! il S el

OsborneMcGraw-Hill - : :

| i

l : J T e ;
{ =2 N .
|

‘f e

PROGRAM FACTORY'

The Macintosh”™
Program Factory™

The Macintosh™
Program Factory"

George Stewart

I PROPERTY OF
CUYAHOGA COUNTY
PUBLIC LIBRARY

Osborne MeGraw-Hill
Berkeley, California

Published by

Osborne McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of
the U.S.A., please write to Osborne MeGraw-Hill at the above
address.

Program Factory is a trademark of the author.
Mastermind is a registered trademark of Invitica Plastics.
Spirograph is a registered trademark of Kenner Products, Inc.

Apple is a registered trademark of Apple Computer, Inc.
Macintosh is a trademark of Apple Computer, Inc.

—The Macintosh™ Program Factory™

Copyright © 1985 by McGraw-Hill, Inc. All rights reserved. Printed in the Unit-
ed States of America. Except as permitted under the Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any form or by any
means, or stored in a data base or retrieval system, without the prior written
permission of the publisher, with the exception that the program listings may be
entered, stored, and executed in a computer system, but they may not be repro-
duced for publication.

1234567890 DODO 898765
ISBN 0-07-881175-9

Karen Hanson, Acquisitions Editor

David Ushijima, Technical Editor

Ted Gartner, Copy Editor 005,265
Judy Wohlfrom, Text Design St49m
Deborah Wilson, Composition

Yashi Okita, Cover Design

— Acknowledgments

The author is grateful to the editors at Osborne/McGraw-Hill
for their professionalism and kindness during the writing of
this book. Thanks in particular to Karen Hanson, Jon Erickson,
and Harry Wong.

To Francina, Nathanael, and Bethany

Table
Of Contents

Introduction
Chapter 1
Making Mazes
Chapter 2

Hidden Words —Part I

Chapter 3

Hidden Words —Part II

Chapter 4
The Matchmaker

Chapter 5
Crossword Puzzle Patterns

Chapter 6

Playback

Chapter 7

Electronic Billiards
Chapter 8
Concentration

Chapter 9

The Codebreaker
Chapter 10
Tic-Tac-Toe

Chapter 11
Quizmaster

Xi

17
39
61
81
99
117
137
153
173

199

Chapter 12
Speed Math

Chapter 13
Text Scanner

Chapter 14
Roman Numerals

Chapter 15
Poetry Generator

Chapter 16
Designs in a Circle

Chapter 17
Secret Messages

Chapter 18
Blazing Telephones

Chapter 19
Nutritional Advisor

Chapter 20

The Time Machine
Index

229
249
283
301
331
353
373
393

409
429

— Introduction

Your Macintosh computer has a tremendous amount of power inside,
power that you've probably seen harnessed to a specific application like
word processing or picture drawing. The programming projects in this
book will put you in control of that computing potential, setting your
Macintosh to work as a puzzle generator, entertainer, teacher, creative
assistant, and general helper.

Most of the programs in this book let you contribute something as
well so that the program’s operation or its results have your own per-
sonal touch. You'll be able to enjoy these programs for a long time to
come, changing them every now and then to suit a special purpose or
simply for variety.

If you're interested in how the programs work, you'll get an inside
view from the commentary that accompanies the program listings.
Many of the techniques and ideas can be adapted to your own pro-
gramming projects.

The programs are written in Microsoft BASIC, the most widely used
form of BASIC. All programs take advantage of the Macintosh graph-
ies and mouse, and many can be used in conjunction with other Macin-
tosh programs, such as MacWrite and MacPaint.

The step-by-step method of presentation and many of the programs
in this book are adapted from my column, “The Program Factory,”
which appeared for a number of years in Popular Computing magazine.

Contents of the Book
The 20 programs in this book fall into five categories:

+ Puzzle-generators produce graphic and word puzzles that may be
printed on paper. The printed puzzles may then be used without
the computer.

+ Games and simulations for one or more persons; the computer
plays an active role.

xi

xii Macintosh Program Factory

o Education and self-improvement projects that teach and exercise
your mind.

« Creativity and art projects in which the computer becomes a way
of extending your imagination.

« Handy tools or application programs for use around the home or
office that has entered the computer age.

Chapter Organization

Each chapter starts off with a little background and introductory
material about the subject at hand. A description of the main pro-
gramming methods or techniques used in the program follows.

The program listing comes next. It is presented in functional blocks
accompanied by explanatory comments. With some of the longer proj-
ects, test points are provided so that you can check your work as you go
along.

A concluding section of each chapter gives hints and tips for using
the program.

Computer Requirements

To run these programs you’ll need a Macintosh computer equipped with
Microsoft BASIC version 2.0 or later. Be sure to use the binary version of
BASIC, not the decimal or “business” version. All of the programs will
run in a 128K RAM Macintosh, but most of them run faster and with
more capabilities in the 512K RAM machine. Your computer system
should also include the Apple Imagewriter printer; other printers may
not reproduce the graphics accurately.

Suggestions for Entering Programs

Before typing in any of these programs, find out how to enter and edit a
program using Microsoft BASIC. Step-by-step instructions are given in
Chapter 2 of the Microsoft BASIC Interpreter manual that is included
with the Microsoft BASIC disk.

Type slowly and carefully when entering the program lines. Check
your work as you go along. Before trying to run a program, save it on
disk and get a printout on paper. Compare the printout line for line
with the listing that appears in this book. A program is like a genetic
code —one bit out of place and a useless mutation may result.

Be especially careful to distinguish the letter O from the numeral 0
and the letter 1 from the number 1. Whenever you see a pair of quotes in

Introduction xiii

“”

a listing, as in “”, count the number of empty spaces between the quotes
and be sure to type in the same number on your computer. Sometimes
there are no spaces at all inside the quotes. We call that a null string or
nu$ in the listings, and it is important that such null strings be truly
null (empty).

Some of the program lines are too wide to fit on a page of this book
so they are continued on the next line with an indentation. When you
come to the end of a line, check to see if the following line is indented. If
it is, don’t press RETURN until you have typed in the indented line as
well.

Always type with your keyboard in the lowercase mode. As soon as
you press RETURN at the end of the program line, Microsoft BASIC will
capitalize and display in boldface those words it recognizes. The resul-
tant capitalization should match the listings shown in this book; if it
doesn’t, you probably made a typing error.

Test points are provided for some of the longer projects. To test an
incomplete program, you will often have to enter a few temporary lines,
run the program, and then delete the temporary lines when the test is
complete. When it is time to delete the lines, they are presented again,
this time highlighted with gray shading. The text also provides explicit
directions for deleting the test lines.

After making a line-for-line check of your program, try to run it. To
determine whether your version is working or not, compare your results
with the sample screen figures shown in the chapter.

Program Disks

All the programs in this book are available on a 3 1/2-inch disk. Price of
the disk is $35. To order your disk, complete the form and mail it with
your personal check or money order to: The Macintosh Program Facto-
ry™, Box 137, Hancock, NH 03449. Allow three weeks for delivery (add
ten days if sending a personal check).

- cut along thisline . ______

Please send me the Macintosh Program Factory on disk. My $35 payment is enclosed.
check money order

Name
Address
City State ZIP

The Macintosh Program Factory™, P.O. Box 137, Hancock, New Hampshire 03449

Chapter 1

‘Making Mazes

If you enjoy the challenge of a good maze, consider the task of designing
one. That turns out to be every bit as difficult, and quite a bit more
interesting. In this chapter, we'll explore the process of maze construc-
tion and then program your Macintosh to produce an endless supply of
mind-boggling mazes of varying complexity.

One way to start a maze is to picture the floorplan of a house with
the walls in place but with no doors. You then add doors until there’s
just one path between any two rooms in the house. Last of all, you add
an entrance and an exit anywhere you like.

Figure 1-1 shows a 4 X 4 maze. Verify for yourself that there is
exactly one path between any two rooms. Try closing the entrance and
exit and making new ones: you will still have a perfectly good maze.

—Constructing Mazes

During construction, a maze is divided into the following three types of
rooms:

» Living quarters (LQ): rooms that are connected by doorways.

2 Macintosh Program Factory

Figure 1-1. A simple maze

Planned expansion (PE): rooms that are adjacent to the living

quarters but don’t have doors yet.

Unused space (US): rooms that are not adjacent to the living
quarters and have no doors.

The steps for building a maze are as follows:

1.
2.
3.

7
8.

Divide the maze into rooms and mark all rooms US.
Randomly select a rcom to be the LQ.

Locate all US rooms adjacent to the LQ and add them to the PE
list.

. If no PE rooms remain, go to step 8; otherwise, continue.
. Randomly select a rcom from the PE list. Add a connecting door

to the LQ (if more than one LQ room is adjacent, randomly select
one).

. Mark the new room as LQ; mark all PE rooms resulting from this

addition.
Go back to step 3, using the new LQ room as the starting point.
Randomly select an entrance on the top and an exit on the bottom.

Verify that this procedure works by using it to create a 4 X 4 maze.
Figure 1-2 shows the first four iterations of the process.

Making Mazes 3

US| US| US| US US| US | PE | US
US| US| PE | US US | PE | LQ | PE
US| PE| LQ| PE US | PE | LQ | PE
US| US| PE| US US| US | PE | US

B
US| PE| PE | US US| PE| PE | US
PE| LQ LQ| PE PE | LQ LQ | PE
US| PE| LQ| PE PE | LQ | 1Q | PE
US| US| PE| US US| PE| PE| US

D

Figure 1-2. First four iterations of the maze construction process

—A Computerized Maze

The maze is stored inside the computer as a two-dimensional array
called M(,). The room at row R, column C corresponds to the array
element M(R,C). The number stored in each element indicates whether

the room is LQ, PE, or US.

US rooms are represented by 0. PE rooms are represented by —1.
LQ rooms are represented by a positive number from 1 through 15, with

the exception of the first LQ room.

The number of an LLQ room is calculated by assigning the numbers

1, 2, 4, and 8 to the east, south, west, and north walls, respectively. The

numbers of all walls with doors are then added to produce a door code.

4 Macintosh Program Factory

PE | PE | PE | US -1]-1]-11 0 M2.1)
1 (Initial LQ

LQ 1Q LQ| PE, s 5 207 -1 area)

LQ | PE | PE| US g [-1]-1] o

PE [Us| Us | Us 1l of o] o

Figure 1-3. Maze under construction

Figure 1-3 shows a maze under construction using the LQ/PE/US
coding system and again using the numerical coding system.

Note that the very first room of the living quarters is a special case
because when it is first selected, it has no doors. This gives it a door
code of 0, the same as unused space (US). To distinguish it from unused
space, we add 16 to its initial door code.

—The Program

The maze program is best explained in logical blocks. Feel free to skim
through the explanations and concentrate on entering the actual list-
ings. You can always return to the explanation later on.

Defining the Maze Window

The first block allocates memory and defines the parameters for the
maze window.

CLEAR ,35000!

LET cXr.lim8=1920

LET wnd.w®=72%5 :REM window specifications
LET wnd.18=72%3.5

LET wnd.x8=72*.25

LET wnd.y®=72*5

Making Mazes 5

LET border®8=6

LET image.w®=wnd.w®8-border®*2
LET image.18=wnd.18-border®*2
LET mox.columnsB=(image.w®-1)\2
LET max.rows®=(image.18-1)\2

Users of 128K Macintoshes must change the first program line; see
the important note at the end of this chapter.

The size of the maze is limited by the screen dimensions and by
BASIC’s string length, 32767 (since the maze drawing commands are
stored as a string). The product of the maze length times its width
(counted in cells) can be no greater than c¢Xr.lim%. Assuming that this
criterion is met, the maze must also be small enough to fit within the 5
X 8.5-inch maze window.

Wnd.w% and wnd.1% are the length and width of the maze window.
Wnd.x% and wnd.y% are the coordinates of the upper-left corner of the
window.

Construction Constants

The next block defines certain constants for the maze construction
procedure.

LET empty.cell®=0

LET first.celi®=16

LET pe.cell®=-1

LET boundery.cel1®=-2

LET image.xy®=border®

DIM exp2%(3),dcB(4),dr8(4),groy®(3),black®(3),whiteR(3)
FOR d®=1T0 4

READ dc®(d®),dr8(d%)

LET exp28(d%-1)=2(d%-1)

NEXT d®

DATA 1,0,0,1,-1,0,0,-1

READ grey.code® black.code®,white.code®
DATA -21931,-1,0

FOR code®=0T0 3

LET gray®(code®)=gray.code®

LET black®(code®)=black.code®

LET white8{code8)=white.code®

NEXT code®

6 Macintosh Program Factory

Array exp2%() holds the values 2*n for n=0 to 3. Since these values
are used repeatedly, it is faster to recall them from an array than to
recalculate them over and over. Arrays dr%() and dec%() hold row and
column increments corresponding to the directions east, south, west,
and north. Arrays gray%(), black%(), and white%() hold the codes for
the three corresponding color patterns.

Implementing the Specification Dialog Box

The next block sets up a dialog box so the program operator can specify
the maze dimensions and wall thickness.

spec.maze:

WINDOW 1,,18,36)-(266,214),3

PRINT TAB(11);"MAZE GENERATOR"

PRINT " Length (1-";max.rows®;"cells)”
PRINT

PRINT " Width (1-";max.columns®;cells)”
PRINT

PRINT " Note: length X width must be <";cXr.lim®
PRINT

PRINT = Wall size (1-";

BUTTON 1,0,"PROCEED" (30, 144)-(92,160)
BUTTON 2,1,"QUIT",(112,144)-(162,160)
BUTTON 3,1,"REDO",(1682,144)-(232,160)

After typing in this block, you can run the first part of the program.
(Close the listing window and type COMMAND-R.) Your screen should
display the dialog box shown in Figure 1-4. Notice that the PROCEED
button is inactive.

Now reopen the listing window (COMMAND-L) and continue typing in
the program. The next block starts the dialog:

begin.dialog:

LET last.c®8=15

LET last.rg=10

LET th8=10 :REM wall thickness

LET f1d8=1 REM active field

LET nxt.fid®8=1

GOSUB check.lw

EDIT FIELD 3,5TR$(th®),(198,112)-(240,127)
EDIT FIELD 2,5TR$(1ast.c®),(1986,48)-(240,63)
EDIT FIELD 1,5TR$(1ast.r®),(196,16)-(240,31)

Making Mazes 7

% File Edit %earch Run Windows

e

MAZE GENERATOR
Length (1- 119 cells)

width (1- 173 cells)

Note: length X width must be < 1920

wall size (1-

(Pepirgp) (ouit) (REDO)

Figure 1-4. The preliminary maze specification dialog box

Last.c%, last.r%, and th% are the initial settings for the maze width,

length, and wall thickness. Each time you run the program, these
values will appear as preset values in the dialog box.

The next block waits until you click the mouse in a field or button, or

until you press RETURN or ENTER:

get.size:

LET act®=DIALOG(0)

IF act®=1 THEN ON DIALOG(1) GOTO check.f1d,quit,begin.dialog
IF act®=2 THEN LET nxt.f1d8=DIALOG(2): GOTO check.fld

IF act®=6 THEN LET nxt.f1d8=(f1d® MOD 3)+1: GOTO check.fld
GOTO get.size

Whenever you enter a field by clicking the mouse or pressing ENTER

or RETURN, the following block checks the contents of that field:

check.fld:

LET entry=YAL(EDIT$(f1d%))

IF entry<>INT{entry) THEN entry.error

IF entry<-327686 OR entry>32767 THEN entry.error
IF f1d®=1 THEN LET last.r8=entry

8 Macintosh Program Factory

IF 11d®8=2 THEN LET last.cB=entry

IF f1d®8=3 THEN LET th®8=entry

ON f1d® GOSUB check.lw,check.lw,check.th
IF 1w.ok®=0 THEN entry.error

IF act®=1 AND th.ok®=1 THEN proceed
LET 11d8=nxt.f1d%

EDIT FIELD fid®

GOTO get.size

‘entry.error:

BEEP

EDIT FIELD f1d®

GOTO get.size

This block first ensures that the number you've entered can be stored as
an integer, then proceeds to a more specific range-checking subroutine,
depending upon which field number you enter.

If lw.0k%=0, the value was out of range, and the program jumps to
the entry-error routine. Act%=1 and th.ok%=1 indicate that you just
pressed the PROCEED button and that the thickness-setting is within
range. In this case, the program exits from the dialog loop and begins
drawing the maze. Otherwise, the program automatically selects the
next field for editing.

The next block ends the program if you press the QUIT button.

quit:
WINDOW CLOSE 1
END

The following lines comprise a subroutine to ensure that the maze
specifications are within range:

check.lw:

LET 1w.ok8=1 :REM length & width flag

LET th.ok8=1 :REM.thickness flag

IF Tast.r8<1 OR last.r&>max.rows® THEN 1w.0k8=0
IF 1ast.c®<1 OR last.c8>max.columns® THEN 1w.0k®8=0
IF last.c8*1ast.r@>cXr.lim® THEN 1w.0k®8=0

LET v8=image.w&\(last.c8*2+1)

LET h®=image.18\(1ast.rg*2+1)

LET 1imit8=-(v®8<=hB)*v8-(hB<vB)*hB

IF th&<1 OR th®>1imit® THEN th.ok®8=0

BUTTON 1,1w.ok®B*th.ok®

Making Mazes 9

LOCATE 8,12

PRINT USING “## dots)";limit§;
RETURN

check.th:

LET 1w.ok®8=1

IF th8<1 OR th®>1imit® THEN 1w.0k8=0
BUTTON 1,1w.0k®

RETURN

Each time the length or width is changed, the program must alter
the displayed limit for wall-size. This limit, limit%, ensures that the
maze will not exceed the window size in either dimension (width or
length).

Test Point

This is a good place to stop to check your work. But first, add this line at
the end of the program listing (borrowed from the next block to be
presented).

proceed:

Now close the listing window and run the program. You should see
the screen presented in Figure 1-5. Try all of the options available in the
dialog box.

Now stop the program (COMMAND-.), and open the listing window.
Continue adding to the listing beginning at the end of the last line
entered, “proceed:”.

Creating the Maze

The next block sets up the maze as a two-dimensional array.

proceed:

WINDOY CLOSE 1

LET cell.size®=th®*2

LET last.pe8=2/3*1ast.r8*last.c¥®

DIM m®B(last.rE+1,last.c®+ 1) pe.rowS(last.pe®),pe.colB(last.pe®),vus(4)
FOR r®=0 TO last.r®+1 STEP last.rg+1

FOR c®=0 TO last.c8+1

LET m®(r®,c%)=boundary.cell®

NEXT c%

10 Macintosh Program Factory

NEXT r¥®

FOR c%=0 TO last.c®+1 STEP last.c&+1
FOR r8=0TO last.rg+1

LET m®(r%,c%)=boundary.cel1®

NEXT r®

NEXT c®

The variable last.pe% is the largest number of planned expansion
(PE) cells possible for a given maze size. Array m%(,) stores the door
codes for each room of the maze. Pe.row%() and pe.col%() store the row
and column location of each PE cell. Vu%() stores the view in all four
directions from the newest living quarters (LQ) cell.

Initially, the maze array m%(,) contains all 0’s, except for the maze
boundary cells along the top, right, bottom, and left edges of the maze.
These cells get the value —2.

The next block opens window 1 for the maze and window 2 for a
dialog box.

Run Windows

MAZE GENERATOR
Length (1- 119 cells)

width (1- 173 cells)
Note: length X width must be < 1920

5 dots) n

(PROCEED) (QuiT J (REDO)

%’%&
f s§;

B }fi 11

i ';g" L
%%fé%iz;é’;g{

l:ummand

Figure 1-5. The complete maze specification dialog box

Making Mazes 11

WINDOW 1,,(wnd.x®,wnd.y®)-(wnd.x8+wnd.w®,wnd.yB+wnd.1%),4
WINDOW 2,,(5.5%72,2.5%72)-(7%72,4%72),3

BUTTON 1,1,"CANCEL" (23,46)-(85,64)

¥INDOW OUTPUT 1

PICTURE ON

CALL SHOWPEN

CALL PENSIZE(th®,th®)

IF th®>S THEN CALL PENPAT(YARPTR{(gray®(0)))

IF th®<5 THEN CALL PENPAT(VARPTR(black%(0)))

This dialog box contains a single CANCEL button that erases the
maze window and restarts the maze specification dialog box. For wall
thicknesses of six or greater, a gray pattern is used; for thinner walls a
solid black pattern is used.

The following lines draw the floorplan of the maze with walls but no
doors:

FOR r®8=1TO last.rg+1

CALL MOVETO(image.xy®,image.xy8+(r%-1)*cell.size®)

CALL LINETO(image.xy®+last.cB*cell.size®,image.xy®+(r&-1)*cell.size®)
IF DIALOG(0)=1 THEN stop.it:

NEXT r®

FOR c®=1TO last.c®+1

CALL MOVETO(image.xy®+(c®- 1)*cell.size®,image.xy%)

CALL LINETO(image.xy8+(c®-1)*cell.size®,image.xy®+last.r&*cell.size®)
IF DIALOG(0)=1 THEN stop.it

NEXT c®

The program draws all the horizontal walls first; then all the verti-
cal walls.
Now the program randomly selects a room to be the first LQ cell.

CALL PENPAT{YARPTR{white®(0)))
RANDOMIZE TIMER

LET r1®8=INT(RND*1ast.r@)+1

LET c1®8=INT{RND*1ast.c®)+1

LET m®B(r1%,c1®8)=first.cell®

LET r8=ri1®

LET c®=c1%®

LET n®8=0

GOSUB get.view

GOSUB merk.pe

12 Macintosh Program Factory

Each time a room is added to the L.Q space, the program calls the
get.view subroutine to look for adjacent unused space (US) cells. Any
US cells discovered are added to the list of PE cells by the mark.pe
subroutine.

The following lines comprise a loop (repeated section of code) that
continues adding rooms to the LQ space until no more PE cells are left:

WHILE n®>0

IF DIALOG(0)=1 THEN stop.it

LET pe.ptr8=INT(RND*n®)+1

LET r®8=pe.row®(pe.ptr®)

LET c®8=pe.colB(pe.ptrE)

GOSUB get.view

select.wall:

LET wd®B=INT(RND*4)+1

IF vuB(wd®)<=0 THEN select.wall
LET pe.row®(pe.ptr8)=pe.row®(n%)
LET pe.col®(pe.ptr®)=pe.col®(n%)
LET n8=n%-1

LET m®B(r®,c®)=exp28(wd%-1)

LET opp.r8=r8+dr¥(wd®)

LET opp.cB=cB+dcB(wdS)

LET m®(opp.r®,opp.c8)=m%B{opp.r8,opp.c8) OR exp2%B((wd%+1) MOD 4)
GOSUB erase.wall

GOSUB get.view

GOSUB mark.pe

WEND

The variable pe.ptr% randomly selects a cell from the PE list. The
program gets the view from that cell; by definition, at least one of the
PE cell’s walls must be adjacent to the LQ space. The program ran-
domly selects walls until it finds one that does lead to the LQ area. That
wall is opened, and the PE cell is added to the LQ space.

The process repeats until the PE list is empty (n%=0).

Next the program randomly selects an entrance on the top and an
exit on the bottom of the maze: ’

LET r8=1

LET cB=INT(RND*1ast.c®)+1

LET wd®=4

LET m®(r®,c8)=mB(r$,c%) OR exp2%(wdB-1)
GOSUB erase.wall

Making Mazes 13

LET r@8=last.r®

LET c8=INT(RND*1ast.c®)+1

LET wd®=2

LET m®B(r®,c8)=m®B(r%,cE) OR exp28(wd%-1)
GOSUB erase.wall

When the maze is complete (or if you press CANCEL during maze
construction), the following lines give you an opportunity to copy the
maze to the Clipboard, ending the program, or to start a new maze:

stop.it:

ERASE m%,pe.row®,pe.col8,vus
PICTURE OFF

LET moaze$=PICTURE$

WINDOYW OUTPUT 2

BUTTON CLOSE 1

CLS

PRINT “Copy picture”

PRINT “to clipboard?”

BUTTON 1,1,"YES",(30,40)-(80,62)
BUTTON 2,1,"N0",{30,74)-(80,96)
WHILE DIALOG(0)<>1

WEND

ON DIALOG(1) GOTO copy.maze,continue

The following lines copy the maze to the Clipboard:

copy.maze:

BUTTON CLOSE 1

BUTTON CLOSE 2

CLS

PRINT “One moment..."

OPEN “clip:picture” FOR OUTPUT AS 1
PRINT *1,maze$

CLOSE 1

CLS

PRINT “The clipboard™

PRINT “holds a copy”

PRINT “of the maze.”

BUTTON 2,1,"0K",(30,74)-(80,96)
WHILE DIALOG(0)<> 1

WEND

END

14 Macintosh Program Factory

When you press the OK button, the program ends. To make a per-
manent copy of the maze, you can paste it into the Scrapbook or into a
MacPaint document.

