
Macintosh
Programming
Techniques
A Foundation for All Macintosh Programmers

~

• Learn essential techniques for expert Macintosh
programming

• Understand terms and concepts unique to
Macintosh programming

• Gain hands-on experience with interactive
software tutorial

Dan Parks Sydow

Macintosh
Programming
Techniques
A Foundation for All Macintosh Programmers

Macintosh
Programming
Techniques
A Foundation for All Macintosh Programmers

Dan Parks Sydow

M&T Books
A Division of MIS:Press, Inc.
A Subsidiary of Henry Holt and Company, Inc.
115 West 18th Street
New York, New York 10011

© 1994 by M&T Books

Printed in the United States of America

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage
and retrieval system, without prior written permission from the Publisher. Contact the Publisher for
information on foreign rights.

Limits of Liability and Disclaimer of Warranty
The Author and Publisher of this book have used their best efforts in preparing the book and the pro­
grams contained in it. These efforts include the development, research, and testing of the theories and
programs to determine their effectiveness.

The Author and Publisher make no warranty of any kind, expressed or implied, with regard to these
programs or the documentation contained in this book. The Author and Publisher shall not be liable
in any event for incidental or consequential damages in connection with, or arising out of, the fur­
nishing, performance, or use of these programs.

All products, names and services are trademarks or registered trademarks of their respective companies.

Library of Congress Cataloging-in-Publication Data

Sydow, Dan P.
Macintosh programming techniques: a foundation for all Macintosh programmers I
DanP. Sydow

p. cm.
Includes index.
ISBN l-55828-326-9 : $34.95
1. Macintosh (Computer)--Programming. I. Title.

QA 76.8.M3S96 1993
005 .265--dc20

96 95 94 4 3 2

Publisher: Steve Berkowitz
Associate Publisher: Brenda McLaughlin
Project Editor: Margot Owens Pagan
Development Editor: Mike Miley
Copy Editor: Judy Whittle
Technical Editor: Ray Valdes
Production Editor: Eileen Mullin
Associate Production Editors: Maya Riddick, Joseph McPartland
Cover Design: JPD Communications

93-46619
CIP

Dedication

To my wife, Nadine ...

Dan

.,,.

'~··~ /

Table of Contents

Fe>re"VVe>rc:I •• lClCi

Why This Be>e>k is fe>r Ye>u •••••••••••••••••••••••••••••••• 1

l11tre>c:lllctie>11 •• 3

What's on the Disk 4
What You Need 5
Extracting the Contents of the Disk 5
Using the In Action! Program 9

Running the program 9
The program windows 9
Moving about in the program 10

Chapter 1 : l11tre>c:luctio11 te> Maci11te>sh
Pre>grammi11g •• 13
Development Systems 13

Information environments 14
Application frameworks 14
Programming languages 14

vii

••• VIII Macintosh Programming Techniques

About Macintosh Programming .. 15
Bit-mapped Graphics .. 16
Event-driven Programming .. 17
Resources ... 22
The Toolbox .. 26
The Operating System .. 31
System Software ... 32
The System File and Finder ... 33

The System file ... 33
The Finder ... 34

Chapter Program: Intro to Mac Programming ... 35
Program project: VeryBasics.n ... 36
Program resources: VeryBasics. n.rsrc ... 3 7
Program listing: VeryBasics.c .. 38
Stepping through the code ... 40

Where are the #includes? .. 40
Function prototypes ... 41
The #define directives ... 41
Global variables ... 42
The main() function .. 42
Toolbox initialization .. 42
Loading a window .. 43
Drawing to a window .. 44
The main event loop .. 45
A Macintosh function ... 46

Chapter Summary .. 47

Chapter 1 Lessons on Disk
0. Lesson 1-1: Events ... 22
p Lesson 1-2. Resources .. 26

Lesson 1--3: The Toolbox ... 30

Chapter 2: Macintosh Memory •••••••••••••••••••••• 49
Memory Organization .. 49

System partition organization ... 50
System global variables ... 51
System heap ... 51

Application partition organization ... 52
AS World ... 52
Application stack ... 52

• Table of Contents IX

Application heap .. 54
Summary of memory organization ... 56

The Application Heap .. 57
Heap fragmentation ... 58
Heap compaction ... 60
Nonrelocatable and relocatable blocks ... 61

Chapter Program: Memory Partitions .. 65
Program resources: MemoryFiller.1t.rsrc ... 68
Program listing: MemoryFiJler.c ... 69
Stepping through the code ... 70

Chapter Summary .. 71
Disk Files

Lesson 2-1: Memory organization .. 57
Lesson 2-2: Heap fragmentation ... 58
Lesson 2-3: Heap compaction ... 60
Lesson 2-4: Master Pointers and Handles .. 64

Chapter 2 Lessons on Disk
b. Lesson 2-1: Memory organization .. 57 b Lesson 2-2: Heap fragmentation ... 58

Lesson 2-3: Heap compaction ... 60
Lesson 2-4: Master pointers and handles ... 64

Chapter 3: Resources •••••••••••••••••••••••••••••••••••• 73
About Resources ... 7 4

The importance of resources ... 7 4
Resource types .. 75
Checking for errors .. 75

Working With Strings ... 77
The 'STR#' resource ... 77
Using a string in a program ... 78

Pictures and Animation ... 81
The 'PICT' resource ... 81
Displaying a 'PICT' in a program .. 83
Using 'PICT's to create animation .. 86

Creating a series of 'PICT's ... 86
Animation source code ... 88

Sounding Off ... 91
The 'snd' file .. 91
The 'snd' resource ... 92

X Macintosh Programming Techniques

Playing a 'snd' in a program ... 94
Giving a Program an Icon .. 95

Th.e Finder and icons .. 96
Creating the 'BNDL' resource ... 97
Setting the Creator in the compiler .. 102
Making the Finder aware of a new icon ... 102

Chapter Program: Using Resources ... 103
Program resources: ResourceUser:rc.rsrc .. 104
Program listing: ResourceUser.c ... 106
Stepping through the code ... 110

The #include directives ... 110
The #define directives ... 110
The main() Function ... 111
Using strings .. 112
Using pictures for animation .. 113
Playing sounds ... 113

Chapter Summary .. 113

Chapter 3 Lessons on Disk
tu Lesson 3-1: The 'STR#' resource .. 80
~ Lesson 3-2: Th~ 'PIC?T' resource ... 86

Lesson 3-3: Animation .. 90

Chapter 4: QuickDraw Graphics ••••••••••••••••• 115
About QuickDraw .. 115

Initializing QuickDraw ... 116
Pixels and the coordinate system ... 117

Graphics Ports ... 118
The Graf Port and GrafPtr .. 118
The graphics pen .. 119

Defensive Drawing ... 121
Changing ports ... 121
Changing characteristics of a port .. 123

Drawing Shapes .. 125
Working with rectangles .. 126
Working with ovals .. 128
Working with round rectangles ... 129

Patterns ... 131
The 'PAT ' resource .. 131
The pattern source code .. 133

• Table of Contents XI

Color QuickDraw ... 134
Checking for color .. 134
Color windows ... 136
Color pattems ... 137

The 'ppat' resource .. 138
The color pattern source code .. 138

Color drawing ... 140
The 'wctb' resource .. 141

The Cursor .. 143
Chapter Program: Drawing on the Mac .. 146

Program resources: QuickDrawing.1t.rsrc .. 146
Program listing: ResourceUser.c ... 147
Stepping through the code ... 152

The #include directives ... 152
The #define directives ... 152
The main() function .. 153
lnitialization ... 153
Checking for color ... 154
Preserving the environment ... 154
Lines and shape painting ... 155
Shape filling .. 156

Chapter Summary .. 15 7

Chapter 4 Lessons on Disk
tu Lesson 4-1: Moving the pen .. 121
µ Lesson 4-2: Sw~tching ports .. 123

Lesson 4-3: Using patterns .. 134

Chapter 5: Working With Windows •••••••••••• 159
Windows Primer ... 160

The WIND resource ... 160
Loading a 'WIND' ... 160
The WindowRecord, WindowPtr, and WindowPeek 161

Event Handling ... 163
Windows and Events .. 170

Mouse down events ... 171
Handling a mouse click in a drag bar ... 171
Handling a mouse click in a close box ... 173
Handling a mouse click in a content region 17 4
Handling a mouse click in other areas ... 175

•• XI I Macintosh Programming Techniques

Single Window Techniques ... 17 6
Activate events ... 177
Updating a window .. 177
Simple window techniques ... 182

Moving a window .. 183
Showing and hiding a window .. 184
Changing a window's title .. 184

Multiple Window Techniques ... 184
Expanding the WindowRecord .. 185
Activates and multiple windows .. 190
Updates and multiple windows .. 192

Chapter Program: Working With Multiple Windows 193
Program resources: MultiWindows.1t.rsrc .. 194
Program listing: MultiWindows.c ... 195
Stepping through the code ... 205 .

The #include directives ... 205
The #define directives ... 205
Global types ... 206
Global variables ... 206
The main() function .. 207
Initialization ... 208
Marking and examining a window ... 209
Opening a window ... 211
Event handling ... 213

Chapter Summary .. 220

Chapter 5 Lessons on Disk
tu Lesson 5-1: Handling events ... 169
D Lesson 5-2: Window updating .. 182

Lesson 5-3: MyWindPeek .. 185
Lesson 5-4: Using MyWindPeek ... 185

Chapter 6: Dealing With Dialogs ••••••••••••••••• 223
Alerts ... 224

Alert resources: 'ALRT' and 'DITL' .. 224
Alert source code .. 227

Dialogs ... 228
Dialog Resources .. 229

Dialog item types ... 229
The 'DLOG' and 'DITL' Resources ... 230

••• Table of Contents X 111

Dialog Items .. 236
Getting dialog item information ... 23 7
Working with edit text items .. 238
Working with check box items ... 239
Working with radio button items ... 240

Modal Dialogs ... 241
The DialogRecord .. 242
Modal dialog source code .. 244

Modeless Dialogs .. 246
Using User Items .. 250

The user item resource .. 251
The user item source code ... 251

Color Dialogs ... 258
Chapter Program: DialogPlus .. 259

Program resources: DialogPlus. 7t.rsrc ... 260
Program Listing: DialogPlus. c ... 263
Stepping through the code ... 2 73

The #define directives ... 273
The global variables ... 2 7 4
The main() function .. 2 7 4
Handling check boxes and radio buttons 275
Opening a window and a modeless dialog 2 7 6
Drawing user items ... 278
Event handling ... 279

Chapter Summary .. 285

Chapter 6 Lessons on Disk
to Lesson 6-1: Th~ DialogPtr _. ... 243
~ Lesson 6-2: Usmg modal dialogs .. 246

Lesson 6-3: Using modeless dialogs 250

Chapter 7: Managing Menus ••••••••••••••••••••••• 287
About Menus .. 28 7
Menu Resources ... 289

The 'MENU' resource .. 289
The 'MBAR' resource ... 291

Menu Source Code ... 292
Setting up the menu bar .. 293
Handling a click in a menu ... 296
Handling a click in the Apple menu ... 300

• XIV Macintosh Programming Techniques

Handling a click in other menus .. 301
Keyboard Equivalents ... 302

The 'MENU' resource .. 303
Handling a keystroke ... 304

Hierarchical Menus .. 305
The 'MENU' resource .. 306
Setting up the hierarchical menu ... 308

Changing Menu Characteristics .. 311
Disabling and enabling menus and menu items 311
Adding a checkmark to a menu item ... 315
Changing the text of a menu item .. 318
Changing the style of a menu item .. 320

Editing Text in a Modal Dialog ... 323
Checking for System 7 ... 324
Modal dialog filter function .. 325

Chapter Program: MenuMaster ... 331
Program resources: MenuMaster.1t.rsrc .. 335
Program listing: MenuMaster.c ... 339
Stepping through the code ... 349

The #define Directives .. 350
The global variables ... 352
The main() function .. 352
Initializing variables .. 353
Setting up the menu bar .. 353
Handling a keystroke ... 354
Handling a click in the menu bar ... 356
Editing text in a modal dialog ... 359
Checking a menu item .. 361
Disabling and enabling a menu and menu item 361
Handling a hierarchical menu .. 363

Chapter Summary .. 364

Chapter 7 Lessons on Disk
bi Lesson 7-1: The Menu bar ... 296
µ Lesson 7-2: Filter functions .. 331

Chapter 8: The Varying Mac ••••••••••••••••••••••• 367
Checking for Traps ... 368

Toolbox routines are traps ... 368
Determining if a Toolbox routine is implemented 3 75

Table of Contents XV

The Features of a Macintosh ... 3 78
More Features of a Mac .. 3 79
The Gestalt() Function ... 3 79

Checking for the availability of Gestalt() .. 380
Determining machine features using Gestalt() 382

Determining the QuickDraw version .. 385
Determining the CPU type ... 386
Determining the amount of physical RAM 386
Determining the floating-point coprocessor type 38 7
Determining the Macintosh machine type 388
Determining the operating system version 389

Monitor-Aware ... 390
Dealing with multiple monitors ... 390

Setting the window drag region .. 390
Setting the center point for windows ... 392

Dealing with different sized monitors .. 396
Color-Aware .. 396

Color representation ... ~ 396
Getting the pixel depth of a monitor .. 398
Multiple-monitors and pixel depth .. .400
When to call the pixel depth routines404

Chapter Program: Inner View ... 406
Program resources: InnerView.1t.rsrc .. 407
Program listing: InnerView.c ... 408
Stepping through the code ... 420

The #include directives ... 420
The #define directives ... 420
The global variables ... 422
The start ... 422
Checking the system ... 423
Putting up the menu .. 426
Opening a window ... 426
Event handling ... 427
Closing a window .. 435

Chapter Summary .. 436

Chapter 8 Lessons on Disk
~ Lesson 8-1: Traps and the Toolbox ... 3 7 4
p Lesson 8-2: Pixel depth .. 400

• XVI Macintosh Programming Techniques

Chapter 9: Memory Management ••••••••••••••• 437

Macintosh Memory Management ... 438
Avoiding Heap Fragmentation ... 439

How nonrelocatable blocks are created .. 440
Reserving memory to reduce fragmentation441

Reserving Memory .. 446
Allocating master pointer blocks .. 446
Setting the heap size .. 449

Writing 32-bit Clean Programs .. 450
Segmentation .. 452

Segmenting a program in THINK C .. .455
Determining how to segment a program ... 459
The main segment ... 461
Unloading segments ... 467

Setting a Program's Size ... 471
The user's role in setting the partition size4 71
Setting an application's partition size in THINK C4 73
Using the 'SIZE' resource to set a partition 474
Determining your application's memory needs 476

Watching program memory using the Finder 477
Watching program memory using Swatch480

Handling Memory Errors ... 481
Watching for failed memory allocations .. 482
Providing the user with error information ... 483

Chapter Program: Tying it All Together .. .485
Program resources: Inner Viewll. Tt.rsrc .. .488
Program THINK C project: InnerView.Jt .. 494
Program listing: Inner View/I. c .. 498

Defines.h .. 498
Globals.h .. 500
Initialize.h .. 501
Utilities.h ... 502
Initialize.c .. 502
Utilities.c .. 507
InnerViewll.c ... 509

Stepping through the header files ... 525
Defines.h .. 525
Globals.h .. 526
Initialize.hand Utilities.h .. 527

Stepping through Initialize.c ... 527

•• Table of Contents XVII

Checking the system ... 52 7
Reserving memory ... 528
Initializing variables .. 528
Opening the window and dialog box .. 529

Stepping through Utilities.c .. 531
Stepping through lnnerViewll.c .. 531

The main() function .. 531
Dimming a menu ... 534
Updating the window .. 535
Getting machine information, and error handling 538
Bits, masks, and Str255 ... 539
Displaying machine information ... 542
Displaying a picture ... 545

Chapter Summary .. 546

Chapter 9 Lessons on Disk
0. Lesson 9-1: Reserving memory ... 445
~ Lesson 9-2: Segmentation ... 471

Appendix A: Macintosh C Data Types ••••••••• 549

Appendix B: Determining a Trap's Type •••••• 553

Appendix C: Gestalt Definitions ••••••••••••••••• 557

Appendix D: Toolbox Routine Summary ••••• 567

lndelC ••• ~()~

Acknowledgments

Anthony Meadow, Bear River Group, for kicking things off.

Carole McClendon, WaterSide Productions, for introducing me to M&T
Books.

Mike Miley, for a number of helpful comments during editing, and for
playing middleman to keep things rolling.

Ray Valdes, for numerous suggestions made during editing. A special
thanks to Ray for tactfully saying, "this is not quite accurate" when I
was dead wrong!

Judy Whittle, TechnoMark, for making me look like I write in a gram­
matically correct style.

Eileen Mullin, M&T Books, for the effort put into laying out 600 pages,
and for giving the book such a polished appearance.

Maya Riddick and Joseph McPartland, M&T Books, for cleaning up
many of the figures that appear in the book- I know a lot of work went
into this.

•
XIX

XX Macintosh Programming Techniques

Margot Pagan, M&T Books, for putting up with my unorthodox way of
doing things.

Joe Holt, Adobe Systems, for granting permission to include his simple
and elegant Macintosh program, Swatch, with this package.

Foreword

The Macintosh operating system (which, surprisingly, does not have a
I name) is complex: there are more than 2000 system calls available in

System 7.0, and the number is growing. In fact, the Macintosh OS is as
complex as any newer operating system, such as UNIX, and is far more
complex than earlier personal computer operating systems, such as
MS-DOS. One reason for this complexity is Apple's strategy to add new
sets of features continuously, providing new services for developers.
Since System 7 was released, Apple has shipped additional system soft­
ware extensions, including QuickTime, Apple Open Collaboration
Environment, and AppleScript. Each of these extensions features hun­
dreds of API (Application Programming Interface) calls for programmers
to use.

The result? The Macintosh OS is now so complex that no one person can
understand it all. This is especially true for programmers who are new to
the Macintosh. They need an overview of the whole operating system
without getting lost in all the details.

This book provides just such an overview of the Macintosh OS for work­
ing programmers. It covers all the important concepts of the basic operat­
ing system without trying to explain everything. It is appropriate for pro­
grammers with diverse backgrounds, Macintosh users who are learning

•
.XXI

••
XX 11 Macintosh Programming Techniques

how to program the Macintosh, Windows programmers who have to do
cross-platform development, or programmers used to other operating sys­
tems such as UNIX. It's also useful for people who are not programmers.
If you manage programmers, test software, and need to understand how
Macintosh applications work, this is about the only book on the market
today that gives a technical explanation of how Macintosh applications
work with a clarity even non-programmers can understand.

Sophisticated programmers can learn from this book too. Today, more
and more programmers are using object-oriented languages to do
Macintosh (and Windows) development. Object-oriented programming
(OOP) does provide some excellent ways of managing the complexity of
operating systems such as the Macintosh's. Nonetheless, anyone pro­
gramming on the Macintosh still needs to know the basics of the
Macintosh OS because even an object-oriented programmer will still
have to make many calls to the underlying operating system.

Furthermore, the Macintosh OS works differently than almost every
other operating system. For example, memory is managed primarily by
using handles, which are pointers to pointers, rather than using just
pointers. It is extremely important for any programmer to have a thor­
ough understanding of the implications of this fact, because more bugs in
Macintosh applications arise in this area than anywhere else.

What's more, the concept of resources, now commonplace, originated
with the Macintosh. Resources have enabled the Macintosh to be highly
configurable by programmers and users. It has also allowed the
Macintosh to be easily internationalized. The Macintosh operating sys­
tem is now available in about 40 languages, including English, German,
French, Greek, Russian, Chinese, Hebrew, Japanese, Korean and Arabic.
A good understanding of resources is critical to good Mac programming

Finally, Macintosh applications are event-driven. This means that the
user feels like he or she is in control of the software, and not forced to
use a rigid system of menus or commands. This makes it harder for pro­
grammers. Users can get to one place in an application from many oth­
ers, and Macintosh applications have few, if any, modes where user
actions are interpreted only according to the current mode. In other
words, modal applications are easier to write, but harder to use.
Macintosh programs are harder to write, but easier to use.

••• Foreword XX 111

This book, and the software which accompanies it, will help you learn
the fundamental concepts of Macintosh programming. The book is a
model of clarity and order. When you're finished, you'll have a solid
foundation for programming the Macintosh.

-Anthony Meadow,
Bear River Group

,- :-·--- / .-
~ ...

..

Why This Book is for You

If you've programmed in C, and perhaps have even written programs for
Windows, or tried your hand at writing a Macintosh program (with less

than desirable results), this book starts you out with the basics of
Macintosh programming. Macintosh Programming Techniques doesn't
make a lot of assumptions about what you already know, it teaches you
practical techniques that you will u se again and again in all the
Macintosh programs you'll be writing.

This book is for anyone interested in learning the techniques and con­
cepts basic to writing programs that will run on the Macintosh. The
example code in the book is in the C language. This book does not teach
C; it is assumed that you already know either C or C++. The book
doesn't, however, assume you've used either of these languages on the
Macintosh.

1

r-·r·L,,,. .. - -

• ''I

. ..·:.· '

~- ~

Introduction

Chapter 1 is an introduction to the basic concepts you need to know in
order to program on the Macintosh. If you haven't programmed on

the Mac, you'll appreciate the definitions of Mac terminology. If you
have programmed the Mac, this chapter serves as a refresher. Chapter 1,
like every chapter in the book, ends with an example program.

Chapter 2 introduces you to the elementary organization of memory in
the Macintosh. Concepts and terms covered here will pop up throughout
the remainder of the book.

Chapter 3 discusses resources. Here you'll look at how text, pictures, and
even sounds can be stored easily in a resource file. You'll then see how to
make use of each of these resource types within your programs. You'll
also see how to give your program its own unique icon.

Chapter 4 covers QuickDraw-the Macintosh way of drawing. You'll see how
to draw shapes and patterns, in both monochrome and color. This chapter
also demonstrates how to add color to the content and title bar of a window.

Chapter 5 discusses windows. Here, basic window management tech­
niques, such as dragging and closing a window, are covered. A large part
of this chapter is devoted to the handling of multiple windows.

3

4 Macintosh Programming Techniques

Chapter 6 covers dialog boxes and alerts. This chapter describes the items
that appear in a dialog, including the powerful but seldom-discussed user
item. Here you'll see how to work with both stationary (modal) dialogs
and movable (modeless) dialogs.

Chapter 7 shows you how to manage menus. You'll see how to define
menus using resources and then how to change the characteristics of
menus within your source code. After reading this chapter you'll be able
to enable and disable menus, change the text of menu items, and add
checkmarks to menu items.

Chapter 8 covers the important topic of writing programs that are com­
patible with the many Macintosh models and configurations now on
the market. You'll see how to write programs that will run properly on
both monochrome and color Macs, and on Macs with System 7 and
pre-System 7 software.

Chapter 9 delves deeper into memory. Here you'll learn about how
objects are placed in memory, and what control you have in this process.
Many program errors are caused by memory problems. In this chapter I
cover error-handling techniques that will make you popular with pro­
gram users. You'll also learn how much memory you should devote to
your final program.

Each chapter ends with an example program. You start out with a sim­
ple program that uses just the basics. By the end of the book you'll be
comfortable with the example program of Chapter 9-a complete appli­
cation that works with memory, menus, dialogs, and windows and has
its own icon.

What's on the Disk
The disk that is bundled with this book has three folders on it. One
folder contains the source code files, resource files, and THINK C pro­
ject files for all nine of the programs presented in this book. It also
contains the standalone version of all nine programs, each ready for
you to run.

Introduction 5

The second folder contains a program called In Action! Mac Techniques.
This Macintosh program, written specifically to accompany this book,
reinforces the techniques you'll read about. It displays over thirty ani­
mated scenes that bring to life the concepts in this book.

The third folder contains a Macintosh utility called Swatch, which allows
you to "look inside" your own Macintosh. This small program watches
your Mac as it runs. It displays and constantly updates interesting and
important information about the memory used by each program.

What You Need
To understand this book you should be familiar with a higher-level language­
preferably C or C++.

All you need to run the nine example programs included on the disks is
a Macintosh computer that has a 1.4 Mb floppy drive. Apple calls this a
SuperDrive, and all of the newer Macinotsh models have it. If you want
to edit, modify, and recompile the included source code, you'll need
either the THINK C or Symantec C++ compiler. The project files for
the nine programs are THINK C 6.0 compatible.

The In Action! Mac Techniques program is also ready to run. It runs on
any Macintosh that has System 6.0.4 or later, including System 7. It runs
on a monochrome or color Mac. Your Macintosh needs 1 M of memory
or more to run it.

Extracting the Contents
of the Disk
The disk included with this book is a Macintosh-formatted 1.4 Mb disk
that contains a single compressed file. This file is self-extracting; you
do not have to own any special program to extract the several files and
folders that are compressed into this one file.

6 Macintosh Programming Techniques

Copy the file from the disk to your hard drive, then decompress it. You
do not have to create any folders on your hard drive; just copy the file
directly to your hard drive. Insert the disk into your floppy drive and
copy the one file that is on this. disk, MacProgTech.sea, to your hard
drive.

Before decompressing, store the original floppy disk in a safe place. You
won't need it anymore, but you'll want to save it as a backup disk.

To decompress, or extract, the files, double-click on the MacProgTech.sea
icon that is on your hard drive. You'll see the dialog box shown in Figure 1.
The names in the list will differ from those in Figure I because they will
match the names of files and folders on your disk drive.

Click the Extract button to start the extraction process. You do not have
to select any file or folder in the dialog list.

Select Destination Folder ...

Uolume:

Folder:

Cl Hard Disk

la Hard Disk ... I
CJ Applications
CJ Correspondence
CJ Deuelopment

CJ System Folder

Desktop

Cancel

Open

· EHtrac1 :~E]

figure J. Dialog you'll see after double-clicking on MacProg Tech.sea

Extraction of all of the compressed files will start. The progress will be
displayed in a dialog like that shown in Figure 2.

Introduction 7

EHtracting: In Action! Mac Techniques
J

Files remaining to be eHtracted: 24 (Stop)

Compacted by Compact Pro1M AutoExtractor1M © 1992 Bill Goodman

Figure 2. Extracting the compressed files

When extraction is complete, you'll have a new folder on your hard
drive titled Mac Techniques Folder. That folder will contain three other
folders, shown in Figure 3.

=D Mac Techniques Folder JE

3 items 136.6 MB in disk 66.2 MB available

LJ LJ LJ
$t

In Action I Folder Examples Folder Swatch Folder

~
¢1 1¢ '2J

Figure 3. The contents of the folder aher extraction

You can now drag the MacProgTech.sea icon to the Trash can. You've
extracted all the files from it, so it is no longer needed. If you accidentally
delete files or folders, you can start over again by copying the compressed
file from the original disks on to your hard drive.

The folder titled In Action! Folder contains the program In Action! Mac
Techniques, written specifically to accompany this book. It contains over
30 animated sequences that "bring to life" many of the concepts of this
book. This program is described in more detail later. Figure 4 shows what
is in the In Action! Folder.

8 Macintosh Programming Techniques

D In Action! Folder II§

2 items 1 36.6 MB i n disk 66.2 MB available

¢1

&
.Q.

LJ .

In Action! Resources In Action! Mac Techniques

-0'
1¢ l2J

Figure 4. The contents of the In Action! folder

You can place the In Action! Folder anywhere you
want on your hard drive, but keep both the In Actionl
Mac Techniques program and the folder named
In Action! Resources in it. The program uses the con­
tents of this folder and expects it to be right nearby!

The second of the three folders in the Mac Techniques Folder is the Examples
Folder. In here you'll find a separate folder for nine Macintosh programs, cor­
responding to the examples of each of the book's nine chapters. In each of the
nine folders you'll find the source code, the resource file, the THINK C project
file, and the compiled, ready-to-run application for the example program. If
you don't own THINK C or Symantec C++, you can still run each of the pro­
grams. If you do own one of these compilers, I've saved you plenty of typing!
You can open any of the projects and view or modify the code and recompile it
yourself. Figure 5 shows the nine folders found in the Examples Folder.

~o EHamples Folder !.E:
9 items 136.6 MB in disk 66.2 MB available

LJ LJ LJ LJ ~

(1)Very Basics (2)Memoryf i11er (3) Resource User (4)Quicl:Drawing

LJ LJ CJ LJ LJ
(S) Mul tiWi ndows (6) DialogPl us (7) Menu Master (B) I nnerView (9) I nnerViewll izy

21 ~ '2l

Figure 5. The contents of the Examples Folder

Introduction 9

The last of the three folders in the Mac Techniques Folder is the Swatch
Folder. This folder contains a small Macintosh utility that allows you to
view what's going on in the RAM of your Macintosh as programs run.
This utility is described in Chapter 9 and in the short text file that is in
the Swatch Folder.

Using the In Action! Program
This book endeavors to do a thorough job of explaining the important
concepts of Macintosh programming. But the written page sometimes
can't do justice to the explanation of certain ideas. The In Action! Mac
Techniques program was written to fill these voids and specifically to
accompany this book.

Running the Program
To run Jn Action! Mac Techniques, simply double-click on its icon as
you would any Macintosh program.

After viewing and dismissing the introductory dialog, you'll see two win­
dows on your screen. They're described next.

The Program windows
The In Action! program always has two windows on the screen. The
larger of the two contains text, the smaller contains five icons. The
smaller window controls the larger window; by clicking on icons in the
smaller window you can cause the larger window to display different
text. Think of the small window as a control panel that allows you to
tum pages in an on-screen book. Figure 6 shows what a typical screen
looks like.

1 0 Macintosh Programming Techniques

~ Chapter 2: Macintosh Memory Topic: Memory Organization §§

Shown below is a list of the five major components of RAM that are
covered in the book.

• System Globals
• System Heap
• Application Heap
• Application Stack
• AS World

On the next page is a figure representing RAM. Click on any one of the
five sections to get more information on that section Some of sections
include a short simulation.

Figure 6. A view of the two windows used by In Action/

Moving about in the program
To move to a different screen-to change the contents of the large win­
dow-click on either of the two icons on the far right of the control
panel. See Figure 7.

Move back
one screen

Move forward
one screen

Figure 7. The control panel icons that allow you to change windows

The purpose of In Action! is to provide enhanced understanding of the
topics in the book. If the program did nothing more than display text, it
wouldn't be much of a supplement to the book. To make it worth includ­
ing, In Action! has to be able to do something a book can't do. That
something is to display animation. In Action! contains over 30 short ani­
mated sequences that bring to life the figures you'll find in the book.

Introduction 1 1

Many of the program's windows contain animated sequences. You'll rec­
ognize a window that has such a sequence by the STEP and RUN icons
in the control panel. Normally, they are both dimmed. When you reach a
window that contains animation, however, they both become active, or
enabled. Click on the RUN icon to view the animation. Or, you can click
on the STEP icon to see just a single step of the animation. Clicking on
the STEP icon repeatedly will step you through the entire animation.
Figure 8 shows a typical window that contains an animation.

Chapter 2: Macintosh Memory

The heap has now been
compacted.

Click the STEP or RUN icon ...

Run a single step
of the animation

Topic: Heap Compaction

-

Run the entire
sequence of steps

Figure 8. The STEP and RUN icons allow you to view an animation

The windows of In Action! are grouped to match the chapters in this
book. The last of the five icons on the control panel is used for moving
from one chapter to another. When you click on the LESSON icon a
menu will drop down. It displays the names of each of the nine chapters
found in the book. If you move the mouse over a chapter name, then
move to the right, a submenu will be displayed. This submenu lists the
topics that In Action! covers from the chapter in the book. Figure 9 shows
that In Action! covers four topics from Chapter 2, Macintosh Memory.

1 2 Macintosh Programming Techniques

~. ;~ !Wllil!;!'.~'i'/i;Fll!H''"'!'i'i
~ 1: Intro to M11c PrC!H_l"11mml'!.9_ • Jl

Ill!' 2-1: Memory Org11nlz11tlon
3: Resources • 2-2: Heap Frngment11t1on
4: QulckDr11w Gr11phlcs • 2-3: He11p Comp11ctlon
5: Working With Windows • 2-4: Master Pointers 11nd H11ndles
6: De11llng With Ol11logs •
7: M11n11glng Menus •
e: The U11rylng M11c •
9: Memory M11n11gement •

Figure 9. The LESSON icon reveals a menu of chapter and topic choices

Selecting a topic from a submenu closes the window that is currently on
the screen and opens a new one. A topic typically has two or three win­
dows associated with it. One of the windows will contain an animation.

If you're reading the book and you're near your Macintosh, use the In
Action! program in conjunction with the book. When you get to a disk
icon in the book you'll know that the In Action! program covers that
topic. Figure 10 shows the disk icon in the book and the corresponding
lesson in the In Action! program.

The disk symbol In the book tells you there Is a
corresponding lesson In the In Action! program

~ a-2-11....,owu t c ,,_ __

3: Resources
4: Qulcl:Oraw 6n1phlcs
5: Working With Windows
6: Oealln Wit

2 - 1: Memory Organization
• 2 - 2: Heap Fragmentation
• 2 - 3: Heop Compaction
• 2-4: Mester Pointers ond Handles

Figure 10. The disk symbol in the book means there's
a corresponding lesson in the software

That's enough coverage of the preliminaries. Now, it's time to get down
to work!

1

,... :--c_--/ -
1 .. '
" . ' ·:.

Introduction to Macintosh
Programming

W hen you look at a Macintosh screen with the menus, windows,
and icons that make up its graphical user interface, you discover

that it's visually quite different from a PC or mainframe computer
screen. The programming effort and techniques that go into achieving
this effect are different as well.

If you currently program in a text-based system rather than a graphically­
oriented one, this chapter will serve as your introduction to the differ­
ences between the two. If you program for MS Windows, you'll learn the
similarities and differences between Windows and the Macintosh. And if
you've programmed the Macintosh before, you'll get a refresher on
Macintosh basics and perhaps gain a better understanding of the qualities
unique to the Macintosh.

Development Systems
On a Macintosh, there are different means to accomplishing your program­
ming goal. Besides using a programming language, you can also create a
program using an information environment or an application framework.

13

1 4 Macintosh Programming Techniques

Information environments

Every Macintosh comes with a program called HyperCard, which runs
HyperCard stacks. These are programs written expressly for HyperCard
and designed to display screens of information. A stack is not a stand­
alone application. In order for users to run stacks, they must have
HyperCard on their Macintoshes.

Although you can create simple stacks in a purely visual manner-that is,
without any programming-most of the interesting stacks are written
using HyperTalk, a language designed strictly for HyperCard. HyperTalk's
strength is its simplicity, but it is also its weakness. To expand its useful­
ness, HyperTalk has the capability for adding functions written and com­
piled in a true programming language such as C or Pascal.

HyperCard's primary competition comes in the form of a Silicon Beach
product called SuperCard. SuperCard is very similar to HyperCard, but
its language is a little more powerful.

Application frameworks
An application framework is a sophisticated class library for object­
oriented programming. A class library is a group of classes predefined for
you. These classes provide the kinds of functionality needed by most pro­
grams, such opening and closing files, printing, and showing documents.
The effect is to give you a functioning program shell. You write a mini­
mal amount of code to turn this generic shell into a complete application
that meets your needs.

Apple's MacApp and Symantec's Bedrock are examples of application
frameworks. With a framework application like MacApp or Bedrock, you
write the guts of a program. As an example, you program what goes into
a window, then MacApp manages the window for you.

Programming languages
Most people who create programs for the Macintosh use a conventional
programming language that allows them to write source code and then
compile that code into a standalone application. You can buy a

Chapter 1: Introduction to Mac Programming 1 5

Macintosh compiler for any of the major, and most of the less-than­
major, programming languages. This includes Pascal, C, and C++.

This book assumes you will be using a programming language, rather
than one of the information environments or an application framework
mentioned above. Most of the example code provided in this book is in
C, but all of the concepts and techniques are applicable to any higher­
level language including C++ and Pascal.

About Macintosh Programming
The Macintosh has gained its enormous popularity with users because of
its ease of use-its reputation as "the computer for the rest of us.11 For
programmers, its reputation is altogether different. While its GUI, or
graphical user interface, makes learning to use the Macintosh simple, it
does nothing to make programming it easy. The "Macintosh way11 pre­
sents a host of new challenges to programmers.

If you are a PC or mainframe programmer, be prepared to reorient
yourself-completely.

If you are an MS Windows programmer you already know many of the
programming concepts that will be new to others. But don't get too
relaxed-Windows programming differs from Macintosh programming in
many respects, and you'll still have much to learn.

If you've programmed the Macintosh, but aren't confident or satisfied
with the level you are now at, it may be because you've pieced together
your Macintosh applications without a sound knowledge of basic
Macintosh programming techniques.

This book covers the fundamentals of Macintosh programming through
in-depth discussions of general techniques and backs up that theory by
providing many straightforward examples. You will receive a firm foun­
dation on which you can build the Macintosh programs you want,
regardless of the language you choose to program in.

1 6 Macintosh Programming Techniques

Bit-mapped Graphics
The Macintosh, like other systems that use a GUI, uses bit-mapped
graphics. Bit-mapped means that every pixel, or display dot, shown on
the screen has a corresponding bit, or bits, in memory. The correspond­
ing memory controls the status of each pixel. For a monochrome system,
the memory keeps track of whether a pixel is on or off. For a color sys­
tem, the memory keeps track of the color of each pixel. By way of con­
trast, in a character-mapped system a program cannot control pixels on
the screen, it can control only text characters. Characters are located on
a character grid, usually 25 rows by 80 columns.

In a bit-mapped system, each pixel is specified by a pair of coordinates
that define a point, as in (20, 75). The first coordinate in the pairing
describes the pixel's horizontal value; the second its vertical value. Pixel
numbering begins at the upper-left comer of the screen, which corre­
sponds to point (O, O). Using this numbering system you can locate any
pixel on the screen by giving its horizontal and vertical values.

To draw to the screen you must first specify a starting location, then per­
form the drawing operation. Here's an example:

MoveTo(30, SO): /*move to pixel (30, 50) */
Line (0, 100) : /* draw a line downward, 100 pixels in length •/

Unlike text-based systems, a bit-mapped system allows you to draw text
anywhere on the screen. Note that I use the word draw when I speak of
text. To the Macintosh, the distinction between creating text and draw­
ing a shape is slight. In either case, the pixels are turned on to achieve
the desired effect. Figure 1-1 shows both text and graphics and an
enlarged view of the pixels used.

Figure 1-1 illustrates the advantage of using bit-mapped graphics-it's
easy to mix text and graphics and place them anywhere on the screen.

Chapter 1: Introduction to Mac Programming 1 7

Figure 1-1. Bit-mapped graphics

Event-driven Programming
Programs that don't use a graphical user interface normally run in a
sequential manner. Each time you run a program of this type you exe­
cute steps in the same order. For a program that displays four screens of
information, like that shown in Figure 1-2, the program's user would
generally view the four screens one after another in a predefined order.

Screen 1

Screen 2

Screen 3

Screen 4

Figure 1-2. Structure of a non-Macintosh program

1 8 Macintosh Programming Techniques

The key difference between these two types of programs is something
Apple refers to as an event. A user's action, such as the press of a key or a
click of the mouse button, produces an event. When an event occurs, the
Macintosh system software automatically saves information about the
event in an event record. The event record consists of fields that contain
information about an event. If the event was a mouse click, the event's
what field would then hold that information, that is, what type of event
just occurred. The event record's where field would hold the screen loca­
tion where the mouse click occurred.

Programs that use a GUI don't follow this linear pattern, nor are they
limited to full screens to display their information. Instead, they use
windows. The program's user is free to view the windows in any order.
For a Macintosh, the window selection would most likely be based on a
menu choice. The method used to make this selection is a keyboard or,
more often, a pointing device such as a mouse. Figure 1-3 shows the
structure of a Macintosh program.

I Wlndow1 ~

D

D
Figure 1-3. Structure of a Macintosh program

Chapter 1: Introduction to Mac Programming 1 9

All Macintosh programs are controlled by a main loop. The purpose of
this loop is to unceasingly retrieve and process events. As events occur
they are stored in an event queue, which is serviced by the event loop.
Here's a simple event loop:

EventRecord The_Event;

Boolean Not_Done = TRUE ;

while (Not_Done)
(

GetNextEvent(everyEvent . &The_Event) ;

switch (The_Event .what)

case mouseDown :
Handle_Mouse_Down() ;

break ;

case keyDown :
Handle_Keystroke() ;

You use GetNextEvent() to retrieve a single event, storing the information
in the event record variable The_Event. Then, based on the event type- the
what field of the EventRecord-you process, or handle, the event. The above
example reacts to two types of events: a mouse click and a keystroke. It
responds to an event by calling the appropriate function that handles an
event of that type-either Handle_Mouse_Down() or Handle_Keystroke().
You are responsible for writing these event-handling routines.

If you're an MS Windows programmer, retrieving
events by calling GetNextEvent(} from within a loop
should sound very familiar to you. Windows program·
mers poll for messages by calling GetMessage(J from
within a loop. One big difference is that on a Macintosh
there is a single event stream which all applications are
aware of, while on Windows each window deals with
its own designated message stream.

20 Macintosh Programming Techniques

The accepted event-handling practice is as follows. Figure 1-4 illustrates
the following steps.

• Use GetNextEvent() to retrieve an event to an event record.

• Use a switch statement to examine and respond to the event.

• Based on the event type, call a function to handle the event.

• Repeat the process.

Handle
event
type 1

Retrieve one event

Handle
event
type 2

Handle
event
type 3

figure 1-4. Structure of an event-driven program

For those of you who haven't programmed a graphical user interface, this dis­
cussion shouldn't be entirely foreign to you. You've still written programs
that have a bit of this event-driven flavor to them. You may have written a
program that displayed a menu on the screen, like the first one in Figure 1-5.

Chapter 1: Introduction to Mac Programming 2 1

r r

L

1) Calculate
2) Print
3)Quit

ENJER CHOI CE:

Non Event-driven

Calculate
Print

Quit

Event-driven

Figure 1-S. Looping in non event-driven and event-driven programs

Your program went into a loop, retrieving keyboard input using scanf()
and then responding to this input. Here's an example:

Boolean All_Done = FALSE:

int choice;

while (All_Done == FALSE)

scanf("%d". &choice);

switch (choice)

case 1:
Do_Calculations():

break:
case 2:

Print_Results():

break:
case 3:

All_Done = TRUE:

break:

The second graphic in Figure 1-5 shows how a Macintosh would display
choices to the user. While the scanf() example waits for user input and
then responds to it, it is not truly event-driven-it forces the user to wait
at the screen until a choice is made from the limited menu.

2 2 Macintosh Programming Techniques

The Macintosh, on the other hand, is aware of all types of events, such as
keyboard input, mouse clicks, and the insertion of a disk into the com­
puter. Most importantly, the user's actions control the type of event and
the time the event will occur. This freedom and power that the
Macintosh user enjoys are what makes events and the event loop such an
important aspect of Macintosh programming.

Lesson 1-1 : Events

You can run the program enclosed with this
book for a hands-on tutorial about this topic.

Resources
All of the things that make up a program's interface, such as menus, win­
dows, dialogs, and icons, are called resources. Resources are not part of
your source code, though your source code will be aware of them, use
them, and eventually become linked to them.

It is advantageous to create a piece of the interface as a resource because
a resource can be:

• Created and edited graphically, with no programming knowledge­
even after a program has been published and distributed.

• Copied to another program for reuse.

For you MS Windows programmers, much of this
should sound familiar. Macintosh resources and
Windows resources are very similar. If you've only
programmed for non-Windows PCs, or mainframes,
pay close attention. In the Macintosh world, an
appreciation for resources is very important.

Chapter 1: Introduction to Mac Programming 2 3

To create a resource you use a resource editing program, such as Apple's
ResEdit. You save a resource, or several resources, in a resource file. The
icons for ResEdit and a ResEdit file are shown in Figure 1-6.

D Deuelopment t!l
11 items 112 .7 MB in disk 90.3 MB ava

LJ [i]
Projects THINK Project Manager

[t \ .
MyResFi le ResEdit

Figure 1-6. The Icons of ResEdit and a ResEdit file

Different components of a program's interface have different resource
types. Each resource type has a four-letter, case-sensitive name. The
resource type of a menu is 'MENU', for example.

A program such as ResEdit allows you to visually create a separate
resource for each part of your application's interface. Figure 1-7 shows a
'MENU' resource being created. Instead of writing source code to define
the items in a menu, you use ResEdit to create a 'MENU' resource.

MS Windows programmers may be familiar with edit­
ing resources using a tool such as Borland' s Resource
Workshop or Microsoft's AppStudio. Res Edit is Apple's
version of a resource-editing program. As in Windows,
resources can be created by purely visual means or by
compiling a text representation of resources. Unlike
Windows, most Macintosh programmers standardize
on the visual method-ResEdit.

24 Macintosh Programming Techniques

MENU ID = 128 from Untitled

Selected Item: 181 Enabled

Te Ht: ®._I Q_u_il ______ ___,

0 ··--····· (separator line)
Close

............... ... ~

I
:
i

Qui
Color

D has Submenu TeHt: l•I
Cmd-Key:Dl!IJ

-O I
~~~~~~~~~~~ ; 

Mark: I None .,.. llJ 
Figure 1-7. Editing a MENU resource in ResEdit 

When you look at your Macintosh screen, everything you see originated 
as a resource: 

• A menu bar has an 'MBAR' resource that specifies which individ­
ual menus are in it. 

• Each individual menu has its own 'MENU' resource that defines 
the items in that menu. 

• A window has a 'WIND' resource that defines its size and initial 
position on the screen. 

• A dialog has a 'DLOG' resource that defines its size and initial 
position. 

• A dialog has a second resource, the 'DITL', that defines items 
such as buttons that are to appear in the dialog. 

Figure 1- 8 illustrates this. 



\\ 
MBAR MENU 

~ 
~ 

l.llND 

\\ 
DLOG DITL 

Chapter 1: Introduction to Mac Programming 2 5 

s File Edit Uiew 

Untitled 

la Apple Menu Items~ I 
(;> ~I:l1i t 2.1) g 
(;> tuorm I: lock 
(;> I: 1~lcol<1101· 
O Control Ponels 
(;> K<~~J C<1i1~ 

Saue As: 

II 

I 
'°' 

=Hard Oriue 

[ E: J•'c1 

[ Desktop ] 

~ Sm1<~ ~ 
Cancel 

Figure 1-8. Everything that you see on your Macintosh screen has a resource that defines it 

Once you've created the resources that define the screen elements of 
your program, you write source code that uses these resources. I'll have a 
lot more to say about the source code/resource connection throughout 
this book. 

The THINK C compiler, like most compilers, includes a source code edi­
tor, compiler, and linker within its one environment. When it is time to 
turn your source code into a standalone application THINK C compiles 
your source code, then joins the compiled code with the resources in 
your resource file. The result is an application. This process is shown in 
Figure 1-9. 

In a development environment like THINK C, you will not actually see a 
file such as the Hello.a file shown in Figure 1-9. THINK C holds all 
object code in something it calls a project file. Since your attention will 
be directed towards the source code and the final application, the fact 
that object files are invisible to you should not be a concern. 

When you link a Macintosh program, the linker converts the object code 
into 'CODE' resources and stores them, along with the resources you 
created earlier, in the final application. In the end, a Macintosh program 
is almost completely composed of resources. 



26 Macintosh Programming Techniques 

> ... Compile mt 
THINK C Hel lo . c Hel lo .o Hel l o 

\@I)~ 
ResEdit Hel l o . rsrc 

Figure 1-9. Source code and resources form an application 

If resources and source code are eventually joined, why do they initially 
exist in separate files? Because source code is created with a text editor, 
while resources are created with a resource editor. 

The Toolbox 
With a resource editing tool such as ResEdit, creating menus, windows, 
and dialogs is easy. But a resource contains only a description of a piece 
of the interface-it doesn't do anything with it. For example, ResEdit eas­
ily allows you to list the items that will be in a menu. To then display 
that menu- to track the user's mouse movements over it and then drop 
it down and display the items in it-you need to write source code. 

The menu scenario just described shows up in every Macintosh pro­
gram. You can therefore infer that much of the code to perform that 
scenario should look the same in any Macintosh program. The phrase 
"don't reinvent the wheel" comes up a lot in programming, and 
Macintosh takes this phrase to its limit. Apple programmers wrote a 
few thousand routines that handle all of the actions common to most 



Chapter 1: Introduction to Mac Programming 2 7 

Macintosh programs. They then graciously gave them away-free. 
Well, not exactly free. To get the thousands of routines, you have to 
buy a Macintosh computer. 

Instead of creating libraries of routines, as is the common practice with 
languages for other computers, Apple has taken the code that makes up 
these routines and burned it into ROM chips that are then placed inside 
each Macintosh. Collectively, Apple refers to these routines as the 
Macintosh User Interface Toolbox, or Toolbox for short. 

If you're a PC or mainframe programmer who has 
never programmed in a windowed environment, don't 
let the idea of these invisible routines overwhelm you. 
On a mainframe or PC you also use routines that you 
didn't write, like standard C library functions such as 
strlen(} and printl(). You iust don't have a fancy name 
for them like the Macintosh User Interface Toolbox! 

Figure 1-10 shows how we'll illustrate the Toolbox emphasizing the 
point that the code for Toolbox routines lies in ROM and not in your 
source code. 

Toolbox 

ROM 

Figure 1-10. The Toolbox is in ROM 



2 8 Macintosh Programming Techniques 

PCs have software built into their ROMs too-the ROM 
BIOS services. The difference? The Macintosh Toolbox 
is easier to use and provides a means to display and 
work with graphics and a sophisticated user interface. 

In the previous section I said that you first create a resource and then 
write source code that uses that resource. This, of course, implies that 
your source code somehow communicates with your resources. Toolbox 
routines are this communication link. Here's a brief example: 

WindowPtr the_window ; 

the_window - GetNewWindow(l28 . OL . (WindowPtr) - lL); 

The routine GetNewWindow() is a Toolbox function that locates a 
'WIND' resource and loads it into memory. The code that makes up 
GetNewWindow() exists in ROM. When your source code makes a call 
to GetNewWindow() your program is interrupted while the code in 
ROM is executed. 

A call to GetNewWindow(J gives your program a 
pointer to the window-a WindowPtr. The WindowPtr 
variable is your means of identifying this one particu­
lar window. When you perform operations on the win­
dow, such as moving it or drawing graphics to it, 
you'll use the window's pointer to refer to the win-
dow. There will be more on this topic in Chapter 5. 

The GetNewWindow() code in ROM looks to a 'WIND' resource in your 
program's resources to determine the type and dimensions of the win­
dow. Notice in the above example that there are parameters passed to 
GetNewWindow(). The first parameter is an ID that tells the Toolbox 
which 'WIND' resource to use because your resource file may hold more 
than one 'WIND' resource. The Toolbox routine looks to the resource file 
for information about the window, and the resource file passes this infor­
mation back to the Toolbox. 



Chapter 1: Introduction to Mac Programming 2 9 

Figure 1-11 summarizes the relationship between source code, the 
Toolbox, and resources. In this figure a call to GetNewWindow() accesses 
the Toolbox, which in turn looks at the program's resources to get the 
descriptive window information it needs to put up the correct type and 
properly-sized window. This information is contained in a 'WIND' 
resource. 

~ 
He l lo .c 

( 

GetNewWindow() 
} 

0 
Toolbox 

LJ g ~ He I lo . rsrc 

\ \ \ 
l-l lHO MENU DLOO 

0 
f ie (Cit 

Figure 1-11. Source code, resources, and the Toolbox 

The GetNewWindow() routine is just one of the thousands of functions 
in the Toolbox. To find the ones that serve your purposes, and to know 
the parameters to pass, refer to Appendix D of this book. There we list 
many of the more commonly-used Toolbox routines. For the complete 
listing of Toolbox routines you'll have to turn to Apple's Inside 
Macintosh series of reference books. The books in this library are refer­
ence books, not beginner-level tutorials. 



3 0 Macintosh Programming Techniques 

For MS Windows programmers, the Inside Macintosh 
reference books are the Macintosh counterpart to your 
Windows Programmer's Reference manual. 

This book covers many of the Toolbox functions. The examples often 
make calls to Toolbox functions as well as calls to non-Toolbox func­
tions. So that you can readily tell the difference between the two types 
of functions, I always include at least one underscore in my own func­
tion names, Toolbox functions never include one. Figure 1- 12 gives an 
example. 

Our_Own_Function(---

We use underscores ... 

the Toolbox doesn't. 

GetNewWind ow(----

Figure 1- 12. This book's function naming convention 

~ 

Lesson 1-3: The Toolbox 

You can run the program enclosed with this 
book for a hancls·on tutorial about this topic. 



Chapter 1: Introduction to Mac Programming 3 1 

The Operating System 
Like the Toolbox, the code that makes up the Macintosh Operating 
System is located in ROM-that's why Figure 1-13 is so similar to Figure 
1-10. The Operating System is different from the System file, which is 
found in the System Folder, and is described in the next section. 

Operating 
System 

ROM 

Figure 1-13. The Operating System is in ROM 

The Operating System, like the Toolbox, consists of routines that you 
can access by way of function calls in your source code. The difference 
between the routines in the Toolbox and those of the Operating System 
is in the level of the tasks they perform. Operating System routines deal 
with low-level tasks such as handling keystrokes and disk-insertions. 
Toolbox routines deal with higher-level tasks. The result of a higher­
level chore is more noticeable to the user, such as the display of windows 
and the drawing of shapes or pictures in those windows. 

You perform an Operating System task just as you do a Toolbox task-you 
make the appropriate function call. An example of an Operating System 
call is Eject(), which physically ejects a disk from the floppy disk drive. 



3 2 Macintosh Programming Techniques 

PC and mainframe programmers will appreciate the 
simplicity of accessing the Macintosh Operating 
System. To perform a task you need only know the 
proper Operating System routine to call; you use no 
direct-memory addressing using jumps or interrupts. 

System Software 
Now that you know what Toolbox routines and Operating System rou­
tines are, you can refer to them collectively as system software. 

System software is divided into the two broad categories of the Toolbox 
and the Operating System. It is then further sectioned into groups of 
functionally-related routines. These groups are called managers. 

The Window Manager is an example of a manager. It consists of routines 
such as GetNewWindow() and MoveWindow{}-routines that allow you 
to create and work with windows. Some of the other managers are given 
in Figure 1-14. 

[ Toolbox 
l 
J 

[ Operating } 
System 

LJ LJ 
Control Manager Device Manager 
Dialog Manager SCSI Manager 
Event Manager File Manager 
Menu Manager Memory Manager 
QuickDraw Process Manager 
Resource Manager 
Window Manager 

Figure 1-14. The Macintosh managers 



Chapter I: Introduction to Mac Programming 3 3 

From the names of the managers in Figure 1-14 you can see that the 
Toolbox managers deal with the user interface: windows, dialogs, and 
menus. The managers that comprise the Operating System, on the other 
hand, deal with low-level tasks such as memory management and the 
control of devices such as monitors. 

I'll have more to say about individual managers throughout this book. 

The System File and Finder 
The System Folder that appears on every Macintosh contains two files of 
note: the System file and the Finder. 

The System file 
The System file, not to be confused with the Operating System in ROM, 
consists of resources that are accessible by all programs. New models of 
the Mac may contain new versions of the ROM and thus new, previously 
unavailable system software. An owner of an older Macintosh can access 
these new Toolbox and Operating System routines by upgrading to a new 
System file. 

The System file contains patches-code that takes the place of the rou­
tines found in new versions of ROM. When an older version of ROM 
receives a call to a new system routine, it can look to the System file and 
run the code from there. Figure 1-15 illustrates this idea. The figure 
shows that with the new ROM the Toolbox can handle the new routine 
directly. The older ROM must access the new System file to make use of 
the new routine. 

If a Macintosh user has an old version of ROM and an older System file, 
an application attempting to make a call to a new routine will crash. 
With the multitude of Macintosh models in use, this is a significant 
problem. I introduce techniques to avoid this type of crash in Chapter 8. 



3 4 Macintosh Programming Techniques 

~ 
Hello.c 

{ 

BrandNewRoutine() 
} 

Toolbox Toolbox 

LJ LJ 
New ROM Old ROM 

... •••• 1010 
1101 •••• 

New System 
with patch 

Figure 1-15. Patches take the role of ROM routines 

The Finder 

The Finder is a program that, like most Macintosh programs, consists of 
code and resources. The Finder is loaded into memory and starts running 
when you turn on your computer. It is responsible for displaying the desk­
top pattern and the icons you see on it, such as the trash can, files, and 
folders. When you move, copy, and delete files the Finder is doing the 
work. The Finder makes use of some of the common resources in the 
System file to display the interface that the user sees. Figure 1-16 shows 
the System file and the Finder and what the Finder is responsible for doing. 

On PCs running DOS, there is no real equivalent to the 
Finder and to the base-level user interface it provides. 
Unless you consider the "C:>" prompt in DOS to be a 
user interface! 



Chapter 1: Introduction to Mac Programming 3 5 

r 
ITT 
~ 

Fi nder 

~ 
~ 

CJ 
System Fo lder 

l 

8 
l 

m 
System 

~ 
~ 

Figure 1-16. The Finder and the System file 

Chapter Program: Intro to Mac 
Programming 

We'll close this chapter, and every chapter hereafter, with a short sample 
program that demonstrates the chapter's topics. The source code for each 
chapter is included on the disk that came with this book. If you own a C 
or C++ compiler, such as THINK C or Symantec C++, you can compile 
and run any of the programs. 



3 6 Macintosh Programming Techniques 

This chapter's program, VeryBasics, simply displays a window on the 
screen and then draws a line of text to it. Though the program may not 
appear to do much, it does illustrate several of the concepts discussed in 
this chapter. VeryBasics demonstrates: 

• Bit-mapped graphics by drawing text to the window. 

• Retrieving and processing an event using an event loop. 

• Use of a resource file with a 'WIND' resource. 

• Making Toolbox calls. 

To quit the program click the mouse button. 

Program proiect: VeryBasics.1t 
All of the examples in this book compile using the THINK C compiler. 
I've included the source code, the resource file, and the program's 
THINK C project file for each program. 

To create a program in THINK C, you must first create a project. A pro­
ject holds the source code files for a program. If you have THINK C or 
Symantec C++, refer to your user's guide if you aren't sure how I created 
the VeryBasics project. I will, however, tell you a little bit about the 
THINK C file naming convention. 

A project typically has the same name as the executable program but 
also has a .1t extension. The 1t character is created by pressing the Option 
key and the letter "p" key. Thus, the VeryBasics program has a project 
named VeryBasics.1t. 

When it is time to compile the program, THINK C will look for a 
resource file with the project name plus the extension .rsrc. The 
Very Basics resource file, covered in the next section, has the name 
Very Basics.1t.rsrc. 



Chapter 1: Introduction to Mac Programming 3 7 

Program resources: Very8asics.7t.rsrc 

For the first resource file, I'll quickly run through the steps used to create 
the file and the one and only resource the VeryBasics program uses. 

1. Run ResEdit. 

2. Click on the introductory dialog to dismiss that dialog. 

3. Click the New button in the next dialog that opens. 

4. Name the resource file VeryBasics.7t.rsrc. 

5. Click the New button. 

6. Choose Create New Resource from the Resource menu. 

7. Scroll to the 'WIND' type, then click on it. 

8. Click the OK button. 

9. You now have a 'WIND' resource. If you wish, click on one of the 
small window icons to change the type of window. Type in new 
values in the four size edit boxes to change the dimensions of the 
window. 

10. Choose Save ... from the File menu. 

11. Choose Quit from the File menu. 

Figure 1-17 shows part of the editing window for the 'WIND' resource. 



3 8 Macintosh Programming Techniques 

UeryBasics.1f.rsrc 

D 
'W IND 

§0 WIND ID= 128 

Left: 1~2_0_~ 

Height: 1150 

Width: j259 

Figure 1-17. Creating a 'WIND' resource in ResEdit 

Program listing: VeryBasics.c 

In the sections following the program listing I describe the key elements 
of the source code. 

/ • 1 I I I I I I I I++++++++ Function prototypes +++++++++++++++++• / 

void Handle_Mouse_Down( void ) ; 

/ • ++++++++++++ Define global constants +++I I I I I I I I+++++++• / 

I/define WIND_ID 128 

I/define BEEP _DURATION 
//define NIL OL 
I/define IN_FRONT (WindowPtr ) - lL 

I/define REMOVE_EVENTS 0 



Chapter 1: Introduction to Mac Programming 

/*+++++I I I I I I II+ Define global variables ++++++++++++++++•/ 

WindowPtr The_Window: 
Boolean All_Done = FALSE: 
EventRecord The_Event: 

/•++++++++++++++++++++ main listing +++++++++++++++++++++++•/ 

void main( void ) 

InitGraf( &thePort ): 
InitFonts(): 

InitWindows(): 
InitMenus(): 
TEinit (): 
InitDialogs( NIL): 
FlushEvents( everyEvent, REMOVE_EVENTS ): 
Ini tCursor () ; 

The_Window = GetNewWindow( WIND_ID, NIL, IN_FRONT ); 

SetPort( The_Window ): 

MoveTo( 30,50 ) : 
Drawstring( "\pChapter One Program" ) : 

while ( All_Done == FALSE ) 
( 

GetNextEvent( everyEvent, &The_Event ): 

switch ( The_Event.what 

case mouseDown: 
Handle_Mouse_Down(): 
break: 

/*I I I I I I I I++ Handle a click of the mouse button +++++++++++*/ 

void Handle_Mouse_Down( void ) 

39 



40 Macintosh Programming Techniques 

SysBeep ( 5 ) ; 

All_Done - TRUE ; 

Stepping through the code 

If you're new to Mac programming, there are several lines of code in the 
listing that will look unfamiliar to you. Let's examine them here. 

Where are the #includes? 

When you look at the C source code for programs that run on non­
Macintosh systems, the first thing you usually see are several #include 
directives that include header files in the program. Macintosh programs 
also use #includes, but you usually need to include only one header file, 
and that's done for you automatically. 

Your C or C++ compiler gets its information about the calling conven­
tion of a Toolbox routine from a header file. Macintosh compilers come 
with approximately 100 header files. When you make a call to a Toolbox 
routine such as GetNewWindow(), your compiler looks to the 
Windows.h header file to find the prototype for GetNewWindow(). 

The THINK C compiler has taken about 30 of the most commonly used 
header files and precompiled them into one header file called MacHeaders. 
Symantec C++ has a similar header file called MacHeaders++. The THINK 
Project Manager automatically includes this MacHeaders in every source 
code file you use, so you don't have to use #include directives for it or for 
any of the included files it uses. 

MS Windows programmers know that Windows 
programs always include one large header file­
Windows.h. If a Windows compiler automatically 
included this header in all of its windows source code, 
it would function in the same way as the THINK C 
compiler that includes MacHeaders. 



Chapter 1: Introduction to Mac Programming 4 1 

There will be times when you need to include some of the other 
Macintosh header files in a program. When you do, you simply use stan­
dard #include directives. Examples abound throughout this book. Like 
any other compiler, Macintosh compilers also allow you to write your 
own headers and include them. 

Function prototypes 

Prototypes aid the compiler in determining if functions are being called 
properly. Though some compilers might let you slip by without them, 
always use them. For the Macintosh, prototypes are written in the same 
form as they are for any other computer whose compiler supports this 
construct. You do not have to include a variable name when you list the 
arguments, just the type of the argument. Here's the prototype of the 
Handle_One_Event{} function: 

void Handle_Mouse_Down( void) : 

If you program on an older minicomputer or main­
frame, it is possible that your C compiler does not 
support prototypes-a relatively recent extension to 
the C language. If so, consult any book that describes 
the ANSI standard definition of the C language. 

The #define directives 
As you can tell from the listing, Macintosh programs use #define direc­
tives in the same manner as #defines are used by compilers for other 
computer systems. I'll comment on each #define as it appears in the list­
ing. Here are the five #defines Very Basics uses: 

/ldef ine WIND_ID 128 

#def i ne BEEP_DURATION 
#define NIL OL 

#define IN_FRONT (WindowPtr ) · lL 
#def i ne REMOVE_EVENTS 0 



4 2 Macintosh Programming Techniques 

Global variables 
Variable declarations take on the same format for Macintosh C as they 
do for other versions of C. Macintosh C, however, has some data types 
all its own. I'll cover many of these types at various places in this book, 
and we summarize them in Appendix A. Here are VeryBasics' three 
global variables: 

WindowPtr The_Window; 

Bool ean All_Done - FALSE ; 

Eve ntRecord The_Event ; 

The main() function 

void main( void ) 

Like other C programs, Macintosh programs always begin at the main() 
function. And like all C programs, you don't explicitly call main(); it is 
automatically the first function to execute when you run a Macintosh 
program. 

MS Windows programs use WinMain() rather than 
main(). 

Toolbox initialization 

The various managers must be initialized before performing calls to 
Toolbox routines. The sequence of initialization calls given here should 
be included in every Macintosh program you write, in the order given 
here: 



Chapter 1: Introduction to Mac Programming 4 3 

InitGraf( &thePort ) : 
InitFonts(): 
InitWindows(); 
InitMenus(): 
TEinitO: 
InitDialogs( NIL): 
FlushEvents( everyEvent, REMOVE_EVENTS ) ; 
InitCursor(): 

Two of the constants I defined are used here. On the Macintosh, pointers 
occupy four bytes of memory. A nil pointer has a value of 0. By defining 
NIL to be OL I force the value zero to occupy the size of a long variable of 
four bytes. 

The FlushEvents{} routine clears extraneous events from the event queue 
in preparation for the start of the program. The second parameter to 
FlushEvents(), the REMOVE_EVENTS constant, specifies that all events 
in the queue should be wiped out. 

A call to a Toolbox routine that exists in a manager 
that was not initialized will crash your program. 

Loading a window 

Finally, some action! A call to GetNewWindow() loads a 'WIND' 
resource into memory. When you create a 'WIND' resource in ResEdit, 
you have the option of specifying whether the window should be visible 
or hidden when this call is made. If you examine the 'WIND' resource in 
the VeryBasics.TC.rsrc file you'll see that the check box labeled "Initially 
visible" is checked. That means that when this call is complete a win­
dow will appear on the screen. Here's the call that loads the 'WIND' 
resource: 

The_Window = GetNewWindow( WIND_ID, NIL. IN_FRONT ) : 

In a Mac program there may be more than one occurrence of a resource 
type. In order to be able to specify which resource you want to use, every 



44 Macintosh Programming Techniques 

resource has an ID. When VeryBasics calls GetNewWindow(), the ID of 
the 'WIND' to load into memory is the first parameter. I gave WIND_ID 
the value of the resource ID of the 'WIND'. 

The second parameter to GetNewWindow() tells the Window Manager 
where in memory to store this newly loaded window. Using a nil pointer 
here tells the Window Manager to use whatever available memory it 
wants. Chapter 5 shows you how to be more specific about where in 
memory the window should be stored. 

The last parameter to GetNewWindow() specifies whether the new win­
dow should open in front of or behind all other open windows. This is 
the program's only window, so this parameter doesn't have an impact on 
the call. In general, you'll open a new window in front of all others. A 
value of -1 accomplishes this. Also, this value must be a pointer and by 
convention it is -IL. And, more particularly, this value must be a special 
type of pointer: a window pointer. Preceding the value with (WindowPtr) 
casts the value -11 to a WindowPtr type. I've defined IN_FRONT to have 
this value of (WindowPtr)-IL. 

~OTE If you are a PC programmer or write code for a 
machine in which pointers and integers are not the 
same size, you'll notice that Macintosh programmers 
are much more relaxed about placing integer values 
such as -1 L and OL in slots meant for pointers. Since 
they're both 32 bits in size, it all works out. 

Drawing to a window 

Every window has its own drawing environment, that is, its own port. 
That's how different windows can do things like display text in fonts dif­
ferent from one another. Before drawing to a window, you must set the 
port to that window. A call to the Toolbox routine SetPort() accomplish­
es this. The parameter to SetPort() is a pointer to the window whose port 
you want to use. 

To move to a particular area in a window, you use the Toolbox routine 
MoveTo(). The first parameter is the horizontal location to move to, the 
second parameter is the vertical position. The effect of MoveTo{30,50} is 



Chapter 1: Introduction to Mac Programming 4 5 

as follows: Start at the window's upper-left comer. Move 30 pixels to the 
right. Move 50 pixels down. Stay put until asked to move again or until 
asked to draw. 

The Toolbox routine DrawString() draws a single line of text to a win­
dow. The line of text is preceded by \p, and the entire string is placed in 
double quotes. The Toolbox will be looking for a string in Pascal format. 
Strings which are in Pascal format are not terminated with a null byte, as 
they are when in C format. Rather, Pascal strings begin with a byte that 
contains the size of the string, followed by the text bytes of the string. 
Since our string is sent to it in C format, we let the Toolbox know this so 
that it can make the internal conversions necessary to display the string. 

PC programmers use the \ character all the time: 

printf("Start a new line.\n"); 

It should make sense that the escape character \ is 
used to signal the compiler that the letter p that fol· 
lows does not stand for the letter in the alphabet, but 
rather indicates that the string that follows is in 
Pascal format. 

Here's the code that sets the port, moves to the right and down, and then 
draws a line of text: 

SetPort( The_Window ) : 

MoveTo( 30.50 ): 

Drawstring( "\pChapter One Program" ) : 

The main event loop 

The event loop, the driving force of the program, appears just as dis­
cussed earlier in the chapter. The only event type VeryBasics handles is a 
click of the mouse. It handles this mouseDown event by calling, or 
invoking, a procedure. Here it is: 



46 Macintosh Programming Techniques 

while (All_Done == FALSE) 
{ 

GetNextEvent(everyEvent, &The_Event): 

switch (The_Event.what) 

case mouseDown: 
Handle_Mouse_Down(): 
break: 

A Macintosh function 

void Handle_Mouse_Down( void 

SysBeep(S): 
All_Done = TRUE: 

The Macintosh requires several new ways of orienting the process of 
writing a computer program. So you'll be happy to learn that the 
Macintosh does some things exactly as you've done in the past! A func­
tion for a Macintosh program is written and invoked in the same manner 
as a function you write for any other computer. 

The Handle_Mouse_Down() routine simply beeps the Macintosh speaker 
with a call to the Toolbox routine SysBeep(}. How do you know that 
SysBeep() is a Toolbox routine and Handle_Mouse_Down() isn't? 
Remember our naming convention. SysBeep() has no underscores in its 
name-it's a Toolbox routine. Handle_Mouse_Down() has underscores, 
which means that I wrote this routine. 

Finally, All_Done is set to true. When the event loop attempts to execute 
again, the test of All_Done for false will fail and the program will end. 



Chapter 1: Introduction to Mac Programming 4 7 

Chapter Summary 
The Macintosh graphical user interface, or GUI, presents special chal­
lenges to programmers of the Macintosh. This book presents the tech­
niques to overcome these challenges. 

The Macintosh uses bit-mapped graphics. You can turn each pixel, or dis­
play dot, on or off on the screen. Each pixel has a pair of coordinates that 
make up a point that defines its position on the screen. 

Macintosh programs don't run in a sequential, linear manner. Instead, a 
Mac program responds to events-user actions such as a click of the 
mouse button. An event record holds descriptive information about a 
single event. A Macintosh program is driven by an event loop-code that 
repeatedly checks for and responds to these events. 

All elements of a Macintosh program, such as its menu, windows, and 
dialog boxes, are resources. A resource is a description of one of these ele­
ments. A 'WIND' resource, for example, holds the type, or look, of a win­
dow. It also defines the size of the window and the screen location where 
it will first appear. Resources can be graphically, or visually, edited using 
a program such as Apple's ResEdit resource editor. 

Resources are simply descriptions of interface elements; they don't do 
anything with the elements. For that, you must write source code. So 
that you don't have to start from scratch, Apple provides thousands of 
prewritten functions to help you in working with resources. These rou­
tines are stored in the ROM of your Macintosh and are collectively 
referred to as the Toolbox. 

The Macintosh Operating System, like the Toolbox, consists of routines 
you access from within your source code. The Operating System routines 
are low-level functions that perform tasks such as handling keystrokes, 
while the Toolbox routines are higher-level, performing the more notice­
able tasks such as displaying windows and drawing pictures. 

Collectively, the Toolbox and Operating System are called system soft­
ware. The system software is divided into groups of functionally-related 
routines-managers. The Window Manager and Menu Manager are two 
examples. 



4 8 Macintosh Programming Techniques 

The System File, found in the System Folder of each Macintosh, contains 
resources that are shared by programs. The Finder is another program 
found in the System Folder. It starts executing when your Macintosh 
starts up. It is responsible for displaying the desktop pattern and for per­
forming file housekeeping like copying and deleting files. 



Macintosh Memory 

Understanding how the Macintosh works with memory is an important 
and often understudied topic. A knowledge of what is going on in RAM 

will aid you in writing programs that behave in a predictable manner. 

The Macintosh uses a set of terminology and concepts all its own. This 
chapter will make you familiar with the basic terms and techniques of 
Macintosh memory. In Chapter 9 you will discover the details of mem­
ory management and learn actual techniques you can use to avoid 
memory problems. 

In this chapter you will learn how memory is organized into partitions. 
You'll see how each partition is composed of the same basic areas of 
memory. You will also learn the techniques the Macintosh uses to make 
the most efficient use of memory. 

Memory Organization 
The Macintosh Operating System divides RAM into two main sections, 
or partitions. The partition at the low end of memory is the system par­
tition and is reserved by the Macintosh for its own use. The Macintosh 

49 



5 0 Macintosh Programming Techniques 

dedicates the other partition to applications that you run. The Mac will 
further subdivide this partition into application partitions. For every 
application you run there is a corresponding application partition. Figure 
2-1 illustrates this. 

Higher Memory 
Addresses 

Lower Memory 
Addresses 

Q 

Free Memory 

Application 1 Partition 

Application 2 Partition 

System Partition 

Figure 2-1. Memoty organization 

What does a RAM partition contain? That depends on whether the parti­
tion is a system partition or an application partition. Figure 2-2 shows 
RAM when a single application is running. I'll refer to this figure when I 
first describe the memory organization of the system partition. Then I'll 
refer to the application partition. 

System partition organization 
The RAM of a Macintosh always contains a single system partition. This 
is true regardless of the number of applications that may be running. The 
system partition has a section that contains system global variables and a 
section called the system heap. 



Chapter 2: Macintosh Memory 5 1 

A5 World 

r 0 Application Stack 
··············-···-·-·····--·--·-·--····-····--··--···-···--·-·-·- Application Higher Memory Free Space 

Addresses Partition 
·---·-·-·--·--------·-·------

Lower Memory Application Heap 
Addresses .,,. 

Q .4~ 

System Heap System 
Partition 

System Globals _L 
Figure 2-2. The system and application partitions 

System global variables 

At the bottom of memory, starting at address 0, the Mac reserves a section 
of memory for system global variables. The operating system uses these 
variables to keep track of what is going on in the operating environment. 
There are also variables stored here that establish constant environment 
values, such as the pixel height of the menu bar. Seldom, if ever, will it be 
necessary for you to directly use these variables. Instead, you will access 
them indirectly through Operating System and Toolbox routines. 

System heap 

Above the system global variables is the system heap. Only the 
Operating System uses this section of memory; you will never have a 
need to access information contained within it. The system heap con­
tains things such as system file resources, extensions, and the code nec­
essary to run the Finder. When you start up the Macintosh, the system 



5 2 Macintosh Programming Techniques 

heap size is set and remains fixed until the next time the computer 
starts. At startup, extensions (such as Apple's QuickTime) call upon a 
software mechanism to expand the system heap to accommodate them. 
That's why you have to restart your computer once you move an exten­
sion into your system folder. 

Application partition organization 
When a program launches, the operating system reserves a section of free 
RAM for that application's use. This application partition devotes itself 
entirely to that application for the duration of the application's execu­
tion. When you quit that application the memory within that partition 
becomes free for the Macintosh to use for a different application. 

A system partition has an AS World that holds application global vari­
ables, an application stack that holds application local variables, and an 
application heap section that contains the program's code and resources. 

AS World 

A program's global variables are stored in a section of the application par­
tition called the AS World. The name "AS World" comes from the fact 
that the operating system uses the CPU's AS register to keep track of just 
where this memory section starts. 

Variables stored in the AS World are accessible only to the program in 
this application partition. On the other hand, variables in the system par­
tition are accessible by both the system and any application that is exe­
cuting. Figure 2-3 illustrates this. 

Application stack 

The AS World section holds variables global to the program in the appli­
cation partition. The application stack is a section of memory used for 
holding the local variables of the program to which the application parti­
tion is dedicated. The stack also holds parameters as they are passed to 
functions. 



Only this 
application 
can use these 
variables 

Any program 
can use these 
variables 

Chapter 2: Macintosh Memory 5 3 

AS World 

Application Stack 

Free Space 

Application Heap 

System Heap 

r 
Application 

Partition 

System 
Partition 

System Globals _L .....____ ____ 
figure 2-3. The AS World 

The number of global variables in any single program is fixed. Upon load­
ing a program into the application partition, the operating system can 
determine the exact amount of memory it should allot to the AS World. 
For this reason, the size of the AS World is fixed when an application is 
loaded. The exact number of local variables and passed parameters in a 
program are not as well-defined. Variables local to functions are created 
and destroyed dynamically as the program executes. This necessitates a 
stack that is capable of growing and shrinking in size. 

The bottom of the stack is fixed in memory, and is "anchored" just 
under the AS World. As the stack adds variables, it grows downward in 
memory. As the stack removes variables the stack recedes back upwards. 
Variables are always added and removed from the top of the stack. Figure 
2-4 shows the application stack. The shaded arrow emphasizes that as 
the stack grows it moves toward the application heap. 



5 4 Macintosh Programming Techniques 

Higher Memory 
Addresses 

Lower Memory 
Addresses 

A5 World 

Application Stack 

-+-
Free Space 

.................................... " ..................................................................... 

Application Heap 

System Heap 

System Globals 

figure 2-4. The application stack 

Application heap 

Fixed 
stack bottom 

Movable 
stack top 

The third component of the application partition is the application heap. 
The heap holds the executable code of the application and the applica­
tion's resources. Unlike the stack, which stores variables in a linear man­
ner, the heap is capable of loading, storing, and unloading objects-pro­
gram code and resources-anywhere in the area of memory that the sys­
tem has established as the heap. 

The application heap, like the stack, is capable of growing and shrinking 
as it needs more space. In this respect the application heap differs from 
the system heap, which takes on a fixed size when you start your com­
puter. The application heap grows upward in memory, towards the stack. 
This is shown in Figure 2-5. 



Higher Memory 
Addresses 

Lower Memory 
Addresses 

Chapter 2: Macintosh Memory 5 5 

A5 World 

Application Stack 

------·- ---·---·--! 
Free Space 

1----·--+-
Application Heap 

System Heap 

System Globals 

Figure 2-S. The application heap 

Movable 
heap top 

Fixed 
heap bottom 

The Memory Manager, the set of system routines that handle memory­
related tasks, is responsible for allocating and managing blocks, or sec­
tions, of memory in the heap. These blocks hold objects such as 
resources. The Memory Manager can vary the attributes, or properties, of 
individual blocks of memory. Some of these attributes are: locked or 
unlocked, purgeable or unpurgeable, relocatable or nonrelocatable. 
Chapter 9 discusses these attributes in more detail. 

Now that you know that the stack can grow down towards the heap, and 
the heap can grow up towards the stack, a question may come to mind. 
What prevents the stack and heap from running into one another? The 
answer: sometimes they do! The Memory Manager does its best to pre­
vent this from occurring, and you can assist the manager by using some 
simple memory management techniques discussed in this chapter. 



5 6 Macintosh Programming Techniques 

Summary of memory organization 

Figure 2-6 summarizes several ideas and terms unique to Macintosh 
memory organization. 

0 ~:.~::::_ ~ 
Higher Memory Y 

stack r bottom 

stack Application 
top Partition 

Lo:::r::::~ -=i=-0 
Anes Application Heap (J 
V System Heap 

System Globals 

heap 
top .,, 
heap 

.A 

bottom System 
Partition 

__L 
Figure 2-6. Memory organization summary 

Up to this point, the discussions on memory have centered on examples 
that have just a single application running. System 7, and MultiFinder 
before that, allow a user to have multiple programs running at one time. 
Each program that runs gets its own application partition, and each parti­
tion has its own AS World, application stack, and application heap. 
Figure 2-7 shows memory when two applications are running. 

As a programmer, you will have no control of, nor will you be very inter­
ested in, what happens in the system partition. Any program that you 
create for the Macintosh will end up in an application partition when it 
executes. However, you will be interested in the memory management 
of application partitions. For this reason the topics in the remainder of 
this chapter apply only to application partitions. Of particular impor­
tance is the area of memory where your program's code and resources 
reside-the application heap. 



Chapter 2: Macintosh Memory 5 7 

A5 World 

Application Stack 

Free Space 

Application Heap 

A5 World 

Application Stack 

Free Space 

Application Heap 

System Heap 

System Globals 

i 
Application 1 

Partition 

Application 2 
Partition 

~~ 

System 
Partition 

* 
Figure 2-7. Memory organization when more than one application is running 

The Application Heap 
For a given application, certain things will remain constant each time 
the application is executed. When an application calls a particular func­
tion it will always pass the same number of parameters. Each time the 



5 8 Macintosh Programming Techniques 

function begins execution it will create the same number of local vari­
ables. Each time the function terminates, the program destroys these 
same local variables. For this reason an application's stack is designed to 
hold objects in an orderly, linear manner. The same cannot be said for an 
application's heap. 

As a program executes, it does so in a nonlinear manner. Running a pro­
gram two times may result in several different sections of code being 
executed and several different resources being used. Because of this, the 
implementation of the heap is different from that of the stack. 

Heap fragmentation 
The Macintosh places an object in the heap in any free space large 
enough to accommodate it. It does not necessarily add it to the top of the 
heap, as an object must be added to the top of the stack. Once in the 
heap, the Memory Manager may move an object from its present loca­
tion to a different area of free memory within the heap. The Memory 
Manager may remove an object in the heap, leaving an area of free space. 
Figure 2-8 illustrates how the heap works. 

Note in Figure 2-8 that the object that was added was not placed in free 
space between existing objects. This is because the object was larger than 
either of the two free areas. When the Memory Manager adds an object to 
the heap it always places it in contiguous memory- it never divides it. 
This results in heap memory that goes unused. 

When objects break up free space, fragmentation occurs. Several small 
areas of memory will be free but, due to their small individual size, they 
will go unused. This is shown in Figure 2- 9. 



Chapter 2: Macintosh Memory 5 9 

Heap Heap Heap 

===------

Four objects ... . . . two removed ... . .. one added. 

Figure 2-8. How the heap gets fragmented 

Heap 

____________ -(] 
I-====== == 
.._ ...... (] 

Free space ... 

Heap 

i----_ - - --- - ---- - (J ._-------------- (J 
.. . becomes wasted space. 

Figure 2-9. Fragmentation creates wasted memory 



60 Macintosh Programming Techniques 

Heap compaction 

Over time, the amount of wasted space, or fragmentation, could become 
so great that a program would not be able bring new objects into memo­
ry. Obviously, this is not an acceptable situation. To prevent fragmenta­
tion, the Memory Manager uses a concept called compaction. Ideally, the 
Memory Manager would like to make the most efficient use of memory 
by shifting objects in the heap to fill the free spaces so they don't become 
wasted RAM. Figure 2-10 shows this. 

Heap 

---------

Before adding 
an object .. . 

Heap 

... compaction 
takes place ... 

Heap 

... making RAM 
use more efficient. 

Figure 2-10. Heap compaction restores wasted memory 



Chapter 2: Macintosh Memory 6 1 

During memory compaction the Memory Manager may decide to purge, 
or remove from memory, some blocks. Only blocks that are not current­
ly in use, and that are specifically marked as purgeable, can be removed. 

Nonrelocatable and relocatable blocks 
One of the attributes of a block is whether the block is marked as relo­
catable or nonrelocatable. The Memory Manager can move blocks that 
are relocatable from one area of the heap to another. Blocks that are 
nonrelocatable always stay in one place, even when memory is being 
compacted. 

Because the Memory Manager can't move nonrelocatable blocks, you 
might think they could cause fragmentation. And they do. Though it is 
vastly preferable to use relocatable blocks, there are occasions when 
the Macintosh must use nonrelocatable blocks. Chapter 9 covers these 
situations. 

With all this shifting of memory taking place, how do the Memory 
Manager and your application keep track of where things in memory 
will be at any given moment? For this the Macintosh uses a technique 
involving master pointers. A master pointer is a special pointer that 
points to an object and stays fixed in memory, regardless of where the 
object to which it points moves to. If the object moves in memory, the 
contents of the master pointer will change to reflect the object's new 
address. 

Figure 2-11 shows an object in memory, arbitrarily starting at memory 
location 65000. I labeled a few of the addresses and will reference them 
in the upcoming discussion. I've also labeled the application's stack, 
heap, and the free space that lies between these areas. 



6 2 Macintosh Programming Techn iques 

70000 
65000 
60000 
55000 

Stack 

Free space 

Heap 

Figure 2-11. An object in heap memory 

Figure 2-12 shows a master pointer that points to a single heap object. 
The master pointer contains the starting address of this object-65000. 

pointer 

Figure 2-12. A master pointer holds the address of an object 



Chapter 2: Macintosh Memory 63 

The distinction between the contents of the master pointer and the 
address of the master pointer itself can be a source of confusion. In Figure 
2-12 the content of the master pointer is 65000, while the address of the 
master pointer-where it is physically located in memory-is 55000. 

The Memory Manager uses the master pointer to keep track of a moving 
object. You, the programmer, still need one other device so that the 
Memory Manager can relay this dynamic information to you and your 
program. This device is a handle. A handle contains the address of a mas­
ter pointer. To keep tabs on a moving object in memory you will declare 
a handle variable in your program. Because it is a variable, it will reside 
on your application's stack. The handle variable will contain the address 
of a master pointer. Figure 2-13 illustrates this. 

70000 
65000 
60000 
55000 

Handle, in the stack 

Figure 2-13. A handle holds the address of a master pointer 

Once declared, the content, or value, of the handle variable will not 
change. In Figure 2-13 you can see that the handle has the value of the 
master pointer-55000. Because the master pointer never moves, the 
handle's value will never change. 

If the Memory Manager compacts memory, the value held in the master 
pointer will change. In Figure 2-14 the object in memory is moved from 
address 65000 to address 60000. 



64 Macintosh Programming Techniques 

70000 
65000 
60000 
55000 

Value of handle 
remains the same 

¢ Object has moved 

/1-i Value of master pointer 
""'-' has been updated 

Figure 2-14. The moster pointer is updated ofter the obiecf moves 

Note in Figure 2-14 that the object has moved and that the content of 
the master pointer has changed to reflect this move. Yet the value of the 
handle remains the same. 

If the value of the handle variable remains the same, how does your pro­
gram become aware of the memory movement? The updating of the 
master pointer provides the answer. When your program looks to the 
master pointer, still located at address 55000, it examines the contents of 
the master pointer to see where in memory it should look for the object. 
The master pointer always contains this information, so the handle vari­
able can also track down the object. 



Chapter 2: Macintosh Memory 6 5 

Chapter Program: Memory 
Partitions 
This chapter's example program is a simple demonstration that proves 
your computer really is setting aside a separate partition for each pro­
gram. MemoryFiller is a copy of last chapter's example program 
VeryBasics-with one change. Instead of opening one window like 
Very Basics, MemoryFilJer uses a for loop to open 30 windows. 

A window from MemoryFiller doesn't take up a lot of memory-less 
than 100 bytes in fact. So 30 windows should fit in less than 3K of mem­
ory. If you're like most Mac owners, your computer has at least 1 Meg of 
memory-lOOOK-and perhaps much more. So there should be no reason 
why running the MemoryFiller should result in your Mac running out of 
memory, right? Wrong. 

Whether MemoryFilJer, or any other program runs successfully or not 
isn't dependent on the total amount of memory in your computer. It 
depends on the amount of memory allocated to the partition that will 
hold MemoryFilJer. 

The THINK C compiler used to create the programs in this book normal­
ly sets the partition size of a program you create to 384K. When I used 
the THINK C compiler to tum the MemoryFiller source code into an 
application, I set its partition size to just 16K. If you use THINK C you 
can choose "Set Project Type" from the Project menu to bring up the dia­
log shown in Figure 2-15. Type in the desired size in Kilobytes. 

If you have System 7 on your Mac, try running the MemoryFill.er pro­
gram included on the disk. If you have some version of System 6.0, first 
make sure your computer is running MultiFinder. From the desktop, 
choose "Set Startup" from the Special menu. You'll see a dialog like the 
one shown in Figure 2-16. If the MultiFinder radio button isn't selected 
click on it, then dismiss the dialog and reboot your computer. 



66 Macintosh Programming Techniques 

® Application 

O Desk Accessory 

O Oeuice Driuer 

O Code Resource 

Partition (K) 

Cancel 

File Type I APPL 

Creator ltf''"I 

Separate STRS 

This value will be the final 
application partition size 

figure 2-JS. Establishing a program's partition size in THINK C 

System 6 users, make sure 
MultiFinder is turned on 

~ Start up 11 Hard Di 

O ~ Finder ® ~ <3' ~ Multifinder 

Upon startup, automatically open: 
0 S<~l<H h~d I b~ms 

O Open<~d HpJtH< c~ ttons <md Dfli> 

® Multlfinder Only 

( Cancel ) ([ OK B 

figure 2-J 6. For System 6, make sure MultiFinder is running 



Chapter 2: Macintosh Memory 6 7 

When MemoryFil1er starts, the program will begin to quickly put win­
dows on the screen, one on top of another. You can tell by what appears 
to be a flashing title bar on the window. Each flash is actually a new win­
dow being placed over the previous one. You'll probably count about 8 or 
10 windows before the program suddenly quits and returns to the Finder. 
There it will display a dialog like one of those in Figure 2-17. I looked up 
11 error type 25" in a list of system errors and found that it is an /1 out of 
memory" error, as you probably suspected. 

I System 7 I 
The application "unknown" has 
uneHpectedly quit, because an error of 
type 25 occurred. 

[ OK D 

u OK , 

System 6.0.X I 

The application 11 MemoryFiller 11 

has uneHpectedly quit (out of 
application memory). 

Figure 2-17. "Out of Memory 11 error messages 

You can get the MemoryFiller program to run by clicking once on its 
icon and then selecting "Get Info" from the File menu or typing 
Command-I. The dialog that appears lets you change the application's 
partition size. Try setting the partition to 32K. If you're using System 6, 
type in 32 in the Application Memory Size edit box. System 7 users 
should type 32 in the Preferred size edit box. Figure 2-18 shows both sit­
uations. 



6 8 Macintosh Programming Techniques 

System 7 

~~ Memoryfiller Info ~ 

~ Memory Filler 

Kind : application progr am 
SiH : 4K on disk ( 1 ,399 bytes used) 

Yhere : Hard Disk : Development : 
Projects: Book Examples : 
(2)MemoryFiller 

Created : Sat, Sep 11, 1993, 9:20 PM 
Modified : Sat, Sep 11, 1993, 9:20 PM 
Vers ion : n/a 

Comments : 

r-··Memory Requirements ············: 
j Suggested size : 1 6 K j 
! Minimum size: I 16 I K I 

D 
• I 

Locked j Preferred size : 32 K i 
: .. ·---.......................................... . ........ .) 

System 6.0.X 

Info 

~ MemoryFiller 

Kind: application 

Locked 0 

Size : 1 ,34 7 bytes used, 2K on disk 

Yhere : Mem Hold, internal drive 

Created : Sat, Sep 1 1 , 1 993, 9 :59 PM 
Modified : S<!t, Sep 11 , 1993, 9 :59 PM 
Version : not available 

Suggested Memory Size (K): 1 6 

Your Mac will give this program 
a partition this size, if available 

Figure 2-18. "Get In fo" for both System 7 and System 6.0.X 

With the partition size changed, rerun MemoryFilier. This time all 30 
windows open. Click the mouse once to end the program. 

With one megabyte or more of memory at your disposal, you saw a pro­
gram that needs just a little over 16 K refuse to run. This should show 
you that memory partitions are indeed very real. 

Program resources: MemoryFiller.n.rsrc 
The resource file for MemoryFilier is identical to that of last chapter's 
VeryBasics resource file. In fact, I simply copied the VeryBasics file and 
renamed it! It has just one 'WIND' resource. Remember, resources act as 
templates. Even though thirty windows will be opened, only one 'WIND' 
resource is needed. If you want the windows to be of a different style or 
size from one another, you would need more 'WIND' resources. 



Chapter 2: Macintosh Memory 

Program listing: MemoryFiller.c 

As mentioned, the source code for MemoryFiller is almost identical to 
that of VeryBasics. 

/•+++++++++++++++++ Function prototypes +++++++++++++++++•/ 

void Handle_Mouse_Down( void); 

/*++++++++++++ Define global constants ++++++++++++++++++*/ 

/Ide fine WIND_ID 128 

/!define BEEP_DURATION 
/Ide fine NIL OL 
/!define IN_FRONT (WindowPtr)-lL 
/ldef ine REMOVE_EVENTS 0 

/*++++++++++++++ Define global variables ++++++++++++++++•/ 

WindowPtr 
Boolean 
EventRecord 
short 

The_Window; 
All_Done = FALSE; 
The_Event; 
i; 

/*I I I I I I I I I I++++++++++ main listing +++++++++++++++++++++++•/ 

void main( void ) 

InitGraf( &thePort ) ; 
InitFonts(}; 
InitWindows(); 
InitMenus(); 
TE!ni t (); 
InitDialogs( NIL); 
FlushEvents( everyEvent, REMOVE_EVENTS ); 
Ini tCursor (); 

for ( i = 0; i < 30; i++ ) 
The_Window = GetNewWindow( WIND_ID, NIL. IN_FRONT ) ; 

SetPort( The_Window ) : 

69 



7 0 Macintosh Programming Techniques 

MoveTo( 30.50 ) : 
Drawstring( "\pChapter One Program" ): 

while ( All_Done == FALSE ) 
( 

GetNextEvent( everyEvent, &The_Event ) : 

switch ( The_Event.what 

case mouseDown: 
Handle_Mouse_Down(): 

break; 

/•++++++++++ Handle a click of the mouse button +++++++++++*/ 

void Handle_Mouse_Down( void ) 

SysBeep( 5 ) : 

All_Done = TRUE: 

Stepping through the code 
MemoryFiller.c places the call to GetNewWindow() in a for loop so that 
it gets called 30 times: 

for ( i = 0; i < 30: i++ ) 
The_Window = GetNewWindow(WIND_ID, NIL. IN_FRONT); 

All of the remaining code is identical to the code of VeryBasics. If you 
have any questions about any of the lines, refer back to Chapter 1. 



Chapter 2: Macintosh Memory 71 

Chapter Summary 
The Macintosh Operating System divides RAM into two main sections, 
or partitions. It reserves one partition, the system partition, for its own 
use. The other partition is dedicated to applications that you run. This 
second partition is further subdivided into application partitions. There 
is one application partition for every application that's running. 

An application partition is composed of three main areas: the AS World, 
the application stack, and the application heap. The AS World is used to 
store a program's global variables. The application stack is used to hold a 
program's local variables. Finally, the application heap is used to hold the 
bulk of a program: its resources, including the program's code resources. 

The Memory Manager is the set of system routines that allocate the 
blocks, or sections, of memory. A block of memory is capable of holding 
many different things, such as program code or other resources. This 
book generically refers to these "things" as objects. 

Each block of memory has attributes, or characteristics, that can be set. 
Whether a block is relocatable, or movable in memory, is one such 
attribute. Other attributes are discussed in Chapter 9. 

The section of memory called the application heap is the area of most 
interest to a Macintosh programmer. Because some memory blocks can 
be moved about in the heap, the heap can become fragmented-areas of 
memory develop that are too small to fit an object. One technique that 
the Memory Manager performs periodically on its own is compaction; 
that is, blocks are rearranged to eliminate small pockets of wasted space 
that lie between them. The next chapter covers programming techniques 
you can use to help the Memory Manager minimize fragmentation. 

Because blocks of memory that are purgeable can be shifted about in 
memory, a special memory management technique is necessary to keep 
track of blocks. A master pointer is a special pointer that holds the 
address of a single object. Though the object it points to can be moved, 
the master pointer itself never moves. Instead, when the block the mas­
ter pointer points to is moved, the contents of the master pointer are 
simply updated to reflect the object's new location. 



72 Macintosh Programming Techniques 

The programs you write will have to keep track of where objects reside 
in memory. A handle is a variable that allows a program to keep track of 
an object that moves about in memory. Once declared, the value of a 
handle doesn't change. That's because a handle holds the address of a 
master pointer, which itself is a nonmoving object. 



·-
,. ·~ ;( 

' ' . ' I 

·~ ... ' 

Resources 

In Chapter 1 I implied that almost everything a Macintosh does involves 
resources. In fact, this book could consist of one huge chapter called 

"Macintosh Resources." A more manageable approach, and the one that 
this book takes, is to mention each resource in the chapter to which it 
best pertains. Additionally, one chapter is devoted to resources that 
aren't clearly dependent on one subject. 

The 'WIND' resource type, mentioned in chapters 1and2, defines a win­
dow. Chapter 5 covers this resource in more detail. Dialog boxes use the 
'DITL' and 'DLOG' resource types, and the 'ALRT' resource defines an 
alert. Chapter 6 covers these three resource types. Chapter 7 discusses 
the 'MENU' and 'MBAR' resource types that create menus. 

This chapter deals with storing strings of text in a 'STR#'-a resource 
that is a list of strings. You load them into memory and display them in a 
window. 

Here you will see an easy way to include pictures in your programs 
through the 'PICT' resource. In addition, you will learn how you can use 
a series of pictures to create animation. 

73 



7 4 Macintosh Programming Techniques 

The Macintosh has built-in hardware that makes it ideal for playing 
sound. The 'snd ' resource is a way for you to store a prerecorded sound 
along with your program. 

Every program has its own icon that the Finder displays on the desktop. 
You can give your application its own distinctive icon by creating a 
'BNDL' resource. 

About Resources 
Before getting down to actual examples, I present a short summary of the 
importance of resources and their proper use in your applications. 

The importance of resources 
Chapter 1 provided a good summary of exactly what resources are. I'd 
like to reiterate that almost everything either starts out as a resource or 
ends up as a resource. 

You use a resource editor like Apple's ResEdit or Mathemaesthetics' 
Resourcerer to define the features of your program's windows, dialogs, 
menus, and alerts in a resource file. When your compiler turns your 
source code into an executable program it converts the source code into 
'CODE' resources. It then packages the 'CODE' resources together with 
the resources in your resource file to get the final standalone Macintosh 
program. 

Resources provide Macintosh programs with a uniform look. Every pro­
gram for the Mac has menus and windows that look similar. This makes 
users new to an application comfortable. Having resources that are 
editable with a graphical editor such as ResEdit makes it easy to change 



Chapter 3: Resources 7 5 

Resource types 

There are about 100 different resource types. You'll probably only need to 
use fewer than a dozen types in your programs. Here's a list of some of 
the more common ones. 

'ALRT' Defines the look of an alert box 

'BNDL' Relates an icon to a program 

'CODE' All the instructions of a program 

'DITL' Contents of a dialog box 

'DLOG' Defines the look of a dialog box 

'DRVR' Desk accessory-a driver 

'ICN#' List of icons 

'PICT' Picture 

'SIZE' Partition size of a program 

'STR#' List of strings 

'WIND' Defines the look of a window 

'snd' Sound 

Checking for errors 
One big advantage of resources is that they are easy to edit. Anyone can 
easily modify and remove a program's resources. However, the fact that 
they are easy to edit is also a disadvantage. When your program wants to 
makes use of a resource it expects to be able to find a resource of the 
proper type and ID. If that resource doesn't exist, the Toolbox call that is 
looking for it will fail. 



7 6 Macintosh Programming Techniques 

A failed Toolbox call can spell disaster for your program. The application 
may quit and return to the user to the desktop, or, worse yet, it may 
freeze the Macintosh if the programmer has not implemented proper 
error-handling. 

Failure to put up any of the key elements of a program, such as the menu 
bar, a window, or a dialog, will spell disaster. Subsequent calls to other 
routines depend on these elements being in place. You'll always want to 
verify that the calls that load these pieces of your program are successful. 

Toolbox calls that involve resources often return a pointer or a handle to 
the program. The GetNewWindow() routine is one example. It returns a 
WindowPtr. Up to this point I haven't put effort into verifying that a 
Toolbox call did indeed return a valid pointer. Here's an example of what 
I've been doing: 

//define 
//define 
//define 

WIND_ID 

NIL 

IN_FRONT 

WindowPtr The_Window: 

128 

OL 
(WindowPtr)-lL 

The_Window = GetNewWindow(WIND_ID, NIL, IN_FRONT): 

(go on our merry way ... ] 

Now that you know better, I'll use a little error checking from here on. 
Here's how I'll handle the above GetNewWindow() call. 

The_Window = GetNewWindow(WIND_ID, NIL. IN_FRONT): 
if ( The_Window == NIL ) 

Exi tToShell () ; 

[now go on our merry way ... ] 

If there is insufficient memory to load the window, or the specified 
'WIND' resource doesn't exist, the call to GetNewWindow() will fail and 
the WindowPt.I will be nil. The if statement checks for this condition. 
Should the pointer be nil, the code will exit the program and return to 
the desktop through the use of the Toolbox routine ExitToShell(). You 



Chapter 3: Resources 7 7 

now have assurance that a call to GetNewWindow() that fails will not 
result in a frozen screen. 

This error-handling technique is minimal at best. What you should really 
do is write an error handling routine that puts up an alert with a descrip­
tive message in it. That gives the user some information about the prob­
lem and a chance to correct the ugly situation. At the very least, it 
enables the user to describe the problem in a much more detailed man­
ner to someone else. 

The example program that appears in the final chapter of this book is the 
most comprehensive example I give. That program incorporates full­
fledged error checking. 

Working With Strings 
One of the major advantages of a program that relies heavily on 
resources, as all Macintosh programs do, is that you can make many 
changes to a program even after compiling it. Apple recommends that 
programmers store all displayable text as resources. Then, if you want to 
make a version of your program usable by non-English speaking people; 
for example, you can edit the text within the program's resources. 
Depending on other factors in your program, you might not even have to 
change any source code or recompile your program. This, of course, is 
easier said than done; in practice, internationalizing, or localizing, an 
application is a more involved matter. But resource editing provides a 
very good start. 

The 1 STR#' resource 
The 'STR#' resource is a list of strings, each one up to 255 characters in 
length. Figure 3-1 shows how ResEdit displays the two strings in the 
'STR#' resource from this chapter's example program. Although there are 
other third-party resource editors available, the examples in this book 
will use Apple's ResEdit. ResEdit is widely available at no cost to pro­
grammers, and it does the job. 



7 8 Macintosh Programming Techniques 

§{] STR# Io = 128 from ResourceUser. Tr .rsrc 

NumStrings 2 ~ 

1) ***** 
The string I Di sp I ay I.Ii ndow I 
2) ***** 
The string I The Dane i ng Man I 
~~~ 

'zy
~

Figure 3-1. A 'STR#' resource with two strings

To create the 'STR#' resource, select "Create New Resource" from the
Resource menu in ResEdit. You'll then see the "Select New Type" dialog
box. Scroll to the 'STR#' type and double click on it.

