
Macintosh®
Progra · g

Inside the Toolbox Using
THINK's LightspeedCTM

Foreword by Stephen Chernicoff

Macintosh®
Programming
Primer
Inside the Toolbox Using
THINK's LightspeedC™

Dave Mark Cartwright Reed

• ••
Addison-Wesley Publishing Company, Inc.
Reading, Massachussets Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

I To Kate and Deneen

Many of the designations used by manufacturers and sellers
to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Addison
Wesley was aware of a trademark claim, the designations
have been printed in initial caps or all caps-for example,
Macintosh, THINK C.

Library of Congress Cataloging-in-Publication Data

Mark, Dave.
Macintosh programming primer.

Includes index.
1. Macintosh (Computer)--Programming.

2. C (Computer program language). I. Reed,
Cartwright. II. Title.
QA 76.8.M3M368 1989 005.265 88-34992
ISBN 0-201-15662-8

Copyright © 1989 by Dave Mark and Cartwright Reed

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior
written permission of Addison-Wesley. Printed in the
United States of America.

ABCDEFGHIJ-AL-89
First Printing, April 1989

Contents

Acknowledgments vii

Foreword Stephen Chernicoff ix

1 Introduction 1
The Macintosh Vision 2
About the Book 6
How to Use This Book 19
What You Need to Get Started 20
Ready, Set... 21

2 SettingUp 23
Installing THINK C 24
Macintosh Programming Issues 26
The Hello, World Program 35
In Review 42

3 Drawing on the Macintosh 43
Introduction 44
Window Management 48
Drawing in Your Window: The QuickDraw Toolbox Routines 53
The QuickDraw Programs 60
Hello2 60
Walking through the Hello 2Code 66
Variants 69
Mondrian 73

iii

iv Contents

Walking through the Mondrian Code 76
Variants 79
ShowPICT 84
Walking through the ShowPICT code 88
Variants 92
Screen Saver: The Flying Line Program 92
Walking through the Flying Line Code 96
In Review 102

4 The Event Mechanism 103
Event Types 105
The Structure of a Mac Program: New and Improved 107
Retrieving Events from the Event Queue 109
Handling Events 112
EventTutor: The Return of Show PICT 113
Walking through the EventTutor Code 125
In Review 142

5 Menu Management 143
Menu Components 144
The Pull Down Menu 146
The Hierarchical Menu 146
The Pop-Up Menu 147
Other Kinds of Menus 147
Putting Menus into Your Programs 148
Timer 149
Setting Up the Project 150
Timer Code 163
Walking through the Timer Code 172
Zinger 182
Walking through Zinger 190
In Review 196

6 Working with Dialogs 197
How Dialogs Work 199
Dialog Items: Controls 201
Other Dialog Items 204
Working with Alerts 206
Adding Dialogs to Your Programs 207
The Notification Manager 212
Reminder 215
Walking through the Reminder Code 244
In Review 261

7 Toolbox Potpourri 263
Keeping Track of Windows: Window Maker 264
The Scrap Manager 295
ShowClip 297

Contents v

Inside the Printing and File Managers 307
Using the Printing Manager 312
PrintPICT 312
Scroll Bars! We're Gonna Do Scroll Bars! 327
Pager 329
The Sound Manager 34 7
Sounder 347
Walking through the Sounder Code 352
In Review 354

8 Using ResEdit 355
The Finder Resources 357
Completing a Standalone Application: Hello2 Revisited 358
Notes on Using ResEdit 360
The ResEdit Tutorial: Installing the Finder Resources 366
Rebuilding the Desktop 384
Minimalist, the ResEdit Program 391
In Review 395

9 The Final Chapter 397
Macintosh Periodicals 398
The Essential Inside Macintosh 398
Apple Technical References 400
Apple's Developer Programs 402
Macintosh Developer Technical Support and AppleLink 402
Software Development Tools 403
To Boldly Go 404

Appendix A Glossary 405

Appendix B Code Listings 419
Chapter 2, Hello.c 420
Chapter 3, Hello2.c 420
Chapter 3, Mondrian.c 421
Chapter 3, ShowPict.c 423
Chapter 3, Flying Line.c 425
Chapter 4, EventTutor.c 428
Chapter 5, Timer.c 436
Chapter 5, Popup.c 444
Chapter 6, Reminder.c 448
Chapter 7, WindowMaker.c 460
Chapter 7, ShowClip.c 466
Chapter 7, PrintPICT.c 469
Chapter 7, Pager.c 472
Chapter 7, Sounder.c 478

Appendix C THINK C Command Summary 481
The Project Menu 482
The File Menu 485

vi

The Edit Menu 486
The Search Menu
The Source Menu
The Windows Menu

489
491

492

Appendix D The Debugger Command
Summary
The Source Window of the Debugger 494
The Data Window of the Debugger 495

Appendix E Debugging Techniques
Compilation Errors 500
Improving Your Debugging Technique 502
Recommended Reading 503

Appendix F Building HyperCard XCMDs
The XChooser XCMD 506
Building the XCMD 507
Copying the XCMD into a Stack 508

Appendix G Bibliography

Index 523

Contents

493

499

505

521

Acknowledgments

WE'D LIKE To thank some of the people who made this book possible:

Deneen Melander and Kate Joyce, who waited patiently for us to
return;

Fred Cole: Without his support and guidance, this book would not have
been written;

Dr. Oleh Tretiak, director of Drexel University's Image Processing
Center, who gave us the time to do a better job;

Steve Baker, Bill Wagoner, and Dave Frazier, who covered for us;
Julie Stillman, Debbie Cook, Perry Mcintosh, Judy Ashkenaz,

and David Ershun, who kept this book on track to the end;
Jim Friedlander, our technical referee, who managed to squeeze a

move to Paris in between chapters;
Steve Chernicoff, who was there at the beginning;
Stu Mark, who was like a brother to us!
Jacob Joseph Taber. This was why I missed your first birthday party.

Hi, Lori. Hi, Ralph.
Hayward, Mary, Brian, Erik, and Chris, and Amy: the best kind of

kin;
Karen Elizabeth Ann Swartz: the newest member of DATOM

Enterprises;
the great DD: Ross and Chris Bartell, Mike Poreda, Jeff Sesler,

Denis Roark, and Steve and Linda Schnetzler;
Erik and Deb Hardy, Missy Kane, and Allen Lang, the folks at NASA

HQ, and the entire gang in LA-thanks, guys!
and finally, our parents, Murray and Trudy Mark, and Ogden and

Nancy Reed, who gave us years and years.

vii

viii

Source Code Disk
for the Primer

IF You WoULD like the source code presented in the Macintosh Programming
Primer on disk, please send in the coupon on the last page.

In addition to the source code presented in the book, we also include the
HyperCard XCMD source code and libraries. These were made available to
us by Symantec, the publishers of THINK C.

We hope you like the Macintosh Programming Primer. If you have any
comments or suggestions regarding future editions, you can reach us at this
address:

The Mac Primer-Comments
2534 North Jefferson Street
Arlington, VA 22207

Foreword
Stephen Chernicoff

EVERYBODY REMEMBERS How revolutionary Apple's Macintosh computer was
when it first appeared in January 1984. One look was enough to tell you
that this was something new. The bright, lively screen, the high-resolution
graphics, the multiple fonts and type styles-not to mention that funny
little gadget with the button on top and the roller ball on the bottom-all
served notice that this was not just another boring old computer. Here at
last was a machine that met you on your terms instead of its own.

Gone were the days of enigmatic prompt characters, cryptic command
sequences, and incomprehensible error messages. In their place was a new
vocabulary of concepts, novel and yet reassuringly natural and intuitive:
windows and scroll bars, pull-down menus and dialog boxes, check boxes
and radio buttons, icons and desk accessories. Using a computer was
suddenly easy, comfortable, and above all fun. For most of us, it was love
at first sight.

But as great a boon as the Macintosh was to ordinary users, it held an
unprecedented gift for programmers as well. An integral part of the system
was the User Interface Toolbox, a body of tightly engineered, lovingly
handcrafted machine-language code built into every Macintosh in read
only memory (ROM). By implementing the features of the standard user
interface, the Toolbox gave programmers all the support they needed to
produce finished-quality software with the distinctive Macintosh "look and
feel."

Unfortunately, even with this considerable helping hand from Apple,
learning to program the Macintosh remained a formidable undertaking. All

ix

x Foreword

that increased freedom and convenience for the user imposed a heavier
burden of discipline on the programmer, who had to master a new and
perhaps unfamiliar "event-driven" style of programming. The original
Toolbox included more than 400 different routines, and the latest models
add even more. Apple's own epic reference work on the Toolbox, Inside
Macintosh, was a prodigious brainful for any programmer to digest.

It was to help readers come to terms with this mass of material that I
wrote my Macintosh Revealed series of books back in 1984. My aim was to
present the fundamental ideas underlying the Toolbox in a more readable,
accessible way, along with an extensive, fully developed example program
showing how to put those ideas to practical use. I hoped to give my readers
a compass with which to chart their own course through the labyrinth of
Inside Macintosh. Still, the sheer scope of the subject remained daunting.
What was clearly needed was a good introductory book that could serve as
a stepping-stone to the level of Mac Revealed andlnside Mac.

Now, Dave Mark and Cartwright Reed have filled that need with their
Macintosh Programming Primer. Starting from the most basic concepts,
they take you by the hand and lead you step by step into the brave new world
of the Toolbox and event-driven programming. Instead of a single, all
embracing programming example, Dave and Cart have taken a more
gradual approach. A series of smaller, more manageable programs focus on
specific aspects of the Toolbox: drawing simple text and graphics, displaying
and maintaining windows on the screen, defining menu commands,
managing scroll bars and dialog boxes. By the time you've worked through
all the examples, you'll be ready to combine the concepts to build full-scale
application programs of your own.

One of the great strengths of this book is its emphasis on the use of
resources as a way of structuring Macintosh programs. The Macintosh
Resource Manager is perhaps its boldest and most innovative contribution
to the state of the programming art, an idea whose versatility and power are
only beginning to be fully realized. Right from the start, Dave and Cart
show you how to use resources as a central organizing principle to make
your programming easier, cleaner, and more modular. Their chapter on
Apple's on-screen resource editor, ResEdit, is the best discussion I've seen
on this important program development tool.

If you're interested in learning to program the Macintosh, there isn't a
better place to start than with the book you're holding in your hands right
now.

Stephen Chernicoff
Berkeley, California

December 15, 1988

Introduction
Macintosh Programming Primer is a

complete course in the art of Macintosh
programming. With this book and

Symantec's THINK C, you can learn to
program the Macintosh.

1

_J

2

No OTHER COMPUTER is like the Macintosh.
The Mac is a new kind of computer. It's fast. It's different.
The Mac plays by a new set of rules. To program it, you need a new

rulebook. That's what the Mac Primer is.
At the heart of the Macintosh is the Toolbox, a collection of over 700

procedures and functions that give you access to the Macintosh interface.
The Mac Primer will teach you how to use the Toolbox, to add the power of
pull-down menus, windows, and scroll bars to your programs.

This book serves as a bridge to the Macintosh way of programming.

The Macintosh Vision

Nowadays, the Macintosh line is successful, highly praised, and much
emulated. When the Macintosh was introduced in 1984, however, people
were perplexed: It was like no computer they had ever seen-a beige box
with a little screen and a mouse. People called the Macintosh a toy because
it had a graphic interface, and graphics were not the way normal computers
operated.

It was no sure thing.
At first, Apple did everything wrong. Macintoshes were incompatible

in both hardware and software-with every other computer in the field.
The screen, disk drive, and CPU board were all bundled together, unlike
the modular design of the IBM PC and the Apple II series. The Macintosh
had no internal bus and was difficult to expand. The mouse controlled a
user interface that was unfamiliar to everyone but Lisa owners.

The new computer should have failed, and would have if Apple had not
made an epochal machine. But it made the Mac, which was unique in three
ways:

• The interface: The graphic user interface was effective. People learned
to use computers faster. The dictum "powerful= hard to use" was no
longer valid.

• The Toolbox: Comprehensive routines were defined in the Macintosh
ROM that drove the interface and allowed software designers to write
powerful, easy-to-use applications.

• The use of resources: The building blocks for all software on the
Macintosh, resources store program information in a series of templates
in the program file, simplifying the creation and modification of Macin
tosh programs.

These three ingredients combined to make the Macintosh the basis for
one of the best selling microcomputer lines in history. Half a decade later,

Introduction 3

the vision holds strong. The Macintosh environment remains unique. The
careful planning that went into the original Mac has paid off handsomely,
as the Mac line continues to evolve and improve.

To write successful applications for the Macintosh, the would-be Macin
tosh programmer must understand how those three Macintosh ingredi
ents-interface, Toolbox, and resources-work. First, let's look at the most
visible of the three: the Macintosh user interface.

The Macintosh Interface

The Macintosh makes its first impression on users with its graphic
interface. Figure 1.1 shows some of the distinctive elements of the Mac
"look." Because new user s understand and use the windows and menus of
Mac applications intuitively, the Macintosh interface represents an im
pressive improvement over the command-based interfaces common on
other systems. Each element of the interface-windows, menus, dialog
boxes, icons-has a specific function associated with it, and extensive
guidelines exist for the use of each element.

.,

Hard Dis
4 items 86,1681< in d

!]] Restart
System Folder Shut Down

LJ LJ
Utilities THINK C

3. 14159
Windows

Figure 1.1 Some elements of the Macintosh interface.

4 Macintosh Programming Primer

The Macintosh interface was appropriated from the Lisa, which lifted
it from the Xerox Alto machine. Each successive rendition of the
interface improved. In addition, every new version of the interface on
the Mac gets sleeker. To look at the Macintosh running Version 1 or
2 of the Finder, or to see the Lisa in operation (while not running under
Mac emulation) is rather like examining a '67 Mustang. The new
system software reflects Apple's ability to build on the old system
without modifying it beyond recognition. Most computer manufactur
ers have noted Apple's success. It's very uncommon for a new com
puter to show up without some version of the Macintosh icon/folder/
window interface.

Of course, pretty pictures aren't enough. The beauty of the Macintosh
interface lies in how it is created. Each part of the interface is manipulated
by a series ofroutines in the Macintosh ROM. For example, you can create
an application's window with one call to the Macintosh ROM.

The routines that underlie the interface-that build windows, control
printing, and draw menus-are collectively known as the Macintosh
Toolbox.

The Macintosh Toolbox

The Toolbox can be thought of as a series oflibraries that make it easy for
you to create those features indigenous to Macintosh applications. For
example, the Macintosh Toolbox call GetNewWi ndow() creates a new
window for use in your application.

Using the Toolbox calls to create your applications gives the results a
distinctive Macintosh look and feel. Operations common to most applica
tions, such as cutting, copying, and pasting, are always handled in the same
way, which makes it easier to learn a new application. ·

The Toolbox routines are grouped functionally into Managers, each of
which is responsible for one part of the Macintosh environment (Figure
1.2).

The Macintosh Toolbox undergoes constant updating and modification;
each new system revision gives you some shiny new tools as well as the old
standbys to work with. As new routines are added to the Toolbox, Apple
cleans up problems with older routines.

The Macintosh graphic interface and the Toolbox are two of the features
that make the Mac unique. A third is the successfully introduced concept
of resources on the Macintosh.

Introduction

Dialog

Sound
Manager

Notification
Manager

Menu Window

Printing
Manager

Font
Manager Manager Manager Manager

Control Resource QuickDraw I Toolbox
Manager Manager Utilities

Scrap
Manager

Figure 1.2 Parts of the Toolbox.

Event
Manager

File
Manager

Although the Macintosh line has expanded greatly, the basic compati
bility of the different. Macintosh models has been maintained. Yet,
more powerful machines always provide more choices-and more
decisions. When the only available Macintosh workstations were the
Macintosh and the Macintosh Plus, software developers thought they
had a certain flexibility about how they followed the Mac program
ming guidelines provided by Apple. Now, in the midst of machines
that support color, MultiFinder, math co-processor chips, and new
peripherals, the successful developer hews closely to the Macintosh
standards.

Resources

5

If the Toolbox is the library of routines that make up the Macintosh
interface, resources are the data that your program uses to execute the
library calls. GetNewWi ndow(), the Toolbox call that creates a new win
dow, requires you to specify window parameters such as size, location, and
window type. To do this, you can supply a resource containing that
information, so the new window can be used in your application. Resources
come in various types, each serving as a "holder" for a particular kind of
data relating to windows, menus, and other parts of the Macintosh
interface. For example, a resource of type WI ND contains information for
one specific window in an application. There may be a number ofresources
of type WI ND, but there is only one WIND type, which is identical for all Mac
applications.

6

_J

Macintosh Programming Primer

Resources are integrated into the design of the Macintosh. Each Macin
tosh application file may possess dozens ofresources. This simplifies many
of the tasks of the applications programmer. For example, resources make
it easy to localize a program for a different area. If you want to sell your
program in, say, France, it is relatively easy to replace resources containing
English text with French equivalents.

Resources are also essential in developing the complex code that drives
the Macintosh interface and hardware. Because they can be easily copied
from one program to another, menus and dialog boxes need not be created
more than once. Once you have built up a collection of programs, creating
new ones may begin with a cut-and-paste session with your existing
programs.

To edit resources, Apple developed a program called ResEdit, which
allows you to edit any of the resources in Macintosh Primer programs. You
can also use them to explore other Macintosh applications-even system
files! Since these resources exist as part of the completed application, they
can be edited without recompilation.

We make extensive use ofResEdit throughout the Mac Primer. If you've
never worked with ResEdit before, Chapter 8 contains a ResEdit tutorial
to get you up to speed.

The Macintosh interface, the Toolbox, and resources are the three
intertwined subjects that we'll cover using THINK C and ResEdit to create
standalone Macintosh applications. The next sections discuss our approach
to learning about these issues.

About the Book

Most Macintosh reference books, such as Inside Macintosh and Macintosh
Revealed, are excellent texts for those who already understand the Macin
tosh programming paradigm. They can be frustrating, however, if you're
outside the Macintosh programming world, looking in. The Mac Primer
bridges the gap for those of you who are just learning the basics of Mac
programming.

Our aim is to help you write properly structured Mac applications. If
you're used to programming on a UNIX machine or on an IBM PC, the Mac
Primer is the perfect place to start your Mac programming education. Our
formative years were spent programming under UNIX, on machines like
the PDP-11 and the VAX-11/780; we've also spent a lot of time with IBM
PCs and compatibles. We wrote the Macintosh Programming Primer with
you in mind.

Introduction 7

What You Need to Know

There are only two prerequisites for reading this book. Before starting the
Macintosh Primer, you should already have basic Mac experience: You
should be able to run Macintosh applications and should have a good feel
for the Mac user interface. In addition, you should have some experience
with a programming language like C or Pascal. If you've never used C
before, we suggest a companion text, such as The C Programming Lan
guage by Brian W. Kernighan and Dennis M. Ritchie (Englewood Cliffs,
N.J.: Prentice-Hall, 1988), to supplement your instruction.

The Macintosh Programming Primer examples are all written in C,
using the THINK C development environment. Our general approach,
however, emphasizes the techniques involved in programming with the
Mac Toolbox. The skills you learn will serve you no matter what program
ming language you intend to use in the future.

Why We Chose THINK C

There are many development environments available to the Mac program
mer. The Macintosh Programmer's Workshop (MPW) is a complex and
powerful development system written and marketed by Apple. Most of
Apple's internal development is done with MPW, and many of the large
Macintosh software development houses have made MPW their first
choice. MPW uses an "everything but the kitchen sink" approach to
software development. The basic system consists of an editor shell that
allows you to edit your source code as well as build and execute complex
command scripts. You can do just about anything in MPW, but it is
definitely not a system for beginners. In addition to learning the editor and
shell, you have to install, configure, and (oh, yes) pay for your choice of
compilers. You can buy C and Pascal compilers for MPW, as well as Fortran,
MacApp, and a few others. MPW is ideal for complex, multilanguage
development efforts, but not for learning to program the Macintosh.

We did our first Mac programming using the Aztec C development
system from Manx. Aztec C offers a UNIX-like shell and a very fast
compiler. Again, this is not a compiler for first-time Mac programmers. The
documentation is thorough but overwhelming. The shell is very much like
UNIX or DOS; too much up-front knowledge is required to build and run
your own applications.

When we decided to write the Macintosh Primer, we investigated other
Mac development environments. We settled on THINK C (also known as
Lightspeed C). THINK C is a development environment that is powerful
and friendly. It has concise, accurate documentation. For those inevitable
bugs, it has a source-level debugger.

Finally, THINK C is reasonably priced (see Figure 1.3).

8

SO Lunches

20Lunches

TIDNK C Macintosh
Programmer's

Workshop (MPW)

Using THINK C

Macintosh Programming Primer

Figure 1.3
Lunch economics.

THINK C is an integrated development environment. The source code
editor follows all the standard Macintosh conventions and is very easy to
use. The compiler is smart: It keeps track of the files you're currently
working with, noting which have been changed since they were last
compiled. THINK C recompiles only what it needs to.

THINK C has a well-thought-out Macintosh interface. For example, to
build a standalone application, pull down the Project menu and select
Build Application. Installation is simple: Just pull the floppies out of the
box, copy the files onto your hard drive,* and go!

THINK C's documentation consists of two clearly written manuals. The
User's Manual explains everything you need to know about developing
software using THINK C. THINK C also comes with a source-level debug
ger, a program that allows you to test-drive your program while you
monitor its progress in a window. The debugger is well designed and also
works with other Macintosh debugging tools like MacsBug and TMON. We
discuss the THINK C debugger in detail in Appendix D.

Inside TffiNK C

The Project file is unique to THINK C. It contains the names of all your
source code files, as well as the name you'll eventually give to your

*For those of you without a hard drive, there are complete instructions for running THINK
C on a floppy-based system in the THINK C user's manual.

Introduction

N•~w Prnj•~c1 ...
011<m Pm jcH L.
Close Project
Close & Compact

Figure 1.4 THINK C's Project window.

9

application. It also contains compilation information about each source file,
such as which files have been modified since their last compilation (see
Figure 1.4).

One of the best features of THINK C is its library of #inc 1 ud e files,
which allow THINK C to support the latest editions of the Macintosh
system software, as well as the latest RO Ms. This means that you can use
THINK C to write programs that will run under MultiFinder, take full
advantage of the Macintosh II's color capabilities, and use AppleTalk. All
of these features are supported in the way Apple intended them to be.
THINK C also provides routines to support extensions to Apple's Hyper
Card.

THINK C also comes with a full complement of utilities, including
ResEdit, the resource editor we mentioned earlier, and with the full source
code to a sample text editor that you can use as the basis for your own text
editor.
For your convenience, we present a summary of the THINK C commands
in Appendix C, a summary of the commands for the source-level debugger
in Appendix D, and a description ofTHINK C's HyperTalk extensions with
a sample XCMD in Appendix F.

10 Macintosh Programming Primer

Writing Macintosh Applications

Most Macintosh applications share a basic structure (Figure 1.5). They
start off by initializing the Toolbox data structures and routines that
support the Macintosh user interface. Then the application enters an event
loop and patiently waits for the user to do something-hitting keys, moving
the mouse, or some other action. Events outside the application are also
checked: Desk accessories may be used, or disks inserted. No matter how
complex the Macintosh program, this simple structure is maintained.

At the heart of the Macintosh Programming Primer is a set of fourteen
sample applications. Each builds on the basic program structure to provide
a successively more sophisticated use of the Macintosh Toolbox. Each new
chapter constructs a more powerful implementation of the basic program
structure. Chapter 3's programs show how to create windows and draw
inside them, Chapter 4 demonstrates how to handle events, Chapter 5
implements menus, and Chapter 6 makes use of dialogs. Chapter 7
presents Window Maker,. a complete example of how a Macintosh applica
tion should work, from handling the interface and events to taking care of
error checking and memory management.

We present each Mac Primer example program as completely as pos
sible, and discuss each program listing extensively. Nothing is left as an
"exercise for the reader." Each chapter contains complete instructions and
figures for entering, compiling, and running the programs using THINK C.

Chapter Synopsis

The Macintosh Primer is made up of nine chapters and seven appendices.
This introductory chapter provides an overview and starts you on your way.
Chapter 2 starts by going through the installation of THINK C and

Initialize
the

Toolbox

Perform
Other

Initializations

Retrieve
an Event

Process the
Event

Figure 1.5 How a Macintosh application works.

Exit the
Application

Introduction 11

ResEdit, step by step. Then, THINK C basics are introduced. We present
the THINK C manual's version of the classic Hello, World program (Figure
1.6), and discuss its drawbacks. After discussing C and Pascal differences,
we go on to illustrate the Macintosh and C programming conventions that
we will use in the Primer.

Chapter 3 starts with an introduction to the fundamentals of drawing on
the Macintosh using QuickDraw. The Window Manager and windows are
discussed. Then, we introduce resources and the Resource Manager.

QuickDraw, the Window Manager, and resources are very closely
related. Windows are drawn using QuickDraw commands from infor
mation stored in resource files.

Four programs are introduced in Chapter 3. The Hello2 program intro
duces some of the Quick.Draw drawing routines related to text; the Mon
drian program (Figure 1. 7) demonstrates Quick.Draw shape-drawing rou
tines. Show PICT (Figure 1.8) demonstrates how easy it is to copy a picture
from a program like MacDraw or MacPaint into a resource file, then draw
the picture in a window of our own. Finally, as a bonus for completing the
first three programs, we have included The Flying Line (Figure 1.9), an
intriguing program that can be used as a screen saver.

r S File Edit
.,

-o EHit Window

Click close boH of this window or press Return to continue

hello, world
I

Q]
''

Figure 1.6 THINK C's Hello, World.

12 Macintosh Programming Primer

r .,

Mondrian

Figure 1. 7 Mondrian.

r .,

My Picture

g ~ • 0 . 0 ~
0·'lf c».' • G· 0 ,

0 G, · ·11.
o /) G ? :1:= ••

• 0 0,, 0 G 0
GO'~G ~t- o ~ ·!·. ' 0 ' 0

~ - ··'

Figure 1.8 ShowPICT.

Introduction 13

Figure 1.9 The Flying Line.

Chapter 4 introduces one of the most important concepts in Macintosh
programming: events. Events are the Macintosh's mechanism for describ
ing the user's actions to your application. When the mouse button is clicked,
a key is pressed, or a disk is inserted in the floppy drive, the operating
system lets your program know by queueing an event. The event architec
ture can be found in almost every Macintosh application written. Here we'll
present the architecture of the main event loop and show how events should
be handled. EventTutor, Chapter 4's sole program (Figure 1.10), provides
a working model of the event architecture.

The Macintosh popularized pull-down menus (Figure 1.11). Chapter 5
shows you how to add the classic pull-down, hierarchical, and pop-up
menus to your own programs. Chapter 5's first program, Timer (Figure
1.12), uses both classic pull-down and hierarchical menus. We'll also show
you how to create and implement pop-up menus with a little program called
Zinger (Figure 1.13).

Chapter 6 introduces dialogs and alerts (Figure 1.14). Dialog boxes are
another instrinsic part of the Macintosh user interface. They provide a
vehicle for customizing your applications while they are running. Alerts are
simplified dialogs, used to report errors and give warnings to the user.

14

r

Figure 1.10 EventTutor.

Macintosh Programming Primer

gPlctWindow

activateEvt: activating gEventWindow
updateEvt: gEventWindow
updateEvt: gPictWindow
mouseOown
mouseUp
mouseOown

.,

Figure 1.11 The classic pull down menu.

Introduction 15

Figure 1.12 Timer witp hierarchical menus.

.,

Figure 1.13 Zinger with pop-up menu.

16 Macintosh Programming Primer

Rlarm goes off in ~seconds

[gl Sound on

[gl Rotate Icon

[gl Display Rlert

Saue

Use:

®Seconds

0 Minutes

Saue changes before closing?

Figure 1.14 Dialog box and alert box.

The Reminder program in Chapter 6 (Figure 1.15) uses dialogs, alerts,
and the Notification Manager to allow you to set an alarm. The application
then starts a countdown and notifies you when it goes off-even if you are
running another application.

Chapter 7, our final programming chapter, contains a potpourri of
programs demonstrating concepts such as error checking, memory man
agement, printing, generating sound, adding scroll bars to windows, and
file management. Each program explores a single topic and provides a
working example of reusable code. The WindowMaker program (Figure
1.16) at the beginning of the chapter, which shows how to keep track of
multiple windows, represents the most mature implementation of the
Macintosh interface of all the programs in the book.

Introduction

' S File 1:<111

Figure 1.15 Reminder.

,. S File Edi1

Window

Window

Window

Window

Window

Window

~D Window

0 ..
o 4 G ~

· .<v., 000 .
0(j·~0)~. 0

.!~~

Figure 1.16 WindowMaker.

·~ 0. 0
·. o .·. -

··.o . .

< - .. ~

17

.,

Chapter 8 discusses the creation, modification, and use of r esources. It
starts with a ResEdit tutorial that covers ResEdit operation and demon
strates the creation of Fi nder resources (Figure 1.17).

Now that you've got a handle on the essentials of Macintosh program
ming, what's next? In Chapter 9, we'll talk about some of the tools available
to help you with your development efforts. We'll look at Inside Macintosh
and some of the other Mac technical documentation. We'll look at software
tools, from compilers to debuggers. We'll also look at Apple's Certified
Developer Program and other Macintosh technical resources.

18

" s File Edit

D
!kl
D
D
D ICN-

MBAR
MENU

Figure 1.17 ResEdit.

Macintosh Programming Primer

.,

Appendix A is a glossary of the technical terms used in the Macintosh
Primer.

Appendix B contains a complete commented listing of each of the Mac
Primer applications, presented in the same order as they appear in the
book.

Appendix C contains a THINK C command summary. Each THINK C
menu item is introduced, along with any accompanying dialog boxes and
alerts.

Appendix D contains a summary of the THINK C debugger. The
operation of the debugger is discussed, and each menu item and window is
detailed.

Appendix E covers some debugging techniques that will be particularly
helpful in the THINK C environment.

Appendix F contains a discussion ofHyperCard XC MDs, along with an
example written in THINK C, and a complete source code listing of the
THINK C XCMD source code.

For those of you who are not HyperCard aficionados, XCMDs are
procedures written in C or Pascal that can be called from within
HyperCard. XCMDs allow you to go beyond the limits ofHyperCard,
performing functions not normally available from within HyperCard.

Appendix G is a bibliography of Macintosh programming references.

_J How to Use This Book

Each Macintosh Primer chapter is made up of the main text and tech
blocks. The main text is the narrative portion of this text. Read this first.
It contains the information you need to input and run the example
programs. Because we've placed a premium on getting you going immedi
ately, we have you run the program before discussing how the code works.
Impatient programmers are invited to go directly to Appendix B, which
contains commented listings of all the programs discussed in the book. If
you have questions after typing in the programs, refer to the chapter in
which the program is discussed. If you prefer a more sedate pace, read a
chapter at a time, type in the programs and test them as you go. Try the
variants to the program if they sound interesting.

At some points, we expand on the narrative with a tech block, indicated
by a distinctive gray background. It's OK to ignore them during your first
read-through.

There are several important terms and conventions we make use of

Tech blocks will have this appearance in the main text. If you feel
comfortable with the subject discussed in the main text, read the tech
blocks for more detail. Otherwise, come back to them later.

throughout the Macintosh Primer. Whenever you see a notation like this:

(111:256-272)

we are referring to a volume of Inside Macintosh and a set of pages within
that volume. The example here refers to Volume III, pages 256 to 272.
References to Tech Notes, documentation from Apple's Macintosh Develop
ers Technical Support Group, are annotated like this: (TN:78) (referring to
Tech Note 78). (See Chapter 9 to find out how to get Tech Notes.) These
references to Inside Macintosh and Tech Notes are intended to help readers
who are interested in a further discussion of a topic.

All of our source code is presented in a special font. For example:

while (i < 20)
PassTheParameters();

Toolbox routines and C functions are also in the code font when they are
described in the text.

19

20

_J

Macintosh Programming Primer

Whenever we refer to a function or procedure call, we place a pair of
parenthesesattheendoftheprocedureorfunctionname. GetNewWi ndow()
is an example of a function call.

Finally, we'll use boldface to point out the first occurrence of important
new terms.

What You Need to Get Started

First, you need THINK C from Symantec. The examples from the book use
Version 3.0, which is the first version to have a source-level debugger. You'll
also need a Toolbox reference. Apple's Inside Macintosh series is the
authoritative reference on Macintosh software development. We suggest
that you purchase Volume I and Volume Voflnside Mac. Volume I contains
a description of a majority of the Toolbox routines used in this book. Volume
V contains the latest changes to the Toolbox. Volumes II, III, and IV contain
helpful, but not indispensable, information about less commonly used
routines.

Buy Volumes I and V with your lunch money. Buy Volumes II through
IV with somebody else's lunch money.

You'll also need access to a Macintosh Plus, SE, or II. You can use this
book with anything from a Macintosh Plus with 1 megabyte of RAM and an
external drive to a fully loaded Macintosh IIx. We strongly recommend a
hard drive. The screen shots that accompany the text assume that you have
a hard disk.

Finally, use the latest system files with Mac Primer programs. Don't use
any system software older than Version 6.0 (preferably 6.0.2 or newer) in
this book.

The compiled, standalone programs that will be developed in this book
may or may not work in the 512Kand the 128KMacintosh. In general,
if we use a ROM call that is not supported by these Macintoshes, we
will mention it in a tech block and suggest alternatives (if there are
any) for programmers who wish to support the older machines.

_J
Ready, Set ...

When you finish this book, you'll be able to create your own Macintosh
applications.

Get all your equipment together, take the phone off the hook, and fire up
your Mac.

Go!

21

Setting Up
This chapter will introduce you to the

software tools that we use in this book.
We also examine some issues that are

specific to the implementation
of Con the Macintosh.

2

_J

24

THINK C Is the programming environment we'll use throughout the Macin
tosh Primer. First, we'll show you how to install it; then, we'll look at bow
to type in and run a sample program. We11 talk about the standards that
we'll be using in this book, and some of the rules you need to follow when
you use the Mac and THINK C together.

Installing THINK C

Let's start by installing THINK C.
Create a folder called TH INK C at the top level of your hard disk. Then,

drag the contents of the two THINK C disks into the folder. The TH I N K C
folder should look something like Figure 2.1.

Source Code Files

Set up a place for your source code by creating a folder called my source
code, or something equally inspiring, inside the TH INK C folder. We called
our source code folder s re, in memory of our good old UNIX days. We'll
create a separate folder inside the s re folder for each Mac Primer appli
cation (see Figure 2.2).

r s File Edit Uiew Special
.,

!!O THINK C ==---===========--=--~ - - -
-- ----~~

17 ittms 68,71SK ii disk

[jJ ~ o ~ o
THINK C THINK C Debugger Mac •includ•Mac •includes.Mao Libraries

~ ~ CJ CJ CJ
MacHHders Library Notes LibrariH Utilltios 1 Utilities 2

CJ ~ CJ
Htx Dump DA DA shell MiniEdit Folder

CJ CJ CJ CJ
Bullseve Folder DA stuff Credits Folder for OulcKtys users

Figure 2.1 The TH INK C folder.

Setting Up 25

ResEdit

THINK C comes with a version ofResEdit on one of its disks. Check the
version of your copy of ResEdit. If you can, use version 1.2 or later for the
projects in this book (see Figure 2.3). There is no charge for this utility,
which is written and maintained by Apple. It's available on many BBSs, so
download it if you wish. You can get it from the Apple Programmer's and
Developer's Association (APDA), which also includes some documentation.
See Chapter 9 for more information about APDA. ResEdit versions consis
tently improve, which is a polite way of saying that some of the older
versions were rather exasperating. In this book, we use Version 1.2.

If you are unfamiliar with ResEdit, we strongly recommend that you
read Chapter 8, which discusses ResEdit operations on resources. It dem
onstrates how to install the resources you need to complete a standalone
program. (This includes the techniques you'll need to add an icon to your
own applications.)

Once you have THINK C and ResEdit together on your Macintosh, you're
one step away from starting to program. The next section discusses the
ground rules for running THINK C code: accessing the Toolbox, Macin
tosh/C topics, data types, parameter passing, and coding conventions .

,. s File Edit Uiew
.,

18 items 68, 726K in disk

[iJ ~ u I u
TH INK C TH INK C Debugger Mao •1noludtMac • includts. Mac Libraries

MacHeaders Ubr ary Notes Ubr ar tts Utntties I Utilities 2

Hex Dwnp DA DA s he ll MiniEdtt Foldt r

LJ LJ LJ
Crodits Folder

LJ
for QutcKtys users

..
Ill Bullseye Folder DA s tuff

Figure 2.2 The s r c folder.

26

_J

Info

b ResEdit

Kind: application

Locked D

Size: 275,007 bytes used, 270K on disk

Yhere: Hard Disk, SCSI

Created: Mon, Sep 19, 1988, 10:35 PM
Modified: Fri, Jan 6, 1989, 10:20 AM
Version: 1.2, ©Apple Computer, Inc.

1984-1988

Suggested Memory Size (K): 300

Application Memory Size (K): §]

Macintosh Programming Primer

Figure 2.3
Get Info window from ResEdit 1.2.

Macintosh Programming Issues

Accessing the Toolbox with C

Built into every Macintosh Plus, SE, and Mac II is a set of over 700 routines,
collectively known as the Mac Toolbox. These include routines for drawing
windows on the screen, routines for handling menus, even routines for
changing the date on the real-time clock built into the Mac. The existence
of these routines helps explain the consistency of the Mac user interface.
Everyone uses these routines. When MacDraw pulls down a menu, it's
calling a Toolbox routine. When MacPaint pulls down a menu, it's calling
the same routine. That's why the menus look alike from application to
application, which has a rather soothing effect on users. This same
principle applies to scroll bars, windows, lists, dialog boxes, alerts, and so
on.

If you look at Toolbox calls in the pages of Inside Macintosh, you'll notice
that the calling sequences and example code presented in each chapter are
written in Pascal. For example, the calling sequence for the function
GetNewWi ndow() (1:283) is listed as:

Introduction 27

FUNCTION GetNewWindow (windowID: INTEGER: wStorage:Ptr:
behind: WindowPtr) WindowPtr:

Each calling sequence starts with either the word FUNCTION or the word
PROCEDURE. FUNCTIONs return values; PROCEDURES don't. Here's
an example ofa call to GetNewWi ndow() written in C:

1!d e f i n e NI L 0 L

WindowPtr myNewWindow. myOldWindow:
Ptr myStorage = NIL:
int myWindowID = 400;
myNewWindow GetNewWindow(myWindowID. myStorage.
myOldWindow);

In the Pascal calling sequence, the function GetNewWi ndow() returns a
value of type W i n d ow Pt r. In our code, we receive this value in the variable
myNewWi ndow, which is declared as a Wi ndowPtr. Most of the data types
found in Inside Macintosh are automatically available to you in THINK C.
The exceptions are summarized in the following table:

Pascal Data Type
BOOLEAN
CHAR
INTEGER
LONG INT
PACKED ARRAY [1..4] OF CHAR

C Equivalent
Boolean
int
int
long
long

For example, the Pascal BOOLEAN data type corresponds to the THINK
C data type Boo l ea n. The Pascal calling sequence for the B LI t ton ()
function can be found on page 259 of Volume I:

FUNCTION Button BOOLEAN:

Here's an example of a call to B LI t ton () in C:

Boolean isButton;

isButton =Button();
if (isButton ==TRUE) SysBeep(20);

Although Pascal is not case-sensitive, C is: Boolean and BOOLEAN are
different. THINK C provides this Pascal type as a convenience to the
programmer. Even though Button () has no parameters, you must use the

28 Macintosh Programming Primer

parentheses. If you forget them, you'll get the compiler error message
"illegal use of in-line Macintosh function."

You can also pass literals directly as parameters. For example, our call
to GetNewWi ndow() can be rewritten as:

#define
WindowPtr
myNewWindow

NIL OL
myNewWindow, myOldWindow;

GetNewWindow(400, NIL, myOldWindow);

This code will work just fine. Passing literals as parameters, howeve~
doesn't necessarily make for readable code. At the very least, we suggest
limiting your literal parameters to #defined constants (as we did with
N I L). This brings up the next topic.

#include, #define, and extern statements

The /Ii n c 1 u de statement tells the C compiler to substitute the source code
in the specified file in place of the II i n c 1 u de statement. Here's an example:

#include "MyFile.h"

The //define statement tells the C compiler to substitute the second
argument for the first argument throughout the rest of the source code file.
For example:

#define MAXFILES 20

Most C compilers use two passes to compile source code. During the first
pass through a source code file, the compiler pulls in /Ii ncl ude files and
performs all the /Ide f i n e substitutions. The actual compilation occurs
during the second pass through the source code.

extern is a C key word used in variable and procedure declarations.
Here's an example of an extern variable declaration:

extern Boolean done:

This extern declaration doesn't cause any space to be allocated for the
variable done. Instead, references to done inside the extern declaration's
file are replaced with pointers to the "real" declaration of done:

Boolean done;

The absence of the extern keyword tells the compiler to allocate space
for the variable and tie all the ext e r n references to the variable to this

Setting Up 29

allocated space. In the code of this book, every program is only one file, so
extern is not used. It makes sense to break down programs into modules
after they reach a certain size (for example, the Reminder program in
Chapter 6 could easily be broken down into three or four files). If you'd like
to see how they're used in a program, examine the MiniEdit application on
the THINK C disks.

C and Pascal Strings

C and Pascal use different techniques to implement their basic string data
types. Pascal strings start out with a single byte, called the length byte,
that determines the length of the string. For example, the string He 11 o ,
Wo r 1 d ! would be stored as a single byte with the value 13, followed by the
13 bytes containing the string:

The C version of this string starts off with the 13 bytes containing the string
and is terminated with a single byte with the value 0:

The Macintosh Toolbox uses Pascal strings, embodied by the St r 2 5 5
data type. Since a single byte can hold values from 0 to 255, Pascal strings
can be at most 255 bytes (not including the length byte).

Using Pascal strings in THINK C is easy. The THINK C compiler will
automatically convert C strings that start with the characters " \ p" to
Pascal format. Consider the calling sequence for the Toolbox routine
DrawStri ng () (1:172):

PROCEDURE Drawstring (S: Str255):

You can call DrawSt ring () in C like this:

Drawstring("\pHello. World!" >:

You can also use the two routines Ct o P st r () and Pt oC st r () to translate
between C and Pascal string formats. These routines are provided as part
of THINK C. They are not part of the Macintosh Toolbox.

30 Macintosh Programming Primer

Passing Parameters: When to Use the &

Here are three rules to guide your use of the & operator in Toolbox calls:
1. If the parameter is declared as a VAR parameter in the Pascal calling

sequence, precede it by an & • Here's the Pascal calling sequence for
Get FNum() (1:223):

PROCEDURE GetFNum (fontName: Str255; VAR theNum:
INTEGER);

Here's a C code fragment that calls GetFNum():

int myFontNumber;

GetFNum("\pGeneva", &myFontNumber);

2. If the parameter is bigger than 4 bytes (as is the case with most Pascal
and C data structures), precede it by an & whether or not it is declared as
a VAR parameter. Here's the Pascal calling sequence for Uni onRect()
(!:175):

PROCEDURE UnionRect (srcl.src2: Rect; VAR dstRect:
Rect);

Here's a C code fragment that calls Uni on Re ct ():

Rect srcl, src2, dstRect;
UnionRect(&srcl, &src2, &dstRect);

If you're wondering where Rect came from, it's one of the data
structures defined in Inside Macintosh (1:141). ARectholds the upper
left and lower right points of a rectangle. We'll see more of these 1

"predefined" Mac data structures later on. ·
...:.

3. If the parameter is 4 bytes or smaller and is not declared as a VAR
parameter, pass it without the&. This rule applies even if the parameter is
a struct. This is the Pascal declaration of the routine PtToAngl e (1:175):

PROCEDURE
INTEGER) ;

PtToAngle(r: Rect: pt: Point; VAR angle:

Here's a C code fragment that calls Pt To Ang 1 e () :

Re ct
Point
int

r:
pt;
angle;

PtToAngle(&r, pt, &angle);

Setting Up 31

Notice that pt was passed without a leading&. This is because Points
are only 4 bytes in size. Most of the predefined Mac types are larger than
4 bytes in size. Poi n t is one of the few exceptions.

Conventions

The purpose of any standard is to ensure consistency and quality. With that
in mind, we present our standard for writing C code. We use this standard
and feel comfortable with it. Feel free to use your own standard or adapt
ours to your own personal style. The important thing is to pick a standard
and stick with it.

When discussing (i.e., arguing over) C standards, people fight most of all
over indentation style. Here's an example of our indentation standard:

ma i n C)

{
int i;

for i=O; i<lO; i++)
I

DoNastyStuff();
}
WrapltUpC);

DoNastyStuff{)
{

DoOneNastyThing();

Notice that all our curly brace pairs (I with its corresponding }) line up
in the same column. Some people like to put the open curly brace at the end
of the previous line, like this:

ma i n ()
int i;

for C i=O; i<lO; i++)
DoNastyStuff();

J

WrapltUp();

DoNastyStuff() I
DoOneNastyThing();

Hmmmm.
Well, do what you like, but be consistent.

32 Macintosh Programming Primer

Generally, we name our variables and routines according to the stan
dards in Inside Macintosh. This means that the names look like Pascal
names. The advantage of this is that you can use the same variable names
used by Inside Mac. This makes your code much easier to debug and
compare with Inside Mac. Our general rules for variable and routine
naming are as follows:

• If you're naming a variable, start with a lower-case letter and capitalize
the first letter of every subsequent word. This yields variables named i ,
myWi ndow, and bi gDataStructure.

• If you're naming a routine (function, procedure, subroutine, etc.), start
with a capital letter and capitalize the first letter of every subsequent
word. ThisyieldsroutinesnamedMa in Loop (),De 1 eteEverythi ng(),
and PutThatDown ().

Most of the Toolbox routines are built right into the Macintosh, in
read-only memory, or ROM. The original Macintosh came with 64K
ROMs, the Mac Plus comes with 128KROMs, and the Mac SE, II, and
IIx each come with 256K RO Ms. Many of the routines built into the
MAC II and Mac IIx ROMs are not found in the original Mac, Mac
Plus, or SE. Likewise, many routines found in the Mac Plus were not
found in the original Macintosh. The point is, things change. If you're
not careful, the programs you write on one machine might not work
on another. In the same vein, if you don't follow Apple's programming
guidelines, the program you write on today's machine may break on
tomormw's.

Resources

As we mentioned in Chapter 1, much of a program's descriptive information
is stored in resources. Resources may be defined by their type and either
their resource ID number or their name.

Each resource has a certain type, and each type has a specific function.
For example, the resource type WIND contains the descriptive information
necessary to create a window; MENU resources describe the menus at the top
of the screen. Figure 2.4 gives a short list of some of the resource types you11
see in this book.

Each resource type is composed of four characters. Case is not ignored:
W I ND and w i n d are considered different resource types. Occasionally,
resource types may include a space-for example, ' s n d ' , where the fourth
character is a space.

Setting Up 33

Actually, resource types are just long integers (4 bytes) represented in
ASCil format. Usually, the types are selected so the ASCil version is
readable (like WIND, MENU, and so on).

§0§ Primer Resource Types ~
BNDL ~
CODE
DITL
DLOG
FREF
ICN#
MBAR
MENU
PICT
\:·/IN[J ~

Figure 2.4
Some resource types used
in the Mac Primer.

Resource ID numbers are unique within their resource type and file. An
application can have several resources of type D LOG, each of which normally
has a unique resource ID within the application file. For example, the
program shown in Figure 2.5 has two DLOGs with ID= 400 and ID= 401.
The application also has a WI ND type resource with ID = 4 0 0. Thus, each
resource is uniquely identified by ID number and type.

If you prefer, you may also name your resources. All the examples we
present in the Mac Primer use the resource type and resource ID to specify
resources. When you create your resources, however, you might want to
specify resource names as well as resource IDs. This will make your
resource files easier to read in ResEdit.

ID numbers follow these conventions:

Range
-32, 768 to -16,385
-16,384 to 127
128 to 32, 767

Use
Reserved by Apple
Used for system resources
Free for use

Certain kinds of resources may have additional restrictions; check
Inside Macintosh for further information.

34

r ci File Edit

Hard Disk

Cl Sample Rppllcation

ID BNDL ~------
Cl DITL ~0~ DLOGs from Sample Applic
ID DLOG DLOG ID = 400
Cl FREF DLOG ID= 401
Cl ICN"'
Cl MBAR

MENU
PICT

Figure 2.5 Resources in a sample application.

Macintosh Programming Primer

.,

We'll be creating CODE resources in THINK C; most of the other resources
will be created using ResEdit.

CODE resources contain the actual code that is to be executed. You may
be used to an operating environment that allows you to segment your
executable code. The Mac supports segmentation as well. Each seg
ment is stored in a separate C 0 DE resource and is loaded and unloaded
as necessary. If you are interested in learning more about code
segmentation, an informative discussion begins on page 70 of the
THINK C User's Manual.

Data Forks and Resource Forks

Macintosh files, unlike files on most other operating systems, each contain
two parts: a data fork and a resource fork. The resource fork stores the
resources, and the data fork contains everything else. Most word processors
store a document's text in the document's data fork and use the resource
fork for storing the document's formatting information. HyperCard stacks,

Setting Up

_J

35

interestingly enough, have all their information on the data fork side. The
THINK C projects in this book will use the resource fork exclusively.

Now that we've covered these weighty and important topics, let's make
THINK C do something, right away!

The Hello, World Program

Now you will key in your first THINK C program. It's the classic C program
listed in the THINK C User's Manual. Hello, World draws its name in a
window.

Just to make things neat, put a new folder inside the s re folder you
created earlier. Call the new folder Hello. World. Keep all the files
associated with the Hello, World project in this folder.

Create a New Project

To create your first program, double-click on the THINK C application in
the THINK C folder (Figure 2.6). The first thing you'll see is the Open
Project dialog box. Click on the New button, and you should see the Name

la THINK cl
D Bullseye Folder
D Libraries

~ =Bokonon

D Mac #includes I' je< t
D Mac Libraries
D MiniEdit Folder

Dril•<i

D src w

D Ut ilities I Oi1<m
D Utilities 2

~ New

Figure 2.6 The Open Project dialog box.

36 Macintosh Programming Primer

Project dialog box (Figure 2.7). Open up the s re folder by double-clicking
on it. Then open up the He 11 o . Wo r l d folder that you just created. Type
in He 11 o P roj in the project dialog box and click the OK button (or hit a
carriage return). The project window (titled He 11 o P r oj) is empty (Figure
2.8), because you haven't added any files to the project yet. As you add files
to your project, they will be added to the project window, with the object
code size displayed in bytes.

Now, you're ready to type in your first program. First, open a new
document. Then, you can type in your program and save the file. Finally,
you can add any libraries that are needed to run the code.

The Project file acts as an information center for all the files involved
in building an application. It contains the names of all the source code
and resource files necessary to run the application. In addition, the
Project file contains information about the THINK C environment
like the preferred font and font size for printing source code. Projects
are a THINK C concept, not a Macintosh concept.

D MiniEdit Folder
D src
~ HllNK C
~ Hll NK C D<!tlll~HJ<!r
D Utilities 1
D Utilities 2

Figure 2.7 The Name Project dialog box.

c:::i Hard Disk

Ilril•H

Setting Up 37

'" s File Edit Search Project Source Windows
.,

~~~i:JH~e~ll~o~P~r!oJI·~~~it 
obj sia 

Figure 2.8 The Project window. 

The Code 

Enter the source code for the file he 11 o. c . Pull down the File menu and 
select New. Figure 2.9 should show the result. Now that you have a blank 
window, type in the following program: 

/******* hello . c*****************/ 

#incl ud e <s tdi o.h> 

ma in ( ) 
( 

prin t f ( "hel l o, world\n "); 

The THINK C compiler doesn't care how you use white space, such as 
tabs, blanks, and spaces. Be generous with your white space-don't be 
afraid to throw in a blank line or two if it will improve the readability of your 
code. 

Check the code for typing errors. If everything looks all right, then select 
Save from the File menu. Call the file he 11 o . c. Then select the Add menu 
item from the Source menu. 



38 Macintosh Programming Primer 

,. S File Edit Search Project Source Windows 
., 

~~~~~~~~~~----.. 

Hello Proj

Figure 2.9 A new Source Code window.

Note that the he 11 o . c file is displayed in the project window (Figure
2.10). Now try running the program by choosing Run from the Project
menu, or by keying 3C R (pronounced "command-R''). Respond to the Update
Project dialog box by clicking Yes.

As you can tell, the program isn't quite ready to go. The message Link
Failed (Figure 2.11) should have appeared in a window at the top of the
screen, and another window with the words undefined pr in t f appeared
below it. Don't worry-this is a simple problem to fix. We're missing the
special link libraries that contain the definition of the pri ntf routine.

Get rid of the bug window, either by clicking on it or by pressing the
Return key. Next, close the Link Erro r s window by clicking in its close
box. To corrrect your problem, you need to add the two libraries Ma c Traps
and std i o to the project.

Setting Up 39

" s File Edit Search Project Source Windows
..,

~~~~JH~e~ll~o~P~r~o~j~~~~~ 

/******* Hel l o.c *****************/ 6.;.;H.~:.1;.1;.o;;,;·.cc. ............ - ...... --··-----··-··· ._ .............. ~ .. 

<stdio .h> 

pr intf <"He l lo , World">; 

Figure 2.10 he 11 o . c added to the Project window. 

,. s File Edit search IQii1i4il source Windows 
.., 

link failed 

prinlf C"He l lo, World" >; 

Link Errors 
unde fined: printf 

Figure 2.11 The link failed window. 



40 Macintosh Programming Primer 

., 

Hello Proj 

la Hello, World I 
pl"' in 

~ =Hard Disk 

I' j(~( t 

nrit•<~ 

-··-·-····-·- ·-·····-··--··-

~ fldd , 
~ [ Cancel l 

Figure 2.12 Looking for s t dio . 

Adding Libraries 

Before you run Hello, World, you have to load two library files so that the 
pr i ntf command will be recognized by the compiler. The first, stdio, 
contains information about the standard inputJoutput commands of the C 
language. To load s t di o, pull down the Source menu and select Add ... 
(Figure 2.12). 

When the Add File dialog box appears, open up the l i bra r i es folder 
inside the TH I N K C folder and add the s td i o file. While you're here, add 
the second library, MacTr aps . MacTraps is necessary if you want to use 
anyToolboxcalls (which print f ( ) does). Ma cTraps is in the Mac Li bra r i es 
folder inside the TH I N K C folder. Add Ma c Tr aps by clicking on the Add 
button. Since you don't want to add any more files to the project, click on the 
Cancel button. std i o and Mac Tr a p s should be displayed under he l l o . c 
in the project window (Figure 2.13). 

The difference between Add ... and Add in the source menu is that 
Add ... has you select the file that you desire, whereas Add automati
cally adds the file that you are currently working on to the project. 

The Ma c Tr a p s library file is necessary for all the programs in the 
Primer. If you are having difficulty with these operations, go back to the 
THINK C User's Manual, or take a look at the THINK C Command 
Summary in Appendix E. 



Setting Up 

,.. s File Edit Search Project Source Windows 
., 

~~~Jh~eilln~ojp~r~oj~e~c!t::ii~~~ 

/******* Hello .c *****************/

•inc lude <sld io .h >

prinlf C"He l lo, Wor ld");

H~llo .c

MilcTrilps

stdio

Figure 2.13 s t di o and Mac Traps added to Project .

Running Hello, World

obj s;ze
12

0

19742

41

Select Run from the Project menu. Respond to the Update Project dialog box
by clicking Yes. If you followed the instructions properly, you should get
something like Figure 2.14. The application will exit when you click the
mouse in the Exit window's close box (it's in the upper left-hand comer of
the window).

The Problem with Hello, World

We don't want to get you too excited about this version of Hello, World.
Although it does demonstrate how to use THINK C, it does not make use
of the Macintosh Toolbox. The first program in Chapter 3 is a Macintized
version of Hello, World called Hello2.

42

_J

Macintosh Programming Primer

r S File Edit

:o EKit Window

Click close boK of th~ window or press Return to con tinue

Hel l o , Wor"ld
I

Q]

Figure 2.14 Think's Hello, World.

In Review

In Chapter 2, you installed THINK C and created your first project. In
Chapter 3, we'll look at the basics of Mac programming: QuickDraw,
windows, and resources. We'll also present four Macintosh applications
that demonstrate the versatility of the Macintosh.

It's almost too late to turn back. To all those who have come from other
environments: Beware! QuickDraw is addictive!

Drawing on the
Macintosh

On the Macintosh, the Toolbox routines
that are responsible for all drawing are
collectively known as QuickDraw. Now

that you have installed THINK C, you
can start programming. A good starting

point is with the unique routines that
define the Macintosh graphic interface.

3

_J

44

Introduction

QuickDraw is the Macintosh drawing environment. With it, you can draw
rectangles and other shapes and fill them with different patterns. You can
draw text in different fonts and sizes. The windows, menus, and dialogs
that are displayed on the Macintosh screen are all created using Quick
Draw routines.

In this chapter, we'll show you how to create your own windows and draw
in them with QuickDraw. Let's start by examining the QuickDraw coordi
nate system, the mathematical basis for QuickDraw.

The QuickDraw Coordinate System

QuickDraw drawing operations are all based on a two-dimensional grid
coordinate system. The grid is finite, running from (-32, 767, -32, 767) to
(32,767, 32,767), as shown in Figure 3.1. Every Macintosh screen is
actually an array of pixels aligned to the grid. The lines of the grid surround
the pixels. The grid point labeled (0,0) is just above, and to the left of, the
upper left-hand corner of the Mac screen (Figure 3.2).

A screen measuring 32,768 pixels x 32,768 pixels with a screen
resolution ofl pixel= 1172 inch would be 38 feet wide and 38 feet tall.
The Mac Plus and SE monitors are 512 x 342 pixels. Apple's Mac II 13"
color monitor is 640 x 480 pixels.

(-32,767, -32,767)

(32, 767 I 32, 76"
Figure 3.1 The grid.

Drawing on the Macintosh 45

1-H- (O, 0 t-++-

IS
~

-
l

Figure 3.2
The Macintosh screen on the grid.

The grid is also referred to as the global coordinate system. Each
window defines a rectangle in global coordinates. Every rectangle has a top,
left, bottom, and right. For example, the window depicted in Figure 3.3
defines a rectangle whose top is 80, left is 50, bottom is 220, and right is 300.

H
H

Interestingly, the window does not have to be set up within the
boundaries of the. scre~:m • .You can set up .a window whose left is -50,
top is 100, bottom is 200, and right is 800. On a Mac Plus, this window
would extend past the left and right sides of the screen (Figure 3.4)!
This is known as the big long window technique Use of the big long
window technique is disco~aged.

(50, 80

!'SI
IS

!!ii
~

1-H-
H+
I-++-
t-H-
1-H-
H-+-

IIIITII
lLl 11-1-_l_ ~
J_ J_J_ J_ J_ J__l_ ~

" [(300, 220]

Figure 3.3 A window on the grid.

46 Macintosh Programming Primer

,. .,

Big Long Window

Figure 3.4 A big long window.

When drawing inside a window, you'll always draw with respect to the
window's local coordinate system. The upper left-hand corner of a
window lies at coordinate (0,0) in that window's local coordinate system
(Figure 3.5). To draw a rectangle inside your window, specify the top, left,
bottom, and right in your window's local coordinates (Figure 3.6). Even if
you move your window to a different position on the screen, the rectangle
coordinates stay the same. That's because the rectangle was specified in
local coordinates.

Local coordinates are great. Suppose you write an application that
puts up a window, then draws a circle in the window (Figure 3.7).

Then, the user of your application drags the window to a new
position (Figure 3.8).

You still know exactly where that circle is, even though its window
has been moved. That's because you specified your circle in the
window's local coordinates.

On the Macintosh, text and graphics created by your programs will be
displayed in windows. Windows are the device that Macintosh programs
use to present information to a user.

Since we need windows to draw in, let's look more closely at windows and
the Window Manager.

I

l (0, 0) in Window's Lo la
Coordinate System

ISi

II III
Figure 3.5 Local coordinates.

I O, 0) in Window' s Local
Coordinate Syst em, (" 5 0 , 8 0 >l-+n~f-++-1-1-+4-4--~4-<"-l

Global Coordinates

HH
HH
HH
HH
HH
HH (20, 30) in Window's Loca ~

Coordinate System , (·10 , 110 Hi'!'-1 '1--r.....-..-.-..,.-,-r+-t-+-I
Global Coordinates ±1±±

Figure 3.6 Rectangle drawn in window's
local coordinates.

Drawing Window

(20, 20)

±

Figure 3.7 Circle drawn in window's local coordinates.

48

_J

Macintosh Programming Primer

Still (20, 20)

Figure 3.8 When window moves, local coordinates
stay the same.

Window Management

When you draw graphics and text on the Macintosh, you draw them inside
a window. The Window Manager is the collective name of all the routines
that allow you to display and maintain the windows on your screen.
Window Manager routines are called whenever a window is moved, resized,
or closed.

Window Parts

Although windows can be defined to be any shape you choose, the standard
Macintosh window is rectangular. Figure 3.9 shows the parts of a typical
window.

The close box is used when you wish to close the window. The drag
region is where you grab the window to move it around the screen; this
region also contains the window's title. Scroll bars are used to examine
parts of the window content not currently in view. The grow box (also
known as the size box) lets you resize the window. The zoom box toggles
the window between its standard size and a predefined size, normally about
the size of the full screen.

Drawing on the Macintosh 49

Close BOH Title Bar or Drag Region Zoom BoH

Window_

Scroll Bars

Grow BoH

Figure 3.9 Window components.

There are several types of windows. The window in Figure 3.9 is known
as a document window. When you use desk accessories or print docu
ments, you will notice other kinds of windows. These windows may not have
all the same components as the standard window, but they operate in the
same fashion.

Window Types

Six standard types of windows are defined by the Window Manager. Each
type has a specific use. In this section, each type is described and its use is
discussed.

This doc umentp r oc window, shown in Figure 3.10, is the standard
window used in applications. This one has a size box, so it is resizable; it has
a close box in the upper left-hand corner that closes the window.

The noGrowDocProc window (shown in Figure 3.11), is the standard
window without scroll bars or a grow box. Use this window for information
that has a fixed size. The rDocProc window (shown in Figure 3.12), has a
black title bar; it has no scroll bars or grow box. This window is most often
used with desk accessories.

The remaining three types of windows are all dialog box windows:
dBoxP r oe, pl a i nDBox, and alt DB ox Proc (Figure 3.13). Dialog boxes will
be discussed in Chapter 6.

50

~L

Macintosh Programming Primer

The windows described here are the standard models. You can
customize them by adding a few options. For example, most of the
window types supported by the Mac can come either with or without
the close box (also known as the go-away box). You can specify whether
or not the window has a size box (grow box). A zoom box can be added
to documentProc and noGrowDocProc windows (see Chapter 4).
We'll show you everything you need to know to create exactly the type
of window you want for your application.

Window

jQ

~
lQl E?l Q]

Figure 3.10 The documentProc window.

D Window

Figure 3.11 The noGrowDocProc window.

Drawing on the Macintosh 51

D UlindoLU

Figure 3.12 The rDocProc window.

Figure 3.13 The dBoxProc, pl a i nDBox, and al tDBoxProc.

52 Macintosh Programming Primer

Setting Up a Window for Your Application

If you plan to use one of the standard window designs for your applications,
creating a window is easy. First, build a WIND resource using ResEdit (if
you're not familiar with ResEdit, tum to Chapter 8). The WI ND resource
requires the information shown in Figure 3.14.Use this resource ID within
your application to refer to your W I ND resource.

Once your WI ND resource is built, you're ready to start coding. One of the
first things your program will do is initialize the Toolbox. The Window
Manager is initialized at this point.

Next, load your WIND resource from the resource file, using the
GetNewWi ndow() Toolbox routine:

pictureWindow = GetNewWindow(windowID. wStorage, behind);

GetNewWi ndow() loads the WI ND resource that has a resource ID of
W i n d ow ID. The WI ND information is stored in memory at the space pointed
to by wStorage. The Window Manager will automatically allocate its own
memoryifyoupass NIL (orOL)asyourwStorage parameter.Fornow, this
technique is fine. As your applications get larger, you'll want to consider
developingyourownmemorymanagementscheme. Theparameter behind
determines whether your window is placed in front of or behind any other
windows. If the value is 0 L , it goes to the back, - 1 L puts it in front. For
example:

theWindow = GetNewWindow(400, OL, -lL);

loads a window with a resource ID of 4 0 0, asks the Window Manager to
allocate storage for the window record, and puts the window in front of all
other windows. A pointer to the window data is returned in the variable
theWi ndow.

When you create the WI ND resource with ResEdit, you are given a choice
of making the window visible or not. Visible windows appear as soon as they
are loaded from the resource file with GetNewWi ndow(). If the visible flag
is not set, you can use Sh owW i n d ow () to make the window visible:

ShowWindow(theWindow);

where theWi ndow is the pointer you got from GetNewWi ndow(). Most
applications start with invisible windows and use ShowWi ndow () when
they want the window to appear. The Window Manager routine
Hi deWi ndow() makes the window invisible again. In general, you'll use
ShowWi ndow() and Hi deWi ndow() to control the visibility of your win
dows.

Drawing on the Macintosh

,. • File Edit WIND

HordDiS.1<....---
•CJ----.====T=H==ll ~ WIND ID= 400 from Hello Proj.rsrc

~ .1-CJ----.======I

CJ [) .r:CJ:-r=====l
CJ CJ
CJ~ ~
CJ Ji)

CJ [)
CJ
<d\
<d\

w

Window title:

New U11ndo111

top 40

left 40

proclD 0

181 Ulsible

Figure 3.14 WIN D resource fields.

bottom 240

right 280

refCon lo

53

.,

At this point, you've learned the basics of the Window Manager. You can
create a window resource using ResEdit, load the resource using
GetNewWindow() , and make the window appear and disappear using
ShowW i ndow() and Hi deWi ndow (). We'll demonstrate this technique
shortly. After you have put up the kind of window you want, you can start
drawing in it. The next section shows you how to use QuickDraw routines
in your window.

Drawing in Your Window:
The QuickDraw Toolbox Routines

There are many QuickDraw drawing routines. They can be conveniently
divided into four groups: routines that draw lines, shapes, text, and
pictures. These routines do all their drawing using a graphics "pen." The
pen's characteristics affect all drawing, whether the drawing involves
lines, shapes, or text.

Before starting to draw, you have to put the pen somewhere (Move To ()),
define the size of the line it will draw (Pen Si z e ()), choose the pattern used
to fill thick lines (Pen Pat ()), and decide how the line you are drawing
changes what's already on the screen (PenMode ()). Figure 3.15 shows how
changing the graphics pen changes the drawing effect.

Every window you create has its own pen. The location of a window's pen
is defined in the window's local coordinate system. Once a window's pen
characteristics have been defined, they will stay defined until you change
them.

54 Macintosh Programming Primer

,· '
p t 1

,· .

IJ IJ ~ ~ ~
Source pat Copy pat o r patXo r patBi c
Pattern

~ [] ~ ~ ~
Destinatio n n o tPatCopy notPatOr notPatXo r notPatBi

Pattern

Copy Source Pattern Onto Destination Pattern U ing
One o f Eight Graphics Pen Modes

Figure 3.15 Graphics pen characteristics.

Setting the Current Window

Because your application can have more than one window open at the same
time, you must first tell QuickDraw which window to draw in. This is done
with a call to Setport():

theWindow = GetNewWindow(400 , OL , - ll) :
SetPort(theWindow) :

In this example, Setport () made theWi ndow the current window. Until
the next call to Set Port () , all QuickDraw drawing operations will occur
in theWi ndow, using t heWi ndow's pen. Once you've called Set Port () and
set the window's pen attributes, you're ready to start drawing.

The basic data structure behind all QuickDraw operations is the
Gra f Port. When you call Set Port () ,you are actually setting the
current Graf Port (1:271). Since every window has a Graf Port data
structure associated with it, in effect you are setting the current
window. The Gra f Port data structure contains fields like pnSi ze
and pnl oc , which define the Gr a f Por t pen's current size and loca
tion. QuickDraw routines like Pen Si z e () modify the appropriate
field in the current Graf Po r t data structure.

Drawing on the Macintosh 55

Drawing Lines

The Li neTo() routine allows you to draw lines from the current pen
position (which you have set with MoveTo()) to any point in the current
window. For example, a call to:

t heWi ndow = GetNewWi ndowC 400 , OL, - ll);
SetPor t(theWi ndow) ;
Move To (39 . 47) ;
LineToC 407, 231) ;

would draw a line from (37 . 47) to (407 , 23 1) in theWi nd ow's local
coordinate system (Figure 3.16).

It is perfectly legal to draw a line outside the current boundary of a
window. QuickDraw will automatically clip it so that only the portion
of the line within the window is drawn. QuickDraw will keep you from
scribbling outside the window boundaries. This is true for all the
QuickDraw drawing routines.

The last program in this chapter is The Flying Line, an extensive
example of what you can do using the QuickDraw line-drawing routines .

.,

~D Window

Figure 3.16 Drawing a line with QuickDraw.

56 Macintosh Programming Primer

Drawing Shapes

QuickDraw has a set of drawing routines for each of the following shapes:
rectangles, ovals, rounded-corner rectangles, and arcs. Each shape can be
drawn filled, inverted, or as an outline (Figure 3.17).

The current pen's characteristics are used to draw each shape, where
appropriate. For example, the current fill pattern will have no effect on a
framed rectangle. The current PenMode () setting, however, will affect all
drawing. The second program in this chapter, Mondrian, shows you how to
create different shapes with QuickDraw (Figure 3.18). It also demonstrates
the different pen modes.

Drawing Text

QuickDraw allows you to draw different text formats easily on the screen.
QuickDraw can vary text by font, style, , size, spacing, and mode. Let's
examine each one of the text characteristics.

Font refers to the typeface of the text you are using. Courier, Helvetica,
and Geneva are some of the typefaces available on the Macintosh. Style
refers to the appearance of the typeface, (bold, italic, underline, etc). The
size of text on the Macintosh is measured in points, where a point is equal
to 1172 inch. Spacing defines the average number of pixels in the space
between letters on a line of text. Figure 3.19 shows some of these character
ics of QuickDraw text.

Figure 3.17
Some QuickDraw shapes.

Drawing on the Macintosh

,.

Mondrlnn

Figure 3.18 Mondrian.

,. s File Edit Senrch Formnt Font Document Window

~O QuickDrnw TeHt Unrlntlons.wd3-1

~s the certtor o1 the United Vorlds, New York
was growing q U i Ck 1 y. This was underlined by the f~ct that many of
the poorer planets were unable to find s pa c e !or their embassies. New
York landlords boldly demanded a rental or 1 million credits a day.
As a result, ambassadors set up shop in two other cities.

Chicngo hnd the biggest spnceport on enrth, nnd ended up with mnny
stntesmen.

Geneva was a favori te with those w orlds that had been colonized by
european nations.

416 Chnrs Normnl

Figure 3.19 Examples of QuickDraw text.

57

.,

.,

!l!lll

58 Macintosh Programming Primer

The mode of text is similar to the mode of the pen. The text mode defines
the way drawn text interacts with text and graphics already drawn. Text
can be defined to overlay the existing graphics (s r c 0 r); text can be inverted
as it is placed on the existing graphics (s rcXor); or text can simply paint
over the exising graphics (s r c Copy). The other modes described in Quick
Draw shapes (s re Bi c, notSrcCopy, notSrcOr, etc.) can also be used with
text. Figure 3.20 demonstrates how text mode affects appearance.

Drawing Pictures

QuickDraw can save text and graphics created with the drawing routines
as picture resources called PI CTs. You can create a picture (using a
program like MacPaint or MacDraw), copy the picture to the clipboard, and
paste it into a PI CT resource using ResEdit. Later in the chapter, you'll see
how to make use of PICT resources in the Show PICT program.

About Regions

QuickDraw allows you to define a collection oflines and shapes as a region.
You can then perform operations on the entire region, as shown in Figure
3.21. Chapter 4 demonstrates some basic region-handling techniques.

By now most of you are probably itching to start coding. First, let's look
at the basic Mac programming structure used in this chapter's programs.
Then, we'll hit the keyboards!

v v
e e
r r

Horizontal Hor1 aontal

c c
a a
1 1

I srcCopy j I srcOr j

Figure 3.20 The two most popular
QuickDraw text modes.

Drawing on the Macintosh 59

Basic Mac Program Structure

We've looked at a general outline of the QuickDraw and Window routines
necessary to make a Macintosh application go. The basic algorithm we'll
use in each of the Chapter 3 programs goes something like this:

main ()
{

ToolBoxinit();
Otherlnits();
DoPrimeDirective();

while (!Button())

Like most C programs, our program starts with the routine ma i n () .
main () first initializes the Toolbox. Then, it takes care of any program
specific initialization, like loading windows or pictures from the resource
file. Next, it performs the prime directive. In the case of the Hello, World
program, the prime directive is drawing a text string in a window. Finally,
ma i n () waits for the mouse button to be pressed. This format is very basic:
Except for clicking the button, there is no interaction between the user and
the program. We'll add this in the next chapter.

Danger! Normal Macintosh applications do not exit with a click of the
mouse button. Mac programs are interactive. They use menus, dia
logs, and events. We'll add these features later. For the purpose of
demonstrating QuickDraw, we'll bend the rules a bit.

OffsetRgnl InsetRgn

Figure 3.21 Two QuickDraw region operations.

_J

_J

60

The QuickDraw Programs

The following programs each demonstrate different parts of the Toolbox.
The Hello2 program demonstrates some of the QuickDraw routines re
lated to text; Mondrian demonstrates QuickDraw shapes and modes;
ShowPICT loads a PI CT resource and draws the picture in a window.
Finally, we present The Flying Line, an intriguing program that can be
used as a screen saver.

Let's look at another version of the Hello, World program presented in
Chapter 2.

Hello2

The new Hello2 program will do the following:

• Initialize the Toolbox.

• Load a resource window, show it, and make it the current port.

• Draw the string He 11 o , Wo r l d in the window.

• Quit when the mouse button is pressed.

To get started, create a folder in the s re folder and call it He 11 o2. This
is where you'll build your first Macintosh application.

Create a resource of type W I ND. The W I ND resource allows you to define
a window with the appearance and size that you desire. Use the tutorial in
Chapter 8 if you feel hesitant about using ResEdit.

To build the WI ND resource, run ResEdit. Click on the window that
represents your hard disk, and open up the He 11 o 2 folder you just created
in the s re folder. (You will have to open some folders to get to the s re
folder.) Once you've opened the He 11 o 2 folder window, select New from the
Filemenutocreateanewresourcefile.NamethefileHel l o2 Proj. Rs re.,
as in Figure 3.22. Make sure to include the space between He 11 o2 and
Proj. Rs re.

Once you've named the new resource file, a window listing all of its
resources will appear automatically. Since you just created the file, no
resources are listed. Select New again to create a new resource. When
prompted, enter WI ND as the new resource type. Remember, case is
important: WI ND is not the same as w i n d. Select New yet again to create a
new WI ND resource, as in Figure 3.23.

Drawing on the Macintosh

.. . Edit

Hard Disk
D.
[ti 1moir====;;,~~~=
D ID ot:o:-r=====!
~ I D D J------1

D ~ D
D. [tl

Dl o

D
~
~

New file name

I Hello2 Proj.Rsrq

D Folder

n OK JJ (Cancel J

Figure 3.22 ResEdit, naming the new resource file.

r S File Edit WIND

D
!tl it=D:-r=====l

D D it::D:-r====t
~ D
0 DD [ti

D [ti

O D
D
~
~

F igure 3.23 The newly created WIN 0 resource.

61

.,

.,

62 Macintosh Programming Primer

First, define the coordinates of the window. Pull down the WI ND menu
and choose the only selection: Display as Text. Then, fill out the fields as
shown in Figure 3.24. Next, select Get Info from the File menu (Figure
3.25). Set the window resource ID to 400.

Choose Quit from the File menu. When prompted to save the file, click
Yes. THINK C will automatically make the resource file you just created
available to your program.

As we discussed in Chapter 2, THINK C collects information about the
current program in a Project file. Whenever you run a program within
THINK C, THINK C looks for a file with the name xxx . Rs re, where
xxx is the name of the Project file. If it finds a file with that name,
THINK C opens the file and makes the resources found in that file
available to your program.

,. S File Edit WIND

Hard Di
D M g0g WIND ID = 11342 from Hello2 Proj.R

lfl.r::a~====1

D ar:a~===1

~ D
DD D !fl
Da
Da

D

WI

w

Window title:

Hello2 lllmdoui

top

left

40

40
!===~

proclD o
~-~

181 Ulsible

bottom~38
right 428

refCon D

Figure 3.24 The WIND type and size parameters.

.,

Drawing on the Macintosh

r s File Edit

Hard Di _
0

_
D M El § Info for WINO 400 from Hello2 Proj.Rsrc ~

~ rt:D:--:r===~ Type: WINO Size: 32

Dao
~ D IO: ~4_0-'-~-----'--------
D D D~ Name:
DD WI
Da

D
D
~

w

Attributes:
0 System Heap
O Purgeable

owner type

0 Locked
0 Protected

O Preload

Figure 3.25 The W I ND Get Info window.

The Hello2 Code

63

.,

Get into THINK C and create a new project in the He 11 o 2 folder. If you need
help creating a new project, refer back to Chapter 2 or just review the
THINKC documentation. Call the project He 11 o2 P roj. Next, select New
from the File menu and type the following source code into the window that
appears.

#define BASE_RES_ID 400
#define NIL_POINTER OL
#define MOVE_TO_FRO NT - lL
#define REMOVE_ALL_EVENTS 0

#define HORIZONTAL_PIXEL 30
#define VERTICAL_PIXEL 50

WindowPtr gHelloWindow ;

!*********************** Main *******~***** /

main()
I

Tool Boxlni t() ;
Wi ndowl nit () ;
while (!Button()

64 Macintosh Programming Primer

/*********************************** ToolBoxlnit */
Tool Boxlni t()

InitGraf(&thePort) ;
InitFonts() ;
FlushEvents(everyEvent, REMOVE_ALL_EVENTS) ;
InitWindows () :
InitMenus();
TEI nit() ;
lnitDialogs(NIL POINTER);
InitCursor() :

/*********************Windowinit**************/
Windowinit()
{

gHelloWindow= GetNewWindow(BASE_RES_ID ,
NIL_POINTER, MOVE_TO_FRONT) ;

ShowWindow(gHelloWindow);
SetPort(gHelloWindow) ;
MoveTo(HORIZONTAL_PIXEL , VERTICAL_PIXEL);
DrawString(" \pHello , World");

Select Save from the File menu and save your source code as He 11 o 2 . c.
Select Add from the Source menu to add He 11 o 2 . c to the project. Finally,
add MacTraps to the project. To do this, select Add . .. (not Add) from the
Source menu. When the Add File dialog box appears, find the Mac Traps
file in the Mac Libraries folder.When you're done, the Project window
should look like Figure 3.26.