The following lines let you start a new maze:

continue:
WINDOYW CLOSE 1
WINDOY CLOSE 2
GOTO spec.maze

Finally, here are three subroutines used during maze construction.
The first gets the view from a selected cell:

get.view:

FOR d%8=1T0 4

LET vuB(d®B)=m®B(r8+drB(d®),cB+dcB(d%))
NEXT d%

RETURN

On entry to this subroutine, r% and ¢% are the row and column ad-
dresses of the selected cell. On returning from the subroutine, array
elements VU(1)-VU(4) hold the door codes of the four adjacent cells
(east, south, west, north).

The second subroutine adds a cell to the PE list:

mark.pe:

FOR d%=1T0 4

IF vuB(d®)<>empty.cel1® THEN skip

LET n8=n®B+1

LET pe.row®(n®B)=r&+dr¥(d%®)

LET pe.col®(n®B)=cE+dcB(dB)

LET mB(r8+dr®(d%),c8+dcB(d%))=pe.cell®
skip:

NEXT d%

RETURN

On entry, vu%() contains the four views from the selected cell. The
program randomly selects views until it finds a US cell. It adds this cell
to the PE list and puts the PE cell-code into the corresponding array.

The last subroutine erases a wall from the maze, creating a door
between two rooms:

Making Mazes 15

erase.wall:

LET x18=image.xy®+(c®-1)*cell.size®
LET y18=image.xyRB+{r8-1)*cell.size®

ON wd® GOTO wall.1,wall.2,wall.3,wall .4
wall.1:

CALL MOVETO(x 18+cell.size®,y1%8+th®)
CALL LINETO(x 18+cell.size®,y18+cell.size%-th%)
GOTO erase.done

wall.2:

CALL MOVETO(x18+th®,y18+cell.size%)
CALL LINETO(x 1®+cell.size®-th®,y18+cell.size®)
GOTO erase.done

wall.3:

CALL MOVETO(x18,y18+th®)

CALL LINETO(x1%8,y1%+cell.size%-th%)
GOTO erase.done

wall.4:

CALL MOVETO(x18+th®,y1%)

CALL LINETO(x18+cell.size®-th®,y1%)
erase.done:

RETURN

—Using the Program

Run the complete program. Specify a maze length of 6, width of 10, and
thickness of 15. Then press the PROCEED button. The program should
draw a maze of the specified size in a large rectangular window, while a
CANCEL button will appear in a smaller window to the right, as you
can see in Figure 1-6.

When the maze is complete, the program will ask whether you want
to save the maze on the Clipboard. If you do, press the YES button. The
program will confirm that the maze has been saved and will end, mak-
ing BASIC’s command window active.

To make a permanent copy of the maze, open the Scrapbook and
paste the contents of the Clipboard onto a blank page (COMMAND-V).
Another alternative is to open a MacPaint document and paste the Clip-
board contents.

If you choose not to save a maze on the Clipboard, the program
returns you to the maze specification window. Start another maze or
press the QUIT button to end.

16 Macintosh Program Factory

—

S

ettt

i S

Figure 1-6. A 20 X

Important Note: If you have a 128K Macintosh, you must change
the first line of the program as follows:

LET A=FRE(-1): CLEAR A/2,A/2

You will also need to restrict the size of the maze to 11 X 11.

This chapter has been adapted from “Making Mazes” by George Stewart, appearing in the
November 1982 issue of Popular Computing magazine. Copyright 1982 Byte Publications,
Inc. Used with the permission of Byte Publications, Inc.

~ Hidden Word:
-~ Partl —

This program generates hidden word puzzles as challenging and enter-
taining as the best you’ll find in newspapers or game magazines. The
completed puzzles are truly personalized: you design the puzzle shape,
specify the puzzle vocabulary, and determine the directions in which
words may be placed.

Figure 2-1 shows a sample puzzle created with this program. The
puzzle solution is given in Figure 2-2.
> Because the program is long, it is presented in two parts in this
chapter and the next. Several test points are provided during the pre-
sentation so you can check your progress. However, you won’t be able to
produce finished puzzles until you've entered the entire program.

—Overview

The program starts by asking you to provide a word list and to specify
the puzzle’s dimensions (the grid size). Then you are given the opportu-
nity to define a shape inside the grid. The completed grid consists of

17

18 Macintosh Program Factory

u EKP
60D LoTUSX
RLT Y 08BBT
NST DUR CL
ROSEERN S
ESD LV u SCNHN
1l1AOVY L 41 Hn8B
ROMI 0 Qg0 LN
zZ1 vsT | 6EE
v K Y D ¥
GLSSAAYCRA
IZ6 1 LPN
LHLNGPX
TAKAODOZX
HUCGDG6TPI VYZ
YLJRIENANXD
LILYOBCONZUJ
PXGLCENI!IG
FRUPUDNRA
6YSXVSY

Figure 2-1. Seventeen flower names are hidden in this puzzle

blank cells (the white space in a finished puzzle) and empty cells to be
filled with letters as words are placed into the puzzle.

Given these specifications, the program makes a puzzle. The pro-
gram begins by shuffling a list of all the grid cells and selecting a letter
cell from the shuffled list. The program chooses the longest available
word first and tries to fit it in one of eight possible directions (east,
southeast, south, southwest, west, northwest, north, and northeast).

If the program is unable to make the word fit, it tries the next-
longest word in the list. If none of the words fit, the program skips to
the next cell and tries to fit the longest available word.

After trying all the cells once, the program makes another pass
through the list to find places where two words can start at the same
cell. When it has completed the second pass, the program randomly fills
in the remaining letter cells. The program then prints the puzzle on the
display or printer.

Hidden Words—Part 1 19

TU EKP
6D LOTUSX
RLT 'Y O0BBT
NST DUR CL

ROSEER 8

ESD LUV u SCNHN

11ROV L J1 0B

RODMI 0 Q0 LN

21 UsT | 6EE

VK Yy D ¥
GLSSAAYCRHR
1Z6I1LPHN

LHLNGBPX

TAKAODOZX
HUCG6DGTPIVZ
YLJRIENANKNXD
LILYOBCONZJ

PXGBLCEMNIG

FHUPUNR

6YESXVYSY

Figure 2-2. Solution to the flower puzzle

After the first puzzle has been completed, you can select any of the

following commands in the Puzzle menu on the menu bar (see Figure
2-3):

Change grid shape —edit the puzzle shape

Change grid size —resize the puzzle grid

Change word list —change or replace the word list
Make puzzle —place words into the puzzle grid
Print puzzle —show the completed puzzle

Print solution —show the hidden-word locations
Save grid —save the completed puzzle in a disk file
Save word list —save the word list in a disk file
Quit

20 Macintosh Program Factory

Puzziep

Change grid shape
Change grid size
Change word list
Make puzzie

Print puzzie

Print solution
Save grid

Save word list
Quit

Figure 2-3. The main puzzle generation menu

The menu commands make it possible to change individual puzzle
parameters without having to change all of them. For instance, after
creating a puzzle, you may wish to modify its shape; you can do this
without affecting the word list.

—The Program

The first block of the program loads the labels for the Puzzle menu into
the array menu.label$.

READ last.option®

DIM menu.label$(last.optionB)

FOR j®=0 TO last.option®

READ menu.label$(j%)

NEXT j®

DATA 9,Puzzle

DATA Change grid shape,Change grid size,Change word 1ist
DATA Make puzzle,Print puzzle,Print solution

DATA Save grid,Save word 1ist,Quit

The next lines load the data for the X-cursor, which appears while
you are editing a shape:

DIM cursor®(33)
FOR §8=0 TO 33
READ cursor®(j®)

S——

Hidden Words—Part 1 21

NEXT j%
DATA 0,0,0

DATA &H0B0B,86H0410,6H0220,8H0 140,8H0080
DATA 8H0140,8H0220,6H0410,8H0B08

DATA 0,0,0,0

DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

DATA 6,9

The first 16 numbers in the DATA statements define a 16 X 16 cur-
sor pattern, the next 16 numbers define a 16 X 16 cursor mask, and the
last two define the kot spot, or origin, of the cursor. (Cursor definition is
explained in detail in the Microsoft BASIC Interpreter reference man-
ual, page 298.) Figure 2-4 shows the worksheet used to derive the
cursor-pattern numbers.

Hex Code Cursor Pattern

0000 :
0000 Hot Spot (8,9)
0000 /
0808
0410 [
0220
0140
0080
0140
0220
0410
0808
0000
0000
0000
0000

Figure 2-4. Definition worksheet for the X-cursor

22 Macintosh Program Factory

The program creates two windows —one for use in dialogs and the
other for output. The following lines set up the parameters that control
window location and size:

LET w1.x8=.1%72 :REM window *1 left side
LET w1.y8=.35%72 :REM top

LET wi1.w8=25%72 :REM width

LET w1.18=3.5%72 :REM length

LET w1.x18=w1.wB+w1.x8 REM right side
LET wiy1®=w1.18+w1.y® :REM bottom

LET w2.x8=2.7%72 REM window *2 left side
LET w2.y8=.35%72 :REM and so forth...

LET w2.w%=43%72

LET w2.18=4.3%72

LET w2.x28=w2.wE+w2.%%

LET w2.y28=w2.18+w2.y%

LET border®=6

LET m2.w8=w2.w8-border®*2

LET m2.18=w2.18-border®*2

LET 1.side®=3

LET 1.space®=4

LET 1.tot®=1.side®+1.space®
LET max.cB=(m2.wB+1.sideB)\1.tot3
LET max.r8=(m2.18+1.side®)\1.tot%

Refer to Figure 2-5 for an illustration of the variables used to create
the two windows. The number 72 occurs frequently because it repre-
sents the number of pixels (points on the display) per inch. For example,
2.5%72 (2.5 times T2) represents the number of pixels in 2.5 inches.

The next block of lines initializes constant values:

LET max.wds®=100: REM arbitrary upper limit
LET nu$="": REM no spaces inside quotes
LET hole$="": REM one space inside quotes
LET 1tr.celi$="*"

LET no.more$="/"

LET not.used®=-1

LET yes®B=-1

LET no%=0

LET zone®=2

READ maex.dir®

DIM dev$(3),ri®(mex.dir®),ci®(max.dir8)
LET dev${1)="SCRN:"

Hidden Words—Part 1 23

LET dev$(2)="LPT 1:DIRECT"

LET dev$(3)="CLIP-TEXT"

FOR j8=1TO mex.dir%

READ ri%(j®),ci®(j%)

NEXT j%

DATA B

DATAO,1,1,1,1,0, 1,-1,0,-1,-1,-1,-1,0,-1,1

The variable max.dir% contains the number of path directions that
will be used in hiding words. Arrays ri%() and c¢i%() contain the row
and column increments that produce each path direction. For instance

Upper left corner Upper left corner | .size8=size of block
of window 1 of window 2
Cwl. x8, wi.y8) (w2.x8,w2.y8> | spacef=space

between blocks

® file Edit Scarch Run' Windows Puzzip
EDIT PUZZLE SHAPE T

{{Cursor function:
[ERASE

OFIL

Lower: Plght cocen Lower right corner
of window 1
Col . x18,wi .yl of window 2

(w2 . x28, w2 . yz8 >

Figure 2-5. Explanation of the window-parameter variables

24 Macintosh Program Factory

direction 1 is specified as ri%(1)=0 and ci%(1)=1, indicating that the row
position is unchanged while the column position is incremented by 1.
This produces an easterly movement. The eight possible directions are
given as eight pairs in the last DATA statement.

To simplify the puzzles, reduce the number of directions to four
(east, southeast, south, and northeast) by changing the two DATA state-
ments to DATA 4 and DATA 0,1,1,1,1,0,—1,1.

The next lines initialize the menu and certain control variables:

RANDOMIZE TIMER

LET wd.count®=0

LET last.r8=0

LET last.c8=0

LET g.size®=0

DIM wd$({wd.count®),wuB{wd.count®),wd.seq®(wd.count®)
DIM grid${last.r&,last.c®),cell.seqB(g.size®)
LET m.state®=0

FOR j®=0 TO lest.option®

MENU 6,j%,m.state®,menu.label$({j%)

NEXT j%

MENU 6,3,1 ‘enable change-word-list option
MENU 6,2,1 ‘enable change-size option
MENU 6,9,1 ‘enable quit option

The arrays are defined in this section for formal reasons only; they
are redefined later during execution of certain menu commands. Wd$()
stores the word list; wu%() keeps track of words that have already been
used in the current puzzle. Wd.seq%() is a list of pointers to the words,
sorted according to word length; for instance, wd.seq%(1) points to the
longest word.

Only three of the menu commands are initially enabled with MENU
statements: Change word list, Change grid size, and Quit. Until these
commands have been selected, it makes no sense to select the others
(Make puzzle, Print puzzle, and so forth).

The next group of lines opens the dialog box and automatically exe-
cutes four menu commands: Change word list, Change grid size, Make
puzzle, and Print puzzle. Once these commands have been executed, the
program lets you select additional commands from the menu.

WINDOW 1,,(w1.x%,w1yg)-(wixiBwiyl%),3
GOSUB dialogue.vocab
GOSUB dialogue.size

Hidden Words—Part 1 25

MENU 6,4,1 ‘enable make-puzzle option

GOSUB make.pzl

IF c.flag®=no® THEN GOSUB prt.pzl

get.selection:

MENU 6,0,1

WHILE MENU{0)<>6

WEND

MENU 6,0,0

LET selectionB=MENU(1)

IF selection®=0 THEN get.selection

WINDOW CLOSE 2

IF selection®=last.option® THEN END

IF selection®>3 THEN skip.gs

ON selection® GOSUB dialogue.shape,dialogue.size,dialogue.vocab
GOTO get.selection

skip.gs:

ON selection®-3 GOSUB make.pzl,prt.pzl,prt.sol,save.t,save.vocab
GOTO get.selection

Test Point 1

This gets you to the first test point. Before testing the program, you
must enter temporary “dummy” lines to satisfy subroutine calls in the
program. Add these lines at the end of the current program:

dialogue.vocab:
WINDOW 1

PRINT "dialogue.vocab”
RETURN
dialogue.shape:
¥INDOW 1

PRINT "dialogue.shape”
RETURN

dialogue.size:
WINDOW 1

PRINT "dialogue.size”
RETURN

make.pzl:

WINDOW 1

PRINT “make.pz1”
RETURN

prt.pzl:

WINDOW 1

26 Macintosh Program Factory

PRINT “prt.pzl”
RETURN
prt.sol:
WINDOW 1
PRINT"prt.sol”
RETURN

save.t:
WINDOW 1
PRINT “save.t”
RETURN
save.vocab:
WINDOW 1
PRINT “save.vocab”
RETURN

Now close the listing window and run the program. Your screen
should resemble that shown in Figure 2-6.

Each time you select a command from the Puzzle menu, a new line
appears in the window, confirming the proper operation of the dummy
subroutines.

When you have tested all the active menu items, select Quit from the

® file Edit Search Run Windows SETPPAI K

dialogue.vocab {hanyge {;r?a S%k‘i;}(‘l Sy
dialogue.size Change grid size
Change word list
Make puzzie
Prin? puzzie
Prin? salution

Sape giid
Sape ward st

Quit

Command

Figure 2-6. Screen at test point 1

Hidden Words—Part 1 27

menu to stop the program. Open the listing window. Delete the follow-
ing lines from the listing:

dialogue.vocab:

WINDOW 1

PRINT "dialogue.vocab™
RETURN :

The Word List Dialog Box

Now continue adding these lines at the end of the listing:

dialogue.vocab:

WINDOW 1

CLs

PRINT "SET UP WORD LIST"

BUTTON 1,1,"Key in new words",{2,32)-(w1.x1%8-6,48),3
BUTTON 2,1,"Load new words {(disk)",(2,64)-(w1.x1%-6,80),3
BUTTON 3,0,"Edit word list™,(2,96)-(w1.x1%8-6,112),3

IF wd.count®>0 THEN BUTTON 3,1

WHILE DIALOG(0)<>1

WEND

LET btn®=DIALOG(1)

BUTTON CLOSE 1

BUTTON CLOSE 2

BUTTON CLOSE 3

MENU 6,5,0 ‘disable print puzzle option

MENU 6,6,0 ‘disable print solution option

ON btn% GOTO key.vocab,disk.vocab,edit.vocab

These lines create a dialog box that lets you select three options
relating to the word list: enter words from the keyboard, load words
from a disk file, or edit the existing word list (if there is one).

The following lines handle the keyboard entry of new words:

key.vocab:

CLS

PRINT "KEY IN NEW WORDS"

PRINT

PRINT "How many words?"

PRINT TAB(3);"(1 -";max.wds®;")";
EDIT FIELD 1,™,(120,48)-{156,63)

28 Macintosh Program Factory

key.loop:

LET event®=DIALOG(0)

WHILE event®=0

LET event®=DIALOG(0)

WEND

IF event®<»2 AND event®<»6 THEN key.loop:

LET entry=VAL(EDIT$(1))

IF entry<>INT(entry) THEN key.err

IF entry <&HB000 OR entry>&H7FFF THEN key.err

LET wd.count8=entry

IF wd.count®<1 OR wd.count®>max.wds® THEN key.err
ERASE wd$,wu®,wd.seq®

DIM wd$(wd.count®),wuS(wd.count®),wd.seq®(wd.count®)
EDIT FIELD CLOSE 1

GOTO edit.vocab

key.err:

BEEP

GOTO key.vocab

Once you have set the size of the word list, the program creates an
array to hold the words and then jumps to the Edit word list option.

The next group of lines handles the input of words from a file stored
on disk.

disk.vocab:

CLS

PRINT "LOAD NEW WORDS (DISK)"

LET vocab.file$=FILES$(1,"TEXT") :REM dialog box to select a file
IF vocab.file$=nu$ THEN dialogue.vocab :REM if cancelled try again
LET wd.count®8=0

OPEN vocab.file$ FOR INPUT AS 1

WHILE NOT EOF(1)

LINE INPUT#1, w$

LET wd.count®8=wd.count®+1

WEND

CLOSE 1

ERASE wd$,wu%,wd.seqB

DIM wd${wd.count®),wuB(wd.count8),wd.seq®(wd.count®)

OPEN vocab.file$ FOR INPUT AS 1

FOR j®=1 TO wd.count®

LINE INPUT#*1,w$

LET wd$(j®)=UCASE$(w$)

NEXT j%

CLOSE 1

Hidden Words—Part 1 29

The program prompts you to name the file that contains your word
list. This should be a file created with the Save word list option. How-
ever, it may be any text file that contains one word per line. The
UCASES$ function translates the words into uppercase as they are
loaded into the array wd$().

After the words are loaded from disk, the program executes the Edit
word list option:

edit.vocab:

CLs

PRINT "EDIT WORD LIST"

PRINT

PRINT “Yocabulary size=";wd.count®
BUTTON 1,1,"BACK",{52,144)-(122,159)
BUTTON 2,1,"FORWARD",(52,176)-(122,191)
BUTTON 3,1,"0K",(52,208)-(122,223)
LET wd.ptr8=1

edit.loop:

LOCATE 5,1

PRINT "Enter word *";wd.ptr®;""

EDIT FIELD 1,WD$(wd.ptr®),(6,96)-(w1.w%8-6,111)
edit.here:

LET event8=DIALOG(0)

WHILE event®=0

LET event8=DIALOG(0)

WEND

IF event®=1 THEN edit.btn

IF event®=2 THEN edit.here

IF event®=6 THEN edit.fid

GOTO edit.loop

The program lets you change words and scan forward or backward
through the list. Whenever you enter a new word (or click the OK but-
ton to stop editing), the program checks the field you entered:

edit.fld:

LET wd${wd.ptr8)=UCASES${EDIT$(1))
LET wd.ptr®=wd.ptrg MOD wd.count®+1
GOTO edit.loop

edit.btn:
LET wd$(wd.ptr8)=UCASES(EDIT$(1))
ON DIALOG(1) GOTO edit.back,edit.fwd,done.vocab

30 Macintosh Program Factory

edit.back:

IF wd.ptr®>1 THEN LET wd.ptr8=wd.ptr8-1 ELSE LET wd.ptr8=wd.count®
GOTO edit.loop

edit.fwd:

LET wd.ptr@=wd.ptr® MOD wd.count®+1

GOTO edit.loop

done.vocab:

WINDOW CLOSE 1

MENU 6,8,1 ‘enable save-word-list option

RETURN

Notice that words typed into a field are automatically translated to
uppercase with the UCASE$ function.

Test Point 2

You are now ready for the second test point. Run the program. It should
automatically begin executing the Change word list command. Try the
keyboard entry option. You should see screens similar to those shown in
Figures 2-7a, b, and ¢. Selecting the Edit word list option results in a
screen similar to Figure 2-7c.

Test the disk input option. When the program prompts you to name a
file, press the CANCEL button instead (see Figure 2-7d). You can fully
test this option later on.

The Grid Size Dialog Box

Now stop the program (select Quit from the menu) and open the listing
window. Find these lines and delete them:

Now add these lines, which create a grid size dialog box:

dialogue.size:

WINDOW 1

CLS: ON ERROR GOTO O

PRINT "SET PUZZLE SIZE"

BUTTON 1,1,"Key in new grid size",{2,32)-(w1.x1%-6,48),3
BUTTON 2,1,"Load new grid (disk)",(2,64)-(w 1.x1%-6,80),3

Hidden Words—Part 1 381

BUTTON 3,0,"Edit current grid size™,(2,96)-(w1.x1%8-6,112),3
IF g.size®>0 THEN BUTTON 3,1

WHILE DIALOG(0)<> 1

WEND

LET btn8=DIALOG(1)

BUTTON CLOSE 1

BUTTON CLOSE 2

BUTTON CLOSE 3

MENU 6,5,0 ‘disable print puzzie option
MENU 6,6,0 ‘disable print solution option

ON btn® GOTO key.grid,disk.grid,dialogue.shape

SET UP WORD LIST KEY IN NEW WORDS EDIT WORD LIST
QKey in new words How many words? Yocebulary size= 12
(1-100)
QO Load new words (disk) Enter word * 3
O tdit ward list N [enigator |
FORWARD
a. b. c.

LOAD NEW WORDS (DISK) I

Figure 2-7. Test point 2: dialog boxes for setting up word list (a), specify-
ing list size (b), entering and editing words (c), and loading a
word list from disk (d)

32 Macintosh Program Factory

These lines give you the option of resetting the grid size, loading a
grid from disk, or leaving the existing grid as is (if a grid has been set
up).

Here is the block that prompts you to specify the grid size from the
keyboard:

key.grid:

CLS

PRINT “KEY IN NEW GRID SIZE"
PRINT

PRINT "How many rows?"

PRINT TAB(3); “{ 1-";mex.r®;")"
PRINT

PRINT "How many columns?”

PRINT TAB(3); *(1-";max.c8;")";
EDIT FIELD 2, ,(120,96)-(156,111)
EDIT FIELD 1, ,(120,48)-(156,63)
BUTTON 1,0,"0K",(52,186)-(122,213)
LET f1d®=1

LET nxt.f1d®8=1

LET r.ok8=no%

LET c.ok®=no®

The next series of lines gets your input for the number of rows and
columns in the grid:

grid.loop:

BUTTON 1,c.ok®B*r.ok®

LET event®=DIALOG(0)

IF event®=1 THEN GOTO check.f1d

IF event®=2 THEN LET nxt.f1d8=DIALOG(2): GOTO check.fid
IF event®=6 THEN LET nxt.f1d®=(f1d% MOD 2)+1: GOTO check.fld
GOTO grid.loop

check.fd:

LET entry=VAL(EDIT$(f1d%))

IF entry<>INT(entry) THEN fid.err

IF entryc<-32766 OR entry>32767 THEN fid.err

ON f1d® GOTO check.rov,check.col

The check.fld routine ensures that each value you enter is within
integer range, and then the program executes the appropriate routine
to check for value row and column specifications:

Hidden Words—Part 1 33

check.row:

LET last.r@=entry

LET r.ok®=(1ast.r8»=1 AND last.r¥<=max.rg)
IF r.ok8=no® THEN fid.err

GOTO f1d.ok

check.col:

LET last.cB=entry

LET c.ok8=(1ast.c®>=1 AND last.cB<=max.c%)
IF c.ok®=no® THEN fid.err

fid.ok:

IF event®=1 THEN grid.ok

LET f1d8=nxt.f1d%

EDIT FIELD f1d®

GOTO grid.loop

fld.err.