To add a new string to the 'STR#', first click the mouse button on the
number that appears in the window. Figure 3-1 adds a third string by
doing just that. Next, select "Insert New Field(s)" from the Resource
menu. ResEdit will respond by adding an edit box in which you can type
your new string.

Using a string in a program
To use a string stored as a resource, your code must first load it in to
memory with a call to the Toolbox routine GetlndString(). Because a
'STR#' contains more than one string, you must specify which string in
the list you want. This is done by including an index to the string. The
first string in the 'STR#' is 1, the second is 2, and so forth.

The call to GetlndString() sets a variable of Str255 type equal to the
resource string. The Str255 is a Macintosh type that holds a string of up
to 255 characters. Here's a call to GetlndString() that sets the_str equal
to whatever string is listed second in a 'STR#' with ID of 128:

Str255 the_str:

GetlndString(the_str, 128, 2) :

Chapter 3: Resources 79

Typically you'll add a #define for the resource ID of the 'STR#' list and
a descriptive #define for each string in the string list. The 'STR#' in
Figure 3-1 has two strings in it. We will use the first as the title of a
window and the second string later as a label for a picture we'll put in
the window.

Here's an example that opens a window and writes a string to the win­
dow by setting the variable the_str to the second string in a string list
and then writing that string to the location specified by MoveTo().

//define STR_LIST_ ID 128
#define WIND_TITLE_ STR 1
#define PICT_LABEL_STR 2
#define PICT_LABEL_STR_L 70
#define PICT_LABEL_STR_B 140

Str25 5 the_str;
WindowPtr The_Window;

The_Window = GetNewWindow (WIND_ID. NIL, IN_FRONT) ;
if (The_Window == NIL

Exi tToShell () ;

SetPort (The_Window) ;

GetlndString(the_str, STR_LIST_ID, PICT_LABEL_STR) ;

MoveTo(PICT_LABEL_STR_L, PICT_LABEL_STR_B) ;
DrawString (the_str) ;

Get in the habit of always making a call to SetPort(J
before drawing to a window. The next chapter
explains ports in more detail.

Here's a second example. In this code fragment you open a window and
get the first string from a string list. Instead of writing the string in the
window, you use it to change the title of the window. Every window has
a title in the drag bar. If you don't specify the title it will default to

80 Macintosh Programming Techniques

"Untitled". As shown here, you can use the Toolbox routine SetWTitle()
to change the title.

#define STR_LIST_ID 128
#define WIND_TITLE_STR
#define PICT_LABEL_STR 2

Str255 the_str :
WindowPtr The_Window:

The_Window = GetNewWindow(WIND_ID . NIL. IN_FRONT) :
if (The_Window == NIL

Exi tToShell () :

GetindString(the_str . STR_LIST_ID . WIND_TITLE_STR) ;

SetWTitle(The_Window . the_str) :

Figure 3-2 shows the window resulting from this code fragment.

D Display Window

Figure 3-2. Changing a window's title

Lesson 3-1: The 1STR#' Rasoy.-..

~

Chapter 3: Resources 8 1

Pictures and Animation
The 'PICT' resource is the Macintosh way of storing graphical images for
use by a program. A program can display pictures in its windows and
dialogs. You can also use pictures to easily add simple animation to your
programs.

The 'PICT' resource
If you have a drawing or painting application, you can create a 'PICT'
resource. MacPaint, MacDraw, Canvas, and PixelPaint are just a few
examples of programs you can use. After you draw a picture, or find a
piece of clip art you like, just select it from within your paint program
and copy it to the Scrapbook. Save as many pictures to the Scrapbook as
you want. Then run ResEdit. Once you're in ResEdit copy one of the pic­
tures from the Scrapbook and paste it into your resource file. ResEdit
will save it as a 'PICT'.

Figure 3-3 shows a simple picture in a drawing program. If you follow
the above procedure for transferring the picture to ResEdit, your resource
file will have a new resource type in it-a 'PICT', as shown in Figure 3-4.

MyPicture

• ..
c

\~

a •

f: • Z"

..
.. • I(..
~

Figure 3-3. A picture in a Macintosh paint program

8 2 Macintosh Programming Techniques

§0; ResourceUser.n.rsrc 0a
0
I---'

~Ji
PICT

1--

~
l2J

Figure 3-4. 'PICT' in ResEdit

Double-clicking on the 'PICT' icon of Figure 3-4 will open a window
that displays all of the 'PICT's in the resource file. Our example has just
one, as shown in Figure 3-5. No matter how big the picture that you
paste is, ResEdit will display it in a small rectangle like that of Figure
3-5. ResEdit will scale the picture as best it can. This shrunken version
is for display only. If you double-click on 'PICT' 128 you'll see it at its
actual size.

PICTs from ResourceUser.11.rsrc

128

Figure 3-5. A single 'PICT' in ResEdit

Chapter 3: Resources 8 3

Displaying a 1 PICT' in a program

Now that you have a picture safely tucked away into a resource file, you
can display it in a program.

You know all about handles &om Chapter 2. Programs on the Macintosh
have a special handle for working with pictures-the PicHandle. To load
a 'PICT' resource into memory, you make a call to the Toolbox routine
GetPicture(). This routine returns a PicHandle for use by your program.
Here's an example:

#define PARTY_HAT_PICT 128

PicHandle hat_pict_handle;

hat_pict_handle = GetPicture(PARTY_HAT_PICT):

GetPicture() brings a 'PICT' into memory; it doesn't display the pic­
ture. To do that you make a call to DrawPicture(), which requires two
parameters: a handle to a picture, and a rectangle in which to display
the picture.

You can display a picture in a rectangle of any size. DrawPicture() will
attempt to scale the original picture to fit the rectangle. But if you want
to display the picture in its original, actual size, you'll need to determine
that size.

A PicHandle is a handle to a structure called a Picture. One of the mem­
bers of this structure is the picFrame, which is a Rect that surrounds the
picture. It holds the size of the picture. To access the picFrarne, you
dereference the PicHandle. Let's add to the previous code &agment to see
how this is done.

//define PARTY_HAT_PICT 128

PicHandle hat_pict_handle:
Rect pict_rect:

hat_pict_handle = GetPicture(PARTY_HAT_PICT) :

pict_rect = (**(hat_pict_handle)).picFrame:

84 Macintosh Programming Techniques

Now you have the rectangle that bounds the original picture. Your real
interest is in the picture's size. You want to set up a rectangle of the
proper size to display the picture anywhere in a dialog or window.

Recall from Chapter 1 that a Rect is a structure with four members­
right, left, top, and bottom. Use the Toolbox routine SetRect() to set the
pixel coordinates of a rectangle. Pass SetRect() a pointer to a Rect vari­
able along with the pixel boundaries you want the rectangle to have. The
order of the boundaries is important. Here's an example that sets the
upper left corner of a rectangle at coordinates (75, 40) and a width of 100
and a height of 50.

//define LEFT 75

//define TOP 40

#define RIGHT 175

#define BOTTOM 90

SetRect(&the_rect. LEFT. TOP. RIGHT, BOTTOM) ;

The upper left corner of the window is the reference point for the rec­
tangle's boundaries. Figure 3-6 shows where the rectangle would be
located for the above example. The figure uses a dashed line to show
the rectangle because SetRect() only sets up a rectangle-it doesn't
actually display one.

D Drawing Window

~ r
~ 75 ~~···························: 90

; ; I : : +
: dJ--

... ~--------175 -----. ... 9-tl

figure 3-6. SetRec~) boundaries are relative to a window

Chapter 3: Resources 8 5

Now you know how to get the original rectangle that holds the picture
boundaries and how to set up your own rectangle using SetRect(). Use
the values of the original bounding rectangle to determine the picture's
height and width. Use those values also to set up a rectangle the size of
the picture anywhere you want. Finally, display the picture in your rec­
tangle using DrawPicture(). Here's a complete example.

#define PARTY_HAT_PICT 128

WindowPtr The_Window:
PicHandle hat_pict_handle:
Rect pict_rect;
short pict_wd;

short pict_ht:

The_Window = GetNewWindow(WIND_ID, NIL, IN_FRONT) ;
if (The_Window == NIL

ExitToShell();

SetPort(The_Window) :

hat_pict_handle = GetPicture(PARTY_HAT_PICT);

pict_rect - (**(hat_pict_handle)).picFrame;

pict_wd = pict_rect.right - pict_rect.left;
pict_ht = pict_rect.bottom - pict_rect.top:

SetRect(&pict_rect, 100, 50, 100 + pict_wd, 50 + pict_ht):
DrawPicture(hat_pict_handle. &pict_rect);

This example loads the resource 'PICT' with an ID of 128 into memory
using GetPicture(). It then dereferences the PicHandle that GetPicture()
returned in order to access the picFrame. The width and height of the
original picture are determined from the picFrame. A rectangle is then
set up to display the picture. This rectangle starts 100 pixels in from the
leh of a window and 50 pixels down from the top. The width and height
of the rectangle are the same as those of the original 'PICT'. Finally, the
picture is displayed in the window with a call to DrawPicture(). Figure
3-7 shows this.

8 6 Macintosh Programming Techniques

~o Drawing Window

Figure 3-7. Placing a picture in a window

Now you know exactly how to create a picture, save it as a 'PICT'
resource, and display it in the window of a program. With just a little
more work you can use 'PICT's to really add a little excitement to your
applications, especially in the form of animation.

Lepon 3-.i 1: The 1 PICT' Resourc;e
You can n1n the program enclosed with this
bQc)Jt for a hancls•on tutorial about this topic.

Using 'PICT's to create animation
You can create animated effects in your programs by displaying a series
of 'PICT's, one after another, from within a loop in your source code. To
do this you first create a series of 'PICT's, then write a routine that brings
these 'PICT's into memory and displays them in a window.

Creating a series of "PICT's

Figure 3-8 shows a screen shot of a document from a popular Macintosh
paint program. In the figure, I showed off my drawing expertise by draw­
ing four characters, each in a different pose. I actually only drew the left-

Chapter 3: Resources 8 7

most character. I then copied him and used the paint programs free rotate
feature to shift the character to a slightly different pose.

Figure 3-8. Scenes for animation drawn in a paint program

The characters in Figure 3-8 have a frame surrounding them for one reason
only-so that each will be the same size when you copy them individually
to the Scrapbook. When copying a single character I made the selection just
within, and not including, the border. After copying all four pictures to the
Scrapbook I ran ResEdit and copied each picture out of the Scrapbook and
into a resource file. When you double-click on the file, the 'PICT' resource
opens to a window that displays the four 1PICT1s, as shown in Figure 3-9.

ID PI Cls from ResourceUser. '11.rsrc Pli

128 129 130

~
-----·----·---------_J

131

Figure 3-9. ResEdit after pasting four 'PICT's info o resource file

8 8 Macintosh Programming Techniques

After taking note of the resource IDs of the 'PICT's, quit ResEdit and run
the compiler. It's time to write some code.

Anima~onsourcecode

Earlier in this chapter you learned how to display a 'PICT' in a window
by getting a PicHandle to it using GetPicture() and then showing the pic­
ture using DrawPicture(). You'll use these techniques to create anima­
tion.

As an animation example I'll write a routine that cycles through the four
'PICT's created in the last section. This will give the illusion that the
character is dancing. Examine the function, then read the discussion of it
that follows.

#define FIRST_MAN_PICT 128

#define PICT_L 30

#define PICT_T 20

#define DELAY_TICKS

void Draw_Moving_Picture(void
{

Rect pict_rect:

PicHandle pict_handle:
short pict_wd, pict_ht:

short i, count:

short pict_id:

long end_tick:

SetPort(The_Window):

pict_handle = GetPicture(FIRST_MAN_PICT):

pict_rect = (••(pict_handle)).picFrame;

pict_wd = pict_rect.right - pict_rect.left:

pict_ht = pict_rect.bottom - pict_rect.top:

SetRect(&pict_rect, PICT_L, PICT_T, PICT_L+pict_wd, PICT_T+pict_ht):

count = O:

for (i=l; i < 31; i++)
(

++count:
switch (count)

case 1:
pict_id = FIRST_MAN_PICT;

break;

case 2:
pict_id = FIRST_MAN_PICT + 1:

break;

case 6:
pict_id = FIRST_MAN_PICT + 1;

count = 0;

break:
case 3:
case 5:

pict_id = FIRST_MAN_PICT + 2;
break;

case 4:
pict_id = FIRST_MAN_PICT + 3;

break;

pict_handle = GetPicture(pict_id);
DrawPicture(pict_handle, &pict_rect);

Delay(DELAY_TICKS, &end_tick);

Chapter 3: Resources 8 9

Much of Draw _Moving_Picture() should look familiar to you. It uses
GetPicture() to get a handle to one of the 'PICT's for the purpose of
determining its size. You'll use this size to display each of the four
'PICT's-thus the importance of making them all the same size in your
drawing program.

The heart of Draw _Moving_Picture() is the for loop. The loop executes
30 times. You can choose to make it execute as few or as many times as
you want. Within the loop, I use the variable count to keep track of
which of the four pictures is to be displayed. If I just continually cycled
through the four 'PICT's in order, the animation would look jerky after
showing the fourth picture and then jumping back to the first. So, I use a
different approach. After displaying the fourth 'PICT' I backtrack, dis-

90 Macintosh Programming Techniques

playing the third, then second, and finally the first picture. It's similar to
the motion of a pendulum. Figure 3-10 elaborates on this plan.

count

PICT ID

Reset count ,
repeat eye le ...

l~B 1~9 1:0 1:1 1:0 1:9 I l~B
~l[~i~ll~l[~l[~j~]

Figure 3-10. Animation: cycling through the 'PICT's

After using a variable count to determine which 'PICT' to use, I get a
handle to the correct 'PICT' and then display it-right on top of the previ­
ous 'PICT'. That way I don't have to bother erasing the previous picture.

After drawing one picture, and before displaying the next, I've included a
delay in the program. Some Macintosh computers can run through this
loop very quickly-our little man would be really dancing up a storm. I
use the Toolbox function Delay() to cause a short delay between pictures
to slow things down.

The Delay() function requires two parameters. The first is the length of the
delay. Give this in sixtieths of a second increments-that's how the
Macintosh keeps track of time. Thus a value of 1 results in a delay of one­
sixtieth of a second, while a value of 120 results in a two-second delay.
You'll usually ignore the second parameter to Delay(). This is a pointer to a
variable of type long. When the Delay() routine has finished, the Toolbox
will have filled this variable with the time, in sixtieths of a second, since
the system was started; that is, since the Macintosh was turned on.

Chapter 3: Resources 91

Sounding Off
The Macintosh has built in sound hardware and software that allows it
to easily play quality sound. Chapter 1 mentioned that the Macintosh
has several managers-groups of related Toolbox routines that do much of
the behind the scenes work for you. The Sound Manager is one such
manager. Routines in the Sound Manager allow you to play 'snd '
resources.

All resource types are composed of four characters. If
it appears that a type is only three characters, like the
'snd ' type, then it ends with a space. The space is
required.

The 1 snd ' file
A 'snd ' resource is your means of transferring a recorded sound to other
Mac users and your means of including sound in your programs. A 'snd '
resource can exist as a separate file-that's how you can give or receive
one from other people. It can also exist embedded in a program's resource
file. That way it can be transferred with that program and used by that
program.

You can record your own 'snd' resources or obtain them from others.
On-line bulletin boards like CompuServe, GEnie, and America Online
have hundreds, perhaps thousands, of 'snd' resources. They were record­
ed and uploaded by other Mac users so that all Mac users would have a
source of free sounds to download and play on their Macs.

Be aware that a downloaded 'snd ' is usually in a space-saving stuffed, or
compacted, format. Programs such as Stufflt Expander exist to unstuff
these compacted files. If you don't already have Stufflt Expander you can
download it from these bulletin boards. Figure 3-11 shows a folder that
contains Stufflt Expander, a stuffed 'snd ' resource, and the same resource
after unstuffing with Stufflt Expander. I downloaded both Stufflt
Expander and the Laughing Elvis.sit 'snd' from America Online.

92 Macintosh Programming Techniques

:o Stuffl t EHpander 3.0 BJ:
4items 3 9. 9 M 8 i n disk 1 61.1 MB available

Q

~ . D ti
Stufflt Expander™ 3.0 La ug hi ng Elvis.sit Laughing Elvis

-0
¢1 1¢ l2l

Figure 3-11. Stufflt Expander, a stuffed 'snd ' , and a 'snd ' resource

From Figure 3-11 you can see that the Laughing Elvis 'snd' looks much
like any other Macintosh file. That is what makes a 'snd' so useful. You
can copy Laughing Elvis to a floppy disk and give it to anyone else who
has a Macintosh.

The 1 snd ' resource
Once you have a file that contains a 'snd' you'll want to get the sound
into the resource file of your program. Then you'll be able to write source
code that loads the sound into memory and plays it. As usual, ResEdit is
the tool for the job.

To copy a sound from a file to a resource file, first run ResEdit. From the
File menu select "Open" and open the 'snd' file (make sure to open the
unstuffed file). It will contain one 'snd ' resource. Click on it and then
copy it. Next, open the resource file of your program. Paste in the copied
sound. That's all there is to it. Figure 3-12 shows the three sounds
included in this chapter's example program.

Chapter 3: Resources 9 3

ResourceUser. TT .n

~Ji <J>~ ··-· - ·-- ··
PICT snd STR•

D snds from ResourceUser. TT .rsrc 0

CJ !Q.. Size Name

WIND 9 000 13558 " Gl ass breaking" ~
9 001 55786 " Laughing El vi s"
9002 44640 " The Good, the Bad, and the Ugly"

~
'i2i

Figure 3-12. 'snd 1 resources

A 'snd ' , like any resource, has an ID. Apple has reserved ID numbers 0
to 8191 for its own use. You can change the ID of a 'snd ' by selecting
"Get Info" from ResEdit's File m enu. You'll then see a dialog like that
in Figure 3-13. There you can type in a new ID. Taking into considera­
tion the reserved numbers, I chose to number the three sounds starting
at ID 9000.

~D~ Info for snd 9000 from ResourceUser:rr .rs ~

Type: snd Size: 13558

ID:
Name:

19000 I

Owner type

Owner ID: DRUR ~
i---------1 WDEF

MDEF 0 Sub ID:

Attributes:
D System Heap
~ Purgeable

D Locked D Preload
D Protected D Compressed

Figure 3-13. The Get Info window for o 'snd' resource

94 Macintosh Programming Techniques

Playing a 1 snd ' in a program

A 'snd' consists of commands that are sent to what Apple calls a sound
channel. This sound channel is a queue that holds several commands
and is managed by the Sound Manager. From the sound channel, the
commands are passed, one by one, to a playback synthesizer. A synthe­
sizer is code that interprets the commands and then uses the Macintosh
hardware to actually produce the sound.

If your only interest is in playing a sound, then the Toolbox routine
SndPlay() makes things very simple. Before calling SndPlay() you'll call
GetResource() to get a handle to a sound. You then call SndPlay(), pass­
ing it the handle to the 'snd 'resource. Here's an example. Note that you
need to include the Sound.h header file when you use SndPlay().

#include <Sound.h>

#define SND_GLASS ID 9000

Handle snd_handle:
OSErr err:

snd_handle = GetResource ('snd ' , SND __ GLASS_ID) :

err = SndPlay(NIL, snd_handle, TRUE) :

The first parameter to SndPlay() specifies the sound channel to use. If
you pass a nil pointer, as done here, then the Sound Manager takes care
of opening and closing a sound channel. The third parameter tells the
Sound Manager whether the sound is asynchronous-that is, whether
this is the only sound playing (asynchronous) or if more than one sound
will be playing at the same time (synchronous). You will just be playing
one sound at a time, so set this parameter to true.

Here's an example that loads one 'snd ' resource into memory and then
plays it.

#include <Sound.h)

#define NIL OL
#define SND_GLASS ID 9000

Handle snd_handle;
OSErr err;

Chapter 3: Resources 9 5

snd_handle = GetResource('snd ' , SND_GLASS_ID);

if (snd_handle == NIL)
Exi tToShell () ;

err= SndPlay(NIL, snd_handle, TRUE);

if (err != noErr)
Exi tToShell () ;

Notice that I perform a check to see if GetResource() successfully
retrieved the 'snd' resource before calling SndPlay(). Sounds can take up
a lot of memory-perhaps more memory than was allocated for your pro­
gram. If this is indeed the case, the returned handle will be nil and you
can exit the program.

When SndPlay() is finished it will return an error code to the OSErr vari­
able err. The OSErr type is a Macintosh C type used for error checking. If
everything goes well SndPlay() will return a value of 0. If SndPlay() fails
to play the sound properly it will return a result code other than 0. This
code gives some information on the type of error that occurred. Your
compiler defines noErr to be 0, so you can check the error code after
Snd.Play() is finished and compare its value to noErr.

The Macintosh has the capabilities of creating, editing, and playing com­
plex sounds. The Sound Manager contains close to 50 Toolbox routines.
If your interest is merely in having your application play back prerecord­
ed sounds, you'll only need to familiarize yourself with SndPlay().

Giving a Program an Icon
When you use a Macintosh compiler to build, or create, your application
it ends up with the generic icon displayed in Figure 3-14. If you want
your application to display its own custom icon on the desktop, you'll
need to create a 'BNDL' resource in the program's resource file before
building the program.

96 Macintosh Programming Techniques

-D
9 items

~
Pixel Paint

Hpplications
3 7.4 M 8 i n disk

The generic
program icon

163.6 MB available

~ ~~
Teach Text VeryBasics

Figure 3-14. Typical program icons on the desktop

The Finder is responsible for displaying an icon for each program and pro­
gram file that appears on the desktop. To keep track of what file gets
what icon, the Finder makes use of a file's Type and Creator identifiers.
The following paragraphs cover the essential background information
you'll need before working with a 'BNDL' resource.

The Finder and icons
Every program has an icon, a Type identifier, and a Creator identifier.
The Finder looks to a program's identifiers to see what icon it should dis­
play on the desktop to represent that program. All applications have a
Type of APPL. Each application should have a four letter Creator code
that is unique to that application.

You can give your application any combination of four upper- and lower­
case letters for it to use as its Creator code. At the end of this chapter is a
sample program called ResourceUser. I chose a Creator name of "Rusr",
though I could have chosen any one of countless combinations of letters.

You will specify the Creator name at two times: when you create a
'BNDL' resource for the program and when you build your program.

Chapter 3: Resources 9 7

Creating the 'BNDL' resource

In ResEdit, selecting "Create New Resource" from the Resource menu
allows you to create a 'BNDL' resource. You'll be presented with the
Select New Type dialog box. There, scroll to the 'BNDL' type and double
click on it. When you do, you'll see a dialog like that of Figure 3-15.

§0§ BNDL ID = 128 from ResourceUser.11 .rsrc §

Signature: lt«iMI
Type Finder I cons

Figure 3-1 S. The 'BNDL' resource in ResEdit

In this dialog you'll enter your program's Signature, another name for the
Creator. For this chapter's ResourceUser program you'll set the signa­
ture, or Creator, to Rusr. You want to add an icon that the Finder will
display for the ResourceUser application, so select "Create New File
Type" from the Resource menu. Then click the mouse under the Type
column and type in APPL. The dialog will then look like that of Figure
3-16.

9 8 Macintosh Programming Techniques

§0~ BNDL ID= 128 from ResourceUser.n.rsrc ~

Signature: I Rusr

Type Finder I cons

IRPPL I······~

Figure 3-16. Adding a signature and type to the 'BNDL'

Now, let's create the icon itself. Double-click on any of the six gray
boxes in the Finder Icons column. You'll see a dialog like that in Figure
3-17. You're creating the icon from scratch, so click the New button.

Choose an icon for the type APPL:

(New) (E1m) n Cancel D (OK)

Figure 3-1 T. Getting to the 'BNDL' editor in ResEdit

Chapter 3: Resources 9 9

Now you'll be in the 'BNDL' editor window. Here you can select a tool,
such as the pencil, from the tool palette and then draw your own icon.
Our ResourceUser program demonstrates how to bring resources into a
program. I chose to symbolize this by drawing the ResEdit jack-in-the­
box and an arrow to show the resources being brought up into the pro­
gram. This is shown in Figure 3-18.

p .. -, ..
--~

u (I

~
........_

'iii liiiil D

• 0

• 0 ..

Icon Family ID = 129 from ResourceUser.rr.rsrc

• • • • • • • • •• • • • • • • • • • • •••• • ••• • • • • • • • • • • • • • • • • • •• • • • ••• • •• • • ••••••• • • • • • ••• •• • • • •• • • • • • • • •• • • • • • •• • • •••••• • • • •• • • • •• • • • • • • • •• • • •• •••• • • • ••••••••• ••• • •••
Figure 3-18. The 'BNDL' resource in ResEdit

As you draw the icon you'll see it displayed in actual size in the right
side of the 'BNDL' editor. You may be wondering why there are so many
blank icons shown there. If you want to fully accommodate users of
System 7 you can create several versions of each icon. Here's a summary
of what the different versions are for:

ICN#

icl4

icl8

the original icon resource that has been used for
years and years. The Finder will use this version to
display a black and white icon.

the Finder will diplay the icon that is here if the user
has a 4-bit, or 16-color system.

if the user has an 8-bit, or 256-color system, the user
will see this icon.

1 00 Macintosh Programming Techniques

ics#, ics4, ics8 the Finder sometimes displays a small icon for a pro­
gram. When it does, it chooses one of these versions.

The minimum requirement for a custom program icon is that you create
the ICN# version. Then, no matter what color level the user's system
has, the Finder will display this black and white icon.

You can reduce the work in creating new versions by first creating the
black and white ICN#, then clicking the mouse on the small picture of
it. While holding the mouse button down, drag to any of the gray icon
pictures. This will copy the existing icon to the new version. You can
then edit it.

Figure 3-19 gives a recap of all of the features of the 'BNDL' editor.

Edit icon here.
How icons will l ook under different prognim conditions:
Normal , program running, disk contcining icon ejected.

Cilek here to edit the
black end white icon.

Edit the icon displcyed
on 8-bi t color systems.

Edit the icon displcyed
on 4-bit color systems.

Tell s which pixels should
be on . Safest just to mcke ----. ,
the mask ell black.

Opens toe color pclette
when editing color Icons.

Icons in this column create
small versions of each icon.

Figure 3-19. 'BNDL' editor summary of features

When you're done with the edit, click the 'BNDL' editor's close box to
return to the previous dialog. There you can view the icons you've creat­
ed, as shown in Figure 3-20.

Chapter 3: Resources 1 01

§0~ BNDL ID = 128 from ResourceUser.11.rsrc §

Signature: I Rusr I
Type Finder I cons

~----......i

APPL

Figure 3-20. Viewing the 'BNDL' icons

When you look at the main window of the ResourceUser resource file
you'll notice that there are several new resource types, as shown in Figure
3-21. Creating a 'BNDL' resource will add 'FREF' and 'ICN#' resources. It
will also add a resource with the Signature, or Creator, name. If you create
other icons, such as an icl8 or icl4, ResEdit will also add those resources.
The 'BNDL' serves to bundle these other resources together.

~D§ ResourceUser.11 .rs re §0§!

~~ ~~ L:JD
-0-
t---

13El 1313 ~····
BNDL FREF ICN#

0101 I IOI

Cl 0010 1001
01101010
00011110
01000000 ...
Rusr W'IND

~
l2j

Figure 3-21. The 'BNDL' resource in ResEdit

1 0 2 Macintosh Programming Techniques

Setting the Creator in the compiler

Once your 'BNDL' resource is complete you'll want to let your source
code in on things. You do this by telling your compiler the Signature, or
Creator, you used in the 'BNDL'.

When you build your program, your compiler lets you specify a Creator.
In the THINK C environment you do this by selecting the "Set Project
Type" from the Project menu. That results in the display of the dialog
box shown in Figure 3-22. There you enter a four-letter Creator name.

After dismissing the dialog, you then select "Build Application ... " from
the Project menu to build your application.

® Application

O Desk Accessory

0 Deuice Driuer

O Code Resource

File Type I RPPL I
Creator llilllmll

Partition (K) .._I 3_8_4 _ ___.I D Far CODE
0 Far DRTR

SIZE Flags ~ I 0000 I D Separate STRS

Cancel ([OK D

Figure 3-22. The THINK C Set Project Type dialog

Making the Finder aware of a new icon
After your program's resource file has a 'BNDL' resource and you've suc­
cessfully done a build to create an application, there is one more step you
need to take to see your application's custom icon on the desktop: you
must rebuild the desktop.

The Finder stores icons in a file called the Desktop file. To get the Finder
to notice a new icon you must rebuild the desktop. This scary-sounding

Chapter 3: Resources 1 03

practice is really quite simple-you simply restart the Macintosh, hold­
ing down the Command and Option keys as the Mac starts up. You'll see
a dialog like that shown in Figure 3-23. Press the OK button to continue.

Are you sure you want to rebuild the
desktop file on the disk "Hard Disk 203"?
Comments in info windows will be lost.

(Cancel) (OK)J

Figure 3-23. A last chance to back out of the desktop rebuild

From the dialog in Figure 3-23, you can see that rebuilding the desktop
has the possibly undesirable side-effect of destroying Get Info comments
you may have added to any programs or files.

Giving your program its own unique icon, rather than the generic one
issued to new programs that don't have a 'BNDL' resource, is an easy way
to add polish to your final application.

Chapter Program: Using
Resources
This chapter's program, ResourceUser, does the following to demon­
strate each of this chapter's topics:

• Retrieves a string from a 'STR#' resource and uses it to set a win­
dow's title.

• Retrieves a second string and uses it to draw text to a window.

• Loads 'PICT's and displays them in a loop to create animation.

• Plays three sounds on the Mac's speaker using 'snd ' resources.

1 04 Macintosh Programming Techniques

Figure 3-24 shows the window you'll see when the program is complete.

§0 Display Window

The Dancing Man

figure 3-24. The ResourceUser window

When the sounds are done playing, click the mouse to end the program.

Program resources: ResourceUser.1t.rsrc
ResourceUser's resource file contains the same 'WIND' resource found
in the example programs of Chapters 1 and 2. It also contains 'STR#',
'PICT', and 'snd' and 'BNDL' resources. You've already seen each of
these resources scattered throughout this chapter. To save you the effort
of going back through the pages I'll repeat them here as Figures 3-25,
3-26, 3-27, and 3-28.

§n STR# ID = 128 from ResourceUser. n .rsrc ~

NumStrings 2 ~

1) *****
The string I Display Uindow I
2) *****
The string I The Dane i ng Man I
~~!±::J

-0
~

figure 3-25. ResourceUser's 'STR#' resource

Chapter 3: Resources 105

PI CTs from ResourceUser. 'TT .rs re

i--- -------1

l ________ J
128 129 130

131

Figure 3-26. ResourceUser 's 'PICT' resources'

ResourceUser. 'TT .n

~J~ ~)~ -·--··
PICT snd STR•

D snds from ResourceUser.11.rsrc e:i=

CJ !Q. Size Name

'vr'IND 9000 13558 "Glass breaking" .Q,
9001 55786 " Laughing El vi s"
9002 44640 "The Good, the Bad, and the Ugly" izy

~

Figure 3-27. ResourceUser 's 'snd ' resources

1 06 Macintosh Programming Techniques

§0~ BNDL ID = 128 from ResourceUser.11' .rsrc §

Signature: I Rusr

Type Finder I cons

APPL

Figure 3-28. ResourceUser's 'BNDL' resource

Program listing: ResourceUser.c
Here's the complete listing for the ResourceUser program.

/•+++++++++++++++++++++ Include Files I I I I I I I I II+++++++++*/

#include (Sound.h)

/•+++++++++++++++++ Function prototypes +++++++++++++++++*/

void Get_Some_Strings(void):

void Draw_Movins....Picture(void);

void Play_A_Sound(short):

/*++++++++++++ Define global constants ++++++++++++++++++•/

#define

//define

//define

WIND_ID

NIL
IN_FRONT

128

OL
(WindowPtr)-lL

Chapter 3: Resources

#define REMOVE_EVENTS 0

//define STR_LIST_ID 128

//define WIND_TITLE_STR 1

#define PICT_LABEL_STR 2

/fdefine PICT_LABEL_STR_L 70

#define PICT_LABEL_STR_B 140

/fdefine FIRST_MAN_PICT 128

//define PICT_L 70

/Ide fine PICT_T 10

//define DELAY_TICKS

//define SND_GLASS_ID 9000

I/define SND_ELVI S_ID 9001

#define SND_CLINT_ID 9002

/*++++++++++++++ Define global variables ++++++++++++++++•/

WindowPtr The_Window;
Boolean All_Done = FALSE:
EventRecord The_Event;

/*++++++++++++++++++++ main listing +++++++++++++++++++++++*/

void main(void)

InitGraf (&thePort) ;
Ini tFonts () :
InitWindows();
InitMenus():
TEinitO:
InitDialogs(NIL);
FlushEvents(everyEvent, REMOVE_EVENTS);
Ini tCursor () ;

The_Window = GetNewWindow(WIND_ID. NIL, IN_FRONT);

if (The_Window == NIL
Exi tToShell () ;

SetPort(The_Window):

107

108 Macintosh Programming Techniques

Get_Some_Strings():

Draw_Moving_Picture();

Play_A_Sound(SND_GLASS_ID) ;
Play_A_Sound(SND_ELVIS_ID);

Play_A_Sound(SND_CLINT_ID);

while (All_Done == FALSE)

GetNextEvent(everyEvent, &The_Event) ;

switch (The_Event.what

case mouseDown:
All_Done = TRUE;

break:

/*++++++++++++ Get strings from 'STR#' resource +++++++++++*/

void Get_Some_Strings(void)
{

Str255 the_str;

SetPort(The_Window);

GetindString(the_str, STR_LIST_ID. WIND_TITLE_STR);

SetWTitle(The_Window, the_str):

GetindString(the_str, STR_LIST_ID. PICT_LABEL_STR):
MoveTo(PICT_LABEL_STR_L, PICT_LABEL_STR_B):

Drawstring(the_str):

/*+++1111 I I I I I Create animation using 'PICT's ++I II I II I I I I I*/

void Draw_Moving_Picture(void)
{

Rect pict_rect;
PicHandle pict_handle:

short pict_wd;

short pict_ht;

short i;

short count;

short pict_id:

long end_tick;

SetPort(The_Window):

pict_handle = GetPicture(FIRST_MAN_PICT):

pict_rect = (••(pict_handle)).picFrame;

pict_wd pict_rect.right - pict_rect.left;

pict_ht = pict_rect.bottom - pict_rect.top:

Chapter 3: Resources

SetRect(&pict_rect, PICT_L, PICT_T, PICT_L + pict_wd, PICT_T + pict_ht):

count= 0;

for (i=l; i < 31: i++)
{

++count:

switch count)

case 1:
pict_id FIRST_MAN_PICT;

break:

case 2:

pict_id FIRST_MAN_PICT + 1;

break:
case 6:

pict_id = FIRST_MAN_PICT + 1;

count = O:

break:
case 3:

case 5:
pict_id = FIRST_MAN_PICT + 2:

break:

case 4:
pict_id = FIRST_MAN_PICT + 3:

break:

pict_handle = GetPicture(pict_id) :

DrawPicture(pict_handle, &pict_rect):

109

1 1 0 Macintosh Programming Techniques

Delay(DELAY_TICKS, &end_tick);

/•+++++++++ Play one sound from a 'snd ' resource +++++++++•/

void Play_A_Sound(short snd_id)
{

Handle snd_handle:

OSErr err:

snd_handle c GetResource('snd ' , snd_id):

if (snd_handle == NIL)

ExitToShell ():

err= SndPlay(NIL, snd_handle, TRUE):

if (err != noErr)

Exi tToShell () :

Stepping through the code

By now you're familiar with how the main() function of a Macintosh
program works. Let's take a quick look at the #define directives, then
concentrate on the three new routines: Get_Some_Strings(),
Draw _Moving_Picture(), and Play _A_Sound().

The #include directives

ResourceUser is the first program that uses an #include file. You need
Sound.h because you will use the Sound Manager's SndPlay() routine.

#include <Sound.h)

The #define directives

You've seen ResourceUser's first four #define directives in previous pro­
grams. WIND _ID is the ID of the 'WIND' resource template. NIL and

Chapter 3: Resources 1 1 1

IN_FRONT are parameters for GetNewWindow(). You'll use
REMOVE_EVENTS at initialization.

The window's title and a string that's displayed in the window are in a
string list resource. WIND _TITLE_STR and PICT _LABEL_STR each
serve as an index to a string in the 'STR#' resource with an ID of
STR_LIST_ID. PICT_LABEL_STR_L and PICT_LABEL_STR_B are pixel
values that indicate where in the window the string will be drawn.

ResourceUser has four 'PICT' resources. The first is FIRST_MAN_PICT.
You'll use PICT_L and PICT_T as pixel coordinates for drawing the pic­
ture in the window. DELAY_TICKS is used to slow down the animation.

ResourceUser plays three sounds. SND_GLASS_ID, SND_ELVIS_ID, and
SND _CLINT _ID are the IDs of the three 'snd ' resources.

WIND_ID

NIL
128

OL
//define
//define
//define
//define

IN_FRONT (WindowPtr)-lL
REMOVE_EVENTS 0

//define
//define
//define
//define
//define

//define
//define
/ldef ine
I/define

STR_LIST_ID
WIND_TITLE_STR
PICT_LABEL_STR
PICT_LABEL_STR_L
PICT_LABEL_STR_B

FIRST_MAN_PICT
PICT_L
PICT_T
DELAY_ TICKS

//define SND_GLASS_ID
//define SND_ELVIS_ID
//define SND_CLINT_ID

The main() function

128

1

2

70

140

128

70

10

9000

9001

9002

ResourceUser borrows much of its main() function from past programs. I
only discuss the differences here.

1 1 2 Macintosh Programming Techniques

After initialization the program opens one window. A check is made to
verify that the 'WIND' resource was properly loaded:

The_Window = GetNewWindow(WIND_ID, NIL, IN_FRONT):

if (The_Window == NIL
ExitToShell():

The program calls Get_Some_Strings() to load two strings. It then calls
Draw _Moving_Picture() to display a dancing man to the window. The
Play_A_Sound() routine is called three times, with a different 'snd '
resource ID passed each time.

Get_Some_Strings():

Draw_Moving_Picture():

Play_A_Sound(SND_GLASS_ID);
Play_A_Sound(SND_ELVIS_ID):
Play_A_Sound(SND_CLINT_ID);

Using strings

The Get_Some_Strings() routine relies on GetlndString() to load and dis­
play strings from a 'STR#' list. It uses the first string in the list,
WIND_TITLE_STR, in a call to SetWTitle() to set the window's title to
"Display Window."

void Get_Some_Strings(void)
{

Str255 the_str:

SetPort(The_Window }:

GetindString(the_str, STR_LIST_ID, WIND_TITLE_STR) :
SetWTitle(The_Window, the_str) :

GetindString(the_str. STR_LIST_ID, PICT_LABEL_STR):
MoveTo(PICT_LABEL_STR_L, PICT_LABEL_STR_B):

Drawstring(the_str) :

Chapter 3: Resources 1 1 3

Using pictures lor animation
ResourceUser creates animation exactly as described earlier in this chap­
ter. The Draw _Moving_Picture() routine was developed and explained in
depth in this chapter's Animation Source Code section.

Playing sounds

After displaying the short animated sequence of pictures ResourceUser
plays three sounds. You'll hear a glass shattering, Elvis Presley laughing,
and a short sound clip from the Clint Eastwood movie "The Good, the
Bad, and the Ugly."

Pass Play _A_Sound() a 'snd ' resource id and the routine will call
GetResource() to load it into memory and SndPlay() to actually play it. If
the sound is too large for the available memory, or if the sound doesn't
play properly, the program will call ExitToShell() to terminate.

void Play_A_Sound(short snd_id
{

Handle snd_handle:
OSErr err:

snd_handle = GetResource('snd ' , snd_id):

if (snd_handle == NIL
ExitToShell():

err - SndPlay(NIL, snd_handle, TRUE) :

if (err != noErr
ExitToShell():

Chapter Summary
Everything you see on the Macintosh screen was put there through the
use of resources. A resource defines one element of the interface, such as
a menu or window. Resources provide Macintosh programs with a uni­
form look.

1 1 4 Macintosh Programming Techniques

You use a resource editor like Apple's ResEdit to visually define the fea­
tures of your program's windows, dialogs, menus, and alerts in a resource
file. ResEdit can create and edit any of the 100 or so different resource
types. A simple Macintosh application will use only a few of these types.

You can store lists of strings of text as resources using the 'STR#'
resource type. You then use GetlndString() in your source code to load a
string into memory. A call to DrawString() then displays it. This method
of storing strings keeps text independent of your source code. That
means others, with the use of a resource editor like ResEdit, can copy or
edit the strings easily.

Pictures can be stored as resources using the 'PICT' resource type. A call
to GetPicture() and DrawPicture() then loads and displays one picture.
You can create 'PICT' resources by pasting any drawing made in a
Macintosh drawing application into ResEdit.

The Macintosh is a multimedia machine. You can take advantage of its
sound capabilities by storing sounds in 'snd ' resources. A call to
GetResource() and the SndPlay() will load your sound into memory and
play it on the speaker of you Macintosh.

Giving a program its own icon to be displayed in the Finder is the finish­
ing touch that makes your program look professional. The 'BNDL'
resource allows you to create your own icon and associate it with a pro­
gram you write.

7

~ .-.· -,· -~/· . ·.·
. ..

ft ' . • • :

QuickDraw Graphics

'A lb.at would be the point of programming on a Macintosh if you
VV couldn't draw? Drawing is fun, creative, and gives you a chance to
express yourself-something you can't say about some other areas of
programming. If you're fortunate enough to have a color system, you can
really let loose. This chapter will show you how.

Here you'll learn just what QuickDraw is and how it works. You'll also
look at graphics ports, the data structures that allow drawing styles to
change from one window to the next.

In this chapter you'll see how to draw lines and shapes. You'll then add a
little flair to your shapes by filling them with patterns. Finally, you'll see
how to add even more interest to your drawing by using color.

About QuickDraw
Everything you see on a Macintosh screen is there because of
QuickDraw. QuickDraw is a group of Toolbox routines and is the single
largest group of Toolbox functions. QuickDraw consists of more func­
tions than any of the managers mentioned in Chapter 1.

115

1 1 6 Macintosh Programming Techniques

Some things are obviously graphical, like the screen results of a paint
program. But even windows, menus, and icons are all graphical images
that have to be drawn. QuickDraw does this drawing. If any drawing has
to be done, the managers rely on QuickDraw to do it.

While the managers indirectly make use of QuickDraw, you can directly
use it by calling any of the hundreds of QuickDraw Toolbox functions.

~0Tf If you're used to programming in a non-GUI environ·
ment, you might have written a few drawing routines
of your own. Don't try bypassing QuickDraw by using
or modifying any of your own routines. QuickDraw is
fast, refined, and simple to use-you won't one-up it.

Initializing QuickDraw
QuickDraw has its own set of variables and data structures that need ini­
tialization. You've seen the following call in each program in this book:

InitGraf(&thePort) :

Your program must make this call to initialize QuickDraw before any
QuickDraw operations take place. Make this call right off the bat.

Speaking of initializations, you may recall that several other calls are
included along with InitGraf(). They initialize other parts of the Toolbox,
such as the Font Manager and the Window Manager. Note that the order
in which these calls take place is extremely important and should
remain the same as it is here.

To keep things nice and tidy I've combined all of these initialization calls
into one function called Initialize_Toolbox(). You'll see this function
called in the remaining example programs in this book. Here it is.

void Initialize_Toolbox(void

InitGraf (&thePort) :
Ini tFonts () :

InitWindows():

Chapter 4: QuickDraw Graphics 1 1 7

InitMenus():
TEinit ():
InitDialogs(NIL);
FlushEvents(everyEvent, REMOVE_EVENTS) :
InitCursor():

Pixels and the coordinate system

Chapter 1 introduced the pixel and the coordinate system. Remember
from that discussion that the Macintosh uses bit-mapped graphics; every
pixel on the screen has one or more bits in memory that keep track of
the state of that pixel. For a monochrome Mac the state is on or off. For a
color system, the state is the color of the pixel.

You can refer to each pixel by a pair of coordinates which define a point.
This coordinate system starts at point (O, O) in the upper-left comer of
the screen and moves positively to the right and downward. Figure 4-1 is
from Chapter 1. To illustrate the coordinate system, I've added the coor­
dinates for a couple of pixels.

(0,0) (10 3)

~ '

'-• ~

•

I
•

• - I
I I I
I I -· I
I • I -· I

I
I

• •

Figure 4-1. The coordinate system

1 1 8 Macintosh Programming Techniques

The screen isn't the only part of the Macintosh that has a coordinate sys­
tem. As you'll see in the very next section, every window on the screen
has its own system.

Graphics Ports
When two windows are open on the screen, each is capable of displaying
different styles of text. This is possible because each window has its own
set of properties independent of all other windows.

The Graf Port and Graf Ptr
Associated with a window is a graphics port. The port is the environ­
ment of the window. It describes the window's type and style of text, the
thickness of drawn lines, and numerous other aspects of the graphics
that go into the window.

With more than one window open on the screen you'll have to tell
QuickDraw in which window or, more precisely, in which graphics port
it should perform drawing operations. Issuing a call to SetPort() does
this. SetPort() requires a pointer-a Graf Ptr-to the port you wish to
make the current port. A Graf Port is the structure that holds all this port
information. A Graf Ptr is a pointer to a Graf Port.

In previous chapters you've seen SetPort() in action in code that looks
like this:

WindowPtr The_Window:

SetPort(The_Window):
MoveTo(30, 50) ;

Drawstring("\pChapter One Program") :

You may wonder how I got away with passing SetPort() a variable of type
WindowPtr when you now know that SetPort() requires a Graf Ptr. Figure
4-2 hints at the answer. A Graf Ptr points to a Graf Port. A WindowPtr
points to a WindowRecord structure. Within the WindowRecord, the
very first member is a Graf Port. So the first thing that both a Graf Ptr and

Chapter 4: QuickDraw Graphics 1 1 9

a WindowPtr point to is a Graf Port which is good enough for SetPort()
and good enough for us. You'll learn all the sordid details about
WindowRecords in the next chapter.

:y WindowRecord
I WindowPtr

Graf Port

windowKind

visible

windowPic

refCon

Graf Ptr >1 i.==I Graf======:.1Port II

Figure 4-2. The WindowPtr and Graf Ptr

The graphics pen
A graphics port holds the graphical information about a port. When you
draw to a window, QuickDraw uses the information held in that win­
dow's graphics port. By adjusting the settings of the graphics pen you can
change many of the port's drawing properties. The graphics pen is an
invisible drawing tool that exists as a convenience for making changes to
the properties of lines drawn in a window.

You saw the pen in use in the example program of Chapter 1 with the
call to the Toolbox routine Move To(). Move To() moves the pen, without
drawing, to the pixel coordinates you specify. The reference point for
moving is the window's upper left comer. The companion function to
MoveTo() is Move(). Move() uses the pen's current position as a reference,
not the window's comer. Figure 4-3 shows where the pen would end up
after a call to MoveTo(150, 100). Figure 4-3 also shows that each port has
its own coordinate system. Don't forget, each window has a port, and the
screen itself is a port.

1 20 Macintosh Programming Techniques

Window 1

Window 2

100

~
·--···-···--·-· 1 5 0 --····-··----··

Figure 4-3. Result of MoveTo(l 50, 100) in a window's port

You just saw that you can move the pen. You can also change its charac­
teristics. Call PenSize() to change the size of the pen's tip. The first para­
meter to PenSize() controls the pen's height, the second parameter con­
trols the pen's width.

Changing the pen size will affect the thickness of lines drawn with all
subsequent calls to Line To(). The first parameter to Line To() gives the
horizontal length of a line and the second parameter gives the vertical
length. The reference point for the line is the window's upper-left cor­
ner. The companion to LineTo() is Line(), which uses the current loca­
tion of the pen as its reference. Here's a code fragment using all five of
these calls.

PenSize(l, 3):

MoveTo(100. 100):

Line(90. -50) :
Move (100, 0) :

LineTo(290, 140);

Figure 4--4 shows the results of the above code. Note that a negative ver­
tical value sends the pen upward. For the horizontal direction a negative
value would move the pen to the left.

Chapter 4: QuickDraw Graphics 1 2 1

Drawing Window

l
i Line(90,-50) Move(100,0)
10~0 ·······-··· 100 ·······-·

I A

! -do
····--······ 100 ······-···• + ······-······· 90 ···--···.i

MoveTo(100,100)

LineTo(290, 140)

···-·······················-·············-············ 290 ··········-···•

Figure 4-4. Results of moving and line drawing

Defensive Drawing

140

I
I ...

Every window has its own port, and this allows a program's user to switch
back and forth between these windows at will. Many applications allow the
user to select different graphics settings in each window. It's not up to the
user to keep track of all of this; it's up to you, the programmer. Fortunately,
the Toolbox contains a few routines that make this task painless.

Changing ports
When you issue a command to QuickDraw, it will faithfully execute that
command. The results of the command will always end up in the current
port. If you have more than one window on the screen, you must tell

1 2 2 Macintosh Programming Techn iques

QuickDraw which window holds the current port. SetPort() is your means of
doing this. Always call SetPort() before calling a QuickDraw Toolbox routine.

When drawing, the best strategy is to first make a call to the Toolbox
routine GetPort{) to get a Graf Ptr to the current port. Only then do you
call SetPort(). The call to GetPort{} will capture, or preserve, the port
that was current before you set the port. When your drawing is complete,
return things to their previous state by setting the port to the previously
current port. Here's the format.

void Draw_Somethin g(GrafPtr draw_port)
(

GrafPtr save_ port ;

GetPort(&save_port) ;

SetPort(draw_port) ;

[perform drawing here

SetPort(save_port) ;

Notice that in the C language the GetPort(} routine
accepts a pointer to Graf Ptr as a parameter while
SetPort(} accepts a GrafPtr.

Note that the GrafPtr that is passed to Draw_Something() can also be a
WindowPtr:

void Draw_Something(WindowPtr draw_window)
(

GrafPtr save_port;

GetPort(&save_port) ;
SetPort(draw_ window) :

[perform drawing here

SetPort(save_port) ;

Chapter 4: QuickDraw Graphics 1 23

Apple states that the misuse of SetPort() is one of the
most common sources of errors in programming the
Macintosh. Don't ignore Apple!

Even if your application uses only one window you should still adhere to
this strategy. If the user opens a desk accessory while your program is
running, the output of your program could end up in the desk accessory's
window. Desk accessory windows are ports, too!

Lesson 4-2: Switching Ports

You can run the program enclosed with this
book for a hands-on tutorial about this topic.

Changing characteristics of a port

One of the reasons the Macintosh gained its reputation as a computer that is
easy to use is because the Mac gave control to the user. Program users don't
have to be programmers to change the look of text or to draw into windows.
Macintosh applications let users make changes easily to a window's envi­
ronment, or graphics port, through menu choices or dialog box selections.

When a user makes an effort to set graphics characteristics for a desired
effect, that user will find it disconcerting if the characteristics change on
their own. If you're going to change the state of the graphics pen, you'll
want to first save the present state of the pen with GetPenState{). Pass
GetPenState() a variable of type PenState. You can then change proper­
ties of the pen with calls to routines like PenSize(). When done, return
the pen to its previous condition with a call to SetPenState{). Here's a
code fragment that does that:

PenSt ate save_state :

Ge tPenState(&save_state) :

1 24 Macintosh Programming Techniques

[change pen characteristics

SetPenState(&save_state) ;

When would a program allow both the user and the program itself to
change the state of the pen? Figure 4-5 shows one possibility. In this
hypothetical paint program, the user clicked on a line thickness of four
to change the pen size. When the user drew a circle, it was drawn with
the selected pen size. The program has a feature that automatically adds
a cross hair to a circle always using a pen size of one pixel. After the
cross hair is drawn the program should return the pen to the state the
user last selected-a size of four pixels.

p
[I Cl

My Picture

You change the pen size
and draw the cross hair.

Figure 4-5. Both the user and program can control the pen

Let's summarize the defensive drawing tactics covered in this section:

• Save the current port with GetPort().

~ii

• Make the port you're about to use the active port with SetPort().

• Save the state of the graphics pen with GetPenState().

• Make any desired pen changes.

Chapter 4: QuickDraw Graphics 1 2 5

• Draw any desired shapes.

• Reset the state of the pen with SetPenState().

• Reset the port to the previously active port with SetPort().

Let's end this section with a final version of Draw_Something(). You'll
want to pattern all your routines that change the pen or draw to a win­
dow on this one. Keep in mind that the calls to these routines will add
very little to the size of your final application and may save you hours in
trying to find the cause of bugs later on.

void Draw_Something(WindowPtr draw_window)

(

GrafPtr save_port:

PenState save_state;

GetPenState(&save_state) :

GetPort(&save_port):

SetPort(draw_window) ;

change pen characteristics

perform drawing operations

SetPenState(&save_state) :

SetPort(save_port):

DraV#ing Shapes
In Chapter 3 you saw the Rect data type and SetRect(), the Toolbox call
that establishes the boundaries of a Rect. The rectangle is the basis of
many of the shapes QuickDraw creates, so I'll repeat the last chapter's
call to SetRect() and the figure that displayed the results. Here's the call.
Figure 4-6 shows the results.

#define LEFT 75

1 2 6 Macintosh Programming Techniques

#define TOP 40

#defi ne RIGHT 175

#define BOTTOM 90

SetRect(&the_rect , LEFT . TOP . RIGHT , BOTTOM) ;

D Drawing Window

do i
~ 75 -.t----------------~ 90 : : l I I

I I
I I
I I
I I

L - - - - - - - - - - - - - - - - ·l:l--

~·1------175 ---__,~-1

Figure 4-6. SetRect() sets a rectangle's boundaries

0:

Once you've set the boundaries for a rectangle you can perform several dif­
ferent drawing operations on the rectangle, as discussed in the next section.

Working with rectangles
With the bounds of a rectangle established, you can frame it with
FrameRect():

Rect the_rect ;

FrarneRect(&the_rect) ;

If you'd like to fill the inside of a rectangle with a pattern, you can use
FillRect(). Pass FillRect() a pointer to the Rect to fill and the pattern to fill
it. There are five standard patterns of the C data type Pattern available for
your use: white, ltGray, gray, dkGray, and black. Keeping in mind that C
is case-sensitive, use one of these patterns as the second parameter:

FillRect(&the_rect, ltGray) ;

Chapter 4: QuickDraw Graphics 1 2 7

Earlier I introduced the graphics pen. You saw that it could draw black
lines using Line() and LineTo(). These lines don't have to be black. You
can change the pattern that the pen uses with a call to PenPat(). Include
one of the predefined patterns as the sole parameter. Here's a call that
draws a diagonal line in a dark gray pattern rather than black.

PenPat(dkGray);
MoveTo(20, 30);
Line(100, 100) ;

Once you change the pen pattern, the change stays in effect until the next
call to PenPat(). If the pen pattern is already to your liking, you can call
FillRect()'s companion routine PaintRect(). The only difference between
the two is that PaintRect() uses the current pen pattern to fill the rectan­
gle, while Fil1Rect() requires that you pass a pattern as a parameter.

Rect the_rect ;

SetRect(&the_rect , 20, 20 , 120, 120) ;
PenPat (gray) ;
PaintRect(&the_rect) ;
SetRect(&the_rect, SO, SO , lSO. lSO) ;
FillRect(&the_rect. black) ;

Figure 4-7 shows the result of this code. Note that the call to PaintRect()
uses the current pen pattern gray, as set by the call to PenPat(). Fil1Rect()
ignores the current pen pattern and uses the passed pattern of black. The
next section discusses patterns in greater detail.

Drawing Window

Figure 4-7. Result of calling PaintRect() and FillRect()

1 2 8 Macintosh Programming Techniques

You can invert a rectangle using InvertRect(). This routine doesn't add a
pattern to a rectangle like PaintRect() or FillRect(). Instead, it inverts
each pixel that falls within the boundaries of the rectangle. If the win­
dow happens to be all white at the time of the call, the rectangle will be
all black.

InvertRect(&the_rect)

When you're finished displaying a rectangle you can remove it with a call
to EraseRect(), which will wipe out the entire rectangle and replace it
with the background color, usually white.

EraseRect(&the_rect)

Working with ovals

Now that you know all about rectangles, ovals will be a breeze. An oval
begins with a call to SetRect(). Why set a rectangle to draw an oval?
QuickDraw will not display the rectangle; it will only use it as a guide in
which to inscribe the oval when you call Frame Oval(). Look at the fol­
lowing code, then check out the results in Figure 4--8. Take note that the
dashed rectangle in Figure 4-8 is only there to give a feel for what bounds
the oval; QuickDraw will not actually display it.

Rect the_rect:

SetRect(&the_rect, 50, 50, 200, 150):

FrameOval(&the_rect):

All the operations that work on rectangles also work on ovals. You frame
an oval with FrameOval(). Add pattern to an oval using PaintOval() and
FillOval(). You can invert an oval using InvertOval() and erase it with
EraseOval(). Here's a call to each:

Rect the_rect:

SetRect(&the_rect, 60, 80, 200, 235) :

FillOval(&the_rect, dkGray) :

PenPat(black):

SetRect(&the_rect, 150, 180, 300, 330) :

Chapter 4: QuickDraw Graphics 1 2 9

PaintOval(&the_rect) :

SetRect(&the_rect, 100. 100, 160. 185) ;

InvertOval(&the_rect) ;

SetRect(&the_rect. 200. 200, 250. 250) :
EraseOval(&the_rect) :

Dntwing Window

(50, 50)

(200, 150)

figure 4-8. An oval is inscribed in the boundaries set by SetRect()

Working with round rectangles

The Macintosh has an interesting shape called the round rectangle,
which is a rectangle with rounded-off edges. If you think back to the defi­
nition of an oval, you'll have a pretty good clue of how the Macintosh
defines the round rectangle.

short wd = 100;

short ht = SO:
Rect the_rect:

SetRect(&the_rect, 40. 60, 240. 160);
FrameRoundRect(&the_rect. wd, ht):

First, set the boundary rectangle with SetRect(). Then define the pixel
width and height of an imaginary oval that defines the degree of round­
ing of the comers. QuickDraw uses this oval for rounding each comer.

1 3 0 Macintosh Programming Techniques

Pass the oval width and height to FrameRoundRect(). Figure 4.9 illus­
trates the results of the above code fragment.

Drawing Window

r-Wd=1001
• ···-·-+:. ····-·--+·· t _,,,,.,.

~,,,
l ht= 50
\ .~

'"'· ·"'' :t .. ," ... , .. , •.......... ,.,~:: ~~---···---- ...

figure 4-9. An oval defines the corners of a round rectangle

Don't be surprised to learn that round rectangles can have the same oper­
ations performed on them as rectangles and ovals. Frame a round rectan­
gle with FrameRoundRect(). Apply a pattern to a round rectangle using
PaintRoundRect() or FillRoundRect(). Invert a round rectangle using
InvertRoundRect(). Finally, erase a round rectangle using
EraseRoundRect(). Once again, here is a call to each:

short wd "" 40:

short ht = 75:

Rect the_rect:

SetRect{ &the_rect, 10, 10, 200, 200) :

FillRoundRect{ &the_rect, dkGray):

PenPat(ltGray) :

SetRect{ &the_rect, 30, 200, 100, 250) :

PaintRoundRect{ &the_rect):

SetRect{ &the_rect, 50, 45, 255, 320) :

InvertRoundRect{ &the_rect) :

SetRect{ &the_rect, 200, 100, 250, 250):

EraseRoundRect{ &the_rect) :

Chapter 4: QuickDraw Graphics 1 3 1

Patterns
The five standard patterns are handy to have around, but you'll find occa­
sion to develop your own. That's easy to do with the aid of the 'PAT /

resource type. You'll use ResEdit to edit your own pattern and then a lit­
tle C source code to make it work for you.

Remember, every resource type has a four-character
name. For the 'PAT' type, there is a space after the 'T'.

The 1 PAT' Resource
Since you're proficient with ResEdit by now, you will know how to cre­
ate a pattern resource by simply looking at the following.

1. Choose "Create New Resource" from the Resource menu.

2. In the Select New Type dialog that opens, double-click on 'PAT /

in the list of resource types.

3. A pattern editor will open. There, click the small pencil on indi­
vidual pixels on the left side of the window. A larger section of
pattern will be shown on the right side. Figure 4-10 illustrates
the procedure.

You'll edit an 8-pixel-by-8-pixel square. Later, when your program uses
this pattern, QuickDraw will lay copies of that square end-to-end and
side-by-side to fill whatever area you specify.

Figure 4-11 shows a completed 'PAT / resource. In the next section you'll
call on this resource to fill the lines and shapes that you display with
QuickDraw calls.

1 3 2 Macintosh Programming Techniques

A single click
of the pencil ...

ID = 128 from Ouic

I

... affects the
entire pattern

Figure 4-10. ResEdit's pattern editor

QuickDrawing. 11 .rs

PAT ppat

PRTs from QuickDr

128

..........

• D
• o
• o ..

Figure 4-11. A 'PAT ' in the pattern editor

Chapter 4: QuickDraw Graphics 1 3 3

The pattern source code

By now you should be able to see the pattern for using resources-no pun
intended. First, you use ResEdit to create the appropriate resource. Then you
use a Toolbox call to load that resource into memory. The Toolbox gives your
program a handle to the resource. That gives you something to work with.

Patterns follow this same process. You created a 'PAT ' resource in
ResEdit. Now, bring it into memory with a call to GetPattern(). Pass
GetPattern() the resource ID of the 'PAT' to load. In return, GetPattern()
will give your program a handle to the pattern in memory. Not just an
ordinary handle, of course. You'll get a PatHandle. Here's how it's done:

//define MY_PAT_ID 128

PatHandle pen_pat_handle:

pen_pat_handle = GetPattern(MY_PAT_ID) :

What can you do with the handle? By dereferencing the handle twice you
move from a pattern handle to a pattern pointer, then to a Pattern. Note the
capital 'P' in Pattern. When speaking of patterns in general, use lowercase.
When referring specifically to the Macintosh C data type, use Pattern. You
can pass a Pattern, or a doubly-dereferenced handle, to PenPat() to change
the current pattern of the pen. Then, any drawing that you do, whether it be
lines or shapes, will make use of your new pattern. Here's a comprehensive
example. Figure 4-12 follows and shows the result.

//define MY_PAT_ID 128

PatHandle pen_pat_handle:
Rect the_rect:

pen_pat_handle = GetPattern(MY_PAT_ID);
PenPat(**pen_pat_handle):

PenSize(10, 10) :
MoveTo(20, 20) :
Line (300, 0) :

SetRect(&the_rect, 20, 50, 150, 100):
PaintRect(&the_rect) :

1 3 4 Macintosh Programming Techniques

D Drawing Window

lllllll! lllll ll!i

Figure 4-J 2. Drawing routines using the 'PAT ' resource

Creating a 'PAT' resource is simple and fun. Using the resource in your
source code is just as easy. Since the number of patterns you can develop
is huge, the 'PAT ' resource can really open the door for you to express
your own creativity.

Lesson 4-3: Using Patterns

You can run the program enclosed with this
book for a hands-on tutorial about this topic.

Color QuickDraw
If you're fortunate, you have a color Macintosh system. Even if you
don't, you should know how to include color in your programs. You'll
want program users who do have color to be able to take full advantage
of their machines.

Checking for color
Whether or not the user of your program has a color system is an impor­
tant issue. Users with older systems have the original QuickDraw in

Chapter 4: QuickDraw Graphics 1 3 5

their machines, not the newer Color QuickDraw. Toolbox routines you'll
be calling to display color will fail on older machines-something you
certainly want to avoid. Chapter 8 deals extensively with issues such as
checking for color. Here, I'll just tell you a little about an essential check
you must make.

The Toolbox routine Gestalt() checks the system a program is running
on for a variety of things, including the presence of Color QuickDraw.
Gestalt{} is covered in great depth in Chapter 8. Here you need only
know how to use it and not all the details on how it works.

Include the header file GestaltEqu.h in any program that might make
use of Color QuickDraw. That will allow you full use of the Gestalt()
function.

#include (GestaltEqu.h>

Next, declare a global Boolean variable that will be the flag that tells
your program whether Color QuickDraw is present.

Boolean Color_QD_Present;

Near the start of your program, call Gestalt() with the two parameters
shown below.

OSErr err;
long response;

err = Gestalt(gestaltQuickdrawVersion, &response) ;

The rather ungainly constant gestaltQuickdrawVersion will tell the
versatile Gestalt() that on this occasion it should check for the version
of QuickDraw. Gestalt() is capable of checking for a number of other
system parameters. Gestalt() will dig that information out of the Mac
your program is running on and relay it to your program in the vari­
able-named response. It will also notify your program if it somehow
failed its mission; that's what the err variable is for.

Immediately after the call to Gestalt(), check the results. Make sure
there was no error and then set the color QuickDraw flag according to
the value held in response. A response value of gestaltOriginalQD

1 36 Macintosh Programming Techniques

means this system has the original black and white version of
QuickDraw. Any other value means there's one of several versions of
Color QuickDraw present.

if ((err == noErr) && (response == gestaltOriginalQD))
Color_QD_Present = FALSE:

else
Color_QD_Present = TRUE:

Now, whenever your program is about to make a call to a Color
QuickDraw routine that could spell disaster on a monochrome system,
you can check your Color_QD_Present variable to see if it's safe to con­
tinue. And if it isn't? Then you'll use a similar call that works for black
and white.

You'll see this color-checking code bundled together in the example pro­
gram at the end of this chapter. And remember, you'll get more explana­
tion when you arrive at Chapter 8.

Color windows
You've already used the GetNewWindow() routine several times. To
make use of color in a window you'll call GetNewCWindow(). Both calls
ask for the same number and type of parameters, and both return a
WindowPtr. Here's a call to each.

//define
#define

NIL OL
IN_FRONT (WindowPtr)-lL

WindowPtr The_BW_Window:
WindowPtr The_C_Window:

The_BW_Window = GetNewWindow(BW_WIND_ID, NIL. IN_FRONT):
The_C_Window = GetNewCWindow(C_WIND_ID, NIL. IN_FRONT):

Earlier you read about graphics ports and the Graf Port type-every win­
dow has one. For drawing in color there's a special type of port called a
CGraf Port. Standard windows have a Graf Port. Color windows have a
CGraf Port. Most of the differences will be transparent to you. Drawing
operations in either type of port are similar, as you'll soon see.

Chapter 4: QuickDraw Graphics

Before working with color you'll test your color flag variable to see if
color is available. If it is, open a color window; if not, put the traditional
monochrome window up. Here's how:

WindowPtr The_Window:

if (Color_QD_Present == TRUE
The_Window = GetNewCWindow(C_WIND_ID, NIL, IN_FRONT) :

else
The_Window = GetNewWindow(BW_WIND_ID, NIL, IN_FRONT) :

If you know how to draw, you know how to draw in color. Everything
covered up to this point has been for monochrome, but it applies to color
as well. Use a color port just as you would a standard port. First use
SetPort() to make it the current port, then use QuickDraw routines to
draw to it. Here's an example that draws a line in a window.

WindowPtr The_Window;

if (Color_QD_Present == TRUE
The_Window = GetNewCWindow(C_WIND_ID, NIL, IN_FRONT) :

else
The_Window = GetNewWindow(BW_WIND_ID, NIL, IN_FRONT) :

SetPort(The_Window):

MoveTo(20, 20) :
Line(100. 100):

Of course, there's not much point in using color windows if you're not
using a color monitor.

Color patterns
The monochrome representation of a pattern is the 8-pixel-by-8-pixel
square with a C data type of Pattern. For color, the size is the same, but
each pixel can take on any of the available colors, not just black or white.
The C data type for a color pattern is PixPat, a pixel pattern. There's also
a color pattern resource, the 'ppat'.

137

1 3 8 Macintosh Programming Techniques

The "ppat' resource
The color 'ppat' is analogous to the monochrome 'PAT'. If you know
how to use ResEdit's pattern editor (and you should), then you already
know how to make a 'ppat' resource. For a color pattern you select colors
for each pixel. To do so, you use a palette that opens when you click on
the rectangle in the lower-left comer of the pattern editor. Figure 4-13
shows a color pattern and the color selection palette-in black and white
print, unfortunately-in ResEdit.

QuiclcDrawing.11.rs

Figure 4-13. A 'ppat' in the pattern editor

The color pattern source code

Similar to GetPattern(), the call that brings a 'PAT ' into memory,
GetPixPat{} is the call that loads a 'ppat' into memory. GetPixPat(}
returns yet another handle type, a PixPatHandle.

Chapter 4: QuickDraw Graphics 1 3 9

/Ide fine PEN_PAT_C_ID 128

PixPatHandle pen_pixpat_handle:

pen_pixpat_handle = GetPixPat(PEN_PAT_C_ID):

To change the current setting of the pen to your new color pattern, use
the color version of PenPat(); that is, PenPixPat(). This routine conve­
niently takes a PixPatHandle as its parameter, so there's no dereferenc­
ing involved. You have the handle from the call to GetPixPat(), now use
it in PenPixPat(), as shown in this example:

/Ide fine PEN_PAT_C_ID 128

PixPatHandle pen_pixpat_handle;

Rect the_rect:

pen_pixpat_handle = GetPixPat(PEN_PAT_C_ID):
PenPixPat(pen_pixpat_handle) :

PenSize(10. 10):
MoveTo(20. 20):
Line(300, 0) :

SetRect(&the_rect. 20. 50, 150, 100) :
PaintRect(&the_rect):

If the above example looks familiar, it should; the last five lines are the
same as those of the monochrome pattern example a few pages back.
Once the pen pattern is set-whether it be with a call to PenPat() or a
call to PenPixPat()-Iine drawing and shape painting takes place with
the same calls. Shape filling is just a little different, as you'll soon see.

Figure 4-14 shows the results you could expect from the above example,
assuming the 'ppat' pattern shown in Figure 4-13 is used. Again, the
actual pattern contains whatever colors were used for the 'ppat'.

1 40 Macintosh Programming Techniques

Drawing Window

Figure 4-14. Drawing routines use your 'PAT' resource

Color drawing

Now that you know about color patterns, the rest of color is a snap.
Everything you know from the "old" monochrome QuickDraw applies.
Once you set the pen pattern using PenPixPat(), lines and painted shapes
will use this new pattern. For instance, the preceding example used
Line() and PaintRect().

Fill routines, such as Fil1Rect() require that you specify the pattern to
use; it ignores the current pen pattern. With color you're working with a
PixPatHandle and not a Pattern. Because of this the fill routines for color
QuickDraw are somewhat different. Each of the monochrome Toolbox
routines has a sister routine for color. Here's a call to each:

#define PEN_PAT_C_ ID 128

PixPatHandle fill_ppat_handle :

Rect the_rect :

fill_ppat_hand l e - GetPixPat(FILL_PAT_COLOR_ID) :

SetRect(&the_rect . 20, 150 , 200, 250) :

FillCRect(&the_rect , fill_ppat_handle) :

Chapter 4: QuickDraw Graphics 1 41

FillCOval(&the_rect. fill_ppat_handle):
FillCRoundRect(&the_rect, fill_ppat_handle) :

Inverting shapes in monochrome is simple because black is defined as
the opposite of white. For color, things aren't quite so simple. Just what
is the opposite of light chartreuse, anyway? It is possible to invert all or
part of a color shape by calling InvertRect(), but you should avoid an
inversion attempt such as this because of its unpredictable nature.

Toolbox routines originally intended for monochrome
systems will work in color windows. The reverse is not
always true. A call to FillRecl(&the_rect, ltGroy} will
draw a light gray rectangle in a color window. A call
to FillCRecl(&the_rect, fill_ppat_handle} will not draw
anything if color QuickDraw is not present.

Drawing in color isn't the only thing that adds color to a window. You
can use ResEdit to add color to parts of a window's frame or content, too.
That's next.

The 1wctb' resource
When you create a 'WIND' resource in ResEdit you do so in the window
editor. There, you can add color to some of the parts of a window, such as
its content.

Click the Custom button in the window editor to see the five parts of a
window that are capable of displaying color. Then click on one of the five
rectangles to open a palette of colors. ResEdit will reflect your color
choice in the MiniWindow of the window editor. This is shown in Figure
4-15. Before the change is made, ResEdit will notify you that adding
color to a 'WIND' adds a new resource to your resource file. ResEdit adds
a window color table, a 'wctb' resource. Figure 4-16 shows the alert
ResEdit puts up. Click OK to continue.

1 4 2 Macintosh Programming Techniques

WI ND ID = 128 from M Program.rsrc

I

---------~Clicking here

O Initially uisible opens a palette
of colors

181 Close boH _J
A change in the Content

'---------------- color will show up here

Left: EJ Width: ~

Figure 4-15. Changing window colors in ResEdit's window editor

Rdding color to a 'WI ND' will create a
'wctb' resource to store the color
information. The 'wctb' resource will
haue the same id as this 'WIND'.
Remember to delete this resource if
you delete the 'WI ND'

(Cancel) OK

Figure 4-J 6. ResEdit gives notification that a new resource will be added

When you call GetNewCWindow() and pass the resource ID of a color
'WIND', the colors you added in ResEdit will be displayed on the win­
dow opening on the screen.

Chapter 4: QuickDraw Graphics 143

The Cursor
At the start of this chapter I packaged all of the Toolbox initialization
calls into one function called Initialize_Toolbox(). The last call in that
function is a call to !nit Cursor(), which sets the cursor to the familiar
arrow shape. You've noticed in many Macintosh programs that the cur­
sor can take on different shapes. Often it looks like an arrow, but it can
also take on other forms. A word processor, for example, sets the cursor
to an I-beam shape when it's over a window that allows editing.

As your program runs, you may want to change the appearance of the
cursor. You can do that by using two Toolbox calls: GetCursor() and
SetCursor(). The system defines five cursors for your use, and they're
stored as resources in the system resource file.

InitCursor() sets the cursor to the default cursor, the arrow. For any of
the other four cursors, use GetCursor() to get a handle to the desired one.
You supply the resource ID of the 'CURS' resource you want to display.
You don't have to know the 'CURS' IDs-the four system cursor
resources are defined by constants: iBeamCursor, crossCursor,
plusCursor, and watchCursor.

On a Macintosh handles can be of the generic Handle type or a type spe­
cific to the object being worked with. In the previous chapter you saw
that a call to GetPicture() returns a PicH andle. A call to Get Cursor()
returns a CurHandle to your program. After getting a CurHandle to a
cursor, call SetCursor() to actually make the cursor change shape. When
passing the cursor handle to SetCursor(), dereference it once. SetCursor()
is expecting a pointer to a cursor, and you've got a handle to one.

Here's an example that lets the user know a short wait is in order. It sets
the cursor to the watch, does some task that takes some time, then sets
the cursor back to the arrow.

CursHandle watch_handle:

watch_handle = GetCursor(watchCursor):

HLock((Handle)watch_handle) :
SetCursor(*watch_handle) :

HUnlock((Handle)watch_handle) :

1 44 Macintosh Programming Techniques

[do some time-consuming stuff]

InitCursor():

Yes, we did slip something new into the last code fragment. We sand­
wiched the call to SetCursor() between calls to HLock() and
HUnlock(). The Toolbox routine HLock() marks a relocatable block as
nonrelocatable. HUnlock() sets the block back to its normal condition
of relocatable.

What makes this situation so unique that we needed to include this pair
of calls, when we've never done so in the past? This is the first time we
passed a dereferenced handle to a Toolbox routine. In Chapter 2 we dis­
cussed memory compaction. Memory compaction can take place during
the execution of some Toolbox routines. If it does, and that routine is
working with a dereferenced handle, the results can be unpredictable.

Remember, a handle holds the address of a master pointer. The master
pointer won't ever move, but what it points to may. In our call to
SetCursor() we're passing an address-the address held in the master
pointer. Imagine that memory compaction takes place in the middle of
the call to SetCursor(). We passed SetCursor() the address of the object,
the cursor. If the block that this address points to moves, SetCursor() will
not find the cursor. And that's a big problem.

We've recreated the above scenario in Figure 4-17. The handle holds the
address of a master pointer-65000. Dereferencing a handle one time
yields the contents of what it points to-the contents of the master
pointer, or 80000. So that's what is being passed when *the_handle is
used as a parameter-80000. Just to complete our dereferencing story, if
we dereferenced a second time we'd have the contents of address 80000,
the object itself-the cursor. Now, what happens when we pass
*the_handle, or the address 80000 to SetCursor(), and memory gets com­
pacted in the middle of the call? When SetCursor() looks for the cursor
that should be at address 80000, it just might not be there!

Chapter 4: QuickDraw Graphics 1 4 5

the_handle = 65000

* *the_handle =the object itself

*the_handle = 80000

Figure 4-17. Dangers of passing a dereferenced handle

Nesting code between calls to HLock() and HUnlock() prevents the
above situation from occurring. The relocatable block used as the para­
meter to HLock() will not move-even if the heap gets compacted. The
advantage to this technique should be apparent-the Toolbox calls work­
ing with dereferenced handles will work successfully. The downside is
that while a relocatable block is locked, it can cause memory fragmenta­
tion. That's why we unlock it immediately after our use of the derefer­
enced handle is complete.

Memory compaction takes place only at select times. Not all Toolbox
calls are affected. The Inside Macintosh series lists the ones that may
involve compaction. If you don't have this list, feel free to play it safe and
call HLock() every time you pass an dereferenced handle. As long as you
make sure to call HUnlock() when the call is complete, you can't go
wrong.

146 Macintosh Programming Techniques

Chapter Program:
Drawing on the Mac
QuickDrawing, this chapter's example program, uses the same format as
the preceding example in that it simply puts a single window on the
screen and then does its stuff. In this case, the "stuff" is drawing.

If you run QuickDrawing on a color system it will open a window with a
colored background and draw three colored shapes in the window. If
you're running a monochrome system it will open a standard window
and draw the shapes in black and white. Figure 4-18 shows
QuickDrawing's window on a monochrome system. To quit the pro­
gram, click the mouse.

Untitled

,' ... , ,~ - -~ , ~--= .. :-- .. ~ -.~ ..
.. -.. ~

. , ..
,. '

.. . ~ , , ~

.. - , .

Figure 4-18. Monochrome version of QuickDrawing's window

Program resources: QuickDrawing.n.rsrc
QuickDrawing uses the four resource types discussed in this chapter.
Figure 4-19 shows the program's two black and white 'PAT' patterns
and its two color 'ppat' patterns. These are the same as those used in
earlier examples.

Chapter 4: QuickDraw Graphics 1 4 7

QuickDrawing has two 'WIND' resources. One is the standard window
seen in the preceding chapters but enlarged just a little. The second
'WIND' is a color window. When you clicked the Custom radio button in
the window editor ResEdit created a 'wctb' resource to hold the win­
dow's color information.

QuickDrawing. n .n -~
PAT pp at wctb

PATs from Qu

§0§ ppats from Q §E!J§
WIND

128 129

128 129

Figure 4-19. QuickDrawing's resources

Program listing: ResourceUser.c
Here is the source code in full.

~

/*+++++++++++++++++++++ Include Files +++++++++++++++++++*/

#include <GestaltEqu.h>

/*+++++++++++++++++ Function prototypes +++++++++++++++++*/

void Initialize_Toolbox(void):

void Open_Window(void) :

148 Macintosh Programming Techniques

void Do_Drawing(void) ;
void Draw_Color_Pen_Pattern(void) ;
void Draw_Color_Fill_Pattern(void) :
void Draw_BW_Pen_Pattern(void):
void Draw_BW_Fill_Pattern(void) ;

/•++++++++++++ Define global constants ++++++++++++++++++•/

/Ide fine BW_WIND_ID 128

/Ide fine C_WIND_ID 129

/Ide fine NIL OL

/Ide fine IN_FRONT (WindowPtr)-lL

/Ide fine REMOVE_EVENTS 0

#define PEN_PAT_BW_ID 128

//define FILL_PAT_BW_ID 129

//define PEN_PAT_COLOR_ID 128

//define FILL_PAT_COLOR_ID 129

/•++++++++++++++ Define global variables ++++++++++++++++•/

WindowPtr The_Window:
Boolean All_Done = FALSE:
EventRecord The_Event;
Boolean Color_QD_Present:

/•++++++++++++++++++++ main listing +++++++++++++++++++++++•/

void main(void)

Initialize_Toolbox():

Open_Window();

Do_Drawing();

while (All_Done == FALSE)

I

GetNextEvent(everyEvent, &The_Event) ;

switch (The_Event.what)

Chapter 4: QuickDraw Graphics

case mouseDown:

All_Done = TRUE:

break;

/•+++++++++++++++++ Initialize the Toolbox ++++++++++++++++•/

void Initialize_Toolbox(void)

InitGraf(&thePort) :

InitFonts():
Ini tWindows () ;

InitMenus();

TEini t ():

InitDialogs(NIL):
FlushEvents(everyEvent, REMOVE_EVENTS) :

Ini tCursor ():

/*+++++++++ Open a single mono or color window

void Open_Window(void)

OSErr err;

long response:

+++++++++++•/

err= Gestalt(gestaltQuickdrawVersion, &response):

if ((err == noErr) && (response == gestaltOriginalQD))

Color_QD_Present FALSE:

else
Color_QO_Present TRUE:

if (Color_QD_Present == TRUE)
The_Window

else
The_Window

GetNewCWindow(C_WIND_ID, NIL. IN_FRONT):

GetNewWindow(BW_WIND_ID. NIL, IN_FRONT):

if (The_Window == NIL)

Exi tToShell () :

149

150 Macintosh Programming Techniques

/•+++++++ Branch to mono or color drawing routines

void Do_Drawing(void)

Graf Ptr

PenState

save_port;

save_state:

GetPort(&save_port) :

SetPort(The_Window) ;

GetPenState(&save_state):

if (Color_QD_Present == TRUE

Draw_Color_Pen_Pattern():

Draw_Color_Fill_Pattern();

else

Draw_BW_Pen_Pattern();

Draw_BW_Fill_Pattern();

SetPenState(&save_state) :

SetPort(save_port) ;

1111111•/

/•+++++++++++ Change pen pattern and draw in mono I I I I I I I++•/

void Draw_BW_Pen_Pattern(void

PatHandle pen_pat_handle;

Rect the_rect:

pen_pat_handle = GetPattern(PEN_PAT_BW_ID):
PenPat(**pen_pat_handle);

PenSize(10, 10) ;

MoveTo(20, 20) ;
Line (300, 0) ;

SetRect(&the_rect, 20, SO, 150. 100):
PaintRect(&the_rect):

Chapter 4: QuickDraw Graphics

/*I I I I I I I I I I Change pen pattern and draw in color

void Draw_Color_Pen_Pattern(void)

PixPatHandle pen_pixpat_handle;
Rect the_rect;

pen_pixpat_handle = GetPixPat(PEN_PAT_COLOR_ID) ;
PenPixPat(pen_pixpat_handle);

PenSize (10, 10) ;
MoveTo(20, 20);
Line(300, 0) ;

SetRect(&the_rect, 20, 50, 150, 100);
PaintRect(&the_rect):

++++++++*I

/•+++++++++++ Fill a shape using a mono pattern ++++++++++•/

void Draw_BW_Fill_Pattern(void)

PatHandle fill_pat_handle;
Pattern the_pattern:
Rect the_rect;

fill_pat_handle = GetPattern(FILL_PAT_BW_ID):

SetRect(&the_rect, 20, 150, 200, 250) :
FillRect(&the_rect, **fill_pat_handle);

/•++++++++++ Fill a shape using a color pattern ++++++++++*/

void Draw_Color_Fill_Pattern(void)

PixPatHandle fill_ppat_handle;
Rect the_rect;

fill_ppat_handle = GetPixPat(FILL_PAT_COLOR_ID) ;

151

1 5 2 Macintosh Programming Techniques

SetRect(&the_rect, 20, 150, 200, 250):
FillCRect(&the_rect, fill_ppat_handle) :

Stepping through the code

Stepping through QuickDrawing will be a breeze. All of its code was
developed in this chapter, and there are no surprises.

The #include directives

QuickDrawing checks the system for Color QuickDraw using Gestalt(),
so you need to include the GestaltEqu.h header file.

#include <GestaltEqu.h>

The #define directives

You should now be aware that a good Mac program meets the user's needs,
whatever they may be. QuickDrawing, to meet these needs, uses two
'WIND' resources to display either a monochrome window
(BW _WIND _ID} or a color window (C_ WIND _ID). NIL and IN_FR ONT are
used in GetNewWindow(), and REMOVE_EVENTS is used at initialization.

QuickDrawing will load either two monochrome 'PAT ' resources into
memory, PEN_PAT_BW_ID and FILL_PAT_BW_ID, or two color 'ppat'
resources: PEN_PAT_COLOR_ID and FILL_PAT_COLOR_ID.

fide fine BW_WIND_ID 128
#define C_WIND_ID 129
{/define NIL OL

//define IN_FRONT (WindowPtr)-11

//define REMOVE_EVENTS 0

//define PEN_PAT_BW_ID 128
#define FILL_PAT_BW_ID 129
//define PEN_PAT_COLOR_ID 128
{/define FILL_PAT_COLOR_ID 129

Chapter 4: QuickDraw Graphics 1 5 3

The main() function
QuickDrawing first performs initializations, as always. The only differ­
ence here is that the calls are bundled into a routine called
Initialize_Toolbox().

