Macintosh
Programming
Techniques &

A Foundation for all Macintosh Programmers

Master the
fundamentals
of Macintosh
programming

Covers 68k and
Power Macintosh
techniques

Includes advice
on memory
management,
resources, and
system calls

CD-ROM includes
a limited version
of Symantec C++
for the Macintosh

(ﬁ Series Editor: Tony Meadow

swmvs Bear River Associates

Dan Parks:s S_ydow';}

ACINTOSH
ROGRAMMING

ECHNIQUES, 2E

ACINTOSH
ROGRAMMING

ECHNIQUES, 2E

Dan Sydow

M&T =

E j==]
[—3
=
=

3 e

M&T

L

E|

o

Mé&T Books

A Division of MIS:Press, Inc.

A Subsidiary of Henry Holt and Company, Inc.
115 West 18th Street

New York, New York 10011
© 1996 by M&T Books

Printed in the United States of America

All rights reserved. No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording, or
by any information storage and retrieval system, without prior written permission
from the Publisher. Contact the Publisher for information on foreign rights.

Limits of Liability and Disclaimer of Warranty

The Author and Publisher of this book have used their best efforts in preparing the
book and the programs contained in it. These efforts include the development,
research, and testing of the theories and programs to determine their effectiveness.

The Author and Publisher make no warranty of any kind, expressed or implied, with
regard to these programs or the documentation contained in this book. The Author and
Publisher shall not be liable in any event for incidental or consequential damages in con-
nection with, or arising out of, the furnishing, performance, or use of these programs.

All products, names and services are trademarks or registered trademarks of their
respective companies.

Library of Congress Cataloging-in-Publication Data

Sydow, Dan Parks.
Macintosh programming techniques / Dan Parks Sydow. -- 2nd ed.
p. Cm.
ISBN 1-55851-458-9
1. Macintosh (Computer)--Programming. I. Title.
0A76.8.M359582 1996

005.265--dc20 95-51548
cIe
10987654321
Associate Publisher: Paul Farrell Managing Editor: Cary Sullivan
Editor: Michael Sprague Technical Editor: Peter Ferranti
Copy Edit Manager: Shari Chappell Copy Editor: Suzanne Ingrao

Production Editor: Maya Riddick

DEDICATION

To Nadine
-Dan

@CKNOWLEDGMENTS

Michael Sprague, Development Editor, M&T Books, for keeping things
rolling and on schedule.

Maya Riddick, Production Editor, M&T Books, for such a fine page
layout effort.

Carole McClendon, Waterside Productions, for making this book happen.

ACINTOSH PROGRAMMING TECHNIQUES, 2E

Contents

Why This BookisforYouxxi

Introductioncocv.n.... XXii

Chapter 1: Macintosh Programming Overview .. .1

Deévelopment Systemns . o aux v o s vssvass s vwwruns s 555 583558 55 Haw i)
Information Environmentsiiiiiiiinn... 2
Application Frameworke «s.«asssessmasmseneewnsmsesnessys 2
Programining Languapelcovcusnesmnaresmsmswmns saainms 3

About Macintosh Proprafimiing .suesessssenssisisssnsnasenianss 3

BUTAPPeR GEIRPRICS: . . v xm o< wm o wawe s n s wmmme s smwnmss o 4

BventLitiven Proframifing < vsssssassasassvinessiissiiissses 2]

RESOUICES . vt it ittt it et et e e e 11
ResOUIrCE BOIROIS o s o006 ninas o5 6e s asn s b se s e e e 12
Creating a Resource File and a Resource Using ResEdit 13
Resources, Source Code, and Applications 16
RESOUICETHPES: o wvvmm 6w oms sesim o s s S 4 3 o e s 19

THEITOOIBOR. w552 53 b s s BT R S0 ki B 3 R i b e BB 19

viii

Macintosh Programming Technlques, 2E

Resources, Source Code, and the Toolbox 21
Toolbox Routines and Application-Defined Routines 24
The Operating Systemciiiiiiiiiiiiiiiiiiinnn.. 25
System Software i 26
The System Fileand Finder 27
TheSystem File, 27
TheFinder i, 28
Chapter Program: VeryBasics 30
Program Project: VeryBasics68K.j or VeryBasics68K.mt 32
Program Listing: VeryBasics.c 41
Stepping through the Code e 43
Chapter Summaryccoiiiiuiiiiiiininnneeenna... 51

Chapter 2: Macintosh Memory53

Memory Organization, 53
System Partition Organization 56
Application Partition Organization 57
Summary of Memory Organization 61

The ApplicationHeapl 63
Heap Fragmentation, 63
Heap Compactioncooiiiiiiiiii65
Nonrelocatable and Relocatable Blocks 67

Macintosh Memory Management 72

Avoiding Heap Fragmentation 74
How Nonrelocatable Blocks Get Created 74
Nonrelocatable Blocks and Heap Fragmentation 76
Nonrelocatable Block PlacementintheHeap 77
Reserving Memory to Reduce Fragmentation 79

Heap Management i, 84

Allocating Master Pointer Blocks 84

Contents

ExpandingtheHeap 89
Setting the Application Partition Size of a Program 90
The User’s Role in Setting the Partition Size 90
Setting an Application’s Partition Size 92
Determining Your Application’s Memory Needs 93
Writing 32-Bit Clean Programs 98
Chapter Program: MemoryBasics, 101
Program Resources: MemoryBasics.rsre 103
Program Listing: MemoryBasics.c 103
Stepping throughthe Code 105
Chapter Summarycoiiiiiiiiiiiiiiiiinn., 107

Chapter 3: QuickDraw Graphics109

About QuickDraw and Color QuickDraw 110
Initializing QuickDraw il 110
Pixels and the Coordinate System 111

Graphics Portsoiiiiiiiiiiiiiii it 112
The GrafPortand GrafPtrt 113
Color Windows and the CGrafPort 114
The Graphics Penccoiiiiiiiiiiiiiiii.., 116

Defensive Drawingcooiiiiiiiiiiiiiia. 118
Changing Portscooiiiiiiiiiiinnininnn. 118
Changing CharacteristicsofaPort 120

Drawing Shapes i il i 122
Working with Rectangles 123
Working withOvals, 125
Working with Round Rectangles 127

Patterns 129
The PATReSOUICEiiiuniiiiiiinniinninnennnnn. 129

The PAT Source Code ...t iiir vttt e 131

Macintosh Programming Techniques, 2E

The ppat Color Pattern Resource 133
The ppat Color Pattern SourceCode 134
Pictures and Animation i il 137
The PICT RESOUICEovvviiiiiiiinniieeiiiannn, 137
Displayinga PICT ina Program 139
Using PICT Resources to Create Animation 143
PicturesasPatternso it 148
Converting a Picture to a ppat Resource Using Pict2ppat 148
The Cursorcouiiiiiii i 153
Chapter Program: QuickDrawing 157
Program Resources: QuickDrawing.rsrc 158
Program Listing: ResourceUser.c 159
Stepping throughthe Code 164
Chapter Summarycooiiiiiiiiiiiiiinniiinnns 166

Chapter 4: Working with Windows169

Windows Primer ...ttt 170
The WINDResOUrceviuinemennnnnnenennnnnn. 170
LoadingaWINDottt 170
The WindowRecord, WindowPtr and WindowPeek 171

EventHandling i it 173

Windowsand Eventsc.iiiiniiiininennnnnnn. 178
MouseDownEvents, 179

Single-Window Techniques 184
Activate Events i 185
UpdatingaWindow il 185
Simple Window Techniquesoov... 191

Multiple-Window Techniques 193
Expanding the WindowRecord 194

Activates and Multiple Windows 199

Updates and Multiple Windows 201
Chapter Program: MultiWindows 202
Program Resources: MultiWindows.rsrc 203
Program Listing: MultiWindows.c 204
Stepping Through theCode 214
Chapter Summaryoiiiiiiiiiiiiiiiiii., 238

Chapter 5: Dealing with Dialog Boxes241

Alerts ... 242
Alert Resources: ALRTand DITL 242
AlertSourceCode ...ttt 244

DialogBoxeso 246

Dialog Box Resourcesoiiiiiiiiiiiinnn. 247
Dialog Item Typescoiiiiiiiiiiiiiiiay 247
The DLOG and DITL Resources 248

Working with DialogItems 255
Getting Dialog Box Item Information 255
Working with Edit TextItems 256
Working with CheckboxItems 258
Working with Radio ButtonItems 259

Modal Dialog Boxesccoiiiiiiiiiiiiiininnnnnnn.. 260
The DialogRecord Data Structure 260
Modal Dialog Box SourceCode 262

Modeless Dialog Boxesccoiiiiiiiiiiiia... 265

UsingUserItemscoiiiiiiiiiiiiiiiiiinennn.. 270
The User Item Resource ooiiiinnn 270
The User Item Source Code e e 271

Chapter Program: DialogPlus 279
Program Resources: DialogPlus.rsrc 281

Program Listing: DialogPlus.c 283

Macintosh Programming Techniques, 2E

Stepping throughtheCode 293
ChapterSummaryccoiiiiiiiiiiiia 305

Chapter 6: More About Windows307

AboutMenus i 307
MenuResourcesooo i 308
The MENU Resource ..., 309
The MBARResourcecooviiiiunnnnninnn... 311
MenuSourceCodec. il 313
SettinguptheMenuBar, 313
Handlinga ClickinaMenu 316
Handling a Click in the AppleMenu 320
Handling a Click in Other Menus 321
Keyboard Equivalents i i 321
The MENUResourceoiiiiiiiiinninenn. 323
Handling a Keystroket 324
Hierarchical Menus il 325
The MENU Resourcecooiiiiiiiiiiiiinnnnnn.. 326
Setting up the Hierarchical Menu 328
Changing Menu Characteristics 332
Disabling and Enabling Menus and Menu Items 332
Adding a Check MarktoaMenultem 336
Changing the TextofaMenultem 340
Changing the StyleofaMenultem 342
Editing Text in a Modal Dialog Box 344
Modal Dialog Box Filter Function 346
Chapter Program: MenuMaster 352
Program Resources: MenuMaster.rsrc 356
Program listing: MenuMaster.c 361

Stepping through theCode 371

Contents
Handling a Clickinthe MenuBar 376
The Modal Dialog Boxoiiiiiiiiiinnnn 379
Handling a Hierarchical Menu 384
ChapterSummaryoiiiiiiiiiiiiiiinnnn 384

Chapter 7: Text and Strings387

String Data Typeso, 387
TheStr255Data Type ..., 388
Other String Data Types ..., 390
Assigning a S5tr255 Variablea Value 391

Strings and Resources i it 392
TheSTRResourceciiiiiiiiiiiiiinneeenn.. 393
The STR#Resourcecouiuuiiiiiininennennnn. 396

Text Characteristics o i 399
TextFontot S 399
TextSize 400
TextStyle ... 401
TransferMode il 403

Chapter Program: StringHandler 405
Program Resources: StringHandlerxsre 409
Program Listing: StringHandlerc 411

Chapter Summary i 433

Chapter 8: Power Mac Programming435

Universal Procedure Pointers (UPPs) 436
Procedure Pointers (ProcPtrs)
and Universal Procedure Pointers (UPPs) 437
Chapter Program: MenuMaster (revisited) 441
Universal Procedure Pointers and User Items 443

Chapter Program: DialogPlus (revisited) 445

xiii

Macintosh Programming Techniqaes, ZE

Fat Applications 447
68K, PowerPC-Only, and fat Applications 447
Creating the fat Application 448
The fat App and the cfrg Resource 449
Metrowerks CodeWarrior and the DialogPlus fatapp 450
Symantec and the DialogPlus fatapp 453

ChapterSummarycooiiiiiiiiiiiiiiiiineeen.. 458

Chapter 9: The VaryingMac 459

The Features of a MacintoshoiaL 460
The Gestalt() functioncooviiiiiiniinrnnnnnnen.n 461
Checking for the availability of Gestalt() 462
Determining Machine Features Using Gestalt() 464

Checking for Trapsovuiiiiiiiiniiiiinnnennnnn.. 474
Toolbox Routinesare Traps iina... 474
Determining If a Toolbox routine is Implemented 482

Monitor-Awarec i 485
Dealing with Multiple Monitors 485
Dealing with Different Sized Monitors 492

Color Awareoeiiiiiiiniiii i 493
Color Representationccovuiiiiiin..s 493
Getting the Pixel Depth of a Monitor 494
Multiple Monitors and Pixel Depth 497
When to Call the Pixel Depth Routines 501

Chapter Program: InnerView 504
Program Resources: InnerView.rsrc 505
Program Listing: InnerView.c 506
Stepping ThroughtheCode 515

ChapterSummaryccooiiiiiiiiiiiiiiniin... 527

Contents

Chapter 10: Applications and the Finder ...529

Givinga Programanlconol 530
The Finderandiconso, 530
Creating the BNDLresourcec.0u.... 531
Creating the icons that make up the BNDL resource 533
Setting the creator in the compiler 539

AppleEvents i 542
Making your application Apple event-aware 543
Installing an Apple eventhandler 547
The Quit Application Apple eventhandler 549

Chapter Program: FinderAware 550
Program resources: FinderAware.rsrc 551
Program listing: FinderAware.c 553
Stepping through thecode 556

ChapterSummary it 560

Appendix A: Macintosh Data Types561

Appendix B: Determining a Trap’s Type565

GetTrapType()covviiiiiiii i, 566
NumToolTraps()ccovviiiiiiiiii i, 566
TrapIsPresent(), 566

Appendix C: Gestalt Definitions569

Addressing Mode Attributes ool 570
Selectorcodeciiiiiiiiii i 570
Response parameter i, 570

Macintosh Programming Techniques, ZE

Apple Events Attributes oo il 570
Selectorcodeoiiiiiiiiii 570
Response parameterciiiiiiiiiiiian, 570

AppleTalk Versioncoooiiiiiiiiiiiiii, 570
Selectorcodeiiiiiiii 570
Response parameter i ..571
Selectorcodeciiiiiiiiiii 571
Response parameter il 571

Easy Access Attributes l 571
Selectorcodeiiiiiiiiii 571
Response parameter o, 571

Floating-Point Unit Type i 571
Selectorcode il 571
Response parameterciiiiiiiiiiiiaa, 572

Gestalt Version ... 572
Selectorcodeiiiiiiiii 572
Response parameter i, 572

Hardware Attributes il 572
Selectorcode ...t e e e e R 572
Response parameter i, 572

Help Manager Attributes 573
Selectorcodeiiiiiiiiii i 573
Response parameter i 573

Keyboard Typeo 573
Selectorcodeiiiiiiiiii i 573
Response parameter IR 573

Logical RAM Sizecoiiiiiiiiiiiiiiiiii... 574
Selectorcodel 574
Response parameterl 574

Low Memory Areacuiiiiniiiiiiiinniinnennn.n 574

Selector COde ..ttt e e 574

Response parameter i, 574
Memory Management Unit Type 575
Selectorcodel 575
Response parameter, 575
QuickDraw Versionovvieiirnii it 575
Selectorcodel 575
Response parameterccoiiiiiiiiiiiiia.. 575
Physical RAM Sizeciiiiiiiiiiiiiiiiiii, 575
Selectorcode il 575
Response parameter 0., 576
ROMSize oot i i e 576
Selectorcode il 576
Response parameter ool 576
ROMVersioncciiiiiiiiiiiiiiiiiiii i 576
Selectorcodeiiiiiiiiiiiii 576
Response parameter, 576
Sound Attributes 576
Selectorcodeccoiiiiiiiiiii 576
Response parameter e 577
System Versionc..eviiiiiiiiiiiiiiii i 577
Selectorcodel 577
Response parameter i, 577
Virtual Memory Attributes oL 577
Selectorcode i 577
Response parameter i, 578

Appendix D: Toolbox Rodtine Summary579

QUICKDIAW ..ottt it i et e e e e 580
@3) 413 ¥ 1 ¢ 2 580
Global Variablescoiiiiiii i i 581

Macintosh Programming Techniques, 2E

DataStructuresottt 581
GraphicPorts i i 582
GraphicsPen it 582
Drawing Text i 584
Patterns i e i 585
Drawing Shapes o i, 586
Eventscoiiiiiiii i e e e 588
Constantsiii i i e e e e, 588
DataStructurescoiuriiiiiiiiii i, 589
EventReporting il 590
Mouse Reporting o il 591
WINdows e e e e 591
Constantsiiiii i i e e e i 591
DataStructuresccciiiiiiiiii i it 592
Window Allocationcoiiiiiiiininnennnnn 593
Window Display il 594
Updating 596
Dialogsiiiii 596
DataStructurescciiiiiiiniiiiiitinirernnnns 596
Dialog Allocation il 597
DialogEventsl 598
Alerts ... e 599
Dialog and AlertItems i 600
MenuUS ... e e e e 602
ConsStantsttt e e i e 602
DataStructurest 603
Menu Allocation and Display o .. 603
MenuSelectionscooiuiinii i 604
Hierarchical Menusc.cooiiiiiiiiiiin iy 605
Changing Menu Characteristics 606

Memory ... e e e e 607

Contents

Utilitieso e 609
Constantsoiiiiiiiiiiiiiiii i 609
DataStructures il 610
Extracting Information From LongInts 611
CausingaDelay il 612
CUISOIS ...ttt e 612
Loading Resourcesiiiiiiiiiiiiaa. 613

Sound ... 613
PlayingaSound i, 613

Index...............ciiiiiinena....605

ACINTOSH PROGRAMMING TECHNIQUES, 2E

Why This Book
is for You

If you've programmed in C, whether on a Windows, DOS, or UNIX plat-
form, and are now about to try your hand at programming the
Macintosh—this book is for you. If you've tried writing a Macintosh
program in the past, but had less than desirable results, this book is also
for you. This book starts out with the basics of Macintosh program-
ming—topics such as the elements of a simple Mac application and how
the use of memory differs on a Mac compared to other computers. From
there you'll move on to working with windows, dialog boxes, and
menus. Macintosh Programming Techniques doesn’t make a lot of assump-
tions about what you already know as it teaches you the practical tech-
niques that you will use again and again in all the Macintosh programs
you'll be writing.