BEEP

EDIT FIELD f1d%

GOTO grid.loop

grid.ok:

EDIT FIELD CLOSE 1

EDIT FIELD CLOSE 2

BUTTON CLOSE 1

GOSUB grid.arreys

MENU 6,1,1 ‘enable change-shape option
MENU 6,7,1 ‘enable save-shape option
GOTO dialogue.shape

The program will not let you continue until you have entered valid
data for the row and column size.
Here are the lines that load a grid from disk:

disk.grid:

CLS

PRINT "LOAD NEW GRID (DISK)"
LET grid.file$=FILES$(1,"TEXT")
IF grid.file$=nu$ THEN dialogue.size
ON ERROR GOTO grid.file.err
OPEN grid.file$ FOR INPUT AS 1
INPUT#1,last.r® last.c®

GOSUB grid.arrays

FOR r8=1T0O last.r®

FOR c®=1TO last.c®
INPUT#*1,grid$(r®,c®)

34 Macintosh Program Factory

NEXT c®,r%

CLOSE 1

ON ERROR GOTO 0

WINDOW CLOSE 1

MENU 6,1,1 ‘enable change-shape option
MENU 6,7,1 ‘enable save-shape option
GOTO dialogue.shape

The program prompts you to specify the name of a previously saved
puzzle (using an option presented later). The following lines handle
errors that may occur during the loading of the grid file:

grid.file.err:

CLOSE 1

LET errcode®=ERR

IF errcode®<>6 AND errcode®<>13 AND errcode®<>62 THEN unknown.err
BEEP

PRINT “Invalid data in®

PRINT grid.file$

BUTTON 1,1,"0K",(52,220)-(102,240), 1
WHILE DIALOG(0)<>1

WEND

RESUME dialogue.size

unknovyn.err:

ON ERROR GOTO 0

grid.errays:

LET g.size®=1ast.r8*last.c®

ERASE grid$,cell.seq®

DIM grid$(1ast.r,last.c®),cell.seqB(g.sizeS)
RETURN

If you specify a non-puzzle file, the program will recognize that the
format is incorrect and will return you to the puzzle size dialog box.

The grid.arrays subroutine is used by the keyboard and disk input
routines to set up an array to hold the grid values.

Make Puzzle Command

Locate the following lines and delete them:

Hidden Words—Part1 35

Here are the lines that handle the Make puzzle command:

make.pzl:

WINDOW 1

CLS

PRINT "NEW PUZZLE STATUS"

PRINT

BUTTON 1,1,"CANCEL" (52,220)-(116,240),1
LET c.flag®=no®

DIALOG ON

ON DIALOG GOSUB rq.cancel

GOSUB erase.grid

GOSUB sort.words

IF c.flag8=yes® THEN cancel.pzl
GOSUB shuffle

IF c.flag®=yes® THEN cancel.pz]
GOSUB auto.fill

IF c.flag®=yes® THEN cancel.pzl
GOSUB random.fill

IF c.flag®=yes® THEN cancel.pzl
DIALOG OFF

BEEP

PRINT “Puzzle is ready"

BUTTON 1,1,°0K",{52,220)-(102,240),1
WHILE DIALOG(0)<> 1

WEND

WINDOW CLOSE 1

MENU 6,5,1 ‘enable print-puzzle option
MENU 6,6,1 ‘enable print-solution option
RETURN

cancel.pzl:

DIALOG OFF

WINDOW CLOSE 1

RETURN

rq.cancel:

IF DIALOG(0)=1 THEN LET c.flag8=yes®
RETURN

A series of subroutine calls actually produces the puzzle. To allow
testing of the program, type in these temporary lines:

erase.grid:
PRINT “erase.grid”
RETURN

36 Macintosh Program Factory

sort.words:

PRINT “sort.words"
RETURN

shuffle:

PRINT “shuffle”
RETURN

auto.fill:

PRINT “auto.fill"
RETURN
random.fill:

PRINT “random.fill”
FOR j®=1 TO 8000: NEXT § %
RETURN

Test Point 3

Now you can test the Change grid size command and the Make puzzle
command. Run the program. After prompting you to enter the word
list, the program will display the Change grid size dialog boxes shown
in Figure 2-8a, b, and ¢. Try the keyboard option first.

Reselect the Change grid size command from the menu, and try the
Load new grid option. Of course, you don’t yet have a puzzle file to load,
but try loading some other text file; the program should tell you that the

SET PUZZLE SIZE KEY IN NEW GRID SIZE LOAD NEW GRID (DISK)
Invalid data in
O Key in new grid size How many rows? BP#1:ten words
(1- 43)

O Load new grid (disk)
How many columns?
Q tdit current grid size (1- 43)

Figures 2-8. Test point 3: dialog boxes for setting the puzzle size (a), speci-
fying a new size (b), and handling a disk error (c)

Hidden Words—Part 1 37

NEW PUZZLE STATUS

erase.qrid
sart.words
shuffle
auto.fill
random.fill

Figure 2-9. Test point 3: Status indicator during the Make puzzle pro-
cedure

file format is incorrect and should display the dialog box that is shown
in Figure 2-8ec.

After you specify the grid size or load a grid from disk, the program
will execute the Make puzzle command, during which time you should
see a dialog box like that shown in Figure 2-9.

This completes part 1 of the program. Go back through the available
options, making sure that everything works as shown in Figures 2-7,
2-8, and 2-9. Then continue with the next chapter.

This chapter has been adapted from “Hidden Words” by George Stewart, appearing in the
December 1983 issue of Popular Computing magazine. Copyright 1983 Byte Publications,
Inc. Used with the permission of Byte Publications, Inc.

Chapter 3

Hidden Words —
Part 2

In the last chapter you completed the Hidden Words program up
through the Change grid size procedure. This chapter presents the rest
of the program: the Change grid shape procedure and the logic for fill-
ing the puzzle grid with words. Test points are provided to help you
check your work as you go along.

—The Program

Load the program from the last chapter into Microsoft BASIC. Open
the listing window and delete these lines:

dialogue.shape:
WINDOW 1

PRINT "dialogue.shape”
RETURN

39

40 Macintosh Program Factory

Editing the Grid Shape

Now add these lines, which set up the shape dialog box and the shape
editing window:

dialogue.shape:

LET aw®=1ast.c®*1.tot8-1.side®+2*border®
LET a1®8=1ast.r&*.tot8-1.side®+2*border®
WINDOW 2,,(w2.x8,w2.y%)-(w2.xB+ow®, w2.y%+al%),3
WINDOW 1

MENU 6,5,0 ‘disable print puzzle option
MENU 6,6,0 ‘disable print solution option
CLS

PRINT "EDIT PUZZLE SHAPE"

PRINT

PRINT “Cursor function:”

BUTTON 1,0,"ERASE",(52,64)-(122,79),2
BUTTON 2,0,"FILL",(52,96)-(122,111),2
BUTTON 3,1,°0K",(52,208)-(122,235),1

The shape editing window is just large enough to hold the number of
rows and columns you requested. Figure 3-1 shows the initial appear-
ance of the shape editing window formed by an 11 X 13 grid.

The next lines activate a dialog event trap and draw the current grid
shape in window 2:

LET shape.done®=no%

DIALOG ON

ON DIALOG GOSUB shape.interrupt

WINDOY OUTPUT 2

LET color®=1

FOR r8=1TO last.r®

FOR c®=1 TO last.c®

IF shape.done®=yes® THEN LET r@=last.r®: LET c®=last.c®: GOTO skip
IF grid$(r®,c8)<>hole$ THEN GOSUB set.reset
skip:

NEXT c%,r%

LET color®=0

WINDOW OUTPUT 1

BUTTON 1,2

BUTTON 2,1

The event trap lets you change windows to draw in window 2 or to
change the settings shown in the dialog box (window 1).

Hidden Words—Part 2 41

g
g
i

#lursor function:

] ERASE

TJFILL

Change grid shape dialog screen

S

Figure 3-1. Test point 1, the

After the windows are drawn, the program begins checking for
mouse activity (clicking or dragging the mouse) in the active window.

The following lines take effect only while the mouse is in the shape
editing window.

check.mouse:

LET mouse.status@=ABS({MOUSE{0))

WHILE mouse.status®< 1

IF shape.done®=yes® THEN done

LET mouse.status®=ABS{MOUSE{0))

WEND

LET mouse.x8=MOUSE(1)

LET mouse.y®=MOUSE(2)

LET cB=(mouse.xB-border®+1.tot®)\1.tot%

LET r8=(mouse.y®-border®+1.totE)\1.tot%

IF c®B<1 OR c®>last.c® OR r&<1 OR r&>last.r® THEN check.mouse
IF color®=0 THEN LET grid$(r®,c®)=hole$ ELSE LET grid$(r®,c®)=Itr.cell$
GOSUB set.reset

GOTO check.mouse

The program repeatedly executes the WHILE/WEND loop until the
mouse is clicked. The program then determines whether the mouse is

42 Macintosh Program Factory

within the bounds of the grid (IF ¢%<1 OR c%>last.c%. ..). If the mouse
is out of bounds, the program goes back to the check.mouse loop. Oth-
erwise, the program fills or erases the corresponding cell in the grid
array, depending on the current cursor function. (IF color%=0...)
The set.reset subroutine updates the graphics pattern in window 2.
The following lines handle dialog events (clicking the mouse outside
the active window or pressing a button):

shape.interrupt:

LET event8=DIALOG(0)

IF event®=3 THEN change.windows
IF event®<>1 THEN RETURN

LET btn®=DIALOG(1)

ON btn® GOTO set.color,set.color,request.end
change.windows:

LET rq.w®=DIALOG(3)

WINDOW rq.wg

IF rq.w®=1 THEN CALL INITCURSOR
IF rq.w®=2 THEN CALL SETCURSOR(YARPTR(cursor®(0)))
RETURN

set.color:

WINDOW OUTPUT 1

BUTTON btng,2

BUTTON 3-btn%,1

LET color®=btn%-1

WINDOW OUTPUT 2

RETURN

request.end:

LET shape.done®=yes®

RETURN

A dialog event of 8 indicates you pressed the mouse in an inactive
window. In that case, the program goes to the change.windows routine.
A dialog event of 1 indicates you pressed a button; since only window 1
has buttons, the program tests for buttons 1, 2, or 3 (FILL, ERASE,
OK). Any other dialog event is ignored (IF event%<>1 THEN
RETURN).

Note that the change.windows routine also changes the cursor; if you
have selected window 1, the default cursor (INITCURSOR) is used. If
you have selected window 2, the X-cursor (SETCURSOR...) is used.

The set.color routine handles the selection of the FILL and ERASE

Hidden Words—Part 2 43

buttons. The routine request.end handles the selection of the OK button
by setting a flag that will be noticed by the routine in progress when the
dialog event occurs.

The following lines set or erase grid blocks and end the Change grid
shape procedure:

set.reset:

LET char.x®8=(c%-1)*1.tot8+border®
LET chor.y®=(r®8-1)*1.tot8+border®
LINE (char.x®,char.y®)-STEP (1.side®,].side®),color®,bf
RETURN

done:

CALL INITCURSOR

DIALOG OFF

WINDOW CLOSE 2

WINDOYW CLOSE 1

RETURN

Depending on the value of color% (zero or non-zero), the LINE
statement either erases or fills a grid block.

The routine done, executed when you press the OK button, restores
the default cursor (the pointer), terminates dialog event trapping, and
closes both windows.

Test Point 1

First, save the program in its current state in a disk file. Now you can
test the Change grid shape routine. Run the program. Enter a short
word list. Specify a grid size of 13 rows X 11 columns. You should see
the screen pictured in Figure 3-1.

Move to the graphics window and click the mouse. The cursor should
change to an X. Now press the button on top of each block you want to
erase. To restore a block (fill it in again), go back to the cursor-function
window and select FILL. Try to create the pattern shown in Figure 3-2.
Remember that to change functions, you must press the mouse button
two separate times (not a double-click): once to activate the inactive
window, and a second time to specify the desired cursor function.

Press OK when you are done; you should see the new puzzle status
window and a notice that the puzzle is ready (it really isn’t; we still have
to add the puzzle fill routines).

44 Macintosh Program Factory

& fije Edit Sesrdi Run Windows
EDIT FUZZLE SHAPE

Cursoar function:
] ERASE

OFIL

Figure 3-2. Test point 1, the Change grid shape dialog screen showing
the X-cursor and a design in the graphics window

Select the Change grid shape command from the Puzzle menu. You
should be able to edit the shape you created previously.

If the computer should operate abnormally (screen image becomes
garbled or other unusual behavior), requiring you to turn the computer
off and on again, you may have typed in the cursor definition numbers
incorrectly. Carefully recheck the DATA statements that you entered at
the beginning of Chapter 2.

Puzzle Fill Logic

Now we come to the subroutines that actually fill-in the hidden word
puzzle. First locate the following lines and delete them:

erase.grid:
PRINT “erase.grid”
RETURN

Hidden Words—Part 2 45

Erase Grid Subroutine

Now type in the erase.grid subroutine as follows:

erase.grid:

PRINT “Erasing the puzzle grid.."

FOR j®=1T0O last.r®

FOR k®8=1 TO last.c®

IF grid$(j®,k®)<>hole$ THEN LET grid$(j® k®)=1tr.celi$
IF c.flag®=yes® THEN LET jB=last.r®: LET k8=last.c®
NEXT k®,j%

RETURN

This routine leaves holes unchanged, but changes everything else to a
letter cell (IF grid$(j%,k%)<>hole$...).

After each cell is checked, the program checks the cancel flag
(c.flag%). Recall that during the Make puzzle procedure, you can press a
CANCEL button (see Figure 2-9). If you do so, the c.flag% will be set,
causing the subroutine erase.grid to terminate early.

Word Sort Subroutine

Locate and delete the following lines:

sort.words:
PRINT “sort.words”
RETURN

Now type in the sort.words subroutine, which sorts the words
according to length, so the longest can be tried first in each potential
path.

sort.words:

PRINT “Sorting the words..."
FOR j8=1 TO wd.count®

LET wd.seq®(j%)=j%

NEXT j%

LET 1wR=wd.count®
bubble.sort:

IF 1w®8=1 THEN sorted

LET sort.ok8=yes®

46 Macintosh Program Factory

FOR j®=1T0 Iwg-1

LET 128=LEN(wd$(wd.seq®(j%+1)))

LET 118=LEN(wd$(wd.seq®(j%)))

IF 1285118 THEN SWAP wd.seq®(j®),wd.seqRB(j%+1): sort.ok8=no%
IF c.flag®=yes® THEN LET sort.ok®8=yes®: LET 1w®=1
NEXT j%

IF sort.ok®=yes® THEN sorted

LET 1wR=1wS-1

GOTO bubble.sort

sorted:

FOR j®=1TO wd.count®

LET wu®(j®)=not.used®

IF c.flag8=yes® THEN LET j8=wd.count®

NEXT j%

RETURN

These lines perform a bubble sort, going through the list and com-
paring each word with its successor. If the successor is longer, the
words are swapped. The routine goes through the list repeatedly until
no more swaps can be made.

Test Point 2

Add the following lines to the sort.words subroutine just before the final
RETURN statement; these lines will allow you to test the sort.words
subroutine:

FOR j®=1TO wd.count®
PRINT wd$(wd.seq®B(j%))
NEXT j%

PRINT "Press any key"
WHILE INKEY$=nu$

WEND

Now run the program. Type in these words: red, white, blue,
green, yellow. Complete the grid size and grid shape dialogs with arbi-
trarily chosen data. The program should then enter the Make puzzle
procedure, erasing the grid and sorting the words. After the words are
sorted, they should be displayed in window 1 as shown in Figure 3-3.

Hidden Words—Part 2 47

NEW PUZZLE STATUS

Erasing the puzzle grid...
Sorting the words...
YELLOW

WHITE

GREEN

BLUE

RED

Press any key

(omicet)

Figure 3-3. Test point 2, word list in order of word length

Before continuing, locate the following test lines and delete them:

Grid Shuffle Subroutine

First locate and delete the following lines:

Now type in the following subroutine, which shuffles the grid cells so
the program will attempt to fill them in random order.

48 Macintosh Program Factory

shuffie:

PRINT "Shuffling the cells..”

FOR j®=1TO g.size®

LET cell.seq®(j%)=0

NEXT j%

FOR j®=1TO g.size%

find.unused:

LET g.ptr8=INT(RND*g.size®)+1

IF cell.seq®(g.ptr®)<>0 THEN find.unused
LET cell.seq®{(g.ptr®)=j%

IF c.flag®=yes® THEN LET jB=g.size®
NEXT j%

RETURN

Auto Fill Subroutine

Locate and delete these lines:

The following lines control the puzzle fill-in process:

outo.fill:

LOCATE 7,1

PRINT “Filling in the puzzle..”
PRINT "Pass #-

PRINT "Words used="

PRINT "Cells checked="

LET dir8=INT(RND*max.dir&)+1
LET wds.left8=wd.count®

LET pass.num®B=1

of .loop:

LOCATE 8,7

PRINT USING “#";pass.num®
GOSUB next.pass

PRINT

IF pass.num®=2 OR wds.left8=0 OR c.flag®=yes® THEN af.done
LET pass.numB=2

GOTO af.loop

of done:

RETURN

Hidden Words —Part 2 49

The program makes two passes through the list of grid cells, as
explained later on. When both passes are complete, the program is fin-
ished filling in words. Later, any unfilled letter cells will be filled at
random.

The next lines perform pass 1 and 2 through the grid cells.

next.pass:

LET g.ptr®=1

np.loop:

GOSUB cell.check

LOCATE 9,11

PRINT USING "##*",wd.count®-wds.left®
LOCATE 10,13

PRINT USING "##+".qptr®

IF wds.left®=0 OR g.ptr®=g.size® OR c.flag®=yes® THEN np.done
LET g.ptr8=g.ptr&+1

GOTO np.loop

np.done:

RETURN

The variable g.ptr% points to the cell currently being examined; for
instance, g.ptr%—=1 indicates that the first cell (in the shuffled sequence)
is under examination.

The following subroutine checks to see whether a word can be
entered into the puzzle starting with the current cell:

cell.check:

LET wd.ptr=1

LET word.fit8=no%

LET cell.num®B=cell.seq®(g.ptr%)

LET row®=(cell.num®-1)\last.c&+1

LET col®=(cell.num®-1) MOD last.c®+1

LET t$=grid$(row®,col®)

IF pass.num®=1 THEN LET skip.it®=(t$=hole$)

IF pass.num®=2 THEN LET skip.it®=(t$=hole$) OR (t$=1tr.cell$)
IF skip.it®=yes® THEN cc.done

cc.loop:

GOSUB word.check

IF word.fit8=yes® OR wd.ptr8=wds.left® OR c.flag®=yes® THEN cc.done
LET wd.ptr@=wd.ptr8+1

GOTO cc.loop

cc.done:

RETURN

50 Macintosh Program Factory

During pass 1, all letter cells are considered. During pass 2, only
filled-in cells are considered. This allows the program to start two
words at the same cell.

To check a cell, the program tries every unused word to see if it fits
in one of the available directions.

Here are the lines that check whether a given word can be entered
starting with the current cell:

word.check:

LET wd.num®B=wd.seqB(wd.ptr®)

LET try.wd$=wd$(wd.num®)

LET w1®=LEN(try.wd$)

LET dir.count®=1

wc.loop:

GOSUB dir.check .

IF word.fit®=yes® THEN LET dir8=dir® MOD max.dir8+1: GOTO wc.done
IF dir.count®=max.dir® THEN wc.done
LET dir.count®=dir.count®+1

LET dir®=dir® MOD max.dir®8+1

GOTO wc.loop

wc.done:

RETURN

For each word examined, the program tries all possible directions
before giving up on that word.

The following lines determine whether the word try.wd$ can be
placed in the grid starting at row%, col% in the direction specified by
DIR%:

dir.check:

LET f.row®=row®+(w1%-1)*ri%(dir%)

LET f.col®=colB+{w1%-1)*ciB(dir®)

LET r.ok®=(f.row®>=1) AND (f.row®<=zlast.r®)
LET c.ok®8=(f.col®>=1) AND (f.col®<=last.c%8)
IF NOT (r.ok® AND c.ok®) THEN dc.done

LET word.fit8=yes®

LET pr8=row®

LET pc®=col®

FOR 18=1 TO w1®

LET t$=grid$(pr®,pc®)

Hidden Words —Part 2 51

LET word.fit®=(t$=1tr.cell$) OR (t$=MID$(try.wd$,1%,1))
IF word.fit8=no® THEN LET 18=w1%: GOTO nxt

LET pr8=pr8+ri®{dir®)

LET pcB=pcB+ci®(dir®)

nxt:

NEXT 1%

The program traces the proposed path in the grid, comparing each
letter of the word with the corresponding cell in the grid path.

If no conflicts are found, word.fit% is set to yes% at the end of this
routine.

The next block of lines handles the result of the word-fit test:

IF word.fit8=no® THEN dc.done

LET pr@®=row®

LET pc®=col®

FOR 1B=1TO w1%

LET grid$(pr®,pc®)=MID$(try.wd$,1%8,1)
LET pr&=pr8+ri®(dirg)

LET pc®=pcE®+ciR{dirg)

NEXT 1%

IF wd.ptr®>wds.left® THEN cut.word
FOR jB=wd.ptr® TO wds.left®-1

LET wd.seq®(j%)=wd.seqB(j%+1)

NEXT j&

cut.word:

LET wds.leftB=wds.left®-1

LET wuB(wd.num®B)=(dir8-1)*g.size®+cell.num%-1
dc.done:

RETURN

If the word fits, these lines embed it one letter at a time into the
grid. In this case, the word that was used is removed from the sorted
word list.

Random Fill Subroutine

Once the auto fill subroutine has completed both passes through the
grid, the remaining letter cells are filled with randomly chosen letters.

52 Macintosh Program Factory

Before adding the lines for the random fill routine, locate and delete
the following lines:

Now type in the random fill subroutine:

random.fill:

LOCATE 12,1

PRINT “Filling gaps..."

FOR row®=1T0 last.r®

FOR col®=1 TO last.c®

IF grid$(row®,col®)<>itr.cell$ THEN nxt.fill
LET grid$(row®,col®)=CHR$(INT(RND*26)+65)
nxt.fill:

IF c.flag®=yes® THEN LET col®=1ast.c®: LET row®=last.r®
NEXT col®,row®

RETURN

Test Point 3

To test the puzzle fill logic, add these lines to the random fill subroutine
immediately before the RETURN statement:

CLS

FOR row®=1TO last.r8
FOR col1®8=1 TO last.c®
PRINT grid$(rows,col®);
NEXT col®

PRINT

NEXT row®

PRINT “Press any key"
WHILE INKEY$=nu$

WEND

Run the program. Specify a short word list (man,bites,dog) and a
5 X 5 grid size. Define a simple shape so the words will easily fit.

Hidden Words —Part 2 53

NEW PUZZLE STATUS

Erasing the puzzle grid...
Sorting the words...
Shuffling the cells...

Filling in the puzzle...
Pass * 1

Words used= 3

Cells checked= 3

Filling gaps...

Figure 3-4. Test point 3, puzzle fill in progress

During the auto fill process, your screen should show the new puzzle
status similar to Figure 3-4.

When the puzzle is complete, the program should print a copy of the
puzzle in window 1 similar to that shown in Figure 3-5.

Before continuing, delete the following lines from the listing:

CLs

FOR row®=1 T0 last.rg
FOR co1®=1TO last.c®
PRINT grid$(row®,col®);
NEXT col®

PRINT

NEXT row®

PRINT "Press any key™ -
WHILE INKEY$=nu$
WEND .

54 Macintosh Program Factory

BITES
RTKNI
MHAZD
CMAJO
DSCRG
Press any key

Figure 3-5. Test point 3, puzzle printout (hidden words are: man, bites,
dog)

Save Grid Subroutine

Now we’ll present the lines that save a grid pattern (its size and shape).
But first locate and delete the following dummy lines:

Now enter the save grid routine:

save.t:

WINDOW 1

CLs

PRINT “SAVE PUZZLE GRID"
grid.file$=FILES$(0)

IF grid.file$=nu$ THEN st.done
OPEN grid.file$ FOR OUTPUT AS 1

Hidden Words—Part 2 55

WRITE*1,last.r®, last.c®
FOR r®=1TO last.r®
FOR c®8=1TO last.c®
WRITE*1,grid$(r®,c®)
NEXT c®,r¥

CLOSE 1

st.done:

WINDOW CLOSE 1
RETURN

Save Word List Subroutine
Locate and delete the following lines:

save.vocab:
WINDOW 1

PRINT “save.vocab®
RETURN

Now enter these lines, which let you save the word list in a disk file:

save.vocab:

WINDOW 1

CLS

PRINT "SAVE WORD LIST"

vocab.file$=FILES$(0)

IF vocab.file$=nu$ THEN sv.done
OPEN vocab.file$ FOR OUTPUT AS 1
FOR j8=1TO wd.count®

IF wd$(j®)=nu$ THEN skip.null
PRINT*1, wd${j%)

skip.null:

NEXT j%

CLOSE*1

sv.done:

WINDOW CLOSE 1

RETURN

Any null entries that are in your word list are not saved (IF
wd$(G%)=nu$...). The words are saved one per line in a text file. The
file may be reloaded by the Hidden Words program or by a word pro-
cessing program.

56 Macintosh Program Factory

Print Subroutines

Locate and delete the following lines:

prtpzl:
WINDOW 1

The following subroutine prints a copy of the completed puzzle on
the screen, printer, or Clipboard:

prt.pzl:

GOSUB select.device
CALL TEXTFONT(4)
CALL TEXTSIZE(9)
CALL TEXTFACE(1)
FOR tr®8=1TO last.rg
FOR tc®=1TO last.c®
PRINT#*1, , grid${tr®,tc8);
NEXT tc®

PRINT#1,

NEXT tr®

CLOSE 1

CALL TEXTSIZE(12)
CALL TEXTFONT(3)
CALL TEXTFACE(0)
RETURN

The puzzle must be printed in a monospace font; that is, one in
which every letter uses the same amount of space on a line; otherwise
the columns will not line up correctly and the shape will be distorted.
For this reason, font number 4 (Monaco) was used. Text size 9 and text
face 1 were selected for appearance’s sake. Note: the monospaced font
is used only for output to the screen.