The program next opens a single window. Whether it's a color window or
not is determined by Open_Window(). After that, Do_Drawing() sets up
the drawing that will take place.

void main(void)

Initialize_Toolbox():

Open_Window():

Do_Drawing():

while (All_Done == FALSE
(

GetNextEvent(everyEvent, &The_Event):

switch (The_Event.what

case mouseDown:
All_Done = TRUE:

break;

Initialization

Here's Initialize_Toolbox(), exactly as put together earlier in this chapter.

void Initialize_Toolbox(void)

InitGraf (&thePort) :
Ini tFonts () :
InitWindows();
InitMenus():

TEinitO:
InitDialogs(NIL) :

1 5 4 Macintosh Programming Techniques

FlushEvents(everyEvent, REMOVE_EVENTS) :

InitCursor():

Checking for color
Open_ Window() performs the very necessary check for color using the
Gestalt() function. For now, use it "as is." In Chapter 8 you'll see how to
change the first parameter to check for all sorts of things, not just color.
Once GetNewWindow() or GetNewCWindow() has been called, the pro­
gram verifies that the window was indeed loaded into memory. If not,
The_Windowwill be nil and the program ends.

void Open_Window(void)
(

OSErr err:
long response:

err = Gestalt(gestaltQuickdrawVersion. &response) :

if ((err == noErr) && (response =- gestaltOriginalQD))
Color_QD_Present = FALSE:

else
Color_QD_Present = TRUE:

if (Color_QD_Present == TRUE
The_Window = GetNewCWindow(C_WIND_ID, NIL, IN_FRONT) :

else
The_Window = GetNewWindow(BW_WIND_ID, NIL, IN_FRONT):

if (The_Window == NIL
ExitToShell():

Preserving the environment

Do_Drawi.ng() serves as a branching station for the drawing that's about
to take place. One set of routines executes if Color QuickDraw is pre­
sent, another set if it's not. In addition, Do_Drawing() guarantees that
when the function is finished the state of the pen and the port will be
returned to their previous conditions.

void Do_Drawing(void)
(

GrafPtr

PenState

save_port:

save_state:

GetPort(&save_port) :
SetPort(The_Window) :
GetPenState(&save_state) :

Chapter 4: QuickDraw Graphics

if (Color_QD_Present == TRUE

Draw_Color_Pen_Pattern():
Draw_Color_Fill_Pattern():

else

Draw_BW_Pen_Pattern():
Draw_BW_Fill_Pattern():

SetPenState(&save_state) :
SetPort(save_port):

Lines and shape painting

Both Draw_BW_Pen_Pattern() and Draw_Color_Pen_Pattern() do the
same thing; that is, they change the pattern of the pen and then draw a
line and paint a rectangle. The only difference is in the resource each uses
to obtain the pattern and the call that is made to set the pen pattern.

void Draw_BW_Pen_Pattern(void
{

PatHandle pen_pat_handle:
Rect the_rect:

pen_pat_handle = GetPattern(PEN_PAT_BW_ID) :
PenPat(**pen_pat_handle);

PenSize(10, 10) :
MoveTo(20, 20);

Line(300. 0) :

155

1 5 6 Macintosh Programming Techniques

SetRect(&the_rect. 20, SO, lSO, 100) :

PaintRect(&the_rect):

void Draw_Color_Pen_Pattern(void)

PixPatHandle pen_pixpat_handle:

Rect the_rect:

pen_pixpat_handle = GetPixPat(PEN_PAT_COLOR_ID):

PenPixPat(pen_pixpat_handle) :

PenSize(10, 10):

MoveTo(20, 20) :

Line(300. 0) :

SetRect(&the_rect. 20. SO. 150. 100) :
PaintRect(&the_rect):

Shape filling

Draw _BW _Fill_Pattern() and Draw _Color_Fill_Pattern() each draw an
identically sized and placed rectangle. The BW routine uses a 'PAT '
resource, while the Color routine uses a 'ppat'.

void Draw_BW_Fill_Pattern(void)
{

PatHandle fill_pat_handle:

Pattern the_pattern:

Rect the_rect:

fill_pat_handle = GetPattern{ FILL_PAT_BW_ID) :

SetRect(&the_rect. 20. ISO, 200, 250):
FillRect(&the_rect, ••fill_pat_handle) ;

void Draw_Color_Fill_Pattern(void)

PixPatHandle fill_ppat_handle;

Rect the_rect;

Chapter 4: QuickDraw Graphics 1 5 7

fill_ppat_handle = GetPixPat(FILL_PAT_COLOR_ID) ;

SetRect(&the_rect, 20, 150, 200, 250) ;

FillCRect(&the_rect, fill_ppat_handle) :

Chapter Summary

QuickDraw is a group of Toolbox routines and is the single largest group
of Toolbox functions. Besides drawing the shapes and pictures you see
displayed in windows, QuickDraw draws the window itself. In fact,
QuickDraw is responsible for drawing everything on the Macintosh
screen. QuickDraw, and other parts of the Toolbox, have to be initialized
before use.

Every window has its own graphics port or environment. A graphics port
defines what lines and text will look like. When you give each window
its own graphics port, you allow different windows to display different
styles of text and draw shapes of different patterns. You can change a
graphics feature within a port by making a change to the port's graphics
pen. The pen is invisible-it exists as a reference that aids you in manip­
ulating graphics features.

You use Toolbox routines to tell QuickDraw what to draw. Because each
window has its own graphics port, you must make sure that QuickDraw
knows which window it should draw to in response to the commands
you give it. Before you draw to a window, you'll give QuickDraw this
information in the form of a call to SetPort().

The primary shape that QuickDraw works with is the Rect, the C data
type that represents a rectangle. By defining the boundaries of a rectan­
gle, you give QuickDraw the information it needs to draw rectangles,
ovals, and round rectangles (rectangles with rounded corners). The
Toolbox contains a host of shape-drawing routines that allow you to
frame, fill, invert, and erase these different types of shapes.

You can add flair to your shapes by using patterns. The C data type
Pattern allows you to choose from several defined patterns. You can also
define your own monochrome patterns using 'PAT / resources.

1 5 8 Macintosh Programming Techniques

Many Macintosh users now have color systems, and you can support
these users by using Color QuickDraw. The color version of QuickDraw
allows you to draw shapes in color, create color patterns using the 'ppat'
resource type, and add color to the frame or content of windows.

Working with Windows

Windows are what originally set the Macintosh apart from other
computers. To display information, a Macintosh needs either a

window or the brother of the window, a dialog box. In this chapter you'll
learn about window-handling techniques.

Let's begin with a discussion of events. Nothing happens to or with a
window until an event occurs. A click of the mouse button is usually
what a window responds to, so the focus will be on events involving the
mouse.

Devising a system to handle events that involve one window is relative­
ly straightforward. However, when more than a single window is on the
screen, window-handling techniques become more complex. This chap­
ter provides a strong background on the basic techniques of working
with a window. It also covers the more difficult topic of working with
multiple windows.

As do the previous chapters, this chapter finishes with a sample program
that demonstrates the techniques highlighted in the chapter.

159

1 60 Macintosh Programming Techniques

Windows Primer
Here is a concise summary of just what a window is.

The "WIND' resource
A window starts as a 'WIND' resource, created here in ResEdit. Chapter 1
covered the 'WIND', so this chapter will simply show the 'WIND' editing
window, shown here in Figure 5-1.

lU I ND ID = 128 from MyProgram.rsrc

Le ft: l._3_0 ___,

Height: I 200

Width: 1400

Color: @ Default
0 Custom

D Initially uisible

12] Close boH

Figure 5-1. A 'WIND' resource viewed in ResEdit

Loading a "WIND'
You've already seen the Toolbox routine GetNewWindow() in action sev­
eral times. It loads a window into memory and returns a pointer to the
window. Below is a call to GetNewWindow().

#define
/fdefine
#define

NIL OL
IN_FRONT (WindowPtr)-1
WIND_ID 128

Chapter 5: Working with Windows 1 61

WindowPtr the_window:

the_window = GetNewWindow(WIND_ID, NIL, IN_FRONT):

The first parameter passed to GetNewWindow() is the resource ID of the
'WIND' resource to use. The second parameter is a pointer that tells the
Memory Manager where in memory to place the window. A value of
OL--the number zero followed by the letter L--is the convention used by
many Macintosh programmers to serve as the value for a nil pointer. It
tells the Window Manager to allocate the memory for you. (Later in this
chapter you'll use a value other than nil for the storage.) The third para­
meter signals the Window Manager to place the new window behind all
others (O) or in front of all others (-1). The Toolbox is looking for a
WindowPtr here, so you'll have to cast the value (as shown by
WindowPtr in parentheses) so that the compiler does not produce an
error or warning message.

The WindowRecord, WindowPtr and
WindowPeek
Every window is, in a sense, a world unto itself. Each window can have
its individual properties, such as the size and font of the text it will dis­
play and whether the window is visible at this moment. The data struc­
ture WindowRecord holds this information. Here's the structure:

struct WindowRecord

Graf Port port:
short windowKind;

Boolean visible:
Boolean hili ted:
Boolean goAwayFlag:
Boolean spareFlag:
RgnHandle strucRgn:
RgnHandle contRgn:
RgnHandle updateRgn:

Handle windowDefProc:
Handle dataHandle:
StringHandle titleHandle:

short titleWidth:

1 6 2 Macintosh Programming Techniques

ControlHandle controlList;
struct WindowRecord *nextWindow:

PicHandle windowPic:

long refCon:
} :

The heart of the WindowRecord is the very first member, the port mem­
ber: Graf Port. Recall from Chapter 4 that a Graf Port holds all the infor­
mation about a graphics port, which is a drawing environment.

You won't need to memorize the exact makeup of the WindowRecord
structure. Instead, you'll work with WindowPtrs. A WindowPtr points to
the Graf Port of a Window Record. Once you have a WindowPtr you can
do just about anything you want to a window through Toolbox calls. You
call the Toolbox routine name and include the pointer to the window
you want to work with as follows:

//define
//define
#define

NIL OL
IN_FRONT (WindowPtr)-1
WIND_ID 128

WindowPtr the_window;

the_window = GetNewWindow(WIND_ID, NIL, IN_FRONT);

SetPort(the_window) : /* set the port to the new window */

ShowWindow(the_window) : /* show the window on the screen */

In addition to a WindowPtr there is also a Macintosh C type called a
WindowPeek. WindowPtr points specifically to the Graf Port of the
WindowRecord, but WindowPeek points to the entire WindowRecord
structure. Figure 5-2 illustrates this.

From Figure 5-2 it appears that the WindowPeek is more powerful, since
it allows access to all of the members of a WindowRecord, not just the
port. That is, in fact, true. But there are many instances where you won't
need to access any of the members other than the port. In those cases it's
fine to use the WindowPtr. You'll also use a WindowPtr because many
Toolbox routines expect a WindowPtr as one of the parameters, and do
not expect a WindowPeek.

Chapter 5: Working with Windows 1 63

Window Peek > WindowRecord

I WindowPtr [•<------1

1

. .------ port

windowKind

visible

Figure 5-2. A WindowPtr and WindowPeek

Just when should you use a WindowPeek? You'll find out in the high­
light of this chapter, the section that deals with working with multiple
windows.

Event Handling
Chapter 1 pointed out that the event loop is a distinguishing feature of
programs written for the Macintosh and other GUI systems. A
Macintosh program calls GetNextEvent() to retrieve an event, then
processes that event. How it does that is dependent on the type of event
retrieved. Below is the main() function for a typical Mac program.

#include (Traps.h>

Boolean All_Done = FALSE;

Boolean Multifinder_Present;

void main(void)

Initialize_Toolbox();

1 64 Macintosh Programming Techniques

Multifinder_Present = (NGetTrapAddress(_WaitNextEvent, ToolTrap) !=

NGetTrapAddress(_Unimplemented, ToolTrap)):

while (All_Done == FALSE)
Handle_One_Event();

The last chapters covered the Initialize_Toolbox() routine. There,
Initialize_Toolbox() called the eight Toolbox initialization routines that
you should call at the start of every program.

The next line determines whether the system on which the program is
running has Apple's MultiFinder. It then sets a Boolean variable based on
this information. MultiFinder allows the running of multiple applica­
tions and is built into System 7. Before System 7, however, it was a sepa­
rate, optional program.

From here on you're going to see this MultiFinder test in every pro­
gram. At this point, I recommend that you accept at face value this
rather confusing-looking line of code. Chapter 8 fully describes what's
going on. Take note that the header file Traps.h is included in the list­
ing-it's required so that the compiler understands constants such as
_WaitNextEvent. All the remaining programs at the end of each chap­
ter include this header.

The last two lines of main() are repeated until the program terminates.
The while statement contains a check to see if the All_Done variable is
still true. If it is true, the program retrieves and handles an event.

The general approach to handling a single event is to determine the type
of the event, then branch to a routine that handles that particular event
type. First, determine the general type of event, such as the updating of a
window or a click of the mouse button. For a click of the mouse button,
further determine the location of the cursor when the mouse button was
pressed. Figure 5-3 shows this branching technique.

Chapter 5: Working with Windows

Event I

:J l.._K_ey I I Mouse ~ I Activate I I Update I

J I Menu 11 Drag ~ I Close 11 Content I
Figure S-3. An event leads to branching

Figure 5-3 shows only a few of the event types, you can assume that
there are several more types off to the left. The same is true of the loca­
tion of a mouse event. Keeping Figure 5-3 in mind, take a look at what a
Handle_One_Event() routine might look like.

void Handle_One_Event(void)

if (Multifinder_Present == TRUE
WaitNextEvent(everyEvent, &The_Event, SLEEP_TICKS. MOUSE_REGION);

else

SystemTask():
GetNextEvent(everyEvent, &The_Event) :

switch (The_Event.what

case keyDown:
Handle_Key_Down():

165

1 66 Macintosh Programming Techniques

br eak ;

case mouseDown :

Handle_Mouse_Down() ;

break ;

case activateEvt :
Handle_Activate() ;

break;

case updateEvt :

Handle_Update() ;

break ;

The Handle_One_Event() routine first uses the Multifinder_Present vari­
able to determine which of two event-retrieving routines the program
should use: GetNextEvent() or WaitNextEvent(). The difference between
the two? WaitNextEvent() will relinquish the Macintosh CPU to other
applications periodically. This has the effect of allowing other applica­
tions to work in the background. GetNextEvent() is an older routine and
isn't supportive of multitasking in the same way.

The obvious question is: why, then, would you ever use GetNextEvent()?
Because WaitNextEvent() is only available on more recent machines.
This explains the reasoning for performing the check in main() that sets
the Multifinder_Present variable.

As mentioned, a complete discussion of the
Multilinder_Present check, GetNextEvent(}, and
WaitNextEvent(} appears in Chapter 8. You may want
to skip the rather intense details behind all this until
later. The remainder of this chapter will not be depen·
dent on what is discussed in Chapter 8.

If the program calls GetNextEvent() it also calls SystemTask(). A call to
this routine gives any open desk accessories a slice of processor time
and allows it to do necessary housekeeping. If the program calls
WaitNextEvent(), a call to SystemTask() is not necessary-the func­
tions of SystemTask() are built right into WaitNextEvent().

Chapter 5: Working with Windows

Housekeeping? As an example, open the Alarm Clock
from the Apple menu, then run an application of your
choice. Note that though the Alarm Clock window is in
the background, it still ticks off seconds. Processor time
is shared by the running application and the Alarm
Clock desk accessory.

After retrieving an event, th ~al).dle_One_Event{) routine uses a switch
statement to branch off to • utine written to handle just one type of
event. In this example I call event types keyDown and mouseDown,
among others. These are Apple-defined values, and there are a few more
than appear in the example. Here's the complete list:

everyEvent = -1

nullEvent - 0

mouseDown - l

mouse Up - 2

key Down - 3

keyUp - 4

aul:oKey - 5

updal:eEvt - 6

diskEvt - 7

activateEv1: • 8

osEv1: = 15

You write the routines to handle an event. Some will be relatively short
and straightforward. The handling of a mouse click, on the other hand, is
more involved. That's because a mouse click can occur on different
objects on the screen. Below is an example of the handling of a mouse
click.

void Handle_Mouse_Down(void

WindowPtr l:he_window ;

shorl: 1:he_ par1:;

the_parl: - FindWindow(The_Even1:.where , &the_window) ;

switch (the_parl:)
{

case inMenuBar:

167

1 6 8 Macintosh Programming Techniques

/* Handle click in the menu bar •/
break:

case inSysWindow:
/* Handle click in a desk accessory •/
break:

case inDrag: ~

/* Handle click in a window 7· . bar */
• I

break:

case inGoAway:
/* Handle click in a window close box */
break:

case inContent:
/• Handle click in the content region of a window •/
break:

The first thing Handle_Mouse_Down() does is to call FindWindow().
This Toolbox routine determines where the cursor is on the screen when
the mouse button is pressed. If it is over a window, FindWindow() will
return a pointer to that particular window.

Handle_Mouse_Down() then handles the event depending on the
screen location, (or part of the screen) where the cursor is located. The
routine uses a switch statement to reach the code used to handle a
mouse click on a specific screen part. Here I've elected to show com­
ments rather than the source code, I'll cover the code at appropriate
places in this book. The part codes, such as inMenuBar, are Apple con­
stants. Here's the entire list:

inDesk ... 0

inMenuBar = 1

inSysWindow ... 2

inContent = 3

inDrag = 4

inGrow ... 5

inGoAway = 6

inZoomin ... 7

inZoomOut = 8

Chapter 5: Working with Windows 1 69

As you may have noticed, I love to reinforce a point with a figure. So to
summarize event handling I give you Figure 5-4. As you study the figure,
keep in mind that it shows only a few of the possible event types and
only a few of the screen parts.

MultiFlnder Present?

YESU
WaitNextEvent ()

GetNextEvent()
SystemTask()

Type of Event?

Update u Mouse o
Handle Handle
Update Mouse

Window~
Drag l_('

Drag

0
Screen Part?

windowO
Close

I Close

u Activate

Handle
Activate

/"1 Window
W Content

I Content I
Figure 5-4. Summary: handling of an event

Lesson 5-1: Handling Events

You can run the program enclosed with this
book for a hands-on tutorial about this topic.

1 7 0 Macintosh Programming Techniques

WindoV#s and Events
In case you forgot, this chapter is about windows. The previous discus­
sion of events was a prerequisite to any serious explanation of windows.
The previous section outlined how the processing of an event takes place
but left some blanks-mainly some comments in place of source code.
Many of those blanks deal with the handling of windows, so now is the
time to fill them in.

In this chapter you'll look at three events that relate to windows: mouse
down, activate, and update. When a mouse down event occurs you'll
want to look at things a little more closely. Here the mouse down events
occur in a window's drag bar, close box, and content region. Figure 5-5
illustrates the events and part codes you'll study.

=:JI Key r I Mouse ' I Activate ' I Update '

J I Menu r I Drag ' I Close ' I Content '

Figure S-S. Events and part codes relating to windows

By covering the handling of these particular events and part codes you'll
have a sound background for the finale of this chapter-the handling of
multiple windows.

Chapter 5: Working with Windows 1 71

Mouse down events

When a click of the mouse button occurs in a window, you'll want to
determine whether the click occurred in the window's drag bar, close
box, or content region. You'll then react accordingly.

Handling a mouse clielc in a drag bar

Handling a mouse click in a window's drag bar is easy, thanks to the Toolbox
routine DragWindow(). You need just one line in Handle_Mouse_Down():

DragWindow(the_window, The_Event.where, &screenBits.bounds) :

Here's that line in the context of Handle_Mouse_Down():

void Handle_Mouse_Down(void

WindowPtr the_window:

short the_part;

the_part = FindWindow(The_Event.where, &the_window) ;

switch (the_part)
{

[other code here]

case inDrag:
DragWindow(the_window, The_Event.where, &screenBits.bounds):

break:

[other code here]

Once called, the DragWindow() routine takes control until the mouse
button is released. While the user holds the mouse button down and
moves the mouse, DragWindow() moves the window to follow the
motion of the mouse.

The user can move a window about the screen by clicking the mouse
button and holding it down while over the window's drag bar. To prevent

1 7 2 Macintosh Programming Techniques

the user from dragging the window off the edge of a screen and entirely
hiding it, you will create a boundary rectangle that defines the drag limits.

Macintosh provides you with a system global variable named
screenBits. bounds that defines the pixel boundaries of the monitor your
program is running on. This variable always holds the boundaries of the
monitor's screen, regardless of the monitor's size.

I first declare a global Rect variable called Drag_Rect and then set it to
the same size as screenBits. bounds. Next, I inset this rectangle a few pix­
els. The inset value represents the amount of a window, in pixels, that
must always remain on the screen no matter how far off the edge of the
screen the user drags a window. I've bundled this short bit of code into a
routine called Set_ Window _Drag_Boundaries().

#define DRAG_EDGE 10

Rect Drag_Rect:

void Set_Window_Drag_Boundaries(void)

Drag_Rect = screenBits.bounds:
Drag_Rect.left += DRAG_EDGE:
Drag_Rect.right -= DRAG_EDGE:
Drag_Rect.bottom -= DRAG_EDGE;

~OTt This screenlits.bounds method assumes that your pro·
gram is running on a system with only one monitor.
Chapter 8 discusses a technique for establishing a
boundary rectangle for dual-monitor systems.

Once created, you'll be able to use this drag boundary rectangle anytime,
thus the reasoning for making Drag_Rect a global variable.

Chapter 5: Working with Windows 1 7 3

Handling a mouse click in a close &ox
Should the user depress the mouse button, the Toolbox routine
TrackGoAway() then follows the movement of the mouse. If the user
releases the button while over the close box of a window, the routine
returns a value of true. A couple of simple housekeeping calls are all
that's needed to then close the window. Here's a fragment that demon­
strates TrackGoAway():

if (TrackGoAway(the_window, The_Event.where))
{

HideWindow(the_window);

DisposeWindow(the_window) :

The call to HideWindow() is not necessary, but recommended. If a win­
dow has controls, such as scroll bars, then the housekeeping becomes
more involved than shown here. You'll want the window hidden so that
clean up goes on behind the scenes. Dispose Window() closes a window
and frees up the memory it uses.

Here's TrackGoAway(} in the context you'll use it in your
Handle_Mouse_Down() routine.

void Handle_Mouse_Down(void

WindowPtr the_window:

short the_part;

the_part = FindWindow(The_Event.where, &the_window) ;

switch (the_part)
{

[other code here]

case inGoAway:
if (TrackGoAway(the_window. The_Event.where))
{

HideWindow(the_window) ;
DisposeWindow(the_window) ;

break;

1 7 4 Macintosh Programming Techniques

[other code here]

Handling a mouse cliclc in a content region

If many cases, a mouse button click in the content area of a window
requires that you simply make the window active, if it isn't already so.
The FrontWindow() routine returns a pointer to the frontmost window.
Compare this pointer to the pointer of the clicked window. If different,
make a call to SelectWindow(). This routine takes care of selecting a
window by providing the proper highlighting to the clicked-on window.

if (the_window != FrontWindow()

SelectWindow(the_window) :

else

/* handle the needs, if any, of a click in */
/* the contents of an active window */

What if your program uses a window that does more than simply display
information? Then you must write your program so that it is prepared to
do more than just highlight a window. What else should it do? You'll see
when you get to the end of the chapter. There I provide a concrete pro­
gramming example along with the theory.

Here's the code as you'd see it within the Handle_Mouse_Down() routine.

void Handle_Mouse_Down(void

WindowPtr the_window;

short the_part:

the_part = FindWindow(The_Event.where, &the_window) :

switch (the_part)

(

[other code here]

case inContent:

Chapter 5: Working with Windows 1 7 5

if (the_window != FrontWindow()
SelectWindow(the_window):

else

/* handle the needs. if any, of a click in */
/* the contents of an active window */

break:

[other code here]

Handling mouse cficlcs in other areas

This version of Handle_Mouse_Down() also looks for a mouse click in
the menu bar (inMenuBar) and in a desk accessory (inSysWindow).
Chapter 7 covers a click in the menu bar.

A window that your application creates and manages is an application
window. A desk accessory is a system window. As you've seen in the pre­
vious several sections, you are responsible for handling an event in an
application window. The Macintosh is kind enough to handle an event in
a desk accessory. One call to SystemClick() and you're all set.

SystemClick() takes control and processes the event by activating the
desk accessory, dragging its window, and closing it, or whatever other
action is appropriate. The code that makes up the desk accessory will
then be responsible for handling subsequent events.

Now that you know how to handle each of the part codes you'll be using,
it's time to look at the completed Handle_Mouse_Down() routine.

EventRecord The_Event:

void Handle_Mouse_Down(void

WindowPtr the_window:
short the_part:

the_part = FindWindow(The_Event.where, &the_window):

1 7 6 Macintosh Programming Techniques

switch (the_part)
(

case inMenuBar:

break:

case inSysWindow:
SystemClick(&The_Event, the_window);

break;

case inDrag:
DragWindow(the_window, The_Event.where, &screenBits.bounds);

break:

case inGoAway:
if (TrackGoAway(the_window, The_Event.where))
(

HideWindow(the_window) :

DisposeWindow(the_window):

break;

case inContent:
if (the_window lg FrontWindow()

SelectWindow(the_window):

else

/• handle the needs, if any, of a click in •/

/• the contents of an active window */

break;

I'll fill in the code for the inContent case in the Multiple Window
Techniques section. This section also discusses dealing with activate and
update events.

Single Window Techniques
The Handle_One_Event() routine is the hub from which your program
branches off to handle a particular event. So far, the focus has been on a

Chapter 5: Working with Windows 1 7 7

mouse down event. For window handling you should be aware of two
other event types: activates and updates.

Activate events
Macintosh programs have one and only one window active at any given
time. The active window is the window that responds to user actions
such as keystrokes or a click of the mouse. If there is more than one win­
dow on the screen, the active window is the frontmost of them. The drag
bar of the active window has a highlighted appearance that sets it apart
from other windows.

For a program with more than one window, a click on a deactivated win­
dow will generate two activate events, one to signify the deactivation of
the frontmost window and one to signify the activation of the clicked-on
window. The Window Manager handles the changing highlight condi­
tions of window frames; you will be responsible for handling changes to
the content of a window.

For a program that creates only one window, it is not uncommon to omit
code that handles an activate event. That's because only one activate
event will occur in a program of this type. When the window is first cre­
ated, GetNewWindow() will generate an activate event.

I have more to say about activate events later in this chapter when I dis­
cuss the handling of multiple windows.

Updating a window
When a covered, or obscured, window becomes exposed, its contents will
need updating; that is, you need to redraw what is in the window. A win­
dow that needs updating will trigger the occurrence of an update event. It
becomes your job to handle the event. Begin by branching from
Handle_One_Event() to a routine that handles an update-aptly named
Handle_ Update().

void Handle_One_Event(void

1 7 8 Macintosh Programming Techniques

[other code here]

switch (The_Event.what

case updateEvt:
Handle_Update():
break:

[other code here]

Here's a typical Handle_Update() routine that updates a window in a
program that has a single application window.

void Handle_Update(void
(

WindowPtr the_window:
GrafPtr old_port:

the_window = (WindowPtr)The_Event.message;

GetPort(&old_port):
SetPort(the_window):

BeginUpdate(the_window):
EraseRgn(&the_window->visRgn):
Draw_Something(the_window) :

EndUpdate(the_window);

SetPort(old_port):

Because I like to use techniques that apply to all sorts of programs, I'll
write Handle_Update() in such a manner that you can use it, with some
modification, in a program that has more than one window.

Handle_Update() first uses the message element of The_Event to deter­
mine which window needs updating, in case there is more than one win­
dow on the screen. The Event Manager conveniently places a pointer to
the window that needs updating in the message element. Next, call
GetPort() and SetPort(). You encountered GetPort() and SetPort() in the
previous chapter.

t-\OTE

Chapter 5: Working with Windows 1 79

A common mistake in window updating is forgetting
to set the port. If there is more than one window on
the screen, QuickDraw will draw to the window whose
port is current, regardless of whether that window
needs the updating or not.

In between the port operations you update the window. An update
involves these steps:

• A call to BeginUpdate().

• A call to EraseRgn(), passing the window's visible region.

• Drawing of the window contents.

• A call to EndUpdate{}.

You're at this point in your code because there's an update event in the
event queue. The Mac knew a window had become exposed and placed
the event there. What the Macintosh doesn't know on its own is when
you handle the update. The calls to Begin Update() and End Update() tell
the Mac just that, and let the computer know it should remove the
update event from the queue. Note the indented code between these two
calls. This is this book's convention, intended to clarify the logic of this
routine.

The Window Manager at all times keeps track of the portion of a window
that is exposed, or visible. It keeps this area in the visRgn element of the
window's WindowPtr structure. A call to Begin Update() causes the
Window Manager to save this value, and then temporarily set the visible
region to that area of the window that was obscured. When you draw the
contents of the window, QuickDraw will be limited to drawing in only
this temporarily visible region. The result is that QuickDraw doesn't
update the entire window-only the part that was formerly obscured.
Figure 5-6 illustrates this.

1 8 0 Macintosh Programming Techniques

A Window about to
be moved back onto
the screen.

S File Edit

BeginUpdate () sets
the visible region to the
part that was hidden.
EraseRgn () clears it.

S File Edit

Your draw routine
draws everything,
but QuickDraw limits
it to the visible area.

Figure 5-6. Updating a window

Now let's talk about the rather vaguely named routine Draw_Something().
What does this routine draw? The contents of the entire window. Why
redraw everything when only a portion of it may need updating?
Remember, the call to Begin Update() will tell QuickDraw what part of the
window to draw to. When done, the call to EndUpdate() resets the win­
dow's visible region to its actual area, not to just the newly exposed area.

What your Draw _Something() routine will look like is entirely depen­
dent on your application. In Figure 5-6 you can see that the content of
the window is simply a picture-the display of a 'PICT' resource.
Chapter 3 covered 'PICT' resources and displaying pictures in a window.
For the window shown in Figure 5-6 the code for Draw _Something()
would look like this:

#define WILD_MAN_PICT_ID 128

void Draw_Something(WindowPtr the_window

PicHandle the_pict :

Rect pict_ rect :

short pict_width. pict_height:

GrafPtr old_port :

Chapter 5: Working with Windows

GetPor t(&old_port) :

SetPort(the_window) :

the_pict = GetPicture(WILD_MAN_PICT_ID) :

pict_ rect = (• • (the_pict)) . picFrame :

pi ct_width = pict_rect . right - pi ct_rect.left:

pict_height = pict_rect . bottom - pict_rect . top ;

SetRect (&pict_rect , 10 , 10 , 10 + pict_width . 10 + pict_heigh t) :

DrawPicture(the_pict , &pi ct_rect) :

SetPor t(old_port) :

As this example demonstrates, you update a window
by actually going through all of the work of redrawing
the contents of the window. If you haven't pro­
grammed a Mac in the past, you may have assumed
you somehow get a "snapshot" of the contents of a
window, then simply display that picture whenever
appropriate.

Window updating is an important topic. An improper window update is
immediately noticeable to the user in the form of a blank white area in a
window or the appearance of graphics in the wrong part of the window
(or even in the wrong window). For those reasons we'll take a look at
another example.

Displaying a picture is easy; it's an operation that is unchanging. But
what if some or all of a window's contents depend on information the
user supplied? Consider this example: Your program asks the user to
enter the four coordinates of a rectangle, then draws the rectangle. Later
in the program, the user moves the window partially off screen, then
back on. An update event is generated, and your Draw _Something() rou­
tine is called. Did you save those four values to some global variable,
such as a Rect? Of course you did. If you hadn't, there would be no way
to reproduce the rectangle now. Below is a code fragment to clarify this
example.

181

1 8 2 Macintosh Programming Techniques

Rect Display_Rect : / • gl obal hold the rectangle •/

Boolean Draw_Rect - FALSE ; /• global used i n updating • /

void Get_Data_From_User(void)

short 1 . r. t . b :

[read in values 1 . r. t . and b here

SetRect(Display_Rect, 1, t , r . b) :

Draw_Rect = TRUE ;

void Draw_Something(WindowPtr the_window

other code here }

if (Draw_Rect -= TRUE
Frame_Rect (Draw_Rect) ;

From this example you can see that your updating routine might get
quite involved and may contain decision-making logic, like the check of
the Draw_Rect flag in the above example.

Simple window techniques
Before finishing this chapter with an example program that works with
multiple windows, let's quickly cover some simple techniques that you
can use in any program that has windows-one window or more. The fol­
lowing sections describe several simple window manipulations. All
revolve around using the correct Toolbox call to perform the task at hand.

Lesson 5-2: Window Updating

You can run the program enclosed with this
book for a hands-on tutorial about this topic

Chapter 5: Working with Windows 1 8 3

Moving a window
When you create a 'WIND' window resource in ResEdit you have the
option of specifying whether a call to GetNewWindow() displays the
window when it loads the 'WIND' into memory. It is best to mark the
'WIND' resource as invisible, as shown in Figure 5-7. Then, after you
load the window you can, unbeknownst to the user, move the window to
wherever you want on the screen and show it.

To mark a WIND invisible,
leave unchecked

Width: lsoo

I nltlolly ulslble

[8:1 Close boH

Figure 5-7. Using ResEdit to mark a 'WIND' as invisible

Knowing that you can take control from the user and move a window on
your own should give you the idea that you can load a window, center it
on the user's screen, and finally display it. You can, but your program has
to have knowledge of the size of the user's screen-and that can vary
from user to user. Centering a window on a Mac, regardless of monitor
size, is just one of many topics that Chapter 8 covers.

Back to the topic: moving a window. Use the MoveWindow() routine,
passing a pointer to the window you want to move, the pixel coordinates
of the screen location to move the window to, and a Boolean value that
tells whether to activate (highlight) the window.

#define
#define

LEFT 20
TOP SO

WindowPtr the_window ;

/• 20 pixels from left of screen • /

/ • 50 pixels down from top of screen •/

Boolean activate_wind - TRUE;

MoveWindow(the_window . LEFT . TOP. activate_wind) :

1 84 Macintosh Programming Techniques

Showing and hiding a window
Earlier you learned that you can make a window invisible, or hidden, by
using HideWindow(). You can make the same window visible again with
a call to ShowWindow(). Here's an example:

WindowPtr the_window:

HideWindow(the_window) :
ShowWindow(the_window) :

Changing a window's title
When you load a window with a call to GetNewWindow(), the window's
title will be "Untitled"-not a very polished look for your slick applica­
tion. To give a window a title more befitting its purpose, use SetWTitle().

#define NEW_WIND_TITLE "\pGraphics Window"

WindowPtr the_window:

SetWTitle(the_window, NEW_WIND_TITLE) :

Multiple WindoYI Techniques
A program that is capable of putting more than one window on the screen
has a special set of needs that you must meet. There is a new twist to win­
dow updating: the contents of one window might not be the same as those
of another window. This means that you don't have the luxury of simply
calling on one generic update routine to handle any and all updates.

You'll need to devise a strategy that allows your program to distinguish
between different types of windows. In this section you'll do just that.
Imagine that you want to create a program that puts two types of win­
dows on the screen. One window will be a control window with two but­
tons-one for drawing a shape, and one for erasing the shape. The second
type of window will be a drawing window that displays the drawn shape.
Additionally, the program will open more than one drawing window.

From the program description you may have surmised that there are a few
extra challenges presented by a program capable of working with multiple

Chapter 5: Working with Windows 1 8 5

windows, challenges that you did not have to worry about when you planned
out a program that would make use of just one window. Here they are:

• An update event must be handled in two different ways, depend­
ing on which type of window needs updating.

• Once it has been determined that the update event corresponds
to a drawing window, you must then determine which drawing
window the event applies to.

• The user must be allowed to choose which of the drawing win­
dows a click in the control window corresponds to.

These points make it clear that some planning is in order. Let's begin the
plan by examining a method that allows the addition of window infor­
mation to the window's existing WindowRecord structure.

Expanding the WindowRecord
You know from earlier in this chapter that a WindowPtr points to a win­
dow. More specifically, it points to the port member of a WindowRecord
that holds the information about the window. You also know that you
use a WindowPeek to gain access to the entire WindowRecord; not just
the port. The following figure, Figure 5-8, appeared at the start of this
chapter. I use it again to drive home the difference between a WindowPtr
and a WindowPeek.

Lesson 5-3: MyWindPeek

You can run the pmgram enclosed with lbls
book for a hanclS-on tutorial about tW ~

1 8 6 Macintosh Programming Techniques

WindowRecord

WindowPtr

[•i-------po_rt -·

WindowPeek

windowKlnd

visible

windowPic

refCon

Figure 5-B. A WindowPtr and WindowPeek

When you call GetNewWindow() the Window Manager selects a chunk
of memory and puts the window information-based on the 'WIND'
resource-in that memory. Your program receives a pointer to the
Graf Port. You can declare a WindowPeek and then use typecasting on
the WindowPtr to access the window's entire WindowRecord. Here's an
example.

//define
/ldef ine
//define

NIL
IN_FRONT
WIND_ID

OL
(WindowPtr)-1

128

WindowPtr the_window:
WindowPeek the_wind_peek:

the_window = GetNewWindow(WIND_ID. NIL, IN_FRONT):

the_wind_peek = (WindowPeek)the_window:

Chapter 5: Working with Windows 1 8 7

This is the standard way to call GetNewWindow(), and to create a
WindowPeek variable. There's another method you can use to create
your own version of a WindowPeek that enables you to store and access
extra information along with a WindowRecord.

This method involves creating your own data type by way of the C typedef
keyword. Here's one example:

typedef struct

I

WindowRecord wind_rec;

short wind_type:

Boolean drawn_in;

l MyWindRecord, *MyWindPeek:

This definition creates a structure that has three members. The first
member is a WindowRecord. The remaining two members give addition­
al information about a window. Let's specify the type of the window in
the wind_type member, and whether the window currently has a draw­
ing in it with the drawn_in member. Like any structure, you can have as
many or as few members as you want-whatever makes sense for your'
application.

The typedef names this new type MyWindRecord. It also creates a type
that is a pointer to the structure-MyWindPeek. You know that a vari-.
able of the Macintosh C type WindowPeek points to an entire
WindowRecord. What will a variable of your MyWindPeek point to? A
WindowRecord and some extra information. Figure 5-9 illustrates the
difference between a WindowPeek and your MyWindPeek.

Note in Figure 5-9 that both a WindowPeek and MyWindPeek begin by
pointing to the start of a WindowRecord. What's at the start of a
WindowRecord, and what is the very first member of the
Window Record? The port member-the window's Graf Port. Making the
first member of the data type a WindowRecord was not an accident. It
allows you to use a variable of MyWindPeek anywhere that you would
normally use a WindowPeek.

1 8 8 Macintosh Programming Techniques

Port

windowKind
WindowRecord

visible
MyWindowRecord

window Pie

refCon

wind_ type

drawn_in

Figure S-9. The difference between WindowPeelc and MyWindPeelc

Up to this point in your programming endeavors you've allowed the
Window Manager to assign the memory storage for a window when
you've called GetNewWindow(). You did so by passing a nil pointer as
the second parameter:

//define
/ldefine
/ldef ine

NIL OL
IN_FRONT (WindowPtr)-1
WIND_ID 128

WindowPtr the_window:

the_window = GetNewWindow(WIND_ID, NIL. IN_FRONT) :

In a call to GetNewWindow() you have the option of telling the Window
Manager what memory to use to store the new window. That will be a

Chapter 5: Working with Windows 1 8 9

golden opportunity to use your own structure rather than the Macintosh
WindowRecord. Here's how it's done:

WindowPtr new_window;

Ptr wind_storage;

short left, top;

wind_storage = NewPtr(sizeof (MyWindRecord)):

new_window = GetNewWindow(DRAW_WIND_ID, wind_storage, IN_FRONT) ;

Before calling GetNewWindow(} you declare a pointer variable called
wind_storage. This is a normal pointer, not a WindowPtr. Consequently
it will meet the requirement that the second parameter to
GetNewWindow() be a Ptr. Use NewPtr() to allocate a block of memory
and return a pointer to it. The size of the block? Why, the size of the
MyWindRecord data structure, of course.

Finally, make a call to GetNewWindow(). This time, instead of passing a
nil pointer and letting the Window Manager set up the window storage,
pass the wind_storage pointer that points to your own block of memory.

The only thing left to know is how to go about accessing the additional
information that a window contains. First declare a variable to be of type
MyWind.Peek. Then set it to point, or peek, at a window by typecasting
the window's pointer. With that accomplished you can examine and
assign values to the structure members. Below is a code fragment that
should help you.

WindowPtr new_window;

WindowPtr the_window:

Ptr wind_storage:
short left, top:

MyWindPeek wind_peek:

wind_storage = NewPtr(sizeof (MyWindRecord)) ;
new_window = GetNewWindow(DRAW_WIND_ID. wind_storage, IN_FRONT):
wind_peek = (MyWindPeek)new_window;

/• wind_peek was just set to peek at this newly created window. */
/• Assigning a value to a member of the structure wind_peek points */
/• to only effects this one window. */

1 90 Macintosh Programming Techniques

wind_peek-)drawn_in = TRUE ;

/ • Later in the program you can check to see if a window . any • /

/ • drawing window . has a drawing in it by checking it ' s personal • /

/ • drawn_in member . First assign wind_peek to point to the_window . • /

/ • then check the member .

wind_peek = (MyWindPeek)the_window ;

if (wind_peek-)drawn_in == TRUE

[do something here]

/• examine a member • /

This code "reuses" windJJeek. It first assigns it by having it point to a
newly created window. Later it assigns it to the_ window. You can assume
in between this code some action took place to assign the_window to

point to one of the drawing windows.

The method just described will be the backbone of the sample program
at the end of this chapter. It also can be a technique you use in any of
your own multiple-window programs.

This technique is one way to manage multiple window
types in an application. Another approach is to store a
value in the refcon field of the WindowRecord. The relcon
field is a holder for any user-defined 32·bit value.
Consult Inside Macintosh if this approach interests you.

Activates and multiple windows
Clicking the mouse on a window obscured by another window triggers
the occurrence of an activate event. The clicked-on window appears to
be brought to the forefront by a change in the highlighting of the win­
dow's frame. For single window programs, activate events usually aren't
significant. For multiple window programs, they may be.

You can use an activate event to keep track of the most recently
clicked-on, or active, window. In the example you could use a global
WindowPtr variable for this purpose. When the user next clicks on the

Chapter 5: Working with Windows

control window and clicks the drawing button, action will take place in
whichever window global variable Current_Draw _Window is pointing
to. With that in mind, look at one way to handle an activate event.

//define
//define

CONTROL_WINDOW
DRAW_WINDOW

1

2

/* Two types of windows in this •/
/* example program. •/

EventRecord The_Event:
WindowPtr Current_Draw_Window: /• Save current window globally */

void Handle_Activate(void

WindowPtr the_window:
MyWindPeek wind_peek:
short window_type:

/* Window that was activated
/• Access to the window type

the_window (WindowPtr }The_Event.message:

•/
•/

wind_peek = (MyWindPeek }the_window: /• Cast to a MyWindPeek •/
window_type = wind_peek->wind_type:

if (window_type == DRAW_WINDOW }
Current_Draw_Window = the_window:

As it does for updates, the Event Manager places a pointer to the window
that is being activated in the message element of the EventRecord. After
you have a pointer to this window, typecast it to a variable of
MyWindPeek type so that you can access the wind_type element. If the
window that is activated is a drawing window, set the global
Current_Draw _Window to point to it. That way you always know which
drawing window was the last one activated. Figure 5-10 summarizes the
program flow from the start of the event to the pointer that's set to point
to the activated window.

191

192 Macintosh Programming Techniques

Handle_One_Event()

__ __.n ___ _
7 u; activateEvt ~

~ I Handle_Activate()' ~

Figure S-1 O. Using an activate event to keep track of the current window

Updates and multiple windows

All of the window updating information you read for single window
programs applies to programs with more than one window. If you have
different types of windows, as our example does, you'll want to have
separate routines to update each. Handle_Update() then becomes a
branching point:

//define
//define

CONTROL_ WINDOW
DRAW_WINDOW

EventRecord The_Event:

void Handle_Update(void
(

WindowPtr the_window:
MyWindPeek wind_peek:

2

/* Two types of windows in this */
/* example program.

/* Window to update
/* Access to the window type

*/

*/
*/

Chapter 5: Working with Windows

short window_type:

the_window (WindowPtr)The_Event.message:

wind_peek = (MyWindPeek)the_window: /* Cast to a MyWindPeek */
window_type = wind_peek-)wind_type:

if (window_type == DRAW_WINDOW)
Update_Draw_Window(the_window):

else
Update_Control_Window(the_window):

Both update routines begin by getting and saving the ports. They then,
nested between calls to Begin Update() and End Update(), perform all the
text and graphics drawing tasks necessary for a window. Figure 5-11
shows updating when more than one window is present.

When a mouse click makes
this window active, an
update event Is generated.

BeginUpdate () sets
the visible region to the
part that was hidden.
EraseRgn () clears it.

Your draw routine
draws everything,
but QuickDraw 1£mits
It to the visible area.

Figure S- J J. Updating a window in a multiple-window program

Chapter Program: Working
With Multiple WindoV#s
As a working example of the multiple window techniques just dis­
cussed, this chapter presents MultiWindows-a program that is capable
of displaying multiple windows. MultiWindows will put two types of

193

1 94 Macintosh Programming Techniques

windows on the screen: a control window and a drawing window.
Additionally, the program will open more than one drawing window.
Figure 5-12 is a screen shot of the windows you'll see when you run
MultiWindows.

~ Control Window ~

Draw Clear

Drow Window J
Drow Window J

Drow Window

---i

S-12. MulhWindows program in action

MultiWindows allows the user to draw a pattern or erase an existing pat­
tern in any one of the three drawing windows. The last drawing window
selected will be the window where the action takes place.

Program resources: MultiWindows.1t.rsre
The MultiWindows program has just two resources, both 'WIND's. The
'WIND' with ID 128 will be the control window, while 'WIND' 129 will
serve as the template for each of the drawing windows. Figure 5-13
shows the two resources.

Chapter 5: Working with Windows

MultiWindows. TT'.r src

Width: I 1ao Top: ~la_o~

Left: l~a_o ~

Height: I 200

Width:~

Figure 5-13. The two 'WIND' resources for Mul~Windows

Program listing: MultiWindows.c

Here is the code in its entirety. A description follows.

/ • +++++++++++++++++++++ Include Files ++++++++++++++++++++++ • /

#include <Traps . h>

/ •+++++++++++++++++++ Function prototype s ++++++++++++++++++ • /

voi d Initialize_Toolbox(void) :

void Set_Window_Dr ag_Boundaries(void) ;

vo id Initialize_Variables(void) :

void Set_Window_Ty pe(Wind owPtr , s hort) ;

s hort Determine _Window_ Type(WindowPtr) :

void Set_Drawn_In_Flag(Wind owPt r , Boolean) :

Bool ean Determine_Drawn_In_Flag(Wind owPtr) :

void Open_Control_Window(void) :

void Open_Dr a w_Window(void) :

void Handle_One_Event(void) :

195

196 Macintosh Programming Techniques

void Handle_Activate(void) :
void Handle_Update(void):
void Update_Control_Window(WindowPtr) :
void Update_Draw_Window(WindowPtr) :
void Draw_Something(WindowPtr) :
void Handle_Mouse_Down(void):
void Handle_Control_Window(WindowPtr, Point) :
void Close_Window(WindowPtr):

/*+++++++++++++++++ Define global constants ++++++++++++++++*/

//define CONTROL_WIND_ID 128

//define DRAW_WIND_ID 129

//define NIL OL
//define IN_FRONT (WindowPtr)-lL
//define REMOVE_EVENTS 0

//define SLEEP_TICKS OL
//define MOUSE_REGION OL
#define CONTROL_WINDOW 1

#define DRAW_WINDOW 2

//define STR_LIST_ID 128

fide fine CONTROL_WIND_TITLE_STR
//define DRAW_WIND_TITLE_STR 2

/Ide fine DRAW_BUTTON_STR 3

#define CLEAR_BUTTON_STR 4

fide fine WIND_LEFT 30

//define WIND_ TOP 100

fide fine WIND_OFFSET 20

fide fine DRAG_EDGE 10

/*++++++++++++++++++ Define global types +++++++++++++++++++•/

typedef struct
{

WindowRecord
short

wind_rec:
wind_type:

Boolean drawn_in:
MyWindRecord, *MyWindPeek:

/•++++++++++++++++ Define global variables +++++++++++++++++•/

Boolean All_Done = FALSE:

Chapter 5: Working with Windows

Boolean Multifinder_Present:
EventRecord The_Event:
Rect Drag_Rect:
WindowPtr Current_Draw_Window:
short Winuow_Type:
Rect Draw_Rect:
Rect Clear_Rect:
short Num_Draw_Winds_Open:

/*++++++++++++++++++++++ main listing +I I I I I I l+++++++++I I II I I I*/

void main(void)

Initialize_Toolbox():
Set_Window_Drag_Boundaries():
Initialize_Variables():

Open_Control_Window():
Open_Draw_Window():
Open_Draw_Window():

Open_Draw_Window():

while (All_Done == FALSE
Handle_One_Event():

/*+I I I I I I~++++++++++ Initialize the Toolbox I I I I I I I I I I I I I II I I I*/

void Initialize_Toolbox(void)

InitGraf(&thePort):
Ini tFonts ():
InitWindows():
InitMenus():
TEini t () :
InitDialogs(NIL) :
FlushEvents(everyEvent, REMOVE_EVENTS):
InitCursor ():

/*++++++++++++ Initialize window drag boundaries +++++++++++++*/

197

198 Macintosh Programming Techniques

void Set_Window_Drag_Boundaries(void)

Drag_Rect = screenBits.bounds:

Drag_Rect.left += DRAG_EDGE:

Drag_Rect.right -= DRAG_EDGE;

Drag_Rect.bottom -= DRAG_EDGE;

/•++++++++++++++ Initialize some of our variables ++++++++++++•/

void Initialize_Variables(void)

Multifinder_Present = (NGetTrapAddress(_WaitNextEvent, ToolTrap) !=

NGetTrapAddress(_Unimplemented, ToolTrap)):

Num_Draw_Winds_Open = O:

SetRect(&Draw_Rect, 20. 6, 80, 23) :

SetRect(&Clear_Rect, 100, 6, 160, 23) ;

/•++++++++++++ Set a window's type: control or draw ++++++++++•/

void Set_Window_Type(WindowPtr the_window, short type)

MyWindPeek wind_peek:

wind_peek = (MyWindPeek)the_window;

wind_peek->wind_type = type:

/•+++++++++ Examine a window's type: control or draw +++++++++*/

short Determine_Window_Type(WindowPtr the_window

MyWindPeek wind_peek:

wind_peek = (MyWindPeek)the_window:

return (wind_peek->wind_type) :

Chapter 5: Working with Windows

/•++++ Set a window's drawn flag: does it have a drawing? ++++*/

void Set_Drawn_In_Flag(WindowPtr the_window, Boolean drawn)

MyWindPeek wind_peek;

wind_peek = (MyWindPeek)the_window:
wind_peek->drawn_in = drawn:

/•++ Examine a window's drawn flag: does it have a drawing? ++*/

Boolean Determine_Drawn_In_Flag(WindowPtr the_window)

MyWindPeek wind_peek:

wind_peek = (MyWindPeek)the_window:
return (wind_peek-)drawn_in):

/*I I I I I I I I I I I I I I I I I I Open one control window I I I I I I I I I I I I I I I I I*/

void Open_Control_Window(void)

) ;

WindowPtr new_window:
Ptr wind_storage;
Str255 the_str:

wind_storage = NewPtr(sizeof(MyWindRecord)) :
new_window = GetNewWindow(CONTROL_WIND_ID, wind_storage, IN_FRONT

if (new_window == NIL
ExitToShell():

Set_Drawn_In_Flag(new_window, FALSE) :
Set_Window_Type(new_window, CONTROL_WINDOW) :

GetindString(the_str, STR_LIST_ID, CONTROL_WIND_TITLE_STR):
SetWTitle(new_window, the_str) ;
ShowWindow(new_window) :

199

200 Macintosh Programming Techniques

/•1 I I I I I I I I I I I I I I I I I Open one drawing window I I I I II I I I I I I I++++•/

void Open_Draw_Window(void

WindowPtr new_window;
Ptr wind_storage;
short left. top;
Str255 the_str;

wind_storage = NewPtr(sizeof (MyWindRecord));
new_window = GetNewWindow(DRAW_WIND_ID, wind_storage. IN_FRONT):

if (new_window == NIL
Exi tToShell () :

Set_Drawn_In_Flag(new_window. FALSE):

Set_Window_Type(new_window, DRAW_WINDOW);

GetindString(the_str, STR_LIST_ID, DRAW_WIND_TITLE_STR);
SetWTitle(new_window, the_str) :
left= WIND_LEFT + (Num_Draw_Winds_Open • WIND_OFFSET);
top = WIND_TOP + (Num_Draw_Winds_Open • WIND_OFFSET):

MoveWindow(new_window, left, top, TRUE);

ShowWindow(new_window):

Num_Draw_Winds_Open++;

/•+++++++++++++++++++ Handle a single event ++++++++++++++++++•/

void Handle_One_Event(void)

if (Multifinder_Present == TRUE
WaitNextEvent(everyEvent. &The_Event. SLEEP_TICKS, MOUSE_REGION);

else

SystemTask():
GetNextEvent(everyEvent, &The_Event):

switch The_Event.what

Chapter 5: Working with Windows

case mouseDown:
Handle_Mouse_Down():

break:

case updateEvt:
Handle_Update():

break:

case activateEvt:
Handle_Activate():
break:

/*+++++++++++++++++ Handle an activate event +++++++++++++++++*/

void Handle_Activate(void

WindowPtr the_window:

the_window = (WindowPtr)The_Event.message:
Window_Type = Determine_Window_Type(the_window) ;

if (Window_Type == DRAW_WINDOW)

Current_Draw_Window = the_window:

/•++++++1 I I I I I I I I I I I+ Handle an update event +I I I I I I I I I I I I I I I I*/

void Handle_Update(void

WindowPtr the_window;

the_window = (WindowPtr)The_Event.message:
Window_Type = Determine_Window_Type(the_window) ;

if (Window_Type == DRAW_WINDOW)
Update_Draw_Window(the_window) :

else
Update_Control_Window(the_window):

201

202 Macintosh Programming Techniques

/*I I I I I I I I I I I I I I I I I Update the control window ++I I I I I I I I I I I I I I*/

void Update_Control_Window(WindowPtr the_window

GrafPtr old_port:
Str255 the_str;

GetPort(&old_port);
SetPort(the_window):
BeginUpdate(the_window) ;

EraseRgn(the_window-)visRgn);
FrameRect(&Draw_Rect):
MoveTo(Draw_Rect.left + 15, Draw_Rect.bottom - 4):
GetindString(the_str, STR_LIST_ID, DRAW_BUTTON_STR):
Drawstring(the_str) :
FrameRect(&Clear_Rect):
MoveTo(Clear_Rect.left + 15, Clear_Rect.bottom - 4) :
GetindString(the_str, STR_LIST_ID, CLEAR_BUTTON_STR):
Drawstring(the_str) :

EndUpdate(the_window):
SetPort(old_port):

/*++I I I I I I I I++++++++ Update a drawing window I I I I I I I I I II I I I I I I*/

void Update_Draw_Window(WindowPtr the_window

GrafPtr old_port:

GetPort(&old_port):
SetPort(the_window):
BeginUpdate(the_window);

EraseRgn(the_window-)visRgn);
if (Determine_Drawn_In_Flag(the_window))

Draw_Something(the_window):
EndUpdate(the_window) :

SetPort(old_port) ;

/*I I I I I I I+++++++ Draw something to a draw window I I I I I I I I I I I I+*/

void Draw_Something(WindowPtr the_window)

GrafPtr old_port:

Rect the_rect;

short i;

GetPort(&old_port):

SetPort(the_window) :

for (i=l; i <~ 10; i++
{

Chapter 5: Working with Windows

SetRect(&the_rect, i*S, i*S, i*S+lOO, i*S+lOO) :

FrameRect(&the_rect):

SetPort(old_port) :

/•+++++++++++ Handle a click of the mouse button +++++++++++++•/

void Handle_Mouse_Down(void

WindowPtr the_window:

short the_part:

the_part FindWindow(The_Event.where, &the_window) :

switch (the_part)
{

case inMenuBar:

break:

case inSysWindow:
SystemClick(&The_Event, the_window) :

break;

case inDrag:
DragWindow(the_window, The_Event.where. &screenBits.bounds) :

break:

case inGoAway:
if (TrackGoAway(the_window, The_Event.where))

Close_Window(the_window):

break:

203

204 Macintosh Programming Techniques

case inContent:
if (the_window != FrontWindow()

SelectWindow(the_window);

else

Window_Type = Determine_Window_Type(the_window };

if (Window_Type == CONTROL_WINDOW)
Handle_Control_Window(the_window. The_Event.where):

break;

/•++++++++++ Handle a click in the control window ++++++++++++•/

void Handle_Control_Window(WindowPtr the_window, Point the_point)

GrafPtr old_port:

SetPort(the_window) :
GlobalToLocal(&the_point) :

if (PtinRect(the_point. &Draw_Rect))

InvertRect(&Draw Rect) ;
Draw_Something(Current_Draw_Window) :

Set_Drawn_In_Flag(Current_Draw_Window. TRUE) ;

InvertRect(&Draw_Rect) :

if (PtinRect(the_point. &Clear_Rect))
(

InvertRect(&Clear_Rect) :
GetPort(&old_port) ;
SetPort(Current_Draw_Window) ;
EraseRect(&Current_Draw_Window-)portRect):
Set_Drawn_In_Flag(Current_Draw_Window. FALSE) ;
SetPort(old_port) :
InvertRect(&Clear_Rect) :

Chapter 5: Working with Windows 205

/•+++++++++++++++++++ Close one window +++++++++I I I I 1 I I I I+++*/

void Close_Window(WindowPtr the_window)

HideWindow(the_window) :

CloseWindow(the_window) ;

DisposPtr((Ptr)the_window);

All_Done = TRUE;

Num_Draw_Winds_Open-:

Stepping through the code

Now let's walk through the MultiWindows code, placing emphasis on
the new material.

The #include directives

MultiWindows uses the Tiaps.h #include file. Tiaps.h contains informa­
tion that will be used in the call to NGetTiapAddress(). Chapter 8 has
more to say about the Traps.h file.

The #define directives

MultiWindows opens two types of windows, each defined by a 'WIND'
resource template. Their resource IDs are CONTROL_WIND_ID and
DRAW_WIND_ID. Both NIL and IN_FRONT are parameters for
GetNewWindow(). REMOVE_EVENTS is used during initialization. A
call to WaitNextEvent() uses SLEEP _TICKS and MOUSE_REGION as
parameters. To distinguish between the two window types,
MultiWindows calls one a CONTROL_WINDOW and the other a
DRAW_WINDOW. The titles to the two window types and the two but­
tons are in a string list resource. CONTROL_ WIND _TITLE_STR,
DRAW_WIND_TITLE_STR, DRAW_BU'ITON_STR, and CLEAR_BUT­
TON_STR serve as indices to the 'STR#' resource with an ID of
STR_LIST _ID. After loading a drawing window the program moves it on
the screen to stagger it from other open windows. WIND_LEFT,
WIND_TOP, and WIND_OFFSET help there. DRAG_RECT gives a pixel
buffer that prevents a window from going off screen.

206 Macintosh Programming Techniques

#define CONTROL_WIND_ID 128

//define DRAW_WIND_ID 129

/ldef ine NIL OL
/ldef ine IN_FRONT (WindowPtr)-lL
//define REMOVE_EVENTS 0

//define SLEEP_TICKS OL
//define MOUSE_REGION OL
//define CONTROL_WINDOW 1

//define DRAW_WINDOW 2

//define STR_LIST_ID 128

/Ide fine CONTROL_WIND_TITLE_STR 1

//define DRAW_WIND_TITLE_STR 2

//define DRAW_BUTTON_STR 3

/ldef ine CLEAR_BUTTON_STR 4

//define WIND_LEFT 30

//define WIND_ TOP 100

/!define WIND_OFFSET 20

//define DRAG_EDGE 10

Global types

This chapter spent a lot of time going over a strategy that would allow a
program to be able to distinguish one type of window from another. The
MyW'indRecord struct and the MyW'indPeek that point to it are defined
here exactly as they were earlier in this chapter.

typedef struct
{

WindowRecord wind_rec:
short wind_type:
Boolean drawn_in;
MyWindRecord, *MyWindPeek:

Global variahles

MultiWindows handles events as described at the start of this chapter, mak­
ing use of All_Done, Multifinder_Present, and The_Event. The program sets
up Drag_Rect to prevent a window from disappearing off the screen. The
program uses Current_Draw _Window to keep track of the window that was
clicked on last. I've used variable Num_Draw_Windows_Open to stagger
the drawing windows as they open. The control window has two rectangles

Chapter 5: Working with Windows 207

that serve as buttons. The Draw _Rect and Clear_Rect variables hold the
boundaries of these rectangles.

Boolean All_Done = FALSE:

Boolean Multifinder_Present:

EventRecord The_Event:

Rect Drag_Rect:

WindowPtr Current_Draw_Window:

short Window_Type:

Rect Draw_Rect:

Rect Clear_Rect:

short Num_Draw_Winds_Open:

The main() function
Like most good main() functions, this one is short and simple. It first
calls three initialization routines. You saw lnitialize_Toolbox() in the
last chapter and Set_ Window _Drag_Rectangle() in this chapter. The
Initialize_ Variables() routine simply groups together some miscella­
neous one-time assignments.

MultiWindows opens four windows-one control window and three
drawing windows. The best way to display the windows is to put the
control window on the screen and then let the user select as many draw­
ing windows as he wants by making a menu selection. I chose this
method because I want to keep things simple. The purpose of this pro­
gram is to demonstrate window handling, so I've kept the code to a mini­
mum by omitting features (like menus) you'd be sure to have in a full
Macintosh application. Look in Chapter 9 for an example that demon­
strates a complete program making use of all the features and techniques
discussed in this book.

The main() routine ends with the ever-faithful while loop that drives the
program.

208 Macintosh Programming Techniques

void main(void)

Initialize_Toolbox():
Set_Window_Drag_Rectangle();

Initialize_Variables():

Open_Control_Window():
Open_Draw_Window():
Open_Draw_Window();
Open_Draw_Window():

while (All_Done = FALSE

Handle_One_Event():

Initialization

Most of the program initialization stuff should look familiar to you by
now. The two global Rect variables, Draw _Rect and Clear_Rect, are
given their boundaries in Initialize_ Variables. Later in the program
you'll frame these two rectangles in the control window and use them as
buttons.

void Initialize_Toolbox(void)

InitGraf(&thePort) :
InitFonts():
InitWindows();
InitMenus():

TEinit ():
InitDialogs(NIL) :
FlushEvents(everyEvent, REMOVE_EVENTS) ;
InitCursor():

void Set_Window_Drag_Rectangle(void
{

Drag_Rect = screenBits.bounds:
Drag_Rect.left += DRAG_EDGE;
Drag_Rect.right -= DRAG_EDGE:
Drag_Rect.bottom -= DRAG_EDGE;

Chapter 5: Working with Windows 209

void Initialize_Variables(void)
(

Multifinder_Present = (NGetTrapAddress(_WaitNextEvent ToolTrap) !=

NGetTrapAddress(_Unimplemented, ToolTrap)):

Num_Draw_Winds_Open = 0:

SetRect(&Draw_Rect, 20, 6, 80, 23):
SetRect(&Clear_Rect, 100, 6, 160, 23):

Marking and examining a window

This chapter's Multiple Window Techniques section worked out a strate­
gy for adding information to a window so that it can contain more data
than a WindowRecord alone. MultiWindows makes full use of this tech­
nique. When the program creates a window, Set_Window_Type() is
called. This routine receives a pointer to the new window and then
marks the window as one of the program's two types, depending on the
passed-in value type. To access the wind_type, cast the WindowPtr vari­
able to a MyWindPeek variable. Figure 5-14 shows what happens with
this typecasting.

void Set_Window_Type(WindowPtr the_window, short type)
{

MyWindPeek wind_peek:

wind_peek = (MyWindPeek)the_window:
wind_peek-)wind_type = type:

Note that the typecasting of a WindowPtr variable to a MyWindPeek
variable must occur only with a WindowPtr variable that you are sure
points to a MyWindRecord structure. Otherwise, wind_peek->wind_type
will access unrelated memory that lies beyond the end of the
WindowRecord structure!

2 1 0 Macintosh Programming Techniques

the_window (MyWindPeek) the_window

I WlndowPlr) [[Port

windowKind

visible
~ -----

windowPic

ref Con

wind_ type

drawn_in

Figure S-14. Typecasting a WindowPtr to a MyWindPeek

If you understand Set_Window_Type(), you'll understand the next three
routines. Instead of setting a window's type, Determine_ Window _Type()
examines the wind_type. It then returns the type so that the program can
make a decision based on the this information.

short Determine_Window_Type(WindowPtr the_window)
{

MyWindPeek wind_peek:

wind_peek = (MyWindPeek)the_window:
return (wind_peek-)wind_type) :

The Set_Drawn_In_Flag() and Determine_Drawn_In_Flag() work in the
same way as the preceding two routines.

void Set_Drawn_In_Flag(WindowPtr the_window, Boolean drawn)

Chapter 5: Working with Windows 211

MyWindPeek wind_peek:

wind_peek = (MyWindPeek)the_window:
wind_peek-)drawn_in = drawn:

Boolean Determine_Drawn_In_Flag(WindowPtr the_window)

I
MyWindPeek wind_peek:

wind_peek = (MyWindPeek)the_window;

return (wind_peek->drawn_in):

Opening a window

When MultiWindows opens a new window it reserves memory the size of
MyWindRecord rather than the size of the Macintosh C type WindowRecord.
This allows it to store the type of the window and a flag that tells whether the
window has a drawing in it. Open_Control_Window() does all of that. It also
changes the title that appears in the window's title bar from "Untitled" to the
more descriptive title stored in the program's 'STR#' resource.

void Open_Control_Window(void)
(

WindowPtr new_window:
Ptr wind_storage:
Str255 the_str:

wind_storage = NewPtr(sizeof(MyWindRecord)):
new_window = GetNewWindow(CONTROL_WIND_ID. wind_storage, IN_FRONT):

if (new_window == NIL
Exi tToShell () :

Set_Drawn_In_Flag(new_window, FALSE):
Set_Window_Type(new_window, CONTROL_WINDOW) :

GetindString(the_str, STR_LIST_ID, CONTROL_WIND_TITLE_STR):
SetWTitle(new_window. the_str } :
ShowWindow(new_window }:

2 1 2 Macintosh Programming Techniques

Opening a drawing window involves all of the same steps as opening a
control window, and a few more. Because more than one drawing win­
dow will be open, you'll want to keep track of which one is active. What
about setting that global window pointer Current_Draw _Window to
point to this new window? If it just opened, it surely must be the active,
current window, right? Right. But you don't have to take care of that
here. A mouse click on an obscured draw window will also trigger an
activate event, so both a click on a window and the opening of a new
window will lead the program to Handle_Activate(). If you update
Current_Draw _Window in your Handle_Activate() routine, you're
assured of keeping that variable pointing at the right window no matter
how a window gets activated.

Open_Draw _Window() finishes up by setting the window's title, then
prettying things up a little by offsetting the window from any other
newly opened drawing windows. It uses the number of open windows in
the calculation of the location for the new window. The more windows
that are open, the greater the offset will be.

void Open_Draw_Window(void
(

WindowPtr new_window;

Ptr wind_storage;

short left, top:

Str255 the_str;

wind_storage = NewPtr(sizeof (MyWindRecord)) ;
new_window = GetNewWindow(DRAW_WIND_ID, wind_storage, IN_FRONT) ;

if (new_window == NIL)
ExitToShell();

Set_Drawn_In_Flag(new_window, FALSE) :

Set_Window_Type(new_window, DRAW_WINDOW):

GetindString(the_str, STR_LIST_ID, DRAW_WIND_TITLE_STR):

SetWTitle(new_window, the_str) :
left= WIND_LEFT + (Num_Draw_Winds_Open • WIND_OFFSET);
top = WIND_TOP + (Num_Draw_Winds_Open * WIND_OFFSET);

MoveWindow(new_window, left, top, TRUE) :
ShowWindow(new_window) :

Chapter 5: Working with Windows 21 3

Num_Draw_Winds_Open++:

Event handling

MultiWindows starts the handling of an event by calling Handle_One_Event().
The program responds to three types of events: mouseDown, updateEvt,
and activateEvt.

void Handle_One_Event(void)

if (Multifinder_Present == TRUE

WaitNextEvent(everyEvent, &The_Event, SLEEP_TICKS. MOUSE_REGION):

else

SystemTask():
GetNextEvent(everyEvent, &The_Event):

switch (The_Event.what

case mouseDown:
Handle_Mouse_Down():

break;

case updateEvt:
Handle_Update():

break:

case activateEvt:
Handle_Activate{);

break:

There is only one task that Handle_Activate() is responsible for han­
dling: setting Current_Draw _Window to point to the activated window.
Provided, of course, the window is a drawing window.

2 1 4 Macintosh Programming Techniques

void Handle_Activate(void

WindowPtr the_window:

the_window = (WindowPtr)The_Event.message;
Window_Type = Determine_Window_Type(the_window) :

if (Window_Type === DRAW_WINDOW)
Current_Draw_Window = the_window:

If the event is an update event, MultiWindows determines the type of
window the update is for. It then branches to the correct routine for fur­
ther processing.

void Handle_Update(void
{

WindowPtr the_window:

the_window = (WindowPtr)The_Event.message;

Window_Type = Determine_Window_Type(the_window):

if (Window_Type == DRAW_WINDOW)
Update_Draw_Window(the_window) :

else
Update_Control_Window(the_window):

The control window is updated by redrawing the two rectangles that
serve as its buttons. Since drawing is taking place, call SetPort() to make
the control window's port current.

void Update_Control_Window(WindowPtr the_window)
{

GrafPtr old_port:
Str255 the_str:

GetPort(&old_port) :
SetPort(the_window):
BeginUpdate(the_window) :

EraseRgn(the_window-)visRgn) :
FrameRect(&Draw_Rect) :

Chapter 5: Working with Windows 2 1 5

MoveTo(Draw_Rect.left + 15, Draw_Rect.bottom - 4) :
GetindString(the_str, STR_LIST_ID, DRAW_BUTTON_STR):
Drawstring(the_str):
FrameRect(&Clear_Rect):
MoveTo(Clear_Rect.left + 15, Clear_Rect.bottom - 4):
GetindString(the_str, STR_LIST_ID, CLEAR_BUTTON_STR):
Drawstring(the_str):

EndUpdate(the_window):
SetPort(old_port) :

Speaking of drawing buttons, did you notice that MultiWindows didn't
explicitly draw them when the control window was opened back in
Open_Control_ Window()? Yet, the buttons were drawn at that time.
That's because GetNewWindow() highlights the new window, then caus­
es both an activate and update event to occur. Handle_Activate() doesn't
do anything related to the control window, but Handle_Update() calls
Update_Contxol_Window(), which then draws and labels the rectangles.
Figure 5-15 illustrates this.

GetNewWindow () activateEvt updateEvt

Handle_Activate()

Handle_Update()

0
Update_Control_Window()

0
~ Control Window

Drew I I Cl eer

Figure 5-1 S. GetNewWindow triggers two events

When a new drawing window is opened, or an existing window is acti­
vated or moved from off screen to on screen, an update event occurs, and
Update_Draw _Window() is called. This routine checks the drawn_in

2 1 6 Macintosh Programming Techniques

flag of the window that needs updating to see if a drawing is present. If a
drawing is present, call Draw _Something() to redraw the graphics.
Because drawing might take place, set the port and call BeginUpdate()
and EndUpdate().

void Update_Draw_Window(WindowPtr the_window)
{

GrafPtr old_port:

GetPort(&old_port):

SetPort(the_window) :

BeginUpdate(the_window) :
EraseRgn(the_window-)visRgn):

if (Determine_Drawn_In_Flag(the_window)
Draw_Something(the_window);

EndUpdate(the_window);

SetPort(old_port):

Earlier in this chapter I used a routine called Draw _Something() to load a
'PICT' resource and display it to a window. Here, I let QuickDraw frame
ten overlapping rectangles from within a loop. You'll be able to come up
with something much more interesting for your own program. For these
examples, simplicity rules.

void Draw_Something(WindowPtr the_window
{

GrafPtr old_port:

Rect the_rect:

short i;

GetPort(&old_port) :
SetPort(the_window):

for (i=l: i <= 10: i++
{

SetRect(&the_rect, i*5, i*5, i*5+100, i*5+100) :

FrameRect(&the_rect):

SetPort(old_port) :

Chapter 5: Working with Windows 2 1 7

A click of the mouse is the third and final type of event MultiWindows
handles. Since there are no menus, the program ignores a click in the
menu. The appropriate Toolbox calls handle a mouse click in a desk
accessory or a window's drag bar. A click in the close box of a drawing
window invokes Close_ Window(), which I'll discuss in a moment.

A mouse click in the content of a window warrants more discussion. If
the window was not active before the click, call Select Window() and
consider the event handled. If the window is already active, make a
check to see if the window is the control window. If so, you'll want to
determine if the click of the mouse button is in one of the two rectan­
gles. The_Event. where holds the screen pixel coordinates of the mouse­
button click, so pass that value to Handle_Contxol_Window(). a routine
to further process it.

void Handle_Mouse_Down(void

WindowPtr the_window;
short the_part:

the_part = FindWindow(The_Event.where. &the_window):

switch (the_part)
{

case inMenuBar:

break:

case inSysWindow:
SystemClick(&The_Event, the_window) :

break:

case inDrag:

DragWindow(the_window. The_Event.where, &screenBits.bounds) :

break:

case inGoAway:
if (TrackGoAway(the_window, The_Event.where))

Close_Window(the_window) :

break:

case inContent:
if (the_window != FrontWindow())

2 1 8 Macintosh Programming Techniques

SelectWindow(the_window):
else

Window_Type = Determine_Window_Type(the_window):
if (Window_Type == CONTROL_WINDOW)

Handle_Control_Window(the_window, The_Event.where):

break:

Handle_ Control_ Window() uses a Toolbox routine called GlobalToLocal()
to determine if a mouse click occurred in either of the control window's
two rectangles. The Point value passed into Handle_Control_Window(),
The_Event. where, is in global, or screen coordinates. Drawing in a win­
dow takes place in local, or window coordinates. Figure 5-16 should clari­
fy this point.

The Toolbox routine PtlnRect() returns a value of true if the passed-in
Point variable lies in the passed-in rectangle. If the mouse click is in the
drawing rectangle, invert the rectangle to let the user know his click was
registered. Then examine the window's drawn_in flag. If the last drawing
window to be active already has a drawing in it, you won't want to both­
er drawing it again. If not, call Draw _Something() to make the drawing.
Then set the window's drawn_in flag to mark the window as having a
drawing in it-vital information you'll use during window updating.
When complete, invert the rectangle back to its original state.

A mouse button click in the clear button is handled in a manner similar
to a click in the draw button.

void Handle_Control_Window(WindowPtr the_window, Point the_point)

GrafPtr old_port:

SetPort(the_window) ;
GlobalToLocal(&the_point);

if (PtlnRect(the_point, &Draw_Rect))

InvertRect(&Draw_Rect) :
if (Determine_Drawn_In_Flag(Current_Draw_Window) == FALSE)

Chapter 5: Working with Windows 2 1 9

Draw_Something(Current_Draw_Window):
Set_Drawn_In_Flag(Current_Draw_Window. TRUE):

InvertRect(&Draw_Rect):

if (PtinRect(the_point, &Clear_Rect))

InvertRect(&Clear_Rect) ;
if (Determine_Drawn_In_Flag(Current_Draw_Window) == TRUE)

GetPort(&old_port) ;
SetPort(Current_Draw_Window) :
EraseRect(&Current_Draw_Window-)portRect) ;
Set_Drawn_In_Flag(Current_Draw_Window, FALSE) :
SetPort(old_port) ;

InvertRect(&Clear_Rect) ;

s File Edit

~o. O) global

~ Control Window ~

Clear

(0, O) local
(150, 50) global

Figure S-16. Global and local pixel coordinates

A click anywhere in a window closes that window. Since MultiWindows
has no menu bar, the program uses a click in a go-away box to end the
program by setting All_Done to true. In a real world application, you'd
omit the All_Done line and instead set it to true when the user selected
"Quit" from the program's File menu.

Notice that to close the window, you make calls to two Toolbox rou­
tines: CloseWindow() and DisposPtr(). Earlier in this chapter you

2 2 0 Macintosh Programming Techniques

closed a window by simply calling a different Toolbox routine­
DisposeWindow(). When you supply the window storage for
GetNewWindow(), as you do here, call CloseWindow() and DisposPtr().
If you let the Mac handle window storage, as you do when you pass nil
as the second parameter, just call Dispose Window().

void Close_Window(WindowPtr the_window)

HideWindow(the_window) :
CloseWindow(the_window) :
DisposPtr((Ptr)the_window) :

All_Done = TRUE:
Num_Draw_Winds_Open-:

Chapter Summary

The 'WIND' resource type defines the look of a window. A call to
GetNewWindow() loads a 'WIND' resource into memory, ready to be dis­
played on the screen with a call to ShowWindow().

The descriptive information about a window is read in from the 'WIND'
resource and, along with additional information that can be set within
source code, is stored to a WindowRecord. Rather than access the fields
of the WindowRecord directly, you use Toolbox routines. These Toolbox
routines accept a WindowPtr, a pointer to the WindowRecord, rather
than the WindowRecord itself.

Most window-related information that a programmer needs to access is
available through use of the WindowPtr, which points to a window's
graphics port. For those few times when you need to access other infor­
mation, you'll use a WindowPeek. A WindowPeek points to the entire
WindowRecord, rather than just to the graphics port.

Much of the work involved in handling a window occurs when a user
presses the mouse button, causing a mouse down event. When your pro­
gram receives a mouse down event you'll handle it according to the loca­
tion on the window where the event took place. To drag a window, you'll
call DragWindow(). To close a window, you can first hide it with a call to

Chapter 5: Working with Windows 2 2 1

HideWindow(), then dispose of it with DisposeWindow(). In response to
a click in the content of the window, you can call SelectWindow() to
bring the window to the front of the screen.

When a covered window becomes exposed, you call the Toolbox routines
BeginUpdate() and EndUpdate(). In between the calls, you take care of
any of the drawing that needs to be done for the particular window that
needs updating.

Some applications make use of windows that perform different functions.
One window may accept input from the user, while another displays
some graphical output. For a multiple-window application you have to
use a technique that lets your application distinguish between these dif­
ferent windows. Failure to do so will cause window-updating problems.

One strategy for handling multiple windows is to expand the
WindowRecord. To do this you create your own data structure that con­
tains an entire WindowRecord and any additional information you want
associated with a window. The primary new information will be a vari­
able that holds the type of the window.

Dealing with Dialogs

The primary method of relaying information to a Macintosh program is
I through a dialog box. Allowing a user to adjust program settings is a

typical use of a dialog box. A Macintosh program issues warnings to the
user in the form of an alert, the simplest of dialog boxes.

In this chapter you'll learn how to create alerts using the 'ALRT' and
'DITL' resources. This will be the foundation for creating dialog box
resources as well. Dialogs use the 'DLOG' and 'DITL' resource types.

Here you'll see the similarities between windows and dialogs. You will
learn that dialog boxes are little more than embellished windows. This
chapter will cover both the fixed modal dialog and the movable mode­
less dialog.

Finally, the example program will demonstrate all the dialog box tech­
niques covered in this chapter, along with a method for handling the
case of both a window and a dialog coexisting on the screen.

223

224 Macintosh Programming Techniques

Alerts
When a program's user makes a mistake, or is about to embark on a path
the program's creator feels is dangerous, the user meets with an alert. An
alert provides a warning. It can strictly prohibit the impending action
from taking place, or it may provide a warning and then give the user the
chance to back out or carry on. Figure 6-1 shows an alert.

Are you sure you want to quit?

(Cancel) ([Quit J)

Figure 6-1. A typical alert

An alert typically contains text and one or two push buttons, such as the
Cancel and Quit buttons in Figure 6-1. You'll need two resource types
for an alert: the 'ALRT' and the 'DITL'. I cover them next.

Alert resources: 1 ALRT' and 1 DITL'
The 'ALRT' resource defines the size and screen placement of an alert,
just as the 'WIND' resource defines the same for a window. Whereas you
specify the type of window to display for a 'WIND', you don't for an
'ALRT'. An alert always has the appearance of the one pictured in 6-1.

An 'ALRT' requires that you give the ID of yet another resource-a
'DITL' that corresponds to the 'ALRT'. The 'ALRT' gives the size and
placement of the alert; the 'DITL' gives the contents of the alert; the con­
tents consist of such things as the buttons and text that are to appear in
the alert. Figure 6-2 shows an 'ALRT' with an ID of 129, as can be seen
in the title bar. The 'DITL' ID is also 129.

Chapter 6: Dealing with Dialogs 2 2 5

RLRT ID= 129 from DialogsPlus: rr.rsrc

• 1111 ldll -""""' Window

Le ft: ._I 2_0 _ __,

Height: I 1 06

Width: 1308

Enter the ID of the 'DITL' that
will correspond to this 'ALRT'

Color: @Defaul t

0 Custom

Figure 6-2. The 'ALRT' editor in ResEdit

The 'Dill' that corresponds to an 'ALRT' doesn't have
to have the same ID as the 'ALRT', but because it
makes sense to do so, programmers usually give it
the same ID.

You create the 'ALRT' using the "Create New Resource" option from
ResEdit's Resource menu. After sizing the alert in the MiniWindow and
entering a 'DITL' ID, you create the 'DITL'. Again, you'll use the "Create
New Resource" option.

Figure 6-3 shows a typical 'DITL' resource. The 'DITL' (for dialog item
list) lists the items in an alert or dialog box. The various items, such as
buttons and check boxes, appear in the floating palette in Figure 6-3. You
create an item by clicking on its picture in the floating palette and then,
with the mouse button still held down, dragging the mouse over to the
window. Releasing the mouse button places the item in the window.
Figure 6-3 shows a 'DITL' with three items: a static text item and two

226 Macintosh Programming Techniques

push buttons. Alerts are meant to be simple; they don't have provisions
for working with check boxes and radio buttons. For those items you'll
use a dialog box instead of an alert.

§0§ D ITL ID = 129 from DiologsPlus. n .rs re ~
® Button

···-----···-··············-····-· ...
~ Check Box

IRre you sure you wont to quit? l!)
® Radio Button

III Control•.....................................
T: Static Text Concellaj [~ Quit .J

--------------------·- 11:::~~~:~5~~~::::::::::
& Icon ..
I .. Picture ..
II] User Item

Figure 6-3: The 'Din' editor in ResEdit

To change the name or location of an item, double-click on it. That
opens a window that allows you to do just that.

Each item in a 'DITL' has an identifying number. When you select the
"Show Item Numbers" option from the 'DITL' menu, ResEdit displays
the item number for each item, as shown in Figure 6-3.

In an alert, the button that is item number 1 has special significance.
When a program displays an alert that button will appear with an out­
line, as the Quit button is in Figure 6-1. That tells the user that pressing
the keyboard's return key will select that button, just as clicking the
mouse button on it would.

ResEdit numbers items in the order you create them. If you aren't satis­
fied with the numbering of items in a 'DITL' use ResEdit's "Renumber
Items" option from the DITL menu to make changes.

With the 'ALRT' and 'DITL' complete you're ready to write the code that
brings the alert to the screen.

Chapter 6: Dealing with Dialogs 2 2 7

Alert source code

To load an 'ALRT' resource into memory and display the alert on the
screen, use the Toolbox routine Alert(). There are two ways to use
Alert(). The first is for an alert that does not give the user an option, like
the alert on the left in Figure 6-4. The second use of Alert() is for an alert
that presents the user with more than one choice, such as Cancel and
Quit. That type of alert is on the right in Figure 6-4.

You can't
do that!

((OK)) Cancel

Do you really
want to quit?

Figure 6-4. An alert without an option, and one with options

I show an example of the first usage of Alert() in the following code.
Simply pass Alert() the resource ID of the 'ALRT'.

//define
//define

NO_WAY_ALERT
NIL

Alert(NO_WAY_ALERT. NIL) :

128

OL

By definition, the return type of a call to Alert() is of type short; that is, a
short integer. In the first usage you ignore the return type. In the second
usage you save the return type. It tells which button the user clicked.
Here's an example:

//define
//define
#define
//define

QUIT_ITEM
CANCEL_ ITEM
NO_WAY_ALERT
NIL

short alert_item:

1

2

128

OL

alert_item =Alert(NO_WAY_ALERT. NIL) :

2 2 8 Macintosh Programming Techniques

if (alert_item == QUIT_ITEM)

Exi tToShell () :

[else go on with code as if nothing happened)

You may have noticed that the two alerts shown in Figure 6-4 have dif­
ferent icons. There are four variations of the Alert() routine. The first,
Alert(), displays no icon. The other three, NoteAlert(), CautionAlert(),
and StopAlert(), each display a different icon. Figure 6-5 shows these
icons. All four of the Alert() routines have the same two parameters.

Alert() NoteAlertO Caut i onA 1 ertO StopAlertO

figure 6-S. Variations of Alert(} and the icons they display

Dialogs
A dialog box is similar to both an alert and a window. A dialog box is like
an alert in that it has items in it, but it has a much greater variety of
items. A dialog requires a 'DITL' resource, just as an alert does. A dialog
box can take the appearance of a window, and, like a window, can be
movable. You can think of an alert as a stripped-down dialog, and a dia­
log as a souped-up window.

Dialogs come in two varieties: modal and modeless. A modal dialog is
fixed on the screen-it can't be moved. No action unrelated to the dialog
can take place until the dialog is dismissed. A modeless dialog can be
moved. Its behavior is similar to a window in that it can contain a title
bar that allows the user to drag the dialog. Figure 6--6 shows an example
of both types of dialog.

Chapter 6: Dealing with Dialogs 2 2 9

Find
Number of
decimal places: ~ Find What: I formidable

{(Done J) f Find NeHt D (Cancel)

Modal Dialog Modeless Dialog

Figure 6-6. Modal and modeless dialogs

This chapter covers both types of dialogs, modal and modeless.

Dialog Resources
A dialog can contain several types of items. Figure 6-7 shows the search
dialog box from Microsoft Word, a typical dialog with several item types.
A brief description of the item types follows.

Replace

Find What: I indubitable I Format .,..I.__ ____________ _.
!special I

Replace With: I undeniable I Format .,..I .__ ____________ _.
!special ...,.,

D Match Whole Word Only D Match Case

Figure 6-7. A typical dialog box

Dialog item types

n Find NeHt D
(Ht~plftl:(~ J

[Replace Rll)

[Cancel)

Search:
I Down !.,..I

Almost every dialog contains at least one push button in the form of an
OK or Cancel button. When you click on a push button an action will
take place immediately, such as the dismissal of the dialog with a click
on a button labeled Done.

230 Macintosh Programming Techniques

Check boxes are used to set options. A click on a check box toggles that
box to its opposite state. When you check or uncheck a box the action
should not take place immediately. Rather, the action takes place later,
such as when the dialog is dismissed.

Radio buttons also set options. But while a check box can be an indepen­
dent entity, radio buttons are always found in groupings of two or more.
When one radio button in a grouping is clicked on it turns on, and the
button that was previously on is turned off.

Edit text items are your means of supplying text to the computer. Text
is typed into the framed rectangle that makes up the item. Dialog text
that cannot be edited, such as instructions, is composed of static text
items.

The graphics that appear in a dialog can be made up of icons, pictures, or
user items. Icons are always 32-by-32 pixels in size. Pictures and user
items can be any size. A picture is a 'PICT' resource, while a user item is
a free-form type that can be made up of a picture, an icon, or a drawing
defined by calls to QuickDraw routines.

The 1 DLOG' and 1 DITL' resources
The process of creating a dialog box is very similar to that for an alert.
Instead of an 'ALRT' resource you'll use a 'DLOG', as shown in Figure 6-8.

Like the 'WIND' resource, the 'DLOG' editor in ResEdit lets you
choose the look of the dialog by selecting from a row of icons. As you
did for the 'ALRT' resource, you also specify a 'DITL' that will hold
items for a 'DLOG'. Figure 6-9 shows a 'DITL' with the same ID, 128,
as that for the 'DLOG'.

Chapter 6: Dealing with Dialogs 2 3 1

DLOG ID = 128 from DialogsPlus. 11 .rsrc

• flll ldll ... auna WlndalM Color: @Default
0 Custom

Top: I so
~-~

Left: ~14_0 ~

Height: I 21 s

Width: 1335

Dill ID: ~I 1_2_e_~

D Initially uisible

D Close boH

Figure 6-8. The 'DLOG' editor in ResEdit

§0§ D Ill ID = 1 28 from OialogsPlus. 11.rsrc ~
B Button

llEnter Title Here LlJI
ID Display windowlaj

IOHot Man L1J
IO Cold Man Laj

Heat Up Man~

Done ~

Figure 6-9. The 'DITL' editor in ResEdit

......................... _
181 Check Box

@ Radio Button

[;] Control

T: Static Text
··g···f:cii·t-·r~~1······· ..
...
&, Icon

I .. Picture

!illill User Item

When you read about alerts you learned how to add items to the 'DITL'
by dragging them from the palette and dropping them into the 'DITL'
window. The 'DITL' for a dialog is the same resource type as the 'DITL'
for an alert, so you already know how to create the 'DITL' for a dialog.

2 3 2 Macintosh Programming Techniques

Push buttons, radio buttons, check boxes, and edit text boxes are all
items that the user clicks the mouse button on or types into. Besides
displaying dialog items with which the user interacts, you might also
want to add graphics to a dialog. ResEdit allows you to do this in a few
different ways.

If you have a graphic image that you want to display in a dialog, and that
image is to remain static, use an icon or a picture. A static graphic image
does not move (as the dancing man did in chapter 3) while the dialog is
on the screen. An example might be a company logo that appears in the
comer of a dialog.

In Chapter 3 you saw how to create a 'PICT' resource and an 'ICN#'
resource. If your image is small, you might want to just draw it in
ResEdit's icon editor. If it's bigger than 32-pixels square, you can draw it
in a paint program and then copy it to the resource file. ResEdit will save
it as a 'PICT'.

If you'd like to include an icon or a picture in a dialog, simply include
the proper item in the dialog's 'DITL'. Figure 6-10 shows a 'DITL' with
three items: a button, an icon, and a picture. The button item you've
seen before. The picture and icon were added in the same way-by drag­
ging and dropping from the palette. The results aren't too impressive.
Why? Because for every picture you add you must have a 'PICT'
resource, and for every icon you add you must have an 'ICON' resource.
You haven't added them yet.

~§Dill ID= 128 from Graphics.n.rsrc ~

~-:: ·-:: p-.-· 1----~· -.-!. ---....... ·. -. .· · ... ·
~.
-~·~·~·.:..·~··- -~

ICON

8 Button

181 Check Box

® Radio Button
·--· ... ···-·--·--·-···-·-·-···-·

[;) Control

T: Static Text
·-g·E'dit-;:;;i·-···-·

--.&......-..r.,;;i-&-.. i~~~-···-·-.. ·-···-· ._ ____ ~==~=-· .. .
(Done J I L Picture ... -!I!! '"iii"'lj';;;··it;;····-·

figure 6-10. Adding a picture and an icon to a 'DITL'

Chapter 6: Dealing with Dialogs 2 3 3

The picture item lets you specify the ID of the 'PICT' resource to use.
You can double-click on the picture item to edit this information. Figure
6-11 shows that this picture item will be looking for a 'PICT' with an ID
of 128.

Edit D Ill item #2 from Untitled

Resource ID: I 12e

~P-i-c-tu_r_e----,...~I

D Enabled Top: I 1_s _ __, Height: 16_0 _ ___.

Left: 11-'-~-__, Width: 11_9_0 _ _,

Figure 6-11. Information window for a picture item

Notice the check box labeled Enabled in Figure 6-11.
When you create certain items like push buttons, check
boxes, and radio buttons, this check box will be
checked. ResEdit does it for you. If an item is marked
as enabled, your program will recognize mouse button
clicks on the item. If an item is not enabled, mouse
clicks by the user on the item will be ignored. Pictures
usually aren't enabled. You can make a picture-or
any item-enabled if you want your program to

respond to clicks on that item.

From Chapter 3 you know how to create a picture and save it as a 'PICT'.
I copied an old standby, one of the four 'PICT's from the dancing man
series back in Chapter 3, and pasted it into the resource file. A look at
the 'DITL' shows that the rectangle that was the picture item now dis­
plays the dancing man picture. Notice that in Figure 6-12 the picture
seems distorted. In the window that allows you to enter the 'PICT' ID
you can also enter the boundaries for the picture. The 'PICT' you specify
will be sized to fit that area. You can double-click on the 'DITL' picture
item and change the boundaries any time. The information window was
shown in Figure 6-11.

234 Macintosh Programming Techniques

~0§ Dill ID= 128 from Graphics.TJ.rsrc ~

(Done J

Figure 6-12. 'DITL' with picture item

Now let's finish off the 'DITL' by making an icon for display in the icon
item. Double-click the icon item to set the resource ID of the 'ICON'
resource to display, just as you did for the picture. In Chapter 3 you saw
how to use the icon editor to create an 'ICN#' resource. You'll use this
icon editor again for the 'ICON' resource. The 'ICON' here is for the
Acme Fence Company, shown in Figure 6-13.

And just what is the difference between an 'ICN#' and
an 'ICON'? I knew you'd ask. The 'ICN#' holds a series
of related icons-in Chapter 3 I created an application's
icon for display in the Finder. I wanted several versions
of it-color, black and white, and smaller icons. So I
created an 'ICN#'. The 'ICON' resource holds just a sin­
gle icon. That's all that's needed here, and that's all the
'DIR' looks for, so that's what I used.

Chapter 6: Dealing with Dialogs 2 3 5

§0 I CON ID = 128 from Graphics. rr .rsrc

••••• ••••• ••••• • •••• •••••••••••••••••••••••••••••••• • • • • • • • • • • •••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••• • • • • • • • • • • •••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••

Figure 6-13. ResEdil's 'ICON' editor in use

~
iiiiii:I

Figure 6-14 shows the 'ICON' and 'PICT' resources. Since the 'ICON'
has an ID of 128, it should now appear in the 'DITL', where the icon item
has an ID of 128. Figure 6-15 shows that this indeed is the case.

I CONS from Graph

~
J:ii:ii:iit

128

§0§§ PICTs from Graphics.n.rsrc § 0 §
{}

128

Figure 6-14. An 'ICON' and a 'PICT' resource in ResEdit

236 Macintosh Programming Techniques

I CONS from Graph

~
~

§0§ PICTs from Graphics.n.rsrc §E!I§
{}

128

128

Figure 6-1 S. The 'DITL' with button, picture, and icon items

You've now seen two methods for adding graphics to a 'DITL'. There's a
third way: the user item. When you select the user item from the palette
and drag and drop it into the 'DITL' window, a mysterious gray box
appears. The only feature you can change in a user item is its size-the
box will always remain gray. Where do the graphics come from? Your
source code will determine that. Through your source code you'll be able
to display a picture or icon or use QuickDraw commands to draw some­
thing. User items are a very powerful and useful programming tool, and
something you'll find omitted from most Macintosh books. I'll remedy
that situation later in this chapter when I discuss user items in detail.

Dialog Items
When you want to load a 'DLOG' resource into memory and display the
dialog on the screen, you'll use a call to GetNewDialog(). But before
working with a dialog, you'll learn to work with dialog items. Once you
open a dialog you'll need to know all the information covered in the next
four sections.