This book is for anyone interested in learning the techniques and
concepts basic to writing programs that will run on the Macintosh and
Power Macintosh computers. The example code in the book is in the C
language. This book does not teach C; it is assumed that you already
know either C or C++. The book doesn’t, however, assume you’'ve used
either of these languages on the Macintosh.

ACINTOSH PROGRAMMING TECHNIQUES, 2E

Introduction

Chapter 1 is an introduction to the basic concepts you need to know in
order to program on the Macintosh. If you haven’t programmed on the
Mac, you'll appreciate the definitions of Mac terminology. If you have
programmed the Mac, this chapter serves as a refresher. Chapter 1, like
every chapter in the book, ends with an example program.

Chapter 2 introduces you to the elementary organization of memory
in the Macintosh. Concepts and terms covered here will pop up
throughout the remainder of the book.

Chapter 3 covers QuickDraw—the Macintosh way of drawing.
You'll see how to draw shapes and patterns, in both monochrome and
color. This chapter also demonstrates how to add color to the content
and title bar of a window.

Chapter 4 discusses windows. Here, basic window management
techniques, such as dragging and closing a window, are covered. A large
part of this chapter is devoted to the handling of multiple windows.

Chapter 5 covers dialog boxes and alerts. This chapter describes the
items that appear in a dialog, including the powerful but seldom-dis-
cussed user item. Here you'll see how to work with both stationary
(modal) dialogs and movable (modeless) dialogs.

Chapter 6 shows you how to manage menus. You'll see how to
define menus using resources and then how to change the characteris-
tics of menus within your source code. After reading this chapter you'll
be able to enable and disable menus, change the text of menu items, and
add checkmarks to menu items.

xxiii

Macintosh Programming Techniques, 2E

Chapter 7 discusses strings—how to store text in memory and on
disk. In this chapter you'll also see how to change the characteristics of
text. That is, how to change the size, font, and style of words that are
drawn to a window.

Chapter 8 provides you with the details of writing source code that
will properly compile and execute on the new Power Macintosh com-
puters. Here you'll learn how to create a single program that takes
advantage of the speed of the PowerPC microprocessor when run on a
Power Macintosh, yet is also compatible with older Macintoshes—Macs
that don’t have a PowerPC chip.

Chapter 9 covers the important topic of writing programs that are
compatible with the many Macintosh models and configurations now
on the market. You'll learn how to write programs that will run proper-
ly on both monochrome and color Macs, and on a Macintosh that has
more than one monitor.

Chapter 10 topics are focused on the Finder, or desktop, and how
your program interacts with it. Here you'll learn how to allow the
Finder to communicate with your program. You’ll also see how to give
your program a distinctive icon so that users can quickly identify it.

Each chapter ends with an example program. You start out with a
simple program that uses just the basics. As you progress through the
book, the example programs will become more involved.

WhHart's oN THE CD

The CD that is bundled with this book has three folders on it. One fold-
er contains the example programs from this book. To eliminate your con-
cern as to whether the examples will work with your compiler, three
versions of every example have been included. If you own Metrowerks
CodeWarrior, you'll find a folder that holds the source code files,
resource files, and project files for all of the programs presented in this
book. The same applies to you owners of the Symantec C++ compiler.
And even though Symantec is going to phase out their THINK C com-
piler, you'll find that this book supports readers who own this prod-
uct—there’s a folder on the CD with versions of all the examples in
THINK C format. If you don’t own a compiler yet, you can still run each

Introduction

of the programs—standalone versions of all nine programs, each ready
for you to run, are included.

The second folder contains a handful of Macintosh utility programs
that you'll find helpful in your programming endeavors. Among the
programs found in this folder is a utility called Swatch, which allows
you to “look inside” your own Macintosh. This small program watches
your Mac as it runs. It displays and constantly updates interesting and
important information about the memory used by each program.

The third folder contains a program called In Action! Mac Techniques.
This Macintosh program serves as a tutorial that reinforces many of the
techniques you'll read about. It displays over thirty animated scenes that
bring to life the concepts in this book.

Also on the CD is a limited version of Symantec C++ for the Mac. It
will only run on a Power Mac and doesn’t contain all the libraries and
functionality of the complete version. However, if you don’t own a com-
piler, this will enable you to test-drive Symantec C++—the leading pro-
gramming environment for the Macintosh.

WhaTt You NEeep

To understand this book you should be familiar with a higher-level lan-
guage—preferably C or C++. While you should know one of these lan-
guages, you don’t have to have ever used one of these languages to
program the Mac.

All you need to run the example programs included on the disks is a
Macintosh computer that has a CD-ROM drive. If you want to edit, mod-
ify, and recompile the included source code, you'll need either the THINK
C or Symantec C++ compiler, or the Metrowerks CodeWarrior compiler.

The In Action! Mac Techniques program is also ready to run. It runs on
any Macintosh that has System 6.0.7 or later, including System 7. It runs
on a monochrome or color Mac. Your Macintosh needs 1 MB of memory
or more to run it.

ACINTOSH PROGRAMMING TECHNIQUES, 2E

Chapter 1

Macintosh
Programming Overview

When you look at a Macintosh screen with the menus, windows, and
icons that make up its graphical user interface, you discover that it's
visually quite different from a PC or mainframe computer screen. The
programming effort and techniques that go into achieving this effect are
different as well.

If you currently program in a text-based rather than a graphically
oriented system, this chapter will serve as your introduction to the dif-
ferences between the two. If you program for MS Windows, you'll learn
the similarities and differences between Windows and the Macintosh.
And if you've programmed the Macintosh before, you'll get a refresher
on Macintosh basics and perhaps gain a better understanding of the
qualities unique to the Macintosh.

DEVELOPMENT SYSTEMS

On a Macintosh, there are a variety of ways of accomplishing your pro-
gramming goal. Besides using a programming language, you can also

2

Macintosh Programming Techniques, 2E

create a program using an information environment or an application
framework.

Information Environments

Every Macintosh comes with an Apple program called HyperCard,
which runs HyperCard stacks. These are programs written expressly for
HyperCard and designed to display screens of information. A stack is
not a stand-alone application. In order for users to run stacks, they must
have HyperCard on their Macintoshes.

Although you can create simple stacks in a purely visual manner,
that is, without any programming, most of the interesting stacks are
written using HyperTalk, a language designed strictly for HyperCard.
HyperTalk’s strength is its simplicity, but it is also its weakness. To
expand its usefulness, HyperTalk has the capability for adding func-
tions written and compiled in a true programming language such as C
or Pascal.

HyperCard’s competition comes in the form of an Allegiant product
called SuperCard. SuperCard is very similar to HyperCard, but its lan-
guage is more powerful.

Application Frameworks

An application framework is a sophisticated class library for object-
oriented programming. A class library is a group of predefined classes.
These classes provide the kinds of functionality needed by most pro-
grams, such as opening and closing files, printing, and working with
documents. The effect is to give you a functioning program shell. You
write a minimal amount of code to turn this generic shell into a complete
application that meets your needs.

Metrowerks’s PowerPlant, Symantec’s THINK Class Library, and
Apple’s MacApp are application frameworks. With an application
framework, you write the guts of a program. As an example, you write
the code to display what goes into a window, while the prewritten
framework code manages the window for you.

Chapter 1 = Macintosh Programming Overview

Programming Languages

Most programmers who create programs for the Macintosh use a con-
ventional programming language that allows them to write source code
and then compile and link that code into a stand-alone application. You
can buy a Macintosh compiler for any of the major, and most of the less-
than-major, programming languages. These include C++, C, Pascal,
FORTRAN, and Lisp.

This book assumes you will be using a programming language,
rather than one of the information environments or an application
framework mentioned previously. Most of the example code provided in
this book is in C, but the concepts and techniques are applicable to any
higher-level language, including C++ and Pascal.

ABsodT MacINTOSH PROGRAMMING

The Macintosh has gained its enormous popularity with users because of
its ease of use—its reputation as “the computer for the rest of us.” For
programmers, its reputation is altogether different. While its GUI (graph-
ical user interface) makes learning to use the Macintosh a simple process,
it does nothing to make programming it easy. The “Macintosh way” pre-
sents a host of new challenges to programmers. If you are a PC or main-
frame programmer, be prepared to reorient yourself—completely.

If you are an MS Windows programmer you already know many of
the programming concepts that will be new to others. But don’t get too
relaxed—Windows programming differs from Macintosh programming
in many respects, and you'll still have much to learn.

If you’ve programmed the Macintosh, but aren’t confident or satis-
fied with the level you are now at, it may be because you've pieced
together your Macintosh applications without a sound knowledge of
basic Macintosh programming techniques.

This book covers the fundamentals of Macintosh programming
through in-depth discussions of general techniques. It then backs up that
theory by providing many straightforward examples. You will receive a

&4

Macintosh Programming Techniqaes, 2E

firm foundation on which you can build the Macintosh programs you
want, regardless of your choice of programming language.

BiITMaPPED GRAPHICS

The Macintosh, like other systems that use a GUI, uses bitmapped graph-
ics. Bitmapped means that every pixel, or display dot, shown on the
screen has a corresponding bit, or bits, in memory. The corresponding
memory controls the status of each pixel. For a monochrome system, the
memory keeps track of whether a pixel is on or off. For a color system,
the memory keeps track of the color of each pixel. By way of contrast, in
a character-mapped system a program cannot control pixels on the
screen; it can control only text characters. Characters are located on a
character grid, usually 25 rows by 80 columns.

In a bitmapped system, each pixel is specified by a pair of coordi-
nates that define a point, as in (20, 75). The first coordinate in the pairing
describes the pixel’s horizontal value; the second its vertical value. Pixel
numbering begins at the upper-left corner of the screen, which corre-
sponds to point (0, 0). Using this numbering system you can reference
any pixel on the screen by listing its horizontal and vertical values.

To draw to the screen you must first specify a starting location, then
perform the drawing operation. Here’s an example:

MoveTo(30, 50); /* move to pixel (30, 50) */
Line(0, 100); /* draw a line downward, 100 pixels in length */

Unlike text-based systems, a bitmapped system allows you to draw text
anywhere on the screen. Note the use of the word draw when speaking

Chapter 1 = Macintosh Programming Overview

of placing text onto the screen. To the Macintosh, the distinction between
displaying text and drawing a shape is slight. In either case, specific pix-
els are turned on to achieve the desired effect. Figure 1.1 shows both text
and graphics and an enlarged view of the affected pixels. Figure 1.1 also
illustrates the advantage of using bitmapped graphics—it’s easy to mix
text and graphics and place them anywhere on the screen.

|INEEEEN]
INEEERNR]

Tl
|
|

Te@

111111t

Figure 1.1 On a Macintosh, both graphics and text are bitmapped.

EVENT-DRIVEN PROGRAMMING

Programs that don’t use a graphical user interface normally run in a
sequential manner. Each time you run a program of this type you exe-
cute steps in the same order. For a program that displays four screens of
information, like that shown in Figure 1.2, the program’s user would
generally view the four screens one after another in a predefined order.

Macintosh Programming Techniques, 2E

Figure 1.2 Structure of a non-Macintosh program.

The key difference between these two types of programs is something
Apple refers to as an event. A user’s action, such as the press of a key or
a click of the mouse button, produces an event. When an event occurs,
the Macintosh system software automatically saves information about
the event in an event record. The event record consists of fields that con-
tain information about an event. If the event was a mouse click, the
event’s what field would then hold that information. That is, this field
would hold the type of event that just occurred. The event record’s where
field would hold the screen location where the mouse click occurred.

Programs that use a GUI don't follow this linear pattern, nor are they
limited to full screens to display their information. Instead, they use win-
dows. The program'’s user is free to view the windows in any order. For
a Macintosh, the window selection would most likely be based on a
menu choice. The method used to make this selection is a keyboard or,
more often, a pointing device such as a mouse. Figure 1.3 shows the
structure of a Macintosh program.

Chapter 1 = Macintosh Programming Overview

Window 1

3

window 4

Window 2

1 e
il
e i

Window 3

Figure 1.3 The structure of a Macintosh program.

Macintosh programs are controlled by an event loop. The purpose of this
loop is to unceasingly retrieve and process events. As events occur they
are stored in an event queue, which is serviced by the event loop. Here's
a simple event loop:

Boolean allDone = false;
EventRecord theEvent;

while (allDone == false)

{
WaitNextEvent(everyEvent, &theEvent, 15L, nil);

switch (theEvent.what)
{
case mouseDown:
Hand1eMouseDown();
break;

Macintosh Programming Techniques, 2E

case keyDown:
Hand1eKeyDown();
break;

)

You use WaitNextEvent() to retrieve a single event, storing the infor-
mation in the event record variable theEvent. Then, based on the event
type (found in the what field of the EventRecord), you process, or han-
dle, the event. The preceding example reacts to two types of events: a
mouse click and a keystroke. It responds to an event by calling the
appropriate function that handles an event of that type—either
Hand1eMouseDown() or Hand1eKeyDown (). You are responsible for writ-
ing these event-handling routines.

WaitNextEvent() from within a loop should sound very familiar to you.
Windows programmers poll for messages by calling GetMessage() from

NoTE Wwithina loop. One big difference is that on a Macintosh there is a single
event stream that all applications are aware of, while on Windows each win-
dow deals with its own designated message stream.

B If you're an MS Windows programmer, retrieving events by calling
g

The accepted event-handling practice is outlined in the following steps.
Figure 1.4 illustrates these steps for a program that handles three differ-
ent event types.

e Use WaitNextEvent() to retrieve an event and store it in an
event record.

e Use a switch statement to determine the type of the event.
¢ Based on the event type, call a function to handle the event.
¢ Repeat the process.

Chapter 1 = Macintosh Programming Overview

Figure 1.4 The structure of an event-driven program.

If you've programmed in the past, but not on a platform with a graphi-
cal user interface, this discussion shouldn’t be entirely foreign to you.
You've still written programs that have a bit of this event-driven flavor
to them. You may have written a program that displayed a menu on the
screen, like the first one in Figure 1.5.

9

10 Macintosh Programming Techniques, ZE

CALCULATE
PRINT

1) CALCULATE
2> PRINT
3 QuIT

auiT

ENTER CHOICE:

Non event-driven Event-driven

Figure 1.5 Looping in non-event-driven and event-driven programs.

If you've written a program with output like that shown on the screen
on the left side of Figure 1.5, then your program did so using a loop. At
each pass through the loop, keyboard input might have been retrieved
using the scanf() function. How your program then handled things
depended on the value of the retrieved number. Here’s an example:

Boolean allDone = false;
int theChoice;

while (allDone == false)
{
scanf(“%d”, &theChoice);

switch (theChoice)
A
case 1:
DoCalculations();
break;
case 2:
PrintResults();
break;
case 3:
allDone = true;
break;

}

The monitor pictured on the right side of Figure 1.5 shows how a
Macintosh would display choices to the user. While the scanf() exam-

Chapter 1 = Macintosh Programming Overview

ple waits for user input and then responds to it, it is not truly event- dri-
ven, it forces the user to wait at the screen until a choice is made from the
limited menu. The Macintosh, on the other hand, is aware of all types of
events, including keyboard input, mouse clicks, and the insertion of a
disk into the computer. Most importantly, the user’s actions control the
type of event and the time the event will occur. This freedom and power
that the Macintosh user enjoys are what make events and the event loop
such an important aspect of Macintosh programming.

RESOURCES

All of the elements that make up a program’s interface—such as menus,
windows, dialog boxes, and icons—are defined by resources. A resource
defines an element by holding descriptive information about that ele-
ment. For example, a resource that defines a window will hold informa-
tion about the window’s size, placement on the screen, whether the win-
dow has a zoom box in its title bar, and so forth.