,. s File Edit Search Project Source Windows
.,

~~~ijH~e~ll~o~2JP~r~oijJi!iiiji) 
N~• obj siz:. 

•define BASE...RES-1 0 400 

hel loi.Ji ndow; 

/*********************** Main *************/ 

Too lBox lni l< >; 
i.Jlndowlni l< >; 
whl l e ( IBultonO ) ; 

. -~!:!!.~.~---·-·-··-··-·-··-·--- ··---·····-··~-

/******************* Too lBoxlnil*******************/ 

l nitGraf( &thePort >; 
lni tFonts( >; 
FlushEvent s( everyEvent, 0 >; 
l nl ti.Jindows< >; 

Figure 3.26 Hello2's Project window. 



Drawing on the Macintosh 65 

Running Hello2 

Now that your source code is typed in, you're ready to run Hello2. Select Run 
fromtheProjectmenu.Whenaskedto Bring the project up to date? , 
click Yes. 

You may get a complaint about a syntax error or two. If so, just retype 
the line on which the cursor has been placed. If it still won't run, refer to 
Appendix E on debugging techniques. 

If you make any changes to He l l o 2 . c, you'll be asked whether you'd like 
to Save changes before runni ng? . Click Yes. 

Once you've gotten Hello2 to compile without a hitch, it will automati
cally start running, as shown in Figure 3.27. Voila! The new Hello, World 
should display a window with the text He 11 o , Wo r l d in it. Quit the 
program by clicking the mouse button. Let's look at how the code works. 

If Hello2 compiles, yet the Hello2 window fails to appear, it often 
indicates a problem with the resource file. If the WIND resource has been 
entered correctly, make sure that the resource file name matches up with 
the project name (e.g. Hell o2Proj . Rsrc for the resource file, and 
He 11 o 2 Pro j for the project file. Also make sure that both files are in the 
He 11 o2 folder. 

., 

Hello2 Window 

Hello, World 

Figure 3.27 The new Hello, World. 



_J 

66 

Walking through the Hello2 Code 

ThefirstfewlinesofHe 11 o2. c are1idefi nes. THINKC#defi nes arethe 
same as those found in other C programming environments. During 
compilation, THINK C takes the first argument of the #def i n e, finds each 
occurrence in the source code, and substitutes the second argument. For 
example in the first /ldefi ne, the number 400 will be substituted for each 
occurrence of BASE_RES_I D: 

#define BASE_RES_ID 400 
#define NIL_POINTER OL 
#define MOVE_TO_FRONT -ll 
#define REMOVE_ALL_EVENTS 0 

#define HORIZONTAL_PIXEL 30 
#define V ERTI CA L_P IX EL 50 

#def i n es don't actually modify your copy of the source code. THINK 
C creates its own copy of the source code and makes the substitution 
on its copy. · 

Next, declare your global variables. In this case, there is only one global, 
gHe 11 oWi ndow, whichisdeclaredasapointertoawindow. GetNewWi ndow() 
creates a window specified by your WI ND resource and returns a pointer to 
the window in the variable gHe 11 oWi ndow. 

WindowPtr ghelloWindow; 

The main() routine is next. main() calls ToolBoxlnit() and 
W i n d ow I n i t ( ) , then loops until the mouse button is pressed. 

/*********************** Main *************/ 

ma i n ( ) 
{ 

ToolBoxinit(); 
Windowlnit(); 
while ( !Button() ) ; 

Too 1 Box I n i t ( ) will remain unchanged throughout the entire book. 
Although you won't always use all the data structures and variables 
initialized by Too 1 Box I n i t ( ) , you are perfectly safe in doing so. It is much 
easier and safer to initialize each of the Macintosh Toolbox managers than 
to try to figure out which ones you'll need and which you won't. 



Drawing on the Macintosh 

/*********************************** ToolBoxinit */ 

ToolBoxinit() 
{ 

InitGraf( &thePort ); 
InitFonts(); 
FlushEvents( everyEvent. REMOVE_ALL_EVENTS ); 
InitWindows(); 
InitMenus(); 
TEinit(); 
InitDialogs( NIL_POINTER ); 
InitCursor(); 

67 

Each call initializes a different part of the Macintosh interface. The call 
to Ini tGraf() initializes QuickDraw. 

The following global variables are initialized by InitGraf() and can be 
used in your routines: 

• thePort always points to the current GrafPort. Because it is the 
first QuickDraw global, passing its address to I n i t Graf ( ) tells 
QuickDraw where in memory all the QuickDraw globals are lo
cated. 

• white is a pattern variable set to a white fill; black, gray, 
1 tGray, and dkGray are initialized as different shades between 
black and white. 

• arrow is set as the standard cursor shape, an arrow. You can pass 
arrow as an argument to QuickDraw's cursor-handling routines. 

• screenBi ts is a data structure that describes the main Mac 
screen. The field screenBi ts. bounds is declared as a Rect and 
contains a rectangle that encloses the main Mac screen. 

• randSeed is used as a seed by the Macintosh random number 
generator (we'll show you how to use the seed in this chapter). 

I n i t Fonts ( ) initializes the Font Manager and loads the system font 
into memory. Since the Window Manager uses the Font Manager (to draw 
the window's title, for example), you must initialize fonts first. 
Fl ushEvents ()gets rid of all the events that are currently in the event 
queue, such as mouse movement or keyboard actions. We'll talk about 
events in Chapter 4. In i t W i n d ow s ( ) initializes the Window Manager and 
draws the desktop and the empty menu bar. I ni tMenus ()initializes the 
Menu Manager so you can use menus. (Chapter 5 shows how to use the 
Menu Manager.) I ni tMenus () also draws the empty menu bar. 



68 Macintosh Programming Primer 

InitWindows() and InitMenus() bothdrawtheemptymenubar. 
This is done intentionally by the ROM programmers for a reason that 
is such a dark secret, they didn't even document it in Inside Macin
tosh. 

TE In i t ( ) initializes TextEdit, the Text-Editing ManagerthatMiniEdit 
uses (discussed in the THINK C User's Manual and in Inside Macintosh). 
I ni tDi al ogs () initializestheDialogManager(demonstratedinChapter 
6). I n i t Cursor ( ) sets the cursor to the arrow cursor and makes the cursor 
visible. 

As we said, it's not necessary to call each of these routines in every 
program you'll ever write. Why, then, should you call Ini tMenus (),for 
example, if you don't use menus? Well, suppose you decide to add menus 
later. Calling Ini tMenus () now means you won't spend time later on 
wondering why your program is crashing when all you did was add a new 
menu-handling routine. 

An additional reason to initialize all managers is more subtle. Routines 
in one manager may employ routines in another manager. So, if one 
manager is not initialized-even if you don't use its routines-your pro
gram may bomb. Use the Tool box I n i t ( ) routine in your programs. 

Window Initialization Routine 

Windowlnit() callsGetNewWindow() toloadtheWINDwithresourceID 
= BASE_RES_ID from your resource file. GetNewWi ndow() returns a 
pointer to the new window data structure. Then, W i n d ow I n i t ( ) calls 
Sh owW i n d ow ( ) to make the window visible. It is at this point that the 
window actually appears on the screen. The call to Setport () makes 
gHel l oWi ndow the current window. All subsequent QuickDraw drawing 
operations will take place in gHe 11 oWi ndow. Next, gHe 11 oWi ndow's pen 
is moved to the local coordinates 50 down and 30 across from the upper left
hand comer of g He 11 o W i n d ow, and the Pascal string He 11 o , Wo r 1 d is 
drawn. 

/*********************Windowlnit**************/ 

Windowlnit() 
I 

gHelloWindow= GetNewWindow( BASE_RES_ID . NIL_POINTER. 

ShowWindow( gHelloWindow); 
SetPort( gHelloWindow); 

MOVE_TO_FRONT ); 

MoveTo( HORIZONTAL_PIXEL. VERTICAL_PIXEL ); 
DrawString("\pHello, World"); 



Drawing on the Macintosh 69 

_J 

The new Hello, World can easily be turned into a standalone applica
tion. Pull down the Project menu and select Build Application. When 
the Build Application dialog box appears, type in the name of your 
application and press return. THINK C will build a standalone 
application out ofHello2. If you'd like to add a custom icon to Hello2, 
take a quick tour through Chapter 8. 

Variants 

We'd like to present some variants to the Hello2 program. We'll start by 
changing the font used to draw He 1 1 o , W or 1 d. Next, we'll modify the style 
of the text, using boldface, italics, and so on. We'll also show you how to 
change the size of your text. Finally, we'll experiment with different 
window types. 

Changing the Font 
Every window has an associated font. You can change the current window's 
font by calling Text Font(), and passing an integer that represents the 
font you'd like to use: 

int myFontNumber; 
TextFont ( myFontNumber ); 

lftextisalreadydrawninthewindow, TextFont() won'taffectit-only 
text drawn after the routine is called is affected. Macintosh font numbers 
stat at zero and count up from there. THINK Chas predefined a number of 
font names for you to experiment with. For example, mo n a co is defined as 
4, ti mes as 20. If you want to check out the whole list, open the file 
FontMgr. h in the Mac #includes folder. 

Did someone in the back ask, "How can you tell which fonts have been 
installed in the system?" An excellent question! Not every Mac has the 
same set of fonts installed. Some folks have the Laser Writer font set, 
others a set of fonts for their ImageWriter. Some people might even 
have a complete set of foreign language fonts. For the most part, your 
applications shouldn't care which fonts are installed. There are, 
however, two exceptions to this rule. All dialog boxes and menus are 
drawn in the system font, which defaults to font number 0. The 
default font for applications is called the application font, usually 
font number 1. In the United States, the system font is Chicago, and 
the applications font is Geneva. 



70 Macintosh Programming Primer 

Fornow,putthe Text Font () callbeforeyourcall to DrawStri ng ()and 
after your call to Set Port ( ) , and try different font numbers. 

/*********************Windowlnit**************/ 

Windowlnit() 
{ 

gHelloWindow= GetNewWindow( BASE_RES_ID • NIL_POINTER, 
MOVE_ TO_FRONT ) : 

ShowWindow( gHelloWindow); 
SetPort( gHelloWindow): 
MoveTo( HORIZONTAL_PIXEL. VERTICAL_PIXEL ): 
TextFont( monaco ); 
I* Try other predefined constants <such as times. 

if you have it installed) */ 
DrawString("\pHello. World"): 

Changing Text Style 

The Macintosh supports seven font styles: bold, italic, underline, outline, 
shadow, condensed and extended, or any combination of these. In Chapter 
5, we'll show you how to set text styles using menus. For now, try inserting 
thecallTextFace( style ) before the call to DrawSt ring ().Here's one 
example: 

/********~************Windowlnit**************/ 

Windowlnit() 
{ 

gHelloWindow= GetNewWindow( BASE_RES_ID . NIL_POINTER, 
MOVE_TO_FRONT ): 

ShowWindow( gHelloWindow): 
SetPort( gHelloWindow); 
MoveTo( HORIZONTAL_PIXEL. VERTICAL_PIXEL ): 
TextFace( bold >: 
I* Try the other styles */ 
DrawString("\pHello, World"): 

Here's a list of predefined styles taken from the 1/i ncl ude file 
QuickDraw.h: · 

• bold • shadow 
• italic • condense 
• underline • extend 
• outline 



Drawing on the Macintosh 71 

You can also combine styles; try Text Fa c e ( b o 1 d + i ta 1 i c ) or some 
other combination. 

Changing Text Size 

It's also easy to change the sizeofthefonts, usingthe TextSi ze ()Toolbox 
routine: 

int myFontSize: 
TextSize< myFontSize ): 

The number you supply as an argument to Text Si z e ( ) is the font size 
that will be used the next time text is drawn in the current window. The 
Font Manager will scale a font up to the size requested; this may result in 
a jaggy character, as shown in Figure 3.28. The default size is 0, which 
specifies that the system font size (normally 12 point) be used. Try this 
variation. 

/*********************Windowlnit**************/ 

Windowlnit() 
{ 

gHelloWindow= GetNewWindow( BASE_RES_ID , 
NIL_POINTER, MOVE_TO_FRONT ): 
ShowWindow( gHelloWindow): 
SetPort( gHelloWindow): 
MoveTo( HORIZONTAL_PIXEL. VERTICAL_PIXEL ): 
TextSize( 24 ); 
I* Try other sizes like 1 or 255 (you may have to 
change the VERTICAL_PIXEL #define to something 
bigger) */ 
DrawString("\pHello, World"); 

Changing the Hello2 Window 

Another modification you can try involves changing the window type from 
0 to something else. Use ResEdit to change the WIND resource's pro c ID 
from 0 to 1, as in Figure 3.29. (See the section on window types earlier in 
this chapter for other possibilities.) 

Now that you have mastered QuickDraw's text-handling routines, let's 
exercise the shape-drawing capabilities of QuickDraw with our next pro
gram: Mondrian. 



72 Macintosh Programming Primer 

Window 

These Character s Rren't Scaled 

These Characters 
Rre Scaled 

Figure 3.28 The result of font scaling. 

r s File Edit WINO 

Hard DI _
0

_ 
l t=:D:r======M=i1;1 1'1 WIND ID = 11342 from Hello2 Proj.R 

~ it:D::--:r=====i 

D D it:D:-:p==== 
~ D 
DDD~ 
Do 
Do 

0 

D Uisible 

Figure 3.29 Changing the window type. 

., 

., 



_J Mondrian 

The Mondrian program opens a window and draws randomly generated 
ovals, alternately filled with white or black. Like Hello2, Mondrian waits 
for a mouse click to exit. The program, with its variants, demonstrates most 
of QuickDraw's shape-drawing functionality. 

Mondrian is made up of three steps: 

• Initialize the Toolbox. 
• Initialize the window. 
• Draw random QuickDraw shapes in a loop until the mouse button is 

clicked. 

First, create a new folder called Mondrian in the src folder. Next, 
create the resources you need for the program, and then enter the code. 

Resources 

The Mondrian program needs a WIND resource, just as Hello2 did. In this 
case, create a new resource file called Mond rian P roj . Rs re (don't forget 
the space) in the Mond ri an folder you just made. Then create a WI NO with 
size and title as shown in Figure 3.30. Before you close and save 

,.. s File Edit WIND 

Hord Disk ~--- - 
llt::--.========9"0 " WIND ID = 400 from Mondrian Proj. 

Fu ego 

0 
0 
0 

THI Window title: 
llP-ll•----l Mondrian 

top 

left 

proclO 

~bottom~ 
E:=Jright ~ 

14 lrefConlo I 

D Uisible 

Figure 3.30 W I N 0 parameters for Mondrian. 

., 

73 



74 Macintosh Programming Primer 

Mondrian Proj. rs rc,gotoGetlnfo andchangetheresourceIDofthenew 
WI ND to 4 0 0. Next, go into THINK C and create a new project called 
Mondrian Proj inside the Mondrian folder. Add MacTraps to your 
project. Then open up a new source code window and enter the program: 

#define BASE_RES_ID 400 
#define NIL_POINTER OL 
#define MOVE_TO_FRONT -lL 
#define REMOVE_ALL_EVENTS 0 

WindowPtr 
long 

gDrawWindow; 
gFillColor = blackColor; 

!******************************** main *********/ 

main() 
{ 

Tool Boxlnit(); 
Wi n d ow In it ( ) ; 
Mai nloop(); 

!*********************************** ToolBoxlnit */ 

ToolBoxlnit() 
{ 

InitGraf( &thePort ); 
InitFonts(); 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ); 
InitWindows(); 
InitMenus(); 
TEinit(); 
InitDialogs( NIL_POINTER ); 
Ini tCursor(); 

!******************************** Windowlnit *********/ 

Windowlnit() 
{ 

gDrawWindow = GetNewWindow( BASE_RES_ID. NIL_POINTER. 

ShowWindow( gDrawWindow ); 
SetPort( gDrawWindow ); 

MOVE_ TO_FRONT ) ; 

/******************************** Mainloop *********/ 

Mainloop() 
{ 

GetDateTime( &randSeed ); 
while ( ! Button() ) 
{ 

DrawRandomRect(); 
if ( gFillColor == blackColor ) 

gFillColor = whiteColor; 



Drawing on the Macintosh 

else 
gFillColor blackColor; 

/******************************** DrawRandomRect *********/ 

DrawRandomRect() 
{ 

Rect myRect; 

RandomRect( &myRect. gDrawWindow ); 
ForeColor( gFillColor ): 
PaintOval( &myRect ); 

/******************************** RandomRect *********/ 

RandomRect( myRectPtr. boundingWindow 
Rect *myRectPtr; 
WindowPtr boundingWindow; 
{ 

myRectPtr->left = Randomize( boundingWindow->portRect.right 
- boundingWindow->portRect.left ); 

myRectPtr->right =Randomize( boundingWindow->portRect.right 
- boundingWindow->portRect.left ); 

myRectPtr->top = Randomize( boundingWindow->portRect.bottom 
- boundingWindow->portRect.top ); 

myRectPtr->bottom = Randomize( boundingWindow->portRect.bottom 
- boundingWindow->portRect.top ); 

/******************************** Randomize *********/ 

Randomize( range ) 
int range; 
{ 

long rawResult; 
rawResult =Random(); 
if ( rawResult < 0 ) rawResult *= -1; 

return( (rawResult * range) I 32768 ); 

Running Mondrian 

75 

Once you've finished typing in the code, save it as Mon d r i an • c and add it 
to the project. Next, select Run from the Project menu. Click Yes to bring 
the project up to date. If everything went correctly, you should see some
thing like Figure 3.31. The window should fill with overlapping black and 
white ovals until you click the mouse button. If you got a different result, 
then check out your resource file; make sure the WI ND resource has the 
correct resource ID. If your resource file is all right, go through the code 
carefully. 

Now let's walk through the Mondrian code. 



76 

_J 

Macintosh Programming Primer 

,. .., 

Mondrian 

Figure 3.31 Running Mondrian. 

Walking through the Mondrian Code 

The Mac Primer uses the convention of starting resource ID numbers at 
400, adding one each time a new resource ID is needed. (In your own 
programs you can use any number between 128 and 32, 767 .) The #def i n es 
used in Mondrian are identical to those used in Hello2. The global variable 
gOrawWi ndow is Mondrian's main window. Each shape you draw will be 
filled with the color in gf i 11Co1 or, which is initialized as b 1ackCo 1 or. 

#define BAS~_RES_ID 400 
#define NIL_POINTER OL 
#define MOVE_TO_FRONT -ll 
#define REMOVE_ALL_EVENTS 0 

WindowPtr 
long 

gDrawWindow ; 
gFillColor = blackColor ; 

The main routine is exactly the same as it was in Hello2: 

!******************************** main *********/ 

main ( ) 
{ 

ToolBoxinit() ; 
\~ i n d ow r n i t ( ) ; 
Mainloop() ; 

The Toolbox initialization routine is also t he same as in Hello2. 



Drawing on the Macintosh 

/*********************************** ToolBoxlnit */ 
ToolBoxlnit() 
{ 

InitGraf( &thePort ); 
InitFonts(): 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ); 
InitWindows(): 
InitMenus(); 
TEI nit(); 
InitDialogs( NIL_POINTER ): 
Ini tCursor(): 

77 

W i n d ow In i t ( ) loads WI ND number 4 0 0 from the resource file, storing 
apointertoitin gDrawWi ndow. Next, ShowWi ndow() is called to make the 
window visible, and Set Port() is called to make gDrawWi ndow the 
current window. 

/******************************** Windowlnit ******~**/ 
Windowlnit() 
{ 

gOrawWindow = GetNewWindow( BASE_RES_ID. NIL_POINTER. 

ShowWindow( gDrawWindow ); 
SetPort( gDrawWindow ); 

MOVE_ TO_FRONT ) ; 

Ma i n Loop ( ) starts by using the current time (in seconds since January 
1, 1904) to seed the Mac random number generator. The QuickDraw global 
rand Seed is used as a seed by the random number generator. If you didn't 
modify randSeed, you'd generate the same patterns every time you ran 
Mondrian. 

Ma i n Loop ( ) then sets up a loop that falls through when the mouse 
button is pressed. In the loop, DrawRa ndomRect ( ) is called, which gener
ates a random rectangular area in the window and then draws an oval in 
the rectangle. Then, g Fi 11 Co 1 or is flipped from black to white or from 
white to black. 

/******************************** Mainloop *********/ 
Mainloop() 
{ 

GetDateTime( &randSeed ); 
while ( ! Button() ) 
{ 

DrawRandomRect(); 
if ( gFillColor == blackColor ) 

gFillColor whiteColor; 
else 

gFillColor = blackColor; 



78 Macintosh Programming Primer 

DrawRandomRect() controls the actual drawing of the ovals in the 
window. RandomRect() generatesarandomrectangleinsidegDrawWi ndow, 
Fore Col or ( ) sets the current drawing color to g Fi 1 1 Co 1 or, and Pa i n -
tOv al ( ) paints the oval. 

/***************************** DrawRandomRect *********/ 

DrawRandomRect() 
{ 

Re ct my Re ct; 

RandomRect( &myRect, gDrawWindow ); 
ForeColor( gFillColor ); 
PaintOval( &myRect ); 

RandomRect ( ) sets up the rectangle to be used in drawing the oval. 
Each of the four sides of the rectangle is generated as a random number 
between the right and left (or top and bottom, as appropriate) sides of the 
input parameter, boundi ngWi ndO\'i. 

The notation myStructPtr->myField refers to the field my Fi e 1 d in the 
st r u ct pointed to by my St r u ct Pt r. 

Every window data structure has a field named portRect that defines 
the boundaryofthecontentregionofthewindow. Since boundi ngWi ndow 
is a pointer to a window data structure, you use boundi ngWi ndow-> 
port Rec t to access this rectangle. 

/******************************** RandomRect *********/ 

RandomRect( myRectPtr, boundingWindow 
Rect *myRectPtr; 
WindowPtr boundingWindow; 
{ 

myRectPtr->left =Randomize( boundingWindow->portRect.right 
- boundingWindow->portRect. left ); 

myRectPtr->right = Randomize( boundingWindow->portRect.right 
- boundingWindow->portRect.left ); 

myRectPtr->top = Randomize( boundingWindow->portRect.bottom 
- boundingWindow->portRect.top ); 

myRectPtr->bottom = Randomize( boundingWindow->portRect.bottom 
- boundingWindow->portRect.top ); 



Drawing on the Macintosh 79 

_J 

Randomize ()takes an integer argument and returns a positive integer 
greaterthan or equal to 0, and less than the argument. This is accomplished 
via a call to the Rand om ( ) Toolbox utility, which returns a random number 
in the range -32,767 through 32,767. You may find Randomize() helpful 
in your own applications. 

/******************************** Randomize *********/ 

Randomize( range ) 
int range: 
I 

long rawResult; 
rawResult =Random(); 

if ( rawResult < 0 ) rawResult *= -1; 
return( (rawResult *range) I 32768 ); 

Variants 

Here are some variants of Mondrian. The first few change the shape of the 
repeated figure in the window from ovals to some other shapes. 

Your first new shape will be a rectangle. This one's easy: Just change the 
Pa i n t 0 v a 1 ( ) call to Pa i n t Rec t ( ) . When you run this, you should see 
rectangles instead of ovals. 

Your next new shape is the rounded rectangle. You'll need two new 
parameters for Pa i n t Round Rec t ( ) : ova 1 W i d th and ova 1 He i g ht. These 
two parameters affect the curvature of the corners of the rectangle (I:l 79). 
Try the following values for o v a 1 W i d th and ova 1 He i g ht: 

#define OVAL_WIDTH 20 
#define OVAL_HEIGHT 20 

Now, change the DrawRandomRect ()routine, as follows: 

/*************************** DrawRandomRect *******/ 

DrawRandomRect() 
I 

Rect myRect: 

RandomRect( &myRect, gDrawWindow ); 
ForeColor( gFillColor ); 
PaintRoundRect( &myRect, OVAL_WIDTH, OVAL_HEIGHT ); 

You should see something like Figure 3.32 if you run this variation. 



80 Macintosh Programming Primer 

r ., 

Figure 3.32 Mondrian with rounded rectangles. 

Instead of filling the rectangles, try using FrameRoundRect ()to draw 
just the outline of your rectangles: 

/*************************** DrawRandomRect *********/ 

DrawRandomRect() 
{ 

Rect my Rect ; 

RandomRect( &myRect, gDrawWindow ) ; 
ForeColor( gFillColo r ) ; 
FrameRoundRect ( &myRect , OVAL_W IDTH , OVAL_HEIGHT ); 

The framing function is more interesting if you change the state of your 
pen: The default setting for your pen is a size of 1 pixel wide by 1 pixel tall, 
and the pattern is black. Change it by modifying W i n d ow In i t ( ) as shown 
in Figure 3.33. 



Drawing on the Macintosh 

r 

Mondrian ---- --- -
- - --------

I r i _____ ...__._ _----=----- > 

~ .:::....;~~~~~~~~~~ 

Figure 3.33 Mondrian with framed rounded rectangles. 

/******************************** Windowlnit *********/ 

W i n d ow In it ( ) 
{ 

gOrawWindow = GetNewWi ndow( BASE_RES_ID . NIL_POINTER , 
MOVE_TO_ FRONT ); 

ShowWindow( gDrawWindow ) ; 
SetPort( gOrawWindow ) ; 
PenSize( PEN_WIDTH , PEN_HEIGHT ); 
PenPat( gray ) ; 

81 

., 

Here, you changed the pen pattern to gray. Don't forget to /Fd e f i n e 
PEN_W I DTH and PEN_H EIGHT. We used valuesofl 0 and 2, respectively,for 
Figure 3.33. 

While you're at it, try using InvertRoundRectC) instead of 
FrameRoundRect( ) . InvertRoundRect() will invert the pixels in its 
rectangle. The arguments are handled in the same way (Figure 3.34). 



82 Macintosh Programming Primer 

., 

Figure 3.34 Mondrian with inverted rounded rectangles. 

Next, try using FrameArc() in place of InvertRoundRect( ). 
FrameArc() requires two new parameters. The first defines the arc's 
starting angle, and the second defines the size of the arc. Both are expressed 
in degrees (Figure 3.35). Change Dr awRandomRect() as follows: 

/************************** DrawRandomRect ***~*****/ 

DrawRandomRect() 
( 
Rect myRect : 

RandomRect( &myRect , gDrawWindow ) : 
ForeColor( gFillColor ) ; 
FrameArc( &myRect , START_DEGREES , ARC DEGREES ) ; 

Don't forget to ffdefi ne ST ART _DEGRE ES and ARC_DEGREES. Try using 
values of O and 270. Experiment with Pa in tArc() and I nve r tAr c() 
also, if you wish. 

The final Mondrian variation is more interesting with a color monitor. 
If you change the Fore Color ( ) arguments in Mai n ( ) , you can see colored 
filled ovals (or whatever your program is currently producing). Modify your 
Main Loop ( ) routine as follows: 



Drawing on the Macintosh 

0 

90 

Figure 3.35 Figuring your arc. 

/******************************** Mainloop *********/ 

Mainloop() 
{ 

GetDateTime( &randSeed ); 
while ( ! Button() ) 
I 

DrawRandomRect(); 
if ( gFillColor == redColor ) 

gFillColor yellowColor; 
else 

gFillColor = redColor; 

83 

The following colors have already been defined for you: b 1 a ck Co 1 or, 
whiteColor, redColor,yellowColor,greenColor, blueColor, cy
anCol or, and magenta Col or. These colors are part of Classic Quick
Draw-the original, eight-color QuickDraw model that was part of the 
original Macintosh. The Mac II supports a new version of QuickDraw called 
Color QuickDraw, which supports millions of different colors. (We'll tackle 
Color QuickDraw in our next volume.) The programs you write using the 
eight colors of Classic QuickDraw will run on any Macintosh (even the 
Macintosh II). 

There are a million more possible variations to Mondran, but these 
should get you familiarized with the richness of the QuickDraw environ
ment. The next program demonstrates how to load QuickDraw picture re
sources and draw them in a window. 



_J 

84 

Show PICT 

Show PICT will take your favorite artwork (in the form of a PICT resource) 
and display it in a window. You can create a PI CT resource by copying any 
graphic to the Mac Clipboard, then pasting it into a PI CT resource with 
ResEdit. We copied our artwork from the Scrapbook that comes with the 
Macintosh System disks. If you're not familiar with the way that the 
Scrapbook works, see your Macintosh user's manuals for more information. 

ShowPICT is made up of five distinct steps: 

• Initialize the Toolbox. 

• Load a resource window, show it, and make it the current port. 

• Load a resource picture. 

• Center the picture, then draw it in the window. 

• Wait for the mouse button to be pressed. 

Resources 

Start by creating a new folder, called ShowPICT, in the s re folder. Next, 
using ResEdit, create a new resource file called ShowP I CT Proj. Rs re in 
the Sh ow PICT folder. Create a window as shown in Figure 3.36. Select Get 
Info from the File menu and set the resource ID of your new WI ND to 4 0 0. 

Next, create your P I CT resource. Close the W I ND list, so you get back to 
the main ShowPICT Proj. Rs re window (Figure 3.37). Create a new 
resource type by selecting New from the File menu. When prompted for a 
resource type, select PICT. Pull down the S menu and select the Scrapbook. 
Find a picture you like, pull down the Edit menu, and select Copy. Close the 
Scrapbook, pull down ResEdit's Edit menu, and select Paste. The picture 
should appear in the PI CT window. Select Get Info from the File menu and 
set the resource ID of the P I CT to 4 0 0. Then quit ResEdit, and save your 
changes to ShowP I CT Proj. Rs re. 



Drawing on the Macintosh 

,.. s File Edit WIND 

Hord Di~_"'--_--
lt---.=====T=H=-I ~0'1! WIND ID= 400 from ShowPict Proj. 

WI 

w 

Window title: 

I 
top 

left 

proclD 

~bottom~ 
~right~ 

lo lrefCon lo I 

D Uisible 

Figure 3.36 WIND parameters for Sh ow Pict . 

,.. s File Edit 

Hord Disk 

THINK C 

src 

Figure 3.37 ShowPi ct's resource window. 

85 

., 

., 



86 Macintosh Programming Primer 

Next, go into THINK C and create a new project called S howP I CT Pr oj 
inside the Sh ow PICT folder. Add MacTraps to your project. Then select New 
from the File Menu and enter the following code: 

#define BASE_RES_ID 400 
#define NIL_POINTER OL 
#define MOVE_TO_FRONT -lL 
#define REMOVE_ALL_EVENTS 0 

PicHandle 
WindowPtr 

gThePicture: 
gPictureWindow: 

/******************************** main *********/ 

main ( ) 
I 

Tool Box I nit(): 
Wi ndowlnit(): 
LoadPicture(); 
DrawMyPicture( gThePicture. gPictureWindow ); 
while ( !Button() ) ; 

/*********************************** ToolBoxlnit */ 

Tool Boxlnit() 
I 

InitGraf( &thePort ); 
InitFonts(); 
FlushEvents( everyEvent. REMOVE_ALL_EVENTS ); 
In i tWi ndows ( ) ; 
InitMenus(); 
TEinit(); 
InitDialogs( NIL_POINTER ); 
InitCursor(); 

/******************************** Windowlnit *********/ 

Windowlnit() 
I 

gPictureWindow = GetNewWindow( BASE_RES_ID. NIL_POINTER. 

ShowWindow( gPictureWindow ); 
SetPort( gPictureWindow ); 

MOVE_TO_FRONT ); 

!******************************** LoadPicture *********/ 

LoadPicture() 
{ 

gThePicture GetPicture( BASE_RES_ID ); 



Drawing on the Macintosh 

/******************************** DrawMyPicture *********/ 

DrawMyPicture( thePicture, pictureWindow 
PicHandle thePicture: 
WindowPtr pictureWindow; 
{ 

Re ct my Re ct; 

myRect = pictureWindow->portRect; 
CenterPict( thePicture, &myRect ); 
DrawPicture( thePicture, &myRect ); 

!******************************** CenterPict *********/ 

CenterPict( thePicture, myRectPtr 
PicHandle thePicture; 
Rect *myRectPtr; 
{ 

Rect windRect, pictureRect: 

windRect = *myRectPtr: 
pictureRect = (**( thePicture )).picFrame; 
myRectPtr->top = (windRect.bottom - windRect.top -

CpictureRect.bottom - pictureRect.top))/ 2 + 
wind Rect. top; 

myRectPtr->bottom = myRectPtr->top + 
CpictureRect.bottom - pictureRect.top); 

myRectPtr->left = (windRect.right - windRect.left -
(pictureRect.right - pictureRect.left))/ 2 + 
wi ndRect. 1 eft; 

myRectPtr->right = myRectPtr->left + (pictureRect.right -
pictureRect.left); 

Running ShowPICT 

87 

After you've finished typing in the code, save the file as ShowP I CT. c and 
add it to your project. Next, select Run from the Project menu. If everything 
went well, you should get something like Figure 3.38. Your PICT should 
appear in your window. If it does not, check the resource ID of your PI CT. 
Did your PICT make it into ShowPICT Proj. Rsrc? Check your WIND 
resource and your code for typos. 



88 

_J 

r 

Macintosh Programming Primer 

My Picture 

_0 ~ 0 
G "U . • . 

c;r1iG>_. • G• 0 

0 G·oQi 0 
0

· 0 Gt. 0 G0 
00'~0 '~ • G 

·~"~~,-· 
·!·~ . . 0 , 0 

. ··. 
·.o . . 

CO:· ·' 

., 

Figure 3.38 Running Show Pi ct . 

Walking through the ShowPICT Code 

Take a look at your global variables. The global gThePi ctu re is a pointer 
to apointer(also known as a handle) to a picture. gPi ctureWi ndow acts as 
a pointer to the PI CT window. 

#define BASE_RES_ ID 400 
#define NIL_POINTER OL 
#define MOVE_TO_FRONT - lL 
#define REMOVE_ALL_EVENTS 0 

PicHandle 
WindowPtr 

gThePicture ; 
gPictureWindow; 

Handles are pointers to pointers. For example, if you wanted to 
declare a handle to an int, you'd do something like this: 

int **myHandle; 

Handles are a necessary part of the Mac's memory management 
scheme. They allow the Macintosh Memory Manager to relocate 
blocks of memory as it needs to, without disturbing your program. If 



Drawing on the Macintosh 89 

you depend on a pointer to an object, then, when the Mac moves the 
object in memory, your pointer becomes invalid. If, however, you use 
a handle (pointer to a pointer) to an object, then, when the Mac moves 
the object, as long as it updates the pointer, your handle remains 
valid. 
We'll show you some of the basics of using handles, but we won't spend 
a lot of time on them. You should read up on handles and the Mac 
memory management scheme because eventually you'll want to write 
code that takes advantage of handles. 
In the case of gThe Pi ct u re, we declared a handle to a picture(pointer 
to a pointer to a picture). We then set the handle to the value returned 
by Get Picture (): 

PicHandle pHandle: 
pHandle = GetPicture( BASE_RES_ID ): 

Like most of the Toolbox functions that return handles, Get Pi c -
tu re ( ) actually allocates the memory for the picture itself, as well as 
the memory for the pointer to the picture. The great thing about 
handles is that you hardly know they're there. 
If you'd like to know more about handles (and Mac memory manage
ment in general), read Chapter 3 ofVolume I of Inside Mac. As you get 
into more advanced programming techniques, you'll want to have a 
thorough grasp of this topic. 

In ma i n ( ) , initialize the Toolbox and window as usual. Then load your 
PI CT from the resource file and draw it in the window. Finally, wait for a 
press on the mouse button to exit the program. 

/******************************** main *********/ 

main() 
{ 

Tool Box I nit(): 
Windowlnit(); 
LoadPicture(); 
DrawMyPicture( gThePicture. gPictureWindow ); 

while ( !Button() ) : 



90 Macintosh Programming Primer 

The Toolbox initialization routine remains the same: 

/*********************************** ToolBoxlnit */ 
ToolBoxlnit() 

InitGraf( &thePort ); 
InitFonts(): 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ); 
InitWindows(): 
InitMenus(); 
TEinit(); 
InitDialogs( NIL_POINTER ); 
InitCursor(): 

The window initialization code is the same as Hello2. (If you are cutting and 
pasting, note that the variable name has changed to gPi ctureWi ndow.) 

/******************************** Windowlnit *********/ 

Windowlnit() 
{ 

gPictureWindow = GetNewWindow( BASE_RES_IO, NIL_POINTER, 
MOVE_ TO_FRONT ) ; 

ShowWindow( gPictureWindow ); 
SetPort( gPictureWindow ); 

The Lo ad Pi ct u re ( ) routine gets the handle for the P I CT resource that 
you pasted into your resource file: 

/******************************** LoadPicture *********/ 
LoadPicture() 
{ 

gThePicture = GetPicture( BASE_RES_ID ); 

DrawMyPicture() sets up a Rect the size of pictureWindow (the 
window passed in as a parameter). Then, it passes the Rect and the Pi ct u re 
(anotherinputparameter)toCenterPi ct( ).Finally, DrawMyPi cture() 
draws the Pi ct u re in the newly centered Rect. 



Drawing on the Macintosh 91 

/******************************** DrawMyPicture *********/ 

DrawMyPicture( thePicture. pictureWindow 
PicHandle thePicture; 
WindowPtr pictureWindow; 
{ 

Rect myRect; 

myRect = pictureWindow->portRect; 
CenterPict( thePicture. &myRect ); 
DrawPicture( thePicture. &myRect ); 

Center Pi ct ( ) takes a Pi c Ha n d l e ( the Pi ct u re ) and a pointer to a 
Rect (myRectPtr) as input parameters. thePicture is a handle to a 
picture to be centered in the Rect pointed to by my Re ct Pt r. Center Pi ct() 
constructs a new Rect the size of the Pi ct u re, centering it in the original 
Rect. 

Center Pi ct ( ) is used to center a picture in a window. The original Rect 
is copied into the local variable w i n d Rec t. Then, the picture's frame Rect 
is copied to the local variable pi ct u re Rec t. Finally, each field in the 
original Rect is modified, based on the corresponding fields in wi ndRect 
and pi ctureRect. For example, myRectptr->top is adjusted to become 
the new top of the picture. 

Center Pi ct ( ) is a good utility routine. You'll be seeing it again in other 
chapters. 

/******************************** CenterPict *********/ 

CenterPict( thePicture. myRectPtr 
PicHandle thePicture; 
Rect *myRectPtr; 
{ 

Rect windRect, pictureRect; 

windRect = *myRectPtr; 
pictureRect = (**( thePicture )).picFrame; 
myRectPtr->top = (windRect.bottom - windRect.top -

(pictureRect.bottom - pictureRect.top))/ 2 + 
windRect.top; 

myRectPtr->bottom = myRectPtr->top + 
(pictureRect.bottom - pictureRect.top); 

myRectPtr->left = (windRect.right - windRect.left -
(pictureRect.right - pictureRect.left))/ 2 
+ windRect.left; 

myRectPtr->right = myRectPtr->left + (pictureRect.right
pictureRect. left); 



_J 

_J 

Variants 

Try using different pictures, either from the Scrapbook or from MacPaint 
or MacDraw files. With a little experimentation, you should be able to copy 
and paste these files into your resource file. In Chapter 4, you'll see an 
enhanced ShowP I CT program. 

Screen Saver: The Flying Line Program 

The Flying Line is the last program in the QuickDraw chapter. Although 
it does demonstrate the use of line drawing in QuickDraw, we included it 
mostly because it's fun. The Flying Line draws a set of lines that move 
across the screen with varying speeds, directions, and orientations. The 
program can be used as a screen saver (we even show you how to hide the 
menu bar). 

The Flying Line program consists of four steps: 

• Initialize the Toolbox. 

• Set up the Flying Line window. 

• Initialize the Flying Line data structure, drawing it once. 

• Redraw the Flying Line inside a loop until a mouse click occurs. 

Flying Line needs no resources. Go into THINK C and create a new project 
called F 1 y i n g Li n e Pro j inside the F 1 y i n g Li n e folder. Select New from 
the File menu to open a new window for the Flying Line source code: 

#define NUM_LINES 50 
#define NIL_POINTER 
#define MOVE_TO_FRONT 
#define REMOVE_ALL_EVENTS 
#define NIL_STRING 
#define NIL_TITLE 
#define VISIBLE 
#define NO_GO_AWAY 
#define NIL_REF_CON 

gLineWindow; 

OL 
-ll 
0 
"\p" 
NIL_STRING 
TRUE 
FALSE 
NIL_POINTER 

WindowPtr 
Re ct 
int 
int 
int 

glines[ NUM_LINES ]; 
gDeltaTop=3, gDeltaBottom=3: 
gDeltaleft=2. gDeltaRight=6: 
gOldMBarHeight; 

92 



Drawing on the Macintosh 

/******************************** main *********/ 

main() 
I 

ToolBoxlnit(); 
Windowlnit(); 
Lineslnit(); 
Mainloop(); 

/*********************************** ToolBoxinit */ 

ToolBoxinit() 
I 

InitGraf{ &thePort ); 
InitFonts(); 
FlushEvents( everyEvent. REMOVE_ALL_EVENTS ); 
InitWindowsC); 
InitMenus(); 
TEinit(); 
InitDialogs( NIL_POINTER ); 
InitCursor(); 

/******************************** Windowlnit *********/ 

Windowlnit() 

Re ct 
RgnHandle 

totalRect. mBarRect; 
mBarRgn; 

gOldMBarHeight = MBarHeight; 
MBarHeight = 0; 
gLineWindow = NewWindow( NIL_POINTER. &CscreenBits.bounds). 

NIL_TITLE. VISIBLE. plainDBox. MOVE_TO_FRONT. NO_GO_AWAY. 
NIL_REF_CON ); 

SetRectC &mBarRect. screenBits.bounds.left, screenBits.bounds.top. 

93 

screenBits.bounds.right. screenBits.bounds.top+gOldMBarHeight); 
mBarRgn = NewRgn(); 
RectRgn( mBarRgn. &mBarRect ); 
UnionRgn( gLineWindow->visRgn. mBarRgn. gLineWindow->visRgn ); 
DisposeRgn( mBarRgn ): 

SetPort( gLineWindow ); 
FillRect( &CgLineWindow->portRect), black); I* Change black to 

l tGray. *I 
PenMode( patXor ); I* <-and comment out this line */ 



94 Macintosh Programming Primer 

/******************************** Lineslnit *********/ 

Lineslnit() 
{ 

int i ; 

HideCursor(); 
GetDateTime( &randSeed ); 
RandomRect( &(glines[ 0 ]), glineWindow ); 
Drawline( 0 ); 
for ( i=l; i<NUM_LINES; i++ 
I 

glines[ i J = gLines[ i-1 J: 
Recalcline( i ); 
Drawline( i ); 

/******************************** Mainloop *********/ 

Mainloop() 
I 

int i : 

while 
I 

} 

! Button() ) 

Drawline( NUM_LINES - 1 ); 
for ( i=NUM_LINES-1; i>O; i- ) 

glines[ i J = glines[ i-1 J; 
Recalcline( O ); 
Drawline( 0 ); 

MBarHeight = gOldMBarHeight; 

/******************************** RandomRect *********/ 

RandomRect( myRectPtr, boundingWindow 
Rect *myRectPtr: 
WindowPtr boundingWindow; 
I 

myRectPtr->left =Randomize( boundingWindow->portRect.right 
- boundingWindow->portRect.left ); 

myRectPtr->right = Randomize( boundingWindow->portRect.right 
- boundingWindow->portRect.left ); 

myRectPtr->top = Randomize( boundingWindow->portRect.bottom 
- boundingWindow->portRect.top ); 

myRectPtr->bottom = Randomize( boundingWindow->portRect.bottom 
- boundingWindow->portRect.top ); 



Drawing on the Macintosh 

/******************************** Randomize *********/ 
Randomize( range ) 
int range; 
{ 

long rawResult; 

rawResult =Random(); 
if ( rawResult < 0 ) rawResult *= -1: 
return( (rawResult *range) I 32768 ); 

/******************************** Recalcline *********/ 
Recalcline( i 
int i ; 
{ 

glines[ i ].top+= gDeltaTop: 
if ( glines[ i ].top< glineWindow->portRect.top ) I I 

( glines[ i ].top > gLineWindow->portRect.bottom ) ) 

gDeltaTop *= -1; 
glines[ i ].top+= 2*gDeltaTop; 

glines[ i ].bottom+= gDeltaBottom: 
if ( ( glines[ i ].bottom< gLineWindow->portRect.top ) I I 

( glines[ i ].bottom> glineWindow->portRect.bottom ) ) 

gDeltaBottom *= -1; 
glines[ i ].bottom+= 2*gDeltaBottom; 

glines[ i ].left+= gDeltaleft; 
if ( ( glines[ i ].left< gLineWindow->portRect.left ) I I 

( glines[ i ].left> glineWindow->portRect.right 

gDeltaleft *= -1; 
glines[ i ].left+= 2*g0eltaleft: 

glines[ i ].right+= gDeltaRight; 
if ( ( glines[ i ].right< glineWindow->portRect.left ) 11 

( glines[ i ].right > gLineWindow->portRect.right ) ) 

gDeltaRight *= -1: 
glines[ i ].right+= 2*gDeltaRight: 

/******************************** Drawline *********/ 
Drawl i ne( i ) 
int i ; 
{ 

MoveTo( glines[ 
LineTo( glines[ 

J. left, glines[ i ].top); 
].right, glines[ i ].bottom ); 

95 



96 

_J 

Macintosh Programming Primer 

Running Flying Line 

After you've finished typing in the code, save it as Flying Line. c. Add 
MacTraps to the project, and select Run from the Project menu. If every
thing went well, you should see something like Figure 3.39. The window 
will be completely black except for the flying line; the menu bar should be 
hidden. Now, let's take a look at the code. 

Walking through the Flying Line Code 

Most of Flying Line should be familiar to you. The biggest change is in 
W i n d ow I n i t ( ) , where you create a window from scratch and hide the 
menu bar. We won't go into exhaustive detail on the Flying Line algorithm, 
because it has little to do with the Toolbox. This one's just for fun! 

NU M_ LI NE S defines the number oflines in the Flying Line. g Del ta Bott om, 
gDel ta Top, gDel ta Left, and gDel taRi ght are all tuning parameters. 
Play around with them until you get just the right Flying Line. 

Draw the Flying Line in the g Li n eW i n d ow. The array g Li n es holds all 
of the individual lines in the Flying Line. Finally, gOl dMBa rHei ght saves 
the menu bar height when you start, so you can restore it when the 
application quits. 

Figure 3.39 Running Flying Line. 



Drawing on the Macintosh 

#define NUM_LINES 
#define NIL_POINTER 
#define MOVE_TO_FRONT 
#define REMOVE_ALL_EVENTS 
#define NIL_STRING 
#define NIL_TITLE 
#def i n e V I S IB L E 
#define NO_GO_AWAY 
#define NIL_REF_CON 

glineWindow: 

50 
OL 
-ll 
0 
"\p .. 
NIL_STRING 
TRUE 
FALSE 
NIL_POINTER 

WindowPtr 
Re ct 
int 
int 
int 

glines[ NUM_LINES ]; 
gDeltaTop=3, gDeltaBottom=3: 
gDeltaleft=2. gDeltaRight=6: 
gOldMBarHeight; 

97 

ma i n ( ) is unchanged from the earlier programs, except that Li n es In i t ( ) 
is called before the Main Loop ( ) . 

/******************************** main *********/ 

main ( ) 
{ 

Tool Boxlnit(): 
Wi ndowlnit(); 
Lineslnit(); 
Mainloop(); 

The Toolbox initialization for Flying Line is the same as for the previous 
program: 

/*********************************** ToolBoxlnit */ 

ToolBoxlnit() 
{ 

InitGraf( &thePort ); 
I nit Fonts(): 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ): 
InitWindows(); 
InitMenus(); 
TEinit(); 
InitDialogs( NIL_POINTER ); 
Ini tCursor(): 



98 Macintosh Programming Primer 

The window initialization code for Flying Line is unusual because the 
window itself is unusual. Normally, Mac programs display a menu bar. 
Flying Line, however, will not. Flying Line hides the menu bar (by making 
it 0 pixels tall) and creates a window that covers the entire screen. 

The call to NewWi ndow() is an alternative to GetNewWi ndow( ). 
GetNewWi ndow() creates a window using the information specified in a 
WI ND resource. N ewW i n d ow ( ) also creates a window, but gets the window 
specifications from its parameter list: 

FUNCTION NewWindow( wStorage : Ptr; boundsRect : Rect; 
title : Str255; visible : BOOLEAN; procID : INTEGER; 
behind : WindowPtr; goAwayFlag : BOOLEAN; 
refCon : LONG I NT ) : Wi ndowPt r; 

Specify the size of the window as a Rect, using the QuickDraw global 
screenBi ts. bounds to create a window the size of the current screen. 

/******************************** Wi~dowinit *********/ 

Wi ndowl nit () 
{ 

Re ct 
RgnHandle 

totalRect. mBarRect; 
mBarRgn; 

gOldMBarHeight = MBarHeight; 
MBarHeight = O; 
gLineWindow = NewWindow( NIL_POINTER. 

&CscreenBits.bounds). 
NIL_TITLE, VISIBLE. plainDBox. MOVE_TO_FRONT, 
NO_GO_AWAY, NIL_REF_CON ); 

The next bit of code is tricky. Call SetRect() to create a rectangle 
surrounding the normal menu bar.Use this Rect to create a new region, and 
then add this region to the visible region of your window. As a result of this 
hocus-pocus, your window can overlap the menu bar, taking up the entire 
screen. If this makes you uncomfortable, don't panic. The call to N ewW i nd ow ( ) 
is normally all you'll need in your applications. This extra code is just here 
to allow your window to obscure the menu bar. 

SetRect( &mBarRect, screenBits.bounds.left. 
screenBits.bounds.top. 

screenBits.bounds.right, 
screenBits.bounds.top+gOldMBarHeight ); 

mBarRgn = NewRgn(); 
RectRgn( mBarRgn, &mBarRect ); 
UnionRgn( gLineWindow->visRgn, mBarRgn.gLineWindow-> 
visRgn ); 
DisposeRgn( mBarRgn ); 



Drawing on the Macintosh 99 

Next, call Se tp or t ( ) so all your drawing will occur in l i n e W i n d ow ( ) . 
Then, fill the window with the black pattern. Set the PenMode () to 
pat X or. Try some other pen modes, too. We suggest changing the second 
Fi 11 Rec t ( ) parameter to 1 t Gray, and commenting out the call to 
PenMode <). 

SetPort( gLineWindow ); 
FillRect( &CglineWindow->portRect). black ); /* Try this: 

Change black to ltGray and */ 
PenMode( patXor ); /* <-comment out this line */ 
I 

Don't be fooled by imitations. The second parameter to Fi 11 Rec t ( ) 
is a pattern, not a color. These are the fill patterns you normally 
associate with the paint bucket in MacPaint, not the eight colors of 
Classic QuickDraw. You can experiment with colors by using a call to 
PaintRectC ). 

Li n es I n i t ( ) starts off by hiding the cursor. Next, seed the random 
number generator with the current date (a la Mondrian). Finally, generate 
the first line of the Flying Line, draw it, then generate the rest of the lines 
and draw them. 

/******************************** Lineslnit *********/ 

Lineslnit() 
I 

int i ; 

HideCursor<); 
GetDateTime( &randSeed ); 
RandomRect( &Cglines[ 0 ]). gLineWindow ); 
Drawline( 0 ); 
for ( i=l; i<NUM_LINES; i++ 
I 

glines[ i J = glines[ i-1 J; 
Recalcline( i ); 
Drawline( i ); 

Main Loop () sets up a loop that falls through when the mouse button is 
pressed. At the end of the loop, the menu bar height is restored. If you don't 
do this, you won't be able to pick from the menu bar when you exit the 
program. (If this does happen,just reboot the machine to reset MB a r He i g ht • ) 



100 Macintosh Programming Primer 

Inside the loop, erase and redraw each line in the Flying Line. Erase lines 
by redrawing them in exactly the same position. Since the pen mode is set 
to pat X or, this has the effect of erasing the line. Thus, the first call to 
Draw Li n e ( ) in Ma i n Loop ( ) erases the last line in the g Li n es array. This 
simulates the line moving across the screen. 

/******************************** Mainloop *********/ 

Mainloop() 
{ 

inti; 

while 
{ 

} 

! Button() ) 

Drawline( NUM_LINES - 1 ): 
for ( i=NUM_LINES-1: i>O; i- ) 

glines[ i J = glines[ i-1 J: 
Recalcline( O >: 
Drawline( O >: 

MBarHeight = gOldMBarHeight: 

You've seen this routine in Mondrian: 

!******************************** RandomRect *********/ 
RandomRect( myRectPtr. boundingWindow ) 
Rect *myRectPtr: 
WindowPtr boundingWindow; 
{ 

myRectPtr->left =Randomize( boundingWindow->portRect.right 
- boundingWindow->portRect.left ): 

myRectPtr->right = Randomize< boundingWindow->portRect.right 
- boundingWindow->portRect.left >: 

myRectPtr->top = Randomize( boundingWindow->portRect.bottom 
- boundingWindow->portRect.top ): 

myRect Ptr->bottom = Randomize( boundingWindow->portRect.bottom 
- boundingWindow->portRect.top ): 

You've also seen Randomize() routine in Mondrian: 

/******************************** Randomize *********/ 
Randomize( range ) 
int range: 
{ 

1 ong rawResul t: 

rawResult =Random(); 
if ( rawResult < 0 ) rawResult *= -1: 
return( CrawResult * range) I 32768 ): 



Drawing on the Macintosh 

The Re Cal c ( ) routine determines where to draw the next line: 

/******************************** Recalcline *********/ 

Recalcline( i ) 
int i ; 
{ 

glines[ i ].top+= gDeltaTop; 
if ( ( glines[ i ].top< gLineWindow->portRect.top ) I I 

( glines[ i ].top > glineWindow->portRect.bottom )) 

gDeltaTop *= -1; 
g Li n es [ i J . top += 2 * g De lt a Top ; 

glines[ i ].bottom+= gDeltaBottom; 
if ( ( glines[ i ].bottom< gLineWindow-'>portRect.top) II 

( glines[ i ].bottom> gLineWindow->portRect.bottom ) ) 

gDeltaBottom *= -1: 
glines[ i ].bottom+= 2*gDeltaBottom; 

glines[ i ].left+= gDeltaleft: 
if ( ( glines[ i ].left< glineWindow->portRect. left) I I 

( glines[ i ].left> glineWindow->portRect.right ) ) 

gDeltaLeft *= -1: 
g L i n e s [ i J . 1 e ft += 2 * g De lt a Left ; 

glines[ i ].right+= gDeltaRight: 
if ( ( glines[ i ].right< glineWindow->portRect.left ) I I 

( glines[ i ].right > gLineWindow->portRect.right ) ) 

gDeltaRight *= -1: 
glines[ i ].right+= 2*gDeltaRight; 

101 

Drawl i ne() draws line number i, using the coordinates stored in 
g L; n es [ i J. Since the pen mode is set to pat X or, this may actually have 
the effect of erasing the line. 

/******************************** Drawline *********/ 

Drawline( i ) 
int i ; 
{ 

MoveTo( glines[ 
LineTo( glines[ 

].left, glines[ i ].top ); 
].right, glines[ i ].bottom ); 



104 

ONE OF THE basic differences between programming on the Mac and 
programming on other machines lies in the use of events. Events are 
descriptions of actions taken by the user of your application. For example, 
when a key is pressed on the keyboard, a piece of the Mac operating system 
(known as the Event Manager) captures some important information 
about the keystroke in an EventRecord. As more keys are pressed, more 
EventRecords are created and joined to the first, forming the event 
queue (Figure 4.1). 

The event queue is a FIFO (First In, First Out) queue: The event at 
the front of the queue is the oldest event in the queue. As you can see 
in Figure 4.1, different types of events live together in the same event 
queue. All events, no matter what their type, pass under the watchful 
eye of the Event Manager. 

The Event Manager gets events from many different sources, 
queues them up, and passes them to your application, one at a time. 

Your application can get at this information by retrieving 
EventRecords from the event queue, one at a time. If the retrieved 
Event Record describes a keystroke, your application can jump to some 
code that handles keystrokes. If it describes the pressing of the mouse 
button, it can jump to some code that deals with the mouse button. Lefs 
look at the mouse button case. 

When the mouse button is pressed, what does it mean to the application? 
Maybe the user wants to select from a menu. Maybe the user is clicking on 
a window to bring it to the front, or has clicked in a scroll bar to move up 
or down in the document. One way to tell what the user is trying to 
accomplish is to compare the location of the mouse when its button was 
pressed with the locations of the menu bar, the windows on the screen, 
scroll bars, and so on. 

If the user clicked in the menu bar, you can jump to some code that 
handles menu selection. If the user clicked on a scroll bar, you can jump to 
the scroll bar handling routine. 

.. ... ... -r - ---- .. .. -- -, -
nullEvent jmouseDowr mouse Up key Down 

r 
keyUp nullEvent 

Figure 4.1 The Event queue. 



_J Event Types 

The Event Manager handles 15 distinct events (V:249). 

• nullEvent : This event is queued when the Event Manager has no other 
events to report. 

• mouseDown: mouseDown events are queued whenever the mouse 
button is pressed. Note that the button doesn't have to be released for the 
event to qualify as a mouse Down. 

• mouse Up : mouse Ups are queued whenever the mouse button is 
released. 

• keyDown: key Down eventsarequeuedeverytimeakeyispressed.Like 
mouse Downs, keyDowns are queued even if the key has not yet been 
released. 

• keyUp: key Ups are queued whenever a key is released. 

• autoKey: autoKey events are queued when a key is held down for a 
certain length of time (beyond the auto Key threshhold). Usually, an 
autoKey event is treatedjust like a keyDown. 

The autoKey threshholdrepresentsthetimefrom the first keyDown 
until the auto Key event is generated. The default value is 16 ticks 
(sixtieths of a second). The autoKey rate is the interval between 
auto Keys. The default auto Key rate is 4ticks. The user can change 
both of these from the control panel desk accessory. Their values are 
stored in the system global variables Key Thresh and Key Rep Thresh. 

• update Ev t: update Ev ts are queued whenever a window needs redraw
ing. They are always associated with a specific window. This usually 
happens when a window is partially obscured and the obstruction is 
moved, revealing more of the window, as shown in Figure 4.2. 

• di s k E v't: d i s k Ev ts are queued whenever a disk is inserted into a disk 
drive, or when an action is taken that requires that a volume be mounted. 
Don't worry too much about these right now. We'll tell you how to deal 
with disks and files in Chapter 7. 

• activateEvt: activateEvts are also associated with windows. An 
act i vat e Ev t is queued whenever a window is activated (made to come 
to the front) or deactivated (replaced as the frontmost window by another 

105 



106 Macintosh Programming Primer 

window). As you might guess, act i vat e Ev ts always occur in pairs (Fig
ures 4.3 and 4.4). 

• networkEvt: networkEvts are no longer used. 

• dri verEvt: dri verEvts are used by device drivers to signal special 
conditions. They (and device drivers in general) are beyond the scope of 
this book. 

• appl Evt, app2Evt, app3Evt: These events are defined by your appli
cation and can be used for just about anything. With the advent of 
MultiFinder, the use of application-defined events is discouraged. 

• app4Evt (Suspend/Resume/mouseMoved events): The app4Evt has 
been reserved by Apple for use with MultiFinder. MultiFinder will post 
an a p p4 Ev t just before it moves your application into the background 
(suspends it) and just after it brings your application back to the 
foreground (resumes it). You can also set your application up to receive 
mouseMoved events. mouseMoved events are posted when the user 
moves the cursor outside a predefined region (like a text-editing window) 
or back in again. When your application receives a mouseMoved event, 
it can change the cursor to one appropriate to that region. We'll discuss 
a pp 4 Ev ts in more detail later in the chapter. 

The next section discusses a new Macintosh application model based on 
event handling. After that, we'll present Event Tutor, our first event
based application. 

Back Window Back Window 

. Q) 

Figure 4.2 FrontWindow is moved down and to the right, generating an 
updateEvt for BackWindow. 



The Event Mechanism 107 

_J 

Front Window 

Figure 4.3 Back Window is selected, an act i v a t e Ev t is generated to deactivate 
FrontWindow, and an act i vateEvt is generated to activate BackWindow. 

Figure 4.4 Back Window is selected, an act i vat e Ev t is generated to deactivate 
FrontWindow, an acti vateEvt is generated to activate BackWindow, and an 
update Evt is generated to redraw BackWindow. 

The Structure of a Mac Program: 
New and Improved 

In Chapter 3, we presented a very primitive Macintosh application model 
that looked like this: 



108 

main ( ) 
{ 

ToolBoxlnit(); 
Otherlni ts (); 
DoPrimeDirective(); 
while ( ! Button() 

Macintosh Programming Primer 

First, we initialized the Toolbox. Then, we took care of any program
specific initialization like loading windows or pictures from the resource 
file. Next, we performed our "prime directive." In the case ofShowPict, our 
prime directive was drawing a PI CT in the main application. Finally, we 
waited for the mouse button to be pressed. 

There is one basic problem with this model: It does not reflect reality. 
Macintosh applications do not exit when the mouse button is pressed. 
Clearly, we need a better model. 

Our new model does things a little differently: 

Event Record 
Boolean 

ma i n ( ) 
{ 

gTheEvent; 
gDone: 

ToolBoxlnit(); 
Other I nits(); 
Mainloop(); 

Mainloop() 
{ 

gDone = FALSE; 
while ( gDone ==FALSE 
{ 

HandleEvent(); 

HandleEvent() 
{ 

if ( waitNextEventlslnstalled ) 

else 
{ 

} 

WaitNextEvent( everyEvent, &gTheEvent, sleepValue, 
mouseRgn ); 

SystemTask(); 
GetNextEvent( everyEvent, &gTheEvent ); 

switch( gTheEvent.what 
{ 

case mouseDown: 

if( .... ) gDone TRUE; 



The Event Mechanism 109 

_J 

This model starts off the same way as the basic model, with calls to our 
initialization routines. The difference lies in our call of Main Loop ( ) . 
Main Loop ( ) contains the main event loop. The main event loop is part 
of the basic structure of any Mac program. Each time through the loop, your 
program retrieves an event from the event queue, and processes the event. 

As we'll explain in the next section, events are retrieved in one of two 
ways. If the Toolbox routine W a i t Next Event ( ) is available (it isn't 
on older systems), it gets called. If Wai t Next Event ( ) isn't available, 
the older Toolbox routine, Get Next Event ( ) , is used. 

Eventually, some event will cause Handl eEvent() to set gDone to 
TRUE, and the program will end. This might be the result ofa mouse Down 
in the menu bar (selecting Quit from the File menu) or a key Down (typing 
the key sequence 88 Q ). You can design your ending conditions any way you 
like. 

We should warn you that Apple has a little-known squad of mercenar
ies who seek out and eradicate applications that don't meet the user 
interface guidelines. Beware! 

Retrieving Events from the Event Queue 

In the early days of Mac programming, the Toolbox routine Get Next Event ( ) 
was used to retrieve events from the event queue. GetNextEvent () 
worked just fine until MultiFinder was introduced. MultiFinder is a set of 
operating system functions that extend the capabilities of the Macintosh. 
Most notably, MultiFinder allows the Macintosh to run several applica
tions at the same time. 

Figure 4.5 shows MultiFinder in action. Notice that only one application 
at a time can be "in front." Notice also that the Finder is one of the 
applications under MultiFinder. To bring an application to the front, you 
click on one of its windows. 

One of the nicest features ofMultiFinder is its ability to run applications 
in the background. Figure 4.5 shows the alarm clock desk accessory 
running in the background. Even though the alarm clock window is not the 



110 Macintosh Programming Primer 

r ~., s File Edit Search Format Font Document Window Work ~ 

Hard Disk 
4 items 8G,421K in disk 

~ LJ 
S\jstem Folder Apps 

~D 
0 

D t j' t . I 1§;11 1€<1 l::EI 1§1 

This Is an important document being prepared in Microsoft 
Word. We really like this word processor a lot! I 

Normal+ ... 

Figure 4.5 MultiFinder in action. 

frontmost window, the time is updated because the alarm clock is running 
in the background. 

GetNextEven t () was written with the Finder in mind. WhenMultiFin
der was introduced, Apple added a new routine to the Toolbox to handle 
things like background processing more efficiently. The new routine is 
called WaitNextEvent ( ). 

As you'll see when you get to the EventTutor application, you should 
always check to see if Wai tNextEvent () is installed before you call it. If 
it isn't installed, call GetNextEvent ( )instead. 

You may have noticed a call to the Toolbox routine SystemTask() 
just before the call to GetN extEvent () in our new application model. 
SystemTas k () gives the Mac operating system a slice of time to do 
things like update desk accessories (like the alarm clock), process 
AppleTalk messages, and so on. W a i t Next Event ( ) has this func
t ionality built right in, so an accompanying cal] to SystemTask() 
isn't necessary. 



The Event Mechanism 111 

Calling GetNextEvent() and WaitNextEvent() 

The first parameter to both Get Next Event ( ) and W a i t Next Event ( ) is 
an event mask, used to limit the types of events your program will handle. 
Figure 4.6 contains a list of predefined event mask constants. If your 
program needs only mouseDowns and key Downs, for example, you might 
use the following call: 

EventRecord gTheEvent; 
GetNextEvent( CmDownMask I keyDownMask). &gTheEvent ) 

In this case, GetNextEvent() will return only mouseOown, key Down, 
or nu l l Event information. nu 11 Even ts are never masked out. To handle 
all possible events, pass the predefined constant eve r y Event as the 
event Mask parameter. Inside Mac recommends that you use every Event 
as your event mask in all your applications unless there's a specific reason 
not to. 

Thesecondparametertoboth GetNextEvent ()and Wai tNextEvent () 
is gTheEvent, declared as an Event Record. Here's the type definition of 
an EventRecord: 

typedef struct EventRecord 
{ 

int 
long 
long 
Point 
int 
EventRecord; 

what; 
message; 
when; 
where; 
modifiers; 

#define mDownMask Ox2 
#define mUpMask Ox4 
#define keyDownMask Ox8 
#define keyUpMask Ox10 
#define autoKeyMask Ox20 
#define updateMask Ox40 
#define diskMask Ox80 
#define activMask Ox100 
#define networkMask Ox400 
#define driverMask Ox800 
#define app1 Mask Ox1000 
#define app2Mask Ox2000 
#define app3Mask Ox4000 
#define app4Mask Ox8000 
#define everyEvent OxFFFF 

Figure 4.6 Event masks 
predefined in THINK C. 



112 Macintosh Programming Primer 

Here's a description of each of the fields: 

• what:Whattypeofeventjustoccurred?Wasita null Event, key Down, 
mouse Down, or updateEvt? 

• message: This part of the Event Record is specific to the event. For 
keyDown events, the message field contains information about the 
actual key that was pressed (the key code) and the character that key 
represents (the character code). For acti vateEvts and updateEvts, 
the message field contains a pointer to the affected window. 

• when: When did the event occur? The Event Manager tells us, in ticks 
since the system was last started up (or booted). 

• where: Where was the mouse when the event occurred? This informa
tion is specified in global coordinates (see Chapter 3). 

• modifiers: This part of the Event Record describes the state of the 
mouse button and the modifier keys (the shift, option, control, command, 
and caps lock keys) when the event occurred. 

The third parameter to WaitNextEvent() is the sleep parameter. 
sleep is a long integer specifying the amount of time (in clock ticks) your 
application is willing to not perform any background processing while 
waiting for an event. By passing a sleep value of OL, you tell 
W a i t Next Event ( ) to regain control of the processor as soon as possible. 

The fourth parameter to Wa itNextEvent() is the mouseRgn parame
ter, used to simplify cursor tracking. If your application requires different 
cursors, depending on which part of the screen the cursor is in, the 
mouse R g n parameter is essential. With it, you can specify the screen region 
appropriate to the current cursor. Whenever the mouse is outside that 
region, the Event Manager queues up a mouseMoved event. When your 
program receives the mouseMoved event, the region is changed to reflect 
the new mouse position and is passed as a parameter to the next 
W a it Next Event ( ) call. 

Calling Wai tNextEvent C) with asleep value of OL and a mouseRgn 
of OLisexactlyequivalenttocallingSystemTask() andGetNextEvent(). 
The programs presented throughout the rest of the book will do just that. 
The Programmer's Guide to MultiFinder includes a program that uses the 
s l ee p and mouse R g n parameters ofW a i t Next Event ( ) . The program was 
written by Apple's Macintosh Technical Support Group. The Programmer's 
Guide to MultiFinder, published by Apple, is essential reading for writing 
truly MultiFinder-friendly applications. 

Handling Events 

Onceyou'veretrievedaneventviaGetNextEvent () orWa i tNextEvent ( ), 
your next step is to process it. If the event is a mouse Down event, figure out 



The Event Mechanism 113 

_J 

where the mouse was clicked. If the mouse was clicked in a window's drag 
region, as shown in Figure 4. 7, you can call a Toolbox routine that handles 
window dragging. If the event is an update Ev t, you might want to redraw 
the window pointed to by the Event. message. 

If this sounds vague, don't worry. The concept of events may be unfamil
iar to you, but it will be easier to understand once you see it in operation. 
This chapter's program, EventTutor, will show you how all types of events 
are handled. 

EventTutor: The Return of ShowPICT 

Back in Chapter 3, we wrote a program called Show PICT, which works like 
this: 

• It initializes the Toolbox. 

• It loads a resource window, shows it, and makes it the current port. 

• It loads a resource picture. 

• It centers the picture, then draws it in the window. 

• It waits for the mouse button to be pressed. 

Our new program, EventTutor, adds a main event loop to this model. 
EventTutor also adds a new window, gEventWi ndow. gEventWi ndow 
keeps a scrolling list of events, updated as the events occur. You can also 
drag both windows around the screen, as well as zoom and grow the picture 
window. EventTutor works like this: 

• It initializes the Toolbox. 

• It loads the picture and event windows from the resource file, shows 
them, and makes gEventWi ndow the current port. 

Figure 4. 7 Arrow cursor in 
window's drag region. 



114 Macintosh Programming Primer 

• It loads a picture from the resource file. 

• W h i 1 e ( g done == FALSE ) , EventTutor handles events. 

• Aseventsoccur,itdisplaystheirnamesingEventWi ndow, thencallsthe 
appropriate routines to process them. 

Setting Up the EventTutor Project 

Start by creating a new project folder, called Event Tutor. Use ResEdit to 
create a new file inside this folder called Event Tutor Pro j . Rs r c. 

Resources 

Create three new resources. The first two are WI N Ds with resource IDs 4 0 0 
and 401. Figure 4.8 shows the specifications for these WI N Ds. 

The third resource is a PI CT. In our example, we use the champagne 
picture from the standard Scrapbook, but feel free to use any PI CT you'd 
like. Make sure you change the resource ID to 4 0 0. 

Next, start up THINK C. When prompted, create a new project inside the 
EventTutor folder. Call it EventTutor Proj. Select New from the File 
menu to create a new source code file. Type the code listing in and save the 
file inside the EventTutor folder as EventTutor. c. Select Add from the 
Source menu to add Event Tutor. c to the project. Finally, add MacTraps 
to your project. The Project window should now look like Figure 4.9. 

BOD WIND ID= 400 from Euentlutor Pro ~WIND ID= 401 from Euentlutor Pro 

Window title: Window title: 

[ gPlctWindow ( gEuentWindow ] 
top 40 bottom 240 top 122 bottom~ 
left 20 right 420 left 200 right 500 

proclD 8 refCon O proclD 4 refCon o 

D Uisible l8I goRwoyFlag OUisible l8I goRwayFlog 

Figure 4.8 EventTutor WIND specifications. 



The Event Mechanism 115 

,. s File Edit Search Project Source Windows 
., 

!"""-~~~~~~~~~ 

~ EuentTutor Proj ~ 
Nllme ob siz:e 
EventTutor .c O 

... !:!~ .. '?.!.!:.~.P.~ .................... - ................... ·-·-·-·----~-

Figure 4.9 EventTutor Project. 

Here's the source code for EventTutor.c: 

#define BASE_RES_ID 400 
#define NIL_POIN TE R OL 
#define MOVE TO FRONT -lL 
#define REMOVE_ALL_EVENTS 0 

#define LEAVE_WHERE_JT_ IS FALSE 
#define NORMAL_UPOATES TRUE 

#defi ne SLEEP OL 
#define NIL_MOUS E_RE GION OL 
#define WNE_TRAP_NUM Ox60 
#define UNIMPL_TRAP_NUM Ox9F 
#define SUSPEND_RESUME_BITOxOOOl 
#define ACTIVATING 1 
#define RESUMING 1 

#define TEXT_FONT_SIZE 12 

#define DRAG_ THRESHOLD 30 
#define MIN_WINDOW_HEIGHT 50 
#define MIN_WI NOOW_WIOTH 50 
#define SCROLL_BAR_P IXELS 16 

#define ROWHEIGHT 15 
1/defi ne LEFTMARGIN 10 
#define STARTROW 0 
#define HOR IZONTAL_OFFSET 0 



116 

PicHandle 
WindowPtr 
Boolean 
EventRecord 
int 

gPictureHandle: 
gPictWindow, gEventWindow: 
gDone, gWNEimplemented; 
gTheEvent; 
gCurRow, gMaxRow: 
gDragRect, gSizeRect; Re ct 

/******************************** main *********/ 

main() 
{ 

ToolBoxlnit(); 
Window In it (); 
LoadPicture(): 
SetUpDragRect(); 
SetUpSizeRect(); 

Mainloop(); 

/*********************************** ToolBoxlnit */ 

Tool Boxlnit() 
{ 

InitGraf( &thePort ): 
Ini tFonts (): 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ); 
In itWi ndows ( ) ; 
InitMenus(); 
TEinit(); 
InitDialogs( NIL_POINTER ): 
InitCursor(); 

Macintosh Programming Primer 

/******************************** Windowlnit *********/ 

Wi ndowl nit () 
{ 

gPictWindow = GetNewWindow( BASE_RES_ID, NIL_POINTER, MOVE_TO_FRONT): 
gEventWindow = GetNewWindow( BASE_RES_ID+l, NIL_POINTER, 

SetPort( gEventWindow ); 
SetupEventWindow(); 

MOVE_ TO_FRONT ) ; 

ShowWindow( gEventWindow ); 
ShowWindow( gPictWindow ); 

SelectWindowC gEventWindow ); 



The Event Mechanism 

/******************************** SetupEventWindow *********/ 

SetupEventWindow() 
I 

Rect eventRect; 

eventRect = gEventWindow->portRect; 
gMaxRow = eventRect.bottom - eventRect.top - ROWHEIGHT; 
gCurRow = STARTROW; 

TextFont( monaco ); 
TextSize( TEXT_FONT_SIZE ); 

/******************************** LoadPicture *********/ 

LoadPicture() 
I 

gPictureHandle = GetPicture( BASE_RES_ID ); 

/******************************** SetUpDragRect *********/ 

SetUpDragRect() 
{ 

gDragRect = screenBits.bounds; 
gDragRect. left+= DRAG_THRESHOLD; 
gDragRect.right -= DRAG_THRESHOLD; 
gDragRect.bottom -= DRAG_THRESHOLD; 

/******************************** SetUpSizeRect *********/ 

SetUpSizeRect() 
{ 

gSizeRect.top = MIN_WINDOW_HEIGHT; 
gSizeRect.left = MIN_WINDOW_WIDTH; 

117 

gSizeRect.bottom = screenBits.bounds.bottom - screenBits.bounds.top; 
gSizeRect.right = screenBits.bounds.right - screenBits.bounds.left; 

/******************************** Mainloop *********/ 

Mainloop() 
I 

gDone = FALSE; 
gWNEimplemented = ( NGetTrapAddress( WNE_TRAP_NUM, ToolTrap ) != 

NGetTrapAddress( UNIMPL_TRAP_NUM, ToolTrap ) ); 
while ( gDone == FALSE ) 
I 

HandleEvent(); 



118 Macintosh Programming Primer 

/************************************* HandleEvent */ 

HandleEvent() 
l 

if ( gWNEimplemented 

else 
l 

WaitNextEvent( everyEvent, &gTheEvent, SLEEP, 
NIL_MOUSE_REGION ); 

SystemTask(); 
GetNextEvent( everyEvent, &gTheEvent ); 

switch ( gTheEvent.what ) 
l 

case nullEvent: 
/*DrawEventString( "\pnullEvent" );*/ 
I* Uncomment the previous line for a burst of 
flavor! */ 
break: 

case mouseDown: 
DrawEventString( "\pmouseDown" ); 
HandleMouseDown(); 
break; 

case mouseUp: 
DrawEventString( "\pmouseUp" ); 
break; 

case keyDown: 
DrawEventStringC "\pkeyOown" ); 
break; 

case keyUp: 
DrawEventString( "\pkeyUp" ); 
break; 

case autoKey: 
DrawEventString( "\pautoKey" ); 
break; 

case updateEvt: 
if ( (WindowPtr)gTheEvent.message == gPictWindow ) 
{ 

DrawEventString( "\pupdateEvt: gPictWindow" ); 
BeginUpdate( gTheEvent.message ); 
DrawMyPicture( gTheEvent.message, 
gPictureHandle ); 

EndUpdate< gTheEvent.message ); 
else 

DrawEventString( "\pupdateEvt: gEventWindow" ); 
BeginUpdate( gTheEvent.message ); 
I* 
* We won't handle updates to gEventWindow. 
*but we still need to empty the gEventWindow 
* Update Region so the Window Manager will stop 



The Event Mechanism 

* queueing UpdateEvts. 
* We do this with calls to 

BeginUpdate() 
*and EndUpdate(). 
*/ 
EndUpdate( gTheEvent.message ): 

I 
break: 

case diskEvt: 
DrawEventString( "\pdiskEvt" ): 
break: 

case activateEvt: 
if ( CWindowPtr)gTheEvent.message == gPictWindow ) 
{ 

DrawGrowlcon( gTheEvent.message >: 
if ( ( gTheEvent.modifiers & activeFlag ) == 
ACTIVATING ) 
{ 

DrawEventString( 

119 

"\pactivateEvt: activating gPictWindow" ): 
} 
else 

DrawEventString( 
"\pactivateEvt: deactivating gPictWindow" >: 

else 

if ( ( gTheEvent.modifiers & activeFlag ) 
ACTIVATING ) 

else 

} 
break: 

case networkEvt: 

DrawEventString( 
"\pactivateEvt: activating gEventWindow" ): 

DrawEventString( 
"\pactivateEvt: deactivatinggEventWindow"): 

DrawEventString( "\pnetworkEvt" ); 
break; 

case driverEvt: 
DrawEventString( "\pdriverEvt" ); 
break: 

case applEvt: 
DrawEventString( "\papplEvt" ); 
break; 

case app2Evt: 
DrawEventString( "\papp2Evt" ): 
break; 

case app3Evt: 
DrawEventString( "\papp3Evt" ); 
break: 



120 Macintosh Programming Primer 

case app4Evt: 
if ( (gTheEvent.message & SUSPEND_RESUME_BIT) 
RESUMING ) 

DrawEventString( "\pResume event" ); 
else 

DrawEventString( "\pSuspend event" ); 
break; 

/********************************** DrawEventString *******/ 

DrawEventString( s ) 
Str255s; 
{ 

if gCurRow > gMaxRow 
{ 

} 
else 
{ 

} 

ScrollWindow(); 

gCurRow += ROWHEIGHT; 

MoveToC LEFTMARGIN, gCurRow ); 
Drawstring( s ); 

/********************************** 

ScrollWindow() 
{ 

RgnHandle tempRgn; 

tempRgn = NewRgn{); 

ScrollWindow *******/ 

ScrollRect( &gEventWindow->portRect, HORIZONTAL_OFFSET, 
-ROWHEIGHT, tempRgn ); 

DisposeRgn( tempRgn ); 

/************************************* HandleMouseDown */ 
HandleMouseDown() 

WindowPtr 
short int 
long 
Graf Ptr 

whichWindow: 
thePart; 
windSize: 
oldPort; 

thePart FindWindow( gTheEvent.where, &whichWindow ); 
switch ( thePart ) 
{ 

case inSysWindow 
SystemClickC &gTheEvent. whichWindow ); 
break: 



The Event Mechanism 121 

case i nDrag : 
DragWindowC whichWindow. gTheEvent.where. &gDragRect >: 
break; 

case inContent: 
SelectWindow( whichWindow >: 
break: 

case inGrow: 
windSize = GrowWindow( whichWindow. 

gTheEvent.where.&gSizeRect >: 
if windSize != 0 ) 
( 

} 
break; 

GetPort( &oldPort >: 
SetPort( whichWindow ); 
EraseRect( &whichWindow->portRect ); 
SizeWindow( whichWindow. LoWordC windSize >. 

HiWord( windSize ). NORMAL_UPDATES ): 
InvalRect( &whichWindow->portRect ); 
SetPortC oldPort >: 

case inGoAway : 
gDone = TRUE; 
break; 

case inZoomln: 
case inZoomOut: 

if ( TrackBoxC whichWindow. gTheEvent.where. thePart ) ) 
( 

} 
break; 

GetPort( &oldPort >: 
SetPort( whichWindow ); 
EraseRectC &whichWindow->portRect >: 
ZoomWindowC whichWindow, thePart. 
LEAVE_WHERE_IT_IS ); 
InvalRect( &whichWindow->portRect >: 
SetPortC oldPort >: 

/******************************** DrawMyPicture *********/ 

DrawMyPicture( drawingWindow. thePicture ) 
WindowPtr drawingWindow; 
PicHandle thePicture: 
( 

Rec t d raw i n g C 1 i p Rec t , my Rec t : 
GrafPtr oldPort: 
RgnHandle tempRgn: 

GetPort( &oldPort >: 
SetPortC drawingWindow ); 
tempRgn = NewRgn(); 
GetClipC tempRgn >: 
EraseRect( &drawingWindow->portRect ); 
DrawGrowlcon( drawingWindow ); 



122 

drawingClipRect = drawingWindow->portRect; 
drawingClipRect.right -= SCROLL_BAR_PIXELS; 
drawingClipRect.bottom -= SCROLL_BAR_PIXELS; 

myRect = drawingWindow->portRect; 
CenterPict( thePicture, &myRect ); 
ClipRect( &drawingClipRect ); 
DrawPicture( thePicture, &myRect ); 

SetClip( tempRgn ); 
DisposeRgn( tempRgn ); 
SetPort( oldPort ); 

Macintosh Programming Primer 

/******************************** CenterPict *********/ 

CenterPict( thePicture, myRectPtr 
PicHandle thePicture; 
Rect *myRectPtr; 
I 

Rect windRect, pictureRect; 

windRect = *myRectPtr; 
pictureRect = (**( thePicture )).picFrame; 
myRectPtr->top = CwindRect.bottom - windRect.top -

CpictureRect.bottom -
pictureRect.top)) I 2 + windRect.top; 

myRectPtr->bottom = myRectPtr->top + (pictureRect.bottom -
pictureRect.top); 

myRectPtr->left = (windRect.right - windRect.left -
(pictureRect.right - pictureRect. left)) 
I 2 + windRect.left; 

myRectPtr->right = myRectPtr->left + (pictureRect.right -
pictureRect.left); 

Running EventTutor 

Now that your source code is entered, you're ready to run EventTutor. 
Select Run from the Project menu. When asked to "Bring the project up to 
date," click Yes. If you run into any compilation problems, try the debugging 
tips discussed in Appendix E. 

Once the code compiles, you'll be asked whether you'd like to "Save 
changes before running." Click Yes, and EventTutor will execute. Figure 
4.10 shows EventTutor running under the Finder. 



The Event Mechanism 

,. 

gPlctWindow 

activateEvt: activating gEventWindow 
updateEvt: gEventWindow 
updateEvt : gPictWindow 
mouseDown 
mouseUp 
mouseDown 
mouseUp 

123 

., 

Figure 4.10 EventTutor running under Finder. 

EventTutor puts two windows up on the screen. The background window, 
gPi ctWi ndow, should display your centered picture. The foreground 
window, g EventWi ndow, should already list three events: 

• act i vateEvt: activating gEventWi ndow: This event was caused by 
your code. You called Se l ectWi ndow ( ) , requesting that g EventW i ndow 
be made the frontmost window. 

• updateEvt:gEventWindow,and 
• updateEvt: gPi ctWi ndow:The Window Manager automatically gener

ates an updateEvt for each of its windows as soon as they are drawn for 
the first time. 

When the Window Manager draws a window, it first draws the 
window frame. The window frame includes the border, as well as a 
drag region, zoom box, and a go-away box, if appropriate. Next, it 
generates an upda t e Evt for the window, so the application will draw 
the window contents. 

Press the mouse button in the middle of g Eve nt W i n d ow.Now release the 
mouse button. You should see first a mouseOown and then a mouseUp 
event. Press the mouse button in the g Eve nt W i n d ow drag region (you'll see 



124 Macintosh Programming Primer 

a mouseDown) and drag g EventWi ndow down and to the right. You should 
see an updateEvt for gPi ctWi ndow. This is because you just revealed a 
piece of g Pi ct W i n d ow that was covered before. The reason you didn't get 
a mouseUp when you released the mouse button is that the mo us eUp was 
swallowed by the system routine that handles window dragging. This is 
also true when you zoom or resize a window. 

In Chapter 3 we established a standard of starting our program global 
variable names with the letter g. This led to Wi nd owPtrs named 
gEventWi ndow and gPi ctWi ndow. For clarity, we used these vari
able names as titles for their respective windows, but we could have 
used any titles we wanted. 

Click the mouse button in the center of g Pi ct W i n d ow. You should see a 
mouse Down, a deactivate event for gEventWi ndow, an activate event for 
gPi ctWi ndow, an update event for gPi ctWi ndow (assuming you clicked 
on it while it was still at least partially covered by g Even tWi ndow), and a 
mouseUp (Figure 4.11). 

,. 

There is no such thing as a deact i vateEvt. We use the term 
deactivateeventtoindicatean act i vateEvt with the act i veFl ag 
cleared. There's an example ofthis in the code. 

gPlctWlndow 

!l 
G. /) G o "ii:: . 

• . • 0,, 0"' 0 ..... 

Gq; ·;0 '.:- o ~ •t·· .. 0 , 0 

·· ··.o . · ·.· 

' 

..,: - ,# 

nt Ui ndow 

actl vateEvt: deactivating gEventU indow 
activateEvt : act i vat ing gPi ct Uindow 
mouseUp 
updateEvt : gPi ctUl ndow 

., 

Figure 4.11 After gPi ctWi ndow is activated. 



The Event Mechanism 125 

_J 

Try clicking in g Pi ct W i n d ow ' s zoom box. The picture should remain 
centered in gPi ctWi ndow. Click in the zoom box again. gPi ctWi ndow 
should return to its original size. Resize g Pi ct W i n d ow by clicking and 
dragging the grow box. Keep an eye on g Event W i n d ow. As you create 
events, review the list of event types presented earlier in the chapter. All 
these features were made possible by the use of events. Now, let's take a 
look at the code. 

Writing MultiFinder-friendly applications is not extremely difficult. 
We will try to get the basics across in our code, but we again 
recommend that you read the Programmer's Guide to MultiFinder 
from Apple for a thorough background (oops!) in MultiFinder pro
gramming. 

For starters, you can get your program to handle suspend and 
resume events by selecting Set Project Type ... from the Project menu. 
When the Set Project Type ... dialog box appears, use the MF Attrs pop
up menu to tum all three MultiFinder attributes on. Basically, you've 
just set some bits_ in a resource of type SI Z E with ID·= -1. Now, when 
you run EventTutor, you get suspend and resume events when you 
send EventTutor to the background and bring it back again under 
MultiFinder. 

In Chapter 5, you'll build a clock that runs in the background under 
MultiFinder, and in Chapter 6, you'll build a countdown timer that 
also runs in the background under MultiFinder. 

Walking through the EventTutor Code 

EventTutor starts with a slew of #def i n es, some of which should be 
familiar from Chapter 3. We'll discuss each #define as it appears in the 
code: 

#define BASE_RES_ID 400 
#define NI L_PO INTER OL 

#define MOVE_TO_FRONT - ll 
#define REMOVE_ALL_EVENTS 0 

#define LEAVE_WHERE_IT_IS FALSE 
#define NORMAL_UPDATES TRUE 
#define SLEEP OL 
#define NI L_MOUSE_REG ION OL 
#define WNE_TRAP_NUM Ox60 
#define UNIMPL_TRAP_NUM Ox9F 
#define SUSPEND_RESUME_BIT OxOOOl 
#define ACTIVATING 1 
#define RESUMING 1 



126 Macintosh Programming Primer 

#define TEXT_FONT_SIZE 12 

/fdefine DRAG_ THRESHOLD 30 
ffdefi ne MIN_WINDOW_HEIGHT 50 
/fdefine MIN_WINDOW_WIDTH 50 
/fdefine SCROLL_BAR_PIXELS 16 

#define ROWHEIGHT 15 
#define LE FTMARG IN 10 
#define STARTROW 0 
#define HORIZONTAL_OFFSET 0 

gPi ctureHandl e is the handle to your gPi ctWi ndow picture. 
gPi ctWi ndowandgEventWi ndowarepointerstothetwoprogramwindows. 
gDone is initialized to FALSE and checked each time through the main 
event loop. If anyone sets gDone to TRUE, the program exits. 
gWNE Imp 1 emented is a Boolean you'll set to TRUE if Wa itNextEvent() is 
implemented in the current version of the system. g The Event is your 
Event Record. Whenever you retrieve an event from the event queue, use 
g The Event to hold the event information. g Cu r Row holds the vertical pixel 
coordinate (in gEventWi ndow's local coordinate system) for drawing the 
next event string in gEventWi ndow. gMaxRow is the maximum value 
allowed for gCurRow. If gCurRow gets bigger than gMaxRow, you'll scroll 
the text in gEventWi ndow. gDragRect limits the dragging area of a 
window, and g Si z e Rec t controls the size of a window. 

PicHandle 
WindowPtr 
Boolean 
EventRecord 
int 
Re ct 

gPictureHandle; 
gPictWindow, gEventWindow; 
gOone, gWNEimplemented; 
gTheEvent; 
gCurRow, gMaxRow: 
gOragRect, gSizeRect; 

main ()starts bycallingtheToolboxand window initialization routines. 
Then, ma i n ( ) calls Lo ad Pi ct u re ( ) to load the picture from the resource 
file.Next, main() callsSetUpDragRect() andSetUpSizeRect() to set 
up Rec ts for dragging and resizingourwindows(see Hand 1 eMo use Down ( ) ). 
Finally, main () enters the main event loop by calling Main Loop (). 

/******************************** main *********/ 

main ( ) 
{ 

Tool Boxlnit(); 
Windowlnit(); 
LoadPicture(); 
SetUpDragRect(): 
SetUpSizeRect(); 

Main Loop< ) ; 



The Event Mechanism 127 

Too 1 Box In it ( ) is the same as it was in Chapter 3. In fact, you'll use 
the same Toolbox initialization routine throughout the book. 

/*********************************** ToolBoxlnit */ 

Tool Boxlni t() 
I 

InitGraf( &thePort ); 
InitFonts(); 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ); 
In it Wind ow s ( ) ; 
InitMenus(); 
TEinit(); 
InitDial-0gs( NIL_POINTER ); 
Ini tCursor(); 

W i n d ow In i t ( ) starts by loading the two windows from the resource file. 
Next, gEventWi ndow is made the current window, and its attributes are 
set via the call to Setup Event W i n d ow ( ) . Both windows are made visible 
with ShowWi ndow( ), and Sel ectWi ndow() is called to ensure that 
gEventWi ndow is the frontmost window. 

/******************************** Windowlnit *********/ 

Wi ndowlnit() 
I 

gPictWindow = GetNewWindow( BASE_RES_ID, NIL_POINTER, 
MOVE_ TO_FRONT ) ; 

gEventWindow = GetNewWindow( BASE_RES_ID+l, NIL_POINTER, 
MOVE TO FRONT ); 

SetPort( gEventWindow ); 
SetupEventWindow(); 

ShowWindow( gEventWindow ); 
ShowWindow( gPictWindow ); 

SelectWindow( gEventWindow ); 

Setup Event W i n d ow ( ) sets some of the g Event W i n d ow global variables. 
eventRect is a placeholder for gEventWi ndow's boundary rectangle. 
gMaxRow is set to the maximum row you'll draw into (in gEventWi ndow's 
local coordinates). gCurRow holds the current row number (also in local 
coordinates). g Event W i n d ow's font is set to 12-point Monaco. 



128 Macintosh Programming Primer 

!************************** SetupEventWindow *********/ 

SetupEventWindow() 
I 

Rect eventRect: 

eventRect = gEventWindow->portRect: 
gMaxRow = eventRect.bottom - eventRect.top - ROWHEIGHT; 
gCurRow = STARTROW; 

TextFont( monaco ); 
TextSize( TEXT_FONT_SIZE ); 

Lo ad Pi ct u re ( ) loads your picture from the resource file into memory, 
and g P i ct LI re Ha n d l e is set to be a handle to the picture. For a refresher 
on handles, check out the tech block on handles in Chapter 3. 

/******************************** LoadPicture *********/ 

LoadPicture() 
{ 

gPictureHandle GetPicture( BASE_RES ID ); 

SetUpDragRect() setsupaboundingrectangletopasstoDragWi ndow() 
(see Handl eMoLiseDown () ). Startoffwitharectanglethesizeofthemain 
screen by using the system global variable, screen Bi ts . b o LI n d s. When 
you click on the title bar of a window and drag it around the screen, the 
bounding rectangle forces you to leave DRAG_ THRESHOLD pixels of the 
window on the screen. This will prevent the user from dragging all but a few 
pixels of a window off the screen (making that window tough to find later 
on). The reason you don't have to worry about the top of the drag rectangle 
is that the drag region is on the top of the window. 

/******************************** SetUpDragRect *********/ 

SetUpDragRect() 
I 

gDragRect = screenBits.bounds: 
gDragRect.left += DRAG_THRESHOLD; 
gDragRect.right -= DRAG_THRESHOLD; 
gDragRect.bottom -= DRAG_THRESHOLD; 

SetUpSi zeRect() sets up a res1zmg rectangle for your call to 
GrowWi ndow ( ) (see Hand l eMoLiseDown ( ) ). gSi zeRect. top defines the 
minimum number of pixels allowed for window height. gSi zeRect. 1 eft 
defines the minimum number of pixels allowed for window width. 



The Event Mechanism 129 

gSi zeRect. bottom defines the maximum number of pixels allowed for 
window height, and g Si z e Re ct . r i g ht defines the maximum number for 
width. Use the size of the main screen (from your old friend 
screenBi ts. bounds) for these two. 

/******************************** SetUpSizeRect *********/ 

SetUpSizeRect() 
{ 

gSizeRect.top = MIN_WINDOW_HEIGHT; 
gSizeRect.left = MIN_WINDOW_WIDTH; 

gSizeRect.bottom = screenBits.bounds.bottom -
screenBits.bounds.top: 

gSizeRect.right = screenBits.bounds.right -
screenBits.bounds.left; 

Main Loop () starts by initializing gDone. Your application will exit 
when gDone is set to TRUE. Next, check to see if WaitNextEvent() is 
installed. Essentially, you're checking to see if W a i t Next Event ( ) and an 
unimplemented Toolbox routine have the same address in memory. If so, 
you know that W a i t Next Event ( ) is not implemented in the currently 
booted system. 

This piece of code has changed several times since Wai t Next Ev en t ( ) 
was first made available. To be on the safe side, get the very latest copy 
of the Programmer's Guide to MultiFinder from APDA. In the back, 
you'll see an example program that reflects Apple's current thinking 
on Wai tNext Event ( ) .Byfollowingthisexample,you'llminimi:r.ethe 
chances of your program breaking under future releases of the Mac 
operating system. 

Finally, Ma i n Loop ( ) loops on Hand 1 e Event ( ) until g Done is set to 
TRUE. 

/******************************** Mainloop *********/ 

Mainloop() 
{ 

gDone = FALSE: 
gWNEimplemented = ( NGetTrapAddress( WNE_TRAP_NUM, 

ToolTrap ) != 
NGetTrapAddress( UNIMPL_TRAP_NUM, 
ToolTrap ) ) : 

while gDone == FALSE ) 
{ 

HandleEvent(); 



130 Macintosh Programming Primer 

Handl eEvent () starts with a call to either Wai tNext Event () (if it's 
implemented), or SystemTask() and GetNextEvent(). Either way, 
g The Event gets filled with the latest event info. Each event is handled by 
drawing the name of the event in gEventWi ndow using DrawEve
ntStri ng ().If you uncomment the code in the nul 1 Event case, you'll get 
a feel for the number of nu 11 Events the system generates. 

nu 11 Events offer an excellent opportunity to do things like cursor 
tracking and internal housekeeping. For example, Chapter 5's Timer 
program updates a clock window when it gets a nu 11 Event. 

/************************************* HandleEvent */ 
HandleEvent() 
I 

if ( gWNEimplemented ) 

else 
{ 

WaitNextEvent( everyEvent, &gTheEvent, SLEEP, 
NIL_MOUSE_REGION ); 

SystemTask(); 
GetNextEvent( everyEvent, &gTheEvent ); 

switch ( gTheEvent.what ) 
{ 

case nullEvent: 
/*DrawEventString( "\pnullEvent" );*/ 
/* Uncomment the previous line for a 

burst of flavor! */ 
break; 

case mouseDown: 
DrawEventString( "\pmouseDown" ); 
HandleMouseDown(); 
break; 

case mouseUp: 
DrawEventString( "\pmouseUp" ); 
break; 

case keyDown: 
DrawEventString( "\pkeyDown" ); 
break: 

case keyUp: 
DrawEventString( "\pkeyUp" ); 
break: 

case autoKey: 
DrawEventString( "\pautoKey" ); 
break: 

updateEvts are handled in a special way. First, figure out which 
window the update Ev t is for. The Event Manager stores a pointer to the 