Locate and delete the following lines:

- prtsol:
_ WINDOW 1
~ PRINT prt.sol"

Hidden Words—Part 2 57

The next lines print a copy of the puzzle solution on the screen, print-
er, or Clipboard.

prt.sol:

GOSUB select.device

CALL TEXTSIZE(9)

CALL TEXTFONT(4)

CALL TEXTFACE(1)

PRINT#1, "The hidden words are: "
PRINT#1, "word (row:col:direction)”
FOR j®=1 TO wd.count®

IF wu®(j®)=not.used® THEN nxt.sol
LET dir8=wuR{j®)\g.size®+1

LET cell.numB=wuR(j®)-(dir8-1)*g.size®+1
LET row®=(cell.num®-1)\last.c8+1
LET col®=(cell.num®-1) MOD last.c8+1
PRINT#1, USING "& (*## .## .##)".wd$(j®),rows,col8,dir®
nxt.sol:

NEXT j%

CLOSE 1

CALL TEXTSIZE(12)

CALL TEXTFONT(3)

CALL TEXTFACE(0)

RETURN

The final subroutine of the program lets you select the output device
for printing:

select.device:

WINDOW 1

CLS

PRINT "SELECT QUTPUT DEVICE"

LET device®=1

BUTTON 1,2,"SCREEN",(52,48)-(122,63),3
BUTTON 2, 1,"PRINTER",(52,80)-(122,95),3
BUTTON 3,1,"CLIPBOARD",(52,112)-(142,127),3
BUTTON 4,1,"0K",(52,156)-(122,183),1
sd.loop:

WHILE DIALOG(0)<> 1

WEND

LET btn®=DIALOG(1)

58 Macintosh Program Factory

IF btn®=4 THEN dev.ok

LET device®=btn®

BUTTON btng%,2

BUTTON btn® MOD 3+1,1

BUTTON (btn®+1)MOD 3+1,1

GOTO sd.loop

dev.ok:

WINDOYW CLOSE 1

IF device®=1 THEN WINDOW 2,,(w 1.x%8,w 1.y8)-(w2.x2%8,w2.y2%),3
WIDTH dev$(device®),255,20NER
OPEN dev$(device®) FOR OUTPUT AS 1
RETURN

—Testing and Using the Program

Figure 3-6 shows the select output device dialog box. Run the program
and try each of the three devices. After using the Clipboard, end the
program (Quit command), exit from BASIC to the Finder, and examine
the Clipboard to see if it holds your puzzle (or puzzle solution). You can-

SELECT OUTPUT DEVICE

@® SCREEN
QO PRINTER

(O CLIPBORRD

Figure 3-6. The select output device dialog box

Hidden Words—Part 2 59

Qi Qi
E] s
I XK cecn I XK cecn
ESUOCHTASA ESUONTA
NOCIBCU INOCIBCU
0OSRUCSBH P ROSRUCSEBHN P
KEYBOARARDDH JKEVYBOARDDMH
BGRAPHICSY HBGRRARPHICSY
LKAPPLEEN LKAPPLEEN
JRETNIRPEB JRETNIRPEB
LMEERCS LNEERTCS
HJ no HJ L
Grid cell

<L,

Figure 3-7. Sample puzzle output to the screen (note the position of grid
cell (1,1) in the upper left corner)

not save both the solution and the puzzle on the Clipboard. Typically, a
printed copy of the puzzle solution will be sufficient.

Once the puzzle is saved on the Clipboard, you paste it to the Scrap-
book or into MacWrite or MacPaint (the puzzle may be too large for
pasting into MacPaint).

Remember, the puzzle pattern won’t look right unless the current
text font is monospaced. For instance, in the Clipboard, the puzzle will
not look right. You must copy the puzzle to Macwrite and reset the font
to Monaco 9.

Figures 3-7 and 3-8 show a sample puzzle and puzzle solution using
the screen for output. Notice that the solution lists three numbers after
each word. The first and second numbers identify the row and column
where the word starts. The upper left-hand corner of the grid is row 1,
column 1; often this position will be blank in the puzzle shape, but you
must still use it as the reference point for interpreting the puzzle solu-
tion (see the labeled position in Figure 3-7).

The third number after each word is the path direction. Numbers
run from 1 to 8, corresponding to east, southeast, and so forth, in a
clockwise rotation. (If you changed the direction count (max.dir%) or
direction increments (arrays ri%() and ci%()) from what was supplied
in Chapter 2, the path numbers and directions will differ accordingly.)

60 Macintosh Program Factory

" % fthe Edit Sear<k Run

he hidden words are:
glllord (ros:col:direction)
2NMAC (4 : 9 : 4)
AKEYBORRD ¢ 8 : 2 :

MSCREEN (12 : 9 : 5>
AHOUSE ¢ 5 : 6 : 35)
AAPPLE (10 : 4 : 1)
HICON ¢ 6 : 5 : 5)
@DISK C 1 - 8 : 4)

Figure 3-8. Sample puzzle solution output to the screen

Note: The maximum puzzle size for use with a 128K Macintosh is
20 X 20 (or any size such that rows X columns <= 400).

—Editing Grid Shapes

Editing a grid shape is similar to using the pencil tool in MacPaint. The
program provides a window filled with little blocks. Each block repre-
sents a letter cell. Using the X-shaped cursor, you selectively erase
blocks until your shape is fully defined. Hold down the mouse button to
erase; release it to move around the window without erasing. If you
erase too many blocks, change the cursor function to FILL and replace
the blocks. Again, you hold down the mouse button to fill and release it
to move around the window without filling.

You can create free-form designs or more carefully planned pictures.
To plan a shape, draw the desired outline on graph paper using no more
then 43 squares in any direction. Then fill in all those squares that are
halfway or fully inside the outline. For each colored-in graph square,
fill in a block on the grid; for each blank graph square, erase a block on
the grid. Finally, use this “digitized” shape as your guide for creating
the grid shape with the Hidden Words program.

Finally, if your word list is long and the shape is irregular or small,
be prepared for a substantial delay while the program attempts to fill-
in all the words.

This chapter is adapted from “Hidden Words” by George Stewart, appearing in the
December 19883 issue of Popular Computing magazine. Copyright 1983 Byte Publications,
Inc. Used with the permission of Byte Publications, Inc.

Chapter 4

The Matchmaker

The Matchmaker program enables you to create an endless succession
of personalized logic puzzles. You've probably seen this type of puzzle
before. Given a list of characters, a list of attributes, and a set of clues,
you are to match each character with its attribute. By specifying the
two lists, you are able to determine the subject and difficulty of the resul-
tant puzzles.

Figure 4-1 shows a puzzle produced by the Matchmaker program.
Before continuing with this chapter, it will be worthwhile for you to try
solving the puzzle. Even if you don’t succeed, you'll gain some insight
into the processes we’ll be discussing.

—Overview of Program Logic

Given the two lists (characters and attributes), the program randomly
formulates a clue about the various matchups.

Clues can take four forms:

e p implies q

* not p implies q

* p implies not q

* not p implies not q

where p and q are character-attribute pairs.

61

62 Macintosh Program Factory

CLUES

If Sally’s grandmother lives in Kansas then Jim lives in Texas
If Sally’s grandmother moved from Kansas then Sally lives in Idaho
If Sally moved from Texas then Sally’s grandmother moved from Kansas

Match each character with the corresponding attribute:

Character Attribute
Sally Idaho
Sally’s grandmother Kansas
Jim Texas

SOLUTION

sesuRy[Ul SOAl[wWip
SBX9J, Ul SaAl] Joyjowpued sA[[BS
oyep] ul saAll A[[eS

Figure 4-1. A sample logic puzzle from the Matchmaker

For example, the proposition “If Sally’s grandmother lives in Kan-
sas, then Jim lives in Texas” is an instance of the general form p implies
g. Recognizing the other forms can be a little harder. For example, the
proposition “If Sally moved from Texas, then Sally’s grandmother
moved from Kansas” is an instance of the general form not p (Sally does
not live in Texas) implies not q (Sally’s grandmother does not live in
Kansas).

The program cannot take randomly selected matchups and call them
clues; it first must verify that the pairings are logically consistent and
that they imply a unique solution. To do this, the program uses a truth
table showing which matchups are true for each of the possible
solutions.

Table 4-1 shows the truth table contents for 3 data pairs. Each
column in the table signifies a distinct solution; each row signifies a
particular pairing. Note that there are exactly three T’s in each column;
that’s because there are only three valid pairings in each solution.

The Matchmaker 63

Table 4-1. Truth table for 3-pair puzzles

Pairs Solution Number

1 2 3 4 5 6
Al T T F F F F
A2 F F T T F F
A3 F F F F T T
B1 F F T F T F
B2 T F F F F T
B3 F T F T F F
C1 F F F T F T
Cc2 F T F F T F
C3 T F T F F F

—The Program

The first program block loads the data for the Matchmaker menu:

READ last.option®

DIM menu.label$(last.option®)

FOR j®8=0 TO last.option®

READ menu.label$(j%)

NEXT j%

DATA 5,Matchmaker

DATA Generate clues,Change data
DATA Print clues, Print solution,Quit

The next block sets up certain program constants:

LET dg.x®8=.1%72
LET dg.y%=.35%72
LET dg.x18=dg.x8+6%72

64 Macintosh Program Factory

LET dg.y1®8=dg.y8+4*72

LET true®=(1=1)

LET folse®=(1=0)

RANDOMIZE TIMER

DIM t®(1),18(1),1t8(1),pB(1),0%(1),9%(1)

LET min.pairs®=3

LET maex.pairs8=4

DIM ba®(max.pairs®), bpB(max.pairs®), btB(max.pairs®), a${max.pairs%,2),
t1$(2), dev$(2)

LET dev$(1)="SCRN:"

LET dev$(2)="LPT 1:DIRECT"

LET pairs8=max.pairs®

FOR pa%=1 TO pairs®

FOR which®=1T0 2

READ a$(pe®,which®)

NEXT which®,pe®

READ t1$(1),t1$(2)

DATA A,1,B8,2,C,3,D0,4,is not,is

The variable pairs dg.x%,dg.y% and dg.x1%,dg.y1% define the upper
left and lower right corners of the window used for dialogs and output.
The arrays t$, £%, and so forth are defined in this block for formal rea-
sons only; later on they are erased and redefined to suit the require-
ments of the puzzle data.

The DATA statements at the end of the block provide initial values
for four characters and attributes, as well as verb forms for positive and
negative statements.

Generating the First Puzzle

The next block opens the dialog window, prints a title, and generates
the first puzzle.

WINDOW 1,,(dg.x®,dg.y%)-(dg.x18,dg.y1%),3

PRINT "THE MATCHMAKER: a logic-puzzle generator.”
PRINT

PRINT "Given a series of clues, the object is to"

PRINT “Match each character with one of the attributes.”
GOSUB wait.ok

GOSUB make.tables

LET m.state®=1

FOR j®=0 TO last.option®

The Matchmaker 65

MENU 6,j%,m.state®,menu.label$(j%)
NEXT j%
MENU 6,0,0 : REM disable menu

The wait.ok subroutine places a button in the lower right corner of
the window and waits for you to click on it.

Figure 4-2 shows the title window.

The make.tables subroutine generates the truth tables that are
needed during clue generation and then produces a deterministic set of
clues about the data.

Figures 4-3 and 4-4 show the screen appearance during the truth-
table and clue-generation procedures.

The Menu Loop

The next block of lines lets you select an item from the Matchmaker
menu on the menu bar:

get.selection:
MENU 6,0,1 : REM enable menu
WHILE MENU(0)<>6

. . |
" @& e EdIt Seartt AU Windows

PR SRS SRR S48

THE MATEHMAKER a loglc puzzle generator.

L L R LR et

Given a series of clues, the object is to
:{Match each character with one of the attributes.

Flg'ure 4-2. The 1n1t1a1 title screen

66 Macintosh Program Factory

r

A i . o~ H
% file Edit Scarch Run Windows
TS 35 SRS S B RSS s SEas § SIS A3 S SR 535555 35558988 S 5559535 53555555 555855553 55 5555555558555 555888855585555535555 5855 5555585555583555555!

Geﬁératmg new truth tables for 24 possible solutions.

{Tables are ready.

@

Figure 4-3. Screen during generation of the truth tables

6 file Edit Search Run I.Umdums

#Clues generated so far.

i

. Possible solutions remaining:
'The puzzle is ready

Click on the OK button, then select an option from the menu.

Figure 4-4. Screen at the end of the clue-generation procedure

The Matchmaker 67

WEND
MENU 6,0,0 : REM disable menu
LET selection®=MENU(1)

ON selection® GOSUB generate.clues,change.data,prt.clues,prt.sol,quit
GOTO get.selection

quit:

WINDOW CLOSE 1

END

The program waits in the WHILE/WEND loop until you select a
command. The entire menu is then disabled, and the command you
selected is executed. The menu is not re-enabled until the program
completes the command. Figure 4-5 shows the Matchmaker menu.

The Wait.ok Subroutine

The following lines are used by several program commands as a way of
stopping the action so you can read the screen before it is erased:

wait.ok:

WINDOW 1

BUTTON 1,2,"0K",(360,250)-(398,276)
WHILE DIALOG(0)<>1

WEND

WINDOW CLOSE 1

RETURN

Setting Up the Truth Tables

When you first run the program (also when you change the number of
data pairs), the truth tables must be re-defined.

make.tables:

WINDOW 1

CLS

ERASE t®%,1%,1t%,p%,0%8,9%

LET np%=1

FOR j8=1TO pairs®

LET npB=npR*j%

NEXT j%

PRINT “Generating new truth tables for”; np%; "possible solutions.”

68 Macintosh Program Factory

r % . Al
% file Edit Search Run Windows : .

Generate clues |

: Change data ii
5 Print clues
] ' Print solution
Quit
S
L
i
% i

Command

[}

Figure 4-5. The Matchmaker menu

LET nc&=pairs®*pairs®

DIM t&(nc®&,np®),f B(np%B,npR),ftB(np&),pE(np%),q%B(np%),g8(npE)
FOR j8=1TO pairs®

LET bp%(j%)=0

LET bt®(j%)=0

LET ba®(j®)=true®

NEXT j%

Array t%(,) is a truth table that specifies all possible solutions for a
given number of data pairs. The array f%(,) keeps track of how each
clue relates to the list of possible solutions. For instance, f%(2,5) shows
whether or not the second clue is consistent with the fifth solution.

Array ft%() keeps the same information for a single, tentative clue.
When the clue has been checked for consistency with all preceding
clues, the information is copied into f%(,). The arrays p%(), g%(), and
q%() keep track of the matchups used in each clue.

Np% is the number of possible solutions (possible matchups) for a
given number of data pairs. The variable nc% contains the number of
possible combinations of items from the character and attribute lists.

The Matchmaker 69

Generating Possible Solutions

The next lines begin the process of generating all n! possible solutions.

start.perms:

LET 18=1 :REM tree-level counter
LET p8=0 :REM permutation counter
move.ptr:

LET bp®(1%)=bp&(1%)MOD pairs® + 1

IF ba%(bpB(18))=false® THEN move.ptr
LET btB(1%)=bt B(18)+1

LET ba®({bpB(1%))=false®

IF 1®8=pairs® THEN reached.end

LET 18=1%8+1

GOTO move.ptr

The program generates solutions by spanning a tree as shown in
Figure 4-6.
Each pathway from the tree trunk to an endpoint corresponds to one

Tree Trunk

Figure 4-6. A tree diagram showing all 24 possible solutions to a 3-pair
puzzle. Each path represents one solution

70 Macintosh Program Factory

possible solution to the puzzle. In Figure 4-6, the highlighted path cor-
responds to the pairing A is 2, Bis 3, C is 1.

When the program reaches an endpoint of the tree, the following
lines record the pairings defined by the latest pathway:

reached.end:

LET pB=pB+1

FOR jB=1T0 pairs®

LET t®((j®B-1)*pairs®+bpB(j%),p%)=true®
NEXT j%

back.up:

LET ba®(bp%(1%8))=true®

LET bt®(1%)=0

LET 18=18-1

IF 18=0 THEN mt.done

IF bt®(18)=pairs®-18+1 THEN back.up
LET ba®(bp®B(18))=true®

GOTO move.ptr

mt.done:

PRINT

PRINT "Tables are ready.”

GOSUB wait.ok

Generating Clues

After generating all possible solutions, the program begins generating
clues:

generote.clues:

WINDOW 1

CLS

PRINT "GENERATE CLUES"
LOCATE 3,1

PRINT “Clues generated so far: "
PRINT “Possible solutions remaining:”
gc.loop:

LET p.oldB=false®

LET q.oldB=false®

LET fc®=0

LET pn%=0

LOCATE 3,27

PRINT USING "*##",pn®

The Matchmaker 71

LOCATE 4,27

PRINT USING "**";np®-fc®
FOR j8=1TO np®

LET ft®B(j®)=true®

NEXT j®

P.old% and q.0ld% are the most recent pairings; the program keeps
this information to avoid giving repetitious clues. Pn% is the number of
clues generated so far.

The following block randomly selects a proposition:

pick.pg:

LET p&=INT(RND*nc&)+1

LET q&=INT(RND*nc®)+1

LET p18=(p%-1)\pairs®+1

LET p2%=p&-(p1%-1)*pairs®

LET q18=(q%-1)\pairs®+1

LET q28=q%-(q1%-1)*pairs®

IF (p18B=q1%) OR {p2%=q2%) THEN pick.pq
pick.g:

LET g®=INT(RND*np®&)+1

LET pv®=t®(p%,g%)

LET qv®=t%(q%,g%)

IF {(pv®B=p.o1d®) AND (qv%=q.01d%) THEN pick.g
LET pn&=pn%+1

LET g®B{pn%)=g%

LET p®(pn®)=p%

LET q®B(pn®)=q%

LET j%=pn%

The randomly chosen variables p%, q%, and g% uniquely define a
proposition. For example, suppose p%, q%, and g% have the values 3, 4,
and 2. Referring to Table 4-1, p%—=3 refers to pairing A8; q%—4 refers
to pairing B1; and g%—=2 refers to solution 2. Under solution 2, A3 is
false and B1 is false. Thus the proposition is “not A3 implies not B1.”

The next group of lines determines the efficacy of the latest clue on
the logical system of clues.

FOR j®=1T0 np®

LET pt®=t%({p®,j%)

LET qt%=t%(q%,]%)

LET f®(pn®,j®)=(pyB=pt®) IMP (qvB=qtR)

72 Macintosh Program Factory

NEXT j%

LET fa%=0

FOR j8=1TO np®

IF 1t®8(j%)=true® AND f8(pn®,j®)=false® THEN faB=fa%+1
NEXT j%

IF fa®>0 THEN effective.clue

LET pn®=pn®-1 ’

GOTO pick.pq

The variable fa% counts the number of possible solutions ruled out by
the latest clue. If fa%>0, the clue is effective; otherwise, it is syllogistic
(it rules out no new solutions at all). In the latter case, the program
discards the clue and gets another.

In the case of effective clues, the program compares the new clue
with the preceding clues to see if it is redundant (ruling out solutions
that have already been ruled out) or too exclusive (ruling out all remain-
ing solutions).

The following lines make the comparison:

effective.clue:

IF faB+fc®>=np® THEN gc.loop : REM inscluble, try again
LET fcB=faB+{c®

FOR j®=1TO np%

LET ft8(j8)=1%(pn%,j%B) AND ftB(j®)

NEXT j%

LOCATE 3,27

PRINT USING “*#";pn®

LOCATE 4,27

PRINT USING “##°;np®B-fc8®

IF fc8=np%-1 THEN enough.clues

LET p.old®=pv¥

LET q.01dB=qv®

GOTO pick.pq

enough.clues:

PRINT

PRINT “The puzzle is ready.”

PRINT

PRINT “Click on the OK button, then select an option from the menu.”
GOTO wait.ok

The variable fc% counts the number of solutions that have been ruled
out. When fc% is one less than the total number of solutions, the clues

The Matchmaker 73

imply a unique solution, so the puzzle is ready. Otherwise the program
goes back to generate another clue (GOTO pick.pq).

Figure 4-4 shows the screen appearance at the end of the clue selec-
tion process.

Changing Clue Data

Initially the characters are A, B, C, and D, and the attributes are 1, 2, 3,
and 4. The next block allows you to change the data used in formulating
the actual clues:

change.data:

WINDOW 1

CLS

PRINT "CHANGE PUZZLE DATA"

BUTTON 1,5-pairs®,"3 pairs",(18,32)-(90,47),3
BUTTON 2,pairs®-2,"4 pairs”,(126,32)-(198,47),3
BUTTON 3,1,"0K",{234,26)-(306,53),1

LET new.pairs®=pairs®

set.pairnum:

WHILE DIALOG(0)<>1

WEND

LET btn®=DIALOG(1)

IF btn®=3 THEN pairnum.ok

LET new.pairs®=btn®+2

BUTTON 1,5-new.pairs®

BUTTON 2,new.pairs8-2

GOTO set.pairnum

Your data can consist of three or four data pairs. Puzzles based on
four data pairs are considerably harder to solve than those based on
three data pairs.

Figure 4-7 shows the dialog window for specifying the number of
data pairs.

The next block displays the data presently in use:

pairnum.ok:

BUTTON CLOSE 1

BUTTON CLOSE 2

BUTTON CLOSE 3

LET changed.pairnum®=(pairs®<>new.pairs®)

74 Macintosh Program Factory

" & file Edit Search Run lllmdows Mutohmakar

SSSEISSISISSIIITISIIIRISIIIS

CHANGE PUZZLE DATA

' QO 3 pairs @ 4 pairs l 0K l

333 SRS S A SOA a3 S8R AT RTITRBSSS

S N R

Figure 4-7. Dialog box for selecting the number of data pairs

LET pairs®=new.pairs®

LET n.fields®=pairs8*2+2

LOCATE 5,1

PRINT “Positive verb”

PRINT

PRINT "Negative verb”

PRINT

PRINT TAB(10)"Character"; TAB(38); “Attribute”
FOR pa%=1 TO pairs®

FOR which®=1.T0 2

LET f1d8=2+({pa%-1)*2+which®

LET f1d.x®B=(which®-1)*212+9

LET f1d.y8=(pa%-1)*21+9*16

EDIT FIELD f1d®, a$(pa®,which®), (f1d.x®,f1d.y®)- (f1d.x8+200,f1d.y%+15), 1
NEXT which®,pa®

EDIT FIELD 2,t1$(1),{112,96)-(2688,111)

EDIT FIELD 1,t1$(2),(112,64)-(268,79)

BUTTON 1,1,"0K",(230,dg.y1%8-586)-(302,dg.y 1 %8-35)

The Matchmaker 75

ws Mutchmakey

R T T P

3 % file Edit Scarch Run Windo

H{Negative verb [is not .]

Character Attribute

Figure 4-8. The data entry and editing screen

The program lets you move from one edit field until another until
you have filled them all and pressed the OK button. Figure 4-8 shows
the dialog window that lets you change the puzzle data.

The following lines wait for you to press the OK button, signifying
that you have finished editing or changing the data:

LET f1d%=1

cd.loop:

LET event®=0

WHILE event®=0

LET event®=DIALOG{0)

WEND

IF event®=1 THEN check.data

IF event®=2 THEN f1d®=DIALOG(2)
IF event®=6 OR event®=7 THEN f1d%=11d% MOD (n.fields®)+1
EDIT FIELD f1d%

GOTO cd.loop

76 Macintosh Program Factory

The program waits in the WHILE/WEND loop until you select an edit
field with the mouse pointer, press ENTER, RETURN, or TAB, or click on
the OK button.

The next lines copy the revised data into the appropriate arrays.

check.data:

LET tf$(1)=EDIT$(2)

LET tf$(2)=EDIT$(1)

FOR pa%=1 TO pairs®

FOR which®=1T0O 2

LET f1d8=2+(pa%-1)*2+which®
LET a$(pa®,which®)=EDIT$(f1d%)
NEXT which® pa®

cd.done:

WINDOW CLOSE 1

IF changed.pairnum® THEN GOSUB make tables
RETURN

If you have changed the number of data pairs from the previous set-
ting, the program must regenerate its truth tables (IF changed.pair-
num%. ..). Otherwise the program simply returns control to the menu
procedure (get.selection). This allows you to keep the same set of formal
clues but change the words that are plugged into the formal structure.