Resources are not part of your source code, though your source code
will be aware of them, use them, and eventually become linked to them.
Instead, a resource is code that is held in a file separate from the source
code file. The code in the resource file is viewed not as words or numbers,
but as the interface element that the code defines.

It is advantageous to create an element of the interface as a resource
because a resource can be:

® Created and edited graphically, with no programming knowl-
edge—even after a program has been developed and distributed.
¢ Copied to another program for reuse.

For MS Windows programmers, much of this should sound familiar.
Macintosh resources and Windows resources are very similar. If you’ve only
programmed for non-Windows PCs, or mainframes, pay close attention. In
NOTE theMacintosh world, an appreciation for resources is very important.

n

12

Macintosh Programming Techniques, 2E

Resource Editors

To create a resource, you use a resource-editing program such as Apple’s
ResEdit or Mathemaesthetics” Resorcerer. You save a resource, or sever-
al resources, in a resource file. The icons for ResEdit and a ResEdit file
are shown in Figure 1.6.

El=——-= Development =—F———@
14items 681 MB indisk 303 MB available

Projects Symantec Project Manager

Figure 1.6 The icons of ResEdit and a ResEdit file.

Different elements of a program’s interface are defined by different
resource types. Each resource type has a four-character, case-sensitive
name. For example, the resource type of a menu is MENU, the resource type
of a window is WIND, and the resource type of a dialog box is DLOG.

A program such as ResEdit allows you to graphically create a sepa-
rate resource for each part of your application’s interface. Figure 1.7
shows a MENU resource being created. Instead of writing source code to
define the items in a menu, you use ResEdit to create a MENU resource.

Chapter 1 = Macintosh Programming Overview

= MENU ID = 128 from MyResFile.rsrc

File Selected Item: [<] Enabled
New it
Open... Tent: @|[!u1 |
Close

O - (separator line)

[] has Submenu Tent: [:l
Cmd-Key: |:|
. maric Nome]

Figure 1.7 Editing a MENU resource in ResEdit.

tool such as Borland’s Resource Workshop or Microsoft’'s AppStudio.
ResEdit is Apple’s version of a resource-editing program. As in Windows,

NOTE resourcescanbe created by purely visual means or by compiling a text rep-
resentation of resources. Unlike Windows, most Macintosh programmers
standardize on the visual method—ResEdit or Resorcerer.

MS Windows programmers may be familiar with editing resources using a
A

Creating a Resource File and a Resource Using
ResEdit

When you launch ResEdit, you'll encounter a dialog box that asks you to
either open an existing resource file or create a new file. Click the New but-
ton to create a new file. After typing in a file naming and clicking the New
button, you're ready to add a resource to the type picker. The type picker is
the name of the main ResEdit window. This window displays an icon for
each resource type in the resource file. Figure 1.8 shows a type picker for
a resource file that holds only one type of resource—the WIND type.

13

14

Macintosh Programming Techniqaes, 2E

Initially, the type picker for a new file will be empty. To add a
resource, select Create New Resource from the Resource menu. Scroll to
the name of the type of resource you wish to create, click once on the
name, and then click the OK button. When you do, ResEdit will open a
resource picker and a resource editor.

The type picker lets you know the different types of resources in a
file, but it doesn’t reveal how many resources of any given type are in the
file. For example, a file usually holds several MENU resources—one for
each menu that will appear in a program’s menu bar. To see the
resources of a given type, you double-click on the resource type’s icon in
the type picker. When you do, you'll see a resource picker. The resource
picker lists each resource of a given type. In Figure 1.8, the WIND resource
picker shows that this file holds a single WIND resource.

When you create a new resource—such as the new WIND resource cre-
ated above—ResEdit opens an editor in which to edit the resource. To
view or edit an existing resource, double-click on its ID in the resource
picker. This brings up an editor. The look and actions of ResEdit editors
vary with the resource being edited. In Figure 1.8 you can see the result
of double-clicking on 128 in the resource picker. In that figure the
resource editor is the WIND editor. From the figure, you can see that it's
easy to change the size and placement of a window by typing in new val-
ues in the four editable text boxes. Changing the look of the window is
accomplished by clicking on one of the icons in the row of icons at the
top of the WIND resource editor.

Chapter 1 = Macintosh Programming Overview

; Type picker

leryBasics.rsrc

[EEmTE]

|

; Resource picker

WHiNDs from UeryBasics.rsic

After adding a resource or resources to a file, select Save from the File
menu to save the file. Then either close the file or quit ResEdit.

; Resource editor

D Size Name
128 27 [
EE=——— wiNDID = 128

from llerinnsizs.rsrc ==

3

a
=

Color: @ Default
O Custom

-
=)
=]

Left:

Height:

Width:

] Initially visible

[Close box

Figure 1.8 Editing a WIND resource in ResEdit.

16

Macintosh Programming Techniques, ZE

ResEdit doesn’t only make window resource editing easy—other
interface elements are just as easy to define using this resource editor. In
Figure 1.9 you can see a menu being defined. As you'll see in Chapter 6,
the MENU resource allows your program to implement menus.

Untitied

e =
= [
==2] =i
MENU

Y IND

L_E@=——————— MENU ID = 128 from Untitled

Calculations | Selected Item: Xl Enabled

Square ¥
Square Root Tert: @ | Square Roof |

O - (separator line)

Color

] has Submenu Texnt:
cmd-Key:[_|
5 Mark:[None v [

Figure 1.9 Editing a MENU resource in ResEdit.

As mentioned, a resource file can, and usually does, hold more than one type
of resource. Figure 1.9 shows a resource file with two types of resources in it.
A resource file can also hold more than one resource of any given resource
type. Figure 1.9 doesn’t reveal how many WIND or MENU resources are in the
as yet untitled resource file—it only shows that there are two types of
resources present. To see the various resources of any given type, double-
click on the resource icon in the type picker window of a resource file. For
example, double-clicking on the WIND icon would display the WIND resource
picker, which lists the different WIND resources in the file.

Resources, Source Code, and Applications

When you look at your Macintosh monitor, everything you see originat-
ed as a resource. Figure 1.10 illustrates the following:

Chapter 1 = Macintosh Programming Overview

¢ The menu bar has an MBAR resource that specifies which indi-

vidual menus are in it.

e Each individual menu has its own MENU resource that defines

the items in that menu.

e A window has a WIND resource that defines its size and initial

position on the screen.

* Adialog box has a DLOG resource that defines its size and initial

position.

e A dialog box has a second resource, the DITL, that defines items

such as buttons that are to appear in the dialog box.

! % |:> % File Edit Uiew
MBAR HMENU : i

Development

—

Ia Screen Snapz Vl

Finder.pict.01

Codelllarrior IDE 1.3.pic...
Codellarrior 1DE 1.3.pic...
Codellarrior IDE 1.3.pic... [
Codellarvior 10E 1.3.pic...

@] = Hara pisk

fieet

Save as...

!

[Test.Picture

DLOG DITL

R

Figure 1.10 Everything that you see on your Macintosh screen

has a resource that defines it.

Once you've used a resource editor to create the resources that define the
interface elements of your program, you write source code that uses
these resources. Throughout this book the source code/resource connec-

tion will be mentioned—and expanded upon.

17

18

Macintosh Programming Techniques, 2E

When it is time to turn your source code into a stand-alone applica-
tion, your compiler compiles your source code, then joins the compiled
code with the resources in your resource file by linking them together.
The result is an application. This process is shown in Figure 1.11.

Hello

Symantec Project Manager Hello.c

S E==)

ResEdit Hello.rsre

Figure 1.11 Source code and resources form an application.

Because the application that results from the combining of code with
resources holds a copy of each resource that was in the resource file, the
separate resource file is not needed by the application. An application
then consists of both executable code and resources.

An integrated development environment (IDE) is a combination of a
source code editor, compiler, and linker. When you use an IDE like the
Symantec Project Manager (SPM) or Metrowerks CodeWarrior, you won't
actually see a file such as the Hello.o file shown in Figure 1.11. A Macintosh
IDE holds all object code in something it calls a project file. Since your atten-
tion will be directed toward the source code and the final application, the
fact that object files are invisible to you should not be a concern.

When you link a Macintosh project, the linker combines the object code
with the resources from a resource file. The result is a single file—the appli-
cation, or program. If resources and source code are eventually joined, why
do they initially exist in separate files? Because source code is created with
a text editor, while resources are created with a resource editor.

Chapter 1 = Macintosh Programming Overview

19

Resource Types

There are more than 100 different resource types. You'll probably need to
use fewer than a dozen types in your programs. The following is a list of
some of the more common resource types. In your reading of this text
you’ll encounter each of these types—and a few others.

ALRT Defines the look of an alert box
BNDL Relates an icon to a program
CODE All the instructions of a program
DITL Contents of a dialog box

DLOG Defines the look of a dialog box
ICN# List of icons

PICT Picture

SIZE Partition size of a program
STR## List of strings

WIND Defines the look of a window
snd Sound

THE TooLBOX

With a resource editing tool such as ResEdit, creating menus, windows,
and dialog boxes is easy. But a resource contains only a description of a
piece of the interface—it doesn’t do anything with it. For example, ResEdit
easily allows you to list the items that will be in a menu. To then display
that menu—to track the user’s mouse movements over it and then drop it
down and display the items in it—you need to write source code.

The menu scenario just described shows up in every Macintosh pro-

gram. You can therefore infer that much of the code to perform that sce-
nario should look the same in any Macintosh program. The phrase

20

Macintosh Programming Techniques, ZE

“don’t reinvent the wheel” comes up a lot in programming, and
Macintosh takes this phrase to its limit. Apple programmers wrote sev-
eral thousand routines that handle all of the actions common to most
Macintosh programs. They then graciously gave them away—free. Well,
not exactly free. To get the thousands of routines, you have to buy a
Macintosh computer.

Instead of creating libraries of routines, as is the common practice
with languages for other computers, Apple has taken the code that
makes up these routines and burned it into ROM chips that are then
placed inside each Macintosh. Collectively, Apple refers to these routines
as the Macintosh User Interface Toolbox, or Toolbox for short.

If you're a PC or mainframe programmer who has never programmed in a
windowed environment, don’t let the idea of these invisible routines over-
whelm you. On a mainframe or PC you also use routines that you didn’t write,
NoTE lkestandard C library functions such as strien() and printf(). You just
don’t have a fancy name for them like the Macintosh User Interface Toolbox!

Figure 1.12 shows how the Toolbox will be shown in the remainder of
this chapter. This figure emphasizes the point that the code for Toolbox
routines lies in ROM and not in your source code.

Toolbox

Figure 1.12 The Toolbox is in ROM.

PCs have software built into their ROMs too—the ROM BIOS services. The
difference? The Macintosh Toolbox is easier to use and provides a means to
display and work with graphics and a sophisticated user interface.

Chapter 1 » Macintosh Programming Overview

Resources, Source Code, and the Toolbox

Earlier it was stated that you first create a resource, then write source
code that uses that resource. This, of course, implies that source code
somehow communicates with resources. Toolbox routines provide this
communication link. Here’s a brief example:

WindowPtr theWindow:
theWindow = GetNewWindow(128, OL, (WindowPtr)-1L);

The routine GetNewWindow() is a Toolbox function that locates a WIND
resource and loads the resource data into memory. The code that makes
up the Apple-supplied function GetNewWindow() exists in ROM. When
your source code makes a call to GetNewWindow(), your program is
interrupted while the code in ROM is executed. In Figure 1.13 an appli-
cation named Hello is shown as executable code (denoted here by a series
of ones and zeros) and two WIND resources (denoted here by ResEdit
icons). Figure 1.13 emphasizes that a call to GetNewWindow() means that
the program’s code accesses Toolbox code in the Macintosh ROM.

GetNewWindow (}
@ 0010101101 code is in ROM Toolbox
Werlo | 1011120201 | [=
1101001100
WIND WIND

Figure 1.13 Calling a Toolbox routine from within the Hello program.

The GetNewWindow() code in ROM searches the program’s resources for
the desired WIND resource—that’s shown in Figure 1.14. Notice in the
above example that there are parameters passed to GetNewWindow(). The
first parameter is an ID that tells the Toolbox which WIND is to be used.
Because an application may hold more than one WIND resource, it’s nec-
essary to specify which WIND resource to use.

21

12

Macintosh Programming Techniques, ZE

0010101101
hello | 2011110101
1101001100
=] =]
HItD HIHD Toolbox code accesses

application's resources

Figure 1.14 Getting resource information from the application.

the resource file in order to execute.

The fact that resources exist in a resource file, and then in an application, is
a source of confusion to many. Recall that resources begin their life in a
resource file—just as code begins its life in a source code file. When an appli-
cation is generated from the CodeWarrior IDE or the Symantec Project
Manager, the code from the source code file and the resources from the
resource file get merged. The final stand-alone application contains both
code and resources, and thus no longer needs either the source code file or

Once the correct WIND resource is found, its data gets loaded into mem-
ory. Figure 1.15 illustrates this.

Hel lo

0010101101
1011110101
1101001100

WIND WIND

WIND data gets

loaded into memory

110101
001010
101011
011110

Figure 1.15 Loading WIND resource data into memory.

Chapter 1 = Macintosh Programming Overview

program be able to access another part without going through the afore-
mentioned song and dance? The answer, of course, is “No”—the code must

NoTE explictlyload the resource data. It all has to do with application launching
and memory. When a program is launched, all of its code and all of its
resources aren’t loaded into memory. In particular, most of the resources
remain on disk. So when a program needs to access a resource, the resource’s
data need to be loaded into memory.

If an application consists of both code and resources, shouldn’t one part of a
7

GetNewWindow() finishes by returning a pointer to the data to the pro-
gram. When the application needs to access the data, it can then do so by
accessing memory via this pointer. The window pointer variable, of the
Macintosh data type WindowPtr, provides the means of identifying this
one particular window. When the application needs to perform opera-
tions on the window—such as moving it or drawing graphics to it—the
window’s pointer is used to reference the window. For example, if the
program wants to hide this newly created window from the view of the
user, the program will change some of the WIND data that is now in mem-
ory. This data manipulation won’t be obvious, though. That’s because
rather than directly altering data you'll let Toolbox routines do the dirty
work. Hiding a window, for example, can be done as follows:

HideWindow(theWindow);

In the above code, HideWindow() is a Toolbox routine and theWindow is
a WindowPtr variable—the same window pointer returned by the call to
GetNewWindow(). By simply passing a Toolbox routine the address of a
window’s data, you let the Toolbox do the work of locating the window
data and changing the appropriate part of that data to reflect the new
condition of the window. Figure 1.16 illustrates.

23

24

Macintosh Programming Techniques, 2E

Hidewindow() Toolbox code
code is in ROM accesses memory

0010101101 Toolbox

1011110101
Hello J 1101001100 |:> ‘
3

HIND HIND

Figure 1.16 The source code, resources, and the Toolbox.

This section uses windows to demonstrate how the Toolbox loads resource
data into memory. In Chapter 4 you’ll see more on this topic as it pertains to
windows. Other chapters will discuss the loading of other resource types.

NOTE

Toolbox Roatines and fpplication-Defined
Routines

The GetNewWindow() routine is just one of the thousands of functions
that make up the Macintosh Toolbox. This book covers many of these
Toolbox functions. The example snippets and programs often make calls
to Toolbox functions as well as calls to non-Toolbox functions. So that
you can readily tell the difference between the two types of functions,
discussions in this text will always refer to a Toolbox function as just
that—a Toolbox function. Other functions will be referred to as applica-
tion-defined routines. Application-defined means that you define these
functions in your source code—they aren’t supplied by Apple. Consider
the following snippet:

void main(void)

{
WindowPtr theWindow;

l‘-h:aewindow(theWindow);

Chapter 1 » Macintosh Programming Overview

PerformCalculations();

}

In describing the above snippet, this text might say “...the Toolbox func-
tion HideWindow() is called before the application-defined function
PerformCalculations() executes.

THE OPERATING SYSTEM

Like the Toolbox, the code that makes up the Macintosh Operating
System is located in ROM—that’s why Figure 1.17 is so similar to Figure
1.13. The Operating System is different from the System file, which is
found in the System Folder and is described in the next section.

Operating
System

Figure 1.17 The Operating System is in ROM.

The Operating System, like the Toolbox, consists of routines that you can
access by way of function calls in your source code. The difference
between the routines in the Toolbox and those of the Operating System
is in the level of the tasks they perform. Operating System routines deal
with low-level tasks such as allocating memory and handling keystrokes
and disk insertions. Toolbox routines deal with higher-level tasks. The
result of a higher-level chore is generally more noticeable to the user—
the display of windows and the drawing of shapes or pictures in those
windows are accomplished by Toolbox routines.

You perform an Operating System task just as you do a Toolbox
task—you make the appropriate function call. An example of an

25

26

Macintosh Programming Techniques, ZE

Operating System call is Eject (), which physically ejects a disk from

the floppy disk drive.
the Macintosh Operating System. To perform a task, you need only know the

proper Operating System routine to call; you use no direct-memory address-

NOTE INgusingjumps or interrupts.