window requiring updating in gTheEvent. message. By comparing this 
pointer to gEventWi ndow and gPi ctWi ndow, you can tell which window 



The Event Mechanism 131 

the updateEvt is for. If the updateEvt is for gPi ctWi ndow, draw the 
appropriate event string into g Event W i n d ow, and then call Beg i n Update ( ) . 

Beg i n Update ( ) tells the Event Manager that you're about to take care 
of the condition that caused the update. In this case, you'll redraw the 
picture in gPi ctWi ndow using DrawMyPi cture( ). Finally, call EndUp
date () to let the Event Manager know you're done. 

lfyoucommentedoutthecallsto BeginUpdate() and EndUpdate( ), 
you'dgetanunendingstreamofupdateEvts forgPi ctWi ndow. TheEvent 
Manager, thinking you were ignoring the ones you'd already retrieved, 
would just keep generating them. Try it for yourself. 

Every window has an update region associated with it. When a 
previously covered section of a window is uncovered, the uncovered 
area is added to the window's update region. The Window Manager is 
constantly on the lookout for windows with nonempty update regions. 
When it finds one, it generates an updateEvt for that window. 
Beg i n Update ( ) , as part ofits processing, replaces the update region 
of the specified window with the empty region. Therefore, if you don't 
call Beg i n Update ( ) , you'll never empty the window's update region, 
and the Window Manager will never stop generating update Ev ts for 
the window. 

If you have not done so already, you should absolutely read the 
Window Manager chapter of Inside Macintosh (Volume I, Chapter 9) 
The information presented in the Window Manager chapter is crucial 
to writing proper Macintosh applications. 

You won't redraw the contents of gEventWi ndow in response to 
update Ev ts. If you want to add this capability, add a data structure to the 
program that keeps track of all the strings currently in the window, and 
redraw them whenever an updateEvt occurs for gEventWi ndow. In this 
version, you'll just call Draw Event St r i n g ( ) to add the update Ev t to 
your list of events, and Beg i n Update ( ) and End Up d a t e ( ) to let the 
Window Manager know that you've responded to the update Ev t. 

Before Beg i n Update ( ) empties the update region, it first replaces 
the visible region of the window (called the vi s R g n) with the intersec
tion of the vis Rgn and the update region (see Figure 4.12). The 
application then redraws the contents of the window. If it wants to, it 
can use this newly cropped vis Rgn to help reduce the amount of 



132 Macintosh Programming Primer 

drawing necessary. For now, you'll just redraw the entire contents of 
the window. Finally, End Update C ) is called. End Update C ) replaces 
the original version of the vi s R g n. A call to Beg i n Update C ) without 
a corresponding call to End Update ( ) will leave your window in a very 
unpredictable state. 

Vi.&Rgn ~ ~ LEJ ~ 
Update Qj L2J L[J L[J Region 

Before the bottom After the bottom After After 
window is selected window is Begin Update() End Update() 

selected, but is called is called 
before 
BeginUpdate() is 
called 

Figure 4.12 Begi nUpdate() in action. 

case updateEvt: 
if ( CWindowPtr)gTheEvent.message == gPictWindow ) 
{ 

DrawEventString( 
"\pupdateEvt: gPictWindow" ); 
BeginUpdate( gTheEvent.message ); 
DrawMyPictureC gTheEvent.message, 

gPictureHandle ); 
EndUpdate( gTheEvent.message ); 

else 

DrawEventString( 
"\pupdateEvt: gEventWindow" ); 
BeginUpdate( gTheEve~t.message ); 
I* 
* We won't handle updates to 

gEventWindow, 
*but we still need to empty the 

gEventWindow 
* Update Region so the Window Manager 

wi 11 stop 
* queing UpdateEvts. 



The Event Mechanism 

~ 
break: 

case diskEvt: 

* We do this with calls to 
BeginUpdate() 

*and EndUpdate(). 
*/ 
EndUpdate( gTheEvent.message ): 

DrawEventString( "\pdiskEvt" ): 
break; 

133 

Another special case is the act i vateEvt. As you did with updateEvt, 
first check to see which window the act i vat e Ev t was intended for. If the 
a ct i va teEvt was for gPi ctWi ndow, call DrawGrow I con ( ) to redraw the 
grow box and the empty scroll bar areas. The grow box looks different 
depending on whether the window was activated or deactivated (see Figure 
4.13). DrawGrowI con () is smart enough to draw the grow box correctly. 

Next, check a bit in the modifiers field to see if the event was an activate 
or a deactivate event. Remember, act i vat e Ev ts usually occur in pairs: 
The frontmost window is first deactivated, and then the new front window 
is activated. Also draw the appropriate strings for networkEvts, 
d r i v er Ev ts, and a pp 1 through a pp 3 Ev ts, although you probably won't 
get any of these. 

Front Window 

Figure 4.13 The grow box-activated and deactivated. 



134 Macintosh Programming Primer 

case activateEvt: 
if ( (WindowPtr)gTheEvent.message 

gPictWindow ) 

DrawGrow!con( gTheEvent.message ); 
if ( gTheEvent.modifiers & 

activeFlag ) ==ACTIVATING ) 

DrawEventString( 
"\pactivateEvt:activatinggPictWindow" ); 

} 
else 

DrawEventString( 
"\pactivateEvt: deactivating gPictWindow): 
} else 
{ 

if < < gTheEvent.modifiers & 
activeFlag ) == ACTIVATING 
DrawEventString( 

"\pactivateEvt: activating gEventWindow" ); 
else 

DrawEventString( 
"\pactivateEvt:deactivatinggEventWindow"); 
} 
break; 

case networkEvt: 
OrawEventString( "\pnetworkEvt" ): 
break: 

case driverEvt: 

case applEvt: 

case app2Evt: 

case app3Evt: 

DrawEventString( "\pdriverEvt" ); 
break: 

DrawEventString( "\papplEvt" ): 
break: 

DrawEventString( "\papp2Evt".): 
break: 

DrawEventString( "\papp3Evt" ); 
break; 



The Event Mechanism 135 

If you handle resume and suspend events, you'll get them in the form of 
an app4Evt. The SUSPEND_RESUME_BIT is set ifthe event is a resume 
event and cleared if the event is a suspend event. 

case app4Evt: 
if ( (gTheEvent.message & SUSPEND_RESUME_BIT) 

RESUMING ) 
DrawEventStringC "\pResume event" ); 

else 
DrawEventString( "\pSuspend event" ); 

break; 

Draw Event St r i n g ( ) handles the text positioning in g Event W i n d ow. If 
the QuickDraw pen is near the bottom of the window, Scro 11 Wi n d ow ( ) is 
called. The string is drawn with Draw St r i n g ( ) . R 0 W HE I G HT is the height 
in pixels of a single row of text. LEFTMARGIN is the pixel coordinate (in 
g Event W i n d ow 's local coordinate system) of the left margin of the text in 
gEventWi ndow. 

/**************************** DrawEventString *******/ 

DrawEventString( s ) 
Str255 s: 
{ 

if gCurRow > gMaxRow 
{ 

} 
else 
I 

I 

ScrollWindow(); 

gCurRow += ROWHEIGHT: 

MoveTo( LEFTMARGIN, gCurRow ); 
Drawstring( s ); 

Scroll Window() calls Scroll Rect() to scroll the pixels in 
gEventWi ndow up one row. Scroll Rect() scrolls the contents of the 
current Graf Port (in this case, gEventWi ndow) within the rectangle 
specified in the first parameter. The rectangle is scrolled to the right by the 
number of pixels specified in the second parameter and down by the 
number of pixels specified in the third parameter. Since you specified a 
negative third parameter, the contents of g Event W i n d ow will be scrolled 
up. 



136 Macintosh Programming Primer 

The last parameter to Scro 11 Re ct ( ) is a RgnHand 1 e, or a handle to a 
region. Regions are collections of drawn lines, shapes, and curves, as 
shown in Figure 4.14. After the pixels in the rectangle are scrolled, 
Scro 11 Re ct ( ) will fill thevacatedareaoftherectanglewith the Graf Port's 
background pattern. Then, these new areas are collected into the region 
handled by RgnHandl e (Figure 4.15). 

Many programs use this region as a guide to redrawing the window so 
that they don't have to redraw the entire window. This is especially 
useful if your window is extremely complex and takes a long time to 
redraw. In that case, a handle to the window's UpdateRgn is passed 
to Scro 1 l Rec t ( ) . Whenever the Window Manager detects that a 
window's updateRgn is nonempty, the Window Manager generates 
an updateEvt for the window. As part of its processing, Begi nUp
d ate ( ) sets the specified window's update R g n to the empty region. 

Figure 4.14 A region. 

updateRgn 
filled with bkPat 

Figure 4.15 FrontWindow's updateRgn after Scroll Rect 
( r, 10, 20, updateRgn). 



The Event Mechanism 137 

Since you're not redrawing g Event W i n d ow in response to update Ev ts, 
you'll use a temporaryregion(tempRgn)asaparameterto Scro 11 Re ct ( ). 
Deallocate the tempRgn's memory by calling Di sposeRgn (). 

/**************************** 

Scroll Window() 
( 

RgnHandle tempRgn; 

tempRgn = NewRgn(); 

ScrollWindow *******/ 

ScrollRect( &gEventWindow->portRect, HORIZONTAL_OFFSET, 
-ROWHEIGHT, tempRgn ); 

DisposeRgn( tempRgn ); 

Handling mouseDown Events 

When you receive a mouse Down event, the first thing to do is find out which 
window the mouse was clicked in, by calling the Toolbox routine 
Fi ndWi ndow( ). Fi ndWi ndow() takes, as input, a point on the screen and 
returns, in the parameter whi chWi ndow, a Wi ndowPtr to the window 
containing the point. In addition, Fi ndWi ndow () returns an integer part 
code, describing the part of the window the point was in. 

Once you have your part code, compare it to the predefined Toolbox part 
codes (you can find a list of legal part codes in 1:287). The part code 
i n Sys W i n d ow means that the mouse was clicked in a system window, very 
likely, a desk accessory. (Since Event Tutor doesn't support desk accesso
ries, you probably won't see any inSysWindow mouseDowns, but you will 
see them in Chapter 5.) The appropriate thing to do in this case is to pass 
the event and the Wi ndowPt r to the system so it can handle the event. Do 
this with the Toolbox routine SystemCl i ck(). 

The part code i nDrag indicates a mouse click in whi chWi ndow's drag 
region. Handle this with a call to the Toolbox routine DragWi ndow( ). 
DragWi ndow() wants a Wi ndowPtr, the point on the screen where the 
mouse was clicked, and a boundary rectangle. DragWi ndow() will allow 
the user to drag the window anywhere on the screen as long as it's within 
the boundary rectangle. Use gOragRect, which you initialized with the 
routine SetUpDragRect( ). 

The i n Content part code represents the part of the window in which you 
draw. When you detect a mouse click i nContent, call Se l ectWi ndow( ). 
If the mouse click was not in the frontmost window, Se 1 ectW ind ow ( ) 
deactivates the frontmost window and activates the clicked-in window. A 
call to Sel ectWi ndow() usually results in a pair of act i vateEvts. 



138 Macintosh Programming Primer 

/************************************* Handl eMouseDown *I 

HandleMouseDown() 
{ 

WindowPtr 
short int 
long 

whichWindow: 
thePart: 
windSize: 
oldPort; Graf Ptr 

thePart FindWindow( gTheEvent.where, &whichWindow ); 
switch ( thePart ) 
{ 

case inSysWindow : 
SystemClick( &gTheEvent, whichWindow ): 
break: 

case inDrag : 
DragWindow( whichWindow, gTheEvent.where, 

&gDragRect ): 
break: 

case inContent: 
SelectWindow( whichWindow ): 
break: 

A click in the grow box is handled by a call to Gr owWi n d ow ( ) , which 
takes the same arguments as Drag W i n d ow ( ) but allows the window to 
grow and shrink instead of move. Gr owW i n d ow () returns a long integer 
composed of two words (four bytes) that define the number of pixels the 
window will grow or shrink in each direction. These words are passed to 
Si zeWi ndow(), causing the window to be resized accordingly. The last 
parameter to Si z e W i n d ow ( ) tells the Window Manager to accumulate any 
newly created content region into the update region. This means that the 
Window Manager will generate an update event whenever the window is 
made either taller or wider. 

Theupdateeventstrategyisfairlysimple. Usetheroutine I nva 1 Rect () 
to add the entire contents of the window to the window's updateRgn, 
guaranteeing that an updateEvt will be generated whether or not the 
window was grown. When you plan your applications, spend some time 
working out an appropriate update strategy. If redrawing the contents of 
your windows will be fairly easy and won't take too long, you may want to 
use the Inv a 1 Rec t ( ) approach. But if the contents of your window are 
potentially complex (as is true of many drawing and CAD packages), you'll 
probably want to avoid the call to I n v a 1 Rec t ( ) and, instead, use the shape 
of the update region to aid you in updating your window efficiently. 

case inGrow: 
windSize = GrowWindow( whichWindow, 

gTheEvent.where,&gSizeRect ): 
if windSize != O ) 
I 

GetPort( &oldPort ); 
SetPort( whichWindow ); 



The Event Mechanism 

} 
break; 

139 

EraseRect( &whichWindow->portRect ); 
SizeWindow( whichWindow. LoWord( windSize), 

HiWord( windSize ), 
NORMAL_UPDATES ); 

InvalRect( &whichWindow->portRect >: 
SetPort( oldPort ); 

A click in the go-away box of either window will result in g done being set 
to TRUE. This will cause the program to exit. 

case inGoAway : 
gDone = TRUE; 
break; 

A note from the thought police: A proper Macintosh application would 
never think of exiting just because someone clicked in the close box of 
a window! When we get to menu handling in Chapter 5, we'll show you 
the correct way to Quit. 

If the mouse is clicked in the zoom box, respond by calling Trac kB ox ( ) , 
which will return TRUE if the mouse button is released while the mouse is 
still in the zoom box. ZoomWi ndow() zooms the window in or out, depend
ing on the part code passed as a parameter. The constant 
LEAV E_WHERE_IT _IS tells ZoomWi ndow() to leave the window in front if 
it was in front when the zoom box was pressed or in back if the window was 
in back when the zoom box was pressed. Just as you did with Si z eW i n d ow ( ) , 
call Inv a 1 Rec t ( ) to guarantee that an update Ev t is generated when the 
window is zoomed in or out. 

case inZoomln: 
case inZoomOut: 

if ( TrackBox( whichWindow, 
gTheEvent.where, thePart ) ) 

} 
break; 

GetPort( &oldPort ); 
SetPort( whichWindow ); 
EraseRectC &whichWindow->portRect ); 
ZoomWindow( whichWindow, thePart, 

LEAVE_WHERE_IT_IS ); 
InvalRectC &whichWindow->portRect ); 
SetPort( oldPort ); 



140 Macintosh Programming Primer 

DrawMyPi cture() will draw the picture handled by the Picture in 
the window pointed to by draw i n g W i n d ow, clipping the drawing so that the 
scroll bar and grow areas aren't overwritten. Copy d raw i n g W i n d ow's 
portRect to drawi ngCl i pRect, andadjusttheleftand bottom to clip the 
two scroll bar areas. Use this new Rec t as a parameter to C 1 i p Rec t ( ) so 
that when you draw your picture, it gets clipped properly. 

Start by saving a pointer to the current Graf Port in o 1 d Port so you can 
restore it at the end of DrawMyPi ctu re ().Next, make d rawi ngWi ndow 
the current Graf Port so the picture will be drawn in the correct window: 

/******************************** DrawMyPicture *********/ 

DrawMyPicture( drawingWindow, thePicture ) 
WindowPtr drawingWindow; 
PicHandle thePicture; 
{ 

Re ct 
Graf Ptr 
RgnHandle 

drawingClipRect, myRect; 
oldPort: 
tempRgn; 

GetPort( &oldPort ); 
SetPort( drawingWindow ); 

Then, allocate memory for a region to save a copy of the current clip 
region. Call GetCl i p() to copy the current clip region into tempRgn. 
NewRgn () allocates enough memory for the minimum-sized region. 
Get C 1 i p ( ) resizes the region to accommodate the current clip region. 

tempRgn = NewRgn(); 
GetClip( tempRgn ); 

If you created a region in the shape of a star, and used Set C 1 i p ( ) to 
set the clip region to your star region, all drawing in that window 
would be clipped in the shape of a star. You can read more about 
regions in Inside Macintosh (1:141-142and1:166-167). 

Next, erase the whole window with a call to Er as e Re ct ( ) . You've just 
erased the Grow I con, so call DrawGrowl con () to redraw it. Next, set up 
your clipping Re ct, drawi ngCl i pRect, so that it excludes the right and 
bottom scroll bar areas (and, as a result, the grow area). Then, set my Rec t 
to the drawi ngWi ndow port Re ct. You'll use myRect as a parameter to 
Center Pi ct(), where it will be adjusted to reflect the size of the picture, 
centered in the input Rect. 



The Event Mechanism 141 

At this point, you have not changed the clip region of d raw i n g W i n d ow. 
You are about to. Call Cl i pRect () to set the clipping region to the 
rectangle defined by drawi ngCl i pRect. Now, draw the picture with 
DrawPi cture( ). 

EraseRect( &drawingWindow->portRect ): 
DrawGrowicon( drawingWindow ); 

drawingClipRect = drawingWindow->portRect: 
drawingClipRect.right -= SCROLL_BAR_PIXELS; 
drawingClipRect.bottom -= SCROLL_BAR_PIXELS: 

myRect = drawingWindow->portRect; 
CenterPict( thePicture. &myRect ): 
ClipRect( &drawingClipRect ); 
DrawPicture( thePicture. &myRect ); 

Finally, reset the C 1 i p Rec t to the setting saved in temp R g n, release the 
memory allocated to tempRgn, and set the current Graf Port back to the 
original setting. 

SetClip( tempRgn ); 
DisposeRgn( tempRgn ): 
SetPort( oldPort ); 

CenterRect () is the same as in Chapter 3's ShowPict program: 

/******************************** CenterPict *********/ 

CenterPict( thePicture. myRectPtr 
PicHandle thePicture; 
Rect *myRectPtr; 
{ 

Rect windRect. pictureRect: 

windRect = *myRectPtr; 
pictureRect = (**( thePicture )).picFrame: 
myRectPtr->top = (windRect.bottom - windRect.top -

CpictureRect.bottom -
pictureRect.top)) I 2 + windRect.top; 

myRectPtr->bottom = myRectPtr->top + (pictureRect.bottom 
- pictureRect.top); 

myRectPtr->left = CwindRect.right - windRect.left -
(pictureRect.right - pictureRect.left)) 
I 2 + windRect.left; 

myRectPtr->right = myRectPtr->left + CpictureRect.right 
- pictureRect.left); 

If you'd like to learn more about event handling, read the Toolbox Event 
Manager chapter of Inside Macintosh (1:241-266). 



_J 

142 

In Review 

At the heart of every Macintosh application is the main event loop. Mac 
applications are built around this loop. Each pass through the main event 
loop consists of the retrieval of an event from the event queue and the 
processing of the event. 

The Window Manager plays an important role in the handling of events 
by generating updateEvts as a means of getting the application to draw 
(or update) the contents of a window. In addition, Window Manager 
routines like Fi n d W i n d ow ( ) offer a mechanism for linking an event to a 
window. 

An underlying theme of this chapter is a concern for good user interface 
design. When you set out to build an application, concentrate on the user's 
view of your application. Use the main event loop in this chapter as your 
basic skeleton. Then, determine how you will handle each of the different 
events your user might initiate. 

In Chapter 5, you'll learn all about menus. You'll learn how to design and 
implement regular menus, hierarchical menus, and pop-up menus! 



Menu 
Management 

This chapter explains the use of menus in 
your programs. We'll show you how to 
install menus via MB.AR, and MENU 

resources, and describe the routines 
available from the Menu Manager. We'll 

also discuss the best way to support 
desk accessories and do event 

handling with menus. 

5 



_J 

144 

MACINTOSH MENUS HAVEN'T been the same since the advent of the Mac SE 
and the Mac II. The classic Mac menu was the pull-down menu-the strip 
at the top of the screen with options that, when clicked on, displayed the 
possibilities available to each program (Figure 5.1). The situation has 
changed for the better with two additional menu types: the hierarchical 
menu and the pop-up menu. We'll discuss and demonstrate both. But first, 
let's look at the standard parts of all menu systems. 

Menu Components 

Before we discuss the structure of menus, let's examine the parts of a menu 
and their functions. Figure 5.2 shows the main parts of Macintosh menus. 
We'll discuss the parts of the classic menu first, then discuss differences in 
the new menu types in the section devoted to each type. 

The menu bar displayed at the top of the Mac screen is normally 20 pixels 
high. The font type and size are always the same as the system font. The 
menu bar height may be changed, using the global variable MB a rHei ght, 
as we saw in Chapter 3's screen saver program, The Flying Line. 

On the menu bar, each list of choices is known as a menu. The , File, 
and Edit menus are found in most Macintosh applications. Menus are 
dimmed, or disabled, when none of their options is available. 

Windows 

Hello2 Proj 
obj sin 

406 

~!!.~.!!.~ .................................................. ?..?.?..~ .. 

Bring Up To Dote atlU 
Check link atl l 
Build library ... 
Build Application •.• 

Figure 5.1 Classic pull down menu. 

., 



Menu Management 

• ___ / 
Menu Bar I 

Menu Item 

Edit Uiew Special 
N(~W folth?'r ~}(tN 

Open 380 
Print Dimmed Menu I tern 
[lose ~!tUJ 

Get Info 
0Uf)liC<l1<~ 

Put Hwa1_t 

Page Setup ••• 
Prh~ t lHu~c1 ory ... 

Command Key Equiualent 

Ellipses ( ••. ) indicate that 
further information will 
be required to complete 
the command. 

Figure 5.2 Components of Macintosh menus. 

145 

Menu items are the choices that are available in a given menu. For 
example, the File menu items in MacWrite are as shown in Figure 5.3. 

A menu item is selected if the mouse button is released while the item 
is still highlighted. Individual items may also be disabled (dimmed). An 
icon or a check mark can be placed to the left of an item's text. The font and 
size of the item may be varied; command key equivalents may be placed to 
the right of a menu item. If a menu item list becomes too long for the screen, 
not uncommon on a Mac Plus or SE, the last item that would normally be 
seen is replaced with a downward-pointing arrow ['T']. If the user pulls the 
mouse pointer down further, more menu items will scroll into view. 

The S menu is different in several respects from the other menus in the 
menu bar. By convention, the first item in the s menu is used by your 
program to display information about your program. The remaining menu 
items make up a list of available desk accessories (Figure 5.4). 

Let's take a look at the classic pull down menu and how it works. 

New 38N 
Open... HO 
Close sew 
Saue ses 
Saue Rs ••• 
Page Setup ••• 
Print... 38P 

Quit 380 Figure 5.3 MacWrite File menu. 



146 

_J 

_J 

About the Finder ••• 

Rhum Clock 
Calculator 
Chooser 
Control Panel 
Find Fiie 
Key Cops 
Scrapbook 

Figure 5.4 The S menu. 

The Pull Down Menu 

Macintosh Programming Primer 

The pull down menu, displayed at the top of the screen, is standard for 
most Macintosh applications. Pull-down menus are created by the Menu 
Manager, which also takes care of drawing the menu items; handling menu 
selection (as well as command key equivalents); and, finally, restoring the 
screen when the menu is released. All you have to do is provide the menu 
information in the form of two resources, MBAR and MENU, and call them 
with Menu Manager routines. The MBAR resource contains a list of the 
menus that will be displayed on the menu bar. Each MENU resource contains 
information about the individual menu items. 

On the Mac II, menus and menu items can also be displayed in different 
colors (V:235). 

The Hierarchical Menu 

The hierarchical menu came on board in 1987, when it was added to the 
Toolbox. It was needed for the new, complex programs that had become 
available for the Mac. As more bells and whistles were added to Mac 
applications, it became harder to find a place for them on the menu bar. 
Hierarchical menus made it possible to put a whole menu into one item 
without inconveniencing the user (Figure 5.5). 

Menu items that have a hierarchical submenu associated with them 
have a small right-pointing triangle(...,. ) on their right side. When the menu 



Menu Management 

_J 

_J 

147 

item is selected, the hierarchical submenu is displayed. The user then 
moves the arrow over to the item desired on the hierarchical menu. 

The Pop-Up Menu 

The pop-up menu is the only menu that can be placed anywhere on the 
screen. This menu is similar to a hierarchical menu, except that pop-up 
menus can be placed in windows, dialog boxes, even on the desktop. 

A pop-up menu appears when a mouseDown occurs in an area defined by 
an application (Figure 5.6). Once the pop-up menu appears, the user can 
select an item by moving the cursor up or down. When the mouse button is 
released, the selection is processed. Pop-up menu routines require a little 
more work than the other menu types, but the additional functionality is 
worth it. We will build a pop-up menu project at the end of this chapter. 

Other Kinds of Menus 

As with most other parts of the interface, you can make your own unique 
menus that use the same calls yet look very different from the three kinds 
of menus already described. Building your own menus, however, is more 
complicated than using the standards. And since many current applica
tions don't even use the pop-up and hierarchical menus yet, there's no need 
to rush out and create something new. 

~./Chicago 
Geneua 
Heluetica 
Monaco 

Figure 5.5 Hierarchical menu. 



148 Macintosh Programming Primer 

@ Rppllcotion 

O Desk Rccessory 

O Deuice Driuer 

O Code Resource 

Portition (K) 

Timer Proj 

File Type I RPPL 

Creutor lflPMI 
~ Sepurute STRS 

Figure 5.6 Dialog box with pop-up menu. 

., 

9792 
1236 

A fourth type of Macintosh menu that has become quite popular recently 
is the tear-off menu, which can be torn off the menu bar and moved around 
the screen like a window. Its use in HyperCard and MacPaint 2.0 have 
probably guaranteed its eventual enshrinement in the Toolbox. We suggest 
that you wait until it is available in the Toolbox before trying to make one 
on your own. 

Menu formats from MS-DOS programs or other non-Macintosh systems 
are sometimes ported over to the Macintosh. A result of this might be 
something like Figure 5.7. These MS-DOS style menus do not follow the 
Macintosh user interface guidelines. Don't use them or associate with 
developers that do. 

Putting Menus into Your Programs 

There are a number of ways to add menus to the applications you create: You 
can insert menus at the end of the current menu bar (e.g., desk accessories 
like QuickDex or DiskTop), you can build a new set of menus from scratch 
right inside your program, or you can create your menus in ResEdit and 
load them into your program. We're going to do it the last way, which makes 
for clean programming and easy changes without recompiling. 



Menu Management 

_J 

149 

Figure 5.7 MS-DOS menu. 

We'll use two menu resources: MENU and MBAR. The MBAR resource 
contains a list of all of the MENU resources that will be used to draw the menu 
bar. The MBAR resource also controls the order in which the menus are 
drawn on the menu bar. Each MENU resource contains a menu title, a list of 
the menu items, and detailed information about the display of each item. 

Now, let's look at Timer, our first program with menus. 

Timer 

Timer displays the current time in a window and refreshes the time once 
per second. The standard S , File, and Edit menus are supported as well as 
an additional menu, Special. The Special menu has two hierarchical 
submenus, which allow you to change the display's font and style. 

Timer's menu supports desk accessories. The File menu has a single 
item, Quit. The Edit menu is disabled but is provided as a service to desk 
accessories. Every Macintosh application you write should support the 
standard Edit menu, as it is part of the Macintosh interface standards. 

Timer works like this: 

• It initializes the Toolbox. 

• It loads the MBAR and MENU resources. 



150 Macintosh Programming Primer 

• It initializes the Timer window. 

• It displays the time in the window. 

• It handles events for the menus and the window, refreshing the Timer 
window once per second. 

Setting Up the Project 

Create a folder called Ti mer; keep your project and resource files inside the 
folder. 

Resources 

Now, add the resources you'll need for your Timer program. Create a file in 
your new Ti mer folder using ResEdit. Call it Ti mer Pro j . Rs r c. Then 
build a WIND with ID= 400, with the specifications as shown in Figure 5.8. 

Next, you need an MBAR resource, that lists the resource IDs of the four 
MENUs that will be part of Timer's menu bar. Create a new MBAR resource 
inside Ti mer P roj. Rs re. You should see something like Figure 5.9. Click 
on the row of asterisks and select New from the File menu. A field for the 
first menu should appear, as well as a new row of asterisks. Create three 
more menu fields and fill all four as shown in Figure 5.10. Finally, change 

§0§ WI ND ID = 400 from Timer Proj.Rsrc 

Window title: 

I Timer 

top 

left 

proclD 

~bottom~ 
~right~ 
Io I refCon IO I 

D Uisible 181 goRwayFlag 

Figure 5.8 Timer W I ND specifications. 



Menu Management 151 

_o MBRR ID 400 from Timer Proj.Rsrc 

#of menus O 

***** 

Figure 5.9 A new MBAR resource. 

D MBRR ID 400 from Timer Proj.Rsrc 

#of menus 4 

***** 

menu res ID 1400 

***** 

menu res ID 1401 

***** 

menu res ID 1402 

***** 

menu res ID 1403 

***** 

Figure 5.10 A complete MBAR resource. 



152 Macintosh Programming Primer 

the MBAR resource ID to 400. Close the MBAR window. Now, you need to 
create four MENU resources. 

First, build the MENU resource as shown in Figure 5.11. When the MENU 
resource is initially displayed by ResEdit, only the first seven fields are 
displayed. When you have completed these fields, click on the row of 
asterisks at the bottom of the window and select New from the menu to add 
information for each subsequent menu item. You may encounter difficul
ties in generating the 9 character for this menu. The simplest way to get 
the 9 is to go into another application with an 9 MENU resource, copy the 
9 character and paste it into Timer's resources. Using the 9 is just a 
convention; the program will run fine, if amateurishly, with any character. 

Close the 9 MENU resource window and give it a resource number of 400. 
Open a new MENU resource for the File menu information, and fill it in as 
shown in Figure 5.12. 

~~ MENU "Apple 11 ID = 400 from Timer Proj.Rsrc ~ 

menu ID 400 

width 0 

height 0 

proclD 0 

filler 0 

enable Figs $FFFFFFFB 

title • 
"'"'"'"'"' 
menu Item I About Timer 

icon# lo I 
key equiu D 
mark Char D 
style lsoo 
"'"'"'"'"' 
menu Item I-
icon# lo 
key equiu D 
mark Char D 
style lso1 
............... 0 

Figure 5.11 Apple MENU specifications. 



Menu Management 153 

§0~ MENU "File" ID= 40 from Timer Proj.Rsrc ~ 

menu ID 401 

width 0 

height 0 

proclD 0 

filler 0 

enableflgs SFFFFFFFF 
title File 

***** 

menu Item louit 

icon# lo 
key equiu [!] 
mark Char D 
style lsoo 
***** 0 

Figure 5.12 File MENU specifications. 

The MENU resource allows you to specify the appearance of the dis
played menu in your program. The first seven items of the MENU 
resource relate to the entire menu. The Memu ID field is the resource 
ID of the ME NU, the en ab 1 e Fl gs field allows you to specify which 
menu items are initially disabled (dimmed) so that the user cannot 
select them. The ti t 1 e field contains the menu's title that is dis
played on the menu bar. The other fields will be filied in for you by 
ResEdit. 

The en ab 1 e Fl gs field contains a set of flags for the Menu Man
ager. These flags tell the Manager which menu items are selectable 
and which should be displayed in a dimmed state. In the menu, 
$FFFFFFFB has been entered. 

In binary, this becomes: 

1111-1111-1111-1111-1111-1111-1111-1011 

The rightmost bit corresponds to the MENU title, the second rightmost 
to the first MENU item the third from the right corresponds to the 
second MENU item,, and so on. $FF FF FF FB tells the Menu Manager to 
make the second MENU item (the line under About Timer) unse
lectable. 



154 Macintosh Programming Primer 

Close the File menu resource window and give it a resource number of 
401. Now, open a new MENU resource for the Edit menu information. Fill it 
in as shown in Figure 5.13. Then, close the Edit menu resource window and 
give it a resource number of 4 0 2. 

The Edit menu is a little different from the first two, in that the menu 

ill~ MENU 11 Edit 11 ID = 402 from Timer Proj.Rsrc ~ 

menu ID 

width 

height 

proclD 

filler 

enableflgs 

title 

............... 

menu Item 

icon# 

key equiu 

mark Char 

style 

............... 

402 

0 

0 

0 

0 

$00000000 

Edit 

I undo 

D 
lD 
D 
lsoo 

menultem 1-::===:::::;-----------------------J 
icon#I ...._ o_ ...... 
key equiu 0 
mark Char 0 
style ~, s=o=-o----------
............... 

menu Item I Cut 
=====:::::;------------------------' 

icon#I ...._ o_ ...... 
key equiu ~ 
mark Char 0 

===------------------------
sty I el ..... s_oo __________ __. 
............. 

Figure 5.13 Edit MENU specifications. 



Menu Management 155 

menu Item I copy 

icon# lo 
key equiu ~ 
mark Char D 
style jsoo 
***** 

menu Item I Paste 

icon# lo I 
key equiu ~ 
mark Char D 
style jsoo 
***** 

menu Item I Clear 

icon# lo I 
key equiu D 
mark Char D 
style lsoo 
***** 0 

Figure 5.13 Edit MENU specifications (continued). 

items in it have all been disabled. In fact, this application does not use the 
Edit menu at all. So why add it? The reason is that although your 
application may not use the Edit menu, the desk accesories that you 
support may. Many desk accessories expect an Edit menu on Mac applica
tions. If you don't put one there, the accessory may not be able to function 
properly. 

Now, add the.Special menu. Open up a new MENU resource and fill it as 
shown in Figure 5.14. Close the Special menu and give it a resource ID of 
403. 

The next step is a little tricky. You may have wondered why the Font and 
Style items each used a* in the key equiv field. In order to mark a menu 
item as a hierarchical menu item, the key equiv field is filled with a special 



156 

§~ MENU "Special 11 Io = 403 from Timer Proj.Rsrc ~ 

menu ID 1403 

width lo 
height 0 

proclD 0 

filler 0 

enableflgs $FFFFFFFF 

title Special 

***** 

menu Item I Font 

icon# lo 
key equiu EJ 
mark Char [!] 
style lsoo 
***** 

menu Item I Style 

Icon# lo 
key equiu ~ 
mark Char [!] 
style lsoo 
***** 0 

Figure 5.14 Special MENU specifications. 

000000 
000008 
000010 
000018 
000020 
000028 
000030 
000038 
000040 
000048 
000050 
000058 
000060 
000068 

0193 0000 0000 0000 DiDDDDDD 
0000 FFFF FFFF 0753 DDDDDDDS 
7065 6369 616C 0446 pecialUF 
6F6E 7400 !1>4 0005 ont~DD 
5374 796C 6500 2A65 StyleD*e 
0000 DD 

Figure 5.15 The Special menu, using 
Open General. 

J 

J 

J 



Menu Management 157 

hex character, which, unfortunately, cannot be typed from the keyboard. 
The * acts as a placeholder for this special character. Now, replace the * 
with the hex character 1 B. To do this, highlight the Special MENU (ID = 4 0 3) 
and select Open General from the File menu (Figure 5.15) 

Find the first * on the right side of the window and the corresponding 
hex code for* (2A) on the left side. Select the 2A. Notice that a rectangle 
appeared around the * on the right. Key in the characters 1 B. Repeat this 
procedure for the second * on the right side of the window, and compare 
your result with Figure 5.16. Finally, close the Special MENU window, 
reopen it normally, and compare it with Figure 5.17. 

Notice that the * placeholders have been replaced by the ASCII version 
ofhex lB. That's because a hex lB in a MENU item's key equiv field tells 
the Menu Manager to look for a hierarchical submenu. The Menu Manager 
uses the value in the item's ma r k Ch a r field to indicate the resource ID of 
a MENU to use as a hierarchical submenu. The Font item has an ASCII d in 
the mark Ch a r field. ASCII d is equivalent to hex 64 , or 100 decimal. 
Therefore, the Menu Manager will look for a MENU with resource ID = 10 0 
to use as the Font hierarchical submenu. In the same way, the Style item 
has ASCII e (101 decimal) in its mark Char field, so the Menu Manager 
will look for a MENU with resource ID = 1 01 for the Style hierarchical 
submenu. Now let's build these submenus. 

Here's why you don't use 404 and 405 instead of 100 and 101 for 
hierarchical submenu resource IDs. The hierarchical menu structure 
was defined in Volume 5 oflnside Macintosh. Only two bytes are used 
as a pointer to the hierarchical menus in the menu structure. Since the 
biggest two-digit hexadecimal number is FF, or 255 decimal, that's 
the biggest hierarchical menu number that you can use. 

§0§ MENU ID = 403 from Timer Proj.Rsrc i 
000000 0193 0000 0000 0000 DlDDDDDD ~ 000008 0000 FFFF FFFF 0753 DDDDDDDS 
000010 7065 6369 616C 0446 pecialDF 
000018 6F6E 7400 1864 0005 ontDDdDD 
000020 5374 796C 6500 1865 StyleDDe 
000028 0000 ao 
000030 
000038 
000040 
000048 
000050 
000058 r§ 000060 
000068 ~ 

Figure 5.16 The completed Special menu, using Open General. 



158 Macintosh Programming Primer 

~D~ MENU "Special 11 ID = 403 from Timer Proj.Rsrc ~ 

menu ID 403 

width 0 

fleight 0 

proclD 0 

filler 0 

enableflgs $FFFFFFFF 

title Special 

*"'*** 

menu Item I Font 

icon# lo 
key equiu @] 
mark Char [] 
style lsoo 
***** 

menu Item I style 

icon# lo I 
key equiu @] 
mark Char [!] 
style lsoo 
***** 0 

Figure 5.17 Special menu, opened normally. 



Menu Management 159 

Close the Special MENU window. Create a new MENU resource and fill it 
as shown in Figure 5.18. Note that the Font MENU has no menu items. As 
with the menu, the items will be inserted from system resources. Change 
the Font MENU resource ID to 10 0. Create another new MENU resource and 
fill it as shown in Figure 5.19. Change its resource ID to 101. When you're 
finished with the Font MENU, close and save your work. 

You've completed the resources necessary for the window and menus of 
Timer. Now, you'll create an Alert that is displayed when About Timer is 
selected from the menu. For the moment, don't worry too much about the 
alert mechanism (the ALRT and DITL resources). We'll cover alerts in 
Chapter 6. 

§0~ MENU "Font" ID= 100 from Timer Proj.Rsrc ~ 

menu ID I 100 

width 0 

height 0 

proclD 0 

filler 0 

enableFlgs $FFFFFFFF 

title Font 

***** 0 

Figure 5.18 Font MENU specifications. 



160 Macintosh Programming Primer 

§[]~ MENU "Style" ID = 1O1 from Timer Proj.Rsrc ~ 

menu ID 101 

width 0 

height 0 

proclD 0 

filler 0 

enableFlgs $FFFFFFFF 

title Style 

***** 

menu Item I Plain 

icon# lo 

key equiu D 
mark Char D 
style lsoo 

***** 

menu Item leold 

icon# lo 

key equiu D 
mark Char D 
style lso1 

***** 

menu Item I italic 

icon# lo I 
key equiu D 
mark Char D 
style lso2 

***** 

Figure 5.19 Style MENU specifications. 



Menu Management 161 

menu Item I underline 

icon# lo 

key equlu D 
mark Char D 
style 1$04 

***** 

menu Item I outline 

icon# lo I 
key equiu D 
mark Char D 
style lsoe 

***** 

menu Item I shadow 

icon# lo I 
key equiu D 
mark Char D 
style ls10 

***** 0 

Figure 5.19 Style MENU specifications (continued). 

Create a DI TL resource (select New, enter DI TL, and select New again). 
The DI TL (for Dialog Item List) contains the list ofitems you want to appear 
in your alert. By convention, the first item is always the OK button that the 
user clicks to make the alert disappear. Create a new item by selecting New 
from the File menu, making it look like Figure 5.20. Close the Item #1 
window and create a second item, making it look like Figure 5.21. 

Close the Item #2 window. Now, choose Get Info from the File menu and 
change the DITL resource ID to 4 0 0. 

Next, you'll create an alert template to display the DI TL items. From the 
Timer Proj. Rs re's main window, create a new ALRT resource. A new 
ALRT menu should appear in ResEdit's menu bar. Select Display as Text 
from the ALRT menu. Change the alert fields so they look like those in 
Figure 5.22. Finally, change the AL RT resource ID to 4 00. All the resources 
are now done. Select Quit from the File menu and save your changes. You're 
ready to code! 



162 Macintosh Programming Primer 

§0§ DITL " About " ID= 400 from Timer Proj.~ 

r;:i·r1·a-t"fi.ifr ... f"1·n0···ii·r:·a·!ir·a·m·-fra·m···•fi"e .. ! 
!Mac Programming Primer! ! 
i~ .. 1 .. ?..~.?..'. ... ~.: ... ~.~-~~---~---~- : ... ~.~-~-~--: .. : .. : ........... .1 

OK 

Edit DITL Item #1 

®Button 
0 Check boH 
0 Radio control 

0 Static teHt 
O Editable teHt 

O CNTL resource 
O I CON resource 
O PICT resource 

0 User item 

TeHt 

1·· 

®Enabled 
0 Disabled 

top 71 
1--------l 

left 117 
t---------1 

bottom 91 
t---------1 

right 177 ..__ ___ ____. 

Figure 5.20 The OK button. 

Edit Dill Item #2 

0 Button ®Enabled 
0 Check boH 0 Disabled 
O Radio control 

® Static teHt top 7 O Editable teHt 
left 70 O CNTL resource 

0 I CON resource bottom 61 
0 PI CT resource right 280 
0 User item 

Te Ht Another fine program from the Mac 
Programming Primer! ©1989, D. 
Mark & C. Reed!!! 

Figure 5.21 The About Box text. 



Menu Management 163 

#define 
#define 
#define 
#define 

//define 
I/define 
//define 
#define 
#define 
#define 
I/define 

I/define 

lldefi ne 
I/define 

//define 

#define 
#define 

§0§ Alert 11 About 11 ID = 400 from Timer P 

top ~bottom~ 
left ~right ~ 
items I ol 400 I 
stage 1 D 2 bold 181 drawn 

stage 2 D 2 bold 181 drawn 

stage 3 D 2 bold 181 drawn 

stage 4 D 2 bold 181 drawn 

Figure 5.22 The About Alert, 
displayed as text. 

Timer Code 

sound 

~ 

Some of this code can be cannibalized from EventTutor. Just be careful with 
variable names and the like. 

Get into THINK C, and start a new project in the Timer folder. Call the 
project Timer Proj. Add MacTraps to your project. Now, add the code. 

BASE_RES_ID 400 
NI L_POINTER OL 
MOVE_ TO_FRONT -1 
REMOVE_ALL_EVENTS 0 

PLAIN 0 
PLAI N_ITEM 1 
BOLD_ITEM 2 
ITALIC_ITEM 3 
UNDERLINE_ ITEM 4 
OUTLINE_ITEM 5 
SHADOW_ ITEM 6 

INCLUDE_SECONDS TRUE 
' 

ADD_CHECK_MARK TRUE 
REMOVE_CHECK_MARK FALSE 

DRAG_ THRESHO LO 30 

MIN_SLEEP OL 
NI L_MOUSE_REGION OL 



164 

#define WNE_TRAP_NUM Ox60 
lldef i ne UNIMPL_TRAP_NUM Ox9F 

#define OUIT_ITEM 1 
#define ABOUT_ITEM 1 

#define NOT_A_NORMAL_MENU -1 
#define APPLE_MENU_ID BASE_RES_ID 
#define FILE_MENU_ID BASE_RES_ID+l 
/idef i ne FONT_MENU_ID 100 
/idefi ne STYLE_MENU_IO 101 

#define CLOCK_LEFT 12 
#define CLOCK_ TOP 25 
#define CLOCK_SIZE 24 

#define ABOUT_ALERT 400 

gClockWindow: WindowPtr 
Boolean 
1 ong 
EventRecord 
MenuHandle 
int 

gDone. gWNEimplemented: 
gCurrentTime. gOldTime: 
gTheEvent: 

Re ct 
Style 

gAppleMenu. gFontMenu. gStyleMenu: 
gLastFont: 
gOragRect: 
gCurrentStyle = PLAIN: 

!******************************** main *********/ 

main C ) 
{ 

ToolBoxlnit(): 
Window In it ( ) : 
SetUpDragRect<>: 
MenuBarinit{): 
Mainloop{): 

/*********************************** ToolBoxinit */ 

ToolBoxinit() 
{ 

InitGraf{ &thePort >: 
InitFonts<>: 
FlushEvents( everyEvent. REMOVE_ALL_EVENTS ): 
InitWindows(): 
InitMenus(): 
TEinit(): 
InitDialogs( NIL_POINTER ): 
InitCursor{): 

Macintosh Programming Primer 



Menu Management 165 

!************************************ Windowlnit */ 

Windowlnit() 
{ 

gClockWindow = GetNewWindow( BASE_RES_ID, NIL_POINTER, 
MOVE_TO_FRONT ); 

SetPort( gClockWindow ); 
ShowWindow( gClockWindow ); 

TextSize( CLOCK_SIZE ); 

/******************************** SetUpDragRect *********/ 

SetUpDragRect() 
{ 

gOragRect = screenBits.bounds; 
gOragRect.left += DRAG_THRESHOLD; 
gDragRect.right -= DRAG_THRESHOLD; 
gDragRect.bottom -= DRAG_THRESHOLD; 

/*********************************** 

MenuBarlnit() 
{ 

Handle myMenuBar; 

MenuBarlnit */ 

myMenuBar GetNewMBar( BASE_RES_ID ); 
SetMenuBar( myMenuBar ); 
gAppleMenu = GetMHandle( APPLE_MENU_ID ); 
gFontMenu = GetMenu( FONT_MENU_ID ); 
gStyleMenu = GetMenu( STYLE_MENU_ID ); 

InsertMenu( gFontMenu, NOT_A_NORMAL_MENU ); 
AddResMen u ( g F ontMen u, 'FONT' ) ; 
InsertMenu( gStyleMenu, NOT_A_NORMAL_MENU ); 

Checkltem( gStyleMenu, PLAIN_ITEM, TRUE ); 
AddResMenu( gAppleMenu, 'DRVR' ); 
DrawMenuBar(); 

glastFont = l; 
HandleFontChoice( glastFont ); 



166 Macintosh Programming Primer 

!******************************** MainLoop *********/ 

MainLoop() 
{ 

gDone = FALSE; 
gWNEimplemented = ( NGetTrapAddress( WNE_TRAP_NUM, ToolTrap ) != 

NGetTrapAddress( UNIMPL_TRAP_NUM, ToolTrap ) ); 
while ( gDone == FALSE ) 
{ 

HandleEvent(); 

!************************************* HandleEvent */ 

HandleEvent() 
{ 

char theChar; 

if ( gWNEimplemented ) 

else 
{ 

WaitNextEvent( everyEvent, &gTheEvent, MIN_SLEEP, 
NIL_MOUSE_REGION ): 

SystemTask(): 
GetNextEvent( everyEvent, &gTheEvent ): 

switch ( gTheEvent.what ) 
{ 

case nullEvent: 
Handl eNul 1 <): 
break; 

case mouseDown: 
HandleMouseDown(); 
break: 

case keyDown: 
case autoKey: 

theChar = gTheEvent.message & charCodeMask; 
if (( gTheEvent.modifiers & cmdKey ) != 0) 

HandleMenuChoice( MenuKey( theChar ) ); 
break; 

case updateEvt: 
BeginUpdate( gTheEvent.message ); 
EndUpdate( gTheEvent.message ); 
break; 



Menu Management 

/******************************** HandleNull *********/ 

Handl eNul l () 
{ 

GetDateTime( &gCurrentTime ); 
if gCurrentTime != gOldTime 
{ 

DrawClock( gClockWindow ); 

/******************************** DrawClock *********/ 

DrawClock( theWindow ) 
WindowPtr theWindow; 
{ 

Str255 myTimeString; 

IUTimeString( gCurrentTime. INCLUDE_SECONDS. myTimeString ); 
EraseRect( &< theWindow->portRect ) ); 
MoveTo( CLOCK_LEFT. CLOCK_TOP ); 
Drawstring( myTimeString ); 
gOldTime = gCurrentTime; 

/************************************* HandleMouseDown */ 

HandleMouseDown() 
{ 

WindowPtr 
short int 
long int 

whichWindow: 
thePart; 
menuChoice, windSize; 

thePart = FindWindow( gTheEvent.where, &whichWindow ); 
switch ( thePart ) 
{ 

case inMenuBar: 
menuChoice = MenuSelect( gTheEvent.where ); 
HandleMenuChoice( menuChoice ); 
break: 

case inSysWindow : 
SystemClick( &gTheEvent, whichWindow ); 
break: 

case inDrag : 

167 

DragWindow( whichWindow, gTheEvent.where. &gDragRect); 
break; 

case inGoAway : 
gDone = TRUE: 
break; 



168 Macintosh Programming Primer 

/************************************* HandleMenuChoice */ 

HandleMenuChoice( menuChoice 
long int menuChoice: 
I 

int theMenu; 
int the Item; 

if menuChoice != O ) 
I 

theMenu = HiWord( menuChoice ); 
theltem = LoWord( menuChoice ); 
switch ( theMenu ) 
I 

case APPLE_MENU_ID : 
HandleAppleChoiceC 
break: 

case FI LE_MENU_ID : 
HandleFileChoice( 
break; 

case FONT_MENU_ID : 
HandleFontChoice( 
break; 

case STYLE_MENU_ID: 
HandleStyleChoice( 
break; 

I 
HiliteMenu( 0 ) ; 

theltem ); 

the Item ) : 

the Item ) : 

theltem >: 

/******************************** HandleAppleChoice *******/ 

HandleAppleChoice( theltem ) 
int the Item; 
( 

Str255 
int 
short int 
DialogPtr 

accName: 
accNumber: 
itemNumber; 
AboutDialog; 

switch ( theltem ) 
I 

case ABOUT_ITEM 
NoteAlert( ABOUT_ALERT. NIL_POINTER ); 
break; 

default : 
Getltem( gAppleMenu. theltem. accName ); 
accNumber = OpenDeskAcc( accName ); 
break; 



Menu Management 

!******************************** 

HandleFileChoice( theltem 
int the Item: 
{ 

switch ( theltem ) 
{ 

case QUIT_ITEM 
gDone = TRUE: 
break: 

!******************************** 

HandleFontChoice( theltem 
int the Item: 
{ 

int f ontNumber: 
St r255 f ontName: 

HandleFileChoice *******/ 

HandleFontChoice *******/ 

Checkltem( gFontMenu, gLastFont, REMOVE_CHECK_MARK ): 
Checkltem( gFontMenu, theltem, ADD_CHECK_MARK ): 
gLastFont = theltem: 
Getltem( gFontMenu . theltem . fontName >: 
GetFNumC fontName , &fontNumber >: 
TextFont( fontNumber >: 

!******************************** HandleStyleChoice *******/ 

HandleStyleChoice( theltem 
int the Item: 
{ 

switch( theltem ) 
{ 

case PLAIN_ITEM: 
gCurrentStyle c PLAIN: 
break: 

case BOLD_ITEM: 

case 

if ( gCurrentStyle & bold ) 
gCurrentStyle bold: 

else 
gCurrentStyle I= bold: 

break: 
ITALIC ITEM: 

if ( gCurrentStyle & italic ) 
gCurrentStyle italic; 

else 
gCurrentStyle I= italic: 

break: 

169 



170 Macintosh Programming Primer 

if ( gCurrentStyle & underline ) 
gCurrentStyle underline; 

else 
gCurrentStyle I= underline; 

break; 
case OUTLINE_ITEM: 

if ( gCurrentStyle & outline ) 
gCurrentStyle outline; 

else 
gCurrentStyle I= outline; 

break; 
case SHADOW ITEM: 

if ( gCurrentStyl e & shadow ) 
gCurrentStyle shadow; 

else 
gCurrentStyle I= shadow; 

break; 
} 
CheckStyles(); 
TextFace( gCurrentStyle ); 

/******************************** CheckStyles *******/ 

CheckStyles() 
I 

Checkltem( gStyleMenu. PLAIN_ITEM. gCurrentStyle ==PLAIN ); 
Check!tem( gStyleMenu. BOLD_ITEM. gCurrentStyle & bold ); 
Check!tem( gStyleMenu. ITALIC_ITEM. gCurrentStyle & italic ); 
Check!tem( gStyleMenu. UNDERLINE_ITEM. gCurrentStyle & underline); 
Check!tem( gStyleMenu. OUTLINE_ITEM. gCurrentStyle & outline ); 
Check!tem( gStyleMenu. SHADOW_ITEM, gCurrentStyle & shadow ); 

Running Timer 

Now that your source code is in, you're ready to run Timer. Select Run from 
the Project menu. When asked to "Bring the project up to date," click Yes. 
If you run into any compilation problems, consult the debugging tips found 
in the appendix. When asked to "Save changes before running," click Yes. 
Timer should now be up and running (see Figure 5.23). 



Menu Management 171 

Figure 5.23 Running Timer. 

Timer should display the time in a window in the upper left-hand corner. 
The menu bar should display the , File, Edit, and Special menus. Desk 
accessories should work. The File Menu has just one option, Quit, which 
should be operational. The Edit menu contains the standard menu items 
but is dimmed. The Special menu contains two hierarchical menu items: 
Font and Style. If you select Font, the hierarchical Font submenu should be 
displayed (Figure 5.24a). If you select Style, the hierarchical Style sub
menu should be displayed (Figure 5.24b). Both hierarchical menus should 
show a check mark next to the currently used font and style. If you change 
the style or font with the menus, the appearance of the timer window should 
change appropriately. Selecting About Timer from the menu should bring 
up the alert that you just created. Click on the OK button (or hit return) to 
make the alert disappear. 

Choose Quit from the File menu. Let's look at the code. 



172 

_J 

Macintosh Programming Primer 

a 

b 

~ ..IChicogo 
Geneuo 
Heluetico 
Monaco 

11 :55:26 p 

Figure 5.24 Timer hierarchical menus. 

Walking through the Timer Code 

Timer starts off with a set of#defi nes. The first global, gCl ockWi ndow, 
is the pointer to Timer's clock window. gDone and gWN E Impl emented are 
the same as in Chapter4's EventTutor. gCurrentTi me and gOl dTi me are 
used to determine when to change the clock display. You'll use g Appl e Menu 
when you add desk accessories to the menu. You'll use gFontMenu and 
gStyl eMe nu when you add and remove check marks from the Font and 
Style menus. g La s tF on t is used to determine the current font number in 
use, gDragRect is the Rec t used to limit the dragging area of the clock 
window, and gCurrentSty l e contains the current style used by Timer. 

#define BASE_RE S_I D 400 
#define N IL_PO INTER OL 
#define MDV E_ TO_FRONT - ll 
ftdefine REMOV E_AL L_EV ENTS 0 

#define PLAIN 0 
#define PLAIN_ ITEM 1 
#define BOLD_ITEM 2 
ftd efi ne ITALIC_I TE M 3 
#define UNDERLINE_I TEM 4 
ftdefi ne OUT LI NE_ I TEM 5 
1/define SHADOW_ ITEM 6 



Menu Management 

I/define INCLUDE_SECONDS TRUE 

I/define ADD_CHECK_MARK TRUE 
I/define REMOVE_CHECK_MARK FALSE 

I/define DRAG_ TH RES HO LO 30 

I/define MIN_SLEEP OL 
I/define NIL_MOUSE_REGION OL 

I/define WNE_TRAP_NUM Ox60 
/fdef i ne UNIMPL_TRAP_NUM Ox9F 

#define QUIT_ITEM 1 
#define ABOUT_ITEM 1 

#define NOT_A_NORMAL_MENU -1 
/fdefi ne APP LE_MENU_ID BASE_RES_ID 
I/define FILE_MENU_ID BASE_RES_ID+l 
I/define FONT_MENU_ID 100 
I/define STY LE_MENU_I D 101 

I/define CLOCK_LEFT 12 
I/define CLOCK_ TOP 25 
I/define CLOCK_SIZE 24 

I/define ABOUT_ALERT 400 

gClockWindow: WindowPtr 
Boolean 
long 
Event Record 
MenuHandle 
int 

gDone. gWNEimplemented: 
gCurrentTime. gOldTime: 
gTheEvent: 

Re ct 
Style 

gAppleMenu. gFontMenu. gStyleMenu: 
glastFont; 
gDragRect: 
gCurrentStyle = PLAIN; 

173 

main () should be familiar. It calls Too 1 Box I nit C), Wi ndowI nit (), 
and SetUpDragRect ( ). ThemenubaristheninitializedinMenuBa r I nit ( ), 
and then Main Loop () is run: 

!******************************** main *********/ 
main ( ) 
{ 

Tool Box I nit(): 
Windowlnit(): 
SetUpDragRect<>: 
MenuBarlnit(): 
MainLoop(); 



174 Macintosh Programming Primer 

Tool Boxlni t() is unchanged: 

/*********************************** ToolBoxlnit */ 

Tool Boxlni t() 
{ 

InitGraf( &thePort ); 
I nit Fonts(); 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ); 
InitWindows(); 
InitMenus(); 
TEinit(); 
InitDialogs( NIL_POINTER ); 
Ini tCursor(); 

Wi ndowlni t() hasafewnewlinesinit. gCl ockWi ndowiscreatedfrom 
the W I ND resource, made visible, and set as the current port. Then, the 
standard text size is set to C L 0 CK_ S I Z E. 

/************************************ Windowlnit */ 

Windowlnit() 
{ 

gClockWindow = GetNewWindow( BASE_RES_ID, NIL_POINTER, 
MOVE_TO_FRONT ); 

SetPort( gClockWindow ); 
ShowWindow( gClockWindow ); 

TextSize( CLOCK_SIZE ); 

SetUpOragRect() is the same as in Chapter 4. 

/******************************** SetUpDragRect *********/ 

SetUpDragRect() 
{ 

gDragRect = screenBits.bounds; 
gDragRect.left += DRAG_THRESHOLD; 
gDragRect.right -= DRAG_THRESHOLD; 
gDragRect.bottom -= DRAG_THRESHOLD; 

You now have an initialization routine called MenuBarlnit(). 
MenuBa r I nit () starts off by calling GetNewMBar() to load the MBAR 
resource you created into memory. GetNewMBar() automatically loads the 
individual MENUs pointed to by the MBAR. 

Then Set Menu Ba r ( ) tells the system to use the MB AR handled by 
myMenuBa r as the current menu bar. (The phrase, "xxx is handled by 
my Menu Ba r" really means that my Menu Ba r is a handle to xxx.) 



Menu Management 175 

!*********************************** 
MenuBarlnit() 

MenuBarlnit */ 

{ 
Handle myMenuBar: 

myMenuBar GetNewMBar( BASE_RES_ID ); 
SetMenuBar( myMenuBar ); 
gAppleMenu = GetMHandle( APPLE_MENU_ID ); 
gFontMenu = GetMenu( FONT_MENU_ID ); 
gStyleMenu = GetMenu( STYLE_MENU_ID ); 

InsertMenu( gFontMenu, NOT_A_NORMAL_MENU ): 
Add Res Menu ( g Fon tMen u, ·FONT' ) ; 
InsertMenu( gStyleMenu, NOT_A_NORMAL_MENU ); 
Checkltem( gStyleMenu, PLAIN_ITEM, TRUE ); 
AddResMenu( gAppl eMenu, • DRVR' ) ; 
OrawMenuBar(); 

gLastFont = 1; 
HandleFontChoice( glastFont ); 

After that, the globals gApp 1 eMenu, g FontMenu, and gStyl eMenu are 
set to handle their respective MENU data structures. InsertMenLI() is 
called to add the Font hierarchical submenu to the Menu Manager's list of 
available menus. The NOT_A_NORMAL_MENU parameter tells the Menu 
Manager not to place the Font menu directly on the menu bar. Add Res Men LI ( ) 
adds the name of all resources of type FONT to the Font menu. Next, 
I n s e rt Men LI ( ) is called for the Style hierarchical submenu. A check mark 
is placed next to the P LA I N item on the Style menu with the call to 
Check I t em ( ).You use the handle to the menu so you can add desk 
accessories to it via the call to Add Res Menu (). All desk accessories are 
resources of type DRVR. Add Res Men LI () looks for all resources of the 
specified type (we specified D RV R) and adds the resource names found to the 
specified menu. 

Next, DrawMenuBa r () drawsthemenubar,and Handl eFontChoi ce () 
sets the current font to the first font on the Font menu. 

Main Loop () is the same as in Chapter 4: 

/******************************** Mainloop *********/ 
Mainloop() 
{ 

gDone = FALSE; 
gWNEimplemented 

ToolTrap ) != 

ToolTrap) ); 
while ( gOone 
I 

NGetTrapAddress( WNE_TRAP_NUM, 

NGetTrapAddress( UNIMPL_TRAP_NUM, 

FALSE 

Handl eEvent(); 



176 Macintosh Programming Primer 

Hand 1 e Event ( ) is very similar to the version in Chapter 4. Start by 
checking for the existence of Wai t Next Ev en t ( ) and then make the 
appropriate call. Then, switch on gTheEvent. what. nul 1 Events are 
handledbytheroutineHandl eNul 1 ( ).Asusual,mouseDowns are handled 
by Handl eMouseDown( ). keyDown and autoKey events are handled by 
the same code. In either case, check to see if the command 38 key was 
depressed when the event occurred. If it was, convert the keystroke to a 
menu selection via MenuKey() and pass that result to 
H a n d 1 e Menu C ho i c e ( ). Finally, handle update Ev t s by calling 
Beg i n Update ( ) and End Update ( ) . 

Since update Ev ts have a higher priority than nu 11 Ev t, it is imperative 
that you respond to every update Ev t by calling Beg i n Update ( ) and 
End Update ( ) . If you didn't, the Window Manager would keep 
queueing update Ev ts, thinking you hadn't received them, and no 
nu 11 Ev ts would ever make it into the event queue. One type of event 
can prevent another from making it into the event queue because the 
queue is finite. If the queue is big enough for 20 events, and 20 
updateEvts are pending, there's no room for even one null Evt. 

/************************************* HandleEvent */ 

HandleEvent() 
{ 

char theChar; 

if ( gWNEimplemented ) 
WaitNextEvent( everyEvent. &gTheEvent, MIN_SLEEP. 

else 
{ 

SystemTask(); 

NIL_MOUSE_REGION ); 

GetNextEvent( everyEvent. &gTheEvent ); 

switch ( gTheEvent.what ) 
{ 

case nullEvent: 
Handl eNul 1 (); 
break; 

case mouseDown: 
HandleMouseDown(); 
break; 

case keyDown: 



Menu Management 177 

case autoKey: 
theChar = gTheEvent.message & charCodeMask: 
if CC gTheEvent.modifiers & cmdKey ) != 0) 

HandleMenuChoice( MenuKey( theChar ) ): 
break; 

case updateEvt: 
BeginUpdateC gTheEvent.message ): 
EndUpdate( gTheEvent.message ): 
break: 

Hand 1 e Nu 1 1 ( ) is called whenever a nu 1 1 Event is retrieved from the 
event queue. Hand 1 e Nu 11 ( ) checks the current time (in seconds) and 
compares it to the last check performed. If the time has changed, the clock 
window is refreshed. 

/******************************** HandleNull *********/ 

Handl eNul 1 () 
{ 

GetDateTime( &gCurrentTime ); 
if gCurrentTime != gOldTime 
{ 

DrawClock( gClockWindow ): 

DrawCl oc k () calls the International Utility I UTi me String () to get 
the current time in a format suitable for display. Next, the window is 
erased, the pen is positioned, and the new time string is drawn. Finally, 
gOl dTi me is updated. 

/******************************** DrawClock *********/ 

DrawClock( theWindow ) 
WindowPtr theWindow: 
{ 

Str255 myTimeString: 

IUTimeString( gCurrentTime, INCLUDE_SECONOS, 
myTimeString ): 

EraseRect( &C theWindow->portRect ) ): 
MoveTo( CLOCK_LEFT, CLOCK_TOP ); 
Drawstring( myTimeString ): 
gOldTime = gCurrentTime; 

Handl eMouseDown () issimilartoitsChapter4counterpart. Fi ndWi n
d ow ( ) is called, returning a part code that indicates the part of the window 
in which the mouseDown event occurred. In addition, Fi ndWi ndow () sets 
whi chWi ndow to the window in which the mouseDown occurred. 



178 Macintosh Programming Primer 

If the mouse Down occurred in the menu bar, MenuSel ect() is called, 
allowing the user to make a selection from the menu bar. The user's 
selection is passed on to Hand 1 e Menu Choi c e ( ) . 

The rest of the part codes are handled as they were in Chapter 4. 

!************************************* HandleMouseDown */ 

HandleMouseDown() 
{ 

WindowPtr 
short int 
long int 

whichWindow; 
thePart; 
menuChoice, windSize; 

thePart = FindWindow( gTheEvent.where, &whichWindow ); 
switch ( thePart ) 
{ 

case inMenuBar: 
menuChoice = MenuSelect( gTheEvent.where ); 
HandleMenuChoice( menuChoice ); 
break: 

case inSysWindow : 
SystemClick( &gTheEvent, whichWindow ); 
break; 

case inDrag : 
DragWindow( whichWindow, gTheEvent.where, 

&gDragRect); 
break: 

case inGoAway : 
gDone =TRUE; 
break; 

Hand 1 e Menu Choi c e ( ) takes a four-byte argument. The first two bytes 
contain the menu selected, and the last two bytes contain the item selected 
from that menu. First, the Men u is set to the first two bytes and the I t em 
to the last two bytes. After that, th eMe nu is compared against the four MENU 
resource IDs to find which one was selected. A different routine exists for 
each of the four menus. When Menu Se 1 e ct ( ) was called, the selected 
menu title was left inverted. When you finish processing the menu selec
tion, the menu title is uninverted with a call to Hi 1 i teMen u ( 0 ) (1:357). 

!************************************* HandleMenuChoice */ 

HandleMenuChoice( menuChoice 
long int menuChoice; 
{ 

int theMenu; 
int the Item; 



Menu Management 179 

if menuChoice != 0 ) 
{ 

theMenu = HiWord( menuChoice ); 
theltem = LoWord( menuChoice ); 
switch ( theMenu ) 
{ 

case APPLE_MENU_IO : 
HandleAppleChoice( 
break: 

case FI LE_MENU_IO : 
HandleFileChoice( 
break; 

case FONT_MENU_IO : 
HandleFontChoice( 
break; 

case STYLE_MENU_ID: 
HandleStyleChoice( 
break: 

} 
HiliteMenu( 0 ) ; 

theltem ); 

the Item ) ; 

the Item ) ; 

theltem ); 

Ha n d 1 e Appl e Choi c e ( ) handles all s menu selections. If the About 
Timer menu item is selected, the alert with resource ID= ABOUT _ALERT is 
drawn with NoteA 1 ert ().Alerts are discussed in more detail in Chapter 
6. Any other item selected is assumed to be a desk accessory. The name of 
the desk accessory is retrieved with Get I t em ( ) • and the desk accessory is 
opened with Open Des kAcc (). 

/***************************HandleAppleChoice *******/ 

HandleAppleChoice( theltem 
int the Item: 
{ 

Str255 
int 
short int 
DialogPtr 

accName: 
accNumber: 
itemNumber; 
AboutDialog; 

switch ( theitem ) 
{ 

case ABOUT_ITEM : 
NoteAlert( ABOUT_ALERT, NIL_POINTER ); 
break: 

default : 
Getitem( gAppleMenu. theltem, accName ); 
accNumber = OpenDeskAcc( accName ); 
break: 



180 Macintosh Programming Primer 

Because there's only one item under the File menu, the code for 
Handl eFi 1 eChoi ce() is pretty simple. The global variable done is set to 
TRUE if Quit is selected. The value of g Done is checked every time through 
the main loop. When gDone =TRUE, the program knows that it's time to 
exit. 

/************************* HandleFileChoice 

HandleFileChoiceC theltem 
int the Item: 
{ 

switch ( theltem ) 
{ 

case OUIT_ITEM : 
gDone "" TRUE; 
break: 

*******/ 

The Edit menu is in this application only to support desk accessories. All 
items were dimmed when you created the MENU resource. Since you don't 
care what happens as far as your application is concerned, you need not do 
anything. 

Actually, we've only done half the job so far; although Timer allows 
the use of desk accessoriest the cut, copy, paste commands are not yet 
supported. We'll add this in Chapter 7's WindowMaker program. 

The Font menu is displayed when the Font item in the Special menu is 
selected. The first Check I tern ( ) call removes the check mark from what
ever had been the last font selected. Then, the same call is used to place a 
check mark on the newly selected font. Then, glastFont is set to the 
selecteditemnumber.Next, the Get Item() callreturnsthe fontNamefor 
the menu selection that you picked. Get FN um ( ) provides the font number 
given the fontName, and finally the ont of the text is changed with the 
Text Font() call, given the font ID number. 

/************************** HandleFontChoice *******/ 

HandleFontChoice( theltem 
int the Item; 
I 

int fontNumber; 
St r255 f ontName: 



Menu Management 

Checkltem( gFontMenu, glastFont, REMOVE_CHECK_MARK ); 
Checkltem( gFontMenu, theltem, AOD_CHECK_MARK ); 
gLastFont = theltem; 
Getltem( gFontMenu, theltem • fontName ); 
GetFNum( fontName, &fontNumber ); 
TextFont( fontNumber ); 

181 

The Style hierarchical submenu controls g Current Sty l e. When a style 
is selected, it must be checked against g Cur rent Sty 1 e. If the style is 
currently in use, it must be removed, and vice versa. Check Sty 1 es ( ) is 
then called to update the check marks on the Style menu. Finally, 
Text Face() is called to implement the styles in gCurrentStyl e. 

/************************** HandleStyleChoice ***/ 

HandleStyleChoice( theltem 
int the Item: 
{ 

switch( theltem ) 
{ 

case PLAI N_ITEM: 
gCurrentStyle = PLAIN; 
break; 

case BOLO_ITEM: 
if ( gCurrentStyle & bold ) 

gCurrentStyle bold; 
else 

gCurrentStyle I= bold: 
break: 

case ITALIC_ITEM: 
if ( gCurrentStyle & italic ) 

gCurrentStyle italic: 
else 

gCurrentStyle I= italic; 
break; 

case UNDERLINE_ITEM: 
if ( gCurrentStyle & underline ) 

gCurrentStyle underline; 
else 

gCurrentStyle I= underline; 
break; 

case OUTLINE_ITEM: 
if ( gCurrentStyle & outline ) 

gCurrentStyle outline; 
else 

gCurrentStyle I= outline; 
break; 

case SHADOW_ITEM: 
if ( gCurrentStyle & shadow ) 

gCurrentStyle shadow; 
else 

gCurrentStyle I= shadow: 
break: 



182 

_J 

Macintosh Programming Primer 

case SHADOW_ITEM: 
if ( gCurrentStyle & shadow ) 

gCurrentStyle shadow; 
else 

gCurrentStyle I= shadow; 
break; 

} 
CheckStyles(); 
TextFace( gCurrentStyle ); 

CheckStyl es () steps through each item in the Style menu, placing a 
check mark next to those styles set in g Current Sty l e: 

!******************************** CheckStyles *******/ 

CheckStyles() 
{ 

Checkltem( gStyleMenu, PLAIN_ITEM, gCurrentStyle == 
PLAIN ) ; 

Checkltem( gStyleMenu, BOLD_ITEM, gCurrentStyle & bold); 
Checkltem( gStyleMenu, ITALIC_ITEM, gCurrentStyle & 

italic): 
Checkltem( gStyleMenu, UNDERLINE_ITEM, gCurrentStyle & 

underline); 
Check!tem( gStyleMenu, OUTLINE_ITEM. gCurrentStyle & 

outline ); 
Checkltem( gStyleMenu, SHADOW_ITEM, gCurrentStyle & 

shadow ); 

That's it for our discussion of Timer. With this code, you should be able 
to add pull down and hierarchical menus to your programs. The last menu 
type, pop-up menus, are explored in the next program. 

Zinger 

Zinger opens a window on the desktop and implements a pop-up menu of 
numbers inside the window. When a number is selected from the pop-up, 
Zinger beeps that number of times and resets the value on the face of the 
pop-up to reflect this selection. 

Zinger works like this: 

• It initializes the Toolbox, window, and drag Re ct. 

• It initializes the pop-up menus, drawing the pop-up for the first time. 

• It activates the pop-up menu when a mouseDown occurs in the menu 
rectangle, and redraws the pop-up when an updateEvt occurs. 

• Finally, Zinger quits when the window's close box is clicked. 



Menu Management 183 

Since you've seen much of Zinger's code in previous chapters, we'll 
concentrate on the code that makes the pop-up menu work. Start by 
building a folder called Z i n g e r for the project files. 

Next, create a resource file called Zinger Proj. Rsrc. Then, build a 
resource of type MENU with ID= 400 and with the specifications in Figure 
5.25 (see page 188). Build a WIND with the specifications of Figure 5.26 (see 
page 189). Now, startanewprojectcalled Zinger Proj, add Ma cTraps to 
it, and type in the following code: 

#define BASE_RES_ID 400 
#define NIL_POINTER OL 
#define MOVE_TO_FRONT -1 L 
#define REMOVE_ALL_EVENTS 0 

#define MIN_SLEEP OL 
#define NIL_MOUSE_REGION OL 

#define DRAG_ THRESHOLD 30 

#define WNE_TRAP_NUM Ox60 
#define UNIMPL_TRAP_NUM Ox9F 

#define POPUP_MENU_ID BASE RES_ ID 
#define NOT_A_NORMAL_MENU -1 

#define POPUP_LEFT 100 
#define POPUP_TOP 35 
#define POPUP_RIGHT 125 
#define POPUP_BOTTOM 52 
#define SHADOW_PIXELS 1 
#define RIGHT_MARGIN 5 
#define BOTTOM_MARGIN 4 
#define LEFT_MARGIN 5 
#define PIXEL_FOR_TOP LI NE 1 

Boolean 
int 
MenuHandle 
EventRecord 
Re ct 

gDone, gWNEimplemented; 
gPopUpitem = 1, gPopUpLabelWidth; 
gPopUpMenu; 
gTheEvent; 
gPopUpRect. gLabelRect. gDragRect; 

/*********************** Main *************/ 

ma i n ( ) 
{ 

Tool Boxlni t(); 
Wi ndowlni t(); 
SetUpDragRect(); 
MenuBarinit(); 
D rawPopUp ( ) ; 
Mainloop(); 



184 

/*********************************** ToolBoxinit */ 

Tool Box I nit() 
{ 

InitGraf( &thePort ); 
InitFontsC); 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ); 
InitWindows(); 
InitMenus(); 
TEI nit(): 
InitDialogs( NIL_POINTER ); 
Ini tCursor(): 

/*********************Windowlnit**************/ 

Windowlnit() 
{ 

WindowPtr popUpWindow: 

Macintosh Programming Primer 

popUpWindow = GetNewWindow( BASE_RES_ID , NIL_POINTER, 
MOVE_TO_FRONT ) : 

ShowWindow( popUpWindow ); 
SetPort( popUpWindow ); 
TextFont( systemFont ); 
TextMode( srcCopy ); 

/******************************** SetUpDragRect *********/ 

SetUpDragRect() 
{ 

gDragRect = screenBits.bounds: 
gDragRect.left += DRAG_THRESHOLD; 
gDragRect.right -= DRAG_THRESHOLD: 
gDragRect.bottom -= DRAG_THRESHOLD: 

/*********************MenuBarlnit**************/ 

MenuBarlnit() 
{ 

gPopUpMenu = GetMenu( POPUP_MENU_ID ); 
InsertMenu( gPopUpMenu, NOT_A_NORMAL_MENU ); 
Hlock( gPopUpMenu ); 
gPopUplabelWidth = StringWidth( (**gPopUpMenu).menuData ); 
HUnlock( gPopUpMenu ); 



Menu Management 

/********************* DrawPopUp **************/ 

DrawPopUp() 
{ 

SetRect( &gPopUpRect. POPUP_LEFT. POPUP_TOP. 
POPUP_RIGHT. POPUP_BOTTOM ); 

FrameRect( &gPopUpRect ); 

MoveTo( gPopUpRect.left+SHADOW_PIXELS. gPopUpRect.bottom ); 
LineTo( gPopUpRect.right. gPopUpRect.bottom ); 
LineTo( gPopUpRect.right. gPopUpRect.top+SHADOW_PIXELS ); 

MoveToC gPopUpRect.left - gPopUplabelWidth - RIGHT_MARGIN, 
gPopUpRect.bottom - BOTTOM_MARGIN ); 

HLockC gPopUpMenu ); 
Drawstring( (**gPopUpMenu).menuData ); 
HUnlockC gPopUpMenu >: 

gLabelRect.top = gPopUpRect.top + PIXEL_FOR_TOP_LINE; 
gLabelRect.left = gPopUpRect.left - gPopUplabelWidth 

- LEFT_MARGIN - RIGHT_MARGIN: 
gLabelRect.right = gPopUpRect.left: 
gLabelRect.bottom = gPopUpRect.bottom: 

DrawPopUpNumber(); 

/********************* DrawPopUpNumber **************/ 

DrawPopUpNumber() 
{ 

Str255 menu Item; 
int itemLeftMargin; 

Getltem( gPopUpMenu. gPopUpltem. &menultem ); 
itemLeftMargin = ( gPopUpRect.right - gPopUpRect.left -

StringWidth( menultem ) ) I 2; 
MoveToC gPopUpRect.left + itemLeftMargin, 

gPopUpRect.bottom - BOTTOM_MARGIN ); 
Drawstring( menultem ); 

/******************************** Mainloop *********/ 

Mainloop() 
{ 

gDone = FALSE; 

185 

gWNElmplemented = ( NGetTrapAddress( WNE_TRAP_NUM, ToolTrap ) != 
NGetTrapAddress( UNIMPL_TRAP_NUM. ToolTrap ) ); 

while ( gDone == FALSE ) 
{ 

HandleEvent(); 



186 Macintosh Programming Primer 

!************************************* HandleEvent */ 

HandleEvent() 
{ 

if ( gWNEimplemented ) 
WaitNextEvent( everyEvent, &gTheEvent, MIN_SLEEP, 

NIL_MOUSE_REGION ); 
else 
{ 

SystemTask(); 
GetNextEvent( everyEvent, &gTheEvent ); 

switch ( gTheEvent.what ) 
{ 

case mouseDown: 
HandleMouseDown(); 
break; 

case updateEvt: 
BeginUpdate( gTheEvent.message ); 
DrawPopUp(); 
EndUpdate( gTheEvent.message ); 
break; 

/************************************* HandleMouseDown */ 

HandleMouseDown() 
{ 

WindowPtr 
short int 
1 ong int 
Point 

whichWindow; 
thePart, i; 
theChoice; 
myPoint, popUpUpperLeft; 

thePart = FindWindow( gTheEvent.where, &whichWindow ); 
switch ( thePart ) 
{ 



Menu Management 

case inContent: 
myPoint = gTheEvent.where: 
GlobalTolocalC &myPoint ): 
if ( PtlnRect( myPoint, &gPopUpRect ) ) 
{ 

} 

InvertRect( &gLabelRect ): 
popUpUpperleft.v = gPopUpRect.top + 

PIXEL_FOR_TOP_LINE: 
popUpUpperLeft.h = gPopUpRect.left: 
LocalToGlobal( &popUpUpperleft >: 
theChoice = PopUpMenuSelectC gPopUpMenu. 

popUpUpperLeft.v. popUpUpperleft.h, 
gPopUpltem >: 

InvertRectC &gLabelRect >: 
if ( LoWordC theChoice ) > O ) 
{ 

gPopUpltem = LoWord( theChoice >: 
DrawPopUpNumberC>: 
for < i=O: i <gPopUpltem: i++ ) 

SysBeepC 20 ): 

break: 
case inSysWindow: 

SystemClick( &gTheEvent, whichWindow >: 
break: 

case inDrag: 

187 

DragWindow( whichWindow. gTheEvent.where. &gDragRect): 
break: 

case inGoAway : 
gDone = TRUE: 
break: 



188 Macintosh Programming Primer 

§0~ MENU .. Pop up 11 Io :::z 400 from Po pup Proj.Rsrc ~ 

menu ID 11400 

width lo 
height lo 
proclD lo 
filler lo 
en&bleflgs ISFFFFFFFF 
title !Pop Me Up 

***** 
menu Item I 1 

icon# lo 
key equiu D 
m&rk Ch&r D 
style lsoo 
***** 

menu Item 12 
icon# lo 
key equlu D 
mark Char D 
style lsoo 
***** 

menu Item 13 
icon# lo 
key equiu D 
mark Char D 
style lsoo 
***** 

Figure 5.25 Zinger MENU specifications. 



Menu Management 

menu Item 14 
icon# lo 
key equiu D 
mark Char D 
style lsoo 
***** 

menu Item Is 
icon# lo 
key equiu D 
mark Char D 
style lsoo 
***** 0 

Figure 5.25 Zinger MENU specifications (continued). 

§0§ WI ND 11 Pop up 11 ID = 400 from Pop up 

Window title: 

I Popup Windo~ I 
top 

left 

~bottom~ 
~right~ 

proclD j O I refCon l O I 

D Uisible 18] goRwayflag 

Figure 5.26 WI ND resource. 

189 



190 

_J 

Macintosh Programming Primer 

Save your code as Zinger.c and add it to the project. When you run the 
program, you should get a window with a pop-up box in it (Figure 5.27). 
When you select a number on the menu, Sys Beep should sound for the 
number of times that you selected. If you don't hear anything, check the 
volume in the control panel. If it's all right, check your code. 

Walking through Zinger 

Zinger starts, as usual, with 11 def i n es, followed by declaration ofits global 
variables: 

#define BASE_RES_ID 400 
#define NIL_POINTER OL 
#define MOVE_TO_FRONT -ll 
#define REMOVE_ALL_EVENTS 0 

#define MIN_SLEEP OL 
#define NIL_MOUSE_REGION OL 

#define DRAG_ THRESHOLD 30 

#define WNE_TRAP_NUM Ox60 
#define UNIMPL_TRAP_NUM Ox9F 

#define POPUP_MENU_ID BASE_ RES_ID 
#define NOT_A_NORMAL_MENU -1 

#define POPUP_LEFT 100 
#define POPUP_TOP 35 
#define POPUP_RIGHT 125 
#define POPUP_BOTTOM 52 
#define SHADOW_P IX ELS 1 
#define RIGHT_MARGIN 5 
#define BOTTOM_MARGIN 4 
#define LEFT_MARGIN 5 
#define PIXEL_FOR_TOP_LINE 1 

Boolean gDone, gWNEimplemented; 
int gPopUpltem = 1, gPopUplabelWidth; 
MenuHandle gPopUpMenu; 
EventRecord gTheEvent; 
Re ct gPopUpRect, gLabelRect, gDragRect; 



Menu Management 191 

,. ., 

Figure 5.27 Zinger! 

ma i n ( ) is much like its Timer counterpart, except that it calls 
DrawPopUp () before it enters the Main Loop () : 

/*********************** Main *************/ 
main ( ) 
{ 

Tool Boxini t() ; 
Wi ndowlni t() ; 
SetUpDragRect() ; 
MenuBarlnit() ; 
DrawPopUp() ; 
Mainloop() ; 

Tool Box I n i t ( ) remains the same as in previous incarnations: 

/******************************~**** Too lBox l nit */ 

Tool Boxlni t() 
{ 

InitGraf( &thePort ) ; 
InitFonts(l ; 
FlushEvents( everyEvent . REMOVE_ALL_EVENTS ) ; 
InitWindows(); 
InitMenus() ; 
TEinit() ; 
InitDialogs( NIL_POINTER ) ; 
Ini tCursor () ; 



192 Macintosh Programming Primer 

W i n d ow In i t ( ) may give you a sense of deja vu, as well. The 
popUpWi ndow ( ) is loaded, made visible, and made the current port. Next, 
the font is changed to system Font, the same font used to draw the regular 
pull-down menus. The s r c Copy text mode is used to simplify drawing of the 
pop-up menu item. With s r c Copy enabled, text drawn in a window 
overlays existing graphics. 

/*********************Windowlnit**************/ 

Windowlnit() 
{ 

WindowPtr popUpWindow: 

popUpWindow = GetNewWindow( BASE_RES_ID . NIL_POINTER. 
MOVE_TO_FRONT ) : 

ShowWindow( popUpWindow ): 
SetPort( popUpWindow >: 
TextFontC systemFont >: 
TextMode( srcCopy ): 

Set Up Dr a g Rec t ( ) is identical to the Timer version: 

/******************************** SetUpDragRect *********/ 

SetUpDragRect() 
{ 

gDragRect = screenBits.bounds: 
gDragRect.left += DRAG_THRESHOLD: 
gDragRect.right -= DRAG_THRESHOLD: 
gDragRect.bottom -= DRAG_THRESHOLD; 

In Menu Ba r I n i t ( ) , just as you did with the hierarchical menus in ' 
Timer, you load the MENU and add it to the menu list via the call to 
I nse rtMenu ( ) . Next, get the pop-up label from the menu data structure 
and calculate its width in pixels. You'll use this information later. 

/*********************MenuBarlnit**************/ 

MenuBarlnit() 
{ 

gPopUpMenu = GetMenu( POPUP_MENU_ID ); 
InsertMenu( gPopUpMenu. NOT_A_NORMAL_MENU ): 
HLock( gPopUpMenu ); 
gPopUplabelWidth = StringWidth( (**gPopUpMenu).menuData 

) : 
HUnlock( gPopUpMenu ): 



Menu Management 193 

DrawPopUp() will draw the pop-up outline, its one-pixel drop shadow, 
the pop-up label, and set g La be 1 Rec t, which you'll invert when the pop
up is selected. DrawPopUp() will also be called to handle updateEvts. 
After the background is drawn, call DrawPopUpNumber() to draw the 
current menu value-in this case, a number. 

/********************* DrawPopUp **************/ 

DrawPopUp() 
{ 

SetRect( &gPopUpRect. POPUP_LEFT. POPUP_TOP. 
POPUP_RIGHT. POPUP_BOTTOM ); 

FrameRect( &gPopUpRect ); 

MoveTo( gPopUpRect.left+SHADOW_PIXELS. gPopUpRect.bottom ); 
LineTo( gPopUpRect.right. gPopUpRect.bottom ); 
LineTo( gPopUpRect.right. gPopUpRect.top+SHADOW_PIXELS ); 

MoveTo( gPopUpRect.left - gPopUplabelWidth - RIGHT_MARGIN. 
gPopUpRect.bottom - BOTTOM_MARGIN ); 

Hlock( gPopUpMenu ); 
Drawstring( (**gPopUpMenu).menuData ); 
HUnlock( gPopUpMenu ); 

glabelRect.top = gPopUpRect.top + PIXEL_FOR_TOP_LINE; 
gLabelRect.left = gPopUpRect.left - gPopUpLabelWidth 

- LEFT_MARGIN - RIGHT_MARGIN: 
gLabelRect.right = gPopUpRect.left: 
gLabelRect.bottom = gPopUpRect.bottom: 

DrawPopUpNumber(); 

DrawPopUpNumber() gets the menu item corresponding to gPopU
p It em, calculates the margin, and draws it: 

/********************* DrawPopUpNumber **************/ 

DrawPopUpNumber() 
{ 

Str255 menuitem; 
int i temleftMa rg in; 

Getitem( gPopUpMenu. gPopUpitem. &menultem ); 
itemleftMargin = ( gPopUpRect.right - gPopUpRect.left -

StringWidth( menultem ) ) I 2; 
MoveToC gPopUpRect.left + itemleftMargin. 

gPopUpRect.bottom - BOTTOM_MARGIN ); 
Drawstring( menuitem ); 



194 Macintosh Programming Primer 

Main Loop ( ) works as it did in Timer: 

!******************************** MainLoop *********/ 

MainLoop() 
{ 

gOone == FALSE: 
gWNEimplemented = ( NGetTrapAddress( WNE_TRAP_NUM, ToolTrap ) != 

NGetTrapAddress( UNIMPL_TRAP_NUM, ToolTrap ) ): 
while ( gDone == FALSE ) 
{ 

HandleEventC>: 

/************************************* HandleEvent */ 

HandleEvent() 
{ 

if C gWNEimplemented > 

else 
{ 

WaitNextEvent( everyEvent, &gTheEvent, MIN_SLEEP, 
NIL_MOUSE_REGION ); 

SystemTask(); 
GetNextEventC everyEvent. &gTheEvent >: 

switch C gTheEvent.what ) 
( 

case mouseDown: 
HandleMouseDown(): 
break: 

When Zinger gets an updateEvt, it redraws the pop-up menu: 

case updateEvt: 
BeginUpdate( gTheEvent.message ): 
DrawPopUp (): 
EndUpdate( gTheEvent.message ): 
break: 

If the mouse was clicked in the window, copy the Point, convert it to the 
window's local coordinate system, and check to see ifit's inside g Pop Up Rec t. 
Ifso ... 



Menu Management 

/******************************** HandleMouseDown */ 

HandleMouseDown() 
{ 

WindowPtr 
short int 
long int 
Point 

whichWindow; 
thePart, i; 
theChoice; 
myPoint, popUpUpperleft; 

185 

thePart = FindWindow( gTheEvent.where, &whichWindow ); 
switch ( thePart ) 
{ 

case inContent: 
myPoint = gTheEvent.where; 
GlobalTolocalC &myPoint ); 
if ( PtinRect( myPoint, &gPopUpRect ) ) 
{ 

... invert the label and use g Pop Up Rec t to determine where the pop-up 
menu should appear. Since PopUpMenuSel ect() works with global coor
dinates, call Loe al ToGl oba l () to convert popUpUpperleft. Next, call 
Pop Up Menu Se l e ct ( ) to implement the pop-up menu. Then, uninvert the 
label. Finally, handle the selection by calling Sys Beep ( ) the selected 
number of times. gPopUpitem is set to the selected item number, so the 
next time the pop-up appears, g Pop Up I t em will be the default. 

Some versions of Apple's system software experiences problems with 
the SysBeep() call. If you experience problems with Zinger, do not 
adjust your set. The problem may be with your system. 

} 

break; 

InvertRect( &glabelRect ); 
popUpUpperleft.v = gPopUpRect.top + 

PIXEL_FOR_TOP_LINE; 
popUpUpperleft.h = gPopUpRect.left: 
LocalToGlobal( &popUpUpperleft ): 
theChoice = PopUpMenuSelect( gPopUpMenu, 

popUpUpperleft.v, popUpUpperleft.h, 
gPopUpitem ); 

InvertRect( &gLabelRect ); 
if C LoWordC theChoice > > O ) 
I 

gPopUpitem = LoWord( theChoice ); 
OrawPopUpNumber(); 
for C i=O; i<gPopUpitem; i++ ) 

SysBeepC 20 ); 



196 

_J 

Macintosh Programming Primer 

case inSysWindow: 
SystemClick( &gTheEvent, whichWindow ); 
break: 

case inDrag: 
DragWindow( whichWindow. gTheEvent.where. &gDragRect): 
break: 

case inGoAway : 

This is not the way "proper" Macintosh applications exit. You would 
normally use a Quit item in the File menu. 

gDone = TRUE: 
break: 

In Review 

Menus are an intrinsic part of the Macintosh interface. Designing them 
correctly allows the developer to take advantage of the familiarity of users 
with standard Mac menus. The standard pull-down menu does the job for 
many applications, and hierarchical and pop-up menus bring freshness to 
the interface. 

In Chapter 6, you'll learn about another essential part of the Mac 
interface: creating and controlling dialog boxes. While you're there, you'll 
also look at one of the newest managers on the Macintosh: the Notification 
Manager. 



Working with 
Dialogs 

In a dialog box, the computer presents a 
list of alternatives for the user to choose 
from. Alerts are simplified dialogs, used 

to report errors and give warnings to 
the user. Chapter 6 discusses both of 

these, along with the Notification 
Manager, Apple's new background 

notification mechanism. 

6 



198 

DIALOGS ARE AN important part of the Macintosh interface; they provide 
a friendly, standardized way of communicating and receiving feedback 
from the user. Some dialogs ask questions of the user, as in Figure 6.1. 
Others offer the user the opportunity to modify current program parame
ters (Figure 6.2). Some dialogs are the direct result of a user menu 
selection. For example, when you select Print ... from within an applica
tion, the Print Job dialog appears (Figure 6.3). 

Dialogs that appear as a direct result of menu commands give you a 
chance to change your mind (with the Cancel button), to continue on as 
planned (with the OK button), or to change things around a bit before 
continuing. 

By convention, menu items that spawn dialog boxes always end with 
an ellipsis( ... ). For example, the Print ... item on the File menu brings 
up a print dialog box. 

Another important part of the Mac Interface is the alert mechanism. 
Alerts (Figure 6.4) are simplified dialogs, used to report errors and give 
warnings to the user. From a programmer's point of view, alerts are easier 
to deal with than dialogs, so we'll use them when we can. 

Please Type In Your Name: 

I Bill 11 P.H. 11 Wagonbakerl 

Cancel OK 

Figure 6.1 "Whzt's Your Name?" dialog box. 

=L=as=e=r=W=n=·t=er=P=a=g=e=S=e=tu=p===========5=.2== (( OK JJ 
Paper: ® US Letter O R4 Letter O Tabloid · · 

O US Legal O 85 Letter ( Cancel ] 

Reduce or 1Hmij% 
Enlarge: 

Orientation 

·~ 
Figure 6.2 Page Setup dialog box. 

Printer Effects: 
181 Font Substitution? 
181 TeHt Smoothing? 
181 Graphics Smoothing? 
181 Faster Bitmap Printing? 

(Options) 

Help 



Working with Dialogs 199 

_J 

LoserWriter "LoserWriter" 5.2 n OK D 
Copies:l•MI Pages:® All 0 From: D To: D ( Cancel ) 

Couer Page: ® No O First Page 0 Lost Page ( Help ] 

Poper Source:® Poper Cossette O Manual Feed 

Figure 6.3 Print Job dialog box. 

There's not enough 
memory to edit another 
document. 

ll OK ll 
Figure 6.4 An Alert! 

Chapter 6 also presents the Notification Manager, Apple's newest 
addition to the Toolbox. The Notification Manager is designed to work with 
MultiFinder, so that a program not currently in the foreground has a way 
of notifying the user of an important event. 

How Dialogs Work 

Dialog boxes consist of a window and a list of dialog items. When the dialog 
first appears, each item on the dialog item list is drawn. Typical dialog 
items include check boxes, radio buttons, and push buttons. These items 
are called controls. In addition, static text fields, editable text fields, PICT s, 
and IC 0 Ns may also be part of an item list (Figure 6.5). Every dialog box has 
at least one exit item (by convention, most dialog boxes offer an OK button 
for this purpose). There are two different kinds of dialogs: modal dialogs 
and modeless dialogs. 

Modal Dialogs 

A modal dialog is one to which the user must respond before the program 
can continue. Modal dialogs are used for decisions that must be made 
immediately. They represent the vast majority of dialog boxes. 



200 Macintosh Programming Primer 

[ Selected Radio Button J [ Radio Button J 
L 

I mageWrite;z ~ v2.7 ([ OK ~ 
Paper: ®us Letter O A4 Letter 

0 US Legal O International Fanfold (Cancel ) 
O Computer Paper 

Orientation Special Effects: D Tall Adjusted 

·~ 
L1815D 3 Reduction i No 6ops Between Pages 

z I 

J l Check DOH J Checked Check Boa 

[ Static Teat J [ Button J 
] 

I mageWri1er v2,1 (( OK l) 
Quality: QBest 0 Faster ®Draft 

Page Range: @All O From: D To: D ( Cancel ) 

Copies: D 
OHondFeed ~ Paper Feed: ®Automatic 

" Editable Teat l 
Figure 6.5 Dialog items. 

The Macintosh is generally a modeless machine. This means that 
most of the operations performed by an application are available to 
the user most of the time. For example, most of the operations 
performed by THINK Care available via pull-down menus. Modal 
dialogs come into play when you must focus the user's attention on a 
specific task or issue. Alerts are always modal. Dialog boxes aren't 
always modal. 

Modeless Dialogs 

Modeless dialogs act more like regular windows; they appear to the user 
like any other window and can be brought to the front with a mouse click, 
or even dragged around the screen. Whereas modal dialogs require an 
immediate response from the user, modeless dialogs may be set aside until 
they are needed. The algorithms used to implement modal and modeless 
dialogs are quite different. 



Working with Dialogs 201 

_J 

The Modal Dialog Algorithm 

• First, load the dialog (including the dialog's item list) from the resource 
file using GetNewDi a 1 og ( ) . 

• Then, make the dialog window visible (just as you would a new window). 

• Next, enter a loop, first calling Mod a 1Dia1 og () to find out which item 
the user selected, then processing that item. When an exit item (like OK 
or Cancel) is selected, exit the loop. 

The Modeless Dialog Algorithm 

• First, load the dialog and make it visible (as was done with the modal 
dialog). 

• As an event is returned by GetNextEvent () or Wai tNextEvent (). 
pass it on to I s Di a 1 o g Event ( ) . 

• If Is Di al ogEvent() returns FALSE, the event is not related to the 
dialog and should be handled normally. Otherwise, the event should be 
passed to Di a 1ogSe1 ect ( ) . 

• Di a 1 o g Se 1 e ct ( ) returns a pointer to the dialog box whose item was 
selected, as well as the number of the item selected by the user. Process 
the item as you would with Modal Di al og (). 

Let's look at the types of items found in dialogs. 

Dialog Items: Controls 

One of the most important types of dialog items is the control. Controls are 
items that exist in at least two different states. For example, the check box 
can be checked or unchecked (Figure 6.6).Although controls may be defined 
by the program designer, four controls are already defined in the Toolbox. 
They are: buttons, check boxes, radio buttons, and dials. 

These controls fall under the jurisdiction of the Control Manager, 
which handles the creation, editing, and use of controls. 

D Check boH # 1 

181 Check BoH #2 

n OK D 
Figure 6.6 The Checkbox. 



202 Macintosh Programming Primer 

Buttons 

The classic example of a button is the OK button found in most dialog boxes 
(Figure 6. 7). When the mouse button is released with the cursor inside the 
button, the button's action is performed. For example, clicking an OK 
button might start a print job or save an application's data. Those of you who 
are familiar with HyperCard should note the similarity of HyperCard 
buttons to Toolbox buttons. Toolbox buttons are generally rounded-corner 
rectangles, whereas HyperCard buttons have more variation in shape and 
appearance. 

Check Boxes 

Check boxes are generally used to set options or arguments of an action. 
For example, you might use a check box to determine whether the user 
wants sound turned on or off in an application (Figure 6.8). 

Radio Buttons 

Radio buttons are similar to check boxes in function, in that they also are 
used to set options or choices in a dialog box. Figure 6.9 shows some radio 
buttons. The difference between radio buttons and check boxes is that the 
choices displayed in radio buttons are mutually exclusive. Radio buttons 
appear in sets, and one and only one radio button in a set may be on (or 
highlighted) at any given time (Figure 6.10). 

Scale selection to: 

1-13 
( Cancel ) 

Figure 6. 7 The Button. 

Options Set: [81 Sound On 
[81 Aduanced Leuel 

n OK D 
Figure 6.8 Check box example. 



Working with Dialogs 

Measurement Type 

®inch Qcm 

([ OK JJ 

Your Order: 

® Hamburgers 
® French Fries 
®Coca-Cola 

OK 

Wrong Way: radio buttons 
should indicate mutually 
eHclusiue options. 

Figure 6.9 Radio button example. 

How Much Do You Make? 

O I make a lot of money 
O I make enough money 
® Got a nickel? 

OK 

Right Way: Only one of the 
options would reasonably 
be picked. 

Figure 6.10 Radio button pointers. 

Dials 

203 

Dials are different from other controls: They display and supply qualita
tive instead of off/on information. The only dial controls predefined in the 
Toolbox are scroll bars (Figure 6.11), which are an integral part of many 
Mac application windows. In Chapter 7, we'll show you how to set up a scroll 
bar. 



204 

_J 

Macintosh Programming Primer 

Pager 

!! 
Go,,, G !> 'ii\ 

·
0

0 
0

G0 .. 
0,,--; :.:: •• , G 

\:.:!) 00 ••. 0 

0!0~ ,J. 0 , 0 

· . . o .· . -
···.o . . 

c.: - . ·' 

Figure 6.11 Scroll bar example (from Pager in Chapter 7). 

Other Dialog Items 

I 

Controls are only one type of item used in dialogs. You can also display 
PI CTs and I CO Ns in dialog boxes. You can also add static and editable text 
fields, as well as user items, to your dialogs (Figure 6.12). User items 
designate an area of the dialog box that will be drawn in by a user I t em 
procedure. If the procedure draws outside the user item Re ct, the drawing 