Printing the Puzzle
Here are the lines that print the clues.

prt.clues:

WINDOW 1

CLS

PRINT “PRINT CLUES"
GOSUB select.device
PRINT#1, "CLUES"
PRINT*1,

FOR j®=1 TO pn®

LET g8=g®(j®)

LET p8=p%(j%)

LET q®8=q%(j®)

LET pv®8=t®(p%,9%)

LET qv8=t®(q®,g%)

LET p18=(p%8-1)\pairs®+1
LET p28=p%-(p1%8-1)*pairs®

The Matchmaker 77

LET q18=(q%-1)\pairs®+1

LET q2%=q%-(q1%-1)*pairs®

PRINT=1,"If ", a$(p1%,1); " "; tf$(ABS(pv&)+1); " *; a$(p2%,2);
PRINT*1, “ then "; a$(q1%,1); " *; tf$(ABS(qv®)+1); " "; a$(q2%,2)
NEXT j%

PRINT #1,

PRINT#* 1, "Match each character with the corresponding attribute.”
CLOSE 1

GOTO wait.ok

Before printing, the program prompts you to select the output
device. Note that SCREEN is the Macintosh screen and PRINTER is
the Imagewriter or other printer connected to the Macintosh’s printer
connector.

Figure 4-9 shows the screen that allows you to select the output
device for the puzzle clues. Figure 4-10 shows the clues output to the
screen.

Here are the lines that print the puzzle’s solution:

prt.sol:

WINDOW 1

CLS

PRINT "PRINT SOLUTION"
G0SUB select.device
PRINT*1, "SOLUTION"
PRINT#*1,

LET x®B=1

WHILE ftB(x®)=false®

PRINT CLUES

@ SCREEN QO PRINTER l 0K \

Figure 4-9. Device selection for printing clues

78 Macintosh Program Factory

Matchmakey

Run Windows

{11 Bis2thenCisnot 3

#IfDis | thenBis 4

#If Aisnot 1 thenBisnot 4

#dIf Cis | thenBis not 3

#1f Cis not 2 then B is not 3

HIfBisnot | thenCis 4

11f Ais 3 thenBis 2
fBisnot2thenAis 4

fDisnot2thenCisnotd

fCis 3thenBisnot 1

atch each character with the corresponding attribute.

(ox)

Figure 4-10. Clues output to the screen

LET x8=x%B+1

WEND

FOR pa%=1TO nc®

IF tB(pa%,x%)=false® THEN next.pair

LET p1®B=(pa%-1)\pairs®+1

LET p2%=pa%-(p1%-1)*pairs®

PRINT#*1, a$(p18,1);" *; t1$(2); " ", a$(p2%,2)
next.pair:

NEXT pa®

CLOSE 1

GOTO wait.ok

Again, the program prompts you to select an output device first.

Figures 4-11 and 4-12 show the device selection screen and the solu-
tion to the puzzle.

Here is the subroutine that lets you select an output device:

select.device:
BUTTON 1,2,"SCREEN",(16,48)-(90,63),3
BUTTON 2,1,"PRINTER",(108,48)-{180,63),3

The Matchmaker 79

PRINT SOLUTION

@ SCREEN QO PRINTER l 0K

Figure 4-11. Device selection for printing the solution

® file Edit Scarch Run Windows Muichmake

R e Y

Figure 4-12. Solution output to the screen

BUTTON 3,1,"0K",(252,42)-(324,69),1

LET sel.dev®=1 : REM Initial device setting
sd.loop:

WHILE DIALDG{0)<>1

80 Macintosh Program Factory

WEND

LET btn®=DIALOG(1)

IF btn®=3 THEN sd.ok
LET sel.dev®=bin®
BUTTON 1,3-btn%
BUTTON 2,btn®

GOTO sd.loop

sd.ok:

BUTTON CLOSE 1
BUTTON CLOSE 2
BUTTON CLOSE 3

OPEN dev$(sel.dev®) FOR OUTPUT AS 1
IF sel.dev®=1 THEN CLS
RETURN

—Testing and Using the Program

After carefully checking the program for typing errors, run it. You
should be able to get screens similar to those shown in the figures.

Experiment with different types of data pairs. Initially, you’ll find it
helpful to stick with attributes that are mutually exclusive; the clues
tend to make more sense that way. Similarly, use true opposites for the
positive and negative verb forms: is/is not, has/doesn’t have, and so
forth.

Chapter 9

Crossword Puzzle
Patterns

This program generates ready-to-use crossword puzzle patterns rang-
ing in size from 38 X 3 to 12 X 12. You determine the approximate diffi-
culty level of the puzzle by specifying the shortest allowable word path
(2, 3, 4, or 5 letters).

As each puzzle is generated, it is displayed on the screen. If you like
a particular puzzle pattern, you may print it on the Imagewriter and
save the entire screen in a MacPaint file. Later, you can use MacPaint to
erase extraneous graphics (everything but the puzzle).

The program does not place words into the puzzle pattern. Using the
paper copy, you manually insert the words you want to use. When you
have completely filled all the puzzle paths, you use MacWrite to prepare
a list of word clues. A completed puzzle consists of a high-quality Mac-
Paint printout of the puzzle, plus your list of clues for words across and
down.

81

82 Macintosh Program Factory

—Anatomy of a Crossword Puzzle

A lot of care goes into the creation of a puzzle pattern. Good puzzle
patterns have the following properties:

+ Solid blocks are arranged in symmetric, geometric, or representa-
tional patterns.

+ Every possible word path is numbered.
"~ Only one set of numbers is used for paths across and down.

Puzzles generated by this program satisfy all three criteria. Refer to
Figure 5-1 while reading the following explanation of the puzzle-
creation process.

The program starts out with an empty square puzzle grid. It then
randomly fills in a certain number of the cells in quadrant I of the grid.
Each time it fills in a cell in quadrant I, the corresponding cells in
quadrants II through IV are also filled in. Quadrant II is equivalent to
quadrant I rotated 90 degrees clockwise; quadrant III is equivalent to
quadrant I rotated 180 degrees; quadrant IV is equivalent to quadrant I
rotated 270 degrees.

The result of this process is a radially symmetrical pattern of empty
and filled cells, such as the pattern in Figure 5-1 without the path
numbers. Notice that by rotating quadrant I 90 degrees at a time, you
duplicate the other three quadrants. Also note that the centerpoint of
the puzzle is considered to belong to all four quadrants. Only puzzles in
which the length of a side is an odd number have such a cell at the
center.

Next the program must locate all the word paths. To explain this
process, we nieed to present a couple of terms. A head cell is the starting
location of a word path: the numbered squares of a crossword puzzle
are head cells. A block cell is a filled-in cell that marks the boundary of
a word path.

The set of potential head cells in a puzzle pattern consists of those
empty cells immediately below or to the right of block cells. Note that
the puzzle is surrounded by an imaginary boundary of block cells so
that empty cells in the top row and left column are also potential head
cells. Potential head cells are used only if the resultant path would be
long enough to meet the minimum word length. (There is no maximum
word length; subject to chance, word paths may occasionally go com-
pletely across or down the puzzle grid.)

Notice in Figure 5-1 that some of the numbered cells define paths
across and down, while others define paths in one direction only.

Crossword Puzzle Patterns 83

Head cell for 1-down and 1-across

Head cell for 2-down , Block cell

Figure 5-1. Anatomy of a crossword puzzle pattern. Note that the cell in
the center belongs to all four quadrants

—The Program

The first block loads the data for the Crossword menu.

READ last.option®

DIM menu.label${1ast.option®)

FOR j®=0 TO last.option®

READ menu.label${JR)

NEXT j%

DATA 5,Crossword

DATA New puzzle,Print screen,Redraw screen,Save screen,Quit

The next block defines constants and initializes parameters.

LET dg.x8=.25%72
LET dg.y%=.275%72

84 Macintosh Program Factory

LET dg.x 1%8=dg.x8+4.46%72

LET dg.y1%8=dg.y®+4.46%*72

LET ulc®=3

LET c.size®=26

LET true®=(1=1)

LET folse®=(1=0)

LET filled®B=true®

LET empty®=faise®

LET min.size®=3

LET max.size®=12

LET min.min®=2

LET m8=12 : REM initial puzzle size
LET mi%=3 : REM initial minimum word length
RANDOMIZE TIMER

The variable pairs dg.x%,dg.y% and dg.x1%,dg.yl1% locate the
upper left and lower right corners of the program’s output and dialog
window. Ule% locates the upper left corner of the puzzle pattern within
this window. C.size% is the size (in pixels) of a puzzle square or cell.

Min.size% and max.size% define the minimum and maximum allow-
able size for puzzles. Min.min% is the “minimum-minimum” for word

" % File Edit Sear<h Run Windows
CROSSWORD PUZZLE GENERATOR

The program makes crossword puzzle patterns.
While a pattern is on the screen,
it cen be printed or saved in 8 Macpaint file

@

Figure 5-2. The title window

| |

Crossword Puzzle Patterns 85

lengths; in other words, it is the smallest value you can specify as a
minimum path length.
The next block creates the title window shown in Figure 5-2:

WINDOW 1,,(dg.x%,dg.y%)-(dg.x18,dg.y1%8),3

CALL TEXTSIZE(12)

CALL TEXTFACE(0)

PRINT "CROSSWORD PUZZLE GENERATOR"

PRINT

PRINT "The program makes crossword puzzle patterns.”
'PRINT "While a pattern is on the screen,”

PRINT "it can be printed or saved in a Macpaint file."
BUTTON 1,2,"0K",(200,278)-(236,298)

LET event®=0

WHILE event®<>1 AND event®<>6

LET event%=DIALOG(0)

WEND

BUTTON CLOSE 1

The following lines prompt you to create the first puzzle pattern:

GOSUB resize.puzzle

GOSUB nev.puzzle

LET m.state®=1

FOR j®8=0 TO last.option®

MENU 6,j%,m.state®,menu.label$(j%)
NEXT j®

MENU 6,0,0

Figures 5-3 through 5-5 depict the screens you’ll see when you first
run the program (after you've typed it all in).

After creating the new puzzle, the program turns on the Crossword
menu, pictured in Figure 5-5.

The Menu Selection Loop

Once a puzzle has been created, the program enters a menu selection
loop that controls all activity until you quit the program:

get.selection:
MENU 6,0,1

WHILE MENU(0)<>6
WEND

86 Macintosh Program Factory

r

&€ File Edit Sear<h Run Windows

PUZZLE SPECIFICATIONS

Number of cells per side { 3 - 12}

Minimum word length:

02 ® 3 O 4 OSs

(E_E_l

Figure 5-3. The puzzle specifications dialog window

& File Edit Search Run Windows

Making the pattern now Wait..

Figure 5-4. The puzzle-creation “wait” window

Crossword Puzzle Patterns 87

r

& File Edit Scarch Run Windows

1T 2 3 4 New pu2zle
Print screen
7 8 ° 10 Redraw screen
T Save screen
Quit
12 13 14 |15
16
7 18 [19
20
21 22 23
24 3 2% z7
28 29
Eq) 31

Figure 5-5. A completed puzzle showing the Crossword menu

MENU 6,0,0

LET selection®=MENU(1)

ON selection® GOSUB new.puzzle, prt.screen, prt.pzl,

save.screen, quit '

GOTO get.selection

quit:

END

The rest of the program consists of major and auxiliary subroutines
to accomplish the five menu options (make a new puzzle, print the
screen to the Imagewriter, redraw the puzzle, save the screen in a Mac-
Paint file, and quit.

Resizing the Puzzle

Each time you change the puzzle size, the following lines make the
necessary changes in the arrays and other parameters:

resize.puzzle:
LET n8=m®B\2
LET odd®={n®*2->mR)

88 Macintosh Program Factory

LET ncB=mZ*m%

LET nb®B=nc&\6+1

DIM mB(m%E+1,m&+1),p1B(ME,mB),r¥(nc®),cB(nck)
RETURN

Variable n% is the number of cells in a quadrant. If the puzzle size,
m%, is an odd number, n% is actually one less than the true quadrant
size. The variable odd% takes care of this anomaly; for odd m%,
0odd%=—1; for even m%, odd%=0.

Variable ne% is the total number of cells in the puzzle, and nb% is
the number of block cells to be marked during the pattern design phase.

Making a New Puzzle

The next lines generate a new puzzle (New puzzle command):

new.puzzle:

GOSUB dialogue.size

IF chenged.sizeB=false® THEN size.ok
ERASE m®,pi%,r¥,c®

GOSUB resize.puzzle

size.ok:

GOSUB pattern

GOSUB prt.pzl

RETURN

If you change the puzzle size during the puzzle specification dialog,
the program calls the resize puzzle subroutine before continuing. Once
a new pattern is generated, the result is displayed on the screen.

Puzzle Specification Dialog

The following lines let you specify the puzzle size and the minimum
word length:

dialogue.size:

WINDOW 1

LET new.m&B=m®

CLS

PRINT “PUZZLE SPECIFICATIONS™

Crossword Puzzle Patterns 89

PRINT

PRINT USING “Number of cells per side {(** - ##)".min.sizeX,
max.size®

EDIT FIELD 1,STR${new.m®),(234,32)-(272,47)

LOCATE 5,1

PRINT "Minimum word length:"

FOR b®=1TO 4

BUTTON b®,0,STR$(b%B+1), (30+(b%-1)*60,80)-
{60+(b%-1)*60,96),3

NEXT b®

BUTTON 5,0,"0K",{126,128)-({176,152)

LET btn%=0

Refer to Figure 5-3 while studying these lines. The program sets up
one edit field for specifying the size. Then it creates four radio-type
buttons for specifying the minimum word length. Finally, it creates an
OK button for use when you have completed the specifications. Initially,
all the buttons are inactive.

The next block of lines checks the current size settings.

change.size:

new.m8=VAL(EDIT$(1))

IF new.m&<min.size® OR new.m®B>max.size® THEN size.error
LET max.min8=new.mB\3+1
FORB®=1TO 4

BUTTON b%,ABS((b%+1)<=max.min%)
NEXT b®

IF mi%>max.min® THEN m1Z=max.min®
BUTTON mi1%-1,2

BUTTON 5,1

IF btn®8=5 THEN end.dialogue

If the size specification is out of range, the size.error routine is exe-
cuted. Otherwise, the size setting is used to determine an upper limit
for the minimum word length, referred to as the “maximum-minimum”
or max.min%. The maximum-minimum equals the puzzle size divided
by 8, rounded up to the nearest integer.

Those buttons corresponding to paths up to the maximum-minimum
are made active (BUTTON b%, ABS...). If the current maximum-
minimum setting, ml%, exceeds the newly calculated value, the current
setting is reset to the new value (IF ml%>max.min%...).

90 Macintosh Program Factory

The following lines constitute a loop that is repeated until you change
the puzzle size (edit field) or select one of the buttons:

size.loop:

LET btn®8=0

LET event®=0

WHILE event®=0

LET event8=DIALOG(0)

WEND

IF event®=2 OR event®=6 THEN change.size
IF event®=1 THEN which.button
GOTO size.loop

size.error:

BUTTON 5,0

BEEP

GOTO size.loop

When you select a button, the following lines are executed:

which.button:

LET btn®=DIALOG(1)

IF btn®=5 THEN change.size
change.mi:

BUTTON mi1%-1,1

BUTTON btn®,2

LET mi8=btn®+1

GOTO size.loop
end.dialogue:

LET changed.size®=(new.mB<>mg)
LET m&8=new.m®

EDIT FIELD CLOSE 1
FORb®=1TO0S

BUTTON CLOSE b®

NEXT b%

CLS

RETURN

If you press button 5 (the OK button), the program goes back to
check the current size setting. If the size is within range, the last line of
the change.size routine will force the program to skip to the end.dia-
logue routine. Otherwise, change.size will wait for you to enter a valid
size.

Crossword Puzzle Patterns 91

The change.ml routine resets the minimum word length and updates
the button display accordingly.

The end.dialogue routine records whether the puzzle size was
changed (changed.size%), closes the edit field and closes the buttons.

That ends the dialogue.size subroutine.

Creating a New Pattern

Now we present the subroutine that creates a new puzzle pattern. The
first block of lines marks the randomly chosen block cells:

pattern:

PRINT "Making the pattern now. wait...”

FOR j8=0 TO m®B+1

FOR k%®=0 TO m®B+1

LET m®(j®,k®8)=(j%=0) OR (jB=m%B+1) OR (k%=0) OR (kB=m%B+1)
IF m®B(j®, k®)=empty® THEN LET pIB(j®,kB)=empty®
NEXT k%,j%

FOR j&=1 TO nb®B\4+1

pick.cell:

LET r®8=INT(RND*(n%-0dd%))+ 1

LET cB=INT(RND*(n8-0dd®))+1

IF m®B(r®,c®)=rilled® THEN pick.cell

GOSUB mark.4

NEXT j®

The first FOR-NEXT loop marks a perimeter of block cells around
the entire puzzle. These block cells are never displayed; however, they
are needed so the program can identify path boundaries along the outer
edges of the puzzle grid. The second FOR-NEXT loop randomly selects
a cell in quadrant I. The mark.4 subroutine marks that cell and its
counterparts in quadrants II, III, and IV.

After the block cells have been marked, the following lines eliminate
head cells that do not define at least one path that meets the minimum
length requirement.

pass.2:

LET chg.cellB=false®
FOR r®=1 TO n8-o0dd%

92 Macintosh Program Factory

FOR c®=1 TO n8-o0dd®

IF m®(r%,c®)=filled® THEN next.cell

LET hs®B=c%-1

WHILE m®(r®,hs®)=empty®

LET hs®=hs%-1

WEND

LET he®B=c%B+1

WHILE m®(r8,he®)=empty®

LET he8=he&+1

WEND

LET vs®=r®-1

WHILE m®(vs®,c®)=empty®

LET vs®=vs%-1

WEND

LET ve8=r%+1

WHILE m®B(ve®,cX)=empty®

LET veB=veR+1

WEND

IF heB-hs8>m1%8 OR ve®-vsB>mi% THEN next.cell

LET chg.cel1®=chg.cel1® OR {{(he®-hs®B<=m1%) AND
(veB-vsB<=m1%))

IF chg.cell® THEN GOSUB mark.4

next.cell:

NEXT c®,r®

IF chg.cel1® THEN pass.2

For each empty cell in quadrant I, the program locates the head cell
that “owns” that cell. First the program backs up horizontally until
reaching a block cell. Then it advances until it reaches another block
cell. The distance from one boundary to another is the effective path
length. The process is repeated in the vertical direction.

If at least one path (horizonal or vertical) is as long as the minimum
path length m1%, the program examines the next cell. If neither path is
long enough, the program makes the current cell a block cell and sets a
flag (chg.cell%) to record this change.

After all the cells in quadrant I have been examined, the program
checks to see whether any changes were made during the refinement
process; if changes were made, the refinement process must be
repeated, because adding a block cell may have caused other paths to
become too short.

Crossword Puzzle Patterns 93

Numbering the Paths

Now the program assigns numbers to all the head cells:

LET pn&=0

FOR r&=1TO m%

FOR c®=1TOmg%

IF m®B(r®,c®)=filled® THEN another.cell
IF m®B(r&-1,c&)=empty® THEN h.path
LET ve®=r&+1

WHILE m®&(ve®,c8)=empty%

LET ve®=ve®+1

WEND

IF veB-r&<mi% THEN h.path

GOSUB path.info

Variable pn% counts the number of head cells found. The cell at row
r%, column c% is by definition a head cell if it is empty and the cell
above it is filled (m%(r%—1,c%)=filled%). The program first deter-
mines whether the vertical path starting at that head cell is long
enough. If it is, the path location is recorded by the path.info subroutine.

Next the program checks for a horizontal path starting from the
current head cell.

h.path:

IF mB(r®,c®-1)=empty® THEN another.cell
LET he®=c®+1

WHILE m®B(r&,he®)=empty®

LET he®=he®+1

WEND

IF he®-c®&<m1% THEN another.cell

IF p1%B(r®,c®)=0 THEN GOSUB path.info
another.cell:

NEXT c%,r®

RETURN

In this case, the current cell is a head cell if the cell to the left is
filled (m%(r%,c%— 1)=filled%). If the cell does define a horizontal path,
the program determines if that path is long enough. If it is, the horizon-
tal path is recorded by the path.info subroutine.

94 Macintosh Program Factory

When every cell has been checked in this manner, the pattern crea-
tion process is complete.

Here are a couple of auxiliary subroutines to the pattern creation
subroutine:

mark.4:

LET m®B(r®,c®)=filled®

LET m®B(c®,nB+nB-0ddB+1-r&)=filled®
LET m®B(n®+n%-0dd®B+1-r¥,nB+n%-0ddB+1-cB)=filled®
LET mB(n8+n%-0dd®B+1-c®,r@)=filled®
RETURN

path.info:

LET pn8=pn®&+1

LET pl®%(r®,c®)=pn%

LET r®(pn®)=rg

LET c®(pn®B)=c®

RETURN

The mark.4 subroutine marks a block cell in quadrants I through IV.
The path.info subroutine records the location of path number pn%.
P1%(r%,c%) contains the number of the path that starts at location r%,
¢%. It is 0 if no path starts there. R%(pn%) and c%(pn%) store the row
and column addresses of path pn%.

Displaying the Puzzle Pattern

The next subroutine displays the puzzle on the screen:

prt.pzl:

WINDOW 1

CLS

CALL TEXTSIZE(9)

CALL TEXTFACE(32)

FORr®=1TO m%

FOR c®=1 TO m%

LET px®B=(c8-1)*c.sizeB+ulc®

LET py®=(r&-1)*c.size®+ulc®

IF mB(r®,c8)=empty® THEN find.head
LINE {px®,py8)-STEP(c.size%,c.size®),1,bf
GOTO try.another

find.head:

LET hn®=pI1%(r®,c®)

Crossword Puzzle Patterns 95

IF hn®=0 THEN try.another
LET n$=STR$(hn%)

LET n$=RIGHT$(n$,LEN(n$)-1)
CALL MOVETO(px®+2,py%+10)
PRINT n$

try.another:

NEXT c8,r®

The first series of lines draws the block cells and places numbers in
the upper left corner of each head cell. The following block of lines
draws in the cell-divider lines:

FOR 18=0 TO m%

LINE {ulcB,ulcB+18*c.sizeR)-
(ulcB+m®B*c.sized,ulcB+18*c.sizeR)

LINE {ulc®+18*c.size®,ulc®)-
{ulcB+1B*c.sizeB,ulcB+mB*c.sizeB)

NEXT 18

CALL TEXTFACE(0)

CALL TEXTSIZE(12)

RETURN

Printing the Screen

The following lines send a copy of the screen to the Imagewriter
printer:

prt.screen:

CALL HIDECURSOR
LCOPY

CALL SHOWCURSOR
RETURN

The cursor is hidden during the screen copy so that the pointer will
not appear in the printed image.

Saving the Screen
_In a MacPaint File

The following lines provide instructions for saving the screen in a Mac-
Paint file.

96 Macintosh Program Factory

saye.screen:

WINDOW 2,,{dg.x 18+6,dg.u%)-(dg.x18+162,dg.yB+216),3
CLS

PRINT “"SAYE SCREEN:"

PRINT

PRINT Type command-shift-3~
PRINT “to save the screen”

PRINT “image in a Screen file.”
PRINT "Then quit this program®
PRINT "& load the Screen file”
PRINT "into Macpaint.”

BUTTON 1,1,"0K",(60,168)-(96,192)
LET event®=0

WHILE event®<>1 AND event®<>6
LET event®=DIALOG(0)

WEND

WINDOW CLOSE 2

RETURN

These lines simply provide an information box (Figure 5-6) explain-
ing that COMMAND-SHIFT-8 causes the screen contents to be saved in
a screen file which may later be loaded into MacPaint.

" & file Edit Search Run Windows {iosswsnid
2 SAVE SCREEN:

Type command-shift-3
to save the screen
image in a Screen file
Then quit this program
& load the Screen file
into Macpaint

0K

10

Figure 5-6. The save-screen information box

Crossword Puzzle Patterns 97

—Using the Program

After typing in the entire program and carefully checking the listing,
try to run it. You should be able to reproduce the screens shown in Fig-
ures 5-2 through 5-6.

The Redraw screen command is provided on the Crossword menu so
that you may stop the program to perform a BASIC command and later
restart the program and redraw the latest puzzle pattern.

To do this, proceed as follows:

Select Stop from the Run menu. Type in the command you want. For
instance, after saving a screen image, you might want to rename the
file. Type the command:

NAME “Screen 0” AS “Xword Puzzle”

Then select Continue from the Run menu, and select Redraw screen
from the Crossword menu.

Note: Occasionally the puzzle pattern will consist entirely of block
cells. When this happens, simply select New puzzle from the Crossword
menu.

Chapter 6

Playback

This program turns your Macintosh into a game machine similar to
several popular electronic games, such as Merlin and Simon. The object
of the game is to play back a sequence of notes generated by the comput-
er. Each time you repeat a sequence correctly, the computer adds a new
note to the end of the sequence. You must continue to play back the
sequence up to a preset sequence length in order to score a success.
Most people can recall a sequence of as many as seven notes without
difficulty. Playback lets you play with sequences of as many as 99 notes.

—Operating Instructions for Playback

Figure 6-1 shows the Playback machine with all of its controls and
switches identified.

The four squares in the center are play back buttons. When the
computer produces a tone, one of the buttons lights up. To playback a
computer-generated sequence, you press the playback buttons in the
proper order.

