
I 1-

Osborne MctGraw-1-lill "
.

. "

TM T
. ' : .

Georg Stewart

The Macintosh™
Program Factory™

I

The Macintosh™
Program Factory TM

George Stewart

PROPBRTYOF
CUYAHOGA COUNTY

PUBLIC LmRARY

Osborne McGraw-Hill
Berkeley, California

Published by
Osborne McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of
the U.S.A., please write to Osborne McGraw-Hill at the above
address.

Program Factory is a trademark of the author.
Mastermind is a registered trademark of Invitica Plastics.
Spirograph is a registered trademark of Kenner Products, Inc.
Apple is a registered trademark of Apple Computer, Inc.
Macintosh is a trademark of Apple Computer, Inc.

-The Macintosh TM Program Factory TM ---

Copyright © 1985 by McGraw-Hill, Inc. All rights reserved. Printed in the Unit
ed States of America. Except as permitted under the Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any form or by any
means, or stored in a data base or retrieval system, without the prior written
permission of the publisher, with the exception that the program listings may be
entered, stored, and executed in a computer system, but they may not be repro
duced for publication.

1234567890 DODO 898765

ISBN 0-07-881175-9

Karen Hanson, Acquisitions Editor
David Ushijima, Technical Editor
Ted Gartner, Copy Editor
Judy Wohlfrom, Text Design
Deborah Wilson, Composition
Yashi Okita, Cover Design

005.265
St49m

-Acknowledgments ---------

The author is grateful to the editors at Osborne/McGraw-Hill
for their professionalism and kindness during the writing of
this book. Thanks in particular to Karen Hanson, Jon Erickson,
and Harry Wong.

)

To Francina, Nathanael, and Bethany

Table
Of Contents

Introduction XI

Chapter 1

Making Mazes 1
Chapter 2

Hidden Words-Part I 17
Chapter 3

Hidden Words-Part II 39
Chapter 4

The Matchmaker 61
Chapter 5

Crossword Puzzle Patterns 81
Chapter 6

Playback 99
Chapter 7

Electronic Billiards 117
Chapter 8

Concentration 137
Chapter 9

The Codebreaker 153
Chapter 10

Tic-Tac-Toe 173
Chapter 11

Quiz master 199

j

Chapter 12

Speed Math 229
Chapter 13

Text Scanner 249
Chapter 14
Roman Numerals 283
Chapter 15
Poetry Generator 301
Chapter 16

Designs in a Circle 331
Chapter 17

Secret Messages 353
Chapter 18
Blazing Telephones 373
Chapter 19
Nutritional Advisor 393
Chapter 20
The Time Machine 409
Index 429

-Introduction--------------
Your Macintosh computer has a tremendous amount of power inside,
power that you've probably seen harnessed to a specific application like
word processing or picture drawing. The programming projects in this
book will put you in control of that computing potential, setting your
Macintosh to work as a puzzle generator, entertainer, teacher, creative
assistant, and general helper.

Most of the programs in this book let you contribute something as
well so that the program's operation or its results have your own per
sonal touch. You'll be able to enjoy these programs for a long time to
come, changing them every now and then to suit a special purpose or
simply for variety.

If you're interested in how the programs work, you'll get an inside
view from the commentary that accompanies the program listings.
Many of the techniques and ideas can be adapted to your own pro
gramming projects.

The programs are written in Microsoft BASIC, the most widely used
form of BASIC. All programs take advantage of the Macintosh graph
ics and mouse, and many can be used in conjunction with other Macin
tosh programs, such as Mac Write and MacPaint.

The step-by-step method of presentation and many of the programs
in this book are adapted from my column, "The Program Factory,"
which appeared for a number of years in Popular Computing magazine.

Contents of the Book

The 20 programs in this book fall into five categories:

• Puzzle-generators produce graphic and word puzzles that may be
printed on paper. The printed puzzles may then be used without
the computer.

• Games and simulations for one or more persons; the computer
plays an active role.

xi

xii Macintosh Program Factory

• Education and self-improvement projects that teach and exercise
your mind.

• Creaiivity and art projects in which the computer becomes a way
of extending your imagination.

• Handy tools or application programs for use around the home or
office that has entered the computer age.

Chapter Organization

Each chapter starts off with a little background and introductory
material about the subject at hand. A description of the main pro
gramming methods or techniques used in the program follows.

The program listing comes next. It is presented in functional blocks
accompanied by explanatory comments. With some of the longer proj
ects, test points are provided so that you can check your work as you go
along.

A concluding section of each chapter gives hints and tips for using
the program.

Computer Requirements

To run these programs you'll need a Macintosh computer equipped with
Microsoft BASIC version 2.0 or later. Be sure to use the binary version of
BASIC, not the decimal or "business" version. All of the programs will
run in a 128K RAM Macintosh, but most of them run faster and with
more capabilities in the 512K RAM machine. Your computer system
should also include the Apple Imagewriter printer; other printers may
not reproduce the graphics accurately.

Suggestions for Entering Programs

Before typing in any of these programs, find out how to enter and edit a
program using Microsoft BASIC. Step-by-step instructions are given in
Chapter 2 of the Microsoft BASIC Interpreter manual that is included
with the Microsoft BASIC disk.

Type slowly and carefully when entering the program lines. Check
your work as you go along. Before trying to run a program, save it on
disk and get a printout on paper. Compare the printout line for line
with the listing that appears in this book. A program is like a genetic
code -one bit out of place and a useless mutation may result.

Be especially careful to distinguish the letter 0 from the numeral 0
and the letter l from the number 1. Whenever you see a pair of quotes in

Introduction xiii

a listing, as in "", count the number of empty spaces between the quotes
and be sure to type in the same number on your computer. Sometimes
there are no spaces at all inside the quotes. We call that a null string or
nu$ in the listings, and it is important that such null strings be truly
null (empty).

Some of the program lines are too wide to fit on a page of this book
so they are continued on the next line with an indentation. When you
come to the end of a line, check to see if the following line is indented. If
it is, don't press RETURN until you have typed in the indented line as
well.

Always type with your keyboard in the lowercase mode. As soon as
you press RETURN at the end of the program line, Microsoft BASIC will
capitalize and display in boldface those words it recognizes. The resul
tant capitalization should match the listings shown in this book; if it
doesn't, you probably made a typing error.

Test points are provided for some of the longer projects. To test an
incomplete program, you will often have to enter a few temporary lines,
run the program, and then delete the temporary lines when the test is
complete. When it is time to delete the lines, they are presented again,
this time highlighted with gray shading. The text also provides explicit
directions for deleting the test lines.

After making a line-for-line check of your program, try to run it. To
determine whether your version is working or not, compare your results
with the sample screen figures shown in the chapter.

Program Disks

All the programs in this book are available on a 3 1/2-inch disk. Price of
the disk is $35. To order your disk, complete the form and mail it with
your personal check or money order to: The Macintosh Program Facto
ry™, Box 137, Hancock, NH 03449. Allow three weeks for delivery (add
ten days if sending a personal check).

----------- cut along this line ----------

Please send me the Macintosh Program Factory on disk. My $35 payment is enclosed.
___ check __ money order

Address _______________________ _

City --------------State ____ ZIP----

The Macintosh Program Factory'", P.O. Box 137, Hancock, New Hampshire 03449

Chapter 1

M akin····· •...... ... M
·. ····•···· g: .. ····.·azes

If you enjoy the challenge of a good maze, consider the task of designing
one. That turns out to be every bit as difficult, and quite a bit more
interesting. In this chapter, we'll explore the process of maze construc
tion and then program your Macintosh to produce an endless supply of
mind-boggling mazes of varying complexity.

One way to start a maze is to picture the floorplan of a house with
the walls in place but with no doors. You then add doors until there's
just one path between any two rooms in the house. Last of all, you add
an entrance and an exit anywhere you like.

Figure 1-1 shows a 4 X 4 maze. Verify for yourself that there is
exactly one path between any two rooms. Try closing the entrance and
exit and making new ones: you will still have a perfectly good maze.

-Constructing Mazes----------
During construction, a maze is divided into the following three types of
rooms:

• Living quarters (LQ): rooms that are connected by doorways.

1

2 Macintosh Program Factory

Figure 1-1. A simple maze

• Planned expansion (PE): rooms that are adjacent to the living
quarters but don't have doors yet.

• Unused space (US): rooms that are not adjacent to the living
quarters and have no doors.

The steps for building a maze are as follows:

1. Divide the maze into rooms and mark all rooms US.

2. Randomly select a room to be the LQ.

3. Locate all US rooms adjacent to the LQ and add them to the PE
list.

4. If no PE rooms remain, go to step 8; otherwise, continue . .
5. Randomly select a room from the PE list. Add a connecting door

to the LQ (if more than one LQ room is adjacent, randomly select
one).

6. Mark the new room as LQ; mark all PE rooms resulting from this
addition.

7. Go back to step 3, using the new LQ room as the starting point.

8. Randomly select an entrance on the top and an exit on the bottom.

Verify that this procedure works by using it to create a 4 X 4 maze.
Figure 1-2 shows the first four iterations of the process.

Making Mazes 3

us us us us us us PE us

us us PE us us PE LQ PE
t-----1

us PE LQ PE us PE LQ PE

us us PE us us us PE us

A B

us PE PE us us PE PE us

PE LQ LQ PE PE LQ LQ PE
t--- ~ ~

us PE LQ PE PE LQ LQ PE

us us PE us us PE PE us

c D

Figure 1-2. First four iterations of the maze construction process

-A Computerized Maze---------
The maze is stored inside the computer as a two-dimensional array
called M(,). The room at row R, column C corresponds to the array
element M(R,C). The number stored in each element indicates whether
the room is LQ, PE, or US.

US rooms are represented by 0. PE rooms are represented by -1.
LQ rooms are represented by a positive number from 1 through 15, with
the exception of the first LQ room.

The number of an LQ room is calculated by assigning the numbers
1, 2, 4, and 8 to the east, south, west, and north walls, respectively. The
numbers of all walls with doors are then added to produce a door code.

4 Macintosh Program Factory

PE PE PE us -1 -1 -1 0 M(2,1)
(Initial LQ

LQ LQ LQ PE 3 5 20 -1 area)

-
LQ PE PE us 8 -1 -1 0

PE us us us -1 0 0 0

Figure 1-3. Maze under construction

Figure 1-3 shows a maze under construction using the LQ/PE/US
coding system and again using the numerical coding system.

Note that the very first room of the living quarters is a special case
because when it is first selected, it has no doors. This gives it a door
code of 0, the same as unused space (US). To distinguish it from unused
space, we add 16 to its initial door code.

-The Program-------------
The maze program is best explained in logical blocks. Feel free to skim
through the explanations and concentrate on entering the actual list
ings. You can always return to the explanation later on.

Defining the Maze Window

The first block allocates memory and defines the parameters for the
maze window.

CLEAR ,350001
LET cXr.ltml= 1920
LET wnd.wl:72*5 : REM window spectflcattons
LET wnd.11:72*3.5
LET wnd.XI= 72*.25
LET wnd.yl= 72*.5

LET borderl=6
LET image.wl:wnd.wl-borderl*2
LET image.11=wnd.11-border1*2
LET ma1<.columnsl=(image.wl-l)\2
LET mauowsl=Omage.11-1)\2

Making Mazes 5

Users of 128K Macintoshes must change the first program line; see
the important note at the end of this chapter.

The size of the maze is limited by the screen dimensions and by
BASIC's string length, 32767 (since the maze drawing commands are
stored as a string). The product of the maze length times its width
(counted in cells) can be no greater than cXr.lim%. Assuming that this
criterion is met, the maze must also be small enough to fit within the 5
X 3.5-inch maze window.

Wnd.w% and wnd.1% are the length and width of the maze window.
Wnd.x% and wnd.y% are the coordinates of the upper-left corner of the
window.

Construction Constants

The next block defines certain constants for the maze construction
procedure.

LET empty.ce111=0
LET first.cell I= 16
LET pe.celll=-1
LET boundary.celll=-2
LET tmage.xyl:borderl
DIM exp21(3) ,dcl(4) ,drl(4) ,greyl(3) ,b 1 ackl(3), whi tel(3)
FOR dl=1TO4
READ dcl(dl),drl(dl)
LET exp21(dl-1)=2\dl-1)
NEXT di
DATA 1,0,0, 1,-1,0,0,-1
READ gray.codel ,bl ack.codel, whi te.codel
DATA -21931,-1,0
FOR codel:O TO 3
LET grayl(codel)=gray.codel
LET b 1ackl(codel)=b1 ack.codel
LET whitel(codel)=white.codel
NEXT codel

6 Macintosh Program Factory

Array exp2%() holds the values 2 /\ n for n=O to 3. Since these values
are used repeatedly, it is faster to recall them from an array than to
recalculate them over and over. Arrays dr%() and de%() hold row and
column increments corresponding to the directions east, south, west,
and north. Arrays gray%(), black%(), and white%() hold the codes for
the three corresponding color patterns.

Implementing the Specification Dialog Box

The next block sets up a dialog box so the program operator can specify
the maze dimensions and wall thickness.

spec.maze:
WINDOW 1,,(18,36)-(288,214),3
PRINT TAB(11);.MAZE GENERATOR.
PRINT· Length (1-·;max.rows1;·cells>9
PRINT
PRINT • W1dth (1-·;max.columns1;·cells)"
PRINT
PRINT· Note: length X width must be <·;cXr.lim:C
PRINT
PRINT • Wall size (1-·;
BUTTON 1,0 I .PROCEED. ,(30 I 144)-(92, 160)
BUTTON 2, 1, ·au IT",(112, 144)-(162, 160)
BUTTON 3, 1,"RED0·,c1e2, 144)-(232, 160)

After typing in this block, you can run the first part of the program.
(Close the listing window and type COMMAND-R.) Your screen should
display the dialog box shown in Figure 1-4. Notice that the PROCEED
button is inactive.

Now reopen the listing window (COMMAND-L) and continue typing in
the program. The next block starts the dialog:

begin.dialog:
LET last.cl= 15
LET last.rl= 1 o
LET thl= 1 O : REM wall thickness
LET fldl= 1 :REM active field
LET nxt. fl d:C= 1
GOSUB check.1 w
EDIT FIELD 3,STR$(thl),(198, 112)-(240, 127)
EDIT FIELD 2,STR$(1ast.cl),(198,48)-(240,63)
EDIT FIELD 1,STR$(1ast.rl),(198, 16)-(240,31)

Making Mazes 7

r s File Edit '.•l e<1n h Run Windows
.,

119 cells)

Width(l- 173 cells)

Note: length x width must be< 1920

[l'BIJllUJ) [QUIT I [REDO I

Figure 1-4. The preliminary maze specification dialog box

Last.c%, last.r%, and th% are the initial settings for the maze width,
length, and wall thickness. Each time you run the program, these
values will appear as preset values in the dialog box.

The next block waits until you click the mouse in a field or button, or
until you press RETURN or ENTER:

get.size:
LET act~=DIALOG(O)
IF actle= 1 THEN ON DIALOG(1) GOTO check.fld,quit,begin.dialog
IF actle:2 THEN LET nxt.fld~=DIALOG(2): GOTO check.fld
IF actle:6 THEN LET nxt.fl di:(fl di MOD 3)+ 1: GOTO check.fl d
GOTO get.size

Whenever you enter a field by clicking the mouse or pressing ENTER

or RETURN, the following block checks the contents of that field:

check.fld:
LET entry:\/AL(EDIT$(fld:C))
IF entry<>INT(entry) THEN entry.error
IF entry<-32768 OR entry>32767 THEN entry.error
IF fld~=l THEN LET last.rle:entry

8 Macint.osh Program Fact.ory

IF fldl:2 THEN LET lost.cl:entry
IF fldl:3 THEN LET thl:entry
ON fldl GOSUB check.lw,check.lw,check.th
IF lw.okl=O THEN entry.error
IF GCtl: 1 AND th.Oki= 1 THEN proceed
LET fl dl=nxt. fl di
EDIT FIELD fldl
GOTO get.size
·entry.error:
BEEP
EDIT FIELD fldl
GOTO get.size

This block first ensures that the number you've entered can be stored as
an integer, then proceeds to a more specific range-checking subroutine,
depending upon which field number you enter.

If lw.ok%=0, the value was out of range, and the program jumps to
the entry-error routine. Act%=1 and th.ok%=1 indicate that you just
pressed the PROCEED button and that the thickness-setting is within
range. In this case, the program exits from the dialog loop and begins
drawing the maze. Otherwise, the program automatically selects the
next field for editing.

The next block ends the program if you press the QUIT button.

QUit:
WINDOW CLOSE 1
END

The following lines comprise a subroutine to ensure that the maze
specifications are within range:

check.lw:
LET lw.okl:1 :REM length & Width flag
LET th.okl= 1 :REM.thickness flog
IF lost.rl< 1 OR lost.rl>mox.rowsl THEN lw.okl=O
IF last.cl< 1 OR lost.cl>mox.columnsl THEN lw.okl=O
IF last.cl*lost.rl>cXr.liml THEN lw.okl=O
LET vl=image.wl\Oost.cl*2+ 1)
LET hl=i mage.11\(1 ost.rl*2+ 1)
LET 1 j mi ti:-(Yl<=hl)*vl-(hl<Yl)*hl
IF thl<1 OR thl>limitl THEN th.okl:O
BUTTON 1,lw.okl*th.okl

LOCATE B, 12
PRINT USING """ dots)";llmitl;
RETURN
check.th:
LET 1w.okl= 1
IF thl< 1 OR thl>Jimitl THEN Jw.okl:O
BlITTON 1,1w.okl
RETURN

Making Mazes 9

Each time the length or width is changed, the program must·alter
the displayed limit for wall-size. This limit, limit%, ensures that the
maze will not exceed the window size in either dimension (width or
length).

Test Point

This is a good place to stop to check your work. But first, add this line at
the end of the program listing (borrowed from the next block to be
presented).

proceed:

Now close the listing window and run the program. You should see
the screen presented in Figure 1-5. Try all of the options available in the
dialog box.

Now stop the program (COMMAND-.), and open the listing window.
Continue adding to the listing beginning at the end of the last line
entered, "proceed:".

Creating the Maze

The next block sets up the maze as a two-dimensional array.

proceed:
WINDOW CLOSE 1
LET ce11.sizel=thl*2
LET 1est.pel:2/3*1est.rl*1est.cl
DIM ml(Jest.rl+ 1,1ast.cl+ 1),pe.rowl(1est.pel),pe.co11(1est.pel),Yul(4)
FOR rl:O TO Jest.rl+ 1 STEP Jest.rl+ 1
FOR cl:O TO last.cl+ 1
LET ml(rl,cl):boundery.ce111
NEXT cl

10 Macintosh Program Factory

NEXT~

FOR c:g=o TO lost.c:g+ 1 STEP lost.c:g+ I
FOR ~=0 TO lost.~+ I
LET m:g(~ ,c:g)=boundory.ce 11 :g
NEXT~

NEXT c:g

The variable last.pe% is the largest number of planned expansion
(PE) cells possible for a given maze size. Array m%(,) stores the door
codes for each room of the maze. Pe.row%() and pe.col%() store the row
and column location of each PE cell. Vu%() stores the view in all four
directions from the newest living quarters (LQ) cell.

Initially, the maze array m%(,) contains all O's, except for the maze
boundary cells along the top, right, bottom, and left edges of the maze.
These cells get the value -2.

The next block opens window 1 for the maze and window 2 for a
dialog box.

~ IS Iii<~ Edit SH ill ch Run Windows

MAZE GENERATOR
Length (1- 119 cells) ~

Width (1- 173 cells)

Note l ength X width must be< 1920

Wall size (1- 5 dots)

(PROCEED) (QUIT (REDO I

Figure 1-5. The complete maze specification dialog box

Making Mazes 11

WINDOW 1,,(wnd.xl, wnd.yl)-(wnd.xl+wnd. wl, wnd.yl+wnd.11) ,4
WINDOW 2,,(5.5*72,2.5*72)-(7*72,4*72) ,3
BlJTTON 1, 1, "CANCEL" ,(23,46)-(65,64)
WINDOW OUTPUT 1
PICTURE ON
CALL SHOWPEN
CALL PENSIZE(thl,thl)
IF thli>5 THEN CALL PENPAT(\IARPTR(gray:C(O)))
IF thl<5 THEN CALL PENPAT(\IARPTR(black:C(O)))

This dialog box contains a single CANCEL button that erases the
maze window and restarts the maze specification dialog box. For wall
thicknesses of six or greater, a gray pattern is used; for thinner walls a
solid black pattern is used.

The following lines draw the floorplan of the maze with walls but no
doors:

FOR rli= 1 TO lost.r:i+ 1
CALL MO\IETO(i moge.xy:C ,i moge.xy:C+(r:i-1)*cel1.si ze:C)
CALL LI NETO(i moge.xy:C+ 1ost.cl*ce11.si zel, i moge.xyl+(r:i-1)*ce 11.si zel)
IF DIALOG(O): 1 THEN stop.it:
NEXT r:i
FOR cl: 1 TO lost.cl+ 1
CALL MO\IETO(imoge.xy:C+(cl-1)*cell.sizel,imoge.xyl)
CALL LI NETO(i moge.xyl+(cl-1)*ce 11.si zel, i moge.xyl+ 1ast.r:i*ce11.si zel)
IF DIALOG(O): 1 THEN stop.it
NEXT cl

The program draws all the horizontal walls first; then all the verti
cal walls.

Now the program randomly selects a room to be the first LQ cell.

CALL PENPAT(\IARPTR(wh1tel(O)))
RANDOMIZE TIMER
LET r1l:INT(RND*last.r:i)+1
LET c 11= I NT(RND*l ost.cl)+ 1
LET ml(r 11,c 1 l)=first.celll
LET r:i:r11
LET cl=c11
LET nl:O
GOSUB get.view
GOSUB mark.pe

12 Macintosh Program Factory

Each time a room is added to the LQ space, the program calls the
get.view subroutine to look for adjacent unused space (US) cells. Any
US cells discovered are added to the list of PE cells by the mark.pe
subroutine.

The following lines comprise a loop (repeated section of code) that
continues adding rooms to the LQ space until no more PE cells are left:

WHILE nl>O
IF DIALOG(O): 1 THEN stop.it
LET pe.ptrl:INT(RND*nl)+ 1
LET rl:pe.rowl(pe.ptrl)
LET cl:pe.coll(pe.ptrl)
GOSUB get.view
select.wall:
LET wdl:INT(RND*4)+ 1
IF vul(wdl)<=O THEN select.wall
LET pe.rowl(pe.ptrl):pe.rowl(nl)
LET pe.co l l(pe.ptrl):pe.co 1 l(nl)
LET nl=nl-1
LET ml(rl,cl):exp21(wdl-1)
LET opp.rl:rl+drl(wdl)
LET opp.cl=cl+dcl(wdl)
LET ml(opp.rl,opp.cl)=ml(opp.rl,opp.cl) OR exp21((wdl+ 1) MOD 4)
GOSUB ·erase.wall
GOSUB get.view
GOSUB mark.pe
WEND

The variable pe.ptr% randomly selects a cell from the PE list. The
program gets the view from that cell; by definition, at least one of the
PE cell's walls must be adjacent to the LQ space. The program ran
domly selects walls until it finds one that does lead to the LQ area. That
wall is opened, and the PE cell is added to the LQ space.

The process repeats until the PE list is empty (n%=0).
Next the program randomly selects an entrance on the top and an

exit on the bottom of the maze:

LET rl:l
LET cl:INT(RND*last.cl)+ 1
LET wdl:4
LET ml(rl,cl):ml(rl,cl) OR exp21(wdl-1)
GOSUB erase.wall

LET rl:litst.rl
LET cl:INT(RND*litst.cl)+ 1
LET wdl=2
LET ml(rl ,cl):ml(rl ,cl) OR exp21(wdl-1)
GOSUB erose.woll

Making Mazes 13

When the maze is complete (or if you press CANCEL during maze
construction), the following lines give you an opportunity to copy the
maze to the Clipboard, ending the program, or to start a new maze:

stop.it:
ERASE ml,pe.rowl,pe.col I, vul
PICTURE OFF
LET moze$:PICTURE$
WINDOW OUTPUT 2

BUTTON CLOSE 1
CLS
PRINT "Copy picture·
PRINT "to cllpboord?"
BUTTON 1, 1, "YES",(30,40)-(80,62)
BUTTON 2, 1,"N0",(30, 74)-(80,96)
WHILE DIALOG(O)<> 1
WEND
ON DIALOG(1) GOTO copy.moze ,continue

The following lines copy the maze to the Clipboard:

copy.moze:
BUTTON CLOSE 1
BUTTON CLOSE 2
CLS
PRINT ·one moment .. :
OPEN "cllp:picture· FOR OUTPUT AS 1
PR I NT • 1,mozeS
CLOSE 1
CLS
PRINT "The cllpboord"
PRINT "holds o copy·
PRINT "of the moze."
BUTTON 2, 1,"0K",(30,74)-(80,96)
WHILE DIALOG(O)<> 1
WEND
END

14 Macintosh Program Factory

When you press the OK button, the program ends. To make a per
manent copy of the maze, you can paste it into the Scrapbook or into a
MacPaint document.

The following lines let you start a new maze:

continue:
WINDOW CLOSE 1
WINDOW CLOSE 2
GOTO spec.maze

Finally, here are three subroutines used during maze construction.
The first gets the view from a selected cell:

get.view:
FOR d:g= 1 TO 4
LET vu:g(d:g):m:g(rl+drl(d:g) ,c:g+dc:g(d:g))
NEXT d:g
RETURN

On entry to this subroutine, r% and c% are the row and column ad
dresses of the selected cell. On returning from the subroutine, array
elements VU(l)-VU(4) hold the door codes of the four adjacent cells
(east, south, west, north).

The second subroutine adds a cell to the PE list:

mark.pe:
FOR d:g= 1 TO 4
IF yu:g(d:g)<>empty.ce11:g THEN skip
LET n:g=n:g+ 1
LET pe.row:g(n:g)=rl+drl(d:g)
LET pe.colll(n:g)=c:g+dc:g(d:g)
LET m:g(rl+drl(dll),c:g+dc:g(d:g)):pe.ce11:g
skip:
NEXT d:g
RETURN

On entry, vu%() contains the four views from the selected cell. The
program randomly selects views until it finds a US cell. It adds this cell
to the PE list and puts the PE cell-code into the corresponding array.

The last subroutine erases a wall from the maze, creating a door
between two rooms:

erase.wall:
LET 1e 1 ll=lmage.1eyl+(cl- I)*cell.stzel
LET y 1 l=image.1eyl+(rl- I)*cell.stzel
ON wdl GOTO wa11.1,wa11.2,wa11.3,wa11.4
wall.1:
CALL MOVETO(IC 1 l+ce 11.si zel ,y 1 l+thl)
CALL LINET0(1e 1 l+cell.sizel,y I l+cell.sizel-thll)
GOTO erase.done
wall.2:
CALL MOVETO(IC 1 ll+thll ,y 1 l+ce 11.sl zel)
CALL LI NET0(1e 1 ll+ce 11.si zel-thll ,y 1ll+ce11.st zell)
GOTO erase.done
wall.3:
CALL MOVETO(M 11,y 1 ll+thll)
CALL LINETO(M 1ll,y1 ll+cell.sizel-thl)
GOTO erase.done
wall.4:
CALL MOVETO(M 1ll+thl,y11)
CALL LINETO(M 1l+ce11.slzel-thll,y1 ll)
erase.done:
RETURN

Making Mazes 15

-Using the Program ----------
Run the complete program. Specify a maze length of 6, width of 10, and
thickness of 15. Then press the PROCEED button. The program should
draw a maze of the specified size in a large rectangular window, while a
CANCEL button will appear in a smaller window to the right, as you
can see in Figure 1- 6.

When the maze is complete, the program will ask whether you want
to save the maze on the Clipboard. If you do, press the YES button. The
program will confirm that the maze has been saved and will end, mak
ing BASIC's command window active.

To make a permanent copy of the maze, open the Scrapbook and
paste the contents of the Clipboard onto a blank page (COMMAND-V).

Another alternative is to open a MacPaint document and paste the Clip
board contents.

If you choose not to save a maze on the Clipboard, the program
returns you to the maze specification window. Start another maze or
press the QUIT button to end.

16 Macintosh Program Factory

Figure 1- 6. A 20 X 30 maze

Important Note: If you have a 128K Macintosh, you must change
the first line of the program as follows:

LET A•FRE(-1): CLEAR A/2,A/2

You will also need to restrict the size of the maze to 11 X 11.

This chapter has been adapted from "Making Mazes" by George Stewart, appearing in the
November 1982 issue of Popular Computing magazine. Copyright 1982 Byte Publications,
Inc. Used with the permission of Byte Publications, Inc.

Chapter 2

Hldden WDrds-
,.,.. °'o'"""'"<>'<

Part 1

This program generates hidden word puzzles as challenging and enter
taining as the best you'll find in newspapers or game magazines. The
completed puzzles are truly personalized: you design the puzzle shape,
specify the puzzle vocabulary, and determine the directions in which
words may be placed.

Figure 2-1 shows a sample puzzle created with this program. The
puzzle solution is given in Figure 2-2.

Because the program is long, it is presented in two parts in this
chapter and the next. Several test points are provided during the pre
sentation so you can check your progress. However, you won't be able to
produce finished puzzles until you've entered the entire program. ·

-Overview---------------
The program starts by asking you to provide a word list and to specify
the puzzle's dimensions (the grid size). Then you are given the opportu
nity to define a shape inside the grid. The completed grid consists of

17

18 Macintosh Program Factory

T U E IC P
GD LOTUSX
RLT Y OBBT

HST DUR CL
R 0 S E E ft S
ESD LU U s c"

llROU L J I ft 8
R 0 II I 0 Q 0 L n

Z I U S T I GEE
UK Y D Y

G L S S A A Y C R
I 2 G I L P H
LHLnGPX

TRKRODOZX
II U C 6 D G T P I Y Z
YLJRIEnanxo
LILYOBCOHZJ

PXOLCEHIG
F II U P U n ft
GYSXYSY

Figure 2-1. Seventeen flower names are hidden in this puzzle

blank cells (the white space in a finished puzzle) and empty cells to be
filled with letters as words are placed into the puzzle.

Given these specifications, the program makes a puzzle. The pro
gram begins by shuffling a list of all the grid cells and selecting a letter
cell from the shuffled list. The program chooses the longest available
word first and tries to fit it in one of eight possible directions (east,
southeast, south, southwest, west, northwest, north, and northeast).

If the program is unable to make the word fit, it tries the next
longest word in the list. If none of the words fit, the program skips to
the next cell and tries to fit the longest available word.

After trying all the cells once, the program makes another pass
through the list to find places where two words can start at the same
cell. When it has completed the second pass, the program randomly fills
in the remaining letter cells. The program then prints the puzzle on the
display or printer.

Hidden Words-Part 1 19

T U E IC P
80 LOTUSX
RLT Y OBIT

MST DUR CL
R 0 S E E A S
ESD LU U

I IAOU L
ROii i 0

Z I U S T I

SCll
J I n 8
Q 0 L R

GEE
UK Y D Y

GLSSAAYCR
I Z 6 I L P II
L H L II 8 P X

TA· I A 0 D 0 Z X
11 UC& D 6 T PI Y Z
Y L.J RI E ft A II X D
.L I L Y 0 .a C 0 II 2 J

PX 8 L CE II I 8
F II U P U n R
&YSXYSY

Figure 2-2. Solution to the flower puzzle

After the first puzzle has been completed, you can select any of the
following commands in the Puzzle menu on the menu bar (see Figure
2-3):

Change grid shape-edit the puzzle shape

Change grid size - resize the puzzle grid

Change word list-change or replace the word list

Make puzzle-place words into the puzzle grid

Print puzzle-show the completed puzzle

Print solution -show the hidden-word locations

Save grid-save the completed puzzle in a disk file

Save word list-save the word list in a disk file
Quit

20 Macint.osh Program Factory

Change grid shape
Change grid size
Change word list
Make puzzle
Print puzzle
Print solution
Saue grid
Saue word list
Quit

Figure 2-3. The main puzzle generation menu

The menu commands make it possible to change individual puzzle
parameters without having to change all of them. For instance, after
creating a puzzle, you may wish to modify its shape; you can do this
without affecting the word list.

-The Program-----------
The first block of the program loads the labels for the Puzzle menu into
the array menu.label$.

READ lest.opttonl
DIM menu.1 ebe1$(1 est.optt onl)
FOR jl:O TO lest.opttonl
READ menu.1ebe1$(JI)
NEXT jl
DAT A 9,Puzzle
DATA Chenge gr1d shepe,Chenge gr1d stze,Chenge word list
DAT A Meke puzzle,Pr1nt puzzle,Pr1nt solutton
DATA Seve grtd,Seve word ltst,Qutt

The next lines load the data for the X-cursor, which appears while
you are editing a shape:

DIM cursor1(33)
FOR Jl:O TO 33
READ cursorl(JI)

NEXT jl
DATA 0,0,0
DAT A &HOBOB ,&H0410 ,&H0220,&HO140 ,&HOOBO
OAT A &HO 140 ,&H0220 ,&H0410 ,&HOBOB
DATA 0,0,0,0
DAT A O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O
DATA 8,9

Hidden Words-Part 1 21

The first 16 numbers in the DATA statements define a 16 X 16 cur
sor pattern, the next 16 numbers define a 16 X 16 cursor mask, and the
last two define the hot spot, or origin, of the cursor. (Cursor definition is
explained in detail in the Microsoft BASIC Interpreter reference man
ual, page 298.) Figure 2-4 shows the worksheet used to derive the
cursor-pattern numbers.

Cursor Pattern Hex Code
~----------.--....-..--.--....................,,..__...,..--.-~

0000 l---1--+--+--+---+-l--+---+-----+--+---+--1f--+--+---+--I

0000 1---1--+--+--+---+-1--+---+--1---t--!.t----'<r'--'-+--+---+--I
0000

0808

0410

0220

0140

0080

0140

0220

0410

0808

0000

0000

0000

0000

~-4---1-----1---

~-4---1-----1---

~-4---1-----1----+--

~-4---1-----1---+--+--

l--1----1---1--1---l-1--

l--!--1---1--1---1-l--

l--+--+---+---+---1-

1--+--t--t--+----i

Figure 2-4. Definition worksheet for the X-cursor

22 Macintosh Program Factory

The program creates two windows -one for use in dialogs and the
other for output. The following lines set up the parameters that control
window location and size:

LET w 1.><ll=.1 *72 :REM window • 1 left side
LET w 1.yl:.35*72 :REM top
LET w 1.Wll:2.5*72 :REM width
LET w 1.1ll:3.5*72 :REM length
LET w 1.>C 1 ll:W 1. wll+w 1.>ell :REM right s1 de
LET w 1.y 1ll:W1.lll+w 1.yll :REM bottom
LET w2.><ll=2.7*72 :REM window •21eft s1de
LET w2.yll:.35*72 :REM and so forth ...
LET w2.wll:4.3*72
LET w2.1ll:4.3*72
LET w2.>e2ll:w2.wll+w2.>el
LET w2.y2ll=w2.1ll+w2.yl
LET bonler1=6
LET m2. wl:w2. wll-bonlerl*2
LET m2.11=w2.lll-bonlerl*2
LET 1.sidell=3
LET 1.spacell=4
LET 1.totll= 1.si dell+ 1.spacell
LET ma>e.cll:(m2. wll+ 1.s1dell)\1.totl
LET ma>e.rl:(m2.1ll+1.si dell)\ 1. totll

Refer to Figure 2-5 for an illustration of the variables used to create
the two windows. The number 72 occurs frequently because it repre
sents the number of pixels (points on the display) per inch. For example,
2.5*72 (2.5 times 72) represents the number of pixels in 2.5 inches.

The next block of lines initializes constant values:

LET max. wdsl= 100: REM arbitrary upper limtt
LET nus=··: REM no spaces inside quotes
LET hole$=··: REM one space 1ns1de quotes
LET 1tr.ce11$=···
LET no.mores=· r
LET not.usedl=-1
LET yesl=-1
LET noll:O
LET zonell=2
READ ma>e.dirl
DIM dev$(3) ,ri l(ma>e.dtrl) ,ct ll(max.di rl)
LET dev$(1):"SCRN:"

LET dev$(2):"LPT 1 :DIRECT"
LET dev$(3):"CLIP:TEXT"
FOR j:I: 1 TO m11x.di~
READ ri:g(j:g),ci:g(j:g)
NEXT j:g
DATAB
DATA 0, 1, 1, 1, 1,0, 1,-1, 0,-1, -1,-1, -1,0, -1, 1

Hidden Words - Part 1 23

The variable max.dir% contains the number of path directions that
will be used in hiding words. Arrays ri%() and ci%() contain the row
and column increments that produce each path direction. For instance

,..

Upper I e ft corner

of window 1

<w1 . xRl , w1 . yiD

s me Edit

EDIT PUZZLE SHAPE

Cursor function :

181 ERRSE

OFILL

w1 . wRI

OK

Ru

w1. I RI

Upper I e ft corner

of window 2

<w2 xRl, w2 yRI)

I Windows

. s ize•=si ze o f b lock

I space~=space

be tween b I ocks

::::::::::::::::.:::::::~:::: :::::::::::::•........................••...............•...•.••........•.......••.....•.....•.........••...........•............... ···········~·•.•...................•.......... ...•......................................•.•.••......••..•...... .•.....•.....•...........................
: :::::: :: : : : : : :: : : : : : : : : : : w2. (jg :: : : : ::: : :••..•••.....................•..••. ••.•••.........•..••••...••.. .•••......... ..
··························••1•.............. •.....••••.•. ,
!!!~!!!~ !~!~!!!~~!!~!~ ~ !!!!!!!!!!!!!

...

w2 . wRI -~--~--~1----~~~~-il! •••....••..•. , ..•....•.....••.............. , ··························••t•...................•................•..............••. •.••.........•.....................•......... •............•.•..•.... •••••.•..•••••...............

Lower right corner
o f window 1
(wl .x l Rl, wl . ylllD

I
Lower r i gh l c:orner

o f window 2

<w2 . x2ll: , w2 . y 211:)

Figure 2-5. Explanation of the window-parameter variables

24 Macintosh Program Factory

direction 1 is specified as ri%(1)=0 and ci%(1)=1, indicating that the row
position is unchanged while the column position is incremented by 1.
This produces an easterly movement. The eight possible directions are
given as eight pairs in the last DATA statement.

To simplify the puzzles, reduce the number of directions to four
(east, southeast, south, and northeast) by changing the two DATA state
ments to DATA 4 and DATA 0,l,l,l,l,0,-l,l.

The next lines initialize the menu and certain control variables:

RANDOMIZE TIMER
LET wd.countl=O
LET last.rl:O
LET 1 ast.cl=O
LET g.sizel=O
DIM wd$(wd.count:C), wu:C(wd.count:C), wd.seq:C(wd.count:C)
DIM gri d$(18st.rl, 18st.cl) ,ce 11.seql(g.si zel)
LET m.state:C=O
FOR jl:O TO last.optionl
MENU 6 ,j I ,m.statel ,menu. l 8bel $(jl)
NEXT jl
MENU 6,3, 1
MENU 6,2, 1
MENU 6,9, 1

'enable change-word-list option
'enable change-size option
'enable quit option

The arrays are defined in this section for formal reasons only; they
are redefined later during execution of certain menu commands. Wd$()
stores the word list; wu %() keeps track of words that have already been
used in the current puzzle. W d.seq%() is a list of pointers to the words,
sorted according to word length; for instance, wd.seq%(1) points to the
longest word.

Only three of the menu commands are initially enabled with MENU
statements: Change word list, Change grid size, and Quit. Until these
commands have been selected, it makes no sense to select the others
(Make puzzle, Print puzzle, and so forth).

The next group of lines opens the dialog box and automatically exe
cutes four menu commands: Change word list, Change grid size, Make
puzzle, and Print puzzle. Once these commands have been executed, the
program lets you select additional commands from the menu.

WINDOW 1,,(w 1.xl,w 1.yl)-(w 1.x 11,wl .y11),3
GOSUB dialogue.vocab
GOSUB dialogue.size

MENU 6,4, 1 'enable make-puzzle option
GOSUB make.pzl
IF c.flagl:no:g THEN GOSUB prt.pzl
get.se 1 ect ion:
MENU 6,0, 1
WHILE MENU(0)<>6
WEND
MENU 6,0,0
LET selection:g=MENU(1)
IF selection:g=o THEN get.selection
WINDOW CLOSE 2
IF selectionl=last.optionl THEN END
IF selectionl>3 THEN skip.gs

Hidden Words - Part 1 25

ON selectionl GOSUB d1alogue.shape,diologue.size,diologue.vocob
GOTO get.selection
skip.gs:
ON se 1 ect i on:g-3 GOSUB moke.pzl ,prt.pzl ,prt.so l ,sove. t,sove. vocob
GOTO get.selection

Test Point 1

This gets you to the first test point. Before testing the program, you
must enter temporary "dummy" lines to satisfy subroutine calls in the
program. Add these lines at the end of the current program:

di o 1 ogue. vocob::
WINDOW 1
PRINT "diologue.vocob"
RETURN
di o 1 ogue.shope:
WINDOW I
PRINT "diologue.shope·
RETURN
di o 1 ogue.si ze:
WINDOW I
PRINT "dialogue.size·
RETURN
moke.pzl:
WINDOW 1
PRINT ·moke.pzl"
RETURN
prt.pzl :
WINDOW 1

26 Macintosh Program Factory

PRINT "prt.pzl"
RETURN
prt.sol:
WINDOW 1
PRINT"prt.sol"
RETURN
save.t:
WINDOW 1
PRINT ·sove.t"
RETURN
save. vocob:
WINDOW 1
PRINT ·sove.vocab"
RETURN

Now close the listing window and run the program. Your screen
should resemble that shown in Figure 2-6.

Each time you select a command from the Puzzle menu, a new line
appears in the window, confirming the proper operation of the dummy
subroutines.

When you have tested all the active menu items, select Quit from the

,. S Oh~ Edit

dial.ague.vocab
dialogue.size
moke.pzl
prt .pz l

Figure 2-6. Screen at test point 1

[hnnqP qri1l stwpe
Change grid size
Change word list
Make puzzle
Print puzz!P
Print so!uHon

.,

Hidden Words - Part 1 27

menu to stop the program. Open the listing window. Delete the follow
ing lines from the listing:

dialogue.vocab:
WINDOW 1
PRINT "dialogue.vocab"
RETURN

The Word List Dialog Box

Now continue adding these lines at the end of the listing:

di a 1 ogue. vocab:
WINDOW 1
CLS
PRINT "SET UP WORD LIST"
BUTTON 1, 1, "Key in new words",(2,32)-(w 1.x 11-6,48),3
BUTTON 2, 1, "Load new words (disk)" ,(2,64)-(w 1.x 11-6,60),3
BUTTON 3,0,"Edit word list",(2,96)-(w1.x11-6, 112),3
IF wd.countl>O THEN BUTTON 3, 1
WHILE DIALOG(O)<> 1
WEND
LET btnl:DIALOG(1)
BUTTON CLOSE 1
BUTTON CLOSE 2
BUTTON CLOSE 3
MENU 6,5,0 'disable print puzzle option
MENU 6,6,0 'disable print solution option
ON btnl GOTO key.vocab,disk.voc6b,edit.vocab

These lines create a dialog box that lets you select three options
relating to the word list: enter words from the keyboard, load words
from a disk file, or edit the existing word list (if there is one).

The following lines handle the keyboard entry of new words:

key.vocab:
CLS
PRINT "KEY IN NEW WORDS"
PRINT
PR I NT "How many words?"
PRINT TAB(3);"(1 -·;max.wdsl;")";
EDIT FIELD 1,"",(120,48)-(156,63)

28 Macintosh Program Factory

key.loop:
LET eventl:DIALOG(O)
WHILE eventl:O
LET eventl:DIALOG(O)
WEND
IF eventl<>2 AND eventl<>6 THEN key.loop:
LET entry:\/ AL(ED ITS(1))
IF entry<>INT(entry) THEN key.err
IF entry <&HBOOO OR entry>&H7FFF THEN key.err
LET wd.countl:entry
IF wd.countl< 1 OR wd.countl>m1nc.wdsl THEN key.err
ERASE wd$,wul,wd.seql
DIM wd$(wd.countl), wul(wd.countl), wd.seql(wd.countl)
EDIT FIELD CLOSE 1
GOTO edit.vocab
key.err:
BEEP
GOTO key. vocab

Once you have set the size of the word list, the program creates an
array to hold the words and then jumps to the Edit word list option.

The next group of lines handles the input of words from a file stored
on disk.

disk.vocab:
CLS
PRINT .LOAD NEW WORDS (DISK)"
LET vocab.file$:FILES$(1,"TEXT") :REM dialog box to select a file
IF vocab.file$:nu$ THEN dialogue.vocab :REM if cancelled try again
LET wd.countl=O
OPEN vocab.file$ FOR INPUT AS 1
WHILE NOT EOF(1)
LINE INPUT•t, w$
LET wd.countl:wd.countl+ 1
WEND
CLOSE 1
ERASE wd$,wul,wd.seql
DIM wd$(wd.countl), wul(wd.countl), wd.seql(wd.countl)
OPEN vocab.file$ FOR INPUT AS 1
FOR Jl=1 TO wd.countl
LINE INPUT•t,w$
LET wd$(jl):UCASE$(w$)
NEXT JI
CLOSE 1

Hidden Words -Part 1 29

The program prompts you to name the file that contains your word
list. This should be a file created with the Save word list option. How
ever, it may be any text file that contains one word per line. The
UCASE$ function translates the words into uppercase as they are
loaded into the array wd$().

After the words are loaded from disk, the program executes the Edit
word list option:

edit. voceb:
CLS
PRINT "EDIT WORD LIST"
PRINT
PRINT "Vocebu1ery s1ze=";wd.countl
BUTTON 1, 1,"BACK",(52, 144)-(122, 159)
BUTTON 2, 1, "FORWARD" ,(52, 176)-(122, 191)
BUTTON 3, 1, "OK" ,(52,208)-(122,223)
LET wd.ptrl= 1
edit.loop:
LOCATE 5, 1
PRINT "Enter word •";wd.ptrl;":"
EDIT FIELD 1,WD$(wd.ptrl),(6,96)-(w1.wl-6,111)
edit.here:
LET eventl:DIALOG(O)
WHILE eventl:O
LET eventl:DIALOG(O)
WEND
IF eventl= 1 THEN edit.btn
IF eventl=2 THEN edit.here
IF eventl:6 THEN ed1t.f1d
GOTO edit.loop

The program lets you change words and scan forward or backward
through the list. Whenever you enter a new word (or click the OK but
ton to stop editing), the program checks the field you entered:

edit.f1d:
LET wd$(wd.ptrl):UCASE$(EDIT$(1))
LET wd.ptrl=wd.ptrl MOD wd.countl+ 1
GOTO edit.loop

edit.btn:
LET wd$(wd.ptrl):UCASE$(EDIT$(I))
ON DIALOG(I) GOTO edit.beck,edit.fwd,done.voceb

30 Macintosh Program Factory

edit.back:
IF wd.ptrl> 1 THEN LET wd.ptrl:wd.ptrl-1 ELSE LET wd.ptrl:wd.countl
GOTO edit.loop
edit.fwd:
LET wd.ptrl=wd.ptrl MOD wd.countl+ 1
GOTO edi t.1 oop
done.vocab:
WINDOW CLOSE 1
MENU 6,8, 1 'enable save-word-list option
RETURN

Notice that words typed into a field are automatically translated to
uppercase with the UCASE$ function.

Test Point 2

You are now ready for the second test point. Run the program. It should
automatically begin executing the Change word list command. Try the
keyboard entry option. You should see screens similar to those shown in
Figures 2-7a, b, and c. Selecting the Edit word list option results in a
screen similar to Figure 2-7c.

Test the disk input option. When the program prompts you to name a
file, press the CANCEL button instead (see Figure 2-7d). You can fully
test this option later on.

The Grid Size Dialog Box

Now stop the program (select Quit from the menu) and open the listing
window. Find these lines and delete them:

dialogue.size:
WINDOW 1
PRINT •dtalogue.size•
RETURN

Now add these lines, which create a grid size dialog box:

dialogue.size:
WINDOW 1
CLS: ON ERROR GOTO 0
PRINT "SET PUZZLE SIZE"
BUTTON 1,1,"Key in new grid size",(2,32Hw1.x11-6,48),3
BUTTON 2, 1, "Load new grid (disk)" ,(2,64)-(W 1.X 11-6,80),3

Hidden Words - Part 1 31

BUTTON 3,0, "Edit current grid size",(2,96)-(w 1.x 11-6, 112),3
IF g.sizel>O THEN BUTTON 3, 1
WHILE DIALOG(O)<> 1
WEND
LET btnl:DIALOG(1)
BUTTON CLOSE 1
BUTTON CLOSE 2
BUTTON CLOSE 3
MENU 6,5,0 'discible print puzzle option
MENU 6,6,0 'discible print solution option
ON btnl GOTO key.grid,disk.grid,dicilogue.shcipe

SET UP WORD LI ST KEV IN NEW WORDS

0 Key in new words How mony words?
(1 - 100) o::r::J

O Lond new words (disk)

O Edit word li•t

a. b.

LOAD NEW WORDS (DISK)

ten puzzle ton eel

d.

I

J

EDIT WORD LIST

Vocabulary size= I 2

Enter word " 3

lo111gotor

c.

BP#I

Eject

Drtue

I BRCK I

(FDRWRRDI

OK

Figure 2-7. Test point 2: dialog boxes for setting up word list (a), specify
ing list size (b), entering and editing words (c), and loading a
word list from disk (d)

32 Macintosh Program Factory

These lines give you the option of resetting the grid size, loading a
grid from disk, or leaving the existing grid as is (if a grid has been set
up).

Here is the block that prompts you to specify the grid size from the
keyboard:

key.grid:
CLS
PRINT .KEV IN NEW GRID SIZE.
PRINT
PRINT "How many rows?"
PRINT TAB(3); "(1-·;max.~;·)"
PRINT
PRINT ·How many columns?"
PRINT TAB(3); "(1-";max.cl;•)•;
EDIT FIELD 2,"",(120,96)-(156,111)
EDIT FIELD 1,"",(120,46)-(156,63)
BUTTON 1,0 I "OK" ,(52, 166)-(122,213)
LET fldl:1
LET nxt.fl di= 1
LET r.okl=nol
LET c.okl=nol

The next series of lines gets your input for the number of rows and
columns in the grid:

grid.loop:
BUTTON 1,c.okl*r.okl
LET eventl:DIALOG(O)
IF event•= 1 THEN GOTO check.fld
IF eventl=2 THEN LET nxt.fldl:DIALOG(2): GOTO check.fld
IF eventl:6 THEN LET nxt.fldl:(fldl MOD 2)+ 1: GOTO check.fld
GOTO grid.loop
check.fld:
LET entry:'VAL(EDIT$(fldl))
IF entry<>INT(entry) THEN fld.err
IF entry<-32766 OR entry>32767 THEN fld.err
ON fldl GOTO check.row,check.col

The check.fld routine ensures that each value you enter is within
integer range, and then the program executes the appropriate routine
to check for value row and column specifications:

check.row:
LET lest.rl:entry
LET r.okl:(lost.rl>=1 AND lost.rl<=mox.rl)
IF r.okl=nol THEN fld.err
GOTO fld.ok
check.col:
LET 1 ost.cl=entry
LET c.okl=(lost.cl>= 1 AND lost.cl<=mox.cl)
IF c.okl:nol THEN fld.err
fld.ok:
IF eventl:1 THEN grid.Ok
LET fldl=nxt.fldl
EDIT FIELD fldl
GOTO grid.loop
fld.err:
BEEP
EDIT FIELD fldl
GOTO gri d.1 oop
grid.Ok:
EDIT FIELD CLOSE 1
EDIT FIELD CLOSE 2
BUTTON CLOSE 1
GOSUB grid.orroys
MENU 6, 1, 1 'enoble chonge-shope option
MENU 6,7, 1 '&noble sove-shope option
GOTO dtologue.shope

Hidden Words-Part 1 33

The program will not let you continue until you have entered valid
data for the row and column size.

Here are the lines that load a grid from disk:

disk.grid:
CLS
PRINT •LOAD NEW GRID (DISK)•
LET grid.ftle$:FILES$(1, 'TEXT•)
IF grid.ftle$:nu$ THEN dtologue.stze
ON ERROR GOTO grid.file.err
OPEN grid.file$ FOR INPUT AS 1
INPUT• 1,1ost.rl,lost.cl
GOSUB grid.orroys
FOR rl= 1 TO lost.rl
FOR cl: 1 TO lost.cl
INPUT• 1,grid$(rl,cl)

34 Macintosh Program Factory

NEXT cl,rl
CLOSE 1
ON ERROR GOTO 0
WINDOW CLOSE 1
MENU 6, 1, 1 'enctble chcinge-shcipe option
MENU 6,7, 1 'enctble scive-shctpe option
GOTO d1ctlogue.shcipe

The program prompts you to specify the name of a previously saved
puzzle (using an option presented later). The following lines handle
errors that may occur during the loading of the grid file:

grid.file.err:
CLOSE 1
LET errcodel:ERR
IF errcodel<>6 AND errcodel<> 13 AND errcodel<>62 THEN unknown.err
BEEP
PRINT "lnYct11d dcttCI in"
PRINT grid.mes
BUTTON 1, 1, "0K",(52,220)-(102,240), I
WHILE DIALOG(O)<> 1
WEND
RESUME d1ctlogue.s1ze
unknown.err:
ON ERROR GOTO 0
grid.ctrrctys:
LET g.sizel=lctst.rl*lctst.cl
ERASE grid$,ce11.seql
DIM gn d$(1cist.rl,1 cist.cl) ,ce 11.seql(g.s1 zel)
RETURN

If you specify a non-puzzle file, the program will recognize that the
format is incorrect and will return you to the puzzle size dialog box.

The grid.arrays subroutine is used by the keyboard and disk input
routines to set up an array to hold the grid values.

Make Puzzle Command

Locate the following lines and delete them:

pzl:
~Mi

. · ;iiftictt.pzl"
•RiJ'ORN

Hidden Words-Part 1 35

Here are the lines that handle the Make puzzle command:

make.pzl:
WINDOW 1
CLS
PRINT "NEW PUZZLE STATUS"
PRINT
BUTTON 1, 1,"CANCEL",(52,220)-(116,240), 1
LET c.flagl=nol
DIALOG ON
ON DIALOG GOSUB rq.cancel
GOSUB erase.grid
GOSUB sort. words
IF c.flagl=yesl THEN cancel.pzl
GOSUB shuffle
IF c.flagl=yesl THEN cancel.pzl
GOSUB auto.fill
IF c.flagl=yesl THEN cancel.pzl
GOSUB random.fill
IF c.flagl=yesl THEN cancel.pzl
DIALOG OFF
BEEP
PRINT "Puzzle is ready"
BUTTON 1, 1,"0K",(52,220)-(102,240), 1
WHILE DIALOG(O)<> 1
WEND
WINDOW CLOSE 1
MENU 6,5, 1 'enable print-puzzle option
MENU 6,6, 1 'enable print-solution option
RETURN
cancel.pzl:
DIALOG OFF
WINDOW CLOSE 1
RETURN
rq.cancel:
IF DIALOG(O): 1 THEN LET c.flagl:yesl
RETURN

A series of subroutine calls actually produces the puzzle. To allow
testing of the program, type in these temporary lines:

erase.grid:
PRINT "erase.grid"
RETURN

36 Macintosh Program Factory

sort. words:
PRINT ·sort.words·
RETURN
shuffle:
PRINT ·shuffle·
RETURN
auto.ml:
PRINT ·auto.mr
RETURN
random.f111:
PRINT ·random.mr
FOR JI= 1 TO BOOO: NEXT JI
RETURN

Test Point 3

Now you can test the Change grid size command and the Make puzzle
command. Run the program. After prompting you to enter the word
list, the program will display the Change grid size dialog boxes shown
in Figure 2-Sa, b, and c. Try the keyboard option first.

Reselect the Change grid size command from the menu, and try the
Load new grid option. Of course, you don't yet have a puzzle file to load,
but try loading some other text file; the program should tell you that the

SET PUZZLE SIZE

O Key in new grid size

O Lond new grid (disk)

O [dil rnrre11t gri1I siz"

a.

KEV IN NEW GRID SIZE

How mnny rows?
(1- 43) @=:]

How mony columns?
(1- 43) @=]

b.

LOAD NEW GRID (DISK)
lnvnlid data in
BP"' 1.ten words

c.

Figures 2-8. Test point 3: dialog boxes for setting the puzzle size (a), speci
fying a new size (b), and handling a disk error (c)

NEW PUZZLE ST A TUS

ernse.gri d
sort.words
shuffle
auto.fill
random.fill

(CANCEL)

Hidden Words - Part 1 37

Figure 2-9. Test point 3: Status indicator during the Make puzzle pro
cedure

file format is incorrect and should display the dialog box that is shown
in Figure 2-8c.

After you specify the grid size· or load a grid from disk, the program
will execute the Make puzzle command, during which time you should
see a dialog box like that shown in Figure 2-9.

This completes part 1 of the program. Go back through the available
options, making sure that everything works as shown in Figures 2-7,
2-8, and 2-9. Then continue with the next chapter.

This chapter has been adapted from "Hidden Words" by George Stewart, appearing in the
December 1983 issue of Popular Computing magazine. Copyright 1983 Byte Publications,
Inc. Used with the permission of Byte Publications, Inc.

Chapter 3

Hidden Words
. Part 2

In the last chapter you completed the Hidden Words program up
through the Change grid size procedure. This chapter presents the rest
of the program: the Change grid shape procedure and the logic for fill
ing the puzzle grid with words. Test points are provided to help you
check your work as you go along.

-The Program-------------
Load the program from the last chapter into Microsoft BASIC. Open
the listing window and delete these lines:

di ti 1 ogue.shtipe:
WINDOW 1
PRINT "dit1Jogue.sht1pe·
RETURN

39

40 Macintosh Program Factory

Editing the Grid Shape

Now add these lines, which set up the shape dialog box and the shape
editing window:

di a 1 ogue.shape:
LET awl= 1 ast.cl*l.toUH .sidel+2*borderl
LET a 11= last.rl*l.totl-1.si del+2*borderl
WINDOW 2,,(w2.xl, w2.yl)-(w2.xl+awl, w2.yl+all),3
WINDOW 1
MENU 6,5,0 'disable print puzzle option
MENU 6,6,0 'disable print solution option
CLS
PRINT .EDIT PUZZLE SHAPE.
PRINT
PRINT ·cursor function:·
BUTTON 1,0, ·ERASE. ,(52,64)-(122, 79),2
BUTTON 2,0, .FILL ·,(52,96)-(122, 111),2
BUTTON 3, 1,-0K·,cs2,2oe)-(122,235), 1

The shape editing window is just large enough to hold the number of
rows and columns you requested. Figure 3-1 shows the initial appear
ance of the shape editing window formed by an 11 X 13 grid.

The next lines activate a dialog event trap and draw the current grid
shape in window 2:

LET shape.donel:nol
DIALOG ON
ON DIALOG GOSUB shape.interrupt
WINDOW OUTPUT 2
LET color-I= 1
FOR rl= 1 TO last.rl
FOR cl: 1 TO 1 ast.cl
IF shape.donel:yesl THEN LET rl=last.rl: LET cl:last.cl: GOTO skip
IF grid$(rl,cl)<>hole$ THEN GOSUB set.reset
skip:
NEXT cl,rl
LET colorl:O
WINDOW OUTPUT 1
BUTTON 1,2
BUTTON 2, 1

The event trap lets you change windows to draw in window 2 or to
change the settings shown in the dialog box (window 1).

ED IT F'U ZZ LE t=; HAPE

(Z] ERASE

U FILL

....•.....• ..•....•••••••..•••••.••..•••.•.........

Hidden Words -Part 2 41

Figure 3-1. Test point 1, the Change grid shape dialog screen

After the windows are drawn, the program begins checking for
mouse activity (clicking or dragging the mouse) in the active window.

The following lines take effect only while the mouse is in the shape
editing window.

check.mouse:
LET mouse.stotusl:ABS(MOUSE(O))
WHILE mouse.stotusl<> 1
IF shope.donel=yesl THEN done
LET mouse.stotusl:ABS(MOUSE(0))
WEND
LET mouse.xl:MOUSE(1)
LET mouse.yl:MOUSE(2)
LET cl=(mouse.xl-borderl+ 1. totl)\ 1. tot I
LET rl=(mouse.yl-borderl+ 1. totl)\ 1. tot I
IF cl< 1 OR cl> lost.cl OR rl< 1 OR rl>Jost.rl THEN check.mouse
IF coJorl:O THEN LET grid$(rl,cl):ho1e$ ELSE LET grid$(rl,cl):ltr.ce11$
GOSUB set.reset
GOTO check.mouse

The program repeatedly executes the WHILE/WEND loop until the
mouse is clicked. The program then determines whether the mouse is

42 Macintosh Program Factory

within the bounds of the grid (IF c%<1 OR c%>last.c% ...). If the mouse
is out of bounds, the program goes back to the check.mouse loop. Oth
erwise, the program fills or erases the corresponding cell in the grid
array, depending on the current cursor function. (IF color%=0 ...)

The set.reset subroutine updates the graphics pattern in window 2.
The following lines handle dialog events (clicking the mouse outside

the active window or pressing a button):

shGpe. interrupt:
LET eventfl:DIALOG(O)
IF eventl=3 THEN chGnge.windows
IF eventl<> 1 THEN RETURN
LET btnl:OIALOG(1)
ON btnll GOTO set.color,set.color,request.end
chGnge. windows:
LET rq.wfl:DIALOG(3)
WINDOW rq. wll
IF rq.wll: 1 THEN CALL INITCURSOR
IF rq.wll=2 THEN CALL SETCURSOR(VARPTR(cursorl(O)))
RETURN
set.color:
WINDOW OUTPUT 1
BUTTON btnll,2
BUTTON 3-btnl, 1
LET colorl=btnll-1
WINDOW OUTPUT 2
RETURN
request.end:
LET shGpe.donefl=yesfl
RETURN

A dialog event of 3 indicates you ·pressed the mouse in an inactive
window. In that case, the program goes to the change.windows routine.
A dialog event of 1 indicates you pressed a button; since only window 1
has buttons, the program tests for buttons l, 2, or 3 (FILL, ERASE,
OK). Any other dialog event is ignored (IF event%<> 1 THEN
RETURN).

Note that the change.windows routine also changes the cursor; if you
have selected window 1, the default cursor (INITCURSOR) is used. If
you have selected window 2, the X-cursor (SETCURSOR ...) is used.

The set.color routine handles the selection of the FILL and ERASE

Hidden Words - Part 2 43

buttons. The routine request.end handles the selection of the OK button
by setting a flag that will be noticed by the routine in progress when the
dialog event occurs.

The following lines set or erase grid blocks and end the Change grid
shape procedure:

set.reset:
LET chitr.x:C=(c:C-1)*1.tot:C+borderl
LET chitr.yl=(rl-1)*1.totl+borderl
LI NE (chitr.x:C ,ch8r.y:C)-STEP (1.si del, 1.si del) ,co 1 or:c ,bf
RETURN
done:
CALL INITCURSOR
DIALOG OFF
WINDOW CLOSE 2
WINDOW CLOSE 1
RETURN

Depending on the value of color% (zero or non-zero), the LINE
statement either erases or fills a grid block.

The routine done, executed when you press the OK button, restores
the default cursor (the pointer), terminates dialog event trapping, and
closes both windows.

Test Point 1

First, save the program in its current state in a disk file. Now you can
test the Change grid shape routine. Run the program. Enter a short
word list. Specify a grid size of 13 rows X 11 columns. You should see
the screen pictured in Figure 3-1.

Move to the graphics window and click the mouse. The cursor should
change to an X. Now press the button on top of each block you want to
erase. To restore a block (fill it in again), go back to the cursor-function
window and select FILL. Try to create the pattern shown in Figure 3-2.
Remember that to change functions, you must press the mouse button
two separate times (not a double-click): once to activate the inactive
window, and a second time to specify the desired cursor function.

Press OK when you are done; you should see the new puzzle status
window and a notice that the puzzle is ready (it really isn't; we still have
to add the puzzle fill routines).

44 Macintosh Program Factory

r a f:'il(·l Edit Se<>n h Run Windows Puz.z.h:

EDIT PUZZLE =;HAPE

Cursor function :

[2;J ERRSE

D FILL

OK

)(.
••• ••••.••..•..

.,

Figure 3-2. Test point 1, the Change grid shape dialog screen showing
the X-cursor and a design in the graphics window

Select the Change grid shape command from the Puzzle menu. You
should be able to edit the shape you created previously.

If the computer should operate abnormally (screen image becomes
garbled or other unusual behavior), requiring you to turn the computer
off and on again, you may have typed in the cursor definition numbers
incorrectly. Carefully recheck the DATA statements that you entered at
the beginning of Chapter 2.

Puzzle Fill Logic

Now we come to the subroutines that actually fill-in the hidden word
puzzle. First locate the following lines and delete them:

erose.grid:
PRINT ·erose.grid"
RETURN

Hidden Words-Part 2 45

Erase Grid Subroutine

Now type in the erase.grid subroutine as follows:

entse.grid:
PRINT ·Erasing the puzzle grid .. ."
FOR jl= 1 TO last.rl
FOR kl= 1 TO last.cl
IF grid$(jl,kl)<>hole$ THEN LET grid$(jl,kl):ltr.ce11$
IF c.flagl:yesl THEN LET jl:l8st.rl: LET kl:last.cl
NEXT kl,jl
RETURN

This routine leaves holes unchanged, but changes everything else to a
letter cell (IF grid$(j%,k%)<>hole$...).

After each cell is checked, the program checks the cancel flag
(c.flag%). Recall that during the Make puzzle procedure, you can press a
CANCEL button (see Figure 2-9). If you do so, the c.flag% will be set,
causing the subroutine erase.grid to terminate early.

Word Sort Subroutine

Locate and delete the following lines:

sort. words:
PRINT ·sort.words·
RETURN

Now type in the sort.words subroutine, which sorts the words
according to length, so the longest can be tried first in each potential
path.

sort.words:
PRINT ·sorting the words .. :
FOR jl=1 TO wd.countl
LET wd.seql(jl)=JI
NEXT JI
LET lwl=wd.countl
bubble.sort:
IF lwl= 1 THEN sorted
LET sort.okl:yesl

46 Macintosh Program Factory

FOR jl: 1 TO lwl-1
LET 121:LEN(wd$(wd.seql(jl+ 1)))
LET 11 l:LEN(wd$(wd.seql(JI)))
IF 121>111 THEN SWAP wd.seql(jl),wd.seql(Jl+1): sort.okl:nol
IF c.flitgl:yesl THEN LET sort.okl:yesl: LET 1wl: 1
NEICT JI
IF sort.okl:yesl THEN sorted
LET 1wl:1wl-1
GOTO bubble.sort
sorted:
FOR JI= 1 TO wd.countll
LET wull(jl):not.usedl
IF c.f1Dgl:yesl THEN LET Jl:Wd.countl
NEXT JI
RETURN

These lines perform a bubble sort, going through the list and com
paring each word with its successor. If the successor is longer,· the
words are swapped. The routine goes through the list repeatedly until
no more swaps can be made.

Test Point 2

Add the following lines to the sort.words subroutine just before the final
RETURN statement; these lines will allow you to test the sort.words
subroutine:

FOR JI= 1 TO wd.countl
PRINT wd$(wd.seql(jl})
NEXT JI
PRINT "Press itny key·
WHILE INKEY$:nu$
WEND

Now run the program. Type in these words: red, white, blue,
green, yellow. Complete the grid size and grid shape dialogs with arbi
trarily chosen data. The program should then enter the Make puzzle
procedure, erasing the grid and sorting the words. After the words are
sorted, they should be displayed in window 1 as shown in Figure 3-3.

NEW PUZZLE STATUS

Erasing the puzzle gnd ...
Sort Ing the words ...
YELLOW
WHITE
GREEN
BLUE
RED
Press any key

(ClltlCEL J

Hidden Words-Part 2 47

Figure .3-3. Test point 2, word list in order of word length

Before continuing, locate the following test lines and delete them:

Grid Shuffle Subroutine

First locate and delete the following lines:

Now type in the following subroutine, which shuffles the grid cells so
the program will attempt to fill them in random order.

48 Macintosh Program Factory

shuffle:
PRINT ·shuffling the cells .. :
FOR jl:1 TO g.stzel
LET ce11.seql(jl)=0
NEXT JI
FOR Jll=1 TO g.stzell
find.unused:
LET g.ptrl:INT(RND*g.stzell)+ 1
IF ce11.seqll(g.ptrl)<>O THEN find.unused
LET ce11.seqll(g.ptrl)=Jll
IF c.flagll:yesll THEN LET jll:g.sizel
NEXT JI
RETURN

Auto Fill Subroutine

Locate and delete these lines:

The following lines control the puzzle fill-in process:

auto.fi11:
LOCATE 7, 1
PRINT ·rnung in the puzzle .. :
PRINT ·pass ••
PRINT ·words used=·
PRINT ·cens checked=·
LET dlrl:INT(RND*max.dtrl)+ 1
LET wds.leftll:wd.countll
LET pass.numll= 1
af.loop:
LOCATE B,7
PRINT USING ·•·;pass.numll
GOSUB next.pass
PRINT
IF pass.numl=2 OR wds.leftl=O OR c.flagl:yesl THEN af.done
LET pass.numl=2
GOTO af.loop
af.done:
RETURN

Hidden Words-Part 2 49

The program makes two passes through the list of grid cells, as
explained later on. When both passes are complete, the program is fin
ished filling in words. Later, any unfilled letter cells will be filled at
random.

The next lines perform pass 1 and 2 through the grid cells.

next.ptiss:
LET g.pt~:l
np.Joop:
GOSUB cell.check
LOCATE 9, 11
PRINT USING ·••·;wd.countll-wds.leftll
LOCATE I 0, 13
PRINT USING "•••·;g.pt~
IF wds.leftll=O OR g.pt~=g.s1zell OR c.fltig:C:yes:C THEN np.done
LET g.pt~=g.pt~+ 1
GOTO np.loop
np.done:
RETURN

The variable g.ptr% points to the cell currently being examined; for
instance, g.ptr%=1 indicates that the first cell (in the shuffled sequence)
is under examination.