is clipped. For example, you can define a clock-drawing procedure that gets 
updated each time Mod a 1Dia1 og () is called. 

ResEdit makes it easy to define dialog item lists. Figure 6.13 shows how 
ResEdit allows you to graphically edit the appearance of a dialog and the 
items within it. 



Working with Dialogs 205 

Custom Control J ::o Info 

~ 
Lochd 0 r [ ICON } MacP•int 2 .0 

Don't Set Kind : application 
the Uolume l Static TeHt ~ t--- Size: 149,273 t.itu us•d, 149K on disk 

too high ! 
Yhere : Hard Disk, SCSI 

a Created : Thu, Dec 17, 1987, 11 :07 PM I PICT J L Modified : 'w'ed, Oct 19, 1988, 9 :12 AM 
Version: MacP•int® Vers ion 2 .0 . Cop~righ\ 

© 1985-1987CLARIS 

!.. 
[Um Item HI 

I ([ OK u 
Suggested HemorlJ Size (K) : 512 

l Editable TeHt L AppHcdion HemorlJ Size (IC) : ~ 

Figure 6.12 Other dialog items. 

r S File Edit DITL 

0 Sound on 

O Rotate I con 

O Display Rlert 

Figure 6.13 Making dialogs (in ResEdit). 

[Us~J 
0 Seconds 

0 Minutes 



_J 

206 

Working with Alerts 

Alerts are very much like dialogs: You build them using ResEdit, and they 
consist of a window and a dialog item list. But there are some differences. 
Alerts are completely self contained. While Mod a 1Dia1 og ( ) is called 
repeatedly inside a loop, the alert procedures are called once. Each alert 
routine takes care of its own housekeeping. 

There are three standard types of alerts: stop alerts, note alerts, and 
caution alerts (Figure 6.14). Stop alerts indicate a critical situation, like 
a fatal error, that must be brought to the user's attention. Note alerts have 
a more informative tone. Caution alerts tell the user that the next step 
taken should be considered carefully, as it may lead to unexpected results. 

Another fine program from the 
Mac Programming Primer! 
©1989, D. Mark & C. Reed!!! 

n OK I 

You haue lost another 30,000 
Quatloos. Further losses may 
result in the total destruction 
of this planet. 

n Gee! D 

Tri-Dimensional Desktop 
Professional Uersion 2.01 a 
requires 84 Megabytes of 
RRM. Please purchase and 
install immediately. 

n Aargh! D 

Figure 6.14 Note, caution, and Stop alerts. 



Working with Dialogs 207 

_J 

Each alert exists in stages. The first time an alert is presented, it is a 
stage 1 alert; the second time, a stage 2 alert; the third time, a stage 3 alert; 
the fourth and subsequent times, a stage 4 alert. You can design your alerts 
so that stage 1 alerts are silent but stage 2, 3, and 4 alerts beep when the 
alert is presented. You can also specify whether or not the alert is presented 
at different stages. 

The Alert Algorithm 

Working with alerts is easy. Build your alert with ResEdit by creating an 
AL RT and a DI TL. Unlike regular dialogs, the only type of control you should 
put in your alert dialog item list is a button. 

• Load and present the alert with a call to StopA 1 ert( ), NoteA 1 ert ( ), 
or Ca u ti on A 1 er t ( ) . 

• Use the value returned from each of these functions to determine which 
item was hit (i.e., which button was pressed). 

Adding Dialogs to Your Programs 

In this chapter, we'll show you how to build modal dialog boxes and alerts 
through the use ofDLOG and DITL resources.Although we could create the 
dialog structure in THINK C instead, we choose to emphasize the resource
based approach. 

As we stated in the dialog algorithm, to put a dialog box in your 
application, you do the following things: (1) initialize the Dialog Manager 
and get your dialog box resources; (2) call Modal Di a 1 og ( ) ; and(3) respond 
to the events that occur in the dialog box window. 

Here's an outline of the procedure. First, initialize the Dialog Manager: 

InitDialogs( NIL_POINTER ); 

Then, load a dialog from your resource file with the GetNewDi al og ( ) 
routine: 

myDialog = GetNewDialog( resource ID. 
NIL_POINTER, MOVE_TO_FRONT ); 



208 Macintosh Programming Primer 

Now, initialize each of your controls. Each control has a unique item 
number, defined in the DITL resource (Figure 6.15.). Use GetDitem() to 
get a handle to each control item in the dialog box; then use Set Ct 1 Va 1 u e ( ) 
to set the buttons, radio buttons, and check boxes to their initial values. For 
example, the following routine will fill the first radio button and clear the 
second radio button in a dialog box: 

#define FIRST_RADIO 2 
#define SECOND_RADIO 3 
#define ON 1 
#define OFF 0 

GetDltem( myDialog, FIRST_RADIO, &itemType, &itemHandle, 
&itemRect ); 

SetCtlValue( itemHandle, ON ); 
GetDltem( myDialog, SECOND_RADIO, &itemType, &itemHandle, 

&itemRect ); 
SetCtlValue( itemHandle, OFF ); 

FI RST_RADIO and SECOND_RADIO are the radio button item numbers 
defined in the DI TL resource. The first radio button will be set to 0 N, the 
second to 0 FF (Figure 6.16). 

~§ D Ill 11 Alarm 11 ID = 400 from RemimJ 

1n·i·arm .. g·c;·0s··"C;·1fin·1rttJ1rs·tic·ci"n·a·s .. ! 
~ ........................................................ :~! ............................ ; 

D Sound on 

D Rotate I con 

D Display Alert 

( Saue 

fffs·a·: .. 1 
1 ................ 1 

0 Seconds 

0 Minutes 

(Cancel ) 

Figure 6.15 A sample D I T L. 

® First Radio Button 
O Second Radio Button 

n OK D 

Figure 6.16 Radio buttons #1 and #2. 



Working with Dialogs 209 

Here's an example of initialization of a series of check boxes. This code 
fragment clears the first check box and checks the second and third check 
boxes (Figure 6.17). 

#define FIRST_CHECKBOX 4 
#define SECOND_CHECKBOX 5 
#define THIRD_CHECKBOX 6 

#define ON 1 
#define OFF 0 

GetDitem( myDialog, FIRST_CHECKBOX, &itemType, 
&itemHandle, &itemRect ); 

SetCtlValue( itemHandle, OFF ); 
GetDitem( myDialog, SECOND_CHECKBOX, &itemType, 

&itemHandle, &itemRect ); 
SetCtlValue( itemHandle. ON ); 
GetDitem( myDialog, THIRD_CHECKBOX, &itemType, 

&itemHandle, &itemRect ); 
SetCtlValue( itemHandle, ON ); 

If you plan on drawing in the dialog box with QuickDraw (which you 
might want to do with a user I tern procedure), make it the current port: 

SetPort( myOialog ); 

When you create your D LOG in ResEdit, make sure the Visible box is 
unchecked. That way, if you load your dialog at the beginning of your 
program, it won't appear until you're ready. 

D First Check BoH 
181 Second Check BoH 
181 Third Check Bou 

(( OK )J 

Figure 6.17 Three check boxes. 



210 Macintosh Programming Primer 

Make the dialog visible by calling ShowWi ndow( ) . You're now ready to 
call Mod a 1 Di a 1 o g ( ) to handle the events that occur in the dialog window. 

dialogDone = FALSE; 
ShowWindow( myDialog ); 
while ( dialogDone == FALSE 
{ 

l 

ModalDialog( NIL_POINTER, &itemHit ); 
switch ( itemHit ) 
{ 

case OK_BUTTON: 
dialogDone = TRUE; 
break; 

case FIRST_RADIO: 
HandleRadio( SECOND_BUTTON ); 
break; 

case THIRD_CHECKBOX : 
HandleCheck( THIRD_CHECKBOX ); 
break; 

HideWindow< myDialog ); 

When the user clicks the OK button, the dialog loop exits and the dialog 
window is made invisible again. 

If you 're dealing with more than one window, make sure you are 
aware ofroutines like Sel ectWi ndow( ), which brings the window 
specified in the parameter to the front. You may also want to consider 
hiding your other windows while your dialog box is visible, then 
showing them when you drop out of the dialog loop. 

Dialog items are either enabled or disabled. If an item is disabled, 
Mod a 1Dia1 og () will not report mouse clicks in the item. In general, 
clicking I C 0 N s and P I CT s in a dialog box has no special significance, so 
disable both of these types of items. 

Static text fields are usually disabled, although you may change them in 
response to other events. For example, a timer might display the time in 
minutes or seconds, depending on the value of a set ofradio buttons (Figure 
6.18). If the Seconds radio button is clicked, the static text field could read 
Seconds. If the Minutes radio button is clicked, the static text field could be 
changed to read Minutes. Use the routines Get IT ext ( ) and Set IT ext ( ) 
to read and set the values of static text fields. 



Working with Dialogs 

~ Minutes 

O Seconds 
®Minutes 

([ OK D 

211 

Static TeHt 

Figure 6.18 Static text. 

Pa ram Text ( ) allows you to create a set of four default strings that can 
be substituted in your static text fields. To specify them, call Pa ram Text ( ) 
with four Str255s: 

ParamText( "\pthe tiny republic of Togo", "\pporkpie 
hats", "\pbabar", "\pAltarian dog biscuits" ); 

From now on, whenever the strings "AO", "Al", "A2", or "A3" appear in a 
static text item, they will be replaced by the appropriate Pa ramText () 
parameter. We use Pa ramText ()in Chapter 7's error handling routines. 

You can store Pa ram Text ( ) strings in your resource file as resources 
of type 'STR ' or inside a single 'STR/I' resource, read the strings in 
with GetResource() or GetStri ng( ), and then pass them to 
Pa ram Text ( ) . If, during the course of running your program, you 
decide to change the values of your strings, you can write them back 
outtotheresourcefilewith Wr i teResou rce ( ) . This is a little tricky, 
but it gives you a great way to store program defaults. The mechanism 
for modifying resources is covered in Inside Macintosh, Volume I, 
pages 122-127. 

Get IT ext ( ) and Set IT ext ( ) can also be used to modify the contents 
of an editable text field. Here's an example: 

GetDitem( myDialog, TEXT_FIELD, &itemType, &itemHandle, 
&itemRect ); 

GetIText( itemHandle, &myString ); 
SetIText( itemHandle, "\pI've been replaced!!!"); 



212 

__j 

Macintosh Programming Primer 

The last three arguments to Ge tD It em ( ) are placeholders. That is, 
they won't always be used, but you always need to provide a variable 
to receive the values returned. In the previous example, i t emH and 1 e 
was used, but i temType and i temRect were not. 

The Notification Manager 

The Notification Manager contains calls that allow applications running in 
the background to communicate with the user. The Notification Manager 
was first implemented in System 6.0. Because the Notification Manager is 
not described in Inside Macintosh, we've provided the following tech block. 
We should warn you, though, that this is an experimental, highly classified, 
multipage Tech Block. Take your time. Remember, read all the directions 
before you start. 

r 

r 

r 

How the Notification Manager Works 

The Notification Manager alerts the user that a background applica
tion requires the user's attention. The following notification tech
niques can be used. First, a small diamond-shaped mark ( +) may be 
placed on the notifying application's item in the menu. 

Next, the small icon may be rotated with another icon (see Figure 
6.19). Then, the user may be notified of the event by a sound 
designated by the background application. Finally, an alert can be 
displayed with a message regarding the event (see Figure 6.20). After 
the user clicks on the Alert button, a response procedure defined in the 
notifiying application can be called. · 

The Notification Manager will still run, even if your program is not 
running under MultiFinder. Since your program can't run in the 
background, however, the Notification Manager's functionality will 
be limited. 

• File Edit Uiew Special 

* File Edit Uiew Special 

• File Edit Uiew Special 

Figure 6.19 Small icon rotation 
in the menu bar. 



Working with Dialogs 

,. ''/$ File E di1 

An euent has taken place that 
requires your attention ... 

n OK D 

Figure 6.20 Alert message from the Notification Manager. 

The Notification Manager Structure 

213 

., 

Each call to the Notification Manager makes use of the NM Rec data 
structure: 

typedef st ruct NM Rec 
{ 

QE l emPtr ql i nk ; /* the next queue ent ry*/ 
short qTy pe; I* queue type */ 
s hort nmFlags ; I* reserved *I 
long nmPrivate ; /* reservedPoint *I 
short nmReserved ; I* reserved *I 
short nmMa r k; /* Appl i cation ID to 

mark in Apple Menu *I 
Handle nmSicon ; /* handle to small icon*/ 
Ha ndle nmSound ; I* handle to sound 

record*/ 
Str i ng Ptr nmStr ; I* stri ng to appear i n 

alert *I 
ProcPtr nmResp ; /* pointer to response 

routine *I 
l ong nm RefCon; I* for appl icat i on use*/ 
NMR ec ; 



214 Macintosh Programming Primer 

Here's an explanation of the NM Rec fields: 

• ql; nk, qType, nmFl ags, nmPri vate, and nmReserved are either 
reserved or contain information about the notification queue; you 
won't adjust these values. 

• nmMa rk: IfnmMa r k is 0, the (+)willnotbe displayed in the menu 
when the notification occurs; if nmMa r k is 1, then the application 
that is making the notifying call receives the mark. If you want a 
desk accessory to be marked, use the ref n um of the desk accessory. 
Drivers should pass 0. 

• nmS I con: If nm S I con is N I L_P 0 I NT ER, no icon is used; otherwise, 
the handle to the small icon ( • SIC N ' resource) to be used should be 
placed here. 

• nmSound: if nmSound is 0, no sound is played; -1 will result in the 
system sound being played. To play an ' s n d ' sound resource, put 
a handle to the resource here. The handle must be nonpurgeable. 

• nmS tr contains the pointer to the text string to be used in the Alert 
box. Put in NI L_PO INTER for no Alert box. 

• nm Resp is a pointer to a response procedure that gets called once the 
notification is complete. We'll set nmRespto -1, which removes the 
request from the notification queue once the notification is com
plete. 

There are only two calls in the Notification Manager. The first, 
NM I n st a 11 ( ) , adds the notification request to the Notification Queue, 
which is checked periodically: 

OSErr NM!nstall( QElemPtr ); 
QEl emPtr nmReqPtr: 

The second, NM Remove ( ) , removes the notification from the Notifica
tion Queue: 

OSErr NMRemoveC nmReqPtr: OElemPtr ); 
OElemPtr nmReqPtr: 

The next section lists and describes Reminder, the biggest and most 
complex program in this book. Reminder will show you how to put together 
all the pieces we've talked about so far: windows, events, menus, fonts, 
dialogs, alerts, and the Notification Manager. 



_J 
Reminder 

Reminder sets a countdown timer and, when the time runs out, alerts the 
user of the event via the Notification Manager. Reminder also supports a 
dialog box that allows you to change some of its settings. Here's a quick look 
at the Reminder algorithm: 

• It initializes the Toolbox. 

• It checks for System 6.0 or later. If not, it puts up an alert and exits. 

• It loads and initializes the settings dialog. 

• It loads the , File, and Edit menus. 

• It initializes the Notification Manager data structure. 

• It handles events. 

• If the Change Settings menu item is selected, it handles the settings 
dialog box. 

• If the Start Countdown menu item is selected, it pulls the number of 
seconds from the settings dialog, loads and shows the countdown 
window, counts down, and sets the notification. 

• If the Kill Notification menu item is selected, it removes the notification 
from the Notification Queue. 

• If the Quit menu item is selected, it exits. 

Warning: This is the longest of all of the Primer programs. You can 
save a little time by using resources and code from Chapter 5, but it's 
still going to take a while. You may wish to take a brief recess. 

Setting Up the Project 

Start by creating your project files. You can save some time by copying your 
Timer folder from Chapter 5 and renaming it Reminder. But remember, if 
you do this, you'll need to change the source code file name, the project file 
name, and the resource file name. We'll assume you're starting from 
scratch. 

215 



216 Macintosh Programming Primer 

Making the Resources for Reminder 

Go into ResEdit and create a file named Reminder Proj. rs re. Create a 
DITL with the Get Info information shown in Figure 6.21. This DITL will 
have eleven items. The table in Figure 6.22 lists the values for these items. 
Next, create a DI TL with the Get Info information shown in Figure 6.23. 
You'll use this DI TL in your About box alert. The About DI TL has two items. 
Create them from the table shown in Figure 6.24. 

Finally, create a DI TL with the Get Info information shown in Figure 
6.25. This DI TL belongs to the alert shown for a system earlier than Version 
6.0. The Bad System DI TL also has two items. Create them from the table 
in Figure 6.26. 

§0§ D ITL "Alarm 11 ID = 400 from Remin~ 

!Alarm goes off in ! 1 O 1seconds I .......................... -............................... ~r ...... -... -............... . 

; ............................................................ : : ............................. ; 

D Sound on 

D Rotate I con 

D Display Alert 

Saue 

ffi'se·:· .. 1 
i ................ I 

0 Seconds 

0 Minutes 

(Cancel ) 

Figure 6.21 Settings D IT L appearance. 

Item# Type Enabled top left 

1 Button Yes 130 50 

2 Button Yes 130 160 

3 Static Text Yes 20 20 

4 Edltable Text Yes 20 142 

5 Static Text Yes 20 189 

6 Check Box Yes 55 20 

7 Check Box Yes 75 20 

8 Check Box Yes 95 20 

9 Radio Button Yes 54 157 

10 Radio Button Yes 75 170 

11 Static Text Yes 95 170 

bottom 

150 

150 

40 

40 

40 

75 

95 

115 

74 

95 

115 

Figure 6.22 Item specifications for settings 0 IT L . 

right Text/Resource ID 

120 Save 

220 Cancel 

138 Alarm goes off 

In 

184 10 

249 seconds 

102 Sound on 

122 Rotate Icon 

130 Dlsplay Alert 

192 Use: 

247 Seconds 

249 Minutes 



Working with Dialogs 

§0§ D ITL 11 About 11 ID == 401 from Reminder Pr 

fn·n·0Iil·e·r:··1rn"ii ... ii"ro·,;;-r:a·iii··1r·o-rii.Iil·e .. l 
!Mac Programming Primer! ! 
!@1988, D. Mark & c. Reed!!! ! 
i ........................................................................................................ J 

OK J 

Figure 6.23 About box DI TL Get Info window. 

Item# Type Enabled top left bottom 

1 Button Yes 71 117 91 

2 Static Text Yes 7 70 61 

Figure 6.24 Item specifications for About DI TL . 

§0§ Dill "Bad System 11 ID== 402 from Remin 

ffil'e ... N.otiri·c·af.-O'i•··M·a·n·a·g·0·r:1s·"il'oll 
!supported in this uersion of the! 
!system software. Get 6.0! ! ! I 
I ....................................................................................................... ; 

OK 

Figure 6.25 Bad system DI TL Get Info window. 

217 

right Text/Resource ID 

177 OK 

280 Another fine 

program from the 

Mac 

Programming 

Prlmerl ©1989, 

D.Mark&C. 

Reed Ill 



218 Macintosh Programming Primer 

Item# Type Enabled top left bottom right Text/Resource ID 

1 Button Yes 71 117 91 177 OK 

2 Static Text Yes 7 70 61 280 The Notification 

Manager Is not 

supported In this 

version of the 

System software. 

Gets.om 

Figure 6.26 Item specifications for Bad System DI TL . 

Create an ALRT resource with ID= 401 that matches Figure 6.27. This 
snapshot was made by selecting Display as Text from the AL RT menu that 
appears when the ALRT is opened. Don't forget to set the i terns ID field to 
401. This links the ALRT to D ITL 401. 

Next, create an ALRT resource with ID= 402 that matches the table in 
Figure 6.28. 

You're now ready to create your Settings dialog box. Create a D L 0 G with 
ID= 4 0 0 that matches Figure 6.29. Remember to set the pro c I D to 1. This 
tells the Dialog Manager to draw a classic modal dialog type window. 

Next, we'll create two ' ST R ' resources to use in the Settings dialog. The 
first contains the default value to use when the time is displayed in seconds. 
The second contains the default value to use when the time is displayed in 
minutes. Figure 6.30a shows the value for 'ST R ' 401, and Figure 6.30b 
shows the value for 'STR' 402. 

~§ Alert "About" ID= 401 from Remind 

top ~bottom~ 
left ~right E==i 
itemslOl 401 I 
stage 1 D 2 bold 181 drawn 

stage 2 D 2 bold 181 drawn 

stage 3 D 2 bold 181 drawn 

stage 4 D 2 bold 181 drawn 

Figure 6.27 The About Box AL RT, 
displayed as text. 

sound 

~ 



fil]§ Alert 11 Bad System 11 ID = 402 from R 

top ~bottom~ 
left ~right ~ 
items ml 402 I 
stage 1 D 2 bold 181 drawn 

stage 2 D 2 bold 181 drawn 

stage 3 D 2 bold 181 drawn 

stage 4 D 2 bold 181 drawn 

sound 

~ 
Figure 6.28 The Bad System AL RT, 
displayed as text. 

§0§ Dialog 11 Alarm" ID = 400 from Remin 

Window title: 

I Alarm I 
top ~bottom~ 
left ~right ~ 

proclD I 1 I refCon IO I 
itemslD 1400 I 

D Uisible D goAwayFlag 

Figure 6.29 The Settings D L 0 G, 
displayed as text. 

§0§ STR "Def. Secs." ID= 401 from Copy of Reminder Proj. 

a 
theStr I 1 O 

~=========================: 
Data $ 

~0§ STR "Def. Mins." ID = 402 from Copy of Reminder Proj. 

theStr 
b 

Data $ 

Figure 6.30 Default time 'ST R' resources. 



220 Macintosh Programming Primer 

Setting Up the Notification Manager Resources 

Now that you've finished with the dialog and alert resources, you need to 
add three resources for the Notification Manager: a string, a sound, and a 
small icon. First, create another ' ST R ' resource, with ID = 4 0 0, that the 
Notification Manager will use in the alert that is presented to the user 
(Figure 6.31). 

Now, add the sound. There are a number of different sound resource 
types. The resource type to use is ' s n d ' (space at the end), with resource 
ID = 4 0 0. If you have a favorite sound from a HyperCard stack, you can cut 
it out using ResEdit and paste it into Reminder Proj. rs re. 

A good check on whether the sound will work properly is to use the 
play it option in the ' s n d ' menu, which shows when you are editing 
's n d ' resources. If that works, then the Notification Manager should 
be able to use it. If your's nd ' is a large file, you may have some 
problems. Start with a small 's n d ' resource. 

Figure 6.32 shows the 'snd' resources found in System 6.0.2. Open up 
the system file and copy the ' s n d ' of your choice into your Resource file if 
you don't have any other good sounds. Change the ID of the ' s n d ' to 4 0 0. 

The final resource for the Notification Manager is the small icon that 
rotates with the menu icon. Ours is a little bell. Use it or create your own 
small icon. Create a resource of type 'SI CN ',with ID= 400. Figure 6.33 is 
a snapshot of our S I C N editing session. 



Working with Dialogs 

-o STR ID 400 from Reminder Proj.Rsrc 

theStr 

Data 

lizounds ! ! ! It's time... I 

Figure 6.31 The 'STR' resource for the Notification Manager. 

,. s File Edit snd 

Hard Disk 

System Folder 

System 

Figure 6.32 System 6.0.2 ' s nd' resources. 

221 

., 



222 Macintosh Programming Primer 

r S File Edit 

Hard Disk 

THINK C 

src 

Reminder 

Reminder Proj.Rsrc 

SICNs from Reminder Proj . 

.. . .. . ...... . . . . . . . . . . .. . . . . . . . . . . . . ............ . . ............ .. .... 

Figure 6.33 The S I C N resource for the Notification Manager. 

Adding the Menu Resources 

., 

Add the two menu resources. The first, MBAR, contains the three menu IDs 
(400, 401, and 402). Create a resource of type MBAR, with ID= 400 (Figure 
6.34). Remember, to add a new menu to the list, click on the asterisks and 
select New from the File menu. 

D MBAR ID 400 from Reminder Proj.Rsrc 

#of menus 3 

***** 

menu res ID 1400 

***** 
menu res ID 1401 

***** 

menu res ID 1402 

***** 

Figure 6.34 MBAR resource. 



Working with Dialogs 223 

Now you need to create each menu with its items. Create the MENU, ID 
= 4 0 0, and make it look like the window in Figure 6.35. If you have trouble 
typing the symbol, open up an existing application and copy it from their 

MENU. 

§0§ MENU 11 Apple 11 ID = 400 from Reminder Proj.Rsrc §§ 

menu ID 

width 

height 

proclD 

filler 

enableflgs 

title 

***** 

400 

0 

0 

0 

0 

$FFFFFFFB 

menu I tern I About Reminder 

icon# lo I 
key equiu D 
mark Char D 
style 1.--s=-00-----------, 

*"'"'"'"' 
menultem l- J 

~==::::;---------------------------------' 
icon# ..... I o _ __. 
key equiu D 
mark Char D 
style i=I s=o=-1 --------------, 

***** 0 

Figure 6.35 MBAR resources. 



224 Macintosh Programming Primer 

Next, create the File MENU, ID = 401, and make it look like the window 
in Figure 6.36. Finally, create the Edit MENU, ID= 4 0 2, and make it look like 
the window in Figure 6.37 (see page 226). The Edit menu is disabled and 
is provided only as a courtesy for desk accessories. 

~D~ MENU "File" ID= 401 from Reminder Proj.Rsrc ~ 

menu ID 401 

width 0 

height 0 

proclD 0 

filler 0 

enableFlgs $FFFFFFF7 

title File 

***** 

menu Item I Change Settings 

icon# lo I 
key equiu [£] 
mark Char D 
style lsoo 
***** 

menu Item I Start Countdown 

icon# lo I 
key equiu [] 
mark Char D 
style lsoo 
***** 

Figure 6.36 File MENU resource (stretched). 



Working with Dialogs 225 

menu Item I Kill Notification 

icon# lo I 
key equiu ~ 
mark Char D 
style lsoo 

***** 

menu Item louit 

icon# lo 

key equiu [!] 
mark Char D 
style lsoo 

***** 0 

Figure 6.36 (continued) 



226 Macintosh Programming Primer 

§0§§ MENU "Edit" ID = 402 from Reminder Proj.Rsrc ~ 

menu ID 402 

width 0 

height 0 

proclD 0 

filler 0 

enableflgs $FFFFFF08 

title Edit 

**"'*"' 
menu Item I undo 

icon# lo 
key equiu [] 
mark Char D 
style lsoo 
***** 
menu Item I-
icon# lo 
key equiu D 
mark Char D 
style lsoo 
*"'**"' 
menu Item I cut 

icon# lo 
key equiu El 
mark Char D 
style lsoo 
***** 

Figure 6.37 Edit MENU resource (stretched). 



Working with Dialogs 227 

menu Item !copy 

icon# lo 

key equiu [D 
mark Char D 
style lsoo 

***** 

menu Item I Paste 

icon# lo I 
key equiu [!] 
mark Char D 
style lsoo 

***** 

menu Item lc1ear 

icon# lo I 
key equiu D 
mark Char D 
style lsoo 

***** 0 

Figure 6.37 (continued) 

The Home Stretch 

Finally, add the old WIND resource for your countdown window. Create a 
WI ND, ID= 400, with the specifications in Figure 6.38. When you're done, 
save the resource file (whew!). Then, check it to see if you have all the 
resources listed in Figure 6.39. If you don't, go back and add them. 

This is, by far, the biggest set of resources in the book. It is not uncommon 
at this point to start making mistakes (like mangling your motherboard 
and switching on the TV), so you might want to take a break before you start 
entering the code. 

***** 



228 

~D~~ WIND ID= 400 from Reminder Proj. 

Window title: 

I Time Remaining I 
top 

left 

~bottom~ 
~right ~ 

proclD lo lrefCon lo I 

D Uisible D goRwayFlag 

Figure 6.38 W I ND resource for 
countdown window. 

,. S File Edit 

Figure 6.39 Reminder resources completed. 

Macintosh Programming Primer 

., 



Working with Dialogs 229 

#define 
#define 
#define 
I/define 
I/define 
I/define 

I/define 
I/define 

I/define 

//define 
I/define 
I/define 
I/define 
//define 
I/define 
I/define 

The Reminder Code 

If you haven't done so already, go into THINK C, create a new project file 
named Reminder Proj,andaddMacTraps toit.Next,createanewsource 
code file named Reminder. c, and add it to the project as well. 

Some of the Reminder code can be copied from Chapter 5's Timer. Just 
be careful with variable names and the like. 

BASE_RES_ID 400 
ABOUT_ALERT 401 
BAD_SYS_ALERT 402 
NIL_POINTER OL 
MOVE_TO_FRONT -ll 
REMOVE_ALL_EVENTS 0 

MIN_SLEEP OL 
NI L_MOUSE_REGION OL 

DRAG_ TH RESHO LO 30 

SAVE_BUTTON 1 
CANCEL_BUTTON 2 
TIME_FI ELD 4 
S_OR_M_FIELD 5 
SOUND_ON_BOX 6 
ICON_ON_BOX 7 
ALERT_ON_BOX 8 

#define SECS_RADIO 10 
#define MINS_RADIO 11 

#define DEFAULT_SECS_ID 401 
I/define DE FAUL T_MINS_ID 402 

I/define ON 1 
I/define OFF 0 

I/define SECONDS 0 
#define MI NU TES 1 
//define SECONDS_PER_MINUTE60 

#define TOP 25 
#define LEFT 12 

//define MARK_APPLICATION 1 

//define APPLE_MENU_ID BASE_RES_ID 
#define FILE_MENU_ID BASE_RES_ID+l 
#define ABOUT_ITEM_ID 1 

//define CHANGE_IT EM 1 
I/define START_STOP_ITEM 2 



230 

#define KILL_ITEM 
#define QUIT_ITEM 

#define SYS_VERSION 

3 
4 

1 

DialogPtr 
Re ct 

gSettingsDialog; 
gDragRect: 

Macintosh Programming Primer 

Boolean 
char 
StringHandle 
NM Rec 
MenuHandle 
Event Record 

gDone. gCounting, gNotify_set: 
gSeconds_or_minutes =SECONDS; 
gNotifyStrH. gDefaultSecsH, gOefaultMinsH: 
gMyNMRec; 

struct 
I 

gAppleMenu. gFileMenu; 
gTheEvent; 

Str255 timeString; 
int sound: 
int icon: 
int alert; 
int secsRadi o: 
int minsRadio: 

savedSettings; 

/******************************** main *********/ 

ma i n ( ) 
I 

Tool Box I nit(): 
if< Sys60rlater() 
I 

Dialoglnit(); 
MenuBarlni t(): 
SetUpDragRect(); 
Notifylnit(); 
Mainloop(); 

/*********************************** ToolBoxlnit */ 

Tool Boxlnit() 
I 

InitGraf( &thePort ); 
InitFonts(); 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ); 
InitWindows(); 
InitMenus(); 
TEI nit(); 
InitDialogs( NIL_POINTER ); 
Ini tCursor(): 



Working with Dialogs 

/******************************** Sys60rlater *********/ 

int Sys60rlater() 
{ 

OS Err 
SysEnvRec 

status; 
SysEnvData; 

status= SysEnvirons( SYS_VERSION, &SysEnvData ); 
if (( status != noErr ) I I ( SysEnvData.systemVersion < Ox0600 )) 
I 

} 
else 

StopAlert( BAD_SYS_ALERT, NIL_POINTER ); 
return( FALSE ) ; 

return( TRUE ) ; 

/******************************** Dialoglnit *********/ 

Dialoglnit() 
I 

int 
Re ct 
Handle 

itemType; 
itemRect; 
itemHandle: 

gDefaultSecsH = GetString( DEFAULT_SECS_ID ); 
gDefaultMinsH = GetString( DEFAULT_MINS_ID ); 

gSettingsDialog = GetNewDialog( BASE_RES_ID, NIL_POINTER, 
MOVE_TO_FRONT ); 

GetDitem( gSettingsDialog, SECS_RADIO, &itemType, &itemHandle, 
&itemRect ); 

SetCtlValue( itemHandle, ON ); 
GetDitem( gSettingsDialog, SOUND_ON_BOX, &itemType, &itemHandle, 

&itemRect ); 
SetCtlValue( itemHandle, ON ); 
GetDitem( gSettingsDialog, ICON_ON_BOX, &itemType, &itemHandle, 

&itemRect ); 
SetCtlValue( itemHandle, ON ); 
GetDitem( gSettingsDialog, ALERT_ON_BOX, &itemType, &itemHandle, 

&itemRect ); 
SetCtlValue( itemHandle, ON ); 

231 



232 Macintosh Programming Primer 

/*********************************** MenuBarlnit */ 

MenuBarlnit() 
{ 

Handle myMenuBar; 

myMenuBar = GetNewMBar( BASE_RES_ID ): 
SetMenuBar( myMenuBar ); 
gAppleMenu = GetMHandleC APPLE_MENU_ID ): 
AddResMenu( gAppleMenu, 'DRVR' ); 
gFileMenu = GetMHandle( FILE_MENU_ID ): 
DrawMenuBarC): 

/******************************** SetUpDragRect *********/ 

SetUpDragRect() 
{ 

gDragRect = screenBits.bounds: 
gDragRect.left += DRAG_THRESHOLD: 
gDragRect.right -= DRAG_THRESHOLD: 
gDragRect.bottom -= DRAG_THRESHOLD: 

/******************************** Notifylnit *********/ 

Notifylnit() 
{ 

gNotifyStrH = GetString( BASE_RES_ID ); 
gMyNMRec.qType = nmType; 
gMyNMRec.nmMark MARK_APPLICATION: 
gMyNMRec.nmResp = NIL_POINTER: 

!******************************** MainLoop *********/ 

Mainloop() 
{ 

gDone = FALSE: 
gCounting = FALSE: 
gNotify_set = FALSE: 

while ( gDone == FALSE 
{ 

HandleEvent(): 



Working with Dialogs 

/************************************* HandleEvent 

HandleEvent() 
I 

char theCha r; 

*/ 

WaitNextEvent( everyEvent, &gTheEvent, MIN_SLEEP, 
NIL_MOUSE_REGION ); 

switch ( gTheEvent.what ) 
I 

case mouseDown: 
HandleMouseDown(); 
break; 

case keyDown: 
case autoKey: 

theChar = gTheEvent.message & charCodeMask; 
if (( gTheEvent.modifiers & cmdKey ) != O ) 

HandleMenuChoice( MenuKey( theChar ) ); 
break; 

/************************************* HandleMouseDown */ 

HandleMouseDown() 
I 

WindowPtr 
short int 
long int 

whichWindow; 
thePart; 
menuChoice, windSize; 

thePart = FindWindow( gTheEvent.where, &whichWindow ); 
switch < thePart > 

I 
case inMenuBar: 

menuChoice = MenuSelect( gTheEvent.where ); 
HandleMenuChoice( menuChoice ); 
break; 

case inSysWindow : 
SystemClick( &gTheEvent, whichWindow ); 
break; 

case inDrag : 

233 

OragWindow( whichWindow, gTheEvent.where, &gDragRect); 
break; 

case inGoAway : 
gDone = TRUE; 
break: 



234 Macintosh Programming Primer 

/************************************* HandleMenuChoice */ 

HandleMenuChoice( menuChoice 
long int menuChoice; 
{ 

int theMenu; 
int the Item; 

if menuChoice != 0 ) 
l 

} 

theMenu = HiWordC menuChoice ); 
theltem = LoWordC menuChoice ); 
switch C theMenu ) 
{ 

case APPLE_MENU_ID : 
HandleAppleChoice( theltem ); 
break; 

case FILE_MENU_ID : 
HandleFileChoice( theltem ); 
break: 

Hi l iteMenu( 0 ) ; 

/******************************** HandleAppleChoice *******/ 

HandleAppleChoice( theltem ) 
int the Item; 
{ 

Str255 
int 
short int 

accName; 
accNumber; 
itemNumber; 

switch ( theltem ) 
I 

case ABOUT_ITEM_IO : 
NoteAlert( ABOUT_ALERT, NIL_POINTER ); 
break; 

default : 
GetitemC gAppleMenu, theltem, accName ); 
accNumber = OpenDeskAcc( accName ); 
break; 



Working with Dialogs 235 

/******************************** HandleFileChoice *******/ 

HandleFileChoice( theltem 
int the Item; 
{ 

Str255 timeString; 
long countDownTime; 
int i temType; 
Rec t i temRect; 
Handle i temHandl e: 

switch ( theltem ) 
I 

case CHANGE_ITEM 
HandleDialog(); 
break; 

case START_STOP_ITEM : 
if ( gCount i ng ) 
I 

else 

I 
break: 

Setltem( gFileMenu,theltem,"\pStart Countdown"); 
gCounting = FALSE; 

HiliteMenu( 0 ); 
GetDltem( gSettingsDialog, TIME_FIELD, 

&itemType, &itemHandle, &itemRect ); 
GetIText( itemHandle, &timeString ); 
StringToNum( timeString, &countDownTime ); 

Disableltem( gFileMenu, CHANGE_ITEM ); 
Setltem( gFileMenu, theitem,"\pStop Countdown"); 
CountDown( countDownTime ); 
Enableltem( gFileMenu, CHANGE_ITEM ); 
Setltem( gFileMenu,theltem,"\pStart Countdown"); 

case KI LL_ITEM : 
NMRemove( &gMyNMRec ); 
HUnlock( gNotifyStrH ); 
Disableltem( gFileMenu, KILL_ITEM ); 
gNotify_set = FALSE; 
break; 

case QUIT_ITEM : 
gCounting = FALSE; 
gDone = TRUE: 
break; 



236 Macintosh Programming Primer 

!******************************** HandleDialog *********/ 

HandleDialog() 
{ 

int itemHit, dialogDone FALSE; 
long alarmDelay; 
St r255 de l aySt ring; 
int i temType; 
Rect itemRect: 
Handle itemHandle; 

ShowWindow( gSettingsDialog ); 
SaveSettings(); 

while ( dialogDone == FALSE 
{ 

ModalDialog( NIL_POINTER, &itemHit ); 
switch ( itemHit ) 
{ 

case SAVE_BUTTON: 
HideWindow( gSettingsDialog ); 
dialogDone = TRUE: 
break: 

case CANCEL_BUTTON: 
HideWindow( gSettingsDialog ); 
RestoreSettings(); 
dialogDone =TRUE; 
break; 

case SOUND_ON_BOX: 
GetDitem( gSettingsDialog, SOUND_ON_BOX, 

&itemType, &itemHandle, &itemRect ); 
SetCtlValue( itemHandle. 

break; 
case ICON_ON_BOX: 

! GetCtlValue< itemHandle ) ); 

GetDitem( gSettingsDialog, ICON_ON_BOX. 
&itemType, &itemHandle, &itemRect ); 

SetCtlValue( itemHandle, 
! GetCtlValue( itemHandle ) ); 

break; 
case ALERT_ON_BOX: 

GetDitem( gSettingsDialog, ALERT_ON_BOX, 
&itemType, &itemHandle. &itemRect ); 

SetCtlValue( itemHandle, 

break: 
case SECS_RAD IO: 

! GetCtlValue( itemHandle ) ); 

gSeconds_or_minutes =SECONDS; 
GetDitem( gSettingsDialog, MINS_RADIO, 

&itemType. &itemHandle, &itemRect ); 
SetCtlValue( itemHandle. OFF ); 
GetDitem( gSettingsDialog, SECS_RADIO. 

&itemType, &itemHandle. &itemRect ); 



Working with Dialogs 237 

SetCtlValue( itemHandle, ON ); 
GetDitem( gSettingsDialog, S_OR_M_FIELD, 

&itemType, &itemHandle, &itemRect ); 
SetIText( itemHandle, "\pseconds" ); 
GetDitem( gSettingsDialog, TIME_FIELD, 

&itemType, &itemHandle, &itemRect ); 
Hlock( gDefaultSecsH ); 
SetIText( itemHandle, *gDefaultSecsH ); 
HUnlock( gDefaultSecsH ); 
break; 

case MINS_RADIO: 
gSeconds_or_minutes = MINUTES; 
GetDitem( gSettingsDialog, SECS_RADIO, 

&itemType, &itemHandle, &itemRect ); 
SetCtlValue( itemHandle, OFF ); 
GetDitem( gSettingsDialog, MINS_RADIO, 

&itemType, &itemHandle, &itemRect ); 
SetCtlValue( itemHandle. ON ); 
GetDitem( gSettingsDialog, S_OR_M_FIELD, 

&itemType. &itemHandle, &itemRect ); 
SetIText( itemHandle. "\pminutes" ); 
GetDitem( gSettingsDialog, TIME_FIELD, 

&itemType, &itemHandle. &itemRect ); 
HLock( gDefaultMinsH ); 
SetIText( itemHandle. *gDefaultMinsH ); 
HUnlock( gDefaultMinsH ); 
break; 

/************************************* SaveSettings */ 

SaveSettings() 
I 

int i temType: 
Rect itemRect: 
Handle i temHandl e: 

GetDitem( gSettingsDialog, TIME_FIELD, &itemType, &itemHandle, 
&itemRect ): 

GetIText( itemHandle. &CsavedSettings.timeString) ); 
GetDitem( gSettingsDialog, SOUND_ON_BOX. &itemType. &itemHandle. 

&itemRect ): 
savedSettings.sound = GetCtlValue( itemHandle ); 
GetDitem( gSettingsDialog, ICON_ON_BOX. &itemType, &itemHandle, 

&itemRect ): 
savedSettings.icon = GetCtlValue( itemHandle ): 
GetDitem( gSettingsDialog, ALERT_ON_BOX, &itemType, &itemHandle, 

&itemRect ); 



238 Macintosh Programming Primer 

savedSettings.alert = GetCtlValue( itemHandle ); 
GetDitem( gSettingsDialog, SECS_RADIO, &itemType, &itemHandle,. 

&itemRect ); 
savedSettings.secsRadio = GetCtlValue( itemHandle ); 
GetDitem( gSettingsDialog, MINS_RADIO, &itemType, &itemHandle, 

&itemRect ); 
savedSettings.minsRadio = GetCtlValue( itemHandle ); 

!************************************* RestoreSettings */ 

RestoreSettings() 
{ 

int itemType; 
Rect itemRect; 
Handle itemHandle; 

GetDitem( gSettingsDialog, TIME_FIELD, &itemType, &itemHandle, 
&itemRect ); 

SetIText( itemHandle, savedSettings.timeString ); 
GetDitem( gSettingsDialog, SOUND_ON_BOX, &itemType, &itemHandle, 

&itemRect ); 
SetCtlValue( itemHandle, savedSettings.sound ); 
GetDitem( gSettingsDialog, ICON_ON_BOX, &itemType, &itemHandle, 

&itemRect ); 
SetCtlValue( itemHandle, savedSettings.icon ); 
GetDitem( gSettingsDialog, ALERT_ON_BOX, &itemType, &itemHandle, 

&itemRect ); 
SetCtlValue( itemHandle, savedSettings.alert ); 
GetDitem( gSettingsDialog, SECS_RADIO, &itemType, &itemHandle, 

&itemRect ); 
SetCtlValue( itemHandle, savedSettings.secsRadio ); 
GetDitem( gSettingsDialog, MINS_RADIO, &itemType, &itemHandle, 

&itemRect ) ; 
SetCtlValue( itemHandle, savedSettings.minsRadio ); 

if savedSettings.secsRadio == ON ) 
{ 

else 

GetDitem( gSettingsDialog, S_OR_M_FIELD, &itemType, 
&itemHandle, &itemRect ); 

Set!Text( itemHandle, "\pseconds" ); 

GetDitem( gSettingsDialog, S_OR_M_FIELD, &itemType, 
&itemHandle, &itemRect ); 

Set!Text( itemHandle, "\pminutes" ); 



Working with Dialogs 

/******************************** CountDown *******/ 

CountDown( numSecs 
long numSecs; 
{ 

long 
Str255 
WindowPtr 

myTime. oldTime. difTime; 
myTimeString; 
countDownWindow: 

countDownWindow = GetNewWindow( BASE_RES_ID, NIL_POINTER, 
MOVE_TO_FRONT ); 

SetPort( countDownWindow ); 
ShowWindow( countDownWindow ); 
TextFace( bold ); 
TextSize( 24 ); 

GetDateTime( &myTime ); 
oldTime = myTime; 
if ( gSeconds_or_minutes ==MINUTES ) 

numSecs *= SECONDS_PER_MINUTE; 
gCounting = TRUE; 

while ( ( numSecs > 0 ) && ( gCounting ) ) 
I 

} 

HandleEvent(); 
if ( gCounti ng ) 
{ 

MoveTo( LEFT, TOP ); 
GetDateTime( &myTime ); 
if ( myTime != oldTime ) 
{ 

difTime = myTime - oldTime; 
numSecs = numSecs - difTime; 
oldTime = myTime; 
NumToString( numSecs . myTimeString ); 
EraseRect C &(countDownWindow->portRect) ); 
Drawstring( myTimeString ); 

if gCounting ) 
SetNotification(); 

gCounting = FALSE; 
HideWindow( countDownWindow ); 

239 



240 Macintosh Programming Primer 

/******************************** SetNotification *******/ 

SetNotification() 
{ 

int i temType; 
Rect itemRect; 
Handle itemHandle; 

if gNotify_set ) 
{ 

NMRemove( &gMyNMRec ); 
HUnlock( gNotifyStrH ); 

GetDltem( gSettingsDialog. ICON_ON_BOX. &itemType. &itemHandle. 
&itemRect ) : 

if ( GetCtlValue( itemHandle ) ) 
gMyNMRec.nmSicon GetResource( 'SICN'. BASE_RES_ID ); 

else 
gMyNMRec.nmSicon = NIL_POINTER: 

GetDitem< gSettingsDialog, SOUND_ON_BOX, &itemType. &itemHandle. 
&itemRect ); 

if ( GetCtlValue( itemHandle ) ) 
gMyNMRec.nmSound GetResource( 'snd '. BASE_RES_ID ): 

else 
gMyNMRec.nmSound = NIL_POINTER; 

GetDitemC gSettingsDialog, ALERT_ON_BOX, &itemType. &itemHandle. 
&itemRect ) : 

if GetCtlValue( itemHandle ) 
I 

} 

else 

MoveHHi( gNotifyStrH ); 
Hlock( gNotifyStrH ); 
gMyNMRec.nmStr *gNotifyStrH; 

gMyNMRec.nmStr = NIL_POINTER; 

NMinstall( &gMyNMRec ); 
Enableltem( gFileMenu. KILL_ITEM ); 
gNotify_set = TRUE; 



Working with Dialogs 241 

Running Reminder 

Now that your source code is updated, you're almost ready to run Reminder. 
First, we'll show you how to set the MultiFinder attributes that will allow 
Reminder to continue executing, even in the background. 

Pull down the Project menu and select Set Project Type .... The Project 
Type dialog box will appear (Figure 6.40). Click the mouse on the MF Attrs 
pop-up menu, selecting items until all three have a check mark next to them 
(Figure 6.41). Click the OK button. Now you're ready to run Reminder. 

® Application 

O Desk Accessory 

O Deuice Driuer 

O Code Resource 

File Type I APPL 

Creator 

D Separate STRS 

Partition (K) ~ 

MF Attrs ~ 1 seoo I 

OK ( Cancel ) 

Figure 6.40 Project Type dialog box. 

® Application 

O Desk Accessory 

O Deuice Driuer 

O Code Resource 

File Type I APPL 

Creator ltR'"I 
D Separate STRS 

Partition (K) ~ 

jseoo I 

Figure 6.41 Project Type dialog with 
MultiFinder attributes set. 



242 Macintosh Programming Primer 

Creating applications that are MultiFinder-friendly is very impor
tant. We've touched on the basics ofMultiFinder friendliness by using 
Wa i t Next Even t ( ) and handling Suspend/Resume events, but there's 
a lot more to learn. If you want to write MultiFinder-friendly applica
tions, read the Programmer's Guide to MultiFinder from Apple and 
APDA. 

To be truly MultiFinder-friendly, Reminder would have to worry 
about things like scrap conversion (we discuss the scrap in Chapter 7), 
mouse regions, sleep times, and much more. 

Select Run from the Project menu. When asked to Bring the project up 
to date, click Yes. If you run into any compilation problems, consult the 
debugging tips found in Appendix E. When asked to Save changes before 
running, click Yes. Reminder should be up and running (Figure 6.42). 

Reminder does not display any windows initially. The File menu should 
display four menu items: Change Settings, Start Countdown, Kill Notifica
tion, and Quit. If Change Settings is selected, the Settings dialog box 
appears (Figure 6.43). You can select the countdown time in minutes or 
seconds, and choose the method or methods by which you wish to be 
notified. Save will keep the settings and close the dialog box. Cancel will 
restore the last saved settings and close the dialog box. 

r S File Edit 
., 

Figure 6.42 Running Reminder. 



Working with Dialogs 

r 

Alarm goes off in~ seconds 

r8J Sound on 

181 Rotate Icon 

181 Display Alert 

Use: 

®Seconds 

0 Minutes 

Figure 6.43 Using the Change Settings dialog box. 

243 

., 

Start Countdown will begin the countdown: The countdown window is 
displayed, and the timer will count down in seconds. In the File menu, Start 
Countdown is changed to Stop Countdown, and may be selected to cancel 
the countdown and close the countdown window. During countdown, the 
Change Settings item is dimmed. When the countdown reaches zero, up to 
three methods will be used to notify you that the time has been reached 
(Figure 6.44). 

Once the notification is set, the Kill Notification item under the File 
menu will become available. When it is used to cancel a notification, it will 
become dim again. 

If you are running under MultiFinder, use Change Settings to set the 
countdown time to 20 seconds, then start the countdown. Before time runs 
out, click on another application's window (like the Finder) so that the 
countdown window is in the background. The countdown should continue 
and, when it reaches zero, you should be notified. If this doesn't work,check 
your MF Attrs in the Set Project Type dialog box. Make sure all three bits 
are turned on. Of course, Reminder works fine in the regular Finder, but is 
somewhat less useful there. 

Choose Quit from the File menu. Let's take a look at the code. 



244 

_J 

Macintosh Programming Primer 

., 

I'S Zounds!!! It's time ... 

Figure 6.44 The Notification Manager comes through. 

Walking Through the Reminder Code 

First, set up your #defines. Most of them relate to the Settings dialog box. 
Each dialog item is given an appropriate name. SA V E_BU TTON is dialog 
item number 1, CANCE L_BUTTON is dialog item number 2, and so on. 
DEFAULT_ SECS_ ID and DEFAULT_MINS_ID are the resource IDs of the 
' ST R ' resources used as second and minute defaults in the Settings dialog. 
ON and OFF are set to 1 and 0 foreaseofuse in setting controls. SY S_V ERS I ON 
is set to 1. You use this in the Sys 60 r Later ( ) function to indicate which 
version of Sys Env i ron s ( ) to call. 

Sys En vi r on s ( ) fills out a record that describes the Mac operating 
environment. Most important, we can use it to tell what version of the 
system is running and, therefore, whether or not Toolbox routines like 
W a it Ne x tE vent ( ) or the Notification Manager are present. 
Sys Environs () is completely described in Inside Macintosh (V:5). 



Working with Dialogs 245 

#define BASE_RES_ID 400 
#define ABOUT ALERT 401 
#define BAD_SYS_ALERT 402 
#define NIL_POINTER OL 
#define MOVE_TO_FRONT -IL 
#define REMOVE_ALL_EVENTS 0 

#define MIN_SLEEP OL 
#define NIL_MOUSE_REGION OL 

#define DRAG_THRESHOLD 30 

#define SAVE_BUTTON 1 
#define CANCEL_BUTTON 2 
#define TIME_FIELD 4 
#define S_OR_M_FIELD 5 
#define SOUND_ON_BOX 6 
#define ICON_ON_BOX 7 
#define ALERT_ON_BOX 8 
#define SECS_RADIO 10 
#define MINS_RADIO 11 

#define DEFAULT_SECS_ID 401 
#define DEFAULT_MINS_ID 402 

#define ON 1 
#define OFF O 

#define SECONDS 0 
#define MINUTES 1 
#define SECONDS_PER_MINUTE 60 

#define TOP 25 
#define LEFT 12 

#define MARK_APPLICATION 1 

#define APPLE_MENU_ID BASE_RES_ID 
#define FILE_MENU_ID BASE_RES_ID+l 
#define ABOUT_ITEM_ID 1 

#define CHANGE_ITEM 1 
#define START_STOP_ITEM 2 
#define KILL_ITEM 3 
#define QUIT_ITEM 4 

#define SYS_VERSION 1 

The variable g Sett i n gs Di al og will point to your Settings dialog. 
Remember, you can treat a Di a 1 ogPtr just like a Wi ndowPt r. For 
example,youcouldpass gSett i ngsDi a 1 og as an argument to Set Port ( ). 



246 Macintosh Programming Primer 

When gDone is set to TRUE, the program will exit. gCount i ng is TRUE 
only when the countdown window is displayed. g Not i f y _set is TRUE 
whenanotificationhasbeenset. gSeconds_or _minutes issetto SECONDS 
or M I NUTE S, depending on the setting in the Settings dialog. It is reset to 
FALSE when Kill Notification is selected from the File menu. 

gDef aul tSecsH and gDefaul tMi nsH are handles to the default time 
'STR • resources.dialog items. gNot i fySt rH and gMyNMRec are used by 
the Notification Manager. 

gAppl eMenu and gFi l eMenu are handles to their respective menus. 
You need the handle to the Apple menu so you can add desk accessories. You 
need the handle to the File menu so you can change menu items. 

The s a v e d Sett i n gs st r u ct is used to hold all the settings from the 
Settings dialog box, in case they need to be restored (if the user clicks the 
Cancel button). 

DialogPtr 
Re ct 
Boolean 
char 
StringHandle 
NM Rec 
MenuHandle 
EventRecord 

struct 
I 

gSettingsDialog; 
gDragRect: 
gDone, gCounting, gNotify_set: 
gSeconds_or_minutes =SECONDS; 
gNotifyStrH, gDefaultSecsH. gDefaultMinsH; 
gMyNMRec; 
gAppleMenu. gFileMenu; 
gTheEvent; 

Str255 timeString; 
int sound; 
int icon: 
int alert; 
int secsRadio; 
int minsRadio: 
savedSettings; 

main () starts by initializing the Toolbox, using the same routine you 
always have. Then, test to see if System 6.0 or later is installed. If it is, you 
can use the Notification Manager. Initialize your dialogs, your menus, and 
the notification data structure. 

Finally, enter your main event loop. 

/******************************** main *********/ 

ma i n ( ) 
I 

Tool Box I nit(); 
if ( Sys60rlater() 
I 



Working with Dialogs 

Dialoglnit(); 
MenuBarlnit(): 
SetUpDragRect(): 
Noti fylni t(): 
Mainloop(): 

Tooffioxlnit() 

This routine is the same routine you've been using all along. 

!******************************** ToolBoxlnit */ 

ToolBoxlnit() 
{ 

InitGraf( &thePort ): 
InitFonts(); 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ): 
InitWindows(); 
InitMenus(): 
TEI nit(): 
InitDialogs( NIL_POINTER ): 
Ini tCursor(): 

247 

Sys60rlater() will return TRUE if System Version 6.0 or later is 
installed. Otherwise, it returns FALSE. The key to this function lies in the 
call to SysEnvi rons ().Pass in the version number of SysEnvi rons () 
that you'd like to use. In this case, use SYS_VERSION, which is set to 1. 
Apple will eventually add new features to the Sys En v i r on s ( ) call, but 
they'll always provide compatibility with older versions via the version 
parameter. 

SysEnvData isadatastructurethatgetsfilledby Sys Environs ().One 
of the fields, system Ve rs i on, gets filled with the current system version 
number. The first two bytes get the major version number, and the last two 
bytes get the minor version number. (In Version 5.3, the major version 
number is 5, and the minor version number is 3.) As long as the version 
number is greater than Ox0600 (hex for 6*256), you know you have a 
system with a major version greater than 6.0. 

If there is a problem, call Stop A 1 e rt ( ) to put up your ''You don't have 
version 6.0 or later" alert. 



248 Macintosh Programming Primer 

/******************************** Sys60rlater *********/ 

int Sys60rLater() 
{ 

OS Err status: 
SysEnvRec SysEnvData: 

status= SysEnvirons( SYS_VERSION. &SysEnvData ); 
if (( status != noErr ) I I ( SysEnvData.systemVersion < Ox0600 )) 
{ 

I 
else 

StopAlert( BAD_SYS_ALERT. NIL_POINTER ); 
return( FALSE ) : 

return( TRUE); 

Di a 1 o g I n i t ( ) starts by loading the default second and minute settings 
into the Stri ngHandl es gDefaul tSecsH and gDefaul tMi nsH. The 
Settings dialog is then loaded from the resource file. When you designed the 
dialog box in ResEdit, you set it up to be invisible. When the time is right, 
you can call Sh owW i n d ow ( ) to make it visible. 

Call GetDitem() and SetCtl Value() inpairstosetthe SECS_RADIO, 
SOUND_ON_BOX, I CON_ON_BOX, and ALERT _ON_BOX items to ON. 

/******************************** Dialoglnit *********/ 

Dialoglnit() 
{ 

int 
Re ct 
Handle 

itemType; 
itemRect: 
itemHandle: 

gDefaultSecsH = GetString( DEFAULT_SECS_ID ); 
gDefaultMinsH = GetString( DEFAULT_MINS_ID ); 

gSettingsOialog = GetNewDialog( BASE_RES_IO, NIL_POINTER, 
MOVE_TO_FRONT ); 

GetDitem( gSettingsDialog. SECS_RADIO. &itemType, &itemHandle, 
&itemRect ); 

SetCtlValue( itemHandle. ON ); 
GetDitem( gSettingsDialog. SOUND_ON_BOX, &itemType. &itemHandle, 

&itemRect ); 
SetCtlValue( itemHandle, ON ); 
GetDitem( gSettingsDialog, ICON_ON_BOX. &itemType. &itemHandle, 

&itemRect ); 
SetCtlValue( itemHandle, ON ); 
GetDitem( gSettingsDialog, ALERT_ON_BOX, &itemType, &itemHandle, 

&itemRect ); 
SetCtlValue( itemHandle, ON ); 



Working with Dialogs 249 

Menu Ba r I n i t () is similar to the earlier menu routines you've seen. 
First, you load your MBA R resource, and then you get a handle to the menu 
so you can add all the desk accessories to it. Next, you get a handle to the 
File menu so you can change menu items later on. Finally, you draw the 
menu bar: 

/****************************** 

MenuBarinit() 
{ 

Handle myMenuBar; 

MenuBarinit */ 

myMenuBar GetNewMBar( BASE_RES_ID ); 
SetMenuBar( myMenuBar ): 
gAppleMenu = GetMHandle( APPLE_MENU_ID ): 
AddResMenu( gAppleMenu, 'DRVR' ); 
gFileMenu = GetMHandle( FILE_MENU_ID ); 
DrawMenuBar(): 

SetUpDragRect() is the same as always: 

/******************************** SetUpDragRect *********/ 

SetUpDragRect() 
{ 

gDragRect = screenBits.bounds: 
gOragRect.left += DRAG_THRESHOLD: 
gDragRect.right -= DRAG_THRESHOLD: 
gDragRect.bottom -= DRAG_THRESHOLD; 

The MacintOsh operating system, like most other operating systems, 
supports a set of operating system queues. You're already familiar 
with the Event Manager's queue. The Notification Manager main
tains a queue, as well. Under MultiFinder, several applications might 
post notifications at the same time. Each notification request is 
handled by the operating system and posted on the Notification 
Manager's queue. 

In Not i f y In i t ( ) , load the ' ST R ' you want to appear in the notification 
alert with Get String ().Then, qType is set to nmType. This tells the part 
of the operating system that manages queues that this request is destined 
for the Notification Manager's queue. 

Next, nmMa rk is set to MARK_APPLI CATION, whichmeansthe(+)willbe 
placed next to Reminder in the Menu (if you're in MultiFinder). NM Resp 
is set to NI L_PO INTER, whichmeansyouhavenoresponseroutineafterthe 
notification has been successfully made. 



250 Macintosh Programming Primer 

/******************************** Notifylnit *********/ 

Notifylnit() 
I 

gNotifyStrH = GetString( BASE_RES_IO ); 
gMyNMRec.qType = nmType; 
gMyNMRec.nmMark MARK_APPLICATION; 
gMyNMRec.nmResp = NIL_POINTER; 

Mainloop() initializes gDone, gCounting, and gNotify_set and 
then loops on Ha n d l e Event ( ) . 

/**************************** MainLoop *********/ 

Main Loop() 
I 

gDone = FALSE; 
gCounting = FALSE; 
gNotify_set = FALSE; 

while ( gDone == FALSE 
I 

HandleEvent(); 

The Handl eEvent() routine is set up much like Handl eEvent() in 
Chapter 5. Call WaitNextEvent() to see what is in the event queue. 
(Because you're running System 6.0 or later, you know that 
W a i t Next Event ( ) is installed.) Use a switch to find out what the event 
was. If the mouse button is depressed, the Hand l e Mouse Down ( ) routine is 
called. If a keyd own or auto Key event occurs, check to see if the command 
key was depressed. If so, the Handl eMenuChoi ce() routine is called. If 
you don't check for a keyd own event first, you won't ever see the command 
key sequence (for example, when you type 38 Q to Quit). 

We've left out some of the standard event handling, like update Ev ts, to 
simplify the code. Don't worry-Reminder will work just fine without the 
extra code. 

/********************************* HandleEvent */ 

HandleEvent() 
I 

char theChar; 

WaitNextEvent( everyEvent, &gTheEvent, MIN_SLEEP, 
NIL_MOUSE_REGION ); 

switch ( gTheEvent.what ) 
I 



Working with Dialogs 251 

case mouseDown: 
HandleMouseDown(); 
break; 

case keyDown: 
case autoKey: 

theChar = gTheEvent.message & charCodeMask; 
if (( gTheEvent.modifiers & cmdKey ) != 0 ) 

HandleMenuChoice( MenuKey( theChar ) ); 
break; 

Hand 1 eMouseDown () is the same as its Chapter 5 counterpart: 

/************************************* HandleMouseDown */ 

HandleMouseDown() 
I 

WindowPtr 
short int 
long int 

whichWindow; 
thePart: 
menuChoice, windSize; 

thePart = FindWindow( gTheEvent.where, &whichWindow ); 
switch ( thePart ) 
{ 

case inMenuBar: 
menuChoice = MenuSelect( gTheEvent.where ); 
HandleMenuChoiceC menuChoice ); 
break; 

case inSysWindow : 
SystemClick( &gTheEvent, whichWindow ); 
break; 

case inDrag : 
DragWindowC whichWindow, gTheEvent.where, &gDragRect); 
break; 

case inGoAway : 
gDone = TRUE; 
break; 

Handl eMenuChoi ce() is also the same as its Chapter 5 counterpart: 



252 Macintosh Programming Primer 

/********************************** HandleMenuChoice */ 

HandleMenuChoice( menuChoice 
long int menuChoice; 
{ 

int theMenu; 
int the Item; 

if menuChoice != 0 ) 
{ 

} 

theMenu = HiWord( menuChoice ); 
theltem = LoWord( menuChoice ); 
switch ( theMenu ) 
{ 

case APPLE_MENU_ID : 
HandleAppleChoice( theltem ); 
break; 

case FILE_MENU_ID : 
HandleFileChoice( theltem ); 
break; 

HiliteMenu( O ); 

Guess what? 

/******************************** HandleAppleChoice *******/ 

HandleAppleChoice( theltem 
int the Item; 
{ 

Str255 accName; 
int accNumber; 
short int itemNumber; 

switch < theltem ) 
{ 

case ABOUT_ITEM_ID : 
NoteAlert( ABOUT_ALERT, NIL_POINTER ); 
break: 

default : 
Getltem( gAppleMenu, theltem, accName ); 
accNumber = OpenDeskAcc( accName ); 
break; 

Handl eFi 1 eChoi ce() takescareofthefouritemsundertheFilemenu. 
If Change Settings is selected call Handl eDi al og( ). If Start Count
down (or its counterpart, Stop Countdown) is selected, check to see if you 
are currently counting down. If you are, then the menu item must have been 
Stop Countdown, so change the item back to Start Countdown and set 
gCount i ng to FALSE to stop the countdown. 



Working with Dialogs 253 

If you were not counting down, Start Countdown was the item selected. 
In this case, unhighlight the File menu (try commenting this line to get a 
feel for why this is necessary). Then, pull the countdown time from the 
settings dialog and convert it to a number. Dim the Change Settings item 
(you don't want to change the settings while you're actually counting down), 
and change the Start Countdown menu item to Stop Countdown. Next, call 
CountDown (). When Count Down () returns, reenable the Change Set
tings item and change Stop Countdown to Start Countdown. 

If the menu item selected was Kill Notification, call NM Remove () to 
remove the notification from the Notification Manager's queue. Then, 
unlock the notification string you locked in Set Not i f i cat i on ( ) . (We 
discuss handle locking and unlocking in a tech block a little later on.) Also, 
dim the Kill Notification item, since the notification is no longer active. 
Finally, set g Not i f y _set to FA LS E, so everyone else knows that the 
notification is no longer active. 

If Quit is selected, set g Count i n g to FALSE so you'll drop out of the 
counting loop (if the selection was made during the countdown). In addi
tion, set gDone to FALSE. 

!***************************** HandleFileChoice *******/ 

HandleFileChoice( theltem 
int the Item; 
{ 

Str255 timeString; 
long countDownTime; 
int i tern Type: 
Rect i temRect; 
Handle itemHandl e; 

switch ( theltem ) 
{ 

case CHANGE_ITEM : 
HandleDialog(); 
break; 

case START_STOP_ITEM : 
if ( gCounting) 
I 

else 

Setltem( gFileMenu,theltem,"\pStart Countdown"); 
gCounting = FALSE; 

Hi 1 iteMenu( 0 ) ; 
GetDitem( gSettingsOialog, TIME_FIELD, 

&itemType, &itemHandle. &itemRect ); 
GetIText( itemHandle. &timeString ); 
StringToNum( timeString, &countDownTime ); 



254 Macintosh Programming Primer 

Oisableltem( gFileMenu, CHANGE_ITEM ); 

} 
break; 

Setltem( gFileMenu, theitem,"\pStop Countdown"); 
CountDownC countDownTime ); 
Enableltem( gFileMenu, CHANGE_ITEM ); 
Setltem( gFileMenu,theltem,"\pStart Countdown"); 

case KI LL_ITEM : 
NMRemove( &gMyNMRec ); 
Hunlock( gNotifyStrH ); 
Disableltem( gFileMenu, KILL_ITEM ); 
gNotify_set = FALSE; 
break; 

case QUIT_ITEM : 
gCounting = FALSE; 
gDone = TRUE; 
break; 

As with Chapter 5's Timer, we still haven't added support for copy, cut, 
and paste operations to desk accessories. Look at WindowMaker in 
Chapter 7 to see how to support desk accessories with the Edit menµ. 

Hand 1 e Di al o g ( ) is the key to Reminder's modal dialog. As we dis
cussed in the beginning of the chapter, modal dialogs are implemented in 
a loop. First Mod a 1Dia1 og () is called, returning the number of the 
selected item. The selected item is processed and, ifit was an exit item, the 
loop ends. 

Ha n d 1 e Di a 1 o g ( ) is a very long routine, but it is not complex. Most of it 
is a big switch with cases for most of the items in the dialog. 

Start by making the Settings dialog visible and saving the settings you 
start off with (in case the user clicks on the Cancel button). You then enter 
the Modal Di a 1 o g ( ) loop. If the user selects an exit item (in this case, Save 
or Cancel), di a 1 ogDone is set to TRUE. If the user selects the Save button, 
make the dialog window invisible and set d i a 1 o g Done to TR U E. 

If the user selects the Cancel button, make the dialog window invisible 
and restore the old settings. (We made the window invisible first because 
we didn't want the user to watch as we changed the items back. It's not a 
prettysight.)Agaip, set dial ogDone to TRUE todropoutofthewh i le loop. 



Working with Dialogs 

/***************************** HandleDialog *********/ 

HandleDialog() 
{ 

int itemHit, dialogDone FALSE: 
1 ong al armDel ay: 
Str255 del ayStri ng: 
int i temType: 
Rect i temRect: 
Handle i temHandl e: 

ShowWindow( gSettingsDialog ); 
SaveSettings(); 

while ( dialogDone == FALSE 
{ 

ModalDialog( NIL_POINTER, &itemHit ); 
switch ( itemHit ) 
{ 

case SAVE_BUTTON: 
HideWindow( gSettingsDialog ); 
dialogDone =TRUE: 
break: 

case CANCEL_BUTTON: 
HideWindow( gSettingsDialog ); 
RestoreSettings(); 
dialogDone =TRUE; 
break; 

255 

If the user clicks in the sound, icon, or alert check box, set them to 0 FF 
if they were 0 N or to 0 N if they were 0 FF. Note that ( ! Get Ct 1 Va 1 u e ( 
i temHandl e ) ) returns the setting opposite to i temHandl e's current 
setting. 

case SOUND_ON_BOX: 
GetDitem( gSettingsDialog, SOUND_ON_BOX, 

&itemType, &itemHandle, &itemRect ); 
SetCtlValue( itemHandle, 

break; 
case ICON_ON_BOX: 

! GetCtlValue( itemHandle ) ); 

GetDitem( gSettingsDialog, ICON_ON_BOX, 
&itemType, &itemHandle, &itemRect ); 

SetCtlValue( itemHandle, 
! GetCtlValue( itemHandle ) ); 

break: 
case ALERT_ON_BOX: 

GetDitem( gSettingsDialog, ALERT_ON_BOX, 
&itemType, &itemHandle, &itemRect ); 

SetCtlValue( itemHandle. 
! GetCtlValue( itemHandle ) ); 

break; 



256 Macintosh Programming Primer 

If the user clicks in the Seconds radio button, change the global 
gSeconds_or _minutes to SECONDS, tum off the Minutes radio button, 
and tum on the Seconds radio button. (It's important to tum off the old 
button and then tum on the new one, so the user never sees two radio 
buttons on at the same time.) Next, set the static text field to read seconds, 
and place the default value loaded into g Def au 1 t Secs Hin the editable text 
field (the resource was loaded in Di a 1 og In it ()).Lock the string handle, 
since you're passing a pointer to the string and not the string's handle to 
SetIText(). 

Remember, a handle is a pointer to a pointer, allowing the system to 
move the data around in memory without changing the value of the 
handle. In this case, we need to use a pointer to our string instead of 
ahandle to it, so we can't afford to let the system move our data around 
(relocate it). We can solve this problem in one of two ways. We can loek 
the handle and its data with Hlock() or we can make a copy of the 
data and dispose of the handle. Each of these techniques has its place. 
For simplicity, we used the H Loe k ( ) method, but this method is not 
necessarily the best. For more information, read about the Memo& 
Manager in Inside Macintosh, Volume II, pages 9-51. 

If the user clicks in the Minutes radio button, you will go through a 
similar exercise, using a default value in g Def au 1 tM ins H in the editable 
text field. 

case SECS_RADIO: 
gSeconds_or_minutes =SECONDS; 
GetDitem( gSettingsDialog, MINS_RADIO, 

&itemType, &itemHandle, &itemRect ); 
SetCtlValue( itemHandle, OFF ); 
GetDitem( gSettingsDialog, SECS_RADIO, 

&itemType, &itemHandle, &itemRect ); 
SetCtlValue( itemHandle, ON ); 
GetDitem( gSettingsDialog, S_OR_M_FIELD, 

&itemType, &itemHandle, &itemRect ); 
SetIText( itemHandle, "\pseconds" ); 
GetDitem( gSettingsDialog, TIME_FIELD, 

&itemType, &itemHandle. &itemRect ); 
Hlock( gDefaultSecsH ); 
SetIText( itemHandle, *gDefaultSecsH ); 
HUnlock( gDefaultSecsH ); 
break; 

case MI NS_RADIO: 
gSeconds_or_minutes =MINUTES; 
GetDitemC gSettingsDialog, SECS_RADIO, 

&itemType, &itemHandle, &itemRect ); 
SetCtlValueC itemHandle, OFF ); 



Working with Dialogs 

GetDitem( gSettingsDialog, MINS_RADIO. 
&itemType. &itemHandle. &itemRect ); 

SetCtlValue( itemHandle. ON ); 
GetDitem( gSettingsDialog, S_OR_M_FIELD, 

&itemType, &itemHandle. &itemRect ): 
SetIText( itemHandle, "\pminutes" ); 
GetDitem( gSettingsDialog, TIME_FIELD, 

&itemType, &itemHandle, &itemRect ): 
Hlock( gDefaultMinsH ): 
SetIText( itemHandle. *gDefaultMinsH >: 
HUnlock( gDefaultMinsH ); 
break: 

257 

SaveSettings() uses GetDitem() and either GetIText() or 
Get Ct l Value ()to fill the savedSett i ngs data structure with the values 
currently set in the settings dialog items. 

/************************************* SaveSettings */ 

SaveSettings() 
{ 

int itemType; 
Rect itemRect: 
Handle i temHandl e; 

GetDitem( gSettingsDialog, TIME_FIELD. &itemType, &itemHandle, 
&itemRect ) ; 

GetIText( itemHandle, &CsavedSettings.timeString) ); 
GetDitem( gSettingsDialog, SOUND_ON_BOX. &itemType, &itemHandle, 

&itemRect ); 
savedSettings.sound = GetCtlValue( itemHandle ); 
GetDitem( gSettingsDialog, ICON_ON_BOX, &itemType, &itemHandle. 

&itemRect ); 
savedSettings.icon = GetCtlValue( itemHandle ); 
GetDitem( gSettingsDialog, ALERT_ON_BOX, &itemType, &itemHandle, 

&itemRect ) : 
savedSettings.alert = GetCtlValue( itemHandle ); 
GetDitem( gSettingsDialog, SECS_RADIO. &itemType, &itemHandle. 

&itemRect ): 
savedSettings.secsRadio = GetCtlValue( itemHandle ); 
GetDitem( gSettingsDialog, MINS_RADIO, &itemType, &itemHandle, 

&itemRect ) : 
savedSettings.minsRadio = GetCtlValue( itemHandle ); 

Re s t o re Set t i n g s ( ) uses Get D I t em ( ) , Set IT ext ( ) , and 
Set Ct l Va l u e ( ) to restore the settings dialog items to the values saved in 
the saved Sett i n gs data structure. Use the value saved in 
s a v e d Sett i n gs . secs Rad i o to determine if the static text field should 
read seconds or minutes. 



258 Macintosh Programming Primer 

/************************************* RestoreSettings */ 

RestoreSettings() 
{ 

int i temType: 
Rect itemRect; 
Handle itemHandle; 

GetDitem( gSettingsDialog, TIME_FIELD, &itemType, &itemHandle, 
&itemRect ); 

SetIText( itemHandle, savedSettings.timeString ); 
GetDitem( gSettingsDialog, SOUND_ON_BOX. &itemType, &itemHandle, 

&itemRect ); 
SetCtlValue( itemHandle, savedSettings.sound ); 
GetDitem< gSettingsDialog, ICON_ON_BOX, &itemType, &itemHandle, 

&itemRect ); 
SetCtlValue( itemHandle, savedSettings.icon ); 
GetDitem( gSettingsDialog, ALERT_ON_BOX. &itemType, &itemHandle, 

&itemRect ); 
SetCtlValue( itemHandle, savedSettings.alert ); 
GetDitem( gSettingsDialog, SECS_RADIO, &itemType, &itemHandle, 

&itemRect ); 
SetCtlValue( itemHandle, savedSettings.secsRadio ); 
GetDitem< gSettingsDialog, MINS_RADIO, &itemType, &itemHandle, 

&itemRect ); 
SetCtlValue( itemHandle, savedSettings.minsRadio ); 

if savedSettings.secsRadio == ON ) 
{ 

else 

GetDitem( gSettingsDialog, S_OR_M_FIELD, &itemType, 
&itemHandle, &itemRect ); 

SetIText( itemHandle, "\pseconds" ); 

GetDltem( gSettingsDialog, S_OR_M_FIELD, &itemType, 
&itemHandle, &itemRect ); 

SetIText( itemHandle, "\pminutes" ); 

CountDown () takes the number of seconds (or minutes) to count down 
as its only argument, puts up the countdown window, and goes to it. 

Start by loading the countdown window from the resource file. Set the 
current GrafPort to the countdown window, make it visible, and set the 
current font's size to 24 point. Make the current font appear in boldface. 

/******************************** CountDown *******/ 

CountDown( numSecs 
long numSecs; 
{ 

long 
Str255 
WindowPtr 

myTime, oldTime, difTime; 
myTimeString; 
countDownWindow; 



Working with Dialogs 259 

countDownWindow = GetNewWindow( BASE_RES_ID. NIL_POINTER. 
MOVE_ TO_FRONT ) : 

SetPort( countDownWindow ); 
ShowWindow( countDownWindow ); 
TextFace( bold ); 
TextSize( 24 ); 

while 
I 

Your next step is to get the current time (in seconds since midnight, 
January l, 1904), and to convert the countdown time from minutes to 
seconds, if necessary. Also, set the global g Count i n g to TRUE. 

GetDateTime< &myTime ); 
oldTime = myTime: 
if ( gSeconds_or_minutes == MINUTES ) 

numSecs *= SECONDS_PER_MINUTE; 
gCounting =TRUE: 
While you count down, call Hand 1 e Event ( ) . This lets the user drag the 

countdown window around the screen or make menu selections while you 
count down. This is very important because it keeps your program from 
falling into a mode. Users won't feel as though they're in countdown mode 
because they'll be able to pull down desk accessories and, if they're in 
MultiFinder, switch to other applications. 

Every time myTi me changes, a second has passed, and you have to 
redraw the countdown time. Call Er as e Rec t ( ) to clear the window and 
redraw the time. 

< numSecs > O ) && ( gCounting ) ) 

HandleEvent(); 
if ( gCounting ) 
I 

MoveTo( LEFT, TOP ); 
GetDateTime( &myTime ); 
if ( myTime != oldTime ) 
I 

difTime = myTime - oldTime; 
numSecs = numSecs - difTime; 
oldTime = myTime; 
NumToString( numSecs . myTimeString ); 
EraseRect ( &CcountDownWindow->portRect) ); 
Drawstring( myTimeString ); 



260 Macintosh Programming Primer 

If g Count i n g is still TRUE, then no one interrupted the countdown, and 
you can set your notification. Finally, set g Count i n g to FALSE and hide the 
countdown window. 

if ( gCounting ) 
SetNotification(); 

gCounting = FALSE; 
HideWindow( countDownWindow ); 

If a notification is already set, remove it so you can set a new one. If 
appropriate, load the small icon ( ' S I C N • ) from the resource file and put its 
handle in the notification data structure. Do the same for the ' s n d ' 
resource and the string you loaded earlier. 

Then, call NM I n st a 11 ( ) to set the notification. Also turn on the Kill 
Notification item in the File menu. Finally, set gNoti fy_set to TRUE. 

!***************************** SetNotification *******/ 

SetNotification() 
{ 

int i temType; 
Rect itemRect; 
Handle itemHandl e; 

if gNotify_set ) 
{ 

NMRemove( &gMyNMRec ); 
HUnlock( gNotifyStrH ); 

GetDitem( gSettingsDialog, ICON_ON_BOX, &itemType. &itemHandle, 
&itemRect ); 

if ( GetCtlValue( itemHandle ) ) 
gMyNMRec.nmSicon GetResource( 'SICN'. BASE_RES ID ); 

else 
gMyNMRec.nmSicon = NIL_POINTER: 

GetDitem( gSettingsDialog, SOUND_ON_BOX. &itemType, &itemHandle. 
&itemRect ); 

if ( GetCtlValue( itemHandle ) ) 
gMyNMRec.nmSound = GetResource( 'snd ' BASE_RES_ID ); 

else 
gMyNMRec.nmSound = NIL_POINTER: 

GetDitem( gSettingsDialog, ALERT_ON_BOX. &itemType, &itemHandle, 
&itemRect ) : 

if ( GetCtlValue( itemHandle ) ) 
{ 



Working with Dialogs 261 

} 
else 

MoveHHi( gNotifyStrH ); 
Hlock( gNotifyStrH ); 
gMyNMRec.nmStr = *gNotifyStrH; 

gMyNMRec.nmStr = NIL_POINTER; 

NMinstall( &gMyNMRec ); 
Enableitem( gFileMenu, KILL_ITEM ); 
gNotify_set = TRUE; 

_J 

Note that the routine MoveHH i ()was called before gNot i fySt rH was 
locked. Normally, before you work with a pointer to a handled object, you 
H Lo c k ( ) the handle. When you're done with the pointer, you HU n 1 o ck ( ) 
the handle again. As we mentioned earlier, H Lo c k ( ) creates an obstruction 
in the middle of the application heap. If the handle will only be H Locked for 
a short period of time (a few lines of code), this won't be a problem. In 
Reminder, you keep g Notify St rH H Loe ked from the time the notification 
is installed until the notification is removed. That's too long to keep a 
handle locked in the middle of the heap. Move H Hi ( ) reduces this problem 
by relocating the handled memory as high in the heap as possible. Locking 
the handle at this point creates an obstruction at one end of the heap 
instead of in the middle. 

The topic of memory management on the Macintosh is important, but 
beyond the scope of this book. Inside Macintosh, Volume II, Chapter 1 
contains a complete description of the Memory Manager. As your 
programs get larger and more sophisticated, you'll make more and more 
use of this part of the Toolbox. 

In Review 

This chapter examined some of the oldest parts of the Macintosh toolbox 
(dialog boxes), together with some of the newest parts (SysEnvi rons () 
and the Notification Manager). You built an application that used most of 
the Toolbox routines presented in the previous three chapters. 

In Chapter 7, we'll address some of the programming issues that we have 
not touched on so far, like error handling, managing multiple windows, 
using the clipboard, printing, and working with scroll bars. We'll end with 
a brief sojourn into the Macintosh Sound Manager. 

Congratulations! The toughest part of the book is behind you. 



Toolbox 
Potpourri 

Congratulations! Now that you have the 
Macintosh interface under your belt, 

youll see how to implement other traits 
that Mac programs should possess: mul

tiple window handling, error checking, 
the Clipboard, file and print manage

ment, scroll bars, and sound. 

7 



_J 

264 

THE FIRST APPLICATION, WindowMaker, shows you how to manage a dy
namic windowing environment. In addition to supporting window creation, 
movement, and disposal, WindowMaker introduces an error-handling 
mechanism that you can use in your own applications. 

Next, the desk scrap, more commonly known as the Clipboard, is 
introduced. The Scrap Manager utilities that support cut, copy, and paste 
operations are discussed. The second application, ShowClip, uses these 
routines to display the current scrap in a window. 

The third application, PrintPICT, introduces the File Manager and the 
Printing Manager. You'll learn how to support the standard Open, Save, 
and Save As ... File menu options in your own code. 

Next, we present a discussion on the use of scroll bars. The fourth 
application, Pager, uses the Control Manager, as well as the Resource 
Manager, to build a kinescopic display of P I CT resources. 

For the piece de resistance, we present Sounder, an alternative to the 
dreary world of Sys Beep ( ) . 

Keeping Track of Windows: WindowMaker 

Most applications on the Macintosh allow you to open more than one 
window at a time. Window Maker lets you create as many windows as you 
desire. After they are created, you can select, move, and close any window. 

WindowMaker Specifications 

Here's how WindowMaker works: 

• It initializes the Toolbox. 

• It initializes the menu bar. 

• It loads a P I CT resource. 

• It enters the Main Event Loop and performs the following functions. 

• It creates a new window whenever the New menu item is selected, 
centering the PI CT in the window. 

• It closes the currently selected window whenever the Close menu item 
is selected. 

• It handles events for moving and updating windows. 

• It quits when the Quit menu item is selected. 



Toolbox Potpourri 265 

WindowMaker is the first Primer program that does error checking. 
Every time a Toolbox function is called, there is the possibility that it may 
not execute properly. For example, if you call GetMenu ()to load a MENU 
resource, and the operating system can't find the resource, the call returns 
an error code. Your program should check for and respond to these error 
codes. If you ignore Toolbox error code, you do so at your own risk. Check 
Toolbox calls the way we do it in Window Maker and the other programs in 
this chapter. WindowMaker also fully supports desk accessory editing 
operations. 

Because Window Maker uses the concepts of the previous chapters and 
also handles error checking and multiple windows, you should consider 
using it as the model for your own applications. 

Setting up the WindowMaker Project 

Create a folder called W i n d owM a k er in your source code folder. Then use 
ResEdit to create a new file inside the new folder called WindowMaker 
Proj. Rs re. Build a WI ND with an ID of 400. Figure 7.1 shows the speci
fications of the W I ND you need. 

§0§ WI ND ID = 400 from WindowMaker Proj.Rsrc 

Window title: 

j WindowMaker I 
top @::==J bottom~ 
left ~right ~ 

proclD 14 lrefCon lo I 

D Uisible 181 goAwayFlag 

Figure 7.1 WIND resource for Window Maker. 



266 Macintosh Programming Primer 

Now, create the menu resources. First, build the MBA R resource (Figure 
7.2). Change the MBAR resource ID to 400. Now build the individual MENU 
items. Figure 7.3 displays the S, File, and Edit menus for WindowMaker. 
(The Edit menu is the same as Chapter 5's Timer program and Chapter 6's 
Reminder program; copy resources from the older programs whenever 
possible.) 

D MBRR ID 400 from WindowMaker Proj .Rsrc 

# of menus 3 ~ 

***** 

menu res ID 1400 

***** 

menu res ID 140 1 

***** 

menu res ID 1402 

***** 

Figure 7.2 MBAR resource for Window Maker. 



Toolbox Potpourri 267 

§0~ MENU "Apple" ID = 400 from Reminder Proj.Rsrc ~ 

menu ID 400 

width 0 

height 0 

proclD 0 

filler 0 

enableflgs $FFFFFFFB 

title • 
***** 

menu Item I About WindowMaker 

icon# lo I 
key equiu D 
mark Char D 
style lsoo 
............... 

menu Item I-
icon# D 
key equiu D 
mark Char D 
style lso1 
***** 0 

Figure 7 .3 MENU resources for Window Maker. 



268 Macintosh Programming Primer 

§0§ MENU "File 11 Io = 401 from WindowMaker Proj.Rsrc § 

menu ID 401 

width 0 

height 0 

proclD 0 

filler 0 

enableflgs $FFFFFFFF 

title File 

***** 

menu Item I New 

icon# lo 
key equiu ~ 
mark Char D 
style lsoo 
***** 

menu Item I Close 

icon# lo I 
key equiu ~ 
mark Char D 
style lsoo 
***** 

menu Item I aun 

icon# lo 
key equiu [] 
mark Char D 
style lsoo 
***** 0 

Figure 7.3 (continued) 



Toolbox Potpourri 269 

§0§ MENU 11 Edit 11 ID = 402 from Reminder Proj.Rsrc ~ 

menu ID 402 

width 0 

height 0 

proclD 0 

filler 0 

enableFlgs $00000001 

title Edit 

***** 

menu Item I undo 

icon# lo 
key equiu [] 
mark Char D 
style lsoo 
***** 

menu Item I-
icon# lo 
key equiu D 
mark Char D 
style lsoo 
***** 

menu Item I cut 

icon# lo 
key equiu ~ 
mark Char D 
style lsoo 
***** 

Figure 7.3 (continued) 



270 Macintosh Programming Primer 

menu Item I copy 

icon# lo 
key equiu [£] 
mark Char D 
style lsoo 
***** 

menu Item I Paste 

icon# lo I 
key equiu @] 
mark Char D 
style lsoo 
***** 

menu Item I Clear 

icon# lo I 
key equiu D 
mark Char D 
style lsoo 
***** 0 

Figure 7 .3 (continued) 

Next, create the two DI TL resources, one for the about box, the other for 
the new error-checking routines. Change the resource IDs to the ones 
shown in Figure 7.4. To frame those two DI TL resources, build the two AL RT 
resources shown in Figure 7.5. 



Toolbox Potpourri 

§0§ D ITL "About 11 ID = 400 from WindowMak 

!ii"iiot'iie·r: .. 1.-ri·0· .. ii·ro·jJ'ra'in ... f"ro'in ... H1·0··i 
!Mac Programming Primer! i 
1©1989, D. Mark & C. Reed!!! ~ 
i ....................................................................................................... j 

OK 

Item# Type Enabled lop left bottom right 

1 Button Yes 71 117 91 1n 

2 Static Text Yes 7 70 61 280 

§0§ Dill "Fatal Error" ID= 401 from Windou 
!iin ... lnc·r:0·a·1·ii·iii··-ra·i·a1··0·r:r:o·r: .. il·a·s··· .......... 1 
Uust occurred: "O i 

L ______ .................................................................................... ..I 
Gasp! 

Item# Type Enabled top left bottom right 

1 Button Yes 86 117 106 177 

2 Static Text Yes 5 67 71 283 

Figure 7.4 DI TL resources for Window Maker. 

271 

Text/Resource ID 

OK 

Another fine 

program from the 

Mac 

Programming 

Primer! ©1989, 

D.Mark&C. 

Reedf!I 

Text/Resource ID 

Gasp I 

An Incredibly 

fatal error has 

Just occurred: 110 



272 Macintosh Programming Primer 

~U§ Hlert u Hbout" ID = 400 from Window Maker P~ 

top ~bottom~ 
left ~right ~ 
items ml 400 I 
stage 1 D 2 bold 

stage 2 D 2 bold 

stage 3 D 2 bold 

stage 4 D 2 bold 

sound 

181drawn ~ 
181 drawn 1 

181 drawn 1 

181 drawn 1 

§0§ Hlert "Fatal Error" ID= 401 from WindowMak 

~bottom~ 
left ~right ~ 
top 

items IOI 401 I 
stage 1 D 2 bold 

stage 2 D 2 bold 

stage 3 D 2 bold 

stage 4 D 2 bold 

sound 

181drawn ~ 
181 drawn 1 

181 drawn 1 

181 drawn 1 

Figure 7.5 AL RT resources for Window Maker. 

All you need now are the PI CT resources that you'll display in the 
WindowMaker windows and the STR resources that will be used in the 
error-checking routine. Use Chapter 3's ShowPICT PI CT resource, or just 
cut and paste a picture from the Scrapbook. Be sure the resource ID for the 
PI CT is 400. Finally, add the four STR resources shown in Figure 7.6 to the 
Wi ndowMa ker Proj. Rs re file. Again, make sure to change the resource 
IDs of each resource to those shown in the figure. When you're done, the 
resource window ofWi ndowMa ker Proj. Rs re should look like Figure 7.7. 



Toolbox Potpourri 

50§ STR 11 MBAR Error" ID = 400 from WindowMaker Proj.Rs( 

theStr I Couldn't load the MBAR resource! I ~ 

Data s[ ] 
~ 

§0§ STR "MENU Error" ID = 401 from WindowMaker Proj.Rs~ 

theStr I Couldn't load the MENU resource! I ~ 

Data Sl J 
9] 

§0!~ STR "PI CT Error" ID = 402 from WindowMaker Proj.Rsr~ 

theStr llcouldn't load the PI CT resource! I ~ 

Data s[ ] 

~ 

§0§ STR 11 WI ND Error" ID = 403 from Window Maker Proj.Rs~ 

theStr I Couldn't load the WIND resource! I ~ 

Data st ] 
~ 

Figure 7.6 STR resources for WindowMaker. 

§0§ WindowMaker Proj.Rsrc g 
ALRT ~ 
DITL 
MBAR 
MENU 
PICT 
STR 
WIND 

~ 
Figure 7. 7 Window Maker 
resources completed. 

273 



274 

#define 
#define 
#define 
/fdef i ne 

#define 
#define 
#define 

#define 
#define 
#define 

#define 
#define 
#define 
#define 

#define 
#define 
#define 

#define 
#define 
#define 
#define 
#define 

#define 

//define 
#define 
#define 

#define 
/fdefi ne 

#define 

#define 
#define 

#define 
#define 

Macintosh Programming Primer 

Now, you're ready to launch THINK C. When prompted for a project to 
open, create anew project in the W i ndowMa ke r folder called Wi ndowMa ke r 
Pro j. Make sure to add the Mac Traps library to your project. Create a new 
source file (call it Wi ndowMa ker. c), and add it to Wi ndowMa ker Proj. 
Here's the source code for Wi ndowMa ke r. c: 

BASE_RES_ID 400 
NIL_POINTER OL 
MOVE_TO_FRONT -ll 
REMOVE_ALL_EVENTS 0 

APPLE_MENU_ID 400 
FI LE_MENU_ID 401 
ED IT _MENU_ID 402 

ABOUT_ITEM 1 
ABOUT_ALERT 400 
ERROR_ALERT_ID 401 

NO_MBAR BASE_RES_ID 
NO_MENU BASE_RES_ID+l 
NO_PICTURE BASE_RES_ID+2 
NO_WIND BASE_RES_ID+3 

NEW_ITEM 1 
CLOSE_ITEM 2 
OUIT_ITEM 3 

UNOO_ITEM 1 
CUT_ITEM 3 
COPY_ITEM 4 
PASTE_ ITEM 5 
CLEAR_ITEM 6 

DRAG_ THRESHOLD 30 

WINDOW_HOME_LEFT 5 
WINDOW_HOME_TOP 45 
NEW_WINDOW_OFFSET 20 

MIN_SLEEP OL 
NIL_MOUSE_REGION OL 

LEAVE_WHERE_IT_IS FALSE 

WNE_TRAP_NUM Ox60 
UNIMPL_TRAP_NUM Ox9F 

NIL_STRING "\p'' 
HOPELESSLY_FATAL_ ERROR "\pGame over, man!" 



Toolbox Potpourri 

Boolean 
Event Record 
MenuHandle 
PicHandle 
Re ct 

gDone, gWNEimplemented; 
gTheEvent: 
gAppleMenu. gEditMenu: 
gMyPicture: 
gDragRect; 

int gNewWindowleft = WINDOW_HOME_LEFT, gNewWindowTop 
WINDOW_HOME_TOP: 

/******************************** main *********/ 

main() 
{ 

Tool Boxini t(): 
MenuBarinit(); 
LoadPicture(); 
SetUpDragRect(); 

Mainloop(); 

/*********************************** ToolBoxinit */ 

Tool Box I nit() 
{ 

InitGraf( &thePort ); 
InitFonts(); 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ); 
InitWindows(); 
Ini tMenus (); 
TEinit(); 
InitDialogs( NIL_POINTER ); 
InitCursor(); 

/*********************************** 

MenuBarlnit() 
{ 

Handle myMenuBa r; 

MenuBarlnit */ 

if ( ( myMenuBar = GetNewMBar( BASE_RES_ID ) ) == NIL_POINTER ) 
ErrorHandler( NO_MBAR ); 

SetMenuBar( myMenuBar ); 
if ( ( gAppleMenu = GetMHandle( APPLE_MENU_ID ) == NIL_POINTER 

ErrorHandler( NO_MENU ); 
AddResMen u ( gApp l eMen u. . ORV R' ) ; 
if ( ( gEditMenu = GetMHandle( EDIT_MENU_ID ) NIL_POINTER 
ErrorHandler( NO_MENU ); 
DrawMenuBar(): 

275 



276 Macintosh Programming Primer 

/******************************** LoadPicture *********/ 

LoadPicture() 
{ 

if ( ( gMyPicture = GetPicture( BASE_RES_ID ) ) 
ErrorHandler( NO_PICTURE ); 

NI L_PO INTER 

/******************************** SetUpDragRect *********/ 

SetUpDragRect() 
{ 

gDragRect = screenBits.bounds; 
gDragRect.left += DRAG_THRESHOLD; 
gDragRect.right -= DRAG_THRESHOLD: 
gOragRect.bottom -= DRAG_THRESHOLD; 

/******************************** MainLoop *********/ 

MainLoop() 
{ 

gOone = FALSE: 
gWNEimplemented = ( NGetTrapAddress( WNE_TRAP_NUM, ToolTrap ) != 

NGetTrapAddress( UNIMPL_TRAP_NUM, ToolTrap) ); 
while ( gOone == FALSE ) 
{ 

HandleEvent(); 

/************************************* HandleEvent */ 

HandleEvent() 
{ 

char theCha r: 

if ( gWNEimplemented 

else 
I 

WaitNextEvent( everyEvent, &gTheEvent, MIN_SLEEP, 
NIL_MOUSE_REGION ); 

SystemTask(); 
GetNextEvent( everyEvent, &gTheEvent ): 

switch ( gTheEvent.what ) 
I 



Toolbox Potpourri 

case mouseDown: 
HandleMouseOown(); 
break; 

case keyDown: 
case autoKey: 

theChar = gTheEvent.message & charCodeMask; 
if (( gTheEvent.modifiers & cmdKey ) != 0) 
{ 

} 
break: 

AdjustMenus(); 
HandleMenuChoice( MenuKey( theChar ) ); 

case updateEvt: 
BeginUpdate( gTheEvent.message ); 
DrawMyPicture( gMyPicture. gTheEvent.message ); 
EndUpdate( gTheEvent.message ): 
break: 

!************************************* HandleMouseDown */ 

HandleMouseDown() 
{ 

WindowPtr 
short int 
long int 

whichWindow; 
thePart: 
menuChoice, windSize; 

thePart = FindWindow( gTheEvent.where, &whichWindow ): 
switch ( thePart ) 
{ 

case inMenuBar: 
AdjustMenus(); 
menuChoice = MenuSelect( gTheEvent.where ); 
HandleMenuChoice< menuChoice ); 
break: 

case inSysWindow: 
SystemClick( &gTheEvent, whichWindow ); 
break: 

case inDrag: 

277 

OragWindow( whichWindow, gTheEvent.where. &gOragRect ); 
break; 

case inGoAway: 
DisposeWindow( whichWindow ); 
break: 

case inContent: 
SelectWindow( whichWindow ); 
break: 



278 Macintosh Programming Primer 

/************************************* AdjustMenus *I 

AdjustMenus() 
{ 

if IsDAWindow( FrontWindow() ) ) 
{ 

Enable Item( gEditMenu, UNDO_ITEM ) ; 
Enable Item( gEditMenu, CUT _ITEM ) ; 
Enableltem( gEditMenu, COPY _ITEM ) ; 
Enableltem( gEditMenu, PASTE_ITEM ) ; 
Enable Item( gEditMenu, C LE AR_ ITEM ) : 

l 
else 
{ 

Disableltem( gEditMenu, UNDO_ITEM ) ; 
Disableltem( gEditMenu, CUT_ITEM ) ; 
Di sabl eltem( gEditMenu, COPY _ITEM ) : 
Disableltem( gEditMenu, PASTE_! TEM ) : 
Disable Item( gEditMenu, C LEAR_ITEM ) ; 

/************************************* IsDAWindow */ 

IsDAWindow( whichWindow ) 
WindowPtr whichWindow; 
{ 

if ( whichWindow == NIL_POINTER ) 
return( FALSE ) ; 

else /* DA windows have negative windowKinds */ 
return( ( (WindowPeek)whichWindow )->windowKind < 0 ); 

/************************************* HandleMenuChoice */ 

HandleMenuChoice( menuChoice 
long int menuChoice: 
{ 

int theMenu; 
int the Item; 

if menuChoice != O ) 
{ 

theMenu = HiWord( menuChoice ); 
theltem = LoWord( menuChoice ); 
switch ( theMenu ) 
{ 



Toolbox Potpourri 

} 

case APPLE_MENU_ID : 
HandleAppleChoice( theitem ); 
break; 

case FILE_MENU_ID : 
HandleFileChoice( theltem ); 
break; 

case EDIT MENU ID : 
HandleEditChoice( theltem ); 
break; 

HiliteMenu( 0 ); 

!******************************** HandleAppleChoice *******/ 

HandleAppleChoice( theitem ) 
int the Item; 
{ 

Str255 
int 

switch 
{ 

accName; 
accNumber: 

theitem ) 

case ABOUT_ITEM 
NoteAlert( ABOUT_ALERT, NIL_POINTER ); 
break: 

default : 
Getitem( gAppleMenu, theitem. accName ); 
accNumber = OpenDeskAcc( accName ); 
break; 

/******************************** HandleFileChoice *******/ 

HandleFileChoice( theitem ) 
int the Item; 
{ 

WindowPtr whichWindow: 
switch ( theltem ) 
{ 

case NEW_ITEM : 
CreateWi ndow(); 
break: 

case CLOSE ITEM : 
if (( whichWindow = FrontWindow()) != NIL_POINTER 

DisposeWindow( whichWindow ); 
break; 

case OUIT_ITEM : 
gDone = TRUE; 
break: 

279 



280 Macintosh Programming Primer 

/******************************** HandleEditChoice 

HandleEditChoice( theltem ) 
int the Item; 
{ 

SystemEdit( the!tem - 1 ); 

!************************************ CreateWindow */ 

CreateWindow() 
{ 

WindowPtr theNewestWindow; 

*******/ 

if theNewestWindow = GetNewWindow( BASE_RES_ID, NIL_POINTER, 

11 

) ) 

MOVE_TO_FRONT ) ) == NIL_POINTER 
ErrorHandler( NO_WIND ); 

if ( (screenBits.bounds.right - gNewWindowLeft) < DRAG_THRESHOLD ) 

( ( screenBits.bounds.bottom - gNewWindowTop) < DRAG_THRESHOLD 

gNewWindowLeft = WINDOW_HOME_LEFT; 
gNewWindowTop = WINDOW_HOME_TOP; 

MoveWindow( theNewestWindow, gNewWindowLeft, 
gNewWindowTop,LEAVE_WHERE_IT_IS ); 

gNewWindowLeft += NEW_WINDOW_OFFSET; 
gNewWindowTop += NEW_WINDOW_OFFSET; 
ShowWindow( theNewestWindow ); 

/******************************** DrawMyPicture *********/ 

DrawMyPicture( thePicture, pictureWindow 
PicHandle thePicture; 
WindowPtr pictureWindow; 
{ 

Rect myRect: 

myRect = pictureWindow->portRect; 
CenterPict( thePicture, &myRect ): 
SetPort( pictureWindow ); 
DrawPicture( thePicture, &myRect ); 



Toolbox Potpourri 

/******************************** CenterPict *********/ 

CenterPict( thePicture, myRectPtr 
PicHandle thePicture: 
Rect *myRectPtr: 
{ 

Rect windRect, pictureRect: 

windRect = *myRectPtr: 
pictureRect = (**( thePicture )).picFrame: 
myRectPtr->top = (windRect.bottom - windRect.top -

CpictureRect.bottom - pictureRect.top)) 
I 2 + windRect.top; 

myRectPtr->bottom = myRectPtr->top + (pictureRect.bottom -
pictureRect.top); 

myRectPtr->left = (windRect.right - windRect.left -
(pictureRect.right - pictureRect.left)) 
I 2 + windRect.left: 

myRectPtr->right = myRectPtr->left + (pictureRect.right -
pictureRect.left); 

/******************************** ErrorHandler *********/ 

ErrorHandler( stringNum ) 
int stringNum: 
{ 

StringHandle errorStringH; 

if ( ( errorStringH = GetString( stringNum ) ) == NIL_POINTER 
ParamText( HOPELESSLY_FATAL_ERROR, NIL_STRING, 
NIL_STRING,NIL_STRING ); 

else 
{ 

Hlock( errorStringH ); 

281 

ParamText( *errorStringH, NIL_STRING, NIL_STRING, NIL_STRING ); 
HUnlock( errorStringH ); 

I 
StopAlert( ERROR_ALERT_ID, NIL_POINTER ); 
Exi tToShel l (): 

Running WindowMaker 

Now that your source code is done, you're ready to run WindowMaker. 
Select Run from the Project menu. When asked to Br i n g the project up 
to date, click Yes. If you run into any compilation problems, consult the 
debugging tips found in Appendix E. When asked to Save changes before 
running, click Yes. The menu bar should display the , File, and Edit 



282 Macintosh Programming Primer 

menus. Desk accessories should work. The File menu should contain three 
new menu items: New, Close, and Quit. The Edit menu contains the 
standard menu items but is dimmed. Select New from the File menu a few 
times: You should see something like Figure 7 .8. 

Each window can be selected and dragged around the screen. Selecting 
Close closes the currently selected window. 

Try selecting New about a dozen times (or until you've created enough 
windows to cause window wrap). You should see something like Figure 7 .9. 
Each new window is placed below and to the right of the previous window. 
When the new windows reach the bottom or the right of the screen, the 
window wraps back to the top left corner. Select a window and drag it 
partially off and then back onto the screen. An updateEvt will cause the 