PC and mainframe programmers will appreciate the simplicity of accessing

SYSTEM SOFTWARE

Now that you know what Toolbox routines and Operating System rou-
tines are, you should also know that you can refer to them collectively as
system software. System software is divided into the two broad categories
of the Toolbox and the Operating System. It is then further sectioned into
groups of functionally related routines. These groups are called managers.

The Window Manager is an example of a manager. It consists of rou-
tines that allow you to create and work with windows—the
GetNewWindow() and HideWindow() routines that you've seen in this
chapter are part of the Window Manager. Some of the other managers
are shown in Figure 1.18.

Operating
System

Toolbox

Control Manager
Dialog Manager
Event Manager
Menu Manager
QuickDraw
Resource Manager
Window Manager

Device Manager
SCSI Manager
File Manager
Memory Manager
Process Manager

Figure 1.18 Some of the Macintosh managers.

Chapter 1 * Macintosh Programming Overview

From the names of the managers in Figure 1.18 you can see that the
Toolbox managers deal with the user interface: windows, dialog boxes,
and menus. The managers that comprise the Operating System, on the
other hand, deal with low-level tasks such as memory management and
the control of devices such as monitors. Many of the individual managers
shown in Figure 1.18 will be discussed in the remainder of this book.

THE SYSTEM FILE aND FINDER

The System Folder that appears on every Macintosh contains two files of
particular note: the System file and the Finder.

The System File

The System file, not to be confused with the Operating System in ROM,
holds resources that are accessible by all programs. These resources
allow your programs to display the standard Macintosh graphical user
interface. The System file also holds the code for some Toolbox routines.
Earlier it was mentioned that the Toolbox routines were housed in
ROM—so the preceding statement requires some elaboration.

As years have gone by, the price of memory has dropped markedly,
and computers have become more sophisticated. New models of the
Macintosh have taken advantage of these two facts. Over the years, the
amount of ROM in a Mac has increased, as has the number of Toolbox
routines. That means that owners of newer model Macs have Toolbox
routines in their ROM that aren’t found in the ROM of earlier model
Macintoshes. Owners of older Macs can’t just replace the ROM chips in
their Macs—yet they can get access to the same routines found in the
new ROM chips. This is made possible by the inclusion of new Toolbox
routine in the System file. If the owner of an older Mac upgrades to a
newer version of the System file (say, from System 6.0.7 to System 7.5),
that owner gets access to the same new Toolbox routines that are present
in the ROM of newer Macs.

When the owner of the older Mac restarts his or her Mac, the routines
in the System file will be loaded into RAM. That means that when a pro-
gram calls a Toolbox routine, the Operating System may find the code for
that routine in either ROM or RAM. Fortunately, it’s not up to you, the

27

28

Macintosh Programming Techniques, 2E

programmer, to keep track of the whereabouts of Toolbox routines.
That’s a job for the Mac Operating System.

The Finder

The Finder is a program that, like most Macintosh programs, consists of
code and resources. The Finder is loaded into memory and starts run-
ning when you turn on your computer. It is responsible for displaying
the desktop pattern and the icons you see on it, such as the trash can,
files, and folders. When you move, copy, and delete files the Finder is
doing the work. The Finder makes use of some of the common resources
in the System file to display the interface that the user sees. Figure 1.19
shows the System file and the Finder and what the Finder is responsi-
ble for doing. In this figure you can see that the Finder, made up of
resources and code, interacts with the System file—also made up of
resources and code. Once the Finder has the system information it
needs, it displays a part of the user interface, as shown at the bottom of
the figure.

[On PCs running DOS, there is no real equivalent to the Finder and to the
base-level user interface it provides. Unless you consider the C:> prompt in
d DOS to be a user interface!

NOTE

Chapter 1 = Macintosh Programming Overview 29

B

System Folder

e |

Finder
01101
&5 11010
E 11011
01100

m D

Figure 1.19 The Finder and the System file.

30

Macintosh Programming Techniques, 2E

CHAPTER PROGRAM: VERYBaAsICS

This chapter, and every chapter hereafter, closes with a short example
program that demonstrates the topics discussed in the chapter. The pro-
ject, resource, and source code files for each example are included on the
CD that came with this book. If you own a Metrowerks or Symantec
compiler, you can compile and run any of the programs. The CD also
contains a stand-alone application of each example so that you can
immediately test out each example without compiling the code.

This chapter’s program, VeryBasics, simply displays a window on the
screen and then draws a line of text to it—as shown in Figure 1.20. To
quit the program click the mouse button.

O=———— Untitled —r———=]

]

Chapter One Program

Figure 1.20 The result of running the VeryBasics program.

Though the VeryBasics program may not appear to do much, it does
illustrate several of the concepts discussed in this chapter. VeryBasics
demonstrates:

¢ Bitmapped graphics by drawing text to the window.

* Retrieving and processing an event using an event loop.
* Use of a resource file with a WIND resource.

* (Calls to Toolbox functions.

Project Resource File: VeryBasics.rsrc

The resource file used in the creation of a full-featured Mac program con-
sists of dozens—perhaps hundreds—of resources of a variety of types.
Because the VeryBasics program is the most minimal of Mac programs,
the resource file used in its development is much smaller. In fact, the

Chapter 1 = Macintosh Programming Overview 3

VeryBasics.rsrc file holds just a single resource. As shown in Figure 1.21,
this file consists of a single WIND resource with an ID of 128.

UeryBasics.rsic

'
-I WHINDs from UeryBasics.rsrc

WIND D Size Name
128 27 |

Er——_“‘“ WIND 1D = 128 from DeryBasics.rsrc ===y

o I O] [

(4 #ia_feil_Gasourcs Gindew Color: @ Default
Ve TN)) QO Custom

Top: Height: ‘ [Initially visible
Left: Width: X Close box

Figure 1.21 The WIND resource for the VeryBasics project.

The following list provides the steps for creating a new resource file and
adding a WIND resource to it. While the VeryBasics.rsrc file is included on
this book’s CD, you may want to create your own version so that you
feel comfortable with the process.

Launch ResEdit.

If an introductory dialog box opens, click on it to dismiss it.
Click the New button in the dialog box that opens.

Name the resource file VeryBasics.rsrc.

Click the New button.

Choose Create New Resource from the Resource menu.
Scroll to the WIND type, then click on it.

NGk W=

32

Macintosh Programming Techniques, 2E

8. Click the OK button.

9. You now have a WIND resource. If you wish, click on one of the
small window icons to change the type of window. Type in new
values in the four size editable text boxes to change the dimen-
sions of the window.

10. Choose Save from the File menu.
11. Choose Quit from the File menu.

Program Project: VeryBasics68K.g or
VeryBasics68K.w

All of the examples in this book compile using either the Metrowerks or
Symantec integrated development environment (IDE). An integrated devel-
opment environment is, as its name implies, more than just a compiler.
Minimally, it’s an editor, compiler and linker. Usually there’s at least one
other programming utility included, such as a debugger. Since this chap-
ter provides you with your first exposure to Mac programming, the
VeryBasics project will be discussed for both the Metrowerks and Symantec
IDEs. Subsequent examples will assume you’ve become familiar with the
basics of the IDE your using, and will forego the details of project files.

All the files necessary to build a VeryBasics application are included
on this book’s CD. If you’d like a little practice with your integrated
development environment, follow the steps in the next sections. If you
do that, you'll re-create the VeryBasics-related files found on the CD. If
you're a CodeWarrior user, read on. If you're using the Symantec IDE,
skip the next section and move on to the section titled “The Symantec
Project: VeryBasics68K.x.”

Every Mac program starts as a project. A project is represented by a project
window that holds the names of the files that will get linked together to form
a stand-alone program. Regardless of the IDE you use, you’ll want to keep
the following tips in mind—they apply to both Metrowerks and Symantec
project windows. You can move a file from one group to another by clicking
on its name and dragging it. You can create a new group by dragging a file
past, or beneath, the last group in the window. You can rename an existing
group (such as Sources or Resources) by double-clicking on the group name
and then typing in a new name. You can open a source code file or resource
file by double-clicking on its name in the project window.

Chapter 1 » Macintosh Programming Overview

Before creating a new project, as described below, create a new folder in
the main folder that holds your Symantec or Metrowerks IDE. Supply the
folder with a name of your choosing, then place the VeryBasics.rsrc file in
the folder. If you haven’t already created that file, use ResEdit to do so
now. Name the file VeryBasics.rsrc and add a single WIND resource to it—
the steps for doing so precede this section. Figure 1.21 shows that resource.

Tl As you read the following pages you'll notice that the terms 68K and PPC

' appear occasionally. Both the Metrowerks and Symantec IDEs let you speci-

J fy the final application’s target machine. That is, you can choose whether the

NOTE resultingprogram should consist of code that uses the 680x0 instruction set

or the PowerPC instruction set. By selecting 68K as the target, the resulting

application will be one that runs on either a Mac (with one of the Motorola

680x0 microprocessors) or a Power Mac (with one of the PowerPC micro-

processors). That's opposed to a PPC target, which results in an application

that will run only on a Power Mac. If you're working on a 680x0-based Mac,

choose 68K as your target so that you can run the program. If you're work-

ing on a PowerPC-based Mac, you can choose either 68K or PPC as your tar-

get. Chapter 8 discusses the advantages and disadvantages of both types of
applications, as well as the perfect compromise program—the fat app.

The Metrowerks CodeWarrior Project: VeryBasics68K.u

To create the VeryBasics project, launch the CodeWarrior IDE, then select
New Project from the File menu. Use the pop-up menu at the top of the
dialog box that opens to move into your VeryBasics folder. Then type in
a name for the project. By convention, a Metrowerks project typically has
a .u extension. To create the u character, press the m key while holding
down the Option key. As you're about to see, the VeryBasics project will
be generating 68K instruction set code—that’s why the program name
includes 68K in it. Again, Chapter 8 provides the details regarding the
differences between 68K and PPC programs.

Before saving the new project, choose a project stationary from the
Project Stationary pop-up menu. When you create a project, you always
need to add at least one Metrowerks library to the project. Among other
purposes, libraries hold precompiled code that provide support for the
Macintosh Toolbox and the Metrowerks PowerPlant application frame-
work. All that a project stationary does is tell CodeWarrior which
libraries to add to a project. This saves you the effort of determining
which libraries your project needs, and the chore of then adding those

33

34

Macintosh Programming Techniques, 2E

libraries. In Figure 1.22 you can see that the VeryBasics68K.u project is
using the Min MacOS 68K C/C++.p stationary. Because the VeryBasics
program doesn’t use any ANSI C functions, doesn’t use the PowerPlant
application framework, and isn’t a PowerPC program, this stationary
works fine. Because the stationary name includes 68K in it, you know
that the application that gets generated will consist of 680x0 code.

|€3 Co1 Very Basics ¥ | = Hard Disk
DeryBasics.rsrc £
Desktop

&
Name the project as:
UeryBasics68K.p j

SYICAEIGHIICISEE ~ Mac0S 68k C/C++.p.
MacO0S PPC C/C++.p
PowerPlant 68K.u
PowerPlant PPC.p
~ANSI 68Kk C/C++.n
~ANSI PPC C/C++.1
~Min Mac0S 68k C/C++.n
~Min Mac0S$ PPC C/C++.n

Figure 1.22 Selecting project stationary to use with the VeryBasics CodeWarrior project.

After clicking the Save button, the new project will open in a project win-
dow like the one shown in Figure 1.23. Using the selected project sta-

Chapter 1 = Macintosh Programming Overview

tionary causes CodeWarrior to add the CPlusPlus.lib and MacOS.lib
libraries to the project. If you had used a different stationary, different
libraries would be in the project. As denoted by the <replace me> names
in the window, it's now up to you to add the source code file and
resource file to the project.

Efi..____ UeryBasics68K. _;ﬁg

M File Code Data ﬁ |
¥ Sources [1] 0 « [3|5¢
<replace me Mac>.c 0 0i « @[

7 Resources 1] 1] E
<replace me>.rsrc n/a n/a 3]

% Mac Libraries 1] 0 E
CPlusPlus.lib n] 0 =
Mac0S._lib 0 0 (3]

ko4
4 file(s) 0 0 @

Figure 1.23 The VeryBasics CodeWarrior project before the source
code and resource file are added.

To make the VeryBasics.rsrc resource file a part of the project, choose Add
Files from the Project menu. When you do, you'll see a dialog box like
the one shown in Figure 1.24. If the project folder isn't named in the pop-
up menu at the top of the dialog box, use the menu to move into that
folder. Then double-click on the name of the resource file, as is being
done in Figure 1.24. That moves the file from the top list to the bottom
list, and tells CodeWarrior that it should be added to the project. When
you click the Done button, the dialog box will be dismissed and the file
will appear in the project window.

35

36

Macintosh Programming Techniques, ZE

|EI CO1 Uery Basics ‘V| =— Hard Disk

I_§ Eject

Desktop

Add Al

Select files to add... Remove

Remove Al

Figure 1.24 Adding a file to the VeryBasics CodeWarrior project.

To create a new text file to serve as the source code file, select New from
the File menu. Select Save As from the same menu to name and save the
file. You can give the file any name that ends with the .c extension. To
match the following figure, use the name VeryBasics.c. Now choose Add
Window from the Project menu. You won’t have to go through the dia-
log box shown in Figure 1.24 to add the file—CodeWarrior adds it for
you. Consider this menu item a shortcut for adding the frontmost win-
dow to a project.

To remove one of the <replace me> marker files from the project win-
dow, click on its name, then select Remove from the Project menu. After
removing both markers, your project window should look similar to the
one shown in Figure 1.25.

Chapter 1 = Macintosh Programming Overview

EEI==—== VeryBasics68K.u =——0
File Code Data ¥
W Sources 0o 0: « [d <>
VeryBasics.c 0 0: « @[|
¥ Rescurces o 0 E
YeryBasics.rsre n/a n/a 3]
¥ Mac Libraries 0 0 E
CPlusPlus. lib 1] 1] 3]
Mac0S . 1ib 0 0 3]
O
4 file(s) , 0 0]

Figure 1.25 The VeryBasics CodeWarrior project after the source code and resource file
are added.

At this point the VeryBasics.c source code file is empty. Add the code by
typing in the C code from the listing that appears later in this chapter. If
you're satisfied that you now know how CodeWarrior projects work,
you can save a little typing by opening the VeryBasics.c source code file
included with this book and copy and pasting its contents into your own
VeryBasics.c file. Finally, select Run from the Project menu to compile and
run the program.

The Symantec Project: VeryBasics68K.w

To create the VeryBasics project, launch the Symantec IDE. When you do,
you'll be faced with the dialog box shown in Figure 1.26. Use the pop-up
menu at the top of the dialog box to move into your VeryBasics folder.
Then type in a name for the project. By convention, a Symantec project
has a .m extension. To create the © character, press the p key while hold-
ing down the Option key. Because the VeryBasics project will be generat-
ing 68K instruction set code, the program name includes 68K in it. As
mentioned, Chapter 8 provides more information about the differences
between 68K and PPC programs.

37

38

Macintosh Programming Techniques, 2E

Before clicking the Save button, choose a project model from the
Project Model pop-up menu. When you create a project, you always need
to add at least one Symantec library to the project. Libraries hold precom-
piled code that provide support for the Macintosh Toolbox and the THINK
Class Library application framework, among other purposes. A project
model can be thought of as a template that tells the Symantec Project
Manager which libraries to add to a project. Letting the SPM determine
which libraries a project needs, and then add those libraries to the project,
saves you effort. In Figure 1.26 you can see that the VeryBasics68K.nt project
is using the C Mac Application model. Because the VeryBasics program
doesn’t use any ANSI C functions and doesn’t use the THINK Class
Library application framework, this model is a good choice.

(€3 co1 very Basics ¥ | © Hard Disk
VeryBasics.rsrc

Desktop
New ()

&

Create New Project:
LlleryBasics68K.11 j

Project Model: EETITEITER

ANSI C

ANS1 C++ (10Streams)
C Mac Application
C++ Mac Application
Code Resource
Native MPW Tool

UA App w/Shared TCL
UR Application

{1

Figure 1.26 Selecting project stationary to use with the
VeryBasics Symantec project.

Chapter 1 = Macintosh Programming Overview

After clicking the Save button, a new project will open. As shown in
Figure 1.27, the contents of a project are displayed in a project window.
Using the selected project model causes the SPM to add a folder that
holds the libraries necessary to support the code you’ll be writing. You
can see the names of the libraries SPM selected by clicking on the
Triangle icon to the left of the folder. Note that if you had selected a dif-
ferent project model, the contents of this folder would differ. As shown
in the figure, the Symantec Project Manager also added a “dummy”
main.c file that could be used to hold your code.

b Libraries 0 Q
+ main.c *
Totals 1]
O
7}

Figure 1.27 The VeryBasics Symantec project before the source code and
resource file are added.