The computer keeps track of your cumulative score in the left-hand

99

100 Macintosh Program Factory

Number of notes you must

playback to count a success.

Press left button to change

tens, right button to change
Score: Attempts, successes, percent, ones.
best playback so far

Playback speed

L& Al

& File Edit [Search Run Windows EBRNINIE

PLAYBACK

) om om T~

Playback Press to start a Press to turn game
buttons round of on or off
“Playback”

Figure 6-1. The Playback unit. The numbers #1 through #12 show how
each button is referenced by the program

panel of the machine: attempts, successes (times you reached the goal),
percentage of successes, and best (longest) play back.

On the right-hand panel are two control sections labeled GOAL and
SPEED. The goal indicates the number of notes you must playback
before the computer will score a success. To change the goal, click on
the tens or ones button. The speed setting determines how quickly the
computer will play its sequence.

On the bottom panel of the game unit are three buttons: BEGIN, ON,
and OFF. Turning the machine off deactivates all the machine’s func-
tions. Turning the machine on again reactivates all functions and resets
the scoring record.

Playback 101

& File Edit Search Run Windows Playpack

PLAYBACK

Jii{ﬁiii{{gl{!g} Jgi'i{({{{fgv’{{" 72 IIJ; (22242
e
b%; ::ze::gm: :::-;]
SR
3553

)E:{?E)\?‘«'uw

2. $3929:

SPEED
O sLow
[@hidt
BRI, Q A8y
L
2 ,;gg;:‘:‘ R
3&’5’?’2& 2

(mesin) OON @ OFF

Figure 6-2. The Playback unit

Figure 6-2 shows the appearance of the unit when it is off.

To start a round of the Playback game, you press the BEGIN button.
The computer will play a note and wait for you to repeat the same note.
If you play it back correctly, the computer will add a note to the
sequence and play it again. This process continues until you make an
error or reach the preset goal.

An error is also registered if you play back the notes too slowly. The
computer allows a delay of two seconds at most between your playback
notes.

—The Program

The first block of lines sets up constants pertaining to the window size
and location and the game unit’s appearance.

LET w.wB8=6%72

LET w.18=(4+1/4)*72
LET w.x8=(1/2)*72
LET w.y®=(3/8)*72

102 Macintosh Program Factory

LET w.x1B=w.xB+w.w%
LET w.yl®B=w.yB+w.1%
LET t.s8=(3+1/4)*72
LET t.x8=(1+3/8)*72
LET t.yB=(1/2)*72
LET t.x18=t.xB+t.s%
LET t.y1®=t.yg+t.s®
LET dig.x®B=t.x 18+36
LET dig.y8=t.y8+46
LET df xB=dig.x%-3
LET df.y®8=dig.y8+4
LET sp.x®B=t.x1%8+18
LET sp.y®=t.yg+130

The variables with the w. prefix set the window size and location.
Variables with the t. prefix set the size and location of the center panel.
Dig.x%,dig.y% and dg.x%,df.y% locate the goal indicators and switches.
Sp.x% and sp.y% locate the speed controls.

The next section of the program initializes certain other constants
and arrays.

RANDOMIZE TIMER

LET ms®=99 :REM must be <100

DIM cqB(ms®), speed$(3), speed®(3), rr®(3, 4), 1q%(4),
gray®(3), top&(3)

LET top®(0)=t.y®

LET top®(1)=t.x%

LET top®(2)=t.y1%

LET top®(3)=t.x 1%

LET b.s%=72

LET oval®B=b.s%\2

LET b.zoneS8=b.sB+(1/8)*72

LET yes®B=(1=1)

LET no%=(1=0)

LET loops.persecond=5041 :REM integer FOR/NEXT cycles per
second

FOR j8=1T0 3

READ speed$(j®), seconds®

speed®(j®)=10.2\seconds® :REM convert to SOUND duration

NEXT %

DATA SLOW, 4, MED, 6, FAST, 8

FOR j%=1TO 4

READ fq%(j%)

Playback 103

NEXT j%

DATA 440, 550, 660, 860

LET ncR=4

FOR j8=0TO 3

READ pattern®

LET gray®(j®)=pattern®

NEXT j®

DATA &HB130, &H03 1B, &HDBCO, &HOCED

Variable ms% is the longest allowable sequence that may be set as a
goal. You may change 99 to any positive whole number less than 100.

Array cq%() stores the current sequence. Speed$() stores the labels
SLOW, MED, and FAST for the game unit. Speed%() stores the dura-
tion assigned to each speed. Rr%(,) stores the coordinates of the four
playback buttons. Array fq%() stores the frequencies assigned to the
playback buttons. Gray%() holds the codes that produce the speckled
background pattern of the center panel. Top%() holds the coordinates of
the center panel. Parameters b.s%, oval%, and b.zone% determine the
button sizes and shapes.

Setting Up the Screen

The next block of lines sets up the window and creates the game unit on
the screen.

WINDOW 1, , (w.x®8, w.yB)-(w.x1%8, wyl®),3
LET game.on®B=yes®

GOSUB reset.params

GOSUB machine.outline
GOSUB put.labels

GOSUB calc.playregions
GOSUB create.playbuttons
GOSUB create.controlbuttons
GOSUB create.lengthbuttons
GOSUB put.length

GOSUB create.speedbuttons
GOSUB put.scores

MENU 6, 0, 1, “Playback”
MENU 6, 1, 1, "Quit ~

ON MENU GOSUB menu.activity
MENU ON

LET ok®=yes®

GOSUB respond

104 Macintosh Program Factory

Most of the subroutine references are self-explanatory, and all will
be presented in detail as we go along.
These lines also activate the Playback menu shown in Figure 6-1.

The Idle Loop

The next block provides an idle loop (a sequence of lines that is repeated
until some action is requested).

loop:

DIALOG ON

WHILE DIALOG(0)<>1

WEND

DIALOG COFF

LET btn®=DIALOG(1)

IF btn%>9 THEN GOSUB change.speed: GOTO loop
IF btn®>7 THEN GOSUB change.length: GOTU loop
IF btn®=6 OR btn¥=7 THEN GOSUB switch.game: GOTO lo0p
IF btn®=5 THEN GOSUB begin: GOTO loop

SOUND fq&(btng), speed®(speed®)

GOTO loop

The button numbers correspond to those shown in Figure 6-1. For
instance, buttons 10, 11, and 12 are the speed selectors; hence, when
btn%>9, the program executes the change.speed subroutine.

If the button number corresponds to a playback button (btn%<5),
the computer generates the sound assigned to that button. This feature
lets you practice hitting the buttons before beginning a game.

Menu Selections

Here’s the routine to handle selections from the Playback menu:

menu.activity:

IF MENU{0)<»6 THEN RETURN
IF MENU(1)<>1 THEN RETURN
LET ok®=n0%

GOSUB respond

WINDOW CLOSE 1

END

The only menu option is Quit. If you select that option, the subroutine
responds with a quick sign-off couplet and then the program ends.

Playback 105

Resetting the Game Parameters

The next block of lines resets the scores, speed settings, and the goal to
their initial values. These lines are executed when you start the pro-
gram and each time you turn on the game machine.

reset.params:

LET d.level®=7

LET score®{1)=0 :REM tries

LET score®(2)=0 :REM successes

LET score®{3)=0 :REM percent

LET score®(4)=0 :REM highest goal reached
LET speed®=2

RETURN

D.level% is the initial goal setting. Speed% is the initial speed set-
ting, corresponding to MED. Depending on your preference, you may
change d.level% to any value from 1 to ms%, and speed% to any value
from 1 to 3.

Drawing the Game Unit

The following lines draw the outlines of the game unit:

machine.outline:

CALL FILLRECT{YARPTR(top®(0)), YARPTR(gray%(0)))
LINE (t.x®, t.u®)-(tx1%, t.yi®), b

LINE {0, 0)-(t.x%, t.u®) :REMulc

LINE (w.w®, 0)-(t.x1%, t.y®) :REMurc

LINE (0, w.18)-(t.x%, t.y1®) :REMIlc

LINE (w.w®, w.18)-(t.x1%, t.y1®) :REMIrc

RETURN

FILLRECT is one of the Macintosh’s built-in subroutines. It fills the
rectangle specified by array top%() with the pattern specified by the
array gray%(). In this case, FILLRECT provides the speckled pattern
of the center panel.

The first LINE statement draws the outline of the center panel. The
remaining LINE statements draw the diagonal contour lines to the
upper left corner, upper right corner, lower left corner, and lower right
corner.

106 Macintosh Program Factory

Setting Up the Game Buttons

The next lines calculate the coordinates for the location of the four play-
back buttons:

calc.playregions:

FORbB=1TO 4

LET b.x®8=({b%-1) MOD 2)*b.zoneB+(1+15/16)*72
LET b.y®=((b%-1)\2)*b.zoneB+(1+1 /16)*72

LET b.xB=({b%-1) MOD 2)*b.zone®+({1+15/16)*72
LET b.yR=((b%-1 N2)*b.zoneB+({1+1/16)%72

LET rr%(0, b®)=b.y® :REM top

LET rr®(1, bB)=b.x8 :REM left

LET rr®(2, b®)=b.y®+b.s® :REM bottom

LET rr®(3, b%8)=b.x%+b.s® :REM right

NEXT b®

RETURN

While the computer is playing its sequence, the buttons are treated
as rounded rectangles rather than as true dialog buttons. The following
lines draw four rounded rectangles in the playback button regions:

create.playregions:

FOR b®=1T0 4

CALL FRAMEROUNDRECT(VARPTR(RRE(0, b%)), oval®, ovai®)
NEXT b%

RETURN

While the computer accepts your attempts at playing back a
sequence, the buttons are true dialog buttons. The following lines draw
the dialog buttons:

create.playbuttons:

FORb®=1TO0 4

BUTTON b%, 1, ™", (rr®(1, b%), rr&(0, b®))-(rrR(3, b%), rr&(2,
b®)), 1

NEXT b%

RETURN

These lines create the BEGIN, ON, and OFF buttons:

create.controlbuttons:
BUTTON 5, ABS(game.on®), "BEGIN", (t.x8+20,
w.18-30)-(t.x8+90, w.1%-6)

Playback 107

BUTTON 6, 1+ABS{game.on®), "ON", (t.x%+150,
w.18-24)-(t.x%+189, w.18-6), 3

BUTTON 7, 1+ABS(NOT(game.on®)), “OFF", (t.x®8+200,
w.1%8-24)-(t x%+240, w.1%-6), 3

RETURN

Here are the lines that create the two length buttons which appear
under the goal indicator:

create.lengthbuttons:

FOR b®=0TO 1

LET b.xB=df xB+b%*16

BUTTON b®+8, ABS(game.on®), ™", (b.x%, df y%)-(b.x%+16,
df.y®+16), 3

NEXT b%

RETURN

Button 8 changes the tens digit, and button 9 changes the ones digit
of the current goal setting.
The next block of lines creates the speed selection buttons.

create.speedbuttons:

FOR b®=0TO 2

LET b.y®=sp.y®+b%*24

LET b.y1%=b.y®+34

LET b.stat®=(ABS(speed®=b%+1)+1)*ABS(game.on®)

BUTTON b®+10, b.stat®, speed$(b®+1), (SP.XZ, b.y®)-(SP.X%+72,
byl®), 3

NEXT b®

RETURN

Control Button Subroutines

Whenever you press one of the goal buttons, the following lines calculate
a new goal value, d.level %:

change.length:

LET digit®=btn® MOD 2

ON digit®+1 GOSUB tens, ones

IF d.level®=0 THEN LET d.level®=1
GOSUB put.length

RETURN

108 Macintosh Program Factory

ones:

LET ones®=d.level® MOD 10

LET tens®B=d.level8-ones®

LET ones®=(ones®+1) MOD 10

LET d.level®=(tens® + ones®) MOD (ms&+1)
RETURN

tens:

LET d.level®B=d.level8+10

IF d.level®>ms® THEN d.level®=d.level® MOD 10
RETURN

The ones and tens buttons operate independently of one another.
Pressing either button changes only the corresponding tens or ones
digit.

If you attempt to exceed the limit value, ms%, the tens digit is set to
0. If you attempt to set a goal of 0, a goal of 1 is used instead.

Whenever you request a change in playback speed, the following
lines reset the speed buttons accordingly:

change.speed:
BUTTON speed®+9, 1
LET speed®=btn%-9
BUTTON btng®, 2
RETURN

Pressing the ON or OFF button activates the following lines:

switch.game:

IF game.on® AND (btn®8=6) THEN RETURN
LET game.on®=(btn&=6)

IF game.on® THEN GOSUB reset.params
FORb®=1T0S

BUTTON b®, ABS(game.on%)

NEXT b®

BUTTON 6, 1+ABS(game.on®)

BUTTON 7, 1+ABS(NOT(game.on&))
BUTTON 8, ABS(game.on®)

BUTTON 9, ABS(game.on%)

FOR bB=10TO 12

LET b.stat®=(ABS{speedB=b%-9)+1)*ABS(gome on®)
BUTTON b&%, b.stat®

NEXT b%

Playback 109

GOSUB put.length
GOSUB put.scores
LET ok®=game.on®
GOSUB respond
RETURN

If the game is already on and you press the ON button, the action is
ignored (IF game.on% AND btn%=6...).

Otherwise, game.on% is reset according to whether you pressed ON
or OFF. If the new game is on, the original game parameters are
restored. Then the program resets the inactive/active/selected status of
all 12 buttons according to the value of game.on%.

The respond subroutine sounds a welcome or sign-off couplet accord-
ing to whether you have just turned the game on or off.

Applying' the Labels

These next lines apply the text labels to the game machine:

put.labels:

CALL TEXTFONT(3)

CALL TEXTSIZE(12)

CALL TEXTFACE(1)

CALL MOVETO(168, 23)

PRINT " PLAYBACK",;

CALL TEXTFONT(4)

CALL TEXTSIZE(9)

CALL MOVETO(t.x 18+36, t.y8+30)
PRINT “GOAL"

CALL MOVETO(t.x18+20, t.y®+126)
PRINT "SPEED"

LOCATE S, 4

PRINT "SCORE"

LOCATE 11, 2

PRINT "ATT:"

LOCATE 13, 2

PRINT "SUCC:"

LOCATE 15, 2
PRINT "PCT:"
LOCATE 17,2
PRINT "BEST:"
RETURN

110 Macintosh Program Factory

After each round, the following lines are executed to update the
scores:

put.scores:

CALL TEXTFONT{4)

CALL TEXTSIZE(9)

FOR j%=1T0 4

LOCATE 9+2%j%, 7

IF NOT game.on® THEN PRINT * -" ELSE PRINT USING
~##2".score®(j%)

NEXT %

RETURN

If the game is off, hyphens are printed in the numeric fields of the
score panel. Otherwise, the appropriate numbers are printed.

Each time the goal is changed, the following lines print the new
setting:

put.length:

CALL TEXTFONT{(4)

CALL TEXTSIZE(9)

IF NOT game.on® THEN blank.digits

LET tens$=RIGHT$(STR$(d.level®\10), 1)
LET ones$=RIGHT$(STR$(d.level® MOD 10), 1)
GOTO show.digits

blank.digits:

LET tens$="-"

LET ones$="-"

show.digits:

CALL MOVETO(dig.x®, dig.y®)

PRINT tens$

CALL MOVETO(dig.x%+16, dig.y®)

PRINT ones$

RETURN

Again, if the game is off, hyphens are printed instead of digits.

Audible Response Subroutine

The following lines sound a descending couplet when you turn the game
off or when you make an error during a playback attempt. The same

Playback 111

lines sound an ascending sequence of notes when you turn on the game
or reach the goal:

respond:

IF ok® THEN good

SOUND 300, 2 :REM “wrong answer" sound

SOUND 150, 2

RETURN

good:

FOR s8=1T0 4

CALL INVERTROUNDRECT(YARPTR(RRE(0, s8)), oval®, oval®)
SOUND fq®(s®), 1 :REM “right answer" sound

CALL INVERTROUNDRECT{YARPTR(RR®B(0, s8)), oval&, oval%)
NEXT s%

RETURN

Along with the sound indicating a success, the computer blinks the
corresponding playback buttons (CALL INVERTROUNDRECT...).

Test Point

To test your work so far, add these temporary lines to the end of the
listing:

begin:
RETURN

After carefully checking each block for typographical errors and
omissions, close the listing window and run the program. If you have
typed everything correctly, you should see a screen similar to Figure
6-1.

Try all 12 buttons. Pressing a playback button should produce a
sound. Pressing any other button (except BEGIN) should produce the
appropriate result. Try changing the speed and notice the effect on the
sounds produced by the playback buttons.

Try using the goal selector buttons. You should be able to specify
every value from 1 to ms% (which we set at 99).

After you have confirmed that everything is working properly so far,
delete the following lines:

~ RETI

112 Macintosh Program Factory

The Playback Subroutine

Now we'll add the lines that handle the playback function. These lines
are activated when you press the BEGIN button:

begin:

LET cp®=0

add.to:

LET cp&=cp&+1

LET c®=INT(RND*nc®)+1

LET cq®(cp®)=c®

GOSUB play.sequence

DIALOG ON

LET ok®B=yes®

GOSUB playback

IF ok®=no% OR cp®=d.level® THEN end.round
LET delay®=loops.persecond*.375
GOSUB pause

GOTO edd.to

The variable cp% indicates the current length of the playback
sequence. The add.to routine randomly selects one of the four playback
sounds ¢% and adds it to the current sequence stored in eq%().

Then the program calls a subroutine to play the notes of the
sequence. The DIALOG ON statement allows you to use the playback
buttons to play back the sequence.

To receive your playback attempt, the program calls the playback
subroutine. Upon return from this subroutine, the variable ok% indi-
cates whether you made an error or not. If you made an error
(OK%=no0%) or reached the goal (cp%=d.level%), the program ends the
round. Otherwise, it pauses briefly and then produces a new, longer
sequence (GOTO add.to).

The following lines are executed at the end of a round:

end.round:

LET delay®=100ps.persecond*.25

GOSUB pause

GOSUB respond :REM make appropriate sounds
LET score®(1)=score®(1)+1

LET score®(2)=score®(2)-ok®

LET score®(3)=INT(score®(2)/score®(1)*100+.5)

Playback 113

IF cp®>score®(4) THEN score®(4)=cp®
GOSUB put.scores
RETURN

The computer pauses briefly, makes an appropriate sound (GOSUB
respond), and then updates the scores. The new scores are printed in the
scoring panel (GOSUB put.scores). After that, the program ends the
playback subroutine and returns to the idle loop.

Auxiliary Playback Subroutines
The next block of lines plays the sequence stored in cq%():

play.sequence:

GOSUB create.playregions

FOR j%=1T0 cp%

CALL INVERTROUNDRECT(VARPTR(RR®(0, cq®(j%))), oval®,
oval®)

SOUND FQB(CQ%(JR)), speed®(speedS)

LET delay®=speed®(speed®)*200

GOSUB pause

CALL INVERTROUNDRECT(VARPTR(RR®E(0, cq®(j®))), oval®,
oval%)

NEXT %

RETURN

First, rounded rectangles are drawn over the dialog buttons (GOSUB
create.playregions). Then the program plays each note in the current
sequence, blinking the corresponding rounded rectangle. In the SOUND
statement, FQ%(CQ%(J %)) specifies the frequency of each note and
speed%(speed %) specifies the duration.

The following lines are executed when it’s your turn to play back the
sequence:

playback:

LET j®=0

ON TIMER(2) GOSUB activity.check
pb.loop:

LET time.left®=yes®

TIMER ON

WHILE DIALOG(0)<>1 AND time.left®

114 Macintosh Program Factory

WEND

TIMER OFF

DIALOG OFF

IF time.left®=no% THEN pb.error
LET btn8=DIALOG(1)

IF btn®>4 THEN pb.error

SOUND fq®(btn®), speed®(speed®)
LET jB=j%+1

IF btn®<>cqB(j%) THEN pb.error

IF j8<cp® THEN pb.loop ELSE pb.done
pb.error:

LET ok®=no®

LET cp®=cp®-1 :REMdidn't get last character
pb.done:

RETURN

activity.check:

LET time.left8=no®

RETURN

Variable j% keeps track of the number of notes you've played back.
The ON TIMER statement gives you two seconds to press the next
playback button; if you wait longer than that, the activity.check subrou-
tine will record that fact, causing the program to record an error.

Pb.loop is a repeated sequence of lines that lets you play back the
sequence of notes. The loop ends when you complete the sequence, press
the wrong button, or wait more than two seconds before playing the
next note of a sequence.

Pause Subroutine

The last subroutine of our program provides a simple pause. The length
of the pause is set by the value of delay%. Delay%=5041 produces a
one-second pause.

pause:

FOR xx%=1 TO delay®
NEXT xx®

RETURN

—Testing and Using the Program

Carefully check all blocks added since the test point. Close the listing
window and run the program. Set the goal to 3. Press the BEGIN but-

Playback 115

& File Edit Search Run Windows Playback A

PLAYBACK
@' 4 :3:31'{.3::::'.31

4"3
5% : < '§” 3 3“: :" ‘.:
~:: B ‘:g,,
R 232 :}‘:"‘ A% ‘3= 3:::*: SRS
i §);,. 7323 G 320 m’.‘

<
3
<

250

e

::::::‘g,g«':'f"':
Sy

22
'}'is.«‘?&‘

333
<
333

A AuAsasa ATy 2
PEPrPr PP s PP

Figure 6-3. The Playback unit during a playback sequence

ton to start a game. The computer should play a single note and high-
light the corresponding playback button. Play the same button by click-
ing the mouse on it. The computer should play that note again, followed
by a new note. Continue until you repeat a sequence of three. The com-
puter should sound the response indicating a success and update the
scores to ATT=1, SUCC=1, PCT=100, and BEST=3.

Press BEGIN to play another round. This time, make an error. The
computer should sound the error response and update your scores
appropriately.

Figure 6-3 shows the game unit during a playback sequence.

Now begin increasing the goal, and see how long a sequence you can
play back!

Chapter 7

Electronic Billiards

The Billiard Practice program turns your Macintosh display into an
electronic billiard table. You can use it for practicing and experiment-
ing with different kinds of angle shots and to play simplified games of
billiards.

The table is designed to match the appearance and proportions of a
real billiard table. As in billiards (not pool), the table has no holes. The
object of billiards is to hit the object ball with the cue ball after first
striking one or more rails.

There are a few peculiarities of our electronic billiard table. First of
all, there is no table friction to slow down a ball. Once started, a ball
rolls until it hits another ball or until you stop the ball by clicking the
mouse. Another difference from the real world is that when the cue ball
hits the object ball, the cue ball stops and the object ball rolls away from
the point of impact. If the object ball hits the cue ball, the motion is
again reversed. In true billiards, two object balls are used; our version
has only one.

Figure 7-1 shows the billiard table and billiard control panel.

17

118 Macintosh Program Factory

" & file Edit Search Run Windows B

\

Object ball

[»)

\

Cue ball

CHANGE BALL POSITION

TRACER:/QEN’E OFF

['}"N'"’“] (T“““J (snoor |r| ?un| (.FIKTABLE)
{I { 1] !
Change ball positions Change ball Shoot cue \ Quit Redraw table to erase

at random positions ball ‘program the previous traces
using mouse
Turn tracer
on or off

Figure 7-1. The electronic billiards table and control panel

—Brief Operating Instructions

The program will position the balls at random on the table (RANDOM
button) or you can rearrange them manually (MOUSE button). When
you're ready to shoot, press the SHOOT button. Then use the mouse to
point to the destination —which can be any spot on the table. Click the
mouse button to start the cue ball rolling in the specified direction.

When the cue ball strikes a rail, it bounces off of the rail at the angle
of deflection. When the cue ball strikes the object ball, the object ball
bounces off at the angle of collision. Figure 7-2 illustrates both angles.

Our electronic billiards has an optional tracer feature that shows the
path of motion for each ball. You may find this helpful in sharpening
your game.

Figures 7-3 through 7-6 illustrate a typical sequence in using elec-
tronic billiards.

Electronic Billiards 119

Collision angle (object ball
moves in this direction)

|_— Angle of inflection

L Angle of
deflection

WA /AL

Angle of cue-ball travel

Figure 7-2. Angle of inflection/deflection and angle of collision

% file Edit Search Run Windows

Point to the ball you want to move. Press button
to drag it to the desired spot. Release button to
let it go. Double-click for menu.

Figure 7-8. Screen appearance during manual repositioning of the
balls

120 Macintosh Program Factory

$ file Edit Search Run Windows

CHANGE BALL POSITION TRACER: [XJON []OFF

(ranoom] (mouse (‘swoot] (ounr) (FinTABLE)

Figure 7-4. The balls have been repositioned and the tracer
function is on

r - Al
% e Edit Scasch: Run Windows

Point to destination and click mouse button
to shoot the white cue ball. Double-click for menu.

Figure 7-5. Screen appearance while specifying the target for
the cue ball

Electronic Billiards 121

' 29 3 <« £ z
& file Edit Seardh Run Windows

Click once to stop action. Double-click for menu.