PI CT to be redrawn. Click in the close box of a window to close it. Now, 
choose Quit from the File menu. Let's take a look at the code. 

r s File l'.di1 
., 

Window 

Window 

ill Window 

(;, ... (;, . 
• . 0 a.0 
0° -'1' 0 Qi Ql•0 ::,·. "!". · .I. 0 . 0 

·:· .. o:· . 

~ - .. • 

Figure 7.8 Running Window Maker . 



Toolbox Potpourri 

r • File !:di1 

Window 

G , .. G • 
0

• 0 0,, 0G0. 
09·~0 '.f 0 ~ "!" . . J. 0 ' 0 

·• o ,• .. 
···.o. . 

' - ··' 
Window 

Window 

Window 

Window 

Window 

Window 

Figure 7.9 Window wrap in WindowMaker. 

How WindowMaker Works 

283 

., 

Wi ndo\vMa ker . c starts off with the :/fdefi ne statements. BASE_RES_ I D, 
NI L_ PO INTER, MOVE_ TO_ FRONT, and REMOV E_ ALL_ EV ENTS are the famil
iar assignments used in the initialization phase of the program. 
APP LE_MENU_l D, ED IT _ MENU_I D, and FI LE_ MENU_I Dare the resource ID 
numbers for the MENU resources. ABOUT_ITEM, ABOUT_ALERT, and 
ERROR_ALERT _ID are used for the alert section and resources. The names 
NO_MBA R, NO_ MENU, NO_ PICTURE, and NO_WIND are used to identify the 
resource ID of the four strings used in the error-handling routine. NEW_ ITEM, 
CLOSE_ ITEM, and OU IT _ITEM are used in the case statement in the menu
handlingroutines. UNDO_ITEM, CUT _ITEM, COPY _ ITEM, PASTE_ITEM, and 
CLEAR_ ITEM will be used to control the Edit menu items for desk accesso
ries. The DRAG_ THRESH 0 L D is used to set the distance from the edge, in 
pixels, that the windows may be moved or new windows created. 
WI NDOW_HOME_LEFT and WI NDOW_ HOME_ TOP are the default positions for 
a new window on the screen. The NEW_WINDOW_OFFSET is set to the 
number of pixels that a new window will be offset from the previous 
window. MIN_SLEEP and NIL_ MOUSE_ REGIONS are the parameters for 
Wai tNext Event ( ) ; LEAV E_WH E RE_I T _ I S isaconstantforMoveWi ndow ( ) . 
WN E_ TRAP _ NUM and UN I MP L_ TRAP NUM are used to determine the availa
bility ofWa it Next Event ( ) on the user's Mac. Finally, set up NI L_STR I NG 
and HOPE LESSLY _ FAT AL_ ERROR for use in the error-handling alert. 



284 Macintosh Programming Primer 

#define BASE_RES_ID 400 
#define NI L_PO INTER OL 
/ldefi ne MOVE TO FRONT -ll 
#define REMOVE_ALL_EVENTS 0 

#define APPLE_MENU_ID 400 
#define FILE_MENU_ID 401 
#define EDIT_MENU_ID 402 

#define ABOUT_ ITEM 1 
/ldefi ne ABOUT_ALERT 400 
/ldefi ne ERROR_ALERT _ID 401 

#define NO_MBAR BASE_RES_ID 
/fdefi ne NO_MENU BASE_RES_ID+l 
#define NO_PICTURE BASE_RES_ID+2 
/fdefi ne NO_WIND BASE_RES_ID+3 

#define NEW_ITEM 1 
If define CLOSE_ITEM 2 
If define QUIT_ITEM 3 
#define UNDO_ITEM 1 
#define CUT_ITEM 3 
If define COPY_ITEM 4 
#define PASTE_ITEM 5 
#define CLEAR_ITEM 6 

#define DRAG_ THRESHOLD 30 

#define WINDOW_HOME_LEFT 5 
#define WINDOW_HOME_TOP 45 
#define NEW_WINDOW_OFFSET 20 

#define MIN_SLEEP OL 
/ldefi ne NI L_MOUSE_REGION OL 

/ldefi ne LEAVE_WHERE_IT_IS FALSE 

#define WNE_TRAP_NUM Ox60 
#define UNIMPL_TRAP_NUM Ox9F 

#define NIL_STRING "\p" 
#define HOPELESSLY_FATAL_ ERROR "\pGame over. man!" 

Then define your global variables: 

Boolean gDone. gWNEimplemented: 
Event Record gTheEvent: 
MenuHandle gAppleMenu. gEditMenu; 
PicHandle gMyPicture: 
Re ct gDragRect: 
int gNewWindowleft = WINDOW_HOME_LEFT. gNewWindowTop = 

WI NDO\LHOME_ TOP: 



Working with Dialogs 285 

main ( ) 
( 

gDone, as always, is used as a flag for program completion. 
gWNEimpl emented is the flag used when evaluating whether 
Wai tNext Event ()is available. gApp 1 eMenu and gEdi tMenu are handles 
to the MENU resource; g My Pi ct u re, the handle to the P I CT resource. 
gDragRect is the rectangle within the user's screen in which the window 
can be dragged around. gNewWi ndowleft and gNewWi ndowTop are the 
left and top coordinates for new windows, and are initialized for the first 
window. 

main () startswiththefamiliarcallsto Too 1 Box I nit ( ) and Menu I nit ( ); 
then Load Picture() loads your PICT resource, and SetUpDragRect() 
defines the dragging limits for windows. Next, go to Main Loop ( ) . 

Tool Boxlnit(); 
MenuBarlnit(); 
Load Picture(); 
SetUpDragRect(); 

Mainloop(); 

You haven't made any changes to Too 1 ~ox In it ( ) : 

/*********************************** ToolBoxlnit */ 

Tool Box I nit() 
( 

InitGraf( &thePort ); 
In it Fonts (); 
FlushEvents( everyEvent. REMOVE_ALL_EVENTS ); 
InitWindows(); 
InitMenusC); 
TEinit(); 
InitDialogs( NIL_POINTER ); 
InitCursor(); 

In Menu Bar In it ( ) , load your menu resources and draw the menu bar. 
Everything is standard operating procedure except for the new error 
handling. If GetNewMBa r ( BASE_RES_I D) returns a NI L_PO INTER, it in
dicates that the operating system could not find the MBA R resource in your 
resource file; the error-handling routine, Error Hand 1 er ( ) , will then 
display an alert containing the string ( ' ST R ' ) resource with an ID number 
of N O_M BAR. The same thing happens if the S or Edit menu resource cannot 
be found: 



286 Macintosh Programming Primer 

/*********************************** MenuBarinit */ 

MenuBarinit() 
{ 

Handle myMenuBar; 

if ( ( myMenuBar = GetNewMBar( BASE_RES_ID ) ) == NIL_POINTER ) 
ErrorHandler( NO_MBAR ): 

SetMenuBar( myMenuBar ): 
if ( ( gAppleMenu = GetMHandle( APPLE_MENU_ID == NIL_POINTER 

ErrorHandler( NO_MENU ): 
AddResMenu( gAppl eMenu. • DRVR' ) : 
if ( ( gEditMenu = GetMHandle( EDIT_MENU ID NIL_POINTER 
ErrorHandler( NO_MENU ): 
DrawMenuBar(): 

Lo ad Pi ct u re ( ) gets the P I CT resource out of your resource file. This 
version of Lo ad Pi ct u re ( ) also checks to see if the resource was available. 
If not, the error-handling routine is run with the ' ST R ' resource string 
possessing ID number NO _PICTURE. 

!******************************** LoadPicture *********/ 

LoadPicture() 
{ 

if ( ( gMyPicture = GetPicture( BASE_RES ID ) ) 
ErrorHandler( NO_PICTURE ): 

NI L_PO INTER 

Set Up Drag Rec t ( ) initializes the region within which windows can be 
dragged and new windows created. The initial Re ct is set to the size of the 
screen (screenBi ts. bounds); the left, right, and bottom of the Rect are 
then decremented by DRAG_ THRESH 0 L D. (Try changing DRAG_ THRESH 0 L D 
to a number other than 3 0 and see what happens to the application.) 

!******************************** SetUpDragRect *********/ 

SetUpDragRect() 
{ 

gDragRect = screenBits.bounds: 
gDragRect.left += DRAG_THRESHOLD: 
gDragRect.right -= DRAG_THRESHOLD: 
gDragRect.bottom -= DRAG_THRESHOLD: 

Main Loop ( ) checks to see if Wai tNext Event ( ) is implemented. 



Working with Dialogs 

/******************************** MainLoop *********/ 

MainLoop() 
{ 

gDone = FALSE; 
gWNEimplemented = ( NGetTrapAddress( WNE_TRAP_NUM. ToolTrap ) != 

NGetTrapAddress( UNIMPL_TRAP_NUM, ToolTrap ) ); 
while ( gDone == FALSE ) 
{ 

HandleEvent(); 

287 

Ha n d l e Event ( ) is similar to the earlier event handlers, except that cut, 
copy, and paste operations are now supported in desk accessories. 
AdjustMenus () is now called if a command key equivalent event has 
occurred, to change the state of the Edit menu. updateEvts are handled 
with a call to DrawMyPi cture(). 

/************************************* HandleEvent */ 

HandleEvent() 
{ 

char theCha r; 

if ( gWNEimplemented 

else 
{ 

WaitNextEvent( everyEvent, &gTheEvent, MIN_SLEEP, 
NIL_MOUSE_REGION ); 

SystemTask(); 
GetNextEvent( everyEvent. &gTheEvent ); 

switch ( gTheEvent.what ) 
{ 

case mouseDown: 
HandleMouseDown(); 
break; 

case keyDown: 
case autoKey: 

theChar = gTheEvent.message & charCodeMask; 
if (( gTheEvent.modifiers & cmdKey ) != 0) 
{ 

} 
break; 

AdjustMenus(); 
HandleMenuChoice( MenuKey( theChar ) ); 

case updateEvt: 
BeginUpdate( gTheEvent.message ); 
DrawMyPicture( gMyPicture. gTheEvent.message ); 
EndUpdate( gTheEvent.message ); 
break: 



288 Macintosh Programming Primer 

Now, Hand l eM o use Down ( ) supports desk accessory use of the Edit 
menu. AdjustMenus() is also called to activate the Edit menu if a 
mouse Down has occurred in the menu bar. Clicking in the close box calls 
Di s po s eW i n d ow ( ) , which will close and free up the memory used for the 
window. 

/************************************* HandleMouseDown */ 

HandleMouseDown() 
{ 

WindowPtr 
short int 
long int 

whichWindow; 
thePart; 
menuChoice, windSize: 

thePart = FindWindow( gTheEvent.where, &whichWindow ): 
switch ( thePart ) 
{ 

case inMenuBar: 
AdjustMenus(); 
menuChoice = MenuSelect( gTheEvent.where ); 
HandleMenuChoice( menuChoice ): 
break: 

case inSysWindow: 
SystemClick( &gTheEvent, whichWindow ); 
break: 

case inDrag: 
DragWindow( whichWindow, gTheEvent.where, &gDragRect ); 
break: 

case inGoAway: 
DisposeWindow( whichWindow ): 
break: 

case inContent: 
SelectWindow( whichWindow ); 
break: 

AdjustMenus() and IsDAWindow() work together: AdjustMenus() 
enables and disables the items in the Edit menu, depending on whether the 
current window is a desk accessory window or a Window Maker window. To 
determine this we look into the structure of the current window: One of the 
fields ofa window, wi ndowKi nd, is positive if the window is an application 
window and negative ifit is a desk accessory window. So, in I s DAW i n d ow ( ) , 
FALSE is returned if there is no window, or if the window belongs to 
WindowMaker, and all items in the Edit menu are disabled (dimmed). If 
TRUE is returned, the Edit items are enabled so that desk accessories can 
use them. 



Toolbox Potpourri 

/************************************* AdjustMenus */ 

AdjustMenus() 
{ 

if IsDAWindow( FrontWindow() ) ) 
{ 

Enableltem( gEditMenu, UNDO_ITEM ); 
Enable Item( gEditMenu, CUT _ITEM ) : 
Enable Item( gEditMenu, COPY _IT EM ) : 
Enable Item( gEditMenu, PASTE_ITEM ) : 
Enable Item( gEditMenu, C LEAR_ITEM ) : 

I 
else 
I 

Disableltem( gEditMenu, UNDO_ITEM ) : 
Disableltem( gEditMenu, CUT_ITEM ); 
Disableltem( gEditMenu, COPY _ITEM ) : 
Disableltem( gEditMenu, PASTE_ITEM ) : 
Disable Item( gEditMenu, CLEAR_! TEM ) : 

/************************************* IsDAWindow */ 

IsDAWindow( whichWindow ) 
WindowPtr whichWindow: 
{ 

if ( whichWindow == NIL_POINTER ) 
return( FALSE ): 

else /* DA windows have negative windowKinds */ 
return( ( (WindowPeek)whichWindow )->windowKind < 0 ); 

289 

Hand 1 eMe nu Choi c e ( ) hasn't changed from the earlier programs with 
menus, except that you now handle Edit menu selections: 

/************************************* HandleMenuChoice */ 

HandleMenuChoice( menuChoice 
long int menuChoice: 
I 

int theMenu: 
int the Item: 

if menuChoice != O ) 
I 

theMenu = HiWord( menuChoice ); 
theltem = LoWord( menuChoice ); 
switch ( theMenu ) 
{ 



290 

J 

Macintosh Programming Primer 

case APPLE_MENU_ID : 
HandleAppleChoice( theltem ); 
break; 

case FILE_MENU_ID : 
HandleFileChoice( theltem ): 
break: 

case EDIT_MENU_ID : 
HandleEditChoice( theltem ); 
break; 

HiliteMenu( 0 ); 

Handl eApp 1 eChoi ce() works the same way as Chapter 6's Reminder 
program. The about item calls Note Al er t ( ) , which displays the AL RT and 
the DI TL you set up for the about box. 

/******************************** HandleAppleChoice *******/ 

HandleAppleChoice( theltem ) 
int the Item; 
{ 

Str255 
int 

switch 
I 

accName: 
accNumber: 

theltem ) 

case ABOUT_ITEM : 
NoteAlert( ABOUT_ALERT. NIL_POINTER ); 
break: 

default : 
Getltem( gAppleMenu, theltem, accName ); 
accNumber = OpenDeskAcc( accName ); 
break; 

Ha n d l e Fi 1 e Cho i c e ( ) takes care of the File menu choices. The New 
menu item runs the routine CreateWi ndow( ), and the Close menu item 
closes the active window by calling Di sposeWi ndow( ). Using the Close 
menu item is the same as clicking in the active window's close box. Quit sets 
gDone to TRUE, which halts execution of the main event loop. 



Toolbox Potpourri 291 

/******************************** HandleFileChoice *******/ 

HandleFileChoice( theltem ) 
int the Item; 
{ 

WindowPtr whichWindow: 
switch ( theltem ) 
I 

case NEW_ITEM : 
CreateWindow(); 
break: 

case CLOSE_ITEM : 
if ( ( whichWindow = FrontWindow() ) != NIL_POINTER 

DisposeWindow( whichWindow ); 
break; 

case QUIT_ITEM : 
gDone = TRUE; 
break: 

Hand l e Ed i t Choi c e ( ) calls System Ed i t ( ) . If the active window be
longs to a desk accessory, System Ed i t ( ) passes the appropriate edit 
command to the accessory. Otherwise, it returns FALSE, and your applica
tion should then handle the edit command. Since the Edit menu items are 
disabled in Window Maker, Hand l e Ed i t Choi c e ( ) just takes care of desk 
accessories. 

******************************** HandleEditChoice *******/ 

HandleEditChoice( theltem ) 
int the Item: 
I 

SystemEdit( the Item - 1 ) ; 

C re ate W i n do w ( ) controls the creation and placing of new windows for 
Window Maker. First, use Get N ewW i n d ow ( ) with your WIND resource to 
create a new window. If the WI ND is missing, GetNewWi ndow() returns a 
NI L_PO INTER, so you can call ErrorHandl er ()with a 'STR ' resource 
of NO_WI ND. 

/************************************ CreateWindow */ 

CreateWindow() 
{ 

WindowPtr theNewesUJi ndow; 

if ( ( theNewestWindow = GetNewWindow( BASE_RES_ID. NIL_POINTER. 
MOVE_TO_FRONT ) ) == NIL_POINTER 

ErrorHandler( NO_WIND ); 



292 Macintosh Programming Primer 

Next, check to see if the left edge or the top of the new window is within 
DRAG_ TH RESH 0 L D pixels of the edge of the screen. If so, reset 
gNewWi ndowleft and gNewWi ndowTop to the home position. 

if ( ( (screenBits.bounds.right - gNewWindowleft) 
< DRAG_THRESHOLD I I 

( ( screenBits.bounds.bottom - gNewWindowTop) 
< DRAG_THRESHOLD 

gNewWindowleft = WINDOW_HOME_LEFT; 
gNewWindowTop = WINDOW_HOME_TOP; 

MoveWindow( theNewestWindow, gNewWindowleft, 
gNewWindowTop,LEAVE_WHERE_IT_IS ); 

gNewWindowleft += NEW_WINDOW_OFFSET; 
gNewWindowTop += NEW_WINDOW_OFFSET; 
ShowWindow( theNewestWindow ); 

Normally, you'd use the position of a window as specified in the WI ND 
resource. In this case, however, the position of each new window is defined 
by the globals gNewWi ndowleft and gNewWi ndowTop. Whenever a new 
window is defined, MoveWi ndow() is called to move the window from the 
original WIND-based position to the position described by g N ewW i n d ow Left 
andgNewWi ndowTop. ThefinalparametertoMoveWi ndow() isa Boolean 
that determines whether the window, once moved, is moved to the front of 
all other windows or is left in the same layer. LE AV E_W HERE_ IT_ I S tells 
Move W i n d ow ( ) not to move the window to the front. Since the window was 
created in the front, this parameter will have no effect. 

Next, gNewWi ndowleft and gNewWi ndowTop are incremented by 
N EW_W I N DOW_ 0 FF SET, so the next new window won't appear directly on top 
of the previous one. Finally, the window is made visible. 

Dr a wMy Pi ct u re ( ) passes g My Pi ct u re to Cent e r Pi ct ( ) and then 
draws the centered PICT in pi ctureWi ndow. 

The real value of parameter passing is seen here. By passing the 
Wi ndowPtr embedded in gTheEvent. message as a parameter to 
Dr a wMy Pi ct u re ( ) , you avoid hard-coded variable names that would 
limit the flexibility of this routine. 



Toolbox Potpourri 293 

/******************************** OrawMyPicture *********/ 

OrawMyPicture( thePicture, pictureWindow 
PicHandle thePicture: 
WindowPtr pictureWindow: 
{ 

Rect myRect: 

myRect = pictureWindow->portRect: 
CenterPict( thePicture, &myRect ): 
SetPort( pictureWindow ); 
OrawPicture( thePicture, &myRect ); 

Center Pi ct ( ) is the same routine you've used in your other P I CT 
drawing programs: 

/******************************** CenterPict *********/ 

CenterPict( thePicture, myRectPtr 
PicHandle thePicture; 
Rect *myRectPtr: 
( 

Rect wi ndRect, pi ctureRect; 

windRect = *myRectPtr; 
pictureRect = (**( thePicture )).picFrame; 
myRectPtr->top = (windRect.bottom - windRect.top -

(pictureRect.bottom - pictureRect.top)) 
I 2 + windRect.top; 

myRectPtr->bottom = myRectPtr->top + (pictureRect.bottom -
pictureRect.top); 

myRectPtr->left = (windRect.right - windRect.left -
(pictureRect.right - pictureRect.left)) 

I 2 + windRect.left; 
myRectPtr->right = myRectPtr->left + (pictureRect.right -

pictureRect.left): 

Finally, there's the ErrorHandl er() routine. ErrorHandl er() takes 
an error ID as input, loads the 'STR' resource with that ID, and uses 
Stop A 1 e rt ( ) to display the error message. If the program can't find the 
'STR' resource it needs, it calls StopA le rt () with the 
HOPELESSLY _FATAL_ERROR string defined at the beginning ofWindow
Maker (Game Over. Man), to inform the user that the situation is 
exceedingly grim. 

Finally, Exit To She 11 ( ) returns control of the Macintosh to the Finder. 



294 Macintosh Programming Primer 

/******************************** ErrorHandler *********/ 

ErrorHandler( stringNum ) 
int stringNum; 
{ 

StringHandle errorStringH; 

if ( ( errorStringH = GetString( stringNum ) ) == NIL_POINTER 
ParamText( HOPELESSLY_FATAL_ERROR. NIL_STRING. 
NIL_STRING.NIL_STRING ); 

else 
{ 

} 

Hlock( errorStri ngH ) ; 
ParamText( *errorStringH. NIL_STRING. NIL_STRING. NIL_STRING ); 
HUnlock( errorStringH ); 

StopAlert( ERROR_ALERT_ID. NIL_POINTER ); 
Exi tToShel 1 <); 

There are many solutions to error handling on the Macintosh. Whenever 
you make a Toolbox function call, check to see if an error has occurred. This 
is called passive error handling. Sometimes this is good enough, sometimes 
it's not. 

You can also go out of your way to avoid errors by checking everything 
you can possibly check. For example, take another look at this code 
fragment from the Menu I n i t ( ) routine: 

MenuBarinit() 
{ 

Handle myMenuBar; 

if ( ( myMenuBar = GetNewMBarC BASE_RES_ID ) ) == NIL_POINTER ) 
ErrorHandler( NO_MBAR ); 

SetMenuBar( myMenuBar ); 
if ( ( gAppleMenu = GetMHandle( APPLE_MENU_ID ) ) == NIL_POINTER 

ErrorHandler( NO_MENU ); 
AddResMenu( gAppleMenu. 'DRVR' ); 
DrawMenuBar(); 

Although you check the return codes from both function calls in Menu-
1 n i t ( ) , you still missed something. What happens if the File or Edit MENU 
resources are not found? The program will not function properly and will 
most probably crash. Checking all your resources may be time-consuming, 
but in the end, it's well worth it. 

Here's a version of Menu In i t ( ) with proactive error handling: 



Toolbox Potpourri 295 

MenuBarinit() 
{ 

Handle myMenuBa r: 

if ( myMenuBar = GetNewMBar( BASE_RES_ID ) ) == NIL_POINTER ) 
ErrorHandler( NO_MBAR ); 

if ( gAppleMenu = GetMHandle( APPLE_MENU_ID ) == NIL_POINTER 
ErrorHandler( NO_MENU ); 

if ( gFileMenu = GetMHandle( FILE_MENU_ID NIL_POINTER 
ErrorHandl er( NO_MENU ) : 

if ( gEditMenu = GetMHandle( EDIT_MENU_ID NIL_POINTER 
ErrorHandler( NO_MENU ); 

AddResMenu( gAppleMenu, 'DRVR' ); 
SetMenuBar( myMenuBar ); 
DrawMenuBar(); 

_J 

You can take error handling one step further and also check your 
resources just before you use them. For example, you could call 
Get M Ha n d 1 e ( ) immediately before Menu Se 1 e ct ( ) in case the M EN U was 
somehow corrupted. 

You'll decide on the appropriate amount of error handling to perform. 
Error handling bulks code up but provides a higher level of reliability for 
your program. We highly recommend the inclusion of error-handling code 
early in the programming cycle. 

The Scrap Manager 

Whenever you use the Mac's copy, cut, or paste facilities, you're making use 
of the Scrap Manager. The Scrap Manager manages the desk scrap, 
more commonly known as the Clipboard. The second program, ShowClip, 
will use the Scrap Manager Toolbox routines to open the Clipboard and 
display the contents in a window. 

Scrap Manager Basics 

Data copied to the desk scrap is stored in two basic flavors, TEXT and P I CT. 
Data stored in TEXT format consist of a series of ASCII characters. Data 
stored in P I CT format consist of a QuickDraw picture. ShowClip will handle 
both TEXT and PI CT data types. 

The Sera p Manager consists of six routines: I n fo Sc r a p ( ) , 
Un l o ad Scrap ( ) , Lo ad Scrap ( ) , Zero Scrap ( ) , Put Scrap(), and 
Get Sc r a p ( ) . Each of these functions returns a long integer containing a 
result code (1:457). 



296 Macintosh Programming Primer 

InfoScrap() 

InfoScrap() isafunction(oftype PScrapStuff) that returns informa
tion about the desk scrap in a struct of type ScrapStuff: 

typedef struct ScrapStuff 
I 

1 ong 
Handle 
int 

scrapSize: 
scrapHandle: 
scrapCount: 
scrapState: 
scrapName: 

int 
StringPtr 
ScrapStuff, *PScrapStuff: 

The scrap Si z e field contains the actual size, in bytes, of the desk scrap. 
The scrap Hand l e field contains a handle to the desk scrap (if it currently 
resides in memory). The scrapCount field is changed every time 
ZeroScra p () iscalled(we'llgetto ZeroScrap() in a bit). The scrapState 
field is positive if the desk scrap is memory resident, zero if the scrap is on 
disk, and negative if the scrap has not yet been initialized. The scrap Na me 
field contains a pointer to the name of the scrap disk file (usually called the 
Clipboard file). 

UnloadScrap() and LoadScrap() 

If the scrap is currently in memory, Un l o ad Scrap ( ) copies the scrap to 
disk and releases the scrap's memory. If the scrap is currently disk-based, 
Unl oadScrap() does nothing. 

If the scrap is currently on disk, Lo ad Scrap ( ) allocates memory for the 
scrap and copies it from disk. If the scrap is currently memory-resident, 
LoadScrap() does nothing. 

ZeroScrap() 

If the desk scrap does not yet exist, Zero Scrap ( ) creates it in memory. If 
it does exist, Zero Sc r a p ( ) clears it. As we mentioned before, Z e r o Scrap ( ) 
always changes the scrapCount field of the ScrapStuff struct. 

PutScrap() 

PutScrap() puts the data pointed to by source into the scrap: 

long PutScrap( length, theType, source ) 
1 ong 1 ength: 
ResType theType: 
Ptr source: 



Toolbox Potpourri 

_J 

297 

The parameter length specifies the length of the data, and theType 
specifies its type (whether it's PI CT or TEXT data). You must call 
ZeroScrapC) immediately before each call to PutScrap( ). 

GetScrap() 

GetScrap ()resizes the handle hDest and stores acopyofthescrapin this 
resized block of memory: 

long GetScrap( hDest, theType, offset ) 
Handle hDest; 
ResType theType: 
long *offset; 

Specify the type of data you want in the parameter theType. The 
offset parameter is set to the returned data's offset in bytes from the 
beginning of the desk scrap. GetScrap() returns a long containing the 
length of the data in bytes. 

You can actually put and get data types other than TEXT and PI CT to 
and from the scrap (1:461). For the most part, however, the TEXT and PI CT 
data types should serve your needs. 

ShowClip 

The ability to use the Clipboard is basic to Mac applications. ShowClip 
shows you how to add this capability to your applications. If you cut or copy 
text or a picture in an application or in the Finder and then run ShowClip, 
it will display the cut or copied text in a window. 

ShowClip Specifications 

The structure of ShowClip works like this: 

• It initializes the Toolbox. 

• It initializes a window. 

• It puts whatever is in the Clipboard into the window. 

• It quits. 

ShowClip also does error checking. It warns if the WI ND resource is 
missing, or if the scrap is empty. 



298 Macintosh Programming Primer 

Setting Up the ShowClip Project 

Start by creating a folder for this project, called ShowClip. Use ResEdit to 
create a new file called ShowClip Proj.Rsrc and, within that, a WI ND with an 
ID of 4 0 0. Figure 7 .10 shows the specifications of this W I ND. 

Add the D I TL in Figure 7 .11 (this is the same AL RT as the "hopelessly 
fatal" DI TL in Window Maker, so use the Window Maker DI TL if you have 
it. 

~U§ WIND ID= 400 from ShowClip Proj.Rsrc ~ 

Window title: 

jshowClip I 
top ~bottom~ 
left E=:J right ~ 

proclD jo lrefCon jo I 

D Uisible D goAwayFlag 

Figure 7.10 WIND resource for ShowClip. 

§0§ DITL "Fatal Error" ID= 401 from ShowCI 

~n·n··Iilc·r:e·Ci-ril'fy ... iafare·r·r·ci'r .. il"a"S ............. ~ 
µust occurred: "O j 

1.. ...................................................................................................... ..1 

( Gasp! ) 

Figure 7.11 0 IT L resource for ShowClip. 



Toolbox Potpourri 299 

Item# Type Enabled top left bottom right Text/Resource ID 

1 Button Yes 86 117 106 1n Gasp I 

2 StaUcText Yes 5 67 71 283 An Incredibly 

fatal error has 

Just occurred: 110 

Figure 7 .11 D I TL resource for ShowClip (continued). 

Next, create an ALRT resource for your new error-checking routines 
(Figure 7.12). Add the two 'STR' resources shown in Figure 7.13 to the 
ShowCl i p Proj. rs re file. Again, be sure to change the resource IDs of 
each resource to those shown in the figure. When you're done, the resource 
ShowCl i p P roj. rs re should look like Figure 7.14. 

§0§ Alert 11 Fatal Error 11 ID= 401 from ShowClip Pr 

~bottom~ 
left ~right ~ 
top 

items IOI 401 I 
stage 1 D 2 bold 18] drawn 

stage 2 D 2 bold 18] drawn 

stage 3 D 2 bold 18] drawn 

stage 4 D 2 bold 18] drawn 

Figure 7 .12 D IT L resource for ShowClip. 

sound 
.-
1 

1---

1 
1---

1 
1---

1 
1....--



300 

#define 
#define 
#define 
#define 

#define 
#define 
#define 

#define 
#define 

WindowPtr 

Macintosh Programming Primer 

STR ID = 400 from ShowClip Proj.Rsrc 

theStr 

Data 

theStr 

Data 

I Can't load the WI ND resource! ! ! 

sL...-1 ---------

I Clipboard is Empty!!! I 
srL---_____ ___.J 

Figure 7.13 STR resources for ShowClip. 

§0 ShowClip Proj.Rsrc 
ALRT 
DITL 
STR 
WIND 

~ 

to Figure 7.14 ShowClip 
resources completed. 

Now you're ready to launch THINK C. When prompted for a project to 
open, create a new project in the ShowCl i p folder and call it ShowCl i p 
P r o j . Add Ma c Traps to your project. Create a new source file called 
ShowCl ip.c and add it to ShowCl ip Proj. Here's the source code for 
ShowCl i p. c: 

BASE_RES_ID 400 
NIL_POINTER OL 
MOVE_ TO_FRONT -ll 
REMOVE_ALL_EVENTS 0 

ERROR_ALERT_ID BASE_RES_ID+l 
NO_WIND BASE_RES_ID 
EMPTY_SCRAP BASE_RES_ID+ 1 

NIL_STRING .. \ p" 
HOPELESSLY_FATAL_ ERROR "\pGame over. man!" 

gClipWindow; 



Toolbox Potpourri 

!******************************** main *********/ 

main() 
I 

Tool Boxlnit(); 
Windowlnit(); 
Mainloop(); 

/******************************** ToolBoxlnit *********/ 

ToolBoxinit() 
I 

InitGraf( &thePort ); 
InitFonts(); 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ); 
InitWindows(); 
Ini tMenus (): 
TEinit(); 
InitDialogs( NIL_POINTER ); 
InitCursor(); 

/******************************** Windowinit *********/ 

Wi ndowl nit () 
I 

if ( ( gClipWindow = GetNewWindow( BASE_RES_ID, NIL_POINTER, 
MOVE_TO_FRONT ) ) == NIL_POINTER ) 
ErrorHandler( NO_WIND ); 

ShowWindow( gClipWindow ); 
SetPort( gClipWindow >: 

/******************************** Mainloop *********/ 

Mainloop() 
I 

Re ct 
Handle 
1 ong int 

myRect; 
clipHandle; 
length, offset; 

clipHandle NewHandle( 0 ); 
if ( length= GetScrap( clipHandle, 'TEXT', &offset ) ) < O ) 
I 

301 

if ( length= GetScrap( clipHandle, 'PICT'. &offset ) ) < 0 ) 

else 
I 

ErrorHandler( EMPTY_SCRAP ); 



302 

} 
else 
{ 

Macintosh Programming Primer 

myRect = gClipWindow->portRect; 
CenterPict( clipHandle, &myRect ); 
DrawPicture( clipHandle, &myRect ): 

Hlock( clipHandle ): 
TextBox( *clipHandle, length, &(thePort->portRect), 

teJustleft ); 
HUnlock( clipHandle ); 

while ( !Button() ) : 

/******************************** CenterPict *********/ 

CenterPict( thePicture. myRectPtr 
PicHandle thePicture: 
Rect *myRectPtr: 
I 

Rect windRect, pictureRect: 

windRect = *myRectPtr: 
pictureRect = (**( thePicture )).picFrame; 
myRectPtr->top = (windRect.bottom - windRect.top -

(pictureRect.bottom - pictureRect.top)) 
I 2 + windRect.top; 

myRectPtr->bottom = myRectPtr->top + (pictureRect.bottom -
pictureRect.top); 

myRectPtr->left = CwindRect.right - windRect.left -
(pictureRect.right - pictureRect.left)) 
I 2 + windRect.left; 

myRectPtr->right = myRectPtr->left + {pictureRect.right -
pictureRect.left); 

!******************************** ErrorHandler *********/ 

ErrorHandler( stringNum ) 
int stringNum; 
{ 

StringHandle errorStringH; 

if ( errorStringH = GetString( stringNum ) ) == NIL_POINTER ) 

else 
{ 

ParamText( HOPELESSLY_FATAL_ERROR, NIL_STRING, NIL_STRING, 
NIL_STRING ); 



Toolbox Potpourri 303 

HLock( errorStringH ); 
ParamText( *errorStringH, NIL_STRING, NIL_STRING, 

NIL_STRING ); 
HUnlock( errorStringH ); 

} 
StopAlert( ERROR_ALERT_ID, NIL_POINTER ); 
Exi tToShel l (); 

Running ShowClip 

Now that your source code is done, you're ready to run ShowClip. Before you 
run the program, however, do a cut or copy operation on the ShowCl i p. c 
file, or copy a picture from the Scrapbook; otherwise, you'll get an alert 
telling you that the scrap is empty. Now run ShowClip. It should immedi
ately display the text or picture that you cut or copied (Figure 7 .15). 

Quit by clicking the mouse. Try copying varying sizes of text, or different 
pictures and running ShowClip again. This code should point out the ease 
with which you can add the Clipboard functions to your applications. 

Now, let's see how it's done. 

ShowClip 
Semple Copied Text 

Figure 7.15 Running ShowClip. 



304 Macintosh Programming Primer 

How ShowClip Works 

ShowClip.c starts off with the //define constants that you'll be using. (You 
saw these in WindowMaker already.) Next, declare your only global vari
able: 

#define BASE_RES_ID 400 
#define NI L_PO INTER OL 
If define MOVE_TO_FRONT -ll 
#define REMOVE_ALL_EVENTS 0 

#define ERRO R_ALERT _ID BASE_RES_ID+l 

#define NO_WIND BASE_RES_ID 
ff define EMPTY _SCRAP BASE_RES_ID+l 

/fdefi ne NIL_STRING "\p" 
#define HOPELESSLY_FATAL_ ERROR "\pGame over. man!" 

gCl i pWi ndow is the pointer to the window you'll use to display your 
scrap. 

WindowPtr gClipWindow; 

ma i n () calls Too 1 Box I n i t ( ) , W i n d ow I n i t ( ) , and then Ma i n Loop ( ) . 
No excitement here. 

/******************************** main *********/ 

main ( ) 
I 

ToolBoxlnit(); 
Windowlnit(): 
Mainloop(); 

There aren't any changes in Too 1 Box In it (): 

/******************************** ToolBoxlnit *********/ 

ToolBoxlnit() 
I 

InitGraf( &thePort ); 
InitFonts(); 
FlushEvents( everyEvent. REMOVE_ALL_EVENTS ); 
I nitWi ndows (); 
InitMenus(); 
TEinit(); 
InitDialogs( NIL_POINTER ); 
Ini tCursor(); 



Toolbox Potpourri 305 

In Window In it ( ) , use GetNewWi ndow ()to get gC l i pWi ndow from the 
resource file. Then call ShowWi ndow() to make gCl i pWi ndow visible, and 
Set Port () so that all drawing is done in gCl i pWi ndow: 

/******************************** Windowlnit *********/ 

Windowlnit() 
{ 

if ( ( gClipWindow = GetNewWindow( BASE_RES_ID, NIL_POINTER. 
MOVE_TO_FRONT ) ) == NIL_POINTER ) 

ErrorHandler( NO_WIND ); 
ShowWindow( gClipWindow ); 
SetPort( gClipWindow ); 

Main Loop ( ) is where the action is. You use NewHa nd le ( ) (II:32) to 
create minimum-size blocks of storage for your PICT and TEXT data. 
Remember, Get Scrap ( ) will resize these memory blocks for you, as 
needed. 

/******************************** Mainloop *********/ 

Mainloop() 
{ 

Re ct 
Handle 
long int 

myRect; 
clipHandle; 
length, offset; 

clipHandle NewHandle( 0 ); 

Now, call GetScrap (),looking first for some TEXT data. Ifthere are no 
TEXT data in the scrap, call GetScrap () to look for PI CT data. If you find 
no PICT data, call ErrorHandl er() with the EMPTY_SCRAP string. lfyou 
do find PI CT data, call CenterPi ct ( ) tocenterthepicturein gCl i pWi ndow, 
and then call Draw Pi ct u re ( ) to draw the picture: 

if length= GetScrap( clipHandle, 'TEXT'. &offset ) ) < O ) 
{ 

if ( ( length= GetScrap( clipHandle, 'PICT', &offset) ) < 0) 
ErrorHandler( EMPTY_SCRAP ); 

else 
{ 

myRect = gClipWindow->portRect; 
CenterPictC clipHandle, &myRect ); 
DrawPicture( clipHandle, &myRect ); 



306 

) ; 

else 
I 

Macintosh Programming Primer 

If you found the TEXT datain the scrap, lock c 1 i pH and le with H 1 oc k ( ) , 
then call TextBox() to draw the text in gCl i pWi ndow. 

Hlock( clipHandle ); 
TextBox( *clipHandle. length. &CthePort->portRect), teJustleft 

HUnlock( clipHandle ); 

Finally, wait for a mouse click to exit the program: 

while ( !Button() ) : 

Cent e r P i ct ( ) is the same routine you've used in the other Primer P I CT 
drawing programs: 

/******************************** CenterPict *********/ 

CenterPict( thePicture, myRectPtr 
PicHandle thePicture; 
Rect *myRectPtr; 
{ 

Rect windRect. pictureRect; 

windRect = *myRectPtr; 
pictureRect = (**( thePicture )).picFrame: 
myRectPtr->top = (windRect.bottom - windRect.top -(pictureRect.bottom 

- pictureRect.top)) 
I 2 + windRect.top; 

myRectPtr->bottom = myRectPtr->top + (pictureRect.bottom -
pictureRect.top); 

myRectPtr->left = (windRect.right - windRect. left -
(pictureRect.right - pictureRect.left)) 
I 2 + windRect.left; 

myRectPtr->right = myRectPtr->left + (pictureRect.right -
pictureRect.left); 

ErrorHandler() is the same routine that's part of WindowMaker. 
Here, you get the string you need, then display it with StopAl ert( ). 
Ex i t To She 1 1 ( ) halts program execution and brings up the Finder. 

/******************************** ErrorHandler *********/ 

ErrorHandler( stringNum ) 
int stringNum; 
I 

StringHandle errorStringH; 



Toolbox Potpourri 307 

if ( ( errorStringH = GetString( stringNum ) ) == NIL_POINTER ) 
ParamText( HOPELESSLY_FATAL_ERROR. NIL_STRING. NIL_STRING, 

NIL_STRING ); 
else 
I 

I 

HLock( errorStringH ); 
ParamText( *errorStringH, NIL_STRING. NIL_STRING. NIL_STRING ); 
HUnlock( errorStringH ); 

StopAlert( ERROR_ALERT_ID. NIL_POINTER ); 
Exi tToShel 1 (); 

_J Inside the Printing and File Managers 

The next program, PrintPICT, makes use ofboth the Printing Manager 
and the File Manager. PrintPICT uses the Standard File Package 
(IV:71)topromptforthename ofa PI CT file to print. It opens the file, reads 
in a chunk of data, builds a page, and sends the page to the current printer. 
The power of the File and Printing Managers makes this task a simple one. 
Let's take a look at the Standard File Package. 

The Standard File Package 

The Standard File Package is used by most Macintosh applications to 
support the Open, Save, and Save As ... File menu items. Figure 7 .16 shows 
examples of calls to SFGetFil e() and SFPutFil e( ). SFGetFi 1 e() is 
used to get a file name from the user. It can be called with a list of file types, 
limiting the user's choices to files of the types specified on the list. 
PrintPICT prints a single PI CT file. By calling S FGet Fi 1 e ( ) , PrintPICT 
allows the user to select the print file from a list limited to PI CT files. 

The File Manager was totally remade when the Mac Plus came out. 
The original Macintosh Filing System (MFS) was inadequate to 
handle the number of files that hard disks could hold. The Hierarchi
cal Filing System (HFS) replaced it, and Volume IV details the new 
Toolbox calls. So, if you need information about the File Manager, use 
Chapter 19 ofVolume IV, not Chapter 4 ofVolume II, which has been 
superseded. 



308 

I G=> Hard Disk I 
Cl Rpps 
Cl System Folder 
Cl THINK C 
Cl Utilities 

Macintosh Programming Primer 

IA E=> Hard Disk I!:! 

Driue 

IO Cancel 
'--~~~~~~~~~---1...:....i 

IE=> Hard Disk I 
Cl Rpps 
CJ System Folder 
Cl THINK C 
Cl Utilities 

Saue this document as: 

E=> Hard Disk 

Driue 

Saue 

Cancel 

Figure7.16 SFGetFile()and SFPutFile(). 

Here's the calling sequence for SFGetFi 1 e( ): 

SFGetFile( where, prompt, fileFilter, numTypes. typelist, 
dlgHook, reply ); 
Point where: 
Str255 prompt; 
ProcPtr fileFilter; 
int numTypes: 
SFTypelist typelist; 
ProcPtr dlgHook; 
SFReply *reply; 

SF Get F i 1 e ( ) displays the standard open dialog on the screen at the 
point where. Thepromptstringisignored. numTypes and typel i st allow 
you to specify up to four distinct file types (like P I CT or TEXT ) for the user 
to choose from. 



Toolbox Potpourri 309 

Actually, you can specify as many file types as you like by creating 
your own data type, instead of SFTypeli st. SFGetFil e() looks in 
type Li st for numTypes types. 

f i 1eFi1 ter is a pointer to a filtering routine called by SF Get Fi 1 e ( ) 
after the file list is built from the type List. This filtering routine can 
modify the file list before it's displayed to the user. 

dl gHook also points to a function. The dl gHook function you write 
allows you to add extra items (like pop-up menus) to the standard open 
dialog. 

Once the user selects a file, S F Get Fi 1 e ( ) fills in the st r u ct pointed to 
by reply with information about the selected file: 

typedef st ruct S FRep l y 
{ 

char 
char 
long 
int 
int 
unsigned 
SFReply; 

good; 
copy; 
fType; /* array[l .. 4] of char; */ 
vRefNum; 
version; 

charfName[64J; 

The good field contains FA LS E if the user pressed the Cancel button, 
TRUE otherwise. The copy field is not currently used. The fType field 
contains the file type selected (if the good field contains TRUE). The 
version field always contains 0. The vRefNum and fName fields specify 
the selected file. Y ou11 see how to use these last two fields in the next 
section. 

Using the File Manager 

Once the user has picked a file to open (via SF Get Fi l e ( ) ), you'll use the 
File Manager routines F S 0 pen ( ) to open the file, F SR ea d ( ) to read a block 
of data, and F SC l o s e ( ) to close the file. 

There are a few key terms you should know before you use the File 
Manager. Volwnes are the media used to store files. When the user presses 
the Drive button in the S F Get Fi 1 e ( ) dialog box, they look at the files on 
the next available volume. Macintosh floppy and hard disks are both 
examples of volumes. In the original Macintosh (the one with 64K ROMs), 
all the files on a volume were organized in a flat file format called the 
Macintosh File System (MFS) (Figure 7.17). 



310 Macintosh Programming Primer 

The concept of folders existed on these "flat" Macs, but internally the 
files on a volume were all stored in one big list. The folders were an illusion 
maintained by the Finder. On flat volumes, users can't have two files with 
the same name, even if they're in different folders. The Mac Plus (with 128K 
RO Ms) introduced a new method for organizing files: the Hierarchical File 
System (HFS) (Figure 7.18). 

Within each HFS volume is a set of files and directories. Within each 
directory, there can be still more files and directories. You'll use the 
File Manager Toolbox calls to open, read, write, and close these files 
and directories. 

F S 0 pen ( ) opens the specified file for reading and/or writing, depending 
on the file's open permission: 

DODOO 
Figure 7 .17 Flat files. 

Figure 7.18 Hierarchical files. 



Toolbox Potpourri 

OS Err 
Str255 
int 

FSOpen( fileName. vRefNum. refNum ) 
fileName: 
vRefNum, *refNum; 

311 

SFGetFi 1 e() translatestheuser'sfileselectioninto a vRefNum and 
an f Na me. The v Ref N um specifies the file's volume and directory, and 
the fName specifies the file name. FSOpen () gets open permission 
from a file control block stored on the file's volume. 

Use the f i 1 e Name and v Ref nu m fields of the reply record returned by 
S F Get Fi l e ( ) as parameters to F S 0 pen ( ). F S 0 pen ( ) will return a path 
reference number in the ref N um parameter that you can use in F S Re ad ( ) : 

OSErr FSRead( refNum. count, buffPtr ) 
int refNum: 
long *count: 
Ptr buffPtr; 

The ref Nu m returned by F SO pen ( ) is known as an access path, 
specifying the file's volume and the file's location on the volume all in 
one variable. 

Specify the file to be read from using the parameter ref N um, and specify 
the number of bytes to be read using the parameter count. The bytes will 
be read into the space pointed to by the parameter buff Pt r (make sure you 
allocate the memory to which buff Pt r points), and the number of bytes 
actually read will be returned in count. 

Finally, close the file by calling F SC 1 o s e ( ) : 

OSErr FSClose( refNum ) 
int refNum; 

Specify the file to be closed via the parameter ref Nu m. 
For a detailed discussion of the File Manager, tum to Inside Macintosh 

(Volume IV, Chapter 1) and Tech Notes 47, 77, 80, and 190. You'll need this 
for any substantial development effort. 

Now, let's take a look at the Printing Manager. 



_J 

_J 

312 

Using the Printing Manager 

Prepare the Printing Manager for use by calling P rOpen ( ). Then, 
allocate a new print record using NewHa nd 1 e ( ) . The print record contains 
information the Printing Manager needs to print your job, including page 
setup information and information specific to the print job. 

You can prompt the user to fill in the page setup information by calling 
PrStl Di al og( ). Prompttheuserforjob-specificinformation via a call to 
Pr Job Di a 1 o g ( ) . Each of these routines displays the appropriate dialog 
box and fills the newly allocated print record with the results. 

Then, call PrOpenDoc() to set up a printing graf Port. The printing 
grafPort is made up of pages. PrOpenDoc() calls SetPort( ), so you 
don't need to do so. You'll call P r 0 pen Page ( ) to start a new page, then 
make a set of QuickDraw calls (like Draw P i ct u re ( ) ) to fill the page with 
graphics. Next, call Pr C 1 o s e Page ( ) to close the current page. Call 
PrOpenPage () and Pr Cl osePage () for each page you want to create. 

When you've drawn all your pages, close the document with a call to 
PrCl oseDoc ().Now, it's time to print our document. Do this with a call to 
PrPi cFil e(). When you're done with the Printing Manager, call 
PrCl ose(). 

The Printing Manager is described in detail in Inside Macintosh, Volume 
II, Chapter 5. If you plan on writing an application that supports printing, 
read this chapter thoroughly. 

Now, let's look at PrintPICT. 

PrintPICT 

Since the "paperless society" seems to be rapidly receding into the distance, 
it's reasonable to expect a Mac application to be able to print. PrintPICT 
shows you how to print PI CT files. 

PrintPICTreads in the contents of a PI CT file. Reading in the contents 
of a TEXT file is no different. Instead of interpreting the data as a PI CT, 
you would run the data through a parser that handles pagination, line 
breaks, hyphenation, and so on, before you draw it on the print 
graf Port. 



Toolbox Potpourri 313 

PrintPICT Specifications 

PrintPICT works like this: 

• It initializes the Toolbox. 

• It uses the Standard File Package to locate a file of type PI CT. 

• It uses the File Manager to open a file of type P I CT . 

• It uses the Printing Manager to print the PI CT file. 

• It quits. 

PrintPICT also has error checking. It puts up an alert if the printing 
operation goes astray at a number of different points. 

Setting Up PrintPICT Resources 

Start by creating a folder for this project, called Pri ntPICT. Then, use 
ResEdit to create a new file called PrintPICT Proj.Rsrc. 

Create a DI TL resource for your error alert (Figure 7.19). Add the same 
old ALRT (Figure 7.20). Next, add the six' STR' resources shown in Figure 

§0§ Dill "Fatal Error" ID= 401 from PrintPI 
1a11··111c·r:e·e1·1·iiiy .. laltii···e·r:r:o·r:-il·a·s ............. 1 
Uust occurred: "O ! 

L ... -... ·-·-···---··--·· ... -.... -... -_.J 
Gasp! 

Item• Type Eneble~ to~ left bolt ~m rt~ ht Text/Resourc1 

1 Button Yes 86 117 106 177 Gas pl 

2 St11t1c Text Yes 5 67 71 283 An tncredtbly 

fetel error 

hes Just 

occurred: ·o 

Figure 7.19 DI TL Resource for PrintPICT. 



314 Macintosh Programming Primer 

7 .21 to the PrintPICT resource file. Be sure to change the resource IDs of each 
resource to those shown in the figures. When you're done, the resource 
window of Pr i n t P I CT Pro j . rs r c should look like Figure 7 .22. 

Once again, it's time to code. 

Setting Up the PrintPICT Project 

Start up THINK C. Create a new project in the Pr i n t PICT folder. Call 
it Pri ntPICT Proj. Make sure to add the MacTraps library to your 
project. Create a new source file called Pr i n t P I CT • c and add it to 
Pri ntP ICT Proj. The source code for Pri ntPICT. c followsonpage316. 

1§10§ Alert "Fatal Error" ID= 401 from PrintPICT Pr 

~bottom~ 
left ~right ~ 

top 

itemslDI 401 I 
stage 1 D 2 bold 

stage 2 D 2 bold 

stage 3 D 2 bold 

stage 4 D 2 bold 

sound 

181drown ~ 181 drown 1 

181 drawn 1 

181 drawn 1 

Figure 7.20 ALRT resource for PrintPICT. 



D STR ID 402 from PrintP I CT Proj .Rsrc 

theStr lThe file header was less than 512 
bytes long!!! 

Data st 

0 STR ID - 403 from PrintPICT Proj.Rsrc 

theStr 

Data $ 

Could not allocate enough 
memory for the PI CT!!! 

IQ 

~ 



316 

#include 

#define 
/fdefi ne 
#define 
#define 

#define 
#define 
#define 
/fdef i ne 
#define 
#define 
/fdefi ne 

#define 
#define 
/fdef i ne 

/fdefi ne 
#define 
//define 
#define 
#define 
#define 

Boolean 
THPri nt 

Macintosh Programming Primer 

§[]= PrintP I CT Proj.Rsrc 
ALRT 
DITL 
STR 

"'PrintMgr.h" 

HEADER_SIZE 
NI L_PO INTER 
BASE_RES_ID 
REMOVE_ALL_EVENTS 

ERROR_ALERT_ID 
CANT_OPEN_FILE 
GET_EOF _ERROR 
HEADER_TOO_SMALL 
OUT_OF_MEMORY 
CANT_READ_HEADER 
CANT_READ_PICT 

NIL_PRPORT 
NI L_IOBU FFER 
NIL_DEVBUF 

Nll_STRING 
IGNORED_STRING 
Nll_FILE_FILTER 
NIL_OIALOG_HOOK 
OONT_SCALE_OUTPUT 

512 
OL 
400 
0 

~ 

~ 
Figure 7.22 PrintPICT 
resources completed. 

BASE_RES_IO+l 
BASE_RES_IO 
BASE_RES_IO+l 
BASE_RES_I0+2 
BASE_RES_I 0+3 
BASE_RES_I 0+4 
BASE_RES_I0+5 

NIL_POINTER 
N I L_ P 0 I NT ER 
NIL_POINTER 

"\p" 
NIL_STRING 
NIL_POINTER 
NIL_POINTER 
NIL_POINTER 

HOPELESSLY_FATAL_ERROR "'\pGame over. man!" 

DoDialogs(); 
gPrintRecordH; 



Toolbox Potpourri 

/******************************** main *********/ 

main() 
{ 

SFReply reply: 

ToolBoxlnit(): 
Printlnit(): 
GetFileName( &reply >: 
if ( reply.good ) /* The User didn't hit Cancel */ 
{ 

if DoDialogs() ) 
{ 

PrintPictFile( &reply ); 

/*********************************** ToolBoxlnit */ 

ToolBoxlnit() 
( 

InitGraf( &thePort ); 
InitFonts(); 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ); 
InitWindows(); 
InitMenus(); 
TEinit(); 
InitDialogs( NIL_POINTER ); 
InitCursor(); 

/******************************** Printlnit *********/ 

Printlnit() 
{ 

gPrintRecordH = (THPrint)NewHandle( sizeof( TPrint ) ); 
PrOpen(); 
PrintDefault( gPrintRecordH ); 

317 



318 Macintosh Programming Primer 

/******************************** GetFileName *******/ 

GetFileName< replyPtr > 
SFReply *replyPtr; 
( 

Point 
SFTypelist 
int 

myPoint; 
typelist; 
numTypes; 

my Point. h = 100; 
myPoint.v = 100; 
typelist[ 0 ] = 'PICT'; 
numTypes = 1; 
SFGetFile( myPoint, IGNORED_STRING, NIL_FILE_FILTER, numTypes, 

&typelist, NIL_DIALOG_HOOK, replyPtr ); 

!******************************** 

Boolean 
( 

DoDi a 1 ogs () 

PrStlDialog( gPrintRecordH >: 

DoDialogs 

return( PrJobDialog( gPrintRecordH ) ); 

*******/ 

!******************************** PrintPictFile*******/ 

PrintPictFile( replyPtr ) 
SFReply *replyPtr: 
{ 

int 
TPPrPort 
TPrStatus 
PicHandle 
char 
1 ong 

srcfile: 
printPort: 
printStatus: 
thePict: 
pictHeader[ HEADER_SIZE ]; 
pictSize, headerSize: 

if< FSOpen( (*replyPtr).fName, (*replyPtr).vRefNum, &srcfile) != 
noErr ) 
ErrorHandler( CANT_OPEN_FILE ); 

if < GetEOF( srcfile, &pictSize ) != noErr 
ErrorHandler( GET_EOF_ERROR ); 

headerSize = HEADER_SIZE: 
if ( FSRead( srcfile, &headerSize, pictHeader 

ErrorHandler( CANT_READ_HEADER ); 

if ( pictSize -= HEADER_SIZE ) <= 0 ) 
{ 

ErrorHandler( HEADER_TOO_SMALL ); 

!= noErr ) 



Toolbox Potpourri 

if ( thePict = CPicHandle)NewHandle( pictSize ) ) 
{ 

ErrorHandler( OUT_OF_MEMORY ); 

HLockC thePict ); 

if ( FSRead( srcFile. &pictSize. *thePict != noErr ) 
ErrorHandler( CANT_READ_PICT ); 

FSCloseC srcFile ); 

NI L_POI NTER 

printPort = PrOpenDoc( gPrintRecordH, NIL_POINTER. NIL_POINTER ); 
PrOpenPage( printPort. DONT_SCALE_OUTPUT ); 
DrawPicture( thePict. &C**( thePict )).picFrame ); 
PrClosePage( printPort ); 
PrCloseDoc( printPort ); 

PrPicFile( gPrintRecordH. NIL_PRPORT, NIL_IOBUFFER, NIL_DEVBUF. 
&printStatus ); 
} 

/******************************** ErrorHandler *********/ 

ErrorHandler( stringNum ) 
int stringNum: 
{ 

StringHandle errorStringH: 

if ( ( errorStringH = GetString( stringNum ) ) == NIL_POINTER ) 
ParamText( HOPELESSLY_FATAL_ERROR. NIL_STRING. NIL_STRING. 

NIL_STRING ); 
else 
{ 

Hlock( errorStringH ); 

319 

ParamText( *errorStringH, NIL_STRING. NIL_STRING. NIL_STRING ); 
HUnlock( errorStringH ): 

} 
StopAlert( ERROR_ALERT_ID. NIL_POINTER ); 
ExitToShel 1 (): 



320 Macintosh Programming Primer 

Running PrintPICT 

Now that your source code is entered, you're ready to run PrintPICT. 
PrintPICTwill bring up the SFGetFi 1 e() dialogbox(Figure 7.23). 

Select a P I CT file to be printed. The Page Setup dialog box will then be 
displayed (Figure 7.24). After you click OK, the Print Job dialog box 
appears (Figure 7.25). If you click on OK, or press <RETURN>, PrintPICT 
will print your P I CT file and quit. Let's see how it's done. 

la PrintPICTI 

D My Test PICT ~ 6=:> Hard Disk 

Driue 

Open 

Cancel 

Figure 7.23 SF Get Fi l e () dialog box. 

=La=s=e=r=w=ri=te=r=P=a=g=e=s=e=tu=p=====================s=.2~n OK D 
Poper: ® US Letter O R4 Letter O Tabloid 

O us Legel O BS Letter ( Cancel ) 

Reduce or 1Hmil% 
Enlarge: 

Orientation 

-~ 

Printer Effects: 
1:81 Font Substitution? 
1:81 TeHt Smoothing? 
1:81 Graphics Smoothing? 
181 Faster Bitmap Printing? 

Figure 7.24 PrintPICT calls the Page Setup dialog box. 

(Options) 

( Help ) 

LaserWriter "LoserWriter" 5.2 n OK D 
Copies:liMI Pages:® Rll 0 From: D To: D ( Cancel ) 

Couer Page: ® No O First Page 0 Last Page ( Help ] 

Paper Source: ® Poper Cassette O Manual Feed 

Figure 7.25 PrintPICT calls the Print Job dialog box. 



Toolbox Potpourri 321 

How PICTPrinter Works 

Start by /!incl ude-ing the Printing Manager's /Ii ncl ude file. THINK C ' 
normally #i n c 1 ud es everything you'll need, but there are a few exceptions. 
In this case, # i n c 1 u de Pr i n t Mgr . h. 

#include "PrintMgr.h" 

Here's a list of files that are not included automatically: 

#include "Appletalk.h" 
#include "nAppletalk.h" 
#include "Color.h" 
#include "ColorToolbox.h" 
#include "DeskBus.h" 
#include "DiskDvr.h" 
#include "PrintMgr.h" 
#include "ScriptMgr.h" 
/Ii ncl ude "SCSIMgr .. h"' 
#include "SerialDvr.h" 
#include "SlotMgr.h" 
#include "SoundDvr.h" 
#include "SoundMgr.h"' 
#include "StartMgr.h" 
#include "TimeMgr.h" 
#include "VRetraceMgr.h" 

How can you tell ifyou need to #include one of these? If you get a 
compilererror,like i nva 1 id de cl a rat i on,anditreferstoaTHINK 
C defined global or type, check your code for typos. If the problem still 
exists, look through these #include files (use the Find command) 
until you find the type or variable's declaration. Finally, #include 
that file. 

Next come your #defines: 



322 

#define 
#define 
#define 
#define 

#define 
#define 
#define 
#define 
#define 
#define 
#define 

#define 
#define 
#define 

#define 
#define 
//define 
#define 
#define 
#define 

HEADER_SIZE 
NIL_POINTER 
BASE_RES_ID 
REMOVE_ALL_EVENTS 

ERROR_ALERT _ID 
CANT_OPEN_FILE 
GET _EOF _ERROR 
HEADER_ TOO_SMALL 
OUT_OF_MEMORY 
CANT_READ_HEADER 
CANT_READ_PICT 

NIL_PRPORT 
NIL_IOBUFFER 
NIL_DEVBUF 

NIL_STRING 

512 
OL 
400 
0 

BASE_RES_ID+l 
BASE_RES_ID 
BASE_RES_IO+l 
BASE_RES_ID+2 
BASE_RES_ID+3 
BASE_RES_ID+4 
BASE_RES_ID+5 

NIL_POINTER 
NIL_POINTER 
NIL_POINTER 

"\p" 
NIL_STRING 
NIL_POINTER 
NI L_POINTER 
NIL_POINTER 

Macintosh Programming Primer 

I GNO RED_STR I NG 
NIL_FILE_FILTER 
NIL_DIALOG_HOOK 
DONT_SCALE_OUTPUT 
HOPELESSLY_FATAL_ERROR "\pGame over, man!" 

H EADE R_ SI Z E is used for removing the header at the top of P I CT files. 
BASE_RES_ID, NI L_PO INTER, and REMOV E_ALL_EV ENTS are the initiali
zation-related #defines you've seen earlier. ERROR_ALERT _ID, 
CANT_OPEN_FILE,GET_EOF_ERROR,HEADER_TOO_SMALL,OUT_OF_MEMORY, 
CANT _READ_H EADER, and CANT _READ_P I CT are all used for the 
appropriate error strings in the error-handling routines. NI L_PRPORT, 
NI L_IOBUFFER, NI L_DEVBUF, NI L_STRING, IGNORED_STRING, 
NIL_FILE_FILTER, NIL_DIALOG_HOOK, and DONT_SCALE_OUTPUT are 
the arguments in the Printing Manager routines. Finally, 
H 0 PE LESS LY_ FAT AL_ ERR 0 R is for your AL RT of last resort. 

Next, declare your globals: 

char DoDialogs(); 
THPrint gPrintRecordH; 

DoDi al ogs ()returns either TRUE or FALSE, so declare it to be of type 
Boo l ea n. g Pr i n t Rec o rd H is the handle to the print record you'll create. 

As usual, main ( ) starts off with a call to Tool Box In it ( ) . Then, 
Pr i n t In i t ( ) is run and SF Get Fi l e ( ) is invoked. If the user doesn't click 
on the Cancel button, DoDi al ogs () is called. 



Toolbox Potpourri 323 

/******************************** main *********/ 

main() 
{ 

SFReply reply; 

Tool Boxlni t(); 
Printlnit(); 
GetFileName( &reply ); 
if ( reply.good ) /* The User didn't hit Cancel */ 
{ 

if DoDialogs() ) 
{ 

PrintPictFile( &reply ); 

ToolBoxlnit() is the same as always: 

/*********************************** ToolBoxlnit */ 

Tool Boxlnit() 
{ 

InitGraf( &thePort ); 
InitFonts(); 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ); 
InitWindows(): 
InitMenus(): 
TEinit(); 
InitDialogs( NIL_POINTER ); 
InitCursor(); 

The information entered by the user in the Page Setup and Print Job 
dialog boxes is stored in a print record. Pr i n t Default ( ) fills the 
print record with default print values. A handle to the print record is 
passed to Pr Pi cFi 1 e(.) at print time. 

Pri ntini t() uses NewHandl e() toallocateablockofmemorythesize 
of a print record, and makes gPri ntRecordH a handle to that memory. 
Call PrOpen () tostartupthePrintingManager, thensetthedefaultprint 
record to gPri ntRecordH by calling Pri ntDefaul t( ). Doing this en
sures that any changes you make to the Page Setup and Job dialogs will be 
implemented when you print. 



324 Macintosh Programming Primer 

/**************************** Printinit *********/ 

Printinit() 
{ 

gPrintRecordH = CTHPrint)NewHandle( sizeof( TPrint ) ); 
PrOpen ( ) : 
PrintDefault( gPrintRecordH ); 

Get Fil eName() sets up the arguments and calls SFGetFi le(). 
numTypes was defined as l, so you need to set up a single entry in the 
type Li st array. Display only files of type P I CT. The pointer to the reply 
from SF Get File () will be placed in rep l yPtr: 

/***************************** GetFileName *******/ 

GetFileName( replyPtr ) 
SFReply *replyPtr: 
{ 

Point 
SFTypelist 
int 

myPoint; 
typelist; 
numTypes; 

my Po i n t. h = 1 0 0 : 
myPoint.v = 100: 
typelist[ 0 ] = 'PICT'; 
numTypes = 1: 
SFGetFile( myPoint, IGNORED_STRING, NIL_FILE_FILTER, numTypes. 

&typelist, NIL_DIALOG_HOOK, replyPtr ): 

Do Di al ogs ()calls Pr St 1 Di al og ()to do the Page Setup dialog, then 
calls P rJ ob Di al og ( ) to do the Job dialog.If the user hits the cancel button 
in the Print Job dialog box, DoDi a 1 ogs () returns FALSE. The value re
turned by P r Job Di a 1 o g ( ) is returned by Do Di a l o gs ( ) . 

Normally, your application would bring up the Page Setup dialog in 
response to a Page Setup ... menu selection and the Print Job dialog in : 
response to a Print ... menu selection. PrintPICT calls both dialogs for 
demonstration purposes only 

!******************************** DoDialogs *******/ 

Boolean 
{ 

DoDialogs() 

PrStlDialog( gPrintRecordH >: 
return< PrJobDialog( gPrintRecordH ) ); 



Toolbox Potpourri 325 

Pr i n t Pi ct Fil e ( ) starts off with a call to F S 0 pen ( ) to get the access 
path of the file selected by S F Get Fi l e ( ) . If the file can be opened, 
Get E 0 F ( ) is called, returning the size of the file in the parameter pi ct Si z e. 
Next, F SR ea d ( ) attempts to read the 512-byte header that describes the 
rest of the file. The actual number of bytes read is returned in the parameter 
header Si z e. If less than 512 bytes was read, or if you run out of memory 
while trying to read the picture in, call the E r r or Hand l er ( ) . Since 
PrintPICT won't need the 512-byte PICT header, pi ctSi ze is decre
mented by 512. This reduced version of pi ct Si z e will be used to read in 
the headerless P I CT. 

/******************************** PrintPictFile*******/ 

PrintPictFile( replyPtr ) 
SFReply *replyPtr; 
I 

int 
TPPrPort 
TPrStatus 
PicHandle 
char 
long 

srcFile; 
printPort; 
printStatus; 
thePict; 
pictHeader[ HEADER_SIZE ]; 
pictSize, headerSize: 

if FSOpen( (*replyPtr).fName, (*replyPtr).vRefNum, &srcFile ) != 
noErr ) 

ErrorHandler( CANT_OPEN_FILE ): 

if GetEOF( srcFile, &pictSize ) != noErr 
ErrorHandler( GET_EOF_ERROR ); 

headerSize = HEADER_SIZE: 
if ( FSRead( srcFile, &headerSize, pictHeader 

ErrorHandler( CANT_READ_HEADER ); 

if ( pictSize -= HEADER_SIZE ) <= 0 ) 
I 

ErrorHandler( HEADER_TOO_SMALL ); 

!= noErr ) 

if ( thePict = CPicHandle)NewHandle( pictSize ) ) NI L_POINTER 
I 

ErrorHandler( OUT_OF_MEMORY ): 

If you've passed through these trials successfully, you're ready to read in 
the P I CT data. Since F SR ea d ( ) requires a pointer to the read buffer, and 
you allocated a handle (the Pi ct), you'll have to H Lock ( ) the handle before 
you pass its pointer(*thePi ct)to FS Read ( ) . Call FSRead ()to read in the 
P I CT. If this fails (IV: 109 ), E r r o r Ha n d 1 er ( ) is run yet again. Assuming 
that you finally have the PI CT in memory at this point, close the PI CT file 



326 Macintosh Programming Primer 

with FSCl ose( ). Next, PrOpenDoc() is called, returning a pointer 
(pri ntPort) to the printing graf Port. Open a new page with 
P r 0 pen Pa g e ( ) , and draw the P I CT with Draw Pi ct u re ( ) . When you're 
done PrCl osePage () closes the page, and PrCl oseDoc () closes the 
printing g ra f Port. 

Finally, print the file with Pr Pi c Fi 1 e ( ) . 

Hlock( thePict ); 

if ( FSRead( srcFile, &pictSize. *thePict 
ErrorHandler( CANT_READ_PICT ); 

FSClose( srcFile ); 

!= noErr ) 

printPort = PrOpenDoc( gPrintRecordH, NIL_POINTER, NIL_POINTER ); 
PrOpenPage( printPort, DONT_SCALE_OUTPUT ); 
DrawPicture( thePict, &(**( thePict )).picFrame ); 
PrClosePage( printPort ); 
PrCloseDoc( printPort ); 

PrPicFile( gPrintRecordH, NIL_PRPORT, NIL_IOBUFFER, NIL_DEVBUF, 
&printStatus ); 

Error Hand 1 er ( ) is the same as in the earlier programs. Take the alert 
string resource ID and set up Pa ram Text ( ) with it. Then, display the alert 
with StopAlert() and quit with ExitToShel l (). 

/******************************** ErrorHandler *********/ 

ErrorHandler( stringNum ) 
int stringNum; 
{ 

StringHandle errorStringH; 

if ( ( errorStringH = GetString( stringNum ) ) == NIL_POINTER ) 
ParamText( HOPELESSLY_FATAL_ERROR, NIL_STRING, NIL_STRING, 

NIL_STRING ); 
else 
{ 

l 

Hlock( errorStringH ); 
ParamText( *errorStringH, NIL_STRING, NIL_STRING, NIL_STRING ); 
HUnlock( errorStringH ) ; 

StopAlert( ERROR_ALERT_IO, NIL_POINTER ); 
ExitToShel l (); 



_J Scroll Bars! We're Gonna Do Scroll Bars! 

Scroll bars are a common control used in Macintosh applications. This 
section shows you how to set one up to control paging between a series of 
pictures in a window. 

Making Use of Scroll Bars 

Scroll bars are a common control used in Macintosh applications (Figure 
7 .26). The routines that create and control scroll bars are part of the Control 
Manager. NewCont r o l ( ) is used to create a new control: 

FUNCTION NewControl( theWindow : WindowPtr : boundsRect : Rect : 
title : Str255 ; visible : BOO LEAN ; 
value : INTEGER : min .max INTEGER ; 
proc IO : INTEGER ; ref Con : LONG I NT ) 
Control Hand l e; 

Pager 

Figure 7.26 Window with scroll bar (P ager). 

• • 

111111 

!!!Ill 

~Iii 

327 



328 Macintosh Programming Primer 

The parameter pro c I D specifies the type of control to be created. To 
createanewscrollbar,passtheconstantscrol l BarProctoNewControl ( ). 
Every scroll bar has a minimum, maximum, and current value. For 
example, a scroll bar may go from 1 to 2 0, and currently be at 10 (Figure 
7.27). 

Once the scroll bar is created, call Dr a we on t ro 1 s ( ) to draw it in your 
window: 

PROCEDURE DrawControls( theWindow WindowPtr ); 

As the calls to Window Manager routines (such as Sh owW i n d ow ( ) or 
Move W i n d ow ( ) ) do not redraw controls in a window, Dr a wC on tr o 1 s ( ) 
must be called whenever the window receives an update event. 

When a mouseDown event occurs Fi ndWi ndow() is called, returning a 
part code describing the part of the window in which the mouse Down 
occurred. If the mouseDown was i nContent, call Fi ndControl ( ). 

FUNCTION FindControl( thePoint : Point; theWindow: WindowPtr; 
VAR whichControl : ControlHandle ) : 
INTEGER; 

111-1 
:-:·:· --1,..._T_h_u_m_b_a_t _P_o_s-it-io_n_l_O....., 

llll_~ .... -P-o-s-it_i_o_n_2_0_ 

Position 1 I 

Figure 7.27 Scroll bar positioning. 



Toolbox Potpourri 329 

Like Fi ndWi ndow ( ) , Fi ndCont ro l ( ) returns a part code. This time, 
the part code specifies which part of the scroll bar was clicked in (Figure 
7.28).Passthepartcodereturnedby Fi ndContro l ()to TrackContro l (). 

FUNCTION TrackControl( theControl : ControlHandle; 

_J 

startPt : Point; actionProc : ProcPtr ) : 
INTEGER: 

Tr a ck Cont r o l ( ) will perform the action appropriate to that part of the 
scroll bar. For example, ifthe mouse Down was in the thumb of the scroll bar, 
an outline of the thumb is moved up and down (or across) the scroll bar until 
the mouse button is released. Once Track Control ( ) returns, take the 
appropriate action, depending on the new value of the scroll bar. 

Next, let's look at Pager, a program that uses a scroll barto page between 
PICT drawings in a window. 

Pager 

Pager demonstrates the use of scroll bars in a Macintosh application. It 
works like this: 

• It initializes the Toolbox. 

• It initializes a window. 

• It creates a new scroll bar, using the number of available P I CT resources 
to determine the number of position in the scroll bar. 

• When a mouse Down occurs in the scroll bar, it loads the appropriate 
PI CT and displays it in the window. 

• It quits when the close box is clicked. 

Pager also warns if the W I ND or P I CT resources are unavailable. 

Setting Up the Pager Project 

Start by creating a folder for this project, called Pager. Use ResEdit to 
create a new file called Pager Pro j . Rs r c. You might want to save some 
time by just copying and pasting the WI ND, AL RT, and DI TL resources from 
the Wi ndowMaker Proj. Rsrc file. 

The WI ND resource info appears in Figure 7 .29. 



330 

up arrow 

"page up 11 region 1-----l~lll 
thumb 

"page down" region 

I ll1!·i' down arrow r--- =·!=! 

I 
Figure 7.28 Parts of scroll bars. 

Macintosh Programming Primer 

§0§§ WIND ID= 400 from Pager Proj.Rsrc ~ 

Window title: 

I Pager I 
top 

left 

~bottom~ 
~right~ 

proclD 14 lrefCon lo I 

D Uisible 181 goRwayFlag 

Figure 7.29 W I ND resource for Pager. 



Toolbox Potpourri 331 

Next, create a DITL resource (Figure 7.30). Add the ALRT (Figure 7.31). 
Then, add the three ' ST R ' resources shown in Figure 7 .32 to the Pager 
Pro j . Rs r c. Change the resource IDs of each resource to those shown in the 
figures. 

Next, create some PI CT resources from your favorite clip art and paste 
them into the Pager Pro j . Rs r c. Paste in as many as you like. Don't worry 
about changing resource IDs for the P I CT resources. We'll display every 
available P I CT, regardless ofrace, creed, or resource ID. When you're done, 
the resource window of Pa g er Pro j . Rs r c should look like Figure 7 .33. 

g0§ DITL "Fatal Error" ID= 401 from Pager 
inn···1·nc:-r·edfii.i'!ff'alar0·r·r·o·r· .. h'a·s· ............. ! 
Just occurred: "'O ! 

l...._ .. ,_,,,_,,,_.,_ ... , ... _, ___ ,,,_,,,_,,_,,,,.,_J 
Gasp! 

Item# Type Enabled top left bottom right 

1 Button Yes 86 117 106 177 

2 Static Text Yes 5 67 71 283 

Figure 7.30 D I TL resource for Pager. 

§0§ Alert "Fatal Error 11 ID= 401 from PrintPICT Pr 

top ~bottom~ 
left ~right ~ 
items I DI 401 I 
stage 1 D 2 bold 181 drawn 

stage 2 D 2 bold 181 drawn 

stage 3 D 2 bold 181 drawn 

stage 4 D 2 bold 181 drawn 

sound 

~ 
Figure 7.31 ALRT resource for Pager. 

Text/Resource ID 

Gasp! 

An Incredibly 

fatal error has 

Just occurred: 110 



332 Macintosh Programming Primer 

D 

theStr 

Data 

_o 
theStr 

Data 

_o 
theStr 

Data 

STR ID 400 from Pager Proj.Rsrc 

l Couldn't load the WIND 
resource!!! 

s[ 

STR ID 401 from Pager Proj.Rsrc 

There are no PICT resources ] auailable! ! ! 

$ l 

STR ID 402 from Pager Proj.Rsrc 

r
l know there's a PICT auailable. I ] 
just can't load it!!! 

s[ l 

Figure 7 .32 ST R resources for Pager. 

_D Pager Proj.Rsrc 
ALRT 
DITL 
PI CT 
STR 
WIND 

Figure 7.33 Pager 
resources completed. 

~ 

~ 

~ 

lQ 



Toolbox Potpourri 333 

Now you're ready to launch THINK C. Create a new project in the Pager 
folder. Call it Pager Proj. Make sure to add the MacTraps library to your 
project. Create Pager .c and add it to Pa g e r P r o j . Here's the source code for 
Pager. c: 

/ldefine BASE_RES_ID 400 
/ldefine NI L_PO INTER OL 
/ldefine MOVE_TO_FRONT -ll 
I/define REMOVE_ALL_EVENTS 0 
#define SCROLL_BAR_PIXELS 16 
#define DRAG_ THRESHOLD 30 
#define NI L_ACTION_PROC NIL - PO INTER 

I/define MIN_SLEEP OL 
#define NIL_MOUSE_REGION OL 

#define WNE_TRAP_NUM Ox60 
#define UNIMPL_TRAP_NUM Ox9F 

#define ERROR_ALERT _ID BAS E_RES_IO+ 1 
#define NO_WIND BASE_RES_ID 
#define NO_PICTS BASE_RES_IO+l 
#define CANT_LOAD_PICT BASE_RES_ID+2 

I/define NIL_STRING .. \p" 
#define NI L_TITLE NIL_STRING 
//define VISIBLE TRUE 
#define START_VALUE 1 
I/define MIN_VALUE 1 
#define NIL_REF_CON NI L_PO INTER 
#define HOPELESSLY_FATAL_ ERROR "\pGame over, 

WindowPtr gPictWindow: 
ControlHandlegScrollBarHandle: 
Boolean gDone, gWNEimplemented: 
EventRecord gTheEvent: 
Rect gDragRect; 
pascal void ScrollProc(): 

!******************************** main *********/ 

main ( ) 
{ 

Tool Boxlni t(): 
Wi ndowl nit (): 
SetUpDragRect(); 
SetUpScrollBar(); 
MainLoop(); 

man!" 



334 Macintosh Programming Primer 

!*********************************** ToolBoxinit */ 

ToolBoxinit() 
{ 

InitGraf( &thePort ); 
InitFonts(); 
FlushEvents( everyEvent. REMOVE_ALL_EVENTS ); 
InitWi ndows(); 
InitMenus(); 
TEinit(); 
InitDialogs( NIL_POINTER ); 
InitCursor(); 

!******************************** Windowlnit *********/ 

Windowlnit() 
{ 

if ( ( gPictWindow = GetNewWindow( BASE_RES_ID. NIL_POINTER. 
MOVE_TO_FRONT ) ) == NIL_POINTER ) 
ErrorHandler( NO_WIND ); 

SelectWindow< gPictWindow ); 
ShowWindow( gPictWindow ); 
SetPort( gPictWindow ); 

/******************************** SetUpDragRect *********/ 

SetUpDragRect() 
{ 

gDragRect = screenBits.bounds; 
gDragRect.left += DRAG_THRESHOLD: 
gDragRect.right -= DRAG_THRESHOLD; 
gDragRect.bottom -= DRAG_THRESHOLD; 

/********************************** 

SetUpScrollBar() 
{ 

Rect vScrollRect; 
int numPictures; 

SetUpScrollBar *******! 

if ( ( numPi ctures = Count Resources ( •PICT" ) ) <= 0 ) 
ErrorHandler( NO_PICTS ); 

vScrollRect = gPictWindow->portRect: 
vScrollRect.top -= 1; 
vScrollRect.bottom +=l; 
vScrollRect.left = vScrollRect.right-SCROLL_BAR_PIXELS+l; 
vScrollRect.right += 1; 
gScrollBarHandle = NewControl( gPictWindow. &vScrollRect. 

NIL_TITLE. VISIBLE. START_VALUE. MIN_VALUE. 
numPictures. scrollBarProc. NIL_REF_CON); 



Toolbox Potpourri 

/******************************** MainLoop *********/ 

MainLoop() 
{ 

gDone = FALSE: 
gWNEimplemented = ( NGetTrapAddress( WNE_TRAP_NUM. ToolTrap ) != 
NGetTrapAddress( UNIMPL_TRAP_NUM. ToolTrap ) ): 
while ( gDone == FALSE ) 
{ 

HandleEvent(): 

/************************************* HandleEvent */ 

HandleEvent() 
{ 

if ( gWNEimplemented 

else 
{ 

WaitNextEvent( everyEvent. &gTheEvent. MIN_SLEEP. 
NIL_MOUSE_REGION ): 

SystemTask(): 
GetNextEvent( everyEvent. &gTheEvent ); 

switch ( gTheEvent.what ) 
{ 

case mouseDown: 
HandleMouseDown(); 
break; 

case updateEvt: 
BeginUpdate( gTheEvent.message ); 
DrawControls( gTheEvent.message ); 
UpdateMyWindowC gTheEvent.message ); 
EndUpdate( gTheEvent.message ); 
break: 

/************************************* HandleMouseDown */ 

HandleMouseDown() 
{ 

WindowPtr whichWindow; 
short int thePart: 
Point thePoint; 
ControlHandletheControl: 

thePart = FindWindow( gTheEvent.where. &whichWindow ); 
switch ( thePart ) 
{ 

335 



336 Macintosh Programming Primer 

case inSysWindow : 
SystemClick( &gTheEvent, whichWindow ); 
break; 

case inDrag : 
OragWindow( whichWindow, gTheEvent.where, &gDragRect ); 
break: 

case inContent: 
thePoint = gTheEvent.where; 
GlobalToLocal( &(thePoint) ); 
thePart = FindControl( thePoint, whichWindow, 

&theControl ) ; 
if theControl == gScrollBarHandle 
{ 

if thePart == inThumb ) 
I 

} 
break; 

} 
else 
{ 

case inGoAway : 
gDone =TRUE; 
break: 

thePart = TrackControl( theControl. 
thePoint, NIL_ACTION_PROC ); 
UpdateMyWindow( whichWindow ); 

thePart = TrackControl( theControl, 
thePoint, &ScrollProc ); 
UpdateMyWindow( whichWindow ); 

/********************************** ScrollProc *******/ 

pascal void ScrollProc(theControl, theCode) 
ControlHandle theControl; 
int theCode; 
I 

int curControlValue, maxControlValue, minControlValue; 

maxControl Value GetCtl Max( theControl ) : 
curControlValue = GetCtlValue( theControl ); 
minControlValue = GetCtlMin( theControl ); 

switch ( theCode ) 
I 

case inPageDown: 
case inDownButton: 



Toolbox Potpourri 337 

} 

if curControlValue < maxControlValue 
{ 

curControlValue += l; 
} 
break; 

case inPageUp: 
case inUpButton: 

if ( curControlValue > minControlValue 
{ 

curControlValue -= 1: 

SetCtlValue( theControl. curControlValue ); 

/********************************** UpdateMyWindow 

UpdateMyWindow( drawingWindow ) 
WindowPtr drawingWindow: 
{ 

PicHandle 
Re ct 
RgnHandle 

currentPicture: 
drawingClipRect, myRect: 
tempRgn; 

tempRgn = NewRgn(); 
GetCl i p( tempRgn ) ; 

myRect = drawingWindow->portRect; 
myRect.right -= SCROLL_BAR_PIXELS; 
EraseRect( &myRect ); 

*******/ 

currentPicture = (PicHandle)GetlndResource( 'PICT', GetCtlValue( 
gScrollBarHandle ) ): 

if ( currentPicture == NIL_POINTER ) 
ErrorHandler( CANT_LOAD_PICT ); 

CenterPict( currentPicture, &myRect ); 

drawingClipRect = drawingWindow->portRect; 
drawingClipRect.right -= SCROLL_BAR_PIXELS; 
ClipRect( &drawingClipRect ); 

DrawPicture( currentPicture, &myRect ); 

SetClip( tempRgn ); 
DisposeRgn( tempRgn ); 



338 Macintosh Programming Primer 

/******************************** CenterPict *********/ 

CenterPict( thePicture, myRectPtr 
PicHandle thePicture; 
Rect *myRectPtr; 
{ 

Rect windRect, pictureRect; 

windRect = *myRectPtr; 
pictureRect = (**( thePicture )).picFrame; 
myRectPtr->top = (windRect.bottom - windRect.top -

(pictureRect.bottom -pictureRect.top)) 
I 2 + windRect.top; 

myRectPtr->bottom = myRectPtr->top + CpictureRect.bottom -
pictureRect.top); 

myRectPtr->left = (windRect.right - windRect.left -
(pictureRect.right - pictureRect.left)) 
I 2 + windRect.left; 

myRectPtr->right = myRectPtr->left + (pictureRect.right -
pictureRect.left); 

/******************************** ErrorHandler *********/ 
ErrorHandler( stringNum ) 
int stringNum; 
I 

StringHandle errorStringH; 

if ( ( errorStringH = GetString( stringNum ) ) == NIL_POINTER ) 
ParamText( HOPELESSLY_FATAL_ERROR, NIL_STRING, NIL_STRING, 

NIL_STRING ); 
else 
I 

I 

Hlock( errorStringH ) ; 
ParamText( *errorStringH, NIL_STRING, NIL_STRING, NIL_STRING ); 
HUnlock( errorStringH ); 

StopAlert( ERROR_ALERT_ID, NIL_POINTER ); 
Exi tToShel 1 (); 

Running Pager 

When you've finished typing in your source code, run Pager. You should see 
something like Figure 7.26, except with the PI CT s that you put in the Pager 
Pro j . Rs r c. The scroll bar should allow you to page back and forth between 
the PI CTs. Clicking in the close box ends Pager's execution. 

How Pager Works 

You've seen most of this program before. You'll create a window with 
GetNewWi ndow() and get and handle events just as you did in Window
Maker. Now, let's look at the code. 



Toolbox Potpourri 339 

Pager starts off with #defines and global variable declarations. We11 
discuss these in context. 

#define BASE_RES_ID 400 
#define NI L_PO INTER OL 
#define MOVE_TO_FRONT -ll 
#define REMOVE_ALL_EVENTS 0 
//define SCROLL_BAR_PIXELS 16 
#define DRAG_ THRESHOLD 30 
#define NI L_ACT ION_P ROC NIL_POINTER 

#define MIN_SLEEP OL 
#define NIL_MOUSE_REGION OL 

#define WNE_TRAP_NUM Ox60 
#define UNIMPL_TRAP_NUM Ox9F 

#define ERROR_ALERT _ID BAS E_RES_ID+ 1 
//define NO_WIND BASE_RES_ID 
#define NO_PICTS BASE_RES_ID+l 
#define CANT_LOAD_PICT BASE_RES_ID+2 

#define NIL_STRING "\p" 
#define NIL_ TITLE NIL_STRING 
#define VISIBLE TRUE 
#define START_VALUE 1 
#define MIN_VALUE 1 
#define NIL_REF_CON NIL_POINTER 
#define HOPELESSLY_FATAL_ERROR "\pGame over, man!" 

WindowPtr gPictWindow; 
ControlHandlegScrollBarHandle; 
Boolean gDone, gWNEimplemented; 
EventRecord gTheEvent; 
Rect gDragRect; 
pascal void ScrollProc(); 

Main() calls the Tool boxlni t() and Wi ndowlni t() routines, uses 
Set Up Drag Rec t ( ) to set the bounds for moving the window around on the 
screen and Set Up Scro l l Ba r ( ) to initialize the scroll bar control, and then 
runs Main Loop ()to start the main event loop. 

!******************************** main *********/ 

main ( ) 
{ 

Tool Boxlni t(); 
Wind ow In it ( ) ; 
SetUpDragRect(); 
SetUpScrollBar(); 
Mainloop(): 

Nope. Still looks the same. 



340 Macintosh Programming Primer 

/*********************************** ToolBoxinit */ 

Tool Box I nit() 
{ 

InitGraf( &thePort ); 
InitFonts(): 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ): 
InitWindows(): 
InitMenus(); 
TEinit(); 
InitDialogs( NIL_POINTER ); 
InitCursor(): 

W i n do w I n it ( ) is uneventful. The W I ND resource is loaded and dis
played, with the customary call to Error Hand 1 er ( ) if the W I ND resource 
is missing. 

/******************************** Windowlnit *********/ 

Windowlnit() 
{ 

if ( ( gPictWindow = GetNewWindow( BASE_RES_ID, NIL_POINTER, 
MOVE_TO_FRONT ) ) == NIL_POINTER 

ErrorHandler( NO_WIND ); 
SelectWindow( gPictWindow ): 
ShowWindow( gPictWindow ); 
SetPort( gPictWindow ); 

Asyousawin WindowMaker, SetUpDragRect ()sets up the bounds for 
the dragging routine used in the Hand 1 e Event ( ) loop. 

/******************************** SetUpDragRect *********/ 

SetUpDragRect() 
{ 

gDragRect = screenBits.bounds; 
gDragRect.left += DRAG_THRESHOLD: 
gDragRect.right -= DRAG_THRESHOLD; 
gDragRect.bottom -= DRAG_THRESHOLD: 

SetUpScrol l Bar() calls Count Resources () to fmd out how many 
P I CT resources are available. 



Toolbox Potpourri 341 

Every application has access to resources from two different places: 
the resource fork of the application itself and the resource fork of the 
system file. In addition, an application may use the Resource Manager 
to open additional resource files. When looking for a resource, the 
Resource Manager searches the most recently opened resource file 
first. 

If no PI CT resources are available, the Error Hand 1 er ( ) is called. 
Otherwise, SetUpScrol l Bar() creates a Rect the proper size for your 
scroll bar, then creates the scroll bar with a call to NewCont ro 1 ().The 
scroll bar ranges in value from MI N_VALU E to numPi ctures, the number 
of available PI CT resources. START _VALUE is the initial value of the scroll 
bar and determines the initial position of the scroll bar thumb. The final 
parameter is a reference value available for your application's convenience. 
You can use these four bytes as scratch pad space. 

!********************************** 

SetUpScrollBar() 
{ 

Rect vScrollRect; 
int numPictures; 

SetUpScrollBar *******/ 

if ( ( numPictures = CountResources( 'PICT' ) ) <= 0 ) 
ErrorHandler( NO_PICTS ); 

vScrollRect = gPictWindow->portRect: 
vScrollRect.top -= l; 
vScrollRect.bottom +=l; 
vScrollRect.left = vScrollRect.right-SCROLL_BAR_PIXELS+l; 
vScrollRect.right += 1: 
gScrollBarHandle = NewControl( gPictWindow, &vScrollRect, 

NIL_TITLE, VISIBLE, START_VALUE. MIN_VALUE, 
numPictures. scrollBarProc. NIL_REF_CON); 

Ma i n Loop ( ) sets the flag for Get Next Event ( ) or W a i t Next Even t ( ) , 
then calls Hand 1 e Event ( ). 

/******************************** MainLoop *********/ 

MainLoop() 
{ 

gDone = FALSE; 
gWNEimplemented = ( NGetTrapAddress( WNE_TRAP_NUM, ToolTrap ) != 
NGetTrapAddress( UNIMPL_TRAP_NUM, ToolTrap ) ); 
while ( gDone == FALSE ) 
{ 

HandleEvent(); 



342 Macintosh Programming Primer 

Pager handles two different events. mouseDowns are handled by 
Handl eMouseDown (). updateEvts are handled in line. First, 
Begi nUpdate () is called. Then, DrawCont ro 1 s () draws the scroll bar 
with the thumb in the proper position. Finally, EndUpdate() is called. 

!************************************* HandleEvent */ 

HandleEvent() 
{ 

if ( gWNEimplemented ) 
WaitNextEvent( everyEvent, &gTheEvent, MIN_SLEEP, 

NIL_MOUSE_REGION ); 
else 
{ 

SystemTask(); 
GetNextEvent( everyEvent, &gTheEvent ); 

switch C gTheEvent.what ) 
{ 

case mouseDown: 
HandleMouseDown(); 
break: 

case updateEvt: 
BeginUpdateC gTheEvent.message ); 
DrawControls( gTheEvent.message ); 
UpdateMyWindow( gTheEvent.message ); 
EndUpdate( gTheEvent.message ); 
break; 

Handl eMouseDown ()looks the same at the start: 

/************************************* HandleMouseDown */ 

HandleMouseDown() 
{ 

WindowPtr whichWindow: 
short int thePart: 
Point thePoint; 
ControlHandletheControl; 

thePart = FindWindow( gTheEvent.where, &whichWindow ); 
switch C thePart ) 
I 

case inSysWindow : 
SystemClick( &gTheEvent, whichWindow ); 
break; 

case inDrag : 
DragWindow( whichWindow, gTheEvent.where, &gDragRect ); 
break; 



Toolbox Potpourri 343 

The big change comes when a mouseDown occurs in the content region 
(i nContent) of a window. The mouse Down's location (gEvent. where) is 
translated into the window's local coordinate system. The localized point is 
passed to Fi n d Cont r o 1 ( ) , which returns a Handle to the selected control 
(in the parameter the Cont r o 1 ) and a part code indicating what part of the 
control was selected. If theCont ro 1 is your scroll bar, find out if it was in 
the thumb. If it was, call Track Cont r o 1 ( ) to drag an outline of the thumb 
up and down the scroll bar. When the thumb is released, update the window 
using the new scroll bar value. If any other part of the control was used, call 
TrackControl () withapointertoScrol l Proc( ). Scroll Proc() scrolls 
the scroll bar until the mouse button is released. 

Call Track Cont r o 1 ( ) with a pointer to an action procedure if you 
want the control to change while the mouse button is still down. If you 
pass a NI L_ACT I 0 N_P ROC, the control will animate, but its value will 
not change until the mouse button is released. 

case inContent: 
thePoint = gTheEvent.where; 
GlobalTolocal( &CthePoint) ); 
thePart = FindControl( thePoint, whichWindow, 

&theControl ) ; 
if theControl == gScrollBarHandle 
I 

if thePart == inThumb ) 

} 
break; 

I 

l 
else 
I 

case inGoAway : 
gDone = TRUE; 
break; 

thePart = TrackControl( theControl. 
thePoint, NIL_ACTION_PROC ); 
UpdateMyWindow( whichWindow ); 

thePart = TrackControl ( theControl, 
thePoint, &ScrollProc ); 
UpdateMyWindow( whichWindow ); 



344 Macintosh Programming Primer 

Scroll Proc() handles mouseDowns in the page up, page down, up 
button, and down button regions of the scroll bar. max Cont r o l Va l u e, 
curControlValue, and minControlValue are set to the maximum, 
current, and minimum values of the Control . If the mouse click was 
i nPageDown or i nDownButton, increase the value of the control. If the 
mouse click was i n Page Up or i n Up Button areas were pressed, decrease 
the value of the control. Finally, update the control to this new value with 
SetCtl Value(). 

!********************************** ScrollProc *******/ 

pascal void ScrollProc(theControl, theCode) 
ControlHandletheControl: 
int theCode: 
{ 

int curControlValue, maxControlValue, minControlValue: 

maxControlValue GetCtlMax< theControl ); 
curControlValue = GetCtlValue( theControl ); 
minControlValue = GetCtlMin( theControl ): 

switch C theCode ) 
I 

) 

case inPageDown: 
case inDownButton: 

if ( curControlValue < maxControlValue 
I 

curControlValue += l; 
) 
break; 

case inPageUp: 
case inUpButton: 

if ( curControlValue > minControlValue 
{ 

curControlValue -= l; 

SetCtlValue( theControl, curControlValue ); 

UpdateMyWi ndow() works in a similar fashion to the DrawPi cture () 
routine in EventTutor (Chapter 4). The algorithm works so: Temporarily 
reset the window's clipping region so it does not include the area covered by 
the scroll bar. Center the picture, draw it, and reset the original clip region. 
The call to Get I n d Res o u r c e ( ) uses the current value of the scroll bar 
(Get Ct 1 V a l u e ( g Sc r o l l Ba r Ha n d l e )) to load the appropriate P I CT re
source. 



Toolbox Potpourri 345 

For example, ifthere were 3 0 PICT resources available, the scroll bar 
would run from 1 to 3 0. If the current thumb setting was 10, the call 
to GetlndResource() would return a handle to the tenth PICT 
resource. Since Get I n d Resource ( ) returns a handle, you can use 
C's type-casting mechanism to convert it to a Pi cHandl e. 

Note that only one PI CT at a time is ever loaded into memory. When the 
scroll bar's value changes, a replacement PI CT is loaded, not an additional 
one. 

/********************************** UpdateMyWindow *******/ 

UpdateMyWindow( drawingWindow ) 
WindowPtr drawingWindow: 
I 

PicHandle 
Re ct 
RgnHandle 

currentPicture: 
drawingClipRect, myRect: 
tempRgn; 

tempRgn = NewRgn(); 
GetC lip ( tempRgn ) : 

myRect = drawingWindow->portRect; 
myRect.right -= SCROLL_BAR_PIXELS: 
EraseRect( &myRect ): 

currentPicture = (PicHandle)GetlndResource( 'PICT'. GetCtlValue( 
gScrollBarHandle ) ): 

if ( currentPicture == NIL_POINTER ) 
ErrorHandler( CANT_LOAD_PICT ): 

CenterPict( currentPicture, &myRect ); 

drawingClipRect = drawingWindow->portRect: 
drawingClipRect.right -= SCROLL_BAR_PIXELS; 
ClipRect( &drawingClipRect ): 

DrawPicture( currentPicture, &myRect ); 

SetClip( tempRgn ); 
DisposeRgn( tempRgn ); 



346 Macintosh Programming Primer 

Center Pi ct ()is the same as it ever was. 

!******************************** CenterPict *********/ 

CenterPict( thePicture, myRectPtr 
PicHandle thePicture; 
Rect *myRectPtr; 
{ 

Rect windRect, pictureRect; 

windRect = *myRectPtr; 
pictureRect = (**( thePicture )).picFrame; 
myRectPtr->top = (windRect.bottom - windRect.top -

(pictureRect.bottom -pictureRect.top)) 
I 2 + windRect.top; 

myRectPtr->bottom = myRectPtr->top + (pictureRect.bottom -
pictureRect.top); 

myRectPtr->left = CwindRect.right - windRect.left -
(pictureRect.right - pictureRect.left)) 

I 2 + windRect.left; 
myRectPtr->right = myRectPtr->left + (pictureRect.right -

pictureRect.left): 
} 

Err o r Ha n d 1 e r ( ) should be familiar by now. Pa ram Text ( ) to 
Stop A 1 er t ( ) to Ex i tT o She 1 1 ( ) , leaving nothing to chance. 

/******************************** ErrorHandler *********/ 

ErrorHandler( stringNum ) 
int stringNum: 
{ 

StringHandle errorStringH; 

if ( ( errorStringH = GetString( stringNum ) ) == NIL_POINTER ) 
ParamText( HOPELESSLY_FATAL_ERROR, NIL_STRING, NIL_STRING, 

NIL_STRING ); 
else 
I 

} 

Hlock( errorStringH ); 
ParamText( *errorStringH, NIL_STRING, NIL_STRING, NIL_STRING ); 
HUnlock( errorStringH ); 

StopAlert( ERROR_ALERT_ID. NIL_POINTER ); 
ExitToShel 1 (): 



_J 

_J 

The Sound Manager 

If you're tired of the same old Sys Beep ( ) , there is an alternative. Within 
the system file is a set of ' s n d ' resources, commonly known as beep sounds. 
The ' s n d ' with resource ID = 1 is the familiar Beep. The current system 
comes with three additional 'snd 's: Monkey, Clink-Klank, and Boing. 
Hundreds more are available on electronic bulletin boards throughout the 
country. 

Using the Sound Manager, you can add these sounds to your applica
tions. The final Mac Primer application, Sounder, shows you how. 

Sounder 

Sounder works like this: 

• It initializes the Toolbox. 

• It loads the ' SN D ' resources from the system file. 

• It plays them (assuming you have the volume set above 0). 

• It quits. 

Sounder also performs error checking. It puts up an alert if the 'SND' 
resources can't be accessed. 

Setting Up the Sounder Project 

Start by creating a folder for this project, called Sounder. Use ResEdit to 
createanewfilecalled Sounder Proj. Rs re. Sounder uses the same D ITL 
and AL RT resources as all the other Chapter 7 programs, so you can cut and 
paste if you've typed in the other programs. Ifnot, use Figures 7 .34 and 7 .35 
for those resources. Add the four ' ST R ' resources shown in Figure 7 .36 to 
the Sound e r Pro j . Rs r c file. Again, be sure to change the resource IDs of 
each resource to those shown in the figure. When you're done, the resource 
window of Sounder Proj. Rs re should look like Figure 7.37. 

347 



348 Macintosh Programming Primer 

§0§ D Ill 11 Fatal Error" ID = 401 from Pager 

!iln .. iil.c'i'e'iffi>fy ... ia'fafiirror···il·a·s······· .. ····l 
Just occurred: "O ! 

l ... -...... -....... _ .................................... ,_,,,,,_,,_,,,,, .. _ .... , ..... ....! 
Gasp! 

Item• Type Enoble~ toi lef~ bottofn 

t Button Yes 86 1t7 106 

2 Stolle Text Yes 5 67 7 t 

Figure 7 .34 D I TL resource for Sounder. 

177 

283 

§0§ Alert 11 Fatal Error" ID= 401 from Sounder Pro 

~bottom~ 
left ~right ~ 
top 

items ml 401 I 
stage 1 D 2 bold 181 drawn 

stage 2 D 2 bold 181 drawn 

stage 3 D 2 bold 181 drawn 

stage 4 D 2 bold 181 drawn 

sound 

~ 
Figure 7.35 AL RT resource for Sounder. 

rt~ ht Text/Resourq 

Gos pl 

An Incredibly 

fotol error 

hos Just 

occurred: ·o 



~D Sounder Proj.Rsrc 
ALRT 
DITL 
STR 

Q 

tQJ Figure 7.37 Sounder 
resources completed. 



350 Macintosh Programming Primer 

Now you're ready to launch TIDNK C. Create a new project in the Sounder 
folder. Call it Sounder Pr oj. Be sure to add the Mac Traps library to your 
project. Create a new source file (Sounder. c), and add it to Sounder Proj. 
Here's the source code for Sounder.c: 

#define NIL_POINTER OL 
#define BASE_RES_ID 400 
#define REMOVE_ALL_EVENTS 0 
#define NIL_SOUND_CHANNEL NIL_POINTER 
#define SYNCHRONOUS FALSE 

#define ERROR_ALERT _ID BASE_RES_ID+l 
#define CANT_LOAD_BEEP_SND BASE_RES_ID 
#define CANT_LOAD_MONKEY_SND BASE_RES_ID+l 
#define CANT_LOAD_KLANK_SND BASE_RES_ID+2 
#define CANT_LOAD_BOING_SND BASE_RES_ID+3 

#define NIL_STRING "\p" 
#define HOPELESSLY_FATAL_ERROR "\pGame over, 

#define BEEP_SND 1 
#define MONKEY_SND 2 
#define KLANK_SND 3 
#define BOING_SND 4 

/******************************** main *********/ 

main() 
{ 

ToolBoxinit(); 
Ma keSound ( ) ; 

/*********************************** ToolBoxinit */ 

Tool Box I nit() 
I 

InitGraf( &thePort ); 
I nit Fonts(); 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ); 
InitWi ndows(); 
InitMenus(); 
TEinit(); 
InitDialogs( NIL_POINTER ); 
InitCursor(); 

man!" 



Toolbox Potpourri 

/******************************** MakeSound *********/ 

MakeSound() 
{ 

Handle soundHandl e; 

351 

if ( ( sound Hand l e = Get Resource ( ' s n d ' . BEEP_ SN D ) ) == N I L_ P 0 I NT ER 

ErrorHandler( CANT_LOAD_BEEP_SND ); 
SndPlay( NIL_SOUND_CHANNEL, soundHandle, SYNCHRONOUS ); 

if ( ( soundHandle = GetResource( 'snd '. MONKEY_SND ) ) 
NIL_POINTER ) 
ErrorHandler( CANT_LOAD_MONKEY_SND ); 

SndPlay( NIL_SOUND_CHANNEL, soundHandle, SYNCHRONOUS ); 

if ( ( soundHandle = GetResource( 'snd '. KLANK_SND ) ) 
NI L_PO INTER ) 
ErrorHandler( CANT_LOAD_KLANK_SND ); 

SndPlay( NIL_SOUND_CHANNEL, soundHandle, SYNCHRONOUS ); 

if ( ( soundHandle = GetResource( 'snd '. BOING_SND ) ) 
NIL_POINTER ) 
ErrorHandler( CANT_LOAD_BOING_SND ); 

SndPlay( NIL_SOUND_CHANNEL, soundHandle. SYNCHRONOUS ); 

/******************************** ErrorHandler *********/ 

ErrorHandler( stringNum ) 
int stri ngNum; 
{ 

StringHandle errorStringH; 

if ( errorStringH = GetString( stringNum ) ) == NIL_POINTER ) 

else 
{ 

} 

ParamText( HOPELESSLY_FATAL_ERROR, NIL_STRING, NIL_STRING, 
NIL_STRING ); 

Hlock( errorStringH ); 
ParamText( *errorStringH, NIL_STRING. NIL_STRING. NIL_STRING ); 
HUnlock( errorStringH ); 

StopAlert( ERROR_ALERT_ID. NIL_POINTER ); 
Exi tToShel l (); 



_J 
Walking through the Sounder Code 

Sounder is short and sweet. These #def i n es should be familiar to you 
Chapter 7 cognoscenti. 

#define NI L_PO INTER OL 
#define BASE_RES_ID 400 
#define REMOVE_ALL_EVENTS 0 
#define NIL_SOUND_CHANNEL NIL_POINTER 
#define SYNCHRONOUS FALSE 

#define ERROR_ALERT _ID BASE_RES_ID+l 
#define CANT_LOAD_BEEP_SND BASE_RES_ID 
#define CANT_LOAD_MONKEY_SND BASE_RES_ID+l 
#define CANT_LOAD_KLANK_SND BASE_RES_ID+2 
#define CANT_LOAD_BOING_SND BASE_RES_ID+3 

#define NIL_STRING "\p" 
#define HOPELESSLY_FATAL_ERROR "\pGame over. man!" 

#define BEEP_SND 1 
#define MONKEY_SND 2 
#define KLANK_SND 3 
#define BOING_SND 4 

Make the usual call to Too 1 Box In it ( ) .Then call Ma keSound ( ) . 

/******************************** main *********/ 

main ( ) 
{ 

Tool Boxlnit(); 
MakeSound(); 

/*********************************** ToolBoxlnit */ 

Tool Boxlnit() 
{ 

352 

InitGraf( &thePort ); 
InitFonts(); 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ); 
InitWindows(); 
InitMenus(); 
TEinit(); 
InitDialogs( NIL_POINTER ); 
InitCursor(); 



Toolbox Potpourri 353 

The key to this program is the Sound Manager routine Sn d Pl a y ( ) . Load 
each of the four ' s n d ' resources normally found in the system file, and 
play them with SndPl ay (). 

Since the Mac System file didn't always use • s n d ' resources, older 
systems may cause an error ALRT to appear. Check out the Sound 
Manager (Chapter 27) in Inside Macintosh, Volume V, for more detail. 

The first parameter to Sn d Pl a y ( ) is the Sn d Ch a n n el Pt r. By passing 
NI L_PO INTER, you've told Snd Play ( ) to allocate a channel for you. The 
secondparameteristhe' snd' handle. Thethirdparametertells SndPl ay () 
whether or not to play the sound asynchronously. When you pass NI Las the 
Sn d Ch an n el Pt r, you must pass FALSE as the third parameter. That is, if 
you ask Sn d Pl a y ( ) to allocate a channel for you, you must play the sound 
synchronously. If you cannot find the ' s n d ' resource, go to the beloved 
ErrorHandl er(). 