To add the VeryBasics.rsrc resource file to the project, choose Add Files
from the Project menu. That menu selection brings up the dialog box
shown in Figure 1.28. If the pop-up menu at the top of the dialog box
doesn’t show the name of the project folder, use the menu to move into
that folder. Then double-click on the name of the resource file to move
the file from the top list to the bottom list. When you click the Done but-
ton, the dialog box will be dismissed and the resource file will appear in
the project window.

39

40 Macintosh Programming Techniques, 2E

= Hard Disk

Eject

Desktop

Show: | Source Files

Add Al

Remove

Figure 1.28 Adding a file to the VeryBasics Symantec project.

To create a new, empty source code file, select New from the File menu.
Then choose Save As from the File menu to provide the file with a name
and to save the file to disk. While you can use any name that ends with
a .c extension, you might want to name the file VeryBasics.c to match the
figures. Next, select Add “VeryBasics.c” from the Project menu. This
menu item allows you to bypass the Add Files dialog box to quickly add
the frontmost window to the project.

To remove the main.c file from the project window;, click on its name
and select Remove “main.c” from the Project menu. After removing this
file, your project window should look like to the one shown in Figure 1.29.

Chapter 1 = Macintosh Programming Overview

P Lrie e 1]

+ VeryBasics.c * a
& VeryBasics.rsro 0

Totals 0 I§
{51

Figure 1.29 The VeryBasics Symantec project after the source code and resource file are
added.

The VeryBasics.c source code file that is a part of the project is empty. Add
the source code by typing in the C code from the listing that appears
next. If you're comfortable using the Symantec Project Manager, you can
save some typing by opening the VeryBasics.c source code file found on
the CD that came with this book. Select all the code, then copy it and
paste it into your own VeryBasics.c file. To compile and test run the
VeryBasics code, select Run from the Project menu.

Program Listing: VeryBasics.c

Now it’s time to take a look at the VeryBasics.c source code listing.
Following the program listing is a walk though of the key elements of
the source code.

/1
// Function prototypes

void InitializeToolbox(void);
void HandleMouseDown(void);

/!
// Global constants

41

42 Macintosh Programming Techniques, 2E

fidefine rTextWindow 128

1

// Global variables

Boolean gAllDone = false;

1

// Program execution starts here

void main(void)

{
WindowPtr theWindow;
EventRecord theEvent;

InitializeToolbox();

theWindow = GetNewWindow(rTextWindow, nil, (WindowPtr)-1L);
ShowWindow(theWindow);
SetPort(theWindow);

MoveTo(30, 50);
DrawString(“\pChapter One Program”);

while (gAllDone = false)
{
WaitNextEvent(everyEvent, &theEvent, 15L, nil);

switch (theEvent.what)
{
case mouseDown:
Hand1eMouseDown();
break;

/1

// Handle a click of the mouse button

void HandleMouseDown(void)

Chapter 1 = Macintosh Programming Overview

{
SysBeep(1);

gAl1Done = true;
}

!/
// One-time initialization of the Macintosh Toolbox

void InitializeToolbox(void)
{
InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(OL);
FlushEvents(everyEvent, 0);
InitCursor();

Stepping through the Code

If you're new to Mac programming, there are several lines of code in the
listing that will look unfamiliar to you. That code is examined here.

Where are the #include Directives?

When you look at the C source code for programs that run on non-
Macintosh platforms, the first thing you usually see are several
{##include directives that include header files in the program. Macintosh
programs also use #includes, but you usually need to include only one
header file, and that’s done for you automatically.

Your C or C++ compiler gets its information about the calling con-
vention of a Toolbox routine from a header file. Macintosh compilers
come with over 100 header files—the universal interface files written by
Apple. When you make a call to a Toolbox routine such as
GetNewWindow(), your compiler looks to the Windows.h header file to
find the prototype for GetNewWindow().

43

hb

Macintosh Programming Techniques, 2E

Your IDE—whether Symantec or Metrowerks—includes a single pre-
compiled file in each project. This file is the result of compiling several
of the most commonly used header files. If you use Symantec, your pro-
ject will include one of four precompiled header files: MacHeaders for
68K C projects, MacHeaders++ for 68K C++ projects, PPC MacHeaders for
PowerPC C projects, or PPC MacHeaders++ for PowerPC C++ projects. If
you use Metrowerks, your project will include one of just two precom-
piled header files: MacHeaders68K for any 68K project or MacHeadersPPC
for any PowerPC project. Both environments automatically include the
correct precompiled header file for the type of project your working on.
That means you don’t have to use #include directives for the precom-
piled header file or for any of the universal interface files from which the
header file was created.

one large header file—Windows.h. If a Windows compiler automatically
included this header in all of its windows source code, it would function in

NOTE thesame way as a Mac IDE that includes one of the precompiled
MacHeader files.

MS Windows programmers know that Windows programs always include
I

Sometimes, you will need to include some of the other Macintosh head-
er files in a program. When you do, you simply use standard #include
directives. Examples abound throughout this book. Like any other IDE,
a Macintosh IDE also allows you to write your own headers and include
them in a project.

Function Prototypes

Prototypes aid the compiler in determining if functions are being called
properly. Though some compilers might let you slip by without them,
always use them. For the Macintosh, prototypes are written in the same
form as they are for any other computer whose compiler supports this
construct. You do not have to include a variable name when you list the
arguments, just the type of the argument. Here’s the prototype of the
Hand1eMouseDown() function used in the VeryBasics project:

void HandleMouseDown(void);

Chapter 1 = Macintosh Programming Overview

your C compiler does not support prototypes—a relatively recent extension
to the C language. If so, consult any book that describes the ANSI standard

Tl If you program on an older minicomputer or mainframe, it is possible that
“
NoOTE definitionof the Clanguage.

The #fdefine Directives

As you can tell from the listing, Macintosh programs use #define direc-
tives in the same manner as #defines are used by compilers for other
computer systems. Here is the one #define VeryBasics uses:

fidefine rTextWindow 128

The rTextWindow constant is used to define the ID of the WIND resource
used in the call to GetNewWindow():

theWindow = GetNewWindow(rTextWindow, nil, (WindowPtr)-1iL);

While not required, Macintosh source code usually follows the conven-
tion of preceding a constant name with a lowercase character. The char-
acter provides readers of your code with a hint of what the constant will
be used for. Here’s the characters used in this book. You may want to
adopt this same technique in your own programs:

jdefine mFileMenu 129 // ‘m’ for menu resource ID

jidefine rMyWindow 128 /! ‘r’ for other resource ID

fdefine iQuit 4 // ‘i’ for menu item number

JHdefine kTaxRate 0.05 // ‘k’ for non-resource constant
Global Variables

Variable declarations take on the same format for Macintosh C as they do
for other versions of C. Macintosh C, however, has some data types all
its own. Many of these types that are unique to the Mac will be described
at various places in this book and summarized in Appendix A. Here is
the one global variable used by VeryBasics:

Boolean gAllDone = false;

45

46

Macintosh Programming Techniques, 2E

The gA11Done variable is used to end the program. When the user clicks
the mouse button, VeryBasics toggles the value of gA11Done from its ini-
tialized value of false to true.

To make it readily apparent that a variable is a global variable, Mac
programmers often precede a global variable name with a lowercase g.
Again, this isn’t a requirement, just a commonly used convention.

The main() Fanction

Like other C programs, Macintosh programs always begin at the main()
function. And like all C programs, you don't explicitly call main(); it is
automatically the first function to execute when you run a Macintosh
program. In a Mac program, the return type of main() and the parame-
ter tomain() are both void.

void main(void)
{

}

MS Windows programs use WinMain() rather than main().
g

NOTE

The Application-Defined InitializeToolbox() Function

The various managers must be initialized before performing calls to
Toolbox routines. The initialization calls used in VeryBasics should be
included in every Macintosh program you write, in the order given here.
Since very program uses these same Toolbox function calls, for conve-
nience you’ll want to define a routine that you can copy and paste
between projects. Make sure to always call such an application-defined
routine at the start of your main() function.

void InitializeToolbox(void)
{
InitGraf(&qd.thePort);
InitFonts();
InitWindows();

Chapter 1 = Macintosh Programming Overview

InitMenus();
TEInit();
InitDialogs(OL);
FlushEvents(everyEvent, 0);
InitCursor();

}

The Macintosh requires several new ways of orienting the process of
writing a computer program. So you'll be happy to learn that when pro-
gramming the Macintosh, you'll still do some things exactly as have in
the past! A function for a Macintosh program is written and invoked in
the same manner as a function you write for any other computer.

A call to a Toolbox routine that exists in a manager that was not initialized will
crash your program. For example, if the call to InitWindows() was omitted
from a program, a subsequent call to GetNewWindow() would cause a crash.

WARNING

Loading a Window

Finally, some action! A call to GetNewWindow() loads a WIND resource
into memory. When you create a WIND resource in ResEdit, you have the
option of specifying whether the window should be visible or hidden
when this call is made. If you examine the WIND resource in the
VeryBasics.rsrc file you'll see that the Initially visible check box is
checked. That means that when this call is complete a window will
appear on the screen. Here's the call that loads the WIND resource:

theWindow = GetNewWindow(rTextWindow, nil, (WindowPtr)-1L);
ShowWindow(theWindow);

As a precaution, you might want to follow a call to GetNewWindow()
with a call to ShowWindow(). This Toolbox routine displays a hidden
window. If the window is already visible, ShowWindow() has no effect.

The first parameter passed to GetNewWindow() is the ID of the WIND
resource to load. The second parameter to GetNewWindow() tells the
Window Manager where in memory to store this newly loaded window.
Using a nil pointer here tells the Window Manager to use whatever
available memory it wants. Chapter 4 shows you how to be more specif-
ic about where in memory the window should be stored.

&7

48

Macintosh Programming Techniques, 2E

The last parameter to GetNewWindow() specifies whether the new
window should open in front of or behind all other open windows. This
is the program’s only window, so this parameter doesn’t have an impact
on the call. In general, you'll open a new window in front of all others.
A value of -1 accomplishes this. This parameter, however, must be a
pointer. Affixing an uppercase L to a value forces that value to occupy 4
bytes. In Macintosh programming, that’s the same number of bytes used
to hold a pointer. There’s one more step to turning the number -1 into an
acceptable parameter to GetNewWindow(). This third parameter can’t be
any type of pointer—it must be a WindowPtr. Preceding the value -1L
with (WindowPtr) casts the value -1L to a WindowPtr type.

If you are a PC programmer or write code for a machine in which pointers
and integers are not the same size, you'll notice that Macintosh programmers
are much more relaxed about placing integer values such as -1L and OL in
NOTE Slotsmeant for pointers. Since they’re both 32 bits in size, it all works out.

Drawing to a Window

Every window has its own drawing environment, or graphics port. That’s
how different windows can do things like display text in fonts different
from one another. Before drawing to a window, you must set the port to
that window. A call to the Toolbox routine SetPort () accomplishes this.
The parameter to SetPort () is a pointer to the window whose port you
want to use:

SetPort(theWindow);

To move to a particular area in a window, you use the Toolbox routine
MoveTo(). The first parameter is the horizontal location to move to, the
second parameter is the vertical position. The effect of MoveTo0(30,50) is
as follows: start at the window’s upper-left corner; move 30 pixels to the
right; move 50 pixels down; then stay put until asked to move again or
until asked to draw. You'll find more in-depth discussion of drawing to
windows in Chapter 3.

The Toolbox routine DrawString() draws a single line of text to a
window. The line of text is preceded by \p, and the entire string is placed
in double quotes. The Toolbox will be looking for a string in Pascal for-
mat. Strings that are in Pascal format are not terminated with a null byte,

Chapter 1 = Macintosh Programming Overview

as they are when in C format. Rather, Pascal strings begin with a byte
that contains the size of the string, followed by the text bytes of the
string. The “Chapter One Program” string is sent to DrawString() from
a C program. The \p lets the Toolbox know this so that it can make the
internal conversions necessary to display the string. You'll find a more
comprehensive discussion of strings and DrawString() in Chapter 7.

.? PC programmers use the \ character all the time:

NOTE

printf(“Start a new line.\n");

It should make sense that the escape character \ is used to signal the com-
piler that the letter p that follows does not stand for the letter in the alpha-
bet, but rather indicates that the string that follows is in Pascal format.

The Event Loop

The event loop, the driving force of the program, appears just as dis-
cussed earlier in the chapter. The only event type VeryBasics handles is a
click of the mouse. It handles this mouseDown event by calling an appli-
cation-defined routine named Hand1eMouseDown():

while (gAllDone == false)

{
WaitNextEvent(everyEvent, &theEvent, 15L, nil);

switch (theEvent.what)
{
case mouseDown:
Hand1leMouseDown();
break;

}

The Toolbox function WaitNextEvent() accepts four parameters. The
first tells the Event Manager what types of events the program is inter-
ested in responding to. By passing the Apple-defined constant
everyEvent, VeryBasics tells the Event Manager to return information
about any type of event that occurs.

49

50

Macintosh Programming Technlques, 2E

The phrase Apple-defined will appear throughout this book. It simply refers to
the fact that a constant is defined in the Apple universal header files (the
same files that hold the function prototypes for all the Toolbox routines)
NoTE ratherthanby the application in its source code.

The second parameter to WaitNextEvent() is a pointer to a variable of
type EventRecord. After WaitNextEvent() retrieves the next event
from the event queue, it returns descriptive information about that event
in this second parameter. The Event Manager does this by placing the
information in the various fields of an EventRecord data structure.
Here’s how Apple defines the EventRecord structure:

struct EventRecord
{

MacOSEventKind what;
UInt32 message;
UInt32 when;
Point where;

MacOSEventModifiers modifiers;
)

As you can see in the VeryBasics event loop, the what field of the
EventRecord structure is used to hold information about the type of
event that was returned by WaitNextEvent (). VeryBasics compares the
value in the what field with the Apple-defined mouseDown constant. If
it'’s a match, the code under the mouseDown case label executes.

While VeryBasics compares the what field of the EventRecord vari-
able theEvent to only one Apple-defined constant, your programs can
compare this field to several others. The following is a list of event type
constants that will be discussed in this book:

mouseDown // mouse button was clicked

keyDown // keyboard key was pressed

updateEvt // window contents need to be redrawn
activatekvt /! window has been activated or deactivated

The Application-Defined Hand1eMouseDown () Fuanction

When the user clicks the mouse, VeryBasics plays the system alert sound
and then quits. The application-defined Hand1eMouseDown() routine

Chapter 1 = Macintosh Programming Overview

takes care of these two tasks. First, a call to the Toolbox routine
SysBeep() plays the system alert sound. This sound varies from Mac to
Mac—it’s the sound that the user has previously selected using the
Sound Control Panel. Years ago, the Mac had only one system alert
sound, and SysBeep() allowed you to use its parameter to specify the
duration for which that sound would play. Now, the parameter to
SysBeep() goes unused. Though the number you pass to SysBeep() has
no effect on the way the function operates, you still need to pass a value.

void HandleMouseDown(void)
{
SysBeep(1);

gAl1Done = true;
}

Finally, the global variable gAl1Done is set to true. When
Hand1eMouseDown() completes, program execution returns to the event
loop in main(). When it does, the loop’s wh1i1e test will fail, and the loop
will end. As shown below, the body of the while statement executes only
when gAl11Done has a value of false. The Hand1eMouseDown() routine
sets gA11Done to true, thus ending main() and the program.

while (gAll1Done false)

CHAPTER SUMMARY

The Macintosh graphical user interface, or GUI, presents special chal-
lenges to programmers of the Macintosh. This book presents the tech-
niques to overcome these challenges.

The Macintosh uses bitmapped graphics. You can turn each pixel, or
display dot, on or off on the screen. On a color monitor, each pixel has
more than the two states of on or off. Color systems allow a single pixel
to take on hundreds, thousands, or even millions of different values.
Whether a Mac uses a monochrome or color monitor, each pixel on the
screen has a pair of coordinates that make up a point that defines its
position on the screen.

52

Macintosh Programming Techniques, 2E

Macintosh programs don’t run in a sequential, linear manner.
Instead, a Mac program responds to events—user actions such as a click
of the mouse button. An event record holds descriptive information
about a single event. A Macintosh program is driven by an event loop—
code that repeatedly checks for and responds to these events.

All elements of a Macintosh program, such as its menu, windows,
and dialog boxes, are resources. A resource is a description of one of
these elements. AWIND resource, for example, holds the type, or look, of
a window. It also defines the size of the window and the screen location
where it will first appear. Resources can be graphically, or visually, edit-
ed using a program such as Apple’s ResEdit resource editor.

Resources are simply descriptions of interface elements; they don't
do anything with the elements. For that, you must write source code. So
that you don’t have to start from scratch, Apple provides thousands of
prewritten functions to help you in working with resources. These rou-
tines are stored in the ROM and the System file of your Macintosh and
are collectively referred to as the Toolbox.