Figure 7-6. Paths of the white cue ball before impact and black object
ball after impact

—The Program

The cursor and ball data are derived from the plans shown in Figure
7-7. For each object shown, one row of dots is represented as a hexadec-
imal number. (For further details, read about PUT and SETCURSOR
in the Microsoft BASIC interpreter manual.)

The first block contains graphics data for the cue-stick cursor that is
used when you are repositioning the balls or shooting the cue ball.

DATA &H0004, &HO00C, &H0016, &H0024, &H0048, &HOODO,
&HO160

DATA &H0240, &H0480, &HODO0O, &H1600, &H2400, &H4800,
&HS000

DATA &H6000, &H0000

DATA &HOOOE, &HOO1E, &HOO3F, &HOO7E, &HOOFC, &HO1F8,
&HO3FO0

122 Macintosh Program Factory

. Binary Hexadecimal
5 A
ol
| o]
N T
"l u
L — <=—(000" 0100’ 1000" 0000'= 0480
iy :
BT
s — i <=— (110" 0000" 0000" 0000’= 6000
\ ']
EEEDR T
o
H s I
EE
]]
CaEamm t

Figure 7-7. The cue-stick cursor and billiard ball patterns

DATA &HO7EO, &HOFCO, &H1F80, &H3F00, &H7EQ0, &HFCOO,
&HF800

DATA &HF000, &HE0OO

DATA 11,0

The next block contains the graphics data for the cue and object
balls:

DATAS, 9

DATA &H3EO00, &H7700, &HC 180, &H8 180, &H8080, &HCO8O,
&HC180

DATA &H7700, &H3EQO

DATA9,9

Electronic Billiards 123

DATA &H3E00, &H7F00, &HFF80, &HFF80, &HFF80, &HFF B0,
&HFF80
DATA &H7F00, &H3E0QO

The next series of lines sets up various functions and array
constants:

DEF FNdistance(x,y,x 1,y 1)=SQR((x-x 1 P¥(x-x1)+(y-y 1 ¥¥(y-y 1))
RANDOMIZE TIMER

DIM pool.cursor®(33), gray®(3), black®(3), bali®R(10,2),locx(2),
locy(2)

FOR j®=0 TO 33

READ pool.cursor®(j®)

NEXT j%

FOR j®=1T0 2

FOR code®=0 TO 10

READ ball%(code®,J%)

NEXT code®, j%

FOR j8=0TO0 3

LET black®B(j®)=8&HFFFF :REM black pattern

LET gray®(j®)=8HAASS :REM haiftone pattern

NEXT j%

FNdistance calculates the distance between two points, x,y and
x1,y1. Pool.cursor%() stores the cue-stick cursor data. Gray%() and
black%() store graphics patterns for gray and black. Ball%(,) stores
the data for the two balls.

The following lines store constants and parameters:

LET yes®=(1=1)

LET no®=(1=0)

LET pi=4%ATN(1)

LET gtr.circ=pi/2

LET threeqtr.circ=3%pi/2

LET ball.dia%=9

LET rail®=24

LET t.width®=5%72

LET t.length®=2.5%72

LET spot.x®B=rail®

LET spot.y®=rail®

LET spot.x1®=rail%+t.width®-ball.dia®
LET spot.y 1R=rail®+t.length®-ball.dia®

124 Macintosh Program Factory

LET speed®=ball.dia%-1
LET trace.on®=no®

Here are the window definition parameters:

LET wp.xB=3/4%72

LET wp.x1B=wp.xB+t.width®B+2%rail®
LET wp.yR=.3%72

LET wp.y 1R=wp.yR+t.lengthR+2%rail%
LET tw.fourth®=t.width®\4

LET tw.eighth®B=t.width®\8

LET tl.fourth®=t.length®\4

LET wd.width®=t.width®+2%*rail®
LET wd.lengthR=3/4%72

LET wd.xB=wp.xB

LET wd.yR=wp.y 1B+ 1/4%72

LET wd.x1B=wd.xB+wd.width®

LET wdy 1 R=wd.y®+wd.length®

The variables having the prefix wp define the billiard table window.
The tw-prefix variables hold locations for the billiard table markings.
Wd-prefix variables define the control-panel window. Spot-prefix vari-
ables indicate the range of allowable ball locations (anywhere within the
black rails). Trace.on% holds the status of the tracer function.

Setting Up the Table and Control Box

Now the program can create the two windows and set up the table and
control panel:

WINDOW 2, , (wd.x®, wd.yR)-(wd.x1®, wdy!®), 2
WINDOW 1, , (wp.x®, wp.yR)-(wp.x1R, wp.y1R), 3
GOSUB new.table

GOSUB spot.random

start.dialogue:

WINDOW 2

CLS

PRINT " CHANGE BALL POSITION"; PTAB(204); “TRACER:"
LINE (164,1)-(164,52)

LINE (170,20)-(406,20)

BUTTON 1,1,"RANDOM",(6,20)-(72,45)

BUTTON 2,1,"FIX TABLE",(312,28)-(402,49)

Electronic Billiards 125

BUTTON 3, 1+ABS(trace.on®), "ON", (270, 2)-(304, 14), 2
BUTTON 4, 1+ABS(NOT trace.on®), "OFF", (314, 3)-(354, 15), 2
BUTTON S, 1,"MOUSE",(30,20)-(156,45)

BUTTON 6,1,"SHOOT",(174,28)-(240,49)

BUTTON 7,1,"QUIT",(258,28)-(294,49)

The new.table subroutine draws the billiard table. Spot.random
repositions the two balls at randomly chosen locations.

Control Panel Monitor

Here is the block that monitors the buttons of the control panel:

sd.loop:

WHILE DIALOG(0)<> 1

WEND

LET btnR=DIALOG(1)

IF btn®<S THEN window.ok

FOR jB=1TO 7

BUTTON CLOSE j®

NEXT j®

CLS

window.ok:

ON btn® GOSUB spot.random, new.table, set.trace, set.trace,
spot.mouse, shoot, quit

IF btn®>=5 THEN start.dialogue

WINDOW 2

GOTO sd.loop

The subroutine references in the line beginning on btn% GOSUB are
self-explanatory and will be covered in more detail later as each subrou-
tine is presented.

Upon return from each subroutine, the program refreshes the

control-panel window (if necessary) and re-enters the monitor loop
(GOTO sd.loop).

Positioning the Balls at Random

The following lines comprise the random ball position subroutine:

spot.random:
WINDOW OUTPUT |
FOR b®B=1TO 2

126 Macintosh Program Factory

PUT (locx(bR), locy(bR)), ball®(0, bB) :REM erase previous
get.random:

LET r.x®B=INT(RND*(spot.x | B-spot.x®B+ 1))+rail®

LET ryR=INT(RND*(spot.y I B-spot.y®+ 1))+rail®

IF b®=1 THEN spot.ok:

IF FNdistance(r.x®, r.y®, locx(1), locy(1))xball.dia® THEN get.random
spot.ok:

LET locx(b®B)=r.x®

LET locy(bR)=r.y®

PUT (1ocx(b®), 1ocy(b®)), bal1%(0, b%)

NEXT b®

RETURN

To position each ball, the program first erases the ball from its pre-
vious position (PUT...). Then it randomly selects a new location
(r.x%,r.y%) on the table. When the object ball (b%=2) is being positioned,
the program ensures that the new position isn’t already occupied by the
cue ball (IF FNdistance...).

After getting a new location for the ball, the program updates the
location arrays locx(b%), locy(b%) and draws the ball at its new spot.

Drawing the Table

These lines draw the billiard table’s rails:

new.table:

WINDOW OQUTPUT 1

CLs

CALL PENPAT(VARPTR(black®(0)))
CALL PENSIZE(rail®,rail®)

CALL MOVET0(0,0)

CALL LINE(t.width®+rail®+1,0)
CALL LINE(O,t.lengthR+railR+1)
CALL LINE(-(t.width®+rail®+1),0)
CALL LINE(O,~(t.length®B+rail%+1))

The following block supplies the rest of the table’s characteristic
markings:

CALL PENSIZE(1,1)
CALL PENPAT(VARPTR(gray®(0)))
FOR v.line®=tw.fourth® TO 3*tw.fourth® STEP tw.fourth®

Electronic Billiards

CALL MOVETO(rai1R+v.line®,rail%)

CALL LINE(O,t.1ength®)

CIRCLE (rail®+v.line®,rail®+t.length®\2),2,1

NEXT v.line®

FOR w.dot®B=tw.eighth® TO 7*tw.eighth® STEP tw.eighth®

CIRCLE (rail®+w.dot®,rail%\2),2,0

CIRCLE (rail®+w.dot®,t.lengthR+rail®+rail®\2),2,0

NEXT w.dot®

FOR 1.dotR=t].fourth® TO 3*tl.fourth® STEP tl.fourth®

CIRCLE (rail®\2,rail®+].dot®),2,0

NEXT 1.dot®

LINE (rail®+t.width®+3%rail®\8, raii®+ | 1%t.length®\24)-
STEP(rail®\4, t.length®\12),0,b

FOR b®=1TO 2

PUT (locx(bR),locy(b®)),bal1&(0,b%)

NEXT bR

RETURN

127

First the program draws the three dotted lines that divide the table

into quadrants (FOR v.line%=. .. NEXT v.line%). Each line has a circu-
lar spot at its midpoint.

Then the program supplies the seven dots along the top and bottom

rails (FOR w.dot%=...) and the three dots along the left rail (FOR
1.dot%=...). Next the program draws the rectangular chalk-box along
the right rail.

Now the table is complete, so the program redraws the balls at their

current locations. (PUT...).

Tracer and Quit Options

set.trace:
LET trace.on®=(btn%=3)

BUTTON 3,1+ABS(trace.on®)
BUTTON 4, 1+ABS(NOT trace.on®)
RETURN

quit:

WINDOW CLOSE 2

WINDOW CLOSE 1

END

These lines take over when you change a tracer button or select Quit:

128 Macintosh Program Factory

On entry to the set.trace subroutine, btn% is 3 or 4, depending on
whether you pressed tracer ON or tracer OFF. The program puts an X
in the appropriate box (BUTTON 3,... and BUTTON 4,...) and
returns to the control-panel monitor.

Positioning the Balls With the Mouse
When you press the MOUSE button, the following lines take over:

spot.mouse:

PRINT "Point to the ball you want to move. Press button®
PRINT “to drag it to the desired spot. Release button to”
PRINT “let it go. Double-click for menu.”;

WINDOW 1

CALL SETCURSOR(VARPTR(pool.cursor®(0)))
await.selection:

LET event®=MOUSE(0)

WHILE event®B<>-1 AND event®<2

LET event®=MOUSE(0)

WEND

The program activates the cue-stick cursor (CALL SETCURSOR) to
indicate that the table window (window 1) is active. Then it waits for you
to select a ball or request the menu. (See Figure 7-3).

The following lines respond to your selection:

IF event®=2 THEN sm.done

LET mx=MOUSE(1)-4

LET my=MOUSE(2)

LET b®=0

LET ball.select®=noR

WHILE b®R<2 AND NOT ball.select®

LET bR=b%+1

LET m.to.ball=FNdistance(mx,my,locx(b®),locy(b®))
LET ball.select®=(m.to.bail<=ball.dia®)

WEND

IF NOT ball.select® THEN await.selection

LET mx=locx(b®)

LET my=locy(b%®)

WHILE MOUSE(0)=-1

IF MOUSE(1)=mx+4 AND MOUSE(2)=my THEN skip
PUT (mx,my),bal1%(0,b®)

Electronic Billiards 129

LET mx=MOUSE(1)-4

LET my=MOUSE(2)

PUT (mx,my),bal1®(0,b®)
skip:

WEND

Event%=2 indicates that you have double-clicked the mouse. In that
case, the program exits from the ball-positioning subroutine (IF
event%=2 THEN sm.done).

Otherwise, the program determines whether you are pointing to one
of the balls. Mx,my is the current position of the mouse. M.to.ball is the
distance from the mouse to the cue ball or object ball. When m.to.ball is
less than or equal to the ball diameter, the program recognizes that you
want to select that ball.

If the mouse is not pointing to either ball, the program returns to the
await.selection routine.

Once you have selected a ball with the cue-stick pointer, the program
“attaches” that ball to the cue-stick. Whenever you move the stick, the
ball follows. The ball stays attached until you release the mouse button.

The following lines determine whether you have left the ball in an
acceptable location:

IF mx<spot.x® OR mx>spot.x 1% OR my<spot.y® OR my>spot.y 1%
THEN cancel.move

IF FNdistance(locx(3-bR),locy(3-b®),mx,myXball.dia% THEN
cancel.move

LET locx(b®B)=mx

LET locy(b®)=my

GOTO await.selection

sm.done:

CALL INITCURSOR

RETURN

cancel.move:

PUT (mx,my),ball®(0,b%) :REM erase last position

PUT (locx(b®),locy(b®)),balI%(0,bR) :REM restore initial

position
GOTO await.selection

If the ball is off the table or touching another ball, the program
returns it to its original location via the cancel.move routine. If the posi-
tion is okay, it is stored in the position pointer locx() and locy().

The program then returns to the await.selection routine.

130 Macintosh Program Factory

Shooting the Ball

These lines start the shooting procedure:

WINDOW OUTPUT 2

CLS

PRINT "Point to destination and click mouse button”
PRINT “to shoot the white cue ball. Double-click for menu.”
WINDOW 1

CALL SETCURSOR(VARPTR(pool.cursor®(0)))

s.loop:

LET event®B=MOUSE(0)

WHILE event®< |

LET event®=MOUSE(0)

WEND

The lines produce a display similar to that in Figure 7-5. The s.loop
routine waits until you press or click the mouse button. After that, the
following lines are executed:

WINDOW QUTPUT 2

CLS

PRINT “Click once to stop action. Double-click for menu.”
WINDOW 1

LET tg.x®=MOUSE(1)-4

LET tgy®=MOUSE(2)

LET delta.x®=tg.x%-locx(1)
LET delta.yR=tg.yR-locy(1)
GOSUB find.angle

IF NOT a.0k® THEN s.100p
LET dx.b=speed®*COS(angle)
LET dy.b=speed®*SIN(angle)
LET mvb®=1

These lines provide a display like that in Figure 7-6 (created with
the tracer on). Tg.x%, tg.y% are the coordinates of the destination (the
cue-stick location when you pressed the mouse). The program calculates
the angle from the cue ball to the destination ball (GOSUB find.angle).
It then calculates the corresponding horizontal and vertical increments
dx.b and dy.b (see Figure 7-8).

Electronic Billiards 131

dx.b=speed X cos(angle)
dy.b=speed Xsin(angle)

*Speed is the distance the ball travels in direction angle in a single cycle of program
calculations.

Figure 7-8. Given a ball direction specified as an angle and a speed,
the program calculates the corresponding horizontal and
vertical increments dx.b and dy.b

Just before executing the next block of lines, the program specifies
ball number 1 (cue ball) as the moving object (LET Mvb%—=1).

Rolling the Balls

The following lines start the moving-ball procedure:

LET event®=MOUSE(0) :REM begin roll

WHILE event®<>1 AND event®<2

LET event®=MOUSE(0)

LET new.locx=locx(mvb®)+dx.b :REM find next location
LET new.locy=locy(mvb®)+dy.b

The program will continue to move the balls until you single-click or
double-click the mouse button (WHILE event%<>1 AND event%<>2).

First the program looks ahead to the next location —the position the
ball will occupy when it has been moved. (LET new.locx=... and LET
new.locy=...).

132 Macintosh Program Factory

Checking for a Collision

These lines check to see whether the moving ball will collide with the
stationary ball:

LET hitB=no® :REM check.for.collision

LET b1R=3-mvb®

LET dist®=FNdistance(new.locx, new.locy, locx(b1%),
locy(b1%))

IF dist®>ball.dia® THEN cfc.done

LET delta.x®=dx.b

LET delta.yR=dy.b

GOSUB find.angle

IF NOT a.0k® THEN cfc.done

LET b.angle=angle

LET delta.x®=locx(b1%)-new.locx

LET deltayR=locy(b!%)-new.locy

GOSUB find.angle

IF NOT a.ok® THEN LET angle=b.angle

LET col.angle=angle

LET impact.angle=ABS(b.angle-col.angle)

LET hit®=(impact.angle<qtr.circ) OR
(impact.angle>threeqtr.circ)

IF NOT hit® THEN cfc.done

LET dx.b=speed®*COS(col.angle)

LET dy.b=speed®*SIN(col.angle)

B1% is the number of the stationary ball. If the distance between
balls is greater than the ball diameter, no collision ean occur, so the
collision check is finished (IF dist%>ball.dia% THEN cfc.done).

Otherwise, the program checks to see whether the direction of
motion is toward the stationary ball (causing a collision), on a tangent
(no collision), or away from the ball (no collision).

B.angle is the angle of cue-ball travel. Col.angle is the angle between
the centerpoints of the two balls (see Figure 7-2). Impact.angle is the
difference between the two angles. When impact.angle is less than a
quarter circle or greater than a three-quarter circle, a collision is
imminent.

If no collision is imminent (NOT hit%), the collision check is finished.
Otherwise, the horizontal and vertical motion-increments dx.b and dy.b
are recalculated from the angle of impact. The new values will be ap-
plied to the ball that was stationary at the time of the collision.

The next block of lines checks to see if the moving ball is going to

Electronic Billiards 133

bounce against a rail:

cfc.done:

LET rbounce®=(new.locx>=spot.x1%®) :REM check.for.bounce:
IF NOT rbounce® THEN check.lbounce

LET new.locx=spot.x1®B+spot.x | B-new.locx
check.lbounce:

LET Ibounce®=(new.locx<=spot.x®)

IF NOT Ibounce® THEN check.bbounce

LET new.locx=spot.x®+spot.xB-new.locx
check.bbounce:

LET bbounce®=(new.locy>=spot.y 1 %)

IF NOT bbounce® THEN check.tbounce

LET new.locy=spot.y I B+spot.y | B-new.locy
check.tbounce:

LET tbounce®=(new.locy<=spot.y®)

IF NOT tbounce® THEN done.cfb

LET new.locy=spot.y®+spot.y®-new.locy
done.cfb:

IF rbounce® OR Ibounce® THEN LET dx.b=-dx.b
IF bbounce® OR tbounce® THEN LET dy.b=-dy.b

A ball bounce is imminent if its next calculated position (new.locx,
new.locy) is off the table. The status variables rbounce%, lbounce%,
tbounce%, and bbounce% indicate whether the ball will hit the right,
left, top, or bottom rail. After a right- or left-side bounce, the horizontal
direction dx.b is reversed; after a top- or bottom-side bounce, the vertical
direction dy.b is reversed.

After checking for a collision and a bounce, the program moves the
ball to its new location:

IF trace.on® THEN new.pos :REM move ball

PUT (locx(mvb®),locy(mvbR)),baliR(0,mvbR) :REM erase from
old pos’n

New.pos:

LET locx(mvb®)=new.locx

LET locy(mvb®)=new.locy

PUT (locx(mvb®),locy(mvb®)),bal1®(0,mvbR) :REM show at new
pos’n

IF hit® THEN SOUND 110,.75

IF rbounce® OR 1bounce® OR bbounce® OR tbounce® THEN SOUND
200,.5

IF hit® THEN mvb®=3-mvbR®

134 Macintosh Program Factory

WEND

IF event®=1 THEN shoot
shoot.done:

CALL INITCURSOR
RETURN

If the tracer is on, the program skips the line that erases the ball
from its old position. Immediately after the ball is shown in its new
position, the program makes a sound if a hit or bounce was calculated.

If a hit occurred, the stationary ball becomes the moving ball (IF
hit% then mvb%=38—mvb%).

These lines also include the termination of the roll-ball loop. If you
have clicked the mouse button during the current roll-ball cycle, the
program exits from the WHILE/WEND loop. In the case of a single
click (event%=1), the program goes back to the beginning of the shoot
procedure. In the case of a double-click, the program goes back to the
control-button monitor routine.

Calculating the Angle of Motion

Given a horizontal increment delta.x% and a vertical increment del-
ta.y%, the following subroutine calculates the resulting angle of motion:

find.angle:

LET a.ok®=yes®

LET quad.select®=SGN(delta.x®B)+1+(SGN(delta.yR)+ | }*3

ON quad.select®+! GOTO
42q3,yneg,q1q4,xneg,origin,xpos,q2q3,ypos,q1q4

origin:

LET a.ok®=no%

GOTO fa.done:

Xpos:

LET angle=0

GOTO fa.done

qlq4:

LET angle=ATN(delta.y®/delta.x%)

GOTO fa.done

ypos:

LET angle=gtr.circ

GOTO fa.done

q2q3:

Electronic Billiards 135

LET angle=pi+ATN(delta.yR/delta.x®)
GOTO fa.done

xneg:

LET angle=pi

GOTO fa.done

yneg:

LET angle=3*qtr.circ

GOTO ra.done

fa.done:

RETURN

—Testing and Using the Program

You should be able nearly to duplicate the screens shown in Figures 7-1
and 7-8 through 7-6. Test all of the control-panel buttons. When shoot-
ing the cue ball, try aiming for the sides of the object ball. The object
ball should bounce away at an angle just as in real billiards.

—Suggested Games

One of the simplest games for one or two players is Call the Shot. Each
player starts with the same ball position (use the table spots to help fix a
location). Before shooting, the player specifies which rails the ball will
bounce off of en route to the object ball. The object of the game is to
bounce off the most rails before hitting the ball; but remember, the
player must specify the number and sequence of rails that will be hit.

Another game is Circles. The goal is to enclose the object ball in the
path of the cue ball without hitting it. Play this game with the tracer
on.

Finally, players may take turns at One-upmanship. Each player
starts at level 1, meaning the player must hit the object ball after one
bounce. Starting a turn with new random ball positions, the player tries
to hit the object ball after the number of bounces corresponding to that
player’s current game level. After successfully hitting the object ball in
a specified number of bounces, the player advances to the next level
(keeping the latest ball positions). A player continues until he or she
misses.

Chapter 8

Concentration

Concentration is usually played with a deck of cards. In this chapter, we
present a program that allows you to do the same thing with a comput-
er. Never mind how many decks of cards you can buy for the cost of a
single computer —the computer version has unique advantages over its
predecessor, such as automatic scoring, shuffling, and card-handling,
and a far more interesting deck of cards (see Figure 8-1).

—Rules and Object of the Game

From one to four persons can play Concentration. A deck of playing
cards is shuffled and then arranged face-down on a table. For a com-
plete 54-card deck (including two “wild” or blank cards), a 6 X 9 layout
is used. The computer handles these details.

The first player “turns over” two of the cards by pointing to each
card with the cursor and clicking the mouse button. If the cards match
or if either of the cards is wild, the player receives two points and the
cards are removed from the table. Otherwise, the cards are turned over
again, each in its original position. Play then passes to the next player.
The game continues until no more matching pairs remain on the table.
The player with the most points wins.

137

138 Macintosh Program Factory

@

IR0
BEE0O®
FEEOE
VRO

(@)

B®
OICIOEIE
(=60

@ T

P80 U

Figure 8-1. The deck of cards used in Concentration, shown face-up. To
get these characters, the Cairo type font must be included
in the system fonts of your BASIC startup disk

—The Program

The first block sets up the card-deck characters and certain other
arrays.

DIM cv$(14), scB(4), dRB(54), pair.rowR(2), pair.col®B(2),
cn®(2),card®(3), gray®(3)

FOR c%=1TO 14

READ cv$(c®)

NEXT c®

DATA 1,2,3,5,7,8,8,8,",%,) e, "

FOR j8=0 TO 3

LET grayR(jR)=&HSSAA

NEXT j%

LET wc®=14

LET np®R=1

LET yes®B=(1=1)

RANDOMIZE TIMER

The array CV$() stores the 14 characters that appear on the faces of
the playing cards.

Concentration 139

Look at the DATA statement. It includes 14 characters, of which the
last is a single blank space inside quotes. If you select the Cairo font and
then attempt to print these characters, you’ll get the characters shown
in Figure 81. You may change any of the first 13 items in the DATA
statement; however, the last item should always be a blank space, to
produce the blank wild card.

Sc%() stores the players’ scores. D%() keeps track of which card
occupies each space on the table. Pair.row%() and pair.col%() record
the location of the most recently selected pair of cards. Cn%() holds the
same data in more compressed form. Card%() holds parameters used
when drawing the cards, and gray%() holds data corresponding to the
dotted pattern on the backs of the cards.

We% indicates which card character is wild. Np% is the initial set-
ting for the number of players.

The next block of lines defines the card’s appearance:

LET card.width®=26

LET card.length®=29

LET row.tab®=35

LET col.tabB=40

LET oval.x®=card.width®\2
LET oval.y®=card.length®\2

Cards are 26 X 29 dots and are placed at 85-dot increments horizon-
tally and 40-dot increments vertically. The corners of the cards are
rounded.