The following subroutine checks to see whether a word can be
entered into the puzzle starting with the current cell:

cell.check:
LET wd.ptri: 1
LET word.f1tll=noll
LET ce 11.numll=cel 1.seqll(g.pt~)
LET rowll=(cell .numll-1}\ltist.cll+1
LET colll:(cell .numl-1) MOD ltist.cl+ 1
LET tS=gridS(row:C,coll)
IF ptiss.numll= 1 THEN LET skip.itll=(t$:hole$)
IF ptiss.numl:2 THEN LET skip.it:C:(t$:hole$) OR (t$:1tr.ce11$)
IF skip.it:C=yes:C THEN cc.done
cc.loop:
GOSUB word.check
IF word.flt:C=yes:C OR wd.pt~=wds.left:C OR c.fltig:C:yes:C THEN cc.done
LET wd.pt~:wd.pt~+ 1
GOTO cc.loop
cc.done:
RETURN

50 Macintosh Program Factory

During pass l, all letter cells are considered. During pass 2, only
filled-in cells are considered. This allows the program to start two
words at the same cell.

To check a cell, the program tries every unused word to see if it fits
in one of the available directions.

Here are the lines that check whether a given word can be entered
starting with the current cell:

word.check:
LET wd.numl=wd.seql(wd.ptr:g)
LET try.wd$:wd$(wd.numl)
LET wll:LEN(try.wd$)
LET dir.countl= 1
we.loop:
GOSUB dir.eheek
IF word.fitl:yesl THEN LET dirl=dirl MOD mox.dirl+ 1: GOTO we.done
IF dir.eountl:mox.dirl THEN we.done
LET dir.eountl:dtr.eount:g+ 1
LET dirl:dirl MOD mox.dtrl+ 1
GOTO we.loop
we.done:
RETURN

For each word examined, the program tries all possible directions
before giving up on that word.

The following lines determine whether the word try.wd$ can be
placed in the grid starting at row%, col% in the direction specified by
DIR%:

dir.eheek:
LET f .rowl:rowl+(wll-1)*r11(dirl)
LET f .coll:coll+(wll-1)*cil(dirl)
LET r.okl=(f.rowl>= 1) AND (f .rowl<=lost.rl)
LET c.okl=(f.coll>= 1) AND (f .coll<= lost.el)
IF NOT (r.okl AND c.okl) THEN de.done
LET word.fttl:yesl
LET prl:rowl
LET pcl:coll
FOR 11= 1 TO wll
LET t$:gr1 d$(prl ,pcl)

Hidden Words-Part 2 51

LET word.fitlt':=(t$:ltr.ce11$) OR (t$:MID$(try.wd$,11, 1))
IF word.fit:C:no:C THEN LET ll:wlfe: GOTO nxt
LET prlC:prlC+ri:C(dirlC)
LET pcl:pc:C+ci:C(dirl)
nxt:
NEXT 11

The program traces the proposed path in the grid, comparing each
letter of the word with the corresponding cell in the grid path.

If no conflicts are found, word.fit% is set to yes% at the end of this
routine.

The next block of lines handles the result of the word-fit test:

IF word.fitl:no:C THEN de.done
LET prl=rowl
LET pc:C:coll
FOR l:C: 1 TO wl:C
LET grid$(prlC,pcl):MID$(try.wd$,1:C, 1)
LET pr:C:prl+ri:C(dir:C)
LET pcl:pc:C+ci:C(dirl)
NElff 11
IF wd.ptrl>wds.leftl THEN cut.word
FOR jl:Wd.ptrl TO wds.leftl-1
LET wd.seq:C(jl)=wd.seql(j:C+ 1)
NEXT jl
cut.word:
LET wds.leftl=wds.left:C-1
LET wul(wd.numl):(dirl-1)*g.size:C+cell.num:C-1
de.done:
RETURN

If the word fits, these lines embed it one letter at a time into the
grid. In this case, the word that was used is removed from the sorted
word list.

Random Fill Subroutine

Once the auto fill subroutine has completed both passes through the
grid, the remaining letter cells are filled with randomly chosen letters.

52 Macintosh Program Factory

Before adding the lines for the random fill routine, locate and delete
the following lines:

Now type in the random fill subroutine:

rendom.f111:
LOCATE 12,1
PRINT .Ftlltng gctps .. :
FOR rowl= 1 TO lctst.rl
FOR coll= 1 TO lctst.cl
IF grtd$(rowl,co11)<>1tr.ce11$ THEN nxt.fm
LET grtd$(rowl,col l):CHR$(1 NT(RND*26)+65)
nxt.fill:
IF c.flctgl:yesl THEN LET coll:lctst.cl: LET rowl:lGSt.rl
NEXT coll,rowl
RETURN

Test Point 3

To test the puzzle fill logic, add these lines to the random fill subroutine
immediately before the RETURN statement:

CLS
FOR row1:·1 TO lctst.rl
FOR coll= 1 TO lctst.cl
PRINT grtd$(rowl,coll);
NEXT coll
PRINT
NEXT rowl
PRINT ·press 11ny key·
WHILE INKEV$:nu$
WEND

Run the program. Specify a short word list (man,bites,dog) and a
5 X 5 grid size. Define a simple shape so the words will easily fit.

NEW PUZZLE STATUS

Ereslng the puzzle grid ...
Sorting the words .. .
Shuf.fllng the cells .. .

Filllng ln the puzzle ...
Pnss • 1
Words used= 3
Cells checked= 3

Filling gnps ...

(CANCEL J

Figure 3-4. Test point 3, puzzle fill in progress

Hidden Words-Part 2 53

During the auto fill process, your screen should show the new puzzle
status similar to Figure 3-4.

When the puzzle is complete, the program should print a copy of the
puzzle in window 1 similar to that shown in Figure 3-5.

Before continuing, delete the following lines from the listing:

CLS."
FOR fowl: 1 TO last.rS
FOR coll: 1 TO last.cl
PRltfl' grtd$(r:'!)Wl,co11.);
NEXT coll
PRINT
NEXT rowl
PRINT ·press any key·
WHILE INKEY$:nu$
WEND

54 Macint.osh Program Fact.ory

BITES
RTKNI
MHAZD
CMAJO
DSCRG
Press 1my key

(CANCEL)

Figure 3-5. Test point 3, puzzle printout (hidden words are: man, bites,
dog)

Save Grid Subroutine

Now we'll present the lines that save a grid pattern (its size and shape).
But first locate and delete the following dummy lines:

Now enter the save grid routine:

80¥8.l:
WINDOW 1
CLS
PRINT ·sAYE PUZZLE GRID.
grtd.f11e$:FILES$(0)
IF grt d. f11 e$:nu$ THEN st.done
OPEN grtd.f11e$ FOR OUTPUT AS 1

WRITE• t ,lost.,-,;,1ost.c:g
FOR rj): 1 TO lost.,-,;
FOR c:g= 1 TO lost.c:g
WRITE• 1,gr1d$(,-,;,c:g)
NEXT c:g,,-,;
CLOSE 1
st.done:
WINDOW CLOSE 1
RETURN

Save Word List Subroutine

Locate and delete the following lines:

sove.vocob:
WINDOW 1
PRINT ·sove.vocob"
RETURN

Hidden Words - Part 2 55

Now enter these lines, which let you save the word list in a disk file:

sove.Yocob:
WINDOW 1
CLS
PRINT "SAVE WORD LIST"

YOCOb. fi 1 e$:F I LES$(0)
IF YOCOb.file$:nu$ THEN SY.done
OPEN yocob.file$ FOR OUTPUT AS 1
FOR j :g= 1 TO wd.count:g
IF wd$(j:g)=nu$ THEN skip.null
PRINT• 1, wd$(j:g)
skip.null :
NEXT j:g
CLOSE•!
SY.done:
WINDOW CLOSE 1
RETURN

Any null entries that are in your word list are not saved (IF
wd$(j%)=nu$. ..). The words are saved one per line in a text file. The
file may be reloaded by the Hidden Words program or by a word pro
cessing program.

56 Macintosh Program Factory

Print Subroutines

Locate and delete the following lines:

prt.pzl:
WINDOW 1
PRI~ ·prt.pz1·

·~~liJRN

The following subroutine prints a copy of the completed puzzle on
the screen, printer, or Clipboard:

prt.pzl:
GOSUB select.device
CALL TEXTFONT(4)
CALL TEXTSIZE(9)
CALL TEXTFACE(1)
FOR trl: 1 TO 1 est.fl
FOR tel: 1 TO 1 est.cl
PRINT-1, , grid$(trl,tcl);
NEXT tel
PRINT-1,
NEXT trl
CLOSE 1
CALL TEXTSIZE(12)
CALL TEXTFONT(3)
CALL TEXTFACE(O)
RETURN

The puzzle must be printed in a monospace font; that is, one in
which every letter uses the same amount of space on a line; otherwise
the columns will not line up correctly and the shape will be distorted.
For this reason, font number 4 (Monaco) was used. Text size 9 and text
face 1 were selected for appearance's sake. Note: the monospaced font
is used only for output to the screen.

Locate and delete the following lines:

· · \ .~rt~sqt:
:W:flAnOW.1

,~rt.J~r
1Rf.f···:··

Hidden Words-Part 2 57

The next lines print a copy of the puzzle solution on the screen, print
er, or Clipboard.

prt.sol:
GOSUB select.devtce
CALL TEICTSIZE(9)
CALL TEICTFONT(4)
CALL TEICTFACE(1)
PRINT"1, ihe htdden words ere:·
PRINT" 1, ·word (row:col:dtrectton)•
FOR J1=1 TO wd.countl
IF wul(jl)=not.usedl THEN nxt.sol
LET dtrl=wul(Jl)\g.stzel+ 1
LET cell .numl:wul(Jl)-(dtrl-1)*g.sizel+1
LET rowl=(cen.numl-1)\lest.cl+1
LET coll=(cen.numl-1) MOD lest.cl+ 1
PRINT" 1, USING ·& (•• :•• :••)•;wd$(jl),rowl,coll,dtrl
nxt.sol:
NEXT JI
CLOSE 1
CALL TEICTSIZE(12)
CALL TEICTFONT(3)
CALL TEICTFACE(O)
RETURN

The final subroutine of the program lets you select the output device
for printing:

select.device:
WINDOW 1
CLS
PRINT "SELECT OUTPUT DEVICE"
LET devicell= 1
BUTTON I ,2,"SCREEN",(52,4BH 122,63),3
BUTTON 2, 1, "PRINTER" ,(52,80)-(122,95),3
BUTTON 3, 1,"CLIPBOARD.,(52, 112)-(142, 127),3
BUTTON 4, 1,·0K",(52, 156)-(122, 183), 1
sd.loop:
WHILE DIALOG(O)<> I
WEND
LET btnl=DIALOG(1)

58 Macintosh Program Factory

IF btnl=4 THEN deY.Ok
LET devi cel=btnl
BUTTON btnl,2
BUTTON btnl MOD 3+ 1, 1
BUTTON (btnl+ 1)MOD 3+ 1, 1
GOTO sd.Joop
deY.Ok:
WINDOW CLOSE 1
IF devicel:l THEN WINDOW 2,,(w1.xl,w1.yl)-(w2.x21,w2.y2:C),3
WIDTH dev$(devicel),255,ZONEI
OPEN dev$(devicel) FOR OUTPUT AS 1
RETURN

-Testing and Using the Program -----
Figure 3-6 shows the select output device dialog box. Run the program
and try each of the three devices. After using the Clipboard, end the
program (Quit command), exit from BASIC to the Finder, and examine
the Clipboard to see if it holds your puzzle (or puzzle solution). You can-

SELECT OUTPUT DEVICE

@>SCREEN

QPRINTER

QCLIPBORRD

(OK J

Figure 3-6. The select output device dialog box

, ... ; .. D
"(Q I

I 1xic 8 ccn
i E S U 0 n T A
I ff 0 C I B C U
R 0 S R U C B n P
J K E Y B 0 A R 0 D H
H B G R A P H I C S Y

L K A P P L E E H
J R E T H I R P 8

L H E E R C S

Grid eel I

< 1, I)

H J n D

Hidden Words-Part 2' 59

,. S me Edit S(~<1n !l Run

&I D
Q I
s

IXK ccn
ESUOnTR

I n 0 C I B C U
R 0 S R U C B n P
J K E Y B 0 A R D D H
H B G R R P H I C S Y

L K R P P L E E H
J R E T H I R P B

L ff E E R C S
HJ n D

Figure 3-7. Sample puzzle output to the screen (note the position of grid
cell (1,1) in the upper left corner)

not save both the solution and the puzzle on the Clipboard. Typically, a
printed copy of the puzzle solution will be sufficient.

Once the puzzle is saved on the Clipboard, you paste it to the Scrap
book or into MacWrite or MacPaint (the puzzle may be too large for
pasting into MacPaint).

Remember, the puzzle pattern won't look right unless the current
text font is monospaced. For instance, in the Clipboard, the puzzle will
not look right. You must copy the puzzle to Macwrite and reset the font
to Monaco 9.

Figures 3-7 and 3-8 show a sample puzzle and puzzle solution using
the screen for output. Notice that the solution lists three numbers after
each word. The first and second numbers identify the row and column
where the word starts. The upper left-hand corner of the grid is row 1,
column 1; often this position will be blank in the puzzle shape, but you
must still use it as the reference point for interpreting the puzzle solu
tion (see the labeled position in Figure 3-7).

The third number after each word is the path direction. Numbers
run from 1 to 8, corresponding to east, southeast, and so forth, in a
clockwise rotation. (If you changed the direction count (max.dir%) or
direction increments (arrays ri%() and ci%()) from what was supplied
in Chapter 2, the path numbers and directions will differ accordingly.)

60 Macintosh Program Factory

r S fih~ Edit SHdH h Run

The hidden •ords are:
Uord <ro•:col:direclion>
nAc < 4 : g : 4>
KEYBOARD < 8 : 2 : 1)
GRAPHICS (9 : 3 : 1>
PRIHTER <11 : 9 : 5>
CURSOR < 7 : 6 : 5>
SCREEH <12 : 9 : 5>
HOUSE < 5 : 6 : 5>
APPLE <10 : 4 : I>
ICOH < 6 : 5 : 5>
DISK (1 : 8 : 4)

Figure 3- 8. Sample puzzle solution output to the screen

Note: The maximum puzzle size for use with a 128K Macintosh is
20 X 20 (or any size such that rows X columns <= 400).

-Editing Grid Shapes---------
Editing a grid shape is similar to using the pencil tool in MacPaint. The
program provides a window filled with little blocks. Each block repre
sents a letter cell. Using the X-shaped cursor, you selectively erase
blocks until your shape is fully defined. Hold down the mouse button to
erase; release it to move around the window without erasing. If you
erase too many blocks, change the cursor function to FILL and replace
the blocks. Again, you hold down the mouse button to fill and release it
to move around the window without filling.

You can create free-form designs or more carefully planned pictures.
To plan a shape, draw the desired outline on graph paper using no more
then 43 squares in any direction. Then fill in all those squares that are
halfway or fully inside the outline. For each colored-in graph square,
fill in a block on the grid; for each blank graph square, erase a block on
the grid. Finally, use this "digitized" shape as your guide for creating
the grid shape with the Hidden Words program.

Finally, if your word list is long and the shape is irregular or small,
be prepared for a substantial delay while the program attempts to fill
in all the words.

This chapter is adapted from "Hidden Words" by George Stewart, appearing in the
December 1983 issue of Popular Computing magazine. Copyright 1983 Byte Publications,
Inc. Used with the permission of Byte Publications, Inc.

Chapter 4

The Matchmaker program enables you to create an endless succession
of personalized logic puzzles. You've probably seen this type of puzzle
before. Given a list of characterg, a list of attributes, and a set of clues,
you are to match each character with its attribute. By specifying the
two lists, you are able to determine the subject and difficulty of the resul
tant puzzles.

Figure 4-1 shows a puzzle produced by the Matchmaker program.
Before continuing with this chapter, it will be worthwhile for you to try
solving the puzzle. Even if you don't succeed, you'll gain some insight
into the processes we'll be discussing.

-Overview of Program Logic ------
Given the two lists (characters and attributes), the program randomly
formulates a clue about the various matchups.

Clues can take four forms:

• p implies q
• not p implies q
• p implies not q

• not p implies not q

where p and q are character-attribute pairs.

61

62 Macintosh Program Factory

CLUES

If Sally's grandmother lives in Kansas then Jim lives in Texas

If Sally's grandmother moved from Kansas then Sally lives in Idaho

If Sally moved from Texas then Sally's grandmother moved from Kansas

Match each character with the corresponding attribute:

Character Attribute
Sally Idaho
Sally's grandmother Kansas
Jim Texas

SOLUTION

SllSUll}l UJ SaAJI WJ f

Sll:xaJ.. ui saAJI .1a1nowpu11~ s,.&n11s

oqllpI UJ saAJI AllllS

Figure 4-1. A sample logic puzzle from the Matchmaker

For example, the proposition "If Sally's grandmother lives in Kan
sas, then Jim lives in Texas" is an instance of the general form p implies
q. Recognizing the other forms can be a little harder. For example, the
proposition "If Sally moved from Texas, then Sally's grandmother
moved from Kansas" is an instance of the general form not p (Sally does
not live in Texas) implies not q (Sally's grandmother does not live in
Kansas).

The program cannot take randomly selected matchups and call them
clues; it first must verify that the pairings are logically consistent and
that they imply a unique solution. To do this, the program uses a truth
table showing which matchups are true for each of the possible
solutions.

Table 4-1 shows the truth table contents for 3 data pairs. Each
column in the table signifies a distinct solution; each row signifies a
particular pairing. Note that there are exactly three T's in each column;
that's because there are only three valid pairings in each solution.

The Matchmaker 63

Table 4-1. Truth table for 3-pair puzzles

Pairs Solution Number
1 2 3 4 5 6

Al T T F F F F

A2 F F T T F F

A3 F F F F T T

Bl F F T F T F

B2 T F F F F T

B3 F T F T F F

Cl F F F T F T

C2 F T F F T F

ca T F T F F F

-The Program------------
The first program block loads the data for the Matchmaker menu:

READ last.optionl
DIM menu.1abe1$(1ast.optionl)
FOR jl:O TO last.optionl
READ menu.labe1$(jl)
NEXT jl
DATA 5,Matchmaker
DAT A Generate clues,Change data
DATA Print clues, Print solution,Qu1t

The next block sets up certain program constants:

LET dg.xl:. 1 *72
LET dg.yl:.35*72
LET dg.x t l=dg.xl+6*72

64 Macintosh Program Factory

LET dg.y 1 l:dg.yl+4*72
LET truel:(1 = 1)
LET fGlsel:(l:O)
RANDOMIZE TIMER
DIM ti(1),fl(1),ftl(1),pl(1),ql(1),gl(1)
LET min.pG1rsl=3
LET mGx.pG1rsl=4
DIM bGl(mG>e.pG1rsl), bpl(mGx.pGirsl), btl(mGx.pGirsl), G$(mGx.pGirsl,2),

tf$(2), dev$(2)
LET dev$(1):"SCRN:"
LET dev$(2):"LPT 1 :DIRECT"
LET pG1rsl=mGx.pGirsl
FOR PGI= 1 TO pGirsl
FOR whi chi= 1 TO 2
READ G$(pGl,wh1chl)
NEXT wh1chl,pGI
READ tf$(1),tf$(2)
DATA A, 1,B,2,C,3,D,4,is not,is

The variable pairs dg.x%,dg.y% and dg.xl %,dg.yl % define the upper
left and lower right corners of the window used for dialogs and output.
The arrays t$, f%, and so forth are defined in this block for formal rea
sons only; later on they are erased and redefined to suit the require
ments of the puzzle data.

The DATA statements at the end of the block provide initial values
for four characters and attributes, as well as verb forms for positive and
negative statements.

Generating the First Puzzle

The next block opens the dialog window, prints a title, and generates
the first puzzle.

WINDOW 1,,(dg.xl,dg.yl)-(dg.x 11,dg.y 11),3
PRINT "THE MATCHMAKER: 8 logic-puzzle generGtor."
PRINT
PRINT "Given G series of clues, the object is to"
PRINT "M8tch e8ch ch8r8cter with one of the 8ttributes."
GOSUB WGit.ok
GOSUB mGke.tGbles
LET m.stGtel= 1
FOR jl:O TO lGst.optionl

MENU 6,jl,m.stote:C,menu.1obe1$(jic)
NEXT jl
MENU 6,0,0 : REM disoble menu

The Matchmaker 65

The wait.ok subroutine places a button in the lower right corner of
the window and waits for you to click on it.

Figure 4-2 shows the title window.
The make.tables subroutine generates the truth tables that are

needed during clue generation and then produces a deterministic set of
clues about the data.

Figures 4-3 and 4-4 show the screen appearance during the truth
table and clue-generation procedures.

The Menu Loop

The next block of lines lets you select an item from the Matchmaker
menu on the menu bar:

get.se 1 ect ion:
MENU 6,0, 1 : REM enoble menu
WHILE MENU(0)<>6

r 9 I il(l Edit ~H~ <ll t 11 Hun WlndUWll

;1 THE MATCHMAKER a logic-puzzle generator.

;~f
:;; Given a series of clues . the object is to
:;; Motch eoch chorocter with one of the ottributes.
::~

'r:

Figure 4-2. The initial title screen

66 Macintosh Program Factory

~ 5 !'ii(~ Edit :·;e ,11 (h Run Windows

Generating new truth tables for 24 possible solutions.

Tables are ready .

Figure 4-3. Screen during generation of the truth tables

~ • I il e Edit ~ e m (h Run Windows

GENERA TE CLUES

Clues generated so far. 10
Possible solutions remoining :

The puzzle is reody .

Click on the OK button , then select an option from the menu.

Figure 4- 4. Screen at the end of the clue-generation procedure

The Matchmaker 67

WEND
MENU 6,0,0 : REH discible menu
LET selectionl=MENU(1)

ON se lecti onl GOSUB genercite.c 1 ues ,chcinge.dcitci,prt.c 1 ues ,prt.so 1,qui t
GOTO get.selection
quit:
WINDOW CLOSE 1
END

The program waits in the WHILE/WEND loop until you select a
command. The entire menu is then disabled, and the command you
selected is executed. The menu is not re-enabled until the program
completes the command. Figure 4-5 shows the Matchmaker menu.

The Wait.ok Subroutine

The following lines are used by several program commands as a way of
stopping the action so you can read the screen before it is erased:

WClit.Ok:
WINDOW 1
BUTTON 1,2, ·0K·,c360,2so)-(398,276)
WHILE DIALOG(O)<> 1
WEND
WINDOW CLOSE 1
RETURN

Setting Up the Truth Tables

When you first run the program (also when you change the number of
data pairs), the truth tables must be re-defined.

mcike. tcib 1 es:
WINDOW 1
CLS
ERASE tl,fl,ftl,pl,Ql,gl
LET npl:I
FOR JI= 1 TO pciirsl
LET npl:npl* j I
NEXT JI
PRINT "Generciting new truth tcibles for"; npl; "possible solutions."

68 Macintosh Program Factory

Figure 4-5. The Matchmaker menu

LET ncl:p11irsl*p11irs:g
DIM t:g(ncl ,npl), fl(np:g ,npl), f tl(npl) ,pl(npl) ,Ql(npl) ,gl(npl)
FOR jl: 1 TO p11irsl
LET bpl(jl):O
LET btl(jl):O
LET bcl(jl)=truel
NEXT jl

Array t%(,) is a truth table that specifies all possible solutions for a
given number of data pairs. The array f%(,) keeps track of how each
clue relates to the list of possible solutions. For instance, f%(2,5) shows
whether or not the second clue is consistent with the fifth solution.

Array ft%() keeps the same information for a single, tentative clue.
When the clue has been checked for consistency with all preceding
clues, the information is copied into f%(,). The arrays p%(), g%(), and
q%() keep track of the matchups used in each clue.

Np% is the number of possible solutions (possible matchups) for a
given number of data pairs. The variable nc% contains the number of
possible combinations of items from the character and attribute lists.

The Matchmaker 69

Generating Possible Solutions

The next lines begin the process of generating all n! possible solutions.

stort.perms:
LET lll= 1 : REM tree-level counter
LET pll:O : REM permutotion counter
move.ptr:
LET bpll(lll):bpll(lll)MOD poirs:C +- 1
IF boll(bpll(lll)):folse:C THEN move.ptr
LET btl(HC):bt:C(l:C)+-1
LET boll(bpl(ll)):folsel
IF ll:poirs:C THEN reoched.end
LET 11=11+-1
GOTO move.ptr

The program generates solutions by spanning a tree as shown in
Figure 4-6.

Each pathway from the tree trunk to an endpoint corresponds to one

C3 C2 C3 Cl C2 Cl

Tree Trunk

Figure 4-6. A tree diagram showing all 24 possible solutions to a 3-pair
puzzle. Each path represents one solution

70 Macint.osh Program Fact.ory

possible solution to the puzzle. In Figure 4-6, the highlighted path cor
responds to the pairing A is 2, B is 3, C is 1.

When the program reaches an endpoint of the tree, the following
lines record the pairings defined by the latest pathway:

reoched.end:
LET p%:p:C+ 1
FOR jill:l TO pflirs:C
LET t:C((j:C-1)*poirs:C+bp%(j:C),p%):true%
NEXT j:C
bock.up:
LET bei:C(bp:C(l :C))=true:C
LET bt:C(l:C):O
LET l:C:l:C-1
IF l:C:O THEN mt.done
IF bUC(UC):pflirsi-1:g+ 1 THEN bock.up
LET bo:C(bp:C(l:C)):true:C
GOTO move.ptr
mt.done:
PRINT
PRINT "Tobles ore reedy."
GOSUB woi t.ok

Generating Clues

After generating all possible solutions, the program begins generating
clues:

generote.c 1 ues:
WINDOW 1
CLS
PRINT "GENERATE CLUES"
LOCATE 3, 1
PRINT "Clues generoted so for: •
PRINT "Possible solutions remoining:"
gc.loop:
LET p.old:C=folse:C
LET q.old%:folse:C
LET fc:C:O
LET pn:C:O
LOCATE 3,27
PRINT USING "••";pn%

LOCATE 4,27
PRINT USING "U";np~-fc~
FOR j~= 1 TO np~
LET ft:g(j:g)=true:g
NEXT j:g

The Matchmaker 71

P.old% and q.old% are the most recent pairings; the program keeps
this information to avoid giving repetitious clues. Pn% is the number of
clues generated so far.

The following block randomly selects a proposition:

pick.pq:
LET p:g:INT(RND*nc:g)+ 1
LET q:g=INT(RND*nc:g)+ 1
LET p 1 :g=(p:g-1)\pairs:g+1
LET p2:g=p:g-(p 1 :g-1)*poi rs:g
LET Q 1 :g=(q:g-1)\pairs:g+1
LET q2:g=q:g-(q 1 :g-1)*pairs:g
IF (p 1 :g=Q 1 :g) OR (p2:g=q2:g) THEN pi ck.pQ
pick.g:
LET g:g=INT(RND*np:g)+ 1
LET pv:g=t:g(p:g ,g:g)
LET qv:g=t:g(q:g,g:g)
IF (pv:g:p.old:g) AND (qy:g:q.old:g) THEN pick.g
LET pn:g=pn:g+ 1
LET g:g(pn:g)=g:g
LET p:g(pn:g)=p:g
LET q:g(pn:g)=Q:g
LET j:g:pn:g

The randomly chosen variables p%, q%, and g% uniquely define a
proposition. For example, suppose p%, q%, and g% have the values 3, 4,
and 2. Referring to Table 4-1, p%=3 refers to pairing A3; q%=4 refers
to pairing Bl; and g%=2 refers to solution 2. Under solution 2, A3 is
false and Bl is false. Thus the proposition is "not A3 implies not Bl."

The next group of lines determines the efficacy of the latest clue on
the logical system of clues.

FOR j:g= 1 TO np:g
LET pt:g=t:g(p:g,j:g)
LET qt:g:t:g(q:g,j:g)
LET f:g(pn:g,j:g):(pv:g:pt:g) IMP (qy:g:qt:g)

72 Macintosh Program Factory

NEXT jl
LET fel:O
FOR j I: 1 TO npl
IF ftl(jl):truel AND fl(pnl,jl):felsel THEN fel:fel+ 1
NEXT jl
IF fel>O THEN effective.clue
LET pnl:pnl-1
GOTO pi ck.pq

The variable fa% counts the number of possible solutions ruled out by
the latest clue. If fa%>0, the clue is effective; otherwise, it is syllogistic
(it rules out no new solutions at all). In the latter case, the program
discards the clue and gets another.

In the case of effective clues, the program compares the new clue
with the preceding clues to see if it is redundant (ruling out solutions
that have already been ruled out) or too exclusive (ruling out all remain
ing solutions). ·

The following lines make the comparison:

effective.clue:
IF fel+fcl>:npl THEN gc.loop : REM insoluble, try egein
LET fcl:fDl+fcl
FOR jl: 1 TO npl
LET ftl(jl):fl(pnl,jl) AND ftl(jl)
NEXT jl
LOCATE 3,27
PRINT USING ·••";pnl
LOCATE 4,27
PRINT USING "••·;npl-fcl
IF fcl:npl-1 THEN enough.clues
LET p.oldl:pvl
LET q.oldl:qvl
GOTO pick.pq
enough.c I ues:
PRINT
PRINT "The puzzle is reedy:
PRINT
PRINT "Click on the OK button, then select 1m option from the menu:
GOTO Wflit.ok

The variable fc% counts the number of solutions that have been ruled
out. When fc% is one less than the total number of solutions, the clues

The Matchmaker 73

imply a unique solution, so the puzzle is ready. Otherwise the program
goes back to generate another clue (GOTO pick.pq).

Figure 4-4 shows the screen appearance at the end of the clue selec
tion process.

Changing Clue Data

Initially the characters are A, B, C, and D, and the attributes are l, 2, 3,
and 4. The next block allows you to change the data used in formulating
the actual clues:

change.data:
WINDOW 1
CLS
PRINT ·cHANGE PUZZLE DATA.
BUTTON 1,5-pairsl, ·3 pairs·,(1 B,32)-(90,47),3
BUTTON 2,pairsl-2, • 4 pairs·,(126,32)-(198,47) ,3
BUTTON 3, 1,-oK•,(234,26)-(306,53), 1
LET new.patrsl:pairsl
set.pat mum:
WHILE DIALOG(O)<> I
WEND
LET btnl:DIALOG(1)
IF btnl=3 THEN paimum.ok
LET new.patrsl=btnl+2
BUTTON 1,5-new.pairsl
BUTTON 2,new.patrsl-2
GOTO set.paimum

Your data can consist of three or four data pairs. Puzzles based on
four data pairs are considerably harder to solve than those based on
three data pairs.

Figure 4-7 shows the dialog window for specifying the number of
data pairs.

The next block displays the data presently in use:

paimum.ok:
BUTTON CLOSE 1
BUTTON CLOSE 2
BUTTON CLOSE 3
LET changed.patmuml:(pairsl<>new.pairsl}

74 Macintosh Program Factory

.. 4i I' ile Edit §(wn h Run Windows "'In t1:tm1<1!: (~I

CHANGE PUZZLE DATA

O 3 pairs ® 4 pairs OK ~

Figure 4-7. Dialog box for selecting the number of data pairs

LET pairs:C:new.pairs:C
LET n.fie1dsl:pairs:C*2+2
LOCATE 5, 1
PRINT "Positive verb"
PRINT
PRINT "Negative verb"
PRINT
PRINT TAB(1 O)"Chorocter"; TAB(36); "Attribute"
FOR pal: 1 TO pairsl
FOR which:C: 1 TO 2
LET f1d:C:2+(pal-1)*2+WhiChlC
LET fld.xl:(Whichl-1)*212+9
LET fld.yl:(pal-1)*21+9*16

.,

EDIT FIELD fldl, a$(pal,whichl), (f1d.x:C,f1d.y:C)- (f1d.x:C+200,f1d.y:C+15), 1
NEXT whi chi ,pale
EDIT FIELD 2,tf$(1),(112,96)-(266, 111)
EDIT FIELD 1,tf$(2),(112,64)-(266,79)
BUTION 1, 1, "OK" ,(230,dg.y1:C-56)-(302,dg.y1 :C-35)

The Matchmaker 75

,. • l'ih~ Edit ~; (rnn h Hun Window5 ~lnt1; hrrld k (~J
..,

CHANGE PUZZLE DATA

Positive verb

Negotive verbj ._i_s _no_t ______ ~

Chorocter Attribute

OK

Figure 4-8. The data entry and editing screen

The program lets you move from one edit field until another until
you have filled them all and pressed the OK button. Figure 4-8 shows
the dialog window that lets you change the puzzle data.

The following lines wait for you to press the OK button, signifying
that you have finished editing or changing the data:

LET fld:C: 1
cd.loop:
LET eventl=O
WHILE eventl:O
LET eventl:DIALOG(O)
WEND
IF eventl= 1 THEN check.data
IF eventl:2 THEN fldl:DIALOG(2)
IF eventl:6 OR eventl: 7 THEN fldl:fldl MOD (n.fields:C)+ I
EDIT FIELD fldl
GOTO Cd.loop

76 Macint.osh Program Fact.ory

The program waits in the WHILE/WEND loop until you select an edit
field with the mouse pointer, press ENTER, RETURN, or TAB, or click on
the OK button.

The next lines copy the revised data into the appropriate arrays.

check.doto:
LET tf$(1):EDIT$(2)
LET tf$(2):EDIT$(I)
FOR po:g== 1 TO poirslli:
FOR Which~=' I TO 2
LET fldlli:=2+(po:g-1)*2+wh1chlli:
LET o$(pol,which:g):EDIT$(fld:g)
NEXT which~,po~
cd.done:
WINDOW CLOSE I
IF chonged.poirnum~ THEN GOSUB moke.ttlbles
RETURN

If you have changed the number of data pairs from the previous set
ting, the program must regenerate its truth tables (IF changed.pair
num% ...). Otherwise the program simply returns control to the menu
procedure (get.selection). This allows you to keep the same set of formal
clues but change the words that are plugged into the formal structure.

Printing the Puzzle

Here are the lines that print the clues.

prt.clues:
WINDOW 1
CLS
PRINT "PRINT CLUES"
GOSUB select.device
PR I NT• 1, "CLUES"
PRINT•!,
FOR jl: 1 TO pnl
LET gl:gl(jl)
LET pl:pl(jl)
LET ql:ql(jl)
LET PYl:tl(pl ,gl)
LET QYl:tl(ql,gl)
LET p 1 l=(pl-1)\peirsl+1
LET p21=pl-(p 11-1)*pei rsl

LET q 1 :g=(q:g-1)\poi rs:g+ 1
LET q2:g=q:g-(q 1 :g-1)*poirs:g

The Matchmaker 77

PRINT" 1, "If "; o$(p 1:g,1); " • ; tf$(ABS(pv%)+ 1); " "; o$(p2:g,2);
PRINT"1," then"; 0$(q1:g,1); ""; tf$(ABS(qv%)+1);" "; o$(q2%,2)
NEXT j:g
PRINT •1,
PRINT" 1, "Motch eoch chorocter with the corresponding attribute.·
CLOSE 1
GOTO woi t.ok

Before printing, the program prompts you to select the output
device. Note that SCREEN is the Macintosh screen and PRINTER is
the Imagewriter or other printer connected to the Macintosh's printer
connector.

Figure 4-9 shows the screen that allows you to select the output
device for the puzzle clues. Figure 4-10 shows the clues output to the
screen.

Here are the lines that print the puzzle's solution:

prt.sol :
WINDOW 1
CLS
PRINT "PRINT SOLUTION"
GOSUB select.device
PRINT" I, "SOLUTION"
PRINT"1,
LET x:g= 1
WHILE ft:g(x:g):folse:g

PRINT CLUES

@SCREEN 0 PRINTER OK ~

Figure 4-9. Device selection for printing clues

78 Macintosh Program Factory

CLUES

Ir B is 2 then C is not 3
If Dis 1 thenBis4
If A is not 1 then B is not 4
If c is 1 then Bis not 3
If C is not 2 then Bis not 3
If B is not 1 then c is 4
If A is 3 then Bis 2
If Bis not 2 then A is 4
If D is not 2 then C is not 4
If C is 3 then Bis not 1

Motch eoch chorocter with the corresponding ottribute.

Figure 4-10. Clues output to the screen

LET x:g=x:g+ 1
WEND
FOR pa:g= 1 TO ncl
IF tl(pal,xl)=falsel THEN next.pair
LET p 1 l=(pal-1)\pairsl+ I
LET p21:pal-(p 11-1)*pairsl
PRINT• I, a$(p 11, 1);" "; tf$(2);" "; a$(p21,2)
next.p11ir:
NEXT pal
CLOSE I

GOTO wait.Ok

.,

Again, the program prompts you to select an output device first.
Figures 4-11 and 4-12 show the device selection screen and the solu

tion to the puzzle.
Here is the subroutine that lets you-select an output device:

select.device:
BUTTON 1,2, "SCREEN",(16 ,48)-(90 ,63) ,3
BUTTON 2, 1,"PRINTER",(I06,48)-(160,63),3

The Matchmaker 79

PRINT SOLUTION

@SC:REEN 0 PRINTER OK J

Figure 4-11. Device selection for printing the solution

,. '5 Hie Edit Se <1 nh Run Windows ~111ti: l1111 <1k (!J

SOLUTION

A is 4
Bis 1
c i s 2
D i s 3

Figure 4-12. Solution output to the screen

BUTTON 3, 1, "OK" ,(252,42)-(324,69), 1
LET se1.dev:g=1 : REM lnitiol device setting
sd.loop:
WHILE DIALOG(O)<> 1

80 Macintosh Program Factory

WEND
LET btn1C:O I ALOG(1)
IF btn1C:3 THEN sd.ok
LET sel.devl=btnl
BUTTON 1,3-btnl
BUTTON 2,btnl
GOTO sd.1 oop
sd.ok:
BUTTON CLOSE .1
BUTTON CLOSE 2
BUTTON CLOSE 3
OPEN deY$(se1.deYI) FOR OUTPUT AS 1
IF sel.deYI= 1 THEN CLS
RETURN

-Testing and Using the Program -----
After carefully checking the program for typing errors, run it. You
should be able to get screens similar to those shown in the figures.

Experiment with different types of data pairs. Initially, you'll find it
helpful to stick with attributes that are mutually exclusive; the clues
tend to make more sense that way. Similarly, use true opposites for the
positive and negative verb forms: is/is not, has/doesn't have, and so
forth.

Chapter 5

- Crossword Puzzle
~-Patterns

This program generates ready-to-use crossword puzzle patterns rang
ing in size from 3 X 3 to 12 X 12. You determine the approximate diffi
culty level of the puzzle by specifying the shortest allowable word path
(2, 3, 4, or 5 letters).

As each puzzle is generated, it is displayed on the screen. If you like
a particular puzzle pattern, you may print it on the Imagewriter and
save the entire screen in a MacPaint file. Later, you can use MacPaint to
erase extraneous graphics (everything but the puzzle).

The program does not place words into the puzzle pattern. Using the
paper copy, you manually insert the words you want to use. When you
have completely filled all the puzzle paths, you use Mac Write to prepare
a list of word clues. A completed puzzle consists of a high-quality Mac
Paint printout of the puzzle, plus your list of clues for words across and
down.

81

82 Macintosh Program Factory

-Anatomy of a Crossword Puzzle -----
A lot of care goes into the creation of a puzzle pattern. Good puzzle
patterns have the following properties:

• Solid blocks are arranged in symmetric, geometric, or representa
tional patterns.

• Every possible word path is numbered.
-• Only one set of numbers is used for paths across and down.

Puzzles generated by this program satisfy all three criteria. Refer to
Figure 5-1 while reading the following explanation of the puzzle
creation process.

The program starts out with an empty square puzzle grid. It then
randomly fills in a certain number of the cells in quadrant I of the grid.
Each time it fills in a cell in quadrant I, the corresponding cells in
quadrants II through IV are also filled in. Quadrant II is equivalent to
quadrant I rotated 90 degrees clockwise; quadrant III is equivalent to
quadrant I rotated 180 degrees; quadrant IV is equivalent to quadrant I
rotated 270 degrees.

The result of this process is a radially symmetrical pattern of empty
and filled cells, such as the pattern in Figure 5-1 without the path
numbers. Notice that by rotating quadrant I 90 degrees at a time, you
duplicate the other three quadrants. Also note that the centerpoint of
the puzzle is considered to belong to all four quadrants. Only puzzles in
which the length of a side is an odd number have such a cell at the
center.

Next the program must locate all the word paths. To explain this
process, we need to present a couple of terms. A head cell is the starting
location of a word path: the numbered squares of a crossword puzzle
are head cells. A block cell is a filled-in cell that marks the boundary of
a word path.

The set of potential head cells in a puzzle pattern consists of those
empty cells immediately below or to the right of block cells. Note that
the puzzle is surrounded by an imaginary boundary of block cells so
that empty cells in the top row and left column are also potential head
cells. Potential head cells are used only if the resultant path would be
long enough to meet the minimum word length. (There is no maximum
word length; subject to chance, word paths may occasionally go com
pletely across or down the puzzle grid.)

Notice in Figure 5-1 that some of the numbered cells define paths
across and down, while others define paths in one direction only.

Crossword Puzzle Patterns 83

Head cell for 1 -down and 1-across

II

111

Figure 5-1. Anatomy of a crossword puzzle pattern. Note that the cell in
the center belongs to all four quadrants

-The Program------------
The first block loads the data for the Crossword menu.

READ lost.option:C
DIM menu.lobel$(1ost.option:C)
FOR jl:O TO lost.optionl
READ menu.lobe1$(JI)
NEXT jl
DAT A 5 ,Crossword
DAT A New puzzle,Print screen,Redrow screen,Sove screen,Ouit

The next block defines constants and initializes parameters.

LET dg.xl:.25*72
LET dg.yl:.275*72

84 Macintosh Program Factory

LET dg.x 1 l:dg.xl+4.46*72
LET dg.y 1 l:dg.yl+4.46*72
LET ulcl=3
LET c.s1zel=26
LET truel=(1 = 1)
LET felsel=O=O)
LET f111edl=lruel
LET emptyl:felsel
LET min.sizel=3
LET mex.s1zel= 12
LET m1n.min1=2
LET ml=12 : REM 1nit1e1 puzzle size
LET m11=3 : REM 1nit1e1 minimum word length
RANDOMIZE TIMER

The variable pairs dg.x%,dg.y% and dg.xl %,dg.yl % locate the
upper left and lower right corners of the program's output and dialog
window. Ulc% locates the upper left corner of the puzzle pattern within
this window. C.size% is the size (in pixels) of a puzzle square or cell.

Min.size% and max.size% define the minimum and maximum allow
able size for puzzles. Min.min% is the "minimum-minimum" for word

P' W File Edit S<~<n« h Run Windows

-
-

CROSSWORD PUZZLE GENERATOR

The progrem mekes crossword puzzle petterns
Wh11e 6 pettern is on the screen,
it cen be printed or seved 1n 6 Mecpe1nt me

Figure 5-2. The title window

.,

J
ll

Crossword Puzzle Patterns 85

lengths; in other words, it is the smallest value you can specify as a
minimum path length.

The next block creates the title window shown in Figure 5-2:

WINDOW 1,.(dg.x:C,dg.y:C)-(dg.x 11,dg.y 1 :C),3
CALL TEXTSIZE(12)
CALL TEXTFACE(O)
PRINT ·cROSSWORD PUZZLE GENERATOR"
PRINT
PRINT ihe program makes crossword puzzle patterns."

·PRINT ·whne a pattern is on the screen,·
PRINT •tt can be printed or saved in a Macpaint me:
BUTTON 1,2, "OK. ,(200 ,278)-(236 ,298)
LET event:C:O
WHILE eventl<> 1 AND event:C<>6
LET event:C:DIALOG(O)
WEND
BUTTON CLOSE 1

The following lines prompt you to create the first puzzle pattern:

GOSUB resize.puzzle
GOSUB new.puzzle
LET m.stote:C= 1
FOR j:C:O TO lost.option:C
MENU 6 ,j l,m.state:C ,menu.lobe I $(j I)
NEXT j:C
MENU 6,0,0

Figures 5-3 through 5-5 depict the screens you'll see when you first
run the program (after you've typed it all in).

After creating the new puzzle, the program turns on the Crossword
menu, pictured in Figure 5-5.

The Menu Selection Loop

Once a puzzle has been created, the program enters a menu selection
loop that controls all activity until you quit the program:

get.selection:
MENU 6,0, 1
WHILE MENU(0)<>6
WEND

86 Macintosh Program Factory

r • File Edit S(i<1J'(h Run Windows
PUZZLE SPECIFICATIONS

Number of cells per side (3 - 12) -

Mini mum word 1 ength:
02 @3 04 05

-]
- ll

Figure 5-3. The puzzle specifications dialog window

,.. Ii File Edit SH<1r< h Run Windows
.,

Making the pattern now Weit.

-
-

Figure 5-4. The puzzle-creation "wait" window

Crossword Puzzle Patterns 87

.,

Figure 5-5. A completed puzzle showing the Crossword menu

MENU 6,0,0
LET selectlonl:MENU(1)
ON selection:C GOSUB new.puzzle, prt.screen, prt.pzl,

save.screen, quit ·
GOTO get.selection
quit:
END

The rest of the program consists of major and auxiliary subroutines
to accomplish the five menu options (make a new puzzle, print the
screen to the Imagewriter, redraw the puzzle, save the screen in a Mac
Paint file, and quit.

Resizing the Puzzle

Each time you change the puzzle size, the following lines make the
necessary changes in the arrays and other parameters:

resi ze.puzz1 e:
LET nl=ml\2
LET oddl=(nl*2<>ml)

88 Macintosh Program Factory

LET ncl=ml*ml
LET nbl:ncl\6+ 1
DIM ml(ml+ 1,ml+ 1),pll(ml,ml),rl(ncl),cl(ncl)
RETURN

Variable n% is the number of cells in a quadrant. If the puzzle size,
m %, is an odd number, n % is actually one less than the true quadrant
size. The variable odd% takes care of this anomaly; for odd m %,
odd%=-1; for even m%, odd%=0.

Variable nc% is the total number of cells in the puzzle, and nb% is
the number of block cells to be marked during the pattern design phase.

Making a New Puzzle

The next lines generate a new puzzle (New puzzle command):

new.puzzle:
GOSUB dielogue.size
IF chenged.sizel:felsel THEN size.Ok
ERASE ml,pll,rl,cl
GOSUB resize.puzzle
size.ok:
GOSUB p8ttern
GOSUB prt.pzl
RETURN

If you change the puzzle size during the puzzle specification dialog,
the program calls the resize puzzle subroutine before continuing. Once
a new pattern is generated, the result is displayed on the screen.

Puzzle Specification Dialog

The following lines let you specify the puzzle size and the minimum
word length:

dielogue.size:
WINDOW 1
LET new.ml=ml
CLS
PRINT ·puzzLE SPECIFICATIONS.

Crossword Puzzle Patterns 89

PRINT
PRINT USING "Number of cells per side(•• - ••t;min.sizelll:,

mox.slzelll:
EDIT FIELD 1,STR$(new.mlll:),(234,32)-(272,47)
LOCATE 5, 1
PRINT "Minimum word length:"
FOR blll:= 1 TO 4
BUTTON blll:,0,STR$(bl+ 1), (30+(bl-1)*60,80)-

(60+(blll:-1)*60,96),3
NEXT bl
BUTTON 5,0,"0K",(126, 128)-(176; 152)
LET btnlll::O

Refer to Figure 5-3 while studying these lines. The program sets up
one edit field for specifying the size. Then it creates four radio-type
buttons for specifying the minimum word length. Finally, it creates an
OK button for use when you have completed the specifications. Initially,
all the buttons are inactive.

The next block of lines checks the current size settings.

chonge.size:
new.ml:VAL(EDIT$(1))
IF new.ml<min.slzel OR new.ml>meix.sizel THEN size.error
LET mox.mlnl=new.ml\3+ 1
FOR Bl:1TO4
BUTTON bl,ABS((b:C+ 1)<:mox.minl)
NEXT bl
IF mll>mox.minl THEN mll=mox.mlnl
BUTTON mll-1,2
BUTTON 5,1
IF btnl=5 THEN end.diologue

If the size specification is out of range, the size.error routine is exe
cuted. Otherwise, the size setting is used to determine an upper limit
for the minimum word length, referred to as the "maximum-minimum"
or max.min%. The maximum-minimum equals the puzzle size divided
by 3, rounded up to the nearest integer.

Those buttons corresponding to paths up to the maximum-minimum
are made active (BUTTON b%, ABS ...). If the current max:imum
minimum setting, ml%, exceeds the newly calculated value, the current
setting is reset to the new value (IF ml%>max:.min% ...).

90 Macintosh Program Factory

The following lines constitute a loop that is repeated until you change
the puzzle size (edit field) or select one of the buttons:

size.loop:
LET btnl:O
LET eventl=O
WHILE eventl:O
LET eventl:DIALOG(O)
WEND
IF eventl=2 OR eventl=6 THEN chimge.size
IF eventl= 1 THEN which.button
GOTO size.loop
size.error:
BUTTON 5,0
BEEP
GOTO size.loop

When you select a button, the following lines are executed:

which.button:
LET btnl=DIALOG(1)
IF btnl=5 THEN change.size
change.ml:
BUTTON mll-1, 1
BUTTON btnl,2
LET mll=btnl+ 1
GOTO size.loop
end.dialogue:
LET changed.sizel=(new .ml<>ml)
LET ml=new.ml
EDIT FIELD CLOSE 1
FOR bl:1TO5
BUTTON CLOSE bl
NEXT bl
CLS
RETURN

If you press button 5 (the OK button), the program goes back to
check the current size setting. If the size is within range, the last line of
the change.size routine will force the program to skip to the end.dia
logue routine. Otherwise, change.size will wait for you to enter a valid
size.

Crossword Puzzle Patterns 91

The change.ml routine resets the minimum word length and updates
the button display accordingly.

The end.dialogue routine records whether the puzzle size was
changed (changed.size%), closes the edit field and closes the buttons.

That ends the dialogue.size subroutine.

Creating a New Pattern

Now we present the subroutine that creates a new puzzle pattern. The
first block of lines marks the randomly chosen block cells:

pottem:
PRINT ·Moking the pottern now. Woit..."
FOR jl:O TO ml+ 1
FOR kl:O TO ml+ 1
LET ml(jl,kl):(jl:O) OR (jl:mlB+ 1) OR (kl:O) OR (kl:mlB+ 1)
IF ml(jl,klB):emptylB THEN LET pllB(jl,klB):emptyl
NEKT kl,jl
FOR jlB: 1 TO nblB\4+ 1
pick.cell:
LET rl=INT(RND*(nl-oddlB))+ 1
LET clB:INT(RND*(nlB-oddlB))+ 1
IF mlB(rl,cl)=filledl THEN pick.cell
GOSUB mork.4
NEKT jlB

The first FOR-NEXT loop marks a perimeter of block cells around
the entire puzzle. These block cells are never displayed; however, they
are needed so the program can identify path boundaries along the outer
edges of the puzzle grid. The second FOR-NEXT loop randomly selects
a cell in quadrant I. The mark.4 subroutine marks that cell and its
counterparts in quadrants II, III, and IV.

After the block cells have been marked, the following lines eliminate
head cells that do not define at least one path that meets the minimum
length requirement.

poss.2:

LET chg.celllB=folselB
FOR rl= 1 TO nlB-oddlB

92 Macintosh Program Factory

FOR cl: 1 TO nl-oddl
IF ml(rl,cl)=f111edl THEN next.cell
LET hsl=cl-1
WHILE ml(rl,hsl)=emptyl
LET hsl=hsl-1
WEND
LET hel:cl+ 1
WHILE ml(rl,hel):emptyl
LET hel:hel+ 1
WEND
LET YSl:rl-1
WHILE ml(Ysl,cl):emptyl
LET YSl=YSl-1
WEND
LET Yel:rl+ 1
WHILE ml(Yel,cl):emptyll
LET Yel:Yel+ 1
WEND
IF hel-hsl>mll OR vel-vsl>mll THEN next.cell
LET chg.celll=chg.celll OR ((hel-hsl<=mll) AND

(vel-vsl<=mll))
IF chg.celll THEN GOSUB mark.4
next.cell:
NEXT cl,rl
IF chg.Celli THEN pass.2

For each empty cell in quadrant I, the program locates the head cell
that "owns" that cell. First the program backs up horizontally until
reaching a block cell. Then it advances until it reaches another block
cell. The distance from one boundary to another is the effective path
length. The process is repeated in the vertical direction.

If at least one path (horizonal or vertical) is as long as the minimum
path length ml%, the program examines the next cell. If neither path is
long enough, the program makes the current cell a block cell and sets a
flag (chg.cell%) to record this change.

After all the cells in quadrant I have been examined, the program
checks to see whether any changes were made during the refinement
process; if changes were made, the refinement process must be
repeated, because adding a block cell may have caused other paths to
become too short.

Crossword Puzzle Patterns 93

Numbering the Paths

Now the program assigns numbers to all the head cells:

LET pn:C:O
FOR rlC: 1 TO m:C
FOR c:C: 1 TO m:C
IF m:g(,-:c ,c:g)=fi 11 ed:g THEN another.ce 11
IF m:C(rlC-1,c:C):empty:g THEN h.path
LET ye:g:,-:C+ I
WHILE ml(Yel ,c:g):emptyl
LET Yele:Ye:C+ 1
WEND
IF Yel-rlC<ml:C THEN h.path
GOSUB path.info

Variable pn% counts the number of head cells found. The cell at row
r%, column c% is by definition a head cell if it is empty and the cell
above it is filled (m%(r%-l,c%)=filled%). The program first deter
mines whether the vertical path starting at that head cell is long
enough. If it is, the path location is recorded by the path.info subroutine.

Next the program checks for a horizontal path starting from the
current head cell.

h.path:
IF m:g(r:c,c:C-1)=empty:C THEN another.cell
LET hel:c:C+ 1
WHILE m:C(r:C ,he:C)=empty:C
LET he:C:he:g+ I
WEND
IF he:C-c:C<ml:C THEN another.cell
IF pll(rl,c:C):O THEN GOSUB path.info
another.cell :
NEXT cl,r:g
RETURN

In this case, the current cell is a head cell if the cell to the left is
filled (m%(r%,c%-l)=filled%). If the cell does define a horizontal path,
the program determines if that path is long enough. If it is, the horizon
tal path is recorded by the path.info subroutine.

94 Macintosh Program Factory

When every cell has been checked in this manner, the pattern crea
tion process is complete.

Here are a couple of auxiliary subroutines to the pattern creation
subroutine:

mark.4:
LET ml(rl,cl)=f111edl
LET ml(cl,nl+nl-oddl+ 1-rl)=f111edl
LET ml(nl+nl-oddl+ 1-rl,nl+nl-oddl+ 1-cl):filledl
LET ml(nl+nl-oddl+ 1-cl,rl)=fnledl
RETURN
path.info:
LET pnl:pnl+ 1
LET pll(rl,cl)=pnl
LET rl(pnl):rl
LET cl(pnl)=cl
RETURN

The mark.4 subroutine marks a block cell in quadrants I through IV.
The path.info subroutine records the location of path number pn%.
Pl%(r%,c%) contains the number of the path that starts at location r%,
c%. It is 0 if no path starts there. R%(pn%) and c%(pn%) store the row
and column addresses of path pn %.

Displaying the Puzzle Pattern

The next subroutine displays the puzzle on the screen:

prt.pzl:
WINDOW 1
CLS
CALL TEXTSIZE{9)
CALL TEXTFACE(32)
FOR rl: 1 TO ml
FOR cl: 1 TO ml
LET pxl:(cl-1)*c.sizel+ulcl
LET pyl:{rl-1)*c.stzel+ulcl
IF ml(rl,cl)=emptyl THEN find.he8d
LI NE {pxl ,pyl)-STEP(c.si zel ,c.si zel), 1,bf
GOTO try.another
find.head:
LET hnl:pll(rl,cl)

'

IF hnl:O THEN try.enother
LET n$:STR${hnl)
LET n$:RIGHT$(n$,LEN(n$)-1)
CALL MOVETO(pxl+2,pyl+ 10)
PRINT n$
try.another:
NEXT cl,rl

Crossword Puzzle Patterns 95

The first series of lines draws the block cells and places numbers in
the upper left corner of each head cell. The following block of lines
draws in the cell-divider lines:

FOR 11:0 TO ml
LINE {ulcl,ulcl+ll*c.sizel)

{ulcl+ml*c.sizel,ulcl+ll*c.sizel)
LINE {ulcl+ll*c.sizel,ulcl)-

(ulcl+ll*c.sizel,ulcl+ml*c.sizel)
NEXT 11
CALL TEXTFACE(O)
CALL TEXTSIZE(12)
RETURN

Printing the Screen
The following lines send a copy of the screen to the Imagewriter
printer:

prt.screen:
CALL HIDECURSOR
LCOPY
CALL SHOWCURSOR
RETURN

The cursor is hidden during the screen copy so that the pointer will
not appear in the printed image.

Saving the Screen
In a MacPaint File

The following lines provide instructions for saving the screen in a Mac
Paint file.

96 Macintosh Program Factory

s11ve.screen:
WINDOW 2,,(dg.x 1:g+6,dg.y:g)-(dg.x1:g+162,dg.y:g+216),3
CLS
PRINT "SAYE SCREEN:"
PRINT
PRINT"Type commend-shift-3"
PRINT "to seve the screen"
PRINT "imege in 11 Screen file."
PRINT "Then quit this progrem·
PRINT "& 1011d the Screen file"
PRINT "into M11cp11int."
BUTTON 1, 1,"0K",(60, 168)-(96, 192)
LET event:g=O
WHILE event:g<> 1 AND event:g<>6
LET event:g:DIALOG(O)
WEND
WINDOW CLOSE 2
RETURN

These lines simply provide an information box (Figure 5-6) explain
ing that COMMAND-SHIFT-3 causes the screen contents to be saved in
a screen file which may later be loaded into MacPaint.

,. s HI<~ £dit SH <1n h Run Windows i: rn~ '> UHHti
2 s 6

7

12

30

Figure 5-6. The save-screen information box

SAVE SCREEN

Type command- shift-3
to save the screen
image in a Screen file
Then quit this program
& load the Screen r11e
i nto Macpaint.

Crossword Puzzle Patt.erns 97

-Using the Program ---------
After typing in the entire program and carefully checking the listing,
try to run it. You should be able to reproduce the screens shown in Fig
ures 5-2 through 5-6.

The Redraw screen command is provided on the Crossword menu so
that you may stop the program to perform a BASIC command and later
restart the program and redraw the latest puzzle pattern.

To do this, proceed as follows:
Select Stop from the Run menu. Type in the command you want. For

instance, after saving a screen image, you might want to rename the
file. Type the command:

NAME "Screen O" AS "Xword Puzzle"

Then select Continue from the Run menu, and select Redraw screen
from the Crossword menu.

Note: Occasionally the puzzle pattern will consist entirely of block
cells. When this happens, simply select New puzzle from the Crossword
menu.

Chapter 6

Playback

This program turns your Macintosh into a game machine similar to
several popular electronic games, such as Merlin and Simon. The object
of the game is to play back a sequence of notes generated by the comput
er. Each time you repeat a sequence correctly, the computer adds a new
note to the end of the sequence. You must continue to play back the
sequence up to a preset sequence length in order to score a success.

Most people can recall a sequence of as many as seven notes without
difficulty. Playback lets you play with sequences of as many as 99 notes.

-Operating Instructions for Playback----
Figure 6-1 shows the Playback machine with all of its controls and
switches identified.

The four squares in the center are play back buttons. When the
computer produces a tone, one of the buttons lights up. To playback a
computer-generated sequence, you press the playback buttons in the
proper order.

The computer keeps track of your cumulative score in the left-hand

99

100 Macintosh Program Factory

Playback
buttons

Score: Attempts, successes, percent,
best playback so far

Number of notes you must
playback to count a success.
Press left button to change
tens, right button to change
ones.

Playback speed

Press to start a
round of
"Playback"

Press to turn game
on or off

Figure 6-1. The Playback unit. The numbers #l through #12 show how
each button is referenced by the program

panel of the machine: attempts, successes (times you reached the goal),
percentage of successes, and best (longest) play back.

On the right-hand panel are two control sections labeled GOAL and
SPEED. The goal indicates the number of notes you must playback
before the computer will score a success. To change the goal, click on
the tens or ones button. The speed setting determines how quickly the
computer will play its sequence.

On the bottom panel of the game unit are three buttons: BEGIN, ON,
and OFF. Turning the machine off deactivates all the machine's func
tions. Turning the machine on again reactivates all functions and resets
the scoring record.

Figure 6-2. The Playback unit

Playback 101

00

SPEED

0 Sl.OIH

0Mf:D

o rns·r

Figure 6-2 shows the appearance of the unit when it is off.
To start a round of the Playback game, you press the BEGIN button.

The computer will play a note and wait for you to repeat the same note.
If you play it back correctly, the computer will add a note to the
sequence and play it again. This process continues until you make an
error or reach the preset goal.

An error is also registered if you play back the notes too slowly. The
computer allows a delay of two seconds at most between your playback
notes.

-The Program-------------
The first block of lines sets up constants pertaining to the window size
and location and the game unit's appearance.

LET w.w:g=6*72
LET wU:(4-t1/4)*72
LET W.Xlt::(1 /2)*72
LET w.ylt::(3/8)*72

102 Macintosh Program Factory

-
LET w.xll=w.xl+w.wl
LET w.y 1 l=w.yl+w.11
LET t.sl:(3+ 1/4)*72
LET t.xl=(1 +3/6)*72
LET t.yl=(1 /2)*72
LET t.x 1 l:t.xl+t.sl
LET t.y 1 l:t.yl+t.sl
LET di g.xl=t.x 11+ 36
LET dig.yl:t.yl+46
LET df.xl=dig.xl-3
LET df.yl:dig.yl+4
LET sp.xl=t.x 11+ 16
LET sp.yl:t.yl+ 130

The variables with the w. prefix set the window size and location.
Variables with the t. prefix set the size and location of the center panel.
Dig.x%,dig.y% and dg.x%,df.y% locate the goal indicators and switches.
Sp.x% and sp.y% locate the speed controls.

The next section of the program initializes certain other constants
and arrays.

RANDOMIZE TIMER
LET msl=99 :REM must be < 1 oo
DIM cql(msl), speed$(3), speedl(3), n-1(3, 4), fql(4),

groyl(3), topl(3)
LET topl(O):t.yl
LET topl(1):lJcl
LET toplt:(2):t.y 11
LET topl(3)=t.x 11
LET b.sl:72
LET OYOll:b.sl\2
LET b.zonel:b.sl+(1 /8)*72
LET yeslt::(I = 1)
LET nol=(1 =0)
LET loops.persecond:5041 :REM Integer FOR/NEXT cycles per

second
FOR Jl=1 TO 3
READ speed$(jl), secondsl
speedl(jl)= 18.2\secondsl :REM convert to SOUND durotlon
NEXT jl
DATA SLOW, 4, MED, 6, FAST, 6
FOR jl=1TO4
READ fql(jl)

NEXT JI
DATA 440, 550, 660, eeo
LET ncl:4
FOR JlB:O TO 3
READ patternl
LET grayl(jl):patternlB
NEXT JI
DATA&HB130,&H031B,&HD8CO,&HOC8D

Playback 103

Variable ms% is the longest allowable sequence that may be set as a
goal. You may change 99 to any positive whole number less than 100.

Array cq%() stores the current sequence. Speed$() stores the labels
SLOW, MED, and FAST for the game unit. Speed%() stores the dura
tion assigned to each speed. Rr%(,) stores the coordinates of the four
playback buttons. Array fq%() stores the frequencies assigned to the
playback buttons. Gray%() holds the codes that produce the speckled
background pattern of the center panel. Top%() holds the coordinates of
the center panel. Parameters b.s%, oval%, and b.zone% determine the
button sizes and shapes.

Setting Up the Screen

The next block of lines sets up the window and creates the game unit on
the screen.

WINDOW 1,, (w.xl, w.yl)-(w.x11, w.y11), 3
LET game.onl:yesl
GOSUB reset.params
GOSUB machine.outline
GOSUB put.labels
GOSUB calc.playregions
GOSUB create.p 1 aybut tons
GOSUB create.controlbuttons
GOSUB create.1 engthbuttons
GOSUB put.1 ength
GOSUB create.speedbuttons
GOSUB put.scores
MENU 6, 0, 1, "Playback"
MENU 6, 1, 1, ·autt •
ON MENU GOSUB menu.activity
MENU ON
LET okl:yesl
GOSUB respond

104 Macintosh Program Factory

Most of the subroutine references are self-explanatory, and all will
be presented in detail as we go along.

These lines also activate the Playback menu shown in Figure 6-1.

The Idle Loop

The next block provides an idle loop (a sequence of lines that is repeated
until some action is requested).

loop:
DIALOG ON
WHILE DIALOG(O)<> 1
WEND
DIALOG OFF
LET btn:C:DIALOG(1)
IF btn!C>9 THEN GOSUB change.speed: GOTO loop
IF btn!C> 7 THEN GOSUB chonge.length: GOTO loop
IF btn:C:6 OR btn%:7 THEN GOSUB switch.geime: GOTO loop
IF btnjg:5 THEN GOSUB begin: GOTO loop
SOUND fq:g(btn%), speed!t:(speedjg)
GOTO loop

The button numbers correspond to those shown in Figure 6-1. For
instance, buttons 10, 11, and 12 are the speed selectors; hence, when
btn%>9, the program executes the change.speed subroutine.

If the button number corresponds to a playback button (btn%<5),
the computer generates the sound assigned to that button. This feature
lets you practice hitting the buttons before beginning a game.

Menu Selections

Here's the routine to handle selections from the Playback menu:

menu.act 1Yi ty:
IF MENU(0)<>6 THEN RETURN
IF MENU(1)<>1 THEN RETURN
LET okl=nol
GOSUB respond
WINDOW CLOSE 1
END

The only menu option is Quit. If you select that option, the subroutine
responds with a quick sign-off couplet and then the program ends.

Playback 105

Resetting the Game Parameters

The next block of lines resets the scores, speed settings, and the goal to
their initial values. These lines are executed when you start the pro
gram and each time you turn on the game machine.

reset.perems:
LET d.1evel:C=7
LET score:C(1):0 :REM tries
LET score:C(2)=0 :REM successes
LET score:C(3):0 :REM percent
LET score:C(4):0 :REM highest goel reeched
LET speed:C=2
RETURN

D.level % is the initial goal setting. Speed% is the initial speed set
ting, corresponding to MED. Depending on your preference, you may
change cl.level% to any value from 1 to ms%, and speed% to any value
from 1 to 3.

Drawing the Game Unit

The following lines draw the outlines of the game unit:

mechine.outline:
CALL FI LLRECT(\I ARPTR(top:C(0)), \I ARPTR(grey:C(0))}
LI NE (t.xl, t.yl)-(t.x 1 :C, t.y 1 I), , b
LINE (0, 0)-(t.xl, t.yl) :REM ulc
LINE (w.wl, 0)-(t.xtl, t.yl) :REM urc
LINE (0, w.11)-(t.xl, t.y 1 I) :REM lie
LINE (w.w:C, w.11)-(t.x 11, t.y 1 le) :REM lrc
RETURN

FILLRECT is one of the Macintosh's built-in subroutines. It fills the
rectangle specified by array top%() with the pattern specified by the
array gray%(). In this case, FILLRECT provides the speckled pattern
of the center panel.

The first LINE statement draws the outline of the center panel. The
remaining LINE statements draw the diagonal contour lines to the
upper left corner, upper right corner, lower left corner, and lower right
corner.

106 Macint.osh Program Fact.ory

Setting Up the Grune Buttons

The next lines calculate the coordinates for the location of the four play
back buttons:

ct11c.p1 oyregi ons:
FOR bl= 1 TO 4
LET b.xl=((bl-1) MOD 2)*b.zonel+(1+15/ 16)*72
LET b.yl=((bl-1)\2)*b.zonel+(1+1/16)*72
LET b.xl=CCbl-1) MOD 2)*b.zonel+(1+15/ 16)*72
LET b.yli:((bl-1)\2)*b.zoneli+(1+1/16)*72
LET rrl(O, bl):b.yl :REM top
LET rrl(1, bl):b.xli :REM left
LET rr1(2, bl):b.yli+b.sli :REM bottom
LET rr1(3, bl):b.xl+b.sl :REM right
NEKT bli
RETURN

While the computer is playing its sequence, the buttons are treated
as rounded rectangles rather than as true dialog buttons. The following
lines draw four rounded rectangles in the playback button regions:

creote.p 1 oyregi ons:
FOR bli:t TO 4
CALL FRAMEROUNDRECT(VARPTR(RRl(O, bl)), ovell, ovt1ll)
NEKT bl
RETURN

While the computer accepts your attempts at playing back a
sequence, the buttons are true dialog buttons. The following lines draw
the dialog buttons:

creete.p 1 eybut tons:
FOR bl:1TO4
BUTTON bl, 1, .. , (rrl(1, bl), rrl(O, bl))-(rr1(3, bl), rrl(2,

bl)), 1
NEKT bl
RETURN

These lines create the BEGIN, ON, and OFF buttons:

creete.controlbuttons:
BUTTON 5, ABS(gnme.onl), "BEGIN", (t.xl+20,

w.lli-30)-(t.xli+90, w.11-6)

BUTTON 6, 1 +ABS(gome.onl), "ON", (t.xl+ 150,
w.11-24)-(t.xl+ 189, w.11-6), 3

BUTTON 7, 1+ABS(NOT(gome.onl)), "OFF", (t.xl+200,
wU-24)-(t.xl+240, w.11-6), 3

RETURN

Playback 107

Here are the lines that create the two length buttons which appear
under the goal indicator:

creote. lengthbut tons:
FOR bl:O TO 1
LET b.Xl:df.xl+bl* 16
BUTION bl+8, ABS(gome.onl), ··, (b.xl, df.yl)-(b.xl+16,

df.yl+16), 3
NEXT bl

RETURN

Button 8 changes the tens digit, and button 9 changes the ones digit
of the current goal setting.

The next block of lines creates the speed selection buttons.

creote.speedbut tons:
FOR bl:O TO 2
LET b.yl:sp.yl+bl*24
LET b.y 1l=b.yl+34
LET b.stotl:(ABS(speedl:bl+ 1)+1)* ABS(gome.onl)
BUTTON bl+ 10, b.stotl, speed$(bl+ 1), (SP.XI, b.yl)-(SP.XI+ 72,

b.yll), 3
NEXT bl
RETURN

Control Button Subroutines

Whenever you press one of the goal buttons, the following lines calculate
a new goal value, cl.level%:

chonge.1 ength:
LET digitl:btnl MOD 2
ON digitl+ 1 GOSUB tens, ones
IF d.levell:O THEN LET d.levell: 1
GOSUB put.length
RETURN

108 Macintosh Program Factory

ones:
LET onesl=d.levell MOD 10
LET tenslB:d.leveJl-oneslB
LET oneslB:(oneslB+ 1) MOD 1 O
LET d.levell:(tensl + onesl) MOD (msl+ 1)
RETURN
tens:
LET d.1eve1 l=d.1 eve I I+ 1 o
IF d.levell>msl THEN d.levell:d.levell MOD 10
RETURN

The ones and tens buttons operate independently of one another.
Pressing either button changes only the corresponding tens or ones
digit.