The Macintosh Operating System, like the Toolbox, consists of rou-
tines you access from within your source code. The Operating System
routines are low-level functions that perform tasks such as handling key-
strokes, while the Toolbox routines are higher level, performing the more
noticeable tasks such as displaying windows and drawing pictures.

Collectively, the Toolbox and Operating System are called system
software. The system software is divided into groups of functionally
related routines—managers. The Window Manager and Menu Manager
are two examples.

The System file, found in the System Folder of each Macintosh, con-
tains resources that are shared by programs. The Finder is another pro-
gram found in the System Folder. It gets launched when your Macintosh
starts up, and remains running for as long as your Mac is running. The
Finder is responsible for displaying the desktop pattern and for per-
forming file housekeeping like copying and deleting files.

@GCINTOSH PROGRAMMING TECHNIQUES, 2E

Chapter 2

Macintosh Memory

Understanding how the Macintosh works with memory is an important
and often understudied topic. A knowledge of what is going on in RAM
will aid you in writing programs that behave in a predictable manner.

The Macintosh uses a set of terminology and concepts all its own.
This chapter will make you familiar with the basic terms and techniques
of Macintosh memory. In Chapter 9 you will discover the details of
memory management and learn actual techniques you can use to avoid
memory problems.

In this chapter you will learn how memory is organized into parti-
tions. You'll see how each partition is composed of the same basic areas
of memory. You'll also learn the techniques the Macintosh uses to make
the most efficient use of memory.

MEMORY ORGANIZATION

The Macintosh Operating System divides a Mac’s RAM into two main
sections, or areas. The area at the low end of memory is the system parti-
tion; it is reserved by the Macintosh for its own use. The system partition
starts at the lowest memory address, 0x00000000. The Macintosh dedi-

53

54

Macintosh Programming Techniques, ZE

cates the other area to applications that you run. The Mac will further
subdivide this application area into application partitions. For every appli-
cation you run, there is a corresponding application partition. Figure 2.1
illustrates this.

Free
memory
Application 1
High memory partition
Application 2
partition
Low memory
System
partition
Lowest memory .
address (0x00000000) ==

Figure 2.1 Memory organization.

What does a RAM partition contain? That depends on whether the parti-
tion is a system partition or an application partition. Figure 2.2 shows
RAM when a single 68K application is running. The individual areas in
the application and system partitions are described in the following pages.

Chapter Z = Macintosh Memory

Free
memory

Application

High memory Free memory partition

Free
memory

Low memory

System
partition

Figure 2.2 The system and application partitions.

A native PowerPC application (a program generated by a PowerPC compil-
er) in memory looks very similar to the 68K application shown in Figure 2.2.
The only difference is that a native application doesn’t have an A5 World in
its application partition. The topic of application type (68K or PowerPC) was
introduced in Chapter 1 and is discussed in greater detail in Chapter 8.

56

Macintosh Programming Techniques, 2E

System Partition Organization

The RAM of a Macintosh always contains a single system partition. This
is true whether the computer is a 680x0-based Mac or a PowerPC-based
Macintosh. It’s also true regardless of the number of applications that are
running. The system partition is made up of two sections: one that con-
tains system global variables and one called the system heap.

System Global Variables

At the bottom of memory, starting at address 0x00000000, the Mac
reserves a section of memory for system global variables. The operating
system uses these variables to keep track of what is going on in the oper-
ating environment. There are also variables stored here that establish
constant environment values, such as the pixel height of the menu bar.
While it’s possible to directly access these variables, you’ll want to avoid
that practice. Apple reserves the right to change the layout of this area—
and has so informed programmers. If your program directly alters this
memory (to, say, temporarily set the menu bar height to 0 to hide it), it
may not run properly in the future.

System Heap

Above the system global variables is the system heap. Only the
Operating System uses this section of memory; you will never have a
need to access information contained within it. The system heap contains
things such as system file resources that have been loaded into memory,
the code that makes up extensions, and the code necessary to run the
Finder. When you start up the Macintosh, the system heap size is set and
remains fixed until the next time the computer starts. At startup, exten-
sions (such as Apple’s QuickTime) call upon a software mechanism to
expand the system heap to accommodate them. That’s why you have to
restart your computer after you move an extension into your System
folder—the system heap doesn’t have room to accommodate a newly
added extension.

Chapter 2 = Macintosh Memory

Application Partition Organization

When a program launches, the operating system reserves a section of
free RAM for that application’s use. This application partition devotes
itself entirely to that application for the duration of the application’s exe-
cution. When you quit the application, the memory within that partition
becomes free for the Macintosh to use for a different application.

As was shown in Figure 2.2, the system partition for a 68K applica-
tion has an A5 World that holds application global variables, an applica-
tion stack that holds application local variables, and an application heap
section that contains the program’s code, resources, and data objects that
are created as the program executes.

A5 World

A 68K program’s global variables are stored in a section of the applica-
tion partition called the A5 World. The name A5 World comes from the
fact that the operating system uses the 680x0 microprocessor’s A5 regis-
ter to keep track of where this memory section starts.

Variables stored in the A5 World of an application partition are acces-
sible only to the program to which the application partition is devoted.
On the other hand, variables in the system partition are accessible by
both the system and any application that is executing. While the word
global can be used in describing variables in both an application parti-
tion’s A5 World and the system partition’s system globals section, the
difference is noteworthy. A5 World variables are global to the application
residing in the application partition. That is, any function in the program
in the partition can make use of an A5 World global variable. Variables
in the system partition, on the other hand, are global to the entire system.
Any program can make use of them. Figure 2.3 illustrates this.

57

Macintosh Programming Techniques, ZE

Free
memory

Only the

application in

this partition

can use these Application

variables partition
Free
memory

Any program

can use these

variables System

partition

Figure 2.3 Application global variables and system global variables.

cation heap.

s A native PowerPC application doesn’t use an A5 World—it groups its glob-
i al variables together and stores them in a single block in the program’s appli-
NOTE

Application Stack

The application stack is a section of memory used for holding the local
variables of the program to which the application partition is dedicated.
The stack also holds parameters as they are passed to functions.

The number of global variables in any single program is fixed. Upon
loading a 68K program into the application partition, the operating sys-
tem can determine the exact amount of memory it should allot to the A5

Chapter Z = Macintosh Memory

World; this is why the size of the A5 World is fixed when an application
is loaded. The exact number of local variables and passed parameters in
a program are not as well-defined. Variables local to functions are creat-
ed and destroyed dynamically as the program executes. This necessitates
a stack that can grow and shrink in size.

The bottom of the stack is fixed in memory. For a 68K application, the
bottom of the stack is “anchored” just under the A5 World. For a
PowerPC application, the bottom of the stack is also fixed—there’s no A5
World above it. As the stack adds variables, it grows downward in mem-
ory. As the stack removes variables, the stack recedes back upwards.
Variables are always added and removed from the top of the stack.
Figure 2.4 shows the application stack. The shaded arrow emphasizes
that as the stack grows it moves toward the application heap.

Free
memory

Stack bottom m‘t ‘
(fixed) -

Stack top ql
(movable) EE.@

Application
N partition
Free memory

Free
memory

System
partition

Figure 2.4 The application stack grows toward the application heap.

60

Macintosh Programming Techniques, 2E

Application Heap

The next component of the application partition is the application heap.
The heap holds the executable code of an application and application
resources as they get loaded into memory. If a program creates data
objects dynamically, then those objects get added to the heap. Unlike the
stack, which stores variables in a linear manner, the heap can load, store,
and unload objects anywhere in the area of memory that the system has
established as the heap.

block of memory in the heap. An object could be the resource data that gets
loaded when a call to GetNewWindow() is made, it could be a block of exe-

F The word object is used in this book as a general term for the data in any one
NoTE cutablecode, oritcouldbe the data from an application-defined data structure.

The application heap, like the stack, can grow and shrink as it needs more
space. In this respect, the application heap differs from the system heap,
which takes on a fixed size when you start your computer. The application
heap grows upward in memory, toward the stack; this is shown in Figure 2.5.

Free
memory

) Application
Free memory partition

Heap top \
(movable) w7 |

Free
memory

{ L

Heap bottom :

System
partition

Figure 2.5 The application heap grows toward the application stack.

Chapter 2 = Macintosh Memory

61

Now that you know that the stack can grow down toward the heap, and
the heap can grow up toward the stack, a question may come to mind.
What prevents the stack and heap from running into one another? The
answer: sometimes they do run into each other! The Memory Manager
does its best to prevent this from occurring, and you can help the man-
ager by using some of the simple memory management techniques dis-

cussed in this chapter.

Summary of Memory Organization

Figure 2.6 summarizes several ideas and terms unique to Macintosh

memory organization.

Stack bottom
(fixed)

Stack top
(movable)

Heap top *
(movable)
Heap bottom
(fixed) g

Larger addresses

Smaller addresses

Free
memory

Application
partition

Free
memory

System
partition

Figure 2.6 Memory organization summary.

Up to this point, the discussions on memory have centered on examples
that have just a single application running, but a Macintosh allows a user

62

Macintosh Programming Techniques, ZE

to have multiple programs running at one time. Each program that runs
gets its own application partition, and each partition has its own A5
World (if it’s a 68K application), application stack, and application heap.
Figure 2.7 shows memory when two applications are running: a native
PowerPC program and a 68K program.

: Application
partition for
a PowerPC
program

Application
partition for
a 68K
program

Free memory

System
partiticn

Figure 2.7 Memory organization when more than one application is running.

As a programmer, you will have no control of—nor will you be very
interested in—what happens in the system partition. Any program that
you create for the Macintosh will end up in an application partition
when it executes. Since you'll be interested in how your program
behaves in memory, you'll be interested in the memory management of
application partitions. For this reason, the topics in the rest of this chap-
ter apply only to application partitions. Of particular importance is the

Chapter 2 = Macintosh Memory

area of memory where your program'’s code and resources reside—the
application heap.

Mac? That is, does the computer have a 680x0 microprocessor or a PowerPC
processor? From Chapter 1 you know that a 680x0-based Mac can only run
NOTE O8Kprograms, while a PowerPC-based Mac is capable of running both 68K
programs and new native PPC programs. With those facts in mind, you
know that the memory pictured in Figure 2.7 must be from a Power Mac.

f Is the computer that holds the memory shown in Figure 2.7 a Mac or a Power

THE AprPLICATION HEaP

For a given application, certain things will remain constant each time
the application is executed. When an application calls a particular func-
tion it will always pass the same number of parameters. Each time the
function begins execution it will create the same number of local vari-
ables. Each time the function terminates, the program disposes these
local variables. This is why an application’s stack is designed to hold
objects in an orderly linear manner. The same cannot be said for an
application’s heap.

As a program executes, it does so in a nonlinear manner. Running a
program twice may result in several different sections of code being exe-
cuted and several different resources being used. Because of this, the
implementation of the heap is different from that of the stack.

Heap Fragmentation

When a program loads a resource (such as a WIND) to memory, the
resource data ends up in the heap. When a program is finished with a
resource, it may release, or dispose of, the memory that the resource data
occupied. As a program runs, “pockets” of free memory will develop in
the program’s heap. When the program later loads another resource, it
will attempt to place the resource data in one of these free pools of mem-
ory rather than simply adding the data to the top of the heap. If no one
single area of this free memory is large enough to hold the entire object,
the object will be placed on top of the heap, as shown in Figure 2.8.

63

64

Macintosh Programming Techniques, ZE

Heap Heap Heap

Five objects... ...two removed... ...one added

Figure 2.8 How the heap gets fragmented.

In Figure 2.8, the object that was added was not placed in free space
between existing objects because the object was larger than either of the
two free areas. When the Memory Manager adds an object to the heap it
always places it in contiguous memory—it never divides one object
between blocks of memory. This results in heap memory that is unused.
When several small areas of memory are free but (due to their small indi-
vidual size) they are unused, fragmentation is said to exist. This is shown
in Figure 2.9.

Chapter 2 = Macintosh Memory

Heap Heap

\

...is wasted if
a new object %
won't fit in it v

Free
, Space...

Figure 2.9 Fragmentation creates free memory blocks that may be unused.

Heap Compaction

Over time, the amount of wasted space, or fragmentation, could become
so great that a program is unable to bring new objects into memory, even
if there is plenty of free memory available. Obviously, this is unaccept-
able. To prevent fragmentation, the Memory Manager uses a concept
called compaction. Compaction is the act of rearranging blocks of memo-
ry in an application heap in order to reduce or eliminate small islands of

65

66

Macintosh Programming Techniques, 2E

potentially unusable memory. Ideally, the Memory Manager would like
to make the most efficient use of memory by shifting objects in the heap
to fill the free spaces so they don’t become wasted RAM. Figure 2.10
shows this. In the center version of the heap you can see that the two top
objects pictured in the left version of the heap have been moved down to
eliminate the gaps of free space. The right version of the heap has a new
object added to it. Even with the addition of a new large object, the ver-
sion of heap pictured on the right uses less memory than the precom-
paction version on the left.

Heap Heap Heap

—

Before addinag an obiject... ...compaction takes place... ...increasina RAM efficiency

Figure 2.10 Heap compaction restores wasted memory.

Chapter 2 = Macintosh Memory

During memory compaction, the Memory Manager may decide to purge,
or remove from memory, some blocks. Only blocks that are not current-
ly in use, and that are specifically marked as purgeable, can be removed.

Nonrelocatable and Relocatable Blocks

One of the attributes of a block is whether the block is marked as relo-
catable or nonrelocatable. Blocks that are marked as relocatable can be
moved from one area of the heap to another by the Memory Manager.
Blocks that are marked as nonrelocatable always stay in one place—even
when memory is being compacted.

Because the Memory Manager can’t move nonrelocatable blocks, you
might think they could cause fragmentation, and they do. Though it is
vastly preferable to use relocatable blocks, there are occasions when the
Macintosh must use nonrelocatable blocks. One such situation is dis-
cussed later in this chapter.

With all this shifting of memory taking place, how do the Memory
Manager and your application keep track of where things in memory
will be at any given moment? For this, the Macintosh uses a technique
involving master pointers. A master pointer is a special pointer that points
to an object and stays fixed in memory, regardless of where the object to
which it points moves. If the object moves in memory, the contents of the
master pointer will change to reflect the object’s new address, but the
placement of the master pointer in memory will never change.

Figure 2.11 shows an object in an application’s heap memory. For no

particular reason (other than to provide a reference point in this and sub-
sequent figures), the object starts at memory address 0x01234500.

67

68

Macintosh Programming Techniques, 2E

1 Stack
ot
N]
Free
space
Heap
object "l
0x01234500
Heap
0x011DEFO00

Figure 2.11 An object in heap memory.

When an object is placed into memory, its starting address is always smaller
than its ending address. Recall that when portraying Mac memory, lower
memory addresses are always shown toward the bottom, so in figures such
as Figure 2.11, an object appears to be “upside down” in memory. That is, the
starting address of the object appears at the bottom of the object. A pointer
to the object appears to be pointing to the bottom of the object, rather than to
the start of the object.

Figure 2.12 shows that the lowest object in the heap pictured in Figure
2.11 is a master pointer. The master pointer is set to point to the lone object
in the heap; it holds the starting address of this object, 0x01234500.

Chapter 2 = Macintosh Memory

TP SR
Stack
Free
space
0x01234500
Master Heap
pointer ~
0x011DEF00

Figure 2.12 A master pointer holds the address of a heap object.

The distinction between the contents of the master pointer and the
address of the master pointer can be a source of confusion. In Figure 2.12,
the content of the master pointer is 0x01234500, while the address of the
master pointer—where the master pointer is physically located in mem-
ory—is Ox11DEF00.

The Memory Manager uses the master pointer to keep track of a
moving object. You, the programmer, still need one other device—a han-
dle—so that your program can also keep track of this moving object. A
handle contains the address of a master pointer. To keep tabs on a mov-
ing object in memory, you declare a handle variable in your program.

69

70

Macintosh Programming Techniques, 2E

Assuming the variable is local to a routine in the program (as opposed to
being declared as a global variable), it will reside on your application’s
stack. While the variable might be on the stack, what it points to—the
master pointer—will always be in the heap. The handle variable will
contain the address of this master pointer. Figure 2.13 illustrates this.

Stack

Handle @
@

| Free
space

0%01234500 ==

' Heap

=}l |

US===0 0x011DEF00 }=

Figure 2.13 A handle holds the address of a master pointer.

If you compare Figures 2.13 and 2.12, you'll see that the addition of the han-
I dle to the stack made the stack grow downward, as expected.
NOTE

Once declared, the content, or value, of the handle variable will not
change. In Figure 2.13, you can see that the handle has the value of the

Chapter 2 = Macintosh Memory

master pointer—0x011DEF00. Because the master pointer never moves,
the handle’s value will never change.
If the Memory Manager compacts memory, the value held in the

master pointer will change. In Figure 2.14, the object in memory is
moved from address 0x01234500 to address 0x01210000.