/******************************** MakeSound *********/ 

MakeSound() 
{ 

Handle soundHandle: 

if ( ( soundHandle = GetResource( 'snd ·, BEEP_SND ) 
== NIL_POINTER ) 

ErrorHandler( CANT_LOAD_BEEP_SND ): 
SndPlay( NIL_SOUND_CHANNEL, soundHandle, SYNCHRONOUS ): 

if ( ( soundHandle = GetResource( 'snd ·, MONKEY_SND ) ) 
NIL_POINTER ) 

ErrorHandler( CANT_LOAD_MONKEY_SND ); 
SndPlay( NIL_SOUND_CHANNEL, soundHandle, SYNCHRONOUS ); 

if ( ( soundHandle = GetResource( 'snd '. KLANK_SND ) ) 
NIL_POINTER ) 

ErrorHandler( CANT_LOAD_KLANK_SND ): 
SndPlay( NIL_SOUND_CHANNEL. soundHandle, SYNCHRONOUS): 

if ( ( soundHandle = GetResource( 'snd ·. BOING_SND ) ) 
NIL_POINTER ) 

ErrorHandler( CANT_LOAD_BOING_SND ); 
SndPlay( NIL_SOUND_CHANNEL, soundHandle, SYNCHRONOUS ): 



354 Macintosh Programming Primer 

The error-handling routine is similar to what you've seen in the other 
Chapter 7 programs: 

!******************************** ErrorHandler *********/ 

ErrorHandler( stringNum ) 
int stringNum; 
{ 

StringHandle errorStringH; 

if ( ( errorStringH = GetString( stringNum ) ) == NIL_POINTER ) 
ParamText( HOPELESSLY_FATAL_ERROR, NIL_STRING. NIL_STRING, 
NIL_STRING ); 

else 
I 

} 

Hlock( errorStringH ); 
ParamText( *errorStringH, NIL_STRING, NIL_STRING, NIL_STRING ); 
HUnlock( errorStringH ); 

StopAlert( ERROR_ALERT_ID, NIL_POINTER ); 
ExitToShel 1 <); 

_J In Review 

We covered a lot of ground in this chapter. Each of the four programs we 
presented involved a different part of the Mac Toolbox. If you're unsure 
about any of the concepts discussed, take the time to read about them in 
their respective Inside Macintosh chapters. The Scrap Manager is covered 
in Volume I, Chapter 15. The Standard File Package is covered in Volume 
I, Chapter 20 and updated in Volume IV, Chapter 15. The File Manager is 
covered in Volume IV, Chapter 19. (Warning: Don't be fooled by imitations! 
The File Manager section in Volume II, Chapter 4, has been completely 
replaced by Chapter 19 ofVolume IV.) The Printing Manager is covered in 
Volume II, Chapter 5. 

The Control Manager is covered in Volume I, Chapter 10. Scroll bars 
make up a small part of this chapter, but the concepts implemented in 
Pager will carry through to other types of controls. 

Finally, the Sound Manager is covered in Volume V, Chapter 27. An 
authoritative version of this chapter has been published by Macintosh 
Developer Technical Support under the title "The Sound Manager." If 
you're really interested in sound on the Mac, read the Sound Driver chapter 
(Volume I, Chapter 8). This was the way sound originally worked on the 
Mac, and many of the basic concepts are still supported. 

Chapter 8 introduces the wonderful world of ResEdit. See you there! 



Using ResEdit 
ResEdit provides a simple, yet powerful 

way to edit resources. This chapter shows 
you how to use this tool to create the 

Finder resources necessary to turn your 
projects into standalone applications. 

8 



356 

BY Now, You should have a good grip on the most important aspects of 
Macintosh application programming. We've described how to handle events, 
access files, and display pictures and text. You've worked with menus, 
windows, and dialogs. In this chapter we'll discuss some issues that become 
important after you have your basic programming problems in hand. 

After you compile your debugged application, but before you announce 
your first stock offering, you need to take care of a few loose ends. For 
example, you'll want to turn your code into a standalone application. You'll 
want to design your own custom icon. These finishing touches require the 
creation of six resources known as the Finder resources. These resources 
do not affect the operation of the application; rather, they affect the way 
your application interfaces with the Finder. This chapter discusses how to 
add the six Finder resources to your application. 

If any readers are still shaky about the use of ResEdit, this discussion 
on the installation of Finder resources is for you. After installing the 
resources in this chapter, you should feel comfortable using ResEdit. 

Why use ResEdit to edit resources? Because ResEdit creates re
sources graphically, whereas the others build resources by describing 
them textually. For example, here is a text description of a WIND 
resource: 

TYPE WIND 
.128 

My Window 
40 40 200 472 

Visible GoAway 
0 
0 

the resource number 
the window title 
the window rect (top left 

bottom right) 
resource flags 

• , window definition ID 
refcon (points to user call) 

This is the way that RMalter, another Apple resource editor, maltes 
resources. RMalter also comes with THINK C. 

ResEdit's WI ND editor looks like Figure 8.1. When you're creating 
resources for the first time, ResEdit's graphic approach has many 
advantages: It's more intuitive, and it gives you a chance-with many 
resource types-to examine the appearance of a resource without 
actually running your program. You can use RMaker and ResEdit 
interchangeably; see the appendix in THINK C's User Manual if 
you're interested in using RMaker. 



Using ResEdit 

_J 

§0 WI ND ID = 6583 from wind 

Figure 8.1 Graphic representation of 
W I ND resource. 

357 

First, you'll compile an application in THINK C. Then, you'll use 
ResEdit to add the six Finder resources to it. You can use the procedure in 
this chapter for any project you wish; the tutorial uses the Hello2 project 
that we created in Chapter 3. 

The Finder Resources 

Apple recommends that software developers install six special resources in 
their applications. Each resource plays an essential role in your applica
tion's interface to the Finder. They are grouped into three categories: 

• Application icon: The ICN#, FREF, BNDL,andsignatureresourcesare 
used to add a unique icon to an application as it appears on the desktop. 

' Application version information: The vers resource contains gen
eral information used by the Finder, including the specific version of an 
application, the country for which it is localized, and its creation date. 

• Application MultiFinder requirements: The SI Z E resource desig
nates the recommended and minimum application memory size needed 
for an application, and also contains further details on the application's 
level of MultiFinder compatibility. 



_J 

358 

Completing a Standalone Application: 
Hello2 Revisited 

The first step is to create a standalone application from a working project. 
You'll do this by compiling Hello2, the first program in Chapter 3. Open up 
the Hello2 Project. Select Set Project Type ... from the Project menu. You 
should see something like Figure 8.2. There are four project options in the 
dialog box. Make sure the Application radio button is selected in the 
dialog; click on OK. See THINK C's User Manual or Appendix C for a 
description of the other three project types. 

Now choose Build Application from the Project menu. If the project is up 
to date, it should prompt you for an application name (Figure 8.3). Call the 
application He 11 o2. (The Smart Link check box should be checked.) When 
you click on Save, THINK C will build the Hello2 application. When it's 
completed, quit THINK C and try double-clicking on the Hello2 application 
created in your He l l o 2 folder. It should display the text He l l o , W o r l d in 
a window (Figure 8.4). 

Now that you have a working standalone program, you're ready to add 
the Finder resources. Click the mouse button to quit Hello2. 

® Application 

0 Desk Accessory 

0 Deuice Driuer 

0 Code Resource 

File Type I APPL 

Creator IP'"I 
D Separate STRS 

Partition (K) ~ 

MF Rttrs ~ loooo I 
OK ] ( Cancel ) 

Figure 8.2 Project Type dialog box. 



Using ResEdit 

la Hello2 I 
[) H<~Ho2 Pro j c=i Hard Disk 

I 

L) H<~Uo2 Pro j .. Hi-rc 
D Hello2,< 

Saue application as: 

Hello2 

18] Smart Link 

Figure8.3 Build Application dialog box. 

( 
( 

Hello2 Window 

Hell o, World 

Figure 8.4 Running Hello2. 

[jH1 

Brii.ie 

Saue ) 
Cancel ) 

359 

., 



_J 

360 

Notes on Using ResEdit 

Although you can use ResEdit in MultiFinder, it is more robust (i.e., doesn't 
crash as much) in the regular Finder. We suggest that you not use 
MultiFinder when creating resources for this book. If you do, make sure 
that the application memory size used by ResEdit is at least 512K (Figure 
8.5). 

You can't edit resources in files that are currently in use, such as the 
Finder file. This is not much of a disadvantage, as editing open files is not 
recommended anyway. 

It's a good idea to make a copy of any file you plan to edit. It is very easy 
to modify resources irrevocably. Be careful. If you're planning on entering 
more than one or two resources in a single ResEdit session, save your file 
periodically. 

Although ResEdit works with all resource types, it may have difficulty 
performing some operations on large resources, such as sound resources 
( ' s n d ') that exceed a few hundred Kin size. In these cases, proceed with 
caution. 

These guidelines are a little like the sign posted at swimming pools about 
waiting 30 minutes after you eat: Most of the time, they're not necessary. 
ResEdit is generally quite well-mannered and will quickly become an 
indispensable programming tool. 

Info 

Locked 0 
ResEdit 

Kind: appl ication 
Size: 275 ,007 bytes used, 270K on disk 

Yhere: Hard Disk, SCSI 

Created : Mon, Sep 19, 1988, 10 :35 PM 
Modified: Fri, Jan 6, 1989, 10 :20 AM 
Version : 1.2, ©Apple Computer, Inc. 

1984-1988 

Suggested Memory Size (K) : 300 

Application Hemory Size (K): ~ Figure 8.5 Setting ResEclit 
to 512K. 



Using ResEdit 361 

How ResEdit Works 

Before you start using ResEdit to install the Finder resources, let's examine 
how ResEdit accomplishes the job of creating, editing, and deleting re
sources in files. Double-click on ResEdit to start it up. 

A window is displayed for every storage device currently available. Each 
window lists all the folders and files on that storage device (see Figure 8.6). 
To open a folder, double-click on the folder name. To close a folder, click on 
the close box of the folder's window. 

The Macintosh has a number of different types of storage devices 
available for use. If files are available on a storage device (known as 
a volume), it's called a mounted volume. Mounted volumes include: 

• Floppy disks currently in an internal or external drive 

• Hard disk drives, both serial and SCSI 

• Tapes currently mounted on or in a tape drive 

• Remote file systems, currently mounted via AppleShare, TOPS, 
and so on 

Notice that an empty floppy disk drive is not a mounted volume. An 
initialized floppy disk, however, once inserted into the drive, is a 
mounted volume. 

" s Fil e Edit 

Hard Disk 

D §0 Floppy Disk 
~ ~ Desktop 

~-----· D DHell o, World 
D DHello2 
D DMondrien 

DPeger 
D ShowCli p 
DShowPi c t 
D Text File 
DTimer w/Menus 

Figure 8.6 ResEdit with two volumes open. 

., 



362 Macintosh Programming Primer 

ResEdit has two menus, File and Edit. When you're editing some 
resources, an additional menu will appear. As you've seen in earlier 
chapters, you can create new resource files by selecting New from the File 
menu. 

To create a new resource, create a new resource file or open an existing 
one. To open an existing file, double-click on its name. Figure 8. 7 shows the 
resource window for Hello2. Choose New from the File menu to add a new 
resource to the current file. The Type dialog box (Figure 8.8) appears: This 
allows you to select the type of resource you wish to build. You can either 
select from the scrolling window or type in the name of the new resource 
type. 

If you have just selected a new resource type, or have double-clicked on 
an existing resource type, the Resource Picker window is displayed. This 
window shows all resources of the selected type in the resource file. To 
create an individual resource of the type indicated in the Picker window 
(Figure 8.9), select New from the File menu again. 

An editor window will now appear. The methods by which the editor 
works vary with the resource type. Some resource types have a MacPaint 
"fat bits" editor (I C 0 N, IC N# ). Many types simply display named fields for 
you to input (FRE F, BN D L, MENU, MBAR). Other resource types can be resized 
and positioned graphically (WIND, DITL, DLOG). If ResEdit doesn't know 
how to handle a certain resource type, it defaults to a hexadecimal editor. 

r • File Edit 
., 

Hard Disk 
D THINK C 
lk'l D src 
~D D Hello2 D D D D (kl ~ ~§0 Hello2 
D 

D (kl CODE D D (kl DATA D D D 
~ D 

OREL 

~ D 
SIZE 

D D 
WIND 

DD ZERO 

D 

Figure 8.7 Hello2 resource window. 



Using ResEdit 363 

Select New Type 

STR 

fg ~1~i n OK D 
wctb 

( Cancel ) 

Figure 8.8 The Resource Type dialog box. 

r S File Edit 
., 

Hard Disk 

THINK C 

Figure 8.9 WIN 0 Picker window in the Hello2 application. 



364 Macintosh Programming Primer 

To get things started, let's take a look at the way you'd create a WI ND 
resource. Start by creating a new resource file or opening an existing one. 
Figure 8.10 shows the empty Hello2 Proj.Rsrc file. Select New from the File 
menu. The Type dialog box is displayed, which allows you to select the type 
of resource that you plan to create (Figure 8.11). Type in WI ND, or select 
WIND from the scrolling list. Click on OK. 

The WIND Picker window is now displayed. This shows all the WIND 
resources currently in the file. Since we haven't added any to Hello2.Rsrc 
yet, the window should be empty. Select New from the File menu again to 
create your first WIND resource (Figure 8.12). The WIN D editor displays the 
new window in a miniaturized version of the screen. Click and drag the 
window around the mini desktop to change its global coordinates (Figure 
8.13). Click and drag on the lower right corner of the window to resize it 
(Figure 8.14). 

Finally, select the Display as Text item in the WI ND menu. This shows 
another way to enter the parameters for your WI ND resource. If you make 
changes here and select Display Graphically from the W I ND menu, the 
adjusted window will be positioned correctly on the mini desktop. 

Certain information about each resource can be edited in the resource's 
Get Info window. To edit this information, click on the resource in the 
Resource Picker window and select Get Info from the File menu. ResEdit 
assigns new resources a random resource ID number. The most important 
piece of information in this window is the resource ID. Because you use the 
resource ID number to specify the resource you plan to use, it's important 
to change the resource ID number to match your program design. 

,. s File Edit 

Figure 8.10 Heilo2 Proj.Rsrc resource file. 



Using ResEdit 365 

,.. . Edit 
., 

Hard Disk 

U OK )J 

[ Cancel ) 

Figure 8.11 The Resource Type dialog Box. 

,.. s File Edit WIND 
., 

Figure 8.12 The lH ND editor. 



366 

_J 

Macintosh Programming Primer 

Figure 8.13 Changing the WI ND coordinates. 

Figure 8.14 Resizing the WIN D resource. 

This is all you need to know to use most of ResEdit's functionality. 
ResEdit is probably the most popular resource editor available. Apple has 
constantly updated it and has published a manual called Using ResEdit. If 
you'd like more technical information about how ResEdit works, you can 
procure the manual from APDA (see Chapter 9 for more information). 

That's the end of the ResEdit overview. Next, we'll talk about the six 
special Finder resources, and add them to your application. 

The ResEdit Tutorial: 
Installing the Finder Resources 

Completing a Standalone Application 

Double-click on ResEdit. Double-click on the THINK C folder to open it up. 
Then, double-click on the source code folder inside the THINK C folder 
( ' s r c ' in our figures). Finally, double-click on the He 11 o 2 folder that you 
created back in Chapter 3. You should see something like Figure 8.15. 



Using ResEdit 367 

If you double-click on the new Hello2 application file that you built 
earlier, the resource window of the application will appear. These are the 
resources that THINK C created when it compiled the application (Figure 
8.16). The CODE resources are your executable code. The WI ND resource 
(which you built with ResEdit) is used to build Hello2's window. The DATA, 
OR EL, and ZE RO resources are created by the compiler: Don't mess with 
them. The SIZE resource is one of the Finder resources; THINK C created 
it for you, so you don't need to. We'll look at it later. 

Click on the close box to close the resource list window. Make sure Hello2 
is still highlighted, and select Get Info from the File menu (Figure 8.17). 
This dialog contains information that the system has on your new application. 
APPL is short for application. Files having type APP L are recognized as 
applications by the Finder. 

Start the installation of your Finder resources by changing the Creator 
from???? to HELO. Be careful: ResEdit discriminates between upper and 
lower case. Now close the window by clicking in the close box and save your 
changes. 

The four-charactor Creator name HE LO will be used when the Finder 
looks for the application's icon. If, by chance, another application with 
a defined icon has the same Creator, the first icon the Finder finds will 
be used. Be careful in your choice of Creator names. If you plan to 
market a Macintosh application, register the Creator name with 
Macintosh Developer Technical Support, who can tell you whether or 
not others have used this Creator tag. We registered HELO, so go 
ahead and use it for Primer applications. 

r S File Edit 
.., 

Hard Disk 

Figure 8.15 ResEdit, open to the Hello2 Folder. 



368 Macintosh Programming Primer 

,.. S File Edit 

Hard Disk 

THINK C 

Figure 8.16 Hello2's resource window. 

,.. S File Edit 

O Locked O I nuisible 
O On Desk O Bozo 
D Shared O No I nits 
D Always switch launch 

Creator I???? 

181 Bundle O System 
D Busy O Changed 
1811 nited 

O File Busy O File Lock O File Protect 
O Resource map is read only 
O Printer driuer is Multifinder compatib le 

Created 2/ 16/ 4 9:54:40 AM 

Modified 1 / 6/ 89 12:49:48 PM 

Resource fork size = 1686 bytes 
Dato fork size = O bytes 

Figure 8.17 Hello2's Get Info window. 

., 

., 



Using ResEdit 369 

The flags displayed in the File Information window are information that 
the Finder keeps regarding your application. Normally, you should not 
change them. 

Here is a brief description of the Finder flags found in the File Info box 
(see Figure 8.18). 

The Locked flag is no longer implemented. 
If the Invisible bit is set, the file is not displayed by the Finder. 

ResEdit can see it, however, as well as Finder substitutes like 
DiskTop. 

The Bundle flag is set by the Finder if you have a B ND L resource 
in the file. We'll talk more about BNDLs later in this chapter. 

The System bit indicates that the file cannot be renamed, and that 
a warning will be given when the file is dragged to the trash. 

If the file is on the Desktop (i.e., not in any folder), then the On 
Desk flag is set. 

The Bozo flag was an early attempt to implement copy protection 
on the Mac. If it is set, the Finder will not copy the file. Since ResEdit 
can turn the Bozo bit off, however, you can defeat this copy protection 
scheme. Current protected software uses more sophisticated copy 
protection schemes. 

The Busy bit is currently not implemented. 
The Changed flag tells you that your file has been modified since 

it was opened. ResEdit uses that information to prompt you to save 
your changes when you quit. 

If the Shared flag is set, the application can be opened more than 
once. 

The Inited bit is set by the Finder when it determines the file's 
location and window. 

If the File Busy bit is set, the file is open. You see this if you 
examine a running application with ResEdit while in MultiFinder. 

If the File Lock bit is set, the file cannot be renamed (although it 
can be thrown away). 

The File Protect flag is not currently used. 
If the Resource map is read only check box is checked, the 

resources in the file cannot be changed. 
The Printer driver is MultiFinder compatible is set only for 

printer drivers that work with MultiFinder. 
The File Information dialog box also contains created and 

modified dates for the application. 



370 Macintosh Programming Primer 

At the bottom, the dialog box displays the size of the resource fork 
and the data fork. As was discussed in Chapter 2, all Macintosh 
applications have a resource fork and a data fork. The resource fork 
contains resources. The data fork may store information about user 
preferences or anything else you desire. 

r s File Edit 

111--===~" ~D 

0 Locked D I nuisible 
D On Desk D Bozo 
D Shared O No I nits 
O Rlways switch launch 

Creator I HELO 

181 Bundle D System 
0 Busy D Changed 
181 lnited 

O File Busy O File Lock O File Protect 
O Resource map is read only 
O Printer driuer is Multiflnder compatible 

Created 2/ 16/ 4 9:54:40 RM 

Modified 1 / 6/89 12:49:48 PM 

Resource fork size = 1686 bytes 
Data fork size = O bytes 

Figure 8.18 Finder flags. 

., 

As stated earlier, the Finder resources are broken down into three 
groups. One set of resources sets up the icon, another resource contains 
version information, and the last resource contains MultiFinder informa
tion. First, you'll create the resources that add an icon to the Hello2 
application. 

Adding an Icon to Hello2 

Adding your own icon to Hello2 is an involved procedure. Four resources 
must be placed into your application file to get the Finder to replace the 
generic application icon with a unique icon. 

Begin by creating the graphic icon used to identify the application on the 
desktop. Open up Hello2 with ResEdit, and choose New from the File menu. 
The Type dialog box appears. Either key in ICN# or select it from the 
scrolling list. Figure 8.19 shows the I CN# Picker window. 



Using ResEdit 371 

r S File Edit 
.., 

Figure 8.19 ICN# Picker window. 

A desktop icon (I C Nf/) actually consists of an icon and its mask. The 
mask is used to change the appearance of the icon to indicate a change 
in condition (TN:55). Resources that contain an icon without the mask 
are ofresource type I CON . 

Build your first icon by again selecting New in the File Menu. An IC N# 
editing window should be displayed. The special editor for I C N# resources 
allows you to build your icon graphically. With a little expe1imentation, you 
should be able to draw lines and circles with the mouse (Figure 8.20). 

The ICN# Resource Editor in ResEdit allows you to preview the icon 
on both a light and a dark background. It also shows you what the icon 
will look like if the application is unavailable. (This commonly occurs 
if you ejected the disk with the program on it using Command E. If the 
application was on the desktop, it will still show up but will be 
dimmed, indicating that it can't be used). 

The IC NI/ editor is like the Fat Bits mode in MacPaint. The pane on the 
left is the icon displayed by the application. The pane on the right is the 



372 Macintosh Programming Primer 

D ICN# ID 18714 from sdf 

• • • • • • • • • • • • • • • • • • • • • • • • 

•• • • • • •• 

•••••••••••••••••••••••••••• 
••••••••••••• • •••• •••• •••••••••• •• •• • •• • • ••••••••• • • • • • •••••••• • • 

I
~ 
-0 -v 

• • • • • • • • • • • • • • • • •• • • •••• 

11.0 

Figure 8.20 The ICN# editor. 

mask, and governs the change in the application's icon when selected. 
Figure 8.21 shows how THINK C's application icon looks in the IC N# editor. 

When you're comfortable drawing figures with the bit map editor, try 
creating an icon for your application. If you prefer, use the icon in Figure 
8.22, which will be used in the rest of the tutorial screen shots. When you're 
done with your icon, select Data->Mask from the I CN# menu. This will 
automatically draw a mask for your application in the right pane of the 
window. When the icon is complete, examine the title bar. You should see 
something like the text in Figure 8.23, except that the resource ID number 
will probably be different. Click on the close window of your Hello2 icon, and 
select Get Info in the File menu (Figure 8.24). Change the ID to 128. It is 
a Macintosh convention to use 128 as the application's I CN# ID number. 

Your version ofResEdit may contain a second I CN# menu item that 
rotatesbetween Disp l ay Using Ol d Method and Di splay Using 
New Method.Makesureitshows Display Using New Method. This 
will ensure that your icon looks good on the desktop. With system 
Version 6, changes were made that could cause the old method of 
displaying icons on the desktop to be aesthetically unappealing 
(TN:147). 



Using ResEdit 

ICN# ID= 300 from THINK C 

•••••••••••••••••••••••••••••••• 

••••••••• •• • ••••• •••••• •• •••• • •• •••••••• • •••• • •••••••• •••••••• •••••• • •• •••••••• • •• • •••••• •••••••••• •••••••••• •••••••••• •••• • ••• •••••••••• •••••••••• •••••••••• •••••••••• •••• • •••• •••••••••• •••••••••• 

• ••• • •• • ••• •••• • ••• • ••• • ••• •••• • ••• •••• •••• • ••• • ••• • ••• • ••• •••• • •• • •• • ••• • •••• • •••• • •••• 

•••••••••••••••••••••••••••••••• 

• 
Figure 8.21 The THINK C I CN#. 

D ICN# ID 12566 from Hello2 

•••••••••••••••••••••••••••• • •••••• • • • • • • • •••••• • •••••••••••••••••••••••••••••••• • • •• • • • • • • • • •• •• • • •••••• •• • • • • • • • • • • •• •••••• • • • • • • • • •• •• ••• •••••••••••••••• • • •• • • ••• •• • • •••• ••••••••••••• •• • • •• • •••• • ••• •• ••• •••••••••••••••• • • •• •••••••••• • • •• •• • •• ••• • •• • • •• •• ••• • ••• •• • •••••••••• • •• • • •• • • •••• •• • • ••• • •••• • •• • ••• • • • •• •• • • • •••• • •• •••••••••• • • •• •• • ••••• • • •• • ••• •• • • ••• • ••••••••••••••••••••••••••• •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • •• •••••••••••••••••••••••••••• 

Figure 8.22 The Primer I CN#. 

373 



374 Macintosh Programming Primer 

lo ICN# ID 12566 from Hello2 

Figure 8.23 New resources are assigned random resource IDs. 

~D Info for I CN# 128 from Hello2 

Type: ICN# 

ID: 

Name: 
1120 

Attributes: 

0 System Heap 
0 Purgeable 

Size: 256 

Owner type 

O Locked O Preload 
O Protected 

Figure 8.24 Get Info window of ICN# resource. 

Here's a brief description of the resource fields in this window. 

Owner Type: Special programs such as desk accessories must be 
handled differently. If you click on Owner Type, your resource ID 
changes. Resources in desk accessories must have IDs within certain 
ranges to work properly. 

Owner ID and Sub ID are used when you are sharing the resource 
with other programs. 

The Hello2 icon is automatically set to Preload and Purgeable by 
the Finder. PreLoad resources are loaded into memory as soon as your 
application starts running. Purgeable resources are removed from 
memory if the Memory Manager needs to reclaim that space. 

If System Heap is selected, the resource will be loaded into the 
System Heap instead of the Application Heap. If the resource is 
Locked, the Memory Manager cannot move it around when it is 
rearranging memory. If the resource is Protected, the Resource 
Manager can't modify it. 



Using ResEdit 375 

Now that you've created an icon for your application, you have to create 
the resources that will link your icon to your application's creator name. 

Building the File Reference Resource 

Now we'll build the FR E F (short for File Reference) resource. First, close the 
IC N# Get Info window, then close the IC N# Picker window. Select New from 
the File menu and select FREF from the scrolling window (or type it in). 

While you're in the FR E F Picker window, select New from the File menu 
again. The FR EF resource appears. It contains three pieces of information 
about the application: 

• File Type: You saw this in the Get Info dialog box of your application. 

• icon local ID: The local ID number that other resources (like B ND L) will 
use when looking for the icon. Don't confuse this with the IC NII resource 
ID. 

fileName: This field is not currently used. 

Type APP L for file type. Put a 0 in the icon Local ID field. The fileN ame is 
not currently used; you can leave it blank. Click in the close box to close the 
FR E F window (Figure 8.25). Now, select Get Info so that you can change the 
FR E F resource number ID. As you did with the IC N# resource, change the 
ID of the FRE F to 128 (Figure 8.26). You have now completed the I CN# and 
FREF resources ofHello2. 

D FREF ID 1933 from Hello2 

File Type lnPPL I 
icon locallD I~ I 
fileName [ J 

Figure 8.25 Completed FR E F fields. 



376 Macintosh Programming Primer 

Info for FREF 128 from Hello2 

Type: FREF 

ID: 
Name: 

Attributes: 

D System Heap 
D Purgeable 

Size: O 

Owner type 

D Locked D Preload 
D Protected 

Figure 8.26 Get Info window of FR E F 12 8 , 

Remember, the resource ID is not the same as the local ID. Your 
application's code will call a resource by its resource ID; the local ID 
is used by the Finder to correctly load Finder resources into the 
Desktop file (TN:48). 

Building the Bundle Resource 

Your next task is to build a bundle resource. The B ND L keeps track of the 
resource IDs and local IDs used by the application. 

Select New from the File menu. Key in B ND L, or click on it in the scrolling 
window (Figure 8.27). Click on OK. 

The BNDL resource, like the FREF youjust built, is edited with the text 
editor. B ND Ls, however, have a variable number of fields, depending on how 
many resources are being bundled together. This particular editing opera
tion is not intuitive for most people, so we'll go very slowly. The next time 
you need to create a resource with a variable number of fields, you'll be 
ready. 

To create the B ND L resource, select New again from the File menu. Type 
in HE LO for OwnerName. Put a 0 into the owne r ID field (Figure 8.28). 



Using ResEdit 

Select New Type 

R OK D 
( Cancel ) 

Figure 8.27 B ND L selected 
Resource Type dialog box. 

:o BNDL ID 5400 from Hello2 

OwnerName I HELO 
:=====---. 

owner ID l._o ____ __, 

numTypes -1 

***** 

8.28 B ND L fields, part 1. 

377 

HELO is Hello2's Creator name.The BNDL field OwnerName 
corresponds to the application's Creator name. The B ND L field own
er ID is the resource ID of the signature resource (which you'll build 
next). 

Click on the row of asterisks at the bottom of the listing. The asterisks 
should be highlighted by a rectangle (Figure 8.29). Select New from the File 
menu bar . You can now add the first resource that the BND L is supposed to 
track. Enter I CN# in the new type field. Then, click on the row of dashes. 



378 Macintosh Programming Primer 

_0 BNOL ID 5400 from Hello2 

OwnerNome I HELO 
::=======~ 

ownerlD .... lo ____ --' 
numTypes -1 

I***** 

Figure 8.29 Highlighted asterisks. 

It should be highlighted with a rectangle (Figure 8.30). Select New from the 
File menu again. Type in 0 for the Loe al ID and 128 for the rs re ID for the 
I CN# resource. Scroll down to the bottom of the window using the scroll bar 
on the right. Select the asterisks again (Figure 8.31). (Since the windows in 
ResEdit are not resizable, you will often need to scroll down to find 
additional fields in a resource. This is the only time we'll discuss scrolling 
in the text.) 

-0 BNDL I 0 - 5400 from Hello2 

OwnerName I HELO 
::====:::::!......., 

ownerl D ._I o ____ __. 
numTypes 0 

***** 
type 

#of type 

1-----
local ID 

rsrclD 

I 1cN# 

0 

Figure 8.30 Highlighted dashes. 



Using ResEdit 

::D 
ownerlD 

numTypes 

***** 
type 

#of type 

local ID 

rsrclD 

I***** 

BNDL ID 5400 from Hello2 

lo J 
0 

I ICN# 

0 

lo 

Figure 8.31 Asterisks highlighted again. 

379 

Now that you've put the IC Nff information into the B ND L, let's add the 
FR E F resource information. Use the same techniques that you just used for 
the IC Nft information to complete the B ND L as shown in Figure 8.32. Select 
Get Info from the File menu and change the B ND L's resource ID to 12 8. By 
convention, Macintosh applications have a single B ND L with resource ID = 
128. Now, close the edit window and save your changes. 

ResEdit does some basic error checking with the data that you type in, 
so it's possible that you will get an alert box complaining about something. 
For example, ResEdit will check to make sure you have no more than four 
characters in your type fields; if you get the alert in Figure 8.33 when you 
close the resource, go back to the two type fields and make sure you have 
only four characters (including spaces). 

One way to make sure your fields are clear of non printing characters is 
to double-click on the field to highlight it and then clear the field with the 
backspace/delete key. Then, input the field again. Use the tab key or the 
mouse to get between fields, not the <Return> key. 

Click on the close box and you're done with bundles. Now, you're just one 
resource away from iconization. 



380 Macintosh Programming Primer 

-o BNDL ID - 5400 from Hello2 

rsrclD 1120 j 

***** 
type IFREF 
#of type 0 

local ID lo 
rsrclD I 120 

***** 

8.32 Completed B ND L fields. 

4 characters eHpected for Type name. 

I OK 

8.33 ResEdit error alert. 

Adding the Signature Resource 

You've now added three of the four resources needed to attach an icon to 
Hello2. The last one to be added is the signature resource. The signature 
resource is somewhat different from the other resources, which all have 
fixed names. The signature resource type is actually the Creator name that 
you assigned to Hello2 at the beginning of this chapter. 

At this point, use ResEdit to display the resources that you've already 
installed (Figure 8.34). Select New from the File menu. Since the Creator 
name you used was HE LO, type HE LO and click on OK. (Because HE LO is not 
a standard resource, it's not in the scrolling window; you'll have to type it 
in, as shown in Figure 8.35.) 



Using ResEdit 

Select New Type 

actb ~ I HELO I a cur 

I 
ALRT 
APPL n BNDL OK 
cctb 
clut IQ ( Cancel 

l) 
) 

Figure 8.35 Type dialog box 
with ' HE LO' typed in. 

381 

With the HE LO Picker window open, select New from the File menu. So 
far, you've edited resources textually (like FR E F and B ND L), and you've used 
a bit map editor (IC N#). Each resource in ResEdit has a template that 
specifies how the resource should be edited. If ResEdit does not have a 
template for the resource selected, it defaults to the hexadecimal editor 
(Figure 8.36). This general-purpose editor allows you to type in hexadeci
mal information on the left side of the window and ASCII text on the right 
side. You can force the use of the hexadecimal editor on any resource by 
choosing Open General instead of Open in the File menu. 

The signature resource is used to supply the Creator ID name to the 
Finder, so you don't actually type anything in. Close the window and select 
Get Info from the File menu while the HE LO resource is selected. Change the 
resource ID to 0 and close the Get Info Box. You should have the resources 
shown in Figure 8.37 displayed in Hello2. 



382 Macintosh Programming Primer 

§0 HELO ID = 29817 from Hello2 
000000 ~ 000008 
000010 
000018 
000020 
000028 
000030 
000038 
000040 
000048 
000050 
000058 ; 000060 
000068 

Figure 8.36 ResEdit's hexadecimal editor. 

0 
BNDL 
CODE 
DATA 
DREL 
FREF 
HELO 
ICN# 
SIZE 
WIND 
ZERO 

Hello2 

Figure 8.37 Hello2 with 
Finder resources. 

You're done! The four required Finder resources are installed into your 
Hello2 application. To see ifit worked, save your changes and quit ResEdit. 
If you succeeded (Figure 8.43), you may proceed to the v e r s resource 
discussion. If the situation resembles Figure 8.38, read on. 

The s i gnat u re resource used to have an additional function. If you 
typed text into it, the text would be displayed when the Get Info menu 
item was selected in the Finder with the application highlighted. This 
function has been eliminated by the v er s resource, which now 
supports the Get Info call in the Finder. If the v er s resource is missing 
in a file, the Finder will alternatively use the information in your 
signature resource. For example, if you typed the text of Figure 8.39 
into Hello2's HE LO resource, the Finder would display the Get Info 
window in Figure 8.40. The first character in the HE L 0 resource 
(shown as a hex 36 or an ASCII 6) is the length of the Get Info text. 



Using ResEdit 383 

~D~ Hello2 ~0~ 
4 items 86 ,412K in disk 1 ,599 

iJ 
Hello2 Proj He11o2 

He 11o2 Pro j .Rsrc He 11o2 .c 

Figure 8.38 Hello2 application icon (unchanged). 

=D Helo ID = o from Hello2 
000000 
000008 
0000 10 
000018 
000020 
000028 
000030 
000038 
000040 
000048 
000050 
000058 
000060 
000068 

P648 656C 6C6F 3220 
312E 3020 6973 206 1 
2073 6160 706C 6520 
6170 706C 6963 6174 
696F 6E20 6672 6F60 
2074 6865 2040 6163 
2050 7269 6065 72 

Info 

He11o2 

Kind : application 

6Hel lo2 
1.0 is a 
sample 

appl ical 
ion from 

t he Mac 
Pr imer 

Locked 0 

Size : 2 ,6 72 bytes used, 3K on disk 

Yhere : Hard Disk, SCSI 

Created : Tue, Feb 16 , 1904, 9 :54 AM 
Modified : Fri , J an 6, 1989, 2 :59 PM 
Vers ion : He11o2 1 .0 is a sample application 

from the Mac Primer 

S ugges ted Memory Size (K) : 384 

Application Memory Size (K) : ~ 

F igure 8.39 A complete 
HE L 0 resource. 

Figure 8.40 The Get Info 
window corresponding to 
Figure 8.39. 



384 

_J 

Macintosh Programming Primer 

If your new icon appeared, great! If not, don't despair; use ResEdit to 
check each of the four resources you created. Make sure the resource IDs 
are correct. If this is true and the icon still doesn't appear, try rebooting your 
machine. This almost always works. The final alternative is rebuilding 
your Desktop. Before you go downstairs for the hammer and nails, read the 
next section. 

Rebuilding the Desktop 

The icon you made failed to show up in the Finder when you quit ResEdit. 
The reason was that the Desktop file needs to be rebuilt after you modify 
the Finder resources. The Desktop file is the Finder's application database. 
Among other things, the Desktop file holds information about the volume's 
file bundles. When a volume's Desktop is rebuilt, the entire volume is 
searched, and the Desktop database is reconstructed. One way to rebuild 
the Desktop is to clear the Desktop file using ResEdit (you can't do this in 
MultiFinder ). Rebuilding the Desktop does one irrevocable thing, (so if 
you're not a person who likes to do seven irrevocable things before break
fast, please read carefully); it causes the loss of the information that has been 
placed in the text box of the Get Info window for all your applications. 

One way to avoid rebuilding your Desktop file is to add the resources 1 

to a copy ofHello2 on a floppy and then copy it to the target disk. This 
should cause the Desktop file on the target disk to update itself. 

In ResEdit, highlight the Desktop file by clicking on it once. If you have 
two storage devices mounted, each disk will contain a Desktop file that 
keeps track of things for that disk. Make sure you've chosen the Desktop file 
that's on the diskette or hard drive containing Hello2. Select Clear from the 
Edit menu (Figure 8.41). At this point, you'll be asked to confirm the file 
deletion (Figure 8.42). Click on OK if everything looks right. Select Quit 
from the File menu. After a few moments (the bigger your drive, the longer 
it will take), the Desktop file will be rebuilt with the new information about 
Hello2 (Figure 8.43). 

Did your icon show up correctly? If not, you might want to check the 
resources again. Each step is crucial in making sure the Finder figures out 



Using ResEdit 

:)(:l. 
Hord Disk 

OApps 

~ ResEdit 

Figure 8.41 Deleting the Desktop file. 

Do you really want to delete 
the file 'Desktop' ? 

OK K Cancel B 

Figure 8.42 Last chance alert. 

4 items 86,42 1K in disk 1,590 

[i) 
Hello2 Proj Hello2 

Hello2 Proj.Rsrc Hello2 .c 

Figure 8.43 The new 
Hello2 icon is displayed. 

385 

., 



386 Macintosh Programming Primer 

what the icon is supposed to be. If one of the resources has an error, correct 
it and try rebuilding the Desktop again. One good debugging technique is 
to compare your resources with those in an application that displays its icon 
properly, like THINK C. 

Adding icons to your application depends on the correct relationship of 
the resources you have added. One mistake in a resource ID or field is all 
it takes. If you have made mistakes in the Finder resources, the Finder 
won't complain; it will just go on using the standard application icon until 
it finds the resources it needs. 

Once you understand how to install the Finder resources, you'll find 
it easier to add them directly to your .rsrc file of your project, instead 
of adding them to completed applications. That way, each time you 
build a standalone application from your project, THINK C will 
automatically add the Finder resources to it. 

The vers Resource 

The next Finder resource that you'll add is the vers resource, which stores 
information about the current version of an application. Fire up ResEdit 
and open up Hello2. Create a new resource of type vers (Figure 8.44). As you 
can see, the vers is edited like the FR E F s or B ND Ls you have already seen. 
Key in the fields as shown in Figure 8.45. Then close the v er s edit window 
and change the resource ID to 1. 

The information you put in tells the Finder more about your application. 
Most of this additional information refers to the application's version. The 
version is designated using Apple's intricate numbering system for pro
gram releases, which works like this. A new program has Version 1.0. If 
there is a minor revision to the program, it is then labeled Version 1.1. If 
there's a bug fix to Version 1.1, it's designated 1.1.1. So, if you have a 
program that just had a second bug fix to a third minor revision, it would 
be Version 1.3.2. If there's a major revision to the program, the first 
number is incremented. If the program has gone through a major revision, 
four minor revisions, and six bug fixes, the current version is 2.4.6. 

There's also a development suffix, which is added to indicate how far 
along the product is. There are three different stages: The earliest is d for 
"development" (for example, l.Od). The next level is a (for "alpha"-1.0a). 
Then, the b (''beta") version comes out (l.Ob). Theoretically, the released 
version would then be 1.0. If you have a product labeled 1.3dl.2, it's the 
second bug fix of the first development version of the third revision of the 
first release of the product. 



Using ResEdit 

D 

Uersion 
Number 

Reuision 
Number 

Reuision 
Stage 

Build 
Number 

Language 
Integer 

uers ID 26561 from Hello2 

Rbbrieuiated [ l 
'---~~~~~~~~~~~~---' 

string 

Figure 8.44 v er s resource editor. 

_o uers ID 1 from Hello2 

Uersion llso1 
Number 

Reuision Ison 
Number 

Reuision Ison 
Stage 

Build Ison 
Number 

Language lo 
Integer 

Rbbrieuiated 
string 

11.0 

Get Info I Hello2 1.0 from the Mac Primer 
string 

Figure 8.45 Completed v er s resource. 

387 

I 



388 Macintosh Programming Primer 

Now that we've said all that, it's unlikely that you'll need as complex a 
version number as that, unless you own Microsoft. 

This relates to the v er s resource fields as follows: 

• The version number is the first number, the "1" in 1.0. 

• The revision number is the second number, the "3" in 4.3.1. 

• The revision stage is the development level, the ''b" in 1.0b2. 

• The build number is the number following the development suffix, the 
"5" in 2.3a5. 

• The language integer refers to the country to which this version of the 
program is headed. The United States is O; see Figure 8.46 for a list of 
numbers for other countries. 

• The abbreviated string is the whole version strung together, like 
1.2bl.l. 

• The Get Info string is the text that is put in the Get Info box when you're 
in the Finder. 

us 0 
France 1 
Britian 2 
Germany 3 
Italy 4 
Netherlands 5 
Belgium 6 
Sweden 7 
Spain 8 
Denmark 9 
Portugal 10 
French Canada 11 
Norway 12 
Israel 13 
Japan 14 
Australia 15 
Arabia 16 
Finland 17 
French Swiss 18 
German Swiss 19 
Greece 20 
Iceland 21 
Malta 22 
Cyprus 23 
Turkey 24 
Yugoslavia 25 

Figure 8.46 Country numbers. 



Using ResEdit 389 

Test the resource by saving and quitting ResEdit. Then, click on the 
Hello2 application and choose Get Info from the File menu of the Finder 
(Figure 8.4 7). The dialog box should show what you put into the v er s 
resource. Currently, the Finder doesn't use any of the information except 
for the Get Info string, which is placed in the Get Info box. The v er s 
resource type is a relatively recent addition to the Finder resources; Apple 
will have plans for it in the future, so put it in your applications (TN:189). 

Some of you may be confused by the fact that the s i gnat u re resource 
seems to put information into the Get Info box in the same way that 
the v e r s resource does. You're right, and here's what happened: The 
s i gnat u r e resource was the old way of attaching the icon to the 
application and putting information in the Get Info box. The v e r s 
resource type is intended to supply the Finder with extra information, 
including the Get Info data, about your application. If there is no v e r s 
resource, the Get Info information in the s i gn at u r e resource is used. 
If there is, the s i gnat u r e resource is ignored, and the vers Get Info 
field is used. In any event, don't dump the s i gnat u re resource! It still 
is used to identify the desktop icon for the application. There doesn't 
have to be anything in it however; just create it, change the resource 
ID to 0, and close it. 

Info 

~ Hello2 

Kind: application 

locked D 

Size : 2 ,682 bytes used , 3K on disk 

Yhere : Hard Disk , SCS I 

Created : Tue, Feb 16 , 1904, 9 :54 AM 
Modified : Fri, Jan 6, 1989 , 4 :32 PM 
Version : Hello2 1 .0 from the Mac Primer 

Suggested Memor!J Size (K) : 384 

Application Memor!J Size (K) : §.:=J Figure 8.47 Hello2's 
Get Info window. 



390 Macintosh Programming Primer 

If you have avers resource with a resource ID number of 2, it can be used 
to link a set of files together. Apple has used this number to identify the 
current system level of the files in their disks. Figure 8.48 shows how this 
system information is displayed. 

In the bottom of the Get Info box, there are two other fields, Mininum and 
Suggested Memory Size for the application. These fields are filled by the 
SIZE resource, which is discussed next. 

Last of the Finder Resources: The SIZE Resource 

The last Finder resource is the SIZE resource, which contains MultiFinder 
information. As you saw earlier, THINK C installs the SIZE resource for 
you when it compiles your application. Open the S I Z E resource in Hello2 
and examine the fields. Figure 8.49, suitably elongated, shows the fields 
that the S I Z E resource contains. 

The following is a brief description of these fields: 

• Save screen (Switcher): A flag used by the Switcher, an early version 
of MultiFinder. 

• Accept Suspend/Resume events: If your application handles Sus
pend/Resume events, set this flag. 

• Disable option: Another flag used by Switcher. 

Can Background: A MultiFinder flag set if your application uses null 
events while in the background. 

• MultiFinder aware: If you use WaitNextEvent() in your programs, set 
this flag. 

• Only Background: This flag is set if your application runs only in the 
background and has no user interface (i.e., Backgrounder in the System 
folder). 

• Get Front Clicks: If set, this flag allows your applications to receive 
mouse clicks even if it is working in the background. If this is not set, 
clicking on your application window will only make the application 
active, and not pass on the click. 



Using ResEdit 

_J 

D Info 

Locked 0 
Finder 
System Software Version 6 .0.2 ......... _ 

Kind: System document 
Size : 1 07 ,390 bytes used, 1 OSK on disk 

Yhere: Hard Disk, SCSI 

Created : Sat, Apr 30, 1988, 12 :00 PM 
Modified : Sat, Dec 1 7, 1988, 4 :55 AM 
Version : 6 .1 , Copy right App le Computer, 

Inc. 1983-88 

Suggested Memory Size (K) : 160 

Application Memory Size (K): EJ Figure 8.48 Illustration of 
v er s 2 resource. 

391 

The rest of the bits are reserved by Apple. This is just a brief description of 
the flags in the S I Z E resource. For a detailed discussion of the SI Z E 
resource, read The Programmer's Guide to MultiFinder, available from 
Apple through APDA. 

In most cases, the only bits that need concern you are the ones that you 
can set from THINK C in the Project dialog box. 

As we go to press, two SI ZE resource flags have been reserved by Apple 
(the two Switcher flags), and two new flags: getChildDiedEvents and 
32Bitcompatible. The SIZE editor in your copy of ResEdit may be 
updated to include these changes. (TN:180,205). 

The next section demonstrates how intrinsic resources are to the Macin
tosh. We now present Minimalist, a program that contains nothing except 
two CODE resources and a WIN D resource, all created with ResEdit. 

Minimalist, the ResEdit Program 

Minimalist could be charitably described as a very small, useless program. 
It demonstrates, however, how resources make Macintosh programs work. 

In ResEdit, create a new file named Minimalist. Using the Get Info menu 
i tern, change the file type to APPL. Then, create a new resource of type C 0 DE 
(Figure 8.50). The general hexadecimal editor appears. 



392 Macintosh Programming Primer 

-D SIZE ID - -1 from Hello2 

Saue screen @O 0 1 
(Switcher) 

Rccept @O 0 1 
suspend 
euents 

Disable @O 0 1 
option 
(Switcher) 

Can @ O 0 1 
background 

Multifinder @O 01 
aware 

Only @O 01 
background 

Get front @O 01 
clicks 

Reserned bi t @O 01 

Reserned bit @O 01 

Reserned bit @O 01 

Reserned bit @O 01 

Reserned bit @O 0 1 

Reserned bit @O 0 1 

Reserned bit @O 0 1 

Reserned bit @O 01 

Reserned bit @O 0 1 

Size 11393216 

Min size 1393216 

Figure 8.49 The S I Z E resource fields. 



Using ResEdit 393 

Type in the hex in Figure 8.51. As you're typing, alphanumeric charac
ters will appear on the right. When you're done, click on the close box. 
Change the ID of the resource by choosing Get Info from the File menu. 
Change the ID to 0. Build the second C 0 DE resource with the hex in Figure 
8.52. Change the resource ID number of the second COD E resource ID to 1. 
Finally, build a WI ND resource with a resource ID of 400. Use any size or 
window type that you prefer, but make sure that the Vis i bl e and 
goAwayFl ag checkboxes are checked. Save the WI ND and the two CODE 
resources. 

You now have an application. If you double-click on Minimalist, it will 
display the window you created. Clicking anywhere on the screen will 
return you to the Finder. 

r s File Edit Find 

Hord Disk 
D THINK C 
~~a--i===============~=== 

src 
~ Dra--.=================== 

Minimalist 
DD ~.1-::-::o=========~~====== 
D ~ D COOEs from Minimalist 

D D D c ~ml CODE ID = 19514 from Minimalist ~ 
D D 000000 
,,. D 000000 
""' 000010 
~ D 000010 
D D 000020 

000028 
D D 000030 

000038 
D 000040 

000048 
000050 
000058 
000060 
000068 

Figure 8.50 Blank C 0 0 E resource in Minimalist. 

§0 CODE IO = O from Minimalist 
000000 0000 0028 0000 0200 DDD <DDDD ~ 000008 0000 0008 0000 0020 aaaaaaa 
000010 0000 3F3C 000 1 A9FO DD?< 0090 
0000 18 
000020 
000028 
000030 
000038 
000040 
000048 
000050 
000058 [§ 000060 
000068 Q] 

Figure 8.51 Minimalist's CODE 0 resource. 

., 



394 Macintosh Programming Primer 

§0 CODE ID = 1 from Minimalist 
000000 0000 0001 4860 FFFC DDDDHmDD ~ 000008 A86E A8FE A912 A850 it)nit)OSIDilP 
000010 594F 3F3C 0190 42A7 YO?<DeBll 
000018 2F3C FFFF FFFF A9BD /<DDDDSIQ 
000020 554F A974 4A1F 67F8 UOSltJDgD 
000028 A9F4 SID 
000030 
000038 
000040 
000048 
000050 
000058 ; 000060 
000068 

Figure 8.52 Minimalist's C 0 DE 1 resource. 

To get the C 0 DE hex, we wrote a short assembly language program that 
does initialization, draws a window, and quits on a mouse click. Here's the 
code: 

include 'Traps.a' 
main 
pea -4(A5) 
_InitGraf 
_InitFonts 

InitWindows 
InitCursor 

subq #4.sp 
move #400,-(sp) 
clr.l -<sp) 
move.l #-1.-<sp) 
_GetNewWindow 

Try Button 
subq #2.sp 
_Button 
tst.b (Sp)+ 
beq.s TryButton 

ExitToShell 

end 

We don't, in general, recommend this strategy for program development. 
It's best to leave CODE resources to THINK C. 



_J In Review 

Chapter 8 discussed the steps necessary to install the Finder resources into 
your applications. It provided a tutorial for new ResEdit users. 

Chapter 9 discusses the issues you'll face as you start developing your 
own Macintosh applications. We'll start by taking a look at a few Mac 
periodicals you may find useful. We'll talk about Inside Macintosh and 
other Apple technical references. We'll look at Apple's support apparatus 
for Macintosh programmers and developers. 

395 



The Final 
Chapter 

To successfUlly develop software for the 
Macintosh, you need current technical in

formation. You need to know how to use 
the standard Macintosh references effec

tively. You also need to know about the 
different technical support programs 

Apple offers. In this chapter, we'll 
discuss these and other Macintosh 

development issues. 

9 



_J 

398 

THE BASICS OF programming the Macintosh have been laid out in the eight 
preceding chapters. Familiarity with these basics is half the job of becom
ing a successful developer. The other half is understanding how the 
Macintosh programming world works and knowing where to get the 
information you, as a Macintosh software developer, will need. 

To succeeed in developing software for the Macintosh, you need current 
technical information. You need to be able to use the standard Macintosh 
references effectively. You also need to know about the different technical 
support programs Apple offers. 

In this chapter, we'll investigate the periodicals that are your link to the 
Macintosh community. We'll look at Inside Macintosh and other Mac 
technical texts. We'll look at software tools, from compilers to debuggers. 
We'll also examine Apple's support programs for Macintosh software 
developers. 

The Macintosh Programming Primer is your passport to Mac application 
programming. When you've finished reading this book, join a local Macin
tosh user's group, and buy a copy of the best Mac programmer's magazine, 
MacTutor. Get involved and write some code! 

Macintosh Periodicals 

Whether you're interested in making a commercial product or a shareware 
product, or just want to know the inside stories of the Mac community, get 
the trades. Mac Week is great, and PCWeek and Info World are good, ifless 
oriented to the Macintosh computer line. All three magazines deliver 
timely dollops of news: the new software packages, scoops on company 
goings-on, and juicy industry gossip. 

The Macintosh programming journal is MacTutor, an invigorating 
monthly discourse on the art of Mac programming. Popular Mac magazines 
includeMacUserandMacWorld.Theirbroadviewpointcanshowyouwhat 
is of interest to Macintosh users, and what's available. 

While you wait for the idea that will make you the seventh richest person 
in the world, you need to learn the Macintosh inside out. To do this, you 
need Inside Macintosh. 

The Essential Inside Macintosh 

The Inside Macintosh technical reference series is written by Apple and 
published by Addison-Wesley. There are six books in the Inside Mac series 
(Volumes I-Vand the Inside MacintoshX-Ref). In Chapter 1, we suggested 
that you could get by with Volumes I and V. 



The Final Chapter 399 

We lied. Get them all. 
Volumes I, II, and III represent the Mac technical world as it was before 

the Mac Plus was introduced. All three volumes focus on the original 128K 
Mac, describing interfaces to the ROM routines, memory management, 
hardware specs, and more. 

Volume IV was released after the Mac Plus and the Mac 512KE were 
introduced. Both of these new Macs sported 128K RO Ms (as opposed to the 
128K Macintoshes' 64K ROMs). These larger ROMs contain the routines 
that handle the new, hierarchical file system (HFS), routines that interface 
to the SCSI (Small Computer System Interface) port, and updates to most 
of the 64K ROM routines. Volume IV covers all these changes. 

Volume V was released after the introduction of the Mac SE and the Mac 
II. The Mac II and the SE have 256K ROMs and support features like pop
up, hierarchical, and scrolling menus; a sophisticated sound manager; new 
text edit routines; and more. Perhaps the biggest change of all was the 
addition of color support to the Mac II ROMs. Volume V covers both the Mac 
SE and the Mac II. 

The Typical Inside Mac Chapter 

One of the best features of the Inside Mac volumes is their consistency. 
Each chapter starts with a table of contents, followed by the "About This 
Chapter" section which gives an overview of what the chapter covers and 
what you should already be familiar with before you continue. 

The next section or sections give an overview of the chapter's technical 
premise-for example, "About the Event Manager" or "About the Window 
Manager." The fundamental concepts are explained in great detail. At first, 
you may be overwhelmed by the wealth of detail, but after a few readings 
(and a little experimentation), you'll warm to the concept. 

Then the chapter's data structures, constants, and essential variables 
are detailed. These are presented in Pascal and/or assembly language. 
ijack in Chapter 2, we presented a set of rules for translating Inside Mac's 
Pascal data structures and calling sequences into C. 

Next come the chapter's Toolbox routines. Each routine's calling 
sequence is presented in Pascal, along with a detailed explanation of the 
uses of the routine. This section includes notes and warnings, as appropri
ate. 

Some chapters follow the Toolbox routines section with a few additional 
sections. Among these extras are a description of the resources pertinent to 
that chapter and, perhaps, a description of extensions available to the 
advanced programmer. 

Finally, there's a chapter summary, with its unadorned lists of con
stants, data types, routines, and variables. 



400 Macintosh Programming Primer 

Appendices and Special Sections 

Inside Macintosh, Volume I, Chapter 1, contains a road map that gives you 
a feel for the basics of the Macintosh and how the Inside Mac volumes work. 
The road map suggests you read Chapters 1 through 4, then read the 
chapters that are relevant to your current development effort. This is sage 
advice. These chapters offer an excellent grounding in Mac basics (or an 
excellent review if you've been at it for awhile). 

Volume III contains three chapters, some appendixes, a glossary, and an 
index. Chapter 1 discusses the Finder (with an emphasis on Finder-related 
resources). Chapter 2 discusses the pre-Mac Plus hardware. Chapter 3 is 
a compendium of all the summary sections from Volumes I and II. Appendix 
A is a handy, if occasionally inaccurate, table of result codes from the 
functions defined in Volumes I and II. The rest of the appendixes in Volume 
III have been superseded by the appendices in the Inside Macintosh X-Ref. 

The Inside Mac X-Ref starts off with a general index covering all five 
Inside Mac volumes, the Macintosh Technical Notes, Programmer's Intro
duction to the Macintosh Family, Technical Introduction to the Macintosh 
Family, and Designing Cards and Drivers for the Macintosh II and Macin
tosh SE. The general index is followed by an index of constants and field 
names. Appendix A of theX-Reflists every Toolbox routine that may move 
or purge memory. 

AppendixB of Inside Mac consists of two lists. The first is a list of Toolbox 
routines presented alphabetically by name, with each name followed by the 
routine's trap address, which is the four-byte instruction the compiler 
generates to call the routine. The second is a list of the trap addresses, in 
order, with each trap address followed by the routine name. This informa
tion is extremely useful if you ever have to look at code in hexadecimal 
format, a likely event if you use TMON or MacsBug, two Mac debuggers. 

Appendix C lists most of the operating system global variables, with 
their memory location and a brief description. Finally, Appendix C is 
followed by a glossary of terms presented in Volumes I through V. 

_J Apple Technical References 

In the first few years of the Mac era, Inside Macintosh was the only 
definitive reference on the Macintosh. Recently, however, Apple has pub
lished some additional reference texts for the Macintosh, including Tech
nical Introduction to the Macintosh Family, Programmer's Introduction to 
the Macintosh Family, and Designing Cards and Drivers for the Macintosh 
II and Macintosh SE. These books are all part of Addison-Wesley's Apple 



The Final Chapter 401 

Technical Library. Another excellent source of technical information are 
the Macintosh Technical Notes. 

Macintosh Technical Notes 

Macintosh Technical Notes are published on a regular basis by Apple and 
distributed to developers free of charge. The Tech Notes are a necessity for 
serious Mac developers. They contain technical information that was not 
yet available when the latest volume of Inside Macintosh went to press. For 
example, Tech Note #184 describes the Notification Manager (used in 
chapter 6). Without this Tech Note, developers wouldn't even know the 
Notification Manager existed, let alone know how to use it. 

A timely way to receive Tech Notes if you are not a developer is to become 
a member of APDA, the Apple Programmer's and Developer's Association 
(developers are automatically members of APDA). APDA charges $20 per 
year for membership and they sell most of the technical references men
tioned in this chapter. They sell the Tech Notes in both hard copy and disk 
formats. For more information on APDA, contact: 

Apple Programmer's and Developer's Association 
Apple Computer, Inc. 

20525 Mariani Avenue, MS: 33-G 
Cupertino, CA 95014-6299 

APDA was formerly an organization independent of Apple and has just 
recently been returned to the fold, so changes in its operation may be 
imminent. 

If you're not either a developer of a member of APDA, you can still get 
Tech Notes by downloading them from Mac-oriented bulletin boards 
around the country. 

Other Books 

There are a number of excellent books on Mac programming. One of the 
most popular is the Macintosh Revealed series, written by Stephen Cher
nicoff. Volume I of Macintosh Revealed dives right into the Toolbox, 
providing an in-depth tour of the Mac ROM routines. Volume II continues 
the exploration of ROM routines, and additional texts are planned. 

Another excellent reference is Scott Knaster's How to Write Macintosh 
Software. This book is little too advanced for the beginner, but it's worth the 
struggle to get through it. If you plan on writing a lot of Mac code, read this 
book. 



402 Macintosh Programming Primer 

We're also hard at work on a sequel to the Macintosh Programming 
Primer. We'll address concepts like color QuickDraw, I NIT s, CD EV s, and 
other interesting Toolbox routines with lots of examples and code 
walkthroughs. 

_J Apple's Developer Programs 

_J 

Apple has recently replaced the Certified Developer Program with the 
Apple Partners program. This new program provides additional technical 
support from Apple. Developers accepted into the new Apple Partners 
program receive complete Apple technical documentation, system software 
updates, membership in APDA, access to training classes, and discounts on 
Apple hardware and software. Developers also get a year's subscription to 
AppleLink, Apple's electronic communication network, and access to 
Macintosh Developer Technical Support (see below). However, the orginal 
Certified Developer yearly rate ($0) has also been enhanced to cover the 
services provided ($600). 

You don't have to be a Fortune 500 company to qualify as an Apple 
Partner, but Apple is looking specifically for developers of Apple hardware 
and software who intend to resell their products. It you are interested in 
developing software, but don't have an immediate plan to market it, you 
might consider the Apple Associates Program, a new support program from 
Apple. 

The Apple Associates Program is aimed at educators, in-house develop
ers and shareware programmers. It provides a basic level of support, 
including AppleLink (one month prepaid), system software upgrades, 
APDA, Tech Notes, and access to other technical information. The Associ
ates program has a yearly charge of $350. 

If you plan on writing a product for the Mac, the information that you 
receive in either program is invaluable. Call the Developer Programs 
Hotline at ( 408) 97 4-4897 and ask them to send you an application. 

As a developer, there's nothing more satisfying than talking to people 
who have solved, or at least are aware of the technical programs you 
encounter in writing programs. At Apple, these people come from Macin
tosh Developer Technical Support, or MacDTS. 

Macintosh Developer Technical Support 
and AppleLink 

Macintosh Developer Technical Support is composed of talented Mac 
software engineers dedicated to helping developers with their technical 



The Final Chapter 

_J 

403 

problems. To work with MacDTS, send them a message via MCI Mail. Or 
you can use AppleLink. 

AppleLink is Apple's electronic communication network. It gives access 
to information about Apple products, prices, programs, and policy informa
tion. You can write to Developer Technical Support at MacDTS on Ap
pleLink, and they will make every possible effort to answer your question 
within twenty-four hours. (If they can't solve the problem, they'll give you 
a very chic button to wear.) 

Both Apple Partners and Apple Associates receive subscriptions to 
AppleLink: Apple Partners receive a full year's subscription with the 
minimum monthly fees prepaid; Apple Associates receive one month of the 
minimum monthly fee prepaid. 

Besides access to MacDTS, AppleLink affords access to a lot of other 
services. You can download the new system utilities or look at the Help 
Wanted ads posted on the bulletin board. You can send beta versions of your 
products to your evangelist at Apple or to other developers. AppleLink 
makes you a part of the developer community. 

Software Development Tools 

All the applications presented in this book were written in C using the 
THINK C development environment from Symantec. The advantages of 
THINK C lie primarily in its ease of use and the THINK C Debugger. 
Symantec also makes a powerful, yet friendly, Pascal development environ
ment called THINK Pascal. 

Both THINK environments are basically nonextensible. This means 
that you can't create shell scripts to back up your files automatically, or 
rebuild an older version of your project. You also can't create custom menu 
items that automate your development process. Lightspeed handles most 
of the development cycle so thoroughly that you may not miss these 
features. If you do, you may want to take a look at the Macintosh 
Programmer's Workshop (MPW) from Apple. 

MPW from Apple 

MPW is an extremely powerful developme.nt environment that is totally 
extensible-so extensible, in fact, that several third parties have produced 
compilers that run under MPW. MPW is like a Mac-based UNIX shell. You 
can write shell scripts, tie them to your own menus, and create tools that 
have total access to the Toolbox, yet run inside the Toolbox environment 
with access to all your data. The catch is that MPW is more complex than 
THINK C and, therefore, more difficult to master. MPW also is not cheap, 
typically costing more than three times as much as THINK C or Pascal. 



404 

_J 
:I 

Macintosh Programming Primer 

Both MPW and THINK have a lot of followers and are supported by 
MacDTS. Whichever way you go, you'll be in good company. 

The THINK C Debugger, TMON, and MacsBug 

Debugging on any computer can be a tedious and frustrating experience. 
Luckily, there are some excellent tools that you can use to fix up your code. 

THINK C 3.0 comes with a source-level debugger. Assuming you use 
MultiFinder with at least two megabytes ofRAM, this debugger fits the bill 
for most bugs. We discuss its capabilities in Appendix D. 

MacsBug is an object-level debugger developed by Motorola for the 
68000 family of processors. For a long time, it was the only debugger 
available for the Mac. If, however, you need a little more horsepower, 
consider TMON. 

TMON is the pro's debugger. Instead of running as a separate program 
under MultiFinder, TMON takes over the processor when it runs. TMON 
preserves your program's run-time environment by not calling any of the 
Mac Toolbox routines (which might alter the state of your program). 
Instead, the folks at ICOM Simulations cleverly wrote their own window 
and menu handlers. Although TMON is somewhat difficult to learn, it's 
worth it. When you run into an exasperatingly unexplainable bug, pop into 
TMON and step through your program. You can set breakpoints, disas
semble your executable image, and even make changes to your program 
and data. For debugging drivers, IN IT s, and DAs, TMON can't be beat. 

To Boldly Go 

The Macintosh world is accelerating. 
New hardware and software are being designed and marketed faster 

than ever before. Each successive system software version paves the way 
to wonderful things: multimedia, image processing, CD-quality sound, 
voice recognition. There's a feeling that everything is finally arriving. This 
vision may seem daunting, but remember-a few years ago, the Mac was 
an intriguing experiment; the people who gambled on it won big. 

The changes that Apple is making are setting the stage for machines that 
will be as big a jump as the Macintosh was from the Apple II line. In the Mac 
world, you're close to the edge. 

Enjoy it! 



Appendix A 

Glossary 
access path: A description of the route that the File Manager follows to 

access a file; created when a file is opened. 
access path buffer: Memory used by the File Manager to transfer data 

between an application and a file. 
action procedure: A procedure, used by the Control Manager function 

TrackControl, that defines an action to be performed repeatedly for as 
long as the mouse button is held down. 

activate event: An event generated by the Window Manager when a 
window changes from active to inactive or vice versa. 

active control: A control that will respond to the user's actions with the 
mouse. 

active end: In a selection, the location to which the insertion point moves 
to complete the selection. 

active window: The frontmost window on the desktop. 
address: A number used to identify a location in the computer's address 

space. Some locations are allocated to memory, others to 1/0 devices. 
alert: A warning or report of an error, in the form of an alert box, sound from 

the Macintosh's speaker, or both. 
alert box: A box that appears on the screen to give a warning or report an 

error during a Macintosh application. 
alert template: A resource that contains information from which the 

Dialog Manager can create an alert. 
alert window: The window in which an alert box is displayed. 
allocate: To reserve an area of memory for use. 
application font: The font your application will use unless you specify 

otherwise-Geneva, by default. 
application list: A data structure, kept in the Desktop file, for launching 

applications from their documents in the hierarchical file system. For 

Source: Inside MacintoshX-Ref© 1988 Apple Computer, Inc. Reprinted with permission of 
Addison-Wesley Publishing Company. 

405 



406 Macintosh Programming Primer 

each application in the list, an entry is maintained that includes the 
name and signature of the application, as well as the directory ID of the 
folder containing it. 

application window: A window created as the result of something done 
by the application, either directly or indirectly (as through the Dialog 
Manager). 

asynchronous execution: After calling a routine asynchronously, an 
application is free to perform other tasks until the routine is completed. 

auto-key event: An event generated repeatedly when the user presses 
and holds down a character key on the keyboard or keypad. 

auto-key rate: The rate at which a character key repeats after it's begun 
to do so. 

auto-key threshold: The length of time a character key must be held 
down before it begins to repeat. 

background activity: A program or process that runs while the user is 
engaged with another application. 

bit image: A collection of bits in memory that have a rectilinear represen
tation. The screen is a visible bit image. 

bit map: A set of bits that represent the position and state of a correspond
ing set of items; in QuickDraw, a pointer to a bit image, the row width 
of that image, and its boundary rectangle. 

boundary rectangle: A rectangle, defined as part of a QuickDraw bit 
map, that encloses the active area of the bit image and imposes a 
coordinate system on it. Its top left corner is always aligned around the 
first bit in the bit image. 

bundle: A resource that maps local IDs of resources to their actual 
resource IDs; used to provide mappings for file references and icon lists 
needed by the Finder. 

button: A standard Macintosh control that causes some immediate or 
continuous action when clicked or pressed with the mouse. See also 
radio button. 

catalog tree file: A file that maintains the relationships between the files 
and directories on a hierarchical directory volume. It corresponds to 
the file directory on a flat directory volume. 

cdev: A resource file containing device information, used by the Control 
Panel. 

channel: A queue that's used by an application to send commands to the 
Sound Manager. 

character code: An integer representing the character that a key or 
combination of keys on the keyboard or keypad stands for. 

character key: A key that generates a keyboard event when pressed; any 
key except Shift, Caps Lock, Command, or Option. 

character style: A set of stylistic variations, such as bold, italic, and 
underline. The empty set indicates plain text (no stylistic variations). 

character width: The distance to move the pen from one character's 
origin to the next character's origin. 

check box: A standard Macintosh control that displays a setting, either 
checked (on) or unchecked (oft). Clicking inside a check box reverses its 
setting. 

Chooser: A desk accessory that provides a standard interface for device 
drivers to solicit and accept specific choices from the user. 



Appendix A: Glossary 407 

clipping: Limiting drawing to within the bounds of a particular area. 
clipping region: Same as clipRgn. 
cl i pRgn:Theregion towhichanapplicationlimitsdrawingina g ra f Po rt. 
closed file: A file without an access path. Closed files cannot be read from 

or written to. 
compaction: The process of moving allocated blocks within a heap zone in 

order to collect the free space into a single block. 
content region: The area of a window that the application draws in. 
control: An object in a window on the Macintosh screen with which the 

user, moving the mouse, can cause instant action with visible results 
or change settings to modify a future action. 

Control Manager: The part of the Toolbox that provides routines for 
creating and manipulating controls (such as buttons, check boxes, and 
scroll bars). 

control definition function: A function called by the Control Manager 
when it needs to perform type-depend~nt operations on a particular 
type of control, such as drawing the control. 

control definition ID: A number passed to control-creation routines to 
indicate the type of control. It consists of the control definition func
tion's resource ID and a variation code. 

control list: A list of all the controls associated with a given window. 
control record: The internal representation of a control, where the 

Control Manager stores all the information it needs for its operations 
on that control. 

control template: A resource that contains information from which the 
Control Manager can create a control. 

coordinate plane: A two-dimensional grid. In QuickDraw, the grid 
coordinates are integers ranging from -32,767 to 32,767, and all grid 
lines are infinitely thin. 

current resource file: The last resource file opened, unless you specify 
otherwise with a Resource Manager routine. 

cursor: A 16-by-16 bit image that appears on the screen and is controlled 
by the mouse; called the "pointer" in Macintosh user manuals. 

cursor level: A value, initialized by InitCursor, that keeps track of the 
number of times the cursor has been hidden. 

data fork: The part of a file that contains data accessed via· the File 
Manager. 

data mark: In a sector, information that primarily contains data from an 
application. 

date/time record: An alternate representation of the date and time 
(which is stored on the clock chip in seconds since midnight, January 
1, 1904). 

default button: In an alert box or modal dialog, the button whose effect 
will occur if the user presses Return or Enter. In an alert box, it's boldly 
outlined; in a modal dialog, it's boldly outlined or the OK button. 

default directory: A directory that will be used in File Manager routines 
whenever no other directory is specified. It may be the root directory, 
in which case the default directory is equivalent to the default volume. 

default volume: A volume that will receive I/O during a File Manager 
routine call, whenever no other volume is specified. 



408 Macintosh Programming Primer 

dereference: To refer to a block by its master pointer instead ofits handle. 
Desk Manager: The part of the Toolbox that supports the use of desk 

accessories from an application. 
desk accessory: A "mini-application," implemented as a device driver, 

that can be run at the same time as a Macintosh application. 
desk scrap: The place where data is stored when it's cut (or copied) and 

pasted among applications and desk accessories. 
desktop: The screen as a surface for doing work on the Macintosh. 
Desktop file: A resource file in which the Finder stores the version data, 

bundle, icons, and file references for each application on the volume. 
device driver event: An event generated by one of the Macintosh's device 

drivers. 
device driver: A program that controls the exchange of information 

between an application and a device. 
dial: A control with a moving indicator that displays a quantitative setting 

or value. Depending on the type of dial, the user may be able to change 
the setting by dragging the indicator with the mouse. 

dialog: Same as dialog box. 
dialog box: A box that a Macintosh application displays to request 

information it needs to complete a command, or to report that it's 
waiting for a process to complete. 

Dialog Manager: The part of the Toolbox that provides routines for 
implementing dialogs and alerts. 

dialog record: The internal representation of a dialog, where the Dialog 
Manager stores all the information it needs for its operations on that 
dialog. 

dialog template: A resource that contains information from which the 
Dialog Manager can create a dialog. 

dialog window: The window in which a dialog box is displayed. 
dimmed: Drawn in gray rather than black. 
directory ID: A unique number assigned to a directory, which the File 

Manager uses to distinguish it from other directories on the volume. 
(It's functionally equivalent to the file number assigned to a file; in fact, 
both directory IDs and file numbers are assigned from the same set of 
numbers.) 

directory: A subdivision of a volume that can contain files as well as other 
directories; equivalent to a folder. 

disabled: A disabled menu item or menu is one that cannot be chosen; the 
menu item or menu title appears dimmed. A disabled item in a dialog 
or alert box has no effect when clicked. 

Disk Initialization Package: A Macintosh package for initializing and 
naming new disks; called by the Standard File Package. 

disk-inserted event: An event generated when the user inserts a disk in 
a disk drive or takes any other action that requires a volume to be 
mounted. 

display rectangle: A rectangle that determines where an item is dis
played within a dialog or alert box. 

document window: The standard Macintosh window for presenting a 
document. 



Appendix A: Glossary 409 

double-click time: The greatest interval between a mouse-up and mouse
down event that would qualify two mouse clicks as a double-click. 

draft printing: Printing a document immediately as it's drawn in the 
printing grafPort. 

drag delay: A length of time that allows a user to drag diagonally across 
a main menu, moving from a submenu title into the submenu itself 
without the submenu disappearing. 

drag region: A region in a window frame. Dragging inside this region 
moves the window to a new location and makes it the active window 
unless the Command key was down. 

drive number: A number used to identify a disk drive. The internal drive 
is number 1, the external drive is number 2, and any additional drives 
will have larger numbers. 

empty handle: A handle that points to a NIL master pointer, signifying 
that the underlying relocatable block has been purged. 

end-of-file: See logical end-of-file or physical end-of-file. 
event: A notification to an application of some occurrence that the appli-

cation may want to respond to. 
event code: An integer representing a particular type of event. 
Event Manager: See Toolbox Event Manager. 
event mask: A parameter passed to an Event Manager routine to specify 

which types of events the routine should apply to. 
event message: A field of an event record containing information specific 

to the particular type of event. 
event queue: The Operating System Event Manager's list of pending 

events. 
event record: The internal representation of an event, through which 

your program learns all pertinent information about that event. 
exception: An error or abnormal condition detected by the processor in the 

course of program execution; includes interrupts and traps. 
external reference: A reference to a routine or variable defined in a 

separate compilation or assembly. 
file: A named, ordered sequence of bytes; a principal means by which data 

is stored and transmitted on the Macintosh. 
file catalog: A hierarchical file directory. 
file control block: A fixed-length data structure, contained in the file

control-block buffer, where information about an access path is stored. 
file directory: The part of a volume that contains descriptions and 

locations of all the files and directories on the volume. There are two 
types of file directories: hierarchical file directories and flat file direc
tories. 

File Manager: The part of the Operating System that supports file 1/0. 
file name: A sequence of up to 255 printing characters, excluding colons(:), 

that identifies a file. 
file number: A unique number assigned to a file, which the File Manager 

uses to distinguish it from other files on the volume. A file number 
specifies the file's entry in a file directory. 

file reference: A resource that provides the Finder with file and icon 
information about an application. 



410 Macintosh Programming Primer 

file type: A four-character sequence, specified when a file is created, that 
identifies the type of file. 

Finder information: Information that the Finder provides to an applica
tion upon starting it up, telling it which documents to open or print. 

font: A complete set of characters of one typeface, which may be restricted 
to a particular size and style, or may comprise multiple sizes, or 
multiple sizes and styles, as in the context of menus. 

Font Manager: The part of the Toolbox that supports the use of various 
character fonts for QuickDraw when it draws text. 

font number: The number by which you identify a font to QuickDraw or 
the Font Manager. 

font size: The size of a font in points; equivalent to the distance between 
the ascent line of one line of text and the ascent line of the next line of 
single-spaced text. 

fork: One of the two parts of a file; see data fork and resource fork. 
free block: A memory block containing space available for allocation. 
full pathname: A pathname beginning from the root directory. 
global coordinate system: The coordinate system based on the top left 

corner of the bit image being at (0,0). 
go-away region: A region in a window frame. Clicking inside this region 

of the active window makes the window close or disappear. 
graf Port: A complete drawing environment, including such elements as 

a bit map, a subset of it in which to draw, a character font, patterns for 
drawing and erasing, and other pen characteristics. 

graphics device: A video card, a printer, a display device, or an offscreen 
pixel map. Any of these device types may be used with Color Quick
Draw. 

Gray Rgn: The global variable that in the multiple screen desktop describes 
and defines the desktop, the area on which windows can be dragged. 

grow image: The image pulled around when the user drags inside the grow 
region; whatever is appropriate to show that the window's size will 
change. 

grow region: A window region, usually within the content region, where 
dragging changes the size of an active window. 

handle: A pointer to a master pointer, which designates a relocatable block 
in the heap by double indirection. 

heap: The area of memory in which space is dynamically allocated and 
released on demand, using the Memory Manager. 

hierarchical menu: A menu that includes, among its various menu 
choices, the ability to display a submenu. In most cases the submenu 
appears to the right of the menu item used to select it, and is marked 
with a filled triangle indicator. 

highlight: To display an object on the screen in a distinctive visual way, 
such as inventing it. 

hotSpot: The point in a cursor that's aligned with the mouse location. 
icon: A 32-by-32 bit image that graphically represents an object, concept, 

or message. 
icon list: A resource consisting of a list of icons. 
icon number: A digit from 1 to 255 to which the Menu Manager adds 256 

to get the resource ID of an icon associated with a menu item. 



Appendix A: Glossary 411 

inactive control: A control that won't respond to the user's actions with 
the mouse. An inactive control is highlighted in some special way, such 
as dimmed. 

inactive window: Any window that isn't the frontmost window on the 
desktop. 

indicator: The moving part of a dial that displays its current setting. 
interface routine: A routine called from Pascal whose purpose is to trap 

to a certain Toolbox or Operating System routine. 
International Utilities Package: A Macintosh package that gives you 

access to country-dependent information such as the formats for 
numbers, currency, dates, and times. 

invert: To highlight by changing white pixels to black and vice versa. 
invisible control: A control that's not drawn in its window. 
invisible window: A window that's not drawn in its plane on the desktop. 
item: In dialog and alert boxes, a control, icon, picture, or piece of text, each 

displayed inside its own display rectangle. See also menu item. 
item list: A list of information about all the items in a dialog or alert box. 
item number: The index, starting from 1, of an item in an item list. 
IWM: "Integrated Woz Machine"; the custom chip that controls the 3 1/2-

inch disk drives. 
job dialog: A dialog that sets information about one printing job; associ

ated with the Print command. 
jump table: A table that contains one entry for every routine in an 

application and is the means by which the loading and unloading of 
segments is implemented. 

key code: An integer representing a key on the keyboard or keypad, 
without reference to the character that the key stands for. 

key-down event: An event generated when the user presses a character 
key on the keyboard or keypad. 

key-up event: An event generated when the user releases a character key 
on the keyboard or keypad. 

keyboard equivalent: The combination of the Command key and another 
key, used to invoke a menu item from the keyboard. 

keyboard event: An event generated when the user presses, releases, or 
holds down a character key on the keyboard or keypad; any key-down, 
key-up, or auto-key event. 

List Manager: The part of the Operating System that provides routines for 
creating, displaying, and manipulating lists. 

local coordinate system: The coordinate system local to a graf Port, 
imposed by the boundary rectangle defined in its bit map. 

local I D: A number that refers to an icon list or file reference in an 
application's resource file and is mapped to an actual resource I 0 by a 
bundle. 

localization: The process of adapting an application to different lan
guages, including converting its user interface to a different script. 

lock: To temporarily prevent a relocatable block from being moved during 
heap operation. 

lock bit: A bit in the master pointer to a relocatable block that indicates 
whether the block is currently locked. 

locked file: A file whose data cannot be changed. 



412 Macintosh Programming Primer 

locked volume: A volume whose data cannot be changed. Volumes can be 
locked by either a software flag or a mechanical setting. 

logical end-of-file: The position of one byte past the last byte in a file; 
equal to the actual number of bytes in the file. 

main event loop: In a standard Macintosh application program, a loop 
that repeatedly calls the Toolbox Event Manager to get events and then 
responds to them as appropriate. 

main screen: On a system with multiple display devices, the screen with 
the menu bar is called the main screen. 

main segment: The segment containing the main program. 
master pointer: A single pointer to a relocatable block, maintained by the 

Memory Manager and updated whenever the block is moved, purged, 
or reallocated. All handles to a relocatable block refer to it by double 
indirection through the master pointer. 

Memory Manager: The part of the Operating System that dynamically 