Once a dialog is on the screen the user is free to enter text in edit boxes
or click in check boxes, radio buttons and push buttons. It's up to you to

Chapter 6: Dealing with Dialogs 2 3 7

write the code that responds to these user actions. Resources are a great
help in designing and implementing a program's interface, but it's still up
to you the programmer to write the code that makes things work. You
didn't think everything would be as easy as creating resources, did you?

Getting dialog item information
Chapter 2 introduced you to handles. You've had occasion to use them
since then; for example, when you used a PicHandle to draw a 'PICT'
resource to a window in Chapter 3. A handle is your program's link to an
object in memory-an object that the Memory Manager may shift, or
relocate, in memory. Handles play a very important part in dealing with
dialogs. When a dialog is on the screen you'll want to examine, and per­
haps set, the state of items in it. Before you can work with any dialog
item you need to get a handle to it.

GetDitem() is a Toolbox call you'll become very familiar with. You tell
GetDitem() what dialog you're working with, and which item in that
dialog you're interested in. In return, GetDitem() gives you three pieces
of information about the item: the type of the item, the rectangle that
surrounds, or bounds, the item, and a handle to the item. In most
instances your only concern will be with the item's handle. Here's a call
to GetDitem():

#define
/Ide fine
#define

DONE_BUTTON_ITEM 1

CHECK_BOX_ITEM 2
EDIT_BOX_ITEM 3

DialogPtr the_dialog:
short the_type:
Handle the_handle:
Rect the_rect:

GetDitem(the_dialog, EDIT_BOX_ITEM, &the_type. &the_handle. &the_rect):

After the above call to GetDitem() is complete, your program can use
the_handle to obtain the text that the user typed in the dialog's edit box
or to overwrite the text in the edit box with new text. You'll see just how
to do that next.

2 3 8 Macin.tosh Programming Techniques

Working with edit text items

If you want to store the string that the user types in an edit text item,
call Get!Text()-get inserted text. First call GetDitem() to get a handle to
the item. Use that handle in the call to GetDitem(), which will return
the text as a Str255 variable. Here's a fragment that gets the text from an
edit box and then writes the string to the upper-left corner of the dialog.

I/define EDIT_BOX_ITEM

DialogPtr the_dialog:

short the_type:

Handle the_handle:

Rect the_rect:

Str255 the_string:

GetDitem(the_dialog, EDIT_BOX_ITEM. &the_type. &the_handle, &the_rect):

Get!Text(the_handle, the_string);

SetPort(the_dialog):
MoveTo (15 . 15) :

Drawstring(the_string) :

If you want to replace the text that's in an edit box, call Set/Text().

GetDitem(the_dialog, EDIT_BOX_ITEM. &the_type, &the_handle. &the_rect):

Set!Text(the_handle, "\Welcome!") :

Get/Text() always retrieves an edit text item value as a Str255 type, even
if the user has typed in a number. If you want to convert this string to a
number, use StringToNum().

short the_type:

Handle the_handle:

Re ct the_rect:
Str255 the_string:
long the_long:

GetDitem(the_dialog. EDIT_BOX_ITEM. &the_type. &the_handle. &the_rect):

Chapter 6: Dealing with Dialogs 239

GetIText(the_handle, the_string):

StringToNum(the_string, &the_long):

The following example uses all the Toolbox routines just covered. The
code retrieves the text from an edit box, converts it to a number, then
changes the text in the edit box to a new string, based on the entered
number. Here goes:

I/define
#define

DialogPtr
short
Handle
Re ct
Str255
long

OUT_OF_RANGE_STR
VALID_NUMBER_STR

the_dialog;
the_type:
the_handle;
the_rect:
the_string;
the_long:

11 \pMust be between 0 and 100."
11 \pValid number entered. 11

GetDitem(the_dialog, EDIT_BOX_ITEM, &the_type, &the_handle, &the_rect):

GetIText(the_handle, the_string);

StringToNum(the_string, &the_long) ;

if ((the_long < 0) 11 (the_long > 100))
SetIText(the_handle, OUT_OF_RANGE_STR):

else
SetIText(the_handle, VALID_NUMBER_STR):

Working with check box items
Some dialog items have a state associated with them, such as on or off.
The Macintosh gives these two states values: on is considered to have a
value of 1, while off is 0. Items that have a value are called control items.
Other dialog items such as icons, pictures, and edit text boxes don't have
values associated with them.

A check box is a control item. When the user clicks the mouse button on
a check box, you call GetCtlV alue() to get the control value. Whatever
its value, zero or one, you set it to its opposite value using SetCtlValue().
Here's an example that does just that.

240 Macintosh Programming Techniques

//define
//define

#define

DialogPtr
short
Handle
Re ct
short

CHECK_BOX_ITEM
CONTROL_ OFF
CONTROL_ ON

the_dialog:
the_type:
the_handle;
the_rect:
old_value:

2

0

GetDitem(the_dialog, CHECK_BOX_ITEM, &the_type, &the_handle, &the_rect):

old_value = GetCtlValue((ControlHandle)the_handle):

if (old_value == CONTROL_ON)
SetCtlValue{ (ControlHandle)the_handle, CONTROL_OFF):

else
SetCtlValue{ (ControlHandle)the_handle, CONTROL_ON):

Take special notice that both GetCtlValue() and SetCtlValue() accept
only the Macintosh type ControlHandle as a parameter; they do not
accept a generic Handle type. You must always typecast the handle you
get from GetDitem(), just as done above.

Working with radio button items
If you understood check boxes, you're half way home to working with
radio buttons. Check boxes work independently, and you might have just
one in a dialog. Radio buttons are dependent on one another, and work in
groups-you must have at least two. When the user clicks on one button
in a group, the button that was on previous to the click turns off, and the
newly clicked button goes on.

Because of this interdependency, you'll want to keep track of the radio
button that's currently on. Do this by creating a global variable that holds
the dialog item number of the radio button item that's on. When the user
clicks on a radio button, you'll turn what is now the old button off and
the new button on. Use SetCtlValue() to change the radio button values.

Here's an example that starts out with the first radio button of a set of
three switched on. The code turns this button off, then turns the second
button on.

Chapter 6: Dealing with Dialogs 241

//define RADIO_l_ITEM

//define RADI0_2_ITEM 3
//define RADI0_3_ITEM 4

//define CONTROL_ OFF 0

//define CONTROL_ ON

short Old_Button_Num = RADIO_l_ITEM:

DialogPtr the_dialog:
short the_type;
Handle the_handle;
Re ct the_rect:

GetDitem(the_dialog, Old_Button_Num. &the_type, &the_handle, &the_rect):
SetCtlValue ((ControlHandle)the_handle, CONTROL_OFF):

GetDitem(the_dialog, RADI0_2_ITEM. &the_type, &the_handle, &the_rect):
SetCtlValue((ControlHandle)the_handle, CONTROL_ON):

Old_Button_Num = RADI0_2_ITEM:

Notice that the last thing the code does is to update the global variable
Old_Button_Num to hold the dialog item number of the radio button
that was just turned on. Next time around, it will be considered the
"old" button.

Modal Dialogs
A modal dialog controls the screen, and no action can take place outside
the dialog. In certain cases this disadvantage may cause you to use a
modeless dialog instead; I discuss them later in this chapter. If you're
simply gathering information to use later-perhaps requesting that the
user set some preferences for your program-then a modal dialog will do
just fine. Because a modal dialog owns the screen, you don't have to
worry about the user interacting with other screen elements such as
menus, windows, or other dialogs. That makes the source code for han­
dling a modal dialog much less complex than the code you write for a
modeless dialog.

2 4 2 Macintosh Programming Techniques

The DialogReeord

A dialog, modal or modeless, is based on the DialogRecord structure.
Earlier I said that a dialog had similarities to a window. That was a bit of
an understatement. The first member in a DialogRecord is a
WindowRecord, which means that a dialog is actually a window, with a
little embellishment. Following the WindowRecord member is a mem­
ber called items that is a handle to the items in the dialog. That's pretty
much the difference between a window and a dialog: a dialog has items, a
window doesn't.

You use a DialogPtr to reference a dialog. Because the first member in a
DialogRecord is a WindowRecord, the first thing a DialogPtr points to
is a Graf Port-just as a WindowPtr does. Figure 6-16 shows the
process. This set up allows you to use a DialogPtr as a parameter to
Toolbox calls that require a WindowPtr or Graf Ptr. This can be a con­
fusing point. If you're satisfied that this works, skip the technical note
that follows.

WindowRecord Dialog Record
WindowPtr DialogPtr

Graf Port Graf Port

windowKind windowKind

visible visible

windowPic windowPic

ref Con ref Con

figure 6-16. A DialogPtr and WindowPtr both point to a GraFPort

Chapter 6: Dealing with Dialogs 243

Doesn't the idea of being able to use a Graf Ptr, a
WindowPtr, and a DialogPtr interchangeably almost
seem like cheating? If you look at the type definitions of
each, you'll see why this works:

typedef GrafPort •GrafPtr :

typedef GrafPtr WindowPtr :

typedef Wi ndowPtr DialogPtr ;

All three types are really pointers to a Graf Port. Their
names are different as a convenience to programmers.

A WindowRecord contains a Graf Port and other mem­
bers. A DialogRecord contains a WindowRecord and
other members. It therefore seems as if a Graf Port,
WindowRecord, and DialogRecord should be different
si:r:es. They are. But the first member of each type is the
GrafPort, so that's what each pointer points to.

You could conceivably have the Window Manager load a
window and return either a Graf Ptr or a WindowPtr to
your program, as I do below. The Window Manager
reserves the same amount of memory for each-the si:r:e
of the WindowRecord, not the smaller size of a Graf Port.

WindowPtr the_window_l :

GrafPtr t he_window_2 :

Ptr wind_storage :

wind_storage - NewPtr(sizeof (WindowRecord)) :

the_window_l = GetNewWindow(WIND_ID. wind_sto rage . IN_FRONT) :

the_window_2 = GetNewWindow(WIND_ID. wind_storage . IN_FRONT) :

Lesson 6-1: The Dia/ogPtr

You can run the program enclosed with this
book for a hands-on tutorial about this topic.

244 Macintosh Programming Techniques

Modal dialog source code

You load a 'DLOG' resource with a call to GetNewDialog(). Then call
ShowWindow() to display it.

DialogPtr the_dialog:

the_dialog = GetNewDialog(DIALOG_ID. NIL. IN_FRONT) :

Since a modal dialog controls the screen, you know that it will be dis­
missed before the program continues. Whatever memory it occupies
while it exists will soon be returned to the pool of free memory. Thus,
there is no need to reserve your own memory-let it land in memory
wherever the Memory Manager puts it. It can't cause fragmentation,
because it won't be around to block things.

After creating the dialog, you enter a loop. The loop repeats itself until
the user dismisses the dialog; that's how the modal dialog controls the
screen. At the heart of the loop is a call to the Toolbox function
ModalDialog().

The powerful ModalDialog() routine takes control and determines if a
mouse click by the user occurs on an enabled item in the dialog. If an
enabled item is clicked on, ModalDialog() returns the resource item
number of the item to your program. Run that number through a switch
statement to process the mouse click; that is, base your handling of the
mouse click on the item the user clicked on. Figure 6-17 shows this jour­
ney from the click of the mouse to ModalDialog().

A modal dialog remains on screen as long as the ModalDialog() loop is
executing. The loop ends when the loop test condition fails. The usual
time for this is when the user clicks the dialog's Cancel, OK, or Done
button, as shown in the Handle_Modal_Dialog() routine below.

#define
#define
#define

DIALOG_ID 128
DONE_BUTTON_ITEM 1

CHECK_BOX_ITEM 2

Handle_Modal_Dialog()
{

DialogPtr the_dialog;
short the_itern:

Chapter 6: Dealing with Dialogs

Boolean all_done = FALSE:

the_dialog = GetNewDialog(DIALOG_ID, NIL, IN_FRONT) ;
ShowWindow(the_dialog) ;

while (all_done == FALSE
(

ModalDialog(NIL. &the_item) :
switch (the_item

case DONE_BUTTON_ITEM:
all_done = TRUE:
break:

case CHECK_BOX_ITEM:
Set_Check_Box(the_dialog, the_item):

break:

DisposDialog(the_dialog) :

181 Display
ModelDialog(NIL, &the_item):

ndow title

Handle 'DITL'
Item #1, the
push button

Figure 6- I 7. From user action to ModalDialog()

Handle 'DITL'
item#2, the
check box

245

246 Macintosh Programming Techniques

When the user clicks the Done button, all_done is set to true. When the
loop again reaches the top, the while test will fail, the loop will end, and
the dialog will b e dismissed by a call to the Toolbox routine
DisposDialog(). This chapter's example program makes use of the more
powerful modeless dialog. For a working example of a modal dialog see
the program presented in Chapter 7.

Lesson 6-2: Using Modal Dialogs

You can run the program enclosed with this
book for a hands-on tutorial about this topic~

Modeless Dialogs
To display a modeless dialog on the screen you use the same routine as
that for a modal dialog-GetNewDialog(). For a modal dialog you didn't
specify where in memory the dialog would go, because it wasn't going to
be hanging around in memory anyway. For a modeless dialog that might
be around for the duration of your program's execution use NewPtr{} to
set the storage. This process is identical to creating a new window. Refer
to the previous chapter if you need a review.

DialogPtr the_di a l og :

Ptr dlcg_storage :

dlog_st o r age = NewPtr(sizeof (DialogRecord)) :

the_d i alog = Get NewDialog(DIALOG_ID . dlog_storage . IN_FRONT) :

Once a modeless dialog is on the screen it needs special handling consid­
erations. In the previous chapter I developed the Handle_One_Event{}
function. This routine is repeatedly called with the purpose of getting an
event. Here's that routine, slightly modified.

void Handle_One_Event(void)

Boolean event _was_dialog :

Chapter 6: Dealing with Dialogs 24 7

if (Multifinder_Present == TRUE)
WaitNextEvent(everyEvent, &The_Event, SLEEP_TICKS, MOUSE_REGION }:

else

SystemTask () :
GetNextEvent(everyEvent, &The_Event }:

event_was_dialog = Handle_Dialog_Event():

if (event_was_dialog FALSE }

I
switch (The_Event.what)

I
case mouseDown:

Handle_Mouse_Down():
break:

case updateEvt:
Handle_Update():

break:

This version of Handle_One_Event() makes use of a Boolean variable
called event_was_dialog. If a modeless dialog is on the screen,
Handle_One_Event() wants to know about it. The Toolbox provides a few
routines specifically designed to handle an event that takes place in a dia­
log. I use them in the Handle_Dialog_Event() routine I'm about to cover.

Handle_Dialog_Event() checks to see if the current event occurred with­
in a dialog. If it did, Handle_Dialog_Event() handles it and returns a
value of true. If the event was not dialog-related, Handle_Dialog_Event()
simply returns a value of false.

Back in Handle_One_Event(), the Boolean variable event_was_dialog
takes on the value returned by Handle_Dialog_Event(). If the event was
related to a dialog, it's been handled, and this pass through
Handle_ One_Event() is complete. There's no need to enter the switch
statement used in the past to handle an event.

2 4 8 Macintosh Programming Techniques

I've glossed over the workings of Handle_Dialog_Event() so that you'd
see the overall technique for handling an event in a program that uses a
dialog. Now, it's time to closely examine Handle_Dialog_Event().

Boolean Handle_Dialog_Event(void)

I
Boolean event_was_dlog = FALSE;

DialogPtr the_dialog;

short the_item;

if (FrontWindow() != NIL)

if (IsDialogEvent(&The_Event)

I
if (DialogSelect(&The_Event, &the_dialog, &the_item))

I
switch (the_item)

case DONE_BUTTON:

All_Done = TRUE;

break;

[a "case" to handle each enabled item in the dialog]

event_was_dlog = TRUE;

return (event_was_dlog):

The first thing Handle_Dialog_Event() does is call the Toolbox routine
FrontWindow(), which returns a pointer to the frontmost window on the
screen. If no windows--or dialogs-are on the screen the routine will
return a value of nil. This check verifies that the screen is not empty.

Next, lsDialogEvent() is called. This Toolbox routine determines if, at
the time of the current event, the frontmost window is a dialog box. If a
dialog box isn't in the forefront, you know the event is related to some­
thing other than a dialog. So, lsDialogEvent() returns a value of false, and
Handle_Dialog_Event() ends. If the event is a mouse down event in a
dialog, lsDialogEvent() checks to see if the mouse click occurred in the

Chapter 6: Dealing with Dialogs 249

dialog's content region. If it didn't, then IsDialogEvent() knows the click
occurred in the dialog's title bar, and it again returns false. Your program
has code for dealing with mouse clicks in a window's title bar, and you
can use the same code for a dialog.

DialogSelect() is called next. If execution has made it this far, then it has
been established that the event is dialog-related. Now it's time to handle
the event. DialogSelect() is a powerful routine that will do all of the
work for you if a dialog needs updating or activating. In this case,
DialogSelect() will return a value of false. That tells you the event has
been handled, and you're all done.

If the event is dialog related but isn't an update or activate event,
DialogSelect() doesn't handle it. That's because the event must involve
one of the enabled items in the dialog. Each program has different pur­
poses for buttons and check boxes, and DialogSelect() has no way of
knowing yours. So instead of attempting to handle the event,
DialogSelect() gives you a pointer to the dialog and the item number of
the clicked-on item . It also returns a value of true to signal that process­
ing is now up to you.

At this point handling of the event is dependent on your program's dia­
log. Use a switch statement to determine which item to handle. This
switch statement is the same one you saw in this chapter's section on
working with modal dialogs.

After the switch statement, you can consider the event both dialog-related
and handled. Now it's safe to set the local Boolean variable (initialized to
false) to true. Return the value of this variable to the calling routine
Handle_One_Event(). That lets Handle_One_Event() know whether more
work needs to be done.

Now, I'll summarize things with Figure 6-18.

I

2 5 0 Macintosh Programming Techniques

~f FrontWindowO !- NIL) <:J I Verify screen isn't empty

~f (IsDialogEvent(&The_Event)) ~ Verify front window
is a dialog box ...__ ______________ _.

if
(

DialogSelect(&The_Event, &the_dialog, & the item))

switch (the item)

((:J

Handle dialog update/activate or ...
return dialog and item clicked on

Handle clicked on item, as
appropriate for that item ..._ ____________________ ~

event_:was_dlog - TRUE <:J l...__ __ E_ve_n_t_w_a_s_d_ia_1o_g_re_1_at-ed __ _

!eturn (event_was_dlog) ; <:J Tell calling routine whether
event was dialog-related ..._ ____________________ _.

Figure 6-J B. Handling a dialog-related event

Using User Items
There may be a time when you want to include an item in a dialog box
as your program executes, but not beforehand. That makes placing the
item in the 'DITL' impossible. For example, your program might display
one of two pictures, depending on the action the user takes. You could
include a picture item in your 'DITL', but which 'PICT' ID would you

Chapter 6: Dealing with Dialogs 2 5 1

specify? A problem like this can be overcome using a resource type called
a user item.

The user item resource
The user item is a dialog item type tailor-made for situations like the
above. When you add a user item to a 'DITL' it appears as a gray box. One
such item appears on the left of the 'DITL' in Figure 6-19.

§0§ D Ill ID = 128 from PictDisplay §

O Show Baby

O Show Hdult

(Display J

(Done)

8 Button ..
cg) Check Box

@ Radio Button

111 Control ..
T: Static Text

··a···Eci·1·1··:r;;i·········
..
& Icon ..
I.. Picture

lillfil User I te m

Figure 6-19. A 'DITL' with a user item

As with any other resource type, you can double-click on a user item to
open the window that allows you to move and resize the item. After
that, your job in ResEdit is done. The rest of the work is accomplished in
the source code.

The user item source code
Earlier you saw that the Toolbox routine DialogSelect() performs the
very helpful task of updating a dialog. When a partially obscured dialog is
exposed, DialogSelect() will redraw buttons, check boxes, icons, and pic­
tures: all the items that are the contents of the dialog box. (Without any
work on your part. Very helpful indeed.) The Dialog Manager knows
exactly how to redraw these items without any help from you because
you defined these items in the 'DITL' resource, just as they are to appear

2 5 2 Macintosh Programming Techniques

in the dialog. The Manager uses these definitions when it first displays a
dialog and again when it has to update, or refresh, a dialog box.

The Dialog Manager can't update a user item on its own, as it can other
item types. The 'DITL' definition of a user item is incomplete; it just
shows the display rectangle that will hold the item. Figure 6-20 shows an
example of a dialog that uses the 'DITL' from Figure 6-19. An alert is
obscuring part of the dialog. I've taken some liberties by showing you
what appears under the alert. A real alert would, of course, hide every­
thing behind it. When the alert is dismissed the dialog will need updating.

Display Dialog

@ Show Baby

() Show Hdul1

' '

-----11· J

The Dialog Manager doesn't
know how to redraw this
partially obscured user item

/"-···-·-···-···-·-···
l Bi$ill O!J !
·,··-···········-·"········ ~

The Dialog Manager
knows how to redraw
items such as this
radio button and the
two push buttons

When this alert is dismissed the
dialog underneath it needs updating

Figure 6-20. Dialog items will need updating by the dialog manager

You provide the Dialog Manager the help it needs to update a user item
by writing a function that tells the Dialog Manager just what to draw in
the display rectangle of the user item. You write this function, but you
never call it directly. That's right: your source code never makes a call to
the user item routine. Instead, you associate the function with the user
item. You bond the two together so that whenever an update occurs the
Dialog Manager will call your function, on its own.

Chapter 6: Dealing with Dialogs 2 5 3

You know that GetDitem() is used to get information about an item: its
type, its display rectangle, or a handle to it. I've been using GetDitem()
to get a handle to the item. There's a companion routine to GetDitem(),
called SetDitem(), and it's used-as you may have guessed-to set, or
change, information about an item.

When you have a user item, you use SetDitem() to override the item's
handle and replace it with a drawing procedure that tells the Dialog
Manager just what to draw in the rectangle making up the user item.
Here's an example:

/fdefine USER_ITEM 3

short the_type ;

Handle the_handle ;

Rect the_rect ;

GetDitem(the_dialog. USER_ITEM. &the_type , &the_handle, &the_rect) ;

SetDitem(the_dialog , USER_ITEM , the_type . (Handle)Do_User_Item , &the_rect) :

What the above code does is first call GetDitem() to get all the informa­
tion about a user item with the item number 3. It then calls SetDitem()
to reset everything just as it was, with the exception of the handle to the
item. In place of the handle is a function I call Do_User_Item(). In the
call to SetDitem(), omit the parentheses that normally follow a function
name. You aren't calling the function here, you're passing the Dialog
Manager the address of the function. Just as the name of an array signi­
fies the memory address of the start of the array, so does the name of a
function signify the address of the start of the function. Finally, because
SetDitem() is looking for a handle, you must typecast Do_User_Item to a
handle.

The user item function doesn't have to be named
Do_User_ltem(). You can give it any name you want,
as long as the name used in SetDltem(} matches the
name of the function you write.

2 5 4 Macintosh Programming Techniques

Do_User_Item() is a routine you write that defines what the Dialog
Manager should draw in the user item. The Dialog Manager will be
expecting Do_User_Item() to have the following form:

pascal void Do_User_Item(DialogPtr the_dialog, short the_item)

User items appeared when Pascal was the native language of the
Macintosh. The Dialog Manager is expecting to see a Pascal function
here, and you're giving it a C function. Macintosh C provides a pascal
keyword; use it here and the Dialog Manager will be happy. The
Do_User_Item() routine can have any name, but it must have two argu­
ments: a DialogPtr and a short. That's a requirement you must follow.

Keeping Figure 6-20 in mind, let's see what a user item function might look
like. From Figure 6-20 you can assume that the user clicks on one of the two
radio buttons, then the Display push button. One of two pictures-a baby or
an adult-will then be drawn into the rectangle that bounds the user item.

#define
#define

BABY_PICT_ID 128
ADULT_PICT_ID 129

short Current_Pict;

pascal void Do_User_Item(DialogPtr the_dialog, short the_item
{

short the_type;
Handle the_handle:
Rect user_rect:
GrafPtr old_port:
PicHandle pict_handle;

GetPort(&old_port) :
SetPort(the_dialog) :

GetDitem(the_dialog. the_item, &the_type. &the_handle. &user_rect) :

if (Current_Pict == BABY_PICT_ID)
pict_handle = GetPicture(BABY_PICT_ID) ;

else
pict_handle = GetPicture(ADULT_PICT_ID) :

DrawPicture(pict_handle. &user_rect) :

SetPort(old_port) :

Chapter 6: Dealing with Dialogs 2 5 5

Do_User_Item() draws to a dialog, so it first saves whatever port is cur­
rently active, then sets the port to the dialog. Next, it calls GetDitem()
to get the display rectangle, user rect, that bounds the user item.

The program in which Do_User_Item() appears has declared a global
variable to keep track of which of the two pictures is currently being
displayed. The value of this global variable is based on the settings of
the two radio buttons and gets set elsewhere in the program.
Do_User_Item() uses Current_Pict to decide which 'PICT' resource to
load and draw.

Earlier I said that SetDitem() was the device that binds the user item
function to the user item itself. You only have to perform this task once,
right after opening the dialog in which the user item appears. Here goes:

I/define USER_ITEM

DialogPtr the_dialog:
short the_type:
Handle the_handle:
Rect the_rect;
Ptr dlog_storage:

dlog_storage = NewPtr(sizeof(DialogRecord } } :
the_dialog = GetNewDialog(DIALOG_ID. dlog_storage, IN_FRONT);

if (the_dialog == NIL }
ExitToShell();

GetDitem(the_dialog. USER_ITEM. &the_type. &the_handle, &the_rect):
SetDitem(the_dialog, USER_ITEM. the_type. (Handle}Do_User_Item. &the_rect):

Current_Pict = BABY_PICT_ID:

At this point 'DITL' item #3, USER_ITEM, is bound to the
Do_User_Item() function. You set Current_Pict to one of the two 'PICT'
IDs to start things off. From here on, if the dialog needs updating you're
out of the loop; the Dialog Manager knows to call Do_User_Item() and
take care of things. Your code will never directly make a call to
Do_User_Item(). Rather amazing, isn't it? You can write a function, then
leave it to the Mac to call it when it wants!

2 5 6 Macintosh Programming Techniques

I've shown how to handle the case of a single user item in a dialog. What
if you want to have more than one? Now that you know what to do for
one, working with more than one will be simple. Honest. Figure 6-21
adds a second user item to the 'DITL' I've been using.

S Button

181 Check Box

O Show Baby ® Radio Button

O Show Adult (;! Control
·-·······-·······-···········-········-

(Display) T: Static Text

:g:::~~:~:!::!.~~:::::::::
(Done) & Icon

I .. Picture

IIfilJJ User Item

figure 6-21. A 'D/Tl' with two user items

You know that when a dialog containing a user item is first opened you
use GetDltem() and SetDltem() to associate the user item with the user
item function. If you have more than one user item, do this for each
item. Now, here's the really neat part. You don't have to write a separate
user item function for each item; the same one will do! Below is an
example. After that I'll modify the Do_User_ltem() routine to show how
this is possible.

#define USER_ITEM
#define USER_ITEM_2 6

dlog_storage = NewPtr(sizeof(DialogRecord)):
the_dialog Q GetNewDialog(DIALOG_ID, dlog_storage, IN_FRONT):

if (the_dialog == NIL)
ExitToShell ():

GetDitem(the_dialog, USER_ITEM. &the_type, &the_handle, &the_rect) ;
SetDitem(the_dialog, USER_ITEM. the_type, (Handle)Do_User_Item, &the_rect) ;

GetDitem(the_dialog, USER_ITEM_2, &the_type, &the_handle, &the_rect);
SetDitem(the_dialog, USER_ITEM_2. the_type, (Handle)Do_User_Item, &the_rect) :

Chapter 6: Dealing with Dialogs

Now, here's a slightly modified Do_User_Item():

//define
//define

BABY_PICT_ID 128
ADULT_PICT_ID 129

short Current_Pict:

pascal void Do_User_Item(DialogPtr the_dialog, short the_item
(

short
Handle
Re ct

the_type:
the_handle:
user_rect:

GrafPtr old_port:
PicHandle pict_handle:
Str255 the_string;

GetPort(&old_port) :
SetPort(the_dialog):

GetDitem(the_dialog, the_item, &the_type, &the_handle, &user_rect) :

switch (the_item)

case USER_ITEM:
if (Current_Pict == BABY_PICT_ID

pict_handle = GetPicture(BABY_PICT_ID) :

else
pict_handle = GetPicture(ADULT_PICT_ID):

DrawPicture(pict_handle. &user_rect) :
break:

case USER_ITEM_2:
if (Current_Pict == BABY_PICT_ID

GetlndString(the_string, STR_LIST_ID, BABY_TITLE_STR) :

else
GetlndString(the_string, STR_LIST_ID, ADULT_TITLE_STR):

FillRect(&user_rect, white):
MoveTo(user_rect.left, user_rect.bottom - 3) :
DrawString(the_string):
break:

SetPort{ old_port):

257

2 5 8 Macintosh Programming Techniques

You may now see how more than one user item can use the same rou­
tine. Look at the arguments for Do_User_Item(). One is the item number
of the item to update. That's the key to the function's power.

When the Dialog Manager calls Do_User_Item() it passes along the item
number of the user item that needs updating. You use that number when
calling GetDitem() to get the display rectangle of the user item. You also use
the item number in a switch statement. In the switch, the code appropriate
for this one item is executed. Neat, huh? But there's still more to come.

What if an alert or window is covering the dialog, and, once uncovered,
the dialog needs both user items updated? The Dialog Manager will fig­
ure this out and will call your Do_User_Item() routine twice. On the
first call it will pass the item number of one of the user items, and on the
second call it will pass the remaining item number. If you weren't
amazed before, you've got to be now!

If you could see each line of code executed during this updating you'd see
that the Do_User_Item() routine gets called twice. If you have a debugger
(and if you're using THINK C or Symantec C++, you do) you can test this
out on the source code that appears as this chapter's example program.
The source code is included on the disk that accompanied this book.

User items are considered mysterious entities by many programmers
new to the Macintosh and by many who aren't. And because of the way
the Dialog Manager gets involved with your code, user items really are a
little mystical. However, as you can see from the above examples, when
it comes to writing the code to handle them, they aren't all that tricky.

Color Dialogs
Back in Chapter 4 you saw that creating a color window involved calling
GetNewCWindow() instead of GetNewWindow(). That allowed your
window to properly display color graphics drawn with QuickDraw com­
mands. Additionally, you could modify the window's 'WIND' resource so
that parts of the window itself, such as the frame or content, contained
color. When you modified the 'WIND' in this way ResEdit added a 'wctb'
resource to your resource file-a window color table.

Chapter 6: Dealing with Dialogs 2 5 9

For a color dialog, there's no such pair of "GetNew" calls like there is for
a window. Instead, you call GetNewDialog() whether you want a mono­
chrome or color dialog. What does distinguish one from the other is
determined in the resource file.

Analogous to the 'wctb' for windows is the 'dctb' for dialogs-the dialog
color table. It gets created when you add color features to a 'DLOG'. In
ResEdit, adding color to the elements of a 'DLOG' works just same as for
a 'WIND'-refer back to Chapter 4 if you need a refresher.

Now, how does GetNewDialog() know whether it should open a mono­
chrome or color dialog? When it goes to load the 'DLOG' resource it
looks to see if there's a 'dctb' resource associated with the 'DLOG'. If
there is, it creates the new dialog record using a color graphics port. If
there is no color table resource for the 'DLOG', a standard monochrome
dialog will be created.

Chapter Program: DialogPlus
DialogPlus is this chapter's example program. When you run the pro­
gram you'll come face to face with a modeless dialog box and the
inescapable dancing man. The dialog contains an edit text box, a check
box, two radio buttons, and two push buttons. By no coincidence, this
program demonstrates the use of every item with which a user can inter­
act. A screen shot of DialogPlus in action is shown in Figure 6-22.

Clicking on a radio button lets the program know which of two pic­
tures it should display when the Heat Up Man push button is pressed.
As a bonus, a click of a radio button also changes the title displayed in
the Heat Up Man button-a simple little trick that never fails to amaze
onlookers.

Clicking on the Heat Up Man push button causes several things to hap­
pen. The program retrieves the user-entered text from the edit text box
and displays it in the smaller of the two user items. The program also
displays the proper picture in the second user item.

260 Macintosh Programming Techniques

Enter Title Here

I Enter Title Here

D Display window

®Hot Man

0 Cold Man

Heat Up Man

Done

New Window

New thermostat, please ...

Figure 6-22. A look at the DialogPlus program

If you click on the Heat Up Man push button, and if the check box is
checked, a window will open. The window serves two purposes. First,
it gives you a chance to look at the code for a program that contains
both a dialog and a window on the screen at the same time-a very
real-world kind of thing. Second, you can move the window on and off
the dialog to force the Dialog Manager to update things in the dialog,
including the two user items: the dancing man and the title that
appears above him.

To give a useful example of using an alert, DialogPlus throws up a stop
alert when the Done push button is clicked on. This alert gives the
user the option of canceling and returning to the program or quitting.

Program resources: DialogPlus.n.rsrc
DialogPlus contains a couple of resources you've seen before, the
'WIND' and the 'PICT', and a few that you're seeing for the first time in
an example program: an 'ALRT', a 'DLOG', and two 'DITL's.

Chapter 6: Dealing with Dialogs 2 61

You're familiar with the 'WIND' resource type, so I don't show it. You've
also seen plenty of 'PICT's, but since the two here are new, I show them
in Figure 6-23.

§0~~~ PI CTs from DialogsPlus. n .rsrc

!··1

::::+=:=:
• j====:.

, .. : .. "°'
128 129 121

Figure 6-23. The two 'PICT' s from Dialog Plus

DialogPlus uses the alert shown in figures at the start of this chapter.
The 'ALRT' has an ID of 129, and so does the 'DITL' associated with it.
Figure 6-24 shows the 'DITL'.

§0§ DITL ID = 129 from DialogsPlus.n.rsrc ~

!Are you sure you want to quit?~

[Cancellaj [~ Quit _J

•
Figure 6-24. The 'DITL' used by the 'ALRT'

DialogPlus has one 'DLOG', ID 128, that makes use of 'DITL' 128. Figure
6-25 shows that 'DITL'.

262 Macintosh Programming Techniques

§0 DITL ID= 128 from DialogPlus.11.rsrc ~~~I

llililililililili~lililililililililililllililli

llEnter Title Here llJI
ID Display window@Oj

IO Hot Man Lzj
IO Cold Man laj

[Heat Up Man~

[Done

Figure 6-25. The 'DITL' used by the 'DLOG'
•

Both an 'ALRT' and a 'DLOG' use the same type of resource to hold their
contents-a 'DITL'. Figure 6-26 shows the relationship of these three
types, as used in DialogPlus.

DLOGs from DialogPlus.11
Size Name

129 12

o Ills from DialogPlus.11.

Name

Size

176
84

Name

Figure 6-26. Both an 'ALRT' and a 'DLOG' use a 'D/Tl'

Chapter 6: Dealing with Dialogs

Program Listing: DialogPlus.c
/•+++I I I I I I I I I I I I I I I I I I Include Files +I I I I I I I I I I+++++++++++*/

#include (Traps.h)

/*I I I I I I I I 11 I I I I I I I I I Function prototypes +++++++++II I I I I I I I*/

void
void
void
void
void
pascal

void
void
void
Boolean
void
void
void
void
void

Initialize_Toolbox(void) :
Set_Check_Box(DialogPtr, short):
Set_Radio_Buttons(DialogPtr , short);
Open_Window(void) :
Open_Dialog(void) :
void Do_User_Item(DialogPtr, short);

Change_Man(DialogPtr, Rect):
Draw_Title(DialogPtr. Rect):
Handle_One_Event(void):
Handle_Dialog_Event(void):
Do_Climate_Button(DialogPtr);
Set_Climate_Button(DialogPtr):
Handle_Mouse_Down(void) :
Handle_Update(void) :
Close_Window(WindowPtr);

/*I I I I I I I I I I I I I I I I I Define global constants I I I I I I I I I I I I I I I I*/

#define WIND_ID 128

#define QUIT_ALERT 129

//define ALERT_QUIT_ITEM 1

//define DIALOG_ID 128

#define DONE_BUTTON 1

//define CLIMATE_BUTTON 2

//define WIND_CHECKBOX 3

//define HOT_RADIO_BUTTON 4

//define COLD_RADIO_BUTTON 5

#define MAN_USER_ITEM 6

//define EDIT_TEXT_ITEM 7

#define TITLE_USER_ITEM 8

#define MAN_HOT_PICT_ID 128

//define MAN_COLD_PICT_ID 129

//define HOT_TITLE 11 \pHeat Up Man 11

//define COLD_TITLE "\pCool Down Man"
//define CONTROL_ ON 1

/ldef ine CONTROL_ OFF 0

263

264 Macintosh Programming Techniques

/fdefine NIL OL

/fdefine IN_FRONT (WindowPtr)-lL

/fdef ine REMOVE_EVENTS 0

#define SLEEP_TICKS OL

lfdefine MOUSE_REGION OL

/*++++++++++++++++ Define global variables +++++++++++++++++•/

Boolean All_Done = FALSE;
Boolean Multifinder_Present:
EventRecord The_Event:
DialogPtr The_Dialog:
WindowPtr The_Window:
short Current_Pict:
short Old_Button_Num:

/*++++++++++++++++++++++ main listing I I I I I I Ill+++++++++++++++*/

void main(void)

Initialize_Toolbox();

The_Window = NIL:
The_Dialog = NIL;

Multifinder_Present

Open_Dialog():

(NGetTrapAddress(_WaitNextEvent. ToolTrap) !=

NGetTrapAddress(_Unimplemented, ToolTrap));

while (All_Done == FALSE
Handle_One_Event():

/*I I I I I I I I I I I I I I I I I+ Initialize the Toolbox ++++++++++++++++++*/

void Initialize_Toolbox(void)

InitGraf(&thePort):
InitFonts():
InitWindows():
InitMenus():
TEinit ();

Chapter 6: Dealing with Dialogs

InitDialogs(NIL);
FlushEvents(everyEvent. REMOVE_EVENTS) ;
InitCursor();

/*++++++++++++++ Respond to click in a check box +++++++++++++•/

void Set_Check_Box(DialogPtr the_dialog, short the_item)

short the_type:
Handle the_handle;
Rect the_rect;
int old_value;

GetDitem(the_dialog, the_item, &the_type, &the_handle, &the_rect);

old_value = GetCtlValue((ControlHandle)the_handle):

if (old_value == CONTROL_ON)
SetCtlValue((ControlHandle)the_handle, CONTROL_OFF):

else
SetCtlValue(ControlHandle)the_handle, CONTROL_ON):

/*++++++++++++ Respond to click in a radio button ++++++++++++•/

void Set_Radio_Buttons(DialogPtr the_dialog, short new_button_num

short the_type:
Handle the_handle;
Rect the_rect:

GetDitem(the_dialog, Old_Button_Num, &the_type, &the_handle, &the_rect);
SetCtlValue((ControlHandle)the_handle. CONTROL_OFF);

GetDitem(the_dialog. new_button_num, &the_type. &the_handle. &the_rect);
SetCtlValue((ControlHandle)the_handle, CONTROL_ON);

Old_Button_Num ~ new_button_num ;

/*+++++++++++++++++++ Open a single window +++++++++++++++++++*/

265

266 Macintosh Programming Techniques

void Open_Window(void)
I

Ptr wind_storage:
Str255 the_str:

if (The_Window == NIL

I
wind_storage = NewPtr(sizeof(WindowRecord)):
The_Window = GetNewWindow(WIND_ID, wind_storage, IN_FRONT):

if (The_Window NIL
ExitToShell():

ShowWindow(The_Window):

else
SelectWindow(The_Window):

/•++I I I I I I I I I+++++ Open a modeless dialog box +I I I II I I I I I I I I II I*/

void Open_Dialog(void
I

short the_type:
Handle the_handle:
Rect the_rect:
Ptr dlog_storage:

dlog_storage = NewPtr(sizeof(DialogRecord)):
The_Dialog = GetNewDialog(DIALOG_ID. dlog_storage. IN_FRONT):

if (The_Dialog == NIL
Exi tToShell () :

GetDitem(The_Dialog, MAN_USER_ITEM. &the_type. &the_handle, &the_rect):
SetDitem(The_Dialog, MAN_USER_ITEM, the_type, (Handle)Do_User_Item,

&the_rect):

GetDitem(The_Dialog, TITLE_USER_ITEM, &the_type, &the_handle, &the_rect):
SetDitem(The_Dialog, TITLE_USER_ITEM. the_type, (Handle)Do_User_Item,

&the_rect):

Current_Pict = MAN_HOT_PICT_ID:

Chapter 6: Dealing with Dialogs

Old_Button_Num = HOT_RADIO_BUTTON:
GetDitem(The_Dialog, Old_Button_Num, &the_type. &the_handle, &the_rect);
SetCtlValue((ControlHandle)the_handle, CONTROL_ON):

ShowWindow(The_Dialog) :

/•++++++++++++++ Define contents of user items++++++++++++++++•/

pascal void Do_User_Item(DialogPtr the_dialog, short the_item)
(

short the_type;
Handle the_handle;
Rect user_rect:

GetDitem(the_dialog, the_item, &the_type, &the_handle, &user_rect);

switch (the_item)

case MAN_USER_ITEM:
Change_Man(the_dialog, user_rect):

break:
case TITLE_USER_ITEM:

Draw_Title(the_dialog, user_rect):

break:

/•+++++++++++ Draw contents of one of two user items ++++++++++•/

void Change_Man(DialogPtr the_dialog. Rect user_rect)
(

GrafPtr old_port:

PicHandle pict_handle:

GetPort(&old_port):
SetPort(the_dialog):

if (Current_Pict == MAN_HOT_PICT_ID)
pict_handle = GetPicture(MAN_HOT_PICT_ID):

else
pict_handle = GetPicture(MAN_COLD_PICT_ID) ;

267

268 Macintosh Programming Techniques

DrawPicture(pict_handle, &user_rect):

SetPort(old_port):

/*+++++++++++ Draw contents of two of two user items++++++++++*/

void Draw_Title(DialogPtr the_dialog. Rect user_rect)

short the_type:

Handle the_handle:

Re ct the_rect:

GrafPtr old_port:
Str255 the_string;

GetPort(&old_port):

SetPort(the_dialog):

FillRect(&user_rect. white) :

GetDitem(the_dialog, EDIT_TEXT_ITEM. &the_type, &the_handle, &the_rect):

Get!Text(the_handle. the_string) :

MoveTo(user_rect.left, user_rect.bottom - 3):

Drawstring(the_string):

SetPort(old_port):

/*I I I I I I I I I I I I I I+++++ Handle a single event I I I I I I I I I I I I I I I I I I*/

void Handle_One_Event(void)

Boolean event_was_dialog;

if (Multifinder_Present == TRUE)

WaitNextEvent(everyEvent, &The_Event, SLEEP_TICKS, MOUSE_REGION):

else

SystemTask():

GetNextEvent(everyEvent, &The_Event) :

Chapter 6: Dealing with Dialogs

event_was_dialog = Handle_Dialog_Event{);

if (event_was_dialog == FALSE

switch (The_Event.what

case mouseDown:
Handle_Mouse_Down():

break:

case updateEvt:
Handle_Update():

break:

/•I I I I I I I I I I I I I I I Handle a dialog-related event I I I I I II I I I I I I I 1•/

Boolean Handle_Dialog_Event(void)
{

Boolean event_was_dlog = FALSE:
DialogPtr the_dialog:
short the_item:
short alert_item:

if (FrontWindow() != NIL
(

if (IsDialogEvent(&The_Event)

if (DialogSelect(&The_Event, &the_dialog, &the_item))

switch (the_item)

case DONE_BUTTON:
alert_item = StopAlert(QUIT_ALERT. NIL):
if (alert_item == ALERT_QUIT_ITEM)

All_Done = TRUE;

break:

case WIND_CHECKBOX:
Set_Check_Box(the_dialog, the_item):

break:

case HOT_RADIO_BUTTON:

269

270 Macintosh Programming Techniques

case COLD_RADIO_BUTTON:
Set_Radio_Buttons(the_dialog, the_item):
Set_Climate_Button(the_dialog) :

break:

case CLIMATE_BUTTON:
Do_Climate_Button(the_dialog) :
break:

event_was_dlog ~ TRUE:

return (event_was_dlog) :

/•+++++++++++++ Change the title of a push button +++++++++++++•/

void Set_Climate_Button(DialogPtr the_dialog)

short the_type:
Handle the_handle:
Rect the_rect:
short cntl_value:

GetDitem(the_dialog. CLIMATE_BUTTON, &the_type, &the_handle, &the_rect):

if (Old_Button_Num == HOT_RADIO_BUTTON)
SetCTitle((ControlHandle)the_handle. HOT_TITLE):

else
SetCTitle((ControlHandle)the_handle, COLD_TITLE):

/•+++++++++ Handle a click on the Climate push button I I I I I I I I I*/

void Do_Climate_Button(DialogPtr the_dialog)

short the_type:
Handle the_handle:
Rect the_rect:
short cntl_value:

GetDitem(the_dialog. WIND_CHECKBOX, &the_type, &the_handle, &the_rect):

Chapter 6: Dealing with Dialogs

cntl_value = GetCtlValue ((ControlHandle)the_handle):
if (cntl_value == CONTROL_ON)

Open_Window():

if (Old_Button_Num '"""' HOT_RADIO_BUTTON
Current_Pict = MAN_HOT_PICT_ID;

else
Current_Pict = MAN_COLD_PICT_ID;

GetDitem(the_dialog, MAN_USER_ITEM, &the_type. &the_handle, &the_rect);
Change_Man(the_dialog, the_rect);

GetDitem(the_dialog, TITLE_USER_ITEM, &the_type, &the_handle, &the_rect):
Draw_Title(the_dialog, the_rect):

/•++++++++++ Handle update of a window (not a dialog) +++++++++•/

void Handle_Update(void
{

WindowPtr the_window:
GrafPtr old_port:

the_window = (WindowPtr)The_Event.message:

GetPort(&old_port):
SetPort(the_window):

TextFont(systemFont):
TextSize(12):

BeginUpdate(the_window):
EraseRgn(the_window-)visRgn):
MoveTo(20, 20):
DrawString("\pNew thermostat, please ... "):

EndUpdate(the_window):

SetPort(old_port):

/•+++++++++++ Handle a click of the mouse button I I I I I I I I I I I I 1•/

void Handle_Mouse_Down(void

271

272 Macintosh Programming Techniques

WindowPtr the_window:

short the_part:

the_part FindWindow(The_Event.where, &the_window):

switch (the_part)
(

case inMenuBar:

break:

case inSysWindow:
SystemClick(&The_Event, the_window):

break;

case inDrag:
DragWindow(the_window, The_Event.where, &screenBits.bounds):

break:

case inGoAway:
if (TrackGoAway(the_window, The_Event.where))

Close_Window(the_window):

break:

case inContent:
if (the_window != FrontWindow()

SelectWindow(the_window):

break:

/•1 I I I I I I I I I I II I I I I Close one window +++++I I I I I I I I I I I 1+•/

void Close_Window(WindowPtr the_window)

HideWindow(the_window):
CloseWindow(the_window):
DisposPtr((Ptr)the_window):

The_Window = NIL:

Chapter 6: Dealing with Dialogs 2 7 3

Stepping through the code

Let's now walk through the DialogPlus code, pausing the longest at
information pertinent to this chapter.

The #define directives

DialogPlus can display a window with ID of WIND_ID, an alert with
ID QUIT _ALERT, and the modeless dialog that has a resource ID of
DIALOG_ID.

The alert has a Quit button that has a 'DITL' item number of
ALERT_QUIT_ITEM. The dialog has several items, each referred to in
the code by a define: DONE_BUTTON, CLIMATE_BUTTON,
WIND _CHECKBOX, HOT_RADIO_BUITON, COLD_RADIO_BUTTON,
MAN_USER_ITEM, EDIT_TEXT_ITEM, and TITLE_USER_ITEM.

The dialog can display one of two 'PICT' resources: MAN_HOT_PICT_ID
or MAN_COLD_PICT_ID. A title, dependent on the picture displayed,
will be written in the dialog. It will be either HOT _TITLE or
COLD_TITLE.

When a control such as a radio button is on it has a value of
CONTROL_ON. When it's off, it has the value of CONTROL_OFF.

Last, here are the five constants you're getting quite familiar with: the
GetNewWindow() parameters NIL and IN_FRONT; the initialization
parameter REMOVE_EVENTS; and the WaitNextEvent() parameters
SLEEP _TICKS and MOUSE_REGION.

#define WIND_ID 128

I/define QUIT_ALERT 129

//define ALERT_QUIT_ITEM
//define DIALOG_ID 128

I/define DONE_BUTTON 1

#define CLIMATE_BUTTON 2

I/define WIND_CHECKBOX 3

//define HOT_RADIO_BUTTON 4

//define COLD_RADIO_BUTTON 5

//define MAN_USER_ITEM 6

2 7 4 Macintosh Programming Techniques

/ldefine EDIT_TEXT_ITEM 7

/ldef ine TITLE_USER_ITEM 8
//define MAN_HOT_PICT_ID 128
//define MAN_COLD_PICT_ID 129
/Ide fine HOT_TITLE 11 \pHeat Up Man"
/Ide fine COLD_TITLE ''\pCool Down Man"

/Ide fine CONTROL_ ON 1

//define CONTROL_ OFF 0

/ldef ine NIL OL
/Ide fine IN_FRONT (WindowPtr)-11
//define REMOVE_EVENTS 0

//define SLEEP_TICKS OL
#define MOUSE_REGION OL

The global variables

DialogPlus uses All_Done, Multifinder_Present, and The_Event in deal­
ing with events. The program can have only one dialog open, so it simply
declares a global pointer, The_Dialog, to keep track of it The same is
done for the one window that can be displayed; that variable is
The_ Window. Current_Pict keeps track of which of two pictures is cur­
rently displayed in the dialog. There's always one radio button on, and its
item number is held in the variable Old_Button_Num.

Boolean
Boolean
EventRecord
DialogPtr
WindowPtr
short
short

All_Done = FALSE:
Multifinder_Present;
The_Event:
The_Dialog:
The_Window:
Current_Pict:
Old_Button_Num:

The main() function

The main() function performs the standard Toolbox initializations, then
sets the global window and dialog pointers to NIL to let the program
know that no windows or dialogs are on the screen. After a quick check
for MultiFinder, Open_Dialog() is called to open a modeless dialog. Then
it's on to the main event loop.

void main(void)

Chapter 6: Dealing with Dialogs 2 7 5

Initialize_Toolbox():

The_Window = NIL:
The_Dialog = NIL:

Multifinder_Present = (NGetTrapAddress(_WaitNextEvent, ToolTrap) !=

NGetTrapAddress(_Unimplemented, ToolTrap));
Open_Dialog () ;

while (All_Done == FALSE
Handle_One_Event();

Handling check boxes and radio buttons

This chapter showed you how to handle a mouse click in a check box.
DialogPlus takes the example code shown earlier in this chapter, sur­
rounds it with a pair of braces, and calls it Set_ Check_Box(). If you pass
in the resource 'DITL' item number of the clicked-on item and a pointer
to the dialog box it's in, as done here, you can use and reuse this routine
in all your programs. Without modification.

void Set_Check_Box(DialogPtr the_dialog, short the_item)

short the_type;

Handle the_handle;
Re ct the_rect;
int old_value:

GetDltem(the_dialog, the_item, &the_type, &the_handle, &the_rect) :

old_value = GetCtlValue((ControlHandle)the_handle):

if (old_value == CONTROL_ON)
SetCtlValue((ControlHandle)the_handle, CONTROL_OFF);

else
SetCtlValue(ControlHandle)the_handle, CONTROL_ON):

Like Set_Check_Box(), the radio button routine Set_Radio_Buttons() is a
rehash of the code fragment shown in this chapter. It too asks for the
item number of the clicked-on item and a pointer to the dialog. It then
turns off the old button before turning on the newly clicked one.

2 7 6 Macintosh Programming Techniques

void Set_Radio_Buttons(DialogPtr the_dialog. short new_button_num)

short the_type:
Handle the_handle:

Rect the_rect:

GetDitem(the_dialog, Old_Button_Num, &the_type, &the_handle, &the_rect) :

SetCtlValue((ControlHandle)the_handle, CONTROL_OFF):

GetDitem(the_dialog, new_button_num, &the_type. &the_handle, &the_rect ; ,

SetCtlValue((ControlHandle)the_handle, CONTROL_ON):

Old_Button_Num = new_button_num :

Opening a window and a modeless dialog

DialogPlus allows just one window to be opened. If it's already open, the
pointer to it won't be empty, or nil. In that case, Open_ Window() will
simply call SelectWindow() to activate it. Otherwise it opens a window
with a call to GetNewWindow().

void Open_Window(void

Ptr wind_storage:
Str255 the_str;

if (The_Window == NIL
(

wind_storage = NewPtr(sizeof(WindowRecord));

The_Window = GetNewWindow(WIND_ID, wind_storage, IN_FRONT) ;

if (The_Window == NIL
ExitToShell():

ShowWindow(The_Window):

else

SelectWindow(The_Window):

The dialog that opens in DialogPlus has two user items in it. So
Open_Dialog() calls SetDitem() twice to tell the Dialog Manager to be

Chapter 6: Dealing with Dialogs 2 7 7

on the watch for a routine called Do_User_Item() when it's to update
time.

The dialog's going to display one of two pictures, so Open_Dialog()
assigns Current_Pict the 'PICT' ID of one of them here. You must turn
on one of the radio buttons when you open the dialog; the Dialog
Manager doesn't do that for you. Since I decided to show the hot picture,
that's the radio button I should, and do, turn on.

void Open_Dialog(void
(

short the_type:
Handle the_handle;
Rect the_rect:
Ptr dlog_storage:

dlog_storage = NewPtr(sizeof(DialogRecord));
The_Dialog = GetNewDialog(DIALOG_ID, dlog_storage, IN_FRONT):

if (The_Dialog == NIL
Exi tToShell () ;

GetDitem(The_Dialog. MAN_USER_ITEM, &the_type. &the_handle, &the_rect):
SetDitem(The_Dialog, MAN_USER_ITEM. the_type. (Handle)Do_User_Item.

&the_rect):

GetDitem(The_Dialog, TITLE_USER_ITEM. &the_type, &the_handle, &the_rect):
SetDitem(The_Dialog, TITLE_USER_ITEM, the_type, (Handle)Do_User_Item.

&the_rect);

Current_Pict = MAN_HOT_PICT_ID;

Old_Button_Num = HOT_RADIO_BUTTON:
GetDitem(The_Dialog, Old_Button_Num, &the_type. &the_handle, &the_rect):
SetCtlValue((ControlHandle)the_handle. CONTROL_ON):

ShowWindow(The_Dialog) ;

2 7 8 Macintosh Programming Techniques

Drawing user items
This program's Do_User_Item() routine has the same format as the one
shown in this chapter. Instead of drawing right here within the function,
Do_User_Item() calls either Change_Man() or Draw _Title() to do it.

pascal void Do_User_Item(DialogPtr the_dialog, short the_item)

short the_type;
Handle the_handle:
Rect user_rect:

GetDitem(the_dialog, the_item, &the_type, &the_handle. &user_rect):

switch (the_item)

case MAN_USER_ITEM:
Change_Man(the_dialog. user_rect):
break:

case TITLE_USER_ITEM:
Draw_Title(the_dialog. user_rect);

break:

If the user item displays the picture that needs updating, the program
calls Change_Man(). This routine looks at Current_Pict to see which
'PICT' to load and display. Notice that the user item's display rectangle
is passed to Change_Man() so that the routine knows where to draw it.

void Change_Man(DialogPtr the_dialog, Rect user_rect)
{

GrafPtr old_port;
PicHandle pict_handle;

GetPort(&old_port };
SetPort(the_dialog):

if (Current_Pict == MAN_HOT_PICT_ID)
pict_handle = GetPicture(MAN_HOT_PICT_ID) ;

else
pict_handle = GetPicture(MAN_COLD_PICT_ID):

DrawPicture(pict_handle, &user_rect) :

Chapter 6: Dealing with Dialogs 2 79

SetPort(old_port) ;

If the smaller of the two user items is to be updated, Draw _Title() does
the work. Before drawing a title in the user item, Draw _Title() makes
sure to clear out the old title by calling FillRect() to white out the user
item. Then Draw _Title() gets a handle to the text edit box to use in a
call to GetlText(). With the contents of the edit box retrieved, its a sim­
ple matter to move the graphics pen into the user item box and draw
the string.

void Draw_Title(DialogPtr the_dialog, Rect user_rect)

I

short the_type:
Handle the_handle:
Re ct the_rect:
Graf Ptr old_port:
Str255 the_string;

GetPort(&old_port):
SetPort(the_dialog);

FillRect(&user_rect, white);

GetDitem(the_dialog, EDIT_TEXT_ITEM, &the_type, &the_handle, &the_rect);

GetIText(the_handle, the_string):

MoveTo(user_rect.left, user_rect.bottom - 3) ;
Drawstring(the_string):

SetPort(old_port):

Event handling
Before processing an event, Handle_ One_Event() calls Handle_Dialog_Event()
to give that routine the opportunity to handle it. If Handle_Dialog_Event()
doesn't handle the event, then the event was one of two things.

1. The event was window-related; handle the event in the switch as
done in the past.

2 8 0 Macintosh Programming Techniques

2. The event was in the dialog's title bar, not its content region. A
dialog's title bar is the same as a window's title bar, so you can
again use the old window code found in the switch section to
drag the dialog. As I so often say, "A title bar is a title bar "

void Handle_One_Event(void)

Boolean event_was_dialog:

if (Multifinder_Present == TRUE
WaitNextEvent(everyEvent, &The_Event, SLEEP_TICKS, MOUSE_REGION):

else

SystemTask():
GetNextEvent(everyEvent, &The_Event);

event_was_dialog = Handle_Dialog_Event():

if (event_was_dialog == FALSE
{

switch (The_Event.what

case mouseDown:
Handle_Mouse_Down():

break:
case updateEvt:

Handle_Update():
break:

Handle_Dialog_Event() only handles an event if it's dialog-related.
Because the user items aren't enabled in the 'DITL', the Dialog Manager
ignores mouse clicks on them. Figure 6-2 7 shows how a mouse button
click on each dialog item is handled.

A click here •••

I Enter Title Here

D Display window

®Hot Man
O Cold Man

Heat Up Man

Done

Chapter 6: Dealing with Dialogs 2 8 1

• .. results In this:

Dialog Manager handles things.

Call SeLCheck_Box() to toggle check box.

Call SeLRadio_Button() to turn on.
Call SeLClimate_Button() to change.
title displayed in push button.

Call Do_Climate_Button() to display title
and correct picture, and to open a window

Put up stop alert. If user quits, set
All_Done to true.

Figure 6-27. How items are handled

Boolean Handle_Dialog_Event(void)

Boolean event_was_dlog = FALSE:
DialogPtr the_dialog;
short the_item:
short alert_item:

if (FrontWindow() != NIL
(

if (IsDialogEvent(&The_Event
(

if (DialogSelect(&The_Event, &the_dialog. &the_item))
(

switch (the_item)

case DONE_BUTTON:
alert_item = StopAlert(QUIT_ALERT, NIL):
if (alert_item == ALERT_QUIT_ITEM)

All_Done = TRUE;
break;

case WIND_CHECKBOX:
Set_Check_Box(the_dialog, the_item):

2 8 2 Macintosh Programming Techniques

break:

case HOT_RADIO_BUTTON:
case COLD_RADIO_BUTTON:

Set_Radio_Buttons(the_dialog, the_item) :
Set_Climate_Button(the_dialog) :

break;

case CLIMATE_BUTTON:
Do_Climate_Button(the_dialog);

break;

event_was_dlog = TRUE;

return (event_was_dlog) :

A click on a radio button results in a call to Set_Climate_Button() to
change the title displayed in the push button. This is accomplished by a
call to SetCTitle()-set control title. I set the button title to match the
current radio button setting-Old_Button_Num.

void Set_Climate_Button(DialogPtr the_dialog)
(

short the_type:
Handle the_handle;
Rect the_rect:
short cntl_value;

GetDitem(the_dialog, CLIMATE_BUTTON, &the_type, &the_handle, &the_rect):

if (Old_Button_Num == HOT_RADIO_BUTTON)
SetCTitle((ControlHandle)the_handle, HOT_TITLE):

else
SetCTitle((ControlHandle)the_handle, COLD_TITLE);

Clicking on the radio button called the Climate button performs a few
actions, all taken care of in Do_Climate_Button(). First there is a call to
GetDitem() to get a handle to the check box item. Then a call to
GetCtlValue() is made to find the value of the check box. Remember
that you must typecast the generic handle retu.nled by GetDitem() into a

Chapter 6: Dealing with Dialogs 2 8 3

ControlHandle, as done here. If the check box is on, a call to
Open_ Window() results in a display of a small window on the screen.

Next, I determine which radio button is on so that I can display the prop­
er picture. I then set Current_Pict to the appropriate 'PICT' ID. To do the
actual picture drawing, Do_Climate_Button() calls Change_Man(), pass­
ing along the display rectangle of the user item that will hold the picture.
This is the same Change_Man() routine called by Do_User_Item() during
dialog updating.

The routine ends with a call to Draw _Title(). This function displays a
title in the second user item rectangle.

void Do_Climate_Button(DialogPtr the_dialog)
(

short the_type;
Handle the_handle;
Rect the_rect;
short cntl_value;

GetDitem(the_dialog, WIND_CHECKBOX. &the_type. &the_handle, &the_rect);
cntl_value = GetCtlValue ((ControlHandle)the_handle) :
if (cntl_value == CONTROL_ON)

Open_Window():

if (Old_Button_Num == HOT_RADIO_BUTTON)

Current_Pict = MAN_HOT_PICT_ID:

else
Current_Pict = MAN_COLD_PICT_ID:

GetDitem(the_dialog, MAN_USER_ITEM. &the_type, &the_handle. &the_rect);
Change_Man(the_dialog, the_rect):

GetDitem(the_dialog, TITLE_USER_ITEM. &the_type. &the_handle. &the_rect);
Draw_Title(the_dialog, the_rect);

If Handle_Dialog_Event() doesn't handle the current event, it returns a
value of false to Handle_One_Event(). The switch at the bottom of
Handle_One_Event() is then entered. If it's an update event, and
Handle_Dialog_Event() didn't handle it, it must be window-related.
There's only one window that can be on the screen, so there's no deci­
sion-making to perform here; just write to the window.

284 Macintosh Programming Techniques

void Handle_Update(void

WindowPtr the_window:
GrafPtr old_port:

the_window = (WindowPtr)The_Event.message:

GetPort(&old_port):
SetPort(the_window) :

TextFont(systemFont):

TextSize (12) :

BeginUpdate(the_window):

EraseRgn(the_window-)visRgn):

MoveTo(20, 20):

DrawString("\pNew thermostat, please ... "):

EndUpdate(the_window):

SetPort(old_port):

Handle_Dialog_Event() doesn't handle a mouse down event in a title bar,
whether it's a window or dialog. That takes us to Handle_Mouse_Down().
This routine, written as it was for windows back in Chapter 5, works here
for the window or dialog.

void Handle_Mouse_Down(void

WindowPtr the_window:

short the_part:

the_part = FindWindow(The_Event.where, &the_window) :

switch (the_part)

case inMenuBar:
break:

case inSysWindow:

SystemClick(&The_Event. the_window):

break:

case inDrag:

Chapter 6: Dealing with Dialogs 2 8 5

DragWindow(the_window. The_Event.where, &screenBits.bounds) :
break:

case inGoAway:
if (TrackGoAway(the_window. The_Event.where))

Close_Window(the_window) :

break:

case inContent:
if (the_window != FrontWindow()

SelectWindow(the_window):
break:

A click in the window's go away box closes the window. I allocated the
memory for the window myself, so I call CloseWindow() and
DisposPtr(). The window's gone, so I set the global pointer The_ Window
to nil so that next time Open_ Window() is called it will know that a
window isn't already open.

void Close_Window(WindowPtr the_window)

HideWindow(the_window):
CloseWindow(the_window) :
DisposPtr((Ptr)the_window) ;
The_Window = NIL;

Chapter Summary
When a user makes a mistake, or is about to do something that could
result in a loss of data, a Macintosh program will display an alert. The
size and screen location of an alert is defined by an 'ALRT' resource. The
items in the alert, such as an informative message and a Cancel or OK
button, are defined in a 'DITL' resource. The Toolbox routine Alert() dis­
plays an alert, using the ID of the passed-in 'ALRT' resource ID.

Dialog boxes can be modal-fixed on the screen; or they can be modeless­
movable. The style, size, and screen location of both types are defined by
the 'DLOG' resource type. Like an 'ALRT', a 'DLOG' has a related 'DITL'
that defines the items that are to appear in the dialog box.

2 8 6 Macintosh Programming Techniques

The Toolbox routine ModalDialog() does much of the work in handling a
modal dialog. It tracks the user's mouse movements and reports back to
the program when a user clicks on an item in the dialog.

Modeless dialog boxes require more work on the programmer's part. The
Toolbox routine IsDialogEvent{} determines if a dialog box was the front­
most window when an event occurred. If so, the Toolbox routine
DialogSelect() is called to handle updates or activates to the dialog.
DialogSelect() also tracks the user's actions to determine if he clicked on
an item in the dialog.

Dialog boxes can contain several types of items. Push buttons, radio but­
tons, check boxes, and edit text boxes are the most common. The user
item is a less used but very powerful item type. This item type allows an
item to change as a program executes.

-·

~ ·/- .
~ .

Managing Menus

Windows and menus are what originally set Macintosh programs
apart from those designed for other computers. Menus allow an

application to be nonlinear; that is, it doesn't follow a set sequence of
events. Thanks to menus, a program user is free to perform different
actions each time he runs a program.

In this chapter you'll learn about the two resource types used to create
menus. The 'MENU' is the template for a single menu. The 'MBAR'
resource is a collection of 'MENU's used to form a single menu bar.

Here you'll learn that once you get a handle to a menu you can make
several changes to the characteristics of a menu and its menu items.
You'll disable and enable a menu, change the text and style of text for a
menu item, and place a check mark by an item.

About Menus
Every application has its own m enu bar running along the top of the
screen. Your program will define the individual menu names in the

287

2 8 8 Macintosh Programming Techniques

menu bar-the menus. It will also define all the menu items-the indi­
vidual items that appear in each menu.

As conditions in a program change, the action of a menu item may not
be applicable. At those times you'll want to disable that menu item.
Disabling the item dims it and makes it impossible to select. Later, when
the action of that menu item is usable, you can enable it to again make
it selectable.

You can use separator lines in a menu to logically group menu items.
Though technically an item, a separator line is never selectable. It serves
only to visually divide a menu into sections.

For a commonly used menu command you can define a keyboard equiv­
alent. Rather than making the selection from the menu, the keyboard
equivalent allows the user to carry out the menu option by using the
command key in conjunction with some other key.

Figure 7-1 shows a menu bar that contains the three standard menus
found in almost all Macintosh programs: the Apple, File, and Edit
menus.

Menu

figure 7-J. A Macintosh menu

Chapter 7: Managing Menus 2 8 9

Menu Resources
You'll rely on two resource types to define the menu and menu items for
your program. The 'MENU' resource defines a single menu and the items
in it. The 'MBAR' resource groups the individual 'MENU's together into
a single menu bar.

The 1MENU' resource
For each menu that your program will have in its menu bar, you'll create
a 'MENU' resource. Let's step through that process now.

As is the case for any new resource, select "Create New Resource" from
ResEdit's Resource menu. Then double-click on MENU in the Select New
Type dialog box. You'll get a window like the one shown in Figure 7-2.

You'll want one of your 'MENU's to represent the Apple menu-the one
that holds desk accessories. To do this click, on the ti menu radio but­
ton, as shown in Figure 7-2.

For any menu but the a menu,
click here and type in the menu title

~ Enebled

s (Apple menu)

Color

Title: l•I
Item TeHt Default: I I
Menu Background: D

Click here for the a menu- you don't need a title.

Figure 7-2. ResEdit's 'MENU' editor

290 Macintosh Programming Techniques

To add menu items to a 'MENU', whether the Apple menu or another
menu, choose "Create New Item " from the Resource menu. Then type
the menu item name. Figure 7-3 illustrates typing in the About ... item
that is typically the first menu item in the Apple menu.

[!l
Rbout Mathlu

MENU ID = 128 from Mathlutor. rr .rsrc

0

~

Selected Item: 181 Enabled

TeKt: @ I Rbout Mathlu

0 ·-·-··· (separator line)

Color

O has Submenu TeKt: l•I
Cmd-Key: D l•l

Mark: I None ,..11•1
Figure 7-3. Typing in a menu item name

To add a separator line between menu items, as is done to separate the
About... item from desk accessory names, again select "Create New
Item" from the Resource menu. Instead of typing in a name, click the
(separator line) radio button, as shown in Figure 7-4.

MENU ID= 128 from Mathlutor.rr.rsrc

i Selected I tern:
1--..._--------~0~ 1

0 Enabled

I I ! TeKt: 0 ~------------'
i
!

i @ -···-···· (separator line)
i

I 0 tw~ Sutlrn<rnu
!

I
i

-0- I
Figure 7-4. Adding a separator line in a menu

Color

TeKt: l•J

Chapter 7: Managing Menus 2 91

Figure 7-4 represents a completed 'MENU'. An application's Apple menu
contains desk accessories, but you don't add them here because they vary
&om computer to computer. You'll do that with a Toolbox call when you
set up your program's menu bar in the source code.

You need a 'MENU' resource for each menu your program displays. Figure
7-5 shows a second menu-the traditional File menu. Apple recommends
that all programs contain the Apple, File, and Edit menus. They're function­
al, and they give users a sense of familiarity when your program starts up.

MENU ID = 129 from MathTutor: rr .rs re

!
,...N_e·w~~~~~~~~........,....,o i Entire Menu: r8l Enabled

···-···························· :

! Title:
Quit

I
i
!
I

0 s (Rpple menu)

Color

Title: l•I
Item TeHt Default: l•I
Menu Background: 0 ol

~~~~~~~~~~~; 

Figure 7-5. A File menu 'MENU' resource 

The 1 MBAR' resource 
You've defined each of your program's menus with 'MENU' resources. 
Now its time to package them together using an 'MBAR' resource. The 
'MBAR' defines which 'MENU's will appear in your program's menu bar 
and in what order. 

Why would you have to specify which 'MENU's to use 
in the menu bar? Why would you define a 1 MENU' that 
wouldn't be there? A program can have more than 
one menu bar. Depending on certain conditions during 
the running of the program, the menu bar will swikh 
as the program runs. 



2 9 2 Macintosh Programming Techniques 

ResEdit makes creating an 'MBAR' resource easy. Select "Create New 
Resource" from the Resource menu. You'll see an 'MBAR' editor like 
that shown in Figure 7-6. 

_o MORR ID 128 from Mathlutor. 11 .rs re 

11 of menus 0 

1) ***** 

Figure 7-6. The 'MBAR' editor in ResEdit 

The first 'MENU' that you add will be the leftmost menu in a program's 
menu bar, so the first 'MENU' should be the Apple menu. Click on the 
number 1 in the 'MBAR' editor, then select "Insert New Field" from the 
Resource menu. Enter the ID of the Apple 'MENU' in the box that 
appears. Since the Apple 'MENU' created earlier had an ID of 128, that's 
what is entered in Figure 7-7. 

After you've entered the resource ID of each 'MENU', the 'MBAR' is 
complete. 

Menu Source Code 
The interface between the Menu Manager and you, the programmer, is a 
particularly good one. There are only a few Toolbox commands you need 
to become familiar with in order to work with menus. 



Click on the number, then 
select Insert New Field 
from the Resource menu 

111enus 3 

1 ) ***** 
Menu res ID 128 

2) ***** 
Menu res ID I 129 

3) ***** 
Menu res ID I 130 

'I) ***** 

Chapter 7: Managing Menus 2 9 3 

ResEdit will then add 
this box - type a 'MENU' 
resource ID in it 

Order in which 
menus will be 
placed in the 
menu bar, from 
left to right 

Figure 7-7. Adding 'MENU's to an 'MBAR' 

Setting up the menu bar 
When your program starts up, one of the first things it should do is set up 
the menu bar; the user will be expecting it to be there immediately. 
Calling GetNewMBar() does this for you. Pass this routine the ID of an 
'MBAR' resource and it will create a menu list. The list contains a han­
dle to each individual menu-each 'MENU' resource. Here's a call that 
uses an 'MBAR' with an ID of 128: 

#define MENU_BAR_ID 128 

Handle menu_bar_handle; 

menu_bar_handle - GetNewMBar( MENU_BAR_ID ) ; 

if ( menu_bar_handle -- NIL 
Exi tToShell () ; 

It's unlikely that the Menu Manager will fail in its attempt to load your 
menu resources, but it's a good idea to ensure that the menu bar has been 
set up. Check the handle returned by GetNewMBar() to verify that it's 
not empty. A missing menu bar, while a rarity, is one of those severe 



294 Macintosh Programming Techniques 

errors that spells immediate doom to a program. The user will have no 
way of quitting, so you'll want to do that for him with a call to 
ExitToShell(). 

With the menu list established, call SetMenuBar() to install the individ­
ual menus within the menu bar. 

SetMenuBar( menu_bar_handle ): 
DisposHandle( menu_bar_handle ): 

After setting the menu bar, you no longer need the handle to it; dispose 
of it with a call to DisposHandle(). 

This chapter later discusses several different menu item properties you 
can change, such as dim.ming an item to disable it. Any time you work 
with a menu item you'll need a handle-a MenuHandle-to the menu 
that item is in. Given the resource ID of a 'MENU' (not an 'MBAR'), 
GetMHandle() returns a MenuHandle to that menu. 

While you're setting up the menu bar you can get a MenuHandle to each 
individual menu. If you save each as a global variable they'll be available 
any time your program needs to work with a menu or menu item. Here 
you get a handle to the Apple menu. APPLE_MENU_ID is the resource 
ID of the 'MENU' that represents the Apple menu. 

#define APPLE_MENU_ID 128 

MenuHandle Apple_Menu: 

Apple_Menu = GetMHandle( APPLE_MENU_ID ); 

If your program has an Apple menu, and it should, you'll need to make a 
call to AddResMenu(). The contents of the Apple menu vary from com­
puter to computer, so this menu needs some special treatment. 

Prior to System 7, desk accessories were stored as resources of type 
'DRVR' in the system resource file. On pre-System 7 Macs these 
resources will have to be placed into the Apple menu. For System 7, 
desk accessories and anything else the user wants in the Apple menu 
are stored in the Apple Menu Items folder in the System Folder. The 



Chapter 7: Managing Menus 2 9 5 

contents of this folder, collectively called desktop ob;ects, will have to 
be added to the Apple menu. 

'DRVR' stands for driver. A driver is the middleman in 
charge of the transfer of data between a program and 
a device. A printer is an example of a device. 

Whether your program is running on System 7 or an earlier system, a call 
to AddResMenu() will fill the Apple menu. 

AddResMenu ( Apple_Menu , ' DRVR ' ) ; 

With the menus all loaded there's one last thing you must do-display 
the menu. A call to DrawMenuBar() accomplishes this: 

DrawMenuBar( ): 

I've grouped the menu set up calls into one nice neat function, and here 
it is. I've included three calls to GetMHandle(). That's one call for each 
of the three standard menus included in just about every program: the 
Apple, File, and Edit menus. 

#define MENU_BAR_ID 128 

/fdefine APPLE_MENU_ ID 128 

#define FILEJIENU_ID 129 

#define EDIT_MENU_ID 130 

MenuHandle Apple_Menu ; 
MenuHandle File_Menu: 
MenuHandle Edit_Menu; 

voi d Set_Up_Menu_Bar ( void 
( 

Handle menu_bar_handle : 

menu_bar_handle - GetNewMBar( MENU_BAR_ID ) ; 

if ( menu_bar_handle ~ NIL 
Exi tToShell () : 



296 Macintosh Programming Techniques 

SetMenuBar( menu_bar_handle ) ; 

DisposHandle( menu_bar_handle ) : 

Apple_Menu - GetMHandle( APPLE_MENU_ID ) ; 
File_Menu - GetMHandle( FILE_MENU_ID ): 
Edit_Menu a GetMHandle( EDIT_MENU_ID ) ; 

AddResMenu( Apple_Menu. ' DRVR' ) ; 

DrawMenuBar() : 

Handling a click in a menu 

A mouse click, whether in a menu bar or not, is an event. It will be cap­
tured as a mouseDown event in your program's Handle_One_Event() 
function. From there it will be passed on to a routine that handles strict­
ly mouse down events. Here's a refresher: 

void Handle_One_Event( void ) 

get event here ) 

switch ( The_Event.what 

case mouseDown: 
Handle_Mouse_Down(); 

break ; 

handle any other event type J 



Chapter 7: Managing Menus 2 9 7 

In the past I've used Handle_Mouse_Down() to deal with mouse clicks in 
various parts of a window. Handle_Mouse_Down() will still handle all 
those tasks, but it will additionally take care of a mouse click in the 
menu bar. Here's the new Handle_Mouse_Down(): 

void Handle_Mouse_Down( void 

WindowPtr the_window; 
short the_part; 
long menu_choice; 

the_part = FindWindow( The_Event.where. &the_window ) ; 

switch ( the_part ) 
{ 

case inMenuBar: 
menu_choice = MenuSelect( The_Event.where ) ; 
Handle_Menu_Choice( menu_choice ) : 
break; 

also handle inDrag, inGoAway, etc. ] 

MenuSelect() is the routine that handles menus. This routine will save 
you a great deal of programming effort. In fact, it's a Toolbox routine so 
powerful that you'll want to kiss an Apple Toolbox developer for creating 
it for you! When the user clicks the mouse button in the menu bar, 
MenuSelect() takes control until the user releases the button. Here's a 
summary of what MenuSelect() does: 

• It tracks the mouse, dropping down menus as the mouse travels 
across the menu bar. 

• It highlights menu items as the user moves the mouse up and 
down a dropped down menu. 

• It flashes a menu item a few times when the user finally makes a 
selection. 

• It determines the item number and ID of the 'MENU' resource 
for a menu selection the user makes. It returns this information 
to your program for processing. 



2 9 8 Macintosh Programming Techniques 

Take a good look at a call to MenuSelect(). Menu Select() returns both the 
ID of the 'MENU' resource that holds the selected menu item and the 
item number itself. Yet MenuSelect() only returns one value-a variable 
of type long. How can this be so? 

long menu_choice; 

menu_choice = MenuSelect( The_Event.where ); 

MenuSelect() can do this feat by treating the long variable as two sepa­
rate variables. It stores both the 'MENU' ID and the menu item number 
within the same variable. I'll discuss the simple means to extract these 
two values in just a bit. 

With the display of the menu complete, and the menu selection returned 
to your program, call a routine to take care of the menu selection. This 
one is called Handle_Menu_Choice(): 

void Handle_Menu_Choice( long menu_choice ) 

int the_menu: 
int the_menu_item; 

if ( menu_choice != 0 
( 

the_menu = HiWord( menu_choice ): 
the_menu_item = LoWord( menu_choice ): 

switch ( the_menu ) 

case APPLE_MENU_ID: 
Handle_Apple_Choice( the_menu_item ) : 
break; 

case FILE_MENU_ID: 
Handle_File_Choice( the_menu_item ) : 
break: 

case EDIT_MENU_ID: 
Handle_Edit_Choice( the_menu_item ): 
break; 

HiliteMenu( 0 ) : 



Chapter 7: Managing Menus 299 

If the user scans the menu bar and then backs out of his decision to 
make a menu selection, MenuSelect() will return a value of 0. 
Handle_Menu_Choice() checks to see if this is the case. If not, it's time 
to extract those two pieces of information tucked inside variable 
menu_ choice. 

MenuSelect() stores both the 'MENU' ID and the menu item number 
in one long variable. It places the 'MENU' ID in the upper 16 bits of 
the 32-bit long variable and the menu item number in the lower 16 
bits. Since the Toolbox performs a little trick like this, it also conve­
niently provides a couple of routines for extracting the two pieces of 
information from the one variable: HiWord() and LoWord(). Figure 7-8 
shows this. 

menu_choice = MenuSelect( The_Event where ) : 

1~ menu_choice 

'MENU' resource ID item number of menu item 

the_menu = HiWord( menu_choice ) : 

the_menu_item = LoWord( menu_choice ) : 

Figure 7-B. Extracting the menu and menu item from one variable 

Once you know which menu was clicked in, all you need do is branch to 
a routine written to handle mouse clicks in that particular menu. Of 
course, pass the item number of the selected menu item. The routine 
Handle_Menu_Choice() works for a program that has just the three stan­
dard menus: Apple, File, and Edit. 



300 Macintosh Programming Techniques 

When a menu item is selected, MenuSelect() inverts the menu name in 
the menu bar. After the menu item selection is handled, your code must 
call HiliteMenu() to again invert the menu name back to its original state. 

Handling a click in the Apple menu 

How the selection of a particular menu item is handled depends on the 
item selected. Your program may have a menu item that does things no 
other program does. But some menu choices are standard fare and are 
always handled in much the same way. The items in the Apple menu fall 
into this category. 

The first menu item in the Apple menu is usually the About... item. 
Selecting this item puts up an alert that displays some information about 
the program's copyright. You learned how to display an alert in the previ­
ous chapter. 

The remaining items in the Apple menu are desk accessories or, under 
System 7, any programs or documents the user places in the Apple Menu 
Items folder. Regardless of what the item is, a call to OpenDeskAcc() 
will get things going. Pass OpenDeskAcc() the name of the item to open. 
You can get the name by calling Getltem(). This routine returns the text 
of a menu item in any menu, not just the Apple menu. 

//define ABOUT_ALERT_ID 128 

MenuHandle Apple_Menu: 

void Handle_Apple_Choice( int the_item ) 
{ 

Str255 desk_acc_name: 
int desk_acc_number: 

switch ( the_item ) 

case SHOW_ABOUT_l_ITEM 
Alert( ABOUT_ALERT_ID, NIL ) : 

break: 

default : 
Getitem( Apple_Menu. the_item, desk_acc_name ): 



Chapter 7: Managing Menus 3 0 1 

desk_acc_number = OpenDeskAcc( desk_acc_name ) : 
break; 

Handling a click in other menus 

The format of Handle_Apple_Choice() is the format all your menu­
handling routines will have. Pass the item number of the selected 
menu item to the routine, then use a switch statement to get to the 
code written for that particular item. This chapter's example program 
gives several options. 

This section finishes with a figure that recaps how a click of the mouse 
gets transformed into a menu selection-Figure 7-9. 

Handle_One_Event() 

Mouse click 

Handle_Mouse_Down() 

In the menu bar 

Handle_Menu_Choice() 

In the Mymenu menu 

Handle_MyMenu_Choice() 

Handle according 
to menu item selected 

Figure 7-9. The path from mouse down to menu selection 



302 Macintosh Programming Techniques 

Keyboard Equivalents 
To make things easy for users you'll want to provide them with key­
board equivalents to the most common menu selections. A keyboard 
equivalent, or keyboard alias, allows the user to bypass the menu bar and 
make a menu selection from the keyboard. Pressing the Command key 
in conjunction with one or more other keys does the same thing as using 
the menu. 

Consistency between Macintosh applications is essential to the Apple 
philosophy of keeping the Mac user-friendly. To this end Apple has 
reserved some of the keyboard equivalents for common commands found 
in many Macintosh programs. You can use any of these reserved combi­
nations in your own programs, but you should use them only for the 
commands shown in Table 7-1. 

Ta&/e 7-1. Keyboard equivalents reserved by Apple 

Keyboard Equivalent Command 

3€ -A Select All ........................................................... -.............................................................................. . 
3€-C Copy ............................................................................................................................................. 
3€-N New 

3€-0 Open ... ......................................................................................................................................... 
3€-P Print... 

············································································································-···························· 
3€-Q Quit 

3€-S Save ............................................................................................................................................ 
3€-U Paste 

3€-W Close 

3€-H Cut 

3€-Z Undo 

You can use ResEdit to add a keyboard equivalent to any menu item. 
That discussion is next. 



Chapter 7: Managing Menus 303 

The 'MENU' resource 

To add a keyboard equivalent to a menu item, use ResEdit to edit the 
'MENU' resource in which the menu item appears. Click on the menu 
item name, then enter the character that will be used along with the 
Command key. Figure 7-10 shows the addition of a keyboard equivalent 
to the Quit command in the File menu. 

Out 

MENU ID = 129 from Mothlutor. ff .rsrc 

:ICQ 

Entire Menu: 1:81 Enabled 

Title: ®._I o_u_lt ________ __. 

0 ··--·-·· (separator line) 

! 
; 

! O has Submenu 

Color 

TeHt: l•I 
Cmd-Key: Iii l•I i 

; 
j 

oi Mark: None 

Click on the item that is to 
get the keyboard equivalent 

Then type in the letter that will 
serve as the keybaord equivalent 

Figure 7-1 O. Adding a keyboard equivalent to a 'MENU' 

The character that is typed along with the Command 
key is displayed in uppercase in a program's menu 
even though the user won't be using the shift key. 
Take the Quit keyboard equivalent, Command-Q, for 
example. The user types the Command key and the 
letter 'q'. He doesn't use the Shift key to type an 
uppercase 'Q'. 



3 04 Macintosh Programming Techniques 

Handling a keystroke 

If you want to include keyboard equivalents in your application, you 
have to make your program aware of keystrokes. That's something you 
haven't worried about up to this point. To do this, add a case for a 
keyDown event in your Handle_One_Event() routine. 

void Handle_One_Event( void ) 

} 

get event here ] 

switch ( The_Event.what 

case keyDown: 
Handle_Keystroke(): 
break: 

case mouseDown: 
Handle_Mouse_Down(): 

break: 

Of course, that's only part of the work. Now you have to write the 
Handle_Keystroke() routine. This is a short and simple routine, so I'll 
present it now, then discuss it. 

void Handle_Keystroke( void 
{ 

short chr: 
long menu_choice: 

chr = The_Event.message & charCodeMask: 

if ( ( The_Event.modifiers & cmdKey ) != 0 ) 
( 

if ( The_Event.what != autoKey ) 
( 

menu_choice = MenuKey( chr ) : 
Handle_Menu_Choice( menu_choice ) : 



Chapter 7: Managing Menus 305 

When an event involving the keyboard occurs, the message element of 
the event holds the key that was pressed. The message field consists of 
32 bits that hold more information than just that, though. To access only 
the portion that contains the character the user typed you'll need to use 
the constant charCodeMask in conjunction with the bitwise & operator. 

At this point you are only interested in a keystroke performed in con­
junction with the Command key. The modifi.ers field of the event holds 
this information. As you did for the character, though, you have to use 
the & operator on the field to get the information you need. If the result 
is non-zero, the Command key was down. 

One last check: was the key pressed and held down? That's called an 
auto key, and that's not a keyboard equivalent. If the keystroke survives 
the battery of tests, then you know that the user held down the com­
mand key while pressing a character. That's a keyboard equivalent. At 
this point call the Toolbox routine MenuKey(). 

MenuKey() accepts a typed character and returns a long integer. The long 
contains both the ID of the menu and the ID of the menu item that the 
Command key combination represents. With that information you can 
then call Handle_Menu_Choice() to handle things just as if a menu 
selection had been made. 

Hierarchical Menus 
To offer the user additional menu choices you can use a hierarchical 
menu, which is a menu that has a submenu associated with it. Figure 
7-11 illustrates an example of a menu with a submenu attached to it. 

Beginner 
Intermediate 
Hduanced 

Figure 7-11. A hierarchical menu 



306 Macintosh Programming Techniques 

Adding a hierarchical menu requires a few minimal additions to both 
your resources and code. 

The 'MENU' resource 
You designate a submenu for a menu item by checking the "has 
Submenu" check box in ResEdit. The submenu itself will be a 'MENU' 
resource. List the resource ID of that 'MENU' in the edit text box labeled 
ID. Figure 7-12 takes the File 'MENU' resource developed earlier and 
changes the second item from a separator line to an item named Lesson. 

MENU ID = I 29 from MathTutor. ff .rsrc 

New 
Lesson 
Quit 

Check here to give the 
Lesson menu item a submenu 

Selected I tern: [8;I Enabled 

TeHt: ® .._I L_e_s_s_o_n _______ ___. 

0 ···· .. ····· hf~pnrntor lin~) 

has Submenu 

Enter the ID of the 'MENU' 
that will be the submenu 

Color 

TeHt: l•I 

~=-

Figure 7-12. Adding a submenu to a menu item 

Next, create a new 'MENU' resource. This one will contain the items 
that appear in the submenu. You create it and edit it as you would any 
other 'MENU'. Don't, however, add its ID to the 'MBAR' resource. Figure 
7-13 shows an example submenu. 



Chapter 7: Managing Menus 3 0 7 

MENU ID = 201 from Math Tutor. T1 .rsrc 

Beginner 
Intermediate 
Aduanced 

Entire Menu: ~Enabled 

Title: 

0 s (Apple menu) 

Color 

Title: l•I 
Item TeHt Default: l•I 
Menu Background: D 

Figure 7- 13. A 'MENU' resource to be used as a submenu 

When you create the new 'MENU' by selecting "Create New Resource" 
from ResEdit's Resource menu, it might not give the new 'MENU' the 
same ID you specified in the previous 'MENU'-201 in Figure 7-12. 
Changing the 'MENU' ID is a two step process. First, select "Get Info" 
from ResEdit's File menu and change the ID there as shown in Figure 
7-14. Then select "Edit Menu & MDEF ID" from the MENU menu and 
change the Menu ID there as well. Figure 7-15 shows this. 

E1Ds Info for MENU 201 from MathTutor.11.rsrc ~ 

Type: 

ID: 

Name: 

MENU 

I':"' 
Size: 64 

Owner type 

Owner ID: DRUR ~ 
1-------1 WDEF 

Sub ID: MOH ~ 

Attributes: 
D System Heap 
D Purgeable 

D Locked 
D Protected 

D Preload 
D Compressed 

Figure 7-14. Changing a 'MENU' ID in ResEdit's Get Info dialog 



308 Macintosh Programming Techniques 

Please enter the Menu ID and 
the resource ID of the MDEF to 
be used below. 

Menu ID: l_2_0_1 ___ 

MDEF ID: l._o __ __. 

( Cancel ) n OK , 

Figure 7-15. Changing a 'MENU' ID in ResEdit's Edit Menu & MDEF ID Dialog 

That's it for resource changes. Now it's on to the source code. 

Setting up the hierarchical menu 
When you give a menu item a submenu you are, in effect, changing the 
item &om a menu item to a menu. In Figure 7-16, the Edit menu is obvi­
ously a menu. Clicking on it displays the drop-down menu containing 
what appears to be three menu items: New, Lesson, and Quit. But the 
Lesson item is not quite as obviously a menu. Clicking on Lesson also 
displays a drop-down menu, just as clicking on Edit did. 

Menu item 

Menu 

Figure 7-16. Menus and menu items 



Chapter 7: Managing Menus 309 

You know that when you set up your program's menu bar with 
GetNewMBar(), a menu list is created that contains a handle to each 
item. You can then obtain a handle to a menu using GetMHandle(): 

menu_bar_handle = GetNewMBar( MENU_BAR_ID ) : 

File_Menu = GetMHandle( FILE_MENU_ID ); 

GetNewMBar() reads in the 'MENU' descriptions of the menus that will 
appear in the menu bar, the 'MENU's listed in the 'MBAR' resource. It 
also notes the menu ID of any submenus. It does not, however, read in 
the description of submenus. To read in that, you use GetMenu(). Then 
insert the submenu into the menu list using InsertMenu(). Here's an 
example: 

MenuHandle lesson_menu: 

lesson_menu = GetMenu( LESSON_SUBMENU_ID ) ; 
InsertMenu( lesson_menu, -1 ) : 

The -1 parameter used in InsertMenu() tells the Menu Manager that this 
menu is a submenu. 

Now let's revise the Set_Up_Menu_Bar() routine introduced near the 
start of this chapter. This version adds the code for the insertion of a sub­
menu into the File menu. 

//define MENU_BAR_ID 
//define APPLE_MENU_ID 
//define FILE_MENU_ID 
//define EDIT_MENU_ID 
//define LESSON_SUBMENU_ID 

MenuHandle Apple_Menu: 
MenuHandle File_Menu: 
MenuHandle Edit_Menu: 

void Set_Up_Menu_Bar( void 
{ 

Handle menu_bar_handle: 
MenuHandle submenu_handle: 

128 

128 

129 

130 

201 



310 Macintosh Programming Techniques 

menu_bar_handle = GetNewMBar( MENU_BAR_ID ): 
if ( menu_bar_handle == NIL ) 

Exi tToShell () ; 

SetMenuBar( menu_bar_handle ) ; 
DisposHandle( menu_bar_handle ) ; 

Apple_Menu = GetMHandle( APPLE_MENU_ID ) ; 

File_Menu = GetMHandle( FILE_MENU_ID ) : 
Edit_Menu = GetMHandle( EDIT_MENU_ID ) ; 

submenu_handle = GetMenu( LESSON_SUBMENU_ID ) ; 
InsertMenu( submenu_handle, -1 ): 

AddResMenu( Apple_Menu, 'DRVR' ); 

DrawMenuBar(): 

You'll be pleased to find out that once a hierarchical menu is displayed, 
you handle it in the same way you handle traditional menus. Just 
include its 'MENU' ID in your Handle_Menu_Choice() routine, as done 
below. 

//define APPLE_MENU_ID 128 

//define FILE_MENU_ID 129 

//define EDIT_MENU_ID 130 

//define LESSON_SUBMENU_ID 201 

void Handle_Menu_Choice( long menu_choice ) 

extract menu and menu item from menu_choice 

switch ( the_menu ) 

case APPLE_MENU_ID: 
Handle_Apple_Choice( the_menu_item ); 

break: 

case FILE_MENU_ID: 
Handle_File_Choice( the_menu_item ) : 
break: 

case EDIT_MENU_ID: 



Chapter 7: Managing Menus 3 1 1 

Handle_Edit_Choice( the_menu_item ): 
break; 

case LESSON_SUBMENU_ID: 
Handle_Lesson_Choice( the_menu_item ): 
break; 

HiliteMenu(O); 

Changing Menu Characteristics 
When working with various Macintosh programs, you've noticed that 
menu items might occasionally change during the running of a program. 
A menu item may have a checkmark placed to the left of it, or the text of 
a menu item might change. The most common change in a menu item 
or an entire menu is being enabled or disabled, so I'll discuss that first. 

Disabling and enabling menus and menu items 
During the running of a program not all menu options apply to all situa­
tions. When a menu item is not applicable you should disable, or dim, 
the item to prevent the user from choosing it. The most common exam­
ple of the disabling of a menu item is the Paste command in the Edit 
menu. If the user hasn't cut or copied anything the Clipboard will be 
empty, and there will be nothing to paste. That's when a program will 
disable the Paste command. 

You can disable a single item within a menu or an entire menu. In either 
case, the user can still click on the menu name in the menu bar to drop 
down the menu. If the entire menu is disabled, then the name in the 
menu bar will dim, along with the name of every item in the menu. 
Figure 7-17 shows that case on the left side of the picture. Disabling a 
single item in the menu does just that; every other item in the menu and 
the menu name in the menu bar appear normal. That's shown on the 
right side of Figure 7-17. 



3 1 2 Macintosh Programming Techniques 

Disabled Menu Disabled Menu Item 

s File Horoscope s File Horoscope 
Undt) )JftZ Undo 8€Z 

[ ut )J(t H Cut OOH 
[ op~_j >)('C Copy OOC 
Pns1<~ >l!'V Pas1 <~ >ll' ll 

Figure 7-17. A disabled menu and a disabled menu item 

To disable a single item use Disableltem(), passing a handle to the menu 
in which the item appears and the number of the item. Using the Edit 
menu of Figure 7-17, disable the Paste item. Remember, a dashed line in 
a menu counts as an item. 

//define EDIT_MENU_ID 130 

//define UNDO_ITEM 1 

/* dashed line is 2nd item 2 •/ 
//define CUT_ITEM 3 

#define COPY_ITEM 4 

//define PASTE_ITEM 5 

MenuHandle Edit_Menu: 

Edit_Menu = GetMHandle( EDIT_MENU_ID): 

Disableitem( Edit_Menu, PASTE_ITEM ): 

[ more code here ] 

Enableltem( EditMenu, PASTE_ITEM ) : 

As the above code shows, you enable an item using Enableltem(). Pass it 
the same parameters as Disableltem(). 

Disabling an entire menu is just as easy as disabling a single menu item. 
In fact, you use the same Toolbox routine. The difference is in the value 
you pass as the ·second parameter. A menu item value of zero tells 
Disableltem() to disable the entire menu; that means the menu name in 



Chapter 7: Managing Menus 3 1 3 

the menu bar, as well as each item in the menu. Here's how you'd dis­
able, then enable, the Edit menu. 

//define EDIT_MENU_ID 130 

//define UNDO_ITEM 1 

/• dashed line is 2nd item 2 •/ 
//define CUT_ITEM 3 

I/define COPY_ITEM 4 

/ldef ine PASTE_ITEM 5 

/ldef ine ENTIRE_MENU 0 

MenuHandle Edit_Menu: 

Edit_Menu = GetMHandle( EDIT_MENU_ID): 

Disableitem( Edit_Menu, ENTIRE_MENU ) : 

[ more code here ] 

Enableitem( EditMenu. ENTIRE_MENU ); 

Various circumstances can lead to the disabling and enabling of menu 
items. Every program may be different. Rather than scattering menu set­
ting calls all about your source code, try the commonly used technique 
of grouping all the calls within one function. 

For an example of menu highlighting, take a look at a hypothetical pro­
gram named Horoscope; its menu bar is pictured back in Figure 7-17. 
Let's assume that under certain conditions, either the Enter Information 
item or the Show Forecast item may be disabled. When a condition 
occurs that requires a change in the state of a menu item-and that con­
dition depends on the program I set a global Boolean variable appropri­
ately. When there is a call to the menu-setting routine I check all these 
flags and set the state of each menu item accordingly. 

//define HOROSCOPE_MENU_ID 131 

//define ENTER_INFO_ITEM 1 

/• dashed line is 2nd item 2 */ 
I/define PRINT_SIGN_ITEM 3 

//define NO_PRINT_SIGN_ITEM 4 

/* dashed line is 5th item 5 */ 



3 1 4 Macintosh Programming Techniques 

//define SHOW_FORECAST_ITEM 

Boolean Allow_Info_Input: 
Boolean Allow_Showing_Forecast: 

void Enable_Disable_Menu_Items( void ) 
{ 

6 

Horoscope_Menu = GetMHandle( HOROSCOPE_MENU_ID): 

if ( Allow_Inf o_Input == TRUE ) 
Enableltem( Horoscope_Menu. ENTER_INFO_ITEM ) : 

else 
Disableltem( Horoscope_Menu. ENTER_INFO_ITEM ) : 

if ( Allow_Showing_Forecast == TRUE ) 
Enableltem( Horoscope_Menu, SHOW_FORECAST_ITEM ) : 

else 
Disableltem( Horoscope_Menu, SHOW_FORECAST_ITEM ) : 

The only time a user sees a menu item is when he clicks the mouse in 
the menu bar. So that's the only time you need to worry about each 
menu item being in its proper state. If you've set all flag variables at 
the appropriate places in the program, and if you place the call to 
Enable_Disable_Menu_Items() when the user clicks on the menu bar, 
then that's the one and only time you have to make the call. 

As you saw earlier in this chapter, the Toolbox routine MenuSelect() is 
your means to handling all menu selections. If you call your menu-set­
ting routine right before MenuSelect(), you'll be assured of having all 
your menu items in the proper state. 

void Handle_Mouse_Down( void ) 

[ more code here ] 

switch ( the_part ) 

case inMenuBar: 
Enable_Disable_Menu_Items(): 
menu_choice = MenuSelect( The_Event.where ) : 
Handle_Menu_Choice( menu_choice ): 
break: 



Chapter 7: Managing Menus 3 1 5 

Adding a checkmark to a menu item 

A menu item can have a checkmark to the left of it to mark it as the cur­
rent selection. Often a menu item that can be marked in this way is 
found in a group of two or more items. These items act as radio buttons 
in a dialog box-only one item in the grouping can be checked at any 
given time. Figure 7-18 shows a grouping of two menu items. 

ti File Edit Horoseope 

Enter Information ... 

Only one of these two items will 
be checked at any given time 

Figure 7-1 B. A menu item with a checkmark 

Use the Toolbox routine Checkltem() to place a checkmark by an item 
or to remove a mark by an item. Pass Checkltem() a handle to the menu, 
the number of the item to check or uncheck, and a value of true to check 
the item or false to uncheck it. Here's an example that places a check by 
the third item in a menu. 

/Ide fine HOROSCOPE_MENU_ID 131 

#define ENTER_INFO_ITEM 

/* dashed line is 2nd item 2 */ 
/Ide fine PRINT_SIGN_ITEM 3 

#define NO_PRINT_SIGN_ITEM 4 

/* dashed line is 5th item 5 */ 

/ldef ine SHOW_FORECAST_ITEM 6 

MenuHandle Horoscope_Menu: 

Horoscope_Menu = GetMHandle( HOROSCOPE_MENU_ID): 

Checkitem( Horoscope_Menu. PRINT_SIGN_ITEM. TRUE ) : 



3 1 6 Macintosh Programming Techniques 

The above shows the checking of an item. But you must also uncheck 
whichever item was checked previously. The example program in Figure 
7-18 illustrates that process. A selection in any menu is handled by 
Handle_Menu_Choice(). From there a routine is called to handle the partic­
ular menu selected; in this case you end up at Handle_Horoscope_Choice(). 
Here's that routine: 

void Handle_Horoscope_Choice( int the_item ) 
{ 

switch ( the_item ) 
{ 

case ENTER_INFO_ITEM: 
Open_Info_Dialog(): 
break: 

case PRINT_SIGN_ITEM: 
case NO_PRINT_SIGN_ITEM: 

Handle_Menu_Checked_Item( the_item ): 

break: 

case SHOW_FORECAST_ITEM: 
Open_Horoscope_Window(): 
break: 

The two menu items involved in the checkmarking are both handled in 
the same way by Handle_Menu_Checked_Item(), shown next. 

Boolean Print_Sign_Flag: 

void Handle_Menu_Checked_Item( short item ) 

if ( item == PRINT_SIGN_ITEM ) 
{ 

Checkltem( Horoscope_Menu, NO_PRINT_SIGN_ITEM, FALSE ) : 
Print_Sign_Flag ~ TRUE: 



Chapter 7: Managing Menus 3 1 7 

else 

Checkitem( Horoscope_Menu, PRINT_SIGN_ITEM, FALSE ) : 
Print_Sign_Flag = FALSE: 

Checkitem( Horoscope_Menu, item, TRUE ) : 

I've passed Handle_Menu_Checked_ltem() the number of the menu item 
selected; that is, the menu item to check. I first use that number to 
uncheck the item that was on. Then I check the passed-in item. What if 
the user selects a menu item that is already checked? The above code 
shows that Checkltem() will be called to uncheck an already unchecked 
item. Using Checkltem() to uncheck an unchecked item has no effect. 
The same applies to using it to check an already checked item. That's 
why this technique works. Figure 7-19 shows what happens if the Print 
Zodiac Sign item is already checked when it is again selected . 

.................................................................................... b . 
../Print Zodiac Sign . 

Don't Print Zodiac Si n Uncheck menu item 4 
.......................................................................... ~......... (already was unchecked, no effect) 

.. ::-··Po .. ··;·1·~tt .... zP ... ~~·it~·~z····s·d1·~-~ ...... s ... ~ .......... p. ~~~~~~k ;:~e~~:h:~:~~~: :ffect) 
on rm o 1ac 1gn 

...................................................................................... 

Figure T-19. Selecting an already checked item has no ill effect 

Figure 7-20 shows the case of Print Zodiac Sign in an unchecked state 
when this menu item is selected. 



3 1 8 Macintosh Programming Techniques 

:::::~;i;I~~m~;~::~;;~b uncheck menu item 4 

~~~i~rn~ti~~~;;.:~;~p check selected 1tem, item s 

figure 7-20. Selecting an unchecked item checks it

Notice that in Handle_Menu_Checked_Item() I set a global Boolean
variable, Print_Sign_Flag, according to the selection made. This would be
used at some other point in the program, perhaps to determine whether
to print the user's astrological sign on each page of his horoscope when
Show Forecast is selected.