If you attempt to exceed the limit value, ms%, the tens digit is set to
0. If you attempt to set a goal of 0, a goal of 1 is used instead.

Whenever you request a change in playback speed, the following
lines reset the speed buttons accordingly:

change.speed:
BUTTON speedl+9, 1
LET speedl:btnl-9
BUTTON btnl, 2
RETURN

Pressing the ON or OFF button activates the following lines:

switch.game:
IF gt1me.onl AND (btnl:6) THEN RETURN
LET geime.onl=(btnl:6)
IF game.onl THEN GOSUB reset.pt1rams
FOR bl: 1 TO 5
BUTTON bl, ABS(gt1me.onl)
NEXT bl
BUTTON 6, 1 +ABS(gt1me.onl)
BUTTON 7, 1 +ABS(NOT(geime.onl))
BUTTON 8, ABS(gt1me.onl)
BUTTON 9, ABS(game.onl)
FOR bl= 10 TO 12
LET b.steitl:(ABS(speedl=bl-9)+ 1)*ABS(geime.onl)
BUTTON bl, b.steitl
NEXT bl

GOSUB put.length
GOSUB put.scores
LET okll=geme.onll
GOSUB respond
RETURN

Playback 109

If the game is already on and you press the ON button, the action is
ignored (IF game.on% AND btn%=6 ...).

Otherwise, game.on% is reset according to whether you pressed ON
or OFF. If the new game is on, the original game parameters are
restored. Then the program resets the inactive/active/selected status of
all 12 buttons according to the value of game.on%.

The respond subroutine sounds a welcome or sign-off couplet accord
ing to whether you have just turned the game on or off.

Applying the Labels

These next lines apply the text labels to the game machine:

put.I ebe Is:
CALL TEXTFONT(3)
CALL TEXTSIZE(12)
CALL TEXTFACE(1)
CALL MOVETO(168, 23)
PRINT "P LA Y B A C K";
CALL TEXTFONT(4)
CALL TEXTSIZE(9)
CALL MOVETO(t.x1ll+3B, t.yll+30)
PRINT "GOAL"
CALL MO VETO(t.x 1 ll+20, t.yll+ 126)
PRINT "SPEED"
LOCATE B, 4
PRINT "SCORE"
LOCATE 11, 2
PRINT "ATI:"
LOCATE 13, 2
PRINT "SUCC:"

LOCATE 15, 2
PRINT "PCT:"
LOCATE 17, 2
PRINT "BEST:"
RETURN

110 Macintosh Program Factory

After each round, the following lines are executed to update the
scores:

put.scores:
CALL TEXTFONT(4)
CALL TEXTSIZE(9)
FOR jl= 1 TO 4
LOCATE 9+2*jl, 7
IF NOT gnme.onl THEN PRINT. -·ELSE PRINT USING

·•••· ;scorel(j I)
NEXT jl
RETURN

If the game is off, hyphens are printed in the numeric fields of the
score panel. Otherwise, the appropriate numbers are printed.

Each time the goal is changed, the following lines print the new
setting:

put.length:
CALL TEXTFONT(4)
CALL TEXTSIZE(9)
IF NOT gnme.onl THEN blnnk.digits
LET tens$:RIGHT$(STR$(d.1eve11\ 10), 1)
LET ones$:RIGHT$(STR$(d.1eve11 MOD 10), 1)
GOTO show.digits
b 1 nnk.di glts:
LET tens$="-"
LET ones$="-"
show.digits:
CALL MOVETO(dig.icl, dig.yl)
PRINT tens$
CALL MOVETO(dig.icl+ 16, dig.yl)
PRINT ones$
RETURN

Again, if the game is off, hyphens are printed instead of digits.

Audible Response Subroutine

The following lines sound a descending couplet when you turn the game
off or when you make an error during a playback attempt. The same

Playback 111

lines sound an ascending sequence of notes when you turn on the game
or reach the goal:

respond:
IF Oki THEN good
SOUND 300, 2 :REM "wrong answer" sound
SOUND 150, 2

RETURN
good:
FOR sl:l TO 4
CALL INVERTROUNDRECT(VARPTR(RRl(O, sl)), ovall, ovall)
SOUND fql(sl), 1 :REM ·nght answer· sound
CALL INVERTROUNDRECT(VARPTR(RRl(O, sl)), OY8ll, ovell)
NEXT sl
RETURN

Along with the sound indicating a success, the computer blinks the
corresponding playback buttons (CALL INVERTROUNDRECT ...).

Test Point

To test your work so far, add these temporary lines to the end of the
listing:

begin:
RETURN

After carefully checking each block for typographical errors and
omissions, close the listing window and run the program. If you have
typed everything correctly, you should see a screen similar to Figure
6-1.

Try all 12 buttons. Pressing a playback button should produce a
sound. Pressing any other button (except BEGIN) should produce the
appropriate result. Try changing the speed and notice the effect on the
sounds produced by the playback buttons.

Try using the goal selector buttons. You should be able to specify
every value from 1 to ms% (which we set at 99).

After you have confirmed that everything is working properly so far,
delete the following lines:

begin:.''
~~Q~I~·

112 Macintosh Program Factory

The Playback Subroutine

Now we'll add the lines that handle the playback function. These lines
are activated when you press the BEGIN button:

begin:
LET cp:g=o
odd.to:
LET cp:g:cp:g+ 1
LET c:g= I NT(RND*nc:g)+ 1
LET cq:g(cp:g)=c:g
GOSUB pltiy.sequence
DIALOG ON
LET ok:g=yes:g
GOSUB ploybock
IF ok:g=no:g OR cp:g:d.1eve1:g THEN end.round
LET deloyl=loops.persecond*.375
GOSUB pouse
GOTO odd.to

The variable cp% indicates the current length of the playback
sequence. The add.to routine randomly selects one of the four playback
sounds c% and adds it to the current sequence stored in cq%().

Then the program calls a subroutine to play the notes of the
sequence. The DIALOG ON statement allows you to use the playback
buttons to play back the sequence.

To receive your playback attempt, the program calls the playback
subroutine. Upon return from this subroutine, the variable ok% indi
cates whether you made an error or not. If you made an error
(OK%=no%) or reached the goal (cp%=d.level%), the program ends the
round. Otherwise, it pauses briefly and then produces a new, longer
sequence (GOTO add.to).

The following lines are executed at the end of a round:

end.round:
LET de 1oyl=1 oops.persecond*.25
GOSUB pouse
GOSUB respond :REM moke oppropriote sounds
LET scorel(1):scorel(1)+ 1
LET scorel(2):scorel(2)-okl
LET scorel(3)=1NT(scorel(2)/scorel(1)*100+.5)

IF cpl>scorel(4} THEN scorel(4}:cpl
GOSUB put.scores
RETURN

Playback 113

The computer pauses briefly, makes an appropriate sound (GOSUB
respond), and then updates the scores. The new scores are printed in the
scoring panel (GOSUB put.scores). After that, the program ends the
playback subroutine and returns to the idle loop.

Auxiliary Playback Subroutines·

The next block of lines plays the sequence stored in cq %():

p I ay.sequence:
GOSUB create.playregtons
FOR jl= 1 TO cpl
CALL INVERTROUNDRECT(VARPTR(RRl(O, cql(jl}}}, ovall,

oval I)
SOUND FQl(CQl(JI)), speedl(speedl)
LET delayl:speedl(speedl)*200
GOSUB pause
CALL INVERTROUNDRECT(VARPTR(RRl(O, cql(JI))), ovall,

oval I)
NEXT JI
RETURN

First, rounded rectangles are drawn over the dialog buttons (GOSUB
create.playregions). Then the program plays each note in the current
sequence, blinking the corresponding rounded rectangle. In the SOUND
statement, FQ%(CQ%(J%)) specifies the frequency of each note and
speed%(speed%) specifies the duration.

The following lines are executed when it's your turn to play back the
sequence:

playback:
LET Jl:O
ON TIMER(2) GOSUB activity.check
pb.loop:
LET ttme.leftl:yesl
TIMER ON
WHILE DIALOG(O)<> 1 AND ttme.leftl

114 Macintosh Program Factory

WEND
TIMER OFF
DIALOG OFF
IF time.leftl=nol THEN pb.error
LET btnl=DIALOG(1)
IF btnl>4 THEN pb.error
SOUND fql(btnl), speedl(speedl)
LET Jl=Jl+1
IF btnl<>cql(JI) THEN pb.error
IF Jl<cpl THEN pb.loop ELSE pb.done
pb.error:
LET okl=nol
LET cpl:cpl-1 :REM d1dn't get lest character
pb.done:
RETURN
activity.check:
LET time.leftl=nol
RETURN

Variable j% keeps track of the number of notes you've played back.
The ON TIMER statement gives you two seconds to press the. next
playback button; if you wait longer than that, the activity.check subrou
tine will record that fact, causing the program to record an error.

Pb.loop is a repeated sequence of lines that lets you play back the
sequence of notes. The loop ends when you complete the sequence, press
the wrong button, or wait more than two seconds before playing the
next note of a sequence.

Pause Subroutine

The last subroutine of our program provides a simple pause. The length
of the pause is set by the value of delay%. Delay%= 5041 produces a
one-second pause.

peuse:
FOR XXI= 1 TO deleyl
NEICT xxl
RETURN

-Testing and Using the Program ----
Carefully check all blocks added since the test point. Close the listing
window and run the program. Set the goal to 3. Press the BEGIN but-

Playback 115

@ON

GOAL

0 7

00

SPEED

0SLOW

@MEO

0 FllST

Figure 6-3. The Playback unit during a playback sequence

.,

ton to start a game. The computer should play a single note and high
light the corresponding playback button. Play the same button by click
ing the mouse on it. The computer should play that note again, followed
by a new note. Continue until you repeat a sequence of three. The com
puter should sound the response indicating a success and update the
scores to ATT=l, SUCC=l, PCT=lOO, and BEST=3.

Press BEGIN to play another round. This time, make an error. The
computer should sound the error response and update your scores
appropriately.

Figure 6-3 shows the game unit during a playback sequence.
Now begin increasing the goal, and see how long a sequence you can

play back!

Chapter 7

Electronic Billiards

The Billiard Practice program turns your Macintosh display into an
electronic billiard table. You can use it for practicing and experiment
ing with different kinds of angle shots and to play simplified games of
billiards.

The table is designed to match the appearance and proportions of a
real billiard table. As in billiards (not pool), the table has no holes. The
object of billiards is to hit the object ball with the cue ball after first
striking one or more rails.

There are a few peculiarities of our electronic billiard table. First of
all, there is no table friction to slow down a ball. Once started, a ball
rolls until it hits another ball or until you stop the ball by clicking the
mouse. Another difference from the real world is that whEl_n the cue ball
hits the object ball, the cue ball stops and the object ball rolls away from
the point of impact. If the object ball hits the cue ball, the motion is
again reversed. In true billiards, two object balls are used; our version
has only one.

Figure 7-1 shows the billiard table and billiard control panel.

117

118 Macintosh Program Factory

,. 4i file Edit Seanh Run Windows

I

Object ball I
i
;

i • !
;

!

I
l

i
i
~
i 0

i \
I Cue ball
i
i
;

Shoot cue Quit
ball \program the previous traces

using mouse ~
Turn tracer
on or off

Figure 7-1. The electronic billiards table and control panel

.,

-Brief Operating Instructions ------
The program will position the balls at random on the .table (RANDOM
button) or you can rearrange them manually (MOUSE button). When
you're ready to shoot, press the SHOOT button. Then use the mouse to
point to the destination-which can be any spot on the table. Click the
mouse button to start the cue ball rolling in the specified direction.

When the cue ball strikes a rail, it bounces off of the rail at the angle
of deflection. When the cue ball strikes the object ball, the object ball
bounces off at the angle of collision. Figure 7-2 illustrates both angles.

Our electronic billiards has an optional tracer feature that shows the
path of motion for each ball. You may find this helpful in sharpening
your game.

Figures 7-3 through 7-6 illustrate a typical sequence in using elec
tronic billiards.

F.lP.r.tronir. Rilliards 119

Collision angle (object ball
moves in this direction)

Angle of inflection

Angle of
deflection

Angle of cue-ball travel

Figure 7 -2. Angle of inflection/ deflection and angle of collision

,. S Hl<i Edit S<rnn h Run Windows

Point to the bell you went to move. Press button
to dreg it to the desired spot. Releese button to

t----t• let It go. Double-click for menu.

Figure 7-3. Screen appearance during manual repositioning of the
balls

.,

120 Macintosh Program Factory

Run Windows

; • 0

CHANGE BALL POSITION

(RANDOM) MOUSE SHOOT FIH TABLE

Figure 7-4. The balls have been repositioned and the tracer
function is on

,. S file Edit S(~cl (h Run Window$

Po1nt to dest1not1on and cl1cl< mouse button
to shoot the wh1te cue ball. Double-cl1cl< for menu.

Figure 7-5. Screen appearance while specifying the target for
the cue ball

.,

Electronic Billiards 121

Figure 7-6. Paths of the white cue ball before impact and black object
ball after impact

-The Program------------
The cursor and ball data are derived from the plans shown in Figure
7-7. For each object shown, one row of dots is represented as a hexadec
imal number. (For further details, read about PUT and SETCURSOR
in the Microsoft BASIC interpreter manual.)

The first block contains graphics data for the cue-stick cursor that is
used when you are repositioning the balls or shooting the cue ball.

DATA&H0004,&HOOOC,&HOOl6,&H0024,&H0048,&HOODO,
&HOl60

DATA&H0240,&H0480,&HODOO,&Hl600,&H2400,&H4800,
&HSOOO

DATA &H6000, &HOOOO
DATA &HOOOE, &HOOIE, &H003F, &H007E, &HOOFC, &HOIF8,

&H03FO

122 Macintosh Program Factory

• .. -.. •• r

Binary Hexadecimal

~

• • -00001 0100' 1000' 0000'=0480

• • ... - - 0110' 0000' 0000' 0000' = 6000

•
Figure 7-7. The cue-stick cursor and billiard ball patterns

DAT A &H07EO, &HOFCO, &H 1 F80, &H3FOO, &H7EOO, &HF COO,
&HF800

DATA &HFOOO, &HEOOO
DATA 11, 0

The next block contains the graphics data for the cue and object
balls:

DATA 9, 9
OAT A &H3EOO, &H7700, &HC 180, &H8180, &H8080, &HC080,

&HC180
DATA &H7700, &H3EOO

OATA9, 9

Electronic Billiards 123

DATA &HJEOO, &H7FOO, &HFF80, &HFF80, &HFF80, &HFF80,
&HFF80

DAT A &H7FOO, &HJEOO

The next series of lines sets up various functions and array
constants:

DEF FNdlstance(X,y,x I ,y I)•SQR((x-x I)*(x-x I)+(y-y I)*(y-y I))
RANDOMIZE TIMER

DIM pool.cursorX(JJ), grayX(J), blackX(J), bal IX(I 0,2), locx(2),
locy(2)

FOR j7'=0 TO JJ
READ pool.cursorX(jX)
NEXT jX
FOR j7'= I TO 2
FOR code7'=0 TO I 0
READ ba117'(code71,J7')
NEXT codex, j7'
FOR j71•0 TO J
LET black7'(j71)=&HFFFF :REM black pattern
LET gray7'(j71)=&HM55 :REM halftone pattern

, NEXT j7'

FN distance calculates the distance between two points, x,y and
xl,yl. Pool.cursor%() stores the cue-stick cursor data. Gray%() and
black%() store graphics patterns for gray and black. Ball%(,) stores
the data for the two balls.

The following lines store constants and parameters:

LET yesX=(I = I)
LET no7'=(I =0)
LET p1=4*ATN(I)
LET qtr.circ=pi/2
LET threeqtr.clrc .. J*pl/2
LET ball.dla7'"'9
LET rallX=24
LET t.wldthX=5*72
LET t. lengthX•2.5*72
LET spot.xX•rai IX
LET spot.yX=railX
LET spot.x I 7'=rai 17'+t.widthX-bal l.dlaX
LET spot.y I X=rallX+t. lengthX-ball.dlaX

124 Macintosh Program Factory

LET speedl=bal 1.dial-1
LET trace.onl .. nol

Here are the window definition parameters:

LET wp.xl .. J/ 4*72
LET wp.x I X=wp.xl+t.wtdth7'+2*ralll
LET wp.yl=.3*72
LET wp.y I l•wp.yl+t.length7'+2*rai II
LET tw.fourthl 111t.widthl\4
LET tw.elghthl•t.widthl\8
LET tl.fourthX=t.lengthX\4
LET wd.widthX=t.widthl+2*raill
LET wd.length7'=3/4*72
LET wd.xX=wp.xX
LET wd.yX=wp.y IX+ I I 4*72
LET wd.x 1 X=wd.xX+wd.widthl
LET wd.y 1 X .. wd.yX+wd. lengthX

The variables having the prefix wp define the billiard table window.
The tw-prefix variables hold locations for the billiard table markings.
W d-prefix variables define the control-panel window. Spot-prefix vari
ables indicate the range of allowable ball locations (anywhere within the
black rails). Trace.on% holds the status of the tracer function.

Setting Up the Table and Control Box

Now the program can create the two windows and set up the table and
control panel:

WINDOW 2, , (wd.xl, wd.yX)-(wd.x IX, wd.y IX), 2
WINDOW I, , (wp.xX, wp.yl)-(wp.x 17', wp.y 1 X), 3
GOSUB new.table
GOSUB spot.random
start.dialogue:
WINOOW2
CLS
PRINT" CHANGE BALL POSITION"; PTAB(204); "TRACER:"
LINE (164, I)-(164,52)
LINE (170,20)-(406,20)
BUTTON I, I, "RANDOM" ,(6,20)-(72,45)
BUTTON 2, I ,"FIX T ABLE",(312,28)-(402,49)

Electronic Billiards 125

BUTTON 3, 1+ABS(trace.on1'), ·oN·, (270, 2)-(304, 14), 2
BUTTON 4, 1 + ABS(NOT trace.on7'), ·off·, (314, 3)-(354, 15), 2
BUTTON 5, I, ·NOusE· ,(90,20)-(156,45)
BUTTON 6, I, ·sHOOr ,(174,28)-(240,49)
BUTTON 7, 1,·au1T·,c2s8,28H294,49)

The new.table subroutine draws the billiard table. Spot.random
repositions the two balls at randomly chosen locations.

Control Panel Monitor

Here is the block that monitors the buttons of the control panel:

sd.loop:
WHILE DIALOG(O)<> I
WEND
LET btn7'•DIALOG(I)
IF btn7'<5 THEN window.Ok
FOR j1'= I TO 7
BUTTON CLOSE j1'
NEXT j7'
CLS
wlndow.ok:
ON btn1' GOSUB spot.random, new.table, set.trace, set.trace,

spot.mouse, shoot, quit
IF btn1'>•5 THEN start.dialogue
WINOOW2
GOTO sd. loop

The subroutine references in the line beginning on btn% GOSUB are
self-explanatory and will be covered in more detail later as each subrou
tine is presented.

Upon return from each subroutine, the program refreshes the
control-panel window (if necessary) and re-enters the monitor loop
(GOTO sd.loop).

Positioning the Balls at Random

The following lines comprise the random ball position subroutine:

spot.random:
WINOOWOUTPUT I
FOR b1'• I TO 2

126 Macintosh Program Factory

PUT (locx(b"), locy(b")), ball7'(0, b7') :REM erase previous
get.random:
LET r.x7'•1NT(RND*(spot.x I 7'-spot.x7'+ I))+ral 17'
LET r.y7'=1NT(RNO*(spot.y I X-spot.y7'+ I))+rat IX
IF bX= I THEN spot.ok:
IF FNdlstanceCr.x7', r.y7', locxC I), locyC I))<ball.dla7' THEN get.random
spot.Ok:
LET 1ocx(bfU•r.x1'
LET 1ocy(b1')ar.y1'
PUT (1ocx(b1'), 1ocy(b7')), ba117'(0, b1')
NEXT b1'
RETURN

To position each ball, the program first erases the ball from its pre
vious position (PUT ...). Then it randomly selects a new location
(r.x%,r.y%) on the table. When the object ball (b%=2) is being positioned,
the program ensures that the new position isn't already occupied by the
cue ball (IF FN distance ...).

After getting a new location for the ball, the program updates the
location arrays locx(b%), locy(b%) and draws the ball at its new spot.

Drawing the Table

These lines draw the billiard table's rails:

new.table:
WINDOW OUTPUT I
CLS
CALL PENPAT(VARPTR(blackX(O)))
CALL PENSIZE(rallX,rallX)
CALL MOVET0(0,0)
CALL LINE(t.wldthX+rallX+ 1,0)
CALL LINE(O,t.length7'+rall7'+ I)
CALL LINE(-(t.wldth7'+rall7'+ I),0)
CALL LINE(0,-(t.length7'+rall7'+ I))

The following block supplies the rest of the table's characteristic
markings:

CALL PENSIZE(I, I)
CALL PENPA T(V ARPTR(gray7'(0)))
FOR v.llne7'•tw.f ourth7' TO 3*tw.fourth7' STEP tw.fourthX

CALL MOVETO(ral 17'+v.1lne7',ral17')
CALL LINE(O,t.length7')
CIRCLE (ral 17'+v.1lne7',ral17'+t. length7'\2),2, I
NEXT v.llne7'

Electronic Billiards 127

FOR w.dot7'=tw.elghth7' TO 7*tw.elghth7' STEP tw.elghth7'
CIRCLE (ral 17'+w .dot7',ral 17'\2),2,0
Cl RCLE {ral IX+w .dot7',t. length7'+ral lX+ral 17'\2),2,0
NEXT w.dot7'
FOR l.dot7' .. tl.fourth7' TO 3*tl.fourth7' STEP tl.fourth7'
CIRCLE Cral 17'\2,ratlX+ l.dot7'),2,0
NEXT l.dot7'
LINE (ral17'+t.width7'+3*ral17'\8, ral17'+ I l*t.length7'\24)-

STEP{ral 17'\4, t. length7'\ 12),0,b
FOR b7'= I TO 2
PUT Oocx{b7'),locy{b7')),ball7'{0,b7')
NEXT b7'
RETURN

First the program draws the three dotted lines that divide the table
into quadrants (FOR v.line%= ... NEXT v.line%). Each line has a circu
lar spot at its midpoint.

Then the program supplies the seven dots along the top and bottom
rails (FOR w.dot%= ...) and the three dots along the left rail (FOR
1.dot%= ...). Next the program draws the rectangular chalk-box along
the right rail.

Now the table is complete, so the program redraws the balls at their
current locations. (PUT ...).

Tracer and Quit Options

These lines take over when you change a tracer button or select Quit:

set.trace:
LET trace.on7'={btn7'=3)

BUTTON 3, 1+ABS(trace.on7')
BUTTON 4, 1 + ABS(NOT trace.on7')
RETURN
qu1t:
WINDOW CLOSE 2
WINDOW CLOSE 1
END

128 Macintosh Program Factory

On entry to the set.trace subroutine, btn% is 3 or 4, depending on
whether you pressed tracer ON or tracer OFF. The program puts an X
in the appropriate box (BUTTON 3,. . . and BUTTON 4, ...) and
returns to the control-panel monitor.

Positioning the Balls With the Mouse

When you press the MOUSE button, the following lines take over:

spot.mouse:
PRINT "Point to the ball you want to move. Press button•
PRINT "to drag It to the desired spot. Release button to"
PRINT "let It go. Double-click for menu.";
WINDOW I
CALL SETCURSOR(V ARPTR(pool.curso~(O)))
await.selection:
LET eventfC-MOUSE(O)
WHILE eventl<>-1 AND eventfC<>2
LET eventfC""10USE(O)
WEND

The program activates the cue-stick cursor (CALL SETCURSOR) to
indicate that the table window (window 1) is active. Then it waits for you
to select a ball or request the menu. (See Figure 7-3).

The following lines respond to your selection:

IF eventl .. 2 THEN sm.done
LET mxat10USE(I)-4
LET my-t'K>USE(2)
LET bl=O
LET ball.selectl .. nol
WHILE b7'<2 AND NOT ball.select7'
LET bl•b7'+ I
LET m.to.ball=FNdistance(mx,my,locX(bfC),locy(bfC))
LET ball.selectfC=(m. to.ball <=ba 11.diafC)
WEND
IF NOT ball.selectfC THEN await.selection
LET mx=locx(bfC)
LET my=locy(bX)
WHILE MOUSE(0)=-1
IF MOUSE(I)=mx+4 AND MOUSE(2)o=my THEN skip
PUT (mx,my),ballfC(O,bfC)

LET mx•MOUSE(I)-4
LET mymf10USE(2)
PUT (mx,my),ballX(O,bX)
skip:
WEND

Electronic Billiards 129

Event%=2 indicates that you have double-clicked the mouse. In that
case, the program exits from the ball-positioning subroutine (IF
event%=2 THEN sm.done).

Otherwise, the program determines whether you are pointing to one
of the balls. Mx,my is the current position of the mouse. M.to.ball is the
distance from the mouse to the cue ball or object ball. When m.to.ball is
less than or equal to the ball diameter, the program recognizes that you
want to select that ball.

If the mouse is not pointing to either ball, the program returns to the
await.selection routine.

Once you have selected a ball with the cue-stick pointer, the program
"attaches" that ball to the cue-stick. Whenever you move the stick, the
ball follows. The ball stays attached until you release the mouse button.

The following lines determine whether you have left the ball in an
acceptable location:

IF mx<spot.xX OR mx>spot.xlX OR my<spot.yX OR my>spot.ylX
THEN cancel.move

IF FNdlstanceOocx(3-bX),locy(3-bX),mx,my)<ball.dl8" THEN
cancel.move

LET locx(b7')=mx
LET locy(bX)=my
GOTO await.selection
sm.done:
CALL INITCURSOR
RETURN
cancel.move:
PUT (mx,my),ballX(O,bX) :REM erase last position
PUT Oocx(bX),locy(bX)),ballX(O,bX) :REM restore Initial

position
GOTO await.selection

If the ball is off the table or touching another ball, the program
returns it to its original location via the cancel.move routine. If the posi
tion is okay, it is stored in the position pointer locx() and locy().

The program then returns to the await.selection routine.

130 Macintosh Program Factory

Shooting the Ball

These lines start the shooting procedure:

WINDOW OUTPUT 2
CLS
PRINT "Point to destination and click mouse button·
PRINT "to shoot the white cue ball. Double-click for menu."
WINDOW I
CALL SETCURSOR(V ARPTR(pool.curso~(O)))
s.loop:
LET eventlaNOUSE(O)
WHILE eventl<> I
LET eventl=MOUSE(O)
WEND

The lines produce a display similar to that in Figure 7-5. The s.loop
routine waits until you press or click the mouse button. After that, the
following lines are executed:

WINDOW OUTPUT 2
CLS
PRINT "Click once to stop action. Double-click for menu."
WINDOW I
LET tg.xl .. MOUSE(I)-4
LET tg.yl'"'10USE(2)
LET delta.xl=tg.xl-locx(I)
LET delta.yl•tg.yl-locy(I)
GOSUB f Ind.angle
IF NOT a.Oki THEN s. loop
LET dx.b=speedl*COSCangle)
LET dy.b=speedl*SIN(angle)
LET mvb'11•1

These lines provide a display like that in Figure 7-6 (created with
the tracer on). Tg.x%, tg.y% are the coordinates of the destination (the
cue-stick location when you pressed the mouse). The program calculates
the angle from the cue ball to the destination ball (GOSUB find.angle).
It then calculates the corresponding horizontal and vertical increments
dx.b and dy.b (see Figure 7-8).

Electronic Billiards 131

dx.b=speedXcos(angle)

dy.b=speedXsin(angle)

*Speed is the distance the ball travels in direction angle in a single cycle of program
calculations.

Figure 7-8. Given a ball direction specified as an angle and a speed,
the program calculates the corresponding horizontal and
vertical increments dx.b and dy.b

Just before executing the next block of lines, the program specifies
ball number 1 (cue ball) as the moving object (LET Mvbo/o=l).

Rolling the Balls

The following lines start the moving-ball procedure:

LET event7'=MOUSE(O) :REM begtn roll
WHILE event7'<> 1 AND event7'<>2
LET event7'-MOUSE(O)
LET new.1ocx=locx(mvb7')+dx.b :REM ftnd next location
LET new.1ocy=locy(mvb7')+dy.b

The program will continue to move the balls until you single-click or
double-click the mouse button (WHILE event%<>1 AND event%<>2).

First the program looks ahead to the next location - the position the
ball will occupy when it has been moved. (LET new.locx= ... and LET
new.Joey= ...).

132 Macintosh Program Factory

Checking for a Collision

These lines check to see whether the moving ball will collide with the
stationary ball:

LET hltX=nox :REM ehecl<.for.eolllslon
LET b I X•3-mvbX
LET dlstX=FNdlstanee(new.loex, new.loey, loex(blX),

locy(blX))
IF dlstX>ball.dtax THEN ere.done
LET delta.xX•dx.b
LET delta.yX•dy.b
GOSUB r Ind.angle
IF NOT a.okX THEN ere.done
LET b.angle=angle
LET delta.xX•locx(b I X)-new.loex
LET de I ta. yX= locy(b I X)-new .locy
GOSUB f Ind.angle
IF NOT a.okX THEN LET angle=b.angle
LET eol.angle=-angle
LET lmpaet.angle•ABS(b.angle-eol.angle)
LET hltX=(lmpaet.angle<qtr.elrc) OR

(lmpaet.angle>threeqtr.elrc)
IF NOT hltX THEN ere.done
LET dx.b .. speedX*COS(eol.angle)
LET dy.b=speedX*SIN(eol.angle)

B 1 % is the number of the stationary ball. If the distance between
balls is greater than the ball diameter, no collision can occur, so the
collision check is finished (IF dist%> ball.dia % THEN cfc.done).

Otherwise, the program checks to see whether the direction of
motion is toward the stationary ball (causing a collision), on a tangent
(no collision), or away from the ball (no collision).

B.angle is the angle of cue-ball travel. Col.angle is the angle between
the centerpoints of the two balls (see Figure 7-2). Impact.angle is the
difference between the two angles. When impact.angle is less than a
quarter circle or greater than a three-quarter circle, a collision is
imminent.

If no collision is imminent (NOT hit%), the collision check is finished.
Otherwise, the horizontal and vertical motion-increments dx.b and dy.b
are recalculated from the angle of impact. The new values will be ap
plied to the ball that was stationary at the time of the collision.

The next block of lines checks to see if the moving ball is going to

Electronic Billiards 133

bounce against a rail:

etc.done:
LET rbounce7'=Cnew.locx>=spot.x17') :REM check.for.bounce:
IF NOT rbounce7' THEN checl<.lbounce
LET new. locx .. spot.x 17'+spot.x 17'-new. locx
check. I bounce:
LET lbounce7'=(new. locx<11spot.x7')
IF NOT lbounce7' THEN checl<.bbounce
LET new. locx11spot.x7'+spot.x7'-new. locx
checl<.bbounce:
LET bbounceX=Cnew. locy> =spot. y 17')
IF NOT bbounce7' THEN checl<.tbounce
LET new. locy=spot.y 17'+spot.y 17'-new .locy
check.tbounce:
LET tbounce7'•(new.locy<=spot.y7')
IF NOT tbounce1' THEN done.cfb
LET new.locy•spot.y1'+spot.y7'-new.Jocy
done.cfb:
IF rbounce1' OR lbounce1' THEN LET dx.b=-dx.b
IF bbounce7' OR tbounce7' THEN LET dy.b•-dy.b

A ball bounce is imminent if its next calculated position (new.locx,
new.locy) is off the table. The status variables rbounce%, !bounce%,
tbounce%, and bbounce% indicate whether the ball will hit the right,
left, top, or bottom rail. After a right- or left-side bounce, the horizontal
direction dx.b is reversed; after a top- or bottom-side bounce, the vertical
direction dy. b is reversed.

After checking for a collision and a bounce, the program moves the
ball to its new location:

1F trace.on1' THEN new.pos :REM move ball
PUT Oocx(mvb7'),JocyCmvb7')),baJJ7'(0,mvb7') :REM erase from

old pos'n
new.pos:
LET Jocx(mvb7') .. new.Jocx
LET JocyCmvbX)=new.locy
PUT (locx(mvb1'),locy(mvb7')),ball7'(0,mvb1') :REM show at new

pos'n
IF hlt1' THEN SOUND 110,.75
IF rbouncex OR JbounceX OR bbouncex OR tbouncex THEN SOUND

200,.5
IF hlt1' THEN mvb1'•3-mvb7'

134 Macintosh Program Factory

WEND
IF event1'm I THEN shoot
shoot.done:
CALL INITCURSOR
RETURN

If the tracer is on, the program skips the line that erases the ball
from its old position. Immediately after the ball is shown in its new
position, the program makes a sound if a hit or bounce was calculated.

If a hit occurred, the stationary ball becomes the moving ball (IF
hit% then mvb%=3-mvb%).

These lines also include the termination of the roll-ball loop. If you
have clicked the mouse button during the current roll-ball cycle, the
program exits from the WHILE/WEND loop. In the case of a single
click (event%=1), the program goes back to the beginning of the shoot
procedure. In the case of a double-click, the program goes back to the
control-button monitor routine.

Calculating the Angle of Motion

Given a horizontal increment delta.x% and a vertical increment del
ta.y%, the following subroutine calculates the resulting angle of motion:

f Ind.angle:
LET a.ok1'=yes1'
LET quad.select1'=SGN(delta.x7')+ I +(SGN(delta.yl)+ I)*3
ON quad.selectl+ I GOTO

q2q3,yneg.q I q4,xneg.orlgtn,xpos,q2q3,ypos,q I q4
ortgtn:
LET a.ok7il=no7il
GOTO fa.done:
xpos:
LET angle=O
GOTO fa.done
q1q4:
LET angle=ATN(delta.y1'/delta.xl)
GOTO fa.done
ypos:
LET angle=qtr.clrc
GOTO fa.done
q2q3:

LET angle•pl+ATN(delta.y7'/delta.x70
GOTO fa.done
xneg:
LET angle=pi
GOTO fa.done
yneg:
LET angle•J*qtr.clrc
GOTO fa.done
fa.done:
RETURN

Electronic Billiards 135

-Testing and Using the Program -----
You should be able nearly to duplicate the screens shown in Figures 7-1
and 7-3 through 7-6. Test all of the control-panel buttons. When shoot
ing the cue ball, try aiming for the sides of the object ball. The object
ball should bounce away at an angle just as in real billiards.

-Suggested Games-----------
One of the simplest games for one or two players is Call the Shot. Each
player starts with the same ball position (use the table spots to help fix a
location). Before shooting, the player specifies which rails the ball will
bounce off of en route to the object ball. The object of the game is to
bounce off the most rails before hitting the ball; but remember, the
player must specify the number and sequence of rails that will be hit.

Another game is Circles. The goal is to enclose the object ball in the
path of the cue ball without hitting it. Play this game with the tracer
on.

Finally, players may take turns at One-upmanship. Each player
starts at level 1, meaning the player must hit the object ball after one
bounce. Starting a turn with new random ball positions, the player tries
to hit the object ball after the number of bounces corresponding to that
player's current game level. After successfully hitting the object ball in
a specified number of bounces, the player advances to the next level
(keeping the latest ball positions). A player continues until he or she
misses.

Chapter 8

Concentration

Concentration is usually played with a deck of cards. In this chapter, we
present a program that allows you to do the same thing with a comput
er. Never mind how many decks of cards you can buy for the cost of a
single computer-the computer version has unique advantages over its
predecessor, such as automatic scoring, shuffling, and card-handling,
and a far more interesting deck of cards (see Figure 8-1).

-Rules and Object of the Game------
From one to four persons can play Concentration. A deck of playing
cards is shuffled and then arranged face-down on a table. For a com
plete 54-card deck (including two "wild" or blank cards), a 6 X 9 layout
is used. The computer handles these details.

The first player "turns over" two of the cards by pointing to each
card with the cursor and clicking the mouse button. If the cards match
or if either of the cards is wild, the player receives two points and the
cards are removed from the table. Otherwise, the cards are turned over
again, each in its original position. Play then passes to the next player.
The game continues until no more matching pairs remain on the table.
The player with the most points wins.

137

138 Macint.osh Program Fact.ory

Figure 8-1. The deck of cards used in Concentration, shown face-up. To
get these characters, the Cairo type font must be included
in the system fonts of your BASIC startup disk

-The Program-------------
The first block sets up the card-deck characters and certain other
arrays.

DIM cv$(14), sc7'(4), d7'(54), pair.row7'(2), pair.col7'(2),
cn7'(2),card7'(3), gray7'(3)

FOR C7''" I TO 14
READ cv$(c1')
NEXT ex
DAT A 1,2,3,5, 7,8,@,7',A,*,),!,e,· •
FOR J1''"0 TO 3
LET gray7'(j7')•&HSSM
NEXT JI
LET wc1'=14
LET npX=l
LET yes1'•(1 .. 1)
RANDOMIZE TIMER

The array CV$() stores the 14 characters that appear on the faces of
the playing cards.

Concentration 139

Look at the DATA statement. It includes 14 characters, of which the
last is a single blank space inside quotes. If you select the Cairo font and
then attempt to print these characters, you'll get the characters shown
in Figure 8-1. You may change any of the first 13 items in the DATA
statement; however, the last item should always be a blank space, to
produce the blank wild card.

Sc%() stores the players' scores. D%() keeps track of which card
occupies each space on the table. Pair.row%() and pair.col%() record
the location of the most recently selected pair of cards. Cn%() holds the
same data in more compressed form. Card%() holds parameters used
when drawing the cards, and gray%() holds data corresponding to the
dotted pattern on the backs of the cards.

We% indicates which card character is wild. Np% is the initial set
ting for the number of players.

The next block of lines defines the card's appearance:

LET carci.wtdth7'•26
LET carct length7'·29
LET row.tabX•JS
LET co 1.tabX=40
LET oval.xX•card.wldthX\2
LET oval.yX•card. lengthX\2

Cards are 26 X 29 dots and are placed at 35-dot increments horizon
tally and 40-dot increments vertically. The corners of the cards are
rounded.

The following lines determine the size and location of the three win
dows used by the program:

LET wJ.wldthX=5*72
LET w3.length7'=3*72
LET w l.wldthX=wJ.wldthX
LET bx.c1'•(w I .wldthX-50)\2
LET w I. length1'=(I+ I /8)*72
LET w2.wldthX=(I+ I /2)*72
LET w2. lengthX=wJ. lengthX
LET wJ.xX• I I 4*72
LET wJ.x 17' .. wJ.xX+wJ.widthX
LET w3.y7'•3/8*72
LET wJ.y 1 X=w3.yX+w3. length7'
LET w l.x7' .. w3.xX
LET w 1.x 1X=w3.x11'

140 Macintosh Program Factory

,. w l'ilt1 Edit S tH 11 th Run Windows

CONCENTRATION
Numoer of plByers: @ 1 O 2 O l O 4

(BEGIN)

Figure 8-2. The initial screen when you start Concentration

LET w I .y'R.=w3.y I 'R.+ 1 /8*72
LET w 1.y I 'R.=w 1.y'R.+w l.length'R.
LET w2.x'R.•w 1.x I 'R.+ I /8*72
LET w2.x I 'R.=w2.x'R.+w2.width7'
LET w2.y'R.•w3.y'R.
LET w2.y I 'R.•w2.y'R.+w2. length'R.

.,

Refer to Figure 8-2. The w-prefix variables refer to window 3 (the
card table), window 2 (the scorebox), and window 1 (the dialog box).

Here are the lines that create the windows:

WINDOW 3,,(w3.x7',w3.y7'Hw3.x I 'R.,w3.y I 'R.),3 :REM 8-4
CALL TEXTMODE(I)
CALL TEXTSIZE(18)
CALL TEXTFONT(I 1)
WINDOW 1,.(w 1.x'R.,w 1.yl'O- (w 1.x17',w1.y1 'R.),3
CALL TEXTS I ZE(12)
CALL TEXTFONT(I)
LET tltle1$•"C 0 NC ENT RAT I 0 N"
LET title 1.tab'R. .. (w 1.wldth'R.-WIDTH(title I $))\2

Concentration 141

Figure 8- 3. If your startup disk doesn't have the Cairo font, your deck of
cards will look like this

WINDOW 2,.(w2.x7', w2.y7')-(w2.x 17', w2.y 17'),3
CALL TEXTSIZE(12)
CALL TEXTFONT(1)
LET title2$="SCOREBOX"
LET t1tle2.tab7'=(w2.width7'-WIDTH(t1tle2$))\2

Each window has its own associated type font and type size. Notice
that text font 11 (Cairo) is used in window 3. If your Macintosh BASIC
disk does not include that type font, you can use Apple's Font Mover
program to add that font to the disk. If you run the program without
having the Cairo font available, the characters on the cards will be the
same as those shown in Figure 8-3.

The following lines add a menu entry to the top bar:

MENU 6,0, 1,·concentration·
MENU 6, 1, 1 ;aun .
ON MENU GOSUB menu.rq
MENU ON

142 Macintosh Program Factory

Setting Up the Windows

These lines set up the windows as shown in Figure 8-2:

new.game:
WINOOW3
CLS
WINOOW2
CLS
WINDOW I
CLS
PRINT PT AB<title I .tabl);tttle Is
PRINT .Number of players:·
FOR bl• I TO 4
bxl•(bl-1)*44+ 136
BUTTON bl, 1-(bl•npl),STRS(bl),(bxl, 18)-(bxl• 32,30),3

NEXT bl
BUTTON 5, 1,-BEGIN9 ,(bx.cl,54)-(bx.cl+SO, 72)

Next comes a loop that waits for you to specify the number of players
and press the BEGIN button:

hm.loop:
WHILE DIALOG(O)<> I
WEND
LET btnl=DIALOG(I)
IF btnl•5 Tt£N hm.done
BUTTON npl, I
LET npl=btnl
BUTTON npl,2
GOTO hm. loop
hm.done:
FOR btnl= 1 TO 5
BUTTON CLOSE btnR
NEXT btnl

Np% is the number of players. Pressing one of the radio-style buttons
1 through 4 changes np% accordingly. Pressing BEGIN causes the pro
gram to continue with the next program block.

Shuffling the Cards

The next block of lines shuffles the cards:

CLS
PRINT "Shuffling the cards .. ."
FOR c7C• 1 TO 54
LET d7C(c7C)m0
NEXT c7'
FOR w7C• 1 TO 2
pick.we Joe:
LET cX•INTCRND*54)+ 1
IF d7C(c7C)>O THEN pick.wcloc
LET d7C(c7C)=wc7C
NEXT w7'
FOR n7'= 1 TO 52
pick.cloc:
LET c7C .. INTCRND*54)+ 1
IF d7C(c7')>0 THEN pick.cloc
LET d7C(c7C)•n7C MOD 13 + 1
NEXT n7C
CLS

Concentration 143

First the program sets every array element to 0 (LET d%(c%)=0),
which indicates that no card has been assigned to any location. Then the
program places the two wild cards in randomly chosen positions in
array d%() (LET d%(c%)=wc%).

Next the program shuffles the remaining 52 cards in the deck.
The program converts n% (which ranges from 1 to 52) into a value

from 1 to 13, corresponding to the 13 card characters, and stores that
value in the randomly selected location c% (LET d%(c%)=n% MOD 13 + 1).

Now that the cards are shuffled, the following lines place them face
down on the table:

WINDOWJ
FOR row7'• I TO 6
FOR col7'• I TO 9
GOSUB card.down
NEXT coll
NEXT row7C

144 Macintosh Program Factory

The card identities are stored in the single-dimension array d%()
and are placed on the table in a two-dimensional arrangement. The fol
lowing formula gives the correspondence between each card on the
table and its location in do/o():

index in do/o() = (row-1) X 6 + col

For instance, the identity of the card at row 5, column 3 is stored in
do/o() at location (5-1) X 6 + 3 = 27.

The card.down subroutine places a face-down card at the table loca
tion rowo/o,colo/o.

The Score Box

The next block of lines sets up the scorebox labels:

score.box:

WINDOW OUTPUT 2
CLS
PRINT PT AB(tlt1e2.tabi);t1tle2$
FOR pnll= 1 TO nplS
LET sclS(pnll)=O
LOCATE 3+2*(pnlS-1), 1
PRINT USING "Player •:";pn:g;
GOSUB update.scores
NEXT pnjg
PRINT
PRINT "Round•·

The appearance of the scorebox varies with the number of players
(compare the boxes in Figures 8-4 and 8-5).

Starting a Game

The next lines are executed at the start of a player's turn:

pley.geme:
LET cl:C:54
LET pn:C:O
LET round:C=O

Concentration 145

,. s File Edit S<rn n h Run Windows Concentrotion

II II II II II II II II II
II II II II II II II II II
II II II II II II II II
II II II II (f) II II II
II II II II II II II II II
II II II II II II filJ
Player• 1
Select card • 2
No match.

SCOREBOX

Player 1: o

Round•

Figure 8-4. Screen appearance after player l's first turn

SCOREBOX

Player 1: 0

Player 2: 0

Player 3: 0

Player 4: 2

Round•

Figure 8-5. Appearance of the scorebox with four players

.,

146 Macintosh Program Factory

WINDOW OUTPUT 1
CLS
PRINT "Ployer ""
PRINT "Select card "";

The variable cl% counts the cards left on the table. When cl%=0, the
game is over. The game is also over if cl%= 2 and the two cards remain
ing are not a matching pair. This is usually the case because the wild
cards have been used to take half of a matching pair. Pn% identifies the
current player.

The following lines begin a player's turn:

begin.turn:
LET pnl•pnl MOD npl+ 1
IF pnl<> 1 THEN round.Ok
LET roundl .. roundl+ 1
WINDOW OllTPUT 2
GOSUB update.round
WINDOW OUTPUT 1
round.Ok:
LOCATE 1,9
PRINT USING ·•·;pnl
FOR cl• 1 TO 2
LOCATE 2,13
PRINT USING ·••·;cl;

Each time the play passes back to player 1, the round-counter,
round%, is incremented and the scorebox is updated. The program
prompts the player to select two cards (FOR c%= 1 TO 2).

Card Selection

Now the program begins monitoring mouse activity in the card-table
window:

WINOOWJ
SOUNDSS0,1
card.loop:
WHILE MOUSE(O)<> 1
WEND
LET mxlaMOUSE(1)
LET m~=MOUSE(2)

LET zone.xl=(mx7'-6)\col.tab7'+ t
LET zone.y1' .. (my7'-6)\row.tab7'+ I
IF zone.x7'<1 OR zone.x7'>9 OR zone.y7'<1 OR zone.y7'>6

THEN card. Joop
IF (mxl-6) MOD co1.tab7'>card.widthl OR (my7'-6) MOD
row.tabl>card.1ength7' THEN card.loop
LET rowl•zone.)'1'
LET coJl•zone.xl
LET cr7'=(row7'-t)M9+co11
IF dl(cr7')=0 THEN card.loop
IF cl•2 AND cr7'•cn7'(I) THEN card. Joop
LET cnl(c7')acr7'
LET pair.rowl(cl)-row7'
LET pair.co11(d0=co11
GOSUB card.up
WINDOW OUTPUT I
NEXT cl

Concentration 14 7

The WHILE/WEND loop waits for the player to click the mouse.
The next 11 lines after WEND check to see whether the player clicked
the mouse on a card or not. Three types of invalid selections are possi-
ble: invalid row-column location (IF zone.x%<1 OR ...); reference to a
card already removed from the table (IF d%(cr%)=0 ...); and a request
for the same card for card 1 and card 2 (IF c%=2 AND ...). In case of
any of these errors, the program returns to card.loop to wait for another
click.

If the selection is valid, the program stores the card-pointer in
cn%(c%), where c% equals 1 or 2. The program also stores the card's row
and column address in pair.r%() and pair.c%(). The selected card is
turned face-up (GOSUB card.up).

The card-selection loop is repeated for the second card.

Evaluating a Selection

After a player has selected two cards, the program checks to see
whether they match:

LOCATE J,I
LET matchl•(dl(cnfl< 1))=d7'(cn7'(2))) OR

(cnl(cnl(I))•wcX)
LET matchl .. matchl OR (dl(cnl(2))=wcl)

148 Macintosh Program Factory

IF NOT matchX THEN no.match
PRINT "Match! ";
FOR sndX .. I TO 4
SOUND sndX* I I 0, I
NEXT sndX
LET scX(pnX)=scX(pnX)+ 2
WINDOW OUTPUT 2
GOSUB update.scores
WINDOW OUTPUT I
LET clX=clX-2
LET game.overX=(clX=O)
IF game.overX THEN PRINT "Game.over";: BEEP
GOTO end. tum

Figures 8-4 and 8-6 show the program's response to a non-matching
pair and a matching pair.

In case of a match, the program sounds an ascending sequence of
notes and adds two to the current player's score. Since the matched
cards will be removed from the table, the program also deducts two
from cl%. If cl%= 0, no cards remain and the game is over.

,. s File Edit S<rnn h Run Windows Concentration

II II II II II II II II IJ
II II II II II II II II II
II II II II II II II II II
II ~ II II II II II II II
II II II II II II II II II
11111111111111@11
Player• r
Select card• 2
Match!

OK

SCOREElOX

Round• 4

Figure 8-6. Screen appearance after a matching pair is found

.,

~ ti File Edit S<~<n« h Run Windows Concentration

II II II II II II II II
II II II II II II II II
II II II II II II II II II
II II II II II II m II
II II II II II II II II II
II II II II II II II II
Pl11yer • 1
Select c11rd •

Concentration

SCOREBOX

Pl11yer 1: 2

Round " 5

Figure 8-7. The matching pair is removed from the table

149

.,

Figure 8-7 shows the table after a matching pair has been removed.
In the case of a non-match, these lines take over:

no.match
PRINT "No match.";
SOUND 220,2
SOUND 110,2
LET game.ove~=(cl1'•2)
IF game.ove~ THEN PRINT "Game.over";:BEEP

The program sounds a descending couplet and checks to see whether
the cards selected were the last two on the table. If so, the game is over
since no matching pairs are left.

After a player's selections have been evaluated, the following lines
wait until the player presses a button to continue:

end.turn:
WINDOW 1
BUTTON 1, 1,"0K",(bx.c:g,54)-(bx.c:g+50, 72)
WHILE DIALOG(O)<> 1

150 Macintosh Program Factory

WEND
BUTTON CLOSE 1
LOCATE 3, 1
PRINT.
WINDOW OUTPUT 3
IF NOT motchll AND NOT gome.overll THEN put.bock
FOR ell= 1 TO 2
LET dll(cnll(cll)):O
LET rowll:peiir.rowl(cl)
LET colll=ptiir.coll(cl}
GOSUB 1 ocote.cord
CALL ERASEROUNDRECT (\/ARPTR(ctirdll(O)), OYtil.xll, ovol.yll)
NEXT cl
GOTO cl.check
put.bock:
FOR cl=l TO 2
LET rowll:pair.rowl(cll)
LET colll:peiir.colll(cll}
GOSUB cord.down
NEXT cl
cl.check:
WINDOW 1
IF gome.over:C THEN new.gome ELSE begin.turn

The OK button is shown in Figures 8-4 and 8-6. Once the player has
pressed the OK button, the program puts the cards face-down again or
removes them from the table (if they were a matching pair).

Subroutines

The program uses six subroutines. The first responds to a selection
from the Concentration menu:

menu.rq:
IF MENU(0)<>6 THEN RETURN
IF MENU(I)<> I THEN RETURN
WINDOW CLOSE I
WINDOW CLOSE 2
WINDOW CLOSE 3
END

Concentration 151

The next two subroutines update the scores and round-counter.

update.scores:
LOCATE 3+2*(pnX-1),9
PRINT USING ····;scX(pnX)
RETURN
update.round:
LOCATE 5+2*(npX-I),9
PRINT USING ··•·;roundX
RETURN

On entry to the update.scores subroutine, pn% is the player number.
Here's the subroutine that turns a card face-up:

card.up:
GOSUB locate.card
CALL ERASEROUNDRECT (\IARPTR(cardl(O)), oval.xi, oval.yl)
LET c$=cv$(dl((rowll-1)*9+coll))
LET c.tabl=(card.widthl-WIDTH(c$))\2
CALL MO\IETO(cxl+c. tabl ,rxl+22)
PRINT USING "!"; c$;
CALL FRAMEROUNDRECT (\IARPTR(cardl(O)), oval.xi, oval.yl)
RETURN

Given card location row%, column%, the locate.card subroutine finds
the actual card location in terms of window coordinates. It loads those
coordinates into the array card%() so that the ERASEROUNDRECT
routine can erase the card from the screen and the FRAMEROUNDRECT
routine can redraw it with the character c$ showing.

The following lines put a card face-down on the table:

card.down:
GOSUB locate.card
CALL FILLROUNDRECT (VARPTR(cardl(O)),

oval.xX,oval.yfC, VARPTR(grayl(O)))
CALL FRAMEROUNDRECT (VARPTR(cardl(O)),

oval.xx, oval.yX)
RETURN

As with the card. up subroutine, locate. card puts the necessary screen

152 Macintosh Program Factory

coordinates into the array card%(). The program then puts a gray
rounded rectangle at the appropriate location on the table.

Finally, here's the subroutine that loads the card-location parame
ters into the card%() array.

locate.card:
LET rx7'=6+(row7'- I)*row.tab7'
LET cxX=6+(col7'- I)*col.tab7'
LET card7'(0)=rx7'
LET card%(I)•cxX
LET card7&(2) .. rx%+card. length7'
LET card7&(3)=cx7'+card.wldthX
RETURN

Variables rx% and ex% are the actual screen coordinates of the upper
left corner of the current card.

-Using the Program -----------
The screens shown in Figures 8-2 through 8-7 are similar to the results
you should get when you run Concentration on your computer.

The game must be played without pencil or paper. For fairness, every
one should get a look at the screen after each player completes his turn
(and before he presses the OK button).

When playing Concentration solitaire, try to find all the pairs in as
few rounds as possible. The next time you play, try to do it in even fewer
rounds.

Chapter 9

·'"fhe Codebreaker

This program lets your Macintosh show its smarts by competing against
you in a game called the Codebreaker. With minor variations, the game
is also known as "Bulls and Cows" and "Mastermind" (trademarked).

-Rules of the Game ----------
In this two-player game, one player (the codemaker) makes up a secret
code and the other player (the codebreaker) tries to guess the code.
After each guess, the codemaker gives a score to the codebreaker, who
uses this information to make another guess. The object of the game is
to guess the code in as few tries as possible.

Codes consist of a sequence of four characters taken from the set
A,B,C,D. For example, AAAA, ABCD, DCBA, and BAAB are all valid
codes. There are 256 ways of combining the characters into codes.

Each guess receives two scores:

• The number of characters positioned correctly, called "hits."
• The number of characters positioned incorrectly, called "misses."

If a guess includes a character that is not found in the code, the
character is not scored at all.

Table 9-1 gives several examples of scoring. Take a minute to study

153

154 Macintosh Program Factory

Table 9-1. Sample Scoring for Secret Code BDBA

Guess Score Comments
Hits Misses

AAAA 1 0 The A in the rightmost posi·
tion is a hit; the other A's
don't count.

ABBB 1 2 The B second from the right
is a hit; the A is a miss; one of
the other B's is a miss; the
remaining B doesn't count.

BCAB 1 2 The B in the leftmost position
is a hit; one of the other B's
and the A are misses; the C
doesn't count.

DBAB 0 4 All four characters are misses,
i.e., all are in the secret code
but none is positioned as
guessed.

BDBA 4 0 All four characters are hits.

the sample guesses and scores to be sure you understand the scoring
system.

The Codebreaker program lets you play the role of codemaker or
codebreaker. In the latter case, the program makes up secret codes and
scores your guesses. When you take the role of codemaker, the program
functions as the codebreaker. You type in your secret code, and the
computer scores its own guesses. (Don't worry, the program doesn't
cheat; the secret code is kept in a part of the program that the code
breaker never sees.)

You may be surprised to find that the program is an exceptionally
good guesser. The process it uses is very systematic-no intuition or
artificial intelligence is involved. Of course, you don't have to tell your
friends that!

Two people can play this game by taking turns as the codebreaker
and letting the computer score each player. The player who guesses the
secret code in the fewest tries wins the round.

Figures 9-1 through 9-10 illustrate the operation of the program in
its role as codemaker and codebreaker.

The Codebreaker 155

-Secrets of Codebreaking --------
Most players eventually come up with a system for guessing. Here's the
Codebreaker's own method:

The program makes its first guess arbitrarily. It then gets the scores
(number of hits and misses) and records that information.

For subsequent guesses, the program starts with a potential guess or
"hypothesis" chosen from a list of all possible codes. It assumes the
hypothesis is correct and scores each of its previous guesses against the
hypothesis. If all its scores are consistent with the scores actually
received, the program uses the hypothesis as its next guess. If any of the
scores are different from the scores you provided, the program discards
that hypothesis and gets another.

-The Program-------------
The first block defines the arrays used in the program:

LET lg7'=10
DIM wnd.w7'(2), wnd.17'(2), wnd.x7'(2), wnd.y7'(2), wnd.x 17'(2),

wnd.y 17'(2)
DIM btn.x7'(3), btn.y7'(3), btn.x 17'(3), btn.y 17'(3)
DIM fld.x7'(2), fld.y7'(2), fld.x 17'(2), fld.y 17'(2)
DIM p$(256), gu$0g7'), s I 7'0g7'), s27'0g7'), pl$(2)

Lg% is the maximum number of guesses you are allowed before the
computer reveals the secret code. The arrays prefixed by wnd., btn.,
and fld. contain parameters for windows, buttons, and edit fields.

P$() contains all possible codes. Gu$() contains the guesses that the
codebreaker (you or the computer) makes. Sl %() and s2o/o() keep track
of the scoring for each guess: s1%() stores hits, and s2% stores misses.

For instance, gu$(1) stores the first guess; sl %(1) stores the number
of hits assigned to that guess, and s2%(1) stores the number of misses.

Loading the Parameters

The next block of lines loads parameters into the window arrays:

FOR n7''" I TO 2
READ Inches. wlde,fnches. long,ulcx,ulcy
LET wnd.w7'(n7'>-inches.wlde*72

156 Macintosh Program Factory

LET wnd.1X(n70=1nches. long*72
LET wnd.XX(nX)•u1cX*72
LET wnd.yXCnX)•ulcy*72
LET wnd.x I X(nX)•wnd.x7C(nX)+wnd.w.7C(n7C)
LET wnd. y I X(nX) .. wnd. yXCnX)+wnd. IX(nX)
NEXT nx
REM wide long left top
DAT A 3.00, 3.625, 0.375, 0.50
DATA 3.00, 3.625, 3.750, 0.50

The following lines serve the same function for the button arrays:

FOR nX• I TO 3
READ lnches.wlde,inches.long,h.zone,v.zone,b.type7C(nX)
LET btn.x7C(nX)=(wnd.wX(I Hnches.wide*72l*h.zone
LET btn.yX(nX) .. (wnd.17'(I)-Inches. long*72l*v.zone
LET btn.x I 7C(n7C) .. btn.x7C(n7C)+ Inches. wlde*72
LET btn.y I 7C(n7C)=btn. y7C(n7C)+ Inches. long*72
NEXT n7C
REM wide long h.zone v.zone type
DATA 1.000, 0.333, 0.500, 0.9375, I
DATA 0.667, 0.208, 0.333, 0.3750, 3
DATA 0.667, 0.208, 0.667, 0.3750, 3

H.zone% and v.zone% indicate the relative horizontal and vertical
position of a button within window 1.

And here are the corresponding lines for the edit fields:

FOR n7C• I TO 2
READ Inches.wide, Inches. long,h.zone,v.zone
LET fld.xXCn7C)=(wnd.wX(I Hnches.wlde*72l*h.zone
LET fld.y7C(n7C>-Cwnd. IX(I)-Inches. long*72)*v.zone
LET fld.x I 7C(n7C)=fld.x7C(n70+ Inches. wlde*72
LET fld.y I 7C(n70=fld.y7C(n7C)+ Inches. long*72
NEXT nx
REM wide long h.zone v.zone
DATA 1.00, 0.208, 0.500, 0.333
DATA 1.00, 0.208, 0.500, 0.500

Program Constants

The following lines set up certain values that do not change during pro
gram operation:

LET pl$(I)="You·
LET pl$(2)•"Mac·
LET yes~·(I • I)
LET no7'•(1 •0)
LET dg$=" ABCD"
LET one.space$•" ·: REM one space inside quotes
LET one.xs-·x·: REM one X inside quotes
LET qt$•CHR$(34) :REM double quote

The Codebreaker 157

Pl$() stores the names of the two players: "Mac" and "You."
The next lines activate the Codebreaker menu shown in Figure 9-1:

MENU 6,0, I, ·codebreaker·
MENU6,l,1,"Quit.
ON MENU GOSUB menu.rq
MENU ON

The menu offers only one command: Quit.

THE CODEBREAKER

Figure 9-1. The Codebreaker's initial title screen

.,

158 Macintosh Program Factory

Generating All Possible Codes

The following lines print the title screen shown in Figure 9-1 and also
generate all possible codes, storing them in array p$().

RANDOMIZE TIMER
LET cbl:l
WINDOW 1,,(wnd.xll(1),wnd.yl(1))-(wnd.x Ill(1),wnd.y1ll(1)),3
CLS
CALL TEKTSIZE(16)
PRINT
PRINT. THE CODEBREAKER"
PRINT
PRINT" One moment."
CALL TEKTSIZE(12)
FOR p 1ll=1 TO 4
FOR p21= 1 TO 4
FOR p31= 1 TO 4
FOR p41= 1 TO 4
LET ixl:(p 11-1)*64+(p21-1)*16+(p31-1)*4+p41
LET p$(ixl):MID$(dg$,p 11, 1) + MID$(dg$,p21, 1) + MID$(dg$,p31, 1) +

MID$(dg$,p41, 1)
NEXT p4ll,p31,p2ll,p 11

Codes are generated in the following order: AAAA, AAAB, AAAC,
AAAD, AABA, AABB, AABC, AABD, AACA, and so forth, up to
DDDD. In effect, the computer just counts from 0 to 255 in base 4, using
the "digits" A, B, C, and D instead of 0, 1, 2, and 3.

The following lines produce the initial dialog box, which is shown in
Figure 9-2:

select.codebreoker:
CLS
PRINT u THE CODEBREAKER"
LOCATE 5, 1
PRINT" Who is the codebreaker?"
BUTTON 1,3-cbll, UVOU" ,(btn.xl(2),btn.yl(2))- (btn.x 11(2), btn.y 11(2)),

b.typel(2)
BUTTON 2,cbl,"MAC" ,(btn.xl(3) ,btn.yl(3))- (btn.x 11(3), btn.y 11(3)),

b.typel(3)
BUTTON 3, 1,"BEGIW ,(btn.xl(1),btn.yl(1))- (btn.x 11(1),btn.y11(1)),

b. typell(1)
sc.loop:

GOSUB Weit.entry
IF event:g=6 THEN stert
LET btn:g:DIALOG(1)
ON btn:g GOTO roles,roles,st6rt
roles:
LET cb:g:btn:g
BUTTON 1,3-cb:g
BUTTON 2,cb:g
GOTO SC.loop
stert:
BUTTON CLOSE 1
BUTTON CLOSE 2
BUTTON CLOSE 3
ON cb:g GOTO you.guess,mec.guess

The Codebreaker 159

The variable cb%, used in the BUTTON statements, identifies the
codebreaker; l=You, 2=Mac (the Macintosh).

The program gives you a chance to change the codebreaker (initially
set to You) before you press BEGIN to start the game.

THE CODEBREAKER

Who is the codebreaker?

@YOU QMRC

(BEGIN J

Figure 9- 2. The Codebreaker selection menu

160 Macintosh Program Factory

You as Codebreaker

In the next block of lines, the computer randomly selects a secret code,
presents instructions for guessing, and prompts you to enter your first
guess:

you.guess:
LET gn7'=0
LET cr1C=RND*256+ I
LET cd$•p$(<ri)
GOSUB cb.lnstructlons
WINDOW 2,,Cwnd.x7'(2), wnd.y7'(2))-(wnd.x 17'(2), wnd.y 17'(2)),3
GOSUB label.scorebox
WINDOW I
cb.loop:
CLS
PRINT • CODEBREAKER:·
LET gn7'•gn7'+ I
LOCATE 5, I
PRINT· Enter guess number·;gn7'
EDIT FIELD 1,·· ,(fld.x7'(l),f ld.y7'(1))-(fld.x 17'(1),fld.y17'(I))
BUTTON I, I, ·oK·' (btn.x7'(I), btn.y7C(1))- (btn.x 17'(1),

btn.y 17'(1)), b.type7'(I)
GOSUB wait.entry
LET codeS=UCASESCEDITSC I))
EDIT FIELD CLOSE 1
BUTTON CLOSE I
GOSUB check.code
IF code.ok7' THEN accept.guess
LET gn7'•gn7'- I
GOTO Cb. loop

Gn% stores the latest guess number and is set to 0 before you make
your first guess. Cr% is a random number from 1to256. Cd$=P$(cr%) is
the computer's secret code.

The ch.instructions subroutine prints the instruction box shown in
Figure 9- 3. The label.scorebox subroutine identifies the rows and
columns of the scoring table in window 2 (the right-hand window in
Figure 9-4). The program prompts you to enter the next guess and then
provides an edit field and an OK button. When you press the OK button,
the check.code subroutine makes sure you have entered a valid

CODEBREAKER INSTRUCTIONS

Mee hes e secret 4-digit code ,
cons1st1ng or the letters:

A B C D
Any letter may repeat.
Here ere examples:

AAAA,DCBA, end DACC
Try to guess the code .
Mee scores your guesses.
Scoring: Hits ere letters
in the right place. Misses ere
letters 1n the wrong piece.

OK ~

Figure 9-3. Instructions for playing Codebreaker

,.. ei r i l<~ Edit S <~<J r < h Run Windows Codebreaker

The Codebreaker 161

Code Hi ts Misses
Enter guess number 1

lebcd I

OK

Figure 9-4. Screen appearance during entry of the guess abed

162 Macintosh Program Factory

code. If you have, the program continues at the accept.guess routine.
Otherwise, it prompts you to re-enter your next guess.

Here's the routine that scores your guess:

accept.guess:
LET gu$(gn1')=code$
LET a$=cd$
LET q$•gu$(gn1')
GOSUB score
LET s I 1'(gn1')=-s 17'
LET s27'(gn7'l'·s27'
WINDOW OUTPUT 2
GOSUB update.score
WINDOW I
IF s I 7'(gn70•4 THEN got.It
IF gn7Mg7' THEN GOTO Cb.loop

The score subroutine compares the current guess stored in q$ with
the secret code stored in a$. Upon return from that subroutine, s1% is
the number of hits and s2% is the number of misses.

,. s i: il<i Edit Se<11 < h Run Windows Codebreaker
.,

SCORING RE CORD

You broke the code Code Hits Misses

in 5 tries! 1. AE!CD
2. AAE!El
3 . CCDD
4. ElElDD 2 2
5. DElDEl 4 0
6 .
7.
8 .
g

OK

Figure 9- 5. Screen appearanc~fter breaking the code

The Codebreaker 163

The program then updates the scorebox. If you have guessed the
code (sl%(gn%)=4), the program goes to the got.it subroutine. Other
wise, if you have more tries remaining, the program prompts you to
enter another guess.

The following block takes over when you guess correctly or run out
of tries:

nmt:
CLS
SOUND 440,2
SOUND 110,2
CALL TEXTSIZE(18)
LOCATE 3, I
PRINT • No more tries left:
PRINT • The secret code Is"
PRINT" ";cdS
CALL TEXTSIZE(12)
GOTO end.round
got.It:
CLS
FOR f 7'= I TO 4
SOUND f7'* I I 0, 1
NEXT f7'
CALL TEXTS I ZE(18)
LOCATE 3,1
PRINT T AB(2);plS(cbSi);" broke the code"
PRINT TAB(2)"1n"; gn7'; "trlesr
CALL TEXTSIZE(12)
end.round:

..
GOSUB wait.Ok
WINDOW CLOSE 2
GOTO select.codebreaker

In the case of no more tries left, the program sounds a descending
couplet; in the case of a correct answer, the program sounds an ascend
ing sequence of notes.

The end.round routine waits for you to press the OK button, then
closes the scorebox window and starts over with the menu shown in
Figure 9-2.

164 Macintosh Program Factory

Mac as Codebreaker

The next block of lines prints the codemaker instructions that are
shown in Figure 9-6:

mac.guess:
CLS
PRINT • Make up a secret 4-dlglt code·
PRINT • consisting of the letters·
PRINT • A B C o·
PRINT • You may repeat any Jetter:
PRINT
PRINT • Enter your secret code here:
EDIT FIELD 1,··,(fld.x7'(2),fld.y7'(2))-(fld.x 17'(2),fld.y 17'(2))
BUTTON 1, 1, .OK. ,(btnxl(I), btn yl(I))- (btn.x 17'(1),

btn.y 1711(1)), b.typel(I)
GOSUB wait.entry
LET code$=UCASE$(EDIT$(I))
EDIT FIELD CLOSE I
BUTTON CLOSE 1
GOSUB check.code
IF code.ok:C THEN accept.code ELSE mac.guess

Meke up 11 secret 4-dlglt code
consisting of the letters

A B C D
vou mey repeet any letter.

Enter your secret code here.

IDACB

(OK ~

Figure 9-6. Instructions for entering a secret code

The Codebreaker 165

After you enter a valid secret code, these next lines store it away for
use in scoring and then display the status indicator box that is shown in
Figure 9-7:

occept.code:
LET cd$:code$
WINDOW 2,,(wnd.xl(2), wnd.yl(2))-(wndJc 11(2), wnd.y 11(2)) ,3
GOSUB 1'1bel.scorebox
WINDOW 1
CLS
PRINT· Moc will now try to guess"
PRINT· the code. Eoch guess wm be"
PRINT· scored outomoticolly."
PRINT
PRINT· Now working on guess 1 •
LET gnl:1
LET pnl:1
mg.loop:
LET gu$(gnl):p$(pnl)
LET o$:cd$
LET q$:gu$(gnl)

M11c will now try to guess
the code. E11ch guess will be
scored 11utom11tic111ly.