The following lines determine the size and location of the three win-
dows used by the program:

LET w3.width®=5%72

LET w3.lengthR=3%72

LET wl.width®=w3.width®
LET bx.cB=(w 1.width®-50)\2
LET w1.length®B=(1+1/8)%72
LET w2.width®=(1+1/2)%72
LET w2.length®=w3.length®
LET w3.xB=1/4%72

LET w3.x1%=w3.xB+w3.width®
LET w3.yRB=3/8%72

LET w3y 1R=w3.yR+w3.length®
LET w1.xB=w3.x%

LET wix1B=w3x1%

140 Macintosh Program Factory

file Edit Sewdch Run Windows PETTRITRTRRETTN

" CONCENTRATION
| |Number of players: ®1 O2 O3 0Oa

Figure 8-2. The initial screen when you start Concentration

LET wl.yR=w3.y | B+1/8%72
LET wly1%=w1.yR+w 1.length®
LET w2.xB=w 1.x 1%+ 1/8%72
LET w2.x1R=w2.xRB+w2.width®
LET w2.yR=w3.y®

LET w2y |1%=w2yR+w2.length®

Refer to Figure 8-2. The w-prefix variables refer to window 3 (the
card table), window 2 (the scorebox), and window 1 (the dialog box).
Here are the lines that create the windows:

WINDOW 3,,(w3.x%,w3.yR)-(w3.x18,w3.yl1%),3 :REM 8-4
CALL TEXTMODE(1)

CALL TEXTSIZE(18)

CALL TEXTFONT(11)

WINDOW 1,,(w1.xBw1yR)-(Wix1®Bwlyl%)3

CALL TEXTSIZE(12)

CALL TEXTFONT(1)

LET title1$="CONCENTRATION

LET titlel.tab%=(w1.width®-WIDTH(title1$))\2

Concentration 141

MEHGEMM®
MM)EIG)@
BEO@
HMEEEE
EEHEHEE)
BARCE®E
@WOEE®X
HEC®®
HDHEHOEBEE)

B5EUHEEEEEG

Figure 8-3. If your startup disk doesn’t have the Cairo font, your deck of
cards will look like this

WINDOW 2, (W2.xB,w2.yR)-(w2.x1%,w2y1R),3
CALL TEXTSIZE(12)

CALL TEXTFONT(1)

LET titie2$="SCOREBOX"

LET title2.tabR=(w2.width%-WIDTH(tit1e2$))\2

Each window has its own associated type font and type size. Notice
that text font 11 (Cairo) is used in window 3. If your Macintosh BASIC
disk ‘does not include that type font, you can use Apple’s Font Mover
program to add that font to the disk. If you run the program without
having the Cairo font available, the characters on the cards will be the
same as those shown in Figure 8-3.

The following lines add a menu entry to the top bar:

MENU 6,0,1,"Concentration”
MENU 6,1,1,"Quit -

ON MENU GOSUB menu.rq
MENU ON

142 Macintosh Program Factory

Setting Up the Windows

These lines set up the windows as shown in Figure 8-2:

new.game:

WINDOW 3

CLS

WINDOW 2

CLS

WINDOW 1

CLS

PRINT PTAB(title1.tab®);title!$
PRINT “Number of players:”
FORbR=1TO 4

bx®=(bR- 1)*44+136

BUTTON bR, 1-(b®=npR),STRS(bR),(bxR, 18)-(bx®+32,30),3

NEXT b®
BUTTON 5, 1,"BEGIN,(bx.c®,54)-(bx.c®+50,72)

Next comes a loop that waits for you to specify the number of players
and press the BEGIN button:

hm.loop:

WHILE DIALOG(0)<> 1
WEND

LET btn®=DIALOG(1)
IF btn®=5 THEN hm.done
BUTTON np%, 1

LET npR=btn®
BUTTON np®,2

GOTO hm.loop
hm.done:
FORbtnR=1TOS
BUTTON CLOSE btn®

NEXT btn®

Np% is the number of players. Pressing one of the radio-style buttons
1 through 4 changes np% accordingly. Pressing BEGIN causes the pro-
gram to continue with the next program block.

Concentration 143

Shuffling the Cards
The next block of lines shuffles the cards:

CLS

PRINT “Shuffling the cards...”
FOR c%=1 TO 54

LET d%(c®)=0

NEXT c®

FOR w®=1 TO 2

pick.wcloc:

LET cR=INT(RND*54)+1

IF d®(c%)>0 THEN pick.wcloc
LET d%(cR®)=wc%

NEXT w®

FOR n%=1 TO 52

pick.cloc:

LET cR=INT(RND*54)+1

IF d®(c®)>0 THEN pick.cloc
LET d®B(c®B)=nBMOD 13 + 1
NEXT n®

CLS

First the program sets every array element to 0 (LET d%(c%)=0),
which indicates that no card has been assigned to any location. Then the
program places the two wild cards in randomly chosen positions in
array d%() (LET d%(c%)=wc%).

Next the program shuffles the remaining 52 cards in the deck.

The program converts n% (which ranges from 1 to 52) into a value
from 1 to 13, corresponding to the 138 card characters, and stores that
value in the randomly selected location ¢% (LET d%(c%)=n% MOD 13 + 1).

Now that the cards are shuffled, the following lines place them face-
down on the table:

WINDOW 3

FOR row®R=1 TO 6
FOR col®=1TO 9
GOSUB card.down
NEXT col®

NEXT rowR®

144 Macintosh Program Factory

The card identities are stored in the single-dimension array d%()
and are placed on the table in a two-dimensional arrangement. The fol-
lowing formula gives the correspondence between each card on the
table and its location in d%():

index in d%() = (row—1) X 6 + col

For instance, the identity of the card at row 5, column 3 is stored in
d%() at location (5—1) X 6 + 3 = 27.

The card.down subroutine places a face-down card at the table loca-
tion row%,col%.

The Score Box

The next block of lines sets up the scorebox labels:

score.box:

WINDOW OUTPUT 2

CLS

PRINT PTAB(title2.tab®);titie2$
FOR pn®=1 TO np®

LET sc®(pn®)=0

LOCATE 3+2*(pn%-1),1
PRINT USING “Player *:";pn&;
GOSUB update.scores

NEXT pn®

PRINT

PRINT "Round **

The appearance of the scorebox varies with the number of players
(compare the boxes in Figures 8-4 and 8-5).

Starting a Game

The next lines are executed at the start of a player’s turn:

play.game:
LET c1®8=54
LET pn®=0
LET round®=0

Concentration 145

3 ® File Edit Sear<h Run Windows Concentration

SCOREBOX

Figure 8-4. Screen appearance after player 1’s first turn

SCOREBOX
Player 1: O
Plager 2. 0
Player 3: 0
Player 4. 2
Round * 1

Figure 8-5. Appearance of the scorebox with four players

146 Macintosh Program Factory

WINDOW QUTPUT 1
CLS

PRINT "Player **
PRINT “Select card *",

The variable ¢l% counts the cards left on the table. When ¢l%=0, the
game is over. The game is also over if cl%=2 and the two cards remain-
ing are not a matching pair. This is usually the case because the wild
cards have been used to take half of a matching pair. Pn% identifies the
current player.

The following lines begin a player’s turn:

begin.turn:

LET pn%B=pn% MOD.npH+1
IF pn®<>1 THEN round.ok
LET round®=round®+ 1
WINDOW OUTPUT 2
60SUB update.round
WINDOW OUTPUT 1
round.ok:

LOCATE 1,9

PRINT USING "**;pn%
FOR c®=1T0 2

LOCATE 2,13

PRINT USING “**;c%;

Each time the play passes back to player 1, the round-counter,
round%, is incremented and the scorebox is updated. The program
prompts the player to select two cards (FOR ¢%=1 TO 2).

Card Selection

Now the program begins monitoring mouse activity in the card-table
window:

WINDOW 3

SOUND 550,1
card.loop:

WHILE MOUSE(0)<>1
WEND

LET mx®B=MOUSE(1)
LET my®=MOUSE(2)

Concentration 147

LET zone.x®B=(mx%-6)\col.tab%+1

LET zone.y®=(my%-6)\row.tab%+1

IF zone.x®<1 OR zone.x%>9 OR zone.y®<1 OR zone.y%>6
THEN card.loop

IF (mx%-6) MOD col.tab®B>card.width® OR (my%-6) MOD

row.tab®>card.length® THEN card.loop

LET row®=zone.y®

LET col®B=zone.x%

LET cr&=(row®-1)*9+col®

IF d®(cr®)=0 THEN card.loop

IF c®=2 AND cr®&=cn%(1) THEN card.loop

LET cn®(c®)=cr®

LET pair.row®(c®)=row®

LET pair.col®B(c®)=coi%

GOSUB card.up

WINDOW OUTPUT 1

NEXT c®

The WHILE/WEND loop waits for the player to click the mouse.
The next 11 lines after WEND check to see whether the player clicked
the mouse on a card or not. Three types of invalid selections are possi-
ble: invalid row-column location (IF zone.x%<1 OR...); reference to a
card already removed from the table (IF d%(cr%)=0...); and a request
for the same card for card 1 and card 2 (IF ¢%=2 AND...). In case of
any of these errors, the program returns to card.loop to wait for another
click.

If the selection is valid, the program stores the card-pointer in
cn%(c%), where ¢% equals 1 or 2. The program also stores the card’s row
and column address in pair.r%() and pair.c%(). The selected card is
turned face-up (GOSUB card.up).

The card-selection loop is repeated for the second card.

Evaluating a Selection

After a player has selected two cards, the program checks to see
whether they match:

LOCATE 3,1

LET matchB=(dB(cnB(1))=dR(cn®R(2))) OR
(dB(cn®R(1))=wcR®)

LET match®=match® OR (dB(cn®(2))=wcR)

148 Macintosh Program Factory

IF NOT match® THEN no.match
PRINT "Match! ~;

FOR snd%=1 TO 4

SOUND snd®*110, |

NEXT snd®

LET sc®(pn®)=scR(pn®)+2
WINDOW OUTPUT 2

GOSUB update.scores
WINDOW OUTPUT 1

LET clR=c1®-2

LET game.over®=(c1%=0)

IF game.over® THEN PRINT “Game.over”;: BEEP
GOTO end.turn

Figures 8-4 and 8-6 show the program’s response to a non-matching
pair and a matching pair.

In case of a match, the program sounds an ascending sequence of
notes and adds two to the current player’s score. Since the matched
cards will be removed from the table, the program also deducts two
from cl%. If cl1%=0, no cards remain and the game is over.

E [File Edit Search Run ulindows Concentrution

@4 Select card *
il Match!

Figure 8-6. Screen appearance after a matching pair is found

Concentration 149

" & File Edit Sear<h Run Windows Concentration

Figure 8-7. The matching pair is removed from the table

Figure 8-7 shows the table after a matching pair has been removed.
In the case of a non-match, these lines take over:

no.match

PRINT "No match.”;

SOUND 220,2

SOUND 110,2

LET game.over%=(c1%=2)

IF game.over® THEN PRINT “Game.over”;:BEEP

The program sounds a descending couplet and checks to see whether
the cards selected were the last two on the table. If so, the game is over
since no matching pairs are left.

After a player’s selections have been evaluated, the following lines
wait until the player presses a button to continue:

end.turn:

WINDOW 1

BUTTON 1,1,"0K",(bx.c®,54)-(bx.c8+50,72)
WHILE DIALOG(0)<>1

150 Macintosh Program Factory

WEND

BUTTON CLOSE 1

LOCATE 3,1

PRINT - "

WINDOW OUTPUT 3

IF NOT match® AND NOT game.over® THEN put.back
FORc®=1T02

LET d®(cn®B(c%))=0

LET row®=pair.row®(c®)

LET col®=pair.colB(c®)

GOSUB locate.card

CALL ERASEROUNDRECT (VARPTR(card®(0)), oval.x®, oval.y®)
NEXT c®

GOTQO cl.check

put.back:

FOR c®=1T0 2

LET row®=poir.row®(c®)

LET col®=pair.col%(c®)

GOSUB card.down

NEXT c®

cl.check:

WINDOW 1

IF game.over® THEN new.game ELSE begin.turn

The OK button is shown in Figures 8-4 and 8-6. Once the player has
pressed the OK button, the program puts the cards face-down again or
removes them from the table (if they were a matching pair).

Subroutines

The program uses six subroutines. The first responds to a selection
from the Concentration menu:

menu.rg:

IF MENU(0)<>6 THEN RETURN
IF MENU(1)<>1 THEN RETURN
WINDOW CLOSE 1

WINDOW CLOSE 2

WINDOW CLOSE 3

END

Concentration 151
The next two subroutines update the scores and round-counter.

update.scores:

LOCATE 3+2%(pn®-1),9
PRINT USING “*#";scR(pn®)
RETURN

update.round:

LOCATE S5+2%(np%-1),9
PRINT USING “##°;round®
RETURN

On entry to the update.scores subroutine, pn% is the player number.
Here’s the subroutine that turns a card face-up:

card.up:

GOSUB 1ocate.card

CALL ERASEROUNDRECT (VARPTR(card®(0)), oval.x%, oval.y®)
LET c$=cv$(d®((row®-1)*9+co1%))

LET c.tab®=(card.width®-WIDTH(c$))\2

CALL MOVETO(cx®+c.tab®,rx®+22)

PRINT USING "1"; c$;

CALL FRAMEROUNDRECT (YARPTR(cerd®(0)), oval.x®, ovel.y®)
RETURN

Given card location row%, column%, the locate .card subroutine finds
the actual card location in terms of window coordinates. It loads those
coordinates into the array card%() so that the ERASEROUNDRECT
routine can erase the card from the screen and the FRAMEROUNDRECT
routine can redraw it with the character ¢$ showing.

The following lines put a card face-down on the table:

card.down:

GOSUB locate.card

CALL FILLROUNDRECT (VARPTR(card®(0)),
oval.x®,oval.y®, VARPTR(gray®(0)))

CALL FRAMEROUNDRECT (VARPTR(card®(0)),

oval.x%, ovaly®)
RETURN

As with the card .up subroutine, locate.card puts the necessary screen

152 Macintosh Program Factory

coordinates into the array card%(). The program then puts a gray
rounded rectangle at the appropriate location on the table.

Finally, here’s the subroutine that loads the card-location parame-
ters into the card%() array.

locate.card:

LET rx®B=6+(row®-1)*row.tab®
LET cx®=6+(col®-1)*col.tab®
LET card®(0)=rx%

LET card®(1)=cx®

LET card®(2)=rx®+card.length®
LET card®(3)=cx®+card.width®
RETURN

Variables rx% and cx% are the actual screen coordinates of the upper
left corner of the current card.

—Using the Program

The screens shown in Figures 8-2 through 8-7 are similar to the results
you should get when you run Concentration on your computer.

The game must be played without pencil or paper. For fairness, every-
one should get a look at the screen after each player completes his turn
(and before he presses the OK button).

When playing Concentration solitaire, try to find all the pairs in as
few rounds as possible. The next time you play, try to do it in even fewer
rounds.

Chapter 9

~ The Codebreaker

This program lets your Macintosh show its smarts by competing against
you in a game called the Codebreaker. With minor variations, the game
is also known as “Bulls and Cows” and “Mastermind” (trademarked).

—Rules of the Game

In this two-player game, one player (the codemaker) makes up a secret
code and the other player (the codebreaker) tries to guess the code.
After each guess, the codemaker gives a score to the codebreaker, who
uses this information to make another guess. The object of the game is
to guess the code in as few tries as possible.

Codes consist of a sequence of four characters taken from the set
A,B,C,D. For example, AAAA, ABCD, DCBA, and BAAB are all valid
codes. There are 256 ways of combining the characters into codes.

Each guess receives two scores:

+ The number of characters positioned correctly, called “hits.”
» The number of characters positioned incorrectly, called “misses.”

If a guess includes a character that is not found in the code, the
character is not scored at all.
Table 9-1 gives several examples of scoring. Take a minute to study

153

154 Macintosh Program Factory

Table 9-1. Sample Scoring for Secret Code BDBA

Guess Score Comments
Hits Misses
AAAA 1 0 The A in the rightmost posi-
tion is a hit; the other A’s
don’t count.
ABBB 1 2 The B second from the right

is a hit; the A is a miss; one of
the other B’s is a miss; the
remaining B doesn’t count.
BCAB 1 2 The B in the leftmost position
is a hit; one of the other B’s
and the A are misses; the C
doesn’t count.

DBAB 0 4 All four characters are misses,
i.e., all are in the secret code
but none is positioned as
guessed.

BDBA 4 0 All four characters are hits.

the sample guesses and scores to be sure you understand the scoring
system.

The Codebreaker program lets you play the role of codemaker or
codebreaker. In the latter case, the program makes up secret codes and
scores your guesses. When you take the role of codemaker, the program
functions as the codebreaker. You type in your secret code, and the
computer scores its own guesses. (Don’t worry, the program doesn’t
cheat; the secret code is kept in a part of the program that the code-
breaker never sees.)

You may be surprised to find that the program is an exceptionally
good guesser. The process it uses is very systematic —no intuition or
artificial intelligence is involved. Of course, you don’t have to tell your
friends that!

Two people can play this game by taking turns as the codebreaker
and letting the computer score each player. The player who guesses the
secret code in the fewest tries wins the round.

Figures 9-1 through 9-10 illustrate the operation of the program in
its role as codemaker and codebreaker.

The Codebreaker 155

—Secrets of Codebreaking

Most players eventually come up with a system for guessing. Here’s the
Codebreaker’s own method:

The program makes its first guess arbitrarily. It then gets the scores
(number of hits and misses) and records that information.

For subsequent guesses, the program starts with a potential guess or
“hypothesis” chosen from a list of all possible codes. It assumes the
hypothesis is correct and scores each of its previous guesses against the
hypothesis. If all its scores are consistent with the scores actually
received, the program uses the hypothesis as its next guess. If any of the
scores are different from the scores you provided, the program discards
that hypothesis and gets another.

—The Program

The first block defines the arrays used in the program:

LET 1g%=10

DIM wnd.w®(2), wnd.1%(2), wnd.x®(2), wnd.y®(2), wnd.x1%(2),
wndy 1%(2)

DIM btn.x®(3), btn.yR(3), btn.x 1%(3), btn.y 1%(3)

DIM f1d.xR(2), f1d.yR(2), f1d.x1%(2), fid.y 18(2)

DIM p$(256), gus(igR), s1%(1gR), s2R(1gR), p1$(2)

Lg% is the maximum number of guesses you are allowed before the
computer reveals the secret code. The arrays prefixed by wnd., btn.,
and fld. contain parameters for windows, buttons, and edit fields.

P$() contains all possible codes. Gu$() contains the guesses that the
codebreaker (you or the computer) makes. S1%() and s2%() keep track
of the scoring for each guess: s1%() stores hits, and s2% stores misses.

For instance, gu$(1) stores the first guess; s1%(1) stores the number
of hits assigned to that guess, and s2%(1) stores the number of misses.

Loading the Parameters
The next block of lines loads parameters into the window arrays:
FORn®=1TO 2

READ inches.wide,inches.long,ulcx,ulcy
LET wnd.wR(nR)=inches.wide*72

156 Macintosh Program Factory

LET wnd.1R(n®)=inches.long*72

LET wnd.x®(n®)=ulcx*72

LET wnd.yR(nR)=ulcy*72

LET wnd.x 1R(n®)=wnd.xB(n%)+wnd.wR(nR%)
LET wnd.y 1R(n®)=wnd.y®(nR®)+wnd.IR(n®)
NEXT n®

REM wide long left top

DATA 3.00, 3.625, 0.375, 0.50

DATA 3.00, 3.625, 3.750, 0.50

The following lines serve the same function for the button arrays:

FORN®R=1 TO 3

READ inches.wide,inches.long,h.zone,v.zone,b.type®(n%)
LET btn.x®B(n®)=(wnd.wR(1)-inches.wide*72)*h.zone
LET btn.yR(n®)=(wnd.1%(1)-inches.long*72)*v.zone
LET btn.x 1®(n®)=btn.xB(n®)+inches.wide¥*72

LET btn.y 1R(n®)=btn.yR(n®)+inches.long*72

NEXT n®

REM wide long h.zone v.zone type

DATA 1.000, 0.333, 0.500, 0.9375, 1

DATA 0.667, 0.208, 0.333, 0.3750, 3

DATA 0.667, 0.208, 0.667, 0.3750, 3

H.zone% and v.zone% indicate the relative horizontal and vertical
position of a button within window 1.
And here are the corresponding lines for the edit fields:

FOR n®=1 TO 2

READ inches.wide,inches.long,h.zone,v.zone

LET f1d.x®(nR)=(wnd.w®(1)-inches.wide*72)*h.zone
LET fidyR(n®)=(wnd.I1R(1)-inches.long*72)*v.zone
LET f1d.x1R(n®B)=f1d.xR(n%)+inches.wide*72

LET flidy | B(n®R)=f1d.yR(nR)+inches.long*72

NEXT n®

REM wide long h.zone v.zone

DATA 1.00, 0.208, 0.500, 0.333

DATA 1.00, 0.208, 0.500, 0.500

Program Constants

The following lines set up certain values that do not change during pro-
gram operation:

The Codebreaker 157

LET p1$(1)="You"

LET pl$(2)="Mac"

LET yes®=(1=1)

LET no%=(1=0)

LET dg$="ABCD"

LET one.space$="": REM one space inside quotes
LET one.x$="X": REM one X inside quotes

LET qt$=CHR$(34) :REM double quote

P1$() stores the names of the two players: “Mac” and “You.”
The next lines activate the Codebreaker menu shown in Figure 9-1:

MENU 6,0,1,"Codebreaker”
MENU 6,1,1,"Quit ~

ON MENU GOSUB menu.rq
MENU ON

The menu offers only one command: Quit.

e Run Windows ESGETRES] EE

THE CODEBRE AKER

One moment.

Figure 9-1. The Codebreaker’s initial title screen

158 Macintosh Program Factory

Generating All Possible Codes

The following lines print the title screen shown in Figure 9-1 and also
generate all possible codes, storing them in array p$().

RANDOMIZE TIMER

LET cb®=1

WINDOW 1,,(wnd.xB(1),wnd.y®{1))-(wnd.x 1 8(1),wnd.y1%(1)),3

CLS

CALL TEXTSIZE(18)

PRINT

PRINT " THE CODEBREAKER"

PRINT

PRINT " One moment.”

CALL TEXTSIZE(12)

FORpI1®=1T0 4

FOR p28=1T0 4

FOR p3%=1TO0 4

FOR p48=1T0 4

LET ixB=(p 18-1)*64+(p28-1)* 16+(p3%- 1)*4+p4R

LET p$(ix®)=MID$(dg$,p18,1) + MID$(dg$,p2%, 1) + MID$(dg$,p3%,1) +
MID$(dg$,p4%,1)

NEXT p4®,p3%,028,01%

Codes are generated in the following order: AAAA, AAAB, AAAC,
AAAD, AABA, AABB, AABC, AABD, AACA, and so forth, up to
DDDD. In effect, the computer just counts from 0 to 255 in base 4, using
the “digits” A, B, C, and D instead of 0, 1, 2, and 3.

The following lines produce the initial dialog box, which is shown in
Figure 9-2:

select.codebreaker:

CLS

PRINT “ THE CODEBREAKER"

LOCATE 5,1

PRINT " Who is the codebreaker?”

BUTTON 1,3-cb®,"YOU",(btn.x%(2),btn.yR(2))- (btn.x 1%(2), btn.y1%(2)),
b.type®(2) '

BUTTON 2,cb®,"MAC",(btn.x®B{3),btny®(3))- (btn.x1%8(3), btny1%(3)),
b.type®(3)

BUTTON 3,1,"BEGIN",(btn.x®(1),btn.y®(1))- (btn.x 18(1),btn.y1%(1)),
b.type®(1)

sc.loop:

The Codebreaker 159

GOSUB wait.entry

IF event®=6 THEN start

LET bin®=DIALOG(1)

ON btn® GOTO roles,roles,start
roles:

LET cb®=btn%

BUTTON 1,3-cb®

BUTTON 2,cb%

GOTO sc.loop

start:

BUTTON CLOSE 1

BUTTON CLOSE 2

BUTTON CLOSE 3

ON cb® GOTO you.guess,mac.guess

The variable cb%, used in the BUTTON statements, identifies the
codebreaker; 1=You, 2=Mac (the Macintosh).

The program gives you a chance to change the codebreaker (initially
set to You) before you press BEGIN to start the game.

THE CODEBREAKER

who is the codebreaker?

@You QOMRC

l BEGIN !

Figure 9-2. The Codebreaker selection menu

160 Macintosh Program Factory

You as Codebreaker

In the next block of lines, the computer randomly selects a secret code,
presents instructions for guessing, and prompts you to enter your first

guess:

you.guess:

LET gn®=0

LET crR=RND*256+1

LET cd$=p$(crR)

GOSUB cb.instructions

WINDOW 2,,(wnd.x®(2),wnd.yR(2))-(wnd.x 1 8(2),wnd.y 1 8(2)),3

GOSUB label.scorebox

WINDOW 1

cb.loop:

CLS

PRINT “ CODEBREAKER:"

LET gn®B=gn®+1

LOCATE S,1

PRINT ° Enter guess number”;,gn®

EDIT FIELD 1, ,(f1d.x®(1),fid.y®(1))-(f1d.x 1R(1),f1d.y 1%(1))

BUTTON