One last point. If you're including menu items that get checked, make
sure to check one and set any pertinent flags when you first set up the
menu:

void Set_Up_Menu_Bar(void

[other menu code here]

Horoscope_Menu = GetMHandle(HOROSCOPE_MENU_ID);

Checkltem(Horoscope_Menu, PRINT_SIGN_ITEM, TRUE) :
Print_Sign_Flag = TRUE;

[other menu code here]

Changing the text of a menu item

You define the text that makes up each menu item in the 'MENU'
resource of your program's resource file. If you want to change the text of
a menu item during the execution of your program, use Setltem(). This
Toolbox routine requires a handle to the affected menu, the item number

Chapter 7: Managing Menus 3 1 9

of the menu item to change, and a string that represents the new text.
Here's an example that changes the text of a menu item from its resource
definition of Enter Information ... to Supply Missing Info ... :

//define
//define

HOROSCOPE_MENU_ID
ENTER_INFO_ITEM

MenuHandle Horoscope_Menu:

131

1

Horoscope_Menu = GetMHandle(HOROSCOPE_MENU_ID):
Setitem(Horoscope_Menu, ENTER_INFO_ITEM. "\pSupply Missing Info ... "):

Figure 7-21 shows the results. If you're concerned about the length of the
new text exceeding the width of the dropped down menu-don't be. The
Menu Manager knows to set the size of the menu according to the num­
ber of characters in the longest item string.

Horo:sc.ope Horoscope

Enter Information ... Supply Missing Info ...

../Print Zodiac Sign ../ Print Zodiac Sign
Don't Print Zodiac Sign Don't Print Zodiac Sign

Show Forecast Show Forecast

figure 7-21. Changing the text of a menu item

If you like the liberal use of #define directives you might want to pre­
define the two titles the menu item might have:

/ldefine
//define

ENTER_INFO_STR
MISSING_INFO_STR

11 \pEnter Information ... "
11 \pSupply Missing Info ... "

Setitem(Horoscope_Menu. ENTER_INFO_ITEM, MISSING_INFO_STR):

If you really want to do things right, you'll follow Apple's recommen­
dation of not including text strings in your source code; they make it
difficult to convert to another language. Instead, make each of the two
menu item titles 'STR#' resources and store them in your program's
resource file.

3 20 Macintosh Programming Techniques

#define STR_LIST_ID 128
#define ENTER_INFO_STR 1
#define MISSING_INFO_STR 2

Str255 the_str:

GetindString(the_str, STR_LIST_ID. MISSING_INFO_STR):
Setltem(Horoscope_Menu, ENTER_INFO_ITEM, the_str) :

Refer back to Chapter 3 for more information on this technique.

Of course, you won't be changing menu-item text randomly. In the
example of 7-21, the decision to change the name of the menu item
might be based on the amount of information the user entered in an
Information Dialog. When the user closes the Information Dialog, the
program can check for missing data and set the value of a global variable,
Data_Missing, based on the results of this check.

Information Dialog closed here]

check for missing user-supplied data

if (Data_Missing == TRUE)
Setltem(Horoscope_Menu, ENTER_INFO_ITEM. MISSING_INFO_STR):

else
Setitem(Horoscope_Menu, ENTER_INFO_ITEM, ENTER_INFO_STR) ;

If you want to find out the current text of a menu item, use the sister
routine of Setltem(): Getltem(). You were introduced to the routine earli­
er in this chapter in the discussion on opening desk accessories from the
Apple menu.

Changing the style of a menu item
Now that you know you can change the text of a menu item, you may
have guessed that you can also change the style of an item. The
SetltemStyle() function is your means of doing this.

The Macintosh has a Style data type that contains the following con­
stants: plain, bold, italic, underline, outline, shadow, condense, and
extend. You can set a variable of type Style to any one of these values or,

Chapter 7: Managing Menus 3 2 1

to apply more than one style, add values. The following code sets a Style
variable to bold and italic.

Style item_style:

item_style =bold + italic:

With the style set, make a call to SetltemStyle(). Pass SetltemStyle() a
MenuHandle and the item number corresponding to the item to change.
A good time to do this is when you're setting up the menu bar. Here's an
example that will display the fourth of four menu items in outline.
Figure 7-22 shows the result.

//define HOROSCOPE_MENU_ID 130

//define ENTER_INFO_ITEM 1

//define PRINT_SIGN_ITEM 2

/ldef ine NO_PRINT_SIGN_ITEM 3

//define SHOW_FORECAST_ITEM 4

MenuHandle Horoscope_Menu:

Style item_style:

Horoscope_Menu = GetMHandle(HOROSCOPE_MENU_ID);

item_style = outline:
Set!temStyle(Horoscope_Menu, SHOW_FORECAST_ITEM, item_style) ;

S File Edit Horoscope

Enter Information ...

r./ Print Zodiac Sign
Don't Print Zodiac Sign

Figure 7-22. A menu item with the outline style applied to it

322 Macintosh Programming Techniques

Perhaps your program allows the user to change a menu item's style. If
so, you might not know just how a menu item is being displayed at any
given time. In this case you can use GetltemStyle(). The parameters to
this function are the same as those for SetltemStyle() except that the last
one is a pointer to a Style rather than a Style. This allows the Toolbox to
change its value, and it does. It will return a number that represents the
menu item's current style or combination of styles. Here's a call to
GetltemStyle():

Style item_style:

GetitemStyle(Horoscope_Menu. SHOW_CHART_ITEM, &item_style):

Each of the possible styles has a value, shown below. A menu item's
current style is the sum of all the styles that have been applied to that
item. As an example, if GetltemStyle() sets item_style to a value of 35,
you know that the menu item is displayed as condensed, italic, bold
(32 + 2 + 1).

plain 0

bold 1

italic 2

underline 4

outline 8

shadow 16

condense 32

extend 64

To determine which individual styles are in the sum, check for the
largest value, extend. If it's there, subtract that value out and move on
down the line. Here's an example that looks to see if a menu item has
the extend or condense styles applied to it.

Boolean extend_style = FALSE:
Boolean condense_style = FALSE:

if (item_style >= extend
{

extend_style = TRUE:
item_style -=extend:

if (item_style >= condense

condense_style = TRUE:

item_style -= condense:

add same tests for other styles

Chapter 7: Managing Menus 323

Editing Text in a Modal Dialog
Before System 7 a modal dialog owned the screen entirely. If the dialog
appeared due to a menu selection, the menu name would invert in the
menu bar, and all the menu names would dim. The user could not use
the Edit menu to edit text in an edit text item. This situation is shown in
the left of Figure 7-23.

System 7 adds a handy feature to the use of modal dialogs. If your appli­
cation displays a modal dialog with one or more edit text items the sys­
tem is now more generous. It will check to see if your program has a
menu with the keyboard equivalents Command-X, Command-C, and
Command-V. If your program does, the system will allow the user access
to the Edit menu by enabling the menu along with the Cut, Copy, and
Paste items. It will also take care of the editing, whether the user uses
the menu or command key equivalents. The System 7 screen for this sit­
uation is shown on the right side of Figure 7-23

Pre-System 7 System 7

Horoscope

Sign: llillJI Sign: lliJllm
n OK ll n OK D

Figure 7-23. The menu while a modal dialog is on the screen

If you are absolutely sure that the program you're writing will never run on
a pre-System 7 machine, you're all set. The system will take care of cut,

3 24 Macintosh Programming Techniques

copy, and paste in a dialog. If your program might run on a Mac equipped
with pre-System 7 software, but you aren't concerned with allowing the
user access to cut and paste features in a dialog, you're again all set.

If you're a programmer who believes in accommodating the user-and as
a Mac programmer, you must be-you'll want to make things easy on
the user. That means giving the user the capability to edit text in a
modal dialog, regardless of what system version the user has.

If your program is running under System 7, let the system do the work.
Apple's written the code to handle the situation, so use it. Don't expend
your time and energy trying to improve on what Apple engineers have
aheady done! If your program is running on a Mac with pre-System 7
software, you can write a function to handle the dialog editing. Before
discussing this function let's take a look at a simple way to see if the
user has System 7.

Checking for System 7
How do you check to see what system the user has? Use the Gestalt()
function. I introduced this powerful and handy Toolbox routine back in
Chapter 4 when I wanted to see if the user had Color QuickDraw. I'll
save you the effort of flipping pages by repeating that code here:

#include (GestaltEqu.h>

OSErr err:

long response:

err= Gestalt(gestaltQuickdrawVersion, &response):

Recall that gestaltQuickdrawVersion is defined, along with numerous
other constants, in the header file GestaltEqu.h. You don't have to define
it in your program.

Gestalt() can perform all sorts of inquiries into the system software and
hardware of the Mac your program is running on; checking for Color
QuickDraw is just one. Checking the system version is another. In the
following code fragment I ask Gestalt() to return the system version in
the variable response. If the response has a hexadecimal value of Ox0700,

Chapter 7: Managing Menus 3 2 5

or greater, your program is running on a Mac with a version of System 7.
Set a global variable based on the findings of Gestalt(). Here's the code:

Boolean System_7_Present ;

OSErr err ;

long response ;

err• Gestalt(gestaltSystemVersion . &response);

if ((err ~ noErr) && (response >- Ox0700))
System_7_Present = TRUE;

else
System_7_Present = FALSE ;

~OTt Just a reminder-Gestalt(} is covered in detail in
Chapter 8. If you don't fully understand its workings
now, don't be alarmed.

Once you know whether your program is running under System 7 you
can make your decision whether to let the system handle dialog editing,
or whether to handle it yourself with a filter function.

Modal dialog filter function
In the previous chapter you saw that the Toolbox routine ModalDialog()
takes care of most of the work of handling a modal dialog. Here's a refresher:

[open modal dialog]

while (all_done ~ FALSE
(

ModalDialog(NIL . &the_item) ;

switch (the_item)

case OK_BUTTON_ITEM :
all_done = TRUE;

326 Macintosh Programming Techniques

break:

other dialog items

What I didn't tell you in the last chapter is that you can handle a modal
dialog however you see fit-before ModalDialog() gets a crack at things.
After you do the handling, you can then tell ModalDialog() to further
handle things if you want.

The first parameter passed to ModalDialog() is the name of a filter func­
tion that does any necessary special handling of your dialog. This routine
is optional. If you don't want to write one, pass in a nil pointer as you've
done up to now. The time to use a filter function is when you have a dia­
log with special needs that ModalDialog() can't handle.

ModalDialog() handles update and activate events. It also intercepts user
events and determines if an event occurred in an enabled item in the dia­
log box. If it did, it lets your program know which item was involved.

ModalDialog() will also track the user's actions in edit text boxes. It will
flash the insertion bar in an edit text box, display typed characters, and
invert selected text. What it won't do is handle text editing commands such
as cut, copy, and paste. And that's a perfect application for a filter function.

To create a filter function, you write a function that performs the chores
your dialog needs. The filter function always has three arguments: a
pointer to the dialog box itself, a pointer to an EventRecord, and a point­
er to a variable of type short. The return type of the function is always
Boolean. And, as you learned in the Chapter 6 discussion on user items,
the filter function needs to be prefaced with the pascal keyword. Here1s a
partial definition of a filter function called Dialog_Edit_Filter():

pascal Boolean Dialog_Edit_Filter(DialogPtr dlog, EventRecord *event,
short *item)

[handle edit commands here]

Here's what a call to ModalDialog() would look like using a filter function:

ModalDialog(Dialog_Edit_Filter, &the_item);

Chapter 7: Managing Menus 3 2 7

Do you find it a little distressing that you can just use the
name af a function as a parameter, without any parenthe­
ses or parameters? It's possible because ModalDialog() is
expecting a pointer to a function as the first argument, not a
call to a function. ModalDialog() uses the filter function name
as a pointer to the function. It takes this pointer and uses it
to go off into memory in search af your filter function.

When your program reaches a call to ModalDialog() , it branches off to
the filter function. If the user performed some action that the filter func­
tion needs to handle, it does . It then returns a value of true to
ModalDialog(). The question is, "Did the filter function handle the
event?", and the answer is yes-or true. If the filter function handled the
event, ModalDialog() doesn't have to. If it turns out that the user action
did not require handling by the filter function, the function will return
false. ModalDialog() knows it must then handle things itself. Figure 7-24
sums this all up. The shaded arrow is the point where the journey starts.

My Code

••••••••• My_Filter()
(

ModalDialog(My_Filter, the_ item) retu rn (· · ·)

FALSE

Toolbox

HodalDialog ()
(

TRUE

switch (the_item)
(

[handle click s on items]

Figure 7-24. Course of action when Moda/Dialog() uses a filter function

3 2 8 Macintosh Programming Techniques

Enough theory. Let's look at a real filter function. The Dialog_Edit_Filte1()
shown below allows the user to use the standard cut, copy, and paste key­
board aliases in. the edit text items of a dialog. You can use it as is for any
modal dialog you have.

pascal Boolean Dialog_Edit_Filter(DialogPtr dlog, EventRecord *event,
short *item)

char chr;

if (event->what != keyDown
return (FALSE):

chr = event->message & charCodeMask;

if ((event->modifiers & cmdKey) != 0

switch (chr

case 'x':
DlgCut (dlog);
break;

case 'c':
DlgCopy (dlog) :
break:

case 'v':
DlgPaste (dlog) :
break:

return (TRUE) ;

if ((chr """'" RETURN_KEY) I I (chr -- ENTER_KEY))
(

*item= 1:
return (TRUE) :

return (FALSE) :

Let's take a closer look at just what's going on in the filter function.

Chapter 7: Managing Menus 329

ModalDialog() passes the filter function each and every event it sees.
The filter is only interested in events that involve the command key. If
the event didn't involve a keystroke, let ModalDialog() handle it. So the
very first thing the filter does is check to see if the event is a keystroke. If
it isn't, the filter is through. It bails out and passes back a value of false;
the event was not processed.

If the event survives the first test, it's an event involving a keystroke.
The next step is to determine which key was pressed. This is done in the
same way as Handle_Keystroke() did it. That routine was covered in the
discussion on keyboard aliases:

chr = event->message & charCodeMask:

In Handle_Keystroke() the above line looked like this:

chr = The_Event.message & charCodeMask:

Remember your C? A structure member is accessed using the structure
member operator, commonly called the dot:

EventRecord The_Event:

The_Event.message

If you're working with a pointer to a structure, as is the case here, you
must use the structure pointer operator: a minus sign followed by the
greater than symbol:

EventRecord *event:

event->message

Now, you want to see if the command key was pressed. This too was
done back in Handle_Keystroke(). It involves looking at the modifiers
member of the EventRecord.

if ((event->modifiers & cmdKey) != 0)

If the command key was pressed, the filter might actually be doing some real
work! If the character key pressed along with the command key is either an

3 3 0 Macintosh Programming Techniques

'x', a 'c', or a 'v', the user is attempting to edit the contents of a edit text
item. A pointer to that item, by the way, was passed to the filter. To perform
the actual editing in the dialog, the filter uses the Toolbox routines DlgCut(),
DlgCopy(), and DlgPaste(). The event is handled, so the filter returns true.

The last test the filter makes is to see if the key that was pressed was
either the return key or the enter key. If it was either, the filter treats the
event as if there was a mouse-click on item number 1, the Done or OK
button. It does this by setting the passed item variable to 1. That's why a
pointer was passed in-so the filter could change its value.

If none of the above cases applied to the event, the event wasn't handled,
so the filter returns a value of false to let Modal.Dialog() handle things.

If that breakdown of the filter function seemed a bit wordy, then you
know it's time for a figure. Figure 7-25 sums it all up.

if { event-)what I- keyDown)
return { PALSB); ~ Event doesn't Involve a

keystroke-all done ----------------
chr - event->message & charCodeMask; ~ I Extractthecharacter

if { (event- >modifiers & cmdKey) 1- O) ~ I Command key pressed? I
{

switch { chr)
{

case 'x':
DlgCut { dlog);
break;

case 'c':
DlgCopy (dlog);
break;

case 'v':
DlgPaste (dlog):
break:

~--
Call appropriate

/'-a Toolbox function
~ to handle dialog

box editing

~--
}

return (TRUE) ; ~ I Editing handled, all done I
if ((chr - RETURN_KEY) I I { chr - ENTBR_KBY)
{

*item - l;
return {TRUE): ~ If return or enter key pressed,

change Item to Item #1, all done

return (PALSE) ; ~ l Didn't handle event I

Figure T-2S. Closer look at a dialog editing filter function

Chapter 7: Managing Menus 3 3 1

Earlier I said that if the user has System 7 you should let the system han­
dle editing in a dialog. I then showed how to use Gestalt() to test for the
presence of System 7 and set a global Boolean variable using the test
result. Now's the time to make use of this work. Use the Boolean vari­
able in your dialog handling routine to determine whether to pass
ModalDialog() the filter function or go it alone. Here's how.

[open modal dialog)

while all_done == FALSE

if System_7_Present == TRUE

ModalDialog(NIL , &the_item) ;

else

ModalDialog(Dialog_Edit_Filter , &the_item) ;

switch (the_item)

case OK_BUTTON_ITEM :

all_done = TRUE ;

break ;

[othe r dialog items

Lesson 7-2: Filter Functions

You can run the program enclosed with this
book for a hands-on tutorial about this topic.

Chapter Program: MenuMaster
The example program for this chapter is MenuMaster. When you run the
program you'll see a menu bar with three menus in it. Of most interest
will be the File menu, shown in Figure 7-26.

3 3 2 Macintosh Programming Techniques

Open Modal Dialog
ShDID H/10111 ...

../Check Me
No, Check Me

Disable 'Open Modal Dialog'
Disable 'Edit' Menu

Figure 7-26. MenuMaster's file menu

A good deal of this chapter was devoted to demonstrating various tech­
niques for changing the look of menu items. MenuMaster shows how
these techniques work. It does all of the following:

• Includes the Apple menu in the menu bar .

• Enables and disables a menu item .

• Enables and disables an entire menu .

• Places a checkmark by menu items .

• Changes the text of menu items .

• Changes the style of a menu item .

• Displays a hierarchical menu .

• Uses a keyboard equivalent for a menu item .

Figure 7-27 shows the File menu of MenuMaster after a few of the menu
items have been changed.

Chapter 7: Managing Menus 333

DIH~n Mtuinl Otalot.J
SllBID 6/111111

Check Me
../No, Check Me

Enable 'Open Modal Dialog'
Disable 'Edit' Menu

Hierarchical Menu ~

Quit 38Q

figure 7-27. MenuMaster's File menu, with a few items changed

Selecting the "About MenuMaster" item from the Apple menu displays
an alert that tells a little (very little) about the program. That alert is
shown in Figure 7-28.

MenuMaster
uersion 1.0

n Done)

figure 7-28. The 'About MenuMaster' alert

Selecting "Open Modal Dialog" from the File menu opens the modal dia­
log shown in Figure 7-29. Earlier I discussed allowing the user access to
cut, copy, and paste commands while a modal dialog is on the screen.
With this dialog box, MenuMaster demonstrates just how to do that.

3 3 4 Macintosh Programming Techniques

Enter teHt, then edit it: I Edit TeHt

OK

Figure 7-29. MenuMaster's modal dialog, with editing capabilities

The "Show About" item in the File menu displays the very same alert
that the "About MenuMaster" item in the Apple menu displays.

When you choose the "Check Me" or "No, Check Me!", that item will
receive a checkmark by it.

The "Disable 'Open Modal Dialog111 menu item does just that. Selecting
it disables the first item in the File menu. With the first menu item now
disabled, it would now be more appropriate if the text of the "Disable
'Open Modal Dialog"' read "Enable 'Open Modal Dialog111-and it does.

The "Disable 'Edit' Menu" item works in the same manner as the previ­
ous item. It, however, disables an entire menu rather than just a single
menu item.

The menu titled "Hierarchical Menu" is exactly that. It has two items in
its submenu: Submenu Item 1 and Submenu Item 2. Each opens an alert
that displays which choice was made. The alert for the first submenu
item is shown in Figure 7-30.

115] Submenu, Item I

Figure 7-30. A hierarchical submenu selection displays an alert

Chapter 7: Managing Menus 3 3 5

The last menu item in the File menu is "Quit". You can use the key­
board equivalent Command-Q to quit the program.

Program resources: MenuMaster.1t.rsrc
MenuMaster demonstrates menus in a Macintosh program and gives you
a quick review of the previous chapter. The program uses two alerts and
one dialog box. Figure 7-31 shows the five resource types used by the
application.

MenuMoster. TT .rsrc

w . .
ALRT DITL DLOG MBAR MENU

Figure 7-3 J. The resource file for MenuMaster

The two 'ALRT's have IDs of 128 and 129. So do their corresponding
'DITL' resources. They're shown in Figure 7-32.

Dill ID= 128

IMenuMoster Lzj
luersion 1.0 W

Done~

•

D Ill ID = 1 29 from MenuMo~

IAO ~

[OK L1j

Figure 7-32. The 'DITL' resources for MenuMaster 's two 'ALRT's

Of particular note is the strange ""0" text in item 2 in 'DITL' 129 in
Figure 7-32. The alert that uses this 'DITL' is displayed by MenuMaster
when either of the two items in its hierarchical submenu are selected.
But rather than displaying ""0", the text in item 2 will be either
"Submenu, Item 1" or "Submenu, Item 2." How do you use one alert to
display different strings on different occasions? The answer is simple and
clever and involves just one Toolbox call: ParamText().

3 3 6 Macintosh Programming Techniques

You pass ParamText() four strings. Your program will retain these four
strings and use them in any alert or dialog that has one or more static
items. How does it know which string to use in which item? The text of
the static text item, defined when you create the 'DITL', must be one or
more of the following: '"'0", '"' 1 ", '"'2", '"'3". Your program will substi­
tute the four ParamText{} strings for each of these ""'' strings. Here's an
example:

/idef ine ALERT_ID 128

ParamText("\pMonday " 11 \pTuesday", 11 \pWednesday ", 11 \pThursday"):
Alert(ALERT_ID. NIL):

Figure 7-33 shows a 'DITL' resource that displays all four of the
ParamText{} strings. Figure 7-34 shows the resulting alert displayed for
the above code.

"3

D ITL ID = 128 from StringTester. ff .rs re

IAOAIA2A3 ~

[OK ~
•

Figure 7-33. A 'DITL' with a static text item to display four strings

> Monday Tuesday Wednesday
Thursday ._ ____ 1111111

K OK l)

Figure 7-34. The 'DITL' resources for MenuMaster's two 'ALRT's

Chapter 7: Managing Menus 337

Now, what would happen if we called ParamText() again, substituting
different strings, and then displayed the same alert? Here's the code:

#define ALERT_ID 128

ParamText("\pMonday " 11 \pTuesday", 11 \pWednesday ", 11 \pThursday"):

Alert(ALERT_ID, NIL) :

ParamText("\pFriday ". "\pSaturday ", 11 \pSunday ". "\p"):

Alert(ALERT_ID, NIL);

First the alert in Figure 7-34 would be displayed. After clicking the OK
button, the alert shown in Figure 7-35 would be displayed. Remember,
both these alerts are using the same 'DITL'-the one pictured back in
Figure 7-33.

"3

K OK)]

Figure 7-35. The 'D/Tl' resources for MenuMaster's two 'ALRT's

Notice in Figure 7-35 that only three strings seem to be displayed. The
call to ParamText() defined the fourth string, the one to be displayed in
the ,.. 3 spot, as a null string-"\p".

If you look back a few pages you'll see that this whole discussion started
with Figure 7-32. In that figure we showed you 'DITL' 129, which con­
tained a static text item with the string ",..0,, in it. This 'DITL' will be
used in an alert that will substitute a single string-for the ,,,..0"-into
the static text item.

3 3 8 Macintosh Programming Techniques

To the third and final 'DITL' resource is used for the dialog box displayed
when the user selects "Open Modal Dialog" from the File menu. It's pic­
tured in Figure 7-36.

D ITL ID = 130 from MenuMaster. TI

!Enter teHt, then edit it:LajllEdit TeHt WI

OK ~

Figure 7-36. The 'D/Tl' for MenuMaster 's modal dialog

Now, to the menu-related resources, MenuMaster's 'MBAR' resource is
pictured in Figure 7-37. You can tell from the figure that the program has
three menus-and, thus, three 'MENU' resources.

:O MBAR ID 128 from MenuMaster. 11 .rsrc

of menus 3

1) *****
Menu res ID I 12a

2) *****
Menu res ID I 129

3) *****
Menu res ID I 130

4) *****

Figure 7-37. The 'MBAR' for MenuMaster

Figure 7-38 shows the three 'MENU' resources found in MenuMaste.r's
resource file.

Chapter 7: Managing Menus

MENUs from MenuMoster. rr .rs re

1·········:·~·:·:·~···:·:·:·:·:·:·~·~·:··1
1 ··••••H••••··········-······-···-·························-

i
'

Cut SCH
copy sec
Poste :ICU

' '

'

l_______ ------- ---
t ·-·-··-··-········-············-·····----·.!

128 129 130

Figure 7-38. The three 'MENU' resources for MenuMaster

Program listing: MenuMaster.c
/ •+++++++++++++++++++++ Include Files ++++++++++++++++++++++• /

#include <Traps.h>

#include <GestaltEqu.h)

/ •+++++++++++++++++++ Function prototypes ++++++++++++++++++• /

void I nitialize_Toolbox(void) ;

void Initialize_Variables(void) ;
void Set_Up_Menu_Bar(void) ;

void Handle_One_Event(void) ;

void Handle_Keystroke(void) ;
void Handle_Mouse_Down(void) :

void Handle_Menu_Choice(long) ;

void Handle_Apple_Choice(int) ;

void Handle_File_Choice(int) ;

void Open_Modal_Dialog(void) ;

pascal Boolean Dialo~Edit_Filter(DialogPtr, EventRecord • short •) ;

void Handle_Hierarchical_Menu(int) :

void Handle_Menu_Checked_Item(short) ;

void Handle_Disable_Edit_Item(void) ;

void Handle_Disable_Open_Dialo~Item(void);

/ • 1 I I I I I I I I I!++++++ Define global constants +++I I I I I I I I I I I I 1•/

0

339

340 Macintosh Programming Techniques

/Jdef ine ABOUT_ALERT_ID 128
//define INFO_ALERT_ID 129

//define DIALOG_ID 130
I/define OK_BUTTON_ITEM 1

//define MENU_BAR_ID 128

/Ide fine APPLE_MENU_ID 128
//define SHOW_ABOUT_l_ITEM 1

//define FILE_MENU_ID 129
//define OPEN_DIALOG_ITEM 1
I/define SHOW_ABOUT_2_ITEM 2
/• ------------------ < dashed line */

//define CHECK_ME_ITEM 4

/Ide fine NO_CHECK_ME_ITEM s
/* ------------------ < dashed line */

//define DISABLE_OPEN_DIALOG_ITEM 7

//define DISABLE_EDIT_MENU_ITEM 8
/* -------·---------- < dashed line •/

/* ++++++++++++++++++++++ < hierarchical menu */

/• ------------------ < dashed line •/

//define QUIT_ITEM 12

#define SUBMENU_ID 201
//define SUBMENU_ITEM_l

/ldefine SUBMENU_ITEM_2

//define EDIT_MENU_ID 130
/* ------------------ < item is Cut */

/* ---·-·------------ < item is Copy •/
/* ------------------ < item 3 is Paste •/

/Ide fine ENTIRE_MENU 0
#define RETURN_KEY (char)OxOD
I/define ENTER_KEY (char)Ox03

//define NIL OL
//define IN_FRONT (WindowPtr)-lL
/Ide fine REMOVE_EVENTS 0
#define SLEEP_TICKS OL
/Ide fine MOUSE_REGION OL

Chapter 7: Managing Menus

/ • I I I I I I I I I I I I I I I I Define global variables

Boolean

Boolean

EventRecord

MenuHandle

MenuHandle

MenuHandle

Boolean
Boolean

Boolean

Boolean

All_Done = FALSE;

Multifinder_Present;

The_Event:

Apple_Menu;

File_Menu:

Edit_Menu:

Check_Me_Checked = FALSE;
Open_Dialog:__Disabled = FALSE;

Edit_Menu_Disabled = FALSE;
System_7_Present:

I I I I I I I I I I I I I I I I I * /

/•1 I main listing +++++++++++I I I II I I I+++++•/

void main(void)

Initialize_Toolbox();

Initialize_Variables():

Set_Up_Menu_Bar():

while (All_Done == FALSE

Handle_One_Event();

/•I 11I11 I I I I I I I I I I 11 Initialize the Toolbox I I I I I I I I 11I11I11I1 •I

void Initialize_Toolbox(void)

InitGraf(&thePort):
InitFonts();

InitWindows();

InitMenus();

TEinit ():
InitDialogs(NIL);
FlushEvents(everyEvent. REMOVE_EVENTS):

InitCursor ():

/•+++++++++++++ Initialize some of our variables +++++I I I I I I I 1•/

341

342 Macintosh Programming Techniques

void Initialize_Variables(void)

OSErr err:
long response:

Multifinder_Present (NGetTrapAddress(_WaitNextEvent. ToolTrap) !=
NGetTrapAddress(_Unimplemented, ToolTrap)):

err= Gestalt(gestaltSystemVersion, &response):

if ((err== noErr) && (response >= Ox0700))

System_7_Present = TRUE:

else
System_7_Present = FALSE:

InitCursor():

/•++++++++++++++ Set up menu bar and menus in it +++I I I I I I I I I 1•/

void Set_Up_Menu_Bar(void)

Handle menu_bar_handle:

MenuHandle submenu_handle:
Style item_style;

menu_bar_handle = GetNewMBar(MENU_BAR_ID):
if (menu_bar_handle == NIL)

Exi tToShell () :

SetMenuBar(menu_bar_handle):
DisposHandle(menu_bar_handle) :

Apple_Menu = GetMHandle(APPLE_MENU_ID);
File_Menu = GetMHandle(FILE_MENU_ID):
Edit_Menu = GetMHandle(EDIT_MENU_ID);

submenu_handle = GetMenu(SUBMENU_ID) :
InsertMenu(submenu_handle. -1) :

item_style =bold+ italic;
SetitemStyle(File_Menu, SHOW_ABOUT_2_ITEM, item_style) :

Chapter 7: Managing Menus

Checkltem(File_Menu, NO_CHECK_ME_ITEM, TRUE}:

AddResMenu(Apple_Menu, 'DRVR' }:

DrawMenuBar(}:

/*I I I I I I I I I I I++++++++ Handle a single event +++++++11 I I I I I I+++•/

void Handle_One_Event(void }
(

Boolean event_was_dialog:

if (Multifinder_Present == TRUE
WaitNextEvent(everyEvent, &The_Event, SLEEP_TICKS, MOUSE_REGION }:

else

SystemTask(}:
GetNextEvent(everyEvent, &The_Event }:

switch (The_Event.what

case keyDown:
Handle_Keystroke(}:
break:

case mouseDown:
Handle_Mouse_Down(}:
break:

/*I Handle a keystroke I I I I I I I I I I I I I I I I I I I*/

void Handle_Keystroke(void }
(

short chr:
long menu_choice:

chr = The_Event.message & charCodeMask:

if ((The_Event.modifiers & cmdKey } != 0 }

343

344 Macintosh Programming Techniques

if (The_Event.what != autoKey)

menu_choice = MenuKey(chr):
Handle_Menu_Choice(menu_choice);

/*++I I I I I I I I I Handle a click of the mouse button II I I I I I I I I I I I*/

void Handle_Mouse_Down(void

WindowPtr the_window:
short the_part;
long menu_choice;

the_part = FindWindow(The_Event.where, &the_window):

switch the_part)

case inMenuBar:
menu_choice = MenuSelect(The_Event.where);
Handle_Menu_Choice(menu_choice);

break:

/*I II I I I I I I I I I I Respond to a click in a menu I I I I II I I I I I I I I I I I*/

void Handle_Menu_Choice(long menu_choice

int the_menu:
int the_menu_item:

if menu_choice != 0

the_menu = HiWord(menu_choice);
the_menu_item = LoWord(menu_choice):

switch (the_menu)

case APPLE_MENU_ID:

Chapter 7: Managing Menus

Handle_Apple_Choice(the_menu_item):

break:

case FILE_MENU_ID:
Handle_File_Choice(the_menu_item):
break:

case SUBMENU_ID:
Handle_Hierarchical_Henu(the_menu_item):

break:

case EDIT_MENU_ID:

break:

HiliteHenu(O):

/*I II I I I I I II I Handle selection from 'Apple' menu I I I 11111 I II I I*/

void Handle_Apple_Choice(int the_item)
(

Str255 desk_acc_name;
int desk_acc_number:

switch (the_item)

case SHOW_ABOUT_l_ITEM
Alert(ABOUT_ALERT_ID, NIL):

break:

default :
Getltem(Apple_Menu. the_item, desk_acc_name):
desk_acc_number - OpenDeskAcc(desk_acc_name):
break:

/•11111111111 Handle selection from 'File' menu 111111II111111•/

void Handle_File_Choice(int the_item)
(

switch (the_item)

345

346 Macintosh Programming Techniques

case OPEN_DIALOG_ITEM:
Open_Modal_Dialog(};
break;

case SHOW_ABOUT_2_ITEM:
Alert(ABOUT_ALERT_ID. NIL):
break;

case CHECK_ME_ITEM:
case NO_CHECK_ME_ITEM:

Handle_Menu_Checked_Item(the_item }:
break:

case DISABLE_OPEN_DIALOG_ITEM:
Handle_Disable_Open_Dialog_Item():

break:

case DISABLE_EDIT_MENU_ITEM:
Handle_Disable_Edit_Item():

break:

case QUIT_ITEM:
All_Done = TRUE:
break:

/*+++++++ Open a modal dialog to test 'Edit' menu items ++++++*/

void Open_Modal_Dialog(void
(

DialogPtr the_dialog:
short
Boolean

the_item:
all_done = FALSE;

the_dialog = GetNewDialog(DIALOG_ID, NIL. IN_FRONT):
ShowWindow(the_dialog }:

while (all_done """" FALSE
(

if (System_7_Present a= TRUE
ModalDialog(NIL, &the_item) :

else

Chapter 7: Managing Menus

ModalDialog(Dialog_Edit_Filter, &the_item) :

switch (the_item

case OK_BUTTON_ITEM:

all_done = TRUE:

break:

DisposDialog(the_dialog) :

/•+++ Filter function for ModalDialog of Open_Modal_Dialog +++*/

pascal Boolean Dialog_Edit_Filter(DialogPtr dlog, EventRecord *event, short *item)

char chr:

if event·>what != keyDown
return (FALSE) :

chr = event·>message & charCodeMask:

if ((event·>modifiers & cmdKey) != 0

switch (chr

case 'x':
DlgCut (dlog);

break:
case 'c':

DlgCopy (dlog) ;

break:
case 'v':

DlgPaste (dlog):
break;

return (TRUE) :

if ((chr == RETURN_KEY) I I (chr == ENTER_KEY))

*item= l;

return (TRUE) :

347

348 Macintosh Programming Techniques

return (FALSE}:

/*II I I I Ill Ill Handle Check Me item from File menu I I I I I I I I I 111•/

void Handle_Menu_Checked_Item(short item)

if (item == CHECK_ME_ITEM }
(

Check!tem(File_Menu, NO_CHECK_ME_ITEM, FALSE}:
Check_Me_Checked = TRUE:

else

Check!tem(File_Menu, CHECK_ME_ITEM, FALSE}:
Check_Me_Checked = FALSE:

Check!tem(File_Menu, item, TRUE}:

/*+++ Handle Disable Open Modal Dialog item from File menu +++•/

void Handle_Disable_Open_Dialog_Item(void)
(\

if (Open_Dialog_Disabled == TRUE)
(

Enable!tem(File_Menu, OPEN_DIALOG_ITEM):
Setitem(File_Menu, DISABLE_OPEN_DIALOG_ITEM,

"\pDisable 'Open Modal Dialog'"}:
Open_Dialog_Disabled = FALSE:

else

Disableitem(File_Menu. OPEN_DIALOG_ITEM }:
Set!tem(File_Menu, DISABLE_OPEN_DIALOG_ITEM,

"\pEnable 'Open Modal Dialog'"}:
Open_Dialog_Disabled = TRUE:

Chapter 7: Managing Menus

/•+++++++ Handle Disable Edit Menu item from File menu +++++++•/

void Handle_Disable_Edit_Item(void
(

if (Edit_Menu_Disabled == TRUE)
{

Enableitem(Edit_Menu, ENTIRE_MENU):

DrawMenuBar () :
Setitem(File_Menu, DISABLE_EDIT_MENU_ITEM, 11 \pDisable 'Edit' Menu"):
Edit_Menu_Disabled a FALSE:

else

Disableitem(Edit_Menu, ENTIRE_MENU):
DrawMenuBar():
Setitem(File_Menu, DISABLE_EDIT_MENU_ITEM. 11 \pEnable 'Edit' Menu"):
Edit_Menu_Disabled = TRUE:

/•++++++ Handle selection from 'Hierarchical Menu' menu ++++++•/

void Handle_Hierarchical_Menu(int the_item)

switch (the_item)
(

case SUBMENU_ITEM_l:
ParamText("\pSubmenu, Item l", 11 \p 11

,
11 \p", 11 \p"):

NoteAlert(INFO_ALERT_ID, NIL):
break:

case SUBMENU_ITEM_2:
ParamText("\pSubmenu, Item 2", 11 \p", 11 \p". 11 \p"):
NoteAlert(INFO_ALERT_ID, NIL):
break:

Stepping through the code

Once again, it's time to step through the source code to see just what's
going on.

349

3 5 0 Macintosh Programming Techniques

The #define directives
All but three of the #defines new to this program are resource IDs or
resource item numbers. If you want to make any changes to
MenuMaster's resource file, you only have to go to one place in the
source code to make changes or additions-the #defines section.

The two 'ALRT' resources have IDs of ABOUT_ALERT_ID and
INFO_ALERT_ID. The modal dialog has a 'DLOG' ID of DIALOG_ID. The
OK button in that dialog has an item number of OK_BUITON_ITEM.

The 'MBAR' has an ID of MENU_BAR_ID. There are three 'MENU's
in it.

The first 'MENU' has an ID of APPLE_MENU_ID. The Apple menu has
one item, SHOW_ABOUT_l_ITEM.

The second 'MENU', with an ID of FILE_MENU _ID, has 12 items, but
four of them are dashed lines and one is a hierarchical menu. Those five
don't get #defines. That leaves OPEN_DIALOG_ITEM,
SHOW_ABOUT_2_ITEM, CHECK_ME_ITEM, NO_CHECK_ME_ITEM,
DISABLE_OPEN_DIALOG_ITEM, DISABLE_EDIT_MENU_ITEM, and
QUIT_ITEM.

The hierarchical menu that appears in the File menu has its own 'MENU'
resource to define the items in it. The ID of that resource is SUBMENU_ID.
The two items in it are SUBMENU_ITEM_l and SUBMENU_ITEM_2.

The final 'MENU' in the menu bar is the Edit menu, with a resource ID
of EDIT_MENU. It has three items in it. As the source code will demon­
strate, you won't be using any of them directly, so they don't require
#defines.

Normally a call to Disableltem() disables a single menu item. If you pass
the routine ENTIRE_MENU as a parameter, though, an entire menu will
be disabled.

RETURN_KEY and ENTER_KEY are the character constants for the
return key and the enter key. The filter function for ModalDialog() will
use these.

#define ABOUT_ALERT_ID 128

Chapter 7: Managing Menus 351

//define INFO_ALERT_ID 129

/ldef ine DIALOG_ID 130
//define OK_BUTTON_ITEM 1

/ldef ine MENU_BAR_ID 128

//define APPLE_MENU_ID 128
/Ide fine SHOW_ABOUT_l_ITEM 1

/ldef ine FILE_MENU_ID 129
/ldef ine OPEN_DIALOG_ITEM 1
/ldef ine SHOW_ABOUT_2_ITEM 2
/• ------------------ < dashed line •/

//define CHECK_ME_ITEM 4

//define NO_CHECK_ME_ITEM 5

/• ------------------ (dashed line •/

/Ide fine DISABLE_OPEN_DIALOG_ITEM 7

//define DISABLE_EDIT_MENU_ITEM 8
/• ------------------ < dashed line */

/* ++++++++++++++++++++++ < hierarchical menu */

/• ------------------ < dashed line */

//define QUIT_ITEM 12

/Ide fine SUBMENU_ID 201
//define SUBMENU_ITEM_l 1
//define SUBMENU_ITEM_2 2

//define EDIT_MENU_ID 130
/* ------------------ < item 1 is Cut */

/* ------------------ < item 2 is Copy */

/* ------------------ < item 3 is Paste */

//define ENTIRE_MENU 0
//define RETURN_KEY (char)OxOD
//define ENTER_KEY (char)Ox03

//define NIL OL
//define IN_FRONT (WindowPtr)-lL
//define REMOVE_EVENTS 0
//define SLEEP_TICKS OL
/ldef ine MOUSE_REGION OL

3 5 2 Macintosh Programming Techniques

The global variables
Like the previous examples, MenuMaster uses All_Done,
Multifinder_Present, and The_Event in dealing with events. The pro­
gram puts up three menus. So that you can work with the menus,
you'll want a global MenuHandle variable for each. They are
Apple_Menu, File_Menu, Edit_Menu. MenuMaster will be toggling the
text of some menu items. Simplistically, you'll be checking for some­
thing like this: if a menu says /1 A", make it 11B". If it says "B", make it
11 A". These Boolean variables will keep track of the current state of
three of the menu items: Menu_Checked, Open_Dialog_Disabled, and
Edit_Menu_Disabled. Finally, MenuMaster checks to see if it's running
on a Macintosh that has System 7. It uses System_7 _Present to hold
the result of this check.

Boolean All_Done ~ FALSE:

Boolean Multifinder_Present:

EventRecord The_Event:

MenuHandle Apple_Menu:

MenuHandle File_Menu:

MenuHandle Edit_Menu:

Boolean Check_Me_Checked = FALSE:

Boolean Open_Dialog_Disabled = FALSE:

Boolean Edit_Menu_Disabled = FALSE:

Boolean System_7_Present:

The main() function

I said early in this chapter that your program should put up the menu bar
soon after starting. MenuMaster does just that. Right after the traditional
initialization of the Toolbox and a few program variables, the menu goes
up with a call to Set_Up_Menu_Bar().

void main(void)
(

Initialize_Toolbox():

Initialize_Variables():

Set_Up_Menu_Bar():

while (All_Done == FALSE

Handle_One_Event():

Chapter 7: Managing Menus 3 5 3

Initializing variables
After initializing the Toolbox, MenuMaster calls Initialize_ Variables() to
give a few program globals their values. Here you use a call to Gestalt()
to determine if the program is running under System 7. You'll use this
information to decide if you'll let the system handle dialog box editing
the modal dialog comes up. Here's the Initialize_ Variables() routine:

void Initialize_Variables(void

OSErr err:
long response:

Multifinder_Present = (NGetTrapAddress(_WaitNextEvent, ToolTrap) !=
NGetTrapAddress(_Unimplemented, ToolTrap)):

err= Gestalt(gestaltSystemVersion, &response):

if ((err== noErr) && (response >= Ox0700))
System_7_Present = TRUE:

else
System_7_Present = FALSE:

Ini tCursor () :

Setting up the menu &ar

MenuMaster calls Set_Up_Menu_Bar() to put the menu bar on the
screen. This routine is so similar to the one by the same name developed
in this chapter's Setting Up the Hierarchical Menu section, you'd swear I
did a copy and paste. Me? Never! Seriously, though, just a few lines are
new. I've added a Style variable and these three lines:

item_style =bold + italic:
SetitemStyle(File_Menu. SHOW_ABOUT_2_ITEM, item_style):

Checkitem(File_Menu, NO_CHECK_ME_ITEM, TRUE) :

The second item in the File menu, the "Show About" item, appears in
bold and italic. I add the styles I want, then call SetltemStyle() to make
the style change. This is the only place I have to make the change; the

3 5 4 Macintosh Programming Techniques

menu item will appear in this style for the remainder of the program's
execution.

MenuMaster has two items that can receive a checkm.ark. The program
starts with one of the items checked, so I do that here with a call to
Checkltem().

void Set_Up_Menu_Bar(void)
{

Handle menu_bar_handle;
MenuHandle submenu_handle;

Style item_style;

menu_bar_handle = GetNewMBar(MENU_BAR_ID);
if (menu_bar_handle NIL

ExitToShell();

SetMenuBar(menu_bar_handle) :
DisposHandle(menu_bar_handle):

Apple_Menu = GetMHandle(APPLE_MENU_ID) :
File_Menu = GetMHandle(FILE_MENU_ID);
Edit_Menu = GetMHandle(EDIT_MENU_ID);

submenu_handle = GetMenu(SUBMENU_ID) ;
InsertMenu(submenu_handle, -1);

item_style =bold+ italic:
SetitemStyle(File_Menu, SHOW_ABOUT_2_ITEM. item_style):

Check!tem(File_Menu, NO_CHECK_ME_ITEM, TRUE);

AddResMenu(Apple_Menu, 'DRVR');

DrawMenuBar () ;

Handling a lceystrolce
The Handle_One_Event() routine should be old-hat by now. This program's
version has just one addition-the handling of a keystroke. I've included a
case section for a keyDown event. There I call Handle_Keystioke(). This

Chapter 7: Managing Menus

routine appears exactly as it was developed in this chapter's Handling A
Keystroke section.

void Handle_One_Event(void)

Boolean event_was_dialog:

if (Multifinder_Present == TRUE
WaitNextEvent(everyEvent, &The_Event, SLEEP_TICKS, MOUSE_REGION):

else

SystemTask():

GetNextEvent(everyEvent, &The_Event):

switch (The_Event.what

case keyDown:

Handle_Keystroke():

break:

case mouseDown:
Handle_Mouse_Down():

break:

void Handle_Keystroke(void)
(

short chr;

long menu_choice:

chr = The_Event.message & charCodeMask:

if ((The_Event.modifiers & cmdKey) != 0)

if (The_Event.what != autoKey)

menu_choice = MenuKey(chr):
Handle_Menu_Choice(menu_choice):

355

3 5 6 Macintosh Programming Techniques

Handling a click in the menu &ar
A mouse click results in a call to Handle_Mouse_Down(), which in turn

calls Handle_Menu_Choice(). Here's Handle_Mouse_Down().

void Handle_Mouse_Down(void

WindowPtr the_window:
short the_part:
long menu_choice:

the_part = FindWindow(The_Event.where, &the_window):

switch (the_part)
(

case inMenuBar:
menu_choice = MenuSelect(The_Event.where):
Handle_Menu_Choice(menu_choice);

break:

Regardless of the program, Handle_Menu_Choice() has the same form:
use HiWord() and LoWord() to determine the selected menu and menu
item, respectively. Then enter a switch statement that determines which
menu-handling routine to branch to.

MenuMaster has three menus in the menu bar, yet there are four cases in
the switch. That's because MenuMaster has a hierarchical menu; don't
forget to include all hierarchical menus in the switch. Even though the
user goes through the File menu to reach the hierarchical menu, it still
acts as if it were a menu perched in the menu bar.

Notice that a click in the edit menu doesn't get any attention. That's
because MenuMaster only uses the Edit menu when the modal dialog is
open. When that's the case, either the system will handle things (if
System 7 is present), or the filter function called by ModalDialog() will
(if any other earlier system is running).

Chapter 7: Managing Menus

void Handle_Menu_Choice(long menu_choice)

int the_menu;
int the_menu_item:

if menu_choice != 0
(

the_menu = HiWord(menu_choice) :
the_menu_item ~ LoWord(menu_choice):

switch (the_menu)

case APPLE_MENU_ID:
Handle_Apple_Choice(the_menu_item):
break:

case FILE_MENU_ID:
Handle_File_Choice(the_menu_item):
break;

case SUBMENU_ID:
Handle_Hierarchical_Menu(the_menu_item) ;
break;

case EDIT_MENU_ID:

break;

HiliteMenu(O);

A menu selection in the Apple menu brings you to Handle_Apple_Choice().
This is a typical "cut and paste" routine; it will appear, as is, in almost any
program you write. What would make you change this routine? If you have
more than one item in the menu, other than the desk accessories. Figure
7-39 gives an example.

void Handle_Apple_Choice(int the_item)
(

Str255 desk_acc_name;
int desk_acc_number;

switch (the_item)

357

3 5 8 Macintosh Programming Techniques

case SHOW_ABOUT_l_ITEM :

Alert(ABOUT_ALERT_ID, NIL):

break:

default :
Getltem(Apple_Menu, the_item, desk_acc_name) :

desk_acc_number = OpenDeskAcc(desk_acc_name) :

break:

About DoubleDealer ...
Registering DoubleOealer ...

~ Alarm Clock

ill! Calculator

tp Chooser

~Key Caps

Figure 7-39. Example of a "nonstandard" Apple menu

A selection in the File menu sends you to Handle_File_Choice(). Typical
of menu-handling routines, it isn't much more than a branching-off
point. A "Show About" selection simply puts up the same alert that you
used for the Apple menu's "About MenuMaster" item. Choosing "Quit"
just sets the global variable All_Done to true. The other menu items are
a bit more complicated, so they have their own routines.

void Handle_File_Choice(int the_item

switch (the_item)

case OPEN_DIALOG_ITEM:
Open_Modal_Dialog():

break:

case SHOW_ABOUT_2_ITEM:
Alert(ABOUT_ALERT_ID, NIL):

break:

Chapter 7: Managing Menus 3 5 9

case CHECK_ME_ITEM:
Handle_Menu_Checked_Item();
break:

case DISABLE_OPEN_DIALOG_ITEM:
Handle_Disable_Open_Dialog_Item():
break:

case DISABLE_EDIT_MENU_ITEM:
Handle_Disable_Edit_Item():
break:

case QUIT_ITEM:
All_Done = TRUE:
break:

Editing text in a modal dialog

A menu choice of Open Modal Dialog takes the program to a routine
called Open_Modal_Dialog(). How's that for descriptive naming? The
source code for this routine is pretty much straight out of the Modal
Dialog Source Code section of Chapter 6.

There is one addition-the check for System 7 discussed earlier. If
System 7 isn't present, you must supply the means for the user to use the
keyboard equivalents for cut, copy, and paste. Dialog_Edit_Filter() does
that. There's no need to discuss the filter function here-it appears just
as it does several pages back.

void Open_Modal_Dialog(void
{

DialogPtr the_dialog:
short the_item:
Boolean all_done = FALSE:

the_dialog = GetNewDialog(DIALOG_ID, NIL, IN_FRONT) ;
ShowWindow(the_dialog):

while (all_done ==- FALSE
(

if (System_7_Present == TRUE

360 Macintosh Programming Techniques

ModalDialog(NIL. &the_item):
else

ModalDialog(Dialog_Edit_Filter, &the_item) ;

switch (the_item

case OK_BUTTON_ITEM:
all_done "" TRUE;
break:

DisposDialog(the_dialog) ;

pascal Boolean Dialog_Edit_Filter(DialogPtr dlog. EventRecord *event.
short *item)

char chr;

if event-)what Ja keyDown

return (FALSE);

chr = event->message & charCodeMask:

if ((event->modifiers & cmdKey) != 0)

switch (chr

case 'x':
DlgCut (dlog);

break:
case 'c':

DlgCopy (dlog):
break:

case 'v':
DlgPaste (dlog):
break;

return (TRUE);

if ((chr "'""'" RETURN_KEY) I I (chr """"" ENTER_KEY))

*item "" 1:

Chapter 7: Managing Menus 361

return (TRUE) :

return (FALSE) :

Checking a menu item

This chapter demonstrated how to use Checkltem() to either set or clear
a checkmark by a menu item. MenuMaster uses this same technique.

void Handle_Menu_Checked_Item(short item)

if (item == CHECK_ME_ITEM)
(

Checkltem(File_Menu. NO_CHECK_ME_ITEM. FALSE);
Check_Me_Checked = TRUE:

else

Checkltem(File_Menu. CHECK_ME_ITEM. FALSE) :
Check_Me_Checked = FALSE;

Checkltem(File_Menu. item. TRUE) :

Disabling and enabling a menu and menu item
If the user selects the File menu item "Disable 'Open Modal Dialog"'
you check the global flag Open_Dialog_Disabled to see which state this
item is already in. Whatever the state, you toggle it to its opposite state.
This routine performs two tasks. It enables or disables the first item in
the File menu, and then makes a call to Setltem() to change the text of
the selected item to whatever title is appropriate. Figure 7-40 shows the
two possible scenarios.

3 6 2 Macintosh Programming Techniques

void Handle_Disable_Open_Dialog_Item(void)
(

if (Open_Dialog_Disabled -- TRUE)
(

Enable!tem(File_Menu. OPEN_DIALOG_ITEM) ;
Setitem(File_Menu, DISABLE_OPEN_DIALOG_ITEM.

"\pDisable 'Open Modal Dialog'"):
Open_Dialog_Disabled = FALSE:

else

Disableitem(File_Menu, OPEN_DIALOG_ITEM) ;
Setitem(File_Menu, DISABLE_OPEN_DIALOG_ITEM,

"\pEnable 'Open Modal Dialog'");
Open_Dialog_Disabled = TRUE:

This item is enabled ...

So this item now lets
the user disable it

This item is disabled ...

So this item now lets
the user enable it

Open Modal Dialog
S/1111U llllBlll ...

e,/Check Me
No, Check Me

Disable 'Open Modal Dialog'
Disable 'Edit' Menu

0f)en Mod•~l IHc~lo•.J
Sh11m 11111111 ...

e./Check Me
No, Check Me

Enable 'Open Modal Dialog•
Disable 'Edit' Menu

Figure 7-40. Enabling/disabling an item and changing an item's text

Chapter 7: Managing Menus 363

Handle_Disable_Edit_ltem() works in the same way as the previous rou­
tine. The difference is in the second parameter passed to Enableltem().
By passing a value of 0 (ENTIRE_MENU) to Disableltem() you're telling
the Toolbox to disable the entire Edit menu, not a particular item in it.

void Handle_Disable_Edit_Item(void
I

if (Edit_Menu_Disabled == TRUE)

I
Enableltem(Edit_Menu, ENTIRE_MENU):
DrawMenuBar ():
Setitem(File_Menu, DISABLE_EDIT_MENU_ITEM. "\pDisable 'Edit' Menu");
Edit_Menu_Disabled = FALSE;

else

Disableitem(Edit_Menu, ENTIRE_MENU);
DrawMenuBar () :
Setitem(File_Menu. DISABLE_EDIT_MENU_ITEM. 11 \pEnable 'Edit' Menu");
Edit_Menu_Disabled = TRUE:

Handling a hierarchical menu

MenuMaster displays an alert if either of the hierarchical submenu items
are selected. To display two different strings in the same alert the pro­
gram uses the ParamText() trick discussed earlier.

void Handle_Hierarchical_Menu(int the_item

switch (the_item)

case SUBMENU_ITEM_l:
ParamText("\pSubmenu. Item l", 11 \p". 11 \p". 11 \p");
NoteAlert(INFO_ALERT_ID. NIL) :
break;

case SUBMENU_ITEM_2:
ParamText("\pSubmenu. Item 2". 11 \p". 11 \p". 11 \p"):
NoteAlert(INFO_ALERT_ID, NIL) :
break;

364 Macintosh Programming Techniques

Chapter Summary
To display a menu bar in your Macintosh program you use 'MENU'
resources and a single 'MBAR' resource. Each 'MENU' resource defines
the menu items that appear in a single pull-down menu. The 'MBAR'
resource packages the individual 'MENU' resources into single menu bar.

Several Toolbox routines are involved in setting up an application's
menu bar. GetNewMBar() creates a menu list that holds a handle to each
menu in the menu bar. SetMenuBar() installs the individual menus with­
in the menu bar. AddResMenu() fills the Apple menu with the names of
desk accessories and, under System 7, the names of items in the Apple
Menu Items folder in the System Folder. Finally, the menu bar is dis­
played on the screen with a call to DrawMenuBar().

To get access to a handle to an individual menu-a MenuHandle-call
GetMHandle(). You'll then use this handle in subsequent calls to
Toolbox routines that change the characteristics of the menu or items in
it. Some of the changes you can make are: enabling and disabling a menu
item, changing the name of a menu item, and displaying a checkmark by
an item.

When the user clicks the mouse button, you'll want to check to see if the
click took place in the menu bar area of the screen. A call to
FindWindow() determines that. If the mouse down event did occur in the
menu bar, you'll call the powerful Toolbox routine MenuSelect() to track
the mouse in the menu bar, dropping down menus as the user moves the
mouse over them.

If the user makes a selection from a menu, call MenuSelect() to deter­
mine what item was selected. You'll use the Toolbox routines HiWord()
and LoWord() to extract both the menu and the menu item from the sin­
gle value that MenuSelect() returns.

You can make things easier for the user by creating keyboard equiva­
lents for commonly-used menu selections. You'll include the keyboard
equivalent in the 'MENU' resource, then write a Handle_Keystroke()
routine that keeps watch for this keystroke combination.

You can expand the amount of information in a menu by changing a
menu item into a hierarchical menu. By marking a menu as such in the

Chapter 7: Managing Menus 365

'MENU' resource you'll add a pull-down menu to a menu item. You
make your program aware of a hierarchical menu when you set up the
program's menu bar. At that time you call GetMenu() and InsertMenu()
for each hierarchical menu your program has.

To change menu characteristics you'll again rely on the Toolbox.
Enableltem() and Disableltem() enable and disable a single menu item
or an entire menu. Depending on the parameters you pass to it, the
Checkltem() routine adds or takes away a checkmark from alongside a
menu item. You can use SetltemStyle() to change the look of a menu
item. You can give a menu item text characteristics such as bold or
outline.

You can use a special filter function to give the user access to commands
found in the Edit menu when a modal dialog 'is on the screen. Your pro­
gram will call this filter function every time it calls the Toolbox routine
ModalDialog().

The Varying Mac

\A /hen the Macintosh was introduced a decade ago, there was just a
YY single model. Now there are numerous models, each with a slightly
different configuration. A user further complicates the picture by cus­
tomizing a machine with a floating-point coprocessor, extra RAM, or a
large-screen color monitor. The system software that drives the
Macintosh has also evolved over the years.

While every Mac owner would like to have the most current, feature­
laden model, the truth is that millions of Macintosh owners are running
programs on older machines.

As a service to this varied audience, and to insure that your program has
the widest distribution and usage as possible, you will want to write
applications that execute on as many Macintosh models as possible.

Writing code that is guaranteed to run on several different models
requires a little extra work on your part, but the effort will be worth it.

367

3 6 8 Macintosh Programming Techniques

This chapter describes the programming tricks necessary to ensure that
anyone using a Macintosh will also be able to use your applications
easily.

Checking For Traps
The machine instructions for routines that you write exist, of course,
within your compiled source code. The machine instructions for
Toolbox routines, such as DrawString(), exist outside your compiled
source code, this machine code is housed in ROM, or occasionally, in
RAM. A Toolbox routine is also called a trap. The technique for placing
shared system code outside of your compiled application is sometimes
called dynamic linking or shared libraries. This is different &om the
library routines such as strcpy() that are compiled and linked together
with your application code so that every application has its own copy of
the compiled code.

If you are a Windows programmer, the Toolbox rou·
tines are similar to routines found in Windows Dlls
(Dynamic Unk Ubraries).

Toolbox routines are traps
A Toolbox routine is usually located in ROM, though the System may on
occasion load a routine in RAM. Where, exactly, is any one particular
routine located in memory? The memory location of the routine is deter­
mined by the routine's trap number. If your application makes a call to
DrawString(), the execution of your application will be interrupted while
the processor makes use of the DrawString() trap number to locate the
code for the DrawString() routine.

~OTt

Chapter 8: The Varying Mac 369

Earlier I said that Toolbox routines are in ROM. Why
then am I now reneging and saying that some may be
in RAM? For any given Macintosh, the contents of ROM
are fixed. A new and improved ROM with additional
routines may be included with the newer Macs. Can an
older, existing model, with its older ROM, ever get
these newer routines? Yes, when Apple provides a new
System. The new System may contain patches-code
that loads a routine from the System into RAM. This
routine can be found in the ROM of a newer Mac and,
via the patch, be placed in the RAM of an older Mac.

Traps are stored in RAM. Each trap number is associated with an address
that is at the start of the code for the routine the trap represents. Figure
8-1 shows how a call to a hypothetical Toolbox routine called Routine_B
results in the processor first going to a trap number in RAM-Trap #2.
The address associated with Trap #2 is address_2. This address is the
memory address of Routine_B. From there, the processor goes to
address_2 in ROM to find and execute the code for the function
Routine_B.

Routine_C: Trap #3

Routine_B: Trap #2

Routine_A: Trap #1

RAM

...... - -
~--- --= - -

address_3

address_2

address_1

ROM

..... ...- -~------=-- -

Routine_B

Figure B-1. A trap number leads to a Toolbox routine

address_2

3 70 Macintosh Programming Techniques

Let's sum up what you've learned to this point. Figure 8-2 shows what
happens when your application makes a call to the Toolbox routine
DrawString().

<D
Drawstring("/pHello, World!"):

RAM ROM

©A call to Drawstring () in the compiled source code.

®To RAM, to see what address corresponds to the
Drawstring () trap.

@To ROM, to the address given by RAM. Here lies
the code that makes up the Drawstring () function.

©After executing the Drawstring () code, it's back
to your application code.

Figure 8-2. Sequence of events in a call to DrawString()

Each Toolbox routine is represented by a trap, and all of the traps are
grouped together in RAM in a dispatch table. The dispatch table thus
holds the starting address of each of the over two thousand Toolbox rou­
tines. For simplicity, imagine that the latest version of the Toolbox con­
tains just three routines generically named Routine_A, Routine_B, and
Routine_C. Figure 8-3 shows the dispatch table for a hypothetical
Toolbox.

Unimplemented: Trap #6

Trap #5

Trap #4

Routine_C: Trap #3

Routine_B: Trap #2

Routine_A: Trap #1

Chapter 8: The Varying Mac 3 71

..- -
-~----~-r------ ~ - ~ -

address_6

address_6

address_6

address_3

address_2

address_1

i
The rest
of RAM

Dispatch
Table

l
Figure 8-3. A hypothetical dispatch table in RAM

Figure 8-3 shows that a trap represents a Toolbox routine and has both a
number and an address associated with it. Notice further that there are
traps that don't represent any function-namely, Trap #4 and Trap #5.
Notice further that these two empty traps both have the same address­
address_6. This is the same address as the dispatch table entry labeled
Unimplemented. Take careful note of this point; it will serve as the basis
for determining whether a Toolbox routine exists in the Toolbox of the
computer your application is running on.

The Unimplemented trap really does exist in our hypothetical
Macintosh and in every real Macintosh computer. And Apple guarantees
that it will never change its trap number and will never use it to house
the address of a Toolbox routine.

A dispatch table is not full. As you just saw in Figure 8--3, it has empty
entries. As Apple releases new versions of the System some of these pre­
viously empty entries will contain valid addresses that direct the proces­
sor to the code of new Toolbox routines. Figure 8-4 illustrates this.

3 72 Macintosh Programming Techniques

Unimplemented: Trap #6

Trap #5

Trap #4

Routine_C: Trap #3

Routine_B: Trap #2

Routine_A: Trap #1

Dispatch Table
for Old Toolbox

RAM

...- -~-------- - - -
address_6

address_6

address_6

address_3

address_2

address_1

New dispatch table entry,
for new function Routine_D

Dispatch Table
for New Toolbox

ROM

address_6

address_6

address 4

Figure 8-4. The dispatch table for an old and a new Toolbox

In Figure 8-4 the new dispatch table and the old dispatch table differ by
just one entry. For the new Toolbox, Trap #4 now holds the address of a
new Toolbox routine, Routine_D.

Now, after this very lengthy introduction to traps, I'm ready to cover the
topic that is really of interest to you. Namely, if different Systems con­
tain different versions of the Toolbox, how can you be sure that a
Toolbox call you'd like to include in your source code is present on the
Macintosh that will be running your application?

~OTt

Chapter 8: The Varying Mac 3 7 3

Why all the fuss about traps and their availability?
Quite simply, if you attempt to make a call to a non­
present Toolbox routine, your application will crash.

The answer to the above question lies in the fact that dispatch table
entries that are empty all contain the identical address: the one found in
the Unimplemented trap. Figure 8-5 demonstrates this.

RAM

The address of the
always-present
Unimplemented Trap ...

Unimplemented: Trap #6
i--------~L-----

Trap #5 ... is given to all
1-------+" ----..... empty entries in

Trap #4 the dispatch table.
Routine_C: Trap #3 address_3 ------Routine_B: Trap #2 address_2 ------Routine_A: Trap #1 address_ 1

.._ ____ _
Figure B-S. Addresses in empty entries of the dispatch table

To determine if a Toolbox routine is present you compare the address
found in the trap number of the Toolbox routine to the address found in
the trap number of the Unimplemented trap. Remember, empty entries
have been assigned the same address as that placed in the
Unimplemented trap. That means that if your comparison results in two
addresses that are the same, the routine is not present in the version of
the Toolbox you are checking. Figure 8-6 illustrates this, again using the
hypothetical Toolbox.

3 7 4 Macintosh Programming Techniques

Trap #6

Trap #5

Trap #4

Trap #3

Trap #2

Trap #1

Dispatch Table
for Old Toolbox

RAM

address_6

address_6

address_6

address_3

address_2

address_1

Trap empty, routine
not implemented.

Dispatch Table
for New Toolbox

RAM

address_6

address_6

address_4

address_3

address_2

address_1

Trap not empty,
routine implemented.

To test for Routine_D, with a trap number of 4 -
Compare: the address in the Unimplemented trap, Trap #6,

To: the address in the trap of Routine_D, Trap #4.

Figure 8-6. Testing for routine Toolbox implementation

Now that you know the theory behind checking for implemented
Toolbox routines, it's time to move on to the real thing: the code to
include in your application to perform this check.

Lesson 8-1: Traps and the Toolbox

You can run the program enclosed with this
book for a hands•on tutorial about this topicjl

Chapter 8: The Varying Mac 3 7 5

Determining if a Toolbox routine is implemented

In the previous section I said that each Toolbox routine has a trap num­
ber by which the code for the routine is accessed. There I used generic
names and numbers for the traps. Here's a look at a C definition of the
trap number for a Toolbox routine that loads a color window into
memory, GetNewCWindow():

#define _GetNewCWindow OxAA46

Compilers such as THINK C and Symantec C++ take care of definitions
such as the above. You can include _GetNewCWindow and other traps
in your program by including the 'IIaps.h header at the top of your code:

#include <Traps.h>

main()
(

To refer to a trap in your source code, you simply preface the routine
name with an underscore; it is not necessary to know the trap number.
The trap number exists for the processor to use as an index into the dis­
patch table. Here's an example that uses NGet'IIapAddress() to get the
memory address of the GetNewCWindow() code, as found in the dis­
patch table:

long color_wind_addr:

color_wind_addr = NGetTrapAddress(_GetNewCWindow, ToolTrap):

The above code by itself is not very useful. But when you also get the
address of the Unimplemented trap, and then make a comparison of the
two addresses, you have the solution to the problem of determining if a
routine is present in the Toolbox. Below is a little C code used to check
to see if the GetNewCWindow() function is in the Toolbox.

long unimplemented_addr:

long color_wind_addr:

3 7 6 Macintosh Programming Techniques

unimplemented_addr = NGetTrapAddress(_Unimplemented, ToolTrap):
color_wind_addr = NGetTrapAddress(_GetNewCWindow, ToolTrap):

if (color_wind_addr == unimplemented_addr)
{

/* Trap is unavailable */

else

/* Trap is available */

The second parameter in the call to NGetTrapAddress()-ToolTrap­
may have caught your eye. There is one final point to make about traps.
There are actually two separate dispatch tables in RAM. One holds the
traps for Operating System routines, while the other holds the traps for
Toolbox routines. An example of an Operating System routine is Eject(),
which, not surprisingly, ejects a disk from the disk drive. Examples of
Toolbox routines are Move Window(), which moves a window, and the
numerous drawing routines, such as FrameRect{} and PaintOval().

To allow you to distinguish between the Operating System traps and the
Toolbox traps, Apple has created the Macintosh C enumerated type
TrapType. There are two members to this type: OSTcap and ToolTcap.

In the previous code fragment, how would you know that
GetNewCWindow() was a Toolbox trap and not an Operating System
trap? One method is to look up the routine name in Apple's Inside
Macintosh series of books. All trap numbers begin with $A. If the next
digit in the trap number is between $0 and $7, then the trap is in the
OS dispatch table and is of the OSTrap type. If the digit is instead
between $8 and $F, then the trap is in the Toolbox dispatch table and is
a ToolTcap type. You know that GetNewCWindow() is a ToolTrap type
because the digit following the first $A (it too just happens to be a $A)
falls in the range of $8 and $F. Figure 8-7 shows a listing of a few
Toolbox trap numbers.

Chapter 8: The Varying Mac 3 7 7

_GetNamedResource $A9Al
_GetNewControl $A9BE

_GetNewCWindow $AA46

~~
Traps start with $A If the next digit is

in the range of $8-$F,
the trap is a Tool Trap

Figure 8-7. Determining the type of a trap

If you don't have a reference book handy there is a second method to
determine a traps type. It's done by writing a couple of routines of your
own, and it's a little tricky. By now you probably already know more
about traps than you ever hoped you would. For that reason, I've thrown
the routines into an appendix. If you're brave, or perhaps masochistic,
refer to Appendix B.

So that you can fully understand what was transpiring, I intentionally
made the previous code fragment a little wordy. Now that you are a trap
master, I can tighten our C code up:

Boolean Color_Wind_Available;

Color_Wind_Available = (NGetTrapAddress(_Unimplemented, ToolTrap)
!= NGetTrapAddress(_GetNewCWindow, ToolTrap));

if (Color_Wind_Available)

[open a color window]

else

[open a black and white window]

In general, make your Boolean variable global and perform the trap check
near the start of your code. Then you can use the Boolean every time you
have to check for the presence of a Toolbox routine.

3 7 8 Macintosh Programming Techniques

With the history of traps well established, earlier use of
NGetTrapAddress() to determine if MultiFinder is present in the system
should make sense to you. I introduced the technique but did not fully
explain it back in Chapter 5. Now it should make better sense.

Boolean Multifinder_Present:

Multifinder_Present = (NGetTrapAddress(_WaitNextEvent, ToolTrap) !=

NGetTrapAddress(_Unimplemented, ToolTrap)):

if (Multifinder_Present == TRUE)
[use the newer event-retrieving routine WaitNextEvent()

else
[use the older GetNextEvent() */

The Features of a Macintosh
The different members of the Macintosh family differ in the hardware fea­
tures they contain. They can also differ in the version of System software
they run. To make matters worse (for you, the compatibility-minded pro­
grammer), users can make a host of changes to both the hardware and
software once they get their computers home or to the office.

The previous section demonstrated a means of determining if a particu­
lar Toolbox routine is present through the use of the NGetTrapAddress()
routine. There will also be times when you want to know if the comput­
er your program is running on has a particular hardware feature. One
way to get this information is by making a call to the Toolbox routine
SysEnviions(). Here's a typical call:

SysEnvRec mac_info:

SysEnvirons(curSysEnvVers. &mac_info):

As Macintosh features have evolved, so has SysEnviions(}-there is more
than one version available. To make use of SysEnviions() you pass it the ver­
sion you'll be using. Always pass curSysEnvVers as the version number. Your
compiler defines this constant for you; you needn't worry about its value.

Chapter 8: The Varying Mac 3 79

The second parameter to pass is a pointer to a variable of type
SysEnvRec. After making the call, the several members of the SysEnvRec
structure will yield useful information such as the CPU the machine has
and the version of the System software currently running. Below is the
SysEnvRec structure.

struct SysEnvRec
(

short environsVersion;

short machineType;

short systemVersion;

short processor;

Boolean hasFPU;

Boolean hasColorQD:

short keyBoardType;

short atDrvrVersNum;

short sysVRefNum;

) :

As this section ends, you'll notice that I haven't provided you with an
in-depth example of SysEnvirons(). The next section tells you why.

More Features of a Mac
Starting with the release of System 6.0.4 back in 1989, the use of
SysEnvirons() became virtually obsolete. After reading the material in
the last section, you're probably wondering why I didn't mention this
fact a little sooner!

The Gestalt() function
All the information about machine features is useful stuff, even if the
calls to SysEnvirons() have lost much of their value. The way in which
the Macintosh determines the features of a machine is different than
you've seen for other brands of computers. It is important that you
understand these concepts. And there will be some occasions when
you'll want to call SysEnvirons(). So, be truthful now, if I had told you at
the onset of the last section that the primary routine I'd be covering was
virtually obsolete, would you really have read it?

3 8 0 Macintosh Programming Techniques

System 6.0.4 introduced a new Toolbox routine, Gestalt(). This function
does what SysEnvirons() did, and much more. When it comes to deter­
mining the various features on a Macintosh, SysEnvirons() pales in com­
parison to Gestalt(). Figure 8-8 sums this up.

Gestalt ()
Some of what it can determine

SysEnvirons()
Everything that
it can determine

Machine Type
System Version
CPU Type
FPU Present
Color QuickDraw Present
Keyboard Type
AppleTalk Version
Directory of System File

FPU Type
QuickDraw Version
Amount of RAM
AUX Version
Sound Capabilities
ROM Size
ROM Version
NuBus slot information
MMUType
Help Manager Present
Power Manager Information
and much more ...

Figure B-B. The advantages of Gestal~)

Now that you know about the existence of the amazing Gestalt() func­
tion, why would you ever bother with SysEnvirons()? Because there's a
catch to Gestalt(); it's only available on more recent machines. If it is
available, you'll want to use it. If not, you'll have to use the older
SysEnvirons() routine.

Checking for the availability of Gestalt()
The Gestalt() function is available on Macs running System 6.0.4 and
later, including any version of System 7. Since System 6.0.4 was released
in 1989, most Mac owners have a version at least that new on their
Macs. That means there's a very good chance that any Mac your applica­
tion runs on will support Gestalt(). But you, of course, can't make that
assumption.

Chapter 8: The Varying Mac 3 8 1

Life is hard enough for those unfortunate enough to still be working on
pre-1989 Macs, don't aggravate them by crashing their machines!
Instead, make a couple of checks very early in your program to see just
what computer your program is running on. Because you won't immedi­
ately know if Gestalt() is available, use SysEnvirons(). Here's an example:

SysEnvRec mac_info;

SysEnvirons(curSysEnvVers, &mac_info):

if (mac_info.machineType < 0)

Exi tToShell () :

if (mac_info.systemVersion < Ox0604)
Exi tToShell () :

The SysEnvirons() routine was added to the Toolbox back in 1986, so it's
a pretty safe bet that it's available on any Mac your program will see. All
right, you caught me-I'm guilty of making an assumption! Here's one
more: anyone still using a pre-1986 Macintosh won't possibly be interest­
ed in the amazing, state-of-the-art application you'll be writing anyway!

Now, back to work. After making the call to SysEnviron() you examine
two of the members of the SysEnvRec structure, the machineType and
the system Version.

A machineType of 0 means that this Mac is really old, so you'll use the
routine Exi.tToShell() to quickly exit your program and return the user to
the Finder.

The same applies to a system of less than Ox0604. This hexadecimal
value means that the System software is pre-6.0.4 and thus pre-Gestalt().
I'll have more to say about the hexadecimal display of the system version
in just a few pages.

You'll be using Gestalt() to check for some Mac features, so you want to
establish that the Mac contains a System with the Gestalt() function. If
it doesn't, again use Exi.tToShell() to terminate your program.

It's a good idea to exit a program in a more graceful manner then I just did
in the above example. Before you ever abnormally terminate a program
you will want to give the user some information as to why he's being

3 8 2 Macintosh Programming Techniques

whisked back to the Finder. This information comes in the form of an alert
that displays an informative message. Here I've rewritten the previous
example to include the display of an alert. This chapter's example program
will do the same. Chapter 9 covers error-handling even more extensively.

/ldefine
/ldef ine

TOO_OLD_ALRT_ID
NIL

129

OL

SysEnvRec mac_info:

SysEnvirons(curSysEnvVers. &mac_info):

if ((mac_info.machineType < 0) I I (mac_info.systemVersion < Ox0604))
(

StopAlert(TOO_OLD_ALRT_ID. NIL):

Exi tToShell () :

The technique used here handles the case of users with
a pre· 1989 System on their Mac by exiting the pro·
gram. If you want to write a program that can execute
on a Mac with an old system, you can't use the
Gestalt() function-it didn't exist then. If your applica·
tion doesn't include any code that makes any assump·
lions about the Macintosh it's running on, that won't
be a problem. Then you'll skip the systemVersion test.

Once you've made it past these two checks, you know that your applica­
tion is running on a Macintosh that supports Gestalt(), and you can
freely use Gestalt() anywhere in your program.

Determining machine features using Gestalt()
To use Gestalt(), you pass it a selector code that tells Gestalt() what
hardware or software feature you want to examine.

In return, Gestalt() returns a response parameter. The response parame­
ter is the answer to the question you posed in the selector code. Here's an
example that checks for the version of QuickDraw in a Mac.

Chapter 8: The Varying Mac 3 8 3

#include (GestaltEqu.h)

OSErr err:

long response;

err= Gestalt(gestaltQuickdrawVersion, &response):

In this example gestaltQuickdrawVersion is the selector code and
response is the response parameter. This call asks Gestalt() to return the
version of QuickDraw in the machine. After the call to Gestalt() is com­
plete response will have one of the following values:

gestaltOriginalQD

gestalt8BitQD

gestalt32BitQD

gestalt32BitQDll

gestalt32BitQD12

gestalt32BitQD13

You can use the above as constants because your compiler defines them
in an enumerated type. This enum is in a header file called GestaltEqu.h.
Here are the actual values from part of that enum:

gestaltOriginalQD = OxOOO, /• original 1-bit QD •/

gestalt8BitQD = OxlOO, /• 8-bit color QD •/

gestalt32BitQD = Ox200, /• 32-bit color QD •/

gestalt32BitQDll = Ox210, /• 32-bit color QDvl.1 •/
gestalt32BitQD12 = Ox220, /• 32-bit color QDvl.2 •/

gestalt32BitQD13 = Ox230, /• 32-bit color QDvl.3 */

The constant gestaltQuickdrawVersion, along with numerous other
selector codes, is also defined in the GestaltEqu.h header file. If you use
Gestalt() in your program you must use GestaltEqu.h in an #include at
the start of your program. Appendix C shows many of the selector codes
and responses included in this file.

Gestalt() gives you verification that it was able to return the requested
information in the form of a result code of type OSErr. After a call to
Gestalt() always compare the result code to noErr. Your compiler defini­
tion for noErr looks like this:

#define noErr 0

3 8 4 Macintosh Programming Techniques

If Gestalt() returns a result code of 0 the call was successful. If it's any
other value you should not base the code that follows on the response
that Gestalt() returned. The following example shows a call to Gestalt()
and a test of the returned result code.

#include <GestaltEqu.h>

OSErr err:
long response;

err= Gestalt(gestaltQuickdrawVersion, &response):

if (err ==- noErr)
(

if (response == gestaltOriginalQD
DrawString("\pYou have the original version of QuickDraw."):

else
DrawString("\pGestalt error."):

Figure 8-9 sums up a call to Gestalt().

Include the file
//include <Gestal tEqu. h> <:J that holds the

Gestalt definitions

OSErr err:

long response:

Pass the selector code that
indicates the info you need

0
Gestalt returns
a response

0
err - Gestalt(gestaltQuickdrawVersion, &response):

. /')Verify that no error occurred

[/ ,/'\Base a decision on
if ((err noErr) && Uthe returned response

(response -- gestaltOriginalQD))
DrawString("\pYou have the original QuickDraw."):

Figure B-9. Using Gestal~)

Chapter 8: The Varying Mac 3 8 5

Now that you know just how to use Gestalt(), what can you use it for?
The following sections cover a few of the Macintosh features you can
determine with Gestalt(). Appendix C covers several more.

Determining the QuiclcDraw version

The drawing routines that make up QuickDraw have been improved and
increased over the years. The original version did not support color; sub­
sequent versions do.

If you're going to work with color, the Mac your program runs on must
have a version of QuickDraw that supports color. Use the selector
gestaltQuickdrawVersion to determine the version of QuickDraw that is
currently present.

Selector code

gestaltQuickdrawVersion
Response parameter
gestaltOriginalQD = OxOOO

gestalt8BitQD = OxlOO

gestalt32BitQD

gestalt32BitQDll

gestalt32BitQD12

gestalt32BitQD13

Example

= Ox200

= Ox210

= Ox220
= Ox230

Boolean Color_QD_Present:

OSErr err:

long response:

/*

/*

/*

/*

/*

/*

/*

QuickDraw version

original 1-bit QD

8-bit color QD

32-bit color QD

32-bit color QDvl.1

32-bit color QDvl.2

32-bit color QDvl.3

err= Gestalt(gestaltQuickdrawVersion, &response):

if (err == noErr)
(

if (response == gestaltOriginalQD

Color_QD_Present = FALSE:

else
Color_QD_Present = TRUE;

else

DrawString("\pGestalt error."):

*/

*/

*/

*/

*/

*/

*/

3 8 6 Macintosh Programming Techniques

Determining the CPU type
All Macintoshes use a CPU, or central processing unit, from the
Motorola 680x0 family. The oldest, the 68000, was in the original
Macintosh. Use the gestaltProcessorType selector to determine which
CPU is in the Macintosh your application is running on.

Selector code

gestaltProcessorType

Response parameter

gestalt68000 = 1

gestalt68010 = 2
gestalt68020 = 3

gestalt68030 = 4
gestalt68040 = 5
Example

OSErr err:
long response:

/* processor type

err= Gestalt(gestaltProcessorType, &response):

if (err ==- noErr)

if (response == gestalt68040)

*/

DrawString("\pYou have the newest CPU available!"):

else
DrawString("\pNo 68040? Tempted to upgrade?"):

else

DrawString("\pGestalt error."):

Determining the amount of physical RAM

In the last few years RAM prices have dropped considerably.
Consequently, many Macs have plenty of RAM. You may be fortunate
enough to have a Mac loaded with RAM, but compatibility concerns dic­
tate that you keep in mind the less fortunate! Millions of Macs with 1
Mb of RAM were sold, and many are still in daily use.

If you want to check for the amount of RAM a machine has, use the
gestaltPhysicalRAMSize selector in a call to Gestalt(). The response will
be the number of bytes of physical RAM.

Selector code

gestaltPhysicalRAMSize

Response parameter

Number of bytes of RAM.

Example

#define ONE_K 1024.0

OS Err

long

short

short

err:

response;

mega_bytes:

k_bytes:

Chapter 8: The Varying Mac

/* physical RAM size */

err= Gestalt(gestaltPhysicalRAMSize, &response);

if (err == noErr)

mega_bytes

k_bytes

response/(ONE_K * ONE_K); /* convert bytes */

response/ONE_K: /* to Mb and K */

Determining the floating-point coprocessor type

Some Macs have a floating-point coprocessor installed. Using the selec­
tor gestaltFPUType, Gestalt() will return a value that indicates the type
of floating-point coprocessor installed, if any.

Selector code

gestaltFPUType /* FPU type */
Response parameter

gestaltNoFPU 0 /* no FPU present */
gestalt68881 1 /* 68881 FPU */

gestalt68882 2 /* 68882 FPU */

gestalt68040FPU = 3 /* 68040 built-in FPU */

Example

OSErr err;

long response:

err = Gestalt(gestaltFPUType. &response):

if (err == noErr)

if (response) gestaltNoFPU

/* This machine has a floating-point unit */

else

387

3 8 8 Macintosh Programming Techniques

/• No floating-point unit present •/

else

DrawString("\pGestalt error."):

Determining the Macintosh machine type
You can determine the type of Macintosh, or machine, your application
is running on by passing the gestaltMachineType selector to Gestalt().
But be aware that two Macs of the same type may be running different
systems, have different amounts of memory, or differ in other ways.
Because they may differ in many respects you should not use the
machine type to assume certain features do or don't exist on the user's
computer.

Selector code

gestaltMachineType

Response parameter

/• machine type

kMachineNameStrID -16395

gestaltClassic = 1

gestaltMacXL = 2

gestaltMac512KE = 3

gestaltMacPlus = 4

gestaltMacSE 5

gestaltMacII 6

gestaltMacIIx = 7

gestaltMacIIcx = 8

gestaltMacSE030 9

gestaltPortable = 10

gestaltMacIIci 11

gestaltMacIIfx 13

gestaltMacClassic = 17

gestaltMacIIsi = 18

gestaltMacLC 19

gestaltQuadra900 20

gestaltPowerBook170 21

gestaltQuadra700 22

gestaltClassicII 23

gestaltPowerBooklOO = 24

gestaltPowerBook140 = 25

Example

OSErr err:

long response;

•/

Chapter 8: The Varying Mac 3 8 9

err = Gestalt(gestaltMachineType, &response):

if (err == noErr)

DrawString("\My senses tell me you're using a ... ");

switch (response)
{

else

case gestaltMacPlus:

DrawString("\pMacintosh Plus!");

break:

case gestaltMacSE:

DrawString("\pMacintosh SE!"):

break:

use "cases" for any or all Mac types]

default:

DrawString("\pI give up!"):

break:

DrawString("\pGestalt error."):

Determining the operating system version

The operating system version number can be determined by using the
gestaltSystemVersion selector. Like the machine type, knowledge of the
operating system version does not lend enough information to make pro­
gramming decisions regarding the features of a particular Macintosh
model.