Now working on guess 4

Figure 9- 7. Status indicator box

166 Macintosh Program Factory

GOSUB score
LET s 1l(gnl)=s1 I
LET s21(gnl)=s21
WINDOW OUTPUT 2
LOCATE 5+gnl,8
PRINT gu$(gnl);TAB(14); s 1 l(gnl); TAB(19); s21(gnl)
WINDOW 1
IF s 11=4 THEN got.it
IF gnl:lgl THEN nmt
LOCATE 5,19
PRINT USING ·••";gnl+ 1

Now the computer is ready to make its first guess. Gn% is the guess
number, initially set to 1 for the program's first guess. Pn%, the "pat
tern number," keeps track of the number of patterns (codes) the pro
gram has tried already.

Initially, pno/o=l since the program starts with the first pattern in
the array P$().

The program scores its own guess just as it scores your guesses.
Unless it has guessed correctly or run out of guesses, the program

,. s I 1IH Edit)iHdn h Run Windows Codebreaker
.,

Mac broke the code Code Hits Misses

in 5 tries! 1. AAAA 0
2. ABBE! 1
3 CABC 1 2
4 . CBAD 0 4
5. DACB 4 0
6.
7 .
B.
9 .

OK

Figure 9-8. Screen appearance after Mac breaks the code

The Codebreaker 167

makes its next guess according to the following procedure:

new.guess:
LET pnX=pnl+ I
IF pnl>256 THEN PRINT ·Error In scoring routine:: STOP
LET f17C•no7C
FOR lhla I TO gnl
LET q$•gu$ClhX)
LET a$•p$(pnl)
GOSUB score
IF s 1l=s1 IOhl) AND s2"•s210hX) THEN nxt.lh
LET lh7C•gnl
LET fJX=yesX
nxt.lh:
NEXT ih7C
IF fll THEN new.guess
LET gnl•gnl+ I
GOTO mg. loop

First the program increments the pattern number. When pn%>256,
all patterns have been tried without success; hence a scoring error has
been made. In that case, you have probably entered the scoring subrou
tine incorrectly.

P$(pn%) becomes the computer's next hypothesis.
The computer tests its hypothesis by reviewing the previous guesses,

scoring each guess under the assumption that the hypothesis is correct,
and comparing the resultant scores with the scores actually received.

Fl% is a flag indicating whether the hypothesis conflicts with the
scoring in previous guesses. Whenever a conflict is found, the program
rejects the hypothesis and then moves on to the next one (IF fl% THEN
new.guess). If a hypothesis produces no conflicts, it is accepted and used
as the nffil"t guess.

Scoring Subroutine

Here's the routine that compares a secret code with a guess:

score:
LET sll•O
LET s27C•O
FOR jX .. 1 TO 4
IF HID$(q$,j7C, I)<>HIDCa,j7C, I) THEN s I .next:

168 Macintosh Program Factory

LET sl7'•sl7'+ I
MID$(a$,j7', I)•one.space$
MID$(q$,j7', I)=one.XS
sl.next:
NEXT j1'
FOR j1'• I TO 4
LET f1'=1NSTR(I ,a$,MID$(q$,j1', I))
IF f1'•0 THEN s2.next
LET s21' .. s21'+ I
MID$(a$,f1', I)=one.space$
s2.next:
NEXT j7'
RETURN

On entry to this subroutine, a$ contains the secret code and q$ con
tains the guess. The program compares each character in a$ with the
corresponding character in q$. Whenever a match is found, the pro
gram increments the hit counter sl %. In this case, the program must
blot out the character that was a hit, so that it won't affect the scoring of
misses later on. It replaces the hit character in a$ with a space, and the
hit character in q$ with an "X."

The second FOR/NEXT loop examines each character in the guess
q$, to see if that character can be found anywhere in the secret code a$.
Remember, the hit characters have already been blotted out from both
Q$ and A$. Each time a character is found, the program increments
the "miss" counter s2% and blots out from A$ the character counted as a
miss.

Scorebox Labeling and Instructions

Here's the subroutine to update the scorebox:

update.score:
LOCATE 5+gn1',8
PRINT gu$(gn1');T AB(14); s I 7'(gn7U; TAB(19); s27'(gn1')
RETURN

Gn% is the current guess number.
The following lines print the instructions shown in Figure 9-3:

cb.instructions:
CLS
PRINT. CODEBREAKER INSTRUCTIONS"

PRINT
PRINT • Mac has a secret 4-dlglt code,·
PRINT • consisting or the letters:·
PRINT • A B C o·
PRINT • Any letter may repeat:
PRINT • Here are examples:·
PRINT. AAM,DCBA, and DACC"
PRINT • Try to guess the code."
PRINT • Mac scores your guesses."
PRINT • Scoring: Hits are letters·
PRINT • In the right place. Misses are·
PRINT • letters In the wrong place."
GOSUB walt.ok:
RETURN

The next lines print the scorebox labels:

1 ebe I .scorebox:
CLS
PRINT " SCORING RECORD"
PRINT
PRINT

The Codebreaker 169

PRINT "Try •·; TAB(B); "Code"; TAB(14); "Hits"; TAB(19);"Misses"
PRINT
FOR recll: 1 TO lgll
PRINT USING • ••:;recll
NE)(T recll
RETURN

Check-Code Subroutine

Whenever a code is entered from the keyboard, the following subroutine
ensures that it is valid:

check.code:
LET code.okl .. (LEN(code$) .. 4)
IF NOT code.okl THEN cc.error
FOR 11=1TO4
IF INSTR(I ,dg$,MID$(code$,ll, I)) .. 0 THEN code.okl=nol
NEXT 11

170 Macintosh Program Factory

IF code.okX THEN cc.done
cc.error:
BEEP
CLS
LOCATE 4, 1
PRINT • The code you entered:"
PRINT PT AB((wnd.wX(I)-WIDTH(code$})/2);qt$;code$;qt$
PRINT • Is not valid."
PRINT
PRINT • Codes must be 4 digits long·
PRINT • using only these letters:
PRINT • A B C o·
GOSUBwalt.ok
cc.done:
RETURN

The length of the entry must be 4 and the code must consist solely of
the letters A, B, C, and D.

In the case of an invalid code entry, the program prints the dialog
box shown in Figure 9-9.

The code you entered:
"BAA"

1s not vol id.

Codes must be 4 digits long
us1ng only these letters:

A B C D

(OK J

Figure 9-9. Result of entering an invalid code as a guess or as a secret
code

The Codebreaker 171

Auxiliary Subroutines

The next two subroutines provide pause functions:

woit.ok:
BUTTON 1, 1, "OK", (btn.xjg(1), btn.yjg(1))- (btn.x I jg(I), btn.y I jg(I)),

b. typeig(1)
GOSUB wait.entry
BUTTON CLOSE I
RETURN
woi t.entry:
LET eventl&:DIALOG(O)
WHILE eventjg=O
LET eventjg:DIALOG(O)
WEND
IF eventll<> 1 AND eventjgo6 THEN woit.entry
RETURN

No more tr;es left.
The secret code ;s

DDCB

OK ~J

Figure 9-10. The Mac prints this message if you use all 10 tries with
out guessing the code

172 Macintosh Program Factory

The first subroutine, wait.ok, puts an OK button on the screen and
waits for you to press it. The second subroutine, wait.event, simply waits
for you to press a button or the ENTER key (IF event<>l AND
event%<>6 THEN wait.entry).

Menu Requests

The last block of the program implements the Quit command in the
Codebreaker menu shown in Figure 9-1.

menu.rq:
IF MENU(0)<>6 ANO MENU(I)<> I THEN RETURN
WINDOW CLOSE I
WINDOW CLOSE 2
END

-Testing and Using the Program -----
After entering the entire program and eliminating all typographical
errors, test the program, as codebreaker and as codemaker.

You should be able to get screens similar to the ones in this chapter.
When the program is running correctly, it will usually guess your

secret code within four to six tries. The number of guesses required is
determined by where the secret code is in the computer's internal list of
codes P$(). With a little experimentation, you can find out which secret
codes always take the longest for the computer to find.

One interesting game to play is first to let the computer make up a
code for you to break and see how long it takes you. Then let the com
puter try to break the same secret code.

This chapter is adapted from "The Code Breaker," by George Stewart, appearing in the
December 1982 issue of Popular Computing magazine. Copyright 1982 Byte Publications,
Inc. Used with the permission of Byte Publications, Inc.

Chapter 10

Tic-Tac-Toe

Although the rules and strategies of tic-tac-toe are simple, getting your
computer to play well is no simple task. In this chapter, we teach your
Macintosh to play the game to a win or draw almost every time. Com
pared to a good human player, the tic-tac-toe program's only weakness
is that it occasionally settles for a draw when a victory is possible.

In addition to making your computer a passable tic-tac-toe player,
the program exemplifies three techniques that are just as applicable to
more complex games such as checkers and chess:

• Prepared opening moves.

• "Look-ahead" -checking the consequences of a proposed move by
looking ahead to subsequent moves.

• Heuristics-selection of moves based on general principles of good
strategy.

-Rules and Strategy----------
Before explaining the program's operation, we'll review the rules,
object, and strategies of the game.

173

174 Macintosh Program Factory

Tic-tac-toe is played on a 3 X 3 grid. Two players take turns marking
cells on the grid. The first player marks with an X and the second
player marks with an 0.

The first player to place three of his marks (X's or O's) in a row,
column, or diagonal wins. If all the cells are filled without either player
winning, the game is a tie (see Figure 10-1). Before each subsequent
game, players reverse their playing order so that the second player
becomes the starting player and vice versa.

The lowest level of strategy for the game involves three steps:

1. If you can win on your next turn, do so.

2. If your opponent can win on his next turn, block him.

3. If neither condition is true, take any available cell.

It doesn't take a human player long to come up with some improve
ments or refinements of step 3. Good strategy is based on the idea of the
trap. A trap is a mark that gives you two winning opportunities for your
next turn (see Figure 10-2). Your opponent will be able to block only one
of these on his next turn, so that when your turn comes around again,
you'll still have one winning opportunity. Conversely, to avoid defeat at
tic-tac-toe, you must prevent your opponent from setting such a trap (see
Figure 10-3).

Preventing traps is not always easy. In some cases, you must look two

0 x 0 x 0 x x

x 0 0 0 x x 0 0

x 0 x x x 0 x 0 x

Figure 10-1. A win for player X, a win for player 0, and a tie

Tic-Tac-Toe 175

0 *
0 x

x x *

Figure 10-2. Player 0 is trapped; player X has two winning moves,
indicated by asterisks

turns ahead to spot a potential trap. Furthermore, player O's very first
mark can set him up for a possible loss. Figure 10-4 shows the seven
configurations that player 0 must avoid on his first turn.

Before reading further, you may find it helpful to confirm for your
self that X can indeed force a win in each of the seven situations
depicted in Figure 10-4.

x *

x

* 0

Figure 10-3. Player 0 can foil a trap by taking either safe cell indicated
by an asterisk

176 Macintosh Program Factory

X center,
0 any side:

x

0

X corner,
0 near side:

x

0

X corner,
0 far corner:

x

0

X side,
0 far corner:

0

x

X corner,
0 near corner:

x

0

X side,
0 near side:

0

x

X corner,
0 far side:

x

0

Figure 10-4. The seven losing positions for player 0

-How the Program Plays--------
In the following discussion, we'll explain how the computer handles both
roles-player X and player 0. Occasionally, it may sound as if the com
puter is playing against itself, but keep in mind that in an actual game,
you play one role and the computer plays the other.

Tic-Tac-Toe 177

Both players' first marks are treated as special cases. The program
plays these turns "by the book" without looking ahead or using heuristic
methods.

Before making subsequent marks for either player, the program
applies up to five tests. The first two correspond to steps 1 and 2, out
lined previously:

1. The program looks for winning marks-marks that will complete
a path. If it finds any, the program randomly chooses between
them.

2. If the program can find no winning marks, it checks to see
whether the opponent must be blocked to prevent a win on his
upcoming turn (looking one turn ahead). The program blocks the
first such path it finds.

3. If the program still hasn't marked a cell, it begins looking for
cells that will trap the opponent on his upcoming turn. The pro
gram chooses the first such cell it finds.

4. If none of these checks has resulted in a cell selection, the pro
gram looks for cells that will prevent the opponent from setting a
trap on his next turn. This involves looking ahead two turns.

5. The program applies a heuristic method to choose among the cells
that pass test 4. It takes that cell which results in the fewest paths
that don't include any of its own marks. This makes sense: the
fewer paths there are without a player's mark, the fewer chances
the opponent has to win the game. However, the principle does not
always produce the most aggressive strategy-hence the pro
gram's occasional willingness to settle for a draw when a win is
possible.

-The Program-------------
The first block adds an item to the menu bar:

MENU 6,0, 1, "TicTocToe·
MENU6,1,1,"Quit.
ON MENU GOSUB menu.rq
MENU ON

The menu is shown in Figure 10- 5.

178 Macintosh Program Factory

TIC TAC TOE
w L T

Specify the players 0 0 0
for the next match:

0 0 0
x = 0 Player R @Moc

0 0 0
0 = @Player B OMoc

Figure 10- 5. The initial screen appearance, showing the score box and
the player specification box

Array Definitions

The next block creates the arrays described below and reads in the data
that is stored in the program:

RANDOMIZE TI MER
DIM tc:g(3,3), ok:g(9,3), t:g(3,3), p:g(2), d,-:g(4), dc:g(4)
DIM path.,-:g(8), path.c:g(a), path.di,-:g(8), nw:g(2)
DIM p$(3), oc$(2), wins:g(3), losses:g(3), ties:g(3)
FOR r:g= 1 TO 3
FOR c:g= 1 TO 3
READ tjg(rjg ,cjg)
NEXT c:g ,,-:g
DATA 2, 3, 2, 3, 1, 3, 2, 3, 2
FOR dn:g= 1 TO 4
READ d,-:g(dn:g) ,dcjg(dn~)
NEXT dn:g
DAT A 0, 1, 1, 1, 1,0, 1, -1
FOR pajg: 1 TO 8
READ path.,-:g(pa:g) ,path:c:g(pa:g) ,path.di r:g(pa:g)
NEXT paig

DATA 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 3
DATA 1, 3, 4, 1, 3, 3, 2, 1, 1, 3, 1, 1
LET oc$(1):")("
LET oc$(2)="0"
LET p$(1)="Pl oyer A"
LET p$(2)="Ployer 6"
LET p$(3):"Moc·
LET p~(1):3
LET p~(2)=2

Tic-Tac-Toe 179

Array tc%(,) stores an image of the tic-tac-toe board. For row r%,
column c%, tc%(r%,c%)=0 indicates an empty cell; tc%(r%,c%)=1 indi
cates an X; and tc%(r%,c%)=2 indicates an 0. Ok%(,) keeps track of all
the prospective cells that prevent the opponent from setting a trap on
his next turn. T%(,) stores the type of each grid position - center,
corner, or side. This information comes in handy when the computer is
analyzing the board position before making its first mark as player 0.

P%() keeps track of who the players are: p%(pn%)=1 indicates a
human, and p%(pn%)=2 indicates the computer. Depending on how
p%(1) and p%(2) are set, the computer may play against itself or against
a person, or two people can play against each other. Initially, the pro
gram sets the first player to "Mac" and the second player to Player B.

Dr%() and de%() store the row and column increments producing
the four possible path directions. A similar array is used in the Hidden
Words and Crossword Puzzle Patterns programs. Path.r%(), path.c%(),
and path.dir%() store information that defines the eight paths on a tic
tac-toe grid (see Figure 10-6).

Nw%() identifies paths that contain a specified number of one play
er's marks. P$() stores the name assigned to each player. "Player A" is
used for the first human player, "Player B" for the second human
player, and "Mac" for the computer. Oc$() stores the X and 0 charac
ters. Wins%(), losses%(), and ties%() keep track of the performance of
each of the three possible players.

Window Definitions

The next block of lines defines and creates the two windows (the game
and the scorebox) used by the program:

DIM wnd.w~(2), wndU(2), wnd . x~{2) , wnd.yll:{2), wnd.x 1 ~{2), wnd.y I ~(2)
FOR n~=l TO 2
READ inches.wide, inches. I ong,ul cx,ul cy

180 Macintosh Program Factory

Path 1: Path 2:

* * * *
*

*

Path 3: Path 4:

* *

* *
* *

Path 5: Path 6:

* *

* *

* *

Path 7: Path 8:

* * *

* * *

Figure 10-6. Illustration of the eight paths and the use of arrays t%(,)
and tc%(,)

Tic-Tac-Toe 181

The array T(,) stores the type number of each cell: center= I, corner=2, side=3

T(,)=2 3 2

3 1 3

2 3 2

In the following situation, for player X, NW(l)=l since path 1 contains 2 X's and
no O's

x x TC(,)= 0 1 1

0 x 0 2 2

0 x 0 2 1

Figure 10-6. Illustration of the eight paths and the use of arrays t%(,)
and tc%(,) (continued)

LET wnd. wl(nl)=i nches. wi de*72
LET wnd.11(nl)=inches.1ong*72
LET wnd.xl(nl)=ulcx*72
LET wnd.yl(nl)=ulcy*72
LET wnd.x 1 l(nl):wnd.xl(nl)+wnd.wl(nl)
LET wnd.y 1 ll:(nll:)=wnd.yll:(nll:)+wndU(nll:)
WINDOW nl,,(wnd.xll:(nl),wnd.yl(nl))- (wnd.x 1 l(n~), wnd.y 1 l(n%)), 3
NEXT nl
DAT A 3.125, 3.875, 0.250, 0.50
DAT A 3.125, 3.125, 3.625, 0.50

Initializing Variables
And Setting Constants

Now the program establishes certain constants and initializes variables:

LET zonel=wnd.wll:(1)\5
LET bg. wll:: 72

182 Macintosh Program Factory

LET bgU:36
LET bg.x~=(wnd .w~(1)-bg .w~)\2

LET bg .y~:(wnd.1~(1)-bgU)*7\B
LET rm.w~:BO
LET rm.1 ~=20
LET rm.x~=(wnd.w~(1)-rm . w~)*1 \8
LET rm .y~=(wnd . 1~(1)-rm.1~)*19\20
LET pl.w~:80
LET pl.1~:20
LET pl.x~=(wnd .w~(1)-p1.w~)*7 /8
LET pl.y~=(wndU(1)-pl.I~)*19\20
FOR j~=1 TO 3
LET wins~(j~)=O
LET ties~(j~)=O
LET losses~(j~)=O
NEXT j~

Zone% defines the height and width of a tic-tac-toe grid cell. The bg.
variables locate the BEGIN button seen in Figure 10-5. The rm. and pl.
variables locate the PLAYERS and NEW GAME buttons seen in Fig
ure 10-7.

,. • fil<l Edit SH<tr< h Run Windows Ticlacloe
.,

SCORE BOX

w l T

x x x Player A 0 0 0

x 0
Player B 0 0

0 0

0 0

Figure 10-7. Screen appearance after a win by Mac

Tic-Tac-Toe 183

The Scorebox

The next lines add labels and initial values to the scorebox in window 2:

WINDOW 2
CALL TElffFACE(1)
CLS
PRINT PTAB((wnd.wl(2)- WIDTH("SCOREBOX"))\2); "SCOREBOX"
PRINT
REM 123456769
PRINTTAB(12);"W L T"
FOR plrl= 1 TO 3
LOCATE plrl*2+3,2
PRINT p$(plrl)
NEXT plrl
GOSUB update.scorebox

When entering the lines, use the REM line containing "123456789''
to help you space the headings "W L T" correctly.

Setting Up a Match

Next the program lets you determine who the players are (as shown in
Figure 10- 5):

rematch:
WINDOW 1 : REM new match
CALL TEXTSIZE(12)
CALL TEXTFACE(1)
CLS
LOCATE 2, 1
PRINT PTAB((wnd.wl(1)- WIDTH("TIC TAC TOE"))\2); "TIC TAC TOE"
LOCATE 5, 1
PRINT • Specify the players·
PRINT • for the next match:"
LOCATE 8, 1
PRINT PTAB(24); "X =·
LOCATE 10, 1
PRINT PTAB(24); "O =·
IF pl(1):2 THEN SWAP pl(1),pl(2)
BUTTON 1I1-(pl(1)=I),p$(1),(66,112)-(136, 127),3
BUTTON 2, t-(pl(1):3),p$(3),(148, 112)-(196, 127),3
BUTTON 3, 1-(pl(2):2),p$(2),(66, 144)-(136, 159),3 .

184 Macintosh Program Factory

BUTTON 4, 1-(pl(2):3) ,p$(3) ,(148, 144)-(196 I 159) ,3
BUTTON 5, 1,"BEGIN",(bg.xl,bg.yl)- (bg.xl+bg.wl, bg.yl+bg.11)

By selecting the appropriate buttons, you may specify three different
matches: Player A against Mac, Mac against Player B, or Mac against
Mac.

The next lines wait for you to change the player buttons and press
BEGIN:

m6tch.1oop:
GOSUB wait.entry
IF eventll=6 THEN match.set
LET btnll:DIALOG(1)
ON btnl GOTO p 1,p 1,p2,p2,match.set
p1:
IF btnl= 1 THEN LET pl(1)=1 ELSE LET pl(1):3
BUTTON 1 I 1-(pll(1)= 1)
BUTTON 2, 1-(pl(1):3)
GOTO match.loop
p2:
IF btnl:3 THEN LET pl(2)=2 ELSE LET pll(2):3
BUTTON 3 I 1-(pll(2):2)
BUTTON 4, 1-(pl(2):3)
GOTO match.loop
match.set:
FOR jl:1TO5
BUTTON CLOSE j I
NEXT jl

Starting a Game

The following lines draw the playing grid and erase the computer's
internal game array tco/o(,):

next.gBme:
LET mnl=1
LET pn:t:: 1
CLS
CALL TEXTMODE(1)
CALL PENSIZE(2,2)
FOR 1inl:2 TO 3
CALL MOVETO(zonel*linl,zonel)

CALL LINE(0,3*zonel)
CALL MOVETO(zonel,zonel*linl)
CALL LINE(3*zonel,O)
NEXT linl
CALL PENSIZE(1, 1)
CALL MOVETO(O,zonel*5)
CALL LINE(S*zonel,0)
FOR ~= 1 TO 3 : REM erose boord
FOR cl:l TO 3
LET tcl(~.cl):O
NEXT cl
NEXT~

Tic-Tac-Toe 185

Mn% is the current move number and pn% indicates the current
mark (X or 0).

Now the program gets the current player's move:

next.p 1 oyer:
CALL TEXTSIZE(12)
LINE (O,zonel*5+ 1)- (S*zonel-1, 6.2*zonel-1) ,O,bf
CALL MOVET0(8,5*zonel+ 12)
PRINT p$(pl(pnl)); ·to mark on ·;oc$(pnl);"."
ON pl(pnl) GOSUB ployers.mork, players.mark, mocs.mark
CALL TEXTSIZE(18) :REM Mork oc$(pnl) in rml,cml
LET txl=cml*zonel+(zonel-12)\2
LET tyl=rml*zonel+30
CALL MOVETO(txl,tyl)
PRINT oc$(pnl);
LET sll:3
LET stl:pnl
GOSUB onolyze.grid
IF nl>O THEN win.gome
IF mnl=9 THEN tie.game
LET mnl=mnl+ 1
LET pnl:pnl MOD 2 + 1
GOTO next.player

The program prints a prompt message in the bottom of window 1, as
shown in Figure 10-8. Then control is passed to the appropriate subrou
tine, depending on whether the next player is a person or the Mac (ON
p%(pn%) GOSUB players.mark, players.mark, macs.mark).

Upon returning from the players.mark or macs.mark subroutine,

186 Macintosh Program Factory

.,

SCORE BOX

W L T

0 0 0

x 0 0 0

0 0 0

Player B to mark an 0.

Figure 10-8. Screen appearance with a game in progress

the program marks the move on the playing grid (CALL MOVE TO ...
and PRINT oc$(pn%)).

Next the program determines whether the latest move has ended the
game in a win or a tie. The analyze.grid subroutine searches all eight
paths to see if the current player p%(pn%) has won. N%>0 indicates a
win.

If n%=0, the computer checks the turn number mn% to see whether
the game has ended in a tie. There are only nine cells in the grid; hence
if mn%=9 and there is still no winner, the board is full and the comput
er deduces that the game is a tie.

If the latest move produced neither a win nor a tie, the program
gives the next player a turn.

Wins and Ties

The next block of lines handles wins and ties:

win.gome:
FOR fq:g= 1 TO 4
SOUND fq:g* 110, 1
NEXT fq:g

CALL TEXTSIZE(12)
LINE (O,zone:«*5+ 1)- (5*zone:«-1, 6.2*zone:«-1) ,O,bf
CALL MOVET0(8,5*zone:«+12)
PRINT p$(p:g(pn:g)); • wins.·
LET wi ns:«(p:«(pn:g)):wi ns:«(p:g(pn:«))+ 1
LET I osses:g(p:C(3-pn:C))= 1 osses:C(p:g(3-pn:C))+ 1
GOTO prepare.next
tie.game:
SOUND 440,2
SOUND 110,2
CALL TEXTSIZE(12)
LINE (O,zone:C*5+ 1)- (5*zone:«-1, 6.2*zone:g-1) ,O,bf
CALL MOVET0(8,5*zqne:g+ 12)
PRINT lie gome:
LET ti es:«(p:«(pn:«)):t i es:«(p:«(pn:«))+ 1
LET ti es:g(p:g(3-pn:C))=ti es:C(p:g(3-pn:C))+ 1

Tic-Tac-Toe 187

In the case of a win, the computer sounds an ascending sequence of
notes and announces the winner, as shown in Figure 10-7.

In the case of a tie, the computer sounds a descending couplet and
announces the tie, as shown in Figure 10-9.

,. S rih~ Ellil ii t~<11 d 1 Run Wiulluws Tidtn;Tut!
.,

Figure 10-9. Screen appearance after a tie

188 Macintosh Program Factory

After the win or tie is announced, the following lines take over:

prepare.next:
WINDOW 2
GOSUB update.scorebox
WINDOW 1
BUTTON 1, 1, "PLAYERS" ,(rm.xl,rm.yl)-(rm.xl+rm.wl,rm.yl+rm.11)
BUTTON 2, 1,"NEW GAME",(pl.xl,pl.yl)- (pl.xl+pl.wl, pl.yl+pl.11)
GOSUB wait.entry
IF eventl=6 THEN same.match
IF DIALOG(1):1 THEN rematch
same.match:
SWAP pl(1),pl(2)
GOTO next.game

Before starting a new game, the computer updates the scorebox and
provides the two continuation buttons shown in Figures 10-7 and 10-9.
Pressing the PLAYERS button lets you change the players in the
match. Pressing the NEW GAME button starts another game.

Subroutines

That completes the main program. The remainder of the program con
sists of subroutines. Here's the block that handles requests from the
menu bar:

menu.rq:
IF MENU(0)<>6 AND MENU(1)<>1 THEN RETURN
WINDOW CLOSE 1 .
WINDOW CLOSE 2
END

The next subroutine updates the scorebox:

update.scorebox:
FOR plrl= 1 TO 3
LOCATE plrl*2+3, 12
REM 123456769
PRINT USING ·•• "" ""a; winsl(plrl); lossesl(plrl); tlesl(plrl)
NEICT plrl
RETURN
wait.entry:

LET eventl:DIALOG(O)
WHILE eventl:O
LET eventl:DIALOG(O)
WEND
IF eventl<> 1 AND eventl<>6 THEN wait.entry
RETURN

Tic-Tac-Toe 189

When entering these lines, use the REM 123456789 line as a guide in
spacing the quoted pound signs on the following line.

Analyzing the Tic-Tac-Toe Grid

The following subroutine analyzes the contents of all eight paths:

analyze.grid:
LET nl8:0
LET ml:O
FOR pl:I TO B
LET rul:path.rl(pl)
LET cul:poth.cl(pl)
LET dnlS:path.di~(plS)

LET nf%=0
LET mfl:O
FOR eel: 1 TO 3
IF tcl(ru~,cu~)=O THEN ag.next.cell
IF tcl(rul,cul)=stl THEN cg.players
LET mfl:mfl+ I
GOTO ag.next.cell
ag.p 1 ayers:
LET nfl:nfl+ I
ag.next.cell:
LET rul:rul+drl(dnl)
LET cul:cul+dcl(dnl)
NEXT eel
IF nfl<>sll OR mfl>O THEN 1:1g.others
LET nl:nl+ 1
LET nwl(nl):pl
ag.others:
IF mfl>O THEN next.path
LET ml:ml+I
next.path:
NEXT pl
RETURN

The variable n% counts the number of unblocked paths containing at
least the number of marks indicated by sl% for the player specified by

190 Macintosh Program Factory

st%. Variable m% counts the number of paths containing none of the
other players' marks.

Upon return from this subroutine, the array nw%() lists the path
numbers of all unblocked paths containing at least the number of marks
sl% for player st%.

Getting a Random Mark

The next short block of lines locates a randomly chosen empty cell from
the grid:

rcmdom.mark:
LET rtl:INT(RND*3)+ 1
LET ctl:INT(RND*3)+ 1
IF tcll(rtl,ctl)<>O THEN random.mark
RETURN

Rt% and ct% are the cell's row and column numbers. Tc%(rt%,ct%)< >O
indicates the cell is taken; in that case, the program makes another
random selection.

Getting the Player's Selection

The following subroutine lets a human player (Player A or Player B)
indicate where his next mark should go:

p 1 ayers.mark:
WHILE MOUSE(O)<> 1
WEND
LET mxl:MOUSE(1)
LET myl:MOUSE(2)
LET cml=(mxl-zonel)\zonel+ 1
LET rml=(myl-zonel)\zonel+ I
IF cml< 1 OR cmll>3 OR rml< I OR rml>3 THEN players.mark
IF tcl(rml,cmll)<>O THEN players.mark
LET tcll(rml,cml):pnl
RETURN

To specify a location, the player points to the desired location on the
tic-tac-toe board and clicks the mouse button.

Variables rm% and cm% specify the desired row and column
numbers. If they are out of the range 1 to 3 or if tc%(rm%,cm%) is

Tic-Tac-Toe 191

already taken, the program ignores the selection and waits for another
one (IF cm%<1 ... and IF tc%(rm%,cm%)< >O ...).

Test Point

Before entering the logic that lets your Macintosh play, you can now test
the program with two human players, Player A and Player B.

First a printout of the program. Type COMMAND-. and LLIST, and
press RETURN.

Carefully check the listing against the listings in this chapter; then
close the listing window and run the program (COMMAND-R).

You should see the screen shown in Figure 10-5. Specify a match
between player A and player B. (The Mac can't play yet.)

Now play a game. The computer should alternately ask for moves
from Player A and Player B until one player wins or there is a tie (nine
moves without a win).

After getting the test to work, stop the program (select Quit from
the Tic-Tac-Toe menu). Reopen the listing window (COMMAND-L), and
position the insertion point at the end of the listing.

The Mac's Move

Now we present the lines that let the computer play tic-tac-toe.
The program uses prepared "book" moves only for the first X and

the first 0. The first X is a random selection, and the first 0 is deter
mined by the location of the first X. For subsequent moves, the comput
er uses its look-ahead logic.

Playing by the Book

The following lines determine the computer's first X or 0:

macs.mark:
IF mnl>2 THEN look.ahead
IF mnl=2 THEN second.mark
GOSUB random.mark
LET rml:rtl
LET cml=ctl
GOTO accept.move
second.mark:
LET tl=tl(rml,cml)
sm.loop:

192 Macintosh Program Factory

GOSUB random.mark
ON ti GOTO comer,center,side
comer:
IF tl(rtl,ctl):3 THEN sm.loop
GOTO sm.done
center:
LET rtl:2
LET ctl:2
GOTO sm.done
side:
ON tl(rtl,ctl) GOTO sm.done,center.1,side.1
center.1:
IF ABS(rtl-rml):2 OR ABS(ctl-cml)=2 THEN sm.loop
GOTO Sm.done
side.1:
IF ABS(rtl-rml): 1 OR ABS(ct:C-cml)= 1 THEN sm.loop
sm.done:
LET rml:rtl
LET cm:C:ctl
GOTO accept.move

If mn%>2, that is, if the move number is greater than 2, the
program jumps to the standard program logic described later.
If mn%= 1 (first move), the program selects a move at random. If
mn%=2 (second move), the program randomly selects a cell and then
makes sure that the cell doesn't create one of the losing situations shown
in Figure 10-4.

Once the program has located a safe cell, the program stores the row
and column address of the cell in rm%,cm% and jumps to the end of the
accept.move subroutine.

Looking Ahead

In the case of second and subsequent turns, the program no longer uses
prepared moves to play. First it checks to see whether it can win with
one mark:

look.oheod:
IF mnl<5 THEN check.opponent
LET stl:pnl

LET s11:2
GOSUB amtlyze.grid
IF nl:O THEN check.opponent
LET ml:INT(RND*nl}+ 1
LET pl=nwl(ml}
GOSUB fl nd.openi ng
LET rml=rol
LET cml:col
GOTO accept.move

Tic-Tac-Toe 193

If the computer is making its second mark (mn%<5), there's no point
in looking for a winning cell yet (it takes three marks to fill a path). In
that case, the program goes immediately to check for a potential loss
(check.opponent).

If the move number, mn%, is greater than 4, the program looks for a
winning cell. The analyze.grid subroutine counts the number of
unblocked paths containing at least two marks of the player specified by
pn%. If n%=0, there are no potential wins, so the program skips to the
check.opponent routine described later.

If n%>0, the array nw%() lists the paths that contain winning cells.
The program randomly selects one of these paths, and the find.opening
subroutine finds the row and column of the open cell in that path.

Now that the program has located a winning cell, the pro
gram stores its row and column address and jumps to the end of the
accept.move subroutine.

Preventing Imminent Defeat

If the program cannot find a winning cell, it next checks to see whether
it must prevent its opponent from winning on the next turn:

check.opponent:
LET stl=3-pnl
LET s11:2
GOSUB analyze.grid
IF nl:O THEN set.trap
LET pl=nwl(nl}
GOSUB find.opening
LET rml:rol
LET cml=col
GOTO nccept.move

194 Macintosh Program Factory

The program first sets st% equal to the number of the opposing
player, and then uses analyze.grid to count the number of unblocked
paths containing at least two of the opposing player's marks. If n%=0,
there are none, so the program skips to the trap-setting routine de
scribed in the next section.

If n% does not equal 0, there is at least one way for the opposing
player to win on his next move. The find.opening subroutine finds the
opponent's winning cell, and the program stores its row and column
address so the computer can claim it.

Setting a Trap

If the computer still hasn't made a selection for player number pn%, the
computer looks for a move that will trap the opponent and guarantee a
win on the computer's next turn.

set.trap:
IF mnl<5 THEN preYent.traps
LET stl:pnl
GOSUB find.trap
IF nl<>2 THEN preyent.traps
LET rml=rYI
LET cml=CYI
GOTO accept.move

If the computer is making its second mark (mn%<5), there is no way
it can set a trap yet, so the program skips to the prevent.traps routine.
Otherwise, the program looks for a move that will create a trap. The
find.trap subroutine tests every empty cell to see which, if any, produces
a trap. If n%=2, the program has found such a cell, so the program
claims that cell.

Foiling a Trap

If no opportunities to set a trap are found, the program checks every
empty cell to see which one will prevent the opponent from setting a
trap on his next turn. This is the farthest look ahead the program takes:

prevent. traps:
LET fl:O
FOR rml= 1 TO 3
FOR cml= 1 TO 3
IF tcl(rml,cml)<>O THEN pt.next

LET tc:l(rm:l,cmll)=pn:l
LET sll:pnl
LET sll:2
GOSUB emalyze.grid
IF nl:O THEN no.traps
IF mnl=3 THEN found.one
LET p:l:nwl(1)
GOSUB find.opening
LET sll=3-pnl
LET tcl(rol,col):stl
LET s11=2
GOSUB 6nalyze.grid
LET tcl(rol,col)=O
GOTO record. trap
no.traps:
IF mnl:3 THEN fix.grid
LET stl=3-pnl
GOSUB find.trap
record.trap:
IF nl=2 THEN fix.grid
found.one:
LET fl:fl+l
LET okl(fl, 1)=rml
LET okl(fl,2):cml
fix.grid:
LET tcl(rml,cml)=O
pt.next:
NEXT cml ,rml

Tic-Tac-Toe 195

The variable f% counts the number of safe cells (those that will pre
vent the opponent from setting a trap). The computer tries marking
each empty cell in the grid one at a time. For each cell marked, the
program checks whether its opponent can set a trap.

For each safe cell f that is found, ok(f,l) stores its row and ok(f,2)
stores its column location.

Heuristic Method

After the program has located all the safe cells, it applies a heuristic
method to choose among them:

REM: Heuristic
LET s11=2

196 Macintosh Program Factory

LET stl=3-pn
FOR cnll= 1 TO fll
LET tcll(okll(cnll, 1),okll(cnll,2)):pnll
GOSUB 1malyze.grid
LET tcll(okll(cnll, 1),okll(cnll,2)):0
LET okll(cnll,3)=mll
NEXT cnll
IF fll<> I THEN pick.best
LET cnll:I
GOTO indicate.move
pick.best:
LET smll:I
FOR itll:2 TO fll
IF okll(smll,3)<okll(itll,3) THEN no.swap
LET smll:itll
no.swap:
NEXT ltll
pick.cell:
LET cnll:INT(RND*fl1)+1
IF okl(cnl,3)=okl(smll,3) THEN indicate.move
GOTO pick.cell
Indicate.move:
LET rml:okll(cnl, 1)
LET cml=okll(cnl ,2)
accept.move:
LET tcll(rml,cmll)=pnll
RETURN

The program marks each safe cell (LET tc% (ok% (cn%,l), ok%
(cn%,2)) = pn%) and then counts the number unblocked paths M that
remain. For each safe cell f%, ok%(f%,3) stores the number of unblocked
paths that remain when that cell is marked.

Beginning at pick.best, the program compares the results of the trial
marks to see which marks result in the lowest number (SM) of
unblocked paths. Beginning at pick.cell, the program randomly picks
safe cells until it finds one that leaves the number of unblocked paths
indicated by SM.

Now that the program has located a suitable cell, the program stores
the row-and-column address of that cell so the computer can claim it.

Finally, the computer accepts the chosen board location and ends its
turn (accept.move).

Tic-Tac-Toe 197

Auxiliary Subroutines

The following subroutine locates the first opening in path p%:

find.opening:
LET rtlS:path.~(pl)
LET ctl:path.cl(pl) ·
LET dnl:path.di~(pl)
FOR eel: 1 TO 3
IF tcl(rtl,ctl)<>O THEN fa.not.open
LET rol=rtl
LET col:ctl
LET ce:C=3
fa.not.open:
LET rt:C:rtl+d~(dnl)
LET ctl=ct:C+dc:C(dnl)
NEXT ce:C
RETURN

Upon return from the subroutine, ro% and co% specify the row and
column of the open cell.

Finally, this subroutine looks for an opportunity to set a trap (mark
a cell that creates two winning threats for a player's next turn):

find.trap:
FOR rbl: 1 TO 3
FOR cb:C: 1 TO 3
IF tcl(rb:C,cb:C)<>O THEN ft.not.open
LET sl:C:2
LET tc:C(rbl,cb:C):stl
GOSUB analyze.grid
LET tc:C(rbl,cb:C):O
IF nl<2 THEN ft.not.open
LET rvll:rb:C
LET cv:C:cbl
LET cbl:3
LET rbl:3
ft.not.open:
NEXT cbl,rb:C
RETURN

On entry to the subroutine, st% is the number of the player looking to
set the trap. On return from the subroutine, n%=2 indicates that a trap

198 Macintosh Program Factory

was found, and rv%, cv% identify the row and column of the cell that
sets the trap.

-Using the Program ----------
Reprint the second half of the program (COMMAND-. and LLIST
macs.mark-) and check it carefully against the listings in this chapter.
Close the listing window and run the program (COMMAND-R). The
results should be similar to those shown in Figures 10-5 and 10-7
through 10-9.

Chapter 11
'<

-~Q\lizm-aster-

This chapter presents Quizmaster, a program that will help you learn
information on any subject you choose. The program lets you enter
information into a database (a collection of items that have something in
common); it then uses that database to test your knowledge of the facts.
You may choose between two types of tests: multiple choice or fill in the
blank.

The program lets you store the database in a disk file, so you can
have several different databases available to help you study a variety of
subjects.

-Preparing a Quizmaster Database ---
A Quizmaster database starts out with pairs of related words, phrases,
names, or other items. For instance, a states-and-capitals database
would start out this way:

Item A
Alabama
Alaska
Arizona

Item B
Montgomery
Juneau
Phoenix

199

200 Macintosh Program Factory

To make a working Quizmaster database, you also need a pair of
questions that relate each item in column A with its match in column B,
and vice versa. The answers to question A come from column A, and the
answers to question B come from column B.

For the states-and-capitals database, you could use these questions:
Question A: In what state is the city of ... ? Question B: What is the capi
tal city of. .. ?

Finally, a title for the database is needed; in the present example,
States and Capitals is a good title.

The sample screens given in this chapter (Figures 11-1 through 11-
11) show the Quizmaster being used to create a French and English
vocabulary database.

-The Program------------
If you scan through the figures in this chapter, you'll notice two win
dows and numerous buttons and edit fields. Each button or edit field
requires at least four descriptive numbers that determine its shape,
labeling, and screen location.

To keep all these numbers organized, the program uses three groups
of DATA statements.

Window, Button, and Field Descriptors

First, here are the window descriptors:

REM Window descriptors
DATA 2
REM wide long left top
DATA 6.000, 3.000, 0.500, 0.375
DATA 5.000, 1.125, 1.000, 3.500

As indicated in the REM statement, each DATA line consists of spec
ifications for window width, length, left side, and top side (all measured
in inches).

Now type in the button descriptors:

REM Button descriptors
DATA 16
REM label wide long hzone vzone type

DATA KEY IN NEW, 1.500, 0.333, 0.313, 0.313, 1
DATA EDIT/REVIEW, 1.500, 0.333, 0.750, 0.313, 1
DATA LOAD FILE, 1.500, 0.333, 0.313, 0.625, 1
DATA SAVE FILE, 1.500, 0.333, 0.750, 0.625, 1
DATA BACK, 0.750, 0.333, 0.250, 0.958, 1
DATA FORWARD, 1.000, 0.333, 0.500, 0.958, 1
DATA OK, 0.500, 0.333, 0.750, 0.958, 1
DATA FilJ in the blenk, 1.750, 0.208, 0.000, 0.313, 3
DATA Multiple choice, 1.750, 0.208, 0.000, 0.438, 3
DATA Question A, 5.000, 0.208, 0.000, 0.625, 3
DATA Question B, 5.000, 0.208, 0.000, 0.750, 3
DATA BEGIN, 1.000, 0.333, 0.500, 0.958, 1
DATA first choice, 2.500, 0.208, 0.120, 0.438, 3
DATA second choice, 2.500,·0.208, 0.880, 0.438, 3
DATA third choice, 2.500, 0.208, 0.120, 0.563, 3
DATA fourth choice, 2.500, 0.208, 0.880, 0.563, 3

Quizmaster 201

The hzone and vzone variables determine the relative horizontal and
vertical position of a button. For example, hzone=0.313 is about 3/16 of
the way across the window; vzone=0.500 is halfway down the window.

Type refers to the button type: 1 is a standard pushbutton; 3 is a
radio-style button.

Last come the field descriptors:

REM Field descriptors
DATA 7
REM wide long hzone vzone
DATA 2.500, 0.208, 0.500, 0.167
DAT A 5.000, 0.208, 0.500, 0.375
DATA 5.000, 0.208, 0.500, 0.583
DATA 2.500, 0.208, 0.120, 0.792
DATA 2.500, 0.208, 0.880, 0.792
DATA 0.500, 0.208, 0.934, 0.333
DATA 2.500, 0.208, 0.500, 0.500

Reading the Data

Three blocks of lines read the window, button, and field descriptors.
The following lines read the window data:

READ nwl
DIM wwl(nwl), wll(nwl), wxl(nwl), wyl(nwl), wx 1 l(nwl), wy 1 l(nwl)

FOR nl= 1 TO nwl

202 Macintosh Program Factory

READ inches.wide,inches.long,ulcx,ulcy
LET wwl(nl)=inches.wide*72
LET wll(nl)=inches.1ong*72
LET wxl(nl):ulcx*72
LET wyl(nl):ulcy*72
LET wx t l(nl):wxl(nl)+wwl(nl)
LET wy t l(nl):wyl(nl)+wll(nl)
NEXT-nl

For windows 1and2, ww%() and wl%() store the width and length
expressed in screen points or pixels. Wx%() and wy%() store the coor
dinates of the upper-left corner; wx1%() and wy1%()store the coordi
nates of the lower-right corner.

The next lines read the button data:

READ nbl
DIM b 1 $(nbl) ,bxl(nbl) ,byl(nbl) ,bx t l(nbl) ,by t l(nbl) ,btl(nbl)
FOR nl= t TO nbl
READ bl $(nl), inches.wide ,i nches.1 ong,h.zone, v .zone ,btl(nl)
LET bxl(nl):(wwl(t Hnches. wtde*72)*h.zone
LET byl(nl):(wll(t Hnches.1ong*72)*v.zone
LET bx t l(nl)=bxl(nl)+tnches. wtde*72
LET by t l(nl):byl(nl)+t nches.1 ong*72
NEXT nl

Bl$() stores the button labels. Bx%(), by%() and bxl(), byl %()
define the upper-left and lower-right corners of each button. Bt%()
stores the button type.

The last block of lines in this section of the program reads the edit
field descriptors:

READ nfl
DIM fxl(nfl),fyl(nfl),fx 1l(nfl),fy1 l(nfl)
FOR nl= 1 TO nfl
READ inches. wt de, tnches.1 ong,h.zone, Y .zone
LET fxl(nl)=(wwl(1 Hnches.wide*72)*h.zone
LET fyl(nl)=(wll(1)-tnches.1ong*72)*v.zone
LET fx 1 l(nl)=fxl(nl)+tnches. wide*72
LET fy 1 l(nl)=fyl(nl)+tnches.1ong*72
NEXT nl

The four arrays (fx%() and so forth) serve to locate the upper-left
and the lower-right corners of each edit field.

Constants and Parameters

The next block of lines initializes a group of variables:

RANDOMIZE TIMER
LET qt~=2 : REM quiz type:fill-in blank
LET qnl= 1: REM question 1
LET mcl=4: REM number of choices/question
LET title$:"empty·
LET Jast.pairf;:O
LET mox.pairsl= 100
LET nu$:"": REM no spaces inside quotes
DIM q$(2) ,pr$(1 ast.pai rf; ,2) ,sl(l ast.pai rf;) ,mpcl(4)

Quizmaster 203

Max.pairs% is an arbitrarily chosen maximum number of data
pairs; you may raise or lower this number depending on how much
memory your Macintosh has and how many database items you want to
enter.

Last.pair% is the number of items currently in the database. For
each database, q$() stores the two questions. Pr$(,) stores the data
pairs. S%() determines the order in which data pairs are used in the
quiz. Mpc%() is used during the formulation of multiple-choice
questions.

Database and Quizmaster Menus

The following lines create the database and Quizmaster screens:

WINDOW 1,,(wxl(I),wyl(1))-(wx11(1),wy11(1)),3
GOSUB dotobose
quizmaster:
CLS
CALL TEXTFACE(1)
PRINT . QUIZMASTER: ";title$
CALL MOVETO(12,byJg(1)-12)
PRINT • Stort quiz or work on the dotobose."
BUTTON 1,ABS(lost.poi rl>O), ·au I z·, (bxl(1), byl(1))- (bx I Jg(1) I by 1Jg(1)),

btl(1)
BUTTON 2, 1,"DATABASE", (bxJg(2), byl(2))- (bx11(2), by1~(2)), bt~(2)
BUTTON 3, 1,"END", (bx:g(12), byJg(3))- (bx 1:g(12), by 1 :g(3)), bt:g(3)
WHILE DIALOG(O)<> 1
WEND
FOR b~=l TO 3

204 Macintosh Program Factory

BUTTON CLOSE b~
NEXT b~
ON DIALOG(!) GOSUB select.quiz, dotobose, quit.quiz
GOTO quizmoster
quit.quiz:
WINDOW CLOSE 1
WINDOW CLOSE 2
END

When you first start the program, its database is empty. The pro
gram thus immediately executes the database subroutine, which
prompts you to key in a new database or load one from disk, as shown in
Figure 11-1.

Upon return from the database subroutine, the program presents
the main Quizmaster screen shown in Figure 11-4.

Various combinations of the button descriptors are used to generate
the three buttons QUIZ, DATABASE, and END. For instance, the
END button uses the horizontal values of button 12 and the vertical
values of button 3.

r s H!(~ Edit '.<i r.<11 (h Run Windows

CIUIZMASTER DATABASE 15: empty

Key in a new database or edit/review the current database:

(KEY IN NEW J (rnn: fllll l[IJJ)

Load a database file or save current database to a file :

LORD FILE sm1r r 1u:

Figure 11-1. The screen that appears when you start the Quizmaster
program

.,

Quizmaster 205

Notice that the QUIZ button is enabled only when the database is not
empty (BUTTON l,(ABS(last.pair%>0) ...)).

Upon return from the select.quiz or database subroutines, the pro
gram redisplays the Quizmaster screen (GOTO quizmaster).

The Database Subroutine

These lines take over when you press DATABASE from the Quizmaster
screen:

dotobose:
CLS
CALL TEXTFACE(1)
PRINT" QUIZMASTER DATABASE IS:"; title$
CALL TEXTFACE(O)
CALL MOVETO(12,byl(1)-12)
PRINT· Key in 8 new dBtBbBse or edit/review the current datBbBse:·
CALL MOVETO(12,byl(3)-12)
PRINT "Lood o dotobose file or scive current dotabBse to a file:·
BUTTON 1, 1,b 1 $(1), (bxl(1), byl(1))- (bx 11(1) , by 11(1)), btl(1)
BUTTON 2,-(lost.poirl>O), b1$(2), (bxl(2), byl(2))- (bx11(2), by11(2)),

btl(2)
BUTTON 3, 1,b1$(3), (bxl(3), byl(3))- (bx 11(3), by 11(3)), btl(3)
BUTTON 4,-(lost.poirl>O), b1$(4), (bxl(4), byl(4))- (bx1:1:(4), by1:1:(4)),

bt:l:(4)
BUTTON 5, 1, "MENU" ,(bx:I:(12), by:I:(12))- (bx 1I(12), by 1 I(12)), btl«(12)
WHILE DIALOG(O)<> 1
WEND
FOR b:i:= I TO 5
BUTTON CLOSE bl«
NEXT bl
LET btnl:DIALOG(1)
ON btn:I: GOSUB new.db, edit.db, load.db, save.db
RETURN

Refer to Figure 11-1 again. Buttons 1 through 4 correspond to the
KEY IN NEW, EDIT/REVIEW, LOAD FILE, and SAVE buttons on
the database screen. The program waits for you to press one of the but
tons, after which it executes the selected option and returns to the
Quizmaster screen in Figure 11-4.

Notice that the EDIT/REVIEW and SAVE FILE buttons are
enabled only when the database has at least one data pair (last.pair
%>0).

206 Macintosh Program Factory

Key In New Option

Pressing the KEY IN NEW button activates these lines:

new.db:
CLS
CALL TEKTFACE(1)
PRINT "KEY IN A NEW DAT ABASE"
CALL MOVETO(12,fyl(6)+ 12)
PRINT "How mcny dote poirs will you enter (<="; mox.pcirsl; ")?"
CALL T£KTFACE(O)
EDIT FIELD 1,STR$(1ost.poi~),(fxl(6),fyl(6))-(fx 1•(6),fy1 f«(6))
siz.loop:
LET eventl:O
WHILE eventl<>2 AND eventl<>6
LET eventl:DIALOG(O)
WEND
LET x:INT(YAL(EDIT$(1)))
LET siz.setll:(x>= 1) AND (x<=INT(mox.pcirsl))
IF siz.setl THEN siz.ok
BEEP
GOTO siz.loop
siz.ok:
EDIT FIELD CLOSE 1
LET lcst.poirl=x
ERASE pr$,sl
DIM pr$(1ost.poirl,2), sl(lost.pairl)
LET title$:"empty·
LET Q$(1):nu$
LET q$(2)=nu$
GOTO edit.db

Refer to Figure 11- 2. The program prompts you to specify the
number of data pairs you will enter so it can create the necessary arrays
for data storage. The number you enter must be no greater than
max.pairs%.

The Edit/Review Subroutine

When you complete the Key In New option or select the Edit/Review
option, the following lines take over:

Quizmaster 207

KEV IN A NEW DATABASE

How many data pairs will you enter (<= 100)? 03:]

Figure 11-2. After selecting the Key In New option, you specify the
number of data pairs in the database

edit.db:
CLS
CALL TElITFACE(1)
PRINT "EDIT /REVIEW DAT ABASE:"
CALL MOVETO(fxl(1) ,fyl(1)-4)
PRINT "Title"
CALL MOVETO(fxl(2), fyl(2)-4)
PRINT "Question A"
CALL MOVETO(fxl(3),fyl(3)-4)
PRINT "Question B"
CALL TElITFACE(O)
LET pnol=1
GOSUB display.pair
EDIT FIELD 3,q$(2),(fxl(3),fyl(3))-(fx 11(3),fy 11(3))
EDIT FIELD 2,q$(1),(fxl(2),fyl{2))-(fx11(2),fy 11(2))
EDIT FIELD 1,title$,(fxl{ 1),fyl(1))-(fx11{ 1),fy11(1))
FOR nl= 1TO3
ml=nl+4
BUTTON nl, 1, bl$(ml), (bxl(ml)+ 1 B,byl(ml))- (bx 1l(ml)+1 B, by 1 l(ml)),

btl(ml)
NEXT nl

208 Macintosh Program Factory

These lines create the screen shown in Figure 11- 3. In the figure, the
title and questions have been filled in and the first seven data pairs have
been entered. Notice the correspondence between the questions and
entries:

Entries marked "B" can be used to complete Question A, while
entries marked ''A" constitute answers to the completed questions.

Conversely, entries marked ''A" can be used to complete Question B,
while entries marked "B" constitute answers to the completed
questions.

Each time you fill in one of the edit fields shown in Figure 11-3, you
press ENTER, RETURN, or TAB to advance to the next field. Alterna
tively, you may skip around by pointing to a different field and clicking
the mouse button. If you press ENTER, RETURN, or TAB while the inser
tion point is in Entry B, the program automatically displays the next
data pair.

Pressing BACK causes the previous data pair to be displayed in
Entries A and B; pressing FORWARD displays the next data pair.

Pressing OK ends the Edit/Review process.

EDIT/REVIEW DATABASE:
Ttt1e
ILA FAMILLE FRANc;A1sij ~]

QuasUon A
!comment dit-on en Angleis

Questton B
IHow do you sey in French

~E_nt_r_y.___7_:A~~~~~~ FE~nt~r~y.__~7~:8:;;__~~~~~
l~e_un_t~~~~~~~__.l~lle~te_n_te~~~~~~__.

(BACK) (FORWARD)

Figure 11-3. During entry of a new database or editing of an existing one,
this screen shows you the data fields

Quizmaster 209

Edit/Review Event Monitor

The following block monitors your actions within the Edit/Review
window:

LET fldl:I
ed. loop:
LET eventl:O
WHILE eventl:O
LET eventl:DIALOG(O)
WEND
ON event I GOTO ed.btn,ed.fl d,ed.1 oop ,ed.1 ocip ,ed.1 oop ,nxt. fl d,nxt.fl d
ed.btn:
LET btnl:D I ALOG(1)
ON btnl GOTO pr.back,pr.fwd,ed.ok

A dialog event of 1 corresponds to a button pressed; 2 to a mouse
button click; 6 to pressing ENTER or RETURN; and 7 to pre~sing TAB. 3,
4, and 5 are ignored events. The ON event% statement responds to which
ever event occurred.

In case of a button press, the ON btn% statement distinguishes
between the BACK, FORWARD, and OK buttons.

The next lines execute all the Edit/Review options except for the last
(OK):

pr.back:
LET pr$(pnol, 1):EDITS(4)
LET pr$(pnol,2):EDIT$(5)
IF pnol= 1 THEN pnol:last.pairl ELSE pnol=pnol-1
GOTO select.pair
pr.fwd:
LET pr$(pnol, 1):EDIT$(4)
LET pr$(pnol,2):EDIT$(5)
IF pnol:last.pairl THEN pnol= 1 ELSE pnol:pnol+ 1
select.pair:
IF fldl:5 THEN LET fldl:4
GOSUB display.pair

210 Macintosh Program Factory

EDIT FIELD fldl
GOTO ed.1 oop
ed.fld:
LET new.fldl:DIALOG(2)
IF fldl=new.fldl THEN ed.loop
LET fldl=new.fldl
EDIT FIELD fldl
GOTO ed.1 oop
mct.fld:
IF eventl>5 AND fldl=5 THEN pr.fwd
l:ET fldl:fldl MOD 5+ 1
EDIT FIELD fldl
GOTO ed. loop

Pr.back and pr.forward handle the Back and Forward options.
Ed.fld handles requests to move to another field (mouse clicks in an edit
field). N xt.fld handles ENTER, RETURN, and TAB.

Edit fields 4 and 5 correspond to the fields under Entry A and
Entry B. Pno% is the number of the pair currently displayed in these
fields. If you press BACK or FORWARD, the program decrements or
increments pno% (IF pno%=1 THEN ... and IF pno%=last.pair%
THEN ...).

Ending the Edit/Review Session

The next routine responds to the OK button:

ed.ok:
LET tit1e$:EDIT$(1)
LET q$(1):ED IT$(2)
LET q$(2)=EDIT$(3)
LET pr$(pnol, 1):EDIT$(4)
LET pr$(pnol,2):EDIT$(5)
FOR nl:l TO 5
EDIT FIELD CLOSE nl
NEXT nl
FOR nl:l TO 3
BUTTON CLOSE nl
NEXT nl
RETURN

Quizmaster 211

This routine saves the data you've entered for the title, questions A
and B, and the currently displayed Entries A and B. Then it closes the
edit fields and buttons and ends with a RETURN.

The following subroutine is used at two different points during the
Edit/Review process:

disploy.poir:
CALLTEXTFACE(1)
CALL MOVETO(fxZ(4),fyl(4)-4)
PRINT USING ·Entry '""':A"; pno:g
CALL MOVETO(fxl(5),fyZ(5)-4)

PRINT USING "Entry •••:B"; pnol
CALL TEXTFACE(O)
EDIT FIELD 5,pr$(pnol,2),(fxZ(5),fyl(5))-(fx 11(5),fy 11(5))
EDIT FIELD 4,pr$(pnoZ, 1),(fx:C(4),fy:C(4))-(fx11(4),fy 11(4))
RETURN

These lines copy database entries A and B into edit fields 4 and 5.

Test Point 1

You have now entered enough of the program to test the Quizmaster
screen, the database screen, the Key In New option, and the Edit/
Review option.

First add these temporary lines in lieu of the remainder of the
program:

lood.db:
RETURN
seive.db:
RETURN

Close the listing window. Get a printout of your work (use LLIST)
and carefully check it against this book. Then run the program
(COMMAND-R).

Initially, your screen should resemble Figure 11-1. Notice that the
SAVE FILE and EDIT/REVIEW buttons are disabled (ghosted
appearance).

Pressing the LOAD FILE button should cause the program to
return to the main menu. Pressing KEY IN NEW should give you the

212 Macintosh Program Factory

screen shown in Figure 11-2. Type the number 4 and press ENTER. Now
the computer should show you a screen resembling the one shown in
Figure 11-3. Initially, all the fields will be empty except for the title,
which should read "empty."

Try entering data into each field. Try moving from one field to
another using the ENTER key, TAB key, and the mouse pointer. Test the
BACK and FORWARD buttons. The Entry A and B labels should cycle
through the numbers 1 through 4 as you press FORWARD and BACK
repeatedly.

Press OK. Your screen should now resemble Figure 11-4. The QUIZ
button is enabled, but pressing it has no effect yet. Press DATABASE
and you should see Figure 11-1 again, with the SAVE FILE and EDIT/
REVIEW buttons enabled.

. If something doesn't work properly, check the section of the program
logic that controls the function you're trying to use. (Only the Database,
End, Edit/Review, Key In New, and Menu options will work now.)

When you're ready to continue, stop the program, reopen the listing
window, and delete these lines:

QUIZMASTER: LA FAMILLE FRANf;AISE

Start quiz or work on the database.

(QUIZ ~ (DRTRBRSE J

END J

Figure 11-4. The Quizmaster main menu after a database has been loaded
or typed in

load.t;lb:
Rri"URN
scve.db:

. 'RETURN
,O:(''i'

Loading a Database

Quizmaster 213

The following block of lines takes over when you select the Load File
option:

load.db:
CLS
CALL TEXTFACE(1)
PRINT "LOAD A DATABASE FILE"
CALL TEXTFACE(O)
LET db.file$:FILES$(1 ,'TEXT")
IF db.file$:nu$ THEN RETURN
ON ERROR GOTO loadio.err
OPEN db.file$ FOR INPUT AS 1
INPUT•1, x
ON ERROR GOTO 0
LET X:INT(x)
IF x< 1 OR X>INT(max.pairs:g) THEN Joadsiz.err
LET 1 ast.pDi ,-:g=X
ERASE pr$,s:g
DIM pr$(1 a st.poi ,-:g ,2) ,s:g(l DSt.pDi r:C)
ON ERROR GOTO loadio.err
LINE INPUT• I, title$
LINE INPUT•!, q$(1)
LINE INPUT•!, q$(2)
ON ERROR GOTO 0
LET pno:C= 1
loaddb.loop:
ON ERROR GOTO loadio.err
LINE INPUT•!, pr$(pno:C, 1)
LINE INPUT• t, pr$(pno:C,2)
ON ERROR GOTO 0
IF pno:C:last.pair:C THEN loDd.done
LET pno:C:pno:C+ 1
GOTO loaddb.loop
load.done:
CLOSE
RETURN

214 Macintosh Program Factory

These lines present the screen shown in Figure 11-10. The FILES$
statement activates the dialog box shown in the center of the figure and
shows all the text files available on the currently selected drive. (Use
EJECT or DRIVE to switch disks or drives.) However, you should select
only database files created with the program's Save File option (or files
that are formatted the same way).

After opening the file, the program inputs a single number x, which
indicates the number of pairs in the database file. If the number is
within the allowable range, the program creates arrays pr$() and s%()
and loads the title, the two question fragments, and the x data pairs ..

In case of an error during the loading process, the following lines
take over:

load1o.err:
CLOSE
IF ERR>:50 THEN lood.disk.related
IF ERR<>6 AND ERR<> 13 AND ERR<>23 THEN ON ERROR GOTO 0
1 ood.di sk.re lated:
BEEP
CALL TEXTFACE(1)
CALL MO'v'ETO(12, wl I(1)\2)
PRINT ·unoble to lood file ";db.file$
CALL TEXTFACE(O)
RESUME ack.lood.err:
1 oodsi z.err:
BEEP
CALL TEXTFACE(1)
CALL MO'v'ETO(12, wll(1}*3\B)
PRINT db.f11e$
PRINT PTAB(12); ·contains"; x; "dato pairs."
PRINT PTAB(12); "A1low11ble range 1s 1 -·; max.poirsl;"pairs."
CALL TEXTFACE(O)
ack.1 oad.err:
LET last.patrl:O: ON ERROR GOTO 0
LET tttle$:"empty·
BUTTON 1, 1,b1$(7),(bxl(7),byl(7))-(bx 11(7),by 11(7))
WHILE DIALOG(O)<> 1
WEND
BUTTON CLOSE 1
GOTO load.db

The program can handle disk errors and errors caused by incorrect

Quizmaster 215

data in the file (IF ERR>=50 ... and IF ERR< >6 ...). Any other type of
error causes the program to stop with an error message from Microsoft
BASIC.

Figure 11-11 shows the error message presented by the load.disk.re
lated routine after a disk error occurs or when the file contains invalid
data (such as a character string instead of a number for x).

The loadsiz.err routine gives a similar message when x is larger
than the preset maximum max.pairs%.

After any error, the ack.load.err routine sets the database size indi
cator to 0 and the title to "empty."

Saving a Database

The next block handles the Save File option:

SOYe.db:
CLS: ON ERROR GOTO 0
CALL TEXTFACE(I)
PRINT ·sAVE DATABASE IN A FILE.
CALL TEXTFACE(O)
LET db.file$:FILES$(0,·Nome the file:•)
IF db.file$:nu$ THEN RETURN
open. f or.sove:
ON ERROR GOTO saveio.err
OPEN db.file$ FOR OUTPUT AS 1
PRINT• t ,1ost.poir1:
PRINT• I ,title$
PRINT• t, q$(1)
PRINT•!, q$(2)
ON ERROR GOTO 0
LET pnol= 1
sovedb.1 oop:
ON ERROR GOTO SOYeio.err
PRINT• I, pr$(pnol, 1)
PRINT• I, pr$(pnol,2)
ON ERROR GOTO 0
IF pnol=lost.poir1: THEN sovedb.done
LET pnol:pnol+ 1
GOTO SOYedb.1 oop
sovedb.done:
CLOSE 1
RETURN

216 Macintosh Program Factory

The FILES$ function creates the dialog box shown in the center of
Figure 11-9. After you enter the name of the output file, the program
stores the data in the following sequence: number of data pairs, title,
Question A, Question B, followed by the data pairs. Every data item is
on a separate line in the output file.

If an error occurs while the program is attempting to save the data,
the following lines are activated:

soveio.err:
CLOSE 1
IF ERR<50 THEN ON ERROR GOTO 0
BEEP
CALL TEXTFACE(1)
CALL MOVETO(12, wl :g(1)\2)
PRINT ·unoble to sove dt1tt1bt1se in file ";db.mes
CALL TEXTFACE(O)
BUTTON 1, 1,b 1 $(7) ,(bx:g(7) ,by:g(7))-(bx 11(7) ,by 1 :g(7))
WHILE DIALOG(O)<> 1
WEND
BUTTON CLOSE 1
RESUME stive.db

Again, only disk-related errors are handled; others cause the pro
gram to stop.

Test Point 2

After you have checked over the Load and Save portions of the program
logic, you are almost ready to test them. But first type these lines in lieu
of the remainder of the program.

select.quiz
RETURN

Now close the listing window and run the program. Enter a short
sample database (select Key In New). From the main menu select the
Database option. Now try the Save File option. After the save is com
plete, select the Database option again and try the Load File option.
After that, use Edit/Review to see if the data was loaded properly.

When you're ready to continue, stop the program, reopen the listing
window, and delete these lines:

Quizmaster 217

The Quiz Selection Menu

The following lines start the quiz process:

select.quiz:
CLS
CALL TEXTFACE(1)
PRINT ·sPECIFY QUIZ TYPE.
CALL MOVETO((wwl(1)-WIDTH('TITLE: "+title$))\2,fyl(1)+12)
PRINT 'TITLE: ·; title$
LET mpc.onl=ABS(h~st.pGirl>=mcl) :REM o or 1

IF lost.poirl<mcl THEN LET qUI: 1 :REM con't do mpc, so do fib
LET sell:l+ABS(qtlt::2) :REM 1or2
BUTTON 1, 3-sell, b1$(8), (bxl(8)+ 12, byl(8))- (bx 11(8)+ 12, by 11(8)),

btl(8)
BUTTON 2,mpc.onl*sellt:, b1$(9), (bxl(9)+ 12,bylt:(9))- (bx 11(9)+ 12,

by 11(9)), btl(9)
FOR nlt::l TO 2
LET sellt::l+ABS(qnl:nl) :REM 1 or 2
LET ml=nl+9
LET b1$(ml):q$(nlt:)
LET bxl(ml)= 12
LET bx 1l(ml):12+ 18+WIDTH(b1$(ml))
BUTTON 2+nlt:,sellt:,b1$(ml),(bxl(mlt:),bylt:(ml))- (bx 1 lt:(mlt:), by 1 lt:(ml)),

btl(ml)
NEXT nlt:
BUTTON 5, 1,b 1$(12) ,(bxl(3) ,byl(12))-(bx 11(3) ,by 11(12)) ,btl(3)
BUTTON 6, 1,"MENU",(bxl(4),byl(12))-(bx11(4),by 11(12)),btl(4)

These lines create the quiz selection menu shown in Figure 11- 5.
The multiple-choice button is enabled only if the database contains at
least mc%=4 pairs, since a multiple-choice question has me% choices
(LET rope.on% = (ABS(last.pair%>=mc%).

Next the program waits for you to select the options (Multiple choice
or Fill in the blank, and question A or question B):

sq.loop:
WHILE DIALOG(O)<> 1
WEND

218 Macintosh Program Factory

SPECIFY QUIZ TYPE

TITLE: LA FAMILLE FRANl;AISE

0 Fill in the blank

@ Multiple choice

@ Comment dit-on en Rnglais

O How do you say in French

BEGIN ~) MENU

Figure 11-5. When you select the Quiz option, this menu prompts you to
specify the quiz type

LET btnl:DIALOG(1)
ON btnl GOTO SW.Qt, SW.Qt, sw.qn, SW.Qn, stort.quiz
FOR bl:I TO 6
BUTTON CLOSE bl
NEXT bl
WINDOW CLOSE 2
RETURN

The following lines handle requests to change the question format or
type:

SW.Qt:
BUTTON 2,(1 +ABS(btnl:2))*mpc.onl
BUTTON 1, 1+ABS(btnl=1)
LET qtll:btnl
GOTO sq.loop
sw.qn:
BUTTON 3, 1 +ABS(btnll:3)
BUTTON 4, 1 +ABS(btnl:4)
LET qnll:btnl-2
GOTO SQ.loop

Quizmaster 219

Starting the Quiz

When you press BEGIN, the following lines start the quiz:

start.quiz:
FOR nll:l TO 6
BUTTON CLOSE nl
NEXT nl
CLS
CALL TEXTF ACE(1)
PRINT "Shuffling the questions. One moment."
CALL TEXTFACE(O)
FOR nl= 1 TO last.pair-I
LET sll(nll):O
NEXT nll
FOR nll= 1 TO last.pair-I
shuffle.loop:
LET pnoll:INT(RND*last.pairl)+ 1
IF sll(pnoll)<>O THEN shuffle.loop
LET sll(pnoll):nl
NEXT nll
LET qcll:O
LET succll=O
LET pctll:O
w I NDOW 2,,(wxll(2). wyll(2))-(wx 11(2). wy 11(2)) ,3
GOSUB label.scorebox
GOSUB update.scorebox
WINDOW 1

First the program creates a random question sequence and stores it
in s%(). After shuffling, s%(1) contains the pair number of the first
question, s%(2) contains the pair number of the second question, and so
forth.