Stack
= e 3
Free
space
[:)* 0x01210000 = Heap
> 0x011DEF00 j=

Figure 2.14 The value in the master pointer is updated after the object moves.

Note in Figure 2.14 that the object has moved and the content of the mas-
ter pointer has changed to reflect this move, but the value of the handle
remains the same.

If the value of the handle variable remains the same, how does your
program become aware of the memory movement? The updating of the
master pointer provides the answer. When your program looks to the
master pointer, still located at address 0x01DEF00, it examines the con-

1/

Macintosh Programming Techniques, 2E

tents of the master pointer to see where in memory it should look for the
object. The master pointer always contains this information, so the han-
dle variable can also track down the object.

MeaciNnTosH MEMORY MANAGGEMENT

The term memory management refers to the allocation, movement, track-
ing, and removing of objects in memory. These objects are often
resources. You know that menus, dialog boxes, and windows all start out
as resources. As you'll see in Chapter 8, if you're generating a 68K appli-
cation, your program’s code itself is turned into CODE resources that get
loaded and moved in memory. Together, these things may be referred to
generically as objects in memory.

At the heart of memory management is the Macintosh Memory
Manager. The Memory Manager does much of the behind-the-scenes
work to keep track what's going on in RAM. It also provides the pro-
grammer with a set of routines to assist in memory-management tasks.
Because the Macintosh uses memory-management techniques not found
on most other computers, programmers new to the Macintosh often inject
memory-related bugs into their programs. A thorough understanding of
how the Macintosh works with memory, as described in this chapter,
along with the more specific programming techniques described on the
following pages, will help you reduce the number of bugs of this type.

Objects in memory can have different attributes applied to them.
These attributes, or characteristics, are discussed in some detail through-
out this chapter. For now, here’s a brief overview.

A block can be relocatable. A relocatable block can be moved about in
memory and released from memory by the Memory Manager, without
any intervention by your program. The Memory Manager would do this
in reaction to a scarcity of memory. A block can also be marked nonrelo-
catable. If a block is nonrelocatable it is fixed in memory; the Memory
Manager will never move it or purge it on its own. It can only be released
from memory by your program explicitly calling a Toolbox routine to
dispose of it.

If a block is relocatable it can be either locked or unlocked. A locked
block cannot be moved in memory. If it’s unlocked, it can be shuffled
about in memory during compaction. If it’s unlocked, it can also poten-

Chapter 2 = Macintosh Memory

tially be removed from memory by the Memory Manager. The locking
and unlocking of memory is often done on relocatable blocks. To guar-
antee that the Memory Manager doesn’t move a particular block during
some operation, a program can temporarily lock that block in place.

If a block is relocatable and unlocked it can be made either purgeable
or unpurgeable. If it's purgeable, the Memory Manager can release it from
memory if memory becomes scarce. If an object is important enough to
remain in memory even when memory is in short supply, it can be
marked as unpurgeable.

Although nowadays even many low-cost Macs come equipped with
8 MB of memory, memory remains a scarce resource. Why? The size of
applications—including the operating system—has grown at an equal
pace. So regardless of the amount of memory on the Mac your complet-
ed program is running on, your program’s code or data is likely to be
shuffled around in memory.

Figure 2.15 shows the different attributes that can be imposed on a

block. Notice that if a block is marked as nonrelocatable it can’t be
unlocked or purged.

x s

Purgaab[e : Unpu rgeab 5.

Figure 2.15 Attributes of a block in memory.

73

14

Macintosh Programming Techniques, 2E

The remainder of this chapter is devoted to supplying you with the spe-
cific techniques you need to be aware of in order to write Mac programs
that work with the Memory Manager.

AvoIDING HEAP FRAGMENTATION

Earlier in this chapter, heap fragmentation was discussed. You know that
objects get loaded into memory and then stay where they are, get moved,
or are eventually purged. It’s the objects that don't move, the nonrelo-
catable objects, that can play havoc on your program’s execution. They
cause roadblocks in the heap that prevent efficient use of memory. This
heap fragmentation can literally kill a program; some memory-related
errors will cause a program to terminate or freeze. In this section, you'll
see how fragmentation can be minimized.

How Nonrelocatable Blocks Get Created

One of the attributes of a block in memory is whether the block is marked
as relocatable or nonrelocatable. Blocks that are relocatable can be moved
about in the heap by the Memory Manager. Blocks that are nonrelocatable
always stay in one place, even when memory is being compacted.

You have only a limited amount of control when it comes to allocat-
ing nonrelocatable blocks—any call your program directly makes to the
Toolbox function NewPtr () creates one. Additionally, your program will
indirectly call NewPtr() when it calls some Toolbox routines.
GetNewWindow()—the Toolbox routine that loads a window into memo-
ry—is one such function. A call to GetNewWindow() makes a call to
NewPtr() to create the WindowPtr that is returned to your program. The
WindowPtr points to the nonrelocatable block that holds a
WindowRecord—the data structure that is the recipient of the WIND
resource data that GetNewWindow() loads. Figure 2.16 shows this.

Chapter 2 = Macintosh Memory

Nonrelocatable
block

| stack

1 Relocatable

block

Heap

Free
block

Figure 2.16 The WindowRecord structure is nonrelocatable and is
referenced by a WindowPtr.

In Figure 2.16, the WindowPtr variable is shown on the stack. That means it’s
a local variable. If the program declared the WindowPtr variable at the glob-
al level, it would appear in the A5 World if the program was a 68K program.
PowerPC applications have no A5 World, so if the program was a PowerPC

application, the variable would appear somewhere in the heap.

5

76

Macintosh Programming Techniques, 2E

Nonrelocatable Blocks and Heap Fragmentation

The Memory Manager will attempt to place a newly created nonrelocat-
able block as low as possible in the heap. However, if it is placed above
relocatable blocks and those blocks are eventually disposed of (purged),
the nonrelocatable block becomes an island, with free memory on either
side. A nonrelocatable block—no matter how small it is—creates an
obstruction in memory, and because the block is nonrelocatable, heap
compaction won't help. Figure 2.17 shows the same section of memory
as Figure 2.16. In Figure 2.17, the relocatable block has been purged from
memory (you might assume it held data from a resource that was no
longer needed by the program). If the program is required to load a new
object into memory (now assume that the program is going to load data
from a different resource), that object must not be larger than the largest
single free block of memory. As you can see in Figure 2.17, while there is
enough total free memory to hold the new object pictured on the right,
there is no one single block of memory large enough to hold it. That
means the object can’t be loaded.

is always referenced by a handle.

- ‘ A nonrelocatable block is always referenced by a pointer. A relocatable block
g

NOTE

When a window is closed, the nonrelocatable WindowRecord block is
removed from memory. That’s good, but it could be too late. While the
window is open, an attempt to load a large object into memory could fail.
Additionally, some programs will keep one or more windows open for
the entire duration of the program, eliminating the closing of the win-
dow as a solution to this dilemma.

Chapter 2 = Macintosh Memory

Nonrelocatable
block

Relocatable
block

Stack

This object won't fit
in either free block
T TP Tl

Free
block

Figure 2.17 A nonrelocatable block can create an island in memory.

Nonrelocatable Block Placement in the Heap

It should be obvious by now that nonrelocatable blocks are to be avoid-
ed whenever possible. However, you don’t want to go to such lengths as

17

78

Macintosh Programming Techniques, ZE

to try minimizing the number of windows in your programs; windows
are what the Macintosh is all about. Fortunately, there is a way out of this
predicament: load nonrelocatable blocks into memory first. That puts
them low in the heap, where they don’t form obstructive islands—no
matter how long they remain in memory. Figure 2.18 shows the same
objects in memory as were pictured in Figure 2.16. The only difference is
that in Figure 2.18, the WindowRecord block was loaded before the relo-
catable block. Here you can see that the nonrelocatable window block is
lower in the heap than it was in Figure 2.16.

Stack

Heap

Relocatable Free
block block

Nonrelocatable
block

Figure 2.18 It is preferable to load a nonrelocatable block low in memory.

If the relocatable block is now purged from memory, the total amount of
free space will be the same as it was back in Figure 2.17. However,
because the WindowRecord block isn’t left trapped in the middle of the

Chapter 2 = Macintosh Memory

heap, the free space is together in one block. As shown in Figure 2.19, the
same object that couldn’t be loaded before can be added to the heap now.

Stack

Heap can now be expanded
to allow this block to be added

. Nonrelocatable ' Relocatable Free
block block block

Figure 2.19 With the nonrelocatable block low in memory, the Memory Manager
can make more efficient use of free space.

Reserving Memory to Reduce Fragmentation

The next best thing to avoiding a nonrelocatable block is participating in
its placement. If you can control where the block goes, you can place it
as low as possible in memory. As you’ve just read, if you do this it won't
be an obstruction later as the Memory Manager attempts to load other
objects into memory.

79

80

Macintosh Programming Techniques, 2E

When your program first starts up, you can reserve storage for your
window—even if it hasn’t been opened yet. If very early in your pro-
gram'’s execution you reserve a block of memory large enough to hold a
window’s data, the block will be low in memory because the Memory
Manager always attempts to place nonrelocatable blocks at lower
addresses. Since there’s very little in your application’s heap immediate-
ly after the program launches, the Memory Manager will have no prob-
lem placing a nonrelocatable block very low in the heap. Figure 2.20
shows memory for a program that reserves a block of memory the size
of a WindowRecord data structure. The program also declares a global
variable of type Ptr. As shown in Figure 2.20, this generic pointer vari-
able will be used to hold the address of the reserved block of memory. At
a later time, when the program opens a window, this block will be used
to hold the data loaded by the call to GetNewWindow().

In Figure 2.20, the Ptr variable is shown in the A5 World of the application
partition. That’s where global variables are kept in 68K applications. If this
were a PowerPC application, the variable would instead be in the heap.

NOTE

What if the window you've reserved storage for isn’t opened until much
later in your program? Doesn’t this storage space go wasted until that
time? Yes, but you aren’t trying to save on memory here; you're trying to
avoid fragmentation. Your memory storage may be as few as a hundred
bytes or so. If you created a window without using storage, the resulting
fragmentation brought on by a 100-byte window could make thousands
of bytes unusable.

Chapter Z = Macintosh Memory

A5 World
(68K only)

Stack

Heap

Nonrelocatable Relocatable Free
block block block

Figure 2.20 A block of memory reserved for future use and referenced
by a generic Ptr variable.

82

Macintosh Programming Techniques, 2E

to load. Imagine your application is up and running; it has 300 KB of free
space—divided into two 150KB areas by a nonrelocatable block. If your pro-

NOTE g&ram triestoload a 200KB picture resource (a resource of type PICT), it will
fail. The program won'’t crash, but the picture won’t be displayed. In case
you're wondering, the situation of a 200KB picture is not unreasonable, espe-
cially if your program has color pictures in its resource file.

Thousands of bytes? Sure. It depends on what your program is attempting
i

Your program can reserve a block of memory by using the Toolbox func-
tion NewPtr (). The one parameter passed to NewPtr() is the number of
bytes of memory to reserve. Rather than passing a value here, use the C
sizeof operator to obtain the number of bytes of the data structure for
which the memory is being reserved. Consider an example that reserves
a block of memory that will be used later to hold window data:

Ptr gWindStorage;
gWindStorage = NewPtr(sizeof(WindowRecord));

In the preceding snippet of code, sizeof returns the size, in bytes, of the
WindowRecord data structure. NewPtr() then allocates a nonrelocatable
block of memory of this size and returns a pointer to the start of the
block. If NewPtr() is called near the start of a program—such as just after
Toolbox initialization takes place—then the Memory Manager will
reserve the block very low in the heap, as desired. The following snippet
of code provides a more comprehensive example:

#idefine rTextWindow 128

Ptr gWindStorage;
WindowPtr theWindow;

InitializeToolbox();

gWindStorage = NewPtr(sizeof(WindowRecord));

/! The program can perform any number of tasks before opening a new
// window. Not until the following 1ine does the reserved memory

// actually get used by the application

theWindow = GetNewWindow(rTextWindow, gWindStorage, (WindowPtr)-1L);

Chapter 2 = Macintosh Memory

As was mentioned in Chapter 1, the second parameter to
GetNewWindow() tells the Window Manager where in memory to store the
newly loaded window. Using a ni1 pointer (as has been the case up to this
point) tells the Window Manager to use whatever available memory it
wants. If your program instead passes a pointer as the second parameter,
GetNewWindow() will store data in the block referenced by your pointer.

Let’s say you're writing a program that will open a window that
allows the user to draw in it. Optionally, the user can open a second win-
dow that will display a graph of some data the user has entered. With the
possibility of two windows being opened, you know that your program
should reserve space for two WindowRecords. Here’s a code fragment
that reserves memory for two windows and then opens the windows:

fidefine rDrawWindow 128
fidefine rGraphWindow 129

Ptr gDrawWindStorage;
Ptr gGraphWindStorage;

WindowPtr theWindow;
InitializeToolbox();

// Reserve memory for both windows
gDrawWindStorage = NewPtr(sizeof(WindowRecord));
gGraphWindStorage = NewPtr(sizeof(WindowRecord));

// Do stuff here...then open the first window
theWindow = GetNewWindow(rDrawWindow , gDrawWindStorage,
(WindowPtr)-1L);

// Do stuff here...then open the second window
theWindow = GetNewWindow(rGraphWindow , gGraphWindStorage,
(WindowPtr)-1L);

What if your program doesn’t limit the user to a predefined known number
of windows? One scheme that would provide at least some control over the
positioning of nonrelocatable blocks would be to use the preceding tech-
NOTE niquesfor known windows and then pass nil as the second parameter to
GetNewWindow() to let the Window Manager handle memory assignments
for other windows.

83

84

Macintosh Programming Techniques, 2E

Heap MaNAGEMENT

Setting aside window storage early in the execution of your program is
a way of reserving memory for nonrelocatable blocks, but it’s not the
only memory-management scheme available to your applications. Your
program can also reserve a small amount of memory that will help it
work with relocatable blocks. Additionally, your IDE allows you to set
the size of the heap to a value that is optimal for your type of program.

Allocating Master Pointer Blocks

Earlier in this chapter you saw that a master pointer is a special pointer.
Like any pointer, it points to an object. But unlike a normal pointer, a
master pointer can track moving objects—not just fixed ones—in memo-
ry. A WindowPtr is an example of a normal pointer; it points to a fixed
nonrelocatable block of memory that holds the data of a WindowRecord
data structure. A master pointer, on the other hand, points to a relocat-
able block.

How does a relocatable block get formed? One means of allocating a
relocatable block is by calling the Toolbox function NewHandle().
NewHandle(), like NewPtr(), allocates a block of memory, the size of
which is specified in the parameter to the function. The difference is that
NewHandle() allocates a relocatable block and returns a handle to the
memory, while NewPtr () allocates a nonrelocatable block and returns a
pointer to the memory. A second way to allocate a relocatable block is
through the use of a Toolbox routine that allocates such a block and
returns a handle to it. For example, the GetPicture() routine that you'll
see in Chapter 3 loads a picture resource into memory and returns a han-
dle to the relocatable block of memory that holds the picture data. Just as
GetNewWindow() uses NewPtr() to allocate memory, GetPicture()
uses NewHand1e() to allocate a new block.

When NewHand1e() is called, it returns a handle. As you saw earlier
in this chapter, a handle contains the address of a master pointer. The
Macintosh uses master pointer blocks to hold master pointers. A master
pointer block is a contiguous area set aside for 64 master pointers. When
your program starts up, the Memory Manager creates one master point-
er block for your program’s use. It does this immediately so that this

Chapter 2 = Macintosh Memory

nonrelocatable block is placed low in your application’s heap memory.
Figure 2.21 shows such a block. Because the master pointers don’t ini-
tially point to any data, the figure shows the contents of each as a series
of question marks rather than addresses.

Stack

Free
| space

Heap

Block of 64
master pointers

Figure 2.21 Master pointers are always present in blocks of 64.

If your program calls NewHandle() (or a Toolbox routine that calls
NewHandle()), a block will be allocated in the heap and a handle
returned to your program. The handle will hold the address of a master
pointer, and the master pointer will hold the address of the newly allo-
cated block. The master pointer will be one of the 64 master pointers
available in the master pointer block reserved by the system for your
program. The following snippet of code provides an example of how a
handle variable can be declared and how NewHandle() allocates memo-

86

Macintosh Programming Techniques, ZE

ry for a data structure. Figure 2.22 shows what memory might look like
after this snippet of code executes:

typedef struct
{
Str255 name;
short position;
long salary;
} TeamMemberRec, *TeamMemberPtr, **TeamMemberHandle;
TeamMemberHandle theShortStop;

theShortStop = NewHandle(sizeof(TeamMemberRec));

Stack
Free
space
'—ﬂ% 0x06655440
1
Heap
> 0x02121200

Figure 2.22 Allocating memory for an object referenced by a handle will
cause one master pointer to be used.