The response that Gestalt() returns is a hexadecimal representation of
the system version. For example, if the system is version 6.0.4, response
will be Ox0604. If the system version is 7.1.0, response will be 0x0710.

Selector code

gestaltSystemVersion

Response parameter

/* System version

Number of the System file. in hexadecimal form.

Example

Boolean System_7_Present:

*/

390 Macintosh Programming Techniques

OSErr err;

long response:

err = Gestalt(gestaltSystemVersion, &response);

if (err == noErr)

if (response >= Ox0700

System_7_Present = TRUE:

else

System_7_Present = FALSE:

else

DrawString("\pGestalt error."):

Monitor-Avvare

The original Ford Model T car came in a choice of colors: black, or black.
Like the car, the original Macintosh model came with your choice of
monitor: built-in 9-inch diagonal black and white or ... you get the point.
No choice of size, no choice of color display. Things have changed in ten
years, and so have the tricks you'll need to use to make sure the pro­
grams you write are compatible with both color and monochrome moni­
tors, with monitors of different sizes, and with Mac systems with more
than one monitor. We'll cover multiple monitors first.

Dealing with multiple monitors
Though most users have just a single monitor, don't assume this is so. If
you don't allow the user to drag windows across monitors, or a window
comes up centered between two monitors, the user will quickly become
frustrated with your program.

Setting the window drag region

In Chapter 5 I used the boundaries of the screen to set the boundaries for
dragging a window. That method works just fine for a system that has a
single monitor. If you don't want to make that assumption (and you
shouldn't) you'll need to use a reference other than the screen boundaries.

Chapter 8: The Varying Mac 391

For a system with multiple monitors, one of your main concerns is that
you properly set the boundaries for window dragging. The size of this
drag boundary rectangle will be dependent on the size of the monitor.
More correctly, it will be dependent on the area that makes up the desk­
top. Because the desktop is usually gray, this area is known as the gray
region. Formally, it consists of a region that is the union of any active
screen devices (monitors) minus the menu bar. Figure 8-10 shows the
gray region for a dual-monitor system.

+ - the gray region

Figure 8-10. The gray region of a dual-monitor system

If you want to give the user the ability to drag windows created by your
application across monitors, you need to set up your drag boundary rec­
tangle so that it encompasses the entire gray region. Luckily, a routine
you call during initialization does much of the work for you. When your
initialization routine calls InitWindows() it calculates this region and
saves it to a global rgnHandle variable called GrayRgn. Because it's a sys­
tem global, you can use the GrayRgn variable without declaring it in
your programs.

The following is a replacement for the Set_Window_Drag_Boundaries()
function created in Chapter 5. It creates a rectangle independent of the
number of monitors running-a drag rectangle set to the size of the gray
region. The rest of the routine is the same as the old version. I inset the
drag rectangle a few pixels so that the drag region is not quite as big as

392 Macintosh Programming Techniques

the gray region, thus preventing the user from dragging windows off the
screen. Here's the new routine:

#define DRAG_EDGE 10

Rect Drag_Rect :

void Set_Window_Drag_Boundaries(void

Drag_Rect - (••(GrayRgn)).rgnBBox;

Drag_Rect.left += DRAG_EDGE ;

Drag_Rect.right -= DRAG_EDGE:
Dr ag_Rect.bottom -= DRAG_EDGE :

Setting the center point lor windows
As a programmer writing an application that may run on a dual-monitor
system, you should be concerned with the centering of windows and
dialogs. If you're still excited about your introduction to the gray
region-and why wouldn't you be-your first thought may be to just cen­
ter windows according to the global GrayRgn variable. It's a good
thought, but you should reconsider.

Centering a window by the GrayRgn works fine for a single-monitor
system. For a dual-monitor Mac it would place the window between the
two monitors, something that would definitely be disadvantageous
unusable for the user. Figure 8-11 illustrates the results of window cen­
tering using GrayRgn.

Figure 8-11. Improper window centering on a dual-monitor system

Chapter 8: The Varying Mac 3 9 3

Instead of using the entire desktop for centering, as you do for window
dragging, you can use just the main screen: the screen that displays the
menu bar. The window or dialog you're going to bring to the screen and
center is no doubt a result of the user choosing a menu option. So it is
most likely that's where the user is focused-on the monitor with the
menu bar.

To center the window you need to get the gray area of that one monitor.
That's a trick that you can accomplish with a call to the routine
GetMainDevice().

A monitor is a graphic display device. When the Mac starts up it checks
its expansion slots for display devices. The Mac stores the information it
obtains for a device in a device structure-a GDevice structure to be
exact. It then stores these structures in a device list. I'll talk more about
devices when I discuss color issues. For now, I'm only interested in get­
ting a handle to the main display device; that is, the device that displays
the menu bar. That's exactly what GetMainDevice() does.

One of the members of a GDevice structure is gdRect. This rectangle is
the boundary rectangle of the device's display. Figure 8-12 shows the
relationship between GDHandle and GDevice. For simplicity, just one of
the members of the GDevice structure is shown.

GDHandle Handle to ...

screen boundaries

struct GDevice
{

Re ct gdRect;

}

Figure B-12. GDHandle is a handle to a GDevice structure

The boundary rectangle includes both the gray area and the area of the
menu bar. You can thus use the bounds of gdRect to determine the cen­
ter of the main screen. Here's how:

394 Macintosh Programming Techniques

#define MENU_BAR_ HEIGHT 18

Point Screen_Center:

void Set_Screen_Center(void)

GDHandle gd_ handle ;

Rect bnds_rect ;

gd_handle = GetMainDevice():

bnds_rect - (••(gd_handle)) . gdRect :

Screen_Center . h = (bnds_rect.right /2):

Screen_Center . v = (bnds_rect.bottom/2) + (MENU_BAR_HEIGHT/2) :

The Set_Screen_Center() routine calls GetMainDevice() to get a handle
to the display device holding the main screen. Dereference the handle so
that you can look at this screen's boundary rectangle, gdRect. Make the
Point variable that holds the center point, Screen_Center, global so that
you can use it throughout your program for centering anything you want.

Data strudures and routines that Apple introduced to
support the use of graphics devices are a part of Color
QuickDraw. If the user doesn't have Color QuickDraw,
you can't use them.

A second method for centering a window on the main
screen is to use a QuickDraw global variable called
screenBits. This variable is a structure that represents a
bit map of the main screen. The bounds member is a
Reef that defines the screen of the main display. Here,
in its entirety, is a means to determine the center of the
main screen without using graphics device structures:

Screen_Center . h ~ screenBits . bounds.right/2 :

Screen_Center .v - (screenBits.bounds.bottom/2) +
((MENU_ BAR_HEIGHT/2)/2):

Chapter 8: The Varying Mac 3 9 5

Easy, huh? So why did I go through the much longer
explanation using the GDHandfe? Because you'll need
all of this information on graphics devices for the
upcoming discussion about working with color.
Determining the screen center from the GDHandle pro·
vides you with a sound explanation of device theory.

Once you know the center of the screen it's simple math to center a win­
dow or dialog. I use GetNewWindow() to demonstrate how to center a
window using the Screen_ Center point.

#define WIND_WIDTH 500
#define WIND_HEIGHT 300

Point Screen_Center:
WindowPtr The_Window:

void Open_Window(void

short top, left:

The_Window = GetNewWindow(400, OL, (WindowPtr)-lL):

if (The_Window == NIL
ExitToShell():

left = Screen_Center.h - (WIND_WIDTH /2):
top = Screen_Center.v - (WIND_HEIGHT/2):

MoveWindow(The_Window, left, top, TRUE):

ShowWindow(The_Window);

After GetNewWindow() loads a window into memory, use the Point
variable Screen_Center to establish the top left corner of the window.
You set the width and height of the window when you create the 'WIND'
resource in ResEdit. Use MoveWindow() to move the window to the cen­
ter of the screen.

If the 'WIND' resource that defines this window made the window invis­
ible, then the centering of the window took place behind the scenes.
Now it's time to display it with a call to ShowWindow().

396 Macintosh Programming Techniques

Dealing with different sized monitors

In the previous section you saw how to use the GrayRgn global variable
to determine the boundaries of the desktop for a system that has more
than one monitor. You then learned how to make a call to
GetMainDevice() to determine the center of the screen that holds the
menu bar. Both of these techniques, used to avoid problems should mul­
tiple monitors be present, work for a single monitor system regardless of
the screen size of the monitor.

You should use last section's Set_ Window _Drag_Boundaries() routine in
all your applications; it works for single- or dual-monitor systems,
regardless of the size of the monitor. The same is true for the
Set_Screen_Center() routine and the window centering technique used in
the Open_ Window() example.

Color AYlare
The way in which your program behaves may be dependent on the moni­
tor on which the user displays your program. To make your program
truly compatible with the variety of Macintosh systems on the market,
you'll want it to be able to display color on a color Macintosh while still
being able to run on a monochrome system.

Color representation
A monochrome monitor represents a single pixel on the screen by a sin­
gle bit of memory. A bit has two possible values, 0 and 1, so any pixel on
the screen of a monochrome monitor can have two possible values:
white or black.

To allow a pixel to be capable of displaying more than two colors, that
pixel must be represented by more than a single bit of memory. If two
bits are used per pixel, then a pixel can take on any one of four colors.
Four bits per pixel yields 16 colors, while eight bits gives 256 colors.
Using eight bits (a byte) of memory per pixel is common. After eight bits
comes 16-bit and 24-bit color representation. These are usually reserved
for high-end, expensive systems.

Chapter 8: The Varying Mac 3 9 7

The number of bits that represent a single pixel is the monitor's pixel
depth, or pixel value. Determining a monitor's pixel depth will be the
primary focus of this section.

Knowing the pixel depth of the monitor that is displaying your program
is important because your program will make decisions based on the
level of color the monitor can display. Here's a typical decision your pro­
gram might make:

if machine has colo r . a nd monitor is set to d i splay it

draw color text

otherwise

draw black and white text

Another example is the displaying of pictures. If you're going to display a
picture in a window you might want to have two or three separate ones
to pick from. The one you choose will depend on the amount of color the
user's Macintosh can display. When a black and white Mac shows a color
picture the computer translates the colors to black and white. The Mac
displays similar shades of a dark color as black. If these colors are adja­
cent, the areas that should be separate and distinct will blend into one.
Figure 8-13 shows the display of the same picture on both a four-color
monitor and a monochrome monitor. Note that the monochrome moni­
tor can't make the distinction between shades and produces an undesir­
able display of your picture.

I I I I i
I I

4-bit color
(16 colors)

2-bit color
(4 colors)

1-bit color
(2 colors)

Figure 8-13. The same picture viewed at 4-, 2-, and I -bit color

398 Macintosh Programming Techniques

Getting the pixel depth of a monitor

When I discussed how to determine the center of a monitor I introduced
the ideas of graphic devices and the device list. A monitor is a graphic
device. More technically, the monitor's video card is a graphic device.
The RAM memory that holds the value of each display pixel is located
on the video card, not the RAM in the Macintosh. Information about a
graphic device is stored in a GDevice structure, which is in turn placed
in a device list. Recall that a GDHandle is a handle to a GDevice.

You obtain a handle to the first device in the device list by calling
GetDeviceList(). Once you have the handle, pass it to a routine that
determines the pixel depth of the display:

GDHandle current_device:

short pixel_depth:

current_device = GetDeviceList():
pixel_depth = Get_Pixel_Depth(current_device);

Before you look at Get_Pixel_Depth(), a little background information is
necessary.

A graphic display device has a PixM.ap-a pixel map that defines the dis­
play. A PixMap is a structure that holds such information as the starting
address of the device's video RAM and the depth of each pixel in the
map. What you're after is the pixel depth; that is the pixelSize member of
the PixMap structure.

One member of the GDevice structure, gdPMap, is a handle to the pixel
map of the screen-a PixMapHandle. Once you have the handle to the
screen's pixel map, look at the pixelSize member of the PixMap. This
gives you the pixel depth of the display. Figure 8-14 shows the path to
the pixel depth.

GDHandle Handle to ...

PixMapHandle Handle to ••.

pixel depth

Chapter 8: The Varying Mac 399

struct GDevice
{

PixMapHandle gdPMap:

Rect gdRect:

struct PixMap
{

short pixelSize:

Figure B-14. The path from GDHandle to pixelSize

Now that you have background information on PixMaps, Get_Pixel_Depth()
should make sense to you. Here it is.

short Get_Pixel_Depth(GDHandle the_device)
{

PixMapHandle screen_PixMap_handle;
short pixel_depth;

screen_PixMap_handle = (**(the_device)).gdPMap:
pixel_depth = (**(screen_PixMap_handle)) .pixelSize:
return pixel_depth;

Get_Pixel_Depth() first takes the passed in GDHandle variable and
dereferences it get to the GDevice structure. There you get gdPMap, a
PixMap handle to the screen of the device being examined. Because you
have a handle, not the actual pixel map itself, you have to dereference it
to get to the pixelSize member of the PixMap.

400 Macintosh Programming Techniques

Now that you have the pixel depth of a monitor, how do you use it? One
use is for displaying pictures to a window. Your technique might be to
store two pictures in a resource file-one designed for monochrome sys­
tems and one for color systems, as shown in Figure 8-15. Then when you
determine the pixel depth of the system your program is running on, you
display the appropriate picture in a window.

PICT 301
for color
systems

PICT 302
for black
and white
systems

Figure 8-15. Two similar PICTs: one for color, one for monochrome

Lesson 8-2: Pixel Depth

You can run the program enclosed with this
book for a hands-on tutorial about this topic.

Multiple-monitors and pixel depth

What about a system that has more than one monitor? If there is more
than one display device, your interest will be in determining the pixel
depth of each monitor and saving the minimum depth. Why? If one mon­
itor is black and white, and a second is color, you'll want to display pro­
gram features in monochrome so that they are properly viewed on both
monitors. If you displayed 'PICT' 301 from Figure 8-15 in a window that
spanned both a color and monochrome monitor, the result would be
undesirable, as demonstrated in Figure 8- 16.

Chapter 8: The Varying Mac 401

Black and White Monitor Color Monitor

Figure 8-16. A color picture displayed across two monitors

To avoid the problem shown in Figure 8-16, you'd display the picture
designed for the monitor with the lower pixel depth, 'PICT' 302, as
shown in Figure 8-17.

Black and White Monitor Color Monitor

Figure 8-17: A monochrome picture displayed across two monitors

The same discussion holds true for a system that has two color monitors;
your program should execute as if it were running on a system of the
smaller depth.

402 Macintosh Programming Techniques

This discussion brings up another point. The Get_Pixel_Depth() routine
determines and returns the pixel depth of a single device. Since your
application may be running on a dual-monitor system, shouldn't you
check each device? Good point. You'll want to check the pixel depth of
each device and set a global variable to keep track of the smallest depth.
Or should we say "shallowest" depth?

Instead of directly calling Get_Pixel_Depth(), call a routine that loops
through each graphic device, checking the pixel depth of each and adjust­
ing a global variable as it finds a device of a smaller depth.

If there is more than one device, there will be more than one item in the
device list. So the device list is what you'll loop through. As before, use
GetDeviceList() to return the first device in the list. Use GetNextDevice()
to return the following entry in the device list. When GetNextDevice()
returns a value of nil, you know you've reached the end of the list.

Begin by setting the local variable min_depth to the largest value you
could encounter-24-bit color. Then get a handle to the first device in
the device list. Enter a loop and check the pixel depth. If the pixel
depth is smaller than the previous low value, reset the min_depth to
this new lower value. Call GetNextDevice() in the loop to get a handle
to the next device.

What happens if the system has just one monitor? At the first call to
GetNextDevice() you'll get a value of nil. When you go to the.top of the
while loop the test will fail and the loop will end. In that case,
min_depth will hold the pixel depth of the one monitor. Here's the code,
along with a reprint of Get_Pixel_Depth():

//define NIL

//define PIXEL_DEPTH_BW
//define PIXEL_DEPTH_4_COLOR
//define PIXEL_DEPTH_l6_COLOR
//define PIXEL_DEPTH_256_COLOR
//define PIXEL_DEPTH_LOTS_COLOR
//define PIXEL_DEPTH_MAX_COLOR

short Get_Min_Pixel_Depth(void
(

GDHandle current_device:

OL

1
2
4
8

16
24

/* 1 bit holds 2 colors .. I
/* 2 bits holds 4 colors .. I
/* 4 bits holds 16 colors •/
/* 8 bits holds 256 colors .. I
/* 16 bits holds ... uuhmm I
/* lots and lots of colors .. I

short
short

pixel_depth:
min_depth:

Chapter 8: The Varying Mac 403

min_depth = PIXEL_DEPTH_MAX_COLOR:
current_device = GetDeviceList():
while (current_device != NIL)

pixel_depth = Get_Pixel_Depth(current_device):
if (pixel_depth < min_depth)

min_depth = pixel_depth:
current_device = GetNextDevice(current_device) :

return min_depth:

short Get_Pixel_Depth(GDHandle the_device

PixMapHandle screenPMapH:
short pixel_depth:

screenPMapH = (**the_device).gdPMap:
pixel_depth = (**screenPMapH).pixelSize:
return pixel_depth ;

Note that I define several constants, one for each of the possible values
min_depth might have. Though they aren't used here, you might use them
later on in various tests. Here's an example from a program that runs best
on a machine displaying 256 colors. It calls the Get_Min_Pixel_Depth()
routine to set a global variable, Min_Pixel_Depth, to the lowest pixel depth.

short Min_Pixel_Depth;

Min_Pixel_Depth = Get_Min_Pixel_Depth();

switch (Min_Pixel_Depth
{

case PIXEL_DEPTH_BW:
Drawstring(11 \pThis program looks better in color!") ;
break;

case PIXEL_DEPTH_4_COLOR:
case PIXEL_DEPTH_l6_COLOR:

Drawstring(11 \pSet your monitor{s) to 256 color if available."):

404 Macintosh Programming Techniques

break:

case PIXEL_DEPTH_256_COLOR:

Drawstring("\pLeave monitor settings as they are now.") :

break:

default:

Drawstring("\pThis program displays only 256 colors."):

break;

When to call the pixel depth routines
Near the start of your program you'll want to make a one-time check to
see if the system has color QuickDraw. If it does, you'll set a global flag
that can be examined by your program at any time. I showed you how to
do this earlier when I introduced the Gestalt() function.

Boolean Color_QD_Present;

OSErr err;

long response:

err= Gestalt(gestaltQuickdrawVersion, &response):

if (err == noErr)

if (response == gestaltOriginalQD

Color_QD_Present =FALSE;

else

Color_QD_Present = TRUE:

else

DrawString("\pGestalt error."):

If color QuickDraw is present, determine the lowest color level setting of
the attached monitors. If color QuickDraw isn't present you can, or
course, safely assume a pixel depth of 1 bit-black and white.

if (Color_QD_Present == TRUE)

Min_Pixel_Depth = Get_Min_Pixel_Depth();

else

Min_Pixel_Depth = PIXEL_DEPTH_BW:

The Macintosh is a computer with flexible features; there are Macintosh
models designed to please all types of users. One of the features that can
be varied is the level of colors the monitor will display. As a convenience

Chapter 8: The Varying Mac 405

to the user, the Monitor's control panel lets the user change the color
level at any time, even during the running of your application. Your pro­
gram should be aware of this and not assume that the level of color at the
onset of execution will be the color level throughout the program's entire
execution. The Monitor's control panel appears in Figure 8-18.

If the color level can be changed at any time, how can you possibly know
when to check to see if the user has made a change? If the user selects
the Monitor's control panel while your program is running, an update
event will occur. Your program, ever watchful for the occurrence of an
event, will be aware of this update event. When an update event occurs,
its your cue to check if the color level changed.

:D Monitors
Characteristics of selected monitor : 7.0

®Colors: ~ 6 (Options ...)

o.,.,.

0 256
0

Drag monitors and menu bar to rearrange them.

iii

-===:=J (Identify)

Figure 8-18. The monitor's control panel

Place a call to Get_Min_Pixel_Depth() within the updateEvt case of the
switch statement in your program's event loop, if color QuickDraw is
present. If color QuickDraw isn't present, you know that the value of
your global variable Min_Pixel_Depth, set to black and white near pro­
gram startup, won't change. Here's the affected section of the event loop.

switch (The_ Event . what)

406 Macintosh Programming Techniques

case mouseDown:

Handle_Mouse_Down () ;

bi:eak;

other event types here]

case updateEvt:
if (Color_QD_Present == TRUE)

Min_Pixel_Depth = Get_Min_Pixel_Depth() ;

Handle_Update_Event() ;

bi:eak;

Chapter Program: lnnerView
This chapter's example program, lnnerView, shows off the concepts pre­
sented in this chapter in two ways. First, it does important behind-the­
scenes work to determine the type of Macintosh it's running on.
Secondly, it shows you how you can give a user feedback about his own
machine.

Figure 8-19 shows the window that the user will see when the program's
New menu choice is made.

0 I nnerUiew Results

Hardware Information
~ I
12e=

CPU Type : 68030

Floating Point Unit : 68882

RRM Size (bytes) : 9437184

Figure 8-19. lnnerView program in action

Chapter 8: The Varying Mac 407

If after looking at Figure 8-19 you feel that I could have made better use
of the window's real estate, you're right. But I'm setting things up for
Chapter 9. There I expand the capabilities of InnerView.

Program resources: lnnerView.7t.rsrc
The InnerView program has one 'ALRT' and one 'DITL' resource for dis­
playing the alert that appears when the "About ... " menu item choice is
made.

Inner View has two 'MENU' resources-one for the 9 menu and one for
a File menu. The File menu allows the user to bring up a new Inner View
results window or quit the program. The two 'MENU' resources are
bound together by an 'MBAR' resource.

InnerView has one 'WIND' resource to be used for a window that dis­
plays system information. The window also displays a picture.
InnerView has two 'PICT' resources, though only one will be shown. If
the user has a black and white monitor InnerView will display 'PICT'
128. If the user has color, the program will put up 'PICT' 129. Figure
8-20 shows the two 'PICT's. 'PICT' 129 will appear in color when
viewed in ResEdit. This is the best I can do in a black-and-white book!

PICTs from lnnerUiew:rr.rsrc

12a= 129 =
128 129

Figure 8-20. /nnerView's two 'PICT' resources

408 Macintosh Programming Techniques

Program listing: lnnerView.c

Here, in its entirety, is the InnerView source code. Much of it will look
familiar to you. The portions not familiar will be covered in the sections
that follow.

/•+++++++++++++++++++++ Include Files ++++++++++++++++++++++*/

#include (Traps.h)
#include (GestaltEqu.h>

/•+++++++++++++++++++ Function prototypes +++++++++++I I I I I I I*/

void Initialize_Toolbox(void);

void Check_System(void);
short Get_Min_Pixel_Depth(void);
short Get_Pixel_Depth(GDHandle };
void Set_Window_Drag_Boundaries(void) ;
void Set_Screen_Center(void) ;

void Set_Up_Menu_Bar(void);
void Open_InnerView_Window(void):

void Handle_One_Event(void):
void Handle_Mouse_Down(void) ;
void Handle_Menu_Choice(long) :

void Handle_Apple_Choice(short) :
void Handle_File_Choice(short);
void Handle_Update(void);
void Draw_Mac_Picture(void) :
void Draw_Hardware_System_Info_Headings(void):
void Get_Hardware_Information(void) :
void Close_Window(void) :

/*+++++++++++++++++ Define global constants I I I I I I I I I I I I I I I I*/

#define IV_WIND_ID 128

#define WIND_WIDTH 460

//define WIND_HEIGHT 230

//define STR_LIST_ID 128

i/define WIND_TITLE_STR

//define ABOUT_ALRT_ID 128

#define TOO_OLD_ALRT_ID 129

Chapter 8: The Varying Mac 409

//define MENU_BAR_ID 128

/idefine APPLE_MENU_ID 128

/idef ine ABOUT_ITEM 1

#define FILE_MENU_ID 129

/idef ine NEW_ITEM
#define QUIT_ITEM 2

/idefine MAC_PICT_BW_ID 128

/idefine MAC_PICT_COLOR_ID 129

//define NIL OL
//define IN_FRONT (WindowPtr)-lL
#define REMOVE_EVENTS 0

//define SLEEP_TICKS OL
ff define MOUSE_REGION 01

/idefine DRAG_EDGE 20

//define MENU_BAR_HEIGHT 18

#define PIXEL_DEPTH_BW 1

//define PIXEL_DEPTH_MAX_COLOR 24

#define NUM_HARDWARE_HEADINGS 3

//define LINE_HEIGHT 25

/idef ine COLUMN_X 180

/ldefine HEADING_X 20

//define COLON_X 155

//define INFO_HEAD_Y 120

//define PICT_L 340

//define PICT_T 40

/*++I I 111111111111 Define global variables +++++++++++++++++*/

Boolean All_Done = FALSE:
Boolean Multifinder_Present:
EventRecord The_Event:
MenuHandle Apple_Menu;
MenuHandle File_Menu:
Rect Drag_Rect;
Point Screen_Center;
WindowPtr IV_Window_Ptr;
Boolean Color_QD_Present:
short Min_Pixel_Depth:

410 Macintosh Programming Techniques

/•+++++++++I I II I I I I I I I I I main listing I*/

void main(void)

Check_System();
Initialize_Toolbox();
Set_Up_Menu_Bar():
Set_Window_Drag_Boundaries():

Set_Screen_Center():

while (All_Done == FALSE
Handle_One_Event():

/•++++++++++++++++++ Initialize the Toolbox ++++++++I I I I I I I I I I*/

void Initialize_Toolbox(void)

InitGraf(&thePort);
InitFonts():
InitWindows():
InitMenus();
TEinit();
InitDialogs(NIL) ;
FlushEvents(everyEvent, REMOVE_EVENTS) :

Ini tCursor () :

/*+++++++++++++ Check the machine we're running on +++++++++++*/

void Check_System(void

SysEnvRec mac_info:
OSErr err;

long response;

SysEnvirons(curSysEnvVers, &mac_info):

if ((mac_info.machineType < 0) I I (mac_info.systemVersion < Ox0604))
(

StopAlert(TOO_OLD_ALRT_ID. NIL) :
Exi tToShell () ;

Chapter 8: The Varying Mac

Multifinder_Present (NGetTrapAddress(_WaitNextEvent, ToolTrap) !=

NGetTrapAddress(_Unimplemented, ToolTrap)):

err =Gestalt(gestaltQuickdrawVersion. &response) ;

if (err == noErr)
(

if (response == gestaltOriginalQD
Color_QD_Present FALSE:

else
Color_QD_Present TRUE:

else
Exi tToShell () ;

Min_Pixel_Depth = Get_Min_Pixel_Depth():

/•+++++++++ Find pixel depth of lowest color monitor +++++++++*/

short Get_Min_Pixel_Depth(void

GDHandle current_device:
short pixel_depth;

short min_depth:

min_depth = PIXEL_DEPTH_MAX_COLOR;

current_device = GetDeviceList():
while (current_device != NIL)

pixel_depth = Get_Pixel_Depth(current_device) :
if (pixel_depth < min_depth)

min_depth = pixel_depth;
current_device = GetNextDevice(current_device };

return min_depth;

/*I I I I I I I I I I I I I I Get pixel depth of one monitor +++I I I I I I I I I I I*/

short Get_Pixel_Depth(GDHandle the_device)

411

412 Macintosh Programming Techniques

PixMapHandle screenPMapH;
short pixel_depth:

screenPMapH = (••the_device).gdPMap;
pixel_depth = (••screenPMapH) .pixelSize;

return pixel_depth :

/*++++++++++++ Initialize window drag boundaries I I I I I I 1IIII1+•/

void Set_Window_Drag_Boundaries(void

Drag_Rect = (••(GrayRgn)) .rgnBBox;
Drag_Rect.left += DRAG_EDGE:
Drag_Rect.right -= DRAG_EDGE;
Drag_Rect.bottom -= DRAG_EDGE:

/*+++++ Determine center of monitor that has the menu bar ++++*/

void Set_Screen_Center(void)

Screen_Center.h = screenBits.bounds.right/2:
Screen_Center.v = (screenBits.bounds.bottom/2) +

((MENU_BAR_HEIGHT/2)/2):
)

/•++++++++++I I I I I I I I Initialize the menu bar +++++I I I I I I I I II I 1•/

void Set_Up_Menu_Bar(void)

Handle menu_bar_handle:

menu_bar_handle = GetNewMBar(MENU_BAR_ID):
if (menu_bar_handle == NIL)

Exi tToShell () :

SetMenuBar(menu_bar_handle):
DisposHandle(menu_bar_handle):

Apple_Menu = GetMHandle(APPLE_MENU_ID):
File_Menu = GetMHandle(FILE_MENU_ID):

Chapter 8: The Varying Mac

AddResMenu(Apple_Menu, 'DRVR'):

DrawMenuBar():

/*++++++++++++++++++ Open one results window ++I I I II I I I I++++++*/

void Open_InnerView_Window(void)
{

short left. top:
Str255 the_str;

if (Color_QD_Present && Min_Pixel_Depth) PIXEL_DEPTH_BW)
IV_Window_Ptr = GetNewCWindow(IV_WIND_ID, NIL. IN_FRONT):

else
IV_Window_Ptr = GetNewWindow(IV_WIND_ID, NIL, IN_FRONT):

if (IV_Window_Ptr == NIL
ExitToShell():

GetlndString(the_str, STR_LIST_ID, WIND_TITLE_STR):
SetWTitle(IV_Window_Ptr, the_str):

left~ Screen_Center.h - (WIND_WIDTH /2):
top = Screen_Center.v - (WIND_HEIGHT/2):
MoveWindow(IV_Window_Ptr, left, top, TRUE):

ShowWindow(IV_Window_Ptr):

/*+++++++++++++++++++ Handle a single event ++++++++++++++++++•/

void Handle_One_Event(void)

if (Multifinder_Present "'""" TRUE
WaitNextEvent(everyEvent, &The_Event, SLEEP_TICKS, MOUSE_REGION):

else

SystemTask():
GetNextEvent(everyEvent, &The_Event):

switch (The_Event.what)

413

414 Macintosh Programming Techniques

case mouseDown:
Handle_Mouse_Down():
break:

case updateEvt:
if (Color_QD_Present == TRUE)

Min_Pixel_Depth = Get_Min_Pixel_Depth();
Handle_Update();

break;

/*I I I I I I I I I I I Handle a click of the mouse button +++I I I I I I I II I*/

void Handle_Mouse_Down(void

WindowPtr the_window;
short the_part:
long menu_choice;

the_part FindWindow(The_Event.where, &the_window);

switch (the_part)
(

case inMenuBar:
menu_choice = MenuSelect(The_Event.where) :
Handle_Menu_Choice(menu_choice);
break;

case inSysWindow:
SystemClick(&The_Event, the_window);
break;

case inDrag:
DragWindow(the_window, The_Event.where. &Drag_Rect);
break;

case inGoAway:
if (TrackGoAway(the_window. The_Event.where))

Close_Window();
break:

case inContent:

SelectWindow(the_window) ;
break;

Chapter 8: The Varying Mac

/*I I I I I I I I I I I I I I I I Handle a click on a menu +I I I I I I I I I I I I I I I I I*/

void Handle_Menu_Choice(long menu_choice)

int the_menu:
int the_menu_item:

if menu_choice != 0
(

the_menu = HiWord(menu_choice);
the_menu_item = LoWord(menu_choice };

switch (the_menu)

case APPLE_MENU_ID
Handle_Apple_Choice(the_menu_item) :

break:

case FILE_MENU_ID
Handle_File_Choice(the_menu_item) :

break:

HiliteMenu(0) :

/*I I I I I I I I I I I Handle a click of in the Apple menu I I I I I I I I I I I I*/

void Handle_Apple_Choice(short the_item

Str255 desk_acc_name:
int desk_acc_number;

switch (the_item)

case ABOUT_ITEM :
NoteAlert(ABOUT_ALRT_ID. NIL) :

break:

415

416 Macintosh Programming Techniques

default :
Getitem(Apple_Menu, the_item, desk_acc_name) :
desk_acc_number = OpenDeskAcc(desk_acc_name):

break:

/*+++++++++++++ Handle a click in the File menu ++++++++++++++•/

void Handle_File_Choice(short the_item)

switch (the_item)
(

case NEW_ITEM :
if (IV_Window_Ptr != NIL

Close_Window(};
Open_InnerView_Window();

break:

case QUIT_ITEM

All_Done = TRUE:
break;

/*I I I I I I I I+++++++++++ Handle an update event I I II I I I I I I I I II I++*/

void Handle_Update(void
(

GrafPtr old_port:
WindowPtr the_window:

GetPort(&old_port):
SetPort(IV_Window_Ptr };

TextFont(O);
TextSize(l2):

BeginUpdate(IV_Window_Ptr) ;
Draw_Mac_Picture():
Draw_Hardware_System_Info_Headings():
Get_Hardware_Information():

Chapter 8: The Varying Mac

EndUpdate(IV_Window_Ptr):

SetPort(old_port) ;

/*I I II I I II I I I II Draw a PICT to the results window I I I Ill I I I I I I*/

void Draw_Mac_Picture(void

PicHandle the_pict:

Rect pict_rect;

short pict_wd, pict_ht:

Graf Ptr old_port:

short pict_id;

GetPort(&old_port) ;

SetPort(IV_Window_Ptr) ;

if (Min_Pixel_Depth) PIXEL_DEPTH_BW

pict_id = MAC_PICT_COLOR_ID:

else
pict_id = MAC_PICT_BW_ID;

the_pict = GetPicture(pict_id):

pict_rect = (**(the_pict).picFrame;

pict_wd = pict_rect.right - pict_rect.left;

pict_ht = pict_rect.bottom - pict_rect.top;
SetRect(&pict_rect, PICT_L, PICT_T, PICT_L + pict_wd, PICT_T + pict_ht);

DrawPicture(the_pict, &pict_rect):

SetPort(old_port):

/*++++++++++++ Draw headings to the results window I I II I I I I I I I*/

void Draw_Hardware_System_Info_Headings(void)
(

short colon_y:
short i:
Point pen_loc:

417

418 Macintosh Programming Techniques

MoveTo(HEADING_X, INFO_HEAD_Y);
Drawstring("\pHardware Information"):
GetPen(&pen_loc);
MoveTo(HEADING_X, INFO_HEAD_Y + 2);
LineTo(pen_loc.h, INFO_HEAD_Y + 2);

MoveTo(HEADING_X, INFO_HEAD_Y + * LINE_HEIGHT);
Drawstring("\pCPU Type");
MoveTo(HEADING_X, INFO_HEAD_Y + (2 * LINE_HEIGHT);
Drawstring("\pFloating Point Unit"):
MoveTo(HEADING_X, INFO_HEAD_Y + (3 * LINE_HEIGHT));
Drawstring(11 \pRAM Size (bytes)"):

colon_y = INFO_HEAD_Y;
for (i=l: i (= NUM_HARDWARE_HEADINGS; i++)
{

MoveTo(COLON_X, colon_y + (i*LINE_HEIGHT));
DrawChar(':') :

/*I I I I I I I I+++++++ Get info about user's machine ++++++++++++++•/

void Get_Hardware_Information(void)

OS Err
long
Str255

err;
response:
byte_str;

err =Gestalt(gestaltProcessorType, &response) :
if (err == noErr)

MoveTo(COLUMN_X. INFO_HEAD_Y + (1 * LINE_HEIGHT));
switch (response)
(

case gestalt68000:
Drawstring("\p68000") ;

break:
case gestalt68010:

Drawstring("\p68010") ;

break;
case gestalt68020:

DrawString ("\p68020") :
break:

case gestalt68030:
DrawString("\p68030") ;

Chapter 8: The Varying Mac

break:
case gestalt68040:

Drawstring("\p68040"):
break:

err= Gestalt(gestaltFPUType, &response):
if (err == noErr)

MoveTo(COLUMN_X, INFO_HEAD_Y + (2 * LINE_HEIGHT)):
switch (response)
(

case gestaltNoFPU:
Drawstring("\pNo FPU present") :
break:

case gestalt68881:
Drawstring("\p68881") :
break:

case gestalt68882:
Drawstring("\p68882") :
break:

case gestalt68040FPU:
Drawstring("\p68040 built-in FPU"):
break:

err= Gestalt(gestaltPhysicalRAMSize, &response):
if (err == noErr)

MoveTo(COLUMN_X, INFO_HEAD_Y + (3 * LINE_HEIGHT)) :
NumToString(response, byte_str) :
Drawstring(byte_str):

/*I I I I I I I I I I I I I I I I I I I Close one window I I I I I I I I II I I+++++++++*/

void Close_Window(void

HideWindow(IV_Window_Ptr) :
DisposeWindow(IV_Window_Ptr) :
IV_Window_Ptr = NIL:

419

4 2 0 Macintosh Programming Techniques

Stepping through the code

Now let's walk through the InnerView code, placing emphasis on the
new material.

The #include directives

InnerView uses the Gestalt() function, so it needs information found in
GestaltEqu.h. The program uses traps in a call to NGetTrapAddress(), so
for that it needs Traps.h.

The #define directives

InnerView has a slew of #defines. Ready? N_WIND_ID is the resource
ID of the program's window. WIND_WIDTH and WIND_HEIGHT are
the window's dimensions, taken from the 'WIND' resource. They'll be
used when centering the window. I get the title for the window,
WIND _TITLE_STR, from a 'STR#' resource with an ID of STR_LIST _ID.

ABOUT_ALRT_ID is the 'ALRT' resource for the alert displayed when
the "About..." menu item is selected. TOO_OLD_ALRT_ID is the
'ALRT' for the alert displayed if the user's machine isn't up to snuff.

InnerView has two menus, so it has two 'MENU' resource. The first is
APPLE_MENU_ID for the ti menu, and the second is FILE_MENU_JD
for the File menu. ABOUT_ITEM, NEW_ITEM, and QUIT_ITEM are the
item numbers of the items within the menus. MENU _BAR_ID is the
resource ID of the 'MBAR'.

The program has two 'PICT' resources; -MAC_PICT_BW_ID is a black
and white picture, and MAC_PICT_COLOR_ID has color. That's it for
the resources.

The next several #defines are the old standards from previous chapters.
GetNewWindow() uses NIL and IN_FRONT. Toolbox initialization
makes use of REMOVE_EVENTS. WaitNextEvent() uses SLEEP_TICKS
and MOUSE_REGION. I use DRAG_EDGE to limit window dragging.

Chapter 8: The Varying Mac 4 2 1

The remaining #defines are new to InnerView. PIXEL_DEPTH_BW and
PIXEL_DEPTH_MAJ(_COLOR will help determine pixel depth of the
monitor.

Inner View draws text in its one window. I use all of the following to help
evenly space this text: NUM_HARWARE_HEADINGS, LINE_HEIGHT,
COLUMN_X, HEADING_X, COLON_X, and INFO_HEAD_Y. To place
the picture just where I want it I use PICT_L and PICT_T.

I/define IV_WIND_ID 128

I/define WIND_WIDTH 460

I/define WIND_HEIGHT 230

#define STR_LIST_ID 128

#define WIND_TITLE_STR 1

I/define ABOUT_ALRT_ID 128

//define TOO_OLD_ALRT_ID 129

I/define MENU_BAR_ID 128

//define APPLE_MENU_ID 128

//define ABOUT_ITEM 1

I/define FILE_MENU_ID 129

//define NEW_ITEM 1

I/define QUIT_ITEM 2

I/define MAC_PICT_BW_ID 128

//define MAC_PICT_COLOR_ID 129

//define NIL OL

//define IN_FRONT (WindowPtr)-lL

#define REMOVE_EVENTS 0

I/define SLEEP_TICKS OL
#define MOUSE_REGION 01

I/define DRAG_EDGE 20

#define MENU_BAR_HEIGHT 18

I/define PIXEL_DEPTH_BW 1

#define PIXEL_DEPTH_MAX_COLOR 24

//define NUM_HARDWARE_HEADINGS 3

#define LINE_HEIGHT 25

//define COLUMN_X 180

//define HEADING_X 20

#define COLON_X 155

//define INFO_HEAD_Y 120

4 2 2 Macintosh Programming Techniques

/ldef ine
1/define

PICT_L
PICT_T

The glohal variahles

340

40

InnetView uses global variables All_Done, Multifinder_Present, and
The_Event to process events. The program keeps a handle to each of the
two menus-Apple_Menu and File_Menu. Drag_Rect is used for window
dragging. The point that is the center of the user's screen is, of course,
Screen_Center. IV_Window_Ptr will serve to help determine if a window
is open. For keeping track of the color setting of the user's monitor I use
Color_QD _Present and Min_Pixel_Depth.

Boolean All_Done = FALSE:

Boolean Multifinder_Present:
EventRecord The_Event:

MenuHandle Apple_Menu;
MenuHandle File_Menu:
Rect Drag_Rect:
Point Screen_Center:
WindowPtr IV_Window_Ptr:
Boolean Color_QD_Present:
short Min_Pixel_Depth:

The start

InnerView's main() function should look familiar; it's much like the
main() of previous examples. It starts with program initializations and,
as always, ends with the event-handling while loop.

void main(void)

Check_System () :

Initialize_Toolbox():
Set_Up_Menu_Bar():

Set_Window_Drag_Boundaries():
Set_Screen_Center():

while (All_Done == FALSE
Handle_One_Event():

Chapter 8: The Varying Mac 4 2 3

As you've seen in past examples, every Macintosh program you write
will have some code that is unchanging, such as the Initialize_Toolbox()
routine called by main().

void Initialize_Toolbox(void)

InitGraf(&thePort):

Ini 't:Fonts () :

InitWindows():
InitMenus():
TEinit ():

InitDialogs(NIL):
FlushEvents(everyEvent, REMOVE_EVENTS) :
Ini "t:Cursor () :

Checking the system
Because the Macintosh scene is constantly changing, you can never be
sure on just what kind of Macintosh a program you write will be run­
ning. You've got to cover all bases. That's what this chapter is all about.
Check_System() bundles together into one package much of what is dis­
cussed in this chapter. All your programs should have a routine similar
to InnerView's Check_System() routine and the utility routines it calls.
Figure 8-21 summarizes all the things Check_System() does.

void Check_System(void
{

SysEnvRec mac_info:
OSErr err:

long response:

SysEnvirons(curSysEnvVers. &mac_info):

if ((mac_info. machineType < 0) 11 (mac_info. systemVersion < Ox0604))
{

StopAlert(TOO_OLD_ALRT_ID. NIL):
Exi tToShell () :

Multifinder_Present = (NGetTrapAddress(_WaitNextEvent, ToolTrap) !=

NGetTrapAddress(_Unimplemented, ToolTrap)):

424 Macintosh Programming Techniques

err= Gestalt(gestaltQuickdrawVersion, &response):

if (err noErr)

if (response == gestaltOriginalQD
Color_QD_Present = FALSE:

else
Color_QD_Present = TRUE:

else
Exi tToShell () :

Min_Pixel_Depth = Get_Min_Pixel_Depth():

After Check_System() are several functions I call utility routines. These
are functions that will appear in many or all of your programs, with little
or no modification. Get_Min_Pixel_Depth() determines the minimum
color level of all monitors connected to the Macintosh. It appears just as
it was developed earlier in this chapter. Get_Min_Pixel_Depth() calls
Get_Pixel_Depth(), also covered in this chapter.

SysEnvirons(curSysEnvVers. &mo.c_info); <::i I Get info about thts Mac I
t) I Old ROM I t) ~ t) I Pre-System 6.0.4 I

if ((mac_info. mo.chine'I'ype < 0) 11 (mac_info. systemVersion < Ox0604))
{

StopAlert(roo_oLD_ALRT_ID. NIL_PTR); ~ Inform user,
ExitToShell(); ~ then qu1t

I Check for WattNextEvent() I <:::I
Hul.tifinder_Present a (NGetTrapAddress(_WaitNextEvent. ToolTrap) lo

NGetTrapAddreas(_uni.mplemented. Tool Trap)) ;

t)I Get version of autckOraw tn this Mac I
err a Gestalt(gestaltQuickdrawVersion. &response);

if (err - noErr)
[set variable here J

lfin_Pixel_Depth ca Get_llin_Pixel_Depth(); <::i I Get color level I

figure B-21. What Check_System() does

short Get_Min_Pixel_Depth(void
(

GDHandle current_device;

short pixel_depth;

short min_depth;

Chapter 8: The Varying Mac 4 2 5

min_depth = PIXEL_DEPTH_MAX_COLOR:

current_device = GetDeviceList():

while (current_device != NIL)

pixel_depth = Get_Pixel_Depth(current_device):

if (pixel_depth < min_depth)

min_depth = pixel_depth:

current_device = GetNextDevice(current_device) ;

return min_depth;

short Get_Pixel_Depth(GDHandle the_device)
(

PixMapHandle screenPMapH;

short pixel_depth:

screenPMapH = (**the_device).gdPMap:

pixel_depth = (**screenPMapH) .pixelSize:

return pixel_depth :

Set_ Window _Drag_Boundaries() sets the limits that a window can be
dragged, based on the desktop area of the Macintosh monitor or monitors.

void Set_Window_Drag_Boundaries(void)

Drag_Rect = (**(GrayRgn)) .rgnBBox:
Drag_Rect.left += DRAG_EDGE:
Drag__Rect.right -= DRAG_EDGE:

Drag_Rect.bottom -= DRAG_EDGE;

This chapter showed two methods of determining the center of the
main screen-the screen that holds the menu bar. The first method used
a call to GetMainDevice() to return a GDHandle. Since graphics device
routines are part of Color QuickDraw, this method won't work for

4 2 6 Macintosh Programming Techniques

monochrome systems. The second method simply uses the QuickDraw
global variable screenBits. This method works on any system, so that's
what I use here.

void Set_Screen_Center(void

Screen_Center.h = screenBits.bounds.right/2:
Screen_Center.v = (screenBits.bounds.bottom/2) + ((MENU_BAR_HEIGHT/2)/2):

Putting up the menu

Set_Up_Menu_Bar() puts the menu bar on the screen. This routine was
first covered in Chapter 7.

void Set_Up_Menu_Bar(void)
(

Handle menu_bar_handle:

menu_bar_handle = GetNewMBar(MENU_BAR_ID);
if (menu_bar_handle == NIL

Exi tToShell () ;

SetMenuBar(menu_bar_handle }:
DisposHandle(menu_bar_handle) :

Apple_Menu = GetMHandle(APPLE_MENU_ID) :
File_Menu - GetMHandle(FILE_MENU_ID };

AddResMenu(Apple_Menu, 'DRVR');

DrawMenuBar();

Opening a window

Open_InnerView_Window() will be called a little later on in the pro­
gram, but I'll cover it here. At startup the program checked to see if the
Mac it's running on has color QuickDraw. The program has been con-

Chapter 8: The Varying Mac 427

stantly on the lookout for a change in the pixel depth of any monitor
connected to the system. Here's one reason.

Open_InnerView _Window() checks to see if the system has color
QuickDraw and if color is on. If it is the program will display a color pic­
ture in the window later on. So you'll want to make a call to
GetNewCWindow() to get a color window. You don't want to make a call
to a color routine like this if color QuickDraw isn't available or if the
monitor isn't set to display color.

After opening the window Open_InnerView_Window() goes on to set the
window's title, as described in Chapter 5. It then centers the window
using the center point, Screen_ Center. Recall that this Point variable was
calculated at startup in the Set_Screen_Center() routine.

void Open_InnerView_Window(void)

short left. top:
Str255 the_str:

if (Color_QD_Present && Min_Pixel_Depth > PIXEL_DEPTH_BW)
IV_Window_Ptr = GetNewCWindow(IV_WIND_ID. NIL, IN_FRONT);

else
IV_Window_Ptr = GetNewWindow(IV_WIND_ID, NIL, IN_FRONT);

if (IV_Window_Ptr == NIL
Exi tToShell () :

GetindString(the_str. STR_LIST_ID. WIND_TITLE_STR):
SetWTitle(IV_Window_Ptr, the_str) :

left= Screen_Center.h - (WIND_WIDTH /2):
top = Screen_Center.v - (WIND_HEIGHT/2) :
MoveWindow(IV_Window_Ptr, left. top, TRUE) :
ShowWindow(IV_Window_Ptr) :

Event handling

InnerView looks for two event types: updateEvt and mouseDown. This
version of Handle_One_Event() is similar to previous versions, with one
new addition. As mentioned earlier in this chapter, I use the occurrence

4 2 8 Macintosh Programming Techniques

of an update event as a signal to check for the pixel depth. Why? If the
user selects the Monitor's control panel and changes the color setting of
his monitor, it will trigger an update event. How do you know that a par­
ticular update event was caused by selecting Monitors and not by some
other situation? You don't, so you run the pixel depth check every
update, just in case.

void Handle_One_Event(void)

if (Multifinder_Present == TRUE

WaitNextEvent(everyEvent. &The_Event. SLEEP_TICKS. MOUSE_REGION):
else

SystemTask():
GetNextEvent(everyEvent, &The_Event) :

switch (The_Event.what

case mouseDown:
Handle_Mouse_Down():

break:

case updateEvt:
if (Color_QD_Present == TRUE)

Min_Pixel_Oepth = Get_Min_Pixel_Depth():

Handle_Update():
break:

A click of the mouse is handled by Handle_Mouse_Down(). If the click is
in the menu bar the Handle_Menu_Choice() routine will be called.
Nothing new here; everything you see has been covered in Chapters 5
and 7.

void Handle_Mouse_Down(void

WindowPtr the_window:
short the_part:
long menu_choice:

the_part = FindWindow(The_Event.where, &the_window):

switch (the_part)
(

case inMenuBar:

Chapter 8: The Varying Mac

menu_choice = MenuSelect(The_Event.where) ;

Handle_Menu_Choice(menu_choice) ;

break;

case inSysWindow:

SystemClick(&The_Event, the_window);

break;

case inDrag:

DragWindow(the_window, The_Event.where, &Drag_Rect) :

break:

case inGoAway:
if (TrackGoAway(the_window, The_Event.where))

Close_Window();

break;

case inContent:
SelectWindow(the_window) ;

break:

void Handle_Menu_Choice(long menu_choice

int the_menu:
int the_menu_item:

if menu_choice != 0
{

the_menu = HiWord(menu_choice) :

the_menu_item LoWord(menu_choice) :

switch (the_menu)

case APPLE_MENU_ID
Handle_Apple_Choice(the_menu_item) ;

break:

case FILE_MENU_ID

429

430 Macintosh Programming Techniques

Handle_File_Choice(the_menu_item) :

break:

HiliteMenu(0) :

A click of the mouse in the ti menu triggers Handle_Mouse_Down() to
call Handle_Apple_Choice(). This routine is identical to the version cre­
ated in Chapter 7.

void Handle_Apple_Choice(short the_item
{

Str255 desk_acc_name:

int desk_acc_number:

switch (the_item)

case ABOUT_ITEM :

NoteAlert(ABOUT_ALRT_ID. NIL) ;

break;

default :
Getitem(Apple_Menu, the_item, desk_acc_name) :

desk_acc_number = OpenDeskAcc(desk_acc_name) :

break:

A mouse click in the File menu tells Handle_Mouse_Down() to call
Handle_File_Choice(). InnerView only allows one window on the screen
at a time, so if a window is open the program closes it. It then opens the
results window with a call to Open_Inner_ View_Window().

void Handle_File_Choice(short the_item

I

switch (the_item)

case NEW_ITEM :
if (IV_Window_Ptr != NIL

Close_Window():
Open_InnerView_Window():

break:

case QUIT_ITEM
All_Done = TRUE:

break:

Chapter 8: The Varying Mac 431

After a mouse down event, the second event type handled is an update
event. InnerView only allows one window on the screen at any given
time, so you don't have to do any fancy checks to see what window
needs updating. You set N _Window _Ptr to point to the newly opened
window when you called GetNewWindow() earlier, so that's the window
you're working with now.

After setting the port, make a couple of calls to set the text to the system
font in a 12 point size. The program nests three routines between calls to
Begin Update() and EndUpdate(). I'll cover these three routines next.

void Handle_Update(void
(

GrafPtr old_port:
WindowPtr the_window:

GetPort(&old_port):
SetPort(IV_Window_Ptr):

TextFont(systemFont):
TextSize(l2):

BeginUpdate(IV_Window_Ptr) :
Draw_Mac_Picture():
Draw_Hardware_System_Info_Headings():
Get_Hardware_Information():

EndUpdate(IV_Window_Ptr):

SetPort(old_port) :

43 2 Macintosh Programming Techniques

With only one window, why bother setting the port?
Because there are other ports on the screen, including the
screen itselfl Always keep track of ports as is done here.

The screen, or desktop, is a port. If you don't set the port
there's a good chance that any drawing you do will end
up on the desktop, not in your window. You can see for
yourself by commenting out the SetPorl(IV_ Window_Ptr }
line in lnnerView.c and recompiling the program.

Draw_Mac_Picture() draws a picture in the InnerView window. If color
QuickDraw is present and color is turned on, the program displays the
color 'PICT' stored in the resource file. If you're running in monochrome,
the program displays a different 'PICT'-one drawn to show up better in
black and white.

If you have a color computer, try running Inner View both with the color
on and off to verify that a different picture appears. How can you be sure
that the color 'PICT' isn't being shown (in a monochrome format) when
your computer is in the black-and-white mode? Note that I included the
'PICT' ID right on the picture itself. In monochrome you should see
'PICT' 128, in color mode you'll see 'PICT' 129. Refer back to Figure
8-20 to see the two 'PICT's. Of course 'PICT' 129 will appear in color
when viewed in ResEdit or on a color computer.

The rest of Draw_Mac_Picture() is the same as seen in Chapter 3.

void Draw_Mac_Picture(void)

PicHandle the_pict:

Re ct pict_rect;

short pict_wd. pict_ht :

Graf Ptr old _port :

short pict_ id;

GetPort(&old_port) ;

SetPort(IV_Window_Ptr) ;

if (Min_Pixel_Depth > PIXEL_DEPTH_BW

pict_id = MAC_ PICT_COLOR_ ID;

else
pict_id - MAC_PICT_BW_ID :

Chapter 8: The Varying Mac 433

the_pict = GetPicture(pict_id) :

pict_rect = (**(the_pict).picFrame;
pict_wd = pict_rect.right - pict_rect.left:
pict_ht = pict_rect.bottom - pict_rect.top;
SetRect(&pict_rect, PICT_L, PICT_T, PICT_L + pict_wd, PICT_T +

pict_ht) :

DrawPicture(the_pict, &pict_rect);

SetPort(old_port) :

The Draw _Hardware_System_Info_Headings() routine is nothing more
than a series of pen movements and text drawing calls to display some
unchanging text in the window.

void Draw_Hardware_System_Info_Headings(void)

short colon_y:

short i:
Point pen_loc;

MoveTo(HEADING_X, INFO_HEAD_Y) :
Drawstring("\pHardware Information") :
GetPen(&pen_loc):
MoveTo(HEADING_X, INFO_HEAD_Y + 2):
LineTo(pen_loc.h. INFO_HEAD_Y + 2):

MoveTo(HEADING_X. INFO_HEAD_Y + * LINE_HEIGHT) :

Drawstring("\pCPU Type"):
MoveTo(HEADING_X. INFO_HEAD_Y + (2 * LINE_HEIGHT) :
Drawstring("\pFloating Point Unit"):
MoveTo(HEADING_X, INFO_HEAD_Y + (3 * LINE_HEIGHT) :
DrawString("\pRAM Size (bytes)"):

colon_y = INFO_HEAD_Y:
for (i=l: i <= NUM_HARDWARE_HEADINGS: i++)
(

MoveTo(COLON_X. colon_y + (i*LINE_HEIGHT)):

DrawChar('·') :

434 Macintosh Programming Techniques

Now, the meat of the program. Get_Hardware_Information() depends on
Gestalt() to get a few of the features of the machine InnerView is run­
ning on. InnerView checks for the processor type, the floating-point unit
type, and the amount of RAM in the computer. Once you understand
how one check is made, you can easily add more of your own. In fact,
that's exactly what you'll do in next chapter's example program.

void Get_Hardware_Information(void)

OSErr

long
Str255

err:
response;
byte_str;

err= Gestalt(gestaltProcessorType, &response):
if (err """'" noErr)
{

MoveTo(COLUMN_X. INFO_HEAD_Y + (1 • LINE_HEIGHT)):
switch (response)
{

case gestalt68000:
Drawstring("\p68000"):
break;

case gestalt68010:
Drawstring("\p68010"):

break:
case gestalt68020:

Drawstring("\p68020");
break:

case gestalt68030:
Drawstring("\p68030"):

break:
case gestalt68040:

Drawstring("\p68040"):

break:

err= Gestalt(gestaltFPUType. &response):
if (err == noErr)
(

MoveTo(COLUMN_X, INFO_HEAD_Y + (2 • LINE_HEIGHT));
switch (response)

Chapter 8: The Varying Mac 43 5

case gestaltNoFPU:

Drawstring("\pNo FPU present") :
break;

case gestalt68881:
Drawstring("\p68881") :
break;

case gestalt68882:

Drawstring("\p68882"):
break;

case gestalt68040FPU:
Drawstring("\p68040 built-in FPU") :
break;

err = Gestalt(gestaltPhysicalRAMSize. &response) :
if (err == noErr)

MoveTo(COLUMN_X, INFO_HEAD_Y + (3 * LINE_HEIGHT)) :

NumToString(response, byte_str);
Drawstring(byte_str) :

Closing a window
A mouse click in the window or a "New" menu choice closes the win­
dow. Because I left it up to the Window Manager to assign memory stor­
age for the window I use Dispose Window() rather than Close Window()
and DisposPtr(). The global WindowPtr variable IV_ Window _Ptr is set to
nil so that the program knows that no window is open on the screen.

void Close_Window(void)
(

HideWindow(IV_Window_Ptr) ;
DisposeWindow(IV_Window_Ptr) :
IV_Window_Ptr = NIL:

436 Macintosh Programming Techniques

Chapter Summary
The thousands of Toolbox routines exist in the ROM chips of your
Macintosh. A Toolbox routine is also called a trap, and each trap has a
trap number. When you include a call to a Toolbox routine in your code,
the trap number for that routine tells the processor where in memory it
will find the code that makes up that routine.

As Macintosh computers are improved, so is the ROM. New versions of
ROM contain new Toolbox calls, and thus new trap numbers. Many of
the Toolbox functions you call will have been present in the ROM of the
first Macintosh computer, and in every Macintosh since. Some routines
you'll want to use, however, only reside in more recent versions of ROM.
It's up to you to determine if the computer your program is running on
supports the calls you're going to make.

The Gestalt() routine is your most powerful means of determining the
contents of ROM. By passing it the name of a routine, preceded by an
underscore, you can see if that routine exists on any given Macintosh.
If it doesn't, you'll want to either use a substitute routine or exit the
program and return to the Finder.

Gestalt() can also be used to determine many different hardware and
software features of the machine your program is running on. By passing
Gestalt() different selector codes, you can find out whether a Macintosh
supports color, what version of the system is installed, the amount of
RAM in the computer, and a host of other environmental factors.

Memory Management

Chapter 2, Macintosh Memory, gave you the background you need to
understand Macintosh memory management techniques. In this

chapter you'll delve deeper into the topic. Here I present the code and
specific techniques that will help you avoid system crashes.

The code for Macintosh programs must be grouped into segments no
larger than 32 K each. If a program gets larger than that-and it will­
segmentation becomes a concern. In this chapter you'll learn how to
properly segment your program code.

Here you'll get insight into selecting the proper amount of memory to
allocate for your application's partition. You'll see how to set the parti­
tion in THINK C and how to make changes to it using the 'SIZE'
resource.

437

43 8 Macintosh Programming Techniques

Macintosh Memory Management
The term memory management refers to the allocation, movement,
tracking, and removing of things in memory. These "things" I speak of
are most often resources. You know that menus, dialogs, and windows
all start out as resources. Your program's code itself is turned into
'CODE' resources that get loaded and moved in memory. This book
refers to these things generically as ob;ects in memory.

At the heart of memory management is the Macintosh Memory Manger.
The Memory Manager does much of the "behind the scenes" work to
keep track of what is going on in RAM. It also provides the programmer
with a set of routines to assist in memory management tasks. Because
the Macintosh uses memory management techniques not found on most
other computers, programmers new to the Macintosh often inject memo­
ry-related bugs into their programs. A thorough understanding of how
the Macintosh works with memory, as described in Chapter 2, along
with the more specific programming techniques described in this chap­
ter, will help you reduce the number of bugs of this type.

Objects in memory can have different attributes applied to them. This
chapter discusses these attributes in some detail. For now, here's an
overview.

A block can be relocatable. A relocatable block potentially can be moved
about in memory and released from memory by the Memory Manager,
without any intervention by your program. The Memory Manager does this
when memory is scarce. A block can also be marked nonrelocatable. If a
block is nonrelocatable it is fixed in memory; the Memory Manager will not
ever move it or purge it on its own. It can only be released from memory by
your program explicitly calling a Toolbox routine to dispose of it.

If a block is relocatable it can be either locked or unlocked. A locked
block cannot be moved in memory. If it's unlocked, it can be shuffled
about in memory during compaction. If it's unlocked, it potentially can
also be removed from memory by the Memory Manager. Although
today even many low-cost Macs come equipped with 4 Mb of memory,
memory remains a scarce resource. Why? The size of applications has
grown at an equal pace. So, regardless of the amount of memory on the
Mac your completed program is running on, your code is likely to be
shuffled around in memory.

Chapter 9: Memory Management 439

If a block is relocatable and unlocked it can be made either purgeable or
unpurgeable. If it's purgeable, the Memory Manager can release it from
memory if memory becomes scarce. If the object is important enough to
remain in memory even during times of memory shortage, it can be
marked as unpurgeable.

Figure 9-1 shows the different attributes that can be imposed on a
block. Notice that if a block is marked as nonrelocatable it can't be
unlocked or purged.

Nonrelocatable Relocatable

0 <J
Locked Unlocked

O<J
Purgeable Unpurgeable

Figure 9-J. Attributes of a Block in Memory

Avoiding Heap Fragmentation
Chapter 2 discussed how your application's heap can become fragmented
as your program runs. Objects are loaded into memory and then stay
where they are, get moved, or are purged-removed. The objects that
don't move (the nonrelocatable objects) can play havoc on your program's
execution. They cause roadblocks in the heap that prevent efficient use
of memory. This heap fragmentation can literally kill a program. In this
section you'll learn how fragmentation can be minimized.

440 Macintosh Programming Techniques

How nonrelocatable blocks are created

A block in memory can be marked as relocatable or nonrelocatable. The
Memory Manager can move blocks that are relocatable in the heap.
Blocks that are nonrelocatable always stay in one place, even when
memory is being compacted.

You have only a limited amount of control over allocating nonrelocatable
blocks. Any call you directly make to NewPtr() creates one. Additionally,
your program will indirectly call NewPtr() when it calls some Toolbox
routines. GetNewWindow() is such a call. GetNewWindow() loads a
window in memory. A call to GetNewWindow() also makes a call to
NewPtr{} to create the WindowPtr that it returns to your program. The
WindowPtr points to the nonrelocatable block that holds a
WindowRecord. Figure 9-2 shows this.

After
GetNewWindow()

~ Nonrelocatable
~ WlndowRecord

figure 9-2. The window structure is nonrelocatable

The Memory Manager will attempt to place a newly-created nonrelocat­
able block as low as possible in the heap. But if it is placed above relocat­
able blocks, and those blocks are eventually purged, an island is formed.
A nonrelocatable block-no matter how small it is-creates an obstruc­
tion in memory. Figure 9-3 illustrates this. And because the block is
nonrelocatable, heap compaction won't help the situation.

Chapter 9: Memory Management 441

Before After After
GetNewWindow() GetNewWindow() purge

..................... ·····················

D Free memory

mITJ Relocatable block

II Nonrelocatable block

~Island

Figure 9-3. A WindowRecord creates an island in memory

When a window is closed with a call to DisposeWindow(), the nonrelo­
catable block is removed from memory. That's good. But that could be
too late. While the window is open, an attempt to load a large object into
memory could fail. And some programs will keep one or more windows
open for the entire duration of the program, making what could be a par­
tial solution entirely obsolete.

It should be obvious to you by now that you'd like to avoid nonrelocat­
able blocks. However, you don't want to go to such lengths as minimiz­
ing the number of windows in your programs; windows are what the
Macintosh is all about. Fortunately there is a way out of this dilemma,
and I'll discuss that next.

Reserving memory to reduce fragmentation
The next best thing to avoiding a nonrelocatable block is participating in
its placement. If you can control where the block goes, you can place it

442 Macintosh Programming Techniques

as low as possible in memory. That way it won't be an obstruction later
on as the Memory Manager attempts to load other objects into memory.

When your program first starts up, some of its program code is loaded
into the application partition. (I have more to say about this when I talk
about segments later in this chapter.) After the code is loaded you can
immediately reserve storage for your window even though it hasn't been
opened yet. If you reserve this memory very early in your program's exe­
cution, the memory will be low in memory; that's the desirable position
for it. Later, when GetNewWindow() is called, you'll specify the storage
to use and you'll specify the reserved block of memory. This is shown in
Figure 9-4.

At program
startup

Before After
GetNewWindow() GetNewWindow()

................. ·················

. <:J s:;:!" c::::> "::::::::::::::: ::::::::::::::::: <:J Window

/'-} Program
"..-' code

D Free memory

lliTIJ Relocatable block

~ Nonrelocatable block

Figure 9-4. Reserving a block of memory before it's needed

What if the window you've reserved storage for isn't opened until much
later on in your program? Doesn't this storage space then go wasted until
that time? True enough. But you aren't trying to save on memory here.
You're trying to avoid fragmentation. Your memory storage may be as
few as a hundred bytes or so. If you created a window without using stor­
age, the resulting fragmentation brought on by a one-hundred-byte win­
dow could make thousands and thousands of bytes unusable.

Chapter 9: Memory Management 443

Thousands and thousands of bytes? Sure. It depends
on what your program is attempting to load. Imagine
your application is up and running. It has 40 K of free
space, divided into two 20 K areas by an island. If
your program tries to load a 30 K 'PICT' resource, it
will fail. The program won't crash, but the picture
won't be displayed.

In case you're wondering, the above situation of a
30 K picture is not at all unreasonable. Especially if
your program has color pictures in its resource file.

How do you go about reserving memory? You aheady know because you
did it back in Chapter 5. Yes, I really was leading up to something! Here's
what you did back then:

//define

#define

WIND_ID 128

IN_FRONT (WindowPtr)-1

WindowPtr new_window;

Ptr wind_storage;

short left, top;

wind_storage = NewPtr(sizeof (MyWindRecord)):

new_window = GetNewWindow(WIND_ID, wind_storage, IN_FRONT);

Recall that MyWindRecord was your modified window record structure.
You can do the same thing for a standard WindowRecord:

wind_storage = NewPtr(sizeof (WindowRecord)) ;
new_window = GetNewWindow(WIND_ID, wind_storage. IN_FRONT);

NewPtr() reserves a nonrelocatable block of memory. The size of the
block is the size of whatever you specify in sizeof(). Chapter 5 introduced
you to window storage. Now, it's time to make it really useful. Instead of
calling NewPtr() just before you open your window, call it immediately
after your program starts up. The result will be just as shown back in
Figure 9-4. Save the resulting Ptr in a global variable. Then, when it's
time to open a window, pass GetNewWindow() this pointer.

444 Macintosh Programming Techniques

Let's say you're writing a program that will open a window to which the
user can draw. Optionally, the user can open a second window that will
display a graph of some data he has entered. With the possibility of two
windows being opened, you know that you should reserve space for two
WindowRecords right off the bat. Here's a code fragment that reserves
memory for two windows.

Ptr Draw_Wind_Storage:

Ptr Graph_Wind_Storage:

void main(void)

Initialize_Toolbox():
Reserve_Window_Memory();

while (All_Done == FALSE
Handle_One_Event():

void Reserve_Window_Memory(void)

Draw_Wind_Storage = NewPtr(sizeof WindowRecord);
Graph_Wind_Storage = NewPtr(sizeof WindowRecord) :

void Open_Draw_Window(void

WindowPtr new_window;

new_window = GetNewWindow(WIND_ID. Draw_Wind_Storage, IN_FRONT);

[more code here]

void Open_Graph_Window(void

WindowPtr new_window:

new_window = GetNewWindow(WIND_ID. Graph_Wind_Storage, IN_FRONT):

[more code here]

#define

Chapter 9: Memory Management 44 5

Speaking of assigning window storage, do you recall
the two different ways to close windows?

If you allocate the storage yourself, call Close Window()
and DisposPtr(). CloseWindow() doesn't release the
memory you carefully set aside for the WindowRecord.
That way if the user chooses the same command that
created the window in the first place, you can again
use that space. DisposPtr() releases the memory occu­
pied by the pointer to the window. You aren't con·
cerned about those four bytes.

If you let the Mac set the storage for you by passing a
nil value for the storage, then call DisposeWindow().
DisposeWindow() frees up all memory associated with
the window. You didn't set it aside, so you shouldn't
care that it's freed.

NIL OL

WindowPtr use_my_mem_window :

WindowPtr use_mac_mem_window :

Ptr wind_storage;

/ • using my own storage •/

My_Wind_Storage • NewPtr(sizeof WindowRecord)) :

use_my_mem_window = GetNewWindow(WIND_ID, My_Wind_Storage, IN_FRONT) :

CloseWindow(use_my_mem_window) :

DisposPtr((Ptr) use_my_mem_window) :

/ • using Mac-supplied storage • /
use_mac_mem_window = GetNewWindow(WIND_ID , NIL. IN_FRONT) :

DisposeWindow(mac_store_window) :

Lesson 9-1: Reserving Memory

You can run the program enclosed with this
book for a hands-on tutorial about this topic.

446 Macintosh Programming Techniques

Reserving Memory
Setting aside window storage early in the execution of your program is a
way of reserving memory for nonrelocatable blocks. You can also reserve
a small amount of memory that will help your program as it works with
relocatable blocks.

Allocating master pointer blocks
From Chapter 2 you know that a master pointer is a special pointer. Like
any pointer, it points to an object. But unlike a normal pointer, a master
pointer can track moving objects in memory, not just fixed objects. A
WindowPtr is an example of a normal pointer. It points to a fixed, non­
relocatable WindowRecord. A master pointer, on the other hand, points
to relocatable blocks.

How is a relocatable block formed? Through a call to NewHandle().
When your program calls NewHandle() it returns a handle. A handle
contains the address of a master pointer. Figure 9-5, repeated from
Chapter 2, summarizes what a handle is.

70000 ----.------
65000 -+-----<

60000

55000

Figure 9-5. A handle holds the address of a master pointer

Chapter 9: Memory Management 447

Now that you know that the master pointer itself is fixed in memory,
you should also realize it would be advantageous to have it fixed low in
memory. That would help reduce fragmentation. Just as you reserved
memory to hold nonrelocatable WindowRecord blocks, you'll want to
reserve memory to hold master pointers.

The Macintosh uses master pointer blocks to hold master pointers. A
master pointer block is a contiguous area set aside for 64 master pointers.
When your program starts up, the Memory Manager creates one master
pointer block for your program's use. It does this immediately so that
this nonrelocatable block is placed low in memory. You can create an
additional master pointer block by doing what the Memory Manager
does: call the Toolbox routine MoreMasters(). Figure 9-6 illustrates this .

./"--. Master pointer block
~ created by your program

CJ Some of your program code

Figure 9-6. Master pointer blocks in memory

At the bottom of memory in Figure 9-6 is the master pointer block creat­
ed by the Memory Manager. Some of the code from your program is
above that. Which part of your code that gets loaded immediately is a
topic of discussion later in this chapter. A second master pointer block is
above the code. This block was created by your program. The code that is
loaded in memory made a call to MoreMasters() to create this second
master pointer block. The figure also shows relocatable blocks in memo­
ry. Each has a master pointer pointing to it.

448 Macintosh Programming Techniques

One master pointer points to one relocatable block of memory. One master
pointer block is thus capable of pointing to 64 relocatable blocks. It may
seem unlikely that your program would call NewHandle() more than 64
times, so the issue of how many times you should call MoreMasters() might
seem unimportant. But there's more to the story then I've told you so far.

When you reserve memory for WindowRecords, you do so based on the
number of windows your program will open. To reserve memory for master
pointers you should base the number of master pointers on the number of
relocatable blocks that your program will use; that is, blocks created by calls
to NewHandle(). How do you do this? It's not as easy as counting the num­
ber of times you use NewHandle() in your source code; you might not even
call it. But the Toolbox will. The Toolbox calls NewPtr() in response to a
call to GetNewWindow(). By the same token the Toolbox calls
NewHandle() in response to several Toolbox calls. Some Toolbox calls result
in two or three calls to NewHandle(). All this makes calculating the nwn­
ber of calls to NewHandle() difficult.

In determining how many times to call MoreMasters() you should keep the
following thoughts in mind. A pointer always holds an address, and an
address on the Macintosh always occupies four bytes. Thus a pointer is
always four bytes in size, regardless the size of the block it points to. That
means a single master pointer block, which holds 64 master pointers and an
eight byte header, is always 264 bytes in size.

From the preceding paragraph you know that a master pointer block does
not occupy a lot of memory. You also need to know that a nonrelocatable
object, no matter how small, can cause fragmentation. Whenever possible
you want to allocate nonrelocatable objects low in memory where they can
do the least amount of damage.

From these two ideas you may accurately draw the conclusion that it is bet­
ter to call MoreMasters() too many times than too few. Programmers gener­
ally call MoreMasters() about four times. Including the block that the
Memory Manager creates, that gives a program five master pointer blocks.

You want your master pointer blocks low in memory, so you want to
make the calls to MoreMasters() right away. Like this:

main ()
{

Mo r eMasters():
MoreMas"ters() :
MoreMasl:ers () ;
MoreMasl:ers () ;

I ni"tialize_Toolb ox () ;

[and s o forth ...)

Setting the heap size

Chapter 9: Memory Management 449

When your application first starts up, its application heap is set to a small size.
As your program requires more memory the Memory Manager will gradually
increase the size of the heap. This method of heap expansion can lead to frag­
mentation. A much more efficient method of enlarging the application's heap
is to enlarge everything all at once, at program startup. Conveniently, there's a
Toolbox routine that does just that. MaxApplZone() should be one of the first
calls your program makes. By expanding the heap all at once, you know that
future memory allocations will be carried out much more quickly. Here's how
your main() routine should look, now that you know about MaxApplZone()
and the MoreMasters() routine covered in the previous section:

main ()

MaxApplZone () ;

MoreMasters () ;
MoreMasl:ers () :
MoreMasl:ers () ;
MoreMas"ters () :

In i"tialize_Toolbox() ;

[and so forl:h . . .]

If MaxApplZone(} is so important, why didn't I use it earlier
in some of the example programs? Because all of the exam·
pie programs have been small, and memory management
hasn't been much of an issue. And because I don't like to

introduce new topics until I reach the appropriate chapter!

4 5 0 Macintosh Programming Techniques

Writing 32-bit Clean Programs
The number of bits used to hold an address determines how many
addresses can be accessed. Before System 7, 24-bit addressing was used.
That allowed the Mac to access a maximum of 8 Mb of RAM. With the
arrival of System 7 came 32-bit addressing. Using 32 bits to hold an
address allows accessing up to 1 GigaByte of RAM.

In previous versions of system software, only 24 of the 32 bits of a point­
er or handle were used to hold a memory address. The remaining eight
bits were either ignored or used to store additional information. The bits
in a master pointer are an example.

A master pointer holds the starting address of a block in memory. The
highest bit of a master pointer keeps track of whether the block is locked
in memory. The lower 24 bits of the master pointer give the starting
address of the block. Figure 9-7 illustrates this. Remember that lower
addresses are at the bottom of RAM; that's why the block's starting
address is pictured at the bottom of the block.

I+- 8 bits ~IJJ .. 14---- 24 bits 1JJI

ThisY.!>·<::::······· ... ! Memory Addres .. s········· .. ·.·::::::: .. // I
marks the block ···.•. ·
as locked or unlocked'·· ·· .. .,___M_a_st-er_P_o-in-te_r_. ~ /

····1----------11

First address
in the block

figure 9-7. Bits of a master pointer

Chapter 9: Memory Management 4 5 1

With the advent of System 7, using the upper eight bits of a pointer for
anything but part of an address is now discouraged. When the Memory
Manager looks at 32 bits, it assumes that all 32 bits comprise an address.
Other information stored in some of these bits will not be recognized by
the Memory Manager; that information is assumed to be part of an
address. The results, of course, can be disastrous.

Programs that are written with no extraneous information in any of the
32 bits of an address are said to be 32-bit clean. That is, they will run
cleanly on a Macintosh that is using 32-bit addressing.

To allow you to run programs that aren't 32-bit clean,
the Memory Control Panel lets you switch between 24-
bit and 32-bit addressing in System 7. It can do this
because ROMs that contain a 32-bit Memory Manager
also contain, for compatibility reasons, a 24-bit
Memory Manager. The downside is that with your Mac
set to 24-bit addressing, only 8 Mb of RAM will be
accessible, even if you have more than that.

Because of the migration towards System 7, you'll want all of your programs
to be 32-bit clean. Bits in master pointers used for purposes other than
addressing are the primary cause for an application not to be 32-bit clean.
This was an acceptable practice for pre-System 7 programs, but not anymore.

Don't become alarmed. If you don't try anything real
tricky, your programs will most likely be 32-bit clean. Take
the example pictured in Figure 9-7. If you use the Toolbox
routine HLock() to lock a block, you're fine. HLock() won't
do what's shown in Figure 9-7--change a bit in the master
pointer. It instead stores this information elsewhere.

If you don't use the Toolbox routine HLock() and instead
use your knowledge of what the bits in a master pointer
look like (or used to look like} then try to set or clear the
upper bit using direct bit manipulation, your program
will no longer be considered 32-bit clean.

4 5 2 Macintosh Programming Techniques

Master pointer bit manipulation is one source of breaking 32-bit clean
standards. Another is using customized window definition functions and
customized control definition functions-resources of type 'WDEF' and
'CDEF'. Definition functions let you create your own types of windows
and controls that differ from the standard types. Both of these topics are
beyond the scope of this book. If you plan to use either custom window
or custom control definitions, make sure your reference sources were
written with System 7 and 32-bit clean addressing in mind.

How can you be sure your program is in fact 32-bit clean? Test it.
Thoroughly test your program on a Macintosh that has System 7. Check
the Memory Control Panel and make sure that 32-bit addressing is
turned on. If it isn't, turn it on and reboot the system. Then run your pro­
gram, testing each aspect of it.

"Testing each aspect of it" is something you'd want to
do with or without the issue of 32·bit addressing,
right?

Segmentation
We've said several times in this book that just about everything in a Mac
program ends up being a resource. You create several of these resomces
yourself when you add a 'WIND', 'DITL', 'DLOG', or any other resource
to your program's resource file.

The compiler you use also creates resources when it builds an applica­
tion from your source code. The compiler turns all of your compiled
source code into 'CODE' resources and stores them in the application.
Remember Very Basics, the example program from Chapter 1? Figure 9-8
shows the resources for the VeryBasics application.

Chapter 9: Memory Management 4 5 3

UeryBasics
::I

ollllOIJl,A1
01011101 01011101 CODEs from UeryBasics 00101001 00101001

"SR CAO> 01101010 01101010
Clll'Ol,2 0001II10 0001II10 .IQ.. s;ze Name I.Coll 01000000 01000000
RTE - DATA DREL 0 104

1 578

Cl
01011101

2 132

~
0010 1001
01101010
0001 1110 - 01000000

SIZE WIND ZERO §0 CODE ID = o from UeryBasics
000000 0000 0078 0000 OOF8 OOOxOOOO .Q
000008 0000 0058 0000 0020 OOOXOOO
000010 0008 3F3C 0001 A9FO 00?<0090
000018 OOA6 3F3C 0001 A9FO 0'11?<0090
000020 OOBA 3F3C 0001 A9FO Of?<0090
000028 OOCE 3F3C 0001 A9FO 0(?<0090

~ 000030 OOEA 3F3C 0001 A9FO 00?<0090
000038 0120 3F3C 0001 A9FO o ?<0090
000040 0140 3F3C 0001 A9FO 0@?<0090
000048 0162 3F3C 0001 A9FO Ob?<0090
000050 0182 3F3C 0001 A9FO OC?<0090
000058 023C 3F3C 0001 A9FO 0<?<0090 '{} 000060 0000 3F3C 0002 A9FO 00?<0090
000068 ~

Figure 9-B. 'CODE' resources in the VeryBasics application

Look familiar? It shouldn't! You remember what the resource file for
VeryBasics looked like, not the resources in the application itself. The
VeryBasics.1t.rsrc file contained just a single 'WIND' resource. It's shown
in Figure 9-9.

§0§ UeryBasics.n.rsrc BJ~

CJ
&

\r/IND

1--

.Q
'21

Figure 9-9. The VeryBasics.1t.rsrc file for VeryBasics

Some further explanation is in order. You might want to refer to Figure
9-10 during this discussion. I borrowed it from Chapter 1. When you

4 5 4 Macintosh Programming Techniques

build your final application, the compiler merges the compiled source
code with the resources in your resource file. The result is a standalone
application. When the link is complete, the only thing the user needs to
run your program is the program itself. The user doesn't need your
source code and doesn't need the resource file. Everything has been
incorporated into the application file.

l•I ~ ~ I Compile> !liJ
THINK C UeryBasics.c UeryBasics.o

Link

UeryBasics

\~ ~
ResEdil ~yBasics.w.rsrc

Figure 9-1 O. The program creation cycle

You've used ResEdit to add and edit resources in a resource file. You
can also use ResEdit to view the resource composition of a stand-alone
program-any program. Let's run ResEdit and open the VeryBasics pro­
gram, not the VeryBasics.1t.rsrc resource file. The contents are shown
in Figure 9-11.

\~~
AesEdit UeryBasics

Figure 9-11. Looking at the resources of the VeryBosics application

Very interesting. The 'WIND' resource is there, all right. But so are sever­
al other resources. Your compiler is responsible for adding them. Most
important to you is the addition of 'CODE' resources. That's your source

Chapter 9: Memory Management 4 5 5

code, compiled and packaged into segments. Finally, the point of all of
this: each 'CODE' resource is a segment. VeryBasics happens to have
three of them, with resource IDs of 0, 1, and 2, shown back in Figure 9-8.

Why have more than one 'CODE' resource-more than one segment?
Because of a 32 K size limitation imposed on a segment. One segment
can't exceed 32 K. In one way this is bad; in another way it's good.
What's bad is you have to be concerned with segments. What's good
is that segments permit the existence of huge programs, even pro­
grams that are bigger than the memory available on the Macintosh
it's running on. How so? The segments of a program aren't all loaded
into memory at one time. They get swapped in and out of memory as
a program executes so that an entire program doesn't have to reside in
memory.

If you've programmed MS Windows you may have
optimized memory usage by creating working sets. A
working set is a division of a program that performs a
task, or related tasks-a segment. Windows terminolo­
gy for the loading and unloading of these sets is
dynamic linking.

Now that you know just what segments are, take a look at how to create
them in THINK C. THINK C, like any Macintosh compiler you use, lets
you decide how you want to segment, or divide up, your program. After
that you'll learn how to decide just what to put in each segment.

Segmenting a program in THINK C
Segments are composed of source files. You can have more than one
source file in a segment, but the code in a single file cannot be separated
into two segments. Figure 9-12 illustrates this by showing two ways of
segmenting a program that has three source code files.

4 5 6 Macintosh Programming Techniques

Up to this point all of the example programs have con­
sisted of just one source file. Like any programming
environment, Macintosh or not, THINK C lets you divide
your source code across multiple files. This Chapter's
example program, lnnerViewll, does just that.

DoubleDealer
Version 1

SEGMENT A

~
DoubleOealer.c

Ora11 ing .c

SEGMENTS

Menus.c

DoubleDealer
Version 2

SEGMENT A

Doub I eDeo I er . c

SEGMENTS

Orawing .c

SEGMENTC

Menus .c

Figure 9-12. Looking at the resources of the VeryBasics application

Figure 9-12 shows two possible ways of segmenting the DoubleQealer
program, a fictitious Macintosh game of duplicity and deceit. Which way
is correct? Both. Which way is better? That depends on the routines that
are in each source file. The next section looks at a technique for deter­
mining what files to group together. This section covers the process of
segmenting la very simple one,) using TI-llNK C.

Chapter 9: Memory Management 4 5 7

DOS programmers, you're going to love this. If you've
programmed the 8086 you know segments as 64 K
chunks of addressable memory space. You also know a
lot of mumbo-jumbo about relative offsets, relative
addresses, and segmented addresses. Forget it all, now.

Windows programmers, you too will like Macintosh
segments. You're used to the SEGMENTS keyword and
the module definition file. There's nothing analogous
to that for the Mac. You too can forget what you know
about the process of segmenting a program.

Figure 9- 13 shows the project window for a program called
DoubleDealer. The program's three source files, and the ever-present
MacTraps, are all in one segment: Segment 2.

DoubleDealer. n
Name Code

'VSegment 2 11334 .Q.
Doub leDea ler .c 988
Drawing.c 1440
Mac Traps 8342
Menus.c 560
Totals 11908

-0'
~

Figure 9-13. The DoubleDealer project with one Segment

The fact that THINK C gives the first segment in your program the
name Segment 2 might make you think there's a Segment 1 hiding
somewhere. There is. Segment 1 is called the main segment, and every
Macintosh program has one. Program segments get loaded, unloaded,
and shuffled around in memory as a program runs. But not Segment 1.
It serves as a foundation. It stays in memory from program startup to
program termination.

There's also a Segment 0, also present in every program. It's a table that
holds information about your program, such as the memory require­
ments of the global variables in your program.

4 5 8 Macintosh Programming Techniques

More than one segment can be in memory at one time. If
a program needs to run code from Segment A, the seg·
ment is loaded into memory and locked into place. When
execution of the code is complete, Segment A isn't imme·
diately removed from memory. Instead, it is unlocked
and marked as purgeable. That means that if a different
segment, Segment B, needs to be loaded, and there isn't
enough available memory, Segment A will be purged
from memory to provide room for Segment B.

The default segmentation that THINK C provides is fine for a small pro­
gram like DoubleDealer. For larger programs you'll want to rearrange
and regroup your source files into segments of your own choosing. To
create a new segment simply click on a file and drag it beneath the
Totals line. In Figure 9-14 I clicked on MacTraps, and now I'm dragging
it to the Totals area. Figure 9-15 shows the resulting segmentation.

DoubleDeoler. ff
Name

VSegment 2
Doub leDea ler .c
Drawing.c

Menus.c
Totals

Code
11334 -0-

988
1440

560
11908

Figure 9-14. Moving MacTraps into a new segment

DoubleDeoler. ff
Name Code

VSegment 2 2992 ~
Doub leDea ler .c 988
Drawing.c 1440
Menus.c 560 r---------------------·-·-----

VSegment 3 8346
Mac Traps 8342
Totals 11908 .2

121
figure 9-15. Segmentation after creating a new segment with MacTraps

Chapter 9: Memory Management 459

To move a file from a segment to an already existing segment, simply
click on it and drag it into that segment.

Determining how to segment a program
The overriding reason to segment a program is that you have to! The 32
K addressing barrier demands that your program, if its going to compile
into something greater than 32 K, be divided into more than one seg­
ment. A second reason to segment is for memory efficiency. If you give a
little thought to how you're going to group your program's source code
files into segments, you can improve how your program uses memory.

~OTt You don't have to give any thought to how you seg­
ment a program. You could group source files in any
way you want, as long as no segment code size
exceeds 32 K. If you're used to programming a
machine other than a Mac, the temptation to do that
may be great. But the Macintosh and THINK C make
segmenting so easy, there's every reason to put a little
planning into program segmentation.

I've stressed that when a segment is loaded into memory, all of the rou­
tines in all of the source files in that segment are loaded into memory. So
it makes sense for you to group related routines together, both in source
files and in segments.

Let's look at a practical example. Imagine that, due to user-feedback,
you've greatly enhanced the graphics capabilities of the DoubleDealer
program. You've rereleased it as Version 2.0. Available, of course, for
the modest upgrade fee of $79.95. DoubleDealer now is capable of dis­
playing three different screens of graphics. It might show one, two, or
all three of the screens in succession. Figure 9-16 now shows the seg­
mented program.

460 Macintosh Programming Techniques

DoubleDeoler. 'JJ
Name Code

V"Segment 2 9894 ~ Doub leDea ler .c 988

Mac Traps 8342

Menus.c 560
OOOOOOOOOOOOOOH00000000000000 0 .. 0000000000000000000oOOoooooOOOOOOO
V"Segment 3 30868

Screen1 .c 8540
Screen2.c 10224

Screen3.c 12100

Totals 41332
~
Q]

Figure 9- J 6. Segmentation of Version 2. 0 of DoubleDealer

To display the first of three screens, DoubleDealer will load Segment 3
into memory. If the second screen is to be displayed, the code for it is
already in memory because it's in the same segment. What would hap­
pen if Screen1.c and Screen2.c files were in separate segments? After dis­
playing the first screen the program needs to access the code that draws
the second screen. If this segment is not already in memory (and it might
not be) the program would have to access the hard drive to load the seg­
ment. Remember, the entire program might not be in memory. One or
more segments may still be on disk.

A disk access is the slowest activity a program will
perform. You try to reduce this slowness through
thoughtful segmentation.

When you look at Figure 9-16 you can see that the total code for
DoubleDealer has reached a size of 41,332 bytes. Since this is greater
than the 32 K segment limit, segmenting DoubleDealer is no longer an
option; its a necessity. And since you have to shuffle the files around
anyway, why not spend a few minutes planning out a logical grouping
arrangement?

To avoid the shuffling of segments being shuffled in and out of memory,
you try to keep code that works together grouped together. Sometimes
code falls into obvious groupings; sometimes it doesn't.

Chapter 9: Memory Management 461

There are a couple of "rules of thumb" you can use as you make deci­
sions about segmenting your program. The first was just discussed here.
To achieve the second requires a very minimal amount of effort on your
part; you'll see how in the next section.

• Put routines that are used in conjunction with one another in the
same segment. If a menu selection or a click on a button results
in the calling of a half dozen routines, place those six routines
together in one segment.

• Load code that is constantly used, like the event-loop, into memory
right when the program starts. That places it low in memory. Leave
this code in memory for the duration of your program's execution.

The main segment
Segment 1, which results in 'CODE' resource 1, is called the main segment:
every Macintosh program has one. This segment is preloaded into memory
when your program starts. That places it in the desirable position near the
bottom of the application heap where it won't cause fragmentation, as
objects loaded higher in memory might. I said segment 1 is like a founda­
tion. It stays in memory from program startup to program termination.
That's because the block of memory that it occupies is locked and unpurge­
able. It won't be moved, and won't be unloaded, ever. See Figure 9-17.

::::::::::::::::::::: 'CODE 2'
..................... CJ
.....................
:::::::::::::::::::::.CJ
:::::::::::::::::::::· 'CODE 3' ······················ ······················

CJ 'CODE1'

.. ... • Not preloaded
h~ml • Unlocked

• Purgeable

•Preloaded
~ •Locked

• Unpurgeable

Figure 9-J 7. 'CODE' resources loaded into the application partition

462 Macintosh Programming Techniques

Besides the main segment, Figure 9-17 also shows a
'CODE' 2 and 'CODE' 3 resource loaded. Notice that
these two resources are "out of order." Code isn't
loaded sequentially by resource number. It is loaded
as it's used. This might not, and probably won't, corre-
spond to the segment numbers of the code.

Because Segment 1 is unpurgeable, any code within this segment is
always in memory; execution of this code doesn't require disk access.

Notice in a THINK C project that there is no Segment 1 listed. That's
because the compiler creates 'CODE' 1. It holds a small amount of what
is called "foundation" code. Your code starts at Segment 2, which will
become 'CODE' resource 2. Notice in Figure 9-17 that 'CODE' 1 is
locked into place and unpurgeable, while the two other segments that
have been loaded, 'CODE' 2 and 'CODE' 3, aren't. Normally, the seg­
ments you divide your THINK C project into are purgeable. But you can
control that.

Blocks of memory have attributes; I've been discussing them for quite a
while now. TI-IlNK C lets you set the attributes of the block of memory
to which each segment will be loaded. By double clicking on a segment
name in the project window, you open a dialog that lets you set the
attributes for that segment. Figure 9-18 shows this.

he default settings for a segment are also shown in Figure 9-18. A seg­
ment starts out as protected. That means its contents can't be changed.
The segment is marked as locked, which means it won't be moved in
memory. And it is marked as purgeable, meaning that the Memory
Manager can remove it from memory if it's not in use and memory is
getting low.

The edit text box shown in Figure 9-18 allows you to name a segment. If
you don't give it a name, you'll see the segment number displayed in the
project window. If you do name it, you'll see that name in place of the
number. Renaming the segment is optional. The compiler will ignore the
segment names; those are only for your benefit.

Chapter 9: Memory Management 463

l>oubl..Oul•r .c

Double-click on a segment
name to edit its attributes

Segment: 2

O Preloaded [81 Purgeoble

[81 Protected D System Heep

[81 Locked

Cancel OK D

Figure 9-18. Setting the attributes of a segment in THINK C

Now it's time to change the attributes of a segment. You'll change the
settings of a segment to those shown in Figure 9-19.

Segment: 2

!Main

~Preloaded

~Protected

~Locked

Cancel

D Purgeable

D System Heap

OK D

Figure 9-19. Changing a segment's attributes

In Figure 9-19 you've changed Segment 2 from purgeable to unpurgeable
by unchecking the Purgeable check box. You've also designated the seg­
ment to be preloaded. Then you called the segment "Main." What will
the results of these changes be? Preloading a segment places it in memo­
ry at program start up, just as 'CODE' 1 is. Marking a segment as

464 Macintosh Programming Techniques

unpurgeable means the segment will remain in memory for the duration
of your program's execution, just as 'CODE' 1 does. In essence you've
added Segment 2 to 'CODE' 1. Figure 9-20, a modification of Figure
9-17, shows how memory now looks .

.................... ····················
<:;:J 'CODE 3'

<:;:J 'CODE 2'

<:;:J 'CODE 1'

mm1
llilliJ

• Not preloaded
•Unlocked
• Purgeable

•Preloaded Ill •Locked
• Unpurgeable

Figure 9-20. Loaded 'CODE' resources aher attribute changes

Notice that 'CODE' 2 is now at the base of the application heap, adjacent
to 'CODE' 1. Also note that it now has the same attributes as the main
segment.