Next, the program initializes counters for questions tried (qc%) and
questions answered successfully (succ%) and sets the percentage correct
variable pct% to 0.

Then the program creates the scorebox, labels it, and fills in the
initial scoring values.

The next lines get a question ready:

220 Macintosh Program Factory

set.question:
LET qcl:qcl+ 1
LET quest 1 on$:pr$(sl(qcl) ,3-qnl)
LET answerS=prS(sl(qcl) ,qnl)
CLS
CALL TEXTFACE(1)
PRINT USING ·auestion •••:·;qcl
CALL MO VETO(0 I fyl(2)-40)
CALL LINE(wwl(1),0)
CALL MO VETO(0 I fyl(7)+40)
CALL LINE(wwl(1),0)
CALL MO VETO(f >el(2) If yl(2)-16)
PRINT q$(qnl)
CALL MOVETO(f>el(2),fyl(2))
PRINT questions;·r
CALL TEXTFACE(O)
ON qtl GOTO getanswer.fib,getanswer.mpc

Question% is the data item that correctly completes the question.
Answer% is the data item that correctly answers the question. After
printing the question (see Figure 11-6 and Figure 11-7), the program
branches either to the fill-in-the-blank routine (getanswer.fib) or the
multiple-choice routine (getanswer.mpc).

~ill In the Blank

These next lines wait for you to fill in the blank, as shown in Figure
11-8:

getanswer.fib:
EDIT FIELD 1,··,(f>el(7),fyl(7))-(f>e 11(7),fy 11(7))
LET eventl=O
WHILE eventl<>6
LET eventl:DIALOG(O)
WEND
.LET response$=EDIT$(1)
LET r1 ghtl:(UCASE$(response$):UCASE$(answer$))
GOTO respond

After entering your answer, you press RETURN or ENTER. Before
comparing your answer with the correct answer, the program converts
both answers to uppercase.

Quizmaster 221

,. .S file~ Edit Sernn h Run Windows

1:

Comment dit-on en Anglois
1 e grond-pere?

@ grondfother

Oount

O grondmother

O mother

Correct!

ENO QUIZ

SCOREBOX
LA FAMILLE FRANl;AISE contains 10 facts .

Att succ Pct
I IOOZ

Figure 11-6. A sample multiple-choice question. Notice that the score
box keeps track of your past performance

,. S l'ile~ Edit Se~<1n ll Run Windows

5:

Comment dit-on en Anglois
In soeur?

O sister

0 fother

Oson

(!~aunt

Answer is: sister

DK END QUIZ J

SCOREBOX
LA FAMILLE FRANl;AISE contains 10 facts .

Alt Succ Pct
S 4 BOZ

Figure 11-7. If you answer incorrectly, the program prints the
correct answer

.,

.,

222 Macintosh Program Factory

Question I:

How do you soy tn French
uncle?

lronclg I

Correct!

(OK ~) (END QUIZ)

Figure 11-8. A sample fill-in-the-blank question

Multiple Choice

The multiple-choice process is more involved than the process for filling
in the blanks:

getanswer.mpc:
LET abl=INT(RND*4)+ 1 :REM p1'1ce correct answer
LET mpcl(abl)=qcl
LET sl(qcl)=-sl(qcl) :REM mark that one •taken·
FOR wbl=1 TO 4 :REM place incorrect answers
IF wbl:abl THEN mct.wb
wb.loop:
LET pnol:INT(RND*last.patrl)+ 1
IF sl(pnol)<O THEN wb.loop :REM Dlready tDken, get another
LET mpcl(wbl):pnol
LET sl(pnol):-sl(pnol) :REM mark that one •taken·
nxt.wb:
NEXT wbl
FOR mbl= 1 TO 4
LET sl(mpcl(mbl))=-sl(mpcl(mbl)) :REM remove "taken· mark
LET bl:mbl+ 12
BUTTON mbl, 1, pr$(sl(mpcl(mbl)),qnl), (bxl(bl), byl(bl))- (bx 1 l(bl),

by 1 l(bl)), btl(bl)

NEXT mb:g
LET event:g=o
WHILE eventjgo 1
LET event:g:DIALOG(O)
WEND
LET b:g:DIALOG(1)
BUTTON b:t: ,2
LET r1 ght:g:(b:t:=t:ib:g)

Quizmaster 223

First the program randomly selects which of the four multiple
choice items will contain the correct answer (LET ab%= RND ...). Then
it randomly picks out other pairs to use for the other three multiple
choice items.

After receiving your answer to enter type of question, the following
lines give you a response:

respond:
IF right:g THEN LET succ:g=succ:t:+ 1
LET pct:g=fNT(succ:g/qc:t:* 100+.5)
WINDOW 2
GOSUB updote.scorebox
WINDOW 1
IF NOT right:t: THEN incorrect

SAVE DATABASE IN A FILE

Name the file:

I chemic11I formul11~

S1111e [C11ncel ~

Eject

Driue

Figure 11-9. Screen appearance when you select the Save File option

224 Macintosh Program Factory

FOR fq:C: 1 TO 4
SOUND 11O*fq:C,1
NEXT fq:C
CALL TEXTFACE(1)
CALL MOVETO{ fx:C(7),fy:C{7)+64)
PRINT "Correct!"
CALL TEXTFACE(O)
IF qt:C=2 THEN woitack.mpc ELSE woitack.fib
incorrect:
SOUND 440,2
SOUND 110,2
CALL TEXTF ACE{ 1)
CALL MO\IETO(fx:C(7),fy:C(7)+64)
PRINT "Answer is: ";onswer$
CALL TEXTFACE(O)
IF qtl=2 THEN woitock.mpc ELSE woitock.fib

The succ% and pct% variables are incremented if needed, and the
program updates the scorebox accordingly. In case of a correct answer,
the program plays an ascending sequence of notes; in the case of an
error, the program plays a descending couplet and announces the cor
rect answer.

LOAD A DATABASE FILE

CODE 0209 MB f
DiTI [Open l 8P#5

LR FHMILLE FR-:".f
TIC 0213 MB (Eject l

[Cancel l [Oriue]
IQ

Figure 11-10. Screen appearance when you select the Load File
option

Quizthaster 225

LOAD A DATABASE FILE

Unable to load f11e BP•5:f1rst thtngs

Figure 11-11. An error message like this appears when a disk error
occurs during loading

Next the program waits for you to acknowledge the response to your
latest guess. The process is different for fill-in-the-blank tests and
multiple-choice tests.

The following lines wait after the fill-in-the-blank test:

wei teck. fib:
BUTTON 1, 1, "OK" ,(bx:C(3) ,by:C(12))-(bx 1 :C(3) ,by 1 I(12)) ,bt:C(3)
BUTTON 2, 1,"END QUIZ",(bxll(4),byll(12))-(bx 11(4),by 1lB(t2)),btl(4)
LET eventll=O
WHILE eventl<> 1 AND eventl<>6
LET eventll:DIALOG(O)
WEND
BUTTON CLOSE 1
BUTTON CLOSE 2
EDIT FIELD CLOSE 1
IF eventl=6 OR DIALOG(1)=1 THEN nxt.quest ion
GOTO select.quiz

Pressing ENTER, RETURN, or one of the screen buttons ends the loop.
The following lines wait after a multiple-choice test:

226 Macintosh Program Factory

wtii ttick.mpc:
BUTION 5, 1, "OK" ,(bxl(3) ,byl(12))-(bx 1 :f:(3) ,by 1 I(12)) ,btl(3)
BUTTON 6, I ,"END QUIZ",(bx:fi(4),byl(12))-(bx I 1(4),by 1:fi(12)),bt%(4)
wm.loop:
LET event:fi=O
WHILE eventl<> 1 AND event:fi<>6
LET event:fi:DIALOG(O)
WEND
IF eventl=6 THEN continue.mpc
LET b:fi:DIALOG(1)
IF b:fi<5 THEN Wm.loop
conti nue.mpc:
FOR btnl: 1 TO 6
BUTTON CLOSE btnl
NEXT btn:fi
IF bl=6 THEN select.quiz
nxt.questi on:
IF qcl<last.pairl THEN set.question
GOTO select.quiz

The nxt.question routine takes over upon completion of every quiz.
These lines ensure that every question is asked before the program ends
the quiz (IF qc%<last.pair% ...).

The Scorebox

The following subroutine takes care of the scorebox:

l abe 1.scorebox:
CLS
CALL TEXTFACE(1)
PRINT PTAB((wwl(2)-WIDTH("SCOREBOX"))\2); "SCOREBOX"
PRINT title$; • conteins"; ltist.peirl; "fects."
REM 123456789012345678
LET h$:" Att Succ Pct"
LET centerl=(wwl(2)-W I DTH(h$))\2
PRINT PTAB(centerl); h$
CALL TEXTFACE(O)
RETURN

When entering these lines, use the line REM 12345 ... as a guide to
help you space out the column headings "Att Succ Pct%".

Finally, here are the lines that update the scorebox:

Quizmaster 227

update.scorebox:
LOCATE 4, 1
CALL TEXTFACE(1)
REM 12345678901234567890
PRINT PT AB(center%); USING "111111 111111 111111%"; qc%;succ%;pct%
CALL TEXTFACE(O)

RETURN

Again, use the line REM 12345 ... as a guide to entering the spacing
between numbers correctly.

-Testing and Using the Program -----
Carefully check the new parts of the program, beginning with the
select.quiz routine. If your version doesn't work quite right, try to iden
tify the portion of the program that is supposed to accomplish the
desired function.

Enter a complete, usable database such as States and Capitals or
English and metric units. Try to use all the options from all the menus.

If you have trouble matching up the question fragments with the
data pairs, just remember: incomplete question A is completed by a
field from entry B and answered by the corresponding field from Entry
A; incomplete question B is completed by a field from entry A and an
swered by the corresponding field from Entry B.

This chapter has been adapted from "The Quiz Master" by George Stewart, appearing in
the August 1983 issue of Popu,lar Computing magazine. Copyright© 1983 BYTE Publica
tions, Inc. Used with permission of BYTE Publications, Inc.

Chapter 12

Speed Math

Do any of these situations sound familiar?
You're standing at the grocery checkout counter trying to double

check the cashier and the cash register, but you just can't keep up.
You're speeding down the highway, calculating your gas mileage, but

you run out of fuel before you arrive at the answer.
You're at a dinner party and the person next to you starts talking

about the national defense budget. You'd like to state the figure on a per
capita basis, but the conversation has moved to French wines by the
time you have the problem worked out.

This chapter's program can help you master situations that require
quick mental calculations. The method used is timed drill and practice.
You can practice any of the four basic arithmetic operations over any
range of positive whole numbers, adjusting the time limit from one
second to two minutes. You can even set an error tolerance of up to 25
percent to help you learn to make quick estimates.

-Speed Math Operation---------
The Speed Math program has two modes of operation. During the first
mode, you specify the math operation, operand ranges, error tolerance,
and time limit (see Figures 12-1 and 12-2).

229

230 Macintosh Program Factory

..

RANGES

[8J R + B A:

0 R - B lmto~

OR H B B:

~to @:CJ

SCOREBOX
Succ . Att. Pct.

0 0 0

ERROR
TOLERANCE

SPEED

~sec.

Figure 12-1. The initial Speed Math screen, showing the specification
box and scorebox

• r ii<~ Edit ~l e <1r< h Run Windows

OPERATION RANGES

0 R + B A:

[8J R - B ~to~

OR H B B:

OR.,. B ~to~

Lower limit of B must
be 1 ess th on or equol to
upper 1 i mit for A.

ERROR
TOLERANCE

@=:]s

SPEED

~sec.

Figure 12-2. Specification box with an error message

.,

Speed Math 231

During the second mode, the program generates a series of incom
plete equations for you to fill in. The program keeps score for you and
gives you new equations until you quit or go back to the specification
mode (see Figures 12-3 and 12-4).

-The Program------------
The program starts out with descriptive data for the windows, buttons,
and edit fields.

Here are the window descriptors:

REM Window descriptors
DATA2
REM wide long left top
DATA 4.500, 3.000, 1.250, 0.375
DATA 3.000, 1.000, 2.000, 3.500

The second DATA statement describes the larger window (specifica
tion box and test box); the third describes the smaller window (score
box). All measurements are in inches.

Here are the button descriptors:

REM Button descriptors
DATA9
REM label w1de long hzone vzone type
DATA A+ B, 0.750, 0.208, 0.042, 0.167, 2
DATA A - B, 0.750, 0.208, 0.042, 0.333, 2
DATA Ax B, 0.750, 0.208, 0.042, 0.500, 2
DATA A+ B, 0.750, 0.208, 0.042, 0.667, 2
DATA BEGIN,0.750, 0.250, 0.125, 0.958, 1
DATA QUIT, 0.750, 0.250, 0.675, 0.956, 1
DATA NEXT, 0.750, 0.250, 0.125, 0.956, 1
DATA CHANGE, 1.000, 0.250, 0.500, 0.956, 1
DATA OK, 0.500, 0.250, 0.675, 0.917, 1

To key in the division symbol in the fifth DATA statement, hold
down the OPTION key and type a slash(/).

Hzone and vzone describe a button's position within a window; for
instance, hzone=0.250, vzone 0.500 indicates a button one-fourth of the
way across and one-half of the way down the window.

Here are the descriptors for the edit fields:

232 Macintosh Program Factory

,. • I ii <~ Edit Se<1 1 < h Run Windows
.,

28 - 1 7 =LI 1_1 _ __, Time outi

Correct

CHANGE

SCOREBOX
succ . Att . Pct.

I 2 50

Figure 12- 3. The test box with a time out message. The correct answer is
acknowledged even though time ran out before the operator
pressed ENTER or RETURN

,. j File Edit S<rnn h Run Windows
.,

Figure

26 X 3 =Ll8_1 _ __,

Close enough. Exact answer is 78

· (CHANGE

SCOREBOX
Succ. Att. Pct.

3 4 75

The test box showing the response to an answer that is
within the error tolerance

REM Field descriptors
DATA 7
REM wide long hzone yzone
DATA 0.500, 0.208, 0.375, 0.292
DATA 0.500, 0.208, 0.625, 0.292
DATA 0.500, 0.208, 0.375, 0.625
DATA 0.500, 0.208, 0.625, 0.625
DATA 0.500, 0.208, 0.875, 0.250
DATA 0.500, 0.208, 0.875, 0.667
DATA 0.750, 0.208, 0.750, 0.417

Speed Math 233

The first four DATA statements after the REM define edit fields for
the lower and upper limits of operands A and B. The next two DATA
statements define fields for the error tolerance and speed. The final edit
field defines an answer field for the math test.

The following lines read in the window data and convert it from
inches to screen points (pixels):

READ nwl
DIM wwl(nwl), wl l(nwl), wxl(nwl), wyl(nwl), wx 1 l(nwl), wy 1 l(nwl)
FOR nl: 1 TO nwl
READ inches. wt de, t nches.1 ong,ul cx,ulcy
LET wwl(nl):tnches.wtde*72
LET wll(nl):tnches.long*72
LET wxl(nl)=ulcx*72
LET wyl(nl)=ulcy*72
LET wx 1 l(nl)=wxl(nl)+wwl(nl)
LET wy 1 l(nl):wyl(nl)+wll(nl)
WINDOW nl,,(wxl(nl), wyl(nl))-(wx 1 l(nl), wy 1 l(nl)) ,3
NEXT nl

The next lines do the same for the buttons:

READ nbl
DIM b1$(nbl),bxl(nbl),byl(nbl),bx 1l(nbl),by1 l(nbl),btl(nbl)
FOR nl= 1 TO nbl
READ b 1$(nl), t nches. wt de, t nches.1 ong,h.zone, Y.zone ,btl(nl)
IF nl:9 THEN cwl:2 ELSE cwl= 1
LET bxl(nl):(wwl(cw1Hnches.wtde*72)*h.zone
LET byl(nl):(wll(cwl)-tnches.1ong*72)*v .zone
LET bx 1 l(nl)=bxl(nl)+tnches.wtde*72
LET by 1 l(nl):byl(nl)+tnches.long*72
NEXT nl

234 Macintosh Program Factory

Notice that button 9 is handled a little differently from the others.
Since it appears in the smaller window, window 2, its actual position
must be calculated using the dimensions of window 2 rather than the
large window, window 1 (IF n%=9 THEN cw%=2 ELSE cw%=1).

Finally, the following lines load the data for the edit fields:

READ nfl
DIM fxl(nfl),fyl(nfl),fx 1l(nfl),fy1 l(nfl)
FOR nl: 1 TO nfl
READ t nches. wt de, t nches.1 ong,h.zone, v .zone
LET f xl(nl)=(wwl(1)-inches. wtde*72)*h.zone
LET fyl(nl):(wll(1 Hnches.long*72)*v.zone
LET fx 1 l(nl):fxl(nl)+tnches.wide*72
LET fy 1 l(nl)=fyl(nl)+lnches.long*72
NEXT nl

Constants and Parameters

The next block of lines creates the arrays used by the program logic:

RANDOMIZE TIMER
DIM 1(2),u(2),a(2),op$(4),mcl(5),m1$(5,3)
DEF FNstrtp$(x)=R I GHT$(STR$(x) ,LEN(STR$(x})-1)
READ opl, 1(1), u(1), 1(2), u(2), er, t1
DATA 1, 10, 49, 10, 51, 0, 4
FOR jl:1TO4
READ op$(jl)
NEXT JI
DATA +,-,x,+

Arrays l() and u() store the lower and upper limits for operands A
and B. Op$() stores the operator symbols. Mc%() and ml$() store data
used to generate error messages.

The function FNstrip$ removes the leading space from a positive
number or the sign from a negative number.

The DATA statement sets initial values for the operand ranges u()
and l(), error tolerance er, and time limit tl. After you have gotten the
program working properly, you can adjust these starting values to bet
ter suit your interests and skills.

Again, to key in the division symbol, type OPTION-/.

Speed Math 235

The next lines read in the error messages that are sometimes needed
during the specification mode:.

FOR msgl= 1 TO 5
READ mcl(msgl)
FOR II= 1 TO mcl(msgl)
READ ml$(msgl,ll)
NEXT 11,msgl
DATA3
DATA For operands A end B
DATA O<=lower limtt<:upper limit
DAT A upper limtt<=9999
DATA3
DATA Lower limit of B must
DATA be less then or equal to
DATA upper limit for A.
DATA3
DATA Lower ltmtt of B must
DATA be greeter then O for
DATA dMston.
DATA2
DATA Error tolerance must be
DATA between O end 25 percent.
DATA3
DATA Ttme ltmtt must be
DATA greeter then zero end
DATA less then 180.

There are five different error types and a different message for
each. Mc%() stores the number of lines in each message. Ml$(,) stores
the message text.

One of the messages appears in Figure 12-2.
The next block defines a few additional constants and counters:

LET yesl=(1 = 1)
LET nol=(1 =O)
LET one.spct=· • :REM one space tnstde quotes
LET ettl:O
LET succl=O
LET pctl:O

236 Macint.osh Program Factory

Att%, succ%, and pct% keep track of the number of attempts, correct
answers, and the percentage of accuracy.

Setting Up Windows

The next block sets up the scorebox and specification box:

WINDOW2
CALL TEKTFACE(1)
GOSUB label.scorebox
WINDOW 1
change.panimeters:
REM Set up the panimeter wtndow
LINE (0,w11(1)*10/12)-STEP(wwl(1),0), 1
LI NE (wwl(1)* 1.25/ 4.5,0)-STEP(O, wll(1)* 10/ 12)
LINE (wwl(1)*3.25/ 4.5,0)-STEP(O, wll(1)* 10/ 12)
LINE (WWI(1)*3.25/4.5,fyl(6)-3B)-STEP(wwl(1)*1.25/ 4.5,0)

The label.scorebox subroutine is presented later. The LINE com
mands divide the specification box into five regions.

The following lines print the text labels in the specification box.

CALL TEKTMODE(1)
CALL TEKTFACE(2+16+64) :REM ttaltc shadow extended
LET tttle.matn$:·sPEED MATH.
LET t 1.tabl:(WWl(1)-WIDTH(tttle.matn$))\2
CALL MOYETO(t 1.tabl,byl(5)+ 12)
PRINT tttle.matnS;
CALL TEKTFACE(1)
LOCATE 1,1
PRINT. OPERATION•; PTAB(fxl(t)-12); .RANGES·; PTAB(fxl(5)-12);

•ERROR.
PRINT PT AB(fxl(5)-12); "TOLERANCE·
CALL MOYETO(fxl(6),fyl(6)-24)
PRINT ·sPEED.
CALL MOYETO(fx 11(5)+6,fyl(5)+ 12)
PRINT ·1·
CALL MOYETO(fx 11(6)+6,fyl(6)+ 12)
PRINT ·sec:
CALL MOYETO(fxl(1),fyl(1)-12)
PRINT ·A:·
CALL MOYETO(fxl(2)-WIDTH(•to•)-12,fyl(2)+ 12)

PRINT •to •
CALL MOYETO(fxl(3),fyl(3)-12)
PRINT ·B:·
CALL MOYETO(fxl(4)-W IDTH(•to•)-12, f yl(4)+ 12)
PRINT •to •
CALL TEXTFACE(O)

Monitoring the Specification Box

Speed Math 237

The next few blocks handle the specification box dialog. The first sets
up the six edit fields shown in Figure 12-1:

EDIT FIELD 6,FNstrtp$(t1),(fxl(6),fyl(6))-(fx 11(6),fy 11(6))
EDIT FIELD 5,FNstrtp$(er),(fxl(5),fyl(5))-(fx 11(5),fy 11(5))
EDIT FIELD 4,FNstrtp$(u(2)),(fxl(4),fyl(4))-(fx 11(4),fy 11(4))
EDIT FIELD 3,FNstrtp$(1(2)),(fxl(3),fyl(3))-(fx 11(3),fy 11(3))
EDIT FIELD 2,FNstrtp$(u(1)),(fxl(2),fyl(2))-(fx 11(2),fy 11(2))
EDIT FIELD 1,FNstrtp$(1(1)),(fxl(1),fyl(1))-(fx11(1),fy11(1))

FNstrip$ puts the current value of each parameter (without a lead
ing blank space) into the appropriate field.

The following block creates the six specification box buttons:

FOR nl:1TO4
BUTTON nl, 1-(opl:nl), b1$(nl), (bxl(nl), byll(nl))- (bx 1 ll(nl), by 1 l(nll)),

btl(nll)
NEXT nl
FOR nll:5 TO 6
BUTTON nll, 1,b 1 $(nll), (bxlB(nlB), byl(nll))- (bx 1 lB(nlB), by 1 l(nll)), btll(nl)
NEXT nll

Buttons 1 through 4 correspond to the operation selectors. The
expression 1-(op%=n%) allows only one button to be selected (the one
corresponding to the current operation op%).

The next lines wait for a dialog event (mouse click, ENTER, RETURN,

TAB, or a button press):

por.loop:
LET eventl=O
WHILE eventll:O
LET eventl:DIALOG(O)

238 Macintosh Program Factory

WEND
ON eventl GOTO par.btn, ed.fld, par.loop, par.loop, par.loop, nxt.fld,nxt.fld

Dialog events 3, 4, and 5 (change windows, click close box, and
refresh output window) are ignored. Other dialog events are handled in
the following block:

par.btn:
LET btnl:DIALOG(1)
IF btnl:5 THEN beg1n.qu1z
IF btnl:6 THEN end.quiz
BUTTON opl, 1
BUTTON btnl ,2
LET opl:blnl
GOTO par.loop
ed.fld:
LET new.fldl:DIALOG(2)
IF new.fldl=fldl THEN par.loop
LET fldl:new.fldl
EDIT FIELD fldl
GOTO par.loop
nxt.fld:
LET fldl:fldl MOD 6+ 1
EDIT FIELD fldl
GOTO par.loop
end.quiz:
WINDOW CLOSE 2
WINDOW CLOSE 1
END

The par.btn routine takes over when you press one of the buttons
(A+ B, A-B, AXB, A+ B, BEGIN, or QUIT). Ed.fld takes over when
you click the mouse button inside an edit field; it causes that field to
become active. When you press ENTER, RETURN, or TAB, the nxt.fld rou
tine activates the next field on the screen.

Checking Parameters

When you select the BEGIN button, the program checks the contents of
all six edit fields for validity. First the program checks the lower
bounds for A and B:

Speed Math 239

beg1n.quiz:
FOR nl=I TO 3 STEP 2 :REM check lower 11mits for A and B
GOSUB get.fvalue
IF okl THEN lY.Ok
LET err.fldl=nl
LET nl:3
GOTO nxt.lv
lv.ok:
LET l((nl+ 1)\2)=x
nxt.lv:
NEXT nl
IF NOT okll THEN pnn.err

Get.fvalue converts the string value from edit field n% into the
number x. It also checks to see whether x is a nonnegative whole
number less than 10000. If so, ok%=yes%. If not, ok%=no%.

If the value is within range, it is stored in). Otherwise, the parame
ter error routine prm.err takes over.

Next the program checks the upper bounds for A and B and the
error tolerance and time limit:

FOR nl:2 TO 4 STEP 2 :REM check upper 11m, A and B
GOSUB get.fYalue
IF okl AND X>:l((nl+l)\2) THEN u.gt.1
LET okl:nol
LET err.fldl:nl
LET nl:4
GOTO nxt.uv
u.gt.1:
LET u((nl+ 1)\2)=x
nxt.uv:
NEXT nl
IF NOT okl THEN pnn.err
IF opl:2 AND u(1)<1(2) THEN sub.err :REM prevent negative answers
IF opl:4 AND 1(2)=0 THEN d1v.err :REM prevent d1Ytston by zero
LET nl=5 :REM check tolerance sett1ng
GOSUB get.fvalue
IF NOT Oki OR X>25 THEN tol.err
LET er=x
LET nl=6 :REM check speed setttng
GOSUB get.fYalue

240 Macintosh Program Factory

IF X< 1 OR X>= 1 BO THEN ttme.err
LET tl:x
GOTO select.cs.problem

The upper bound must be between 0 and 9999 and must also be no
smaller than the corresponding lower bound (IF ok% AND x>=
l((n%+1) \2) THEN u.gt.1). If it is not, the parameter error routine
takes over.

In the case of subtraction (op%=2) or division (op%=4), the program
must make a couple of extra checks to eliminate the possibility of nega
tive remainders or division by zero.

If there are no errors, the program continues with the select.a.prob
lem routine presented later.

The next block contains all the specification box error handlers:

prm.err:
LET fld:C:err.fld:C
LET err.type:C= 1
GOTO err.msg
sub.err:
LET fld:C:3
LET err. type:C=2
GOTO err.msg
div.err:
LET fld:C:3
LET err.type:C:3
GOTO err.msg
tol.err:
LET fld:C:5
LET err. type:C=4
GOTO err.msg
ttme.err:
LET fld:C:6
LET err. typel=5
GOTO err.msg

The five types of errors are parameter, negative remainder (subtrac
tion), division by zero, error tolerance out of range, and time limit out of
range. These types of error are handled in a similar manner. The pro
gram records the field that triggered the error, sets the error type, and
then transfers control to the following err.msg routine:

err.msg:
EDIT FIELD f1dl
WINDOW 2
CLS
BEEP
FOR 11= 1 TO mcl(err.typel)
PRINT m1$(err.typel,11)
NEXT 11
GOSUB we1t.ok
GOSUB 1ebe1.scorebox
WINDOW 1
GOTO per.loop

Speed Math 241

The program selects the field causing the error. Then it prints an
appropriate message in the scorebox window and waits for you to press
the OK button, ENTER, or RETURN (see Figure 12-2). After that, the
program restores the scorebox information and goes back to the specifi
cation box monitor loop.

To complete the logic for the specification mode of the program, type
in these auxiliary subroutines:

get.fvelue:
LET x:YAL(EDIT$(nl))
LET okl:(X:INT(x)) AND (X>:O) AND (X<:9999)
RETURN
we1t.ok:
BUTTON 1, 1,b1$(9),(bxl(9),byl(9))-(bx 11(9),by 11(9)),btl(9)
LET eventl=O
WHILE eventl<> 1 AND eventl<>6
LET eventl:DIALOG(O)
WEND
BUTTON CLOSE 1
RETURN

Get.fvalue gets a number from an edit field. Wait.ok puts an OK
button in the window and waits for you to click on it or to press RETURN
or ENTER.

Test Point

To test the specification mode logic, type in these temporary lines in lieu
of the test mode logic:

242 Macintosh Program Factory

se I eel.ti.prob I em:
END
I tibe I .scorebox:
CLS
RETURN

Now print the program by typing LLIST in the command window.
Check the printout carefully against the program lines in this chapter,
and correct any errors you find. Close the listing window and run the
program.

You should see a screen similar to Figure 12-1, except that the score
box window will be blank.

Try to select each of the operator buttons. Try various illegal range
settings:

• upper limit < lower limit

• any negative value

• any number greater than 9999

• for subtraction, lower limit operand B > upper limit A

• for divisjon, 0 = lower limit operand B.

Press BEGIN to see how the program responds to the illegal range
setting. You should see an error message in a dialog box (see Figure
12-2).

Try various illegal settings for the error tolerance and time limit:

• error tolerance < 0 or error tolerance > 25

• time limit < 1 or time limit>= 180.

After you enter an illegal setting, press BEGIN to see how the pro
gram responds. You should see an appropriate error message.

Set all the parameters to valid values, and press BEGIN. The pro
gram should end without any error messages.

Math Test Mode

Now you can begin typing in the math test logic. Start by opening the
listing window and deleting these lines:

select.a.probl~
END . ..

label.scorebox:·

Speed Math 243

The following lines take over after the program has verified that all
of the parameter settings are valid:

select.a.problem:
WINDOW CLOSE 1
LET altl=O :REM reset scorebox counters
LET succl=O
LET pctl:O
WINDOW2
GOSUB label.scorebox
WINDOW 1
next.problem:
FOR Jl:1TO2
LET ng:u(Jl)-l(JI)+ 1
select.rendom:
LET nr:INT(RND*ng)+l(JI)
IF Jl:2 AND opl:2 AND nr>a(1) THEN LET JI= 1: GOTO select.rendom
IF Jl:2 AND opl:4 AND nr:O THEN select.rendom :REM can't+ 0
LET a(jl):nr
NEXT JI

The scorebox counters are reset to zero at the start of each new test.
Then, for operands A and B, the program randomly selects a number
nr that is within the specified range. In the case of subtraction or
division, the program makes a further check to prevent negative differ
ences (subtraction) or division by zero (IF j%=2 AND op%=4 ...).

Given values for A and B and operation op%, the following block
computes the result:

ON opl GOTO add,subtrect,multtply,dMde
add:
LET r:a(1)+a(2)
GOTO show.equatton
subtrect:
LET r=a(1)-a(2)
GOTO show.equatton
multtply:
LET r=a(1)•a(2)
GOTO show.equation

244 Macintosh Program Factory

dMde:
LET r=a(1)/a(2)

The variable r holds the correct result for the indicated operation.

Showing the Equation

The following lines create the test box (as shown in Figures 12-3 and
12-4):

show.equation:
LINE (O,wll(1)*10/ 12)-STEP(wwl(1),0),1
CALL MOVET0(6, wl I(1)* 10/ 12+24)
PRINT 'Type in the answer & press Enter or Return:;
FOR JI= 1 TO 3000
NEXT JI
LET tr=ABS(r*er/100) :REM total allowable error
LET eq$:STR$(a(1))+one.spc$+op$(opl)+STR$(a(2))+one.spcS+· =· +one.spc$
LET eq.tabl:(WWI(1)-WIDTH(eq$)-(fx11(7)-fxl(7)))\2
LET f1d.tabl:eq.tabl+WIDTH(eq$)
CALL MOVETO(eq.tabl,fyl(7)+ 12)
PRINT eq$;
EDIT FIELD 1,"",(f1d.tabl,fyl(7))-(fld.tabl+(fx 11(7)-fxl(7)),fy 11(7)}

The program prompts you to press ENTER when you have typed in
the answer. Then the program prints eq$, which contains the left side of
the equation. The right side is presented as an empty edit field for your
answer.

Timer

The next lines start the timer and wait for you to enter an answer:

TIMER OFF
ON TIMER{tl) GOSUB time.out
LET time.leftl=yesl
SOUND 880,.875
TIMER ON
WHILE DIALOG{0)<>6 AND time.JefUI

WEND
TIMER OFF

Speed Math 245

Tl is the specified time limit in seconds. Time.left% indicates
whether the time limit has expired. The timer is turned on (TIMER
ON) just before the program enters a dialog monitor loop.

The program exits from the monitor loop when you press ENTER or
RETURN or when time.left%=0 (WHILE DIALOG(0)<>6 AND
time.left%).

In the following block, the program checks your answer (the contents
of the edit field):

IF time.leftl THEN skip.buzzer
CALL MOVETO(fld.tabl+(fx 11(7)-fxl(7))+ 12,fyl(7)+ 12)
PRINT "T1me out!·
SOUND 110,9: SOUND 0, 18
sk1p.buzzer:
LET nl:1
GOSUB get.fvalue
LET g:x
LET attl:attl+ 1
IF ABS(g-r)<:tr THEN correct
SOUND 440,2
SOUND 110,2
LET response$:"The answer is·+STR$(r)
GOTO continuation
correct:
LET SUCCl:succl+ 1
FOR fql: 1 TO 4
SOUND fql* 110, 1
NEXT fql
IF r<>g THEN close.enough
LET responses=·correct·
GOTO continuation
c 1 ose.enough:
LET response$:·c1ose enough. Exact answer ts·+STR$(r)

If time has run out, a buzzer sounds. However, the program still
must check to see whether you had already entered the correct answer
when time ran out.

The program checks to see whether your answer is sufficiently close

246 Macintosh Program Factory

to the correct answer (IF ABS(g-r)<=tr ...). When the error tolerance
is 0, ABS(g-r) must equal 0.

The program prepares one of three different responses for an
answer that is outside the error tolerance, inside the error tolerance, or
exactly right. The program updates the scorebox variables att%
(attempts), succ% (successes), and pct% (percentage).

Responding to Your Answer

The next lines control the computer's response to your answer:

continuoti on:
LINE (O,wll(1)~ 10/ 12+ 1)-(wwl(1),wll(1)),0,bf
LET r.tobl=(wwl(1)-WIDTH(response$))\2
CALL MOVETO(r.tobl,fy:C(7)+48)
PRINT response$;
LET pctl:INT(succl/ottl* 100+.5)
WINDOW 2
GOSUB updote.scorebox
WINDOW 1
FOR bl:6TO B
BUTTON bl-5, 1,b1$(bl),(bxl(bl),by:C(bl))-(bx 1l(bl),by1 l(bl)),btl(bl)
NEXT bl
LET eventl=O
WHILE evenll<> 1 AND eventl<>6
LET eventl:DIALOG(O)
WEND
FOR btnl: 1 TO 3
BUTTON CLOSE blnl
NEXT btnl
EDIT FIELD CLOSE 1
CLS
IF eventl=6 THEN next.problem
LET bl=DIALOG(1)
ON bl GOTO end.qutz,next.problem,chonge.porometers

After printing the response and sounding a beep, the program waits
for your next action command. Press ENTER, RETURN, or the NEXT
button to get another equation. Press CHANGE to go back to the speci
fication box. Press QUIT to end the program.

Speed Math 247

Here are the last two subroutines of the Speed Math program:

time.out:
TIMER OFF
LET t1me.1eftl=nol
RETURN
1 ebel.scorebox:
CLS
LET UtleS:·scoREBOIC-
LET t. tebl:(wwl(2)-W I DTH(t 1t1 e$))/2
PRINT PTAB(t.tebl); t1tle$
REM 123456769012345
LET h$:· Succ. AU. Pct:
LET f$:·••• ••• •••·
LET h.tebl:(wwl(2)-WIDTH(h$))/2
PRINT PTAB(h.tebl); h$
updete.scorebqx:
PRINT PT AB(h.tebl) USING f$;succl,ettl,pctl;
RETURN

The time.out subroutine is executed when time runs out while you
are completing an equation. The subroutine signals that fact by setting
time.left%=no% and then returns to the main program so the time out
will be recognized.

The label.scorebox subroutine prints the row and column headings
in the scorebox window. It also includes a subroutine to change only the
scorebox values.

When entering the values for h$ and f$, use the REM 12345 ...
statement as a guide for lining up the letters and symbols correctly.

-Testing the Program----------
Print out the entire program, and check it carefully. Run the program.
Try to get results like those shown in Figures 12-3 and 12-4. Type in
the correct answer and press ENTER before time runs out. Type in the
correct answer, but don't press ENTER. The time out message should
appear, but the program should still recognize your correct answer.

Set the error tolerance to 10 percent and type in an answer that isn't
exactly right but is within 10 percent. You should get a message similar
to that shown in Figure 12-4.

248 Macintosh Program Factory

-Using Speed Math----------
Select an operation and operand ranges that challenge you. Give your
self a generous time limit. When you can answer correctly 90 percent of
the time, reduce the time limit. Keep trying at the new time limit until
you can reach 90 percent again. Repeat the process for various opera
tions and operand ranges.

Now you're ready for life in the fast lane!

Chapter 13

Text Scanner counts the number of words in a document (typed in from
the keyboard or loaded from disk) and sorts them according to fre
quency of use. In other words, the program compiles a vocabulary and
frequency list of all words used in a document.

Text Scanner can help you spot overused words in your own writing
or redo comparative analyses of text from different authors. Using the
results from the Text Scanner program, you can calculate the variety
index of any document. (The variety index is the ratio of vocabulary size
to total words used. For instance, if a 1000-word document uses 780
distinct words, it has a variety index of . 78. A document in which no
word is repeated has a variety index of 1.)

Teachers may find that the program is a convenient way of prepar
ing a vocabulary list for use in conjunction with a reading assignment.

Researchers may find Text Scanner a useful tool for preparing key
word lists. Suppose a 2000-word technical article is to be catalogued
according to its contents. Text Scanner will list every word used in the
document in order of frequency. With this list, you can easily identify
keywords to be used in the catalogue.

249

250 Macintosh Program Factory

If you enjoy the challenge of a good maze, consider the task of designing one.
That turns out to be every bit as difficult, and quite a bit more interesting. In this
chapter, we'll explore the process of maze construction, and then program your
Macintosh to produce an endless supply of mind-boggling mazes of varying
complexity.

One way to start a maze is to picture the floor plan of a house with the walls in
place but no doors. You then add doors until there's just one path between any two
rooms in the house. Last of all, you add an entrance and an exit anywhere you
choose.

Figure 13-1. The sample document used to test the Text Scanner

Finally, Text Scanner may be used in cryptanalysis (codebreaking).
By setting the maximum word length to 1, you can find the frequency
distribution of each letter in the alphabet. This is often the first step in
breaking a cipher. (Cryptography is discussed further in Chapter 17,
Secret Messages.)

Frequency 2 CONSTRUCT I ON PLACE

----------------- DESIGNING PROCESS
DOORS DIFFICULT PRODUCE
HOUSE ENDLESS PROGRAM

ENJOY QUITE
Frequency ENTRANCE ROOMS
----------------- EVERY START
ANYWHERE EXPLORE SUPPLY
BETWEEN FLOORPLAN THERE'S
CHALLENGE INTERESTING TURNS
CHAPTER MACINTOSH UNTIL
CHOOSE MAZES VARYING
COMPLEXITY MIND-BOGGLING WALLS
CONSIDER PICTURE WE'LL

Figure 13- 2. Frequency analysis of the sample document, showing words
with at least five letters

Frequency 51 Frequency 20

E H

Frequency 48 Frequency 19

0 L

Frequency 43 Frequency 16

T u

Frequency 37 Frequency 16

N D

Frequency 35 Frequency 14

A c

Frequency 27 Frequency 13

s v

Frequency 26 Frequency 12

p

Frequency 23 Frequency 11

R F

Text Scanner 251

Frequency 1 O

G
M

Frequency 7

w

Frequency 6

B

Frequency 4

z

Frequency 3

x

Frequency 2

J
v

Frequency

K
a

Figure 13-3. Frequency analysis of the sample document, showing the
letter frequencies

Figure 13-1 shows a sample document used for testing the program.
Figure 13-2 lists the results of a frequency analysis of words at least 5
characters long. Figure 13- 3 lists the results of a frequency analysis of
each letter in the document.

252 Macint.osh Program Fact.ory

-How Text Scanner Works --------
The program has two major functional components: a word finder and
a word filer.

The word finder reads text one line at a time from the keyboard or
from a disk file, depending on which option is selected. The program
examines the line one character at a time. Only a letter or numeral can
mark the beginning of a word. If a character is not a letter, numeral,
hyphen, or apostrophe, it is taken to be a delimiter. A delimiter marks
the end of a word. Hyphens and apostrophes are not delimiters-thus,
didn't and red-hot are treated as single words.

The word filer keeps track of the vocabulary in linked lists. A linked
list is one in which each entry contains a pointer to the next entry in the
list. Entries can be in any physical sequence at all-the pointers keep
them sorted. In an ordinary list, entries must be in the exact physical
order that is called for by the sorting scheme.

Figure 13-4 illustrates the linked list system used by Text Scanner.
The figure shows the contents of frequency folders after analyzing the
sentence, ''.A small step for man, a giant step for mankind." Looking at

Starting folder=#2

Folder# Frequency Next-folder First-word
tag link link

1 1 0 6
2 3 3 1
3 2 1 4

Word# Word Next-word
link

1 A 0
2 SMALL 0
3 STEP 0
4 FOR 3
5 MAN 7
6 GIANT 5
7 MANKIND 2

Figure 13-4. The list structure after analysis of the sentence, "A small
step for a man, a giant step for mankind."

Text Scanner 253

folder #2, you see that it has a frequency tag of 3, indicating that it
contains words that occurred three times in the text.

The first word link for folder #2 is 1. Looking at word number l, you
find the article "A." Thus "A" occurred three times in the text. The next
word link for word # 1 is 0, indicating there are no more words in that
folder.

Going back to frequency folder #2, you see that the next folder link is
3. Folder 3 has a frequency tag of 2 (it contains words that occurred two
times). The first word link for folder 3 is 4. Word number 4 is "FOR."
Thus "FOR" occurred two times in the text.

The next word link for word #4 is 3. Word #3 is "STEP." Thus
"STEP" occurred two times in the text.

You can continue tracing the word links and folder links until you
reach the last word in the last folder (word link=O and folder link=O).

Having a mental picture or model makes it easier to understand
operations with linked lists. Figure 13-5 suggests a useful model for the
lists used in this program.

Using this model, the process of filing a word can be described quite
simply. Each time the program finds a word, it looks to see whether
that word is already contained in one of the folders. If it is not, the
program adds the word to the folder for words of frequency 1. If the
word has already been filed, the program moves the word from its pres
ent folder into the folder for words with the next higher frequency.

Figures 13-6 through 13-18 show various phases in the program's
operation. Scan through them now before continuing.

-Program Listing-----------
The program starts out with descriptive data for the window, buttons,
and edit fields. First, here are the window descriptors:

REM Window descriptor
REM wide long left top
DATA 6.500, 4.150, 0.250, 0.375

Here are the button descriptors:

REM Button descriptors
DATA 16
REM label
DATA Count words only,

wide long hzone vzone type
1.875, 0.208, 0.063, 0.417, 2

254 Macintosh Program Factory

Frequency

-\;2_2 __ 1
3

Folders

Frequency folders

------.WORD
CARDS

Contents of a folder

Figure 13-5. A model for the word filing system

DATA Count words & word frequencies, 3.313, 0.208, 0.750, 0.417, 2
DATA Ignore numbers, 1.875, 0.208, 0.063, 0.500, 2
DATA Count numbers tis words, 3.313, 0.208, 0.750, 0.500, 2
DATA KeyboGrd, 1.125, 0.208, 0.438, 0.667, 2
DATA Disk file, 1.000, 0.250, 0.667, 0.667, 2
DATA OK, 0.750, 0.375, 0.688, 0.916, 1

Text Scanner 255

r .S File Edit '.•i<~<1n h Run Windows

Text Scanner

Est . word count : Mox. vocob. size:

Get text from :

Word length (1-32767)

Min. Mox.

Figure 13-6. The Text Scanner's initial screen at test point 1

DATA UPDATE STATS,
DATA END SCAN,
DATA CONTINUE,
DAT A SCREEN,
DATA PRINTER,
DATA DISK,
DAT A FIND A WORD,
DATA SCAN ANOTHER,
DATA QUIT,

1.750, 0.333, 0.333, 0.667, 1
1.000, 0.333, 0.667, 0.667, 1
1.000, 0.333, 0.600, 0.916, 1
1.000, 0.333, 0.125, 0.666, 1
1.000, 0.333, 0.500, 0.666, I
1.000, 0.333, 0.875, 0.666, 1
1.500, 0.333, 0.125, 0.916, 1
1.500, 0.333, 0.542, 0.916, I
0.750, 0.375, 0.675, 0.916, 1

H.zone and v.zone indicate the relative horizontal and vertical posi
tion within the window. Other values are measured in inches.

Here are the field descriptors:

REM Field descriptors
DATA 4
REM wide long hzone vzone
DATA 0.750, 0.206, 0.375, 0.250
DATA 0.750, 0.206, 0.675, 0.250
DATA 0.666, 0.206, 0.125, 0.956
DATA 0.666, 0.206, 0.333, 0.956

256 Macintosh Program Factory

Text Scanner

Est. word count: 1100 I Max_ vocab. size: lso I

181 Count words only O Count words & word frequencies

181 Ignore numbers O Count numbers as words

Get text from: 181 Keyboard D Disk file

Word length (1-32767)

tttn. l'tax. 0 ~ I • I !so I
Figure 13-7. The Text Scanner's control box

The four fields being defined here are shown in Figure 13- 7; they
are estimated word count, maximum vocabulary size, minimum word
length, and maximum word length.

The following block reads in the window data and converts the data
from inches to screen points (pixels):

READ inches.wide,inches.long,ulcx,ulcy
LET wwl:inches.wicle*72
LET wll=inches.1ong*72
LET WXl:ulcx*72
LET wyl:ulcy*72
LET wx 1 l:WXl+wwl
LET wyll:wyl+wll
w I NDOW 1 ,,(wxl 'wyl)-(wx 11, wy 1 :g) ,3

The next lines read in the button data:

READ nbl
DIM bl $(nbl) ,bxl(nbl) ,byl(nbl) ,bx 1l(nbl),by1 l(nbl) ,btl(nbl)
FOR nl: 1 TO nbl
READ bl $(nl), inches.wide, inches. l ong,h.zone, v .zone ,btl(nl)

LET bx!C(n!C)=(ww!C-inches. wi de*72)*h.zone
LET by!C(n!C):(wl !C-inches.1 ong*72)*v.zone
LET bx I !C(n!C):bx!C(n!C)+i nches. wi de*72
LET by I !C(n!C):by!C(n!C)+i nches. l ong*72
NEXT n!C

Text Scanner 257

Finally, here are the lines that read in the edit field data:

READ nf!C
DIM fx!C(nf!C),fy!C(nf!C),fx I !C(nfl),fy 1 l(nfl)
FOR n!C: I TO nf!C
READ inches.wide,inches.long,h.zone,v.zone
LET fx!C(n!C)=(ww!C-i nches. wi de*72)*h.zone
LET fy!C(n!C)=(wl 1-i nches.1 ong*72)*v.zone
LET fx I !C(n!C):fx!C(n!C)+inches.wide*72
LET fy I l(nl)=fy!C(nl)+inches.long*72
NEXT n!C

Functions, Constants, and Parameters

The next block defines four functions to eliminate repetitious code later
in the program:

DEF FNposint(x):(x:INT(x)) AND (x>O) AND (x<=32767)
DEF FNstrip$(x):RIGHT$(5TR$(x),LEN(STR$(x))-1)
DEF FNc11pletterl(c$):("A"<=c$) AND (cS<="Z")
DEF FNnumer111!C(c$):("0"<:c$) AND (c$<:"9")

FN posint%(x) returns -1 if x is an integer between 1 and 32767.
FNstrip$(x) returns a string representation of the number x without
the usual leading space or minus sign. FNcapletter%(c$) returns -1 if
c$ is a capital letter and 0 if it is not. FNnumeral%(c$) returns -1 if c$
is a numeral and 0 if it is not.

The following block sets up two constant arrays:

DIM device$(2),m$(4)
LET device$(1):"SCRN:"
LET devi ce$(2): "LPT 1 :DIRECT"
FOR j!C: I TO 4
READ m$(j!C)
NEXT j!C
DATA Sc11nner stopped by user request.

258 Macintosh Program Factory

Enter text (empty line to quit):
A sm1111 step for 11 m11n

Enter text (empty line to quit):
a giant step for mankind.

Enter text (empty line to quit):

I

Figure 13-8. The keyboard entry dialog

DATA Analysis completed (reached end of text>.
DATA Anolysis incomplete. Re-do with a larger est. word count.
DATA Anolysis incomplete. Re-do with c Jerger max. vocab. size.

The device names in device$() specify which device is used for sav
ing the results of a frequency analysis. For a higher-quality printout,
you may set device$(2) equal to "LPTl:PROMPT" or "LPTl:".

M$() stores the status messages that are displayed upon completion
of a text analysis.

Here are the other constant and parameter definitions:

LET max.wl=50 :REM maximum word length
LET min.wl= 1 :REM minimum word length
LET max.11=32767 :REM maximum line length
LET yesl:(I = 1)
LET nol=(1 =0)
LET cr$:CHR$(13)+CHR$(10)
LET nu$:"": REM No spaces in quotes
LET hyphen$="-" :REM type a single hyphen inside quotes
LET apostrophe$:"'" :REM type a single apostrophe inside quotes
LET cwfl:yesl :REM count words and frequencies
LET ignl=yesl :REM ignore numerals
LET src.is.kbl:yesl :REM input text from keyboard

Text Scanner 259

Scanner Control Box

The next section of the program lets you specify the type of operation to
be executed ..

First the program prints a title and divides the output window into
six regions.

spec.di a 1 ogue:
CALL TEXTSIZE(1 B)
CALL TEXTFACE(1)
CLS
LET titleS="Text Scanner'"
LET title.htabl:(wwl-WIDTH(title$))/2
LET title.vteibl=(wll- t B)/9
CALL MOVETO(tit 1e.htabl't1t1 e. vtabl)
PRINT "Text Scanner·
CALL TEXTSIZE(12)
LINE (0,wll/6)-STEP(wwl,O)
LINE (O,wll/3)-STEP (wwl,O)
LINE (0,w11*7/12)-STEP (wwl,0)
LINE (0,w11*9/ 12)-STEP (wwl,O)
LINE (wwl/2,w11*9/ 12)-STEP(O,w11*3/ 12)

Next the program labels each of the six window regions:

CALL MOVETO(wwl/ 16,fyl(1)+ 12)
PRINT ·Est. word count:"
CALL MOVETO(wwl/2,fyl(2)+ 12)
PRINT "Max. vocab. size:·
CALL MOVETO(wwl/ 16,byl(5)+ 12)
PRINT "Get text from:·
LET wl.titleS="Word length (t-327671°
LET w1.tabl=(wwl/2-WIDTH(w1.title$))/2
CALL MOVETO(wl.tabl,fyl(3)-30)
PRINT wt.title$
CALL MOVETO(fxl(3)+2,fyl(3)-6)
PRINT "Min."
CALL MOVETO(fxl(4)+2,fyl(4)-6)
PRINT "Max."

Test Point 1

This is a good time to check what you've typed. Print a listing of your
work (in the command window, type LLIST and press ENTER). Check

260 Macintosh Program Factory

Keyboard text
Analysts completed (reached end of text).

Characters read: so. Words read: 11.

List frequency analysis to:

(SCHH1'i) (PJll1'HHI) (DISK J

Other commands:

(1: I ND B IJIOIU)) (SCAN ANOTHER~ ~

Figure 13-9. Results of the text analysis (Count words only)
using the text of Figure 18-8

the listing carefully against the program lines in this chapter. Then
close the listing window, reduce the size of the command window, and
run the program (COMMAND-R). You should see the screen shown in
Figure 13-6.

Adding Control Box Buttons
And Edit Fields

Type in the following lines to add the edit fields shown in Figure 13-7:

EDIT FIELD 4, FNstrip$(meix.wl),(fxl(4),fyl(4))-(fx 11(4),fy 11(4))
EDIT FIELD 3, FNstrip$(min.wl),(fxl(3),fyl(3))-(fx 11(3),fy 11(3))
EDIT FIELD 2,FNstrip$(mwl),(fxl(2),fyl(2))-(fx 11(2),fy 11(2))
EDIT FIELD 1,FNstrip$(ewc),(fxl(1),fyl(1))-(fx11(1),fy11(1))

The following lines create the buttons:

BUTTON 1,2+cwfl,b1$(1),(bxl(1),byl(1))-(bx11(1),by11(1)),btl(1)
BUTTON 2, 1-cwfl,b1$(2),(bxl(2),byl(2))-(bx 11(2),by 11(2)),btl(2)
BUTTON 3, 1-1gnl,b1$(3),(bxl(3),byl(3))-(bx 11(3),by 11(3)),btl(3)
BUTTON 4,2+1 gnl ,b 1$(4) ,(bxl(4) ,byl(4))-(bx 11(4) ,by 11(4)) ,btl(4)

Text Scanner 261

Keyboard text
Analysis completed (reached end of text>.

Characters read: so. Words read: I I.
Vocab. size: 7. Frequencies: 3.

List frequency analysis to:

(SCREEN~ (PRINTER) (DISK)

Other commands:

(FIND A WORD) (SCAN ANOTHER) ~

Figure 13-10. Results of the text analysis (Count words and
word frequencies) using the text of Figure 13-8

BUTTON 5, 1-src.is.kbll,b1$(5),(bxll(5),byll(5))-(bx 11(5),by 11(5)),btl(5)
BUTTON 6 ,2+src.i s.kbl,b1$(6) ,(bxll(6) ,byll(6))-(bx 11(6) ,by 11(6)) ,btl(6)
BUTION 7, 1,bl $(7) ,(bxll(7) ,byll(7))-(bx 11(7) ,by 11(7)) ,btl(7)
BUTTON 8, 1,b 1$(16) ,(bxll(16) ,byll(16))-(bx 1ll(16) ,by 1ll(16)),btl(16)

You can run the program again, but pressing the buttons or clicking
the mouse will cause an error.

The following lines monitor any actions you make within the control
box window:

LET fldl:1
spec.loop:
LET eventll:O
WHILE eventl:O
LET eventl:DIALOG(O)
WEND
IF eventl=6 OR eventl=7 THEN ne><t.field
IF eventll:2 THEN chenge.fteld
IF eventl<> 1 THEN spec.loop
LET btnl:DIALOG(1)
IF btnl=8 THEN qutt.scenner
ON (btnl+ 1)\2 GOTO spec.cwf,spec.ign,spec.src,spec.ok

262 Macint.osh Program Factory

The following block executes your command (keyboard entry or
mouse click):

spec.cwf:
LET cwfll=(btnll=2)
BUTTON 1,2+cwfll
BUTTON 2, 1-cwfll
GOTO spec.1 oop
spec.ign:
LET 1gnll=(btnl=3)
BUTTON 3, Hgnll
BUTTON 4,2+1gnl
GOTO spec.loop
spec.src:
LET src.is.kbll=(btnll=5)
BUTTON 5, 1-src.i s.kbl
BUTTON 6, 2+src.is.kbll
GOTO spec.loop
next.f1eld:
LET fldll=fldll MOD 4 + 1
EDIT FIELD fldl
GOTO spec.loop
cheinge.field:
LET new.fldll:DIALOG(2)
IF new.fldl=fldll THEN spec.loop
LET fldll=new.fldll
EDIT FIELD fldl
GOTO spec.loop

Spec.cwf changes the Count words and word frequencies indicator.
Spec.ign changes the ignore-numbers indicator. Spec.src changes the
source of input (keyboard or disk). Next.field and change.field respond
to your commands to select another field.

Checking Specifications

When you press the OK button, the program checks all of the edit field
entries:

spec.ok:
LET ewc:\IAL(EDIT$(1)) :REM estimeited word count
IF ewc<>INT(ewc) OR ewc<l THEN EDIT FIELD 1: BEEP: GOTO spec.loop
LET x:\IAL(EDIT$(2))

Ftnd e word:
Enter the word
(type en empty line to cancel) ? step
Used 2 ttme(s) tn the text.
Enter the word
(type en empty ltne to cancel) ? I

Figure 13-11. Find a word dialog

Text Scanner 263

IF NOT FNposint(x) OR >e>ewc THEN EDIT FIELD 2: BEEP: GOTO spec.loop
LET mwll=x :REM max vocabulary size
LET mfll:(SQR(B*ewc)-1)/2 :REM maximum distinct frequencies
IF mfll>mwll THEN LET mfll:mwll
LET x:VAL(EDIT$(3))
IF NOT FNposint(x) THEN EDIT FIELD 3: BEEP: GOTO spec.loop
LET min.wll=x :REM minimum word length
LET x:VAL(EDIT$(4))
IF NOT FNpostnt(x) OR >e>32767 THEN EDIT FIELD 4: BEEP: GOTO spec.loop
LET max.wll=x :REM maximum word length
IF min.wll>max.wll THEN EDIT FIELD 3: BEEP: GOTO spec.loop
FOR fll: 1 TO 4
EDIT FIELD CLOSE fll
NEXT fll
FOR bll: 1 TO B
BUTTON CLOSE bll
NEXT bll

The estimated word count (ewe) should be a generous approximation
of the total word length of the document to be analyzed. The program
makes sure you enter a whole number for ewe; the number can be just
about as large as you wish, However, don't make the number exces
sively large; that will slow down the frequency analysis and may cause
the program to run out of memory.

The maximum vocabulary size (mw%) is the largest number of dif
ferent words the program will be able to handle. In the model shown in

264 Macintosh Program Factory

Li st words by frequency:

Frequency 3

A

Frequency 2

FOR
STEP

Frequency

GIANT
MAN
MANKIND
SMALL (CONTINUE~

Figure 13-12. Frequency analysis displayed on the screen

Figure 13-5, mw% is the number of word cards that can be stored in
folders. Again, the number entered should be a generous approxima
tion. Typically, the maximum vocabulary size should be about one half
of the estimated word count.

The maximum number of frequency folders is derived from the
estimated word count. If a document has ewe words, it can have at most

(-1 +J 8Xewc)/2

distinct word frequencies.
The program ensures that the minimum and maximum word length

values min.w% and max.w% are logical and within the range of 1 to
32767. Setting both values equal to 1 causes the program to treat each
letter or number as a word.

If all the entries are acceptable, the program closes the buttons and
edit fields.

Test Point 2

To test the operation of the scanner control box, type in these temporary
lines:

quit.scanner:
end

Text Scanner 265

Run the program. You should see the control box shown in Figure
13-7. Make sure all the check-boxes work properly. Try switching
between

• Counting words only and counting words and word frequencies

• Ignoring numbers and counting numbers as words

• Getting text from the keyboard or from a disk file.

Try various combinations of entries for word count, vocabulary size,
and minimum/maximum word length. Press OK each time you want
the program to check the settings. Whenever you have an invalid setting
(for example, a word count=O), the program should beep and make the
invalid error field active so you can fix it.

Before continuing, find and delete these lines:

Setting Up the Document Scan

The next lines initialize the various counters used during the document
analysis:

CLS
IF cwfl THEN GOSUB fq.setup
LET kfl:O
LET kwl:O
LET sfl:O
LET nc:O :REM floating point so it can count more than 32767 characters
LET wc:O :REM floating point so 1t can count more th8n 32767 words
IF NOT src.is.kbl THEN GOSUB disk.source ELSE CLS
LET cpl:O
LET li$:nu$
LET efl=nol
LET rq.updatel:nol
LET rq.end.scanl:nol

The variables kf% and kw% keep track of the number of frequency
folders and words used. Sf% points to the first folder (Sf%=0 indicates

266 Macintosh Program Factory

Text Scanner

Est. word count: 1300 I Max. vocab. size: I• 00 I

D Count words only ~Count words & word frequencies

~Ignore numbers D Count numbers os words

Get text from: OKeyboerd ~Disk file

Word length (1-32767)

Min. Max. 0 ~ Is I !so I
Figure 13-13. Control box set up for reading text from a disk

file

no folders are in use). Ne is the total character count and we is the total
word count.

Text Analysis

The following block controls the text analysis:

DIALOG ON
LET et:g=no:g
LET ok:g=yes:g
et.loop:
IF rq.update:g THEN GOSUB update: GOSUB seUnterrupt.btns
IF rq.end.scenl THEN LET stop.codel= 1: GOTO quit.enelysis
GOSUB find.next.word
IF LEN(cw$)<min.wl THEN check.et
IF ewl AND cwf:g THEN GOSUB word.filer
IF ok:g AND ew:g THEN LET wc:wc+ 1
check.et:
IF NOT et:g AND o~I THEN et.loop
IF et:g THEN LET stop.code:g=2: REM due to end of text
qui t.ana 1 ysi s:

Name the input file:

Sample teHt ~
snn 0306 Open ~) MPF B 13

Eject

Cancel Drlue

Figure 13-14. Input file specification dialog

CLOSE 1
BUTTON CLOSE 1
BUTTON CLOSE 2
DIALOG OFF

Text Scanner 267

Et% is an indicator for the end of text. Ok% is a filing status indica
tor; ok%=no% means a word could not be filed for some reason. The
repetitive procedure at.loop finds words and files them until one of sev
eral terminating conditions is true: you pressed the END SCAN button
shown in Figure 18-15; the program reached the end of text (et%=yes%);
or the program ran out of frequency folders or word cards (ok%=no%).

Scan Results Window
The following lines show the results of the analysis, as pictured in Fig
ures 18-9 and 18-10:

fe.results:
CLS: ON ERROR GOTO O
IF src.ls.kbl THEN PRINT ·Keyboerd texi- ELSE PRINT f1$
PRINT mSCstop.codel)
LINE (O,w11*6/12)-STEP (wwl,0)
LINE (O,w11*9/12)-STEP (wwl,O)

268 Macint.osh Program Fact.ory

GOSUB show.stats
CALL MOVETO(wwl/ 16,byl(11)-12)
PRINT ·ust frequency analysis to:·
CALL MOVETO(wwl/ 16,byl(14)-12)
PRINT ·other commends:·
FOR bl:l 1 TO 14
BUTTON bl-10, -cwfl, b1$(bl), (bxl(bl), byl(bl))- (bxll(bl), byll(bl)),

btl(bl)
NEXT bl
FOR bl: 15 TO 16
BUTTON bl-10, 1,b1$(bl),(bxl(bl),byl(bl))-(bx 1l(bl),by1 l(bl)),btl(bl)
NEXT bl

These lines wait for you to press one of the buttons:

fa.loop:
WHILE DIALOG(O)<> 1
WEND
LET btnl:DI ALOG(1)
FOR bl:l 1 TO 16
BUTTON CLOSE bl-10
NEXT bl
ON btnl GOTO list.freq, listfreq,list.freq,find.e.word,scen.another,

quit.scanner

The following lines handle the SCAN ANOTHER and QUIT SCANNER
buttons:

scan.another:
IF cwfl THEN ERASE fl, fll, fwl, wd$, wdll
GOTO spec.dialogue
qui t.scenner:
WINDOW CLOSE 1
END

Auxiliary Subroutines

Before presenting the next major portion of the program, here are a
number of subroutines that were called earlier.

The following subroutine lets you select a disk file for input:

disk.source:
CLS

Text Scanner 269

TEXT ANALYSIS IN PROGRESS FOR: MPF 8 13:S8mple text

LBtest results ...

Ch8r8cters re8d:
Voc8b. size:

0.
0.

Words read:
Frequenc1es:

UPDATE STRTS ~) (END SCRN J

0.
0.

Figure 13-15. Screen appearance during analysis of a disk file
document

PRINT "Name the input file:·
LET fi$:FILES$(1, "TEXT")
IF fi $:nu$ THEN scan.another
OPEN fi$ FOR INPUT AS 1
GOSUB update
GOSUB set.interrupt.btns
RETURN

During disk input, the program lets you request an update of the
current document's statistics (as shown in Figure 13-15). The set.inter
rupt. btns subroutine activates the UPDATE STATS and END SCAN
buttons. (During keyboard input, there is no need for periodic updates,
so the buttons are not activated.)

Here is the set.interrupt.btns routine:

set. i nterrupt.btns:
FOR b:g:e TO 9
BUTTON b:g-7, 1,b 1 $(b:g) ,(bx:g(b:g) ,byi(b:g))-(bx 1 :g(b:g) ,by I :g(b:B)) ,bt:g(b:B)
NEXT bl£
LET rq.update,;:no:g
LET rq.end.scan,;:no,;
ON DIALOG GOSUB set.rq.interrupt
RETURN

270 Macintosh Program Factory

MPF B I 3:5ample text
Analysis completed (reached end of text).

Characters read: 560. words read: 39.
Vocab. size: 37. Frequencies: 2.

List frequency analysis to:

(SCREEN) (PRINTER~ (DISK)

Other commands:

(FIND R WORD) (SCRN ANOTHER) ~

Figure 13-16. Final results of text analysis, using the document
shown in Figure 13-1 and counting words with at
least five letters

Pressing the UPDATE STATS or END SCAN button during the
document analysis causes the program to execute the following
subroutine:

set.rq. interrupt:
IF DIALOG(O)<> 1 THEN RETURN
BUTTON CLOSE 1
BUTTON CLOSE 2
CLS
PRINT "Request acknowleged. One moment."
LET which.intl:OIALOG(1)
LET rq.updatel:(whlch.intl= t)
LET rq.end.scanl=(which.intl=2)
RETURN

Sometimes there is a delay of several seconds before the program
can update the statistics or end the scan, so the program immediately
puts a message ("Request acknowledged ... ") on the screen, as shown in
Figure 13-17.

Here are the lines that update the screen statistics:

/

Text Scanner 271

Request acknowleged. One moment.

Figure 13-17. When you press the UPDATE STATS button, this
message appears immediately

update:
CLS
PRINT 'TEXT ANALYSIS IN PROGRESS FOR:"; fi$
PRINT er$; "Latest results .. ."
GOSUB show.stats
RETURN

The next block puts a CONTINUE button on the screen and waits
until you press it (the CONTINUE button is shown in Figure 13-12):

wait.Ok:
BUTTON 1, 1,b1$(10),(bxl(10),byl(1O))-(bx11(10),by 11(1O)),btl(10)
LET eventl=O
WHILE eventl<> 1 AND eventl<>6
LET eventl:DIALOG(O)
WEND
BUTTON CLOSE 1
RETURN

The following lines display the statistics on the screen:

show .stats:
LOCATE 5, 1
REM 123456789012345678901234567
PRINT USING "Characters read: •••••. Words read: •••••:;nc,wc
IF NOT cwfl THEN RETURN
PRINT USING ·vocab. size: ••••• Frequencies: •••••:;kwl,kfl
RETURN

272 Macintosh Program Factory

L 1st wonts by frequency:

Nome the output file: MPF B 13

I fq 1molysis of sample J
Eject

Soue Concel Driue

Figure 18-18. Output file specification dialog when listed to a disk file

Use the REM 1234567 ... statement as an aid in lining up the for
mats in the two succeeding PRINT USING statements.

Word-Counting Logic

Now we're ready to present the section that reads the text and finds
each word. The first block controls the overall process:

find.next. word:
LET ewlS=nolS
LET i WlS:nol
LET cw$:nu$
find.nw.loop:
GOSUB get.next.charocter
IF c$<>nu$ THEN not.null
LET etlS:yeslS
GOTO word.delimlter
not.null:
LET nc=nc+l
IF FNcopletterlS(c$) THEN word.chorocter
IF FNnumercllS(c$) AND NOT ignlS THEN word.character
IF (c$:hyphen$ OR c$:opostrophe$) AND iwl=yesl THEN odd.to.current.word

Text Scanner 273

Ew%=yes% indicates that a word ending has been detected. Iw%=
yes% indicates the program has recognized the beginning of a word.

First the program gets a character c$ from the text. If c$ equals nu$
(the null or empty string), the end of text has been reached. If it doesn't,
the program determines whether the character is a capital letter or a
numeral.

The next lines handle word delimiters:

word.delimiter:
IF iw:C:yes:C THEN LET ew:C:yes:C
GOTO processed.ch1m~cter
word.character:
LET i w:C:yes:C
odd. to.current. word:
LET cw$=cw$+c$
IF LEN(cw$):max.w:C THEN LET ew:C:yes:C
processed.chcirocter:
IF ew:C:no:C AND etl=no:C THEN find.nw.loop
RETURN

The following block controls the character input routine:

get.next.chcircicter:
IF cp:C:LEN(H$) THEN Hne.processed
LET cp:C:cp:C+ 1
LET c$:MID$(11$,cp:C, I)
RETURN
1i ne.processed:
IF ef:C:no:C THEN no.eof
LET c$:nuS
RETURN
no.eof:
IF LEN(lt$):mox.l:C THEN mox.line
LET c$:cr$
GOSUB get.o.line
LET li$:UCASE$(1i$)
RETURN
max.line:
GOSUB get.a.line
LET li$:UCASE$(Ji$)
GOSUB get.next.chorocter
RETURN

27 4 Macintosh Program Factory

Characters are taken from the current line (Ii$) until they have all
been read (cp%=LEN(li$)). Then the program must read another line,
using the following subroutine:

get.a.line:
LET li$:nu$
LET cpl:O
IF src.is.kbl THEN from.kb ELSE from.disk
from.kb:
PRINT er$; "Enter text (empty line to quit):"
LINE INPUT li$
IF 1i$:nu$ THEN LET efl:yesl
RETURN
from.disk:
IF NOT EOF(t) THEN get.disk.line
CLOSE 1
LET efl=yesl
RETURN
get.disk.line:
LINE INPUT •1, li$
RETURN

In the case of keyboard input, the program prints a prompt on the
screen, as shown in Figure 13-8. In the case of disk input, the program
simply reads another line from the disk file.

Test Point 3

To test your work so far, add these lines at the end of the current pro
gram listing:

fq.setup:
word.filer:
RETURN
list.freq:
find.a.word:
GOTO f11.results

After carefully checking a printout of the listing, run the program.
In the scanner control box, select Count words only, because you haven't
yet typed in the frequency counting logic.

Try to duplicate the results shown in Figures 13-7 and 13-8. If you

Text Scanner 275

have a text format disk file (save a Mac Write document in text only
format), you can also select the Disk file box. But remember to select
the Count words only box as well.