allocates and releases memory space in the heap. 

menu: A list of menu items that appears when the user points to a menu 
title in the menu bar and presses the mouse button. Dragging through 
the menu and releasing over an enabled menu item chooses that item. 

menu bar: The horizontal strip at the top of the Macintosh screen that 
contains the menu titles of all menus in the menu list. 

menu definition procedure: A procedure called by the Menu Manager 
when it needs to perform type-dependent operations on a particular 
type of menu, such as drawing the menu. 

menu ID: A number in the menu record that identifies the menu. 
menu item: A choice in a menu, usually a command to a current applica

tion. 
menu list: A list containing menu handles for all menus in the menu bar, 

along with information on the position of each menu. 
Menu Manager: The part of the Toolbox that deal with setting up menus 

and letting the user choose from them. 
menu title: A word or phrase in the menu bar that designates one menu. 
modal dialog: A dialog that requires the user to respond before doing any 

other work on the desktop. 
modeless dialog: A dialog that allows the user to work elsewhere on the 

desktop before responding. 
mounted volume: A volume that previously was inserted into a disk drive 

and had descriptive information read from it by the File Manager. 
mouse-down event: An event generated when the user presses the mouse 

button. 
mouse-up event: An event generated when the user releases the mouse 

button. 
network event: An event generated by the AppleTalk Manager. 
null event: An event reported when there are no other events to report. 
offspring: For a given directory, the set of files and directories for which 

it is the parent. 
on-line volume: A mounted volume with its volume buffer and descriptive 

information contained in memory. 
open file: A file with an access path. Open files can be read from and 

written to. 



Appendix A: Glossary 413 

open permission: Information about a file that indicates whether the file 
can be read from, written to, or both. 

Operating System: The lowest-level software in the Macintosh. It does 
basic tasks such as 1/0, memory management, and interrupt handling. 

Operating System Utilities: Operating System routines that perform 
miscellaneous tasks such as getting the date and time, finding out the 
user's preferred speaker volume and other preferences, and doing 
simple string comparison. 

page rectangle: The rectangle marking the boundaries of a printed page 
image. The boundary rectangle, portRect, and clipRgn of the printing 
grafPort are set to this rectangle. 

panel: An area of a window that shows a different interpretation of the 
same part of a document. 

part code: An integer between 1 and 253 that stands for a particular part 
of a control (possibly the entire control). 

partial pathname: A pathname beginning from any directory other than 
the root directory. 

path reference number: A number that uniquely identifies an individual 
access path; assigned when the access path is created. 

pathname: A series of concatenated directory and file names that identi
fies a given file or directory. See also partial pathname and full 
pathname. 

pattern: An 8-by-8 bit image, used to define a repeating design (such as 
stripes) or tone (such as gray). 

physical end-of-file: The position of one byte past the last allocation block 
of a file; equal to 1 more than the maximum number ofbytes the file can 
contain. 

picture: A saved sequence of QuickDraw drawing commands (and, option
ally, picture comments) that you can play back later with a single 
procedure call; also, the image resulting from these commands. 

pixel: A dot on a display screen. Pixel is short for picture element. 
plane: The front-to-back position of a window on the desktop. 
point: The intersection of a horizontal grid line and a vertical grid line on 

the coordinate plane, defined by a horizontal and a vertical coordinate; 
also, a typographical term meaning approximately 1172 inch. 

polygon: A sequence of connected lines, defined by QuickDraw line-
drawing commands. 

pop-up menu: A menu not located in the menu bar, which appears when 
the user presses the mouse button in a particular place. 

port: See grafPort. 
portBits: The bit map of a grafPort. 
portRect: A rectangle, defined as part of a grafPort, that encloses a subset 

of the bit map for use by the grafPort. 
post: To place an event in the event queue for later processing. 
print record: A record containing all the information needed by the 

Printing Manager to perform a particular printing job. 
Printer Driver: The device driver for the currently installed printer. 
printer resource file: A file containing all the resources needed to run the 

Printing Manager with a particular printer. 



414 Macintosh Programming Primer 

Printing Manager: The routines and data types that enable applications 
to communicate with the Printer Driver to print on any variety of 
printer via the same interface. 

printing grafPort: A special grafPort customized for printing instead of 
drawing on the screen. 

purgeable block: A relocatable block that can be purged from the heap. 
queue: A list of identically structured entries linked together by pointers. 
QuickDraw: The part of the Toolbox that performs all graphic operations 

on the Macintosh screen. 
radio button: A standard Macintosh control that displays a setting, either 

on or off, and is part of a group in which only one button can be on at 
a time. 

RAM: The Macintosh's random access memory, which contains exception 
vectors, buffers used by hardware devices, the system and application 
heaps, the stack, and other information used by applications. 

reallocate: To allocate new space in the heap for a purged block, updating 
its master pointer to point to its new location. 

reference number: A number greater than 0, returned by the Resource 
Manager when a resource file is opened, by which you can refer to that 
file. In Resource Manager routines that expect a reference number, 0 
represents the system resource file. 

region: An arbitrary area or set of areas on the QuickDraw coordinate 
plane. The outline of a region should be one or more closed loops. 

release. To free an allocated area of memory, making it available for reuse. 
relocatable block: A block that can be moved within the heap during 

compaction. 
resource: Data or code stored in a resource file and managed by the 

Resource Manager. 
resource attribute: One of several characteristics, specified by bits in a 

resource reference, that determine how the resource should be dealt 
with. 

resource data: In a resource file, the data that comprises a resource. 
resource file: The resource fork of a file. 
resource fork: The part of a file that contains data used by an application 

(such as menus, fonts, and icons). The resource fork of an application 
file also contains the application code itself. 

resource header: At the beginning of a resource file, data that gives the 
offsets to and lengths of the resource data and resource map. 

resource ID: A number that, together with the resource type, identifies a 
resource in a resource file. Every resource has an ID number. 

Resource Manager: The part of the Toolbox that reads and writes 
resources. 

resource name: A string that, together with the resource type, identifies 
a resource in a resource file. A resource may or may not have a name. 

resource specification: A resource type and either a resource ID or a 
resource name. 

resource type: The type of a resource in a resource file, designated by a 
sequence of four characters (such as 'MENU' for a menu). 

result code: An integer indicating whether a routine completed its task 
successfully or was prevented by some error condition (or other special 
condition, such as reaching the end of a file). 



Appendix A: Glossary 415 

resume procedure: A procedure within an application that allows the 
application to recover from system errors. 

ROM: The Macintosh's permanent Read-Only Memory, which contains the 
routines for the Toolbox and Operating System, and the various system 
traps. 

root directory: The directory at the base of a file catalog. 
row width: The number of bytes in each row of a bit image. 
Scrap Manager: The part of the Toolbox that enables cutting and pasting 

between applications, desk accessories, or an application and a desk 
accessory. 

scrap: A place where cut or copied data is stored. 
scrap file: The file containing the desk scrap (usually named "Clipboard 

File"). 
SCSI: See Small Computer Standard Interface. 
SCSI Manager: The part of the Operating System that controls the 

exchange of information between a Macintosh and peripheral devices 
connected through the Small Computer Standard Interface (SCSI). 

segment: One of several parts into which the code of an application may 
be divided. Not all segments need to be in memory at the same time. 

selection range: The series of characters (inversely highlighted), or the 
character position (marked with a blinking caret), at which the next 
editing operation will occur. 

signature: A four-character sequence that uniquely identifies an applica
tion to the Finder. 

Small Computer Standard Interface (SCSI): A specification of me
chanical, electrical, and functional standards for connecting small 
computers with intelligent peripherals such as hard disks, printers, 
and optical disks. 

solid shape: A shape that's filled in with any pattern. 
Sound Driver: The device driver that controls sound generation in an 

application. 
sound procedure: A procedure associated with an alert that will emit one 

of up to four sounds from the Macintosh's speaker. Its integer parame
ter ranges from 0 to 3 and specifies which sound. 

source transfer mode: One of eight transfer modes for drawing text or 
transferring any bit image between two bit maps. 

stack: The area of memory in which space is allocated and released in LIFO 
(last-in-first-out) order. 

Standard File Package: A Macintosh package for presenting the stan
dard user interface when a file is to be saved or opened. 

startup screen: When the system is started up, one of the display devices 
is selected as the startup screen, the screen on which the "happy 
Macintosh" icon appears. 

structure region: An entire window; its complete "structure." 
style: See character style. 
style dialog: A dialog that sets options affecting the page dimensions; 

associated with the Page Setup command. 
subdirectory: Any directory other than the root directory. 
submenu delay: The length of time before a submenu appears as a user 

drags through a hierarchical main menu; it prevents rapid flashing of 
submenus. 



416 Macintosh Programming Primer 

System Error Handler: The part of the Operating System that assumes 
control when a fatal system error occurs. 

system error alert: An alert box displayed by the System Error Handler. 
system error ID: An ID number that appears in a system error alert to 

identify the error. 
system event mask: A global event mask that controls which types of 

events get posted into the event queue. 
system font: The font that the system uses (in menus, for example). Its 

name is Chicago. 
system font size: The size of text drawn by the system in the system font; 

12 points. 
system heap: The portion of the heap reserved for use by the Operating 

System. 
system resource: A resource in the system resource file. 
system resource file: A resource file containing standard resources, 

accessed if a requested resource wasn't found in any of the other 
resource files that were searched. 

system window: A window in which a desk accessory is displayed. 
target device: An SCSI device (typically an intelligent peripheral) that 

receives a request from an initiator device to perform a certain opera
tion. 

thumb: The Control Manager's term for the scroll box (the indicator of a 
scroll bar). 

tick: A sixtieth of a second. 
Toolbox: Same as User Interface Toolbox. 
Toolbox Event Manager: The part of the Toolbox that allows your 

application program to monitor the user's actions with the mouse, 
keyboard, and keypad. 

Toolbox Utilities: The part of the Toolbox that performs generally useful 
operations such as fixed-point arithmetic, string manipulation, and 
logical operations on bits. 

transfer mode: A specification of which Boolean operation QuickDraw 
should perform when drawing or when transferring a bit image from 
one bit map to another. 

trap dispatcher: The part of the Operating System that examines a trap 
word to determine what operation it stands for, looks up the address of 
the corresponding routine in the trap dispatch table, and jumps to the 
routine. 

trap word: An unimplemented instruction representing a call to a Toolbox 
or Operating System routine. 

type coercion: Many compilers feature type coercion (also known as 
typecasting), which allows a data structure of one type to be converted 
to another type. In many cases, this conversion is simply a relaxation 
of type-checking in the compiler, allowing the substitution of a differ
ently typed but equivalent data structure. 

unlock: To allow a relocatable block to be moved during heap compaction. 
unmounted volume: A volume that hasn't been inserted into a disk drive 

and had descriptive information read from it, or a volume that previ
ously was mounted and has since had the memory used by it released. 

unpurgeable block: A relocatable block that can't be purged from the 
heap. 



Appendix A: Glossary 417 

update event: An event generated by the Window Manager when a 
window's contents need to be redrawn. 

update region: A window region consisting of all areas of the content 
region that have to be redrawn. 

User Interface Toolbox: The software in the Macintosh ROM that helps 
you implement the standard Macintosh user interface in your applica
tion. 

version data: In an application's resource file, a resource that has the 
application's signature as its resource type; typically a string that gives 
the name, version number, and date of the application. 

vertical blanking interval: The time between the display of the last pixel 
on the bottom line of the screen and the first one on the top line. 

virtual key codes: The key codes that appear in keyboard events. 
visible control: A control that's drawn in its window (but may be 

completely overlapped by another window or other object on the 
screen). 

visible window: A window that's drawn in its plane on the desktop (but 
may be completely overlapped by another window or object on the 
screen). 

visRgn: The region of the grafPort, manipulated by the Window Manager, 
that's actually visible on the screen. 

volume: A piece of storage medium formatted to contain files; usually a 
disk or part of a disk. A 3.5-inch Macintosh disk is one volume. 

volume attributes: Information contained on volumes and in memory 
indicating whether the volume is locked, whether it's busy (in memory 
only), and whether the volume control block matches the volume 
information (in memory only). 

volume name: A sequence of up to 27 printing characters that identifies 
a volume; followed by a colon (:) in File Manager routine calls, to 
distinguish it from a file name. 

window: An object on the desktop that presents information, such as a 
document or a message. 

window class: In a window record, an indication of whether a window is 
a system window, a dialog or alert window, or a window created directly 
by the application. 

window definition function: A function called by the Window Manager 
when it needs to perform certain type-dependent operations on a 
particular type of window, such as drawing the window frame. 

window definition ID: A number passed to window-creation routines to 
indicate the type of window. It consists of the window definition 
function's resource ID and a variation code. 

window frame: The structure region of a window minus its content region. 
window list: A list of all windows ordered by their front-to-back positions 

on the desktop. 
Window Manager: The part of the Toolbox that provides routines for 

creating and manipulating windows. 
Window Manager port: A grafPort that has the entire screen as its 

portRect and is used by the Window Manager to draw window frames. 



418 Macintosh Programming Primer 

window record: The internal representation of a window, where the 
Window Manager stores all the information it needs for its operations 
on that window. 

window template: A resource from which the Window Manager can 
create a window. 

word wraparound: Keeping words from being split between lines when 
text is drawn. 

working directory: An alternative way ofreferring to a directory. When 
opened as a working directory, a directory is given a working directory 
reference number that's used to refer to it in File Manager calls. 

working directory control block: A data structure that contains the 
directory ID of a working directory, as well as the volume reference 
number of the volume on which the directory is located. 

working directory reference number: A temporary reference number 
used to identify a working directory. It can be used in place of the 
volume reference number in all File Manager calls; the File Manager 
uses it to get the directory ID and volume reference number from the 
working directory control block. 



AppendixB 

Code Listings 
The following pages contain complete 

listings of all the source code presented 
in Chapters 1-9. The listings are pre

sented in order by Chapter. Each listing 
contains comments detailing the new 

features found in that program. Remem
ber, you can send in the coupon in the 
back of the book for a disk containing 

the complete set of Macintosh 
Primer applications. 



Chapter 2, Hello.c 

#include <stdio.h> 

main ( ) 
I 

printf ("Hello, World"); /* The Unix way ... */ 

Chapter 3, Hello2.c 

#define BASE_RES_IO 400 
#define NIL_POINTER OL 
#define MOVE_TO_FRONT -lL 
#define REMOVE_ALL_EVENTS 0 

#define HORIZONTAL_PIXEL 30 
#define VERTICAL_PIXEL 50 

WindowPtr gPictureWindow: /* We'll draw in this window */ 

/*********************** Main *************/ 

main ( ) 
I 

ToolBoxlnit(): /* Standard Toolbox initialization */ 
Windowlnit(); /* Setup the window */ 

while ( !Button() ) : /* ~Jait for a press of the mouse */ 
I* button ... 

/*********************************** ToolBoxlnit */ 

Tool Box I nit() 
I 

InitGraf( &thePort ): 
I nit Fonts(): 
FlushEvents( everyEvent. REMOVE_ALL_EVENTS ): 
InitWindows(): 
InitMenus(): 
TEinit(): 
InitDialogs( NIL_POINTER ); 
InitCursor(): 

/*********************Windowlnit**************/ 

Windowlnit() 
I 

gPictureWindow = GetNewWindow( BASE_RES_ID , NIL_POINTER. 
MOVE_TO_FRONT ); /* Load the WIND resource */ 

420 

*I 



Appendix B: Code Listings 421 

ShowWindow( gPictureWindow ); /* Make the WIND 
visible */ 

SetPort( gPictureWindow ); /* We'll start drawing in 

MoveTo( HORIZONTAL_PIXEL, VERTICAL_PIXEL ); 
DrawString{"\pHello, World"); 

Chapter 3, Mondrian.c 

#define BASE_RES_ID 400 
#define NIL_POINTER OL 
#define MOVE_TO_FRONT -lL 
#define REMOVE_ALL_EVENTS 0 

~Ji ndowPtr 
long 

gDrawWindow; 
gFillColor = blackColor: 

/******************************** main *********/ 

main ( ) 
I 

ToolBoxinit(); 
Windowlnit(): 
Mainloop(); 

/*********************************** ToolBoxlnit */ 

ToolBoxinit() 
I 

InitGraf{ &thePort ) ; 
InitFonts(); 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ); 
InitWindows(): 
InitMenusC): 
TEI nit(); 
InitDialogs( NIL_POINTER ); 
InitCursor(): 

/******************************** Windowlnit *********/ 

Windowlnit() 
I 

gPictureWindow */ 

gDrawWindow = GetNewWindow( BASE_RES_ID, NIL_POINTER, 
MOVE_TO_FRONT ) ; 

ShowWindow( gDrawWindow ): 
SetPort( gDrawWindow ); 



422 Macintosh Programming Primer 

/******************************** Mainloop *********/ 

Mainloop() 
I 

GetDateTime( &randSeed ); /*Use the current time as a 
seed for the random number generator */ 

while ( ! Button() ) 
I 

DrawRandomRect(): /* 
if ( gFillColor == blackColor ) 

gFillColor whiteColor: 
else 

gFillColor = blackColor; 

Draw a random shape */ 
/* Alternate drawing */ 
/* between black and */ 

/*white ... 

/******************************** DrawRandomRect *********/ 

DrawRandomRect() 
( 

Rect myRect: 

RandomRect( &myRect, gDrawWindow ); /*Generate a random rectangle 
that fits within the bounds of gDrawWindow 

ForeColor( gFillColor ); 
Pai ntOva 1 ( &my Re ct ) : /* Paint an oval filled with gFillColor, 

*I 

*I 

the size of myRect. We could call 
other shape drawing routines (like 
PainRect()) instead of PaintOvalC) ... 

*I 

/******************************** RandomRect *********/ 

RandomRect( 
Rect 

myRectPtr, boundingWindow 
*myRectPtr: 
boundingWindow: l~i ndowPt r 

I 
I* 
* 
*I 

A window's portRect is a Rect the size of the window ... 

myRectPtr->left = Randomize( boundingWindow->portRect.right 
- bound i ngWi ndow- >po rt Rect. 1 eft ) : 

myRectPtr->right = Randomize( boundingWindow->portRect.right 
- boundi ngWi ndow- >portRect. left ) : 

myRectPtr->top = Randomize( boundingWindow->portRect.bottom 
- boundingWindow->portRect.top ); 

myRectPtr->bottom = Randomize( boundingWindow->portRect.bottom 
- boundingWindow->portRect.top ); 

/******************************** Randomize *********/ 

Randomize ( range ) 
int range: 
I 

long rawResult: 
rawResul t = Random(); /* Random() returns a random number 

between -32767 and 32767 */ 



Appendix B: Code Listings 

if < rawResult < 0 ) rawResult *= -1: /* We could call abs(), 
but abs() is not part of the Toolbox. If 
you need it, make sure to add the math 
1 i bra ry to your project. Otherwise. your 
project won't link ... */ 

return( CrawResult * range) I 32768 ); /* We'll return a number 
between 0 and range-1 */ 

Chapter 3, ShowPict.c 

#define BASE_RES_ID 400 
#define NIL_POINTER OL 
#define MOVE_TO_FRONT -ll 
#define REMOVE_ALL_EVENTS 0 

PicHandle 
WindowPtr 

gThePicture; 
gPictureWindow: 

/******************************** main *********/ 

main ( ) 
I 

ToolBoxlnit(); 
Windowlnit(); 
LoadPi cture(); 
DrawMyPicture( gThePicture, gPictureWindow ); 

while ( !Button() ) ; 

/*********************************** ToolBoxlnit */ 

ToolBoxlnit() 
I 

InitGraf ( &the Port ) : 
InitFonts(); 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ); 
InitWindows(); 
InitMenus(); 
TEinit(); 
InitDialogs( NIL_POINTER ); 
InitCursor(); 

/******************************** Windowlnit *********/ 

Windowinit() 
I 

gPictureWindow = GetNewWindow( BASE_RES_IO, NIL_POINTER, 
MOVE_ TO_FRONT ) : 

ShowWindow( gPictureWindow >: 
SetPort( gPictureWindow ); 

423 



424 Macintosh Programming Primer 

!******************************** LoadPicture *********/ 

LoadPicture() 
I 

gThePicture = GetPicture( BASE_RES_ID ): 

/******************************** DrawMyPicture *********/ 

DrawMyPicture( thePicture, pictureWindow 
PicHandle thePicture: 
WindowPtr pictureWindow; 
I 

Rect myRect: 

myRect = pictureWindow->portRect: 
CenterPict< thePicture. &myRect >: /* Pass the window's portRect 

to CenterPict() via myRect, as well as a handle 
to the picture to be centered. CenterPict() 
will modify myRect to be a Rect the size of the 
Picture, centered in the window. */ 

DrawPicture( thePicture, &myRect >: 

/******************************** CenterPict *********/ 

CenterPict( thePicture, myRectPtr 
PicHandle thePicture: 
Rect *myRectPtr: 
I 

Rect wi ndRect. pi ctureRect: 

windRect = *myRectPtr: 
pictureRect = (**( thePicture )).picFrame: /* Two interesting 

facts: 
1) picFrame is a field in the picture 

data structure. It is a Rect, the 
size of the picture, with the same 
coordinates as the picture had when 
it was created. 

2) ANSI C allows the direct assignment of 
one data structure to another of the 
same type. This allows us to copy 
one Rect to another with one 
statement. Some compi 1 ers may not 
support this feature. It sure makes 
life easier! */ 

myRectPtr->top = (windRect.bottom - windRect.top -
CpictureRect.bottom - pictureRect.top))/ 2 + 
windRect.top; 

myRectPtr->bottom = myRectPtr->top + 
CpictureRect.bottom - pictureRect.top): 

myRectPtr->left = (windRect.right - windRect.left -
(pictureRect.right - pictureRect.left))/ 2 + 

windRect.left: 
myRectPtr->right = myRectPtr->left + CpictureRect.right -

pictureRect.left); 



Appendi.x B: Code Listings 

Chapter 3, Flying Line.c 

I* 
* 
* 
* 

Try using different values for NUM_LINES. gDeltaTop, gDeltaBottom. 
gDeltaLeft, and gDeltaRight. This will alter the shape and 
behavior of the Flying Line. 

*/ 

#define NUM_LINES 
#define NIL_POINTER 
#define MOVE_TO_FRONT 
#define REMOVE_ALL_EVENTS 
#define NIL_STRING 
#define NIL_TITLE 
//define VI SIBLE 
#define NO_GO_AWAY 
#define NIL_REF_CON 

WindowPtr 
Re ct 

gLineWindow; 
glines[ NUM_LINES ]: 

50 /* Try 100 or 150 */ 
OL 
-ll 
0 
"\p" 
NIL_STRING 
TRUE 
FALSE 
NIL_POINTER 

int 
int 
int 

gDeltaTop=3. gDeltaBottom=3: /* These four are the */ 
gDeltaleft=2. gDeltaRight=6: /* key to flying line! */ 
gOldMBarHeight; 

/******************************** main *********/ 

main ( ) 
I 

ToolBoxlnit(); 
Wi ndowlnit(): 
Lineslnit(); 
MainLoop(); 

/*********************************** ToolBoxlnit */ 

Tool Boxlnit() 
I 

InitGraf( &thePort ); 
I nit Fonts(): 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ); 
InitWindowsC>: 
InitMenus<>: 
TEinit(); 
InitDialogs( NIL_POINTER ); 
InitCursor(): 

/******************************** Windowlnit *********/ 

Wi ndowlnit() 
I 

Re ct 
RgnHandle 

totalRect, mBarRect: 
mBarRgn: 

425 



426 Macintosh Programming Primer 

I* 
* 
* 
* 
* 
*I 

I* 
* 
* 
* 
*I 

gOldMBarHeight = MBarHeight: 
MBarHeight = O; 
glineWindow = NewWindow< NIL_POINTER. &CscreenBits.bounds), 

NIL_TITLE, VISIBLE, plainDBox. MOVE_TO_FRONT, NO_GO_AWAY, 
NI L_REF _CON ) : 

We use NewWindowC) instead of GetNewWindow() because we want a 
window the size of the screen. NewWindow() allows you to specify 
the size of your window. With GetNewWindow(), the window size is 
pulled from the WIND resource. 

SetRect( &mBa rRect. screenBi ts. bounds.left. screenBi ts. bounds. top, 
screenBits.bounds.right, screenBits.bounds.top+gOldMBarHeight ): 

The following 4 lines of code are for demonstration purposes only. 
The thought police have prohibited the modification of a window's 
visRgn under MultiFinder. Reuse this code at your own risk!!! 

mBarRgn = NewRgn(): 
RectRgn( mBarRgn, &mBarRect ); 
UnionRgn( gLineWindow->visRgn, mBarRgn, gLineWindow->visRgn >: 
DisposeRgn( mBarRgn ); 

SetPort( gLineWindow >: 
FillRect< &CgLineWindow->portRect), black >: /* Change black to 

ltGray. *I 
PenMode( patXor ): /* <-and comment out this line */ 

/******************************** Lineslnit *********/ 

Lineslnit() 
I 

int i: 

HideCursor(): 
GetDateTimeC &randSeed ); /*Reseed the random number generator*/ 
RandomRect( &Cglines[ 0 ]), gLineWindow >: 
Drawline( 0 ): /*Generate and draw the first line*/ 
for ( i=l; i<NUM_LINES: i++ ) 
I 

glines[ i J = glines[ i-1 ]; /* Copy the previous line, */ 
Recalcline( i >: /* modify it, */ 
Drawl i ne( i ) : I* and draw the new line *I 

/******************************** Mainloop *********/ 

Mainloop() 
I 

int i: 

while 
I 

! Button () ) 

Drawline( NUM_LINES - 1 ); /* Erase the last line (because 
we used patXor mode) */ 



Appendix B: Code Listings 

for ( i=NUM_LINES-1; i>O; i-) 
glines[ i J = glines[ i-1 J: /*Bump each line one*/ 

Recalcline( 0 ); /* Modify the first line and */ 
Drawline( 0 ); /* redraw it */ 

I 
MBarHeight = gOldMBarHeight; I* Once the button is clicked, 

we better reset the menubar 
height, else we won't be able 
to click in it */ 

/******************************** RandomRect *********/ 

RandomRect( myRectPtr, boundingWindow 
Re ct *myRectPt r: 
WindowPtr boundingWindow: 
{ 

myRectPtr->left = Randomize( boundingWindow->portRect.right 
- bound i ngWi ndow- >po rt Re ct.left ) : 

myRectPtr->right = Randomize( boundingWindow->portRect.right 
- boundingWindow->portRect.left ); 

myRectPtr->top = Randomize( boundingWindow->portRect.bottom 
- boundingWindow->portRect.top ); 

myRectPtr->bottom = Randomize( bound i ngWi ndow- >portRect. bottom 
- boundingWindow->portRect.top ); 

/******************************** Randomize *********/ 

Randomize( range ) 
int range: 
{ 

1 ong rawResul t; 

rawResult =Random(); 
if ( rawResult < 0 ) rawResult *= -1: 
return( (rawResult * range) I 32768 ): 

/******************************** Recalcline *********/ 

Recalcline( i ) 
int i: 
{ 

g Li n es [ i ] . top += g Delta Top ; 
if ( ( glines[ i ].top< gLineWindow->portRect.top) II 

( glines[ i ].top > gLineWindow->portRect.bottom ) ) 

gDe ltaTop *= -1; 
g Li n es [ i ] . top += 2 * g Del ta Top : 

gLines[ i ].bottom += gDeltaBottom: 
if ( ( glines[ i ].bottom < gLineWindow->portRect.top ) I I 

( glines[ i ].bottom > glineWindow->portRect.bottom ) ) 

gOeltaBottom *= -1: 
glines[ i ].bottom+= 2*gDeltaBottom: 

427 



428 Macintosh Programming Primer 

g Lines [ i ] . 1 eft += gDe 1 ta Left; 
if<< gLines[ i ].left< gLineWindow->portRect.left) II 

( glines[ i ].left> gLineWindow->portRect.right 

gDeltaleft *= -1: 
glines[ i ].left+= 2*gDeltaLeft: 

gLines[ i ].right += gDeltaRight: 
if ( < glines[ i ].right< gLineWindow->portRect.left ) I I 

C gLines[ i ].right > gLineWindow->portRect.right 

gDeltaRight *= -1: 
gLines[ i ].right += 2*gDeltaRight: 

!******************************** DrawLine *********/ 

DrawLineC i ) 
int i : 
I 

MoveToC gLines[ ].left. glines[ i ].top >:/*Move to first 

LineToC gLines[ ].right, gLines[ i ].bottom ): /* Draw line to 
point */ 

second point */ 

Chapter 4, EventTutor.c 

/idefi ne BASE_RES_ID 400 
/idef i ne NI L_PO INTER OL 
#define MOVE_TO_FRONT -ll 
/idef i ne REMOVE_ALL_EVENTS 0 

/fdef i ne LEAVE_WHERE_IT_IS FALSE 
#define NORMAL_UPDATES TRUE 

/idef i ne SLEEP OL 
#define NIL_MOUSE_REGION OL 
lfdef i ne WNE_TRAP_NUM Ox60 
#define UNIMPL_TRAP_NUM Ox9F 
/!define SUSPEND_RESUME_BIT OxOOOl 
/fdefi ne ACTIVATING 1 
/fdefi ne RESUMING 1 

/idefi ne TEXT_FONT_SIZE 12 

#define DRAG_ THRESHOLD 30 
/fdef i ne MIN_WINDOW_HEIGHT 50 
#define MIN_WINDOW_WIDTH 50 
/fdefi ne SCROLL_BAR_PIXELS 16 

/idefi ne ROWHEIGHT 15 
#define LEFTMARGIN 10 
lfdef i ne STARTROW 0 
/idefi ne HORIZONTAL_OFFSET 0 



Appendix B: Code Listings 

PicHandle 
WindowPtr 
Boolean 
EventRecord 
int 

gPictureHandle: 
gPi ctWi ndow. gEventWi ndow: 
gDone, gWNEimplemented; 
gTheEvent: 
gCurRow. gMaxRow: 
gDragRect. gSizeRect: Re ct 

/******************************** main *********/ 

main ( ) 
I 

ToolBoxlnit(); 
WindowlnitC>: 
LoadPictureC>: 
SetUpDragRect(): 
SetUpSizeRect(): 

Mainloop(): 

/*********************************** ToolBoxlnit */ 

Tool Box I nit(> 
{ 

InitGraf ( &the Port ) : 
InitFonts<>: 
FlushEvents( everyEvent. REMOVE_ALL_EVENTS >: 
InitWindows(); 
I nitMenus (): 
TElnit(): 
lnitDialogs( NIL_POINTER ): 
InitCursor(): 

/******************************** Windowlnit *********/ 

Wi ndowlnit() 
( 

I* 
*Start by loading the two windows from the resource file ... 
*/ 

/* 

gPictWindow = GetNewWindow( BASE_RES_ID. NIL_POINTER, 
MOVE_ TO_FRONT ) : 

gEventWindow = GetNewWindow( BASE_RES_ID+l, NIL_POINTER, 
MOVE_ TO_FRONT ) : 

SetPort( gEventWindow ): 
SetupEventWindow(): 

* Make both windows visible ... 
*/ 

/* 
* 
*/ 

ShowWindow( gEventWindow ): 
ShowWindow( gPictWindow ): 

Finally, make gEventWindow the active window ... 

SelectWindow< gEventWindow ): 

429 



430 Macintosh Programming Primer 

/******************************** SetupEventWindow *********/ 

SetupEventWindow() 
{ 

Rect eventRect: 

/* 
* Set up gMaxRow: it determines when gEventWindow is scrolled. 
* Set up gCurRow: it holds the current vertical pixel value. 
*I 

I* 
* 
* 
*/ 

eventRect = gEventWindow->portRect; 
gMaxRow eventRect.bottom - eventRect.top - ROWHEIGHT: 
gCurRow STARTROW: 

Set the gEventWindow font to monaco, and the gEventWindow 
text size to TEXT_FONT_SIZE ... 

TextFontC monaco ); 
TextSize( TEXT_FONT_SIZE ); 

/******************************** LoadPicture *********/ 

LoadPicture() 
{ 

I* Load the picture <to center in gPictWindow) */ 
gPictureHandle = GetPictureC BASE_RES_ID ); 

/******************************** SetUpDragRect *********/ 

SetUpDragRect() 
{ 

I* 
* 
* 
* 
* 
* 
* 
*I 

We'll use gDragRect to limit the dragging area of a window. This 
means that when a user clicks on the title bar of a window and 
drags it around the screen, they will be forced to leave 
DRAG_THRESHOLD pixels of the window on the screen. This prevents 
the user from dragging all but a few pixels of a window off the 
screen (which makes that window mighty tough to find later on). 

gDragRect = screenBits.bounds: 
gDragRect.left += DRAG_THRESHOLD; 
gDragRect.right -= DRAG_THRESHOLD: 
gDragRect.bottom -= DRAG_THRESHOLD: 

/******************************** SetUpSizeRect *********/ 

SetUpSizeRect() 
( 
/* 
* 
* 
* 
* 
* 
*I 

We'll use gSizeRect to control the size of a window. This 
means that when a user tries to resize a window with a grow box 
(like gPictWindow) gSizeRect will determine the minimum height 
and width of the window, and the maximum height and width of the 
window. 



Appendix B: Code Listings 

gSizeRect.top = MIN_WINDOW_HEIGHT; 
gSizeRect.left = MIN_WINDOW_WIDTH; 

gSizeRect.bottom = screenBits.bounds.bottom -
screenBits.bounds.top; 

gSizeRect.right = screenBits.bounds.right -
screenBits.bounds.left; 

/******************************** MainLoop *********/ 

MainLoop() 
{ 

I* 
* 
* 
* 
*I 

I* 

gDone = FALSE; 

Is WaitNextEvent() implemented? If it is, the address of the 
WaitNextEvent() trap will be different than the standard, 
"unimplemented" trap ... 

gWNEimplemented = ( NGetTrapAddress( WNE_TRAP_NUM, ToolTrap ) != 
NGetTrapAddress( UNIMPL_TRAP_NUM, ToolTrap ) ); 

* Don't wait for a mouse click. Retrieve and process events 
* instead! 
*I 

while ( gDone == FALSE 
{ 

HandleEvent(); 

/************************************* HandleEvent */ 

HandleEvent() 
{ 
I* 
* We'll see this routine in all "proper" Macintosh applications. 
* First. we' 11 retrieve an event ... 
*I 

I* 
* 
*I 

if ( gWNEimplemented ) 

else 
{ 

WaitNextEvent( everyEvent, &gTheEvent, SLEEP. 
NIL_MOUSE_REGION ); 

SystemTask(); 
GetNextEvent( everyEvent, &gTheEvent ); 

... then. we' 11 process the event. 

switch 
{ 

gTheEvent.what ) 

case nullEvent: 
/*DrawEventSt ring ( "\pnul l Event" ) ; *I 
/* Uncomment the previous line for a burst of 

flavor! */ 
break; 

431 



432 

I* 
* 
* 
* 
*I 

Macintosh Programming Primer 

case mouseDown: 
DrawEventString( "\pmouseDown" ); 
HandleMouseDown(): 
break; 

case mouseUp: 
DrawEventString( "\pmouseUp" ): 
break: 

case keyDown: 
DrawEventString( "\pkeyDown" ): 
break: 

case keyUp: 
DrawEventStri ng( "\pkeyUp" ) : 
break: 

case autoKey: 
DrawEventStringC "\pautoKey" ); 
break: 

case updateEvt: 
if ( (WindowPtr)gTheEvent.message == gPictWindow ) 
{ 

else 

I 
break: 

case diskEvt: 

DrawEventString( "\pupdateEvt: gPictWindow" ): 
BeginUpdate( gTheEvent.message ); 
DrawMyPicture(gTheEvent.message,gPictureHandle): 
EndUpdateC gTheEvent.message ); 

DrawEventString( "\pupdateEvt: gEventWindow" ): 
BeginUpdateC gTheEvent.message ); 
I* 
* We won't handle updates to gEventWindow, 
* but we still need to empty the gEventWindow 
* Update Region so the Window Manager will stop 
* queueing UpdateEvts. 
* We do this with calls to BeginUpdate() 
*and EndUpdate(). 
*I 

EndUpdate( gTheEvent.message ); 

DrawEventString( "\pdi skEvt" ) : 
break: 

case activateEvt: 
if ( (WindowPtr)gTheEvent.message == gPictWindow ) 
l 

If gPictWindow was activated or deactivated, we better redraw the 
grow box (as well as the scroll bar outlines. We do this because 
active and inactive windows have different looking grow boxes. 

DrawGrowlconC gTheEvent.message ); 
if ( C gTheEvent.modifiers & activeFlag ) 

ACTIVATING ) 

I 
else 

DrawEventString( 
"\pactivateEvt: activating gPictWindow"): 

DrawEventString( 
"\pactivateEvt: deactivating gPictWindow" 
) : 



Appendix B: Code Listings 

I* 
* 
* 
* 
* 
* 
*I 

else 

l 

if ( ( gTheEvent.modifiers & activeFlag ) == 

else 

ACTIVATING ) 
DrawEventString( 
"\pactivateEvt: activating gEventWindow" 
) : 

DrawEventString( 
ff\pactivateEvt: deactivating gEventWindow" 

) ; 

break: 
case networkEvt: 

DrawEventString( ff\pnetworkEvt" ); 
break; 

case driverEvt: 
DrawEventStri ng ( "\pdri verEvt" ) : 
break: 

case applEvt: 
DrawEventString( "\papplEvt" ) : 
break: 

case app2Evt: 
DrawEventString( "\papp2Evt" ); 
break: 

case app3Evt: 
DrawEventStri ng ( "\papp3Evt" ) : 
break: 

case app4Evt: 

app4Evts are like Trojan horses for suspend, resume, and mouse 
moved events. The actual event type is specified by the 
appropriate bit in the event's message field. For more info 
on these events (especially on mouse moved events) read Apple's 
"Programmer's Guide to MultiFinder". 

if ( gTheEvent.message & SUSPEND_RESUME_BIT ) == 
RESUMING ) 

DrawEventString( "\pResume event" ); 
else 

OrawEventString( "\pSuspend event" ); 
break: 

/********************************** DrawEventString *******/ 

DrawEventString( s ) 
Str255 s: 
I 
/* if we're at the bottom of gEventWindow, scroll the window. */ 

if gCurRow > gMaxRow ) 
I 

I 
else 
I 

I 

ScrollWindow(); 

gCurRow += ROWHEIGHT: 

MoveTo( LEFTMARGIN, gCurRow ); 
DrawStri ng( s ) : 

433 



434 Macintosh Programming Primer 

/********************************** ScrollWindow *******/ 

Scrol lWindow() 
I 

/* 
* 
* 
* 
* 
* 
*I 

RgnHandle tempRgn; 

tempRgn = NewRgn(); 

We use ScrollRect() to scroll all the pixels in gEventWindow 
up one row. The newly created rectangular region at the bottom of 
the window will be stored in tempRgn. We could use tempRgn to 
do some smart updating of our window. only refreshing the area 
of the window specified by tempRgn. 

ScrollRect( &gEventWindow->portRect. HORIZONTAL_OFFSET, -
ROWHEIGHT, tempRgn ); 

DisposeRgn( tempRgn ); /* Free up the memory used by tempRgn */ 

!************************************* HandleMouseDown */ 

HandleMouseDown() 
I 

/* 

WindowPtr 
short int 
long 
Graf Ptr 

whichWindow; 
thePart; 
windSize: 
oldPort: 

* First. find out which window the mouse click occurred in. 
*Then, find out what part of the window the mouse click 
* occurred in. 
*I 

/* 
* 
*I 

thePart = FindWindow( gTheEvent.where, &whichWindow ): 
switch ( thePart ) 
I 

case inSysWindow : 

Probably a desk accessory window ... 

SystemClick( &gTheEvent, whichWindow ): 
break: 

case i nDrag : 
I* Drag the window around the screen, limited by gDragRect */ 

DragWindow( whichWindow, gTheEvent.where. &gDragRect); 
break; 

case inContent: 
I* Bring the clicked on window to the front */ 

SelectWindow( whichWindow ); 
break: 

case inGrow: 
I* First. let the user specify the new size of the window ... */ 

I* 

windSize = GrowWindow( whichWindow, gTheEvent.where. 
&gSizeRect ); 

if ( windSize != 0 ) 
I 

* ... If they resize the window. temporarily make the window the 
* window the current port, erase the window, and use InvalRect() 
* to make sure an update event is generated for the window. 
*/ 



Appendix B: Code Listings 

I* 
* 
* 
* 
* 
*I 

/* 
* 
* 
*I 

I 
break: 

case inGoAway 

GetPort( &oldPort ); 
SetPort( whichWindow ): 
EraseRect( &whichWindow->portRect ); 
SizeWindow( whichWindow, LoWord( windSize ), 

HiWord( windSize ), NORMAL_UPDATES ); 
I nva l Rect < &whi chWi ndow->portRect ) ; 
SetPort( oldPort ); 

Important!!! Normally, we'll. only set gDone to TRUE when Quit is 
selected from the File menu. For the currect handling of 
the inGoAway case. refer to the WindowMaker application in 
Chapter 7. 

gDone = TRUE; 
break: 

case inZoomln: 
case inZoomOut: 

Handling a click in the zoom box is similar to handling the 
resizing of a window. 

if TrackBox(whichWindow, gTheEvent.where, thePart) ) 
I 

I 
break: 

GetPort( &oldPort ); 
SetPortC whichWindow ); 
EraseRect( &whichWindow->portRect ): 
ZoomWindow( whichWindow, thePart, 

LEAVE_WHERE_IT_IS ); 
InvalRect< &whichWindow->portRect ); 
SetPort( oldPort ); 

/******************************** DrawMyPicture *********/ 

OrawMyPicture( drawingWindow, thePicture ) 
WindowPtr drawingWindow; 
PicHandle thePicture; 
{ 

I* 
* 
* 
* 
* 
*I 

Rect drawi ngCl i pRect. myRect: 
Graf Ptr ol dPort; 
RgnHandle tempRgn: 

We start by temporarily making the window specified in the 
drawingWindow parameter the current port. We also store the 
window's clipping region in tempRgn. Next, we erase the window 
and redraw the Growlcon. 

GetPort( &oldPort ); 
SetPort( drawingWindow ): 
tempRgn = NewRgnC>: 
GetClip( tempRgn ): 
EraseRect( &drawingWindow->portRect ) ; 
DrawGrowlcon( drawingWindow ): 

435 



436 Macintosh Programming Primer 

I* 
* 
* 
* 
*I 

Next. we create a clip rectangle that doesn't cover the scroll 
bar areas (or the size box either). We use this rectangle as 
our clipping region and center and draw the picture. 

/* 
* 
* 
*I 

drawingClipRect = drawingWindow->portRect; 
drawingClipRect.right ·= SCROLL_BAR_PIXELS; 
drawingClipRect.bottom ·= SCROLL_BAR_PIXELS; 

myRect = drawingWindow·>portRect; 
Center Pi ct( thePi cture, &myRect ) : 
ClipRect( &drawingClipRect ); 
DrawPictureC thePicture, &myRect >: 

Finally, we restore the original clip region, free up the memory 
used by tempRgn, and reset the original port. 

SetClip( tempRgn ); 
DisposeRgn( tempRgn ); 
SetPort( oldPort ); 

!**~***************************** CenterPict *********/ 

CenterPict( thePicture, myRectPtr 
PicHandle thePicture; 
Rect *myRectPtr: 
I 

Rect wi ndRect, pi ctureRect; 

windRect = *myRectPtr; 
pictureRect = (**( thePicture )).picFrame; 
myRectPtr->top = CwindRect.bottom - windRect.top · 

CpictureRect.bottom - pictureRect.top))/ 2 + 
windRect.top; 

myRectPtr->bottom = myRectPtr->top + 
(pictureRect.bottom - pictureRect.top): 

myRectPtr->left = (windRect.right - windRect.left · 
CpictureRect.right - pictureRect.left))/ 2 + 

windRect.left: 
myRectPtr->right = myRectPtr->left + CpictureRect.right -

pictureRect.left): 

Chapter 5, Timer.c 

#define BASE_RES_ID 
#define NIL_POINTER 
#define MOVE_TO_FRONT 
#define REMOVE_ALL_EVENTS 

#define PLAIN 
#define PLAIN_ITEM 
#define BOLD_ITEM 
#define ITALIC_ITEM 
#define UNDERLINE_ITEM 
#define OUTLINE_ITEM 
#define SHADOW_ITEM 

400 
OL 
-ll 
0 

0 
I 
2 
3 
4 
5 
6 



Appendix B: Code Listings 

//define INCLUDE_SECONDS TRUE 

//define ADO_CHECK_MARK TRUE 
//define REMOVE_CHECK_MARK FALSE 

1/defi ne DRAG_ THRESHOLD 30 

1/define MIN_SLEEP OL 
/ldefi ne NIL_MOUSE_REGION OL 

#define WNE_TRAP_NUM Ox60 
#define UNIMPL_TRAP_NUM Ox9F 

//define OUIT_ITEM 1 
/ldefi ne ABOUT_ITEM 1 
/ldefi ne NOT_A_NORMAL_MENU -1 
#define APPLE_MENU_ID BASE_RES_ID 
#define FI LE_MENU_ID BASE_RES_ID+l 
//define FONT_MENU_ID 100 
1/define STY LE_MENU_I D 101 

/ldefi ne CLOCK_LEFT 12 
#define CLOCK_ TOP 25 
I/define CLOCK_SIZE 24 

#define ABOUT_ALERT 400 

gClockWindow: WindowPtr 
Boolean 
1 ong 
Event Record 
MenuHandle 
int 

gDone. gWNEimplemented: 
gCurrentTime. gOldTime: 
gTheEvent: 

Rect 
Style 

gAppleMenu. gFontMenu, gStyleMenu: 
glastFont: 
gDragRect: 
gCurrentStyle = PLAIN: 

!******************************** main *********/ 

main ( ) 
{ 

ToolBoxinit(): 
Windowinit(): 
SetUpDragRect(); 
MenuBarinit(): 
Mainloop(): 

!*********************************** ToolBoxinit */ 

Tool Box I nit() 
{ 

InitGraf( &thePort ) : 
InitFonts(); 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ); 

437 



438 

InitWindows(); 
InitMenus(); 
TEini t(); 
InitDialogs( NIL_POINTER ); 
Ini tCursor(): 

Macintosh Programming Primer 

/************************************ Windowlnit */ 

Windowlnit() 
I 

gClockWindow = GetNewWindow( BASE_RES_IO, NIL_POINTER, 

SetPort( gClockWindow ); 
ShowWindow( gClockWindow ); 

TextSize( CLOCK_SIZE ); 

MOVE_ TO_FRONT ) ; 

!******************************** SetUpDragRect *********/ 

SetUpDragRect() 
I 

gDragRect = screenBits.bounds; 
gDragRect.left += DRAG_THRESHOLD; 
gOragRect.right -= DRAG_THRESHOLD; 
gOragRect.bottom -= DRAG_THRESHOLD: 

/*********************************** MenuBarlnit */ 

MenuBarlnit() 
I 

I* 
* 
* 
* 
* 
*I 

I* 
* 
* 
* 
* 
*I 

I* 

Handle myMenuBar; 

First. we'll load the MBAR resource, which specifies the MENUs 
to use in myMenuBar. Next. make myMenuBar the current menu bar. 
Put handles to their respective menus in the globals gAppleMenu. 
gFontMenu, and gStyleMenu for later use. 

myMenuBar = GetNewMBar( BASE_RES_IO ): 
SetMenuBar( myMenuBar ): 
gAppleMenu = GetMHandle( APPLE_MENU_ID ); 
gFontMenu = GetMenu( FONT_MENU_ID ): 
gStyleMenu = GetMenu( STYLE_MENU_ID ); 

Add the heirarchical menu, gFontMenu, to the menu list. 
We set up the Special MENU resource so that the Font and 
Style menus would automatically be added as hierarchical 
submenus to the Special menu. 

InsertMenu( gFontMenu, NOT_A_NORMAL_MENU ); 

* We also add all the FONTs to the font menu. 
*I 

AddResMenu( gFontMenu. 'FONT' >: 
InsertMenu( gStyleMenu, NOT_A_NORMAL_MENU ): 



Appendix B: Code Listings 

I* 
* Put a check mark next to Plain on the Style submenu and 
* Add all the desk accessory names to the apple menu. 
*I 

I* 

Checkltem( gStyleMenu, PLAIN_ITEM. TRUE ); 
AddResMenu( gAppleMenu, 'DRVR' ); 
DrawMenuBar(); 

* We' 11 start off using the first font on the menu. By 
* calling HandleFontChoice(), we simulate the user selecting 
* the first font from the font menu ... 
*I 

gLastFont = 1: 
Handl eFontChoi ce( gLastFont ) : 

/******************************** MainLoop *********/ 

Main Loop () 
I 

gDone = FALSE: 
gWNEimplemented = ( NGetTrapAddress( WNE_TRAP_NUM, ToolTrap ) != 

NGetTrapAddress( UNIMPL_TRAP_NUM, ToolTrap ) ); 
while ( gDone == FALSE ) 
I 

HandleEvent(); 

/************************************* HandleEvent */ 

HandleEvent() 
I 

I* 

char theCha r: 

if ( gWNEimplemented ) 

else 
{ 

WaitNextEvent( everyEvent. &gTheEvent, MIN_SLEEP, 
NIL_MOUSE_REGION ); 

SystemTask<>: 
GetNextEvent( everyEvent. &gTheEvent ); 

switch ( gTheEvent.what 
{ 

case nullEvent: 

* Since the clock needs to be updated on a regular basis <and not 
* just when an update event is generated), we'll check the clock 
* every time we get a null event. 
*I 

Handl eNul 1 (): 
break: 

case mouseDown: 
HandleMouseDown(); 
break: 

case keyDown: 

439 



440 

/* 
* 
* 
* 
* 
* 
* 
*I 

Macintosh Programming Primer 

case autoKey: 
theChar = gTheEvent.message & charCodeMask: 
if (( gTheEvent.modifiers & cmdKey ) != 0) 

HandleMenuChoice( MenuKey( theChar ) ); 
break; 

case updateEvt: 

We don't need to do anything about updateEvts but we must 
call Begin and EndUpdate() so the Window Manager won't keep 
generating update events. The problem is, if the Window 
Manager keeps generating updateEvts, the event queue will 
eventually fill up, and the Event Manager won't be able to 
generate any nullEvts. 

BeginUpdate( gTheEvent.message ); 
EndUpdateC gTheEvent.message ); 
break: 

/******************************** HandleNull *********/ 

HandleNull() 
I 
I* 
* 
* 
* 
*/ 

Check the time, compare it against the last time you 
checked. If the time (which is measured in seconds) 
changed, update the clock. 

GetDateTime( &gCurrentTime ); 
if < gCurrentTime != gOldTime 
I 

DrawClock( gClockWindow ): 

/******************************** DrawClock *********/ 

DrawClock( theWindow ) 
WindowPtr theWindow: 
I 

Str255 myTimeString; 

IUTi meStri ng ( gCurrentTi me. I NCLUDE_SECONDS, my Ti meStri ng ) : 
EraseRect( &C theWindow->portRect ) ): 
MoveTo( CLOCK_LEFT. CLOCK_TOP ); 
Drawstring( myTimeString ); 
gOldTime = gCurrentTime: 

/************************************* HandleMouseDown */ 

HandleMouseDown() 
{ 

WindowPtr 
short int 
1 ong int 

whichWindow: 
thePart: 
menuChoice, windSize: 



Appendix B: Code Listings 

thePart = FindWindow( gTheEvent.where, &whichWindow ); 
switch ( thePart ) 
I 

case inMenuBar: 
menuChoice = MenuSelect( gTheEvent.where ); 
HandleMenuChoice( menuChoice ): 
break: 

case inSysWindow : 
SystemClick( &gTheEvent, whichWindow ): 
break: 

case i nDrag : 
DragWi ndow( whi chWi ndow. gTheEvent. where. &gDragRect): 
break: 

case inGoAway : 
gDone = TRUE: 
break: 

/************************************* HandleMenuChoice */ 

HandleMenuChoice( menuChoice 
long int menuChoice: 
I 
I* 
* 
* 
* 
*/ 

menuChoice is 4 bytes. 2 bytes of which contain the resource 
ID of the selected menu, and 2 bytes of which contain the 
selected item number. 

int theMenu: 
int the Item: 

if menuChoice != 0 ) 
( 

theMenu = HiWord( menuChoice ): 
theltem = LoWord( menuChoice ); 
switch ( theMenu ) 
I 

case APPLE_MENU_ID : 
HandleAppleChoice( 
break: 

case FI LE_MENU_ID : 
HandleFileChoice< 
break; 

case FONT_MENU_ID : 
HandleFontChoice( 
break: 

case STYLE_MENU_ID: 
HandleStyleChoice( 
break: 

I 
HiliteMenu( 0 ) : 

the Item 

theltem 

the Item 

the Item 

/******************************** HandleAppleChoice 

HandleAppleChoice( theltem ) 
int the Item: 
( 

) : 

) : 

) ; 

) : 

*******/ 

441 



442 

I* 
* 
* 
*I 

St r255 accName; 
int accNumber; 
short int itemNumber: 
DialogPtr AboutDialog; 

switch ( theltem ) 
I 

case ABOUT_ITEM 

Alerts are extremely easy to do. Dialog boxes are 
much more complex (they're explained in Chapter 6). 

Macintosh Programming Primer 

NoteAlert( ABOUT_ALERT, NIL_POINTER ); 
break: 

default : 
I* 
* If the selection was not "About 

Desk Accessory ... 
open the selected 

* 
*I 

Getltem( gAppleMenu, theltem, accName ): 
accNumber = OpenDeskAccC accName ); 
break: 

/******************************** 

HandleFileChoice( theltem 
int the Item: 
I 

switch ( theltem ) 
I 

HandleFileChoice 

I* 
* 
* 

This is the correct way to exit an application: by 
selecting Quit from the File menu! 

*I 
case QUIT_ITEM : 

gDone = TRUE: 
break; 

/******************************** 

HandleFontChoice( theltem ) 
int the Item: 
I 

int fontNumber: 
Str255 font Name: 

HandleFontChoice 

*******/ 

*******/ 

I* Uncheck the old font, check the newly selected font */ 
Checkltem( gFontMenu, gLastFont, REMOVE_CHECK_MARK ); 
Checkltem( gFontMenu, theltem. ADD_CHECK_MARK ); 
gLastFont = theltem; 
Getltem< gFontMenu , theltem , fontName ); 
GetFNum( fontName , &fontNumber ); 

I* Change the font to the selected font ... */ 
TextFont( fontNumber ); 



Appendix B: Code Listings 

/******************************** HandleStyleChoice *******/ 

HandleStyleChoice( theltem ) 
int the Item: 
{ 

I* 
* gCurrentStyle accumulates the style changes made via the 
* Style menu. 
*I 

I* 
* 
* 
* 
*I 

switch( theitem 
{ 

case PLAIN_ITEM: 
gCurrentStyle = PLAIN: 
break: 

case BOLD_ITEM: 
if ( gCurrentStyle & bold ) 

gCurrentStyle bold: 
else 

gCurrentStyle I= bold: 
break: 

case ITALIC_ITEM: 
if ( gCurrentStyle & italic ) 

gCurrentStyle italic; 
else 

gCurrentStyle I= italic: 
break: 

case UNDERLINE_ITEM: 
if ( gCurrentStyle & underline ) 

gCurrentStyle underline; 
else 

gCu rrentStyl e I= under 1 i ne: 
break: 

case OUTLINE_ITEM: 
if ( gCurrentStyle & outline ) 

gCurrentStyle outline; 
else 

gCurrentStyle I= outline: 
break: 

case SHADOW_ITEM: 
if ( gCurrentStyle & shadow ) 

gCurrentStyle shadow: 
else 

gCurrentStyle I= shadow: 
break; 

Check or uncheck the appropriate items from the Style 
menu, then change the current text face to that encoded 
in gCurrentStyle. 

CheckStyles(); 
TextFace( gCurrentStyle ): 

/******************************** CheckStyles *******/ 

CheckStyles() 
I 
I* 
* 
* 
*I 

Check or uncheck each item on the Style menu, depending on 
the contents of gCurrentStyle. 

443 



444 

/fdefi ne 
I/define 
I/define 
I/define 

I/define 
/fdefi ne 

#define 

//define 
I/define 

#define 
#define 

I/define 
#define 
#define 
I/define 
//define 
//define 
//define 
I/define 
fldef i ne 

Boolean 

Macintosh Programming Primer 

Checkltem( gStyleMenu, PLAIN_ITEM. gCurrentStyle == PLAIN ); 
Checkltem( gStyleMenu. BOLO_ITEM. gCurrentStyle & bold >: 
Checkltem( gStyleMenu. ITALIC_ITEM. gCurrentStyle & italic ); 
Checkltem( gStyleMenu. UNDERLINE_ITEM. gCurrentStyle & underline>: 
Checkltem( gStyleMenu. OUTLINE_ITEM, gCurrentStyle & outline ); 
Checkltem( gStyleMenu. SHADOW_ITEM, gCurrentStyle & shadow ); 

Chapter 5, Popup.c 

BASE_RES_I 0 400 
NI L_PO INTER OL 
MOVE_TO_FRONT -ll 
REMOVE_ALL_EVENTS 0 

MIN_SLEEP OL 
NIL_MOUSE_REGION OL 

DRAG_ THRESHOLD 30 

WNE_TRAP_NUM Ox60 
UNIMPL_TRAP_NUM Ox9F 

POPUP_MENU_ID BASE RES_ID 
NOT_A_NORMAL_MENU -1 

POPUP_LEFT 100 
POPUP _TOP 35 
POPUP_RIGHT 125 
POPUP_BOTTOM 52 
SHADOW_PIXELS 1 
RIGHT_MARGIN 5 
BOTTOM_MARGIN 4 
LEFT_MARGIN 5 
PIXEL_FOR_TOP _ LINE 1 

int 
MenuHandle 
Event Record 
Re ct 

gDone. gWNEimplemented; 
gPopUpltem = 1, gPopUpLabelWidth: 
gPopUpMenu: 
gTheEvent; 
gPopUpRect, gLabelRect, gDragRect; 

!*********************** Main *************/ 

main ( ) 
I 

Tool Boxlnit(); 
Windowlnit(): 
SetUpDragRect < >: 
MenuBarlnit(); 
DrawPopUp(); 
Main Loop ( ) : 



Appendix B: Code Listings 445 

/*********************************** ToolBoxlnit */ 

Tool Box I nit() 
I 

InitGraf{ &thePort >: 
InitFonts(): 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ); 
InitWindows(); 
InitMenus C): 
TEinit(); 
lnitOialogs( NIL_POINTER ); 
lnitCursor<): 

/*********************Windowlnit**************/ 

Windowlnit() 
{ 

WindowPtr 

popUpWindow 

popUpWindow: 

GetNewWindow( BASE_RES_IO , NIL_POINTER, 
MOVE_TO_FRONT ) ; 

ShowWindow< popUpWindow >: 
SetPortC popUpWindow ); 
TextFont( systemFont ); 
TextModeC srcCopy ); 

/******************************** SetUpOragRect *********/ 

SetUpOragRectC) 
{ 

gOragRect = screenBits.bounds: 
gOragRect.left += ORAG_THRESHOLD: 
gOragRect.right -= DRAG_THRESHOLO; 
gOragRect.bottom -= ORAG_THRESHOLO; 

/*********************MenuBarlnit**************/ 

MenuBarlnit() 
I 
I* 
* 
* 
* 
* 
* 
*I 

Just as we did with the hierarchical menus in Timer, 
we load the MENU, and add it to the menu list via the 
call to InsertMenu(). Next, we get the popup label 
from the menu data structure and calculate its width in 
pixels. We'll use this information later. 

gPopUpMenu = GetMenu( POPUP_MENU_IO ); 
InsertMenuC gPopUpMenu, NOT_A_NORMAL_MENU ); 
Hlock( gPopUpMenu >: 
gPopUplabe l Width = Stri ngWi dth ( (**gPopUpMenu). menuData ) : 
HUnl ock( gPopUpMenu ) : 



446 Macintosh Programming Primer 

/********************* DrawPopUp **************/ 

DrawPopUp() 
{ 

I* 
* 
* 
* 
* 
*I 

I* 
* 
* 
*/ 

DrawPopUp() will draw the popup outline, its 1-pixel 
drop shadow, the popup label, and set glabelRect, 
which we'll invert when the popup is selected. DrawPopUp() 
will also be called to handle updateEvts. 

SetRect( &gPopUpRect, POPUP_LEFT, POPUP_TOP, 
POPUP_RIGHT, POPUP_BOTTOM ); 

FrameRect( &gPopUpRect ); 

MoveTo( gPopUpRect.left+SHADOW_PIXELS, gPopUpRect.bottom ); 
LineTo< gPopUpRect.right, gPopUpRect.bottom >: 
LineTo( gPopUpRect.right, gPopUpRect.top+SHADOW_PIXELS ); 

MoveTo( gPopUpRect.left - gPopUplabelWidth - RIGHT_MARGIN, 
gPopUpRect.bottom - BOTTOM_MARGIN ); 

Hlock( gPopUpMenu ); 
Drawstring( C**gPopUpMenu) .menuData ) : 
HUnlock( gPopUpMenu >: 

glabelRect.top ~ gPopUpRect.top + PIXEL_FOR_TOP_LINE; 
gLabelRect.left = gPopUpRect.left - gPopUpLabelWidth 

- LEFT_MARGIN - RIGHT_MARGIN; 
gLabelRect.right = gPopUpRect.left: 
gLabelRect.bottom = gPopUpRect.bottom: 

After the background is drawn, we can draw the current 
menu value, in this case, a number. 

DrawPopUpNumber(); 

/********************* DrawPopUpNumber **************/ 

DrawPopUpNumber() 
{ 

I* 
* 
* 
*I 

Str255 menultem; 
int itemleftMargin; 

Get the menu item corresponding to gPopUpltem, 
calculate the margin, and draw it ... 

Getltem( gPopUpMenu, gPopUpltem, &menultem ); 
itemLeftMargin = ( gPopUpRect.right - gPopUpRect.left -

StringWidth( menultem ) ) I 2; 
MoveTo( gPopUpRect.left + itemLeftMargin, 

gPopUpRect.bottom - BOTTOM_MARGIN ); 
Drawstring( menultem ); 



Appendix B: Code Listings 

/******************************** MainLoop *********/ 

MainLoop() 
{ 

gDone = FALSE: 
gWNElmplemented = ( NGetTrapAddress( WNE_TRAP_NUM, ToolTrap ) != 

NGetTrapAddress( UNIMPL_TRAP_NUM, ToolTrap ) ); 
while ( gDone == FALSE ) 
{ 

HandleEvent(); 

/************************************* HandleEvent */ 

HandleEvent() 
I 

if ( gWNEimplemented ) 

else 
{ 

WaitNextEvent( everyEvent, &gTheEvent, MIN_SLEEP. 
NIL_MOUSE_REGION ); 

SystemTask(); 
GetNextEvent( everyEvent, &gTheEvent ); 

switch C gTheEvent.what ) 
I 

case mouseDown: 
HandleMouseDown(): 
break: 

case updateEvt: 
Begi nUpdate( gTheEvent. message ) : 
DrawPopUp (): 
EndUpdate( gTheEvent.message >: 
break: 

/************************************* HandleMouseDown */ 

HandleMouseDown() 
I 

I* 
* 
* 
* 
*I 

WindowPtr 
short int 
long int 
Point 

whichWindow: 
thePart. i: 
theChoice: 
myPoi nt. popUpUpperLeft: 

thePart = FindWindow( gTheEvent.where, &whichWindow >: 
switch < thePart ) 
I 

case inContent: 

If the mouse was clicked in the window. copy the Point. 
convert it to the window's local coordinate system, and 
check to see if its inside gPopUpRect. If so ... 

myPoint = gTheEvent.where: 
GlobalToLocal( &myPoint ): 

447 



448 

I* 
* 
* 
*I 

I* 
* 
* 
*/ 

//define 
/ldefi ne 
/ldefi ne 
//define 
/ldefi ne 
/ldefi ne 

//define 
//define 

/ldefi ne 

/ldefi ne 
/ldefi ne 
/ldefi ne 
I/define 
//define 

Macintosh Programming Primer 

if ( PtlnRect( myPoint, &gPopUpRect ) ) 
( 

... Invert the label, call PopUpMenuSelect, uninvert the 
label. Finally, handle the selection. 

l 

InvertRect( &glabelRect ); 
popUpUpperLeft.v = gPopUpRect.top + 

PIXEL_FOR_TOP_LINE: 
popUpUpperLeft.h = gPopUpRect.left: 
LocalToGlobal( &popUpUpperleft ): 
theChoice = PopUpMenuSelect( gPopUpMenu, 

popUpUpperleft.v, popUpUpperleft.h, 
gPopUpltem ): 

InvertRect( &glabelRect ); 
if ( LoWordC theChoice ) > O ) 
I 

gPopUpltem = LoWord( theChoice ): 
DrawPopUpNumber(): 
for ( i=O; i<gPopUpltem: i++ ) 

SysBeepC 20 ): 

break; 
case inSysWindow: 

SystemClick( &gTheEvent. whichWindow ): 
break: 

case inDrag: 
DragWindowC whichWindow, gTheEvent.where, &gDragRect): 
break: 

case inGoAway : 

Again, this is not the way "proper" Macintosh applications 
exit. We would normally use a Quit item in the File menu. 

gDone = TRUE; 
break: 

Chapter 6, Reminder.c 

BASE_RES_ID 400 
ABOUT_ALERT 401 
BAD_SYS_ALERT 402 
NIL_POINTER OL 
MOVE_TO_FRONT -ll 
REMOVE_ALL_EVENTS 0 

MIN_SLEEP OL 
NIL_MOUSE_REGION OL 

DRAG_ THRESHOLD 30 

SAVE_BUTTON 1 
CANCEL_BUTTON 2 
TIME_FIELD 4 
S_OR_M_FIELD 5 
SOUND_ON_BOX 6 



Appendix B: Code Listings 

#define ICON_ON_BOX 
#define ALERT_ON_BOX 
//define SECS_RAD IO 
#define MINS_RADIO 

//define DE FAUL T_SECS_ID 
#define DEFAULT_MINS_ID 

#define ON 
#define OFF 

#define SECONDS 
#define MINUTES 
#define SECONDS_PER_MINUTE 

#define TOP 
#define LEFT 

//define MARK_APPLICATION 

#define APPLE_MENU_ID 
#define FI LE_MENU_ID 
//define ABOUT _I TEM_ID 

#define CHANGE_ ITEM 
//define START _STOP _ITEM 
//define KI LL_I TEM 
//define OUIT_ITEM 

#define SYS_VERSION 

7 
8 
10 
11 

401 
402 

1 
0 

0 
1 
60 

25 
12 

BASE_RES_ID 
BASE_RES_ID+l 
1 

1 
2 
3 
4 

I* Version Number of SysEnvirons */ 

DialogPtr gSettingsDialog: 
gDragRect: Re ct 

Boolean 
char 
StringHandle 
NM Rec 
MenuHandle 
EventRecord 

gDone, gCounting, gNotify_set: 
gSeconds_or_minutes = SECONDS: 
gNoti fyStrH. gDefaultSecsH. gDefaultMi nsH: 
gMyNMRec: 
gAppleMenu, gFileMenu: 
gTheEvent: 

struct 
{ 

Str255 timeString; 
int sound: 
int icon: 
int alert; 
int secsRadio: 
int minsRadio: 

savedSettings: 

/******************************** main *********/ 

main< ) 
I 

I* 
* 
* 
*I 

ToolBoxlnit(); 

Since we'll be using the Notification Manager. we have to make 
sure System 6.0 or later is installed. 

449 



450 

if 
I 

Sys60rlater () ) 

Dialoglnit(); 
MenuBarlnit(); 
SetUpOragRect(); 
Notifylni t(); 
Mainloop(); 

/*********************************** ToolBoxlnit */ 

ToolBoxlnit() 
I 

InitGraf( &thePort ) ; 
Ini tFonts(): 
Fl ushEvents ( everyEvent, REMOVE_ALL_EVENTS ) ; 
I ni tWi ndows (); 
I nitMenus (); 
TEinit(); 
InitDialogs( NIL_POINTER ); 
Ini tCursor(); 

/******************************** Sys60rlater *********/ 

int Sys60rlater() 
I 

OS Err 
SysEnvRec 

status; 
SysEnvOata; 

Macintosh Programming Primer 

I* 
* 
* 
*I 

SysEnvirons() is documented in (V:5-6). We're interested in 
the systemVersion field. 

status = SysEnvirons( SYS_VERSION. &SysEnvData ); 
if (( status != noErr ) I I < SysEnvData.systemVersion < Ox0600 )) 
I 

I 
else 

StopAlert( BAD_SYS_ALERT, NIL_POINTER ); 
return( FALSE ) : 

return( TRUE ); 

/******************************** Dialoglnit *********/ 

Di a 1 og In it ( ) 
I 

int 
Re ct 
Handle 

itemType; 
itemRect; 
itemHandle; 

I* These 2 'STR 's hold the default values for minutes 
and seconds */ 

gOefaultSecsH GetString( OEFAULT_SECS_IO ); 
gOefaultMinsH = GetString( DEFAULT_MINS_IO ); 



Appendix B: Code Listings 

I* 
* 
* 
* 
* 
*/ 

I* 

Load gSettingsDialog with GetNewDialog{). You can treat 
it like a WindowPtr. If you want to draw in the Dialog 
window, use SetPort first to make the dialog port the current 
port. 

gSettingsDialog = GetNewDialog( BASE_RES_ID, NIL_POINTER, 
MOVE_TO_FRONT ) : 

* Get a handle to the dialog items to be initialized with 
* GetDitem{), use SetCtlValue{) to set the control's value. 
*/ 

GetDitemC gSettingsDialog, SECS_RADIO, &itemType, &itemHandle, 
&i temRect ) : 

SetCtlValue< itemHandle, ON >: 
GetDitem< gSettingsDialog, SOUND_ON_BOX. &itemType, &itemHandle, 

&itemRect ); 
SetCtlValue{ itemHandle, ON >: 
GetDitem( gSettingsDialog, ICON_ON_BOX, &itemType, &itemHandle, 

&itemRect ); 
SetCtlValue( itemHandle, ON >: 
GetDitem( gSettingsDialog, ALERT_ON_BOX. &itemType, &itemHandle, 

&itemRect >: 
SetCtlValue< itemHandle, ON ); 

!*********************************** MenuBarlnit */ 

MenuBarlnit() 
{ 

Handle myMenuBar: 

myMenuBar = GetNewMBar{ BASE_RES_ID ); 
SetMenuBar( myMenuBar ): 
gAppleMenu = GetMHandle( APPLE_MENU_IO ); 
AddResMenu< gAppleMenu, 'DRVR' ): 
gFileMenu = GetMHandle( FILE_MENU_ID ); 
DrawMenuBar(); 

/******************************** SetUpDragRect *********/ 

SetUpDragRect() 
{ 

gDragRect = screenBits.bounds: 
gDragRect.left += DRAG_THRESHOLD; 
gDragRect.right -= DRAG_THRESHOLD: 
gDragRect.bottom -= DRAG_THRESHOLO; 

/******************************** Notifylnit *********/ 

Notifylnit() 
I 
I* Initialize the notification data structure */ 

gNotifyStrH = GetString{ BASE_RES_ID ); I* The Alert string */ 
gMyNMRec.qType = nmType; /* All notifs use this type */ 

451 



452 Macintosh Programming Primer 

gMyNMRec.nmMark = MARK_APPLICATION: /* mark the applications 
entry in the apple menu */ 

gMyNMRec.nmResp = NIL_POINTER: /* don't use a response 
routine */ 

/******************************** MainLoop *********/ 

MainLoop() 
I 
I* 
* gCounting is TRUE while the countdown is happening. gNotify_set 
* is TRUE while the notification is set. 
*/ 

gDone = FALSE: 
gCounting = FALSE: 
gNotify_set = FALSE; 

while ( gDone == FALSE 
I 

HandleEvent(); 

/************************************* HandleEvent */ 

HandleEvent() 
I 

/* 
* 
* 
*/ 

char theCha r: 

Because we're running System 6.0 or later, we don't need 
to check for WaitNextEvent(). 

WaitNextEvent( everyEvent, &gTheEvent. MIN_SLEEP. 

switch ( gTheEvent.what ) 
! 

case mouseDown: 
HandleMouseDown(); 
break: 

case keyDown: 
case autoKey: 

NIL_MOUSE_REGION ); 

theChar = gTheEvent.message & charCodeMask; 
if (( gTheEvent.modifiers & cmdKey ) != O ) 

HandleMenuChoice( MenuKey( theChar ) >: 
break; 

/************************************* HandleMouseDown */ 

HandleMouseDown() 
I 

WindowPtr 
short int 
1 ong int 

whichWindow: 
thePart; 
menuChoice, windSize: 



Appendix B: Code Listings 

thePart = FindWindow( gTheEvent.where, &whichWindow ); 
switch C thePart ) 
I 

case inMenuBar: 
menuChoice = MenuSelect( gTheEvent.where ); 
HandleMenuChoice( menuChoice ); 
break: 

case inSysWindow : 
SystemClick( &gTheEvent. whichWindow ): 
break: 

case inDrag : 
DragWindow( whichWindow, gTheEvent.where, &gDragRect); 
break: 

case inGoAway : 
gDone = TRUE: 
break; 

/************************************* HandleMenuChoice */ 

HandleMenuChoice( menuChoice 
long int menuChoice: 
I 

int theMenu: 
int the Item: 

if menuChoice != 0 ) 
I 

theMenu = HiWord( menuChoice ): 
theltem = LoWord( menuChoice ); 
switch ( theMenu ) 
I 

} 

case APPLE_MENU_ID : 
HandleAppleChoice( theltem ): 
break: 

case FILE_MENU_ID : 
HandleFileChoice( theltem ): 
break: 

HiliteMenu( 0 ): 

/******************************** HandleAppleChoice 

HandleAppleChoice< theltem ) 
int the Item: 
{ 

Str255 
int 
short int 

accName: 
accNumber: 
itemNumber: 

switch < theltem ) 
I 

case ABOUT_ITEM_ID : 

*******/ 

NoteAlert( ABOUT_ALERT, NIL_POINTER ); 
break: 

453 



454 Macintosh Programming Primer 

default : 
Getltem( gAppleMenu. theltem. accName >: 
accNumber = OpenDeskAccC accName ); 
break: 

/******************************** HandleFileChoice *******/ 

HandleFileChoice( theltem ) 
int the Item: 
{ 

/* 
* 
* 
* 
* 
*I 

Str255 timeString: 
long countDownTime: 
int i temType: 
Rect i temRect: 
Handle itemHandl e: 

switch ( theltem ) 
( 

case CHANGE_ITEM : 
I* Change Settings */ 
HandleDialog(); 
break: 

case START_STOP_ITEM : 
I* Start or Stop the Countdown */ 
if ( gCounting ) /* Stop Countdown */ 
( 

Setltem( gFileMenu,theltem,"\pStart Countdown"): 
gCounting = FALSE: 

else /* Start Countdown */ 

Start the countdown by unhilighting the menu, getting the time 
field from the settings dialog, disabling the "Change Settings" 
menu item, changing "Start Countdown" to "Stop Countdown" and. 
finally. calling CountDown(). 

HiliteMenu( 0 ); 
GetDitem( gSettingsDialog. TIME_FIELD. 

&itemType, &itemHandle, &itemRect ); 
GetlText( itemHandle, &timeString ); 
StringToNum( timeString, &countDownTime ); 

Disableltem( gFileMenu, CHANGE_ITEM ); 
/* Disable Change Settings */ 

SetitemC gFileMenu, theltem,"\pStop Countdown"): 
CountDown( countDownTime ); 

I* Once Countdown() returns. reenable "Change Settings", 
change "Stop Countdown" to "Start Countdown" */ 

Enableltem( gFileMenu, CHANGE_ITEM ); 
/* Reenable Change Settings */ 

Setltem( gFileMenu,theltem,"\pStart Countdown"); 
I 
break: 

case KI LL_ITEM : 
I* Kill Notification */ 
NMRemove( &gMyNMRec >: 
HUn 1 ock ( gNot i fyStrH ) : 



Appendix B: Code Listings 

I* 
* 
* 
* 
* 
* 
*I 

Disableltem( gFileMenu, KILL_ITEM ); 
gNotify_set = FALSE: 
break: 

case QUIT_ITEM : 

There is a call to HandleEvent() inside Countdown(), so the Quit 
item might be selected during the countdown. Setting gCounting 
to FALSE will cause us to drop out of the Countdown() event 
loop. Setting gDone to TRUE will drop us out of the main event 
1 oop. 

gCounting = FALSE: 
gOone = TRUE: 
break: 

!******************************** HandleDialog *********/ 

HandleDialog() 
I 

I* 
* 
* 
*I 

int 
1 ong 
Str255 
int 
Re ct 
Handle 

itemHit, dialogDone 
alarmDelay: 
delayString: 
itemType: 
itemRect: 
itemHandle: 

FALSE; 

ShowWindow( gSettingsDialog ); 
SaveSettings(); 

while ( dialogDone 
I 

FALSE 

call ModalDialog() to find out which item was hit, then 
process that item. 

ModalDialog( NIL_POINTER, &itemHit ); 
switch ( itemHit ) 
I 

case SAVE_BUTTON: 
HideWindow( gSettingsDialog ): 
dialogDone = TRUE: 
break: 

case CANCEL_BUTTON: 
Hi deWi ndow( gSett i ngsOi a 1 og ) : 
RestoreSettings(); 
dialogDone = TRUE: 
break: 

case SOUND_ON_BOX: 
GetDltem( gSett i ngsDi a 1 og. SOUND_ON_BOX. 

&itemType, &itemHandle, &itemRect ); 
/* This is a nice technique for flipping the value of checkboxes */ 

SetCtlValue( itemHandle. 

break: 
case ICON_ON_BOX: 

! GetCtlValue< itemHandle ) >: 

GetDitem( gSettingsDialog, ICON_ON_BOX. 
&itemType, &itemHandle, &itemRect >: 

SetCtlValue( itemHandle, 
! GetCtlValue( itemHandle ) ); 

break: 

455 



456 

I* 
* 
* 
*I 

I* 
* 
* 
*I 

Macintosh Programming Primer 

case ALERT_ON_BOX: 
GetDitem( gSettingsDialog, ALERT_ON_BOX. 

&itemType, &itemHandle. &itemRect ); 
SetCtlValue( itemHandle. 

break: 
case SECS_RADIO: 

! GetCtlValue( itemHandle ) ); 

Turn off the minutes radio button, turn on the seconds 
radio button. Change the string from ·minutes" to ·seconds". 

gSeconds_or_minutes = SECONDS: 
GetDitem( gSettingsDialog, MINS_RADIO, 

&itemType, &itemHandle, &itemRect ); 
SetCtlValue< itemHandle, OFF ); 
GetDitem( gSettingsDialog, SECS_RADIO, 

&itemType, &itemHandle, &itemRect ); 
SetCtlValue( itemHandle, ·oN ); 
GetD I tern( gSet ti ngsDi a 1 og. S_OR_M_F I ELD. 

&itemType, &itemHandle. &itemRect ); 
SetIText< itemHandle. "\pseconds" >: 
GetDitem( gSettingsDialog, TIME_FIELD. 

&itemType, &itemHandle, &itemRect ); 
HLock( gDefaultSecsH ); 
SetIText( itemHandle, *gDefaultSecsH ); 
HUnlockC gDefaultSecsH ); 
break: 

case MINS_RADIO: 

Turn off the seconds radio button. turn on the minutes 
radio button. Change the string from ·seconds" to "minutes". 

gSeconds_or_minutes = MINUTES: 
GetDitem( gSetti ngsDi al og, SECS_RADIO, 

&itemType, &itemHandle, &itemRect ); 
Set Ct 1Va1 ue( i temHandl e. OFF ) : 
GetDitem( gSettingsDialog, MINS_RADIO. 

&itemType, &itemHandle, &itemRect ); 
SetCtlValue( itemHandle, ON); 
GetDitem( gSettingsDialog, S_OR_M_FIELD, 

&itemType, &itemHandle, &itemRect ); 
SetlText( itemHandle, ·\pminutes" ); 
GetDitem( gSettingsDialog, TIME_FIELD, 

&itemType, &itemHandle, &itemRect ); 
HLock( gDefaul tMi nsH ) : 
Set!Text( itemHandle. *gDefaultMinsH ); 
HUnl ock( gDefaul tMi nsH ) : 
break: 

/************************************* SaveSettings */ 

SaveSettings() 
I 

int i temType: 
Rect itemRect: 
Handle itemHandl e: 



Appendix B: Code Listings 

/* 
* 
* 
*I 

Fill the savedSettings data structure with all the current 
settings. If the user Cancels, we can restore the data. 

GetDitem( gSettingsDialog, TIME_FIELD. &itemType, &itemHandle, 
&itemRect >: 

Get!Text( itemHandle, &CsavedSettings.timeString) ); 
GetDitem( gSettingsDialog, SOUND_ON_BOX, &itemType, &itemHandle, 

&itemRect ); 
savedSettings.sound = GetCtlValue( itemHandle ); 
GetDitem< gSettingsDialog, ICON_ON_BOX, &itemType, &itemHandle, 

&itemRect ); 
savedSettings.icon = GetCtlValue( itemHandle ); 
GetDitem( gSettingsDialog, ALERT_ON_BOX, &itemType, &itemHandle, 

&itemRect ); 
savedSettings.alert = GetCtlValue( itemHandle ); 
GetDitem( gSettingsDialog, SECS_RADIO. &itemType, &itemHandle, 

&itemRect ); 
savedSettings.secsRadio = GetCtlValue( itemHandle ); 
GetDitem( gSettingsDialog, MINS_RADIO, &itemType. &itemHandle, 

&itemRect ); 
savedSettings.minsRadio = GetCtlValue( itemHandle ); 

/************************************* RestoreSettings */ 

RestoreSettings() 
{ 

/* 
* 
* 
* 
*/ 

int i temType; 
Rect i temRect; 
Handle itemHandle: 

Use the information in the savedSettings data structure to 
restore the fields in the settings dialog. Usually occurs 
as the result of the user hitting the Cancel button. 

GetDitem( gSettingsDialog, TIME_FIELD, &itemType. &itemHandle, 
&itemRect ); 

Set!Text( itemHandle, savedSettings.timeString ); 
GetDitem( gSettingsDialog. SOUND_ON_BOX. &itemType, &itemHandle, 

&itemRect ); 
SetCtlValue( itemHandle, savedSettings.sound >: 
GetDitem( gSett i ngsDi a 1 og. ICON_ON_BOX. &i temType. &itemHandl e. 

&itemRect ); 
SetCtlValue( itemHandle, savedSettings.icon ); 
GetDitem< gSettingsDialog, ALERT_ON_BOX, &itemType, &itemHandle, 

&itemRect >: 
SetCtlValue( itemHandle, savedSettings.alert ); 
GetDltem( gSettingsDialog, SECS_RADIO. &itemType, &iternHandle, 

&itemRect >: 
SetCtlValue( itemHandle, savedSettings.secsRadio >: 
GetDitem< gSettingsDialog, MINS_RADIO, &itemType. &itemHandle, 

&itemRect >: 
SetCtlValue( itemHandle, savedSettings.minsRadio ); 

if savedSettings.secsRadio == ON ) 
I 

GetDitem( gSettingsDialog, S_OR_M_FIELD, &itemType, 
&itemHandle, &itemRect ); 

457 



458 

else 

Macintosh Programming Primer 

Set IT ext ( itemHandl e, "\pseconds" ) ; 

GetDitem( gSettingsDialog, S_OR_M_FIELD, &itemType, 
&itemHandle. &itemRect ); 

SetIText( itemHandle, "\pminutes" >: 

/******************************** Count Down *******/ 

CountDownC numSecs 
long numSecs: 
I 

long 
Str255 
WindowPtr 

myTime, oldTime, difTime; 
myTimeString; 
countDownWindow: 

I* Load the countDownWindow. set its attributes ... */ 
countDownWindow = GetNewWindow( BASE_RES_ID, NIL_POINTER. 

I* 
* 
* 
* 
*I 

SetPort( countDownWindow ); 
ShowWindow( countDownWindow >: 
TextFace< bold >: 
TextSi ze< 24 ) : 

MOVE_TO_FRONT ) ; 

Get the time in seconds. Convert countdown time to seconds 
if it's in minutes. Finally, turn on the countdown flag, 
so the rest of the program knows we're counting ... 

GetDateTime( &myTime ); 
oldTime = myTime: 
if ( gSeconds_or_minutes == MINUTES ) 

numSecs *= SECONDS_PER_MINUTE: 
gCounting =TRUE: 

I* The counting event loop ... */ 
while ( ( numSecs > 0 ) && ( gCounting ) ) 
( 

HandleEvent(): 
if C gCounting ) 
I 

MoveTo( LEFT, TOP ); 
GetDateTime( &myTime ): 
if ( myTime != oldTime ) 
I 

difTime = myTime - oldTime; 
numSecs = numSecs - difTime; 
oldTime = myTime: 
NumToString( numSecs , myTimeString ); 
EraseRect ( &CcountDownWindow->portRect) ) : 
Drawstring( myTimeString ); 



Appendix B: Code Listings 

I* If we haven't canceled, set the notification, turn off 
the counting flag. hide the counting window ... */ 

if C gCount i ng ) 
SetNotification(); 

gCounting = FALSE: 
HideWindow< countDownWindow ): 

/******************************** SetNotification *******/ 

SetNotification() 
I 

I* 
* 
* 
*I 

int itemType: 
Rect i temRect: 
Handle itemHandle: 

If there was already a notification set, remove it, 
unlock the notify string. 

if gNotify_set ) 
I 

NMRemoveC &gMyNMRec ): 
HUnlock( gNotifyStrH ); 

I* Set the various fields of the notification data structure ... */ 
GetDitem( gSettingsDialog, ICON_ON_BOX. &itemType. &itemHandle, 

&itemRect ): 
if < GetCtlValue( itemHandle ) ) 

I* 
* 
* 
* 
* 
*I 

I* 

gMyNMRec.nmSicon = GetResource( "SICN', BASE_RES_ID ); 
else 

gMyNMRec.nmSicon = NIL_POINTER: 

GetDitem( gSettingsDialog, SOUND_ON_BOX. &itemType, &itemHandle, 
&i temRect ) : 

if < GetCtlValueC itemHandle ) ) 
gMyNMRec. nmSound GetResource( • snd · BASE RES_ID ) : 

else 
gMyNMRec.nmSound = NIL_POINTER: 

GetDitem( gSettingsDialog, ALERT_ON_BOX, &itemType, &itemHandle, 
&itemRect ); 

if C GetCtlValueC itemHandle > ) 
( 
Since we'll be dereferencing the Handle to a Pointer, we better 
lock gNotifyStrH. First, we'll call MoveHHi() to defragment 
the heap as much as possible. If we were using the handle as is, 
or using the handled data (as a value). we wouldn't need to lock 
the handle. 

I 
else 

MoveHHi ( gNot i fyStrH ) : 
Hlock( gNotifyStrH >: 
gMyNMRec.nmStr *gNotifyStrH: 

gMyNMRec.nmStr = NIL_POINTER; 

* Install the notification on the notification queue, enable the 
* "Kill Notification" item, turn on the notification flag. 
*I 

459 



460 

/ldefine 
I/define 
#define 
I/define 

#define 
//define 

/ldefine 
/ldefine 
I/define 

I/define 
#define 
#define 
//define 

//define 
//define 
//define 

I/define 

//define 
I/define 
//define 

//define 
//define 

#define 

/ldefi ne 
//define 

NMinstall( &gMyNMRec ); 
Enableltem( gFileMenu, KILL_ITEM ); 
gNotify_set = TRUE; 

Chapter 7, WindowMaker.c 

BASE_RES_ID 400 
NI L_POINTER OL 
MOVE_TO_FRONT -ll 
REMOVE_ALL_EVENTS 0 

APPLE_MENU_ID 400 
FILE_MENU_ID 401 

ABOUT_ITEM 1 
ABOUT_ALERT 400 
ERROR_ALERT_ ID 401 

NO_MBAR BASE_RES_ID 
NO_MENU BASE_RES_ID+l 
NO_PICTURE BASE_RES_ID+2 
NO_WIND BASE_RES_ID+3 

NEW_ ITEM 1 
CLOSE_ITEM 2 
QUIT_ITEM 3 

DRAG_ THRESHOLD 30 

WINDOW_HOME_LEFT 5 
WINDOW_HOME_TOP 45 
NEW_WINDOW_OFFSET 20 

MIN_SLEEP OL 
NIL_MOUSE_REGION OL 

LEAVE_WHERE_IT_IS FALSE 

WNE_TRAP_NUM Ox60 
UNIMPL_TRAP_NUM Ox9F 

#define NIL_STRING "\p" 
#define HOPELESSLY_FATAL_ERROR "\pGame over, man!" 

Boolean 
Event Record 
MenuHandle 
PicHandle 
Re ct 
int 

gDone, gWNEimplemented; 
gTheEvent; 
gAppleMenu: 
gMyPicture: 
gDragRect; 
gNewWindowleft = WINDOW_HOME_LEFT, 

gNewWindowTop = WINDOW_HOME_TOP; 

Macintosh Programming Primer 



Appendix B: Code Listings 

/******************************** main *********/ 

main() 
I 

ToolBoxlnit(): 
MenuBarlnit(): 
LoadPicture(); 
SetUpDragRect (): 

Mainloop(); 

/*********************************** ToolBoxlnit */ 

ToolBoxlnit() 
{ 

InitGraf( &thePort >: 
I nit Fonts (): 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ); 
InitWindowsC): 
InitMenus<): 
TEinit(}: 
lnitDialogs( NIL_POINTER >: 
InitCursor(); 

!*********************************** MenuBarlnit */ 

MenuBarlnit() 
I 

I* 
* 
* 
* 
* 
* 
* 
* 
*I 

Handle myMenuBar: 

This is an example of error handling in a Macintosh program. 
If you want to write an application for public consumption, 
you must do error handling. The question is, how much is 
enough? The answer: you should feel pretty certain that a 
user will never get the dreaded bomb box. Even if your 
application reaches a point of no return, you should at the 
least put up a fatal error alert. then exit to the Finder. 

if ( ( myMenuBar = GetNewMBar( BASE_RES_ID ) ) NIL_POINTER 
ErrorHandler( NO_MBAR >: 

SetMenuBar( myMenuBar ): 
if ( ( gAppleMenu = GetMHandleC APPLE_MENU_ID ) ) == NIL_POINTER ) 

ErrorHandlerC NO_MENU ); 
AddResMenu( gAppleMenu. 'DRVR' >: 
DrawMenuBarC>: 

/******************************** LoadPicture *********/ 

LoadPicture() 
{ 

I* 
* 
* 
*I 

Functions that return error codes are great candidates 
for error checking! 

if ( ( gMyPicture = GetPicture( BASE_RES_ID ) ) == NIL_POINTER ) 
ErrorHandlerC NO_PICTURE ); 

461 



462 Macintosh Programming Primer 

!******************************** SetUpDragRect *********/ 

SetUpDragRect() 
I 

gDragRect = screenBits.bounds; 
gDragRect.left += DRAG_THRESHOLD; 
gDragRect.right -= DRAG_THRESHOLD: 
gDragRect.bottom -= DRAG_THRESHOLD; 

/******************************** MainLoop *********/ 

MainLoop() 
{ 

gOone = FALSE; 
gWNEimplemented = ( NGetTrapAddress( WNE_TRAP_NUM, ToolTrap ) != 

NGetTrapAddress( UNIMPL_TRAP_NUM, ToolTrap ) ); 
while ( gDone == FALSE ) 
{ 

HandleEvent(); 

/************************************* HandleEvent */ 

HandleEvent() 
I 

char theCha r: 

if ( gWNEimplemented ) 

else 
I 

WaitNextEvent( everyEvent, &gTheEvent, MIN_SLEEP, 
NIL_MOUSE_REGION ); 

SystemTask(); 
GetNextEvent( everyEvent, &gTheEvent ); 

switch C gTheEvent.what ) 
I 

case mouseDown: 
HandleMouseDown(); 
break; 

case keyDown: 
case autoKey: 

theChar = gTheEvent.message & charCodeMask: 
if (( gTheEvent.modifiers & cmdKey ) != 0) 

HandleMenuChoice( MenuKey( theChar ) ); 
break; 

case updateEvt: 
BeginUpdate( gTheEvent.message ); 
DrawMyPictureC gMyPicture, gTheEvent.message ); 
EndUpdate( gTheEvent.message ); 
break; 



Appendix B: Code Listings 463 

/************************************* HandleMouseDown */ 

HandleMouseDown() 
I 

I* 
* 
* 
* 
* 
* 
* 
*I 

WindowPtr 
short int 
long int 

whichWindow; 
thePart; 
menuChoice, windSize; 

thePart = FindWindow( gTheEvent.where, &whichWindow ); 
switch < thePart ) 
{ 

case inMenuBar: 
menuChoice = MenuSelectC gTheEvent.where ); 
HandleMenuChoice( menuChoice ); 
break; 

case inSysWindow: 
SystemClick( &gTheEvent, whichWindow ); 
break; 

case inDrag: 
DragWindow( whichWindow, gTheEvent.where, &gDragRect); 
break; 

case inGoAway: 

In previous programs, we've used the goAway box to exit the 
application. This was evil and incorrect! The goAway box is 
a signal to close the window and should behave just as if the 
user selected Close from the File menu. We'll use 
DisposeWindow() to close the window and free up the memory used 
by the window. 

DisposeWindow( whichWindow ); 
break; 

/************************************* HandleMenuChoice */ 

HandleMenuChoice( menuChoice 
long int menuChoice: 
I 

int theMenu: 
int the Item: 

if menuChoice != 0 > 
I 

theMenu = HiWord( menuChoice ); 
theltem = LoWord( menuChoice ); 
switch ( theMenu ) 
I 

} 

case APPLE_MENU_ID : 
HandleAppleChoice( theltem ); 
break: 

case FILE_MENU_ID : 
HandleFileChoice( theltem ); 
break; 

HiliteMenu( 0 ); 



464 Macintosh Programming Primer 

/******************************** HandleAppleChoice *******/ 

HandleAppleChoice( theitem ) 
int the Item: 
I 

Str255 accName: 
int accNumber: 

switch theltem ) 
I 

case ABOUT_ITEM : 
NoteAlert( ABOUT_ALERT, NIL_POINTER ); 
break: 

default : 
GetitemC gAppleMenu. theltem. accName >: 
accNumber = OpenDeskAcc< accName ); 
break: 

/******************************** HandleFileChoice *******/ 

HandleFileChoiceC theltem ) 
int the Item: 
I 

WindowPtr whichWindow: 
switch < theltem ) 
I 

case NEW_ITEM : 
CreateWindow<): 
break: 

case CLOSE_ITEM : 
if ( ( whichWindow = FrontWindow() ) != NIL_POINTER 

DisposeWindow( whichWindow ); 
break; 

case OUIT_ITEM : 
I* This is the corect time to exit the application! */ 

gDone = TRUE: 
break: 

!************************************ CreateWindow */ 

CreateWindow() 
I 

/* 
* 
* 
* 
* 
* 
* 
* 
*I 

WindowPtr theNewestWindow: 

One of the most important features of this application is its 
ability to create a large number of windows, limited only 
by the memory available on the machine. We put up an error 
message if we can't allocate enough memory to open the window. 
Your application may want to put up an Alert, but allow the 
user to continue. The true test of your application us. how 
well it performs under stress. 



Appendix B: Code Listings 

I* 
* 
* 
* 
*! 

if ( ( theNewestWindow = GetNewWindowC BASE_RES_ID. NIL_POINTER. 
MOVE_TO_FRONT ) ) == NIL_POINTER 

ErrorHandler< NO_WIND ); 

New windows are created down and to the right by NEW_WINDOW_OFFSET 
pixels. If the new window will be created too close to the edge 
of the screen, move back to the upper left ... 

if (((screenBits.bounds.right-gNewWindowleft) < DRAG_THRESHOLD) I I 
((screenBits.bounds.bottom-gNewWindowTop) < DRAG_THRESHOLD)) 

gNewWindowleft = WINDOW_HOME_LEFT: 
gNewWindowTop = WINDOW_HOME_TOP: 

MoveWindowC theNewestWindow, gNewWindowLeft. gNewWindowTop, 
LEAVE_WHERE_IT_IS ): 

gNewWindowleft += NEW_WINDOW_OFFSET: 
gNewWindowTop += NEW_WINDOW_OFFSET: 
ShowWindow( theNewestWindow ); 

/******************************** DrawMyPicture *********/ 

DrawMyPicture( thePicture, pictureWindow 
PicHandle thePicture: 
WindowPtr pictureWindow; 
I 

Rect myRect: 

myRect = pictureWindow->portRect; 
CenterPictC thePicture, &myRect >: 
SetPortC pictureWindow ): 
DrawPicture( thePicture. &myRect ): 

!******************************** CenterPict *********/ 

CenterPict( thePicture. myRectPtr 
PicHandle thePicture: 
Rect *myRectPtr; 
I 

Rect windRect, pictureRect: 

windRect = *myRectPtr: 
pictureRect = (**( thePicture )).picFrame: 
myRectPtr->top = CwindRect.bottom - windRect.top -

CpictureRect.bottom - pictureRect.top))/ 2 + 
windRect.top; 

myRectPtr->bottom = myRectPtr->top + 
CpictureRect.bottom - pictureRect.top); 

myRectPtr->left = CwindRect.right - windRect.left -
CpictureRect.right - pictureRect.left))/ 2 + 

wi ndRect. 1 eft: 
myRectPtr->right = myRectPtr->left + (pictureRect.right -

pictureRect.left); 

465 



466 Macintosh Programming Primer 

/******************************** ErrorHandler *********/ 

ErrorHandl er( stri ngNum ) 
int stringNum: 
I 

/* 
* 
* 
* 
* 
*I 

StringHandle errorStringH: 

Load the error message from the resource fork. Use ParamText() 
to make it the first parameter. This will replace "AO" in a 
text item of a dialog box. If we couldn't get the string, we're 
in deep trouble, so we put up the HOPELESSLY_FATAL_ERROR ... 

if errorStringH = GetString( stringNum ) ) == NIL_POINTER ) 

else 
I 

I 

ParamText( HOPELESSLY_FATAL_ERROR, NIL_STRING, NIL_STRING, 
NIL_STRING ); 

HLock( errorStringH ): 
ParamText( *errorStringH, NIL_STRING, NIL_STRING, 

NIL_STRING ); 
HUnlockC errorStringH ) : 

StopAlert( ERROR_ALERT_ID, NIL_POINTER ); 
I* ExitToShell() returns to the calling program immediately. */ 

ExitToShell <): 

Chapter 7, ShowClip.c 

#define BASE_RES_ID 
#define NIL_POINTER 
#define MOVE_TO_FRONT 
#define REMOVE_ALL_EVENTS 

/tdef i ne ERROR_ALERT_ID 
#define NO_WIND 
#define EMPTY_SCRAP 

#define NIL_STRING 

400 
OL 
-ll 
0 

BASE_RES_ID 
BASE_RES_ID 
BASE_RES_ID+l 

"\p" 
#define HOPELESSLY_FATAL_ERROR "\pGame over, man!" 

WindowPtr gClipWindow: 

/******************************** main *********/ 

main() 
I 

ToolBoxlnit(): 
Windowlnit(): 
Mainloop(): 



Appendix B: Code Listings 

/******************************** ToolBoxlnit *********/ 

Tool Boxlnit() 
I 

lnitGraf( &thePort ) : 
InitFonts(); 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ); 
InitWindows(); 
InitMenus(); 
TEinit(); 
InitDialogs( NIL_POINTER ); 
InitCursor(): 

/******************************** Windowlnit *********/ 

Windowlnit() 
I 

if ( ( gClipWindow = GetNewWindow( BASE_RES_ID, NIL_POINTER, 
MOVE_TO_FRONT ) ) == NIL_POINTER ) 

ErrorHandler( NO_WIND ); 
ShowWindow( gClipWindow ); 
SetPort( gClipWindow ): 

/******************************** Mainloop *********/ 

Mainloop() 
I 

I* 
* 
* 
* 
* 
*I 

/* 
* 
* 
*I 

Re ct 
Handle 

myRect; 
clipHandle: 

1 ong int 1 ength, offset: 

clipHandle NewHandle( 0 ): 

GetScrap() resizes clipHandle to hold the scrap data of the 
specified type. While TEXT and PICT are the primary types, you 
can design your own scrap type or use other folks' types, but 
if you do, you better know what's at the other end of the handle. 

if ( ( length= GetScrapC clipHandle, 'TEXT'. &offset ) ) < O 
I 

I 
else 
I 

if (( length= GetScrapC clipHandle, 'PICT' .&offset )) < 0 ) 
ErrorHandler( EMPTY_SCRAP ); 

else 
I 

myRect = gClipWindow->portRect; 
CenterPictC clipHandle, &myRect >: 
DrawPicture( clipHandle, &myRect ): 

HLock( clipHandle ): 

We used TextBox() to draw the text in the current port {that's 
why we used the OuickDraw global thePort), left justified. 

467 



468 Macintosh Programming Primer 

TextBox( *clipHandle, length. &CthePort->portRect), 
teJustLeft ); 

HUnlock( clipHandle ); 

while ( !Button() ) ; 

/******************************** CenterPict *********/ 

CenterPict( thePicture, myRectPtr 
PicHandle thePicture; 
Rect *myRectPtr; 
I 

Rect wi ndRect, pi ctureRect; 

windRect = *myRectPtr: 
pictureRect = (**( thePicture )).picFrame: 
myRectPtr->top = (windRect.bottom - windRect.top -

CpictureRect.bottom - pictureRect.top))/ 2 + 
windRect.top; 

myRectPtr->bottom = myRectPtr->top + 
(pictureRect.bottom - pictureRect.top); 

myRectPtr->left = CwindRect.right - windRect.left -
CpictureRect.right - pictureRect.left))/ 2 + 

windRect.left: 
myRectPtr->right = myRectPtr->left + CpictureRect.right -

pictureRect.left); 

/******************************** ErrorHandler *********/ 

ErrorHandlerC stringNum ) 
int stringNum; 
I 

StringHandle errorStringH; 

if C errorStringH = GetString( stringNum ) ) == NIL_POINTER ) 

else 
I 

I 

ParamTextC HOPELESSLY_FATAL_ERROR, NIL_STRING, NIL_STRING, 
NIL_STRING ): 

HLockC errorStri ngH ) ; 
ParamText( *errorStringH, NIL_STRING, NIL_STRING, 

NIL_STRING ); 
HUnlock( errorStringH ) ; 

StopAlert( ERROR_ALERT_ID, NIL_POINTER ); 
ExitToShell(); 



Appendix B: Code Listings 

I* 
* 
* 
*I 

Chapter 7, PrintPICT.c 

Notice the #include of "PrintMgr.h". LightspeedC will not 
automatically include this one for you. 

#include "PrintMgr.h" 

#define HEADER_SIZE 512 
#define NIL_POINTER OL 
#define BASE_RES_ID 400 
//define REMOVE_ALL_EVENTS 0 

//define ERROR_ALERT_ID BASE_RES_ID 
#define CANT_OPEN_FILE BASE_RES_ID 
#define GET_EOF _ERROR BASE_RES_ID+ 1 
//define HEADER_TOO_SMALL BASE_RES_ID+2 
//define OUT_OF_MEMORY BASE_RES_ID+3 
//define CANT_READ_HEADER BASE_RES_ID+4 
//define CANT_READ_PICT BASE_RES_ID+5 

#define NIL_PRPORT NIL_POINTER 
//define NI L_IOBUFFER NIL_POINTER 
#define N IL_DEVBUF NI L_PO INTER 

#define NIL_STRING "\p" 
#define IGNOREO_STRING 
#define NIL_FILE_FILTER 
#define NIL_DIALOG_HOOK 
#define DONT_SCALE_OUTPUT 
#define HOPELESSLY_FATAL_ERROR 

Boolean 
THPrint 

DoDialogs(); 
gPrintRecordH: 

NI L_STRING 
NIL_POINTER 
NIL_POINTER 
NI L_POINTER 
"\pGame over. man!" 

/******************************** main *********/ 

main() 
I 

SFReply reply: 

ToolBoxlnit(): 
Printlnit(); 

· GetFileNameC &reply ): 
if ( reply.good ) /* The User didn't hit Cancel */ 
I 

if DoDialogs() ) /* Again, the User didn't hit Cancel */ 
I 

PrintPictFile( &reply>: 

469 



470 Macintosh Programming Primer 

/*********************************** ToolBoxlnit */ 

ToolBoxlnit() 
I 

InitGraf{ &thePort ) ; 
Initfonts(); 
Fl ushEvents( everyEvent, REMOVE_ALL_EVENTS ) : 
In it W i n d ow s ( ) ; 
I nitMenus (); 
TEinit(); 
InitDialogs( NIL_POINTER ); 
Ini tCursor(); 

/******************************** ~rintlnit *********/ 

Pri ntinit() 
I 
/* 
* 
* 
*I 

Allocate a new print record, open the chosen printer driver and 
load the default values from the printer resource file ... 

gPrintRecordH = CTHPrint)NewHandle( sizeof( TPrint ) ); 
PrOpen(): 
PrintDefault( gPrintRecordH ) ; 

/******************************** GetFileName *******/ 

GetFileName( replyPtr ) 
SFReply *replyPtr: 
{ 

I* 
* 
* 
* 
*I 

Point 
SFTypel i st 
int 

myPoint: 
typelist: 
numTypes: 

Prompt the user to open a file of type 'PICT', putting the dialog 
myPoint. IGNORED STRING is a prompt parameter that is ignored 
by SFGetFile(). 

myPoint.h = 100; 
my Point. v = 100: 
typeList[ 0 ] = 'PICT'; 
numTypes = 1; 
SFGetFil e( my Point, I GNORED_STRI NG, NI L_FI LE_F IL TER, numTypes, 

&typelist, NIL_DIALOG_HOOK, replyPtr ): 

/******************************** DoDialogs *******/ 

Boolean DoDialogs() 
I 
/* 
* 
* 
* 
* 

PrStlDialog() puts up the standard Page Setup dialog box, 
recording the changes in the print record handled by 
gPrintRecordH. PrJobDialog() puts up the print job dialog box, 
letting the user set things like number of copies, page ranges, 



Appendix B: Code Listings 

* 
* 
* 
*I 

etc., depending on the printer type. PrJobDialog() will return 
TRUE if the user wants to continue with the print (didn't 
hit the Cancel button). 

Pr St lDi al og( gPri ntRecordH ) : 
return< PrJobOialog( gPrintRecordH ) ); 

/******************************** PrintPictFile *******/ 

PrintPictFile( replyPtr ) 
SFReply *replyPtr: 
I 

int 
TPPrPort 
TPrStatus 
PicHandle 
char 
long 

srcFile; 
printPort: 
printStatus: 
thePict; 
pictHeader[ HEADER_SIZE ]: 
pictSize, headerSize: 

/* 
* FSOpen() opens the PICT file. GetEOF() sets pictSize to the 
* size of the file. FSRead() attempts to read the 512 byte header 
* that describes the rest of the file. Once the header is read, 
* we're ready to read the rest of the picture in. 
*I 

/* 
* 
* 
* 
* 
*I 

if ( FSOpen( (*replyPtr).fName, (*replyPtr).vRefNum, &srcFile ) 
!= noErr ) 

ErrorHandler( CANT_OPEN_FILE ); 