Segment 2 has been added to 'CODE' 1 "in essence" because that is the
effect you've achieved; Segment 2 will not actually be merged with
'CODE' 1 in the program's resources. But, like 'CODE' 1, 'CODE' 2 will
now be low in memory, locked into place, and unpurgeable.

~OTt As an aside, Symantec' s THINK Pascal 4.0 has a seg­
ment called ''Main" in each proiect window. Moving
files into that segment in the proiect window has the
effect of literally adding that code to 'CODE' 1. When the
proiect is compiled into an application, the size of the
application's 'CODE' 1 resource varies depending on the
source files designated to appear in that segment.

Chapter 9: Memory Management 465

By changing the attributes of Segment 2 you have, in effect, expanded
the size of the main segment. That's why the segment has the name
"Main" in the THINK C project. Now, any source files you put in
Segment 2, now called Main, will be preloaded and locked into memory.
That's the ideal place for code that's executed often-code that other­
wise might frequently be moving in and out of memory. If memory
becomes tight during program execution, segments are swapped in and
out of memory. That's disk access, and that's what you're trying to
avoid. Any code in your newly-created "Main" segment will be immune
from this swapping.

So what's the big deal? Why not iust make all your
segments preloaded, locked, and unpurgeable. Then
allow your program a big enough partition for all the
code to fit in memory. Like one giant 11 Main." That
way everything gets loaded and stays put; no disk
accesses to load 1CODE' as your program runsl You're
forgetting one thing; you're a thoughtful programmer.
The user of your program may want to run other pro­
grams at the same time that yours is running. Your
program shouldn't hog all the RAM on the user's com­
puter! By allowing segments to be purgeable, your
program can occupy a much smaller amount of RAM
than it could if everything is loaded together.

In the previous section I said that one of the objectives of planning your
program segmentation was to group related routines into the same seg­
ment. I said the other objective is to load often-used code low in memory
and keep it there. Now you know how to achieve this second objective.

You'll want to put your main event loop in Segment 2. For the examples used
here that means putting the main() function and the Handle_One_Event()
function in a source file to be put in Segment 2. Here are the two routines:

void main(void)

Initialize_Toolbox();

Initialize_Variables{);

466 Macintosh Programming Techniques

while (All_Done == FALSE
Handle_One_Event{);

void Handle_One_Event(void

[handle event here]

Examine your source code to see which routines are called often. Those
routines are candidates for a place in Segment 2. Also look for functions
that are called from various parts of your program. Because several rou­
tines call a function like this, and because you are limited to the 32 K
segment size, you might not be able to place this function and all the
functions that call it into one segment. This, too, is a candidate for a
place in Segment 2.

You don't want to put code that is seldom called in Segment 2.
Initialize_Toolbox() is one example of seldom-called code. Your program
only calls this routine once. After you call it you don't want it stuck per­
manently in memory.

This brings us back to the idea of simply preloading
everything into memory to avoid moving code in and
out of memory. Your program might have a large
amount of code that is only executed once during the
running of your program. In this case, there is absolute-
ly no need to have all your code in memory. After the
code is executed, and if memory becomes tight, the
'CODE' resource that holds this one-time-executable
code will be purged to provide room for a different
'CODE' resource. You'll gladly tolerate a disk access in
this case. Since the one-time-only code will never be
called again, it will never be loaded again. That frees
up a lot of memory that would be tied up forever if you
had marked the segment as unpurgeable.

Chapter 9: Memory Management 467

I've discussed segment loading and unloading quite a bit. Let's next look
at the part you play in the control of this process.

Unloading segments
When your program attempts to call a routine that is not in memory, the
segment where the routine is located will be loaded into memory-with­
out any help from you. The Memory Manager handles that. When execu­
tion of the code within the segment is complete, you'll want to release,
or unload, the segment. The releasing of a segment is not automatically
done for you. You'll do that with calls to the Toolbox routine
UnloadSeg().

UnloadSeg() doesn't actually remove a segment from memory. It just lets
the Mac know that it has permission to purge the segment. You saw ear­
lier that THINK C, by default, marks each segment as locked. That
means the Memory Manager can't move it and can't purge it.
UnloadSeg() changes those attributes so that the Memory Manager
knows it can move or release the block if space is needed.

If a program is not large, every segment may fit into
the program's memory partition. In that case, seg­
ments will be loaded as they're needed, but won't
ever be unloaded. In that case memory isn't limited, so
there won't be any need to remove segments from
memory. That's why you might see fully-functional
Macintosh source code written by others without ever
seeing a call to UnloadSeg().

Since segments may be moved in, out, and back into memory, how do
you determine when to call UnloadSeg() for any particular segment?
That's easy; you don't have to. If you call UnloadSeg() for every segment
in your program, you're assured of marking each segment as purgeable at
the end of every pass through the main event loop. Calling UnloadSeg()
at each pass through the main event loops causes the routine to be called
an inordinate number of times during the course of your program's exe­
cution. Take a look at Figure 9-21, then read why this apparent overkill
is necessary.

468 Macintosh Programming Techniques

Main Event Loop
[handle an event

UnloadSeg(A
UnloadSeg(B
UnloadSeg(C

®

Figure 9-21. UnloadSeg() and two "snapshots" of memory

Figure 9-21 shows the application heap at two different points during the
run of a hypothetical program. The program consists of three segments,
called A, B, and C. At point # 1 segments A and B are in memory. The
main event loop comes to an end, and UnloadSeg() is called on each of
the three segments. Though segment C isn't in memory, a call to
UnloadSeg() on it has no effect. Now segments A and B have been
marked as purgeable; the Memory Manager has permission to remove
either or both if it needs the memory they occupy.

Next, the program makes a call to a routine in segment C. Segment C,
(and the routine that is in it) isn't in memory. Figure 9-21 shows that
there is not enough memory in the application's heap to support all
three segments. Because the segments are marked as purgeable, segment
B can be purged. It is, segment C is loaded, and you're now at point #2
in the figure.

The program reaches the end of another pass through the main event
loop. UnloadSeg() is again called on each segment. Why, if all the seg­
ments were marked as purgeable, is this again necessary? Because, when
a segment is loaded it has the attributes of being locked and unpurgeable.
Even if it was previously loaded and marked as purgeable by a call to
UnloadSeg() on it, it comes into memory each time as unpurgeable. At
point # 1 the calls to UnloadSeg() affected segments A and B. At point
two they affect segment C.

Chapter 9: Memory Management 469

You won't be able to figure out at every point in your
program's execution which segments are in memory,
which are about to be loaded, and which are to be
unloaded. That's why you call UnloadSeg() on every
segment in your program, and every pass through the
main event loop. No, this won't slow your program
down. Remember, a call to UnloadSeg() doesn't actual­
ly unload the segment, it just toggles a couple of bits
that let the Memory Manager know it's all right to
unload that segment. That all happens quickly.

Let's look at the latest version of DoubleDealer-version 3.0-as an
example of bow UnloadSeg() is called. I've added a long animation
sequence to the program, in a source file called Screen4.c, and put it into
its own segment. Segment 2 has become the Main segment. I pulled all
of DoubleDealer's initialization code out of DoubleDealer.c and put it in
its own file and its own segment. Figure 9-22 shows how the project is
shaping up.

V Hain
DoubleOealer .c
Mac Trap•
Menus.c ··v:5·;9;n;;i·3··-................................ 3.oii'iiii ...
Screen 1 .c 8540
Screen2.c 10224
Scr een3.c

ScrPPn4.o

VSegment 5
lnitialiu.c

Tot .. l s

I • Initial iz.e. c • /
Initial i%.e_Toolbox ()
{

/ • DoubleDealer. c • /
main() .------~-..,...
(

/ • scr•enl. c • /
Do_ Screenl () .----~~---
{

/ • screen).c • /
.___ _ _ __, Do_ Sc ree n3()

(

/ •scu.an.t.i . c • /
Do_ Screen4 ()
{

Figure 9-22. DoubleDealer THINK C project

470 Macintosh Programming Techniques

Notice in Figure 9-22 that I didn't put the Initialize.c file in Segment 4,
even though I could have without exceeding the 32 K segment size limit.
I put it in its own segment because I know it will only be called once. I
don't want this code with Screen4.c code, which might be in and out of
memory several times.

A call to UnloadSeg() requires one parameter: a pointer to a function in
the segment to unload. This can be any function in the segment. For
UnloadSeg(), simply using the function's name as the parameter serves
as the pointer to it.

Here's the code that would unload each of the segments in
DoubleDealer, except for the Main segment:

UnloadSeg(Do_Screenl) :
UnloadSeg(Do_Screen2) :

UnloadSeg(Do_Screen3) :
UnloadSeg(Do_Screen4) :
UnloadSeg(Initialize_Toolbox) :

Remember, you're preloading the Main segment and leaving it near the
bottom of the heap for the duration of the program. There's no need to
call UnloadSeg() on it.

Now look at how these calls to UnloadSeg() fit into a program:

void main(void)

Initialize_Toolbox():
Set_Up_Menu_Bar():

while (All_Done == FALSE
(

Handle_One_Event():

Unload_All_Segments():

void Unload_All_Segments(void

UnloadSeg(Do_Screenl) :

Chapter 9: Memory Management 4 71

Unl oadS eg(Do_Screen2) ;

UnloadSeg(Do_Screen3) ;

UnloadSeg(Do_ Screen4) ;

UnloadSeg(Initialize_Toolbox) ;

Lesson 9-2: Segmentation

You can run the p1Q9ram enclosed with this
book for a hanclS-on tutorial about thi• tOplc.

Setting a Program's Size

When a user double-clicks on an application's icon in the Finder, the sys­
tem sets up a memory partition for that application, then loads part or all
of the program into the partition. The size of the application's partition is
initially set up by the programmer but can be overridden by the user.

The user's role in setting the partition size
All programs come with a partition size suggested by the program's man­
ufacturer. The program's user can change the partition size by selecting
"Get Info" from the File menu in the Finder. In any version of System 6
the user can make just a single change to the partition size. That's shown
on the right side of Figure 9-23.

With System 7 the user can set both a new minimum partition size and a
preferred size. The minimum partition size is the limit below which the
application will not run. The preferred partition size is the memory size
at which the user feels the application can run more effectively. If the
amount of memory entered in the preferred size is not available, the sys­
tem will place the application into the largest available block of memory.
Allowing the user to configure the partition size lets him base the pro­
gram's partition on the amount of RAM installed in his Macintosh. The
System 7 Get Info dialog box is shown on the left side of Figure 9-23.

472 Macintosh Programming Techniques

System 7 I System 6.0.X I
ii10~ OoubleDealer Info ~ Info

~ DoubleDealer ~ DoubleDealer

Kind: application

Locked 0

Kfod: application program
Size : 64K on disk (62 ,435 bl) tes used) S1u : 62,421 bytes us ed , 64K on disk

Yhere: Hard Disk : Development : Yhere : DoubleHold, internal drive
Projects: Deceitful Folder

Cre<1ted : Sat , Sep 28, 1993, 11 :12 PM
Modified : Sat,Sep28, 1993, 11 :12PM
Version : n I a

Cruted : Sit, Sep 28, 1993, 11 :12 PM
Modified : Sat, Sep 28, 1993, 11 :12 PM
Version : not available

Comments :

,···Memory Requirements ······· ·····;
! Suggested size : 384 K !
i Minimum size : ~ K i

0 Locked L~~~~~~-~~~ --s-~~-=J~~~ J .. ~__j
Sugguted Memory Size (K) : 384

llpplic<1tion M•mory Siz• (K) : ~

Figure 9-23. Get Info dialogs under System 7 and System 6

Memory chip prices have fallen greatly in recent years,
and the amount of memory in users' Macintoshes is
increasing. You may wonder if its worth the extra
effort to plan out segmentation. After all, you could just
do what many program manufacturers do and assign a
very large partition to your program, guaranteeing that
the entire program will load and stay in memory.
That's exactly why you shouldn't. As Macs get more
memory users are loading more of these large pro­
grams at once. A user, even one with 8 Mb of RAM O ii'

more, with several programs running at once might still
often find himself just 1 OOK shy of being able to load
another program-maybe yours.

Chapter 9: Memory Management 4 7 3

Setting an application's partition size
in THINK C

You're the manufacturer of your program, so you get to set the manufac­
turer's suggested size for your program's partition. To do this in 'TIIlNK
C, you select "Set Project Type" from the Project menu before you build
your application. The dialog box that appears is shown in 9-24.

® Application

O Desk Accessory

0 Oeuice Driuer

O Code Resource

Partition (K)

SIZE Flags~

Cancel

Fiie Type I APPL

Creator I????

Set your application's
partition size here

figure 9-24. Setting your application's partition size in THINK C

If you don't specify a partition size, THINK C gives your program a size
of 384 K. Whether you or THINK C set the size, the partition size will
appear as the suggested, minimum, and preferred size in the Get Info dia­
log box of the Finder's File menu. That's shown back in Figure 9-23. To
hold the partition size information, THINK C creates a 'SIZE' resource
and adds it when it builds your application. If you want to prefill the
minimum and preferred partition sizes with values other than those
THINK C uses, you'll want to edit your application's 'SIZE' resource
after building it.

47 4 Macintosh Programming Techniques

Using the 1 SIZE' resource to set a partition

When TIDNK C builds your final application, it adds a 'SIZE' resource
with ID -1 to your application. The ID of the 'SIZE' is important. If one
of your program's users makes any change to partition size using the
"Get Info" menu option, a new 'SIZE' resource with an ID of 0 will be
added to your program. Each time your program is launched the system
looks at your program to see if it contains a 'SIZE' with an ID of 0. If the
user made changes, the system will accept the user's values over those
you've set. If no 'SIZE' with an ID of 0 is present, the system will then
use the values you set up with an ID of -1.

When THINK C sets your program's suggested partition size, it also sets
your program's preferred and minimum sizes to the same value. After
building your program, run ResEdit and open your program. Don't open
the program's resource file; open the program itself. There you'll see a
'SIZE' resource type. Double-click it to see the list of 'SIZE' resources. At
this point there will be just one. Figure 9-25 shows what you'll see in
ResEdit.

~
';;;;/
SIZE

DoubleDealer

.aNOV l,A1
.ll:R <H>
CllP Dl,Z
RE.a
ltTS

CODE

01011101
00101001
01101010
0001 1110
0!000000

DATA

01011101
00101001
01101010
00011110
01000000

DREL

-og SIZEs from DoubleOealer ~~

-1

Name

10

Once the user makes a change to partition
information using Get Info in the Finder, a
second 'SIZE' resource will also appear here

Figure 9-25. The 'SIZE' resource in ResEdit

Chapter 9: Memory Management 4 7 5

Double-click on the 'SIZE' ID of -1 to edit it. When the size editor opens,
scroll down to the bottom of the edit window. There you'll see two edit
text boxes. They're shown in Figure 9-26. The value you enter in the top
box will become the application's preferred partition size. This value is
also used as the program's suggested size, so any change you make here
will override the value you set in the THINK C environment. The value
you type in the lower box will be the program's minimum size. In Figure
9-26, both values are set to 393,216 bytes-384 K.

Preferred
and suggested
partition size

Minimum
partition size

~ SIZE ID = -1 from DoubleDealer

Use text ® 0 0 1 {}
edit
services

Reserved bit

Reserved bit

Reserved bit

Size

Min size

@O 01
@O 01
@O 01

1393216

1393216

Figure 9-26. Editing the 'SIZE' resource in ResEdit

While you're in the 'SIZE' resource, scroll up a little. You'll see a pair of
radio buttons labeled "32-bit Compatible". I discussed 32-bit clean pro­
grams earlier in this chapter. If you've thoroughly tested your program on
a Macintosh that has 32-bit addressing turned on, set this radio button as
shown in Figure 9-2 7. That lets the Finder know your program runs well
in a 32-bit addressing environment.

4 7 6 Macintosh Programming Techniques

Accept opp
died event s
(debuggers)

32 Bit
Compati bl e

High leve l
event mu are

Local and
remote high

@O

o o

® 0

® 0

Set this radio button if you've tested your
program on a Mac with 32-bit addressing

0

~Ill
1~1 0 1

0 1
0
'i!J

Figure 9-27. Marking your program as 32-bit clean

Determining your application's memory needs
Determining the memory requirements of your program is difficult.
There are many factors that play a role in the amount of memory a pro­
gram needs. Here are some of those factors:

• Loading of static 'CODE' resources, such as 'CODE' 1.

• Loading and unloading of purgeable 'CODE' resources.

• Creation of objects in response to program menu commands; this
can vary based on user's selections.

• Amount of global data.

• Number of calls that take place between segments.

• Size of the stack.

Chapter 9: Memory Management 477

Some factors you may be able to determine, including the amount of
memory the static 'CODE' resources will occupy. If you are familiar with
debuggers, you can use either MacsBug or TMON as a heap-exploring
tool to help you determine the dynamic memory requirements of your
program. I don't cover debuggers here; their use is a topic worthy of an
entire book.

If you're planning on thumbing through every
Macintosh book you can find in order to find a simple
formula for the calculation of a program's partition
size, save your time and energy. Such a book doesn't
exist.

Many of you may be overwhelmed by the number of factors involved in
determining memory use. And you may not be well versed in the use of
debuggers. You may be wondering if there are any "quick and dirty"
methods of getting at least a rough idea of program memory use. There
are, and I cover two of them next.

Watching program memory using the Finder

If you're using THINK C, set your program's partition size as discussed
earlier, then build your application. You can start with the default size of
384K that THINK C uses. Leave the THINK C environment. Go to your
program's icon in the Finder and double-click on it to run your program.

Put your program through its paces. Select menu options, open dialogs,
force the program to use the data structures you've programmed into it.
In short, do everything the user will be allowed to do. And do each thing
more than once.

As you're running your program, click periodically on the desktop. This
will take you out of your program and into the Finder. The menu bar will
change to that of the Finder. Select "About This Macintosh" from the
Apple menu. You'll see a dialog box like that shown in Figure 9-28.

4 7 8 Macintosh Programming Techniques

Special

Rbout This Macintosh

Sy stem Softv are 7 .1

~ Macintosh llsi © Apple Computer, Inc. 1983-1992

Total Memory : 9 ,216K Largest Unused Block: 6, 772K

~ Doub leDealer

~ System Software

Figure 9-28. The "About This Macintosh" dialog box

The dialog box you see when you select 11 About This Macintosh" shows
information about memory use for your Macintosh. The bar that dis­
plays your program's partition, and the amount of it that is currently in
use, will be of most interest to you. This bar will fluctuate in length as
your program runs. Figure 9-28 shows you that the DoubleDealer pro­
gram has just about filled its 384 K partition at this point.

If you continue to run DoubleDealer, will the partition fill completely
and crash our program? Maybe it will, and maybe it won't. Remember,
memory allocation is dynamic in both directions-this program both
frees memory by purging objects from memory and consumes memory
by loading objects. The next action taken in DoubleDeale1 may cause
one 'CODE' resource to be purged and a smaller one loaded. This would
free up some of the memory in the application's partition.

In any case, DoubleDealer is reaching its partition limit. Quit the pro­
gram and select 11 Get Info" from the Finder's File menu. Change the pro­
gram's minimum and preferred sizes to a higher value, as shown in
Figure 9-29.

Chapter 9: Memory Management 4 79

=o= OoubleOeoler Info

~ Doub leDea ler

Kind: application program
Size : 64K on disk (62,435 bytes used)

:···Memory Requirements ············:
1 Suggested size : 384 K 1

! Minimum size : I s12 I K !
D Locked I Preferred sin : I s12 I K !

'·-···-···-···-·-·············-·········7""'\:···-·--·--····'

Vary your program's partition
sizes, then return it and again
see how much of the partition
is being used.

Figure 9-29. Increasing a program's partition size during testing

Now, run your program again. And test it vigorously. Check the About
This Macintosh dialog box periodically. I did this with DoubleDealer,
and the most memory use I saw is shown in Figure 9-30. For
DoubleDealer, the 512 K partition seems more appropriate than the
384 K partition I started with.

-o About This Mocintosh 0

Sy stem Softv are 7 _ 1

~ Macintosh llsi © App le Computer , Inc . 1 983-1 992

Total Memory : 9 ,216K Largest Unused Block : 6,490K

~ Doub leDea ler 512K ~ ~
~ System Software 1,966K J tzy

~
Figure 9-30. The About This Macintosh dialog box after a program partition size change

4 8 0 Macintosh Programming Techniques

Before you build your final application, set your compiler to give your
program the partition size you've selected, regardless of the method you
used to determine that size. That way the program's "Get Info" will dis­
play the proper size in the suggested size area.

~OTt All right, hardcore hackers, I hear you. No, this tech­
nique isn't meant to put debugger manufacturers out
of business. But it is a quick and informative way to
get a feel for the fluctuations in a program's memory
requirements.

Watching program memory using Swatch
Using the "About This Macintosh" menu option is about as quick and
dirty as you can get. With that method you can get a very rough idea of
your program's memory use without the need for any programming
tools. To get a much more accurate idea of what's going on in RAM, try
running a nifty utility program called Swatch. In fact, Swatch, written by
Joe Holt, is so handy I've put a copy of it on the disk that is included
with this book. Swatch is a very small Macintosh program (40K) that has
just one purpose: it watches the memory usage of all applications that
are running. The window that Swatch displays, shown in Figure 9-31,
gives much more information than the window you see using About
This Macintosh.

Swatch shows the application heap for each running program. It shows
not only how much of the heap is being used, but how it's being used.
Parts of the heap that are nonrelocatable, or relocatable but locked, are
shown in black on a monochrome system or red on a color system.
Figure 9-31 shows the application for the DoubleDealer program with a
384 K partition. The ·figure also adds a key that explains the color-coding
for each type of block. You can see that DoubleDealer's application heap
is just about full. But here in Swatch, you can see exactly how much
memory is free and how the occupied memory is being used.

Chapter 9: Memory Management 4 8 1

D System Watch

... !:!~.~IL$.i.~~ f.r.f.~J. .. P..i~~J...: .. §,.1.'?.;?. .. ~Y.~~.L .. .
System 1,179,100 26,552 t 0
Finder 253 ,660 15 ,860 !Em
DoubleDealer 383,656 24,220 !~I ~
Swatch 41 ,440 15,216 !ll

! '°'
Red • nonrelocatable or relocatable locked blocks

Yellow • relocatable blocks
Orange ~ relocatable purgeable blocks

Green D free memory

Figure 9-3 1. The Swatch window, as Swatch views the system

Notice in the above figure that the cursor has the appearance of a magni­
fying glass with a cross in it. By clicking the mouse you can magnify the
right side of the window to get a more detailed view of memory. As
shown, one pixel represents 8,192 bytes of RAM. A click of the mouse
will make one pixel represent only 4,096 bytes. You can keep clicking to
get more and more detail. Holding the Option key while clicking the
mouse will reduce the view. Swatch has a few other tricks that provide
more insight into the memory your program and they're mentioned in
the text file included on disk in the Swatch folder. The text file also lists
the few steps involved in copying the program to your disk.

Computer memory is an abstract concept that lends itself to much con­
fusion for both beginner and advanced programmer. Swatch's ability to
allow you to visualize memory helps clarify just what's going on in those
mysterious RAM chips of the Macintosh.

Handling Memory Errors
Even with careful planning, your program could fail at some point. If the
error is severe, such as failed memory allocation for a window necessary
to the execution of your program, you'll want to exit the program grace­
fully rather than have the screen freeze. Before you do so, you'll want to

4 8 2 Macintosh Programming Techniques

give the user some indication of the nature of the problem. And if the
severity of the error doesn't warrant terminating the program, you'll still
want to give the user some feedback as to what went wrong.

Watching for failed memory allocations
You've used NewPtr() to allocate memory for a window. At that time
you checked to make sure the call to load the 'WIND' resource didn't
fail:

//define
//define
//define

NIL
WIND_ID
IN_FRONT

WindowPtr new_window;

OL
128

(WindowPtr)-lL

Ptr wind_storage:

wind_storage = NewPtr(sizeof(WindowRecord));

new_window = GetNewWindow(WIND_ID, wind_storage, IN_FRONT):
if (new_window == NIL

ExitToShell();

You should also check to confirm that the memory you attempted to
allocate was indeed allocated.

wind_storage = NewPtr(sizeof(WindowRecord));

if (wind_storage == NIL)
Exi tToShell () :

new_window = GetNewWindow(WIND_ID, wind_storage, IN_FRONT);
if (new_window == NIL)

ExitToShell():

The first if statement checks to see that memory for the window is avail­
able. If the program reaches the second if statement, memory is indeed
available. What then could cause a call to GetNewWindow() to fail? A
'WIND' resource with WIND _ID doesn't exit. This is unlikely, but could
occur if the user opened your program with ResEdit "just to look around"
and instead deleted or renumbered some resources unintentionally.

Chapter 9: Memory Management 4 8 3

The solution here to handling a memory problem has been to call
ExitToShell(). Bailing out of the program and returning the user to the
Finder, rather than risking a frozen Mac, is thoughtful. But the user
will appreciate it much more if you first provide him with a hint about
the problem. That gives the user the chance to correct the problem and
try again.

Providing the user with error information
Before exiting a program after a severe error, call an error handling rou­
tine of your own creation. Pass the routine a number that represents the
type of error that occurred. Also, send the routine a flag that indicates if
the nature of the error warrants termination of the program.

#define ERR_WIND_MEM_ALLOCATE_FAIL

#define DO_TERMINATE_ERROR TRUE
#define DONT_TERMINATE_ERROR FALSE

wind_storage = NewPtr(sizeof(WindowRecord)) :
if (wind_storage == NIL)

Post_Error_Message(ERR_WIND_MEM_ALLOCATE_FAIL, DO_TERMINATE_ERROR) ;

The error handling routine should post an alert that displays a message
appropriate to the error that occurred. The displayed message will be
based on the first parameter passed to it. Whether the program should be
terminated will depend on the value of the second parameter. Here's a
typical error-handling routine:

#define ERR_WIND_MEM_ALLOCATE_FAIL
#define ERR_PICT_MEM_ALLOCATE_FAIL 2
[have a #define for each error condition you look for

#define DO_TERMINATE_ERROR TRUE
#define DONT_TERMINATE_ERROR FALSE

#define ERR_STR_LIST 128
#define ERR_ALRT_ID 128

void Post_Error_Message(short error_num, Boolean terminate

484 Macintosh Programming Techniques

Str255 the_str;

GetlndString(the_str, ERR_STR_LIST. error_num) :
ParamText(the_str. "\p". "\p". "\p") :
StopAlert(ERR_ALRT_ID. NIL):

if (terminate == DO_TERMINATE_ERROR
Exi tToShell () :

You can keep the error-handling routine nice and short, as I've done, by
keeping all the error messages in a 'STR#' list. The first parameter
passed to the routine will be an index into the list. Call GetlndString()
to dig the string out of the 'STR#' list. (This technique was first cov­
ered back in Chapter 3.) Figure 9-32 shows a typical 'STR#' resource for
error messages.

§0 STR# ID = 128 from DoubleDealer. n .rs re

HumStrings 10

1) *****
The string

2) *****
The string

Error DDOl: Window Memory
Al location Failed. Increase
program size using Get Info.
Ask your local Mac guru how!

Figure 9-32. 'STR#' list of error messages

You can give each error message a reference number, such as
DoubleDealer's DDOl, DD02, and so forth. That will help when your
program becomes a smash hit and you institute a technical support
phone number! When a user calls your technical support number all he
has to report is the error number, and your technicians can look up the
error in your Error Reference Journal to get more information about it.

After retrieving the error string from the 'STR#' list, use ParamText(} to
set the first of four strings to this message string. That's the string that
will be displayed in the alert. Figure 9-33 reminds you how to use the

Chapter 9: Memory Management 4 8 5

""0" notation in the 'DITL' of an 'ALRT' resource, as introduced in
Chapter 7. Figure 9-34 shows the alert the user will see.

§0§ Dill ID = 128 from DoubleDealer.n.rsrc §

[Ouch! ~

Figure 9-33. 'D/Tl' to display one Param Text() string

Error 0001: Window Memory
Rllocation Failed. Increase
program size using Get Info.
Rsk your local Mac guru how!

((Ouch!))

Figure 9-34. The error message alert

•

Numerous conditions can cause problems in a program: lack of available
memory is one of the most common. You'll want to include error check­
ing where appropriate in your particular application.

Chapter Program: Tying it All
Together
This chapter's example program, Inner View II, is a more powerful version
of last chapter's InnerView application. Many of the changes to the pro-

486 Macintosh Programming Techniques

gram occur behind the scenes, and some are right up front for the user to
see. The following are a few of the up-front changes to the program:

• The program now opens a modeless dialog that allows the user to
select the type of machine features to display: hardware or soft­
ware.

• The window that displays the results of the machine examina­
tion now displays either hardware or software information, based
on the user's selection.

• Keyboard equivalents are used for menu items.

• An edit menu has been added to support editing in the informa­
tion dialog's edit text item.

Here are a few of the things Inner View II does behind the scenes:

• Stores all text displayed to a window in 'STR#' resources; no
strings are hard-coded into the source code.

• Reserves memory for the informational dialog and results win­
dow early in the program.

• Performs error-checking at critical points in the program.

• Uses multiple source files and header files in the THINK C
project.

• Uses segmentation, as described in the chapter.

Figure 9-35 shows both the dialog and window that InnerViewll displays.

Chapter 9: Memory Management 4 8 7

Owner lnformotion

CPU Type

Flouting Point Unit

RAM Size (bytes)

Hordwore Window

O.P.S.

68030
68892
9437184

OWNER INFORMATION

Enter Your Nome: I D.P .S.
~-----~

1:81 Dlsploy Your Nome?

SYSTEM INFORMATION

Select Info to Disploy:

® Hordwore

0 Softwore (OK)

Figure 9-35. A look at lnnerViewll

The results window displays information about three environment factors
in the program user's Macintosh. I've sized the window so that a person
knowledgeable about the Gestalt(} function can add about eight more. As
a matter of fact, if a crafty programmer removed the picture, reduced the
spacing between lines, and used two columns, that programmer could
probably fit about two dozen pieces of information in the window.

Hint, hint! Yes, that's you! You have the project, the
source code, and the know how. lnnerViewll is a good
base for a useful utility program. If you instruct the
program user to place your version of lnnerViewll in
the Apple Menu Items folder in the System Folder, it
can be accessed from the Apple menu. Any time a user
has a question about what's in his Mac, he can simply
run your program from the Apple menu.

4 8 8 Macintosh Programming Techniques

Program resources: lnnerViewll.n.rsrc

At first glance the resource file for the InnerViewll project looks a bit
overwhelming. But as Figure 9-36 shows, over half of the resource types
are associated with the program's icon. ResEdit added eight resources to
the file when I created the 'BNDL' resource that allowed me to create and
edit the icon.

The nine
resource
types created
when 'BNDL'
was added

~D lnnerUiewll.11.rsrc E!llil

;··-·;-;~~~"""""""! r;M0<=1 j"""•;·;·~"""""""""""""""~"~""""""i -0
i, 7ii;-; El i ~ II tail !;_·. t.J.E) A i,

1.:1 ! o= ill El ~···· ! ! !
ALRT l BNDL L. ~.~~·············· ·-··~-~~~i FREF ic14 !

1.1·· ···~--~······· OD :m :::: i
A l:ilil /'... CJ D mm lll'l mm lll'l :~mm i

I ~ ~ " " ~ ,.. , ~ ~ ' "' 0100 040• i
! ic18 ICN11 ics • ics4 ics8 IVll i
'-········· .. ···-···--·-···-·--···-··············--·-···-········-···-···-.. ····-.. ····-···--·-···-···-······· .. ············-······-········-.!

1f ~ ~'~ -·--·- Cl . ..

MBAR MENU PICT STR11 \\'IND

Figure 9-36. lnnerViewll.n.rsrc file

Figure 9-37 shows the 'BNDL' resource. The six icons pictured are each
separate resources. I gave the 'BNDL' a signature of "IVII" for InnerViewII.
When you get to the TI-IINK C project, you'll use these four same charac­
ters to set the program's creator. Chapter 3 covered program icons, the
'BNDL' resource, and signature and creator.

The InnerViewII program displays a window with the results of the pro­
gram's check for machine features. Whether the user elects to see hard­
ware or software features, the program uses the same 'WIND' resource.

InnerViewll has one 'DLOG' resource and a companion 'DITL' for the
program's modeless information dialog box. Figure 9-38 shows the items
and item numbers for this dialog box.

Chapter 9: Memory Management 4 8 9

Set program's Signature,
then use the same for
Creator in THINK C project

BNDL ID= 128 from lnnerUiewll. ~

Signature: I 1u1 I I
Type Finder Icons

RPPL ~~~r9/'~l91'

figure 9-37. The 'BNDL' resource for lnnerViewll

ru§ DITL "lnnerUiew DITL" ID= 129 from In ~

!OWNER INFORMRTl(lij

!Enter Your Nam@ lr.=1 =====::::::;::W::;ll
ID Display Your Name@

!SYSTEM I NFORMRTI ON!)

!Select Info to Displaylzj

IO Hardware liJ
lo Software@ [OK LJ

figure 9-38. 'DITL' resource for lnnerViewll

~

-0

The program has two other 'DITL' resources. One corresponds to the
'ALRT' that InnerViewll puts up in response to a menu choice of "About
InnerViewll" from the Apple menu. Chapter 6 covered alerts.

An 'ALRT' uses the other 'DITL' to display error messages. Inner Viewll
uses the error-handling method discussed in this chapter.

The results window of the InnerViewll program displays the same picture
as last chapter's program; they're repeated here as Figure 9-39. The resource

490 Macintosh Programming Techniques

file holds two versions of the picture: one in color and one in monochrome.
Chapter 8 covered the reasons for storing two versions of a picture.

PICTs from lnnerUiewl 1.11.rsrc

:::::~·

128 129

Figure 9-39. lnnerViewll 'PICT's

Figure 9-40 shows the program's three 'MENU' resources. Each of the
File menu items has a keyboard equivalent, as do the enabled items in
the Edit menu. InnerViewII doesn't support Undo or Clear, so these
items have been marked as disabled here in the resource file. Why
include them in the menu? Uniformity. Mac users expect to see five
standard editing commands in the Edit menu of a Macintosh program, so
I include them here.

The three 'MENU' resource IDs appear in the program's one 'MBAR'
resource. Chapter 7 covered these two resource types.

Im Dill " lnnerUlew Dill" ID = 129 from In •

!OWNER INFORMATl(laj

!Enter Your NnmiilJ l.!::11 =======®=.12 I
0 Display Your Name@

!SYSTEM INFORMATIONJ!j

!Select Info to Dlsploylzj

lo Hardware Li)
lo Software@ [OK ~

Figure 9-40. 'MENU' items for lnnerViewll

..

Chapter 9: Memory Management 491

The last resource type is the 'STR#', and it has plenty of items. Figure
9-40 shows the 11 'STR#' resources. All but one of the 11 contain more
than one string.

D SJR#s from I nnerUiew 11. 11 .rsrc 0
!Q_ Size Name

128 386 "Error Messages" ~
129 5 1 "Window Titles"
130 48 " Hardware Headings"
131 51 " Software Headings"
132 46 " Owner Information"
201 44 "CPU Types"
202 60 " Fl oat i ng Point Unit"
203 14 " RAM"
301 17 "System"
302 29 "Color QuickDrew" -0 303 173 " QuickDrew Versi on"

~

Figure 9-41. 'STR#' resources for lnnerViewll

Apple strongly suggests that any text you display in a window or dialog
be stored as a resource. Why? If a change becomes necessary, text in a
resource is much easier to change than text embedded within source
code. If the text is hard-coded into the source code, the person who wants
to make a change must also have the source code. After the change, the
source code must be recompiled into a new application.

If text is placed in strings within 'STR#' resources, anyone with a work­
ing knowledge of ResEdit can make text changes to your program with­
out access to your source code. Someone can use ResEdit to open the
application and edit the strings in the resources of the program itself.

Why is it a good idea to allow this easy access to program text? Here are
a few reasons.

• It's easier for users of your program to change wording or make
corrections of typos, with your permission, of course.

• It's easier to translate your program to another language, again
with your permission.

492 Macintosh Programming Techniques

How likely is it that your program will be used in foreign countries? It
may not be as improbable as you think. And, you may want to cater to
the large non-English speaking segment of the USA. A translator, even
one with very little knowledge of programming, can make the necessary
changes without your involvement.

When should you place strings directly in your source code? Only when
you have text that you don't want changed, such as copyright informa­
tion or your company's name and address.

Figure 9-42 shows the three strings that make up the 'STR#' resource
with an ID of 129. These three strings are used as titles for the program's
dialog box and window. The program changes the window's title, depend­
ing on which set of information it's displaying: hardware or software.

§[§ STR# "Window Titles" ID= 129 from lnnermewll.n

liumStrlngs 3 ~

1) *****
The string !Hardware Window I
2) *****
The string !software Window I
3) *****
The string I user Info Dia log I
1) ***** '<}

~

Figure ~2. The three strings in 'STR#' 129

A second example of how InnerViewll uses 'STR#'s appears in Figure
9-43. The InnerViewll window displays titles for the three pieces of
information being retrieved. Rather than placing "\p" strings directly in
the source code (as last chapter's InnerView did) the new lnnerViewll
keeps the titles in a 'STR#' resource. The program calls GetlndString() to
retrieve the strings and then draw them to the window. Figure 9-44
demonstrates how some of these 'STR#'s are used by the program.

Chapter 9: Memory Management 493

sDs STR# "Hardware Headings" ID = 1 30 from I nnerUie

NumStrings 3 ~

1) *****

The str ing lcpu Type I
2) *****
The string !Floating Po i nt Unit I
3) *****
The string IRAM Size (bytes) I tzy
4) ***** ~

Figure 9-43. The three strings in 'STR#' 130

~ -~ Hardware Window
1 3 2 ·······-············ .. · .. ·······-········ .. ······ .. ··········-················ ,

, Owner Information D.P.S. !

6~::~~::~:~:::::::::~:~~::~::::::::~::::::::::::::::·:"'''''"'~:::::::::::::::::::~-·-···-Q
'V.J CPU Type i 030 Y : I s·

i Floating Point Unit i 68882 202
l i i-····································:
I RRM Size (bytes) i 1 9437184 f:::::..i
!... -! L e

~D STR#s from I nnerUiew 11. n .rs re 0 -
~

!Q. Size Name

128 386 "Error Messages" .g:
129 51 "Window Titles"
130 48 " Hardware Headings"
131 51 "Software Headings"
132 46 " Owner Information"
201 44 "CPU Types"
202 60 " Floating Point Unit"
203 14 "RAM"
301 17 "System"
302 29 " Color QuickDrew" tzy
303 173 " QuickDrew Version"

~

Figure 9-44. How lnnerViewll uses the 'STR#' resources

494 Macintosh Programming Techniques

Figure 9-44 shows the 'STR#'s used when the program displays informa­
tion about the user's hardware. The strings contained in 'STR#' resources
131, 301, 302, and 303 are used in the program's window to display soft­
ware information. The last 'STR#', resource ID 128, contains several
strings used to display error messages in the alert shown in Figure 9-45.

Gestalt Call Failed. Couldn't fill this
field of information about your
Macintosh.

((Ouchi]

Figure 9-45. The error message alert for lnnerViewll

Program THINK C proiect: lnnerView.n
InnerViewll displays an icon in the Finder. (It's shown in the 'BNDL'
resource back in Figure 9-3 7.) So that the Finder can associate the icon
with the program, I set the creator to IVIl to match the 'BNDL' signature.
I did this in the dialog box that THINK C displays when "Set Project
Type" is selected from the Project menu. While I was in the dialog box, I
lowered the partition size of InnerViewll from 384 K to 128 K.
InnerViewll is a small program and probably won't require even this
amount of memory. By lowering the partition size I've just given 256 K
of RAM back to the user. This can be devoted to running some other pro­
gram. Figure 9-46 shows the Set Project Type dialog box.

InnerViewll is the first and only example with multiple source code files.
Source files for a Macintosh program are the same as those for a C pro­
gram written on any other platform. Only the segmentation scheme is
different. Let's take a look at both the source files and segmentation for
Inner View!!.

® Rpplication

0 Desk Rccessory

O Deuice Driuer

O Code Resource

Partition (K)

SIZE Flags ~

Cancel

Chapter 9: Memory Management 49 5

File Type I RPPL

Creator _I 1_u1_1_ .. ,
Set Creator to
1BNDL1 Signature

Lower partition size
from default 384 K

Figure 9-46. Setting creator and changing partition size in THINK C

The code for InnerViewll is divided between three source files:
InnerViewll.c, Initialize.c, and Utilities.c. All of the global variables are
in a header file, Globals.h. All of the #define directives appear in their
own header file, Defines.h. Figure 9-4 7 shows the relationship between
these files.

/• Globals.b •/
[global variables]

/• InnerViewII.c •/

#include "Globals.h"
#include "Defines.h"
Uinclude "Initialize.b"
Uinclude "Utilities.b"
Uinclude (GestaltEqu.b)

/• Initialize.c •/

#include "Defines.b"
#include "Initialize.b"
Uinclude "Utilities.b"
§include (GestaltEqu.b)
Dinclude <Traps.b>

/• Defines.b •/
[Qdefine statements]

/• Utilities.c •/

#include "Defines.h"
#include "Utilities.b"

figure 9-47. Source file relationships to globals and defines

496 Macintosh Programming Techniques

Notice in Figure 9-47 that only InnerViewII.c includes the Globals.h
header file. Globals.h contains all of the global variable declarations, and
can therefore only be a #include for one source file. Otherwise the com­
piler views the situation as multiple declarations of the same variable.
Any global variables used by either Initialize.c or Utilities.c have to be
declared within those files using the "extern" keyword. I show that in
the source code listings that follow this section.

All three source files include the Defines.h header. This header contains
only #define directives. The compiler simply uses #defines to make sub­
stitutions in your source code; it doesn't use them as declarations.

The application has two defined header files, Initialize.h and Utilities.h.
They contain public interfaces to the routines in Initialize.c and
Utilities.c. All of the source files need to know about the routines in
Utilities.c, so they all include Utilities.h. None of the routines in
Utilities.c calls routines in Initialize.c, so you won't find a #include
directive for it in Utilities.c. This is illustrated in Figure 9-48.

/• Initialize.h •/
[public interfaces]

#include "Globals.h"
IJinclude "Define.h"
#include "Initialize.h"
#include "Utilities.h"
#include (GestaltEqu.h>

#include "Define.h"
#include "Initialize.h"
#include "Utilities.h"
#include <GestaltEqu.h)
#include <Traps.h)

/• Utilities.h •/
[public interfaces)

Uinclude "Define.h"
#include "Utilities.h"

Figure 9-48. Source file relationships to application-defined headers

Two Apple header files, Traps.h and GestaltEqu.h support calls to
NGetTrapAddress() and Gestalt(). Both InnerViewII.c and Initialize.c
contain functions that call Gestalt(), so they include Gestalt.h.

Chapter 9: Memory Management 49 7

Initialize.c also includes Traps.h. The Utilities. c source file doesn't need
either of the Apple includes. This is summarized in Figure 9-49.

/• GestaltEqu.h • /
[Apple Gestalt header]

G
/ • InnerViewII. c •/

#include "Globals.h"
finclude "Defines.h"
#include ''Ini~ialize .h ''
#include "Ut ili~ies .b''
#include (GestaltEqu . h>

/ • Tr aps.h • /
[Apple Traps header]

/ • Initialize.c • /

I/i nclude "Defines.h"
//include "Initialize . b"
I/inc lude "Utilities .h"
#include (GestaltEqu .b)
.#include (Traps . h>

/ • Util ities .c •/

#include "Defines.h"
#include "Utilities.h"

Figure 9-49. Source file relationships to Apple-defined headers

The InnerViewll.Tt project has three segments. I've kept the bulk of the
code in Segment 2, which I've renamed "Main". This is shown in Figure
9-50. I also double-clicked on the segment name to change its attributes
to preloaded and locked. That puts it at the base of the application's par­
tition. (This technique was explained earlier in this chapter.)

I put all of the initialization routines in a file, Initialize.c, and then put
that file in a separate segment-Segment 3. I did the same with utility
routines; they're in Utilities.c in Segment 4.

Segment 2 renamed
Main, set to Preload
and Locked

lnnerUiewl 1.11

9356 0
lnnorView ll.c 2326

_ ~~~.!!: .. ~P.~ _, ?.9_2_6. ..
'V'Segment 3 788

lnitialize.o 784
-···-···-···-·-···-·····-····--···········-········-··· ··-········-······-···
'V'Segment 4 254

Utili1ies .c 250
Totals 10976 0

Figure 9-50. Segmentation of lnnerViewll

4 9 8 Macintosh Programming Techniques

How practical is it to segment about 10 K of source
code, as done in lnnerViewln Couldn't you iust have
kept it all in one segment? All right, you caught me
there. But I want to use this last program to give you
the complete source code for a demonstration of seg·
mentation and the use of UnloadSeg().

When you choose "Build Application" from the Project menu, THINK C
will compile and build a standalone application with its own icon. Well,
almost with its own icon. Don't forget to rebuild your Mac's desktop in
order for it to become aware of the new icon. To rebuild the desktop,
press and hold down the Command and Option keys as you reboot the
Mac. Chapter 3 covered icons and the desktop.

Program listing: lnnerViewll.c
The lnnerViewII program starts out with three source files and four
application-defined header files, presented in their entirety now. If you're
familiar with header files, you can just skim them here. A description of
each file follows, with emphasis, on the new material.

Defines.h
/•+++++++++++!I I I I I I I I!+++• /

f • +I I+++ I ++++• /

/ • File Defines.h • /
/• Purpose : Define all constant s . • /
f • ++++++++++I I++++++ I I I I I I I I I I I • f
/• I • f

f/define ERR_STR_LIST 12 8

f/de f ine ERR_WIND_MEM_ALLOCATE_FAIL 1

I/define ERR_DIALOG_MEM_ALLOCATE_FAIL 2

I/define ERR_PICT_MEM_ALLOCATE_FAIL 3

//define ERR__CALL_TO_GESTALT_FAIL 4

I/define ERR_ROM_TOO_OLD 5

I/define ERR_SYSTEM_TOO_OLD 6

{/define ERR_NO_GESTALT 7

{/define ERR_MENU_BAR_FAIL 8

Chapter 9: Memory Management 499

/!define WIND_TITLE_STR_LIST 129

I/define WIND_HARDWARE_TITLE 1

/!define WIND_SOFTWARE_TITLE 2

//define DLOG_INFO_TITLE 3

//define HARDWARE_TITLES_STR_LIST 130

//define SOFTWARE_TITLES_STR_LIST 131

//define OWNER_INFO_STR_LIST 132

/!define OWNER_ TITLE 1

/!define OWNER_NOT_AVAILABLE 2

/!define CPU_TYPE_STR_LIST 201

/ldef ine FPU_TYPE_STR_LIST 202

//define RAM_STR_LIST 203

/Ide fine SYSTEM_STR_LIST 301

/ldef ine COLOR_QUICKDRAW_STR_LIST 302

/Ide fine QUICKDRAW_VER_STR_LIST 303

//define IV_DLOG_ID 129

/ldefine OK_BUTTON_DITL_ITEM 1

/Ide fine NAME_DITL_ITEM 2

/Ide fine CHECK_DITL_ITEM 3

/ldef ine HARDWARE_DITL_ITEM 4

/!define SOFTWARE_DITL_ITEM 5

/Ide fine DLOG_WIDTH 320

/Ide fine DLOG_HEIGHT 200

/Ide fine IV_WIND_ID 128

/Ide fine WIND_WIDTH 485

//define WIND_HEIGHT 280

/!define ABOUT_ALRT_ID 128

//define ERR_ALRT_ID 130

//define MENU_BAR_ID 128

/ldef ine APPLE_MENU_ID 128

/ldef ine ABOUT_ITEM 1

/Ide fine FILE_MENU_ID 129

I/define NEW_ITEM 1

I/define TO_FRONT_ITEM 2

//define QUIT_ITEM 4

/Ide fine EDIT_MENU_ID 130

/Ide fine CUT_ITEM 3

/Ide fine COPY_ITEM 4

I/define PASTE_ITEM 5

/Ide fine MAC_PICT_BW_ID 128

500 Macintosh Programming Techniques

I/define MAC_PICT_COLOR_ID 129

I/define NIL OL
//define IN_FRONT (WindowPtr)-lL

//define REMOVE_EVENTS 0

#define SLEEP_TICKS OL
//define MOUSE_REGION OL

//define MENU_BAR_HEIGHT 18

//define DRAG_EDGE 20

//define CONTROL_ ON

#define CONTROL_OFF 0

//define PIXEL_DEPTH_BW 1

#define PIXEL_DEPTH MAX_COLOR 24

#define ENTIRE_MENU 0

//define DO_TERMINATE_ERROR TRUE

#define DONT_TERMINATE_ERROR FALSE

#define GESTALT_ERR_TYPE 999

#define NUM_SOFTWARE_HEADINGS 3

//define NUM_HARDWARE_HEADINGS 3

//define LINE_HEIGHT 20

//define HEADING_X 20

#define HEADING_Y 40

//define RESULT_X 170

//define OWNER_Y 25

#define PICT_L 380

//define PICT_T 5

//define ASCII_ZERO 48

Glo&als.h
/*++!I I II 1111 I*/

/*++!I I I I I I+++++++*/

/* File Globals.h •/
/• Purpose: Declare all global variables. •/
/*++•/

/•++•/

Boolean
Boolean

EventRecord
MenuHandle
MenuHandle
MenuHandle

All_Done = FALSE:
Multifinder_Present:
The_Event:
Apple_Menu:
File_Menu;

Edit_Menu:

Chapter 9: Memory Management

Re ct

Point

WindowPtr

DialogPtr
Str255

short
Boolean

Boolean

Boolean

short

Ptr
Ptr

Str255
Boolean

long

long

Str255

Boolean

long

long

lnitialize.h

Drag_Rect:

Screen_Center:
IV_Window_Ptr:

IV_Dialog_Ptr:
Name_Str;

Old_Button_Num:

Print_Name:

Display_Hardware_Flag;

Color_QD_Present:

Min_Pixel_Depth;

Info_Dialog_Storage;

Display_Window_Storage:
Mac_RAM_Str:

Mac_RAM_Str_Error:

Mac_CPU;

Mac_FPU;

Mac_Sys_Str:

Mac_Sys_Str_Error;

Mac_Has_Color_QD:

Mac_QD_Version:

/*++++I I I I I I I!++*/

/*++*/

/* File Initialize.h */

/* Purpose: Public interfaces for routines in Initialize.c. */
/* Make Initialize.c routines known to other files. */
/*++++++++++++++++++++++!I I I I I I I I I I!++++++++++++++++++++++++++++*/

/*++*/

void Initialize_Toolbox(void) :
void Check_System(void) :

void Reserve_Window_Memory(void) :

void Initialize_Variables(void) ;

void Set_Window_Drag_Boundaries(void) :

void Set_Screen_Center(void) :
void Set_Up_Menu_Bar(void) ;

void Open_InnerView_Window(void) ;

void Open_InnerView_Dialog(void) :

501

502 Macintosh Programming Techniques

Utilities.h
/•++*/

/•++•/

/*

/•
File Utilities.h

Purpose: Public interfaces for routines in Utilities.c.
*/

*/
/• Make Utilities.c routines known to other files. •/
/*+++++111111111111111111111+++++1111111111111111111++1111111111•/

/•++•/

void Post_Error_Message(short. Boolean):

void Set_Check_Box(DialogPtr, short):

void Set_Radio_Buttons(DialogPtr, short):

void Get_Text_From_Edit(DialogPtr. short, Str2SS):

fnitialize.c
/•++•/

/•+++I I I I I I I I!++++++++++++*/

/• File Initialize. c */
/• Purpose: Initialization routines and other functions that */
/• are "one-time-only." */
/•++•/

/•++•/

/•+++++++++++++++++++++

#include "Defines.h"

#include "Initialize.h"

#include "Utilities.h"

#include <Traps.h>

#include <GestaltEqu.h>

Include Files ++++++++++++++++++++++•/

/•++++++++++++++++I I I I I I I I I I l+++++I I I I I I I I I I I I I I 1+1 I I I I I I I I+++++•/

/•++ Make file aware of externally-declared global variables ++•/

extern Boolean Multifinder_Present:

extern MenuHandle Apple_Menu:

extern MenuHandle File_Menu:

extern MenuHandle Edit_Menu:

extern Re ct Drag_Rect:
extern Point Screen_Center:

extern short Old_Button_Num:
extern Boolean Display_Hardware_Flag:

Chapter 9: Memory Management

extern Boolean Color_QD_Present:
extern short Min_Pixel_Depth:

extern Ptr Info_Dialog_Storage:
extern Ptr Display_Window_Storage:

extern WindowPtr IV_Window_Ptr:
extern DialogPtr IV_Dialog_Ptr:
extern Boolean Display_Hardware_Flag:

/*II I II I I I I Ill I+++++ Initialize the Toolbox ++++++++++I I I I I I I I*/

void Initialize_Toolbox(void)

InitGraf(&thePort):

InitFontsO:
InitWindows():
InitMenus():

TEinit ():
InitDialogs(NIL):
FlushEvents(everyEvent, REMOVE_EVENTS);

InitCursor():

/*++++++++ Verify that this program can run on this Mac ++++++*/

void Check_System(void)
{

Boolean gestalt_present:
SysEnvRec mac_info:

SysEnvirons(curSysEnvVers. &mac_info):

if (mac_info.machineType < envMacII)
Post_Error_Message(ERR_ROM_TOO_OLD, DO_TERMINATE_ERROR);

if (mac_info.systemVersion < Ox0604)
Post_Error_Message(ERR_SYSTEM_TOO_OLD, DO_TERMINATE_ERROR);

gestalt_present ~ (NGetTrapAddress(_Gestalt, OSTrap) !=

NGetTrapAddress(_Unimplemented. OSTrap)):

if (gestalt_present -= FALSE)
Post_Error_Message(ERR_NO_GESTALT, DO_TERMINATE_ERROR):

503

504 Macintosh Programming Techniques

/•+++++++ Reserve low heap memory for window and dialog ++++++•/

void Reserve_Window_Memory(void)

I

Inf o_Dialog_Storage = NewPtr(sizeof DialogRecord) :

Display_Window_Storage = NewPtr(sizeof WindowRecord):

/*I II I I I I I I I I++ Initialize some program variables I I I I I I I I II I I*/

void Initialize_Variables(void

OSErr
long

err:

response:

Multifinder_Present NGetTrapAddress(_WaitNextEvent, ToolTrap) !=

NGetTrapAddress(_Unimplemented, ToolTrap)):

err= Gestalt(gestaltQuickdrawVersion, &response):

if (err == noErr)

if (response == gestaltOriginalQD
Color_QD_Present = FALSE:

else
Color_QD_Present = TRUE:

else
Post_Error_Message(ERR_CALL_TO_GESTALT_FAIL, DO_TERMINATE_ERROR):

Set_Window_Drag_Boundaries();

Set_Screen_Center();

Old_Button_Num = HARDWARE_DITL_ITEM;

Display_Hardware_Flag = TRUE:

/*++I I I I I I I I I I Initialize window drag boundaries +++++++++++++•/

void Set_Window_Drag_Boundaries(void

Drag_Rect = (••(GrayRgn)).rgnBBox:
Drag_Rect.left += DRAG_EDGE:

Chapter 9: Memory Management

Drag_Rect.right -= DRAG_EDGE;
Drag_Rect.bottom -= DRAG_EDGE;

/•+++++ Determine center of monitor that has the menu bar ++++•/

void Set_Screen_Center(void)

GDHandle gd_handle;
Rect bnds_rect;

gd_handle = GetMainDevice():

bnds_rect = (••(gd_handle)).gdRect:

Screen_Center.h = bnds_rect.right /2);
Screen_Center.v = bnds_rect.bottom/2) + (MENU_BAR_HEIGHT/2):

/•1111 I I I I I I I II+++++ Initialize the menu bar ++++++•/

void Set_Up_Menu_Bar(void

Handle menu_bar_handle:

menu_bar_handle = GetNewMBar(MENU_BAR_ID):
if (menu_bar_handle -- NIL)

Post_Error_Message(ERR_MENU_BAR_FAIL, DO_TERMINATE_ERROR):

SetMenuBar(menu_bar_handle);
DisposHandle(menu_bar_handle);

Apple_Menu = GetMHandle(APPLE_MENU_ID):
File_Menu = GetMHandle(FILE_MENU_ID):
Edit_Menu = GetMHandle(EDIT_MENU_ID):

Disable!tem(Edit_Menu, ENTIRE_MENU);

AddResMenu(Apple_Menu. 'DRVR'):

DrawMenuBar():

505

506 Macintosh Programming Techniques

/•1 I I I I I I I Open the results window, but don't show it I I I I I I 11•/

void Open_InnerView_Window(void)
(

Str255 the_str:
short left, top:

if (Color_QD_Present && Min_Pixel_Depth > PIXEL_DEPTH_BW)
IV_Window_Ptr = GetNewCWindow(IV_WIND_ID, Display_Window_Storage, IN_FRONT):

else
IV_Window_Ptr ~ GetNewWindow(IV_WIND_ID, Display_Window_Storage, IN_FRONT):

if (IV_Window_Ptr == NIL)
Post_Error_Message(ERR_WIND_MEM_ALLOCATE_FAIL. DO_TERMINATE_ERROR):

left= Screen_Center.h · (WIND_WIDTH /2 }:
top = Screen_Center.v · (WIND_HEIGHT/2):
MoveWindow(IV_Window_Ptr. left. top, TRUE):

/•1 I I I I I I I I I Open the info dialog. but don't show it I I I I I I I I I*/

void Open_InnerView_Dialog(void)
(

short
Str255

left, top:
the_str;

IV_Dialog_Ptr = GetNewDialog{IV_DLOG_ID. Info_Dialog_Storage, IN_FRONT);

if (IV_Dialog_Ptr ~ NIL)
Post_Error_Message(ERR_DIALOG_MEM_ALLOCATE_FAIL, DO_TERMINATE_ERROR):

GetlndString(the_str, WIND_TITLE_STR_LIST, DLOG_INFO_TITLE);
SetWTitle(IV_Dialog_Ptr. the_str):

left= Screen_Center.h · DLOG_WIDTH /2):
top = Screen_Center.v · DLOG_HEIGHT/2):

MoveWindow(IV_Dialog_Ptr, left, top, TRUE):

Set_Radio_Buttons(IV_Dialog_Ptr, HARDWARE_DITL_ITEM);
Display_Hardware_Flag = TRUE:

Chapter 9: Memory Management

Utilities.c
/•++•/

/*++•/

/• File Utilities.c •/

/• Purpose: Utility routines that may be used by more than •/
/•

/•

/*
/*

one function, and by functions in more than one •/

segment. An example would be Set_Radio_Button(). •/

which is a generic function that can be used for •/
any dialog box. •/

/•+++++++++++++I I++++ I I I I I I I I I • /

/•++•/

/•+++++++++++++++++++++ Include Files ++++++++++++++++++++++•/

#include "Defines.h"

#include "Utilities.h"

/•++ Make file aware of externally-declared global variables ++•/

extern short Old_Button_Num:

/•++++++ Display an alert with descriptive error message +++++•/

void Post_Error_Message(short error_num, Boolean terminate)

Str255 the_str;

GetindString(the_str, ERR_STR_LIST. error_num):

ParamText(the_str, 11 \p". "\p". "\p"):
StopAlert(ERR_ALRT_ID, NIL);

if (terminate == DO_TERMINATE_ERROR

Exi tToShell () ;

/*I I I I I I I I I I I I I I Respond to click in a check box +++++++++++++•/

void Set_Check_Box(DialogPtr the_dialog, short the_item

Handle item_handle:

507

508 Macintosh Programming Techniques

short item_type:
Rect item_rect:
int old_value:

GetDitem(the_dialog, the_item, &item_type, &item_handle. &item_rect) :

old_value = GetCtlValue((ControlHandle)item_handle):

if (old_value == CONTROL_ON)

SetCtlValue((ControlHandle)item_handle, CONTROL_OFF):
else

SetCtlValue((ControlHandle)item_handle, CONTROL_ON):

/*++I I I I I I I I I I Respond to click in a radio button I I II I I I I I I I I*/

void Set_Radio_Buttons(DialogPtr the_dialog, short new_button_num

Handle item_handle:
short item_type:
Rect item_rect:

GetDitem(the_dialog, Old_Button_Num, &item_type, &item_handle, &item_rect):
SetCtlValue((ControlHandle)item_handle, CONTROL_OFF) :

GetDitem (the_dialog, new_button_num, &item_type, &item_handle, &item_rect): ·
SetCtlValue((ControlHandle)item_handle, CONTROL_ON) :

Old_Button_Num = new_button_num:

/•++++++++ Get user-entered text from a text edit item +++++++•/

void Get_Text_From_Edit(DialogPtr the_dialog, short edit_item,
Str255 the_string)

Handle item_handle;
short item_type;
Rect item_rect:

GetDitem(the_dialog. edit_item, &item_type, &item_handle. &item_rect) ;
GetIText(item_handle, the_string):

Chapter 9: Memory Management

lnnerViewll.c
/*I I I I I I I I I!++*/
/*++*/

/* File InnerViewII.c */
/* Purpose: Bulk of the InnerViewII program. Use a modeless */
/* dialog that allows the user to choice between */

/* viewing Mac hardware or software features, then */
/* display the results in a window. */
/*++•/

/*I I I I I I I I I I I l++++I I I I I I I I I I I I I I I l+++++++++++++++++I I II I I I I I I I I I*/

/*+++++++++++++++++++++ Include Files +++++++++++++I I I I I I I I I*/

//include "Defines.h"
{/include 11Globals.h 11

I/include "Initialize.h"
//include "Utilities.h"
#include (GestaltEqu.h)

/•+++++++++++++++++++ Function prototypes +++++++++I I I I I I I I I*/

short Get_Min_Pixel_Depth(void) ;

short Get_Pixel_Depth(GDHandle) ;

void Handle_One_Event(void) ;

Boolean Handle_Dialog_Event(void) ;

void Get_Dialog_Info(DialogPtr the_dialog) ;

void Enable_Disable_Menu_Items(void) ;

void Handle_Keystroke(void);
void Handle_Mouse_Down(void):

void Handle_Menu_Choice(long):

void Handle_Apple_Choice(short):

void Handle_File_Choice(short) :

void Handle_Edit_Choice(short) ;

void Handle_Update(void):

void Update_IV_Window(void):

void Get_Hardware_Information(void):

void Display_Hardware_Information(void) ;

void Get_Software_Information(void):

void Display_Software_Information(void) :

void Draw_Owner_Information(void) :

void Draw_Mac_Picture(void):

void Draw_System_Info_Headings(void) :

509

510 Macintosh Programming Techniques

/*I 1111 I I I I I~+++++++++++ main listing ++++++++++++++++++++++++*/

void main(void)

I
MaxApplZone():

MoreMasters();

MoreMasters():

MoreMasters():

MoreMasters();

Initialize_Toolbox():
Check_System():

Reserve_Window_Memory():

Initialize_Variables(};
Set_Up_Menu_Bar();

Min_Pixel_Depth = Get_Min_Pixel_Depth():

Open_InnerView_Window():

Open_InnerView_Dialog():

UnloadSeg(Initialize_Toolbox) :

while (All_Done == FALSE

I

Handle_One_Event():

UnloadSeg(Set_Check_Box):

/*+++++++++ Find pixel depth of lowest color monitor I I I I I I I 1+•/

short Get_Min_Pixel_Depth(void

GDHandle current_device:
short pixel_depth:

short min_depth:

min_depth = PIXEL_DEPTH_MAX_COLOR:

current_device = GetDeviceList():
while (current_device != NIL)

pixel_depth = Get_Pixel_Depth(current_device);
if (pixel_depth < min_depth)

min_depth = pixel_depth;

Chapter 9: Memory Management

current_device = GetNextDevice{ current_device }:

return min_depth:

/*I I I I I I I I I I I I I I Get pixel depth of one monitor ++++++++++++++•/

short Get_Pixel_Depth{ GDHandle the_device }

PixMapHandle screenPMapH:
short pixel_depth:

screenPMapH = { **the_device }.gdPMap:
pixel_depth = { **screenPMapH }.pixelSize:
return pixel_depth :

/*II I II 11111111111111 Handle a single event II 1111111 I I I I I I Ill*/

void Handle_One_Event(void }
(

Boolean event_was_dialog = FALSE:

if (Multifinder_Present == TRUE }
WaitNextEvent{ everyEvent, &The_Event, SLEEP_TICKS, MOUSE_REGION):

else

SystemTask{}:
GetNextEvent(everyEvent. &The_Event):

event_was_dialog = Handle_Dialog_Event():

if (event_was_dialog == FALSE
(

switch (The_Event.what

case activateEvt:
Enable_Disable_Menu_Items{):

case keyDown:
Handle_Keystroke():
break:

511

512 Macintosh Programming Techniques

case mouseDown:
Handle_Mouse_Down():
break:

case updateEvt:
if (Color_QD_Present """" TRUE

Min_Pixel_Depth = Get_Min_Pixel_Depth():
Handle_Update():

break:

/*I I I I I I I I I I I I I I I Handle a dialog-related event I I I I I I II I I I I+++*/

Boolean Handle_Dialog_Event(void)
{

Boolean event_was_dlog Q FALSE:
DialogPtr the_dialog:
short
short
Str255

the_item:
alert_item:
the_str:

if (FrontWindow() != NIL

I
if (IsDialogEvent(&The_Event
(

if (DialogSelect(&The_Event, &the_dialog, &the_item))

I
switch (the_item)
(

case OK_BUTTON_DITL_ITEM:
Get_Dialog_Info(the_dialog);
HideWindow(IV_WindoXw_Ptr) :
if (Display_Hardware_Flag mQ TRUE

GetlndString(the_str, WIND_TITLE_STR_LIST, WIND_HARDWARE_TITLE);
else

GetlndString(the_str. WIND_TITLE_STR_LIST. WIND_SOFTWARE_TITLE):
SetWTitle(IV_Window_Ptr, the_str):
ShowWindow(IV_Window_Ptr);
SelectWindow(IV_Window_Ptr):
break:

Chapter 9: Memory Management

case CHECK_DITL_ITEM:
Set_Check_Box(the_dialog, the_item):

break:

case HARDWARE_DITL_ITEM:
Set_Radio_Buttons(the_dialog, the_item):
Display_Hardware_Flag = TRUE:

break:

case SOFTWARE_DITL_ITEM:
Set_Radio_Buttons(the_dialog, the_item):
Display_Hardware_Flag c FALSE:

break:

event_was_dlog = TRUE:

return (event_was_dlog);

/*+++++ Adjust Edit menu in response to activate event +++++++*/

void Enable_Disable_Menu_Items(void

if (FrontWindow() == IV_Dialog_Ptr)
Enableitem(Edit_Menu, ENTIRE_MENU);

else
Disable!tem(Edit_Menu, ENTIRE_MENU):

DrawMenuBar();

I. I Handle a keystroke I. I

void Handle_Keystroke(void)
(

short
long

chr;
menu_choice:

chr Q The_Event.message & charCodeMask;

if ((The_Event.modifiers & cmdKey) t= 0

513

514 Macintosh Programming Techniques

if The_Event.what !D autoKey)
{

menu_choice ~ MenuKey(chr):
Handle_Menu_Choice(menu_choice }:

/*II I 11111111 Handle a click of the mouse button I I I I I I I I I I I II*/

void Handle_Mouse_Down(void }

WindowPtr
short
long

the_window:
the_part:
menu_choice:

the_part = FindWindow(The_Event.where, &the_window):

switch (the_part)
{

case inMenuBar:
menu_choice = MenuSelect(The_Event.where):
Handle_Menu_Choice(menu_choice):

break:

case inSysWindow:
SystemClick(&The_Event, the_window):

break:

case inDrag:
DragWindow(the_window. The_Event.where, &Drag_Rect }:
break:

case inGoAway:
if (TrackGoAway(the_window, The_Event.where))

HideWindow(the_window }:
break:

case inContent:
SelectWindow(the_window }:
break:

Chapter 9: Memory Management

/*++++++++++++++++ Handle a click on a menu ++++++++++++++++++•/

void Handle_Menu_Choice(long menu_choice)

int the_menu:
int the_menu_item:

if menu_choice != 0

the_menu = HiWord(menu_choice):
the_menu_item = LoWord(menu_choice):

switch (the_menu)

case APPLE_MENU_ID
Handle_Apple_Choice(the_menu_item):

break:

case FILE_MENU_ID
Handle_File_Choice(the_menu_item) ;

break:

case EDIT_MENU_ID:
Handle_Edit_Choice(the_menu_item):

break:

Hili teMenu (0) :

/•+++++++++++ Handle a click of in the Apple menu ++++++++++++•/

void Handle_Apple_Choice(short the_item

Str255 desk_acc_name:
int desk_acc_number:

switch (the_item)

case ABOUT_ITEM :
NoteAlert(ABOUT_ALRT_ID, NIL);

break:

515

516 Macintosh Programming Techniques

default :
Get!tem(Apple_Menu, the_item, desk_acc_name):
desk_acc_number Q OpenDeskAcc(desk_acc_name):

break;

/*II I I II I I I I I I I Handle a click in the File menu II I I I II I I II I II*/

void Handle_File_Choice(short the_item

switch (the_item

case NEW_ITEM :

case TO_FRONT_ITEM
ShowWindow(IV_Dialog_Ptr);
SelectWindow(IV_Dialog_Ptr) ;

break:

case QUIT_ITEM
All_Done = TRUE;
break;

/•+++++++++++++ Handle a click in the Edit menu ++++++++++++++•/

void Handle_Edit_Choice(short the_item

switch (the_item)

I
case CUT_ITEM :

DlgCut (IV_Dialog_Ptr);

break;

case COPY_ITEM :
DlgCopy (IV_Dialog_Ptr);
break;

case PASTE_ITEM
DlgPaste (IV_Dialog_Ptr):

break:

Chapter 9: Memory Management

/*I I I I I I I I I I I I I I I I I I I Handle an update event I I I I I I I I I I I I I I I I I*/

void Handle_Update(void
(

WindowPtr the_window:

the_window = (WindowPtr)The_Event.message:

if (the_window == IV_Window_Ptr
Update_IV_Window{):

/•1 I I I I I I I I++++++ Update the InnerView window ++++++++++++++++•/

void Update_IV_Window(void)

GrafPtr old_port:
WindowPtr the_window:

GetPort(&old_port):
SetPort(IV_Window_Ptr):

TextFont(systemFont):
TextSize(12):

BeginUpdate(IV_Window_Ptr):

Draw_Mac_Picture():
Draw_Owner_Information():
Draw_System_Info_Headings():

if (Display_Hardware_Flag =- TRUE
(

Get_Hardware_Information():
Display_Hardware_Information():

else

Get_Software_Information():
Display_Software_Information():

517

518 Macintosh Programming Techniques

EndUpdate(IV_Window_Ptr):

SetPort(old_port);

/*+++++++++++ Get software info about user's machine +++++++++•/

void Get_Hardware_Information(void)

OSErr err:
long response:

Boolean failed = FALSE:

err= Gestalt(gestaltProcessorType. &response);
if (err == noErr)

Mac_CPU = response;

else

Mac_CPU = GESTALT_ERR_TYPE:
failed = TRUE;

err= Gestalt(gestaltFPUType, &response):
if (err == noErr)

Mac_FPU = response:
else

Mac_FPU = GESTALT_ERR_TYPE:

failed = TRUE:

err= Gestalt(gestaltPhysicalRAMSize, &response):
if (err == noErr)

Mac_RAM_Str_Error = FALSE:
NumToString(response, Mac_RAM_Str):

else

Mac_RAM_Str_Error TRUE;
failed = TRUE:

Chapter 9: Memory Management

if (failed c= TRUE)
Post_Error_Message(ERR_CALL_TO_GESTALT_FAIL. DONT_TERMINATE_ERROR):

/•111 I I II I Display hardware info about user's machine 11111I11•/

void Display_Hardware_Information(void)
{

Str255 the_str;
short the_list:
short the_index:

switch Mac_CPU)

case gestalt68000:
the_index = 1:

break:
case gestalt68010:

the_index = 2:
break:

case gestalt68020:
the_index = 3;
break:

case gestalt68030:
the_index = 4:
break;

case gestalt68040:
the_index = 5:

break:
default:

the_index = 6:
break;

the_list = CPU_TYPE_STR_LIST:
GetindString(the_str, the_list. the_index);
MoveTo(RESULT_X, HEADING_Y + LINE_HEIGHT);

Drawstring(the_str):

switch (Mac_FPU)
(

case gestaltNoFPU:
the_index = 1;

break:

519

520 Macintosh Programming Techniques

case gestalt68881:
the_index = 2:
break:

case gestalt68882:
the_index ca 3:

break:
case gestalt68040FPU:

the_index = 4;

break:
default:

the_index = S;
break:

the_list = FPU_TYPE_STR_LIST:
GetlndString(the_str, the_list, the_index):
MoveTo(RESULT_X, HEADING_Y + (2 • LINE_HEIGHT)):
Drawstring(the_str):

if (Mac_RAM_Str_Error """" TRUE)
GetlndString(Mac_RAM_Str. RAM_STR_LIST, 1):

MoveTo(RESULT_X, HEADING_Y + (3 • LINE_HEIGHT)):
Drawstring(Mac_RAM_Str):

/•1 I I I I I I I I I I Get software info about user's machine I I I I I I I I 1•/

void Get_Software_Information(void)

OSErr err;
long response:
short digit:
long temp:
short i:
Boolean failed = FALSE;

err= Gestalt(gestaltSystemVersion, &response):
if (err == noErr)

Mac_RAM_Str_Error = FALSE:
for (i=l: i <= 3: i++
(

temp "" response:
if(i=""l)

digit = (temp &= OxOFOO) I OxOlOO:

Chapter 9: Memory Management

else if (i == 2)
digit = (temp &= OxOOFO

else
OxOOlO:

digit= (temp &= OxOOOF) I OxOOOl:
digit += ASCII_ZERO:
Mac_Sys_Str[i] = digit:

Mac_Sys_Str[O] = 3:

else

Mac_RAM_Str_Error = TRUE:

failed = TRUE:

err= Gestalt(gestaltQuickdrawVersion, &response):
if (err == noErr)

Mac_Has_Color_QD = response:
Mac_QD_Version = response:

else

Mac_Has_Color_QD = GESTALT_ERR_TYPE:
Mac_QD_Version = GESTALT_ERR_TYPE:
failed = TRUE:

if (failed == TRUE)
Post_Error_Message(ERR_CALL_TO_GESTALT_FAIL, DONT_TERMINATE_ERROR):

/*I I 1111 II Display software info about user's machine ++++++++*/

void Display_Software_Information(void)
{

Str255 the_str;
short the_list:
short the_index:

if (Mac_Sys_Str_Error == TRUE)
Get!ndString(Mac_Sys_Str, SYSTEM_STR_LIST, 1):

MoveTo(RESULT_X, HEADING_Y + LINE_HEIGHT):
Drawstring(Mac_Sys_Str) :

521

522 Macintosh Programming Techniques

if (Mac_Has_Color_QD ~ GESTALT_ERR_TYPE

the_index = 3:
else

if (Mac_Has_Color_QD == gestaltOriginalQD)
the_index"" 1:

else
the_index"" 2:

the_list = COLOR_QUICKDRAW_STR_LIST:
GetindString(the_str, the_list, the_index):
MoveTo(RESULT_X, HEADING_Y + (2 * LINE_HEIGHT)):
DrawString(the_str):

switch (Mac_QD_Version

case gestaltOriginalQD:
the_index"' 1:
break:

case gestalt8BitQD:
the_index = 2:

break:
case gestalt32BitQD:

the_index = 3;

break:
case gestalt32BitQD11:

the_index = 4:
break:

case gestalt32BitQD12:
the_index"" 5:
break:

case gestalt32BitQD13:
the_index "" 6:
break:

default:
the_index = 7:
break:

the_list = QUICKDRAW_VER_STR_LIST;
GetindString(the_str, the_list, the_index):
MoveTo(RESULT_X, HEADING_Y + (3 * LINE_HEIGHT) }:
Drawstring(the_str):

Chapter 9: Memory Management

/*+++++I I I I I I I!++++++++++++++++++++! I I I I I I!+++++++++++++++++++++++++++++++•/

void Draw_Owner_Information(void)

Str255 the_str;

GetindString(the_str, OWNER_INFO_STR_LIST, OWNER_TITLE) ;

MoveTo(HEADING_X, OWNER_Y);

Drawstring(the_str) :

MoveTo(RESULT_X, OWNER_Y);

if (Print_Name == TRUE)
Drawstring(Name_Str) :

else

GetindString(the_str, OWNER_INFO_STR_LIST, OWNER_NOT_AVAILABLE);

Drawstring(the_str);

/•+++++++++++++ Draw a PICT to the results window ++++++++++++•/

void Draw_Mac_Picture(void

GrafPtr old_port;

PicHandle the_pict;

Rect pict_rect:

short pict_wd, pict_ht;

short pict_id:

GetPort(&old_port) :

SetPort(IV_Window_Ptr) :

if (Min_Pixel_Depth > PIXEL_DEPTH_BW
pict_id = MAC_PICT_COLOR_ID:

else
pict_id = MAC_PICT_BW_ID;

the_pict = GetPicture(pict_id):
if (the_pict == NIL)

Post_Error_Message(ERR_PICT_MEM_ALLOCATE_FAIL. DONT_TERMINATE_ERROR):

pict_rect = (••(the_pict)).picFrame;

523

524 Macintosh Programming Techniques

pict_wd = pict_rect.right - pict_rect.left:

pict_ht = pict_rect.bottom - pict_rect.top:
SetRect (&pict_rect, PICT_L, PICT_T, PICT_L + pict_wd, PICT_T + pict_ht) :

DrawPicture(the_pict, &pict_rect) :

SetPort(old_port) :

/•++++++++++++ Draw headings to the results window +++++++++++•/

void Draw_System_Info_Headings(void)
(

short index:

short headings:

short str_list_id:

Str255 the_str:

if (Display_Hardware_Flag == TRUE
(

headings = NUM_HARDWARE_HEADINGS;

str_list_id = HARDWARE_TITLES_STR_LIST:

else

headings = NUM_SOFTWARE_HEADINGS:

str_list_id = SOFTWARE_TITLES_STR_LIST;

for (index= I: index<= headings: index++

GetindString(the_str. str_list_id, index):
MoveTo(HEADING_X, HEADING_Y + (index • LINE_HEIGHT)) :
Drawstring(the_str) :

/ • I I I I I I I I+++++ I I I I I I I I I I I I I I I I I I ++++++++++++I I I I I I I I I +I I I I I I I I ++++I I I I I I 1 I • /

void Get_Dialog_Info(DialogPtr the_dialog)

Handle item_handle;
short item_type:

Rect item_rect;
int cntl_value;

Chapter 9: Memory Management 5 2 5

Get_Text_From_Edit(the_dialog, NAME_DITL_ITEM, Name_Str) ;

GetDitem(the_dialog. CHECK_DITL_ITEM. &item_type. &item_handle, &item_rect) ;

cntl_value = GetCtlValue((ControlHandle)item_handle) ;

if (cntl_value == CONTROL_ON)

Print_Name = TRUE;

else

Print_Name = FALSE:

Stepping through the header files

The InnerViewII program is the culmination of nine chapters, so you've
seen much of the code before. Let's spend most of the next several pages
on things that were covered in this chapter, and things done a little dif­
ferently than in the past.

Defines.h

From the preceding eight chapters you have a pretty good idea of what
many of the #defines represent. I'll take the liberty of summarizing
things here.

The first two dozen #define statements all involve 'STR#' resources.
Each of the eleven 'STR#' lists has a separate #define. I ended the name
of each with "_STR_LIST" for consistency. I created constants for some
of the string entries in a few of the lists.

IV_DLOG_ID is the ID of the 'DLOG' resource for the information dia­
log box. Each of the five enabled items in the dialog each has its own
#define. To center the dialog box, you supply the dialog width and height
to have the contents-DLOG_WIDTH and DLOG_HEIGHT.

5 2 6 Macintosh Programming Techniques

The results display window has a 'WIND' ID of IV_ WIND _ID. The dis­
play window, like the dialog box, has a #define for width and height­
WJND _ WJDTH and WIND_HEIGHT.

The About InnerViewII 'ALRT' has an ID of ABOUT_ALRT_ID. The
'ALRT' used to display error messages has an ID of ERR_ALRT _ID.

There are 11 #defines for the menu bar. The menu bar's 'MBAR' and
each of the three 'MENU' resources have their own constants. Each item
within a menu has a #define for the constant.

The two 'PICT' resources have #defines-MAC_PICT _BW _ID for the
monochrome picture, MAC_PICT_COLOR_ID for the color version.

The host of "standard" #defines (those I've been using in every program)
are present here. I've added two constants to signal the error alert so that
it knows whether or not to terminate the program. These constants are
DO_TERMINATE_ERROR and DONT_TERMINATE_ERROR.

There are nine #defines for positioning text in the display window. I like
to keep these pixel values in just one spot so that if I want to rearrange
things the work will be minimal. HEADING_X and HEADING_Y are
examples of this type of constant.

Glo&als.h

InnerViewll keeps all of the global variables in Globals.h. Like the
#defines, you've seen many of these before. Here's a look at the new
globals.

Both the dialog box and the window have memory reserve set aside for them
early in the program. Info_Dialog_Storage and Display_ Window _Storage are
the pointers to these areas.

The results of the six machine features that InnerViewII checks for are
kept in a global variable. Each begins with "Mac_".

Chapter 9: Memory Management 5 2 7

lnitialize.h and Utilities.h
Initialize.h makes the functions in Initialize.c that are known to other
files. Any file that uses one or more functions found in Initialize.c will
use Initialize.h in a #include directive. The same applies to functions
found in Util.ities.c; they're made public by Util.ities.h

Stepping through initialize.c
Each routine in Initialize.c is a one-time-only routine. Once called, it
will never be called again. You'll see the significance of removing these
routines from the main source file, InnerViewII.c. as you step through
that file.

Checking the system

Check_System() was developed in Chapter 8. Always make a few stan­
dard checks to verify that your program is capable of running on the
machine that started it. lnnerViewll relies heavily on information
obtained through calls to Gestalt(). So you have to make sure the Mac
has the Gestalt trap.

If any of the checks fail, Check_System() calls the program's error han­
dling routine Post_Error_Message().

void Check_System(void)
(

Boolean gestalt_present:
SysEnvRec mac_info;

SysEnvirons(curSysEnvVers, &mac_info);

if (mac_info.machineType < envMacII)
Post_Error_Message(ERR_ROM_TOO_OLD, DO_TERMINATE_ERROR):

if (mac_info.systemVersion < Ox0604)
Post_Error_Message(ERR_SYSTEM_TOO_OLD. DO_TERMINATE_ERROR);

gestalt_present = (NGetTrapAddress(_Gestalt. OSTrap) t=

NGetTrapAddress(_Unimplemented, OSTrap)) ;
if (gestalt_present == FALSE)

5 2 8 Macintosh Programming Techniques

Post_Error_Message(ERR_NO_GESTALT, DO_TERMINATE_ERROR):

Reserving memory

This chapter suggested that you reserve memory for windows. You can
do the same for dialogs. Reserve_Memory() does just that. When you get
to InnerViewII.c you'll see that this function is called early so that the
memory that is reserved low in the heap. This avoids fragmentation.

void Reserve_Window_Memory(void)

Info_Dialog_Storage = NewPtr(sizeof DialogRecord) :

Display_Window_Storage = NewPtr(sizeof WindowRecord):

Initializing variables

The routine Initialize_Vaiiables() gives some program globals their ini­
tial values, based on the Macintosh InnerViewll is running on.
Old_Button_Num keeps track of which of two radio buttons is set in the
information dialog box. When the dialog box is opened you'll want one of
the two buttons to go on. Since you're telling the Mac to turn on the
hardware button, set the global flag to signal that this is the case.

void Initialize_Variables(void)

OSErr err:

long response:

Multifinder_Present = (NGetTrapAddress(_WaitNextEvent. ToolTrap) !=

NGetTrapAddress(_Unirnplernented, ToolTrap)):

err= Gestalt(gestaltQuickdrawVersion, &response):

if (err == noErr)

if (response == gestaltOriginalQD)

Color_QD_Present = FALSE:

else

Color_QD_Present = TRUE:

Chapter 9: Memory Management 5 2 9

Post_Error_Message(ERR_CALL_TO_GESTALT_FAIL, DO_TERMINATE_ERROR):

Set_Window_Drag_Boundaries();
Set_Screen_Center():

Old_Button_Num = HARDWARE_DITL_ITEM:
Display_Hardware_Flag = TRUE:

Opening the window and dialog box

The calls to open the window and dialog (GetNewWindow() and
GetNewDialog()) pass the global storage pointers set earlier in the pro­
gram. The WindowRecord and DialogRecord that hold the information
for each are now safely tucked in low memory.

lnnerViewII opens the window and dialog immediately, but it doesn't
show them. Both the 'DLOG' and 'WIND' resources are marked as invis­
ible. A call to ShowWindow() to make either visible. Why open them
without displaying them? Here's the story.

lnnerViewll manages its window and dialog boxes in a manner different
from those managed by other programs you've seen here. lnnerViewll
opens both and leaves them open for the duration of the program. To dis­
play either one the program uses ShowWindow(). To close one, it uses
HideWindow(). Unlike most programs that use the Toolbox routine
CloseWindow(), lnnerViewll never really gets rid of either the window
or dialog; it simply appears that way to the user. When the user selects
the New command you need only call ShowWindow() to make the dia­
log box visible again: Please don't call GetNewDialog().

This programs window-handling technique enables only one dialog box
and one window. If the program's New command opened a new window
each time, (allowing multiple windows on the screen) lnnerViewll would
quickly lose track of which window was which. With lnnerViewll, you
can safely assume that any event that involves an application window
also involves the display results window. I keep a global pointer to it and
use that for the duration of the program. The same applies to the one and
only dialog box in the program.

void Open_InnerView_Window(void)

530 Macintosh Programming Techniques

Str255 the_str;
short left, top;

if (Color_QD_Present && Min_Pixel_Depth) PIXEL_DEPTH_BW)
IV_Window_Ptr = GetNewCWindow(IV_WIND_ID. Display_Window_Storage, IN_FRONT);

else
IV_Window_Ptr a GetNewWindow(IV_WIND_ID, Display_Window_Storage, IN_FRONT);

if (IV_Window_Ptr == NIL)
Post_Error_Message(ERR_WIND_MEM_ALLOCATE_FAIL, DO_TERMINATE_ERROR);

left = Screen_Center.h - (WIND_WIDTH /2) ;
top = Screen_Center.v - (WIND_HEIGHT/2) ;
MoveWindow(IV_Window_Ptr, left, top, TRUE);

void Open_InnerView_Dialog(void
(

short
Str255

left, top:
the_str;

IV_Dialog_Ptr = GetNewDialog(IV_DLOG_ID, Info_Dialog_Storage, IN_FRONT):

if (IV_Dialog_Ptr == NIL)
Post_Error_Message(ERR_DIALOG_MEM_ALLOCATE_FAIL, DO_TERMINATE_ERROR);

GetindString(the_str, WIND_TITLE_STR_LIST, DLOG_INFO_TITLE);
SetWTitle(IV_Dialog_Ptr, the_str) :

left = Screen_Center.h - (DLOG_WIDTH /2) ;
top = Screen_Center.v - (DLOG_HEIGHT/2) ;

MoveWindow(IV_Dialog_Ptr, left, top. TRUE);

Set_Radio_Buttons(IV_Dialog_Ptr, HARDWARE_DITL_ITEM) ;
Display_Hardware_Flag a TRUE;

Chapter 9: Memory Management 5 31

By the way, don't be alarmed that one of the dialog box
radio buttons is set with a call to Set_Radio_lutton(J,
even though the dialog isn't visible. The fact that the dia·
log is invisible doesn't prevent us from changing item
settings. When the dialog becomes visible the proper
radio button will be set.

Stepping through Utilities.c
The program calls routines that can be called by several functions or that
can be copied and pasted into other programs' "utility functions."
They're grouped together in one convenient place-Utilities. c. This
makes it especially handy for use in other programs. You don't have to
bother copying individual routines; you just copy the entire file!

You've used two of the four routines in other programs. Set_Check_Box() and
Set_Radio_Button() control items in a dialog box. The Get_Text_From_Edit()
function is just a packaging of material covered in Chapter 6. It gets the user­
entered text from an edit text item.

The forth routine is Post_Error_Message(). This routine was covered in
great detail in this chapter.

Stepping through lnnerViewll.c
There's bad news and good news with InnerViewll.c. The bad news is
that InnerViewll.c contains 21 functions. The good news is that only a
handful contain new information. This discussion covers only those rou­
tines that do.

The main() function

The main() function starts out with standard initializations. After that, it
opens, but doesn't display, both the dialog box and the window. That will
come later on.

5 3 2 Macintosh Programming Techniques

InnerViewII uses segmentation. Although InnerViewll doesn't need seg­
mentation because of its small size, I segmented it to try out some of the
techniques discussed in this chapter.

When I discussed the header files I said that there was special signifi­
cance in taking all of the initialization routines out of InnerViewII.c. I
was hinting that it would help you in your use of segmentation. I've
placed all of the one-time-only routines together in one segment­
Segment 3, and I've made sure that any routine that is called more than
once does not appear in Segment 3. After all of the initialization routines
have been called you can unload the segment and know that it will never
be loaded again. That means that the memory the routines would nor­
mally occupy will be free permanently.

Once UnloadSeg() is called in Segment 3, the Memory Manager will
unload it if memory becomes tight. If even one of the routines in
Segment 3 is called more than once, Segment 3 will have to be reloaded
at a later time. Since none of the functions will be called again, the seg­
ment is out of memory for good. Figure 9-51 illustrates this.

void main(void)
(

I
Initialize_Toolbox():
Check_System():
Reserve_Window_Memory():
Initialize_Variables():

Initializations Set_Up_Menu_Bar () :

l
Min_Pixel_Depth = Get_Min_Pixel_Depth();

Open_InnerView_Window():
-------=------Open_InnerView_Dialog () :

0
After this point, no
routine in Segment 3
will be called again.

UnloadSeg(Initialize_Toolbox);

while (All_Done == FALSE
{

Handle_One_Event():
UnloadSeg(Set_Check_Box):

Figure 9-S 1. Initialization routines can be unloaded permanently

Chapter 9: Memory Management 5 3 3

When I covered segmentation, I suggested that you place all calls to
UnloadSeg() at the bottom of your main event loop. The reason I call
UnloadSeg() repeatedly on each segment is because segments may be
shuffling in and out of memory throughout the course of a program's life.
I don't know what's in and what's out, so I play it safe. Segment 3 is the
exception to this. I know that when I'm done with it I'll never use it
again. If it gets unloaded, it will stay unloaded. So a single call to
UnloadSeg() does the trick.

The single call to UnloadSeg() in the event loop looks a little lonely. A
larger application might have 10, 20, or more segments. To keep things
looking clean you might do something like this:

while (All_Done == FALSE

(

Handle_One_Event();

Unload_All_Segments() ;

void Unload_All_ Segments(void)

UnloadSeg(Se~A_Routine_Name) ;

UnloadSeg(Se~B_Routine_Name) ;

UnloadSeg(Se~C_Routine_Name) :

[unload each segment here]

Right now you might be saying, "What is the point of all
this?" I understand. The entire lnnerViewll program is
only 11 K of code; it's extremely unlikely that any of the
segments will have to be unloaded! Additionally,
Segment 3 is less than 800 bytes of code-not exactly a
whopping savings of RAM, even if it were to be
unloaded. But remember, this is technique. I want to
demonstrate how it's done. This same technique applies
to a program that is 500 K in size, with 25 K of initial­
ization code. And truthfully now, would you really want
to step through a more practical example like that?

5 3 4 Macintosh Programming Techniques

void main(void)
{.

MaxApplZone();
MoreMasters();
MoreMasters():
MoreMasters();

MoreMasters();

Initialize_Toolbox():

Check_Systern () ;
Reserve_Window_Mernory();

Initialize_Variables():
Set_Up_Menu_Bar();
Min_Pixel_Depth = Get_Min_Pixel_Depth():

Open_InnerView_Window();
Open_InnerView_Dialog():

UnloadSeg(Initialize_Toolbox) :

while (All_Done == FALSE
{

Handle_One_Event():
UnloadSeg(Set_Check_Box) :

Dimming a menu

InnerViewll allows use of the Edit menu commands in the edit text item
of the modeless dialog box. Whenever that dialog is the frontmost win­
dow, the edit menu is active and available. But if the display results win­
dow is in the forefront, it wouldn't make much sense to have the Edit
menu enabled. There is nothing to edit in the window. This is a realistic
example of when to disable and enable a menu.

InnerViewll handles the situation by simply calling either Enableltem()
or Disableltem() for the Edit menu at the appropriate time. And when is
that? Whenever an activate event occurs. Any time a window or dialog is
activated the program checks to see which one came to the forefront. If
it's the dialog box, it enables the menu. If it's the window, it disables it.
Here's a fragment of the code that handles things:

Chapter 9: Memory Management 5 3 5

void Handle_One_Event(void)
{

[get one event]

if (event_was_dialog =- FALSE
{

switch (The_Event.what

case activateEvt:
Enable_Disable_Menu_Items():

[handle other event types]

void Enable_Disable_Menu_Items(void)
{

if (FrontWindow() == IV_Dialog_Ptr)
Enableitem(Edit_Menu, ENTIRE_MENU):

else
Disableitem(Edit_Menu, ENTIRE_MENU):

DrawMenuBar():

Updating the window

lnnerViewll accepts input from the user by way of a modeless dialog box.
Modal dialogs restrict the user, so use modeless whenever possible. Once
you know the technique for handling them-and you learned from
Chapter 6, the few extra lines of code you need to write will be greatly
appreciated by the user.

The user operates the dialog's radio buttons to signal which machine
parameters he's interested in seeing. When the user clicks the OK but­
ton, the window that displays the results should be cleared. If software
information was displayed and the user now wants to see hardware
information, he doesn't want to see something drawn on top of the old
information.

5 36 Macintosh Programming Techniques

InnerViewll keeps a global WindowPtr variable that points to the win­
dow. After initially calling GetNewWindow(), the program never actually
closes and opens the window, it just hides and shows it. You take advan­
tage of this simple idea when you clear the window.