Frequency Analysis Logie

Before continuing, delete these lines from the program:

The following block of lines sets up the word filing system:

fq.setup:
PRINT ·setung up the filing system .. :
DIM fl(mfl), f11(mflC), fwlC(mflC), wdS(mwl), wd1lC(mwl)
FOR afl= 1 TO mfl-1 :REM Set up ava11ab1e-f older linkage
LET fll(afl):afl+ 1
NEXT afl
LET fll(mfl):O
LET afl=I
FOR awl= 1 TO mwl-1 :REM Set up available-word-card linkage
LET wd11(awl):awl+ 1
NEXT awl
LET wd11(mwlC):O
LET awl:1
RETURN

Now type in the following lines, which control the overall word-filing
process.

word.filer:
GOSUB search.for. word
IF okl:nol THEN new.word
GOSUB move.word :REM from lts current frequency folder
GOTO put.tn.folder
new.word:

276 Macintosh Program Factory

GOSUB odd.12.word
IF okl=nol THEN no.more.cords
put.i n.f o 1 der:
GOSUB seorch.for.folder
IF okl=yesl THEN folder.exists
GOSUB Ddd.12.folder
IF ok:g=no:g THEN no.more.folders
folder.exists:
GOSUB insert.a.word
RETURN
no.more.folders:
LET stop.codel=3
RETURN
no.more.cords:
LET stop.codel=4
RETURN

On entry to the word filer, CW$ contains the latest word to be recog
nized by the word counting logic.

The first step in filing a word is to see if it has been previously filed.
These lines locate the word:

seorch. for. word:
LET okl=no:g
LET cfl:sfil :REM Stort with first folder
LET pf:g:o
look.inside.folder:
IF cf:g:o THEN RETURN
LET cw:g:fw:g(cf:g) :REM Start with first word in the folder
LET pw:g:o
sfw.loop:
IF cwl=O THEN next.folder :REM no more cords in this folder
IF wd$(cwle)<>cw$ THEN next.word
LET okl:yesl :REM Found the word
RETURN
next.word:
IF wd$(cwle)>cw$ THEN next.folder :REM not in this folder
LET pwl:cw:g
LET cwl=wdl:g(cwle)
GOTO sfw.loop
next.folder:
LET pfl:cfl
LET cfl=fll(cf:g)
GOTO look.inside.folder

Text Scanner 277

The program looks through each folder until the word is found or
the last folder is checked (in which case ok% is set to no%).

If a word has already been filed, it must be moved to the next-higher
frequency folder. The following lines remove the word from its present
folder:

move.word:
LET fqll:fll(cfll)+ 1
IF pwll<>O THEN not.the.first.word
LET fwll(cfll)=wdlll(cwl)
GOTO fix.folder
not.the.first. word:
LET wdl ll(pwl)=wdl l(cwl)
fix.folder:
IF fwll(cfll)<>O THEN RETURN :REM If folder isn't empty, return
IF cfll<>sfl THEN not.first.folder :REM Is empty folder the 1st folder?
LET sfl=flll(cfl) :REM If yes, then reset the first-folder link
GOTO discard.folder
not.first.folder:
LET flll(pfl)=fll(cfl)
di scard.f o 1 der:
LET flll(cfl)=afl
LET afl:cfl :REM Discarded folder is now at top of unused folder list
LET kfl:kfl-1
LET fl(cfl):O
RETURN

In the case of a new word, the following lines put the word in the
frequency 1 folder:

add.ti. word:
IF awl>O THEN get.a.word.card
LET okl=nol
RETURN
get.a. word.ct1rd:
LET okl=yesl
LET swl:awl
LET awl:wdll(awl)
LET kwl=kwl+ 1
LET wd$(swl)=cw$
LET cwl=swl
LET fql:1
LET wdlll(cwl)=O
RETURN

278 Macintosh Program Factory

When a word is being moved up to the next-higher frequency folder,
the following lines locate the desired folder:

search.for. f o 1 der:
LET okll=noll
LET cfll=sfll :REM Start at first folder
LET pfll=O
sff.loop:
IF cfl:O THEN RETURN
IF fll(cfl)<>fQI THEN folder.not.found.yet
LET okl:yesl :REM Found 1t
RETURN
folder.not.found.yet:
IF fll(cfll)<fqll THEN RETURN :REM Should have found it by now, so qult
LET pfl:cfl
LET cfll=flll(cfll) :REM Check next folder
GOTO sff.loop

If the folder is not found, the program must create a folder. The next
block performs that function:

8dd.a.folder:
IF 8fl>O THEN get.an.unused.folder
LET okll=noll
RETURN
get.an.unused. f o 1 der:
LET okll=yesll
LET sqll:afll
LET afll:flll(afll)
LET kfl:kfll+ 1
LET fl(sqll):fqll
LET fll(sqll):cfll
LET fwll(sqll):O
LET cfll:sqll
IF pfll>O THEN not.the.first.folder
LET sfll:cfl
RETURN
not.the.first.folder:
LET flll(pfll):cfll
RETURN

Once a folder has been located for the word, the following lines
insert the word among the other words in that folder:

i nsert.6. word:
LET swll:cwll
LET cwll:fwll(cfll)
LET pwll=O
compare.with.current.word:
IF cwll:O THEN insert.here
IF wd$(swl)<wd$(cwll) THEN insert.here
LET pwl:cwll
LET cwll=wdlll(cwl)
GOTO compare.with.current. word
insert.here:
IF pwl>O THEN fix.pw.pointer
LET fwll(cfll):swll
GOTO point.to.word
fix.pw.pointer:
LET wdlll(pwll)=swll
point. to. word:
LET wdl ll(swll)=cwll
LET cwll=swll
RETURN

Text Scanner 279

That's the end of the filer logic. Now we continue with the logic to
display the frequency analysis results.

List by Frequency Command

Pressing SCREEN, PRINTER, or DISK activates these lines:

list.freq:
CLS
PRINT "List words by frequency:"
IF btnll<3 THEN LET fo$:device$(btnll) ELSE LET fo$:FILES$(0,"Name the

output file:")
IF fo$:nu$ THEN ft1.results
ON ERROR GOTO file.err
OPEN fo$ FOR OUTPUT AS 1
IF sfll:O THEN lbf.done

On entry to this routine, btn% equals l, 2, or 3, depending on
whether you selected the screen, printer, or disk as an output device for
the list. In the case of disk output, the program prompts you to specify
the output file ·name, as shown in Figure 13-18.

280 Macintosh Program Factory

After setting up the specified output device, the following lines print
the list:

LET cfl=sfl
LET line.numbe~=O
new .frequency:
PRINT• 1,
PRINT• I, USING "Frequency •••••"; f:g(cf:g)
PRINT•l, "-----------------Q
LET 1ine.numbe~=line.numbe~+3
IF btn:g= 1 AND 1 i ne.number:g>= 16 THEN GOSUB wai t.ok: LET 1 i ne.numbe~=O
LET cw:g=fw:g(cf:g)
pri nt..next. word:
PRINT• I, wd$(cw:g)
LET line.numbe~=line.numbe~+ 1
IF btn:g= 1 AND line.numbe~>= 16 THEN GOSUB wait.Ok: LET line.numbe~=O
LET cwll=wdJ:g(cw:g)
IF cw:g>o THEN print.next.word
LET cfl:fl:g(cfl)
IF cf:g>o THEN new.frequency
lbf.done:
PRINT• I,
CLOSE 1
PRINT "End of list."
GOSUB wait.Ok
GOTO fa.results
file.err:
IF ERR<50 THEN ON ERROR GOTO 0
BEEP
PRINT"Output file error."
CLOSE 1
GOSUB wait.Ok
RESUME fa.results

Finally, here's the block that handles the FIND A WORD button:

find.a.word:
CLS
PRINT "Find a word:"
fw.loop:
LET cw$:nu$
PRINT "Enter the word"
INPUT "(type an empty line to cancel) ";cw$

LET cw$=UCASE$(cw$)
IF cw$:nu$ THEN fo.results
GOSUB seorch.for.word
IF ok%:no% THEN word.not.found
PRINT "Used ";f%(cf%);" time(s) in the text."
GOTO fw.loop
word.not.found:
PR I NT "Not used in the text."
GOTO fw.loop

Text Scanner 281

This block generates a dialog like that shown in Figure 13-11. The
program takes the word you enter, converts it to uppercase, and
searches through all the frequency folders for a matching word.

-Using the Program
Now you can test the frequency analysis portion of the program.

In the scanner control box, select Count words and word frequencies
and Keyboard. Now try to duplicate the keyboard entries and analysis
shown in Figures 13-8, 13-10, 13-11, and 13-12.

Next save the program on disk and use a word processing program
like Mac Write to make a sample text file. You may want to enter the
exact text shown in Figure 13-1 so you can check the program's opera
tion against what is shown in this chapter. Save the document in text
format (in Mac Write, use the Save as. . . command and specify Text
only).

Now run the Text Scanner program and try to duplicate the dialogs
and results shown in Figure 13-2 and Figures 13-13 through 13-17.

Next set the minimum and maximum word length in the scanner
control box to 1 and read the sample text file again. Your results should
match those shown in Figure 13-3 (if you copied the sample text from
Figure 13-1).

When running the program, you'll notice it takes quite a while to
analyze a document. Most of the delay is in filing the words. As the
vocabulary grows, the filing delay increases. If it suits your purposes,
you can minimize the delay by setting a minimum word length of 3, 4, 5,
or more.

Chapter 14

Your Macintosh is a whiz at many forms of arithmetic: binary, decimal,
hexadecimal, integer, floating point, and so forth. But try using a sim
ple Roman numeral like MIX where the Macintosh expects a number
and the computer will accuse you of making a syntax error.

In this chapter we present a program that fills in the void in the
Macintosh's education. The program enables the computer to convert
those confusing strings of Roman letters into familiar Arabic numbers,
and vice versa.

Apart from the pleasure of seeing your computer grow smarter, you
might even find a few practical uses for the program. After all, Roman
numerals are everywhere-on public monuments and buildings, in
movie credits, copyright notices, book prefaces, and outlines. Further
more, you can sharpen your understanding of the common Arabic or
decimal system by considering the Roman way.

Before presenting the program, we'll review the Roman numeral
system.

-Refresher Course in Roman Numerals ---
The Roman system uses seven letters: M, D, C, L, X, V, and I, repre
senting the quantities 1000, 500, 100, 50, 10, 5, and l, respectively. Any

283

284 Macintosh Program Factory

positive whole number may be represented using these seven letters.
In the old Roman system, numbers are always written left to right in

order of magnitude, largest first. The resultant number is the sum of its
constituent letters, as in MD DCCI= lOOo+ 50o+ lOo+ lOo+ 1=1701.

The modern Roman system (used in this chapter) allows certain two
letter combinations in which the magnitude of the smaller number of
the reversed pair is subtracted from the larger number. For example,
CIX = 10o+(10-1)= 109.

Compared with the old Roman system, the modern Roman system
allows more compact representations of numbers that contain 4s and 9s,
as shown in the following examples:

Decimal
4
49
1492
1984

Old Roman

1111
XXXXVIIII
MCCCCLXXXXII
MDCCCCLXXXIIII

Modern Roman

IV
XLIX
MCDXCII
MCMLXXXIV

Only six reverse-magnitude pairs are allowed: rv; IX, XL, XC, CD,
and CM. In general, the second member of a pair must be only 5 or 10
times greater than the first. Thus, IM is not a valid representation of
999 because M is 1000 times greater than I. CMXCIX is the correct
Roman numeral for 999.

In the modern Roman system, a letter may be used at most three
times in succession. For instance, CCCC is not a valid representation of
400; CD must be used instead. The only exception is that the letter M
may be used in unbroken succession any number of times.

There are also two restrictions on the use of the six reversed pairs:

• Reversed pairs may only be used when the numeral preceding the
pair is greater than the second member of the pair. As a result,
sequences like DCD and CCD are not allowed.

• A numeral following a reversed pair must be smaller than the
first member of the reversed pair. By this rule, CMD is invalid.

-Converting Roman to Arabic-------
Since the context of a letter is often critical in determining its value, we
start with a table showing the value that is given to the second letter in
the sequence for all possible two-letter combinations (see Table 14-1).

Roman Numerals 285

Table 14-1. Values for Roman Numeral Sequences

M D c L x v
M 1000 500 100 50 10 5

D 0 0 100 50 10 5

c 800 300 100 50 10 5

L 0 0 0 0 10 5

x 0 0 80 30 10 5

v 0 0 0 0 0 0

I 0 0 0 0 8 3

Note: To find the value of Roman letter b when preceded by letter a, read the
number at the intersection of row a and column b.

The table shows the result of going from one symbol to another dur
ing the evaluation of a numeral. To find the value of letter b when pre
ceded by letter a, look at the intersection of row a, column b. If the
intersection contains a positive number, add that number to the running
total. Illegal sequences are indicated by O's in the table.

Notice that for a V after an I, you add 3, not 5. But previously you
saw IV= 5-1. The contradiction is only apparent: the net effect of the
sequence is the same, because for the letter I, you always add 1 accord
ing to the table. In other words, IV=l +3=4.

Let's work through a longer conversion using the numeral MDIV.
When evaluating the first letter, there is no previous letter to con

sider, so you take the letter's value, in this case 1000, as the initial run
ning total.

Now, to process the second letter in the numeral, D, find the inter
section of row M (previous letter) and column D (current letter) in Table
14-1. The result is 500, indicating that you must add 500 to the running
total (1000+500=1500).

To process the third letter, I, get the contents of row D, column I,
which is 1, and add it to the running total (1500+1= 1501). To process
the final letter (V), get the contents of row 1, column V, which is 3, and
add it to the running total (1501+3=1504, the decimal equivalent of
MDIV).

286 Macintosh Program Factory

-Converting Arabic to Roman------
Converting from Arabic to Roman is simpler. We start with the under
standing that any decimal number d can be expressed as a sum of
Roman numeral elements:

d = a•M + b•CM + c•D + d•CD + e•C + f•XC + g•L + h•XL + i•X
+ j•IX + k•V + l•IV + m•I

The letters a through m represent non-negative numbers. Thus, con
verting from Arabic to Roman is simply a matter of factoring out each
of these values (the Arabic equivalents of M, CM, and so forth) from the
Arabic number, and replacing each occurrence of a factor with the cor
responding Roman symbol.

To factor a particular term, subtract it from the decimal number d
repeatedly until the result is smaller than the term you are factoring.
As an illustration, we'll convert 2411 into a Roman numeral:

Factoring steps Cumulative R.oman numeral

2411 - M = 1411
1411- M = 411
411- CD= 11
11-X=l
1-1=0

M
MM
MMCD
MMC DX
MMCDXI

The final value in the right-hand column tells us that 2411 decimal
equals MMCDXI Roman.

-The Program------------
The first block contains descriptors for the window, buttons, and edit
fields used in the program.

REM Window descriptor
REM wide, long, left, top
DATA 4.000, 3.000, 1.500, 0.750
REM Button descriptors
DATA5
REM label, wide long hzone vzone type

DATA Roman to Arabic, 1.750, 0.208, 0.500, 0.375, 2
DATA Arabic to Romtm, 1.750, 0.208, 0.500, 0.500, 2
DATA OK, 0.750, 0.333, 0.500, 0.875, 1
DATA QUIT, 0.750, 0.333, 0.675, 0.675, 1
DAT A MENU, 0.750, 0.333, 0.125, 0.875, 1
REM Field descriptor
REM wide I ong hzone vzone
DAT A 2.000, 0.208, 0.500, 0.375

The next block reads in the window data:

READ inches.wide, inches.Jong, ulcx, ulcy
LET wwl:inches.wide*72
LET wll:inches.long*72
LET WXl:ulcx*72
LET wyl:ulcy*72
LET wx 1 l=wxl+wwl
LET wyll:wyl+wll

The program uses only one window.

Roman Numerals 287

Here is the corresponding logic for reading the button data:

READ nbl
DIM bl$(nbl),bxl(nbl),byl(nbl),bx 1l(nbl},by1 l(nbl),btl(nbl)
FOR nl= 1 TO nbl
READ bl$(nl),inches.wide, inches.Jong, hzone, vzone,btl(nl)
LET bxl(nl)=(wwl-inches. wide*72)*hzone
LET byl(nl)=(wl I-inches.I ong*72)*vzone
LET bx 1 l(nl)=bxl(nl)+inches.wide*72
LET by 1 l(nl):byl(nl)+inches.long*72
NEXT nl

And here is the routine to read the edit field data:

READ inches.wide, inches.Jong, hzone,vzone
LET f xi:(wwl-i nches. wi de*72)*hzone
LET fyl=(wl 1-i nches.1 ong*72)*vzone
LET fx 1 l=fxl+inches.wide*72
LET fy 1 l:fyl+inches.long*72

Look through the sample screens shown in Figures 14-1 to 14-7 to
locate the various buttons and edit fields used in the program.

288 Macintosh Program Factory

Program Constants

The next block defines the constants that determine the text's appear
ance within the output window:

WINDOW 1,,(wxll,wy:tn-(wx 11,wy 114:),3
CALL TEXTFONT(2) :REM New Vork
CALL TEXTFACE(1) :REM bold
CALL TEXTMODE(1) :REM overprint
LET t.main$:"Roman Numerals"
LET t.mai n. tabl=(wwll-W IDTH(t.m8in$))/2
LET t.rto8$:"Convert Rom8n to Arabic·
LET t.rto8. t8bl:(wwl-W I DTH(t.rtoa$))/2
LET t.ator$:"Convert An1bic to Rom8n"
LET t.8tor. tabl=(wwl-W I DTH(t.ator$))/2
DEF FNstri p$(n):R I GHT$(STR$(n) ,LEN(STR$(n))-1)
LET convll= 1 :REM def8ult selection is Roman TO Arabic
LET yesl=(1 = 1)
LET nol=(1 =0)

Loading the Roman Numeral Sequence Table

The following lines load in a copy of the sequence table (Table 14-1).

DIM tl(7, 7),1 :1:(7), fl(13), f c$(13)
FOR trll: 1 TO 7
FOR tel: 1 TO 7
READ tl(trll,tcl)
NEXT tcl,trl
DATA 1000, 500, 100, 50, 10, 5, 1
DATA 0, 0, 100, 50, 10, 5, 1
DATA 800, 300, 100, 50, 10, 5, 1
DATA 0, 0, 0, 0, 10, 5, 1
DATA 0, 0, 80, 30, 10, 5, 1
DATA 0, 0, 0, 0, 0, 0, 1
DATA 0, 0, 0, 0, 8, 3, 1
FOR tel: 1 TO 7
READ ll(tcl)
NEXT tel
DATA 4,3,3,2,2, 1, 1
FOR nl:l TO 13
READ fl(nl)
NEXT nl

FOR n~:I TO 13
READ f c$(n~)

NEXT n~

Roman Numerals 289

DATA 1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, I
DATA M, CM, D, CD, C, XC, L, XL, X, IX, \I, IV, I
LET c$:"MDCLX\ll"

T%(,) is the sequence table. 1%() stores the order of magnitude of
each Roman numeral: 4 indicates thousands (M), 3 indicates hundreds
(D and C), 2 indicates tens (L and X), and 1 indicates units (V and I).
F%() stores the 13 factors used in Roman-to-Arabic conversions, and
FC$() stores the Roman numerals corresponding to each factor.

The variable c$ stores the seven symbols of the Roman system in de
scending order of magnitude.

The Menu

The next block presents the menu shown in Figure 14-1:

mo1n.menu:
CLS
PRINT

Roman Numerals

IZ! Roman to Arabic

D Arabic to Roman

(QUIT)

Figure 14-1. Main menu of the Roman-to-Arabic program

290 Macintosh Program Factory

PRINT PT AB{t.ma1n.tabl); t.main$
FOR nl:l TO 2
BUTTON nl, 1-(convl=nl), b1$(nl), (bxl(nl), byl(nl))- (bx 1 l(nl),

by 1 l{nl)), btl(nl)
NEXT nl
FOR nl:3 TO 4
BUTTON nl, 1,b1${nl),(bxl(nl),byl{nl))-(bx 1l(nl),by1 l(nl)),btl(nl)
NEXT nl
mm.loop:
LET eventl=O
WHILE eventl:O
LET eventl:DIALOG(O)
WEND
IF eventl=6 THEN option.selected :REM Pressed Enter or Return
IF eventl<> 1 THEN mm.loop :REM Ignore all others except buttons
LET sell:DIALOG(1) :REM Which button was pressed?
ON sell GOTO change.conv,change.conv,option.selected,quit

The program repeats the mm.loop procedure until an option is
selected. At that point the program jumps to one of the routines con
tained in the following block:

change.conv:
LET convl=sell :REM Note which was selected
BUTTON 1,3-convl :REM Update button status
BUTTON 2,convl
GOTO mm.loop
option.selected:
FOR nl=1TO4
BUTTON CLOSE nl
NEXT nl
CLS
ON convl GOSUB roman.to.arabic, arabic.to.roman
GOTO main.menu
quit:
WINDOW CLOSE 1
END

The change.conv routine switches the current conversion type from
Roman to Arabic or vice versa. The option.selected routine activates the
conversion procedure indicated in the check-boxes. The quit routine
ends the program.

Convert Roman to Arabic

Enter Roman number:

lmcm:axi'!I

(MENU) (QUIT)

Roman Numerals 291

Figure 14-2. Entering a Roman numeral for conversion

Roman-to-Arabic Program Logic

The following lines start the Roman-to-Arabic conversion by presenting
the screen shown in Figure 14-2:

romDn. to.DrDbi c:
PRINT
PRINT PTAB(t.rtoD.tDbl); t.rtoD$
LET n$=nu$
CALL MOVETO(t.rtoa.tDbl,fyl-6)
PRINT "Enter RomDn number:"
rtoD.loop:
GOSUB field.dialogue
IF btnl:2 THEN quit
IF n$:nu$ OR btnl:3 THEN RETURN
LET n$:UCASE$(n$)
CALL MOVETO(fxl,fyl+ 12)
PRINT n$
LET tl:O
LET fl=nol
LET p11=4

292 Macintosh Program Factory

LET pcl:l
LET ocl=l
LET d~=l
LET rc~=O

The field.dialogue subroutine presents the edit field shown in Figure
14-2 and waits for you to enter a value. The program then re-displays
that value, converted to uppercase and stored inn$ as shown in Figure
14-3, and starts the conversion process.

Tl% is the running total of the number being converted. F% is a sta
tus variable indicating whether the letter read previously was part of a
reverse pair.

Cc% and Cl% (not introduced in the program yet) store the corre
sponding information about the current character. Pl% and pc% store
the order of magnitude and the column number of the previous charac
ter (M=column 1, D=column 2, and so forth). Oc% is the column
number of the character preceding the previous one. Initially, there are
no previous characters corresponding to cc% and oc%, but the structure
of the program requires values for them anyway. In effect, the program
acts as if the previous two characters are both M.

The variable d% points to the position of the current character

Convert Roman to Arabic

Enter Roman number:
MCMXXXIV

Arabic equivalent is:

1934

Figure 14-3. Result of a Roman-to-Arabic conversion

Roman Numerals 293

within n$. Re% counts the number of times the current character has
been used in succession. If re% exceeds 3, the Roman numeral is invalid,
unless the character is M.

Now that the counters are set up, the program extracts the character
at position d%:

next.cher8cter:
LET f$:MID$(n$,dl, I)
LET eel: INSTR(I ,c$,f$)
IF ccl:O THEN inY81id.Ch8r8cter
LET cll=ll(ccl)
IF ccl<>pcl THEN LET rel= I ELSE LET rcl:rcl+ I
IF rcl>3 AND eel<> I THEN too.meny
IF fl=yesl AND cll>=i:>ll THEN invelid.sequence
LET vl:tl(pcl,ccl)
IF Yl:O THEN inY81id.sequence
LET tl:tl+vl
IF ccl>=pcl THEN not.8.reverse.p8ir
IF ll(ocl)<=Pll THEN inv81ld.sequence

The first three lines ensure that the character is one of the seven
Roman letters. If it is, cl% stores its order of magnitude. The program
checks whether the character is repeating (IF cc%< >pc% ...) and
whether it forms a valid sequence with the preceding character (LET
v%= ... and IF v%=0 THEN invalid.sequence).

If the sequence is valid, the program determines whether it is a re
versed pair (IF cc%>=pc% THEN not.a.reverse.pair).

The next block of lines handles valid sequences:

LET fl=yesl
LET cll:ll(pcl)
GOTO character.ok
not.a.reverse.p8i r:
LET fl=nol
character.Ok:
LET pll:cll
LET ocl:pcl
LET pcl:ccl
LET dl:dl+I
IF dl<=LEN(n$) THEN next.cher8cter
CALL MOVETO(t.rtoa.t8bl,fyl+36)
PRINT "Ar8bic equivelent is:·

294 Macintosh Program Factory

CALL MO'v'ETO(fxl,fyl+56)
PRINT FNstrip$(t1)
GOTO pause.rtoo

The first three lines identify reversed pairs. The next two lines iden
tify non-reversed pairs. The character.ok routine advances to the next
character in the numeral until none is left, at which time the program
prints the accumulated decimal value tl.

Here are the lines that handle invalid sequences and characters:

i nva 1 id.character:
GOSUB show .err
CALL MO'v'ETO(t.rtoa. tabl ,f yl+ 36)
PRINT "Invalid charocter."
PRINT PTAB(t.rtoa.tobl); ·use only {M,D,C,L,)(,'v',I}"
GOTO pause.rtoo
too.mony:
GOSUB show.err
CALL MO'v'ETO(t.rtoa.tabl,fyl+36)
PRINT "Too many ";f$; ··sin a row:
PRINT PTAB(t.rtoa.tabl); "Limit is 3."
GOTO pause.rtoa
i nva 1 id.sequence:
GOSUB show .err
PRINT PTAB(t.rtoa.tobl); ·1nvolid sequence."
pause.rtoa:
GOSUB pause
LINE (O,fylU-Cwwl,wll),O,bf
GOTO rtoa.loop

Three error routines are included: invalid.character, too.many, and
invalid.sequence. All use the show.err subroutine to place an underscore
beneath the character that triggered the error condition, as shown in
Figures 14-4 and 14- 5.

Arabic-to-Roman Program Logic

The following block presents the screen shown in Figure 14-6:

arabi c. to.roman:
PRINT
PRINT PT AB(t.otor.tobl); t.etor$

Roman Numerals 295

Convert Roman to Arabic

:Enter Roman number:
MIM

Invalid sequence.

Figure 14-4. Roman-to-Arabic error notice identifying an
out-of-place character

Convert Roman to Arabic

:Enter Roman number:
XXTII

In valid. character.
Use only {M.D.c.L.X,V,I}

Figure 14-5. Roman-to-Arabic error notice identifying an
invalid character

296 Macintosh Program Fact.ory

Convert Arabic to Roman

inter the Arabic number:
11642 I

(MENU) (OK J (QUIT)

Figure 14-6. Entering an Arabic numeral for conversion

LET n$:nu$
CALL MOVETO{t.rtoo.tobl,fyl-B)
PRINT ·Enter the Arobic number:·
otor.loop:
GOSUB field.diologue
IF btnl=2 THEN qu1t
IF n$:nu$ OR btnl=3 THEN RETURN
CALL MOVETO(fxl, fyl+ 12)
PRINT n$
LET n:VAL(n$)
IF n<=O OR n<>INT(n) THEN inY81id.8r8b1c
LET r$:nu$
LET fll= 1.

The field.dialogue subroutine waits for you to enter a value into the
edit field. Next the program ensures that you have entered a positive
whole number (IF n<=O or n< >INT(n) ...).

R$ builds the string of Roman numerals; each time a factor is sub
tracted from the number, the corresponding symbol is concatenated to
R$. Fl% is an index pointing to the current factor. For instance, when
fl%=1, f%(fl%)=1000, and fc$(fl%)="M".

Here's the program logic that factors the number n:

subtract.current.factor:
LET nt=n-fSC(flSC)
IF nt<O THEN next.factor
LET r$:r$+fc$(flSC)
LET n:nt
GOTO subtract.current.factor
next.factor:
LET flSC:flSC+ 1
IF fll<= 13 THEN subtroct.current.f octor
CALL MOVETO(t.rtoo.tobl,fyl+36)
PRINT "Romon equivalent is:·
CALL MOVETO(fxl,fyl+56)
PRINT r$
GOSUB pause
LINE (O,fyl)-(wwl,wll),O,bf
GOTO ator.loop

Roman Numerals 297

This routine subtracts the current factor f%(fl%) from the Roman
numeral n. If the result nt is less than 0, the current factor is too large,
so the index is advanced to the next factor. Otherwise, the Roman sym
bol corresponding to the factor f%(fl%) is concatenated to r$, the old
value of n is replaced with the value of nt, and the program attempts to
subtract the factor again.

This process continues until all 13 factors have been tried. At this
point, r$ contains the final value in Roman form. The program displays
the result, as shown in Figure 14-7.

The following routine handles invalid Arabic numbers:

i nva 1i d.arobi c:
CALL MOVETO(t.rtoa.tebl,fyl+36)
PRINT "Not a positive whole number."
GOSUB pause
LINE (O,fyl)-(wwl,wll),0,bf
GOTO ator.loop

Auxiliary Subroutines

The following subroutine creates an edit field and waits for you to enter
a value (the edit field is seen in Figures 14-2 and 14-6):

field.dialogue:
LET n$=nu$

298 Macintosh Program Factory

Convert Arabic to Roman

Enter the Arabic number:
1642

Roman equivalent is:
MDCXLII

Figure 14-7. Result of an Arabic-to-Roman conversion

LET btnl:O
EDIT FIELD 1,n$,(fxl,fyl)-(fx 11,fy 11)
FOR bl:l TO 3
LET bnl:bl+2
BUTTON bl, 1,b1$(bnl), (bxl(bnl), byl(bnl))- (bx 1 l(bnl), by 1 l(bnl)),

btl(bnl)
NEXT bl
LET eventl=O
WHILE eventl<>6 AND eventl<> 1
LET eventl:DIALOG(O)
WEND
IF eventl:6 THEN LET btnl= 1 ELSE LET btnl:DIALOG(1)
LET n$:EDIT$(1)
EDIT FIELD CLOSE 1
FOR bl: 1 TO 3
BUTTON CLOSE bl
NEXT bl
RETURN

The following pause subroutine creates a button on the screen and
waits for you to press it or type RETURN or ENTER:

pe1use:
BUTTON 1, 1,bl $(3) ,(bxl(3) ,byl(3))-(bx 11(3) ,by 11(3)) ,btl(3)

WHILE DIALOG(O)=O
WEND
BUTTON CLOSE 1
RETURN

Roman Numerals 299

Finally, here is a subroutine that puts an underscore beneath the
character at position d% in the string n$. The subroutine is used to high
light invalid entries for Roman numerals.

show.err:
LET p 1 ~=fx~+WIDTH(LEFT$(n$,d:g-1))-2
LET p2:g=WIDTH(MID$(n$,d:g, 1))+2
LINE (p 1~.fyJt:+14)-STEP(p2:g,o)
RETURN

-Testing and Using the Program -----
After comparing a printout of what you've typed with the program list
ing as it appears in this chapter, run the program. You should be able to
duplicate the results shown in Figures 14-1 to 14-7. The program will
convert any positive whole number into Roman numeral form, and any
Roman numeral into Arabic form. However, large Arabic numbers
requiring a long succession of M's cannot fit within the output window.
To convert such numbers, enter only the portion of the number smaller
than 1000, and then prefix the appropriate number of M's onto the
result given by the program. For instance, to convert 32767, enter the
value 767 and prefix 32 M's to the Roman equivalent the program gives
for 767.

Chapter 15
> ~ • • o 'H >

-~-P@tr.y -~Generator

The Macintosh can't really write poetry any more than it can paint a
picture or conceive an idea. You can, however, use the Poetry Generator
program to combine randomly selected words and fit them into a
grammatical skeleton. The result will occasionally pass for a real poem
but more often will stand as a silly but entertaining bit of doggerel.

The vocabulary and poem structure that you provide make a big
difference in the quality of the final results. While an arbitrary list of
words may produce interesting and ·surprising results, a carefully
chosen set of words tends to give the poems more coherence.

Ideally, the vocabulary should be chosen to suit the intended gram
matical structures as well - that way you can minimize cases of incor
rect subject/verb agreement or incorrect verb forms.

To illustrate the possibilities, the favorite words and verse formats of
three poets were entered into the Poetry Generator. The results are
shown in Figure 15-1. The poems were edited to eliminate obvious
grammatical errors; otherwise they are straight from the Mac.

301

302 Macintosh Program Factory

William Shakespeare
Shall I compare thee to a minion's bosom?
Thou are more tyrannous and more twain
Saucy senses do assail the obsequious lips of sense,
and nymph's music hath all too tender a muse.
Shall I compare thee to a tomb's duty?
Thou art more seemly and more marigold.
Sovereign loves do assail the tender minions of love,
And syllable's actor hath all too decrepit a sphere.

Emily Dickinson
The bird covets her own victory;
Then guesses the company;
In her silent truth buzz no more.
The definition presumes her own thing;
Then covets the victory;
Of her condensed journey buzz no more.
The thing presumes her own civility;
Then advocates the nectar;
With her forbidden victory perish no more.

Robert Frost
The guests are arched, yellow. and reluctant,
But I have seeds to wake,
And grounds to find before I dwell,
And orchards to stop before I hear.
The birches are snowy, long, and lone,
But I have stones to wake,
And steeples to see before I look,
And birches to prefer before I taste.

Figure 15-1. Poems produced by the Poetry Generator, using the
words and verse formats of William Shakespeare, Emily
Dickinson, and Robert Frost

-How the Poetry Generator Works -----
Two data structures determine the type of poems produced: the vocabu
lary, which is entered from the keyboard or loaded from a disk file, and
the poem format, which is entered from the keyboard.

Along with each word in the vocabulary, you must indicate the part
of speech, using the eight abbreviations: \nn (noun), \aj (adjective), \av
(adverb), \pr (preposition), \vt (verb transitive), \vi (verb intransitive),

Poetry Generator 303

\sc (subordinate conjunction), \cc (coordinate conjunction). Given this
information, the program determines which words satisfy the specifica
tions given in the poem format you design.

-Designing a Poem Format --------
First write down a one- to six-line poem model. Then replace each part
of speech (except for articles and other words that you want to appear
verbatim) with the corresponding part of speech. As an example, sup
pose you take this verse as a model:

The dewdrop hangs from a twig
in late winter -
a window into spring.

The grammatical structure for that verse is:

The noun verb-intransitive preposition a noun
preposition adjective noun -
a noun preposition noun.

Notice we've replaced most words with their grammatical descrip
tions but have left the articles and punctuation intact. Now replace the
part of speech with the appropriate abbreviation:

The \nn \vi \pr a \nn
\pr \aj \nn-
a \nn \pr \nn.

Now you have a generalized, abbreviated poem format that the com
puter can understand.

As the computer reads the poem format, it replaces each code with a
randomly chosen word taken from the appropriate grammatical
category.

The Poetry Generator does not check for subject and verb agree
ment, the proper spelling of articles ("a" before consonants, "an" before
vowels), the proper spelling of plural nouns, and so forth. If your vocabu
lary list includes verbs in the third person singular and your format
includes a plural subject, you will end up with incorrect results like

The glum bull and the blue moon
stalks the rebellious highway.

·304 Macintosh Program Factory

Don't hesitate to edit your Macintosh's poems for grammatical cor
rectness. After all, even real poets occasionally need a little help.

-The Program------------

The first three program blocks contain descriptive data for the win
dows, buttons, and edit fields, in the same sequence used in most of the
previous chapters. Here is the data for the windows:

REM Window descriptors
DATA2
DATA 3.25, 4.125, 0.125, 0.375
DATA 3.25, 4.125, 3.625, 0.375

The left margin, top margin, width, and length are given in inches.
The first window is used for all of the dialogs; the second window is
used for displaying the poems.

The next lines describe the program's 14 dialog buttons:

REM Button descriptors
DATA 14
DAT A Set poem format, 2.000, 0.206, 0.125, 0.250, 3
DATA Load words, 2.000, 0.206, 0.125, 0.333, 3
DATA Type 1n new words, 2.000, 0.206, 0.125, 0.417, 3
DATA Save words, 2.000, 0.206, 0.125, 0.500, 3
DATA Edit/review words, 2.000, 0.206, 0.125, 0.563, 3
DATA Make poems, 2.000, 0.206, 0.125, 0.666, 3
DATA QUIT, 2.000, 0.206, 0.125, 0.633, 3
DATA MENU, 1.000; 0.333, 0.500, 0.956, 1
DATA Screen, 1.000', 0.206, 0.500, 0.417, 2
DATA Printer, 1.000, 0.206, 0.500, 0.500, 2
DATA Disk me, 1.000, 0.206, 0.500, 0.563, 2
DATA POEM, 1.000, 0.333, 0.500, 0.613, 1
DATA BACK, 1.000, 0.333, 0.250, 0.750, 1
DATA FWD; 1.000, 0.333, 0.750, 0.750, 1

Here are the edit field definitions:

REM Field descriptors
DATA 10
DATA 0.500, 0.206, 0.675, 0.125
DATA 2.750, 0.206, 0.667, 0.206

DATA 2.750, 0.208, 0.667, 0.292
DATA 2.750, 0.208, 0.667, 0.375
DATA 2.750, 0.208, 0.667, 0.458
DATA 2.750, 0.208, 0.667, 0.542
DATA 2.750, 0.208, 0.667, 0.625
DATA 1.000, 0.208, 0.667, 0.333
DATA 1.000, 0.208, 0.500, 0.250
DATA 2.000, 0.208, 0.500, 0.333

Poetry Generator 305

To find each of the buttons and edit fields described in these lines,
scan through the sample screens shown in Figures 15-2 through 15-11.

The next three blocks read in the data, converting inches to display
units (pixels) where necessary. First the windows:

READ nw:t:
DIM wwl(nw:t:), wl :t:(nw:t:), wx:t:(nw:t:), wyl(nwl), wx 1 l(nwl), wy 1 :g(nw:g)

FOR n:t:= 1 TO nwl
READ inches.wide, inches.long, ulcx, ulcy
LET wwl(nl)=inches.wide*72
LET wl l(nl)=i nches.1 ong*72
LET wxl(nl)=ulcx*72
LET wyl(nl)=ulcy*72
LET wx 1 l(nl)=wxl(nl)+wwl(nl)
LET wy 1 l(nl):wyl(nl)+wl l(nl)
NEXT nl

Now the buttons:

READ nb:t:
DIM b 1 $(nb:t:) ,bxl(nbl) ,byl(nbl) ,bx 1 :t:(nb:t:) ,by 1 :t:(nbl) ,bt$(nb$)
FOR nl= 1 TO nbl
READ b1$(nl),inches.wide, inches.long, hzone, vzone, btl(n$)
LET bxl(nl):(wwl(1)-inches.wide*72)*hzone
LET byl(nl):(wll(1 Hnches.long*72)*vzone
LET bx 1 l(nl)=bxl(nl)+inches.wide*72
LET by 1 l(nl)=byl(nl)+inches.1 ong*72
NEXT nl

And finally the edit fields:

READ nf:t:
DIM fx:t:(nf:t:),fy:t:(nfl),fx 1l(nfl),fy1 l(nfl)
FOR nl= 1 TO nfl

306 Macintosh Program Factory

READ inches.wide, inches.long, hzone, vzone
LET fxl(nl)=(wwl(1)-inches.wide*72)*hzone
LET fyl(nl):(wll(1 Hnches.1ong*72)*vzone
LET fx 1 l(nl)=fxl(nl)+inches.wide*72
LET fy 1 l(nl)=fyl(nl)+inches.1ong*72
NEXT nl

Program Constants and Word List Arrays

This next block sets up constant values and arrays for storing informa
tion about the vocabulary:

DIM w. type$(8) ,knl(B),pnll(B) ,device$(3)
FOR UC: 1 TO 8
READ w.type$(tl)
NEXT ti
DATA nn, Dj, DY, pr, vt, Yi, SC, cc
LET b.widl=.5*72 :REM width of ecich word-type button

LET b.lenl=.208*72 :REM length of eDch word-type button
LET YD1id.codes$:"\NN\AJ\A\l\PR\YT\Vl\SC\CC" :REM no speces inside

quotes
LET nu$="" :REM no spcices inside quotes
LET device$(1):"SCRN:"
LET device$(2)="LPT 1 :DIRECT"
LET devtce$(3):"DISK"
LET mDrk$:"\ • :REM no spcices
LET yesl=(1 = 1)
LET nol=(1 =O)
LET nwl=O :REM number of words
LET nll=O :REM number of lines per poem
LET wd.ltmttl:SOO
LET mDx.poemsl= 1 oo
DIM w1$(0), wtl(O) ,nnl(O) ,Djl(O),prl(O),civl(O) ,vtl(O), Yil(O) ,scl(O) ,ccl(O)

W.type$() stores the abbreviated codes for each word type. Kn%()
keeps a count of the number of words in each grammatical category.
Pn%() is used while sorting the words into categories. Device$() con
tains the names of the three output devices (SCRN: for the screen, LPT
1: for the printer, and DISK for disk files).

WI$() and wt%() store the individual words and word type (l=noun,
2=adjective, and so forth). Nn%() stores pointers to each noun, aj%()
stores pointers to each adjective, and so forth. For instance, if the

Poe~y Generator

~Set poem format

O Load words

O Type in new words

0 Scu•<~ uiord~

O Editfnwieu• uiord~

Q !'oi<lk <~ fl(J(Hll~

QQUIT

Figure 15-2. Main menu of the Poetry Generator

Poetry Generator 307

second noun is stored in w1$(3), then wt%(3)=1, indicating a noun, and
nn%(2)=3.

The Main Menu

The following lines create the dialog box shown in Figure 15-2:

WINDOW 1,,(wxl(1),wyl(1))-(wx11(1),wy11(1)),3
CALL TEXTMODE(O) :REM overprint text
CALL TEXTFONT(2) :REM New York
me1n.menu:
CALL TEXTFACE(1) :REM bold
CALL TEXTSIZE(12)
LET ttt1e.me1n$:·Poetry Generator"
LET ttt1e.me1n.tebl=(wwl(1)-WIDTH(tltle.meiin$))/2
CLS
PRINT PT AB(tlt1e.mei1n.teibl); ttt1e.mei1n$
CALL TEXTFACE(O)

308 Macintosh Program Factory

CALL TEXTSIZE(12)
BUTTON 1, 1,b 1$(1) ,(bx:C(1) ,by:C(1))-(bx1I(1) ,by 1:C(1)) ,bt:C(1)
BUTTON 2, 1,bl $(2) ,(bx:C(2) ,byl(2))-(bx 11(2) ,by 11(2)) ,btl(2)
BUTTON 3, 1,bl $(3) ,(bxl(3) ,byl(3))-(bx 11(3) ,by 11(3)) ,btl(3)
BUTTON 4, -(nwl>O) ,b 1$(4) ,(bxl(4) ,byl(4))-(bx 11(4) ,by 11(4)) ,btl(4)
BUTTON 5,-(nwl>0),b1$(5),(bxl(5),byl(5))-(bx 11(5),by 11(5)),bt:t:(5)
BUTTON 6, -(nwl>O AND nll>O), b1$(6), (bxl(6), byl(6))- (bx11(6),

by11(6)), btl(6)
BUTTON 7, 1,bl $(7) ,(bxl(7) ,byl(7))-(bx 11(7) ,by 11(7)) ,btl(7)

Notice from the figure that three of the commands are disabled:
Save words, Edit/Review words, and Make poems. These commands are
not enabled until you have typed in or loaded a word list and provided a
poem format.

The next block waits for you to press one of the dialog buttons and
responds accordingly:

LET eventl=O

WHILE eventl<> 1
LET eventl:DIALOG(O)
WEND
LET btnl:DIALOG(1)
FOR bl:l TO 7

. BUTTON CLOSE bl
NEXT bl
IF btnl=7 THEN quit
ON btnl GOSUB set.fmt, load.wds, type.in.wds, sove.wds, edit.wds,

make.poems
GOTO main.menu
quit:
WINDOW CLOSE 1
WINDOW CLOSE 2
END

Each of the major commands is handled by a subroutine. Upon
returning from a subroutine, the program starts over and displays the
main menu.

Test Point 1

To test your work thus far, try to run the program. You should be able to
get the screen shown in Figure 15-2. However, pressing any of the but
tons will cause an "undefined label" error at this point.

SET POEM FORMAT

Poem lengtll (1-6 lines): -

Le&ed:
\NN N>tin \AJ adjective \PR preposition
\AV adverb \VT trans Vb \VI intrans.Vb.
\SC subordinate con1. \CC coord. conj.

MENU

Poetry Generator 309

Figure 15-3. Dialog box for setting the poem format

Setting Up the Poem Format

The next block starts the poem-formatting process by presenting the
screen shown in Figure 15-3:

set.fmt:
CLS
PRINT ·set Poem Format"
CALL MOVET0(6,fy:C(I)+ 12)
PRlffT "Poem length (1-6 lines):"
CALL TEXTSIZE(9)
CALL MOVETO(O,fy 1 :&(7)+24)
CALL TEXTFACE(1) :REM bold
PRINT. Legend:"
CALL TEXTFACE(O) :REM light
REM 12345678901243567890123456789012435
PRINT· \NN noun \AJ adjective \PR preposition·
PRINT • \AV adverb WT trans.vb. WI intrans.vb."
PRINT· \SC subordinate conj. \CC coord. conj."

310 Macintosh Program Factory

CALL TElITSIZE(12)
EDIT FIELD 1,STR$(n11),(fxl(1),fyl(1))-(fx1I(1),fy11(1))
BUTTON 1' 1, b1$(6) ,(bxl(6) ,byl(6))-(bx 11(6) ,by 11(6)) ,btl(B)
GOSUB show.formot
LET fldll:l
LET new.fl di= t

When typing in the "legend" data (\NN noun ...) use the REM
1234 ... line as a guide for lining up the letters properly.

The next block comprises a dialog monitor loop to handle changes to
the poem format and requests to return to the menu:

set.fmt.loop:
LET eventll=O
WHILE eventl:O
LET eventl:DIALOG(O)
WEND
IF eventl= 1 THEN set.fmt.done :REM Pressed MENU
IF eventl=6 OR eventl= 7 THEN next.field :REM Enter, Return, or Tob
IF eventll<>2 THEN set.fmt.loop :REM ignore unless 8 field wos selected
LET new.fldl:DIALOG(2) :REM Which field?
IF fldll=new.fldl THEN set.fmt.loop :REM Didn't chonge fields
IF fldll<> 1 THEN select.field :REM Didn't chonge the poem length
GOSUB check.poem.length
IF NOT length.Oki THEN length.err

The following lines handle changes to the poem length as well as
requests to edit a different field:

check. f ormot.1 i st:
IF nlll:X THEN select.field
LET nlll:X
GOSUB show.formot
select.field:
IF fldl> 1 THEN LET fmt$(fldll-1):EDIT$(fl di)
LET fldll:new.fldll
EDIT FIELD fldl
GOTO set.fmt.loop
next.field:
IF nlll:O THEN LET new.fldl:2 ELSE LET new.fldl:(fldl MOD (nll+ 1))+1
IF fldl<> 1 THEN select.field
GOSUB check.poem.length

SET POEM FORMAT

Poem length (1-6 lines) EJ
I !Thought for the Day

2 .

~================= 3 I When \nn is \aj and

4. l\nn is \av \aj

5 11 like to \vt \nn

6. l\sc the \nn \vis

Leaeu :
\NN noun \AJ adjective \PR preposition
\AVedverb \VTtrens .v'.b . \ VI intrans vb .
\SC subordinate con1 . \CC coo rd . con1

(MENU ~

Figure 15-4. A completed poem format

IF length.ok:g THEN check.formet.list
1 ength.err:
BEEP
LET new.fld:g= 1
GOTO select.field

Poetry Generator 311

The check.format.list routine takes over after you change the poem
length. Select.field and next.field respond to requests to change fields
(pressing ENTER or RETURN or clicking on an inactive edit field).

The next block contains subroutines that check the length of a newly
entered poem and create the necessary number of edit fields to accom
modate the poem, as shown in Figure 15-4:

check.poem.1 ength:
LET x:VAL(EDIT$(1))
LET length.ok:g:(x:INT(x) AND X>= 1 AND X<:6)
RETURN
show.formet:

312 Macintosh Program Factory

LINE (O,fyi(2)-1)-(wwi(1),fy1i(7)+1),0,bf :REM Erase old fields

IF nlle=O THEN RETURN
FOR fjg:2 TO nli+ I
CALL MOVET0(6,fyjg(fi)+ 12)
PRINT USING "•."; fjg-1
EDIT FIELD fjg,fmt$(fjg-1) ,(fx:C(f:C), fy:C(f:C))-(fx 1 %(f:C), f y 1 :g(f:g))
NEXT f%
RETURN

The following lines complete the logic for setting the format:

set.fmt.done:
IF fld:C> 1 THEN LET fmt$(fld%-1):EDIT$(fld:C): GOTO exit.set.formot
GOSUB check.poem. I ength
IF NOT length.ck% THEN length.err
check.f ormot.1 isl:
IF nl:C:x THEN exit.set.format
LET nl:C:x
GOSUB show.format
GOTO select.field
exit.set.format:
FOR fi: 1 TO 7
ED IT FI ELD CLOSE fi
NEXT fi
BUTTON CLOSE 1
RETURN

These lines are executed when you press the MENU button. If one of
the poem format fields was active, the program saves its latest value in
the format list (IF fldo/o>l THEN LET fmt$(fldo/o-l)=EDIT$(fldo/o) ...).

Then the exit.set.format procedure closes the edit fields and buttons
and returns to the main menu.

Entering a New Word List

The next block creates the screen shown in Figure 15-5:

type.in.wds:
CLS
CALL TEXTFACE(1) :REM bold
PRINT "TVPE IN NEW WORDS"
CALL TEXTFACE(O) :REM regular
CALL MOVET0(6,fy:C(6)-4)

TYPE IN NEW WORDS

Maximum number of words
(1- 500)-

~

OK

CANCEL

Figure 15- 5. Dialog box for typing in new words

PRINT" Moximum number of words"
PRINT " (1 -'"; wd.limit~;'") : "

Poetry Generator 313

EDIT FIELD 1,STR$(nw~),(fx%(8),fy%(8))-(fx 1%(8),fy1 %(8))
BUTTON 1, 1, "OK" ,(bx%(12) ,by%(12))-(bx 1%(12) ,by 1%(12)) ,bt%(12)
BUTTON 2, 1,"CANCEL ",(bx%(8) ,by%(8))-(bx 1 %(8) ,by 1 %(8)) ,bt%(B)

You may specify a maximum vocabulary size up to the value of
wd.limit%, which is arbitrarily set to 500 earlier in the program. How
ever, the maximum vocabulary size depends on how much memory your
Mac has and how long your words are.

When specifying the maximum vocabulary size, it's a good idea to
enter a generous amount (more than you need at that moment), so you
can add words to the list later.

The next block waits for you to enter the desired maximum or press
the CANCEL button (leaving the word list in its previous form):

mw.loop:
LET event%=0
WHILE event~=O

314 Macintosh Program Factory

LET eventl=DIALOG(O)
WEND
IF eventl=6 THEN check.max.wds
IF eventl<> 1 THEN mw.loop
LET btnl:DIALOG(1)
IF btnl=2 THEN exit.set.max.wds
check.max.wds:
LET x:VAL(EDIT$(1))
LET max.wd.okl:(x:INT(x) AND X>= 1 AND)((:Wd.limitl)
IF max.wd.okl THEN reset.word.lists
BEEP
GOTO mw.loop
exit.set.max. wds:
EDIT FIELD CLOSE 1
BUTTON CLOSE 1
BUTTON CLOSE 2
RETURN

If you press the CANCEL button, the program returns to the main
menu without changing the existing word list (if any exists). Otherwise,
the following block resets the word list arrays to accommodate the
newly specified size:

reset. word.1 i sts:
EDIT FIELD CLOSE 1
BUTTON CLOSE 1
BUTTON CLOSE 2
LET nwl=x
ERASE w1$,wtl
DIM w1$(nwl),wtl(nwl)

Entering, Editing, and Reviewing Words

The next block presents the screen shown in Figure 15-6:

edit.wds:
CLS
CALL TEXTFACE(1) :REM bold
PRINT "ENTER/EDIT /REVIEW WORDS"
CALL TEXTFACE(O) :REM regular
PRINT
PRINT "Voc11bulary size:"; nwl
FOR bl:l TO B

Poetry Generator 315

ENTl!:R/EDIT /REVIEW WORDS

Vocabulary size: 200

Word• 28

Onn Oaj 181 au Opr

Out Oui Osc Dec

(BRCK) (FWD

MENU it)

Figure 15-6. Dialog box for entering, editing, and reviewing words

LET b.x:C: 16+((b:C-1) MOD 4)* 1.3*b.w1d:C
LET b.y:C:fy 1:C(1O)+16+((b:C-1)\4)*1.5*b.len:C
BUTTON b:C, 1, w .type$(b:C) ,(b.x:C ,b.y:C)-(b.x:C+b. w1d:C ,b.y:C+b.len:C) ,2

NEXT b:C
FOR b:C:13 TO 14
BUTTON bl-4, 1,b 1 $(b:C) ,(bxl(b:C) ,byl(b:C))-(bx 1 :C(bl) ,by 1 :C(bl)) ,btl(bl)
NEXT bl
BUTTON 11, 1,b 1$(8) ,(bxl(B) ,by:C(6))-(bx 1 :C(B) ,by 11(6)) ,btl(6)
LET cwl= 1 :REM start with first word in the list
last.wtl:O

Cw% points to the current position in the word list. Last. wt% keeps
track of the word type of the most recently edited word.

The following lines complete the screen shown in Figure 15-6:

edit.loop:
CALL MOVET0(6,fyl(10)-12)
PR I NT ·word •"; cwl

316 Macintosh Program Factory

EDIT FIELD 1, w1$(cw:C),(fx:C(1O),fy:C(10))-(fx 1I(1O),fy1:C(1 O))
FOR b:C:I TO 8
IF wt:C(cw:C):O THEN LET wt:C(cwl):ltist.wt:C
LET b.on:C:(bl:wt:C(cw:C))
BUTTON b:C, 1-b.on:C
NEXT b:C

The variable b.on% determines which one of the eight word-type
boxes is selected, depending on the word type of the current word,
wt%(cw%).

The following block waits for a dialog event:

wait.edit.event:
LET event:C=O
WHILE eventl:O
LET eventl:DIALOG(O)
WEND
IF event:C:6 THEN forward
IF event:C<> 1 THEN wait.edit.event
LET edit.btn:C:DIALOG(1)
IF edit.btni<9 THEN ch1mge.word.type
ON edit.btn:C-8 GOTO beck,forwerd,exit.edit
chenge. word. type:
IF wt:C(cw:C)<>O THEN BUTTON wti(cwi), 1 :REM Deselect old type
LET wt:C(cwl):edi t.btni
BUTTON wti(cw:C),2
GOTO weit.edit.event

Pressing one of the eight check-boxes activates the change. word.
type routine. Pressing ENTER or RETURN is equivalent to pressing the
Forward (FWD) button, which displays the next word in the list. The
next block accomplishes this.

forwerd:
LET w1$(cwl):EDIT$(1)
IF w1$(cwl):nu$ THEN LET wti(cwl):O
LET lest.wt:C:wti(cwi) :REM s11ve lotest word type

LET cw:C:(cw:C MOD nw:C)+ 1 :REM move to next word
GOTO edi t.1 oop
beck:
LET wl $(cw:C):ED IT$(1)
IF w1$(cwl):nu$ THEN LET wt:C(cw:C):O

Poetry Generator 317

LET l6st.wtl=wt:ti(cwl) :REM S6Ye 16t.est word type
IF cw:C= 1 THEN LET cw:C:nw:C ELSE LET cwl:cw:C-1 :REM preced;ng word
GOTO edit.loop
exit.edit:
LET wl $(cwl):ED IT$(1)
IF w1$(cw:C):nu$ THEN LET wtl(cwl):O
IF w1$(cwl)<>nu$ AND wtl(cwl):O THEN BEEP: GOTO W6it.edit.event
EDIT FIELD CLOSE 1
FOR bl:l TO 11
BUTTON CLOSE bl
NEXT bl

If you skip to the next field while leaving the previous word field
empty, the program ensures that the word type is 0 (undefined). If you
enter a word, the program will not let you move to the next word until
the word type is also specified (IF w1$(cw%)< >nu$ AND wt%(cw%)
=0 ...).

Sorting the New Word List

Each time you enter a new word list or edit an existing one, the pro
gram must sort the list again. The words are sorted according to the
eight grammatical categories:

CLS
PRINT ·sorting the words .. :
ERASE kn:C,pnl
DIM knl(B),pnl(B)
FOR cwl= 1 TO nwl :REM count how m6ny words of e6ch type
IF wtl(cwl)=O THEN next.word.6 :REM skip empty entr;es
LET knl(wtl(cw:C)):knl(wtl(cw:C))+ 1
next. word.6:
NEXT cw:C
ERASE nn:C,6jl,6Yl,prl,vt:C, vi:C,scl,ccl
DIM nnl(knl(1)), 6 j l(kn:C(2)) ,6Yl(knl(3)) ,prl(knl(4))
DIM vtl(knl(5)), vi l(knl(6)) ,scl(knl(7)) ,ccl(knl(B))

First the counter and pointer arrays kn%() and pn%() are set to
zero. Then the program counts the number of nouns, adjectives, and so
forth. Next the program creates a suitably sized array for each word
type (DIM nn%(kn%(1)) ...).

318 Macintosh Program Factory

The following lines read through the word list wl$() to set up the
proper values in the index arrays like nn%():

FOR cwl: 1 TO nwl
IF wtl(cwl)=O THEN next.word.b
LET pnl(wtl(cwl)):pnl(wtl(cwl))+ 1
ON wtl(cwl) GOTO noun,adj,adv,prep,verbt,verbi,subj,conj
noun:
nnl(pnl(1)):cwl
GOTO next.word.b
adj:

a j l(pnl(2)):cwl
GOTO next.word.b
odv:
avl(pnl(3)):cwl
GOTO next.word.b
prep:
prl(pnl(4)):cwl
GOTO next. word.b
verbt:
vtl(pnl(5)):CWI
GOTO next. word.b
verbi:
vil(pnl(6)):cwl
GOTO ne)(t. word.b
subj:
scl(pnl(7)):cwl
GOTO next.word.b
conj:
ccl(pnl(8)):cwl
ne)(t.word.b:
NEXT cwl
RETURN

Upon completion of these lines, nn%(i) gives the location of the ith
noun in the word list wl$(), aj%(k) gives the location of the kth adjec
tive, and so forth.

After this categorization process, the program returns to the main
menu.

Making Poems

The Make poems command activates these lines:

make.poems:
LET npl: 1
LET deYicel= 1 :REM output to screen
make.poems.again:
CLS
CALL TEXTFACE(1)
PRINT "MAKE POEMS"
CALL TEXTFACE(O)
CALL MOVET0(6,fyl(9)-12)
PRINT "How meny poems (1 -·; max.poemsl; "):"

Poetry Generator 319

EDIT FIELD 1,STR$(npl),(fxl(9),fyl(9))-(fx 11(9),fy 11(9))
CALL MOVET0(6,byl(9)-4)
PRINT ·output to:·
FOR bl=9 TO 11
LET b.onl:((bl-8):devicel)

BUTTON
bl-B, 1-b.onl,b1$(bl),(bxl(bl),byl(bl))-(bx 1l(b:l),by1 :l(b:l)),btl(b:l)

NEXT bl
BUTION 4, 1,b1$(12),(bxl(12),byl(12))-(bx 11(12),by 11(12)),bt:l(12) :REM

poem
BUTION 5, l ,b 1 $(8) ,(bxl(8) ,byl(8))-(bx 11(8) ,by 11(8)) ,bt:l(8) :REM menu

These lines create the screen shown in Figure 15- 7, prompting you to
specify the number of poems to be generated and the output device.

The next block waits for your command:

mp.loop:
LET eventl=O
WHILE eventl=O
LET eventl:DIALOG(O)
WEND
IF eventl:6 THEN GOSUB check.mp: IF mp.okl THEN mp.ready ELSE mp.loop
IF eventl<> 1 THEN mp.loop
LET btnl:DIALOG(1)
IF btnl<4 THEN change.device
IF btnl:5 THEN exit.mp
GOSUB check.mp
IF mp.okl THEN mp.ready ELSE mp.loop

320 Macintosh Program Factory

MAKE POEMS

How many poems (1 - 100)

Output to: -
~Screen

D Printer

D Disk file

POEM~

MENU

Figure 15- 7. This dialog box lets you specify the poem quantity. and
output device

The following lines respond to requests to change the output device,
return to the menu, and change the number of poems to generate.

change.deYice:
BUTTON deYicel, 1
LET deYicel=btnl
BUTTON deYicel,2
GOTO mp.loop
exit.mp:
EDIT FIELD CLOSE 1
FOR bl:1TO5
BUTTON CLOSE bl
NEXT bl
RETURN
check.mp:
LET x:VAL(EDIT$(1))
LET mp.okl:(X:INT(x)) AND (x>O) AND (X<=max.poemsl)
IF NOT mp.Oki THEN BEEP ELSE LET npl:x
RETURN

Poetry Generator 321

Once the poem quantity and output device are set, the following lines
close the edit field and buttons and open the output device:

mp.re8dy:

EDIT FIELD CLOSE 1
FOR bl= 1 TO 5
BUTTON CLOSE bl
NEKT b:C
CLS
LET fo$:device$(devicel)
CALL TEKTFACE(1)

-PRINT "OUTPUT"; npl; "TO"; FO$
CALL TEKTFACE(O)
IF device:C<3 THEN device.ready
LET fo$:FILES$(0,"Name the output file")
IF fo$:nu$ THEN make.poems

The disk is handled specially, since you must specify the output file
name. The FILES$ function waits for you to enter a valid file name.

Poem Generation

The next lines read in the lines of the poem format and locate every
abbreviated grammatical code:

device.ready:
WINDOW 2,,(wxl(2),wy:C(2))-(wx 1:C(2),wy11(2)),3
WINDOW 1
OPEN fo$ FOR OUTPUT AS 1
BUTTON 1, 1,"CANCEL",(bx:C(12),byl(12))-(bx 11(12),by 11(12)),btl(12)
WINDOW OUTPUT 2
FOR poem:C: 1 TO npl
FOR linl: 1 TO nll
LET clin$:fmt$Clinl)
LET 11enl:LEN(clin$)
LET c.pos:C= 1
WHILE c.posl<=llen:C
LET m8rk.posl= I NSTR(c.posl ,cl in$,mark$)
IF mark.posl:O THEN finish.line
IF devicel<> 1 THEN PRINT MID$(clin$,c.pos:C,mark.pos:C-c.posl);
PRINT "'1, MID$(clin$,c.posl,mark.posl-c.posl);
LET code$=UCASE$(M I D$(c 1i n$,mark.posl ,3))
LET whichl:INT((INSTR(1,Y81id.codes$,code$)-1)/3)+ t

322 Macintosh Program Factory

IF whichl=O THEN Hterel.chen1cters
LET c.posl:mark.posl+3
IF knl(whichl)=O THEN none.eveileble
LET word.ptrl: INT(RND*knl(whichl))+ 1

Llen% is the length of the current format line clin$. C.pos% is the
current position within clin$. To locate the grammatical codes, the pro
gram searches for occurrences of the "\" mark. If there are no occur
rences to the right of c.pos%, the program prints out the rest of the line
from c.pos onward and proceeds to the next line.

After finding a "\" mark, the program examines the three-character
sequence beginning with " \" to see if it matches one of the grammatical
abbreviations contained in valid.codes$. If it does match, the variable
which% indicates the word type (l=noun, 2=adjective, and so forth). In
that case, the computer randomly selects a word pointer word.ptr%.

The next lines read a word from the appropriate category:

ON whi chi GOTO get.nn,get.aj,get.ev ,get.pr,get. vt,get. vi ,get.sc ,get.cc
get.nn:
LET rendom.word$=w1 $(nnl(word.ptrl))
GOTO print.random. word
get.ej:
LET random. word$:w1 $(e j jg(word.ptrl))
GOTO print.rendom. word
get.ev:
LET rendom. word$=w1 $(11vjg(word.ptrl))
GOTO print.random. word
get.pr:
LET random.word$:w1$(prl(word.ptrl))
GOTO print.r11ndom.word
get.vt:
LET random.word$=w1$(vtl(word.ptrl))
GOTO print.r11ndom.word
get.vi:
LET random. word$:w1 $(vi jg(word.ptrl))
GOTO print.random. word
get.SC:
LET random. word$:w1 $(sci(word.ptrl))
GOTO print.random. word
get.cc:
LET random. word$:w1 $(cc jg(word.ptrl))
print.random. word:
IF devicel<> 1 THEN PRINT random.word$;

PRINT •1, nmdom.word$;
GOTO next.position
none.ctvctilctble:
IF devicel<> 1 THEN PRINT code$;
PRINT • 1, code$;
GOTO next.position

Poetry Generator 323

If the word category is empty, the none.available routine simply
prints out the three-letter code in place of a randomly chosen word.

Here's the routine that prints the remainder of a line containing no
more codes and the routine that prints a literal character (that is, any
character that is not part of a code):

f i ni sh.1 i ne:
IF devicel<> 1 THEN PRINT RIGHT$(clin$,llenl-c.posl+ 1);
PRINT • 1,RIGHT$(clin$,llenl-c.posl+ 1);
LET c.posl:llenl+ 1
GOTO next.position
1itent1.chantcters:

IF devicel<> 1 THEN PRINT MID$(clin$,mctrk.posl, 1);
PRINT • 1,MID$(clin$,mark.posl, 1);
LET c.posl:c.posl+ 1
next.poslti on:
WEND
IF devicel<> 1 THEN PRINT
PRINT•t,
NEXT linl
IF devicel<> 1 THEN PRINT
PRINT•t,
IF DIALOG(O): 1 THEN LET poeml:npl
NEXT poeml
WINDOW 1
CLOSE 1
CLS
PRINT "Finished."
GOSUB woi t.ok
WINDOW CLOSE 2
GOTO mctke.poems.ogoin

As each poem is completed, the computer checks to see whether the
CANCEL button was pressed. If not, the program continues with the
next poem until all the requested poems have been output.

324 Macintosh Program Factory

s Hh~ Edit !i<w1 < h Run Windows

OUTPUT 3 TO SCRR:

It

CRNCEL

Thought for the Day

When life is pure and
winter is silently little
I like to make summer
before the perfume returns.

Thought for the Day

When summer is little and
perfume is fast secret
I like to teach winter
but the spring screams.

Figure 15-8. Sample poem output to the screen

Figure 15-8 shows the screen appearance after a poem has been
written to the screen.

Loading a Word List

Pressing the Load words button on the main menu activates these lines:

lo8d.wds:
CLS
CALL TElITFACE(1) :REM bold
PRINT "LOAD WORos·
CALL TElITFACE(O) :REM regular
PRINT ·Name the input me:·
LET fi$:FILES$(1,IElIT")
IF fi$:nu$ THEN RETURN
ON ERROR GOTO load.err
OPEN fi$ FOR INPUT AS 1
INPUT•l, x

IF X<>INT(x) OR)((1 OR X>Wd.limlt:i THEN file.err.nw
LET nwl:x
ERASE wl $, wtl
DIM wl$(nwl),wtl(nwl)
FOR cwl: 1 TO nwl
LINE INPUT•!, w1$(cwl)
INPUT•!, wtl(cwl)
NEXT cwl
CLOSE
ON ERROR GOTO 0
GOTO edit.wds

Poetry Generator 325

This routine creates a window similar to that shown in Figure 15-9.
The foreground window is provided by the FILES$ function. The pro
gram opens the specified file fi$, reads in a value for nw%, the number
of words in the file, and reads in the vocabulary words and word types.

In case of an error during loading, the following lines take over:

load.err:
IF ERR>=50 THEN loGd.disk.relGted
IF ERR<>6 AND ERR<> 13 AND ERR<>23 THEN ON ERROR GOTO 0
loGd.disk.relGted:
CLOSE

LOAD WORDS

fig 13-2
fig 13-3
POEM 0319 MB
POEM 0327 MB

'I

ROME 0318 MB
SCRN 0312 MB

Open ~) MPF.R 13

Eject

C1mce1 Driue

Figure 15-9. Screen appearance when you select the Load words
command

326 Macintosh Program Factory

BEEP
PRINT
PRINT ·con't lood doto from·
PRINT fi$
PRINT ·use Mocwrite to check"
PRINT "the file doto ond formot."
GOSUB woit.ok
RESUME err.exit
file.err.nw:
CLOSE
BEEP
PRINT
PRINT fi$
PRINT ·contoins"; x; ·words."
PRINT "The ronge is 1 -·; wd.limit:g
PRINT ·use Mocwrite to check the file."
err.exit:
ON ERROR GOTO 0
GOSUB woit.ok
RETURN

There are two error-handling routines, one for disk-related errors
(load.disk.related) and another for the case of nw% being out of range
(file.err.nw).

The following subroutine provides a pause in program operation
until you press the OK button:

W8it.ok:
BUTTON 1, 1, "OK", (bx:g(a) ,by:g(a))-(bx 1 :g(a) ,by 1 :g(a) > ,bt:gca>
LET event:g=o
WHILE event:g<> 1 AND event:g<>6
LET event:g:DIALOG(O)
WEND
BUTTON CLOSE 1
RETURN

Saving a Word List

Pressing the Save words button on the main menu activates these lines:

seive.wds:
CLS
CALL TEXTFACE(1) :REM bold

Poetry Generator 327

SAVE WORDS 1
Nome the output file: MPF.R 13
I poem uocobuhiry

Eject

(soue i) Cancel Oriue

Figure 15-10. Screen appearance when you select the Save words
command

PRINT "SAVE WORDS"
CALL TElffFACE(O) :REM regular
LET fo$:FILES$(0,"Nome the output file:")
IF fo$:nu$ THEN RETURN
ON ERROR GOTO save.err:
OPEN fo$ FOR OUTPUT AS 1
PRINT•l, nw:g
FOR cw:g: 1 TO nwjg
PRINT• 1, w1$(cwjg)
PRINT• 1, wtjg(cw:g)
NEXT cwjg
CLOSE
ON ERROR GOTO 0
RETURN

The program presents a screen like that shown in Figure 15-10.
Pressing Cancel returns you to the main menu without saving the
vocabulary; pressing ENTER, RETURN, or Save causes the words to be
saved in the specified file, as shown in Figure 15-11.

In case of an error, the following routine (the last block of our pro
gram) takes over:

save.err:
CLOSE
IF ERR<50 THEN ON ERROR GOTO 0
BEEP

328 Macintosh Program Factory

OUTPUT 5 TO DISI: l
Name the output me MPF.R 13
I sample poem~

Eject

(Saue It) Cancel Driue

Figure 15-11. Dialog box to let you specify the output file name for
saving poems to disk

PRINT
PRINT UC6n't seve the d6t6 in
PRINT fo$
GOTO err.e1<it

If the error is not disk-related, the program lets Microsoft BASIC
handle the error in its normal manner (IF ERR<50 THEN ON
ERROR GOTO 0). If it is a disk error, the program informs you and
returns to the main menu. In that case, your disk probably has a file
containing part of the word list.