if ( GetEOF< srcFile, &pictSize ) != noErr 
ErrorHandler( GET_EOF_ERROR ); 

headerSize = HEADER_SIZE: 
if ( FSRead( srcFile, &headerSize, pictHeader 

ErrorHandler( CANT_READ_HEADER ); 
!= noErr ) 

Make sure there were at least HEADER_SIZE bytes in the file. If 
not, exit via ErrorHandler(). We won't use the header info in 
this program, so we'll adjust pictSize to the size of the picture 
without the header. 

if ( ( pictSize -= HEADER_SIZE ) <= 0 ) 
{ 

ErrorHandler( HEADER_TOO_SMALL ); 

/* Allocate enough memory for the picture ... */ 
if < ( thePict = (PicHandle)NewHandleC pictSize ) ) 

== NIL_POINTER ) 

ErrorHandler( OUT_OF_MEMORY ): 

/* Lock the picHandle. since we'll need to dereference it to a 
Pointer to use in the call to FSRead(). */ 

Hlock( the Pi ct ) : 

I* Read in the Picture, and close the file ... */ 

471 



472 

/* 
* 
* 
* 
*I 

if ( FSRead( srcFile, &pictSize, *thePict 
ErrorHandler( CANT_READ_PICT ); 

FSClose( srcFile ); 

Macintosh Programming Primer 

!= noErr ) 

Open a new print document, and a new page within that doc. 
Draw the picture on the print page, close the page, and close 
the doc. Finally, print the print doc. Wasn't that easy!!! 

printPort = PrOpenDoc( gPrintRecordH, NIL_POINTER, NIL_POINTER ); 
PrOpenPage( printPort, DONT_SCALE_OUTPUT ); 
DrawPicture< thePict, &(**( thePict )).picFrame ); 
PrCl osePage( pri ntPort ) : 
PrCloseDoc( printPort ): 

PrPicFile( gPrintRecordH, NIL_PRPORT, NIL_IOBUFFER, NIL_DEVBUF, 
&pri ntStatus ) : 

!******************************** ErrorHandler *********/ 

ErrorHandler( stringNum ) 
int stringNum: 
{ 

//define 
//define 
//define 
#define 
#define 
#define 
//define 

//define 
//define 

#define 
#define 

StringHandle errorStringH; 

if C errorStringH = GetString{ stringNum ) ) == NIL_POINTER ) 
ParamText( HOPELESSLY_FATAL_ERROR, NIL_STRING, NIL_STRING, 

NIL_STRING ); 
else 
I 

) 

Hlock( errorStringH ); 
ParamText( *errorStringH, NIL_STRING, NIL_STRING, 

NIL_STRING ) : 
HUnlock( errorStringH ); 

StopAlert( ERROR_ALERT_ID, NIL_POINTER ); 
ExitToShel l (): 

Chapter 7, Pager.c 

BASE_RES_ID 400 
NI L_PO INTER OL 
MOVE_TO_FRONT -ll 
REMOVE_ALL_EVENTS 0 
SCROLL_BAR_PIXELS 16 
DRAG_ THRESHOLD 30 
NI L_ACT ION_PROC NIL - POINTER 

MIN_SLEEP OL 
NIL_MOUSE_REGION OL 

WNE_TRAP_NUM Ox60 
UNIMPL_TRAP_NUM Ox9F 



Appendix B: Code Listings 

#define ERROR_ALERT_ID 
#define NO_WIND 
#define NO_PICTS 
#define CANT_LOAD_PICT 

#define NIL_STRING 
#define NIL_TITLE 
/Ide f i n e V I S I B LE 
#define START_VALUE 
#define MIN_VALUE 
#define NIL_REF_CON 

BASE_RES_ID 
BASE_RES_ID 
BASE_RES_ID+l 
BASE_RES_ID+2 

"\p" 
NIL_STRING 
TRUE 
1 
1 
NI L_PO INTER 

#define HOPELESSLY_FATAL_ERROR "\pGame over, man!" 

WindowPtr 
Control Handle 
Boolean 

gPictWindow: 
gScrollBarHandle; 
gDone, gWNEimplemented; 
gTheEvent; Event Record 

Re ct gDragRect; 
pascal void Scroll Proc(): 

!******************************** main *********/ 

main ( ) 
( 

ToolBoxlnit(); 
Windowlnit(); 
SetUpDragRect (); 
SetUpScrollBar(); 
Mainloop(); 

/*********************************** ToolBoxlnit */ 

ToolBoxlnit() 
( 

InitGraf ( &thePort ) : 
InitFonts(); 
FlushEvents( everyEvent, REMOVE_ALL_EVENTS ); 
InitWindows(); 
InitMenus(); 
TEinit(); 
InitDialogs( NIL_POINTER ); 
InitCursor<): 

/******************************** Windowlnit *********/ 

Windowlnit() 
I 

if ( ( gPictWindow ~ GetNewWindow( BASE_RES_ID, NIL_POINTER. 
MOVE_TO_FRONT ) ) == NIL_POINTER ) 

ErrorHandler( NO_WIND ); 
SelectWindow( gPictWindow ); 
ShowWindow( gPictWindow ); 
SetPort( gPictWindow ); 

473 



474 Macintosh Programming Primer 

/******************************** SetUpDragRect *********/ 

SetUpDragRect() 
I 

gDragRect = screenBits.bounds; 
gOragRect.left += DRAG_THRESHOLD; 
gDragRect.right -= DRAG_THRESHOLD; 
gDragRect.bottom -= DRAG_THRESHOLD: 

/********************************** SetUpScrollBar *******/ 

SetUpScrollBar() 
I 

I* 
* 

* 
* 
* 
*/ 

Rect vScrollRect; 
int numPictures; 

Find out how many PICT resources are available. Remember. 
re~ources will be available from any open resource files, 
including the System file and the application·s resource 
fork. 

if C < numPictures = CountResources( 'PICT'))<= 0) 
ErrorHandler( NO_PICTS ); 

I* Set up the scroll bar Rect. Make it fit within the window */ 
vScrollRect = gPictWindow->portRect: 
vScrollRect.top -= l; 
vScrollRect.bottom +=l; 
vScrollRect.left = vScrollRect.right-SCROLL_BAR_PIXELS+l; 
vScrollRect.right += 1: 

I* Create a new scroll bar with NewControl () */ 
gScrollBarHandle = NewControl( gPictWindow, &vScrollRect. 

NIL_TITLE, VISIBLE, START_VALUE, MIN_VALUE. 
numPictures. scrollBarProc, NIL_REF_CON); 

/******************************** Mainloop *********/ 

Mai hloop() 
I 

gDone = FALSE; 
gWNEimplemented = C NGetTrapAddressC WNE_TRAP_NUM, ToolTrap ) != 

NGetTrapAddress( UNIMPL_TRAP_NUM, ToolTrap ) ); 
while ( gDone == FALSE ) 
I 

HandleEvent(); 

/************************************* HandleEvent */ 

HandleEvent() 
I 

if ( gWNEimplemented ) 

else 
I 

WaitNextEventC everyEvent. &gTheEvent, MIN_SLEEP, 
NIL_MOUSE_REGION ); 



Appendix B: Code Listings 

/* 
* 
* 
*I 

Systemlask(); 
GetNextEvent( everyEvent, &glheEvent ); 

switch ( gTheEvent.what ) 
I 

case mouseDown: 
HandleMouseDown(); 
break; 

case updateEvt: 

DrawControls() draws all the controls currently visible in the 
specified window. We then update the window contents. 

Beg i nUpdate < gTheEvent. message ) ; 
DrawControls< gTheEvent.message ); 
UpdateMyWindow( gTheEvent.message ); 
EndUpdate( gTheEvent.message ); 
break; 

/************************************* HandleMouseDown */ 

HandleMouseDown() 
I 

/* 

WindowPtr whichWindow; 
short int thePart; 
Point thePoint; 
Control Handle theControl; 

thePart = FindWindow( gTheEvent.where. &whichWindow ); 
switch ( thePart ) 
I 

case inSysWindow : 
SystemClick( &gTheEvent, whichWindow ): 
break; 

case i nDrag : 
DragWi ndow( wh i chWi ndow, gTheEvent. where. &gOragRect); 
break; 

case inContent: 

* FindControl () is very similar to FindWindow() in that it 
* determines which control. if any, thePoint was found in ... 
*/ 

I* 
* 
* 
* 
* 
* 
* 
* 
* 
*I 

thePoint = gTheEvent.where; 
GlobalToLocal( &CthePoint) ); 
thePart = FindControl( thePoint. whichWindow, 

&theControl ) : 
if theControl == gScrollBarHandle ) 
I 

If thePoint was in our control, find out if it was in the thumb. 
If it was. call TrackControl() to drag an outline of the thumb up 
and down (in this case) the scroll bar. ~~hen the thumb is 
released, update the window using the new control value. If any 
other part of the control was used, call TrackControl() with a 
pointer to ScrollProc(), since we may need to scroll before 
the user releases the mouse button (for example, if they click 
in the scroll bar arrows. 

475 



476 Macintosh Programming Primer 

if 
{ 

thePart == inThumb ) 

I 
break: 

case inGoAway 

I 
else 
I 

gDone = TRUE: 
break: 

thePart = TrackControl( theControl, 
thePoint, NIL_ACTION_PROC ); 

UpdateMyWindow( whichWindow ): 

thePart = TrackControl( theControl, 
the Point, &Scro 11 Proc ) : 

UpdateMyWindow( whichWindow ); 

/********************************** ScrollProc *******/ 

pascal void ScrollProc(theControl, theCode) 
Control Handle theControl: 
int theCode: 
I 

I* 
* 
* 
* 
* 
* 
*I 

int curControlValue, maxControlValue, minControlValue; 

Get the min, max. and current values of the scroll bar. If the 
page down or down button areas were pressed, increase the value 
of the control. If the page up or up button areas were pressed, 
decrease the value of the control. Finally, update the control 
to this new value with SetCtlValue() ... 

maxControlValue 
curControlValue 
minControlValue 

Get Ct l Max ( theContro l ) : 
GetCtlValue( theControl >: 
GetCtlMin( theControl >: 

switch ( theCode > 
{ 

I 

case inPageDown: 
case inDownButton: 

if ( curControlValue < maxControlValue 
I 

curControlValue += 1: 
I 
break: 

case inPageUp: 
case inUpButton: 

if ( curControlValue > minControlValue 
I 

curControlValue -= 1: 

SetCtlValue( theControl, curControlValue >: 



Appendix B: Code Listings 4 77 

/********************************** UpdateMyWindow *******/ 

UpdateMyWindowC drawingWindow ) 
WindowPtr drawingWindow: 
I 

/* 
* 
* 
* 
* 
* 
*I 

currentPicture: PicHandle 
Re ct 
RgnHandle 

drawi ngCl i pRect. myRect: 
tempRgn; 

UpdateMyWindow() works in a similar fashion to the DrawPicture() 
routine in EventTutor <Chapter 4). Basically, we temporarily 
reset the windows clipping region to not include the area covered 
by the scroll bar. We center the picture, draw it, and reset the 
original clip region. 

tempRgn = NewRgn(): 
GetClip( tempRgn >: 

myRect = drawingWindow->portRect: 
myRect.right -= SCROLL_BAR_PIXELS: 
EraseRect( &myRect >: 

currentPicture = (PicHandle)GetlndResource( 'PICT'. 
GetCtlValue( gScrollBarHandle ) >: 

if ( currentPicture == NIL_POINTER ) 
ErrorHandler( CANT_LOAD_PICT ); 

CenterPict( currentPicture, &myRect >: 

drawingClipRect = drawingWindow->portRect: 
drawingClipRect.right -= SCROLL_BAR_PIXELS: 
Cl i pRect( &drawi ngCl i pRect ) : 

DrawPicture( currentPicture, &myRect ); 

Set Clip ( tempRgn ) : 
DisposeRgnC tempRgn ); 

/******************************** CenterPict *********/ 

CenterPictC thePicture, myRectPtr 
PicHandle thePicture: 
Rect *myRectPtr: 
I 

Rect wi ndRect. pi ctureRect: 

windRect = *myRectPtr: 
pictureRect = (**( thePicture )).picFrame; 
myRectPtr->top = CwindRect.bottom - windRect.top -

CpictureRect.bottom - pictureRect.top))/ 2 + 
windRect.top; 

myRectPtr->bottom = myRectPtr->top + 
(pictureRect.bottom - pictureRect.top); 

myRectPtr->left = (windRect.right - windRect.left -
CpictureRect.right - pictureRect.left))/ 2 + 

wi ndRect. 1 ef t: 
myRectPtr->right = myRectPtr->left + (pictureRect.right -

pictureRect.left); 



4 78 Macintosh Programming Primer 

!******************************** ErrorHandler *********/ 

ErrorHandler( stringNum ) 
int stringNum; 
{ 

StringHandle errorStringH; 

if ( errorStringH = GetString( stringNum ) ) == NIL_POINTER ) 
ParamText( HOPELESSLY_FATAL_ERROR. NIL_STRING, NIL_STRING, 

NIL_STRING ); 
else 
{ 

Hlock( errorStri ngH ) : 
ParamText( *errorStringH, NIL_STRING, NIL_STRING. 

HUnl ock( errorStri ngH ) ; 
} 
StopAlert( ERROR_ALERT_ID, NIL_POINTER ); 
ExitToShel l <); 

Chapter 7, Sounder.c 

#define NIL_POINTER 
//define BASE_RES_ID 
//define REMOVE_ALL_EVENTS 
//define NI L_SOUNO_CHANNEL 
//define SYNCHRONOUS 

//define ERROR_ALERT _ID 
/fdefi ne CANT_LOAD_BEEP _SNO 
//defineCANT_LOAO_MONKEY_SNO 
//define CANT_LOAO_KLANK_SND 
//defineCANT_LOAD_BOING_SND 

DL 
400 
0 
NIL_POINTER 
FALSE 

BASE_RES_ID 
BASE_RES_ID 
BASE_RES_ID+l 
BASE_RES_I0+2 
BASE_RES_ID+3 

//define NIL_STRING "\p" 
//defineHOPELESSLY_FATAL_ERROR"\pGame over. man!" 

//define BEEP _SNO 
/ldefi ne MONKEY _SND 
/fdefi ne KLANK_SNO 
/ldefi ne BO I NG_SND 

1 
2 
3 
4 

/******************************** main *********/ 

main ( ) 
I 

Tool Box I nit(); 
Ma keSound (); 

/*********************************** ToolBoxlnit */ 

ToolBoxlnit() 
I 

InitGraf( &thePort ); 
InitFontsC): 

NIL_STRING ); 



Appendix B: Code Listings 

Fl ushEvents ( everyEvent. REMOVE_ALL_EVENTS ) : 
I nitWi ndows (): 
InitMenus(); 
TEinit(); 
InitDialogs( NIL_POINTER ) : 
lnitCursor(): 

/******************************** MakeSound *********/ 

MakeSound() 
I 

/* 
* 
* 
* 
* 
* 
* 
*I 

Handle soundHandl e: 

The key to this program is the sound routine SndPlay(). We 
are loading the 'snd · resources normally found in the system 
file. Since the Mac System file didn't always have these 'snd • 
resources, older systems may cause the error messages to appear. 
Check out the Sound Manager (Chapter 27) in Volume V for more 
detail ... 

if ( ( soundHandl e = GetResource( · snd ·• BEEP _SND ) 
== NIL_POINTER ) 

ErrorHandler( CANT_LOAO_BEEP_SND ); 
SndPl ay( NI L_SOUND_CHANNEL. soundHandl e. SYNCHRONOUS ) ; 

if< ( soundHandle = GetResource( 'snd •. MONKEY_SND ) ) 
== NI L_POI NTER ) 

ErrorHandler( CANT_LOAO_MONKEY_SND ): 
SndPl ay ( N IL_SOUND_CHANNEL. soundHandl e, SYNCHRONOUS ) ; 

if ( ( soundHandle = GetResource( 'snd ·. KLANK_SND)) 
== NIL_POINTER ) 

ErrorHandler( CANT_LOAD_KLANK_SND ); 
SndPl ay( NIL_SOUND_CHANNEL. soundHandl e. SYNCHRONOUS ) ; 

if<< soundHandle = GetResource( 'snd ·. BOING_SND)) 
== NIL_POINTER ) 

ErrorHand 1 er ( CANT _LOAD_BO I NG_SND ) ; 
SndPl ay( NI L_SOUND_CHANNEL. soundHandl e. SYNCHRONOUS ) ; 

/******************************** ErrorHandler *********/ 

ErrorHandler( stringNum ) 
int stringNum: 
I 

StringHandle errorStringH; 

if ( errorStringH = GetString( stringNum ) ) == NIL_POINTER ) 

else 
I 

I 

ParamText( HOPELESSLY_FATAL_ERROR, NIL_STRING, NIL_STRING, 
NIL_STRING ); 

Hlock( errorStringH ); 
ParamText( *errorStringH, NIL_STRING, NIL_STRING, 

NIL_STRING ) ; 
HUnlock( errorStringH ); 

StopAlert( ERROR_ALERT_ID. NIL_POINTER ); 
ExitToShell (): 

479 



AppendixC 

THINKC 
Command 
Summary 

This appendix summarizes some of the 
basic operations of THINK C, Version 3.0 



482 

THINK C Is a simple but powerful programming environment. This appendix 
provides an overview of its operations. 

The Project Menu 

THINK C keeps track of all of the library files and code files that you are using in 
a Project file. To create a project, select New Project from the Project menu, and 
type in a project name. (Create a folder for your project first to keep your files 
together.) To open an existing project, use Open Project. If you have a project open, 
and you want to look at another project, use Close Project. If you choose Close & 
Compact, the project file will be compressed. This makes it smaller, but means 
that it takes longer to open. The Set Project Type ••• menu item brings up a dialog 
box, which allows you to define the kind of project that you want to have (Figure 
C.1). There are four types of projects: applications, desk accessories, device drivers 
and code resources. 

APPLICATIONS 

Normally, the first radio button should be clicked on, as standalone applications are 
usually what you'll be building in THINK C. You can key in the File Type and 
Creator for your application. The default for the File Type is APPL: your applica
tions should use this. Other types of projects may have other File Types. In the 
Primer, we have been selecting the Creator name using ResEdit. You can do it here 
instead. 

® Rpplication 

O Desk Rccessory 

O Deuice Driuer 

O Code Resource 

File Type I RPPL 

Creator IRIMI 
D Separate STRS 

Partition (K) ~ 

MF Rttrs ~ I 0000 I 
(( OK J) ( Cancel J 

Figure C.1 Project Type dialog box. 



Appendix C: THINK C Command Summary 483 

The Project Type dialog box also lets you select the level of MultiFinder 
friendliness that you intend your application to have (Figure C.2). 

The pop-up menu allows you to set three flags. MultiFinder Aware means that 
your application will conform to Apple's MultiFinder guidelines. This means that 
your application will respond properly to suspend/resume events. Background 
Null Events means that your program will get null events when it is running in the 
background, and Suspend and Resume Events means that your program will get 
suspend/resume events as well as the normal activate/deactivate events. The 
MultiFinder flags may also be keyed in hex in the field to the right. 

Early versions of THINK C 3.0 had a bug where the Suspend and Resume 
Events and the MultiFinder Aware flags were swapped. To check for this 
problem, examine the SI Z E resource in your THINK C-created application. 
All MultiFinder options are currently stored in the SI Z E resource, and may 
be easily changed in ResEdit. 

In the Partition field, you can key in the preferred amounts of RAM that your 
application will need in MultiFinder. If the Separate STRS check box is checked, 
THINK C will place string literals and floating point constants in a ST R ff resource 
instead of a DAT A resource. Do this if you think you'll have more than 32K worth of 
string literals or floating point constants. 

® Application 

O Desk Accessory 

0 Oeuice Driuer 

O Code Resource 

File Type I APPL 

Creator lf'''"I 
0 Separate STRS 

Partition (K) ~ 

Y"'Background Null Euents 
Y"'Suspend & Resume Euents 

lseoo I 
( Cancel 

Figure C.2 MultiFinder flags pop up menu. 

) 



484 Macintosh Programming Primer 

DESK ACCESSORIES AND DEVICE DRIVERS 

If your project is a desk accessory, or a device driver (like a printer driver), your 
dialog box is somewhat different (Figure C.3). 

Both desk accessories and device drivers have the same fields; desk accessories 
have a default File Type and Creator of D FI L and OMO V. The Multi-Segment 
check box allows you to have up to 31 segments on your device driver or desk 
accessory. 

The Name field contains the name of the desk accessory or device driver 
resource. THINK C will add a null byte to the beginning of your desk accessory (a 
convention). It will also place a period before the device driver name if you don't put 
one there. 

The Type ofresource created is defaulted to DR V R for both kinds of projects. The 
ID of the resource for desk accessories is defaulted to 12. The Font DIA Mover will 
handle ID number conflicts, so this number need not be changed. 

CODE RESOURCE 

THINK C allows you to build C 0 DE resources. This comes in really handy for 
building I N IT s, W DEF s and c de vs. The code resource project type has the same 
basic fields as the desk accessories. If the Custom Header check box is unchecked, 
THINK C builds a 16-byte header for your C 0 DE resource that places the address 
of your resource into register AO and branches to your ma i n ( ) function. The At tr s 
field allows you to select the standard resource attributes for your code resource. 
You can also use ResEdit to set these flags. 

O Application 

® Desk Accessory 

0 Oeuice Driuer 

O Code Resource 

Name 11 

Type lonun I 
( OK ) 

File Type I OF IL 

Creator I DMOU 

D Multi-Segment 

ID _11_2 __ 

(( Cancel ] 

Figure C.3 Desk Accessories/Device Drivers dialog box. 



Appendix C: THINK C Command Summary 485 

MORE ON THE PROJECT MENU 

The next few menu items on the Project menu are Remove Objects, Bring up to 
Date and Check Link. 

Remove Objects will remove object code for all files in your project. Be sure to 
do this for all your projects built with older versions of THINK C. By removing all 
the objects from a project, you are dramatically reducing the size of the project (until 
you put the objects back in) and you are also ensuring that your project uses the 
current version of all your link libraries (like MacTraps). Bring Up to Date 
compiles source code and loads library files thathaven,t been compiled or loaded yet. 
Check Link checks the link-worthiness of your project without running it. 

Build Library takes the current project and saves it as a binary library, so it 
can be used by other projects. Build Application ••• (or Desk Accessory, Device 
Driver, or Code Resource) saves the project as a standalone application (or desk 
accessory, device driver, or C 0 DE resource), depending on the project type chosen. 

If you set the Use Debugger flag, the debugger will automatically run when you 
run your application (in MultiFinder). The final menu item, Run, runs your 
application. If you run your application under MultiFinder, THINK C runs your 
application as a separate entity. 

The File Menu 

Once you've created your project, you're ready to type in your source code. THINK 
Chas a number of formatting facilities that should save you some time. Most of the 
options in the File menu are self-explanatory (Figure C.4). 

New XN 
Open... XO 
Open Selection XO 
Close 

Saue XS 
Saue Rs .•• 
Soue R Copy As •.• 
Reuert 

Page Setup ••• 
Print ••• 

Transfer ••• 
Quit XQ Figure C.4 THINK C's File menu. 



486 Macintosh Programming Primer 

To create a new file, select New. To open an existing file, choose Open. You can 
also open a file by double-clicking its name in the Project window. If a file name is 
highlighted in an edit window, Open Selection will open the file. Close will close 
your file; you are prompted to save or discard your changes if any have been made. 
Save will save the current file you're working on. Save As will save your current 
file under a new name and change the name in the Project window. Save A Copy 
As will save your current file under a different name and use the original file. 
Revert will return the current file to the saved version of that file. Print Setup 
puts up the standard Print Setup dialog box to choose printing options. Print prints 
your current file with the name, date, time and page number at the top. Transfer 
allows you to go directly to another program without going back to the Finder. Quit 
allows you to leave THINK C; you are prompted to save changes in your current 
files. 

The Edit Menu 

The Edit Menu provides options for working on your current file (Figure C.5). 
The Undo, Cut, Copy, Paste, Clear, and Select All menu items are the 

standard text editing options available on most Macintosh applications. Set Tabs 
& Font ••• (Figure C.6) puts up a dialog box that allows you to select the tab size 
(usually, one tab every four character positions), as well as the font type and size. 

Undo HZ 

Cut HH 
Copy HC 
Paste HU 
Clear 
Select Rll 

Set Tabs & Font ••• 
Shift Left H[ 
Shift Right HI 
Balance HB 

Options ••• Figure C.5 THINK C's Edit menu. 



Appendix C: THINK C Command Summary 487 

Tabs: - ~ OK D ( Cancel ) 

Font: Monaco ~ I 9 

The quick brown fox jumps over the lazy dog. 

Figure C.6 Tabs & Font dialog box. 

Shift Left and Shift Right will move selected text one tab to the right or left. 
Balance will highlight the code balanced by the nearest(), [], or (} before and after 
the cursor position. 

The Options ••• menu item (Figure C. 7) brings up a dialog box that allows you 
to set the default options for five different areas of THINK C. 

Search Options has three options to set. These all affect the defaults used by 
options under the Search menu. Selecting the Match Words check box lets you 
search for whole words instead of parts of words. Wrap Around means that the 
entire file will be searched, not just from the cursor to the end of the file. Ignore 
Case lets you ignore upper and lower case in searching. 

Preferences lets you set four options (Figure C.8). The Confirm Auto-Make 
check box, when checked, always brings up the Br i n g Pro j e ct up to Date? 
dialog box when the project is being compiled. If it is not checked, THINK C will 
automatically update the project. When not checked, Confirm Saves always saves 
changes to the current document without asking. Always Compact always saves 

®This Project »Copy» 0 New Projects 

® Search Options 
O Preferences 
O Code Generation 
O Compiler Flags 
O Source Debugger 

OK l 
Figure C. 7 Search options. 

D Match Words 
D Wrap Around 
1811 gnore Case 

( Cancel J 



488 Macintosh Programming Primer 

®This Project »Copy» 0 New Projects 

O Search Options 
® Preferences 
O Code Generation 
0 Compiler Flags 
0 Source Debugger 

OK 

Figure C.8 Preferences. 

181 Confirm Auto-Make 
181 Confirm Saues 
D Always Compact 
D More Memory 

( Cancel J 

the current project using a compression algorithm. When checked, More Memory 
will cause THINK C to try to work around a Mac that keeps running out of memory. 

Code Generation (Figure C.9) allows you to set five options. The Macsbug 
Symbols should be set if you plan to use a symbolic debugger like MacsBug or 
TMON. When Profile is checked, THINK C collects timing statistics about your 
functions. If the 68020 flag is set, THINK C will use the 020 instruction set, when 
the 68881flag is set, floating point coprocessor code will be generated as well. If the 
<MacHeaders> option is set, THINK C automatically uses the MacHeaders file for 
every project. 

Compiler Flags (Figure C.10) has two options. If Check Pointer Types is 
selected, THINK C generates compiler errors for pointer types that don't match. 
The Require Prototypes flag makes THINK C strict about type checking with 
respect to function calls and their arguments. 

®This Project »Copy» O New Projects 

0 Search Options 
O Preferences 
® Code Generation 
O Compiler Flags 
O Source Debugger 

OK 

Figure C.9 Code generation. 

181 Macsbug Symbols 
D Profile 
D 68020 
D 68881 
181 <MacHeaders> 

( Cancel J 



Appendix C: THINK C Command Summary 

®This Project »Copy» O New Projects 

O Search Options 
O Preferences 
O Code Generation 
® Compiler Flags 
O Source Debugger 

OK 

Figure C.10 Compiler flags. 

181 Check Pointer Types 
D Require Prototypes 

( Cancel J 

489 

Source Debugger(Figure C.11) has three options. Use Debugger starts your 
project off with the Use Debugger item checked under the Project menu. IfUse 2nd 
Screen is checked, THINK C will place the debugger windows on a second monitor 
if the Mac being used is equipped with one. If Update Windows is set, the 
Debugger will try to update your windows for you when execution of the code is 
stopped. (This option really eats up memory, so you may want to increase the 
debugger's MultiFinder partition.) 

The Search Menu 

The Search menu (Figure C.12) has a number of functions that allow you to find 
and change text in your files. 

®This Project »Copy» 0 New Projects 

O Search Options 
O Preferences 
O Code Generation 
O Compiler Flags 
® Source Debugger 

OK J) 

Figure C.11 Source debugger. 

D Use Debugger 
181 Use 2nd Screen 
D Update Windows 

( Cancel J 



490 Macintosh Programming Primer 

Find... OOF 
Enter Selection OOE 
Hnd H~}<lin :u:H 
Replace OOP 
H•~Ph~C(~ (~ rind Ht.it~in :c:w 
Ht~phH~<~ HU 

Figure C.12 Search menu. 

The Find •.. menu item puts up a dialog box, as shown in Figure C.13. The Find 
dialog box allows you to enter in the string to search for and, optionally, the string 
to replace it with. The three search options, Match Words, Wrap Around, and 
Ignore Case were described in the discussion of Search Options. If Grep is 
checked, a utility similar to the Grep utility in UNIX is run. If Multi-File Search 
is checked, a dialog box is put up to allow you to select which files to search. 

Enter Selection will take highlighted code and place it in the Search for field 
in the Find dialog box. Find Again searches for the next occurrence of the Search 
For: text without bringing up the dialog box again. Replace replaces the high
lighted string; ifthere is no string in the Replace With field, the highlighted text is 
deleted. Replace and Find Again will replace the highlighted string in the code 
and highlights the next occurrence of the Search For: string. Replace All replaces 
all occurrences of the sought string. Find In Next File is used in conjunction with 
the Multi-File Search check box; it puts up a dialog box so the next files to search 
may be selected. 

Search for: Replace with: 

......._l
1 
__ ______.II.......__ __ _____. 

D Match Words 

D Wrap Rround 

1811 gnore Case 

Figure C.13 Find dialog box. 

D Grep D f'i.1um···rn<~ ~·~l~rct~ 

1: ind m Don't Find m Cancel ) 



Appendix C: THINK C Command Summary 491 

The Source Menu 

The Source menu (Figure C.14) deals with the files currently in the project. Add 
and Remove will add or remove the currently selected file in the Project window. 
If Add is dimmed, the current window has not been saved, or does not have the . c 
suffix. Get Info provides a dialog that displays information about the current file, 
such as number of lines of code and data and string resources used. Other files may 
be examined by clicking on the next or previous buttons. Check Syntax compiles 
a file to check syntax without adding it to the project. Precompile ••• creates a 
precompiled header (like <MacHeaders>) for your project. It may not have code or 
data definitions. Debug sends the currently edited file to the Source window of the 
debugger. Compile will compile the currently selected file and place it in the project 
window. Load Library will take the currently edited library and add it to the 
current project. Add ••• displays a dialog box that allows you to add other files into 
the project. Make ••• puts up a dialog box listing the current files in the project. You 
can then compile any file or load libraries directly instead of having THINK C figure 
it out for you. 

Add 
Remoue 
Get Info 8€1 
Check SyntaH 8€Y 
Precompile ••• 
Debug 8€6 

Compile 8€K 
Load Library 

Add ••• 
Make ••• 8€M Figure C.14 THINK C's Source menu. 

-----------------



492 Macintosh Programming Primer 

The Windows Menu 

The Windows menu (Figure C.15) controls the windows of THINK C. Clean Up 
resizes and stacks currently opened windows. Zoom resizes the current window to 
fill the screen; if selected again, the window returns to the previous size. Full Titles 
puts the full path of each file on the top of its window. Close All closes all edit 
windows. Save All saves all edit windows. Project window brings the Project 
window to the front. The menu items will contain the project title (e.g., He 11 o 
pro j ). Following the Project windows is a list of all currently opened windows in the 
project. Selecting a window on the list will bring it to the front. 

This appendix is meant to provide an overview to THINK Conly. For detailed 
information about THINK C, read Think's THINK C User's Manual and Standard 
Libraries Reference. 

Clean Up 
Zoom 38/ 
Full Titles 
Close All 
Saue All 

Sample 380 
Untitled 381 Figure C.15 THINK C's Windows menu. 



AppendixD 

The Debugger 
Command 
Summary 

This appendix summarizes some of the 
basic operations of the THINK C source
level code debugger. The descriptions are 

specific to Version 3.0 of THINK C. 



494 

THIN KC Now has a debugger that provides a powerful way to test applications. The 
Debugger runs exclusively under MultiFinder and needs at least two megabytes to 
work properly. 

When an application is run inside THINK C, and the Use Debugger flag has 
been set, the windows shown in Figure D.1 are displayed. Each of the two windows 
that are part of the Debugger has a specific function. First, take a look at the Source 
window. 

The Source Window of the Debugger 

The Source window displays the code of the file that is currently being run. In 
Figure D.l, the arrow to the left of the code indicates where the Debugger has 
stopped. At this point, you can Step to the next line, step In to the function at which 
the arrow points, or step Out of the function to the next line of the calling function. 
If you click on Go, the program will run until it hits a breakpoint or until the Stop 
button is clicked on. The Trace button is like the Step button, except that it will step 
into the current function if the code is available for it; Step stays at the same level 
of your program. 

To set up a breakpoint, just click on the diamond to the left of the statement at 
which you want to stop, then click Go (Figure D.2). The program will halt execution 
when it reaches the breakpoint. To clear a breakpoint, click on the diamond again. 
To set up a temporary breakpoint, hold down the command or option key when you 
click on the diamond of the statement at which you want to stop. When you reach 
the breakpoint and then click Go, the breakpoint is cleared. 

If you want to examine a file other than the one in the Source window, select the 
Project window to bring it to the front, choose the file you want to debug, and select 
Debug from the Source menu of THINK C. The file will then appear in the Source 
window. The field in the bottom left-hand corner of the Source window displays the 
name of the current file. 

Data 

I * 
I ••••• , 

I j 11a ln<> 

: { 

¢~ lni lMoc inloshO; 
Oj SelUpMenus< >; 
¢I Se lUplH ndool<>; 
i 
I for ( · ·) 

Oj H~~dleEvenl( >; 
¢; ) 

! / * end main */ 

• m~in 

Figure D.l Bullseye project with the Debugger running. 



Appendix D: The Debugger Command Summary 

' 

I .o;oo 

i { o• oi 

•i 
1 

oi 
o! > 

lnitMacintosh<>; 
Se tUpMenus < >; 
Setupl-l i ndow<); 

for < · · > 
H~~d I eEven t <>; 

! /* end main */ 

+ m~in 

FigureD.2 Breakpoint selected. 

495 

The button actions can also be selected from the Debug menu of the Debugger. 
The debug menu also has some other debugging actions. Go Until Here is the same 
as setting a temporary breakpoint. If you click on a line of source code and select Go 
Until Here, the Debugger will run until that line of code is reached. Skip To Here 
allows you to skip execution of portions of your code. Be careful that whatever you 
are testing doesn't depend on the code you are skipping. 

You can step or trace continuously through your program if you click on these 
buttons with either the command or the option key depressed. To cancel the action, 
click on the Stop button. 

Monitor invokes the currently installed monitor (low-level debuggers like 
Macsbug or TMON). ExitToShell halts execution of your program and quits to 
THINKC. 

If you want to get information about the values of your variables as your code 
executes, use the Debugger's Data window. 

The Data Window of The Debugger 

The Data window lets you find out the values of your variables as the program 
runs. To use it, type in a C expression in the data entry area just under the title bar, 
and the value of the expression will be displayed in the right-hand column. For 
example, Figure D.3 shows the value of a string variable. As you can see, the string 
variable was displayed in hex format. To view the data correctly, click on the 
variable of interest in the left column, pull down the Data menu, and select Pascal 
String. The data are now displayed as a Pascal string. Figure D.4 lists the possible 
data format types with examples. 



496 Macintosh Programming Primer 

Figure D.3 Data window with expression. 

Decimal 
HeHadecimal 
Character 
Pointer 
Address 
C string 
Pascal string 
Floating Point 

7569994, -5000 
0HB11E1520 
'a', 'Chuck' 
0H7A7000 
[) 0H09FE44, struct 0H08FC14 
"GoodbyeCruel\nWorld\ 33" 
" \ pGoodbyeCruel\nWorld\ 33" 
90983.611 

Figure D.4 Data formats in the Debugger. 

In the Data menu, you can also Show Context, which will display the context 
for the expression selected in the Data window in the Source window.lfyou select 
a line in the Source window, you can then Set Context to change the context to the 
line highlighted in the Source window. If you want to make sure that an expression 
doesn't change its value, select Lock in the Data menu with the desired variable 
highlighted (Figure D.6). 

This appendix is meant to provide an overview of the Debugger. For more 
detailed information, read Symantec's THINK C User's Manual and Standard Li
braries Reference. 



Appendix D: The Debugger Command Summary 

Set ConteHt 
Show ConteHt 

Decimal 
HeHadecimal 
Character 
Pointer 
Rddress 
C String 
Pascal String 
Floating Point 

Lock 

Doto 

Figure D.5 Data menu in the Debugger. 

i 0 

Figure D.6 Locked variables in the Debugger. 

497 



AppendixE 

Debugging 
Techniques 
One of the most frustrating experiences 

in programming is running up against a 
really tough bug. In this appendix, we'll 

discuss some techniques for hunting 
down bugs, and some others for avoiding 

them in the first place. 



500 

Compilation Errors 

THE FIRST BUGS you're likely to encounter will pop up during compilation, when 
you've typed in your code and select Run from the Project menu. When THINK C 
asks you if you'd like to rebuild your project, click Yes. 

THINK C is now compiling your code. You'll see a dialog box similar to the one 
in Figure E.1: 

TYPING MISTAKES 

The first sign that something's amiss is the appearance of a bug alert. The one in 
Figure E.2 crops up a lot and seems frustratingly uninformative. Syntax errors are 
usually indicative of a misspelled keyword or bad programming grammar. For 
example, if you misspell #def i n e or type something like: 

EventRecord = theEvent; 

instead of 

Event Record theEvent: 

you'll end up with a syntax error. This happens frequently. Carefully review the line 
of code with the blinking cursor in the left-hand column. If you still can't find the 
bug, check the previous line. Is there a semicolon at the end of the line? Is there 
supposed to be one? 

Compiling bullWindows.c 

Lines: 156 

Total: 156 

Figure E.1 Compiling dialog box. 

II 
A syntaH error 

II 
Figure E.2 Syntax Error dialog box. 



Appendix E: Debugging Techniques 501 

Missing semicolons can cause several different types of bugs. For example, in 
Chapter 4's Event Tutor . c, we took the semicolon away from the end of three 
different lines and got three different errors-an i n v a 1 i d de c 1 a rat i on, a 
syntax error, and finally, am i s s i n g ; . C compilers are very tricky. 

Another popular error meassage is the xx x ha s not been de c 1 a red alert. 
Sometimes this is the result of a missing declaration, but often it's the result of a 
misspelled variable name. Remember, in C, upper and lower case are crucially 
different when it comes to identifiers. The variables my Pi ct u re and My Pi ct u re 
are completely different. Check your case. 

Another indicator of a typing error is the i l l e g a 1 token error message. 
Usually, this means you have a character in your code that shouldn't be there. 
Here's an example: 

myVar $ = 27: 

In this case, the $ was the illegal token. If you try repeatedly but still can't find 
the illegal token, try deleting and retyping the line in question. If that doesn't work, 
check the previous line. 

INDIRECT COMPILER ERRORS 

An example of a indirect compiler error is caused by a missing If i n cl u de file. For 
example, the printing program presented in Chapter 7 depended on the #i n c 1 u de 
file Pr i n t Mgr . h. This file is not one of the standard If i n c 1 u des automatically 
included by THINK C. If you leave out this If i n c 1 u de, you get an i n v a 1 i d 
dee 1 a ration error, and the cursor moves to the line: 

THPrint printRecordH; 

It turns out that TH Pr i n t is a special type declared in P r i n t Mgr . h. The real 
trick is to figure out which file to/fi nc 1 ude. Chapter 7 lists all the #inc 1 udes not 
automatically included by THINK C. You'll find these files in the Mac /Ii nc 1 udes 
folder on your THINK C disk. The files are well named, so picking a likely candidate 
shouldn't be too hard. Use the THINK C Find facility to search for the missing type 
or global variable. 

Another indirect compiler error stems from not closing your comment blocks. For 
example: 

/*my 1st comment * 
int i : 
/*my 2nd comment *I 
i = 10: 

This code will lead to an ' i · w a s not de c 1 a red error. The declaration ofi was 
swallowed up by the my 1 st co mm en t comment block, which was never closed. 

LINKER ERRORS 

If you call a procedure or function in your program that was never declared, you'll 
get a 1 ink failed error and a Fa i 1 ed Lin ks window will appear, listing the 



502 Macintosh Programming Primer 

routines that were called but that the linker couldn't locate. This error is often the 
result of a misspelled procedure name. For example: 

sysBeep< 20 ) : 

The compiler will accept this line because it will assume that you've written a 
routine called sys Beep ( ) that will be provided at link time. 

Improving Your Debugging Technique 

Once your program compiles, your next step is to get the bugs out. One of the best 
ways to debug a Mac program is to use a debugger like the THINK C Debugger 
described in Appendix D, or the TMON debugger from ICOM Simulations. Debug
gers are real life-savers. 

No matter which debugging tool you use, there are some things you can do to 
improve your debugging technique. 

BEING A GOOD DETECTIVE 

When your program crashes or exhibits some unusual behavior, you have to to be 
a detective. Did the system error occur just before your dialog box was scheduled to 
appear? Did those wavy lines start appearing immediately after you clicked on the 
OK button? 

The key to being a good detective is having a good surveillance technique. Try to 
establish a definite pattern in your program's misbehavior. Can you pinpoint 
exactly where in your code things started to go awry? These clues will help you home 
in on the offending code. 

If you can't tell by observation exactly when things went sour, don't give up. You 
can always use the binary method of bug control. 

Tlf~ BINARY METHOD 

The key to the binary method lies in establishing good boundary conditions for the 
bug. First, you'll need to establish a lower limit, a place in your code at which you 
feel fairly certain the bug has not yet occurred. You'd like the lower limit to be as 
·close to the actual bug as possible, but make sure the bug has not yet happened. 

Next, establish an upper limit in your code, a point by which you're certain the 
bug has occurred (because the system has crashed, or the screen has turned green, 
or whatever). 

To use the binary method, split the difference between the upper and lower 
limits. If the bug still has not occurred, split the difference again. Now, if the bug 
has occurred, you have a new upper limit. By repeating this procedure, you'll 
eventually locate the exact line of source code where the bug occurs. 

There are several different ways to split the difference between two lines of 
source code. If you're using a debugger, you can set a breakpoint halfway between 
the lines of code representing the upper and lower limits. Did you hit the breakpoint 
without encountering the bug? If so, set a new breakpoint, halfway between this one 
and the upper limit. 



Appendix E: Debugging Techniques 503 

If you don't have a debugger, use a ROM call like Sys Beep ( ) to give you a clue. 
Did you hear the beep before the bug occurred? If so, put a new Sys Beep ( ) halfway 
between the old one and the upper limit. The nice thing about using Sys Beep ( ) is 
that it is reasonably nonintrusive, unlike putting up a new window and drawing 
some debugging information in it, which tends to interfere with your program's 
basic algorithm. 

Recommended Reading 

In closing, we'd like to recommend some good reading material: your THINK C 
User's Manual! The User's Manual is a treasure trove of valuable tips for writing 
and debugging Mac programs. The more you know about the Macintosh and the 
THINK C development environment, the better you'll be at debugging your 
programs. 



AppendixF 

Building 
Hypercard 

XCMDs 
The introduction of HyperCard in 

August 1987 caused quite a stir in the 
Macintosh world. A complete program

ming environment in its own right, 
HyperCard became even richer with the 

addition of XCMDs and XFCNs. Now 
you can access the raw power of 

THINK C from inside HyperCard. 



506 

HYPERCARD CoMESWITH its own powerful programming language: HyperTalk. 
The designers of HyperTalk thoughtfully provided a mechanism for adding exten
sions to the HyperTalk command set. These extensions are code resources of type 
XCMD and XFCN. 

XCMDs (X-Commands) take a parameter block as input from HyperCard, 
perform some calculations, put the results back into the parameter block, and 
return to the calling script. XFCNs (X-functions) take the same parameter block as 
input, perform the same types of calculations, but return the results as a C or Pascal 
function would. 

We've written an XCMD (called XChooser) that puts the Chooser name in the 
parameter block and returns to HyperCard. A typical call of X Chooser looks like 
this: 

XChooser 
Put the result into card field 1 

We also created an X F C N (called F Chooser) that performs the same service. A 
typical call of F C h o o s e r looks like this: 

Put FChooser() into card field 1 

The source code for F Choose r and X Chooser is identical. One is saved as an 
X FCN and the other as an XCMD. In addition to the X FCN. c and XCMD. c files, you'll 
also need a set ofHyperCard service routines and the XCMD type definition include 
file. The service routines and the # i n c 1 u de file were kindly provided by the 
THINK C folks. We've included all the source code (as well as a HyperCard test 
stack and a resource mover stack) on the Mac Primer source code disk (use the 
coupon on the last page). All the source code is also presented in this Appendix, 
however, so the more intrepid among you can type it right in. 

There are 28 HyperCard service routines, each in its own source code file. You 
don't need to type in all 28 at once. In the example, you'll need only the routine in 
the file PasToZero. c. You may want to type that one in now. In addition, put the 
#include file, HyperXCmd. h, in thesamefolderastheotherMac/li nc 1 udes.All 
of the source code can be found later in this appendix. 

The XChooser XCMD 

Create a new project. Add MacTraps and the file Pas To Zero . c. Next, type in 
this source code, save it as X CM D . c, and add it to the project: 



Appendix F: Building HyperCard XCMDs 507 

#include "HyperXCmd.h" 

pascal void main(XCmdBlockPtr); 

/******************************** main *********/ 

pascal void main( paramPtr ) 
XCmdBlockPtr paramPtr: 
I 

StringHandle chooserStr255H; 

chooserStr255H = GetString( -16096 ) : 
Hlock( chooserStr255H ); 
paramPtr->returnVal ue = PasToZero( paramPtr. *chooserStr255H ) ; 
HUnl ock( chooserStr255H ) : 

Start by loading the Chooser name from resource ST R with ID= -16 0 9 6. Lock the 
handle and pass it, along with the parameter block you receive from HyperCard, to 
Pa s To Z e r o, which converts the Chooser name from a Pascal-based string to a zero
terminated string. Next, place the zero-terminated version of the Chooser name in 
the return Va l u e field of the parameter block, and return. 

Building the XCMD 

Before compiling X Chooser, you must first tell LightspeedC that you're building 
an X CM D. Pull down the Project menu and select Set Project Type ... When the dialog 
box appears, set the fields as they appear in Figure F.1: 

O Application 

O Desk Accessory 

O Deuice Driuer 

® Code Resource 

Name 

Type IHCMD ID 1400 

OK 

File Type I???? 
Creator I???? 
D Custom Header 

I Attrs ~ @!] 

( Cancel ) 

Figure F.1 Set Project Type dialog box. 



508 Macintosh Programming Primer 

I* 

*I 

Click the OK button. Pull down the Project menu and select Build Code 
Resource ... The standard file dialog will appear, asking you to name your new 
resource file. Call it X Chooser. 

Copying the XCMD Into a Stack 

Once X Chooser is built, use ResEdit to copy it into a stack. You can also copy the 
XCMD directly into HyperCard, but work with a copy to stay on the safe side. Once 
the XCMD is copied, you'll be able to access it from within any script. 

To create an X FCN, change XCMD to X FCN in the Set Project Type ... dialog box. 

HyperXCmd.h 

HyperXCmd.h Definitions for calling all standard 
HyperCard callback routines from C. 
©\pple Computer, Inc. 1987 
All Rights Reserved. 

See CFlash.C for an example of how to include this module in your 
C program. 

#include <MacTypes.h> 

typedef struct XCmdBlock 
short pa ramCount; 

Handle params[l6J; 
Handle returnValue; 
Boolean pass Flag; 

void (*entryPoint)(); I* to call back to HyperCard */ 
short request; 
short result; 
long i nArgs [8]; 
long outArgs[4J; 
I XCmdBlock, *XCmdBlockPtr; 

typedef unsigned char Str31[32J; 
/* 
typedef struct Str31 { 

char guts[32J; 

*I 

en um 

} ; 

} Str31, *Str31Ptr: 

xresSucc 0, 
xresFail, 
xresNotlmp 



Appendix F: Building HyperCard XCMDs 

I* request codes */ 
enum I 

I; 

xreqSendCardMessage 1, 
xreqEvalExpr, 
xreqStringLength. 
xreqStringMatch, 
xreqSendHCMessage, 
xreqZeroBytes, 
xreqPasToZero, 
xreqZeroToPas. 
xreqStrTolong, 
xreqStrToNum. 
xreqStrToBool. 
xreqStrToExt, 
xreqlongToStr. 
xreqNumToSt r. 
xreqNumToHex, 
xreqBoolToStr, 
xreqExtToStr, 
xreqGetGlobal. 
xreqSetGlobal. 
xreqGetFieldByName, 
xreqGetFieldByNum, 
xreqGetFieldByID, 
xreqSetFieldByName, 
xreqSetFieldByNum, 
xreqSetFieldByID, 
xreqStringEqual. 
xreqReturnToPas. 
xreqScanToReturn. 
xreqScanToZero = 39 /* was suppose to be 29! Oops! */ 

I* Forward definitions of glue routines. Main program 
must include XCmdGlue.inc.c. See XCmdGlue.inc.c for 
documentation of each routine. */ 

typedef void (*MyProcPtr) (); 

SendCardMessage( XCmdBl ockPtr. Stri ngPtr msg): 
EvalExpr(XCmdBlockPtr, StringPtr expr): 

StringLength(XCmdBlockPtr. StringPtr strPtr): 
StringMatch(XCmdBlockPtr, StringPtr pattern, Ptr target); 
ZeroBytes ( XCmdB 1 ockPt r . Pt r ds tPt r. long l ongCount); 

PasToZero(XCmdBlockPtr, StringPtr pasStr): 
ZeroToPas ( XCmdBl ockPtr, unsigned char *zeroStr, Stri ngPtr 

StrTolong(XCmdBlockPtr, unsigned char * strPtr): 
StrToNum(XCmdBlockPtr, unsigned char *str); 

StrToBool(XCmdBlockPtr,unsigned char *str>: 

509 

pascal void 
pascal Handle 
pascal long 
pascal Ptr 
pascal void 
pascal Handle 
pascal void 
pasStr); 
pascal long 
pascal long 
pascal Boolean 
pascal void 
pascal void 
pascal void 
pascal void 
*mystr): 
pascal void 
pascal void 
pascal Handle 

StrToExt(XCmdBlockPtr.unsigned char *str. double *myext); 
LongToStr(XCmdBlockPtr, long posNum. unsigned char *mystr); 
NumToStr(XCmdBlockPtr. long num, unsigned char *mystr); 
NumToHex(XCmdBlockPtr, long num. short nDigits, unsigned char 

BoolToStr(XCmdBlockPtr, Boolean bool, unsigned char *mystr): 
ExtToStr(XCmdBlockPtr, double *myext, unsigned char *mystr): 

GetGlobal(XCmdBlockPtr, StringPtr globName): 



510 Macintosh Programming Primer 

pascal void SetGlobalCXCmdBlockPtr. StringPtr globName, Handle globValue): 
pascal Handle GetFieldByName(XCmdBlockPtr, Boolean cardFieldFlag, StringPtr 
fieldName); 
pascal Handle GetFieldByNum(XCmdBlockPtr, Boolean cardFieldFlag, short fieldNum); 
pascal Handle GetFieldByID(XCmdBlockPtr.Boolean cardFieldFlag, short fieldID); 
pascal void SetFieldByName(XCmdBlockPtr. Boolean cardFieldFlag, StringPtr 
fieldName, Handle fieldVal); 
pascal void SetFieldByNum(XCmdBlockPtr, Boolean cardFieldFlag, short 
fieldNum,Handle fieldVal); 
pascal void SetFieldByID(XCmdBlockPtr, Boolean cardFieldFlag, short 
fieldID,Handle fieldVal): 
pascal Boolean StringEqual(XCmdBlockPtr. unsigned char *strl. unsigned char *str2); 
pa sea 1 void ReturnToPa s ( XCmdB 1 ockPtr. Ptr zeroSt r. St ri ngPtr pas Str); 
pa sea 1 void ScanToReturn ( XCmdBl ockPt r. Pt r *scanHndl): 
pascal void ScanToZero<XCmdBlockPtr. Ptr *scanHndl); 

BoolToStr.c 

#include "HyperXCmd.h" 

I* Convert a boolean to 'true' or 'false'. Instead of returning 
a new string, as Pascal does, it expects you to create mystr 

and pass it in to be filled. */ 
pascal void 
BoolToStr(paramPtr,bool ,mystr) 
register XCmdBlockPtr paramPtr; 
Boolean bool: 
St r 31 mys tr : 
I 

paramPtr->inArgs[OJ = (long)bool; 
paramPtr->inArgs[lJ = (long)mystr; 
paramPtr->request = xreqBoolToStr: 

(*paramPtr->entryPoint)(); 

EvalExpr.c 

#include <MacTypes.h> 
#include "HyperXCmd.h" 

I* Evaluate a HyperCard expression and return the answer. The answer is 
a handle to a zero-terminated string. 

*/ 
pas ca 1 Handle 
EvalExpr(paramPtr.expr) 
register XCmdBlockPtr paramPtr; 
StringPtr expr: 
I 

paramPtr->inArgs[OJ = (long)expr; 
paramPtr->request = xreqEvalExpr; 

(*paramPtr->entryPoint)(); 
return (Handle)paramPtr->outArgs[OJ; 



Appendix F: Building HyperCard XCMDs 

ExtToStr.c 

#include "HyperXCmd.h" 

I* Original comment: 
Convert an extended long integer to decimal digits in a string. 
Instead of returning a new string, as Pascal does, it expects 

you to create mystr and pass it in to be filled. */ 

/* My comment: 

*I 

I assume that an extended is supposed to be an 80-byte double. 
which is declared as double in LSC. I've changed "extended" to 
"double" to reflect this 

pascal void 
ExtToStr(paramPtr,myext,mystr) 
register XCmdBlockPtr paramPtr: 
double * myext: 
St r 31 mys t r : 
I 

paramPtr->inArgs[OJ = (long)myext: 
paramPtr->inArgs[l] = (long)mystr: 
paramPtr->request = xreqExtToStr; 

(*paramPtr->entryPoint)(); 

GetFieldBylD.c 

#include "HyperXCmd.h" 

/* Return a handle to a zero-terminated string containing the value of 
the field whise ID is fieldID. You must dispose of the handle. 

*I 
pascal Handle 
GetFieldByID(paramPtr,cardFieldFlag,fieldID> 
register XCmdBlockPtr paramPtr: 
Boolean cardFieldFlag; 
short fieldID: 
I 

paramPtr->inArgs[O] = (long)cardFieldFlag; 
paramPtr->inArgs[l] = fieldlD; 
paramPtr->request = xreqGetFieldBylD: 

(*paramPtr->entryPoint)(); 
return (Handl e>paramPtr->outArgs[O]: 

GetFieldByName.c 

#include "HyperXCmd.h" 

/* Return a handle to a zero-terminated string containing the value of 
field fieldName on the current card. You must dispose the handle. 

*/ 
pascal Handle 
GetFieldByName(paramPtr.cardFieldFlag.fieldName) 

511 



512 

register XCmdBlockPtr paramPtr; 
Boolean cardFieldFlag; 
StringPtr fieldName: 
I 

paramPtr->inArgs[O] = (long)cardFieldFlag; 
paramPtr->inArgs[l] = (long)fieldName; 
paramPtr->request = xreqGetFieldByName; 

(*paramPtr->entryPoint)(); 
return (Handle)pararnPtr->outArgs[OJ: 

GetFieldByNum.c 

#include NHyperXCmd.h" 

Macintosh Programming Primer 

I* Return a handle to a zero-terminated string containing the value of 
field fieldNum on the current card. You must dispose of the handle. 

*I 
pascal Handle 
GetFieldByNum(paramPtr, cardFieldFlag,fieldNum) 
register XCmdBlockPtr paramPtr: 
Boolean cardFieldFlag; 
short fieldNum; 
I 

paramPtr->inArgs[O] = Clong)cardFieldFlag; 
paramPtr->inArgs[l] = fieldNum: 
paramPtr->request = xreqGetFieldByNum: 

C*paramPtr->entryPoint)(); 
return CHandle)paramPtr->outArgs[OJ; 

GetGlobal.c 

#include "HyperXCmd.h" 

I* Return a handle to a zero-terminated string containing the value of 
the specified HyperTalk global variable. 

*/ 
pascal Handle 
GetGlobal(paramPtr,globName) 
register XCmdBlockPtr paramPtr; 
StringPtr globName; 
I 

paramPtr->inArgs[OJ = (long)globName; 
paramPtr->request = xreqGetGlobal: 

C*paramPtr->entryPoint)(); 
return CHandl e)paramPtr->outArgs[OJ: 



Appendix F: Building HyperCard XCMDs 

LongToStr.c 

#include "HyperXCmd.h" 

I* Convert an unsigned long integer to a Pascal string. Instead of 
returning a new string, as Pascal does, it expects you to 
create mystr and pass it in to be filled. 

*I 
pas ca 1 void 
LongToStr(paramPtr, posNum. mystr) 
register XCmdBlockPtr paramPtr; 
long posNum; 
St r 31 mys tr : 
I 

paramPtr->inArgs[OJ = posNum: 
paramPtr->inArgs[l] = (long)mystr; 
paramPtr->request = xreqlongToStr; 

C*paramPtr->entryPoint)(); 

NumToHex.c 

#include "HyperXCmd.h" 

/* Convert an unsigned long integer to a hexadecimal number and put it 
into a Pascal string. Instead of returning a new string, as 
Pascal does, it expects you to create mystr and pass it in to be filled. 

*I 
pas ca 1 void 
NumToHex(paramPtr. num, nDigits. mystr) 
register XCmdBlockPtr paramPtr; 
long num; 
short nDigits; 
St r 31 mys t r ; 
I 

paramPtr->inArgs[OJ = num; 
paramPtr->inArgs[l] = nDigits; 
paramPtr->inArgs[2] = (long)mystr: 
paramPtr->request = xreqNumToHex; 

(*paramPtr->entryPoint)(); 

NumToStr.c 

#include "HyperXCmd.h" 

/*Convert a signed long integer to a Pascal string. Instead of 
returning a new string, as Pascal does. it expects you to 

create mystr and pass it in to be filled. 
*I 

pasca 1 void 
NumToStr(paramPtr.num,mystr) 
register XCmdBlockPtr paramPtr; 
long num: 
St r 31 mys tr ; 
I 

513 



514 

paramPtr->inArgs[O] = num: 
paramPtr->inArgs[l] = (long)mystr: 
paramPtr->request = xreqNumToStr: 

(*paramPtr->entryPoint)(); 

PasToZero.c 

#include "HyperXCmd.h" 

Macintosh Programming Primer 

I* Convert a Pascal string to a zero-terminated string. Returns a handle 
to a new zero-terminated string. The caller must dispose the handle. 
You'll need to do this for any result or argument you send from 
your XCMD to HyperTalk. Note that if you use C-format strings, you won't 
need to do this from C. 

*/ 
pascal Handle 
PasToZero{paramPtr,pasStr) 
register XCmdBlockPtr paramPtr: 
StringPtr pasStr: 
I 

paramPtr->inArgs[O] = (long)pasStr; 
paramPtr->request = xreqPasToZero: 

{*paramPtr->entryPoint){); 
return {Handle)paramPtr->outArgs[OJ: 

ReturnToPas.c 

#include "HyperXCmd.h" 

I* zeroStr points into a zero-terminated string. Collect the 
characters from there to the next carriage Return and return 
them in the Pascal string pasStr. If a Return is not found. 
collect chars until the end of the string. 

*I 
pascal void 
ReturnToPas(paramPtr.zeroStr,pasStr) 
register XCmdBlockPtr paramPtr; 
Ptr zeroStr: 
StringPtr pasStr: 
I 

paramPtr->inArgs[OJ = (long)zeroStr; 
paramPtr->inArgs[lJ = (long)pasStr: 
paramPtr->request = xreqReturnToPas; 

(*paramPtr->entryPoint)(); 



Appendix F: Building HyperCard XCMDs 

ScanToReturn.c 

#include "HyperXCmd.h" 

/* Move the pointer scanPtr along a zero-terminated 
string until it points at a Return character 
or a zero byte. 

*I 
pascal void 
ScanToReturnCparamPtr,scanHndl) 
register XCmdBlockPtr paramPtr; 
Ptr * scanHndl: 
I 

paramPtr->inArgs[OJ = Clong)scanHndl; 
pararnPtr->request = xreqScanToReturn; 

(*paramPtr->entryPoint)(); 

ScanToZero.c 

#include "HyperXCmd.h" 

I* Move the pointer scanPtr along a zero-terminated 
string until it points at a zero byte. 

*/ 
pascal void 
ScanToZero(paramPtr,scanHndl) 
register XCmdBlockPtr paramPtr; 
Ptr * scanHndl: 
I 

paramPtr->inArgs[OJ = (long)scanHndl: 
paramPtr->request = xreqScanToZero; 

(*paramPtr->entryPoint)(); 

SendCard.Message.c 

#include "HyperXCmd.h" 

/* Send a HyperCard message Ca command with arguments) to the current card. 
msg is a pointer to a Pascal-format string. 

*I 
pascal void 
SendCardMessage<paramPtr, msg) 
register XCmdBlockPtr paramPtr; 
StringPtr msg; 
I 

paramPtr->inArgs[OJ = Clong)msg; 
paramPtr->request = xreqSendCardMessage; 

C*paramPtr->entryPoint)(); 

515 



516 Macintosh Programming Primer 

SetFieldByID.c 

#include "HyperXCmd.h" 

I* Set the value of the field whose ID is fieldID to be the zero
terminated string in fieldVal. The contents of the Handle are 
copied. so you must still dispose it afterwards. 

*I 
pascal void 
SetFieldBylO(paramPtr,cardFieldFlag,fieldID.fieldVal) 
register XCmdBlockPtr paramPtr: 
Boolean cardFieldFlag; 
short fieldID; 
Handle fieldVal; 
I 

paramPtr->inArgs(OJ = (long)cardFieldFlag; 
paramPtr->inArgs[l] = fieldID: 
paramPtr->inArgs[2J = (long)fieldVal: 
paramPtr->request = xreqSetFieldByID: 

(*paramPtr->entryPoint)(); 

SetFieldByName.c 

#include "HyperXCmd.h" 

I* Set the value of field fieldName to be the zero-terminated string 
in fieldVal. The contents of the Handle are copied, so you must 
still dispose it afterwards. 

*I 
pascal void 
SetFieldByName(paramPtr.cardFieldFlag.fieldName,fieldVal) 
register XCmdBlockPtr paramPtr: 
Boolean cardFieldFlag; 
StringPtr fieldName; 
Handle fieldVal; 
I 

paramPtr->inArgs(OJ = (long)cardFieldFlag; 
paramPtr->inArgs[l] = (long)fieldName; 
paramPtr->inArgs[2J = (long)fieldVal: 
paramPtr->request = xreqSetFieldByName; 

(*paramPtr->entryPoint)(); 

SetFieldByNum.c 

#include "HyperXCmd.h" 

I* Set the value of field fieldNum to be the zero-terminated string 
in fieldVal. The contents of the Handle are copied, so you must 
still dispose it afterwards. 

*/ 
pas ca 1 void 
SetFieldByNum(paramPtr,cardFieldFlag,fieldNum.fieldVal) 



Appendix F: Building HyperCard XCMDs 

register XCmdBlockPtr paramPtr; 
Boolean cardFieldFlag; 
short fieldNum; 
Handle fieldVal: 
I 

paramPtr->inArgs[OJ = (long)cardFieldFlag: 
paramPtr->inArgs[l] = fieldNum: 
paramPtr->inArgs[2J = (long)fieldVal: 
paramPtr->request = xreqSetFieldByNum: 

(*paramPtr->entryPoint)(); 

SetGlobal.c 

#include "HyperXCmd.h" 

/* Set the value of the specified HyperTalk global variable to be 
the zero-terminated string in globValue. The contents of the 
Handle are copied, so you must still dispose it afterwards. 

*I 
pascal void 
SetGlobal(paramPtr.globName.globValue) 
register XCmdBlockPtr paramPtr; 
StringPtr globName: 
Handle globValue: 
I 

paramPtr->inArgs[OJ = (long)globName: 
paramPtr->inArgs[lJ = Clong)globValue: 
paramPtr->request = xreqSetGlobal: 

(*paramPtr->entryPoint)(); 

StringEqual.c 

#include "HyperXCmd.h" 

/* Return true if the two strings have the same characters. 
Case insensitive compare of the strings. 

*I 
pascal Boolean 
StringEqual(paramPtr,strl.str2) 
register XCmdBlockPtr paramPtr: 
unsigned char * strl; 
unsigned char * str2: 
I 

paramPtr->inArgs[OJ = Clong)strl: 
paramPtr->inArgs[l] = (long)str2; 
paramPtr->request = xreqStringEqual: 

(*paramPtr->entryPoint)(); 
return CBoolean)paramPtr->outArgs[OJ: 

517 



518 Macintosh Programming Primer 

StringLength.c 

#include "HyperXCmd.h" 

/* Count the characters from where strPtr points until the next zero byte. 
Does not count the zero itself. strPtr must be a zero-terminated string. 

*/ 
pascal long 
StringlengthCparamPtr.strPtr) 
register XCmdBlockPtr paramPtr: 
StringPtr strPtr; 
{ 

paramPtr->inArgs[OJ = Clong)strPtr; 
paramPtr->request = xreqStringlength; 

(*paramPtr->entryPoint)(); 
return paramPtr->outArgs[OJ; 

StringMatch.c 

#include "HyperXCmd.h 0 

/* Perform case-insensitive match looking for pattern anywhere in 
target, returning a pointer to first character of the first match, 
in target or NIL if no match found. pattern is a Pascal string, 
and target is a zero-terminated string. 

*/ 
pascal Ptr 
StringMatch(paramPtr, pattern. target) 
register XCmdBlockPtr paramPtr; 
StringPtr pattern; 
Ptr target; 
I 

paramPtr->inArgs[OJ = (long)pattern; 
paramPtr->inArgs[l] = Clong)target: 
paramPtr->request = xreqStringMatch; 

(*paramPtr->entryPoint)(); 
return CPtr)paramPtr->outArgs[OJ; 

StrToBool.c 

#include "HyperXCmd.h" 

I* Convert the Pascal strings 'true· and 'false' to booleans. 
*/ 

pascal Boolean 
StrToBool(paramPtr,str) 
register XCmdBlockPtr paramPtr; 
Str31 str; 
I 

paramPtr->inArgs[OJ = (long)str; 
paramPtr->request = xreqStrToBool: 

(*paramPtr->entryPoint)(); 
return (Boolean)paramPtr->outArgs[OJ: 



Appendix F: Building HyperCard XCMDs 

StrToExt.c 

#include "HyperXCmd.h" 

I* Ori gi na 1 comment: 
Convert a string of ASCII decimal digits to an extended long integer. 

Instead of returning a new extended. as Pascal does. it expects you 
to create myext and pass it in to be filled. */ 

/* My comment: extended, as far as I know. is an 80-bit double, not a 
long integer. Since LSC doubles are 80-bit. I've changed myext to 
a pointer to a double */ 

pascal void StrToExt(paramPtr, str, myext) 
register XCmdBlockPtr paramPtr; 
Str31 str; 
double * myext: 
I 

paramPtr->inArgs[OJ = Clong)str: 
paramPtr->inArgs[lJ = Clong)myext: 
paramPtr->request = xreqStrToExt; 

C*paramPtr->entryPoint)(): 
l 
I* FUNCTION StrToExt(str: Str31): Extended; 
VAR x: Extended: 
BEGIN 

WITH paramPtrA DO 
BEGIN 

inArgs[lJ := ORDC@str): 
i n Ar gs [ 2 ] : = 0 RD ( @x ) ; 
request := xreqStrToExt; 
DoJsr(entryPoint); 
StrToExt x: 

END; 
END; *I 

StrToLong.c 

#include "HyperXCmd.h" 

I* Convert a string of ASCII decimal digits to an unsigned long integer. 
*/ 

pascal long 
StrTolongCparamPtr, strPtr) 
register XCmdBlockPtr paramPtr: 
Str31 strPtr; 
I 

paramPtr->inArgs[O] = (long)strPtr: 
paramPtr·>request = xreqStrTolong; 

(*paramPtr->entryPoint)(); 
return (long)paramPtr->outArgs[O]: 

519 



520 Macintosh Programming Primer 

StrToNum.c 

#include "HyperXCmd.h" 

I* Convert a string of ASCII decimal digits to a signed long integer. 
Negative sign is allowed. 

*I 
pascal long 
StrToNum(paramPtr. str) 
register XCmdBlockPtr paramPtr; 
Str31 str; 
I 

paramPtr->inArgs[OJ = (long)str: 
paramPtr->request = xreqStrToNum: 

(*paramPtr->entryPoint)(); 
return paramPtr->outArgs[OJ: 

ZeroBytes.c 

#include "HyperXCmd.h" 

I* Write zeros into memory starting at destPtr and going for longCount 
number of bytes. 

*I 
pascal void 
ZeroBytes (pa ramPt r, dst Pt r. 1 ongCount) 
register XCmdBlockPtr paramPtr: 
Ptr dstPtr; 
long longCount: 
I 

paramPtr->inArgs[O] = Clong)dstPtr: 
paramPtr->inArgs[l] = longCount: 
paramPtr->request = xreqZeroBytes: 

(*paramPtr->entryPoint)(); 

ZeroToPas.c 

#include "HyperXCmd.h" 

I* Fill the Pascal string with the contents of the zero-terminated 
string. Useful for converting the arguments of any XCMD to 
Pascal strings. 

*/ 
pascal void 
ZeroToPas(paramPtr.zeroStr,pasStr) 
register XCmdBlockPtr paramPtr: 
unsigned char *zeroStr: 
StringPtr pasStr: 
I 

paramPtr->inArgs[OJ = Clong)zeroStr: 
paramPtr->inArgs[l] = (long)pasStr: 
paramPtr->request = xreqZeroToPas: 

(*paramPtr->entryPoint)(); 



AppendixG 

Bibliography 
Apple Computer, Inc. Inside Macintosh, Volume I. Reading, Mass.: Addison-Wesley, 

1985. $24.95. 
Apple Computer, Inc. Inside Macintosh, Volume II. Reading, Mass.: Addison

Wesley, 1985. $24.95. 
Apple Computer, Inc. Inside Macintosh, Volume III. Reading, Mass.: Addison

Wesley, 1985. $19.95. 
Apple Computer, Inc. Inside Macintosh, Volume IV. Reading, Mass.: Addison

Wesley, 1986. $24.95. 
Apple Computer, Inc. Inside Macintosh, Volume V. Reading, Mass.: Addison

Wesley, 1988. $26.95. 
Apple Computer, Inc. Inside Macintosh X-Ref. Reading, Mass.: Addison-Wesley, 

1988. $9.95. 
Apple Computer, Inc. Programmer's Introduction to the Macintosh Family. Read

ing, Mass.: Addison-Wesley, 1988. $22.95 (HC). 
Apple Computer, Inc. Technical Introduction to the Macintosh Family. Reading, 

Mass.: Addison-Wesley, 1987. $19.95. 
Chernicoff, Stephen. Macintosh Revealed, Volume I: Unlocking the Toolbox, 2nd 

edition. Indianapolis: Hayden, 1987. $26.95. 
Chernicoff, Stephen. Macintosh Revealed, Volume II: Programming with the 

Toolbox, 2nd edition. Indianapolis: Hayden, 1987. $24.95. 
Goodman, Paul. Advanced Macintosh Pascal. Indianapolis: Hayden, 1986. $19.95. 
Knaster, Scott. How to Write Macintosh Software. Indianapolis: Hayden, 1988. 

$24.95. 
Knaster, Scott. Macintosh Programming Secrets. Reading, Mass.: Addison-Wesley, 

1988. $24.95. 
Smith, David E., ed. The Best of MacTutor, The Macintosh Programming Journal, 

Volume 1. Macintosh Technical Library. Reading, Mass: Addison-Wesley. 
1986. $24.95. 

521 



522 Macintosh Programming Primer 

Smith, David E., ed. The Complete MacTutor, The Macintosh Programming Journal, 
Volume 2. Macintosh Technical Library. Reading, Mass: Addison-Wesley. 
1987. $24.95. 

West, Joel. Programming with Macintosh Programmer's Workshop. New York: 
Bantam, 1987. $29.95. 

A good C language reference is: 

Kernighan, Brian W., and Ritchie, Dennis M. The C Programming Language, 2nd 
edition. Englewood Cliffs, N.J.: Prentice-Hall, 1988. $29.95. 



Index 
Access path, 311 
activateEvt,105,123,133-34 
Add ... , 491 
Add and Remove, 491 
Adding libraries, 4~1 
AddResMenu(),175 
AdjustMenus(),278,288-89 
Alert (AL RT) 

purpose of, 198 
ResEdit and making, 207 
resources, 218-19 
resources for Pager, 331 
resources for PrintPict, 313-14 
resources for ShowClip, 298-99 
resources for Sounder, 348 
resources for WindMaker, 272 
stages of, 207 
in Timer, 159, 161, 163 
types of, 206 

a 1 tDBoxProc window, 49, 51 
Always Compact, 487-88 
& operator, 30-31 
applEvt,106,133,134 
app2Evt,106,133, 134 
app3Evt,106, 133, 134 
app4Evt, 106, 135 
AppleLink, 402 
Apple Programmer's and Developer's 

Association (APDA), 25 
Apple's Certified Developer 

Program, 402 
Application(s) 

font, 69 
icon, 357 
in Project menu, 482-83 
version information, 357 

Application MultiFinder 
requirements, 357 

arrow, 67 
autoKey,105 
Aztec C, 7 

Background Null Events, 483 
Balance, 487 
BeginUpdate(),131-32,136,176 
Big long window technique, 45 
Binary method, 502-3 
B ND L (bundle) resource, 369, 376-80 
BoolToStr.c,510 
Bozo flag, 369 
Bring up to Date, 485 
Build Application, 485 
Build Library, 485 
Bundle flag, 369 
Bundle (BNDL) resource, 369, 376-80 
Busy bit, 369 
Buttons, 202 

Caution alerts, 206 
CenterPict() 

in EventTutor, 122, 141, 436 
in Pager, 338, 346, 477 
in ShowClip, 302, 306, 468 
in ShowPICT, 91, 424 
in WindowMaker, 281, 293, 465 

Changed flag, 369 
Check boxes, 202 
Check Item(), 175 
Check Link, 485 
CheckStyles(),170,182,443-44 
Check Syntax, 491 
Classic QuickDraw, 83 

523 



524 

Clean Up, 492 
Clipboard, 295 
Close, 486 
Close All, 492 
Close & Compact, 482 
Close box, 48, 49 
Close Project, 482 
Code Generation, 488 
C 0 DE resources, 34, 484 
Color ovals, changing, 82-83 
Compile, 491 
Compiler flags, 488 
Confirm Auto-Make, 487 
Confirm Saves, 487 
Control Manager, 201, 327 
Controls, dialog, 201-3 
CountDown(),239,258-60,458-59 
CreateWi ndow( ), 280, 291-92, 

464-65 
Creator, 484 
CtoPstr( ), 29 
Cursor control, I n i t Cursor ( ) , 68 

Data forks, 34-35, 370 
Data window of the Debugger, 

495-97 
dBoxProc window, 49, 51 
deactivateEvt,124 
Debug,491 
Debugger(s) 

MacsBug, 403 
TMON,403-4 
User, 485 

Debugger, source-level, 8, 403, 489 
data window of, 495-97 
source window of, 494-95 
summary of commands, 493-97 

Debugging techniques 
compilation errors, 500-501 
how to improve, 502-3 
illegal token, 501 
illegal use of in-line Macintosh 

function, 28 
indirect compiler errors, 502 
invalid declaration, 501 
linker errors, 501-2 
syntax,500-501 

J/d e f i n e statement 
in EventTutor, 125-26, 428-29 
in Flying Line, 425 
in Mondrian, 421 
inPager,333,339,472-73 
in PrintPICT, 316, 322, 469 
purpose of, 28, 66 
in Reminder, 229-30, 244-46, 

448-49 

in ShowClip, 300, 304, 466 
in Show Pict, 423 
in Sounder, 350, 352, 478 

Index 

in Timer, 163-64, 172-73, 436-37 
in WindowMaker, 274-75, 284, 

460 
in Zinger, 183, 190, 444 

Desk accessories, 153, 484 
Desk scrap, 295 
Desktop, rebuilding the, 384-86 
Device drivers, 484 
Dialog boxes 

adding, 207-12 
buttons, 202 
check boxes, 202 
controls, 201-4 
dials, 203-4 
disabled items, 210 
ellipsis and, 198 
how they work, 199-201 
modal, 199-200, 201 
modeless, 200, 201 
purpose of, 198 
radio buttons, 202-3 
ResEdit and making, 204-5 
resources, 216-17 
resources for Pager, 331 
resources for PrintPict, 313 
resources for ShowClip, 299 
resources for Sounder, 348 
resources for WindMaker, 270-71 

Dialoglnit(),231,248,450-51 
Dialog Item List (DI TL), 159, 161 
Dialog Manager, 68 
Dials, 203-4 
d i s k Ev t, 105 
Display as Text, 364 
Display Graphically, 364 
dlgHook,309 
documentProc window, 48, 49, 50 
DoDialogs(),318,324,470-71 
Drag region, 48 
DragWindow(),137 
DrawClock(),167,177,440 
DrawControls(), 328 
DrawEventString(),120, 135,433 
Drawing 

lines, 55 
pictures, 58 
shapes, 56 
text, 56-58 

Drawl i ne ( ), 95, 101, 428 
DrawMenuBar(),175 
DrawMyPicture() 

in EventTutor, 121-22, 140-41, 
435-36 



Index 

in ShowPICT, 90-91, 424 
in WindowMaker, 280, 293, 465 

DrawPopUp(),185,191,193,446 
DrawPopUpNumber(),185,193,446 
DrawRandomRect(),77-78,422 
driverEvt,106,133, 134 

Edit Menu, 224, 226-27, 362, 
486-89 

Ellipsis, dialog boxes and, 198 
EndUpdate(),131-32,176 
ErrorHandler() 

in Pager, 338, 346, 478 
in PrintPICT, 319, 326, 472 
in ShowClip, 302-3, 306-7, 468 
in Sounder, 351, 354, 479 
in WindowMaker, 281, 293-94, 

466 
Error messages. See Debugging 

techniques 
Eva l Expr. c, 510 
Event(s) 

background null, 483 
definition of, 104 
handling, 112-13 
Manager, 104 
masks, 111 
queue,104 
retrieving, 109-12 
suspend and resume, 483 
types, 105-7 

EventRecord, 104, 111 
EventTutor 

code, 125-37,428-36 
description of, 113-14 
resources, 114-22 
running, 122-25 
setting up, 114 

everyEvent, 111 
Extern declaration, 28-29 
ExtToStr. c, 511 

File Busy bit, 369 
fileFilter, 309 
File information dialog box, 369 
File Lock bit, 369 
File Manager, 307, 309-11 
File menu, 224-25, 362, 485-86 
File Protect flag, 369 
File Reference Resource (FR E F ), 

375-76 
File Type, 484 
F i l l Re c t ( ) , 99 
F i n d Con t r o l ( ) , 328-29 
Finder flags, 369-70 

Finder resources, 356 
BNDL,369,376-80 
categories, 357 
FREF,375-76 
ICN#,371-74 
installing, 366-80 
signature, 357, 380-84, 389 
SIZE,357,390-91 
vers,357,382,386-90 

FindWindow(),137,328-29 
Flags,finder,369-70,488 
FlushEvents(),67 
Flying Line program 

code,96-101,425-28 
description of, 60, 92-95 
running, 96 

fName, 311 
Folders, 310 
Font, 56 

application, 69 
in Hello2 program, 69-70 
InitFonts(),67 
Manager, 67 
system, 69 

F r am e A r c ( ) , 82 
FrameRoundRect(),80 
FR E F (File Reference Resource), 

375-76 
FSCl ose( ), 311 
FSOpen ( ), 311 
FSRead ( ), 311 
Full Titles, 492 
FUNCT I ONs, 27 

gAppleMenu,172,175 
gClockWindow,172 
gCurrentStyle,172, 181 
gCurrentTime, 172 
gCurRow,126 
gOone,126,172 
gOragRect,126,172 
Get Clip(), 140 
GetDitem( ), 212 
GetFieldByID.c,511 
GetFieldByName.c,511-12 
GetFieldByNum.c,512 
Get Fil eName C ) , 318, 324, 470 
GetGlobal .c,512 
Get Info, 491 

525 

GetIText( ), 211 
GetNewWindow(),26-27,52 
GetNextEvent(), 109,110, 111-12 
Get P i c t u re ( ) , 89 
GetScrap( ), 297 
gEventWindow,113,124,126 



526 

gFontMenu, 172,175 
gLastFont,172 
Global coordinate system, 45 
Global variables, 67 
gMaxRow,126 
Go-away box, 49 
gOldTime, 172 
gPictureHandle,126 
gPictureWindow, 88,90 
gPictWindow,124, 125, 126 
gPopUpRect,195 
Gra fPort data structure, 54 
Grow box, 49 
GrowWindow(), 138 
g Size Re ct, 126 
gStyleMenu, 172,175 
gTheEvent, 126 
gThePicture,88 
gWNEimplemented,126,172 

HandleAppleChoice() 
in Reminder, 234, 252-53, 453-54 
in Timer, 168, 179, 441-42 
in WindowMaker, 279, 290, 464 

HandleDialogC ),236-37,254-57, 
455-56 

HandleEditChoice(),280,291 
HandleEvent(),109 

in EventTutor, 118-20, 129-30, 
431-33 

inPager,335,342,474-75 
in Reminder, 233, 250, 452 
in Timer, 165, 176-77, 439-40 
in WindowMaker, 276-77, 287, 

462 
in Zinger, 186, 194, 447 

HandleFileChoice() 
in Reminder, 235, 252-54, 454-55 
in Timer, 169, 180, 442 
in WindowMaker, 279, 290-91, 

464 
HandleFontChoiceC ),169,175, 

180-81,442 
HandleMenuChoice() 

in Reminder, 234, 251-52, 453 
in Timer, 168, 176, 178-79, 441 
in WindowMaker, 278-79, 289-90, 

463 
HandleMouseDown() 

in EventTutor, 120-21, 138, 
434-35 

inPager,335-36,342-43,475-76 
in Reminder, 233, 251, 452-53 
in Timer, 167, 176, 177-78, 440-41 
in WindowMaker, 277, 288, 463 
in Zinger, 186-87, 195, 447-48 

Index 

HandleNul 1 ( ),167,176,177,440 
Handles, 88-89, 256 
Handl eStyl eChoi ce< ), 169-70, 

181-82,443 
Hello, World program 

adding libraries, 40-41 
creating a new project, 35-37 
entering source code, 37-40 
problem with, 41 
running,41 

Hello.c,420 
Hello2.c,420-21 
Hello2 program 

adding an icon to, 370-75 
changing fonts, 69-70 
changing text size, 71 
changing text style, 70-71 
code,62-64,66-69 
completing a standalone 

application, 358-59 
running, 65 
setting up, 60-62 

Hi deWi ndow( ), 52 
Hierarchical Filing System (HFS), 

307,310 
Hierarchical menu, 146-4 7 
Hierarchical submenu IDs, 157 
HyperCard, 9 

buttons, 202 
X CM Os, 18, 505-20 

HyperTalk, 506 
HyperXCmd.h,508-10 

ICN#,371-74 
Icon 

adding an, to Hello2, 370-75 
application, 357 
mask, 371 

Icons ( ' S I C N ' ), 220 
ID, resource versus local, 376 
Ignore Case, 487 
#include statement, 28, 420 
I n fo Sc r a p ( ) , 296 
Info World, 398 
I n i t Cu r s o r ( ) , 68 
InitDi al ogs( ), 68 
Inited bit, 369 
In it Fonts C ) , 67 
In itGraf ( ), 67 
InitMenus(),67,68 
InitWindows(),67,68 
InsertMenu( ),175 
Inside Macintosh, 398-400 
Interface, 2, 3-4 
InvalRect(),138,139 
I nvertArc ( ), 82 



Index 

InvertRoundRect(),81 
Invisible bit, 369 
IsDAWindow(),278,288,289 

keyDown. 105 
KeyRepThresh,105 
Key Thresh, 105 
keyUp, 105 

Libraries, adding, 40-41 
Lines,drawing,55 
Lineslnit( ),94,99,426 
Li n e To ( ) , 55 
Linker errors, 501-2 
Lisa, 4 
Load Library, 491 
LoadPicture() 

in EventTutor, 117, 128, 430 
in ShowPICT, 90, 424 
in WindowMaker, 276, 286, 

461 
Lo a d Sc r a p ( ) , 296 
Local coordinate system, 46 
LocalToGlobal(),195 
Locked flag, 369 
LongToStr.c,513 

MacDraw, 58 
Macintosh 

background of, 2-3 
books on, 401 
compatibility of, 5 
Developer Technical Support, 

402 
Filing System (MFS), 307, 

310 
periodicals, 398 
Programmer's Workshop 

(MPW), 7, 403 
structure of a program, 59, 

107-9 
technical references for, 

400-401 
writing applications, 10 

MacPaint, 58 
MacsBug, 403 
MacTraps, 40 
MacTutor, 398 
MacUser, 398 
MacWeek, 398 
MacWorld, 398 
main ( ) 

in EventTutor, 116, 126, 129, 
429 

in Flying Line, 93, 97, 425 

in Hello2, 66, 420 
in Mondrian, 76, 421 
in Pager, 333, 339, 4 73 
in PrintPICT, 317, 323, 469 

527 

in Reminder, 230, 246-47, 449-50 
in ShowClip, 301, 304, 466 
in ShowPICT, 89, 423 
in Sounder, 350, 352, 478 
in Timer, 164, 173, 437 
in WindowMaker, 275, 285, 461 
in Zinger, 183, 191, 444 

Main event loop, 108-9 
Mainloop() 

in EventTutor, 117, 431 
in Flying Line, 94, 99-100, 426-27 
in Mondrian, 77, 422 
in Pager, 335, 341, 474 
in Reminder, 232, 250, 452 
in ShowClip, 301-2, 305-6, 467-68 
in Timer, 166, 175, 439 
in WindowMaker, 276, 287, 462 
in Zinger, 185, 194, 447 

Make ... ,491 
MakeSound(),351,353,479 
Managers, 4-5 

See also under type of 
Match Words, 487 
MBAR, 149 

resource for Reminder, 222-23 
resource for Timer, 150-52 
resource for WindMaker, 266 

Menu(s) 
adding, 148-49 
bar, 144 
creating your own, 147 
edit,224,226-27,362,486-89 
file,224-25,362,485-86 
hierarchical, 146-47 
hierarchical submenu IDs, 157 
InitMenus(),67,68 
items, 145 
parts of, 144-46 
pop-up,147 
project, 482-85 
pull down, 146 
ResEdit, 362 
resources for Reminder, 222-27 
resources for WindowMaker, 

266-73 
search, 489-90 
source, 491 
tear-off, 148 
window, 492 

MenuBarlnit() 
in Reminder, 232, 249, 451 
in Timer, 165, 174-75, 438-39 



528 

Menu Ba r I n i t ( ) (cont.) 
in WindowMaker, 275, 285-86, 

294-95,461 
in Zinger, 184, 192, 445 

Minimalist, 391-94 
ModalDialog(),210 
Modal dialogs, 199-200, 201 
Modeless dialogs, 200, 201 
Mode of text, 58 
Mondrian program 

code, 76-79,421-23 
description of, 56, 57, 60, 73 
resources, 73-75 
running, 75-76 
variants, 79-83 

More Memory, 488 
Mounted volume, 361 
mouseDown,105,137-41 
mouseMoved, 106 
mouseRgn, 112 
mouseUp,105 
Multi-File Search, 490 
MultiFinder 

Aware, 483 
-friendly applications, 242 
Notification Manager and, 199 
Printer driver, 369 
purpose of, 109-10 
SIZE resource, 357 

Multi-Segment box, 484 

Name field, 484 
networkEvt,106,133, 134 
New, 486 
NewControl(),327-28 
NewHandl e( ), 312 
New Project, 482 
NewWi ndow( ), 98 
NM Inst a 11 ( ) , 214 
NMRec,213-14 
NMRemove( ), 214 
noGrowDocProc window, 49, 50 
Note alerts, 206 
Notification Manager 

MultiFinder and, 199 
purpose of, 212 
resources for, 220-22 
structure, 213-14 

Not i f y I n i t ( ) , 232, 249-50, 
451-52 

nullEvent,105,130, 176 
NumToHex.c,513 
NumToStr.c,513-14 

On Desk flag, 369 
Open, 486 

Open Project, 482 
Open Selection, 486 
Options, 487 
Owner ID, 374 
Owner Type, 37 4 

Pager 
code,333-46,472-78 
description of, 329 
how it works, 338-46 
resources for, 329-32 
setting up, 329 

P a i n t Arc ( ) , 82 

Index 

Pai n t 0 val ( ) , 78 
PaintRect(),79,99 
PaintRoundRect(),79 
Parameters, passing, 30-31, 292 
Pa ramText ( ), 211 
Pascal 

data type compared with C, 27-28 
strings, 29 

PasToZero.c,514 
PC Week, 398 
Pen, changing graphics, 53-54 
P ICTs, 58 
Pictures, drawing, 58 
Pixels, 44 
p 1 a in DB ox window, 49, 51 
Pop-up menu, 14 7 
PopUpMenuSelect(),195 
PrCl ose( ), 312 
PrCloseDoc(),312 
PrClosePage(),312 
Precompile ... , 491 
Preference, 487 
Preload resources, 37 4 
Print, 486 
PrintDefault( ),323 
Printer driver, 369 
Printing Manager, 307, 312 
Printlnit(),317,323-24,470 
PrintPICT 

code,314,316-19,322-26,469-72 
description of, 312-13 
File Manager, 307, 309-11 
how it works, 321-26 
resources for, 313-19 
running, 320 
setting up, 313 
Standard File Package, 307-9 

Pri ntPi ct Fi 1 e( ), 318-19, 325, 
471-72 

Print Setup, 486 
P r Job Di a l o g ( ) , 312 
PROCEDUREs, 27 
Profile, 488 



Index 

Projectfile,8-9,36,62 
Project menu, 482-85 
Project Window, 492 
Pr Open (), 312 
P rOpen Doc ( ) , 312 
PrOpenPage(),312 
PrPicFile(),312,323,326 
PrStlDialog(),312 
Pt o Cs t r ( ) , 29 
Pulldown menu, 146 
Purgeable resources, 374 
PutScrap(),296-97 

QuickDraw 
coordinate system, 44-48 
programs, 60-69 
purpose of, 11, 44 
toolbox routines, 53-59 

Quit, 486 

Radio buttons, 202-3 
Randomize() 

in Flying Line, 95, 100, 427 
in Mondrian, 79, 422-23 

RandomRect() 
in Flying Line, 94, 100, 427 
in Mondrian, 77-78, 422 

randSeed, 67, 77 
rDocProc window,49,51 
Recalcline(),95,101,427-28 
Rect, 30 
refNum, 311 
Regions,defining,58, 136-37 
Reminder 

adding menu resources, 222-27 
adding Notification Manager 

resources,220-22 
code,229-40,244-61,448-60 
description of, 215 
resources for, 216-28 
running,241-44 
setting up, 215 

Remove Objects, 485 
ResEdit 

creating W I ND resource, 364 
how it works, 361-66 
installing finder resources, 366-80 
making alerts in, 207 
making dialogs in, 204-5 
menus, 362 
notes on using, 360 
purpose of, 6, 25-26, 356 

Resource(s) 
adding menu, 222-27 
alert, 218-19 
bundle, 376-80 

CODE,34,484 
description of, 2, 5-6 
dialog, 216-17 
EventTutor, 114-22 
File Reference, 375-76 
forks, 34-35, 370 
hierarchical submenu IDs, 157 
ID number, 33 
Manager, 341 
map, 369 
modifying, 211 
Mondrian, 73-75 
naming, 33-34 
Notification Manager, 220-22 
Pager,329-32 
PrintPICT,313-19 
Reminder, 216-19 
ShowClip, 298-300 
ShowPICT, 84-87 
signature, 357, 380-84, 389 
SIZE,357,390-91 
Sounder,347-49 
Timer, 150-63 
type, 32-33 
vers,357,382,386-90 
WindowMaker, 265-73 
Zinger, 183-90 

529 

See also Finder resources 
RestoreSettings(),238,258, 

457-58 
ReturnToPas.c,514 
Revert, 486 
RgnHandle,136 
RMaker,356 
ROM (read-only memory), 32 
Routines, naming, 32 
Run, 485 

Save,486 
Save A Copy As, 486 
Save All, 492 
Save As, 486 
Sa veSet tings ( ) , 237-38, 257, 

456-57 
ScanToZero.c,515 
Scrap Manager, 295 

GetScrap( ), 297 
I n f o Sc r a p ( ) , 296 
Lo a d Sc r a p < ) , 296 
PutScrap(),296-97 
UnloadScrap(),296 
Z e r o Sc r a p ( ) , 296 

screenBits, 67, 98 
Scroll bars 

how to set up, 327-29 
purpose of, 48, 203 



530 

Scro 11 P roe ( ) , 336-37, 344, 
476 

ScrollRect( ), 135, 136 
Scro 11 Wi n d ow ( ) , 120, 135, 

137,434 
Search menu, 489-90 
Search options, 48 7 
SelectWindow(),137 
SendCardMessage.c,515 
Set Cl i p ( ) , 140 
SetFieldByID.c,516 
SetFieldByName.c,516 
SetFieldByNum.c,516-17 
SetGl oba 1 . c, 517 
SetIText( ), 211 
SetNotification(),240, 

260-61,459-60 
Set Po rt ( ) , 54, 99 
Set Project Type ... , 125, 482 
Set Rec t ( ) , 98 
SetUpDragRect() 

in EventTutor, 117, 128-29, 
137,430 

in Pager, 334, 340, 474 
in Reminder, 232, 249, 451 
in Timer, 165, 17 4, 438 
in WindowMaker, 276, 286, 

462 
in Zinger, 184, 192, 445 

SetupEventWi ndow( ), 117, 
128,430 

Set U p Sc r o 1 l Ba r ( ) , 334, 
341,474 

SetUpSizeRect( ),117, 129, 
430-31 

SFGetFi le(), 307, 308-9, 
311 

S F P u t Fil e ( ) , 307 
SFTypeL i st, 309 
Shapes, drawing, 56 
Shared flag, 369 
Shift left and right, 487 
ShowClip, 295 

code,300-303,304-7, 
466-68 

description of, 297 
how it works, 304-7 
resources for, 298-300 
running,303 
setting up, 298 

Show PICT 
code,88-90,423-24 
description of, 60, 84 
resources, 84-87 

running,87-88 
window setup, 90-91 

ShowWi ndow< ), 52 

Index 

Signature resource, 357, 380-84, 389 
Size box, 48, 49 
Size of text, 56 
S I Z E resource, 357, 390-91 
SizeWindow(),138,139 
sleep, 112 
Sn d P 1 a y ( ) , 353 
Sound (' snd '), 220 
Sounder 

code,350-54,478-79 
description of, 347 
resources,347-49 
setting up, 34 7 

Sound Manager, 34 7 
Source Debugger, 489 
Source files, 24 
Source menu, 491 
Source window of the Debugger, 

494-95 
Spacing, 56 
srcBic,58 
srcCopy,58 
srcOr,58 
Standard File Package, 307-9 
Stop alerts, 206 
Stri ngEqual. c, 517 
Stringlength.c,518 
StringMatch.c,518 
Strings (' STR' ), 29 

resources for Notification 
Manager, 220 

resources for Pager, 331, 332 
resources for PrintPict, 313-14, 

315 
resources for ShowClip, 299-300 
resources for Sounder, 348 
resources for WindowMaker and, 

272-73 
StrToBool .c,518 
StrToExt.c,519 
StrToLong.c,519 
StrToNum.c,520 
Style, 56 
Sub ID, 374 
Suspend and Resume Events, 483 
Syntax errors, 500-501 
SysBeep< ), 195-96 
SysEnvirons(),244 
Sys60rlater(),231,247-48,450 
System bit, 369 
System font, 69 



Index 

System Heap, 374 
SystemTask( ), 110 

Tabs, set, 486 
Tear-off menu, 148 
Technical Notes, 401 
TEini t( ), 68 
Text 

changing size, 71 
changing style, 70-71 
drawing,56-58 

TextEdit, 68 
Text Fon t ( ) , 69 
thePort,67 
THINKC 

description of, 8-9 
documentation for, 8 
installing, 24-26 
reasons for using, 7 
standards for writing, 31-32 
strings, 29 
summary of commands, 481-92 

Timer 
ALRT (alert) resource, 159, 161, 

163 
Apple menu specifications, 152 
code, 163-70, 172-82,436-44 
description of, 149-50 
DI TL (Dialog Item List), 159, 161 
edit menu specifications, 153-55 
file menu specifications, 152-53 
font menu specifications, 159 
resources, 150-63 
running, 170-72 
setting up, 150 
special menu specifications, 

155-59 
TMON,403-4 
Toolbox 

assessing, 26-28 
buttons, 202 
description of, 2, 4-5 
QuickDraw toolbox routines, 53-59 

Tool Boxlni t() 
in EventTutor, 116, 127, 429 
in Flying Line, 93, 97, 425 
in Hello2, 66, 420 
in Mondrian, 76-77, 421 
in Pager, 334, 340, 473 
in PrintPICT, 317, 323, 470 
in Reminder, 230, 247, 450 
in ShowClip, 301, 304, 467 
in ShowPICT, 90, 423 
in Sounder, 350, 352, 478-79 
in Timer, 164, 174, 437-38 

531 

in WindowMaker, 275, 285, 461 
in Zinger, 184, 191, 445 

TrackBox( ), 139 
TrackControl(),329,343 
Type ofresource, 484 

UnloadScrap(),296 
updateEvt 

EventTutor and, 130-31, 132-33 
importance of responding to, 176 
queueing of, 105 
Window Manager and 123, 136 

UpdateMyWi ndow( ), 337, 344-45, 
477 

User Debugger, 485 

Variables 
global, 67 
naming, 32 

vers resource, 357, 382, 386-90 
vis Rg n, 131-32 
Volumes, 309-10 

mounted, 361 
v Re fNum, 311 

WaitNextEvent() 
calling, 110, 129 
events and, 109, 111-12 
MultiFinder friendliness and, 242 

white, 67 
White space, 37 
Window(s) 

big long window technique, 45 
drawing in, 53-59 
InitWindows(),67,68 
Manager, 48, 123 
menu, 492 
parts, 48 
setting the current, 54 
setting up, 52-53 
types, 49-53 
visibility of, 52 

Windowlnit() 
in EventTutor, 116, 127, 429 
in Flying Line, 93, 98, 425-26 
in Hello2, 66, 68-69, 420-21 
in Mondrian, 77, 421 
in Pager, 334, 340, 4 73 
in ShowClip, 301, 305, 467 
in ShowPICT, 90-91, 423 
in Timer, 165, 174, 438 
in Zinger, 184, 192, 445 

Window Maker 
code,274-81,284-95,460-66 
description of, 264-65 



532 

Window Maker (cont.) 
how it works, 283 
resources for, 265-73 
running, 281-82 
setting up, 265 

W I N D resource 
creating a, 52, 364 
for EventTutor, 114 
for Hello2, 60 
for Mondrian, 73-75 
for Pager, 329, 330 
for Reminder, 227-28 
for ShowClip, 298 
for ShowPICT, 84 
for Timer, 150 
for WindowMaker, 265 
for Zinger, 183 

Wrap Around, 487 

XCMDs 
BoolToStr.c,510 
building, 507-8 
copying the, into a stack, 508 
Eva lExpr. c, 510 
ExtToStr. c,511 
GetFieldByID.c,511 
GetFieldByName.c,511-12 
GetFieldByNum.c,512 
GetGl oba l . c, 512 
HyperXCmd.h,508-10 
LongToStr.c,513 
NumToHex.c,513 

NumToStr.c,513-14 
PasToZero.c,514 
purpose of, 18 
ReturnToPas.c,514 
ScanToZero.c,515 
SendCardMessage.c,515 
SetFieldByID.c,516 
SetFieldByName.c,516 
SetFieldByNum.c,516-17 
SetGl oba l . c, 517 
Stri ngEqua l. c, 517 
Stringlength.c,518 
StringMatch.c,518 
StrToBool .c,518 
StrToExt.c,519 
StrTolong.c,519 
StrToNum.c,520 
XChooser,506-7 
ZeroBytes.c,520 
ZeroToPas.c,520 

Xerox Alto machine, 4 
X FCNs, 506 

ZeroBytes.c,520 
Z e r o Sc r a p C ) , 296 
ZeroToPas.c,520 
Zinger 

code, 190-96,444-48 
description of, 182 
resources for, 183-90 

Zoom box, 48, 492 
ZoomWindowC ),139 

Index 



Macintosh Programming 
Primer: 

Hero' a $25. Send me the Disk, 
quicklll Mail it to: 

ZapfChoncery 
24 Chicogo Drive 

The Disk! 

New York, New York 01893 

I/./.! 

Pay to the order of '¥/ '¥1'( 

Amount f; II 

D 

For a complete set of Macintosh Programming 
Primer applications, resources, and projects 
send the coupon on this page (or just send 
your name and address), along with a check 
for $25.00 to: 

MIMAC 
2534 North Jefferson Street 
Arlington, Virginia 22207 

Here's my $25! 

M/MAC 
2534 North Jefferson Street 
Arlington, Virginia 22207 

Send me the Primer Disk, 
quick!!! Mail the disk to: 

Companc,._~~~~~~~~~~-

Addres ___________ _ 

City,___ __ _ State__ Zip __ _ 

Virginia Residents Please Add 4.5% Sales Tax 
No Credit Cards, Please! 

Macintosh C 
Programming 

Primer: 

The Disk 

D 

Mac Primer Disk 
2534 N. Jefferson St. 
Arlington, Vuginia 22207 

Zapf Chancery 
24 Chicago Dri\-e 

D 

New York, New York 01893 



Macintosh® Programming 
Inside the Toolbox Using THINK's LightspeedC'" 

"If you're interested in learning to program the 
Macintosh, there isn't a better place to start than with the book 
you 're holding in your hands right now." 

- From the Foreword by Stephen Chernicoff 
(author of Macintosh Revealed) 

The Macintosh Programming Primer is a tutorial in the art of Macintosh program
ming. Programmers new to the Macintosh but with some previous programming 
experience will learn how to use the powerful Toolbox, resources, and the Macintosh 
interface to create stand-alone applications with the distinctive Macintosh look and 
feel. The authors present concepts involved in building an application - starting with 
the most basic and progressing to the more complex aspects of event-driven program
ming - and show you how to enter, compile, and run the programs you have created. 
THINK's LightspeedC has been chosen as the development environment because it is 
a powerful, user-friendly language for the beginning programmer. 

You will learn how to: 

display and manipulate windows 
use ResEdiC to build Macintosh programs 
manage scroll bars and dialog boxes 

create HyperCard· XCMDs 
create puU-down, pop-up, and 
hierarchical menus. 

Also featured is discussion of the latest additions to the Macintosh Toolbox including 
MultiFinder~ and Notification Manager. 

Six useful appendices include a glossary, commented code listings for each applica
tion presented, and important information on debugging techniques . 

When you have completed the Macintosh Programming Primer you will possess 
the essential skills needed to build your own full-scale Macintosh applications. 

Dave Mark, a veteran Macintosh programmer and an Apple Certified Developer, 
currently heads PRC/NASA's Advanced Technologies Unit. Cartwright Reed is a 
research engineer doing Macintosh software development at 
Drexel University's Image Processing Center. 

9 780201 156621 

s 2 4 ' 

Addison-Wesley Publishing Company, Inc. 
Cover design by Doliber Skeffington ISBN 0-201-15662· 