A click on the OK button, calls HideWindow(). You then set the win­
dow's title to the proper text and call ShowWindow() and
SelectWindow(). The Toolbox routine ShowWindow() does just that; it
shows a window. Once you've made the window visible, you call another
Toolbox routine-SelectWindow(). This function brings the window to
the front and generates an update event. And, as you recall from Chapter
5, an update event is the action that triggers the program to redraw a
window. So by hiding the window and then showing it, you get the same
effect as clearing it and drawing to it. This assumes that you have a
Handle_Update() routine that does the drawing. And of course you do.
But first, here's the part of Handle_Dialog_Event() that plays hide and
seek with the window.

Boolean Handle_Dialog_Event(void)
(

[check for dialog event and respond to it]

switch (the_item)

case OK_BUTTON_DITL_ITEM:
Get_Dialog_Info(the_dialog } :
HideWindow(IV_Window_Ptr):
if (Display_Hardware_Flag c= TRUE)

GetindString(the_str, WIND_TITLE_STR_LIST, WIND_HARDWARE_TITLE):
else

GetindString(the_str. WIND_TITLE_STR_LIST. WIND_SOFTWARE_TITLE):
SetWTitle(IV_Window_Ptr. the_str):
SelectWindow(IV_Window_Ptr):
break:

[handle clicks on other items]

After SelectWindow() generates an update event, Handle_One_Event() is
called and in turn calls Handle_Update(). Since you arrive at this routine
when either the dialog or the window comes to the forefront, you want to

Chapter 9: Memory Management 537

check to make sure it's the window. If it is, you call Update_N_Window()
to draw to the window. Here's Handle_Update():

void Handle_Update(void
{

WindowPtr the_window:

the_window = (WindowPtr)The_Event.message:

if (the_window == IV_Window_Ptr
Update_IV_Window():

Update_IV _Window() examines the Display _Hardware_Flag to deter­
mine whether hardware or software information is to be displayed in the
window. You must have the correct pair of routines to get the informa­
tion and then display it.

void Update_IV_Window(void)
{

GrafPtr old_port:
WindowPtr the_window:

GetPort(&old_port):
SetPort(IV_Window_Ptr) :

TextFont(systemFont):
TextSize(l2):

BeginUpdate(IV_Window_Ptr) :

Draw_l1ac_Picture():
Draw_Owner_Information():
Draw_System_Info_Headings():

if (Display_Hardware_Flag == TRUE
{

Get_Hardware_Information():
Display_Hardware_Information():

else

Get_Software_Information():
Display_Software_Information():

5 3 8 Macintosh Programming Techniques

EndUpdate(IV_Window_Ptr };

SetPort(old_port) ;

A better approach might be to call each of the two rou·
tines that get the information a single time, perhaps in
an initialization routine in Segment 3. Then they
needn't be called each time an update was performed;
the display routines could iust redraw the information
each time. Good thinking!

However ••• Apple's big on Gestalt(}. It's been developed
in such a way that it can, and will be, continually
expanded to allow access to more features of your
Macintosh hardware and system software. What if one
of those features is a check of available free RAM,
which is constantly changing? Or some other parameter
that is dynamic? If this program were to display more
machine features (and if it were a real application, it
would), you might display some of these features that
change "on-the-fly." Now you're ready for thatl

Getting machine information, and error handling
Get_Hardware_Information() uses Gestalt() to get machine information.
Last chapter's InnerView program gave a good example of the powerful
Gestalt() function. This chapter's new InnerViewII uses it in a similar
fashion. Here you use the error-handling routine to verify that the call
worked.

You start out the routine with the initialization of the local Boolean vari­
able failed to false. After each call to Gestalt() you check the result err
for an error. If the call failed, err will have a value other than noErr. If
that happens you set /ailed to true. Here's how one of the three calls to
Gestalt() is handled:

Chapter 9: Memory Management 5 3 9

void Get_Hardware_Information(void)

OSErr err;

long response:
Boolean failed = FALSE;

err = Gestalt(gestaltProcessorType, &response) ;
if (err == noErr)

Mac_CPU = response:
else

Mac_CPU = GESTALT_ERR_TYPE:
failed = TRUE:

When the routine is done, you check to see if failed was set to true. If one
or more of the calls didn't work, failed will equal true. Now it's time to
post an error message:

if (failed == TRUE)
Post_Error_Message(ERR_CALL_TO_GESTALT_FAIL, DONT_TERMINATE_ERROR);

Why wait till the end of the routine to post the message? Why not check
failed after each call? In the unlikely case that all three calls didn't work,
the alert (with the same "gestalt failed" message) would appear three
times. This doesn't give the user much extra information and might lead
him to believe there's some other problem, such as the program hanging
in a loop.

The routine that gets software information, Get_Software_Information()
works in the same way as this routine. How that routine handles the sys­
tem version requires some explanation. I do that next.

Bits, masks, and Str255

One of the Gestalt() calls made in Get_Software_Information() returns
the system version in hexadecimal format. That's OxO, followed by the
version. For example, System 7.1.0 would be returned as Ox0710.
InnerViewII needs to display the hex number as a string. You can't just
call NumToString(), because that routine first converts the hexadecimal
value to decimal, and that's not what you want.

5 4 0 Macintosh Programming Techniques

You need to extract each of the last three hex digits from the number,
make each an individual character, then piece them together into a string
to display. Here's the code that does that:

for (i=l: i <= 3: i++

temp = response:
if(i==l)

digit = (temp &= OxOFOO
else if (i == 2)

digit = temp &= OxOOFO
else

Ox0100;

OxOOlO:

digit= temp&= OxOOOF I OxOOOl:
digit += ASCII_ZERO:

Mac_Sys_Str[i] =digit:

Mac_Sys_Str[O] = 3:

The first step is to extract the last three digits. For that you use the bit­
wise & operator, which operates on a value bit-by-bit. If you use it in
conjunction with a mask, you can pull out a single digit from the hex
number. The first pass through the above for loop looks like this:

temp = response;
if (i = 1)

digit = (temp &= OxOFOO) I OxOlOO:

Here the mask is OxOFOO. When "ANDED" with another hex number,
the only bits that pass through into the result are those that have a 1 in
the bit positions corresponding to the 1 's in the mask. Figure 9-52 shows
what takes place in temp &= OxOFOO. Remember, that's the same as temp
= temp & OxOFOO.

Chapter 9: Memory Management 541

lololololol111 l1lololol1lolololol oxo110

~
lolololol1 !1 !1 !1 lolololololololol oxoFoo

0
lololololol111 l1lolololololololol oxo100

Figure 9-52. Using a mask and the & operator

Figure 9-52 shows that the result of the & operation is a hex number that
has masked out every digit except the 7. The next step is to divide by
OxO 100 to extract the 7. However, you don't want the number 7; you
want the ASCII character for it. This is the step that does that:

digit += ASCII_ZERO:

ASCil_ZERO is defined to be 48. Adding 48 to any digit gives its ASCII
equivalent, as the abbreviated ASCII table in Figure 9-53 shows.

Decimal ASCII

Ox0700/0x0100 = 7 0 48
1 49
2 50
3 51
4 52
5 53
6 ~ 54
7 ~ ss..------

(7 +48)

figure 9-53. Decimal to ASCII conversion

5 4 2 Macintosh Programming Techniques

The final step is to insert the digit into a string. You use the loop counter
as the placeholder:

Mac_Sys_Str[i] = digit;

The Str255 type, which Mac_Sys_Str is declared to be, has the format
shown in Figure 9-54. The first array element is the number of charac­
ters in the string. The remaining elements are the characters themselves.

Str255 my_str

Length
of string

"\pABC":

individual
characters

Figure 9-54. Format of a variable of Str255 type

You know that this system version string will always be three characters
in length. You set the string length with the following line:

Mac_Sys_Str[O] = 3;

Displaying machine information
After each call to Gestalt() in Get_Hardware_Information(), a global
variable was set to keep track of the result of the call. Now, in
Display _Hardware_Information(}, it's time to use the values of those
flags. Here's the technique:

void Display_Hardware_Information(void

Str255 the_s~r:

short the_list;
short the_index;

switch Mac_CPU)

case gestalt68000:
the_index = 1:
break;

case gestalt68010:
the_index = 2:
break;

case gestalt68020:
the_index = 3;

break;

case gestalt68030:
the_index = 4;

break;
case gestalt68040:

the_index = 5:
break;

default:
the_index = 6;
break;

Chapter 9: Memory Management 543

the_list = CPU_TYPE_STR_LIST;

GetindString(the_str, the_list, the_index);
MoveTo(RESULT_X, HEADING_Y + LINE_HEIGHT) ;

Drawstring(the_str) ;

Here you use a switch statement that compares the global variable
Mac_CPU with the various constants that describe the feature you're
looking at. These constants come from the header file GestaltEqu.h.
(Many of them are listed in Appendix C.) Within the switch you set an
index that will be the index into the 'STR#' list holding the text to be
displayed in the window. Figure 9-55 shows what happens to the above
call to GetlndString() when InnerViewII runs on a Macintosh with a
68000CPU.

5 44 Macintosh Programming Techniques

#define CPU_TYPE_STR_LIST 201

Switch (Mac_CPU)

c>
{

case gestalt68000:
the_index = 1 :
break:

case gestalt68010:
the_index = 2:
break:

case gestalt68020:
the_index = 3:
break:

case gestalt68030:
the_index = 4:
break:

case gestalt68040:
the_index = 5:
break:

default:
the_index """ 6:
break:

the_list = CPU_TYPE_STR_LIST:
GetindString(the_str. the _list. the_index): o GetlndString () becomes ...

GetindString(the_str, 201, 1) : I
Figure 9-SS. The parameters to GetlndString(}

What is the string returned to the program by a call to
GetlndString(the_str, 201, 1}? The string "68000". That's the first
string (index= 1) in 'STR#' 201, as shown in Figure 9-56.

InnerViewII also relies on 'STR#' strings to write the heading for the
window in Draw _System_Info_Headings() and to draw the name of the
owner in Draw _Owner_Information().

Chapter 9: Memory Management 545

§0 STR#s from lnnerUiewl 1.11.rsr
~ Size Name

126 366 "Error Messages"
129 51 "W1 ndow T1t1 es"
130 46 "Hardware Head1 ngs"
131 51 "Software Headings"
132 46 "Owner Information"
20 1 44 "CPU Types"
202

§0§ STR# "CPU Types" I 0 = 201

6

The string 68000
L------i

2) *****
The string 68010

figure 9-56. Where the string comes from in a call to GetlndString()

Displaying a picture

You've seen how to display a picture several times in this book. Here, the
difference from previous efforts is that there is no assumption that the
drawing succeeded. If memory is scarce, and the 'PICT' resource holding
the picture is large, a call to DrawPicture{} might fail. You can make a
check for that by examining the PicHandle returned by the call. If the
handle is nil, you call the error-handling routine. This test may be
overkill here, because the 'PICT' is only about 5 K in size. But for large,
color pictures, it is realistic.

the_pict = GetPicture(pict_id):
if (the_pict == NIL)

Post_Error_Message(ERR_PICT_MEM_ALLOCATE_FAIL, DONT_TERMINATE_ERROR):

Sure, I'm proud of the picture of the Mac and the magnifying glass that
I drew up in a paint program. Heck, I've used it in enough examples!
But I'm not so vain that I think the program should cease if my master­
piece isn't displayed! If a call to DrawPicture() fails, the picture won't

5 46 Macintosh Programming Techniques

be displayed. But the program will go on. That's why I pass
Post_Error_Message() a value of DONT_TERMINATE_ERROR. You can
be liberal with the display of error messages. You want to prevent a
frozen Mac, and you want to let the user know he's missing out on some­
thing such as a picture not being displayed. But use your discretion when
deciding if an error is serious enough to warrant a call to Exi.tToShell().

Chapter Summary
Memory management-the allocation, movement, tracking, and remov­
ing of objects in memory-requires some planning on your part.
Familiarity with how the Memory Manager works will aid you in wiit­
ing programs free of memory-related bugs.

Nonrelocatable blocks, which cannot be moved during compaction, are
created through calls to NewPtr(). By reserving a store of memory early
in your program, you can set aside a block low in memory for nonrelo­
catable blocks. A nonrelocatable block that is at the bottom of memory
keeps it from fragmenting your program's application heap.

A master pointer is used every time a relocatable block is created with a
call to NewHandle(). While the block used by the call to NewHandle() is
relocatable, the memory occupied by the master pointer isn't. By calling ,
the Toolbox routine MoreMasters() early in your program you can
reserve a block of master pointers low in memory.

When your program starts up, its heap is set to a small size. The heap
will expand as the program executes. A more efficient use of memory
involves enlarging the heap to its maximum size as your program starts.
A call to the Toolbox routine MaxApplZone() does just that.

The code for a Macintosh program is contained in segments, or parcels,
no larger than 32 K each. By spending time determining a strategy for
segmenting your code, you can make your program's memory usage
more efficient. The Toolbox routine UnloadSeg() marks a segment
purgeable. The routine allows the Memory Manager to remove the seg­
ment from memory if memory becomes tight and the segment is not in
use.

Chapter 9: Memory Management 547

Each program has its own memory partition. You can set that parti­
tion size using a 'SIZE' resource. By not setting an overly-large parti­
tion size, you give your programs users access to more of their com­
puter's RAM. Computer memory is an abstract concept; it is difficult
to determine just how much memory a program requires. Using a util­
ity like Swatch assists you in understanding how your program uses
its allotted partition.

If a call to a Toolbox routine fails, an error occurs. For example, a call
to GetPicture() may attempt to load a 'PICT' resource that is too large
to fit in available memory. You should always examine your code for
potential error conditions and call an error-handling routine in the
event of a failure.

An error-handling routine should display a descriptive message that will
help the user remedy the situation. Additionally, if the error is severe the
program should exit to the Finder rather than risk a crash that will freeze
the user's system.

Macintosh C Data Types

ANSI C data types, such as int, float, and char, all exist in the
1-\Macintosh programming world. But to meet the special GUI needs of
the Macintosh, Apple has created several new data types. These types
allow access to the Toolbox, provide you with a means to create and
work with the graphical user interface, and give you the resource to work
within Apple's memory addressing scheme. Many of these data types are
defined alphabetically in this appendix.

cGralPort
The color version of a Graf Port. See Graf Port.

ControlHandle
The push buttons, radio buttons, and check boxes found in dialog boxes
are controls. To work with them, Toolbox routines use handles to them
called ControlHandles.

549

5 5 0 Macintosh Programming Techniques

Cursor
The data type that represents a 16-by-16 bit image that defines a cursor.
The on-screen cursor is set to the arrow cursor by a call to InitCursor().
To access the other four system-defined cursors, use the constants
iBeamCursor, crossCursor, plusCursor, and watchCursor.

CursHand#e
Cursors are stored as 'CURS' resources and are accessed by Toolbox rcm­
tines that return, and expect as a parameter, the cursor handle
CursHandle.

DialogPtr
A pointer to another Macintosh data type, the DialogRecord. The
DialogRecord holds information about a dialog box. You access this
information via Toolbox calls that require a DialogPtr rather than the
DialogRecord itself. Many Toolbox routines that work with WindowPtrs
also work with a DialogPtr as the parameter.

Dialog Record
A structure that holds information about a single dialog box-descriptive
information needed by the Dialog Manager. You seldom need to work
directly with a DialogRecord. Instead, you access information indirectly
through Toolbox routines that use a DialogPtr, a pointer to a
DialogRecord.

EventRecord
EventRecord holds information about a single event. An EventRecord is
created for every event that occurs. These EventRecords are held in an
event queue. Unlike some Macintosh data types, that you deal with
through the use of pointers or handles, you work with events directly
through the record itself.

grafPort
A graphics port is a drawing environment that defines how text and shapes
will be drawn. So that it can display unique text or shape styles, each win­
dow has its own graphics port. A graf Port is the Macintosh data type that

Appendix A: Macintosh C Data Types 5 5 1

holds this information about a graphics port. To access information within a
graphics port you use a pointer to a graf Port, rather than the graf Port itself.

grafPtr
A pointer to a graf Port. A graf Port is the data structure that holds infor­
mation about a graphics port. See graf Port.

Handle
A pointer to a master pointer. A master pointer keeps track of the loca­
tion of a relocatable block in the application's heap. Some Toolbox func­
tions return a Handle to your program. To make use of this generic
Handle in future Toolbox calls, you may have to typecast it to a specific
type of handle, such as a ControlHandle.

MenuHandle
A handle to a menu record. A menu record holds information about a
single menu-descriptive information needed by the Menu Manager.
Toolbox routines that work with menus use MenuHandles rather than
the menu record itself.

PatHandle
A data type. Patterns can be created and stored in 'PAT' resources.
Toolbox routines that work with Patterns obtained &om a resource file
use the PatHandle data type.

Pattern
An 8-by-8 bit image that defines a design that can be repeated to fill an
area of any given size. There are five system Patterns defined by the con­
stants white, ltGray, gray, dkGray, and black.

Pie Handle
A handle type. Pictures, or 'PICT' resource types, are accessed through a
handle of type PicHandle. Toolbox routines that work with pictures will
expect a PicHandle as a parameter.

5 5 2 Macintosh Programming Techniques

Point
Any pixel on the Macintosh screen can be referred to by a pair of coordi­
nates. That data type Point holds one such pair.

Rect
A rectangle. It is the Macintosh data type that is used as a basis for draw­
ing rectangles, ovals, and round rectangles. The coordinates that make up
a rectangle's upper-left comer and the two that make up its lower-right
comer define a rectangle. The Macintosh data type that holds this infor­
mation is the Rect.

WindowPtr
A pointer to another Macintosh data type, the WindowRecord. The
WindowRecord holds information about a window. You'll access this
information via Toolbox calls that require a WindowPtr rather than the
WindowRecord itself.

WindowRecord
A structure that holds information about a single window-descriptive
information needed by the Window Manager. You seldom need to work
directly with a WindowRecord. Instead, you access information indirect­
ly through Toolbox routines that use a WindowPtr, a pointer to a
Window Record.

' .·.·· . / ·
' /: ···

. . , .. .
k

Determining a Trap's Type

Chapter 8, The Varying Mac, thoroughly covered the concept of traps.
For you trap fanatics, here's a little more.

If your program is rWllling on a computer that has System 6.0.4 or later,
you can use the Gestalt() function to determine the availability of a trap
quickly and easily. The Gestalt() routine is discussed in Chapter 8. If
you ' re on a machine that is pre-1989, you have to use the
NGetTrapAddress() function in place of Gestalt().

If you're using NGetTrapAddress() , and you know the trap you are look­
ing for is a Toolbox trap (as opposed to an Operating System trap,) you
can simply make the comparison to the Unimplemented trap. Here's the
example used in Chapter 8:

Boolean Color_Wind_Available ;

Color_Wind_Avai lable = (NGetTrapAddress(_ Unimplemented , ToolTrap)
!= NGetTrapAddress(_GetNewCWindow , ToolTrap)) ;

553

5 5 4 Macintosh Programming Techniques

If, however, you're writing a program that is to run on a pre-1989
Macintosh, and you don't know the type of the trap, Tool'Iiap or OS'Trap,
you'll need to include extra code in your program. Below is the necessary
code. The routine 'Iiap_ls_Present() and the two routines that it calls are
summarized here.

Get_ Trap_ Type(}
The setting of one bit of a trap-bit I I-determines whether the trap is
a Toolbox trap (Tool'Iiap) or an Operating System trap (OS'Iiap). This
routine performs an&. operation on this one bit to determine if it is set
or not.

Num_ Tool_ Traps(}
Macintosh models may have one of two different sized trap tables. This
routine uses the trap for the lnitGraf() routine, present on all Macs, to
determine if the Toolbox has 512 (Ox200) Toolbox traps or 1024 (Ox400)
Toolbox traps.

Trap_ls_Present(J
This routine makes use of the Get_Trap_Type() and Num_Tool_Traps(}
routines and the Toolbox routine NGet'TrapAddress() to determine if the
trap you've passed in is present.

Now, the code. For in-depth trap-checking, copy the following three rou­
tines to your source code-even if you don't fully understand them!
Then, to check for the availability of a trap, simply call
Trap_Is_Present(), passing in the trap to check for. Following the routines
is an example of a call to Trap_ls_Present().

Boolean Trap_Is_Present(short):

TrapType Get_Trap_Type(short):

short Num_Tool_Traps(void):

Boolean Trap_Is_Present(short the_trap)

TrapType the_type;

Boolean present:

Appendix B: Determining a Trap's Type

the_type = Get_Trap_Type(the_trap);

if ((the_type == ToolType) &&
((the_trap &= Ox07FF) >= Num_Tool_Traps()))

present FALSE:

else
present = (NGetTrapAddress(_Unimplemented, ToolTrap !=

NGetTrapAddress(the_trap, the_type)) :

return present;

TrapType Get_Trap_Type(short the_trap
(

if ((the_trap & Ox0800) == 0)

return (OSTrap):
else

return ToolTrap):

short Num_Tool_Traps(void)

if (NGetTrapAddress(OxA86E, ToolTrap)
NGetTrapAddress(OxAA6E, ToolTrap))

return (Ox200):

else
return Ox400) :

Here's an example that checks for the presence of WaitNextEvent(). If its
not available, an alert will be posted.

#include <Traps.h>

#define
//define

WNE_ERR_ALRT
NIL_PTR

128
OL

if (Trap_Is_Present(_WaitNextEvent) ==FALSE)
Alert(WNE_ERR_ALRT. NIL_PTR):

555

Gestalt Definitions

Chapter 8 gave several examples for obtaining information about a
Macintosh using the Gestalt(} function. Here are several more selec­

tor codes that yield system software and hardware information. If you
plan on expanding Chapter 9's InnerViewll example program into a more
useful utility, you'll want to add Gestalt() calls that include many of
these selector codes.

Use any of the selector codes as shown in Chapter 8. Here's an example:

#include <GestaltEqu.h)

OSErr err :

long response :

err= Gestalt(gestal tQuickdrawVers i on . &response) :

if ((err~ noErr) && (response ~ gesta l tOriginalQD))

DrawSt r ing(" \pYou have the original version of QuickDraw . ") :

557

5 5 8 Macintosh Programming Techniques

Addressing Mode Attributes

Selector code
gestaltAddressingModeAttr

Response parameter
gestalt32BitAddressing = 0 /* using 32-bit addressing mode */
gestalt32BitSysZone

gestalt32BitCapable

= 1 /* 32-bit compatible system zone */
= 2 /* 32-bit capable machine */

Apple Events Attributes

Selector code
gestaltAppleEventsAttr

Response parameter
gestaltAppleEventsPresent = 0 /* true if Apple Events present */

AppleTalk Version

Selector code
gestaltAppleTalkVersion

Response parameter
Returns version number of installed AppleTalk driver.

A/UX Version

Selector code
gestaltAUXVersion

Response parameter
Returns version number of A/UX if it is currently executing.

Appendix C: Gestalt Definitions 5 5 9

Easy Access Attributes

Selector code
gestaltEasyAccessAttr

Response parameter
gestaltEasyAccessOff = 0
gestaltEasyAccessOn - 1
gestaltEasyAccessSticky = 2
gestaltEasyAccessLocked = 3
Font Manager Attributes

Selector code
gestaltFontMgrAttr

Response parameter

/* Easy Access present. but off */

/* Easy Access On */

/* Easy Access Sticky */

/* Easy Access Locked */

gestaltOutlineFonts = 0 /* true if Outline Fonts supported */

Floating-Point Unit Type

Selector code
gestaltFPUType

Response parameter
gestaltNoFPU = 0
gestalt68881 = 1
gestalt68882 = 2
gestalt68040FPU = 3

Gestalt Version

Selector code
gestaltVersion

/* no FPU •/
/* 68881 FPU •/
/* 68882 FPU •/
/* 68040 built-in FPU •/

5 60 Macintosh Programming Techniques

Response parameter
Returns the current version. As of this writing the current version is 1,
returned as $0001.

Hardware Attributes

Selector code
gestaltHardwareAttr

Response parameter
gestaltHasVIAl = 0 /•
gestaltHasVIA2 = 1 /•
gestaltHasASC = 3 /•
gestaltHasSCC = 4 /•
gestaltHasSCSI = 7 /•

gestaltHasSoftPowerOff = 19 /*
gestaltHasSCSI961 = 21 /•
gestaltHasSCSI962 = 22 /*
gestaltHasUniversalROM = 24 /•

Help Manager Attributes

Selector code
gestaltHelpMgrAttr

Response parameter

VIAl exists •/
VIA2 exists •/
Apple Sound Chip exists •/
sec exists •/
SCSI exists •/
has software power off •/

53C96 SCSI controller •/
53C96 SCSI controller •/
has a Universal ROM •/

gestaltHelpMgrPresent = 0 /• true if help mgr is present •/

Keyboard Type

Selector code
gestaltKeyboardType

Appendix C: Gestalt Definitions 5 6 1

Response parameter
gestaltMacKbd = 1 /• Mac keyboard
gestaltMacAndPad = 2 /* Mac keyboard w/pad
gestaltMacPlusKbd = 3 /* MacPlus keyboard
gestaltExtADBKbd ... 4 /* extended ADB keyboard
gestaltStdADBKbd = 5 /* standard ADB keyboard

gestaltPrtblADBKbd ... 6 /* portable ADB keyboard

gestaltPrtblISOKbd = 7 /* portable ISO keyboard
gestaltStdISOADBKbd ... 8 /* standard ISO ADB keyboard

gestaltExtISOADBKbd ... 9 /* extended ISO ADB keyboard

gestal tADBKbdII = 10 /* ADB keyboard II

gestaltADBISOKbdII = 11 /* ADB ISO keyboard II
gestaltPwrBookADBKbd = 12 /* Powerbook ADB keyboard

gestaltPwrBookISOADBKbd ... 13 /* Powerbook ISO ADB keyboard

Logical RAM Size

Selector code
gestaltLogicalRAMSize /* logical ram size */

Response parameter
Returns the amount of logical memory available.

Low Memory Area

Selector code
gestaltLowMemorySize

Response parameter

/* size of low memory area */

•/
•/
*/

*/
•/
*/

*/

*/

*/
*/

*/

*/
*/

Returns the size, in bytes, of the low-memory area. This area is used for
vectors, global variables, and dispatch tables.

Memory Management Unit Type

Selector code
gestaltMMUType

5 6 2 Macintosh Programming Techniques

Response parameter
gestaltNoMMU ... 0

gestaltAMU = 1

gestalt68851 ... 2

gestalt68030MMU ... 3

gestalt68040MMU ... 4

Processor Type

Selector code
gestaltProcessorType

Response parameter
gestalt68000 = 1

gestalt68010 = 2

gestalt68020 = 3

gestalt68030 = 4

gestalt68040 = 5

QuickDraw Version

Selector code
gestaltQuickdrawVersion

Response parameter
gestaltOriginalQD = OxOOO
gestalt8BitQD ""' OxlOO
gestalt32BitQD = Ox200

gestalt32BitQD11 ... Ox210

gestalt32BitQD12 ... Ox220

gestalt32BitQD13 ... Ox230

Physical RAM Size

Selector code
gestaltPhysicalRAMSize

/•
/•
/•
/•
/•

/•
/•
/•
/•
/•

no MMU •/

address management unit •/

68851 PMMU •/
68030 built-in MMU •/
68040 built-in MMU •/

Motorola 68000 CPU •/
68010 CPU •/
68020 CPU •/
68030 CPU •/
68040 CPU */

/* original 1-bit QuickDraw

/* 8-bit color QuickDraw

/* 32-bit color QuickDraw
/• 32-bit color QuickDraw vl.1
/• 32-bit color QuickDraw vl.2
/• 32-bit color QuickDraw vl.3

•/
•/
•/
•/
•/

*/

Appendix C: Gestalt Definitions 5 63

Response parameter
Returns the number of bytes of phgysical RAM currently installed.

Sound Attributes

Selector code
gestaltSoundAttr

Response parameter
gestaltStereoCapability = 0 /* stereo compatabile hardware

gestaltStereoMixing = 1 /* external speaker stereo mixing

gestaltSoundIOMgrPresent = 3 /* Sound I/O Manager is present

gestaltBuiltinSoundinput = 4 /* built-in Sound Input hardware

gestaltHasSoundlnputDevice = S /* Sound Input device available

Virtual Memory Attributes

Selector code
gestaltVMAttr

Response parameter
gestaltVMPresent = 0 /* true if virtual memory is present */

*/
*/
*/
*/

*/

The remaining selector codes are for informational use only. Don't base
programming decisions on the returned response. Chapter 8 gives more
information on this.

Machine Type

Selector code
gestaltMachineType

5 64 Macintosh Programming Techniques

Response parameter
kMachineNameStrID -16395

gestaltClassic 1

gestaltMacXL 2

gestaltMac512KE 3

gestaltMacPlus 4

gestaltMacSE 5

gestal tMacII 6

gestaltMacIIx 7

gestal tMacIIcx 8

gestaltMacSE030 9

gestaltPortable 10

gestal tMacIIci 11

gestal tMacIIfx 13

gestaltMacClassic 17

gestaltMacIIsi 18

gestaltMacLC 19

gestaltQuadra900 20

gestaltPowerBook170 21

gestaltQuadra700 22
gestaltClassicII 23

gestaltPowerBooklOO 24

gestaltPowerBook140 25

Machine Icon

Selector code
gestaltMachineicon

Response parameter
Returns an icon family resource ID for the type of Macintosh.

ROM Size

Selector code
gestaltROMSize

Appendix C: Gestalt Definitions 5 6 5

Response parameter
Returns the size of the installed ROM.

ROM Version

Selector code
gestaltROMVersion

Response parameter
Returns the version number of the installed ROM.

System Version

Selector code
gestaltSystemVersion

Response parameter
Returns the version number of the active System file.

D Toolbox Routine Summary

This appendix summarizes the Toolbox calls used throughout this book.
I The calls are divided into the following eight sections:

• QuickDraw

• Events

• Windows

• Dialogs

• Menus

• Memory

• Utilities

• Sound

567

5 6 8 Macintosh Programming Techniques

QuickDraw
This section describes many of the important QuickDraw routines found
in the Toolbox.

There are additional constants and data structures listed in Apple's
QuickDraw.h header file. You do not have to #include this file in your
projects. Both the THINK C MacHeaders and the Symantec C++
MacHeaders++ files include this header, and many others. By default,
your THINK C and Symantec C++ projects contain MacHeaders or
MacHeaders++.

Constants
//define systemFont 0

//define applFont 1

//define newYork 2

/ldef ine geneva 3

I/define monaco 4

I/define venice 5

f/def ine london 6

//define a thens 7

//define sanFran 8

//define toronto 9

{/define cairo 11

//define losAngeles 12

f/def ine times 20

//define helvetica 21

I/define courier 22

//define symbol 23

//define mobile 24

TextFont() changes the font that subsequent calls to DrawString() uses.
Pass TextFont() any of the above constants to set drawing to that font.

{/define normal 0

//define bold
I/define italic 2

I/define underline 4

I/define outline 8

//define shadow OxlO

Appendix D: Toolbox Routine Summary 569

1/define

#define
condense

extend

Ox20

Ox40

TextStyle() sets the style of text drawn by DrawString(). Pass TextStyle()
any of the above values or add any number of Styles together for a com­
bined effect.

Global Variables
Pattern dkGray:

Pattern ltGray:

Pattern gray:

Pattern black:

Pattern white:

The system defines five Patterns for your use in calls such as PenPat() or
Fil1Rect(). You can use any of the five variables without declaring them
in your program.

Data Structures
struct Graf Port

short device:

BitMap portBits:
Re ct portRect:

RgnHandle visRgn:
RgnHandle clipRgn:
Pattern bkPat:
Pattern fillPat:
Point pnLoc:
Point pnSize:
short pnMode:

Pattern pnPat:
short pnVis:
short txFont:

Style txFace:
char filler:
short txMode:

5 70 Macintosh Programming Techniques

short txSize:

Fixed spExtra:

long fgColor:

long bkColor:
short colrBit;

short patStretch;

Handle picSave:
Handle rgnSave:
Handle polySave:
QDProcsPtr grafProcs;

) ;

typedef struct GrafPort GrafPort;

typedef GrafPort *GrafPtr:

A Graf Port is the drawing environment of a window. Each window has
its own Graf Port. The fields within a Graf Port are changed through the
use of Toolbox calls rather than direct manipulation.

Graphic Ports
void SetPort(GrafPtr the_port) ;

SetPort() makes the graphics port pointed to by the_port the current port.
Subsequent drawing operations will be performed in this port. Call
SetPort() before first drawing to a port to ensure that graphics operations
are drawn to the proper window. Before calling SetPort(), call GetPort() to
save the current port so that it can be restored later.

void GetPort(GrafPtr *the_port);

GetPort() gets the current port and saves a pointer to it in the_port.
Before drawing to a port, call GetPort{} to save the current port, then call
SetPort() to set the port to the new port.

Graphics Pen
void GetPenState(PenState *pen_state) ;

Appendix D: Toolbox Routine Summary 5 71

GetPenState() gets the current state of the pen and stores it in pen_state.
After making location, size, or pattern changes to the pen, you can
restore the previous pen state with a call to SetPenState().

void SetPenState(PenState *pen_state) ;

Before making changes to the state of the graphics pen you can call
GetPenState() to save the current state in pen_state. Then, after drawing
is complete, call SetPenState(). Pass the same pen_state to restore the
pen to its previous condition.

void PenPat(Pattern the_pattern) :

PenPat() sets the pattern used by the graphics pen to the_pattern. All
subsequent drawing operations performed in the current graphics port
will use this pattern until PenPat() is again called. Use GetPattern() to
load a 'PAT ' resource for use by PenPat(), or use one of the standard
Patterns defined as global variables and listed under the Global Variables
heading of this section.

void PenPixPat(PixPatHandle pat_handle) ;

PenPixPat() sets the pattern used by the graphics pen to the pattern
accessed through pat_handle. All subsequent drawing operations per­
formed in the current graphics port will use this pattern until
PenPixPat() is again called. Call GetPixPat() to load a colo:r 'ppat'
resource for use by PenPixPat().

void PenSize(short width,

short height):

Set the width and height of the graphics pen with a call to PenSize(). The
width and height are the pixel dimensions the pen will acquire. All sub­
sequent lines drawn with the pen will be drawn in this size.

void PenNormal(void):

To restore the pen to its default settings, call PenNormal(). PenNormal()
sets the pen's size to (1,1) and its pattern to black.

5 72 Macintosh Programming Techniques

void MoveTo(short horiz,

short vert):

MoveTo() moves the pen to the horizontal pixel coordinate horiz and the
vertical pixel coordinate vert. The origin is the left top corner of the cur-

• rent port. No drawing is performed.

void Move(short horiz,

short vert):

Move() moves the pen horiz pixels in the horizontal direction and vert
pixels in the vertical position from the pen's current position. A negative
horiz value moves the pen to the left. A negative vert value moves the
pen up. No drawing is performed.

void LineTo(short horiz,

short vert):

LineTo(} draws a line to the horizontal pixel coordinate horiz and the ver­
tical pixel coordinate vert. The origin is the left top comer of the current
port.

void Line(short horiz,

short vert):

Line() draws a line horiz pixels in the horizontal direction and vert pixels
in the vertical position from the pen's current position. A negative horiz
value draws a line to the left. A negative vert value draws a line up.

Drawing Text
void GetindString(Str255 the_str,

short str_list_ID,

short index):

GetlndString() loads a string into the_str from the 'STR#' list with an ID
of str_list_ID. From this list GetlndString() selects the index string in the
list; e.g. if index "" 2, the second string in the list will be loaded. Once
loaded, the_str can be used as any other Str255 variable.

void TextFont(short font_num) :

Appendix D: Toolbox Routine Summary 5 7 3

TextFont() sets the font to the font number font_num. All subsequent
text will be drawn in this font. Many fonts are defined by constants given
under the Constants heading of this section.

void TextFace(Style face) ;

TextFace() sets the style of text to face. The style can be one Style or a
combination of Styles. All subsequent text will be drawn in this style.
See the Constants heading in this section for a listing of the available
Styles.

void TextSize(short size):

Set the size of text with a call to TextSize(). The size is given in points,
where approximately 72 points equals one inch. All subsequent text will
be drawn in this size.

void DrawChar(short ch) ;

DrawChar() draws a single character ch to the current port. The current
font, style, and size are used. The starting location of the character is the
current position of the graphics pen.

void Drawstring(Str255 the_str) ;

DrawString() draws string the_str to the current port. The current font,
style, and size are used. The starting location of the character is the cur­
rent position of the graphics pen.

Patterns
PatHandle GetPattern(short pattern_ID) :

GetPattern() returns a PatHandle to the 'PAT' resource with the ID of
pattern_ID. Once you've obtained a PatHandle, dereference it twice and
then use it as a Pattern type in QuickDraw calls, such as PenPat().

PixPatHandle GetPixPat(short ppat_ID):

5 7 4 Macintosh Programming Techniques

GetPixPat() works like GetPattern(). GetPixPat() returns a PixPatHandle
to the 'ppat' resource with the ID of ppat_ID. Once you've obtained a
PixPatHandle, use it in QuickDraw calls, such as PenPixPat(). Color
QuickDraw routines that work with color patterns accept handles to
them-you do not have to dereference it.

Drawing Shapes
void SetRect(Re ct *the _rect,

short left,

short top,

short right,

short bottom) :

SetRect() sets the boundaries of rectangle the_rect. The coordinates of
the rectangle use the current graphics port's left top corner as the origin.

Always use SetRect() to establish a rectangle before performing shape­
drawing operations involving a rectangle, oval, or round rectangle.
SetRect() does not display a rectangle.

void FrameRect(Rect *the_rect) :

FrameRect() frames rectangle the_rect. Before framing, establish the
boundaries of the_rect with a call to SetRect(). FrameRect() does not fill
in the rectangle, it merely outlines it with a frame.

void PaintRect(Rect *the_rect):

PaintRect() fills the rectangle the_rect with the current pen pattern. Call
SetRect() to establish the boundaries of the_rect.

void FillRect(Rect *the_rect,

Pattern the_pat):

FillRect() fills the rectangle the_rect with the pattern the_pat. The cur­
rent pen pattern is unaffected by the call to FillRect(). Call SetRect() to
establish the boundaries of the_rect.

void EraseRect(Rect *the_rect) :

Appendix D: Toolbox Routine Summary 5 7 5

EraseRect() fills rectangle the_rect with the background pattern, which is
usually white. Call SetRect() to establish the boundaries of the_rect.

void InvertRect(Rect *the_rect):

lnvertRect() changes the state of each pixel in rectangle the_rect. All
white pixels become black; all black pixels become white.

void FrameOval(Rect *the_rect):

void PaintOval(Rect *the_rect):

void FillOval(Re ct *the_rect,

Pattern the_pat) ;

void EraseOval(Rect *the_rect):

void InvertOval(Rect *the_rect) :

Each of the previous five routines that perform operations on rectangles
have an analogous Toolbox routine that performs the same operation on an
oval. For each oval routine, the oval is drawn within the rectangle the_rect.

void FrameRoundRect(Rect *the_rect,

short width,

short height) :

void PaintRoundRect(Rect *the_rect,

short width,

short height) ;

void FillRoundRect (Re ct *the_rect,

short width,

short height,

Pattern the_pat) :

void EraseRoundRect(Re ct *the_rect,

short width,

short height) :

void InvertRoundRect(Rect *the_rect,

short width.
short height) ;

5 7 6 Macintosh Programming Techniques

Each of the five routines that perform operations on rectangles have an
analogous Toolbox routine that performs the same operation on a round
rectangle. The amount of rounding to the comer of a round rectangle is
determined by width and height.

void FillCRect(Rect *the_rect.
PixPatHandle ppat_handle) ;

To fill a rectangle with a colored pattern, use FillCRect(). FillCRect() fills
rectangle the_rect with the PixPat accessed through ppat_handle. The
window that is being drawn to should be a color window created with a
call to GetNewCWindow().

void FillCOval(Rect *the_rect,
PixPatHandle ppat_handle);

To fill an oval with a colored pattern, use FillCOval(). This routine fills
the oval inscribed into the_rect with the PixPat accessed through
ppat_handle. The window that is being drawn to should be a color win­
dow created with a call to GetNewCWindow().

void FillCRoundRect(Rect *the_rect,
short width,
short height,
PixPatHandle ppat_handle) ;

To fill a round rectangle with a colored pattern, use FillCRoundRect().
This routine fills the round rectangle described by the_rect with the
PixPat accessed through ppat_handle. The window that is being drawn
to should be a color window created with a call to GetNewCWindow().

Events
This section describes the important Event Manager routines found in
the Toolbox.

There are additional constants and data structures listed in Apple's
Events.h header file. You do not have to #include this file in your pro­
jects. Both the THINK C MacHeaders and the Symantec C++

Appendix D: Toolbox Routine Summary 5 7 7

MacHeaders++ files include this header, and many others. By default,
your THINK C and Symantec C++ projects contain MacHeaders or
MacHeaders++.

Constants
//define nullEvent 0

//define mouseDown
//define mouse Up 2

//define key Down 3

//define key Up 4

//define autoKey 5

//define updateEvt 6

//define diskEvt 7

//define activateEvt 8

//define osEvt 15

After a call to GetNextEvent() or WaitNextEvent(), the what field of the
returned EventRecord will contain one of the above constants.

//define mDownMask 2

//define mUpMask 4

//define keyDownMask 8

//define keyUpMask 16

/ldef ine autoKeyMask 32

//define updateMask 64

f/def ine diskMask 128

//define activMask 256

I/define highLevelEventMask 1024

I/define osMask -32768

//define everyEvent -1

GetNextEvent() and WaitNextEvent() are passed a mask that tells them
which events to watch for. Most applications will use everyEvent as this
mask. The occurrance of any type of event will be reported to your pro­
gram, and the logic of your program can then determine which event
types to respond to.

//define charCodeMask OxOOOOOOFF

//define keyCodeMask OxOOOOFFOO

//define adbAddrMask OxOOFFOOOO

I/define osEvtMessageMask OxFFOOOOOO

5 7 8 Macintosh Programming Techniques

To determine which character is the result of a keystroke, perform an etJ
operation on the message field of the most recent event and the
charCodeMask.

Data Structures
struct EventRecord

short what;

long message:

long when;

Point where;

short modifiers:
} ;

typedef struct EventRecord EventRecord;

Unlike some record data structures, you'll access the fields of the
EventRecord directly, without using a pointer or handle.

The what field holds the type of an event, such as mouseDown or
updateEvt.

The message field holds information that varies from one event type to
the next.

The when field gives the time on the system clock when the event
occurred.

The where field holds the location of the cursor at the time the event
occurred.

The modifiers field holds the modifier keys that were pressed at the time
of the event. The Command and Option keys are examples of modifier
keys.

Event Reporting
Boolean GetNextEvent(short event_mask,

EventRecord *the_event) ;

Appendix D: Toolbox Routine Summary 5 79

GetNextEvent() sets the_event to the next available event of the type or
types specified by event_mask. To receive events of all types, set
event_mask equal to the constant everyEvent. After GetNextEvent()
receives the information that makes up the_event, it will remove it from
the event queue in anticipation of handling the next event. GetNextEvent()
will return a value of true if the event is of a type your program is looking
for, as defined by event_mask. Otherwise it returns a value of false.

Boolean WaitNextEvent(short event_mask,

EventRecord *the_event.

unsigned long sleep,

RgnHandle mouse_rgn):

The operation of WaitNextEvent() is similar to that of GetNextEvent{},
described above. Additionally, WaitNextEvent() allows MultiFinder and
System 7 software to switch control from the current program to another
running application if there are no events in the event queue. This allows
other applications to perform background tasks, even while yours appli­
cation remains active and in the forefront.

The sleep parameter tells the system the maximum number of ticks that
your program is willing to relinquish between events. A single tick is one
sixtieth of a second. A sleep value of zero requests that the system return
control to your program as soon as possible.

The mouse_rgn parameter is used to aid in cursor display. If your pro­
gram changes the look of the cursor at different screen locations, you'll
want to give mouse_rgn a value other than nil, or OL.

Mouse Reporting
void GetMouse(Point *mouse_loc) ;

GetMouse() returns the location of the mouse at the time the call is
made. The location will be given in local coordinates-that is,
mouse_loc will be described in terms of the coordinates of the current
grafPort.

Boolean Button(void) ;

5 8 0 Macintosh Programming Techniques

Button() will return a value of true if the mouse button is down at the
time of the call.

Windovvs
This section details the most commonly used routines that involve the
Window Manager.

There are additional constants and data structures listed in Apple's
Windows.h header file. You do not have to #include this file in your pro­
jects. Both the THINK C MacHeaders and the Symantec C++
MacHeaders++ files include this header, and many others. By default,
your THINK C and Symantec C++ projects contain MacHeaders or
MacHeaders++.

Constants
#define inDesk 0

//define inMenuBar 1

/!define inSysWindow 2

/Ide fine inContent 3

/ldef ine inDrag 4

/Ide fine inGrow 5

/ldef ine inGoAway 6

#define inZoomin 7

/Ide fine inZoomOut 8

FindWindow() returns the part of the window in which a mouse-down
event occurred.

Data Structures
struct WindowRecord

Graf Port
short
Boolean

Boolean

port:

windowKind:
visible:

hilited:

Appendix D: Toolbox Routine Summary 5 8 1

Boolean goAwayFlag;
Boolean spareFlag;
RgnHandle strucRgn:
RgnHandle contRgn:
RgnHandle updateRgn:
Handle windowDefProc:
Handle dataHandle:
StringHandle titleHandle:
short titleWidth;
ControlHandle controlList:
struct WindowRecord *nextWindow:
PicHandle windowPic:
long refCon:

} :

typedef struct WindowRecord WindowRecord:
typedef WindowRecord *WindowPeek:

typedef GrafPtr WindowPtr:

You'll seldom have cause to directly access any of the fields of a
WindowRecord other than the port member, the Graf Port. Instead, you'll
indirectly access the fields using Toolbox calls. For the times you need
direct access, use a pointer to the entire WindowRecord-a
WindowPeek.

A WindowPtr points to the first field of the WindowRecord by the fol­
lowing definitions:

struct GrafPort

[GrafPort members
} :

typedef struct GrafPort GrafPort;
typedef GrafPort *GrafPtr;

typedef GrafPtr WindowPtr:

The above states that a WindowPtr is the same as a Graf Ptr. A Graf Ptr is
a pointer to a Graf Port. A WindowPtr is a Graf Ptr, and points to a
Graf Port-the first member of the Window Record structure. See the
QuickDraw section of this appendix for the complete definition of a
Graf Port.

5 8 2 Macintosh Programming Techniques

Window Allocation
WindowPtr GetNewWindow(short wind_ID,

Ptr wind_storage.

WindowPtr behind) ;

GetNewWindow() loads a window into memory using a 'WIND'
resource. The description of the window is read in from the 'WIND'
resource with ID wi.nd_ID. Pass a nil pointer, OL, for the wi.nd_storage if
you want the Window Manager to choose the memory location for the
window. A behind value of (WindowPtr)-lL places the window in front
of all other windows, a value of nil, OL, places it behind.

WindowPtr Ge~NewCWindow(short wind_ID,

Ptr wind_storage.

WindowPtr behind) ;

GetNewCWindow() loads a color window into memory using a 'WIND'
resource. If color attributes have been defined in the 'WIND' resource
with ID wi.nd_ID, they will appear in the window when it is displayed.
The last two parameters are the same as for GetNewWindow(). Note
that both GetNewCWindow() and GetNewWindow() return a
WindowPtr. This pointer can be used in any Toolbox routines that
require a WindowPtr as a parameter.

void CloseWindow(WindowPtr the_window) :

Close Window() erases the_ window and removes it from the list of open
windows. It does not release the memory used by the window's
WindowRecord. Use this routine only if you supplied the window stor­
age in your call to GetNewWindow() or GetNewCWindow(). To free the
memory associated with the WindowRecord, call
DisposPtr{{Ptr)the_wi.ndow) after CloseWindow().

void DisposeWindow(WindowPtr the_window) ;

DisposeWindow() erases the_window and removes it from the list of
open windows. It also frees the memory used for the_window's
WindowRecord. Use DisposeWindow() if you passed a nil pointer, OL, as
the window storage in your call to GetNewWindow() or
GetNewCWindow().

Appendix D: Toolbox Routine Summary 5 8 3

Window Display
void SetWTitle(WindowPtr the_window.

Str255 title);

SetWTitle() sets the title of the_window to the text that makes up the
Str255 variable title.

void GetWTitle(WindowPtr the_window,

Str255 title);

GetWTitle() reads the current title of the_window and sets the Str255
variable title to that value.

WindowPtr FrontWindow(void) :

FrontWindow() returns a WindowPtr to the active window that is, the
window that is currently frontmost on the screen. If the screen is empty
of windows, Front Window() will return a nil pointer-OL.

void SelectWindow(WindowPtr the_window) :

SelectWindow() activates the_window. The previously active window is
unhighlighted, the_window is placed in front of all others, the_window
is properly highlighted, and an activate event is generated.

void HideWindow(WindowPtr the_window):

HideWindow() makes the_window invisible. It does not dispose of it. If
the_ window is already invisible, Hide Window() has no effect. If any
other windows exist, the one that is behind the_window becomes the
active window. To make the hidden window again visible, use
ShowWindow().

void ShowWindow(WindowPtr the_window) :

ShowWindow() makes the_window visible. If the_ window is already vis­
ible, ShowWindow() has no effect. ShowWindow() highlights the_win­
dow but does not change the front-to-back ordering of windows. To show
a hidden window and bring it to the front, use SelectWindow() in con­
junction with ShowWindow(). To make the shown window again hid­
den, use Hide Window().

5 84 Macintosh Programming Techniques

void MoveWindow(WindowPtr the_window,

short

short

Boolean

horizontal,

vertical,

front) :

MoveWindow() moves the_window to the screen location specified by
the second and third arguments. The top left comer of the window will
be placed at the screen point defined by horizontal and vertical. The size
of the_window will be unaffected. If the value of front is true, then
the_windowwill become the active window.

void DragWindow(WindowPtr the_window.

Point start_pt,

Rect *drag_rect):

DragWindow() should be called in response to a mouseDown event in
the_window's drag region. The start_pt should be set to the location of
the cursor when the mouse was pressed, as given in the where field of
the EventRecord. Window movement will be restricted to the boundaries
of the rectangle defined by drag_rect.

Windows and the Mouse
short FindWindow(Point the_point.

WindowPtr *the_window):

A call to FindWindow() yields both the window (the_window) and the
part of the window (the short return value) in which a mouseDown
event occurred. The returned short value will be one of the constants
listed above in the Constants section, such as inDrag or inGrow. Set
the_point to the location of the cursor when the event occurred. This can
be obtained from the where field of the EventRecord.

Updating
void EraseRgn(RgnHandle update_rgn):

void BeginUpdate(WindowPtr the_window) :

Appendix D: Toolbox Routine Summary 5 8 5

Call BeginUpdate() in response to an updateEvt for the_window. After
calling Begin Update(), call EraseRgn(), passing EraseRgn() the visRgn of
the_window, as in: EraseRgn(eiJthe_window->visRgn). Then perform all
the drawing necessary to draw the entire contents of the window. The
EraseRgn() call will restrict the actual updating to only the area needed
updating. After drawing to the window, call EndUpdate().

void EndUpdate(WindowPtr the_window) :

EndUpdate() restores the visRgn of the_window. This region was altered
during Begin Update().

Dialogs
This section describes many of the Toolbox routines that involve the
Dialog Manager.

There are additional constants and data structures listed in Apple's
Dialogs.h header file. You do not have to #include this file in your pro­
jects. Both the THINK C MacHeaders and the Symantec C++
MacHeaders++ files include this header, and many others. By default,
your THINK C and Symantec C++ projects contain MacHeaders or
MacHeaders++.

Data Structures
struct DialogRecord

(

WindowRecord window:

Handle items:

TEHandle textH:

short editField:

short editOpen:

short aDefltem:

} :

typedef struct DialogRecord DialogRecord:

typedef DialogRecord *DialogPeek:

5 8 6 Macintosh Programming Techniques

typedef WindowPtr DialogPtr:

As with a WindowRecord, you'll seldom need direct access to any of the
fields of a DialogRecord. You will instead use a DialogPtr. The first
member of the DialogRecord is a WindowRecord. The first member of a
WindowRecord is the port-the Graf Port. A DialogPtr, like a
WindowPtr, points to a Graf Port. A DialogPtr can thus be used in
Toolbox calls expecting a WindowPtr as an argument. See the Constants
section of the Windows heading of this appendix for more information.

For the few times you need direct access to fields other than the port, use
a pointer to the entire DialogRecord-a DialogPeek.

Dialog Allocation
DialogPtr GetNewDialog(short dlog_ID,

Ptr dlog_storage,

WindowPtr behind) :

GetNewDialog() loads a dialog into memory using a 'DLOG' resource.
The description of the dialog is read in from the 'DLOG' resource with
ID dlog_ID. Pass a nil pointer, OL, for the dlog_storage if you want the
Dialog Manager to choose the memory location for the dialog. A behind
value of (WindowPtr}-1L places the dialog in front of all other windows,
a value of nil, OL, places it behind.

There is no separate call to create a color dialog as there is for creating a
color window. Instead, you use ResEdit to add color to any element­
such as the frame or title bar-of the dialog's 'DLOG' resource. That will
create a 'dctb' resource. Existence of the 'dctb' resource tells
GetNewDialog() to base the new dialog on a color graphics port.

void CloseDialog(DialogPtr the_dialog):

CloseDialog() erases the_dialog and removes its window from the list of
open windows. It does not release the memory used by the dialog's
DialogRecord or by the dialog's item list. Use this routine only if you
supplied the dialog storage in your call to GetNewDialog(). To free the
memory associated with the DialogRecord, call DisposPtr((Ptr)the_dia­
log) after CloseDialog().

Appendix D: Toolbox Routine Summary 5 8 7

void DisposDialog(DialogPtr the_dialog) ;

DisposDialog() erases the_dialog and removes its window from the list
of open windows. It also frees the memory used for the_dialog's
DialogRecord and item list. Use DisposDialog() if you passed a nil point­
er,OL, as the dialog storage in your call to GetNewDialog().

Dialog Events
void ModalDialog(ProcPtr Filter_Function.

short *the_item) :

ModalDialog() performs event handling for a modal dialog box. When an
event involves an enabled item, the item number of that item is returned
to the program as the_item.

ModalDialog() optionally accepts a pointer to a filter function. If this
value is nil, OL, ModalDialog() is responsible for all handling of the
event. If a pointer to a filter function is included in the call, the filter
function will handle some or all of the events. The filter function name,
without parentheses, serves as the ProcPtr. The filter function is applica­
tion defined. Its format is given below.

pascal Boolean Filter_Function{ DialogPtr the_dialog,

EventRecord *the_event.

short *item) :

Filter_Function() is an application-defined function that should be writ­
ten to perform any dialog-related tasks not performed by ModalDialog().
The function can have any name, but it must have the three arguments
listed. The first is a pointer to the active dialog. The EventRecord should
be the event currently being handled. The item should be the item
selected by the user.

Boolean IsDialogEvent(EventRecord *the_event) :

IsDialogEvent() determines if, at the time of the current event, the front­
most window was a dialog box. If a dialog box wasn't in the forefront the
event is not dialog related, and IsDialogEvent() returns a value of false to
the calling routine.

5 8 8 Macintosh Programming Techniques

Boolean DialogSelect(EventRecord *the_event,

DialogPtr *the_dialog,

short *the_item):

DialogSelect() does all the work for you if a dialog needs updating or acti•
vating. Call it after IsDialogEvent() has returned a value of true.

If the event was dialog related but wasn't an update or activate event,
DialogSelect() doesn't handle it. Instead, DialogSelect() returns a pointer
to the dialog and the item number of the clicked-on item for further pro­
cessing by your program.

void DlgCut(DialogPtr the_dialog);

DlgCut() handles the Cut command for text within a dialog's edit text
item.

void DlgPaste(DialogPtr the_dialog):

DlgPaste() handles the Cut command for text within a dialog's edit text
item.

void DlgCopy(DialogPtr the_dialog) :

DlgCopy() handles the Copy command for text within a dialog's edit text
item.

void DlgPaste(DialogPtr the_dialog) :

DlgPaste() handles the Paste command for text within a dialog's edit text
item.

Alerts
short Alert(short alert_ID.

ProcPtr Filter_Function) :

Alert() loads, displays, and handles and alert defined by an 'ALRT'
resource with an ID of alert_ID. It displays no icon, as the other three
forms of the Alert() function do. The ProcPtr argument is a pointer to an
optional filter function that handles each event before processing by the

Appendix D: Toolbox Routine Summary 5 8 9

Alert() function. See ModalDialog() for more information on filter func­
tions. Alert() returns a value of type short that contains the item number
selected by the user.

short StopAlert(short alert_ID,

ProcPtr Filter_Function) :

StopAlert() is identical to Alert() except that it displays a stop-sign icon
in the alert's top left comer.

short NoteAlert(short alert_ID,

ProcPtr Filter_Function) :

NoteAlert() is identical to Alert() except that it displays a message icon
in the alert's top left comer.

short CautionAlert(short alert_ID.

ProcPtr Filter_Function):

CautionAlert() is identical to Alert{} except that it displays a cautionary
icon in the alert's top left comer.

Dialog and Alert Items
void ParamText(Str255 str_O,

Str255 str_l,

Str255 str_2,

Str255 str_3) ;

ParamText() allows up to four strings to be substituted in an alert or dia­
log. If a static text item contains the string 11 1\0", the text that comprises
str_O will be substituted for "AO". In addition str_1 will replace "Al",
str_2 will replace 11 1\2", and str_3 will replace "1\3". Less than four strings
can be defined in ParamText() by using one or more empty strings ("\p").

void GetDitem(DialogPtr the_dialog,

short the_item,

short *the_type,

Handle *the_handle,

Rect *the_rect) :

5 90 Macintosh Programming Techniques

To obtain information about a dialog item, pass GetDltem() a pointer to
the dialog and the item number of the item in question. The item num­
ber for any item can be found in the dialog's 'DITL' resource. After
GetDitem() has executed, the_type will contain the item's type,
the_handle will hold a handle to the item, and the_rect will hold the dis­
play rectangle that holds the item.

void SetDitem(DialogPtr the_dialog,

short the_item,

short the_type,

Handle the_handle,

Rect *the_rect) :

The description of an item can be changed using SetDitem(). All parame­
ters are the same as they are for GetDltem().

void Get!Text(Handle the_item,

Str255 the_str) :

Get/Text() returns the text from a text item in a dialog. Parameter
the_item is a handle to the item. This handle can be obtained by first
calling GetDltem(). After the call to Get/Text(), the_str will hold the
contents of the text item.

void Set!Text(Handle the_item,

Str255 the_str) :

Set/Text() changes the text in a dialog text item. Parameter the_item is a
handle to the item and can be obtained by first calling GetDltem(). The
Str255 parameter the_str is the text to set the item to.

void SetCTitle(ControlHandle the_control,

Str255 title) :

SetCTitle() sets the title of the_control to the text in title. You can get
a Handle to the_control by first calling GetDltem(). The returned
Handle should be typecast to the proper type when calling SetCTitle().
Assuming the_handle is of type Handle and was returned by
GetDitem(), a call to SetCTitle() would look like the following:
SetCTitle((ControlHandle)the_handle, title);

Appendix D: Toolbox Routine Summary 5 91

Use SetCTYtle() to change the title of a check box or radio button.

void GetCTitle(ControlHandle the_control.

Str255 title) ;

GetCTYtle() returns the current title of the item pointed to by the_con­
tiol. See SetCTYtle() for information on obtaining this ConuolHandle.

void SetCtlValue(ControlHandle the_control,

short the_value);

SetCtlValue() sets the value of the item pointed to by the_conuol. See
SetCTYtle() for information on obtaining this ControlHandle. Parameter
the_value should be either a 1 or 0. A value of 1 turns the control on; a
value of 0 turns it off.

Use SetCtlValue() to change the value, or state, of a check box or radio
button.

short GetCtlValue(ControlHandle the_control) ;

GetCtlValue() returns the value of the item pointed to by the_conuol.
See SetCTYtle() for information on obtaining this ContiolHandle. The
returned short type will be either 1 or 0. A value of 1 means the control
is on; a value of 0 means that it is off.

Use SetCtlValue() to change the value, or state, of a check box or radio
button.

Menus
This section describes the important Menu Manager routines found in
the Toolbox.

There are additional constants and data structures listed in Apple's
Menus.h header file. You do not have to #include this file in your pro­
jects. Both the THINK C MacHeaders and the Symantec C++
MacHeaders++ files include this header, and many others. By default,

5 9 2 Macintosh Programming Techniques

your THINK C and Symantec C++ projects contain MacHeaders or
MacHeaders++.

Constants
#define normal 0
/!define bold 1

/Ide fine italic 2
/!define underline 4
/!define outline 8

/!define shadow OxlO
#define condense Ox20
/!define extend Ox40

The style of the text of a menu item can be changed with a call to
SetltemStyle(). Pass in one or a combination of the above Style con­
stants.

Data Structures
typedef unsigned char Style:

A call to SetltemStyle() changes the text style of a menu item. Use the
Style constants defined above. To combine Styles, declare a variable of
type Style, then add the constants that will yield the desired combina­
tion:

Style item_style:
item_style = bold + italic + shadow:

struct Menulnfo

short menuID:
short menuWidth;
short menuHeight:
Handle menuProc:
long enableFlags;
Str255 menuData;

} ;

Appendix D: Toolbox Routine Summary 5 9 3

typedef struct Menu!nfo Menu!nfo:

typedef Menuinfo *MenuPtr, **MenuHandle;

As with a WindowRecords and DialogRecords, you'll seldom need direct
access to any of the fields of a Menulnfo. You will instead use a
MenuHandle.

Menu Allocation and Display
Handle GetNewMBar(short mbar_ID) :

GetNewMBar() creates a menu list, using the individual 'MENU's speci­
fied in the 'MBAR' resource with an ID of mbar_ID. The list contains a
handle to each individual menu that will appear in the menu bar.
GetNewMBar() does not install the individual menus or display the
menu bar.

void SetMenuBar(Handle menu_list) :

SetMenuBar() installs the individual menus in the menu bar specified by
menu_list. This handle should be the one returned by GetNewMBar().
The effect of SetMenuBar() is to make menu_list the current menu list; a
resource file can have more than one 'MBAR' resource.

MenuHandle GetMHandle(short menu_ID):

GetMHandle() returns a handle to the 'MENU' with a resource ID of
menu_ID. You'll then be able to change characteristics of this menu and
items in it using other Toolbox routines.

void AddResMenu(MenuHandle the_menu,

ResType the_type) :

AddResMenu() locates all items of type the_type and appends them to
the_menu. For the Apple menu, the_type should be 'DRVR'.
AddResMenu() adds all the desk accessories in the user's system to the
Apple menu. Under System 7, AddResMenu() will also append all items
located in the Apple Menu Items folder in the System Folder. The
MenuHandle the_menu should be obtained with a call to GetMHandle().

void DrawMenuBar(void):

5 94 Macintosh Programming Techniques

None of the preceding calls actually displays the menu bar on the screen.
After a menu setup has been performed, call DrawMenuBar() to draw it.

Menu Selections
long MenuSelect(Point start_pt);

When an event is of mouseDown type, and it is further determined that
the location of the mouse down was inMenuBar, call MenuSelect(). Pass
the where field of the event as the start_pt. MenuSelect() handles the
dropping and displaying of menus as the user moves the mouse over the
menu bar. Both the user-selected menu and menu item will be deter­
mined by MenuSelect() and saved in the returned long type.

long MenuKey(short chr) ;

If a keyDown event occurs, and the Command key was pressed simulta­
neously, call MenuKey(). Given the typed character chr, MenuKey() will
determine which menu and menu item this keystroke combination is
equivalent to, and return it in the long type. The value returned by
MenuKey() will be identical to that which MenuSelect() would return if
the menu choice had been made with the mouse rather than with a
Command-key equivalent.

Hierarchical Menus
MenuHandle GetMenu(short resource_ID) :

When GetNewMBar() reads in the 'MENU' descriptions of the menu
that will appear in the menu bar, it takes note of submenu IDs but does
not read in their descriptions. GetMenu() does this. The resource_ID is
the ID of the 'MENU' that represents the submenu of the hierarchical
menu. Call lnsertMenu() after calling GetMenu().

void InsertMenu(MenuHandle the_menu,
short bef ore_ID) :

After reading in the description of a submenu using GetMenu(), call
InsertMenu() to insert the submenu into the menu list. The parameter

Appendix D: Toolbox Routine Summary 5 9 5

the_menu should be the MenuHandle returned by GetMenu(). Assign
before_ID a value of -1 to let the Menu Manager know this is a submenu
rather than a menu in the menu bar.

Changing Menu Characteristics
void Setltem(MenuHandle the_menu,

short

Str255

the_item,

the_str);

Setltem() changes the text of menu item the_item in the_menu. The
new text that will appear in the menu will be that of the_str. Use
GetMHandle() to get a handle to the menu.

void Getltem(MenuHandle the_menu,

short the_item,

Str255 the_str) :

Getltem() gets the text of menu item the_item in the_menu and places it
in the Str255 variable the_str. Use GetMHandle() to get a handle to the
menu.

void Disable!tem(MenuHandle the_menu.

short the_item) ;

Disableltem() disables the menu item the_item in the_menu by dim­
ming it and ignoring user attempts to select it. If the_item is given a
value of zero, the entire menu will be disabled. The menu name in the
menu bar, and all menu items in the menu, will become dim. Use
GetMHandle() to get a handle to the menu. Use Enableltem() to enable a
disabled menu or menu item.

void Enable!tem(MenuHandle the_menu,

short the_item):

Enableltem() enables the menu item the_item in the_menu by high­
lighting the dimmed item. If the_item is given a value of zero, the
entire menu will be enabled. The menu name in the menu bar and all
menu items in the menu will be highlighted. Use GetMHandle() to get

5 96 Macintosh Programming Techniques

a handle to the menu. Use Disableltem() to disable an enabled menu or
menu item.

void Checkitem(MenuHandle the_menu,

short the_item,

Boolean checked) :

Checkltem() places a checkmark to the left of the text in the_item in
the_menu, if checked is true. If checked is false, the checkmark will be
removed from the left of that item. Attempting to check an already
checked item has no effect. The same is true for an attempt to uncheck a
menu item that has no checkmark by it. Use Disableltem() to disable an
enabled menu or menu item. Use GetMHandle() to get a handle to the
menu.

void SetitemStyle(MenuHandle the_menu.

short the_item.

Style chk_style);

The text of a menu item does not have to appear in its default style of
plain. SetltemStyle() changes the style of the text of the_item in
the_menu to that given by chk_style. The style can be one or any combi­
nation of Styles from the set listed in the Constants heading of this sec­
tion. Use GetMHandle() to get a handle to the menu.

void GetitemStyle(MenuHandle the_menu,

short the_item.

Style *chk_style);

GetltemStyle() returns the Style of the text in the_item in the_menu.
Use GetMHandle() to get a handle to the menu.

Memory
This section describes the important Toolbox routines that work with
memory.

There are additional constants and data structures listed in Apple's
Memory.h header file. You do not have to #include this file in your pro-

Appendix D: Toolbox Routine Summary 5 9 7

jects. Both the THINK C MacHeaders and the Symantec C++
MacHeaders++ files include this header, and many others. By default,
your THINK C and Symantec C++ projects contain MacHeaders or
MacHeaders++.

Memory Allocation
void MaxApplZone(void) :

At program startup the application's heap is set to a small size. If leh in
that state, it will grow as objects are loaded into it. For more efficient
heap management, call MaxApplZone() at program startup to immedi­
ately increase the heap to its maximum size.

void MoreMasters(void) :

Master pointers are allocated in blocks. When your program starts up,
the Memory Manager gives you one block. If, during the course of pro­
gram execution, your program runs out of master pointers, the Memory
Manager will place another block in memory. This can lead to fragmen­
tation. Call MoreMasters() four or five times at the very start of your pro­
gram to ensure that the Memory Manager doesn't do so later on.

Handle NewHandle(Size num_bytes):

NewHandle() returns a handle to a relocatable block of memory. The
size of the block is num_bytes bytes.

void DisposHandle(Handle the_handle) :

DisposHandle() frees the memory occuppied by the block accessed by
the_handle. Once disposed of, any other existing handles that access this
same block become invalid.

Ptr NewPtr(Size num_bytes):

NewPtr() returns a pointer to a nonrelocatable block of memory. The size
of the block is num_bytes bytes.

void DisposPtr(Ptr the_ptr) :

5 9 8 Macintosh Programming Techniques

DisposPtr() frees the memory occupied by the block accessed by the_ptr.
Any other existing pointers that point to this same block become invalid
Once the memory is disposed of.

void ExitToShell(void) :

Always check the result of a memory allocation. If the allocation fails, it
will return a value of nil. To avoid a crash, call ExitToShell() at that
point. A call to ExitToShell() prevents a frozen screen and allows your
application to exit gracefully by releasing the application heap and
returning the user to the Finder.

void UnloadSeg(ProcPtr Routine_Name) :

Macintosh programs are segmented. Segments will be loaded and
unloaded from memory if the memory allotted to an application
becomes low. To mark a segment as purgeable, call UnloadSeg().
Routine_Name is the name of one of the routines in the segment. It acts
as a pointer to the routine and tells UnloadSeg() which segment to mark
as purgeable. UnloadSeg() does not actually unload the segment; it just
gives the system permission to do so if memory becomes restricted.

Utilities
This section describes the important general-purpose functions found in
the Toolbox.

There are additional constants and data structures listed in Apple's
Resources.hand ToolUtils.h header files. You do not have to #include
these files in your projects. Both the THINK C MacHeaders and the
Symantec C++ MacHeaders++ files include these headers, and many oth­
ers. By default, your THINK C and Symantec C++ projects contain
MacHeaders or MacHeaders++.

Constants
#define curSysEnvVers 2

Appendix D: Toolbox Routine Summary 5 99

The SysEnvirons() routine returns information about the system of the
machine on which your program is running. Use the constant
curSysEnvVers in calls to SysEnvirons(). Should Apple update the
SysEnvirons() over time, the curSysEnvVers value will be changed and
your calls can remain unchanged.

//define envMac -1
//define envXL -2
//define envMachUnknown 0

//define env512KE 1
//define envMacPlus 2
//define envSE 3
//define envMacII 4

//define envMacIIx 5
//define envMacIIcx 6

//define envSE30 7

//define envPortable 8

//define envMacIIci 9

//define envMacIIfx 11

SysEnvirons() fills the fields of a SysEnvRec. Those fields are given below
in the SysEnvRec structure listing. You may find the machineType field
the most important. You can check the value of that field at program
start up. If the returned value indicates that your program is running on a
machine that is too old (as determined by you), you may wish to exit the
program. Information from all of the other fields can be better obtained
by a call to Gestalt(), which is described later in this section and
throughout this book.

//define
//define
/ldef ine
//define

iBeamCursor
crossCursor
plusCursor
watchCursor

1

2

3

4

The standard arrow-shaped cursor can be changed to any one of four sys­
tem-defined cursors using calls to GetCursor() and SetCursor(). Use one
of the above constants in the call to GetCursor().

600 Macintosh Programming Techniques

Data Structures
struct SysEnvRec

short environsVersion:

short machineType:
short systemVersion:
short processor;
Boolean hasFPU;
Boolean hasColorQD:

short keyBoardType;

short atDrvrVersNum:
short sysVRefNum:

) :

typedef struct SysEnvRec SysEnvRec:

A call to SysEnvirons() fills a SysEnvRec with system information about
the Macintosh on which your program is currently running. In most
cases, you'll want to use the newer Gestalt() Toolbox function, which
provides more information. On Macintoshes running older system soft­
ware, however, Gestalt() may not be available.

struct Cursor

Bits16 data:
Bits16 mask:
Point hotspot:

) ;

typedef struct Cursor Cursor:
typedef Cursor *CursPtr, **CursHandle:

The system defines five cursors. You won't have to access fields of the
Cursor structure itself. Instead, you use GetCursor() to receive a
CursHandle with which to work.

System Features
OSErr SysEnvirons(short version,

SysEnvRec *sys_env_rec);

Appendix D: Toolbox Routine Summary 601

A call to SysEnvirons() fills the SysEnvRec sys_env _rec with system
information about the machine currently running your program. Set ver­
sion equal to the constant curSysEnvVers. You can then examine fields of
the SysEnvRec. The SysEnvRec structure is given under the Data
Structures heading of this section.

OSErr Gestalt(OSType selector,

long *response):

long NGetTrapAddress(short trap_num,

TrapType trap_type) :

When passed trap number trap_num and the type of trap, trap_type,
NGetTrapAddress() returns the address of the trap, or routine. To test for
the availability of a Toolbox routine, call NGetTrapAddress() twice. On
the first call, set trap_num to the trap number of the routine in question.
On the second call, set trap _num to the unimplemented trap number. If
the returned results of both calls are not equal, the trap exists and it is
safe to call that routine.

Extracting Information From Long lnts
short HiWord(long long_num):

HiWord() returns the high-order 16 bits of the 32-bit long_num.

short LoWord(long long_num) ;

Lo Word() returns the low-order 16 bits of the 32-bit long_num.

Causing a Delay
void Delay(long num_ticks,

long *final_ticks) ;

Delay() pauses your program for num_ticks ticks. A single tick is one
sixtieth of a second. When the pause is completed, final_ticks will be
filled in with the number of ticks from system startup to the end of the
delay.

602 Macintosh Programming Techniques

Don't attempt to use a loop, as in:

for (i=O: i(lOOOO: i++)

/* do nothing. just killing time */

Rather, use the Delay() routine. A loop is processor dependent; That is, a
loop will execute more quickly on a faster processor. The Delay() routine
is processor independent its delay effect is the same on all CPUs.

Cursors
CursHandle GetCursor(short cursor_ID) :

GetCursor() loads the 'CURS' resource specified by cursor_ID into mem­
ory and returns a CursHandle to it. It does not display the cursor. Use
SetCursor() for that.

void SetCursor(Cursor *cursor_handle) :

SetCursor() changes the shape of the cursor to that specified by the cur­
sor. First call GetCursor() to get cursor_handle. Dereference that handle
once to get a pointer to a cursor, as required by SetCursor().

void InitCursor(void);

InitCursor() sets the cursor to the familiar arrow shape. You do not have
to call GetCursor() first.

Loading Resources
Handle GetResource(ResType the_type,

short the_ID) :

GetResource() returns a generic handle to the resource with a resource
ID of the_ID. The parameter the_type can be any resource type. Include
single quotes around the type, as in this call that loads a sound resource
with an ID of 9000:

GetResource('snd ' 9000) :

Appendix D: Toolbox Routine Summary 603

Sound
This section describes the Sound Manager routines covered in Chapter 3
of this book.

There are additional constants and data structures listed in Apple's
Sound.h header file. You must #include this file in your projects if you're
going to use 'snd ' resources in them. The sound.h file is not used as
often as many other headers, so it has not been included in either the
TIIlNK C MacHeaders or the Symantec C++ MacHeaders++ files.

#include <sound.h)

Playing a Sound
OSErr SndPlay(SndChannelPtr the_channel.

Handle sound_handle.

Boolean async):

SndPlay() plays a 'snd 'resource that has been loaded into memory. First
call GetResource() using 'snd ' as the first parameter and the resource ID
of the 'snd 'as the second parameter. GetResource() will return a handle
to the sound; use this as sound_handle. Pass a value of true for async if
this is the only sound that will be playing (asynchronous) or false if there
will be multiple sounds playing at the same time (synchronous). See the
Utilities section of this appendix for information on GetResource().

Note that your 'snd' resource should have a resource ID greater than
8192 so that it won't conflict with Apple's reserved 'snd ' resource
numbering 0 to 8191.

-

·-
. ~ /-

~ ·: .

Index

Symbols
#define directive 41
#include directive 40-41
& bit operator 30S, S40-S41
$ trap numbering 376
OxO hexadecimal format S39-S41
32-bit clean 4S0-4S2, 47S

A
AddResMenu function 294-29S
Alert function 227
alerts

cancelling 22 7
returned value 227
variations 228
defined 224
resources 224-226
item types 22S-226
item numbers 226

All_Done variable 164, 219
animation

using 'PICT's 86-90

Apple Menu Items folder 294-29S
application frameworks 14
application partition

defined SO
AS World S2
stack S2, S8
heap S4, S8
size 6S,67-68,471-481

applications

605

internationalizing 77
localizing 77
Type identifier 96
Creator identifier 96, 102
APPL type 96
Signature 97
quitting 164, 219
terminating abruptly

See Exi.tToShell function
building 4S2-4S4
size, setting 471-481

606 Macintosh Programming Techniques

B
Bedrock 14
Begin Update function 179, 193
BIOS 28
bit-mapped graphics

versus text-based 16
buttons

drawing 215

c
casting See typecasting
CautionAlert function 228
central processing unit type 386
CGraf Port data type 136
character 433
charCodeMask constant 329
check box item 239-240
Checkltem function 315
checkmarks 315-318,361-362
clip art 81
Close Window function 445
color

dialog boxes 258-259
displays See pixels, depth
windows 136

Color QuickDraw 134-136, 385, 394
compaction 60-61
compressed files 91
computer characteristics

See machine features
control item 239
ControlHandle data type 240
coordinate system

See pixels, coordinate pair
CPUtype 386
Creator 96, 102
CurHandle data type 143
cursors

system 143
using 143-144

curSysEnvVers constant 378

D
debugger 258
#define directive 41
definition functions 452
Delay function 90
desk accessories

ports 123
program interaction 16 7
menu location 291, 294
drivers 294-295
storing 294

desktop
rebuilding 102-103
objects 295
See also Finder

device
defined 393
list 393

dialog boxes

item types 225-226, 229-230
windows and 260
item numbers 226
defined 228
modal 228,241,244-246
modeless 228
items, adding 231
pictures in 232-236
icons in 232, 234-236
user items 236, 250
displaying 236
visibility 244
eventsin 247-250
color 258-259
text in 323-331, 359-361
filter function 325-331
enabled items 326

dialog items

mouse clicks in 233, 244
picture size 233
information about 23 7
handle to 23 7

edittext 238,329-330
check box 239-240
value 239
control item 239
radio button 240-241, 277
multiple use of 262

Dialog Manager 251-252
DialogPtr data type 242
DialogReco1d data type 242
DialogSelect function 249
Disableltem function 312-314
disk access 460
DisposDialog function 246
Dispose Window function 173,

219-220,445
DisposPtr function 219, 445
DisposHandle function 294
DlgCopy function 330
DlgCut function 330
DlgPaste function 330
Do_User_Item function 253-257
drag region 390-392
Drag_Rect variable 172
DragWindow function 171
Draw _Moving_Picture function 88-90,

113
drawing

shapes 125-130
rectangles 126-128
ovals 128-129
round rectangles 129-130
color 140-141

DrawMenuBar function 295
DrawPicture function 85, 88
DrawString function 45

See also strings
driver 294-295

E
Enableltem function 312-314
EndUpdate function 179, 193

E1aseOval function 128
EraseRect function 128
EraseRgn function 179
EraseRoundRect function 130
errorhandling 75-77,481-485
event

types 165-167
defined 18
loop 19, 45
processing 19
queue 19
mouse down 45
handling 164-169
window-related 170-176
activate 177, 190-191

Index 607

event-driven programming 17-22
event record

See EventRecord data type
EventRecord data type

where field 18, 217-218
what field 19
message field 178, 191, 305
modifier field 305, 329

example source code
decompressing 5-8

exiting a program
See application, quitting

ExitToShell function 76, 113, 482

F
file naming convention 36
FillOval function 128
FillRect function 126
FillRoundRect function 130
filter function 325-331
Finder

defined 34
exiting to See ExitToShell function
displaying icons in 96

FindWindow function 248
floating point unit type 38 7-388

608 Macintosh Programming Techniques

font
size 431
type 431
See also strings

FPU type 387-388
fragmentation 58-59, 439446
FrameOval function 128
FrameRect function 126
FrameRoundRect function 130
Front Window function 174
functions

G

prototypes 41
Macintosh format 46

naming convention 46
See also individual function names

GDevice data type 393, 398
GDeviceList function 398, 402
GDHandle data type 393, 398
Gestalt function 135, 324-325,

379-390
GestaltEqu.h header file 135, 383
Get_Min_Pixel_Depth function 402
Get_Pixel_Depth function 399, 402
Get_Some_Strings function 112
GetCtlV alue function 239-240
GetCursor function 143
GetDltem function 237, 253
GetlndString function 78, 112, 320
Getltem function 300, 320
GetltemStyle function 322
GetIText function 238
GetMainDevice function 393
GetMessage function
GetMHandle function 294-295, 309
GetNewCWindow function 136, 142,

258
GetNewDialog function 236, 244, 246,

259
GetNewMBOI function 293, 309

GetNewWindow function 28, 43-44,
160--161

GetNextDevice function 402
GetNextEvent function 19-22, 163
GetPattern function 133
GetPenState function 123
GetPicture function 83, 85
GetPixPat function 138
GetPort function 122, 178
GetResource function 94-95, 113
global variables 42

See also individual variables
GlobalToLocal function 218
Graf Port

defined 118
window relationship 162
See also graphics ports

GrafPtr
defined 118

graphical user interface
programming challenges 15

graphics
bit-mapped 16

graphics pen
defined 119
moving 119
size of 120

graphics ports
defined 118
changing 121-123
characteristics of 123-125
color 136

gray region 391-392
GrayRgn global variable 391-392

H
Handle_Apple_Choice function 300
Handle_Dialog_Event function 247
Handle_Keystroke function 304
Handle_Menu_Choice function 298
Handle_Modal_Dialog function 244

Handle_Mouse_Down function 46,
173, 297

Handle_One_Event function 165-166,
246

Handle_ Update function 177-182
Handle data type 240
handles

defined 63
use of 63-64
dereferencing 144-145

header files
lviaclieaders 40
example of 525-527

hexadecimal format 539-541
Hide Window function 173
hierarchical menus 305-311
HiWord function 299
HLock function 144
Iiolt, Joe 480
HUnl.ock function 144
liyperCard 14

I
icons

application 95-103
color 99-101
monochrome 99-100
see also resource, types

In Action! software
conjunction with book 12
decompressing 5-8
purpose of 10
running animations 11
selecting topics 12
using 9-12

#include directive 40-41
InitCursor function 143
InitGraf function
Initialize_Toolbox function 116

InsertMenu function 309

Index 609

InvettOval function 128
InvettRect function 128
InvettRoundRect function 130
IsDialogEvent function 248-249

K
keystrokes

handling of 304-305, 329

L
Line function 16, 120
LineTo function 120
long data type 298
Lo Word function 299

M
lviacApp 14
lviaclieaders 40
machine features

CPUtype 386
FPU type 387--388
operating system 389--390
QuickDraw version 383, 385
RAM amount 386--387
response parameter 382
selector codes 382
type 381,388--389

lviacintosh User Interface Toolbox
See Toolbox functions

main function 42
main screen 393
managers

defined 32
See also individual managers

master pointers
allocating 446-449
blocks 446-447
defined 61
use of 61-64

MaxApplZone function 449

61 0 Macintosh Programming Techniques

memory
application partition

See application partition
attributes SS, 438
compaction 60-61
error messages 67
fragmentation S8-S9, 439-446
locked blocks 438
locking l 44-l 4S
master pointers 446-449
nonrelocatable blocks 61, 438, 4

40-445
objects 438
overflow 65
partitions 49
purgeable blocks 439
relocatable blocks 61, 438
reserving S78
system partition

See system partition
unlocked blocks 438
unpurgeable blocks 439

Memory Manager SS, 438
menu bar

adding menus to 291-292
order of menus in 292
parts of 2 78-288
setting up 293-296, 353-354

Menu Manager 293
MenuHandle function 294
MenuKey function 305
menus

About item 290
characteristics 311-313
checkmarks 315-318,361-362
desk accessories in 291, 294, 300
disabling 288, 311-314
enabling 288,311-314
extracting item number 298
flashing 297
handles to 295

hierarchical 305-311
highlighting 297
item length 319
items 288
keyboard equivalent 288, 302-303
list 294
MDEF ID 307-308
mouse click in 296-301, 356-359
resource ID 292, 306-307
resources 289-292
selections 297
separator lines 288, 290
styles in 320-323
textchanges 318-320
tracking mouse in 297, 301

MenuSelect function 297, 314
modal dialog box 228, 241, 244-246
ModalDialog function 24S-246,

326-331
modeless dialog box 228
monitors

center point 392-395
color 396-406
displaying color pictures 397
drag region 390-392
gray region 391-392
main screen 393
multiple 390-395, 400-401
pixel depth See pixels, depth

MoreMasters function 44 7-449
mouse events

close box 173-17 4
desk accessory 175-176
drag bar 171-172
handling 167-169
menu bar 175-176
window content 174-175

mouseDown event type 296
Move function 119
MoveTo function 16, 44, 119
Move Window function 183

·-

MultiFinder 6~6
Multifinder_Present variable 166
MyWindPeek structure 187

N
NewHandle function 446
NewPtr function 189, 246, 440
NGetTrapAddress function 3 75-3 78
nil pointer 43, 161, 189
noErr constant 95, 383

nonrelocatable blocks 61, 438, 440-445
NoteAlert function 228

0
OpenDeskAcc function 300

operating system
ROM-based 31
routines 31

Toolbox comparison 31
OSTrap data type 376

p
PaintOval function 128
PaintRect function 127
PaintRoundRect function 130
ParamText function 335-337, 363,

484-485
part codes 168
pascal keyword 254

patches 33

PatHandle data type 133
Pattern data type 126, 133
patterns

changing 12 7
color 137-140
drawing lines with 127
filling shapes with 126
standard 126, 131

PenPat function 127, 139
PenPixPat function 139
PenSize function 120

Index 611

PenState data type 123
performance degradation 460
picFrame struct member 83
PicHandle data type 83, 85, 88
Picture data type 83
pictures

clip art 81
creating 81, 86-87, 180-181
displaying 83-86
drawing 81
painting 81

resource ID 88
saved as resources 81-82
size of 443

pixels

bits per pixel 396-397
coordinate pair 16, 117, 218

defined 16

depth 396-398,405
PixMap data type 398
PixMapHandle data type 398
PixPat data type 137
PixPatHandle data type 138
Play _A_Sound function 113
Point data type 218

pointers
generic 189
integers as 44
memory size of 43
nil 43, 161, 189
similarities 243
See also master pointers

programs See applications
PtlnRect function 218
purgeable blocks 439

Q
queue 19
QuickDraw

color See Color QuickDraw
defined 115

61 2 Macintosh Programming Techniques

initializing 116
version 383, 385

quitting a program
See application, quitting

R
radio button item 240-241, 277
Rect data type

defined 83-85
pointer to 84

rectangle
basis of other shapes 125
coordinates 84
mouse clicks in 218

relocatable blocks 61, 438
ResEdit resource editor

creating resource file 3 7
creating resources 23
defined23
editing with 26

Resourcerer resource editor 7 4
resources

creating 23, 37
compiling 25
defined 22
editing See ResEdit resource editor
errors 75-76
file versus program 452-454
IDs 44
importance of 7 4
merging 453-454
names 23
ResEdit See ResEdit resource editor
types

I ALRT' 75, 224-226
'BNDL' 75, 95-101, 488
'CODE' 25, 7 4, 455
'CURS' 143
'dctb' 259
'DITL' 24, 75, 24-226, 230-236
'DLOG' 24, 75, 230

'DRVR' 75, 294
'FREF' 101
'ICN#' 75, 99, 101
'icl4' 99, 101
'icl8' 99, 101
'ICON' 232
'ics#' 99
'ics4' 99
'ics8' 99
'MBAR' 24, 289, 291-292
'MENU' 24, 289-291, 303, 306
'PAT I 131-132
'PICT' 75, 81-90
'ppat' 137
'SIZE' 75, 473-477
'snd' 91-95
'STR#' 75, 77-80, 112
'wctb' 141
'WIND' 24, 28, 75, 160

source code and 28
using 133

response parameter 382

s
scanf function 21
screen

as a port 119
screenBits. bounds 172
segmentation

defined 455
loading 462
attributes 462-465
unloading 467-471
'CODE' 455, 461-464
source files 455, 458-461
preloaded 461
size barrier 459-460
naming 457
examples of 469, 497-498
main segment 457, 461-467
segment 0 45 7

selector codes 382

Select Window function 17 4

separator lines 288, 290

Set_ Window_Drag_Boundaries function

172, 391

SetCtlV alue function 239-240

SetCursor function 143

SetDitem function 253

Setltem function 318-320

SetltemStyle function 320-322

SetIText function 238

SetMenuBar function 294

SetPenState function 123

SetPort function 44, 79, 118, 122, 178

SetRect function 84, 125

SetWTitle function 80, 112

ShowWindow function 244

Signature 97
sizeof function 443

SndPlay function 94-95, 113

Sound Manager 94

sound

creating 91

files 92

obtaining 91

memory size of 95

playing 94-95, 113

resources 92-93
storing 91

transferring 92

Sound.h header file 94

source code
multiple files 456, 495

StopAlert function 228
Str255 data type 78, 238, 542

strings
converting to numbers 238

displaying 112

format of 45

length 542

memory content 542

Index 613

retrieving from 'STR#' 78, 491-494

using 79-80

See also Str255 data type

StringToNum function 238

Stufflt program 91

Style data type 320-321

SuperCard 14

Swatch application 480-481

Symantec C++ compiler 35

SysBeep function 46

SysEnvirons function 3 78-3 79
SysEnvRec data type 378--379

System 7
checkingfor 324-325

System file

defined 33

patches in 33

system global variables See individual
variables

system partition

contents of 50

defined 50

global variables 51

heap 51

system software

defined 32

system version

checkingfor 324-325
SystemClick function 175

SystemTask function 166

T
TextFont function 431

TextSize function 431
TIIlNK C compiler

Creator setting 102
file naming convention 36

header files 40

multiple source files 456, 495-498

program examples 35

project file 36

61 4 Macintosh Programming Techniques

resource merging 25
segmentation 455-465
size of applications 473

Toolbox functions
availability of 135
correct usage of 29
defined 27
initialization of 42
naming convention 30
numberof 29
presence of 3 75-3 78
RAM routines 369-3 7 4
ROM routines 27, 369-374
traps See traps

ToolTrap data type 376
TrackGoAway function 173
traps

C language definitions 3 75
defined 368
dispatch table 3 70-3 7 4
nllillbers 368,376-377
RAM 368-374
unimplemented 3 71-3 7 4

Traps.h header file 164, 375
typecasting

u

ControlHandle 240

WindowPtr 161, 186, 189

UnloadSeg function 467-471, 532-533
unlocked blocks 438
unpurgeable blocks 439
user items

definition routine 254-257
handling 257,278
multiple 256-257
purpose 250-251
resources 251
setting up 253
text in 279
updating 251-255

w
WaitNextEvent function 166
Window Manager 32, 177
WindowPeek data type 162, 185-190
WindowPtr data type 162, 185-190
WindowRecord data type 118,

161-162, 185-190
windows

activating 177
closing 219-220, 435
color 136
creating 160-161
dialogs and 260
drawing to 44
dynamic data in 181
events in 170-176
expanding record 185-190
frontmost 17 4
keeping track of 212
memory size 211
moving 183
multiple 184-193
snapshot 181
storage 188, 445
title 80, 184, 211-212
types 187-190,209-211
updating 177
visibility 183-184

Windows.h header file 40
WinMain function 42

About This Disk

The In Action! Mac Techniques software is a Macintosh program created
specifically for the book Macintosh Programming Techniques. Through
the use of over two dozen animations, this software tutorial supplements
and enhances the understanding of the concepts presented in this book.

The one 1.4 Mb disk contains one self-extracting compressed file. When
expanded, this file gives you the In Action! Mac Techniques program and
the THINK C source code for the nine example programs ·listed in this
book. Self-extracting means that you need no additional software to
decompress these files-everything you need is right here on this disk.

This disk is a Macintosh 1.4 Mb high-density disk. All newer model
Macintosh computers come with the SuperDrive-a 1.4 Mb high-density
floppy drive. If you have an older Macintosh with an 800 K double-density
floppy drive, you won't be able to use this disk. You can, however, if you
find a friend who has a SuperDrive. That person can extract the files and
copy them to 800 K disks for you.

To get the software from the disk on to your hard drive, follow these
simple steps:

1. Insert the disk into your 1.4 Mb floppy drive.

2. Copy the single file, named MacProgTech.sea, to your hard drive.

3. Double-click on the MacProgTech.sea icon on your hard drive.

4. A dialog box opens. Click the Extract button.

The In Action! Mac Techniques software runs on any Macintosh running
System 6.0.4 or greater-including any version of System 7. The program
runs on black and white or color systems, and runs on a Macintosh with
any size monitor. You need no additional software to run the program.

For more detailed instructions on how to decompress the software, and how
to use it, read the section titled "Introduction" beginning on page 3.

-:=:.: I

A Division of MIS:Prt'ss, Inc.
A Subsidiary of Ht'nry Hoh and Co .. Inc

Macintosh Programming
Techniques
DanP.Sydow

ISBN 1 ·55828 ·326 ·9
Copyr1ghtC1993 M&T Books
Fonnat: Maolntoah/OS

M&.T Books

of Macintosh programming with this
h ands-on guide and tutorial. It provides a
solid foundation for developing powerful
applications. No matter what language
you use you' ll benefit from the dozens of
techniques presented. This book contains
in-depth discussions of key topics every
programmer should know, including
m emory m anagement, QuickDraw graphics,
and event-driven programming.

Macintosh Programming Techn iques also
includes an interactive software tutorial.
Work through the examples to develop an
exciting app lication loaded with the fea­
tures expected of a Macintosh program -
graphics, text, color, and animation. If
you' re new to Macintosh program ming or
wan t to boost your Macintosh program­
ming skills, t his is tire reference for you!

• Learn the t ricks and techniques of
Macintosh programming

• Gain hands-on experience with an
interact ive software t utorial provided
on the disk

• Discover guidelines for creating
consistent and friendly user interfaces

• Use QuickDraw and PICT resources to
animate your program

• Understand the Macintosh's memory
management system and avoid
memory pitfalls

• Examine the resources essential to
creating standalone Macintosh programs

• DOS, Windows, and mainframe
programmers - make a smooth
transition to Macintosh program ming

Why this book is for you- page 1.

M&T M & T Book B•\lc/1n1cmmha1c

-~
115 West 18th Street

Pro~rammong

S}niamcc (', C++

cw York, y 10011 M•con10,h

Dan Parks Sydow
has owned and
programmed Macin to h
com puters since the
fi rst 128K Macintosh
was introduced a decade
ago. He is a software
engineer at St. Luke's
Medical Center in
Milwaukee, Wisconsin ,
where he works o n
software for t he
hospita l's intensive
care units and nuclear
imaging department.
His educational
Macintosh software
is di stributed by
co mpanies such as
Intellimation .

The enclosed disk
contains a compiled
executable version of
the software tutorial
plus C and C++ source
code examples.

US$ 34.95
CA N$ 43.95

ISBN 1-55828 -326 -9
90000>

9 781558 11 283268