-Putting the Program to Work------
Now the research begins. Select an assortment of words-take them at
random from a book of poems or any other source. Type them in using
the Type in new words command. You may type the words in any
sequence; however, it is a little faster if you have already sorted the
words into categories, because you won't have to change the word-type
button settings so often. Save the list on disk.

Experiment with various formats. Try including prefixes, suffixes,

Poetry Generator 329

and inflectional endings for special effects. For instance, the format
line:

\viing the \nns of your \nn

might generate:

walking the rivers of your mind

On the other hand, it might also produce:

breaksing the dresss of your lawn

depending on how well your vocabulary is suited to the poem format.

This chapter is adapted from "Roll Over, Robert Frost" by George Stewart, appearing in
the February 1983 issue of Popular Computing magazine. Copyright 1983 Byte Publica
tions, Inc. Used with the permission of Byte Publications, Inc.

Chapter 16

In this chapter we turn the Macintosh into a design toy that lets you
create fascinating geometric patterns on the screen. Patterns may be
saved on disk and loaded into MacPaint or printed out on the Image
writer printer.

The program simulates the mechanism shown in Figure 16-1. A
real-world version is available at toy stores under the name Spirograph.

To draw a design, you select a cog wheel and place it inside the
track. You then place a pen into one of several holes in the wheel; using
the pen as a handle, you rotate the wheel along the inside circumference
of the track. As the wheel rotates, the pen creates a design on the paper.
By varying the wheel size, pen location, and the size of the cogs, you can
generate a wide variety of designs. For further elaboration, you can
superimpose one curve on another by changing the wheel and pen setup
and using the same sheet of paper (512K Macintoshes only).

Figure 16-2 shows a few of the countless designs you can make with
this program.

The simulated version of the design tool operates quite similarly to

331

332 Macintosh Program Factory

Figure 16-1. The design toy that the program simulates

the real thing, except that you can change the track size, wheel size, pen
location, and cog size simply by clicking the mouse.

Figure 16-3 presents the tool-setup menu, and Figure 16-4 shows
the various instruction screens explaining how you change the tool
settings.

-The Program-------------
The first program block sets up the window parameters:

REM Window descriptors
DATA 7.0,4.4, 0.04, 0.32
READ inches.wide, inches.long, ulcx,ulcy
LET ww:i:INT(inches.wide*72) ·
LET wl:i:INT(inches.long*72)
LET WX:i:INT(ulcx*72)
LET wy:i:INT(ulcy*72)
LET wx 1 :i:wx:i+ww:i
LET wy 1 :i=wyl+wl:i

Designs in a Circle 333

Figure 16-2. Sample designs created by the program

334 Macintosh Program Factory

Figure 16-2. Sample designs created by the program (continued)

,. IS l 1IH Edit ~IHdn h Run Windows

0

Figure 16-3. The Set Up Tools Menu

Ww% and wl% are the window's width and length in display units
(pixels). Wx%,wy% and wxl%,wy1% specify the upper-left and lower
right corners of the window.

The next block describes the dialog buttons used in the program.

REM Button descriptors
DATA 7
DATA DRAW, 1.3, 0.333, 0.675, 0.125
DATA CHANGE, 1.3, 0.333, 0.675, 0.250
DAT A QUIT, 1.3, 0.333, 0.675, 0.375
DATA STOP, 1.3, 0.333, 0.875, 0.500
DATA OK, 1.3, 0.333, 0.875, 0.625
DATA QUIT, 1.3, 0.333, 0.875, 0.750
DATA RECALL, 1.3, 0.333, 0.875, 0.875
READ nbl
DIM b1$(nbl),bxl(nbl),byl(nbl),bx 1 l(nbl),by I l(nbl)
FOR nl: 1 TO nbl
READ b1$(nl),inches.wide, inches.long, hzone, vzone
LET bxl(nl)=(wwfC-inches. wi de*72)*hzone
LET byl(nl)=(wl 1-i nches.1 ong*72)*vzone
LET bx 1 l(nfC):bxl(nl)+i nches. wi de*72
LET by 1 l(nl)=byl(nl)+inches.1ong*72
NEXT nl

336 Macintosh Program Factory

CHANGE TRACK SIZE

Tnick is the outer circle.

Click inside tnick
to reduce it.

Click outside track
to enlarge it.

Click to the right
of the vertical line
to leave as-is.

(a).__ ________ __,

CHANGE PEN LOCATION

Pen is the little dot
inside the wheel.

To move the pen,
point to destination
and click the mouse.

Destination must be
on or below the wheel's
centerpoint.

Click to the right
of the vertical line
to leave as-is.

(c) .__ _________ _.

CHANGE WHEEL SIZE

Wheel is the inner circle.

Click inside wheel
to reduce it.

Click outside wheel
to enlarge it.

Click to the right
of the vertical line
to leave as-is.

(b) .___ _______ ___,

CHANGE STEP SIZE

Step size is determined
by invisible cogs on
the wheel circumference.

Click inside wheel
to change cog size

Click outside wheel
to leave as-is.

(d).__ _______ ___,

Figure 16-4. Instructions for changing (a) the track size, (b) the wheel
size, (c) the pen location, and (d) the step size

Designs in a Circle 337

Each button is described in terms of its label, width, length, horizon
tal zone, and vertical zone. Look at Figures 16-3, 16-5, and 16-6 to see
where each button is used. Some of the buttons are displayed with la
bels different from those given in the DATA statements.

Setting Up Design Constants and Parameters

The next block sets up certain values that remain constant throughout
the program:

LET yes:g=(1 = 1)
LET no:g=(1 =0)
LET pi:4*ATN(1)
DEF FNdi st(x 1,y 1,x2,y2)=SQR((x2-x 1)*(x2-x1)+(y2-y1)*(y2-y1))
LET m11x.t.di11:g=wl:g
LET m11x. tnd:g=m!lx. t.di 11:g\2
LET t.sc111e:g= 12
LET W .SC!l 1 e:g= 12
LET cog.sc111e:g=20
LET min.t.rtio:g=3
LET max.w.rtio:g=w.scaJe:g-1
LET min .w .rtio~=l

LET tc .x~=m!lx .tnd~

LET tc.y~=m11x . t.rod~

LET wc.x:t=tc.x:t

Pi is the ratio of a circle's circumference to its diameter. Max.t.dia%,
the maximum track diameter, is set so that the largest track completely
fills the window from top to bottom. T.scale%, w.scale% , and cog.scale%
determine the number of different track, wheel, and cog sizes available.
Min.t.rtio% specifies the smallest track size; the actual minimum track
and wheel radii are given by

smallest track radius = max.t.rad% * min.t.rtio% I t.scale%

smallest wheel radius = max.t.rad% * min.w.rtio% / w.scale%

The following lines set up the initial values for the track, wheel, pen
location, and cog ratio:

LET t.rtio:t:t.SC!lle:t
LET w.rtio~=5

LET p.rtio=.675 :REM r11tio of pen-r11d to wheel-rod
LET cog.size~= 1
LET pen.x:t=wc.x:t
LET mem.req:t=O

338 Macintosh Program Factory

IF FRE(1)<15000 THEN nsf.memory
LET mem.req:f;= 1+(INT((max.t.d1a:f;+1)/16)+ 1)*(max.t.d1a:f;+1)
DIM curve:f;(mem.req:f;)
nsf .memory:
DIM previous%(6),pause.btn$(1)
LET pause.btn$(0):"PAUSE"
LET pouse.btn$(1):"CONTINUE"
WINDOW 1,,(wx:f;,wy:f;)-(wx 1:f;,wy1 X),3
GOSUB colculote.poroms

T.rtio% is the current track ratio; the corresponding radius is

t.rad%=t.rtio% / t.scale%

W.rtio% is the current wheel ratio; the corresponding radius is

w.rad%=t.rad% * w.rtio% / w.scale%

Cog.size% sets the numerator of the cog ratio (the denominator is
always cog.scale%). With 512K Macintoshes only, mem.req% stores the
number of bytes needed to store an image of the graphics design when
you press the STORE button. The array curve%() is set up to hold this
information. The array previous%() stores the previous contents of the
small area surrounding the pen before the pen is drawn. This allows the
area to be restored when the pen marker is moved.

The Set Up Tools Menu

The following block creates the display shown in Figure 16-3:

chonge.poreims:
CLS
LINE (mox.t.d1ol+ l ,O)-STEP(O,mox.t.d1o:f;)
GOSUB show .poroms
cp.loop:
CALL MOVETO(bx:f;(1),12)
CALL TEXTFACE(1)
PRINT "SET UP TOOLS"
CALL TEXTFACE(O)
BUTTON 1, 1, ''TRACK" ,(bx:f;(1) ,by:f;(1))-(bx 1 :g(1) ,by 1 I(I)) , 1
BUTTON 2, 1, "WHEEL ",(bxl(2),byl(2))-(bx 1:g(2),by1:g(2)),1
BUTTON 3, 1, "PEN" ,(bxl(3) ,byl(3))-(bx 11(3) ,by 11(3)), 1
BUTTON 4, 1,"STEP" ,(bx:f;(4),by:g(4))-(bx 1:f;(4),by1:f;(4)),1
BUTTON 5, 1, "DRAW" ,(bxl(5),byl(5))-(bx 11(5),by 1:g(5)),1
BUTTON 6, 1, "QUIT",(bxl(6),byl(6))-(bx 11(6),by 1:g(6)),1

Designs in a Circle 339

The first four buttons activate routines to change the design parame
ters. DRAW starts the drawing, and QUIT ends the program.

The next line waits for you to press a button:

WHILE DIALOG(O)<> 1
WEND
FOR bl:l TO 6
BUTTON CLOSE bl
NEXT bl
LET btnl:DIALOG(1)
IF btnl:6 THEN END
IF btnl=5 THEN dr6w.curve
ON btnl GO SUB resize. the. track,resi ze. the. whee 1,set.pen.radius ,set.step
GOTO cp.loop

Pressing button 6 ends the program, and button 5 transfers control
to the draw.curve routine. Pressing one of the other buttons activates a
corresponding tool-setup subroutine.

Changing the Track Size

The following lines print the instructions shown in Figure 16-4a.

resize. the. track:
LET eventl:MOUSE(O) :REM cleor previous mouse-clicks
LINE (m6x.t.di61+2,0)-(wwl, wll),O ,b.f
CALL MOVETO(bxl(1)-30, 12)
CALL TEXTFACE(1)
PR I NT "CHANGE TRACK SIZE"
CALL TEl<TFACE(O)
PRINT
PRINT PT AB(bxl(1)-30); "Track is the outer circle."
PRINT
PRINT PT AB(bxl(1)-30); "Click inside tn~ck"
PRINT PTAB(bxl(1)-30); "to reduce it."
PRINT
PRINT PT AB(bxl(1)-30); "Click outside track"
PRINT PTAB(bxl(t)-30); "to enlarge it."
PRINT
PRINT PT AB(bxl(1)-30); "Click to the right"

340 Macintosh Program Factory

PRINT PTAB(bxl(1)-30); "of the verticcil line·
PRINT PTAB(bxl(1)-30); "to letive cis-is."

The next block responds to the changes that you make:

rtt.loop:
WHILE MOUSE(O)<:O
WEND
LET mxl:MOUSE(1)
LET myl:MOUSE(2)
LET outside.fie 1 dl=mxl>mcix. t.di cil+ 1
LET outside. trcicklE:FNdist(mxlE ,myl, tc.xl, tc.yl)> t.radl
IF outside.fieldl THEN rtt.done
IF outside.trcickl THEN enlcirge.trcick
IF t.rtiol=min.t.rtiol THEN rtt.loop
LET t.rtiol=t.rtiol-1
GOTO t.rtio.reody
en 1 orge. trock:
IF t.rtiol:t.sco1e:g THEN rtt.loop
LET t.rtiol=t.rtiol+ 1
t.rt i o.recidy:
GOSUB erose.pcircims
GOSUB ccilculcte.pcircims
GOSUB show .peroms
GOTO rtt.loop
rtt.done:
LINE (mox.t.dicl+2,0Hww)g,wl:g),O,bf
RETURN

Clicking the mouse button to the right of the vertical line causes the
program to return to the main setup menu (IF outside.field% THEN ...).
Clicking outside the track (but to the right of the vertical line) enlarges
the track; clicking inside the track reduces its size.

Each time you enlarge or reduce the track, the program recalculates
the sizes for everything that is inside the track and then redraws all
these objects (GOSUB erase.params, GOSUB calculate.params, and
GOSUB show.params).

Changing the Wheel Size

Here are the lines that print the instructions shown in Figure 16-4b:

resize. the. whee 1:
LET event)g:MOUSE(O) :REM cleor previous mouse-clicks

LINE (mox.t.diol+2,0)-(wwl,wll),O,bf
CALL MOVETO(bxJg(1)-30, t 2)
CALL TEXTFACE(1)
PRINT "CHANGE WHEEL SIZE"
CALL TEXTFACE(O)
PRINT
PRINT PTAB(bxJg(1)-30); "Wheel is the inner circle."
PRINT
PRINT PTAB(bxl(1)-30); "Click inside wheel"
PRINT PTAB(bxl(1)-30); "to reduce it."
PRINT
PRINT PTAB(bxl(I)-30); "Click outside wheel"
PR I NT PT AB(bxl(1)-30); "to en 1 orge it."
PRINT
PRINT PTAB(bxl(1)-30); "Click to the right"
PRINT PTAB(bxl(l)-30); "of the verticol line"
PRINT PTAB(bxl(I)-30); "to leove os-is."

Designs in a Circle 341

The next lines monitor your requests to change the wheel size:

rtw.loop:
WHILE MOUSE(O)<=O
WEND
LET mxl:MOUSE(1)
LET myl:MOUSE(2)
LET outside.whee 1 l:FNdi st(mxl ,myl, we.xi, wc.yJg)>w .radig
LET outside.fie 1 dl:mxl>mox. t.di al+ I
IF outside.fieldl THEN rtw.done
IF outside.wheell THEN enlarge.wheel
IF w.rtiol=min.w.rtiol THEN rtw.loop
LET w.rtiol=w.rtiol-1 :REM reduce wheel
GOTO w.rtio.reody
enlorge.wheel:
IF w.rtiol:mox.w.rtiol THEN rtw.loop
LET w.rtiol=w.rtlol+ I
w.rtio.reody:
GOSUB enise.wheel
GOSUB new.wheel
GOSUB show.wheel
GOTO rtw.loop
rtw.done:
LI NE (mox. t.di ol+2,0)-(WWI' wl I) ,0 ,bf
RETURN

342 Macintosh Program Factory

These lines function similarly to the corresponding lines from the
track-size routine.

Changing the Cog Size

Pressing the STEP button activates the following lines, which print the
instructions shown in Figure 16-4d.

set.step:
LET eventl:MOUSE(O) :REM clear previous mouse-clicks
LINE (max.t.dhslC+2,0)-(wwlC,wl:t:),O,bf
CALL MOVETO(bx:t:(t)-30, t 2)
CALL TE!ITFACE(t)
PRINT "CHANGE STEP SIZE"
CALL TE!ITFACE(O)
PRINT
PRINT PTAB(bxlC(1)-30); "Step size is determined"
PRINT PT AB(bxl(1)-30); "by invisible cogs on·
PRINT PT AB(bxl(t)-30); "the wheel circumference."
PRINT
PRINT PT AB(bxlC(t)-30); "Click inside wheel"
PRINT PTAB(bxlC(t)-30); "to change cog size:
PRINT
PRINT PT AB(bxlC(1)-30); "Click outside wheel"
PRINT PT AB(bxl(1)-30); "to leave as-ts:

The following lines monitor your changes to the step size (the size of
the invisible cogs):

ss.loop:
WHILE MOUSE(O)<:O
WEND
LET outside. whee 1 l=FNdi st(MOUSE(1) ,MOUSE(2), we.xi, wc.ylC)>w.rad:C
IF outside.wheell THEN ss.done:
LET cog.size:t:=(cog.size:t: MOD cog.scale:t:)+ 1
GOSUB erase.step
GOSUB new.step
GOSUB show.step
GOTO SS.loop
ss.done:
LINE (max.t.dia:C+2,0Hww:t:,wllC),O,bf
RETURN

Designs in a Circle 343

Each time you click the mouse button inside the wheel, the cog size
increases by 2*pi /cog.scale% (in degrees, by 360/cog.scale%). Cog sizes
that do not divide evenly into 2*pi (360 degrees) have no real-world
counterpart, but they occasionally produce interesting patterns.

The maximum cog size is 2*pi (360). At this setting, the wheel
makes a complete rotation before the program draws the next point on
the curve.

Setting the Pen Location

Pressing the PEN button activates the following lines, which print the
instructions shown in Figure 16- 4c:

set.pen.rodi us:
LET event%=MOUSE(O) :REM clear previous mouse-clicks
LINE (max.t.dio%+2,0)-(ww%, w1%) ,0 ,bf
CALL MOVETO(bx%(1)-30, 12)
CALL TEXTF ACE(1)
PRINT "CHANGE PEN LOCATION"
CALL TEXTFACE(O)
PRINT
PRINT PTAB(bx%(1)-30); "Pen is the little dot"
PRINT PTAB(bx%(1)-30); "inside the wheel ."
PRINT
PRINT PTAB(bx%(1)-30); "To move the pen,"
PRINT PTAB(bx%(1)-30); "point to destinotion"
PRINT PTAB(bx%(1)-30); "ond click the mouse."
PRINT
PR I NT PT AB(bx%(1)-30); "Dest i notion must be"
PRINT PTAB(bx%(1)-30); "on or below the wheel's"
PRINT PT AB(bx%(1)-30); "centerpoint."
PRINT
PRINT PTAB(bx%(1)-30); "Click to the right"
PRINT PTAB(bx%(1)-30); "of the verticol line"
PR I NT PT AB(bx%(1)-30); "to l eove os-i s."

The following lines monitor your requests for changes to the pen
location:

spr.loop:
WHILE MOUSE(0)<=0
WEND

344 Macintosh Program Factory

LET mxl:MOUSE(1)
LET myl:MOUSE(2)
IF mxl>mox.t.diol THEN spr.done
IF myl<wc.yl THEN spr.loop
IF myl>wc.yl+w.rodl THEN myl:wc.yl+w.rodl
IF myl:pen.yl THEN spr.loop
PUT (pen.xl-2,pen.yl-2)-(pen.xl+2,pen.yl+2) ,previ ousl ,PSET
LET pen.yl=myl
LET pen.rodl:ABS(pen.yl-wc.yl)
LET p.rtio:pen.rodl/w.rodlf:
GET (pen.xlf:-2,pen.yl-2)-(pen.xli+2,pen.yl+2),previousl
CIRCLE (pen.xii ,pen.ylU ,2
GOTO .spr.loop
spr.cfone:
LI NE (mox.t.di ol+2,0)-(wwli, wllf:),O ,bf
RETURN

Calculating the Drawing Parameters

Each time you change one of the tool sizes or locations, the following
lines make the necessary recalculations of all dependent values:

co lcul ote.poroms:
LET t.rodl:mox. t.rodl*t.rt I o!i/t.sco lei
new.wheel:
LET w.rodl=t.rodl*w.rtiol/w.scolel
LET wc.yl=tc.yl-t.rodl+w.rodl+ 1
new.pen:
LET pen.rodl:INT(w.rodl*p.rtio)
LET pen.yl=wc.yl+pen.rodl
new.step:
LET orc.rodl:w.rodl*3\5
LET end.orc:pi *cog.si zel/ cog.sco lel*2
LET step.ccfl= I NT(pi *cog.sl zel/ cog.sco 1 el*2*w .rodl)
LET step. t.ongl e:step.ccfl/t.rodlf:
RETURN

Changing the track size causes a recalculation of all four values:
track radius, wheel radius, pen radius (location), and step size (cog
size). Changing one of the other parameters changes only those values
that depend on the changed parameter, hence the separate entry points
for new.wheel, new.pen, and new.step.

Designs in a Circle 346

The following block erases the previous track, wheel, pen, and step
indicator from the display:

erase.params:
CIRCLE (tc.xll,tc.yll),t.radll,O
er8se.whee1:
CIRCLE (we.xi, wc.yl), w .radl ,o
erase.step:
CIRCLE (wc.xl,wc.yl),8rcndl,O,pi/2,-(end.arc+pi/2)
erase.pen:
CIRCLE (pen.xl,pen.yl),2,0
RETURN

Again, erasing an object requires erasing all interior objects as well.
The next block draws the track, wheel, pen, and step size in their

current sizes:

show.params:
CIRCLE (tc.xl, tc.yl), t.radl
show.wheel:
CIRCLE (wc.xl,wc.yl),w.radl
show.step:
CIRCLE (we.xi, wc.yl) ,arc.radl, 1,pi /2, -(end.arc+pt /2)
show.pen:
GET (pen.xl-2,pen.yl-2)-(pen.xl+2,pen.yl+2),previousl
CIRCLE (pen.xi ,pen.y:C) ,2
RETURN

Test Point 1
You can now test the lines you've entered so far. First compare a listing
of your program with the original program lines in this chapter. After
correcting any typing errors, run the program. You should see the
screen shown in Figure 16-3. Try using each of the first four buttons;
you cannot use the DRAW button, since that logic isn't included yet.

Press TRACK and try making the track as small as possible, then as
large as possible. Click to the right of the vertical line, then press the
WHEEL button. Try to reset the wheel size.

Return to the main setup menu (click on the right of the vertical
line) and try setting the pen location anywhere between the wheel's center
point and the circumference below the centerpoint.

346 Macintosh Program Factory

,. s i: ii<~ Edit ~•<~an h Run Windows
.,

DRAWING THE CURVE

PRUSE ~)

PRINT)

(FILE)

(RECRLL)

STORE)

CHANGE)

QUIT

Figure 16-5. Drawing a curve

Return to the main setup menu and press the STEP button. Click
the mouse button inside the wheel and the arc should advance counter
clockwise. If you continue to click inside the wheel, eventually the arc
will appear as a straight line, representing the maximum step size
(2*pi or 360 degrees). Click again and the step size will start over at its
minimum value.

Drawing the Curve

Now add the following lines to the end of the program. These lines pro
duce a screen similar to that shown in Figure 16-5:

drow.curve:
CLS
LI NE (mox. t.di o:g .. 1,0)-STEP(O ,max. t.di o:g)
CALL TEXTFACE(1)
PR I NT PT AB(bx:g(1)-30); "DRAW I NG THE CURVE"
CALL TEXTFACE(O)
LET t.ci rc:g= I NT(2*pi *t.rod:g)
LET w.circ~=INT(2*pi*w.rod~)

LET ul=t.circl
LET Yl:w.circl
WHILE Yl>O
LET rl:ul MOD YI
LET ul:YI
LET Yl:rl
WEND
LET lcm:t.circl*w.circl/ul
LET h!st.a:lcm/t.circl
IF h!st.a: 1 THEN 1 ast.a:2*pi
LET tw.difl=t.radl-w.radl
LET tw.wr.quo:tw.difl/w.radl
LET pausedl=nol
LET quitl:nol
LET changel:nol
LET curve.donel:nol
GOSUB set.up.buttons
DIALOG ON
ON DIALOG GOSUB de.interrupt
LET a:O
GOSUB calculate.points
PSET(pxl,pyl)

Designs in a Circle 34 7

T.circ% and w.circ% are the circumferences of the track and wheel.
Lem is the least common multiple of the two (the smallest number into
which they both divide evenly). From lcm, the program determines
last.a, the number of radians through which the wheel must rotate
before the curve begins to repeat.

Pause%, quit%, change%, and curve.done% are status variables used
to terminate the drawing procedure when you press PAUSE, QUIT, or
CHANGE, or when the curve begins to repeat itself. The set.up.buttons
subroutine prepares the buttons shown in Figure 16-5. De.interrupt
handles button events during the drawing procedure.

The program starts by setting the angle to 0 and plotting the first
point on the curve (PSET (px%,py%)).

The next block constitutes a repetitive procedure for calculating the
next point on the curve and connecting it to the previously drawn point:

de.loop:
WHILE pausedl AND NOT chengel AND NOT quitl
WEND
IF change:C THEN de.change

348 Macintosh Program Factory

IF quiUC THEN de.quit
IF curve.donelC THEN de.loop
LET a:e+step.t.engle
GOSUB celculate.points
LINE -(pxlC,pylC)
LET curve.donelC:(a>= 1 ast.a)
IF NOT curve.donelC THEN de.loop
LET pausedlC:nolC
BUTTON CLOSE 1
LINE (max.t.dial+2,0Hwwl,byl(1)-1),O,bf
CALL MOVETO(bxl(1)-30,12)
CALL TEXTFACE(1)
PRINT "CURVE IS COMPLETE"
CALL TEXTFACE(O)
GOTO de.I oop
de.change:
DIALOG STOP
FOR bl: 1 TO 7
BUTTON CLOSE blC
NEXT bl
GOTO change.params
de.Quit:
FOR blC: 1 TO 7
BUTTON CLOSE bl
NEXT bl
END

If you press PAUSE, the program sets the paused% flag to yes% and
changes the button label from PAUSE to CONTINUE. Under that con
dition, the program waits in the first WHILE/WEND loop until you
press CONTINUE, CHANGE, or QUIT.

When paused%=no%, the program advances beyond this loop and
calculates the next curve position (LET a=a+step.t.angle, GOSUB cal
culate.points, and LINE -(px%,py%)).

Here's the subroutine that calculates the coordinates of the new pen
location for angle a:

ca 1 cul ate.points:
LET x=(t w.di fl)*COS(a)+pen.radlC*COS(t w. wr.quo*o)
LET y:(t w.di flC)*S IN(a)-pen.radlC*S IN(t w. wr.quo*a)
LET pxl: INT(ABS(x)+ .5)*SGN(x)+tc.xlC
LET pyl: I NT(ABS(y)+ .5)*SGN(y)+tc.ylC
RETURN

Designs in a Circle 349

The first two program lines correspond to parametric equations for
a family of curves known as hypocycloids (the type of curves drawn by
this program). The next two lines convert x and y to point addresses
around a circle with center at tc.x%, tc.y%.

Interrupt Handlers

The next few program blocks take care of button interrupts that take
place during the curve-drawing procedure. Pressing a button while the
computer is drawing a curve (as shown in Figure 16-5) activates this
routine:

de.interrupt:
LET eventl:DIALOG(O)
IF event~<> 1 THEN RETURN
LET d.interruptll::DIALOG(1)
ON d.interruptll: GOTO

ptiuse.swi tch,dc.pri nt ,de. f i 1e,dc.reca11,dc.store ,dc.rq.change ,dc.rq.qui t

The routine transfers to the appropriate button routine, depending
on which button was pressed. First we present the PAUSE and PRINT
handlers:

ptiuse.swi tch:
LET ptiused~:ptiused:g XOR yes:g
BUTTON 1, 1,ptiuse.btn$(-ptiusedll:),(bxll:(1),by:g(1))-(bx1~(1),by1:g(1)),1
RETURN
de.print:
CALL HIDECURSOR
LCOPV
CALL SHOWCURSOR
RETURN

For the PAUSE button, the program switches the status of the
paused% flag and the label that appears on button 1. For the PRINT
button, the program hides the cursor and copies the screen to the
printer.

Here are the lines that handle the CHANGE, STORE, and RECALL
buttons:

dc.rq.chtinge:
LET chtinge:g:yes:g

350 Macint.osh Program Fact.ory

RETURN
de.store:
GET (O ,0)-(mex. t.di el ,mex. t.di ol) ,curvel
PSET(pxl,pyl) :REM return to lotest point on curve
RETURN
dc.recoll:
PUT (O ,0)-(mox.t.di ol ,mox. t.di ol) ,curvel,OR
PSET(pxl,pyl) · :REM return to lotest point on curve
RETURN
dc.rq.quit:
LET quitl:yesl
RETURN

If you have a 128K Mac, the STORE and RECALL buttons will
always be disabled (ghosted appearance).

If you have a 512K Mac and you press STORE, the program copies
everything to the left of the vertical line into the array curve%(). Press
ing RECALL transfers the contents of curve%() back onto the screen,
but doesn't erase any lines that are already drawn. That enables you to
superimpose one curve on top of a previously drawn one.

The next lines handle the FILE button:

de.file:
FOR bl: 1 TO 7
BUTTON CLOSE bl
NEXT bl
BUTTON 1, 1,·0K·,(bxl(4),byl(4))-(bx 1:C(4),by11(4)), I
CALL MOVETO(bxl(2)-30,by:C(2)+ 12)
PRINT lype commond-•."
PRINT PTAB(bxl(2)-30); ·screen imoge will"
PRINT PTAB(bxl(2)-30); "be stored in Screen n."
WHILE DIALOG(O)<> 1
WEND
BUTTON CLOSE 1
LINE (mox.t.dto:C+2,byl(I))-(ww:C,wl:C),O,bf
PSET(pxl ,pyl) :REM return to I ost point on the curve
GOSUB set.up.but tons
RETURN

The program prints the instructions shown in Figure 16-6 and waits
for you to press the OK button. Note that to save a copy of the design,

DRAWING THE CURVE

Type commend-•
Screen image will
be stored in Screen n.

(OK ~)

Designs in a Circle 351

Figure 16-6. Instructions for saving a copy of the screen

you must press COMMAND-SHIFT-3 (COMMAND-#) prior to clicking OK.
The final subroutine in the program sets up the buttons that are

shown in Figure 16-5.

set.up.buttons:
IF NOT curve.done% THEN BUTTON

I, 1,"PAUSE",(bx%(I),by%(I))-(bx I%(I),by I)g(I)), I
BUTTON 2, I ,"PRINT" ,(bx%(2),by%(2))-(bx I %(2),by 1%(2)),1
BUTTON 3, 1,'"FILE",(bx%(3),byf«(3))-(bx 1 %(3),by I %(3)), I
BUTTON 4,SGN(mem.reqf«), "RECALL" ,(bxf«(4) ,by%(4))-(bx I%(4) ,by I%(4)), 1
BUTTON 5, SGN(mem.reqf«), "STORE",(bx%(5),by:l:(5))-(bx I %(5),by 1%(5)),1
BUTTON 6, I, '"CHANGE" ,(bxf«(6),byf«(6))-(bx I %(6),by I %(6)), I
BUTTON 7, I, "QUIT",(bxf«(7),by%(7))-(bx 1 %(7),by I %(7)), I
RETURN

352 Macintosh Program Factory

-Testing and Using the Program ----
After carefully checking your work, run the program. By experiment
ing with various combinations of wheel size, step size, and pen location,
you should be able to get results similar to those shown in Figure 16-2.

To superimpose one drawing on top of another (512K Macs only),
press STORE while the first curve is displayed. Then press CHANGE
and reset the tool setup. Then draw the new curve. While the new curve
is being drawn, press RECALL, and your previous curve will be super
imposed on the current one.

To place one curve completely inside another one, reduce the track
size to draw the smaller figure, then store it. You can then superimpose
it on a larger figure using the RECALL button.

Chapter 17

Secret Messages

Cryptography, or the art of coding and deciphering messages, has been
in use for almost 4000 years. Diplomats, soldiers, popes, and furtive lov
ers have all used it to send private messages through public channels.
With this program, you can practice it just for fun.

The Secret Message Processor program presented in this chapter
turns your Macintosh into a code machine. The program converts En
glish or any other language into apparent gibberish, and vice versa. To
decipher a secret message, you must know the code that was used to
encipher the original message.

In a typical use of the program, you and a friend both have access to
a Macintosh computer. The two of you agree on a key value prior to
sending the message. You run the program, input the key value, and
type in the original message (cryptographers call it the plai ntext). The
program outputs the enciphered version (the ci phertext) onto paper or
into a disk file. You send your friend the printout or the disk.

When your friend receives the ciphertext, he repeats the process:
running the program, inputting the identical key value, and typing in
the ciphertext or loading it from the disk file. The program deciphers
the message, outputting the results onto the screen and, optionally, onto
paper or another disk file.

Figures 17 -1 through 17 -5 show various stages of the program's
operation.

353

354 Macintosh Program Factory

-Crash Course in Cryptography ------
We'll start this introduction to cryptography with a few definitions.

A cipher is a process that converts plaintext into ciphertext or vice
versa. The two general categories of ciphers are transposition and sub
stitution. Transposition ciphers rearrange the letters according to a def
inite set of rules. The resultant letter-frequency distribution (the
number of times each letter occurs) remains the same; only the se
quence is changed.

Substitution ciphers replace each letter of the plaintext with another
letter by using a replacement table. The letter-frequency distribution is
different in the plaintext and ciphertext, but the sequence of letters is
the same-that is, the nth letter in the plaintext produces or corre
sponds to the nth letter in the ciphertext.

Table 17 -1 shows examples of each type of cipher.
The cryptographic method employed by the Secret Message Proces

sor is a form of substitution cipher.
The program has a list of 64 characters (the cipher list) that can be

processed. Any characters that aren't in the list are left as is (not pro
cessed). Cipherable characters are uppercase and lowercase letters, the
ten decimal digits, and the plus and minus signs.

Table 17-1. Transposition and Substitution Ciphers

TRANSPOSITION: Write down the message one line at a time, five columns to a
line. Read off the ciphertext one column at a time.

T H E N
E W PA
S S W 0 R
D I S
C R A B T
R E E

Plaintext: THE NEW PASSWORD IS CRABTREE.

Ciphertext: TESDCRHWS REE WIAE POSB.NAR T.

SUBSTITUTION: Replace each letter with its third successor in the alphabet:

A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z
D E F G H I J K L M N 0 P Q R S T U V W X Y Z A B C

Plaintext: THE NEW PASSWORD IS CRABTREE.

Ciphertext: WKH QHZ SDVVZRUG LV FUDEWUHH.

Secret Messages 355

The Secret Message Processor also has a list of numbers known as a
key stream. Each cipherable character of the plaintext is paired with a
number taken from the key stream. For each character-number pair,
the program derives a corresponding ciphertext character, as
illustrated:

Plaintext: M e
Key stream: 47 17
Ciphertext: S X

e t m e
1934563
D c t

a
4
p

t 7 p m
57 58 34 36
a X m W

The Secret Message Processor can generate a very large number of
different key streams, and each key stream produces a different cipher
text. To decipher a message, you must use the same key stream that was
used to encipher it. The key or secret code number determines which
key stream is used.

Enciphering a Character

Given a character-number pair c-n, the Secret Message Processor fol
lows these steps to derive ciphertext character d:

1. Find the position of character c within the 64-character cipher
list. By convention, the first position is numbered 0. Thus the
position of character c (referred to as p(c) is a value from 0 to 63.

2. Take the number n (also a value between 0 and 63) and calculate
n XOR p(c). (The XOR operation is explained below.) The result is
a value from 0 to 63, referred to as p(d).

3. Locate the character within the cipher list at position p(d). Call
that character d; d is the ciphertext character corresponding to
plaintext character c.

The XOR Operator

XOR is a binary logical operator. Given two numbers A and B, XOR
compares their binary representations one bit at a time to produce a
result C. The outcome of each bit-to-bit comparison determines the
value of the corresponding bit in the result C. Here are the rules for
comparing bits from A and B:

A: O
B: 0

A XOR B: O

0
1

1

1
0

1

1
1

0

356 Macintosh Program Factory

As an example, 174 XOR 119 = 217, as explained below:

174 = 10101110 binary
XOR 119 = 01110111 binary

217 = 11011001 binary

XOR has a special property: if C=A XOR B, then A=C XOR Band
B=C XOR A. For instance:

174 = 10101110 binary
XOR 217 = 11011001 binary

119 = 01110111 binary

In short, the same function that generates C can be used to regenerate
either of the original operands when the other operand is known. That's
why the Secret Message Processor is able to encipher or decipher a
message using the identical key and the same program logic.

The following two equations summarize the ciphering process used
by the Secret Message Processor:

To encipher c:

p(d)=p(c) XOR n

To decipher d:

p(c)=p(d) XOR n

The variable n is the number from the key stream. P(c) refers to the
position of character c in the cipher list. Knowing p(c), you can find the corre
sponding character c, and vice versa.

Source of the Key Stream

To encipher or decipher a message containing m characters, you need a
list (key stream) of at least m random numbers. When this method is
used manually, both parties (sender and receiver) have a printed copy of
the key stream. They may even have a book of key streams and a prior
agreement about which key stream to use on a given day.

The key stream we'll use is built right into the Macintosh. It's more
commonly known as the random number generator, or the RND func
tion in BASIC.

The RND function returns a pseudo-random value greater than or

Secret Messages 357

equal to 0 and less than 1. The value is not really random; it is deter
mined by a "seed" value hidden in the Macintosh's memory. Each time
the Macintosh executes the RND function, the seed value changes, so
that the next time RND is used, it generates a different value. After a
very large number of uses, RND completes the sequence and starts
over.

Our key stream must consist of numbers between 0 and 63. To scale
the result of RND into the range 0-63, we multiply by 64 and take the
integer portion of the result.

We must also be able to generate the same sequence of numbers for
enciphering and deciphering. To do this, we use the RANDOMIZE
function, which sets the random number seed and thus determines the
sequence of numbers that will be produced by subsequent uses of RND.
For instance, the function RANDOMIZE 4 starts the following sequence:
.2761034369468689, .8757113218307495, . 7579789757728577 To scale
these values into the 0-63 range, we multiply by 64 and take the integer
portion of the result, getting this sequence: 56, 32, 25

-The Program-----------

The first block describes the windows, buttons, and the edit field used
in the program:

REM Window descriptors
DATA4

. DATA 6.5, 4.15, 0.25, 0.375
DATA 6.5, 0.75, 0.25, 0.375
DATA 3.2, 3.125,0.25, 1.5
DATA 3.2, 3.125, 3.55, 1.5
REM Button descriptors
DATA 9
DATA Keyboard, 1.2, 0.208, 0.4, 0.333, 3
DATA Disk file, 1.2, 0.208, 0.65, 0.333, 3
DATA Screen, 1.2, 0.208, 0.4, 0.5, 3
DATA Printer, 1.2, 0.208, 0.65, 0.5, 3
DATA Disk file, 1.2, 0.208, 0.9, 0.5, 3
DATA BEGIN, 1.0, 0.333, 0.333, 0.917, 1
DATA QUIT, 1.0, 0.333, 0.667, 0.917, I
DATA PAUSE, 1.0, 0.333, 0.333, 0.875, I
DATA STOP, 1.0, 0.333, 0.667, 0.875, 1

358 Macintosh Program Factory

REM Edit field descriptors
DAT A 0.75, 0.208, 0.8, 0.667

The second block reads in the window descriptors:

READ nwil
DIM wwil(nwil), wl il(nwil), wxil(nwil), wyil(nwil), wx 1 il(nwil), wy 1 il(nwil)
FOR nil: 1 TO nwil
READ inches.wide, inches.Jong, ulcx, ulcy
LET wwil(nil)=inches.wlde*72
LET wl il(nil)=i nches.1 ong*72
LET wxil(nil)=ulcx*72
LET wyil(nl)=ulcy*72
LET wx 1 il(nl)=wxl(nl)+wwil(nl)
LET wy 1 il(nil):wyl(nil)+wlil(nil)
NEXT nil

The third block reads in the button descriptors.

READ nbil
DIM b 1 $(nbl) ,bxl(nbl) ,byl(nbl) ,bx 1 l(nbl) ,by 1 il(nbl) ,btl(nbl)
FOR nl= 1 TO nbl
IF nil<8 THEN LET WI= 1 ELSE LET wl:2
READ bl$(n!f:),inches.wide, inches.long, hzone, vzone, btl(nl)
LET bx:t:(n:t:)=(wwl(w:t:H nches. wi de*72)*hzone
LET byl(nl)=(wl:t:(w:t:H nches.1 ong*72)*vzone
LET bx I :t:(nl)=bx:t:(nl)+i nches. w1 de*72
LET by 1 l(nl)=byl(nl)•inches.long*72
NEXT nl
DIM pause$(1)
LET pause$(0):"PAUSE"
LET pause$(1):"CONTINUE"

And the fourth block reads in the edit field descriptors.

READ inches.wide, inches.long, hzone, vzone
LET fxl=(ww~(t H nches. wi de*72)*hzone
LET fy~=(wll(1 Hnches.long*72)*vzone
LET fx 1 ll=fx~+inches.wide*72
LET fy 1 ll=fyl+inches.long*72

Secret Messages 359

Program Constants

The following lines set up certain constants and initial values for
parameters:

LET yesll:(1=1)
LET nol=(1 :0)
LET 1 ower.cGse$:"abcdef ghi j kl mnopqrstuvwxyz·
LET upper.case$:" ABCDEFGH IJKLMNOPQRSTUVWKYZ"
LET numbers$:"+-O 123456789"
LET char.set$:numbers$+upper.case$+ 1 ower.case$
IF LEN(cher.set$)<>64 THEN CLS: PRINT "Invalid character table.": STOP
LET sourcel= 1 :REM keyboard
LET destinationll= 1 :REM screen
LET secretll:O :REM initial key value

Char.set$ contains the cipher list. It is important to type the values
for lowercase$, uppercase$, and number$ exactly as shown. The pro
gram checks to ensure that the list contains 64 characters.

Main Menu

The next lines create the main menu window and print the title as
shown in Figure 17-1.

main.menu:
WINDOW 1,,(wxl(1),wyl(1))-(wx11(1),wy11(1)),3
WIDTH 255
CALL TEKTFONT(2)
CALL TEKTSIZE(18)
CALL TEKTFACE(1)
LET title$:"Secret Message Processor"
LET tit1P..Wl:WIDTH(title$)
CLS
PRINT PT AB((wwl(1)-title.wl)/2); title$

The preceding lines print the title only; the following lines put in the
buttons and other information:

CALL TEXTSIZE(12)
CALL MOVETO(12,byl(I)+ 12)
PRINT "Reed text from:·

360 Macintosh Program Factory

,. .S fil (~ Edit ~• (~ <In h Run Windows

Secret Message Processor

Read tezt from : ® Keyboord O Disk file

Print tezt to : ®Screen 0 Printer 0 Disk file

Secret Key (1 to 32767. 0 = don·t process): -

BEGIN~) QUIT

Figure 17 -1. The title screen and main menu

FOR n)g: 1 TO 2
BUTION n:g, 1-(n:g:source%), b 1 $(n%), (bx%(n%), by%(n%))- (bx 1 %(n%),

by 1 %(n%)),bt%(n%)
NEXT n%
CALL MOVETO(12,by%(3)+ 12)
PRINT '"Print text to:'"
FOR n%:3 TO 5

,

BUTTON n%, 1-(n:g-2=destinotion%), b1$(n%), (bx%(n%), by%(n%))- (bx 1 %(n%),
by 1 %(n%)) ,bt%(n:«)

NEXT n%
FOR n%:6 TO 7
BUTION n%, 1, bl$(n%), (bx%(n%), by%(n%))- (bx 1 %(n%), by 1 %(n%)),bt%(n%)
NEXT n%
CALL MO VETO (12, fy%+ 12)
PRINT "Secret Key (0 to 32767, O =don't process):'"
CALL TEXTFACE(O)
EDIT FIELD 1,STR$(secret%),(fx%,fy%)-(fx 1%,fy1 %)

The five radio-style buttons (buttons 1 through 5) indicate the cur
rent input/output device settings.

Secret Messages 361

The program executes the following lines repeatedly until you select
a button:

main.loop:
LET eventl:DIALOG(O)
WHILE eventl<> 1 AND eventl<>6
LET eventl:DIALOG(O)
WEND
IF eventl=6 THEN check.code
LET btnl:DIALOG(1)
IF btnl=7 THEN exit.main
IF btnl=6 THEN check.code
IF btnl<3 THEN GOSUB change.source ELSE GOSUB change.destination
GOTO main.loop
exit.main:
WINDOW CLOSE 1
END

Pressing the ENTER or RETURN key or clicking the BEGIN dialog
button signals to the program that you are ready to begin the ciphering
process. In that case, the program first checks the secret key to ensure
that it is within range (check.code routine). Clicking one of buttons 1
through 5 signals a change to the input or output setting; the following
lines make the change:

change.source:
BUTTON sourcel, 1
LET sourcel:btnl
BUTION sourcel,2
RETURN
change.destination:
BUTTON destination:C+2J
LET destination:C=btn:C-2
BUTTON destinationl+2,2
RETURN

Here are the lines that ensure you have entered a valid secret key:

check.code:
LET x:VAL(EDIT$(1))
IF X<>INT(x) OR X< 0 OR X> +32767 THEN BEEP: GOTO main.loop
LET secret•=><

362 Macintosh Program Factory

"' S file~ Edit ~J c~arc h Run Windows

Enter next l i ne (empty line to quit)
Bring refreshments

Input teHt output teHt
Meet me et 7 p.m.
Bring refreshm

SXDc t- Pe X m.W.
Ay+GU A+ j RnDE5

Figure 17-2. Enciphering text with key= 4

LET xyz:RND(-secretjg) :REM Select pseudorondom sequence
WINDOW CLOSE 1

Setting Up the Coding Windows

The following lines initialize the three windows shown in Figure 17 -2:

begin.coding:
LET termination.code~=O :REM no error
WINDOW 1,,(wxjg(2), wyjg(2))-(wx I ll:(2), wy 1 jg(2)) ,3
WINDOW 2,"lnput text",(wxjg(3),wyig(3))-(wx I %(3),wy I %(3)), I
WINDOW 3,"0utput text",(wxll:(4),wy%(4))-(wx 1%(4),wy1 %(4)), I
WINDOW 1
WIDTH 255
IF source%= I THEN source.ok

Termination.code% keeps track of why the program stopped process
ing text; reasons include input and output file errors and clicking the
QUIT button. Termination.code%=0 indicates no error.

Window 1 is a status indicator and dialog box that allows you to quit

Secret Messages 363

or pause the program. Window 2 repeats the text as it is typed from the
keyboard or input from a disk file; window 3 shows the processed text
(enciphered or deciphered).

The next lines prompt you to specify the name of a disk file for input
to the program.

CLS
CALL TEXTF ACE(1)
PRINT "READ TEXT FROM A DISK FILE"
CALL TEXTFACE(O)
LET fi$:FILES$(1,"TEXT")
IF fi$:nu$ THEN LET terminotion.codel=3: GOTO exit.coding
ON ERROR GOTO fi.err
OPEN fi$ FOR INPUT AS 1
ON ERROR GOTO 0

These lines set up the output device (display, printer, or disk file):

source.ok:
IF destinotionl= 1 THEN destinotion.ok
IF destinotionl=2 THEN set.up.printer
CLS
CALL TEXTFACE(1)
PRINT "OUTPUT PROCESSED TEXT TO A DISK FILE"
CALL TEXTFACE(O)
LET fo$:FILES$(0,"Nome the output file:") :REM set up disk file
IF fo$:nu$ THEN LET terminotion.codel=3: GOTO exit.coding
ON ERROR GOTO f o.err
OPEN fo$ FOR OUTPUT AS 2
ON ERROR GOTO 0
GOTO destinotion.ok
set.up.printer:
OPEN "LPT 1 :DIRECT" FOR OUTPUT AS 2

Once all the input/output routing has been taken care of, the follow
ing lines put PAUSE and QUIT buttons into window 1 (except when you
are inputting from the keyboard, when no buttons are needed). During
disk input, the coding. interrupt routine is activated to handle requests
to pause or quit the program.

destinotion.ok:
IF sourcel: 1 THEN coding.loop

364 Macintosh Program Factory

CLS
PRINT "Coding in progress·
FOR bl:BTO 9
BUTTON bl-7, 1,b1$(bl) ,(bxl(bl),byl(bl))-(bx 1 l(bl) ,by 1 l(bl)) ,btl(bl)
NEXT bl
LET pausedl:nol
LET rq.quitl:not:
ON DIALOG GOSUB coding.interrupt
DIALOG ON

The Coding Process

The following lines are executed repeatedly until there is no more text
in the file (or you type an empty line during keyboard input) or until an
input/output error occurs:

codi ng.1 oop:
WHILE pause~I AND NOT rq.quitl
WEND
IF rq.quitt: THEN exit.coding
IF sourcel=2 THEN disk.input
WINDOW OUTPUT 1
WIDTH 255
CLS
PRINT "Enter next line (empty line to quit)"
LINE INPUT texts
IF textS=nuS THEN exit.coding
GOTO process.text
disk.input:
IF EOF(1) THEN exit.coding
ON ERROR GOTO f 1.err
LINE INPUT"' I, texts
ON ERROR GOTO 0

In the case of keyboard input, entering an empty line signals that no
more text remains. In the case of disk input, the process continues until
it reaches the end of file or an error occurs.

Given a line of text text$, the following routine reads every character
and enciphers those that are contained in its cipher list.

process. text:
LET cpt::I

WHILE cpl<=LEN(text$) AND NOT rq.quitl
WHILE pausedl
WEND
LET c 1$:MID$(text$,cpl, 1)

LET c2$:cl$
IF secretl=O THEN char.ready

Secret Messages 365

LET indexl=INSTR(1,ch6r.set$,c 1 $)-1 :REM between -1 and 63
IF indexl=-1 THEN char.ready :REM wasn't in the character teble
LET rnl=INT(RND*64) :REM Between 0 and 63
IF rnl<O OR rnl>63 THEN STOP
LET new.indexl=rnl XOR indexl :REM again between O and 63
LET c2$:MID$(char.set$,new.indexl+ 1, 1)

Cp% points to the current character within the line of text. cl$ is the
character pointed to and c2$ is the processed character. If the key is set
to 0, the program leaves c2$=cl$ (the character is not changed). Oth
erwise, c2$ is replaced with another character determined by the result
of (position of c2$) XOR (random number rn%).

When c2$ is ready, the following lines print the original character
cl$ to window 2 and the processed character c2$ to window 3 (see Fig
ure 17-3) and optionally to the printer or disk file:

char.ready:
WINDOW OUTPUT 2
WIDTH 25
PRINT c1$;
WINDOW OUTPUT 3
PRINT c2$;
ON ERROR GOTO to.err
IF destinetionl<> I THEN PRINT•2, c2$;
ON ERROR GOTO 0
LET cpl:cpl+ I
WEND
WINDOW OUTPUT 2
WIDTH 25
PRINT
WINDOW OUTPUT 3
PRINT
ON ERROR GOTO f o.err
IF destinationl<> I THEN PRINT•2,
ON ERROR GOTO 0
GOTO codi ng.1 oop

366 Macintosh Program Factory

~ II fih~ Edit S c~<Jrch Run Windows
.,

Enter next line (empty line to quit)

Input teHt Output teHt
SXDi: t-Pf! X m.W. Meet mef!t 7 p.m.

Figure 17-3. Deciphering text with key=4

Windows 2 and 3 are set up with a maximum character width of 25,
so that all the text will be displayed within the windows (WIDTH 25).

While the program is reading text from a disk file, the following
lines handle button interrupts (requests to pause or quit):

coding.interrupt:
LET event%:DIALOG(O)
IF event%<> 1 THEN RETURN
LET type.interrupt%:DIALOG(1)
ON type.interrupt% GOTO pouse.switch,request.quit
pouse.swi tch:
LET poused%:poused)g XOR yes:g
LET current.window~=WINDOW(1) :REM remember current output window
WINDOW 1
fl UTT ON 1, 1,pouse$(-poused%) ,(bx%(8) ,by%(8))-(bx 1 %(8) ,by 1%(8)),1

WINDOW OUTPUT current.window% :REM restore current output window
RETURN
request.quit:
LET rq.qui t:g=yes:g
RETURN

Secret Messages 367

In case of a pause request, the program changes the PAUSE button
to a CONTINUE button, sets the paused% flag to yes%, and returns. If
the program is already paused, pressing CONTINUE changes the but
ton from CONTINUE to PAUSE and sets the paused% flag to no%.

In case of a quit request, the program sets the rq.quit% flag to yes%
and returns.

The next lines take over when coding is terminated for any reason:

exit.coding:
ON ERROR GOTO 0
DIALOG STOP
CLOSE
WINDOW 1
WIDTH 255
CLS
IF termination.codel>O THEN input.output.error
IF rq.quitl THEN PRINT ·processing terminated." ELSE PRINT "Processing

complete."
GOTO wait.ok

Termination.code%>0 indicates that an input or output error caused
the processing to stop; otherwise the processing ended because you
pressed the QUIT button or the program reached the end of the text.
The program prints an appropriate message on the screen depending
on which condition is true.

The following lines warn you that an error occurred:

input.output.error:
BEEP
ON termlnation.codel GOTO lnput.error,output.error,io.concelled
input.error:
PRINT "Error while reading from:·
PRINT fi$
GOTO wait.Ok
output.error:
PRINT ·Error while outputting to:·
PRINT fo$
GOTO woit.ok
io.concelled:
PRINT ·cancelled processing."

Before returning to the main menu, the program creates an OK but
ton and waits for you to press it.

368 Macintosh Program Factory

wiiit.ok:
BUTION CLOSE 1
BUTION CLOSE 2
BUTTON 1, 1, "OK" ,(bxl(9),byl(9))-(bx 11(9),by 11(9)),btl(9)
LET eventl:DIALOG(O)
WHILE eventl<> 1 AND eventl<>6
LET eventl:DIALOG(O)
WEND
FOR wig: 1 TO 3
WINDOW CLOSE wl
NEXT wl
GOTO main.menu

The last program block is executed when an error occurs:

fi.err:
LET terminiition.codel= 1
RESUME exit.coding
fa.err:
LET termi niit ion.codel=2
RESUME exit.coding

The fi.err routine is enabled immediately before and disabled imme
diately after each file input operation. The same is true of the fo.err
routine with respect to file output operations.

-Testing and Using the Program -----
First carefully check a printout of the program against the program
lines in this chapter. Then run the program. Set the key to 0, specify
input from the keyboard and output to the screen. Then press BEGIN.
The program should prompt you to enter text, as shown in Figure 17-1.
Since you selected a key of 0, the program should not change your
text-the Input Text (plaintext) should be the same as the Output Text
(ciphertext).

To stop entering text, press ENTER on an empty line. Then select a
key of 4 and repeat the test. Now type the same text that is shown in
Figure 17-2. You should get the same results that are shown in that
figure.

To test the deciphering capability, go back to the main menu (press
ENTER on an empty line), leave the key set to 4, and press BEGIN again.

Secret Messages 369

Now type in the ciphertext as shown in Figure 17-3. The original plain
text should be printed in the Output Text window.

Test the program's ability to output to the printer and to a disk file,
and to input text from a file (must be a text file). Figures 17-4 and 17-5
show the screen appearance after selection of disk input/output from
the main menu.

-Tips for Processing Lengthy Texts ----
If you are enciphering or deciphering a lengthy text, you may not want
to sit at the keyboard waiting for the computer to process one line at a
time. Using the disk-to-disk option (input from one disk file, output to
another) can free you to do other things while the computer processes
the entire text.

Suppose you want to send a lengthy document to a friend. Run the
program, specifying the keyboard as the input device and a disk file
PLAINTEXT as the output device. Enter a key of 0 (no processing).

,.. S ril<~ Edit Se <1n h Run Windows

READ TEXT FROM A DISK FILE

Open MPF.B 16

Eject

cancel ~ onue

Figure 17 -4. Loading text from disk

370 Macintosh Program Factory

r- S ft l e Edit !-ie<J J" (h Run Windows

OUTPUT PROCESSED TEXT TO A DISK FILE

Nome the output file: MPF.B 16

Eject
le Ht I confidentio~

Soue concerlJ Driue

Figure 17 -5. Saving text to disk

Type in the text, which will be stored on disk without the delay of
processing.

When you've stored the text on disk, set the computer to input from
the disk file PLAINTEXT and output to another disk file CIPHER
TEXT. Enter a nonzero key. The computer will process the text and
save the results in the output file CIPHERTEXT; you won't have to be
around during this possibly lengthy process.

Then send just the CIPHERTEXT file to your friend. The recipient
sets the program to input from CIPHERTEXT and output to a new file
called PLAINTEXT and then enters the correct key. When the process
ing is complete, your friend then sets the computer to read from
PLAINTEXT and output to the CRT or printer and now enters a key of
0. The plaintext is displayed or printed without the delay of processing.

-How Secure Is the Ciphertext? ------
Cryptanalysts (codebreakers) often study the frequency distribution of
characters within the ciphertext to help them break the cipher. This
technique is of little use with ciphertext from the Secret Message pro-

Secret Messages 371

Table 17 -2. Frequency Distribution of Characters in the Ciphertext

Plaintext

AAAAAAAAA
111111111

Joe Joe Joe

Key

32050
12345
41200

Ciphertext

FlsoJBEuM
IcLPJQKOn
7Ge - 91 w7i

gram because the distribution of letters in its ciphertext is almost uni
form. (See Table 17-2.)

The very fact of uniform frequency distribution might lead a crypt
analyst to suspect the use of a key stream substitution cipher. However,
breaking such a cipher is difficult and time-consuming.

If a cryptanalyst can obtain a large sample of ciphertext, he may
eventually break the code. The cryptanalyst starts by assuming that
certain words occur in the text ("the," for example) and then applies
various mathematical operations to the ciphertext, trying to obtain
"the." Once he has recovered a single word of plaintext, he may be able
to infer the nature of the key stream since it is not truly random, only
pseudo-random. (If it were a truly random key stream, the cipher would
be virtually unbreakable without prior knowledge of the key stream.)

The only way for a person who is not a cryptanalyst to break the
code is by trial and error, assuming the person has a copy of the Secret
Messages program. This time-consuming method requires the would-be
codebreaker systematically to try different keys and see the results on
the ciphertext.

In summary, the Secret Messages program produces ciphertext that
is secure against attack by nonexperts. However, don't expect it to fool
the National Security Administration!

This chapter has been adapted from "Secret Messages" by George Stewart, appearing in
the April 1983 issue of Popular Com'JYUting magazine. Copyright © 1983 BYTE Publica
tions, Inc. Used with the permission of BYTE Publications, Inc.

Chapter 18

Blazing Telephones

Harry was plain old 273-2255 until he found out about ape-call. Sue
suffered along with 468-5477 until she discovered hot-lips. And Frank
never really appreciated his 683-4323 until he noticed mud-head.

How about your telephone number? Would you like to add a little
"ring" to it? The Blazing Telephones program will help you find out
what words (if any) are hidden in those seven digits.

The technique of replacing digits with letters is often used by busi
nesses. A barbecue stand, for example, may ask the local telephone
company for the number 737-3744 (pure pig) or 255-2333 (all beef),
depending on its culinary persuasion. Although telephone companies
are not obligated to honor such requests, most of them will try to do so if
it is possible.

The situation facing the private individual is less encouraging. The
telephone company cannot comply with all personal requests for a spe
cific number. Furthermore, you probably already have a telephone
number that is widely known by friends and associates.

But serendipity is on your side. By conducting an exhaustive search

373

37 4 Macintosh Program Fact.ory

through all 2187 possible letter combinations, chances are good that
you'll find a viable alternative to the plain numeric sequence. But
exhaustive searches tend to be exhausting. That's where Blazing Tele
phones comes in.

-The Method------------
Any person who uses a phone will recognize the two objects portrayed
in Figure 18-1. They are reproduced here to emphasize the correspon
dence between the digits 0-9 and the letters A-P and R-Y (the letters Q
and Z are omitted on the dials).

For each digit in your phone number, three different letter replace
ments are possible. The numbers 0 and 1 are exceptions: the telephone
dial offers no replacements for them. Thus, for a seven-digit number,
the total number of distinct letter combinations is 37 or 2187, and fewer
if the number includes l's or O's.

The combinatorial problem is solved by a simple exercise in count
ing. The trick is to count in base 3. All base 3 numbers are composed of
three distinct symbols: 0, l, and 2. For example, the decimal or base 10
number 19 is represented in base 3 as 201 (2 X a2 + 0 X 31 + 1 · X 3°).

For seven-digit telephone numbers, the program counts from 0 to
2186 in base 3. (If your telephone number contains more or fewer than
seven digits, the program automatically adjusts the base 3 counter to
match the number of possibilities for that number.) Each base 3
number acts as a mask or key for generating the 2187 possible alpha
betic sequences.

Consider the phone number 352-5562. The first digit is a 3. Accord
ing to the telephone dial layout, 3 corresponds to the letter triplet
D,E,F.

Which letter is chosen? Here's where the key comes in. Each digit of
the key is either 0, 1, or 2. In the case of a 0, the first letter in the triplet
is used; in the case of a l, the second letter; and in the case of a 2, the
third letter is used.

The first base 3 number generated is 0000000 (seven digits are
required since the phone number contains seven digits). The first digit
in the key is 0, so D is taken, which is the "0th" letter in the triplet
D,E,F. The second digit in the phone number is a 5, which corresponds
to the triplet J,K,L. The key has a 0 in the second position, so the 0th
letter, J, is selected.

Blazing Telephones 375

Figure 18-1. Pushbutton and rotary dial telephone faces

376 Macintosh Program Factory

The following table shows letter replacements for the phone number
352-5562 using the three keys 0000000, 0000001, and 0002100:

Phone number: 3 5 2 5 5 6 2
Key: 0 0 0 0 0 0 0
Letter sequence: D J A J J M A

Phone number: 3 5 2 5 5 6 2
Key: 0 0 0 0 0 0 1
Letter sequence: D J A J J M B

Phone number: 3 5 2 5 5 6 2
Key: 0 0 0 2 1 0 0
Letter sequence: D J A L K 0 A

In a similar manner, all 2187 keys can be used to generate a total of
2187 distinct names for this one phone number.

To be sure you understand the method, compute the resultant letter
sequence for the phone number 266-7883 and the key 2020101.

Figures 18-2 through 18-9 show the screen appearance when you
run the program.

-The Program-------------

The first block of lines contains descriptors for the windows, buttons,
and edit fields:

REM Windows
DATA 3
DATA 4, 3, 1.5, 0.5
DAT A 4, 1, 1.5,0.375
DATA 7,3,0.05, 1.5
REM Buttons
DATA 12
DATA Alphcsbetic to numeric, 2.25, 0.208, 0.5, 0.375, 2
DATA Numeric to cslphcsbetic, 2.25, 0.208, 0.5, 0.5, 2
DATA OK, 0.75, 0.333, 0.333, 0.875, 1
DATA QUIT, 0.75, 0.333, 0.667, 0.875, 1
DATA AGAIN, 1, 0.333, 0.25, 0.9, 1
DATA MENU, 1, 0.333, 0.75, 0.9, 1
DATA Screen, 1, 0.208, 0.5, 0.25, 3

DATA Printer, 1, 0.208, 0.5, 0.375, 3
DATA Dtsk Ftle, 1, 0.208, 0.5, 0.5,3
DATA PAUSE, 1.0, 0.333, 0.25, 0.75, 1
DATA STOP, 1.0, 0.333, 0.75, 0.75, 1
DATA OK, 1,0.333, 0.5, 0.75, 1
REM Edtt fields
DATA 2.5, 0.208, 0.5, 0.4

Blazing Telephones 377

The first window is shown in Figure 18-2; the second and third win
dows, in Figure 18-7; buttons are shown in Figures 18-2, 18-4, 18-6,
18-7, 18-8, and 18-9; and edit fields in Figures 18-3 and 18-5.

Next come three blocks of lines to read in the preceding data. The
first block reads in the window data:

READ nwl
DIM wwl(nwl}, wll(nwl}, wxl(nwl}, wyl(nwl), wx 1 l(nwl), wy 1 l(nwl}
FOR nl= 1 TO nwl
READ inches.wtde, inches.long, u1cx, u1cy
LET wwl(nl}:inches. wide*72
LET w11(nl}:inches.1ong*72
LET wxl(n~}=u1cx*72
LET wyl(nl)=u1cy*72
LET wx 1 l(nl):wxl(nl)+wwl(nl)
LET wy 1 l(nl):wyl(nl}+wJl(nl)
NEXT nl

The second block reads in the data for the buttons:

READ nbl
DIM b 1 $(nbl} ,bxl(nbl) ,byl(nbl} ,bx 1 l(nbl} ,by 1 l(nbl) ,btl(nbl}
FOR -nl= 1 TO nbl
IF nl< 10 THEN LET WI= 1 ELSE LET wl:2
READ b1$(nl},tnches.wide, inches.long, hzone, vzone, btl(nl)
LET bxl(nl}=(wwl(wl}-inches. wtde*72}*hzone
LET byl(nl):(w11(w1Hnches.1ong*72)*vzone
LET bx 1 l(nl)=bxl(nl)+inches.wide*72
LET by 1 l(nl):byl(nl)+inches.1ong*72
NEXT nl
DIM P8Use$(1)
LET p8use$(0):"PAUSE"
LET pouse$(1):"CONTINUE"

378 Macintosh Program Factory

Buttons 1 through 9 appear in window 1; buttons 10 and 12 appear
in window 2 (IF n%<10 THEN LET w%=1 ELSE LET w%=2).

The following lines read in the field descriptors and set up certain
arrays and constants:

READ inches.wide, inches.long, hzone, vzone
LET fx:C=(ww:C(1 H nches. wi de*72)*hzone
LET fy:C=(wl:t:(1 Hnches.long*72)*vzone
LET fx 1 :C:fxl+inches.wide*72
LET fy 1 :C:fy:C+inches. l ong*72
LET mdl=15 :REM meximum digits in a phone number
DIM kl(mdl),fo$(3)
LET fo$(l):"SCRN:"
LET fo$(2)="LPT 1 :DIRECT"
LET fo$(3):"01SK"
LET p$:"000111 ABCDEFGHIJKLMNOPRSTUVWXV" :REM Alpha teble
LET num$="0123456769" :REM Numeric teble
LET col.spcicesl=2 :REM spcices between columns
LET yesl=(1 = 1)
LET nol=(1 =0)
LET cv.typel= 1 :REM 1 :elpha to numeric, 2=numeric to olpha
LET output.tole= 1 :REM 1 =screen, 2=printer, 3=disk
LET lwl=70 :REM mciximum cherecters per line

Array k%() holds the key (described previously). Fo$() holds the name
of the output device used for printing the sometimes voluminous list of
names.

The variable p$ is a table of the 30 characters used to replace the
numerals. Note that there are 3 zeros and 3 ones followed by the com
plete alphabet except for the letters Q and Z.

Num$ is the corresponding table of digits used to convert letters
back into numbers (alphabetic to numeric option).

Main Menu

The next block of lines creates the screen shown in Figure 18-2:

mein.menu:
WINDOW 1,,(wx:C(1), wyl(1))-(wx 1I(1), wy 11(1)) ,3
CALL TEXTFONT(1)
CALL TEXTSIZE(16)

" s l'il(~ Edit S(rnn h Run Windows

Blazing Telephones

181 Alphabetic to numeric

D Numeric to alphabetic

(OK (QUIT)

Figure 18-2. Main menu

CALL TEXTF ACE(1)
CLS
LET title$="Blozing Telephones·
LET t i.tobw;:(ww%(1)-W IDTH(ti t1 e$))/2
PRINT PTAB(ti.tobw;); title$
CALL TEXTFACE(O)
CALL TEXTSIZE(12)
FOR n!C= 1 TO 2

Blazing Telephones

BUTTON nw;, 1-(n!C=CI/. type%) ,b 1 $(n~) ,(bx%(nw;) ,by%(n%))
-(bx 1 %(n%) ,by 1 %(n%)), bt%(n:C)

NEXT n%
FOR n~=3 TO 4
BUTTON n:C, 1,bl $(n%),(bx%(n%),by%(n:C))-(bx 1 %(n%),by l %(n%)) ,bt%(n%)
NEXT nrt:

379

.,

The value of cv.type% determines which of the check-box buttons is
selected.

380 Macintosh Program Factory

While the menu is displayed, the program waits for you to make a
selection:

mm.loop:
GOSUB wait.event
IF eventl=6 THEN selection.made
LET btnl:DIALOG(1)
ON btnl GOTO change.type,change.type,selection.made,quit
quit:
WINDOW CLOSE 1
END
change.type:
BUTTON cv.typel, 1 :REM deselect old button
LET cv.typel:btnl
BUTTON cv.typel,2 :REM select new button
GOTO mm.loop
selectton.made:
FOR btnl= 1 TO 4
BUTTON CLOSE btnl
NEXT btnl
ON cv.typel GOTO alpha.to.numertc, numertc.to.alpha

The wait.event subroutine waits for you to click a button or press
ENTER or RETURN. If you press ENTER, RETURN, or the OK button, the
program closes the buttons and jumps to one of the conversion menus,
as determined by cv.type% (ON cv.type% GOTO) ...).

If you click one of the check-box buttons, the change.type routine
updates the button status, and the program stays inside the idle loop
mm.loop.

Alpha-to-Numeric Conversions

The next part of the program handles the alpha-to-numeric option,
starting with the block that creates the screen shown in Figure 18-3:

alpha.to.numertc:
LETsequenceS:nuS
atn.loop:
CLS
CALL TEXTFACE(1)
PRINT ·coNVERT ALPHA TO NUMER1c·
CALL MOVET0(6,fyl-24)

CONVERT ALPHA TO NUMERIC

Enter an alphabetic sequence
(Empty ltne = menu):

lPURE PIG

Figure 18-3. Alpha-to-numeric entry
screen

PRINT "Enter tm alphtibetic sequence·
PRINT PT AB(6); "(Empty line = menu):"
CALL TEXTFACE(O)
GOSUB get.sequence
IF sequence$=nu$ THEN mtiin.menu
CALL TEXTF ACE(1)
PRINT PTAB(6); "Numertc equivolent is:·
CALL TEXTFACE(O)
PRINT PT AB(fxl);

Blazing Telephones 381

The get.sequence subroutine inputs a character sequence from the
keyboard by means of an edit field like that shown in Figure 18-3. The
same subroutine is used in the numeric-to-alpha subroutine presented
later. If you enter a null (by pressing ENTER or RETURN in an empty
field), the program returns to the main menu (IF sequence$=nu$...).

Otherwise, the program continues with the following block, which
does the alpha-to-numeric conversion:

FOR cnll= 1 TO LEN(sequence$)
LET c$:MID$(sequence$,cnl, I)
LET psi: INSTR(1,p$,c$)
IF psll:O THEN chtir.retidy
LET pdl:(psl-1)\3
LET c$:MID$(num$,pdl+ 1, 1)
chor.reody:

382 Macintosh Program Factory

CONVERT ALPHA TO NU"ERIC

Enter an alphabetic sequence
(Empty Una= menu):

PURE PIG

Numeric equivalent is:
7873 744

(R&RIN ~) (MENU)

Figure 18-4. Alpha-to-numeric output
screen

PRINT c$;
NEKT cnll
FOR nll=5 TO 6
BUTTON nll-4, 1,b1$(nll),(b><l(nll),byll(nlU)-(bx 1ll(nll),by1 :C(n:C)),btll(nll)
NEKT n:C
GOSUB wait.event
BUTTON CLOSE 1
BUTTON CLOSE 2
IF eventll:6 OR DIALOG(1):1 THEN atn.loop
GOTO main.menu

The program examines each character c$ of the sequence. If the
character occurs in the alpha list p$, it is changed into the correspond
ing numeric digit in the number list num$. Otherwise it is left
unchanged.

The resultant alphabetic sequence is printed underneath the original
sequence, and the program lets you continue with the same type of con
version or return to the menu (see Figure 18-4).

Numeric-to-Alpha Conversions

The logic for converting from numeric to alphabetic equivalents is more
complicated. First the screen shown in Figure 18-5 is created by the
following block:

CONVERT NUHERIC TO ALPHA

Enter e numeric sequence
(Empty line= menu):

1522-7344

•
Figure 18-5. Numeric-to-alpha entry

screen

numeric. to.11 l ph11:
LET sequence$:nu$
nt11.1oop:
CLS
CALL TEl<TF ACE(1)
PRINT "CONVERT NUMERIC TO ALPHA"
CALL MOVET0(6,fy)g-24)
PRINT "Enter o numeric sequence·
PRINT PTAB(6); "(Empty line= menu):"
CALL TEl<TFACE(O)
GOSUB get.sequence
IF sequence$:nu$ THEN main.menu

Blazing Telephones 383

Again, the get.sequence subroutine inputs the string value
sequence$. If it is null, the program returns to the main menu; other
wise, the following block is executed:

LET pl)g:LEN(sequence$)
LET nd)g:O
FOR cnjg: 1 TO pJig
LET c$:MID$(sequence$,cn)g, 1)
IF INSTR(1,num$,c$)>2 THEN LET ndl:ndl+ 1
NEXT cnl
IF ndl >0 THEN x.oble.digits.found
CALL TEl<TFACE(1)

384 Macintosh Program Factory

PRINT "No tnmslotoble digits found."
CALL TEXTFACE(O)
GOSUB woit.ok
IF eventl=6 OR btnl= 1 THEN nto.loop ELSE moin.menu
x.ob 1 e.di gits.f ound:
IF ndl<=mdl THEN length.Ok
CALL TEXTFACE(1)
PRINT "Too mony digits. Mox is"; mdl
CALL TEXTFACE(O)
GOSUB woi t.ok
IF eventl=6ORbtnl=1 THEN nto.loop ELSE moin.menu

These lines count the number nd% of translatable digits in sequence$
(numbers 2 through 9). If there are none or too many, the program dis
plays the corresponding error messages (shown in Figures 18-8 and 18-9)
and the continuation buttons (AGAIN and MENU).

If the number of translatable digits is between 1 and md%, the pro
gram continues with the following block:

length.Ok:
LET how.mony=3·ndl
CLS
CALL TEXTFACE(1)
PRINT "SELECT OUTPUT DEVICE:"
CALL TEXTFACE(O)
FOR nl:7 TO 9
BUTTON nl-6, 1-(nl-6:output.tol), b1$(nl),(bxle(nl),byl(nl))- (bx 1 l(nl),

by 1 le(nl)), btl(nl)
NEXT nl
FOR nl:3 TO 4
BUTTON nl+ 1, 1,b1$(nl) ,(bxl(nl) ,byl(nl))-(bx 1 l(nl) ,by 1 l(nl)) ,btl(nl)
NEXT nl

These lines prompt you to select the output device, as shown in Fig
ure 18-6. The variable output.to% indicates the current output device:
1 =screen, 2=printer, 3=disk.

The following block waits for you to press ENTER or RETURN or one
of the dialog buttons:

lo.loop:
GOSUB woit.event
IF eventl=6 THEN open.od

Blazing Telephones 385

SELECT OUTPUT DEVICE

<! >Screen

c: ~ : · Printer

Figure 18-6. Output device selection

LET btn:g:OIALOG(1)
ON btn:g GOTO set.od,set.od,set.od,open.od,mein.menu
set.od:
BUTION output.to:g, 1
LET output.to:g=btn:g
BUTTON output.to:g,2
GOTO lo.loop
open.od:
WINDOW 1,,(wx:g(2),wy:g(2))-(wx 1:g(2),wy1 :g(2)),3
CLS
CALL TEXTFACE(1)
PRINT "LIST"; how.many; "NAMES FOR ";sequence$
CALL TEXTFACE(O)
IF output.to~<>3 THEN m1me.ret1dy
LET fo$(3):FILES$(0,"Ntime the output file:")
IF fo$(3):nu$ THEN mtiin.menu

Pressing one of the three output-device buttons activates the set.od
routine and changes the output device. Pressing ENTER or RETURN is
equivalent to pressing the OK button; the program skips the open.od
routine.

The open.od routine creates the smaller window shown in Figure
18-7, indicates the number of names to be output, and opens the output
device (screen, printer, or disk).

The following lines start the output process.

386 Macintosh Program Factory

m1me.reody:
IF output.to,;<> 1 THEN not.screen
WINDOW 2,,(wx,;(3), wy,;(3))-(wx 1 Jg(3), wy 1,;(3)) ,3
WINDOW OUTPUT 2
CALL TEXTFONT(4)
CALL TEXTSIZE(9)
not.screen:
ON ERROR GOTO fa.error
OPEN fo$(output.toi) FOR OUTPUT AS 1
ON ERROR GOTO 0
LET iw,;:pl,;+col.spoces,; :REM Width of eoch sequence
LET il,;:1w,;\1w,; :REM Number of sequences per line
LET it,;: 1
WIDTH • t ,255,iwi
IF output.to,;: 1 THEN WINDOW OUTPUT 2
ON ERROR GOTO fa.error
PRINT• I, 3·ndl; .NAMES FOR ·;sequence$
ON ERROR GOTO 0
WINDOW 1
FOR nl:10 TO 11
BUTTON n,;-9, 1,b 1 $(nl) ,(bxl(n,;) ,byl(nl))-(bx 1 l(n,;) ,by 1,;(nl)) ,btl(n,;)
NEXT nl

In the case of screen output, the program creates another window, as
shown in Figure 18-7.

It% counts the number of names printed on the current output line.
When it%=il%, the program starts a new line of output. The program
also creates two buttons, PAUSE and STOP, that let you interrupt the
list output process.

The next block of lines resets the interrupt status variables and the
key k%():

LET pousedl=nol
LET rq.quitli=nol
LET printed:O
LOCATE 2, 1
PRINT "Printed nome •·
ON DIALOG GOSUB nto.interrupt
DIALOG ON
FOR tdl: 1 TO nd,;
LET kl(tdl)=O
NEXT tdl

,. • HIH Edit S<Mr< h Run Windows

LIST 2187 NAMES FDR 522-7344
Printed ntime • 109

PRUSE STOP

2187 HAMES FOR S22-7344
JAA-POOG KAR-PDGG LAR-POOG JBA-PDGG KBR-POOG LBA-PDGG
LCR-POGG JRB-POGG KR8-PDGG LRB-PDGG JBB-POGG KBB-POGG
KCB-POOG LCB-POGG JRC-POGG KRC-POGG LRC-POGG JBC-POGG
JCC-POOO KCC-POGG LCC-POGG .JAR-ROGG KAR-ROGG LAA-ROGG
LBA-ROGG JCR-ROGG KCR-ROOG LCR-ROGG JAB-ROGG KRB-ROGG
KBB-ROOG LBB-ROGG JCB-ROGG KCB-ROGG LCB-ROGG JRC-ROGG
JBC-ROGG KBC-ROGG LBC-ROGG JCC-ROGG KCC-ROGG LCC-ROGG
LRA-SOGG JBR-SDGG KBR-SOGG LBR-SOC'i JCR-SOGG KCA-SOGG
KRB-SOGG LAB-SOGG JBB-SOGG KBB-SOC LBB-SOGG JCB-SOGG
JRC-SDGG KRC-SDGG LRC-SOGG JBC-SOGG KBC-SOGG LBC-SOGG
LCC-SOGG JAR-PEGG KRA-PEOG LAA-PEGG JBR-PEGG KBR-PEGG
KC A-PEGG LCA-PEGG JAB-PEGG I< AB-PEGG LAB-PEGG JBB-PEGG
JCB-PEGG I< CB-PEGG LCB-PEGG JAC-PEGG KRC-PEGG LAC-PEGG
LBC-PEGG JCC-PEGG KCC-PEGG LCC-PEGG JAR-REGO KRR-R

Figure 18- 7. Numeric-to-alpha screen output

Blazing Telephones 387

.,

JCR-POGG KCR-PDGG
LBB-POGG JCB-POGG
KBC-POGG LBC-POGG
JBR-ROGG KBR-ROGG
LAB-ROGG JBB-ROGG
KRC-ROGG LAC-ROGG
JRA-SOGG KRR-SOGG
LCA-SOGG JAB-SOGG
KCB-SOGG LCB-SOGG
JCC-SOGG KCC-SOGG
LBA-PEGG JCR-PEGG
KBB-PEGG LBB-PEGG
JBC-PEGG KBC-PEGG

The total number of names printed is stored in a variable named
printed and is displayed in the smaller window shown in Figure 18- 7.

Using a Key

The following lines use the current key to produce an alphabetic
sequence:

key.loop:
WHILE piiused:g AND NOT rQ.QUitle
WEND
IF rQ.QUit:g THEN exit.ntii
LET dle= 1
FOR cn:g= 1 TO pJ:g
LET c$=MID$(sequence$,cn:g, 1)
LET pd:g=INSTR(1,num$,c$)
IF pd:g<3 THEN 11lph11.re11dy
LET c$:MID$(p$,(pd:g-1)*3+1+k:g(dle),1)
LET d:g=d~+ 1

388 Macintosh Program Factory

o 1 pho.reody:
IF output.toll= 1 THEN WINDOW OUTPUT 2
ON ERROR GOTO f o.error
PRINT •1, c$;
ON ERROR GOTO 0
NEXT cnl
IF Jtlg>ill THEN new.line
LET itl:itl+ 1
ON ERROR GOTO f o.error
PRINT• I,, :REM two commos
ON ERROR GOTO 0
GOTO met.key
new.line:
LET itl:I
ON ERROR GOTO fo.error
PRINT•!,
ON ERROR GOTO 0

D% points to the digit being converted. For each translatable digit in
the sequence, the program substitutes a letter from the corresponding
triplet in alpha$; the key array k%() determines which of the three
letters is substituted.

The resulting character c$ is output to the selected device, and the
program continues with the next block, which prepares another key:

met.key:
LET printed:printed+ 1
IF output.toll= 1 THEN WINDOW OUTPUT 1
LOCATE 2, 1
PRINT PTAB(IOO); printed
LET dpl:1
bump.digit:
LET kl(dpl):kl(dpl)+ 1
IF kl(dpl)<=2 THEN key.loop
LET kl(dpl)=O
IF dpl:ndl THEN exit.nt11
LET dpl:dpl+ I :REM corry to next diglt
GOTO bump.digit

After updating the number of items printed, the program generates
the next key. When all the keys have been used, the program executes
the following lines:

CONVERT NUMERIC TO ALPHA

Enter 11 numeric sequence
(Empty line = menu):

110

No trnnsl11t11ble dtg1ts round.

(RGRIN) (MENU)

Figure 18-8. Numeric-to-alpha error
message (no translatable
digits)

exit.nto:
DIALOG STOP
ON ERROR GOTO to.error
PRINT•!,
CLOSE
err.exi t.nto:
ON ERROR GOTO 0
WINDOW 1

Blazing Telephones 389

BUTTON 1, 1,. AGAIN" ,(bxll:(10) ,byl(10))-(bx11(10) ,by 1 ll:(10)) ,bt:E(10)
BUTTON 2, 1, "MENU" ,(bxll:(11) ,by:g(11))-(bx 1:g(11) ,by 1 :g(11)) ,bt:E(I 1)
GOSUB wait.event
WINDOW CLOSE 2
IF eventl<>6 AND DIALOG(1)<>1 THEN moin.menu
WINDOW 1.,(wxl(1).wyll:(1))-(wx1:g(1), wy 1:g(1)),3
GOTO nto.loop

These lines put the continuation buttons AGAIN and MENU in the
dialog box and wait for a selection.

Auxiliary Subroutines

While a list is being printed to the screen, printer, or disk file, you can
interrupt the process by pressing the PAUSE or STOP button. The fol
lowing lines handle the interrupt:

nto.i nterrupt:
LET eventl:DIALOG(O)

390 Macintosh Program Factory

CONVERT NUt1ERIC TO ALPHA

Enter a numeric sequence
(Empty Hne = menu):

4444444444444444444444

Too many digits. Max ts 15

(RGRl'l) (MENU)

Figure 18-9. Numeric-to-alpha error
message (too many
digits)

IF eventl<> 1 THEN RETURN
LET btnl:DIALOG(1)
ON btnl GOTO pouse.swltch,request.quit
pouse.switch:
LET pousedl:pousedl)(OR yesl
LET current.windowl=WINDOW(1)
WINDOW 1
BUTTON 1, 1,pouse$(-pousedl), (bxl(1O),byl(1O))-(bx1:E(1 o), by 11(1 o)),

btl(10)
WINDOW OUTPUT current.windowl
RETURN
request.quit:
LET rq.qu1tl:yesl
RETURN

If you press PAUSE, the program sets the paused% flag to 1 and
changes the button label to CONTINUE. (If you then press CON
TINUE, the program resets the paused% flag and restores the PAUSE
label.)

If you press STOP, the program sets the rq.quit% flag and returns to
the listing procedure. The quit request is detected as soon as the current
sequence is translated.

The next block takes care of output errors that may occur during the
listing process.

fa.error:
CLOSE
WINDOW 1
BUTTON CLOSE I
BUTTON CLOSE 2
CLS

Blazing Telephones 391

IF ERR<50 THEN ON ERROR GOTO 0 :REM Not file-related
PRINT "Can't output to:"
PR I NT f o$(output.to:g)
BUTTON I, 1,bl $(12),(bx:g(12) ,by:g(12))-(bx 1:g(12) ,by 1:g(12)) ,bt:g(12)
GOSUB wait.event
CLS
RESUME err.exi t.nta

If the error number is less than 50, it is not a file-related error, so
the program lets BASIC handle the error in the normal fashion. File
related errors cause the program to print an error notice and return to
the main menu.

The following lines display the AGAIN and MENU buttons after
completing the sequence conversion:

wait.ck:
BUTTON 1, 1,"AGAIN",(bx:g(3),by:g(3))-(bx 1:g(3),by1 :g(3)),bt:g(3)
BUTTON 2, 1, "MENU" ,(bxle(4) ,byle(4))-(bx 1le(4) ,by 1:g(4)) ,bt:g(4)
GOSUB woi t.event
IF eventle: 1 THEN LET btnle:DIALOG(1)
BUTTON CLOSE 1
BUTTON CLOSE 2
RETURN

The wait.event subroutine waits until you press ENTER or RETURN or
one of the dialog buttons.

woit.event:
LET eventle:DIALOG(O)
WHILE eventle<> 1 AND eventle<>6
LET event:g:DIALOG(O)
WEND
RETURN

The final block of the program creates an edit field and waits for you
to input a value, which is then stored in sequence$:

392 Macintosh Program Factory

get.sequence:
EDIT FIELD 1,sequence$,(fxl,fyl)-(fx 11,fy 11)
WHILE DIALOG(O)<>fi
WEND
LET sequence$:UCASE$(EDIT$(1))
EDIT FIELD CLOSE 1
CALL MOVETO(fxl,fyl+ 12)
PRINT sequence$
PRINT
RETURN

-Testing and Using the Program ----
You should be able to duplicate the results shown in Figures 18-2
through 18-9. For numeric-to-alpha conversions, select the screen as the
output device and verify that the conversion procedure works properly.
Then test the printer and disk options. The disk option creates a file
(named by you) that can be loaded into MacWrite.

When using the numeric-to-alpha converter, you don't have to pro
cess the entire number at once. You may find it helpful to enter only
part of the number at a time-for example, the initial three digits of
your telephone number. This reduces the output list to just 27 names.
Once you have found a suitable name for part of the number, you can try
the other portion.

If your number contains any l's or O's, it's a good idea to enter only
the segment on either side of these digits. For example, given the
number 665-8415, enter the number as 66584, which produces only 243
distinct names. Among them you'll find NOJUG, NOLUI, and OOLUH.
Now combine the names with the last two digits to get NOJUG-15,
NOLUI-15, and OOLUH-15.

Who knows what bright new name may be hiding in your telephone
number?

Chapter 19

Nutritional Advisor

A one-ounce bag of potato chips provides 150 calories, 3 grams of pro
tein, 14 grams of carbohydrates, and 10 grams of fat. Two peanut butter
cups give you 180 calories, 4 grams of protein, 17 grams of carbohy
drates, and 11 grams of fat.

All this information (and quite a lot more) is printed on food pack
ages for those who care to know. Almost all prepared foods include sim
ilar information.

But how does Grandmother's pineapple upside-down cake stack up?
How nutritious is your favorite quiche recipe? When it comes to fresh
foods or recipes that you prepare, analyzing your nutritional intake can
be complicated.

The Nutritional Advisor program gives you the essential information
-calories, carbohydrates, fats, and proteins-about the foods you pre
pare. Used in conjunction with standard nutritional requirement tables,
the program will help you plan a balanced diet.

You may also find it interesting to do food cost/value studies. For
example, ounce for ounce, which is a cheaper source of protein: potato
chips or filet mignon? The program will help you make such
comparisons.

Figures 19-1 through 19-5 summarize the operation of the program.

393

394 Macintosh Program Factory

-The Program-------------

The first block of the program contains descriptors for windows, but
tons, and edit fields:

DATA 2
DATA 4.35, 4.2, 0.15, 0.375
DAT A 2.35, 4.2, 4.6, 0.375
DATA 3
DATA UP, .4, 0.333, 0.1, 0.85, 1
DATA DOWN, .6, 0.333, 0.5, 0.85, 1
DATA OK, .4, 0.333, 0.9, 0.85, 1
DATA 3
DAT.A 2.0, 0.208, 0.5, 0.04
DATA 0.75, 0.208, 0.8, 0.95
DAT A 0.75, 0.208, 0.8, 0.55

The next block contains nutritional data:

DATA 48
DATA milk, cup, 165, 8, 12, 10
DAT A whipping cream, cup, 860, 4, 6, 94
DATA cottage cheese, cup, 240, 30, 6, 11
DATA cheddar cheese, Hnch cube, 70, 4, 0, 6
DATA cream cheese, oz, 105, 2, I, 11
DATA eggs, egg, 75, 6, 0, 6
DATA butter, 1/4-lb stick, 800, O, o, 90
DATA margarine, 1/4-lb stick, 806, 0, 0, 91
DAT A veg. oil, tbs, 125, 0, o, 14
DATA ground beef, lb, 1307, 112, O, 91
DAT A chicken, lb, 1326, 114, 0, 91
DATA lamb, lb, 1675, 107, 0, 75
DATA ham, lb, 1547, 85, 0, 117
DATA cod, lb, 777, 128, 0, 23
DATA flounder, lb, 914, 137, o, 37
DATA crobmeot, lb, 480, 75, 5, 11
DATA tuna, lb, 907, 133, 0, 37
DAT A gr. snap beans, cup, 25, 1, 6, o
DATA gr. lima beans, cup, 140, 8, 24, O
DATA conned kidney beons, cup, 230, 15, 42, o
DATA broccoli, cup, 45, 5, 8, 0
DAT A cabbage, cup, 40, 2, 9, O
DATA carrots, cup, 45, 1, 10, O

DATA cauliflower, cup, 30, 3, 6, o
DATA celery, cup, 20, I, 4, o
DATA corn, cup, 170, 5, 41, O
DATA mushrooms, .5 c, 12, 2, 4, O
DATA onions, cup, 80, 2, 18, O
DATA conned gr. peas, cup, 68, 3, 13, 0
DATA potatoes, medium size, 100, 2, 22, 0
DAT A conned tomatoes, cup, 50 .. 2 .. 9 .. 0
DATA spinach, cup, 26, 3, 3, 0
DATA apples, cup, 100, O, 26, O
DATA bonana, medium size, 85, 0, 23, 0
DAT A canned blueberries, cup, 245, 1, 2, 0
DAT A conned peoches, cup, 200, O, 52, O
DATA conned pineopple, slice, 95, 0, 26, 0
DATA raisins, cup, 230, 2, 62, O
DATA corn meol, cup, 360, 9, 74, 4
DATA white flour, cup, 400, 12, 84, O
DATA whole wheot flour, cup, 390, 13, 79, 2
DATA brown rice. cup, 746, 15, 154, 3
DATA white rice, cup, 692, 14, 150, 0
DATA noodles, cup, 200, 7, 37, 2
DATA ootmeol, cup, 150, 5, 26, 3
DATA sugor, cup, 770, 0, 199, 0
DATA olmonds, .5 cup, 425, 13, 13, 36
DATA wolnuts, .5 cup, 325 .. 7, 8, 32

Nutritional Advisor 395

The program includes nutritional information for 48 common foods.
You can add your own favorite ingredients to the list as well. To add a
food, you need the following information:

• food name

• measurement unit

• calories per measurement unit

• protein (grams per measurement unit)

• carbohydrates (grams per measurement unit)

• fat (grams per measurement unit).

One handy compilation of nutritional data can be found in Let's Get
Well, by Adelle Davis (New York: Harcourt Brace Jovanovich, Inc., 1965).
The data in this program was selected from a much longer list of foods
presented in that book.

396 Macintosh Program Factory

If you add any foods to the list, you must change the number in the
DATA line preceding the food list. The value is currently set to 48.

Reading the Data

The next lines read in the window descriptors:

READ nw%
O IM ww%(nw%), wl l&(nw)g), wx:t:(nwll:), wy:&(nw:t:), wx 1 %(nw:t:), wy I :g(nw%)

FOR nll:= 1 TO nw:&
READ inches.wide, inches.long, ulcx, ulcy
LET ww:g(n:g)=inches.wide*72
LET wl:g(n:g)=inches.long*72
LET wx:g(n:g)=ulcx*72
LET wy:g(n:g)=ulcy*72
LET wx 1 :&(n%):wx:g(n:g)+wwl(nl)
LET wy 1 %(n:&):wyl(n:g)+wll(nl)
NEXT nl

Here are the corresponding lines for the button descriptors:

READ nbl
DIM b 1$(nbl) ,bxl(nbl) ,byl(nbl) ,bx 1 l(nbl) ,by 1 l(nbl) ,btl(nbl)

FOR nl= 1 TO nbl
LET wl=2 :REM buttons go in window 2

READ bl$(n%),inches.wide, inches.long, hzone, vzone, btl(nl)
LET bxl(nl)=(wwl(wlH nches. wi de*72)*hzone
LET by%(nl):(wl%(wl)-inches.long*72)*vzone
LET bx 1 l(nl)=bxl(nl)+inches.wide*72
LET by 1 l(nl):byl(nl)+inches.long*72
NEXT nit:

And here are the lines for the edit fields:

READ nfl
DIM fxl(nfl),fyl(nfl),fx 1:g(nfl),fy1l(nfl),ingredl(12),quantityl(12)
LET wl= 1 :REM edit fields go in window 1
FOR nl= 1 TO nfl
READ inches.wide, inches.Jong, hzone, vzone
LET fxl(nl)=(wwl(wlH nches. wi de*72)*hzone
LET fyl(nl)=(wl l(w1Hnches. long*72)*vzone
LET fx 1 l(nl)=fxl(nl)+inches.wide*72

LET fy 1 l(nl)=fyl(n:C)+inches.Jong*72
NEXT nl

Nutritional Advisor 397

The next block of lines reads in the nutritional data and sets up cer
tain functions and constants:

READ nfl
DIM f ood$(nflU ,unit$(nfl) ,col(nfl) ,protein(nfl) ,corbo(nfl), f ot(nfl)
FOR nl= 1 TO nfl
READ f ood$(nl) ,uni t$(nl) ,co 1 (nl) ,protei n(nl) ,corbo(nl), f ot(nl)
NEXT nl
DIM rectonglel(3)
DEF FNminl(o,b)=-(o<=b)*o-(b<o)*b :REM colculote minimum(o,b)
LET npl= 14 :REM items per screen-poge
LET yesl:(1 = 1)
LET nol:(1 :0)

Nutritional Advisor Menu

The following lines create the pull-down menu:

MENU 6,0, 1, "Nutritional Advisor·
MENU 6, 1, 1,"New recipe •
MENU 6,2,0,"Print •
MENU 6,3,1,"Quit "
MENU ON
ON MENU GOSUB chonge.modes
GOTO new.recipe
idle.loop:
MENU 6, 1, I :REM enoble new.recipe option
MENU 6,2,-(nr.selectedl>O) :REM enable print option if non-empty
loop: GOTO loop

After setting up the pull-down menu, the computer automatically
executes the new.recipe routine.

Selecting an item from the Nutritional Advisor menu activates the
following subroutine:

chonge.modes:
IF MENU(0)<>6 THEN RETURN
CLOSE 1 :REM close printer channel

398 Macintosh Program Factory

WINDOW CLOSE 2
ON MENU(1) GOTO rq.new.recipe,rq.print.amilysis,rq.quit
rq.new.recipe:
MENU 6,2,0 :REM disable pnnt option
RETURN new.recipe
rq.print.ana lysis:
MENU 6, 1,0 :REM di sob le new.recipe option
MENU 6,2,0 :REM disable print option
RETURN print.analysis
rq.quit:
END

The new.recipe option is disabled during execution of the print
option, and vice versa.

Print Analysis Option

The following lines output a complete recipe analysis to the printer.

pri nt.ona 1 ysi s:
IF nr.selectedl&=O THEN GOTO idle.loop
WINDOW 1
CLS
OPEN "LPT 1 :DIRECT" FOR OUTPUT AS 1
PRINT 11 I ,title$
PRINT" 1,
PRINT 11 I ,"Ingredients:"
FOR igl&= 1 TO nr.selected~
PRINT 11 1, USING •11111111 "; quantity:t(igl&);
PRINT" 1, unit$(ingredl&(igl&));SPC(2); food$(ingred%(ig%))
NEXT ig%
PRINT11 1,
PRINT 11 I, ·serves·; servingsl&
IF servingsl&:O THEN servings.done
PRINT" 1,"Nutritionol onolysis per serving:"
PRINT "1, USING ·colories: 1111111111 •";cal/servings%
PRINT 11 1, USING "protein: 11111111 11 g"; protein/servings%
PRINT 11 1, USING "carbohydrote: 1111111111 g"; carbo/servings:t
PRINT 11 1, USING "fat: 1111111111 g";f1Mservings%
servings.done:
CLOSE 1
GOTO idle.loop

Nutritional Advisor 399

Upon completion of the printout, the computer waits in the idle.loop
routine until you make another selection from the pull-down menu.

Starting a New Recipe

The following lines take over when you select the new.recipe option
from the Nutritional Advisor menu:

new.recipe:
WINDOW 1,,(wxl(1),wyl(1))-(wx11(1),wy 11(1)),3
CALL TEXTMODE(O) :REM Erase-before-printing mode
CLS
EDIT FIELD 1, "Rec1pe T1tle",(fxl(1),fyl(1))-(fx 11(1),fy 11(1)),,2
WHILE DIALOG(0)<>6
WEND
LET t1t1e$:EDIT$(1)
EDIT FIELD CLOSE 1
LET centerl:(wwl(1)-WIDTH(ttt1e$))/2
CALL MOVETO(centerl, f yl(1)+ 12)
PRINT title$
LINE (0,w11(1)\2)-(wwl{1),w11(1)\2)
LET cal:O
LET prote1n=O
LET carbo:O
LET fat:O

The lines produce the screen shown in Figure 19-1. The program
waits for you to type in the name of the recipe to be analyzed, after
which the counters for cumulative protein, carbohydrates, and fat are
cleared.

Displaying the Food List

The following block sets up the food list window:

WINDOW 2,,(wxl{2), wyl{2))-{wx 11(2), wy 11(2)) ,3
CALL TEXTMODE{ 1) :REM OYerprinttng mode
LET nr.selectedl=O
LET fopl:1
LET h111tedl:O
FOR nl:I TO 3

400 Macintosh Program Factory

e5 lilH Edit · :'IH<11 < h Run Windows Nutritionol Rduisor

Figure 19-1. The initial screen appearance of Nutritional Advisor

BUTTON nl, -(nl=3), b1$(nl), (bxl(nl), byl(nl))- (bx 1 l(nl), by 1 l(nl)),
bll(nl)

NEXT nl
CALL MOVET0(2,by 11(1)+16)
PRINT ·point & click for into:
PRINT ·click twice to select:;
GOSUB show .pege

.,

Window 2 is the smaller window on the right of the screen in Figure
19-2. Nr.selected% counts the number of ingredients selected so far. The
program allows up to 12 ingredients in a single recipe.

Fop% indicates which food is first on the current page (the entire
food list can't fit on the screen at once, so it is broken up into pages).
Hilited% points to the currently highlighted food; hilited%=0 indicates
that no item is highlighted.

The show.page subrouti!}e displays the current page of the food list,
as determined by the value of fop%.

The next block waits for you to select a food or to press OK:

Nutritional Advisor 401

r S I ile Edit S<rnn h Run Windows Nutritional Rduisor
..

Biscuits
canned gr. peas
potatoes

0.50 cup milk canned tomatoes
0.50 1 /4 butter spinach

apples
banana
conned blueberries
canned peaches
canned pineapple
raisins

Food: white flour corn meal

calories: 400.0 whole wheat flour -~-

protein: 12 0 9 brown rice
carbohydrate: B4.0 g
fat: 0.0 g 0 (oowN) ~ Unit of measure: cup

Point & click for info.
Click twice to select.

Figure 19-2. Screen appearance with "white flour" highlighted.

sf.loop:

White flour information appears in the bottom half of
the left-hand window

LET d.clickedl:nol
WHILE DIALOG(O) <> 1 AND NOT d.clickedl
LET mouse.eventl:MOUSE(O)
IF mouse.evenll<=O THEN no.click
LET d.clickedl=(mouse.evenll> 1 AND hnttedl>O)
IF d.clickedl THEN no.click
LET myl:MOUSE(2)
LET newlin.nrl=(myl-1)\ 16+ 1
IF newlin.nrl>1opl-fopl+ 1 OR new1in.nrl=hnttedl THEN no.click
IF h111tedl>O THEN CALL INYERTRECT(YARPTR(rectenglel(O)))
LET ht1itedl=new11n.nrl
LET f.nemel=fopl+hmtedl-1
LET recteng1el(O)=(hnttedl-1)*16
LET recteng1el(1)=0
LET rectenglel(2)=ht1itedl* 16
LET recteng1el(3):wwl(2)
CALL INYERTRECT(YARPTR(rectenglel(O))) :REM htute new ttem

402 Macintosh Program Factory

Refer to Figure 19-2. Pressing UP moves the food list to the preced
ing screen page, if one exists. Pressing DOWN moves the food list to the
following screen page. Pressing OK indicates that the recipe is complete.

To obtain information about a food, you point to it with the mouse
and click once; the item will be highlighted and the following block will
provide descriptive information:

WINDOW 1
LINE (0,w11(1)\2+ 1)-(wwl(1),w11(1)),0,bf
CALL MOVET0(2, w11(1)\2+16)
PRINT "Food:"; food$(f.name:C)
PRINT
PRINT USING "calories: ••••.•"; ca1(f .namel)
PRINT USING "protein: •••.• g·; protein(f.name:C)
PRINT USING "carbohydrate:•••.• g·; carbo(f.mtmel)
PRINT USING "fat: •••.• g·; fat(f .namel)
PRINT "Unit of measure: "; unit$(f.name:C)

While an item is highlighted, you may select it for the recipe by
double-clicking the mouse anywhere in window 2. If you don't wish to
use a highlighted item, simply click on another item or move to another
page. The following lines respond to double-clicks and button presses:

WINDOW 2
no.c1ick:
WEND
IF d.c1ickedl THEN selected
LET btnl:DIALOG(1)
ON btnl GOTO back,forward,recipe.done
selected:
CALL IN\IERTRECT(\IARPTR(rectang1el(O))) :REM cancel previous

highlghting
BUTTON CLOSE 1
BUTTON CLOSE 2
BUTTON CLOSE 3
LI NE (o ,npl* 16+ 1)-(wwl(2), w11(2)) ,0 ,bf

The WEND statement causes the program to loop back to the sf.loop
routine unless you have double-clicked or pressed a button. In the case of
a double-click, the program goes to the routine called selected. In the

Nutritional Advisor 403

r e5 1 rl e Edit '.,;e<1 1 (h Run Windows Nutritionol Aduisor
.,

1-
Bi scuits

CBnned gr. pe6s

··~~ polBtoes

~1l 0.50 cup milk cBnned tomBtoes

;!~~ 0.50 1/4butler spinBch

i~~;
Bpples

~~i b6n6n6
;1m cBnned blueberries
~;~i

CBnned peBches l~j!
iii! cBnned pineopple
·:i1l rBisins
~ Food · while flour corn meBl l'~

Jifi white flour m celori es: 400.0 whole whe6t flour
~i protein : 12.0 g brown rice

cerbohydrete : 84.0 g
f et: 0.0 g

~ Uni l of meesure: cup

How m6ny units? (0=c6ncel) I us I
"

;m1ffHtnW

Figure 19-3. Screen appearance after double-clicking on "white flour"

case of a button press, the program goes to the corresponding button
routine (ON btn% GOTO ...).

Selected starts by closing the buttons and erasing the two lines at the
bottom of window 2 (LINE (0,np%*16+1) ...).

The following lines add an edit field to window 1 and prompt you to
specify the quantity of the selected ingredient (see the bottom line of
window 1 in Figure 19-3):

WINDOW 1
CALL HO\IET0(2,fyll(2)+ 12)
PRINT "How many units? (O:canceW;
EDIT FIELD 1," ",(f xl(2),f yl(2))-(fx 11(2),fy 11(2))
WHILE DIALOG(0)<>6
WEND
LET nu:\IAL(EDIT$(1))
EDIT FIELD CLOSE 1
LINE (0,wlll(1)\2+ I)-(wwll(1),wll(1)),O,bf
IF nu=O THEN cancel.select

Entering 0 for the amount cancels the selection. Otherwise, the

404 Macintosh Program Factory

following lines calculate the nutritional contribution of that particular
food in the specified quantity:

LET col:col+col(f.nomel)*nu
LET protei n:protei n+protei n(f .nomel)*nu
LET corbo=cctrbo+corbo(f .nomel)*nu
LET fot:fot+fot(f.nomel)*nu
LET nr.selectedl=nr.selectedl+ 1
LET ingredl(nr.selectedl)=f.nomel
LET quont i tyl(nr.se 1 ectedl)=nu
LET ig.xl=2+((nr.selectedl-1)\6)*wwl(1)\2
LET ig.yl=48+((nr.selectedl-1) MOD 6)* 16
CALL MOVETO(ig.xl,ig.yl)
REM 123456789012345
PRINT USING·••.••\\\ \•; nu,unit$(f.nomel),food$(f.nomel)
concel.select:
LET hHitedl:O
IF nr.selectedl= 12 THEN recipe.done

Nu is the number of measurement units. Multiplying this value
times the nutritional value per measurement unit gives the total nutri
tional value of that food in the recipe. For instance,

LET protein = protein + protein(f.name%) * nu

adds the current food's protein contribution to the cumulative protein
total.

After all four food elements are calculated, the program prints the
food in the ingredient list at the top of window 1. The text in this section
will be partially obscured or truncated if it is too long to fit in the allot
ted space. However, the full text is printed when you select the Print
option from the Nutritional Advisor menu.

Upon completion of the food-quantity dialog, the program continues
with this block:

WINDOW 2
BUTTON 1,-(fopl> 1),bl$(1),(bxl(1),byl(1))-(bx11(1),by11(1)),btl(1)
BUTTON 2, -(lopl<nfl) ,b1$(2) ,(bxl(2) ,byl(2))-(bx 11(2) ,by 11(2)) ,btl(2)
BUTTON 3, 1,b1$(3),(bxl(3),byl(3))-(bx 11(3),by 11(3)),btl(3)
CALL MOVET0(2,by 11(1)+16)
PRINT ·point & click for info:

PRINT "C11ck twice to select.";
GOTO sf.loop

Paging Up and Down

Nutritional Advisor 405

The next block includes routines to show the preceding (up) and follow
ing (down) screen pages of the food list.

back:
IF fopl<:npl THEN sf.loop
LET fopl:fopl-npl
GOSUB show .page
GOTO sf.loop
forward:
IF fopl>nf:C-np:C+ 1 THEN sf .loop
LET fop:C:fop:C+np:C

GOSUB show.page
GOTO sf.loop

Here's the routine that displays the current page, starting with food
number fop%:

show.page:
LET hi1itedl:O
LINE (O,O)-(ww:C(2),npl* 16),0,bf
LOCATE 1, 1
LET lopl:FN minl(npl+f opl-1,nfl) :REM last on this page
FOR jl:fopl TO lopl
LET Hne.nrl=jl-f op:C+ 1
LOCATE line.nrl, 1
PRINT food$(jl)
LINE (0,Hne.nrl* 16)-STEP(wwl(2),0)
NEXT jl
BUTTON 1,-(fopl> 1) :REM can't back up if it's at first page
BUTTON 2,-(lopl<nfl) :REM can't advance if it's at last page
RETURN

The Completed Recipe

Pressing the DONE button or selecting the twelfth ingredient causes
the program to begin the recipe.done routine.

406 Macintosh Program Factory

recipe.done:
WINDOW CLOSE 2
WINDOW 1
LINE (O,wll':(I)\2+ 1)-(wwl':(1), wll':(1)),0,bf
IF nr.selectedl':=O THEN idle.loop
CALL MOVET0(2, fy:C(3)+ 12)
PRINT "Number of servings:·
get.servings:
EDIT FIELD 1,·· ,(fx:C(3),fyl':(3))-(fx 1:C(3),fy1 :C(3))
WHILE DIALOG(0)<>6
WEND
LET servi ngs:C:VAL(ED IT$(1))
EDIT FIELD CLOSE 1
IF servings:g=O THEN BEEP: GOTO get.servings

The program asks you to specify the number of servings in the
recipe; from this information, it calculates the nutritional value of each
serving. See Figure 19-4.

,. s ril<l Edit SH<11< h Run Windows Nutritional Rduisor

Biscuits

0.50 cup milk
0.50 I I 4 butter
1.75 cup white flour
0. 13 cup sugBr
O. 13 cup oBtmeal
O 13 cup corn meal

Number of servings

0.25 cup whipping er

Figure 19-4. Screen appearance after pressing the OK button. The
program prompts you for the number of servings

.,

' .S rile Edit ~;e<Jr(h Run Windows

0 .50 cup milk
0 .50 1 /4 butter

B1scu1 ts

1.75 cup white flour
0 . 1 3 cup suger
O. 13 cup oetmeel
0 . 13 cup corn meBl

Number of se rving s

Nutrit ionBl Bnelysis per serving
celories : 389.4
protein: 6 9 g
cerbohydrntes : 48.0 g
fet : 18.6g

4

Nutritional Advisor 407

Figure 19- 5. The completed ingredient list and nutritional analysis

The Nutritional Analysis

The following lines put the nutritional analysis on the screen:

CALL MOVETO(fxl(3),fyl(3)+ 12)
PRINT servings:g
PRINT
PRINT "Nutritiontil tintilysis per serving·
PRINT USING ·colories: ••••.•·; col/servings:g
PRINT USING ·protein: '"'"".• g"; protein/servingsl
PRINT USING ·corbohydrotes: ••••.• g"; cerbo/serv1ngsl
PRINT USING "ftit: ••••.• g·; ftit/serv1ngsl
GOTO idle.loop

After displaying the analysis, the program goes to the idle.loop rou
tine to wait for another menu selection. This is the point at which you
would normally select the Print option from the Nutritional Advisor
menu, as shown in Figure 19- 5.

The food list is based on data from the U.S. Department of Agriculture. The data is
available in many encyclopedias and books. One handy compilation can be found in Let's
Get lWJll, by Adelle Davis (New York: Harcourt Brace Jovanovich, Inc. 1965).

Chapter 20

The Time Machine··

A calendar is like a time machine: it helps you wander through the past
and future. In this chapter, we present the Time Machine program,
which produces calendars over any 89-year period from 1900 to 2099.

In addition to facilitating mental time-travel, the program has prac
tical benefits as a scheduling tool for the home or office. Before printing
a month's calendar, you can insert information about birthdays, appoint
ments, social engagements, deadlines, holidays, and other events. You
can even save and retrieve calendar notes to and from disk so you won't
have to retype events and schedules that are the same from month to
month.

Figures 20-1 through 20-9 show typical screens from the program.

-Calendar Logic ------------
Two items are needed to produce an accurate monthly calendar: the
number of days in the month and the weekday on which the month
begins.

Finding the number of days in a month is a trivial exercise, even for
the Macintosh. February is a special case, since its length depends on

409

410 Macintosh Program Factory

whether the year is a leap year. A leap year is evenly divisible by 4,
unless the year happens to be the first year of a new century, in which
case it must be divisible by 400. For instance, 1900 is not a leap year,
2000 is, and 2100 is not.

Finding the weekday on which a month begins is more difficult. One
method involves referring to tables consisting of hundreds of numbers
and letter codes. A simpler method starts with a known base date and
extrapolates forward from that date. For example, if you know that
March 1, 1940, occurred on a Friday, you can calculate the first day of
the week for any subsequent date.

The Time Machine uses the latter method. Because of limitations in
numeric precision (16-bit integers are used), its calendar calculations
are limited to a span of 89 years anywhere in the range from 1900 to
2099.

-The Program-------------

The program starts with the window descriptors:

REM Windows
DATA 7, 4.36, .05, 0.32
READ inches.wide, inches.long, ulcx, ulcy
LET wwl=inches.wide*72
LET wll:inches.long*72
LET W>Cl:ulc>e*72
LET wyl:ulcy*72
LET W)(1 l:W>el+wwl
LET wyll:wyl+wll

The next block loads the calendar data:

DIM mon$(12) ,m I enl(12), wday$(7) ,ca 11(42) ,note$(31)
FOR ml:l TO 12
READ mon$(ml),m lenl(ml)
NEXT ml
FOR dayl: 1 TO 7
READ wday$(dayl)
NEXT dayl
DATA January, 31, February, 28, March, 31, April, 30
DATA May, 31,June, 30,July, 31, August, 31, September, 30

DATA October, 31, November, 30, December, 31
DATA Sun, Mon, Tue, Wed, Thu, Fr1, Set

The Time Machine 411

LET bese.yeerl= 1940 :REM eny leep yeer from 1900 to 201 o
LET first.of .merchl=5 :REM weekdey of Merch 1st in the bese yeer

(O:Sundey)
LET 1 est.yeerl:bese.yeerl+B9

Mon$() and mien%() store the names and lengths of the months.
W day$() stores the names of the weekdays.

Cal%() stores the 6 X 7 grid onto which the calendar days are
mapped. For i=l to 42, cal$(i) refers to the cell at row ((i-1)/7) + 1 and
column ((i-1) mod 7) + 1. Cal%(i)=O indicates a blank cell (cells before
the first and after the last day of the month); nonzero values of cal%()
indicate the date that is given to that calendar cell.

Note$() stores the notes that go with each numbered cell of the
calendar.

Base .year% is set to 1940, giving the calendar a range from March
1940 through November 2029. You may change this range by giving
another value for base .year%. Base .year% must be a leap year from
1900 to 2010. If you change base.year%, you must also change the value
of first.of.march% to correspond to the day of the week of March 1 in
base.year%. For instance, if you set base.year%=1920, then first.of.
march% must be set to 1, since March 1, 1920, falls on a Monday. (Sun
day=O, Monday=l, ... Saturday =6).

The next block defines a function and assigns additional constants
and parameters:

DEF FNstr1p$(x):RIGHT$(5TR$(x),LEN(STR$(x))-1)
LET cwl:wwl\ 7
LET cll:wll\ 7
LET hll:wll\ 14
LET b>el:1
LET bx 1 l=wwl-1
LET byl:l
LET byll:hll-1
LET fyl:byl+hll\2
LET yesl=(1 = 1)
LET nol=(1 :0)
LET nus=·· :REM no speces inside quotes

The function FN strip$ returns the string equivalent of a positive
number without the usual leading space. Cw% and cl% are the relative

412 Macintosh Program Factory

width and length of each cell. Hl% is the relative length of the heading
box.

The other numeric variables define specific points inside the window.

Setting Up the Menu

The program next sets up the menu seen in Figure 20-1:

WINDOW 1,,(wx:t:,wyl)-(wxl l,wy 11),3
CALL TEICTHODE(1)
CALL TEICTFONT(2) :REM New York (must pick ti typefont with 9-, 12-, ond

14-point)
FOR mnul:3 TO 5
MENU mnul,0, 1,·.
NEXT mnul
MENU 3,0,0,"Time Meichine·
MENU 3, 1, 1, ·Ereise notes •
MENU 3 ,2, 1, "Loeid note fl1 e •
MENU 3 ,3, 1, ·seive note fl1 e •
MENU 3,4, 1,·Pnnt •

,. • Hh~ Edit ~~ust1985

4

: 11

'

'18

25

Load note file
Sun M saue note file Wed Thu Fri Sat

Print I 2 s
Quit

5 6 7 8 9 lO

12 13 14 15 16 17

19 20 21 22 23 24

26 27 28 29 30 31

Figure 20-1. Initial screen appearance of the Time Machine and its
pull-down menu

,

MENU 3,5, 1,·Qu1t •
LET ml=B :REM tntt1a1 month for calendar
LET yl= 19B5 :REM tntttal year for calendar
GOSUB new.date
GOSUB redrew.calendar

The Time Machine 413

The program uses text font #4 (New York) for all text. You can use
another font, but whichever font you use, it must be available in sizes 9,
12, and 14. (You can use Apple's Font Mover program to get these font
sizes onto the BASIC startup disk if you don't have them.)

The initial calendar month m% is set to 8 (August) and the year y% is
set to 1985. You can change these initial settings to suit your preference.

The new .date subroutine performs all the date calculations based on
the setting for m% and y%. Redraw .calendar displays the resultant
calendar.

Main Control Loop

While the calendar is displayed, the following routine waits for you to
make a selection from the pull-down menu or to click the mouse inside
one of the calendar cells:

cal endar.dt sp 1ayed:
MENU 3,0, 1 :REM enable menu
LET xl:MOUSE(O) :REM tgnore prevtous mouse events
LET xl:MENU(O) :REM tgnore previous menu events
LET menu.eventl=O
LET mouse.eventl=O
WHILE menu.eventl<>3 AND mouse.eventl<> 1
LET menu.eventl=MENU(O)
LET mouse.eventl:MOUSE(O)
WEND
MENU 3,0,0 :REM dtsable menu
IF menu.eventl<>3 THEN cltcked.mouse
LET chosenl:MENU(1)
IF chosenl:5 THEN MENU RESET: END
ON chosenl GOSUB erese.notes,1oad.notes,save.notes,print.ca1
GOTO calendar.dtsplayed

To add a note to one of the numbered cells, you click the mouse inside
the cell. To change the calendar date, you click in the upper portion of
the calendar (the area that contains the calendar month and year).

414 Macintosh Program Factory

The following block discriminates between the various mouse-clicks:

clicked.mouse:
LET mxl:MOUSE(1)
LET myl:MOUSE(2)
IF myl<hll THEN GOSUB change.date: GOTO calendar.displayed
IF myl<cll THEN BEEP: GOTO calendar.displayed
LET co11=(mxl-1)\cwl+1
LET rowl=(myl-1)\ell :REM don't odd 1 becouse of title row
LET cnl:coll+(rowl-1)*7 :REM cell number
LET dl:coll(cnl)
IF dl:O THEN BEEP: GOTO colendor.disployed
LET dxl:(coll-1)*cwl
LET dyl:rowl*c 11
CALL TEXTFACE(O)
CALL TEXTSIZE(9)
ED IT FIELD 1,note$(dl) ,(dxl+ 3,dyl+2)-(dxl+cwl-2,dyl+c11-2) ,2
BUTTON 1, 1,"0K",(wwl*13/16,h11/B)-(wwl* 15/16,hll*7/6), 1
LET xl=DIALOG(O) :REM ignore previous events
WHILE DIALOG(O)<> 1
WEND

My%<hl% indicates that you clicked the mouse in the area contain
ing the month and year; in this case the program goes to the change .
date subroutine. The program identifies the row number, row%, and
column number, col%, of the cell that you clicked. Cn% is the cell's index
number in the cal%() array, and d% is the number assigned to that cell.

Adding Notes to a Cell

If you click on an unnumbered cell (d%=0), the program beeps and
returns to the main control loop. Otherwise, it creates an edit field for
the note, as shown in Figure 20-2.

You must press ENTER or RETURN to end each line of the note. When
you are through entering text into the edit field, click the OK button. At
that point the following block takes over:

LET note$(dl):EDIT$(1)
BUTTON CLOSE 1
EDIT FIELD CLOSE 1
LET dyl:dyl+9
LET dxl=dxl+3

The Time Machine 415

" s Hie Edit fimP Hnchirrn
.,

August 1985 I OK l
Sun Mon Tue Wed Thu Fri Sat

l 2 3

,4 5 6 7 8 9 10

11 12 13 14 Heil 16 17
mortgage
peymen~ ... 19 20 21 22 23 24

25 26 27 28 29 30 31

. j
Figure 20-2. Entering notes for August 15. You must press ENTER after

each line of the note and click the OK button when the note
is complete

GOSUB update.cell
LET dxl:(coll-1)*cwl
LET dyl:rowl*cll
CALL MO'v'ETO(dxl+2,dyl+ 10)
CALL TEXTF ACE(1)
PRINT FNstrip$(dl);
GOTO calendt1r.displt1yed

Note$(d%) gets the entire contents of the edit field, which may
include several lines. After the program closes the OK button and the
edit field, the update.cell subroutine redisplays the cell with the new
note (Figure 20-3). Finally, the program restores the date in the upper
left corner of the cell.

Changing the Date

Clicking the mouse in the area containing the month and year initiates
the following logic.

416 Macintosh Program Factory

,. .S I 11<~ Edit Time Machine

August 1985 ~-;
Sun Mon Tue Wed Tbu Fri Sat

--r· -··---
l 2 3

.4 5 6 7 B 9 10

ll l2 13 14 1 5 11ail
morlll•ll•
payment

16 17

~----·-~-·- ······---+zo----1-=-,--···
•• 18 19 21 22 23 24

f-zf·------~6 27 28 29 30 31

•i

Figure 20-3. Appearance of the note after you press ENTER. The first
line is shifted right to make room for the date, and the
lines are printed closer together

chonge.dote:
LINE (bxl,byl)-(bx 1 l,by I :C),O,bf :REM entse diologue oreo
CALL TEXTSIZE(12)
CALL TEXTFACE(1)
CALL MOVETO(bxl+6,fyl+3)
PRINT ·chonge month & yeor c·;
PRINT ·Mor. "; FNstrip$(b11se.ye11rl);"- Nov. "; FNstrip$(111st.ye11r:C);")";
CALL TEXTFACE(O)
ed. loop:
EDIT FIELD 1,m.title$,(ww:C* 11/16,fyl-9)-(ww:C* 11/16+ 144,fy:C+6)
LET xl:DIALOG(O) :REM ignore previous events
WHILE DIALOG(0)<>6
WEND

:

'

The program creates an edit field as shown in Figure 20-5 and waits
for you to enter a new date. The following block evaluates your entry:

LET mmyy$:UCASE$(ED IT$(1))
IF mmyy$:nu$ THEN dete.err

The Time Machine 417

' Ii i:il<~ Edit Time Machine

August 1965
Sun Mon Tue Wed Thu Fri Sat

I 2 3

4 5 Jfeeti::.1.i 6 7 8 9 10
at elem. sc
?p.m.

II 12 13 14 15~ail 16 17
mort11a11e
payment

18 19 20 21 22 23 24 Boston
AA•802
4:45 p.m.

25 26 Carpool 27 28 Ca11 29 30 31
this weelc heatiftl! oil

comp•!>Y for
ser'Ylc•ftll ~

Figure 20-4. A calendar with assorted notes. Notice that the note for
August 28 is four lines long; when entering such a note,
the fourth line must be typed first and the insertion point
repositioned to the start of the line so that the first three
lines may be inserted ahead of the fourth

LET volid.monthl=nol
LET triedl:O
WHILE NOT volld.monthl AND tr1edl<12
LET triedl=trtedl+ 1
LET volid.monthl:INSTR(1,mmyy$,UCASE$(LEFT$(mon$(tr1edl),3)))oO
WEND
IF NOT YOlid.monthl THEN dote.err
LET new.m:C:tried:C
LET new.y=O
LET chor:l:O
WHILE new.y:O AND chor:l<LEN(mmyy$)
LET chor:l:chor:I+ 1
LET new.y:INT(\IAL(RIGHT$(mmyy$,LEN(mmyy$)-chor:I+ 1)))
WEND

f

'

'
'

First the program looks for a valid month in mmyy$ (the string you
entered). The program looks only for the first three letters of each

418 Macint.osh Program Factory

~ j file Edit 'finH~ ~1u:hirrn

Change month & year (Mar. 1940- Nov. 2029) I sept I
Sun Mon Tue Wed Thu Fri Sat

I 2 3

It
4 5 Heeli~ 6 7 8 9 10

et elem. sc .
?p.m.

II 12 13 14 15Hail 16 17
mortaaae
payment

18 19 20 21 22 23 24 Boston
AA•aoz
4:45 p.m

25 26 Carpool 27 28 Call 29 30 31
this week lwatina oil

comea~y for
aervtcn..i

Figure 20-5. Screen appearance after you click on the area containing
the month and year

.,

;

~

;

~

'

month, so you can type Mar for March, for example. If you have typed
in a valid month, the program looks for a year specification, new .year,
inside mmyy$. If a year specification is not found, new.year is set to O.

Given a month and year setting, the following block ensures that the
date is within the acceptable range:

IF new.y:O THEN new.y:yl
IF new.y<base.yea~ OR new.y>last.yea~ THEN date.err
IF new.y:base.yea~ AND new.ml<3 THEN date.err
IF new.y:last.yea~ AND new.ml> 11 THEN date.err
LET date.changedl:(ml<>new.ml) OR (yl<>new.y)
LET ml:new.ml
LET yl:new.y
EDIT FIELD CLOSE 1
IF NOT date.changedl THEN redraw.title
GOSUB new.date
GOSUB redraw .ca 1 ender
RETURN
date.err:

The Time Machine 419

BEEP
GOTO cd.1 oop

If new .year=O (indicating that a year specification was not found),
the program leaves the year at the current setting, y%. Given a new
month and year specification, the program performs the calendar calcu
lations (new .date) and redraws the calendar (redraw .calendar). The
existing notes are copied into the corresponding dates in the new month
(compare Figures 20-6 and 20-4).

If you did not change the month or year, the following lines redraw
the title and return to the control loop:

redraw. t it1 e:
LI NE (bxl ,byl)-(bx 11,by 11) ,o ,bf :REM erase ti t1 e area
CALL TEKTSIZE(14)
CALL TEKTFACE(1)

CALL MOVETO(hm.centerl, vm.centerl)
PRINT m.title$;
RETURN

" s HI<~ Edit Time Machine

September

Sun Mon Tue Wed
I 2 s 4

• 9 10 II

1,Hail 16 17 ..
mortgage
pey....,nt

22 ZS 24 Boston 2' AA•802
4:4:>p.m.

29 so

1985 ~
Thu

' 11eeli~ 6
al elem. sc .
?p.m.

IZ 13

19 20

26Cerpool 27
this week

.......

Fri Sat
7

14

21

28 Call
heating oil
compa!\y tor
serV>cang

Figure 20-6. After you enter a new date, the program draws a calendar
for that date but retains the notes from the previously dis
played month

420 Macintosh Program Factory

-Menu Options------------
The following blocks handle the Time Machine menu options: Erase
notes, Load note file, Save note file, and Print.

Erasing Notes

First, here is the logic to erase notes:

erase.notes:
FOR cdl:I TO 31
LET note$(cdl)=nu$
NEXT cdl
GOSUB redraw.calendar
RETURN

All 31 elements of the note are set to null, and the calendar is
redrawn.

Saving Notes

The following lines save the currently displayed notes in a disk file:

save.notes:
CLS
CALL TEXTSIZE(12)
CALL TEXTFACE(I)
PRINT ·sAVE CALENDAR NOTES:·
LET fo$:FILES$(0,.NAME THE OUTPUT FILE•)
IF fo$:nu$ THEN sn.done
ON ERROR GOTO sn.err
OPEN fo$ FOR OUTPUT AS I
FOR cdl:I TO 31
PRINT• I, LEN(note$(cdl))
PRINT•!, note$(cdl);
NEXT cdl
CLOSE
sn.done:
ON ERROR GOTO 0
GOSUB redraW.C8lend8r
RETURN

The Time Machine 421

,. s Hie~ Edit "film~ Mnt:hinc~

NRME THE OUTPUT FILE mbesic & •..

I HOUSEHOLD SCHEDULE 9t~
Eject

Seue Cancel Driue

Figure 20- 7. Screen appearance during execution of the Save note file
command

.,

Figure 20-7 shows the screen appearance during execution of this
routine. After the file is saved, the program redraws the calendar and
returns to the control loop.

If an error occurs while the notes are being saved, the following lines
take over:

sn.err:
BEEP
PRINT
PRINT ·can't save notes to:"
PRINT fo$
BUTTON 1, 1, "OK" ,(ww:g* 13/ 16,hl:g/B)-(ww:g* 15/ 16,h1~*7 /B), 1
LET x:g=DIALOG(O) :REM ignore previous events
WHILE DIALOG(O)<> 1
WEND
CLOSE
BUTTON CLOSE 1
RESUME Sn.done

422 Macintosh Program Factory

The most likely source of an error while you are saving a note file is a
lack of disk space to store the file. If you run out of disk space, you can
re-execute the Save note file command and use the EJECT button to
change disks.

Loading Notes

The following lines implement the Load note file command:

load.notes:
CLS
CALL TEXTSIZE(12)
CALL TEXTFACE(1)
PRINT "LOAD CALENDAR NOTES:"
LET fi$:FILES$(1,"TEXT")
IF fi$=nu$ THEN ln.done
ON ERROR GOTO 1 n.err
OPEN fi$ FOR INPUT AS 1
FOR cdl:1TO31
LET note$(cdl)=nu$
INPUP' 1, note.lengthl
IF note.lengthl=O THEN next.note:
LET note$(cdl)=INPUT$(note.1engthl, • 1)
next.note:
NEXT cdl
CLOSE
In.done:
ON ERROR GOTO 0
GOSUB redraw.calendar
RETURN

Figure 20-8 shows the screen appearance when the program asks
you to name the input file; you must specify a file that was created with
the Save note file command.

In the case of an error during the loading of the file, the following
lines take over:

ln.err:
BEEP
PRINT
PRINT ·can't load notes from:·
PRINT fi$

The Time Machine 423

r • Hie~ Edit finw '-'in tllillH

' LOAD CALENDAR NOTES:

op pie -
lillll.'1UI Ill.I [Open ~J mbosic & m ...

(Eject J

[Concel J [Oriue J
[Q

" " ". ., .,
""

Figure 20- 8. Screen appearance during execution of the Load note file
command

BUTTON 1, 1,"0K",(ww:g* 13/ 16,hl:g/B)-(ww:g* 15/ 16,hJ:g*7 /B), 1
LET x:g=DIALOG(O) :REM ignore previous events
WHILE DIALOG(O)<> 1
WEND
CLOSE
BUTTON CLOSE 1
RESUME In.done

Figure 20-9 shows the kind of error message displayed by the load
error routine. Errors may be caused by an invalid file format (the file
was not created with this program) or by some other disk input error.

Printing the Calendar

The following lines copy the calendar from the screen to the printer:

print.cal :
CALL HIDECURSOR

424 Macintosh Program Factory

,. s l'il<~ Edit ·ri1m~ ~hu:t1ine

Can·t load notes from:
mbasic & macpaint:apple

Figure 20-9. Error notice when a file cannot be loaded

LCOPY
CALL SHOWCURSOR
RETURN

Calendar Calculations

.,

Given a month m% and a year y%, the next few program blocks map the
month into the 6 X 7 calendar grid.

The first block converts the month and year into relative offsets from
the base date:

new .dote: :REM 20-18
FOR cnl: 1 TO 42
LET coll(cnl)=O
NEXT cnl
LET y 1 l=yl-bose.yeo~ :REM yeors since bose year
IF ml<=2 THEN before.march :REM Merch is bese month
LET mll:ml-3
GOTO reletive.dete.reedy

before.march:
LET m 1 :g=m:g+g
LET y 1:g=y1 :g-1

The Time Machine 425

First the calendar map, cal%(), is erased. Then the program calcu
lates yl% and ml% (the number of complete years and months between
the selected year and the base year). The following equations illustrate
the calculation process for August 1985, using a base date of March,
1940:

1985 years, 8 months
-1940 years, 3 months

45 years, 5 months

Expressing this example using the program's variables, year y%=1985
and month m%=8, while the relative year yl %=45 and the relative
month ml %=5.

Given a relative date, the following block calculates the days elapsed
from March 1 of the base year to March 1 of the selected month and
year:

re 1 eiU Ye.date.ready:
LET jd:g=INT(1461*y1:g/4)+(153*ml:g+2)\5 :REM jd:g=d11ys from beise

deite
LET wd:g=(jd:g+first.of.meirch:g) MOD 7
LET leap.y~:((y:g MOD 4:0) AND (y:g MOD 100<>0)) OR (y:g MOD 400:0)
LET Jd:g=mlen:g(m:g)
IF leop.y~ AND m:g:2 THEN LET Jd:g:29 :REM fldjust Feb. in fl leeip year
FOR d:g= 1 TO Jd:g
LET caJ:g(d:g+wd:g):d:g
NEXT d:g
RETURN

Using the total elapsed days jd%, the program calculates the day of
the week for March 1 in the selected year (LET wd%=(jd%+first.of.
march%) MOD 7). The program also gets the correct number of days for
the current month and adjusts for a leap year when necessary.

Given the day of the week for March 1 and the number of days in the
month, the program maps the calendar days into the 6 X 7 grid (LET
cal%(d%+wd%)=d%). For instance, cal%(3)=1 indicates that the first of
the month is the third element of cal%().

426 Macintosh Program Factory

-Redrawing the Calendar --------
The next three blocks draw the calendar on the screen. Here is the block
that draws the lines and the month and year headings:

redniw .co 1 end or:
CLS
FOR rulell: 1 TO 6
LINE (O,rulell*cll)-STEP(wwll,0) :REM horizontol
LINE (rulell*cwll,cll)-STEP(O,wlll-clll) :REM vertict1l
NEXT rulell
LINE (0,hlll)-STEP(wwll,O) :REM rule under heoding
CALL TEXTSIZE(14) :REM lorge for heoding
CALL TEXTFACE(1) :REM bold
LET m. title$:mon$(mll)+STR$(yll)
LET hm.centerl=(wwll-W I DTH(m. title$))\2
LET vm.centerl=(hlll-14)\2+ 11
CALL MOVETO(hm.centerll,vm.center1:)
PRINT m.tttle$;

LET vw.centerl:hlll+(hlll-12)\2+ 12

This block displays day headings:

CALL TEXTSIZE(12)
FOR dnl= 1 TO 7
LET w.title$:wdoy$(dnl)
LET hw.centerl=(dnl-1)*cwl+(cwl-WIDTH(w.title$))\2
CALL MOVETO(hw .centerl, vw .centerl)
PRINT w.title$;
NEXT dnl

And finally, this block displays the dates and the corresponding
notes:

CALL TEXTSIZE(9)
CALL TEXTFACE(1)
FOR di: 1 TO ldl
LET cnl:dl+wdl
LET d>el:2+((cnl-1) MOD 7)*cwll
LET dyl: 1O+((cnl-1)\7+1)*c11
CALL MOVETO(dxll,dyl)
PRINT FNstr1p$(dll);

NEXT di
CALL TEXTFACE(O)
FOR di: 1 TO ldl
LET cnl=dl+wdl
LET dxl:2+((cnl-1) MOD 7)*cwl
LET dyl:9+((cnl-1)\ 7+ 1)*c11
GOSUB updete.cell
NEXT di
CALL TEXTFACE(1)
RETURN

The Time Machine 427

The update .cell subroutine writes any notes in the appropriate cell
for day d%. Here is the subroutine:

updete.cell:
IF note$(dl):nu$ THEN nothtng.here
CALL MOVETO(dxl+ 16,dyl) :REM leave room for date
LET lest.crl=O
LET next.crl:INSTR(lest.crl+ 1,note$(dl),CHR$(13))
WHILE next.crl<>O
IF next.crl-lest.crl= 1 THEN empty
PRINT MID$(note$(dl),1est.crl+ 1,next.crl-lest.crl-1);
empty:
LET dyl:dyl+9
CALL MOVETO(dxl,dyl)
LET lest.crl:next.crl
LET next.crl:INSTR(leist.crl+ 1,note$(dl),CHR$(13))
WEND
PRINT RIGHT$(note$(dl),LEN(note$(dl))-1eist.crl);
not ht ng.here:
RETURN

Notice that in printing the first line of the notes, the program shifts
the text 16 graphics points to the right (CALL MOVETO (dx%+16,dy%)).
This prevents the first line from being printed on top of the date.

-Testing and Using the Progi"am ----
After entering the entire program and carefully checking a printout of
your work, run the program. You should be able to duplicate the screens
shown in this chapter.

428 Macintosh Program Factory

Remember that the first line of the note is always shifted to the right
to make room for the date, so you should keep this line shorter than the
rest. To start a new line in a note, press ENTER or RETURN.

Look at the note for August 28 in Figure 20-4. It contains four lines.
When you try to type in such a note, you'll find that the fourth line is
hidden from view (the edit box isn't large enough to hold four lines).

In order to enter a fourth line, you must type in the fourth line first
and then move the insertion point to the beginning of the line and press
ENTER. Now type in the first three lines. The fourth line will move down
in the edit box until it is no longer visible. However, as soon as you click
the OK button and the cell is redisplayed, you'll be able to see all four
lines.

Practice this until you can get similar results. Just remember that
the note lines are loosely spaced while you're typing them in; they don't
take on their final appearance until after you click the OK button.

Note: If you interrupt the program by typing COMMAND-. or if an
error stops the program, you must type in the following command to
restore the normal top-bar menu:

MENU RESET

Index
B

Blazing Telephones program,

c

373-92
description, 373-74
method, 374-76
testing and using, 392

Codebreaker program, 153- 72
rules, 153-54
testing and using, 172

Computer requirements, xi
Concentration program, 137-52

cards, (Figure 8-1) 138,
(Figure 8-3) 141

rules and object, 137
Creativity and art, xii, 301-52
Crossword Puzzle Patterns

program, 81-97
definition, 81-82, (Figure 5-1)

83
instructions, 97

Cryptography. See also Secret
Messages

methods, 354
use of Text Scanner program

for, 250
Cursor definition

in Electronic Billiards
program, 121-23

Cursor definition (continued)
in Hidden Words program,

21

D
Designs in a Circle program,

331-52
description, 331-32, (Figure

16-1) 352
Macintosh memory considera

tions, 331, 338, 352
sample designs, (Figure 16-2)

333-34
testing and using, 352

Disk, program, available from
author, xiii

E

Education and self-improvement,
xii, 199-299

Electronic Billiards program,
117-35

description, 117, (Figure 7-1)
118

G

operation, 118, 119-21
suggested games, 135

Games and simulations, xi,
99-198

429

- -
./

430 Macintosh Program Factory

H
Handy tools, xii, 353-428
Hidden Words program, 17-60

M

definition, 17
memory considerations in

puzzle size, 60
operation, 17-20
sample puzzles, (Figures 2-1

and 2- 2) 18-19
using puzzles in Mac Write,

59

Matchmaker program, 61-80
definition, 61-62, (Figures 4-1

and 4-2) 62-63
testing and using, 80

Maze program, 1-16
Clipboard, use of, 15
definitions, 1, (Figure 1-1) 2
maximum size, 5
memory considerations for

128K, 5, 16
procedure for building, 2,

(Figure 1-2) 3
program logic, 3-4
sample maze, (Figure 1-6) 16

Microsoft BASIC, xi, xii

N

Nutritional Advisor program,
393-407

database, 395
description, 393

p

Playback program, 99-115
instructions, 99-101

Poetry generator, 301-29
description, 301, (Figure

15-1) 302

Poetry generator (continued)
logic, 302-03
poem formats, 303-04
vocabulary, 328-29

Pool. See Electronic Billiards
Popular Com'[YUting magazine, xi
Printer, xi
Program disks, available from

author, xiii
Program listings, format of, xiii
Puzzle generators, xi, 1-97

Q
Quiz Master program, 199-227

database, 199-200
testing and using, 227

R
RAM (random access memory),

xi
Roman Numerals program,

283-99

s

background information,
283-84

logic, 284-86
testing and using, 299

Secret Messages, 353-71
cryptographic method used

in, 354
description, 353
logic, 354-57
security considerations,

370-71
testing and using, 368- 70

Sorting technique, bubble, 46
Speed Math program, 229-48

operation, 229-31
testing, 247
using, 248

Spirograph. See Designs in a
Circle

T
Text Scanner program, 249-81

description, 249-51
logic, 252-53
use in cryptanalysis, 250
use with text files, 281

Tic-Tac-Toe program, 173-198
logic, 176

Index 431

Tic-Tac-Toe program (continued)
rules and strategy, 173-75,
(Figures 10-1 through 10-4)
174-76

Time Machine program, 409-28
calendar logic used in,

409-10, 424-25
testing and using, 427-28

x
XOR binary operators, 355

,l-:f ·- - ·,· . . ,, ...
-.. ,.,...,, ,J, - I • a,. t. •, ' J...- ,:_t .,. r ~)I,- ,~ / ,, ,/ },

~
\. t

Here's an exciting collection of puzzles and games that will keep you and
your Macintosh™ entertained for hours. \

George Stewat't has assembled more than 20 programs, some adapted from
his articles in Popular Computing, "The Program Factory.™" These take £Jn
advantage of all of the Mac's special features. . I

Key these programs in and enjoy
-Crossword puzzles
-Codebreaker
- Billiard Practice
-Secret Messages
- Time Machine
... and more.

Beginners can quickly access these programs, while experienced users who
want to understand how the programs work can learn from the explana-
tions that accompany each project. 1

1 Ideal for all ages, Macintosh™ Program Factory™ provides hours of
fun and learning.

• Macintosh is a trademark of Apple Computer, Inc.
• Program Factory is a trademark of the author, George Stewart.

ISBN 0-07-88117 5-9