Chapter 2 = Macintosh Memory

In Macintosh C programming, as in programming on other platforms, a point-
‘ er declaration is made by preceding the variable name with the * operator:
ﬂ

NOTE 1long *theLongPtr // pointer to a long, allocate using NewPtr()
A handle is declared by using the * operator twice:
long **thelongHandle // handle to a long, allocate using NewHandle()

The definition of the data structure in the code snippet that precedes this
note defines three new data types: a data structure named TeamMemberRec,
TeamMember Ptr (a pointer to a data structure of type TeamMemberRec), and
TeamMemberHandle (a handle to a data structure of type TeamMemberRec).
Once defined, variables of any of these three types can be declared.

In Figure 2.22, the variable on the stack is the handle variable
theShortStop. Like any handle, it contains the address of a master point-
er. The master pointer appears at the bottom of the figure and is one of the
64 found in a master pointer block. The contents of the master pointer is
the address of the block of memory allocated by the call to NewHandle().

One master pointer points to one relocatable block of memory. One
master pointer block can thus point to 64 relocatable blocks. It may
seem unlikely that your program would call NewHand1e () more than 64
times, but it could. If your program has application-defined data struc-
tures referenced by handles (such as the TeamMemberRec data struc-
ture), it could use a number of master pointers if the program creates
numerous instances of the structure. Additionally, you know that some
Toolbox functions (such as GetPicture()) return handles and thus also
use master pointers.

If your program uses all 64 master pointers in the master pointer
block allocated to your program at application startup, the system sim-
ply allocates a second block to your program; your program doesn’t
need to explicitly allocate the block. There is a potential problem that
arises from allowing the system to allocate the block, however. If your
program has been running for a while, the new block may end up in the
middle of the application’s heap. Since master pointers (and thus a mas-
ter pointer block) are fixed in memory, this may cause fragmentation.
The solution here is similar to the one proposed for allocating memory
for windows: reserve memory early so that the allocated block is low in

87

Macintosh Programming Techniques, 2E

the heap. For master pointers, a single Toolbox call does that. The
MoreMasters() function not only reserves memory for a new block of
master pointers, it creates the master pointers for your program'’s use. By
calling this function a single time, your program will have 128 master
pointers (the 64 from the original block and 64 from the block allocated
by MoreMasters()).

When you reserve memory for windows, you do so based on the
number of windows your program will open. To reserve memory for
master pointers, you should base the number of master pointers on the
number of relocatable blocks that your program will use, blocks created
by calls to NewHand1e(). How do you do this? It’s not as easy as count-
ing the number of times you use NewHand1e() in your source code—you
might never call it, but the Toolbox will. Some Toolbox calls result in two
or three calls to NewHand1e(). All this makes calculating the number of
calls to NewHand1e() difficult.

In determining how many times to call MoreMasters() you should
keep the following in mind. A pointer always holds an address, and an
address on the Macintosh always occupies 4 bytes. Thus a pointer is
always 4 bytes in size, regardless of the size of the block it points to. This
means that a single master pointer block, which holds 64 master point-
ers and an 8-byte header, is always 264 bytes in size.

From the preceding paragraph you know that a master pointer block
does not occupy a lot of memory. The second thing to consider is that a
nonrelocatable object, no matter how small, can cause fragmentation.
Whenever possible, you want to allocate nonrelocatable objects low in
memory, where they can do the least amount of damage.

From these two ideas you may accurately draw the conclusion that
to avoid fragmentation, it is better to call MoreMasters() too many
times than too few. Programmers generally call MoreMasters() about
three or four times (though large applications may call it more than that).
Including the block that the Memory Manager creates, that gives a pro-
gram five master pointer blocks.

You want your master pointer blocks low in memory so you want to make
the calls to MoreMasters() right away. Make the calls to MoreMasters () just
before or after other initialization calls, as in this example:

Chapter 2 = Macintosh Memory 39

main()
{
InitializeToolbox();

MoreMasters();
MoreMasters():;
MoreMasters();

/! rest of the program...

Expanding the Heap

When your application first starts up, its application heap is set to a
small size. As your program requires more memory the Memory
Manager will gradually increase the size of the heap. This method of
heap expansion can lead to fragmentation. A much more efficient
method of enlarging the application’s heap is to do so all at once at pro-
gram startup; that gives the Memory Manager greater freedom in mov-
ing relocatable blocks. Conveniently, there’s a Toolbox routine that does
just that. MaxApp1Zone() should be one of the first calls your program
makes. By expanding the heap all at once, future memory allocations
will be carried out much more quickly. Here’s how your main() routine
should look, now that you know about MaxApplZone() and the
MoreMasters() routine covered in the previous section:

main()

{
InitializeToolbox();

MaxApplZone();
MoreMasters();
MoreMasters();
MoreMasters();

// rest of the program...

90

Macintosh Programming Techniques, ZE

SETTING THE @APPLICATION PARTITION SIZE OF 4
PROGRaAM

When a user double-clicks on an application’s icon in the Finder, the
system sets up a memory partition for that application, then loads all or
part of the program into the partition. The size of the application’s par-
tition is initially set up by the programmer, but it can be overridden by
the user.

The User’s Role in Setting the Partition Size

All programs come with a partition size suggested by the program'’s
developer. The program’s user can change the partition size by select-
ing Get Info from the File menu in the Finder. In any version of System
6, the user can make just a single change to the partition size. Starting
with System 7, however, the user can set both the minimum partition
size and a preferred size. The minimum partition size is the limit below
which the application will not run. The preferred partition size is the
memory size at which the developer feels the application will run effec-
tively. If the amount of memory entered in the preferred size is not
available, the system will place the application into the largest avail-
able block of memory. Allowing the user to configure the partition size
lets the user base the program’s partition on the amount of RAM
installed in his or her Macintosh. The System 7 Get Info dialog box is
shown in Figure 2.23.

Chapter 2 » Macintosh Memory

[EEI== MemoryBasics68K Info ==

@ MemoryBasics68K

Kind : application program
Size: 6K on disk (1,977 bytes used)

Yhere : Hard Disk : CW7 Gold: MPT Code:
C02 Memory Basics:

Created: Fri, Oct 20, 1995, 1:41 AM
Modified: Fri, Gct 20, 1995, 1:41 AM
VYersion:n/a

Comments :
-Memory Requirements -
i Suggested size: 384 K
i Minimum size: (384 | K
[Jtocked | Preferredsize: [384 K

Figure 2.23 The Get Info window under System 7.

NOTE

Memory chip prices have fallen greatly in recent years, and the amount of
memory in users’ Macintoshes is increasing. Additionally, many users make
use of virtual memory and RAM-doubling software. You may wonder if it's
worth the extra effort to plan out partition size. After all, you could just do
what many program developers do and assign a very large partition to your
program, guaranteeing that the entire program will load in memory. That’s
why you shouldn’t. As Macs get more memory, users are loading more of
these large programs at once. While a user may have 8 MB or more of RAM,
that person will typically have several programs running at once. Even with
a large amount of RAM, that user might still find that he or she is just 100 KB
shy of being able to load another program-—maybe yours.

92

Macintosh Programming Techniques, ZE

Setting an @Application’s Partition Size

You're the developer of your program, so you get to set the developer’s
suggested size for your program’s partition. After you build an applica-
tion from your project, the partition size values you specify in your pro-
ject will appear as the minimum and preferred sizes in the Get Info dia-
log box of the Finder’s File menu.

As you're about to see, both Symantec and Metrowerks make it easy
for you to set the preferred and minimum heap sizes for your applica-
tion before you build it.

Setting an Application’s Partition Size Using the Symantec IDE

If you're working with a Symantec project, select Options from the
Project menu. Click on the Project Type icon on the left side of the
Options dialog box to display the page shown in Figure 2.24. Type in the
minimum and preferred sizes, in KB, then click the Save button. When
you perform a build, the stand-alone application will have these two
sizes associated with it.

Project Options for “MemoryBasicsPPC.n” &= ————

oOptions: [MemoryBasicsPPC.1 v |

~ Project Type -
[Application -] File T!we Creator

| | - Destination

] Always ask for destination
[MemoryBasicsPPC |

(set destination... |

- SIZE efrg
=| |58C0
Linker Minimum size | 1024 K Custom stack size Dhgtes
i' Preferred size [1024 |K

s D Merge 680x0 Application
[Seleci app}ilaiiﬂn...] [|

Extensions

Project Window

¥

PowerPCC

[Factory Settings | | save |

Figure 2.24 Setting your application’s partition size using the Symantec IDE.

Ch 2 » Macintosh M
apter acintosh Memory 93

Setting an Application’s Partition Size Using the Metrowerks IDE

If you're working with a Metrowerks project, select Preferences from the
Edit menu. Click on the 68K Project or PPC Project icon on the left side
of the Preferences dialog box to display the panel shown in Figure 2.25.
Type in the minimum and preferred sizes, in KB, then click OK. When
you build the stand-alone application, it will have these two sizes asso-
ciated with it.

e

Apply to open project. “

- Application Info:

Access !hs

il | File Name [MemoryBasics68K |
: HE

'SIZE' Flags Creator 7227
Type |APPL

Preferred Heap Size (k) |384

Minimum Heap Size (k) [384

[Factory Settings) (Revert Panel] [Cancel)

Figure 2.25 Setting your application’s partition size using the
Metrowerks CodeWarrior IDE.

Determining Your Application’s Memory Needs

Determining the memory requirements of your program may be diffi-
cult, especially if it is a large application that relies on a lot of dynamic
memory allocation. There are many factors that play a role in the amount
of memory a program needs. Here are some of those factors:

* Loading of static CODE resources, such as CODE 1.
¢ Loading and unloading of purgeable CODE resources.

94

Macintosh Programming Techniques, 2E

¢ Creation of objects in response to program menu commands;
this can vary based on user’s selections.

* Amount of global data.
* Size of the stack.

Some factors you may be able to determine, including the amount of
memory the static CODE resources will occupy. If you build a 68K appli-
cation and open it using ResEdit, you'll see that it holds CODE resources.
When the user launches your program, the system loads some of these
CODE resources into memory. The CODE 1 resource always gets loaded.
This means that you'll need to always allocate at least that much memo-
ry for your application’s partition.

If you are familiar with debuggers, you can use MacsBug, Jasik Designs
The Debugger, or TMON as a heap-exploring tool to help you determine
the dynamic memory requirements of your program. Debuggers aren’t
covered here; their use is a topic worthy of an entire book.

in order to find a simple formula for the calculation of a program’s partition

el If you're planning on thumbing through every Macintosh book you can find
m size, save your time and energy. Such a formula doesn't exist.

NOTE

If you're feeling overwhelmed by the number of factors involved in
determining memory use and you're not well versed in the use of debug-
gers, you may be wondering if there are any “quick and dirty” methods
of getting at least a rough idea of program memory use. Fortunately for
you, there are.

Watching Program Memory Using the Finder

Regardless of the IDE you use, set your project’s partition size as dis-
cussed earlier, then build your application. If you wish, you can start
with the default sizes that your IDE suggests. Leave your IDE and return
to the desktop. Go to your program’s icon in the Finder and double-click
on it to run your program.

Put your program through its paces. Select menu options, open dia-
log boxes, force the program to use the data structures you’ve pro-

Chapter 2 = Macintosh Memory

grammed into it. In short, do everything the user will be allowed to do,
and do each thing more than once.

As you're running your pfogram, click periodically on the desktop.
This will take you out of your program and into the Finder. The menu
bar will change to that displayed by the Finder. Select About This
Macintosh from the Apple menu. You'll see a window like that shown in
Figure 2.26.

Bl File Edit VDiew Label Special

About This Macintosh...

AppleCD Audio Player

(7 Automated Tasks >

Calculator

==——— fAbout This Macintosh =——08

[

3| System Software 7.5

~= Macintosh © Apple Computer, Inc. 1983-1994
Built-in Memory : 24,576K Largest Unused Block: 14,820K
Total Memory : 24 576K

@ MemoryBasics68K 284k

B sustemsoftware 4,103 I |

=]

Figure 2.26 The About This Macintosh window.

The window you see when you select About This Macintosh shows
information about memory use for each application currently running
on your Macintosh. The bar that displays your program’s partition and
the amount of it that is currently in use, will be of most interest to you.
The bar consists of two parts: the light part (which is blue on a color
monitor) shows the free memory in the heap of an application’s parti-
tion. The dark part (which is charcoal gray on a color monitor) shows the
amount of memory in use in the heap. The overall length of the bar will
remain fixed as your program runs, but the length of the dark part will
fluctuate as your program runs. Figure 2.26 shows you that a small pro-
gram named MemoryBasics68K is currently using very little of its allotted

95

96

Macintosh Programming Techniques, ZE

384 KB partition, while the operating system is using most of its almost
4 MB partition.

If you continue to run your program, will the partition fill complete-
ly and crash the program? Maybe. Remember, memory allocation is
dynamic in both directions—a program frees memory by purging objects
from memory and consumes memory by loading objects. The next action
taken by your program may cause, say, a large sound resource to be
purged and a small picture resource to be loaded. This would free up
some of the memory in the application’s partition, causing the dark part
of the bar in the About This Macintosh window to shrink.

How can the About This Macintosh window be used to determine
the partition size you should select for your application? First, give your
program a thorough workout, watching its bar in the About This
Macintosh window as you do so. If the dark part of the bar comes close
to filling the entire length of the bar, you'll know that the program is
reaching its partition limit, and you should increase the size of the pro-
gram’s partition to provide a buffer. If after a vigorous workout you
notice that the dark part of the bar never goes anywhere near the end of
the bar, you know that you can reduce your program'’s partition size so
that your application doesn’t needlessly tie up the user’s RAM.

After testing your program, quit and return to the desktop. Select
Get Info from the Finder’s File menu. Change the program’s minimum
and preferred sizes to values you think may be more appropriate. Again,
run your program and test it vigorously. Check the About This
Macintosh window periodically. Use this trial-and-error method until
you settle on a partition size that seems right for your program.

memory—too much, in fact. There’s a good chance that the partition size for

EEEPSl You can see that the MemoryBasics68K application heap has plenty of free
m this obviously small program could be reduced from 384 KB to about 100 KB.

NOTE

Before you build your final application, take note of the partition values
you've settled on. Then open the program’s project and use those values
in your Symantec or Metrowerks IDE. Each time you build an applica-
tion from the project, the resulting program will have this optimal parti-
tion size.

Chapter Z = Macintosh Memory

All right, hard-core hackers, you're correct; this technique isn’t meant to put
debugger manufacturers out of business, but it is a quick and informative
way to get a feel for the fluctuations in a program’s memory requirements. If
the topic of partition sizes seemed theoretical before, things should seem a
little more real after this first-hand experience.

Watching Program Memory Using Swatch

Using the About This Macintosh menu option is about as quick and
dirty as you can get. With that method you can get a very rough idea of
your program’s memory use without using any programming tools. To
get a much more accurate idea of what’s going on in RAM, try running
a nifty utility program called Swatch. In fact, Swatch, written by Joe Holt,
is so handy that M&T Books has included a copy of it on the CD includ-
ed with this book. Swatch (which stands for System Watch) is a very small
Macintosh program (about 40K) that has just one purpose: it watches the
memory usage of all applications that are running. The window that
Swatch displays, shown in Figure 2.27, gives much more information
than the window you see using the About This Macintosh menu item.

Em= System Watch =———————1
Heap Size Free 1 pixel : 2,048 bytes

System 2,955,740 14,740 ki

Finder 101,692 3,976 ®,

Swatch 77,440 25,144 |

MemoryBasicsé... 384,636 362,384

. (Red) Nonrelocatable, or relocatable but locked, block
B (vellow) Relocatable block

. (Orange) Relocatable purgeable block

(Green) Free block

Figure 2.27 The Swatch window as Swatch views the system.

Swatch shows the application heap for each running program. It shows
not only how much of the heap is being used, but how it’s being used.

97

98

Macintosh Programming Techniques, 2E

Parts of the heap that are nonrelocatable or are relocatable but locked are
shown in black on a monochrome system or red on a color system.
Figure 2.27 shows the Swatch window on a Mac that has a program
named MemoryBasics68K running. The figure also adds a key that
explains the color-coding for each type of block.

Notice in Figure 2.27 that the cursor has the appearance of a magni-
fying glass with a plus sign in it. By clicking the mouse you can magni-
fy the right side of the window to get a more detailed view of memory.
As shown, one pixel represents 2048 bytes of RAM. A click of the mouse
will make one pixel represent only 1024 bytes. You can keep clicking to
get more and more detail. Holding the Option key while clicking the
mouse button will reduce the view. Swatch has a few other tricks that
provide more insight into the memory your program uses; they’re men-
tioned in the text file included in the Swatch folder on the CD.

Computer memory is an abstract concept that lends itself to much
confusion for both beginning and advanced programmers. Swatch’s abil-
ity to allow you to visualize memory helps clarify what’s going on in
those mysterious RAM chips of the Macintosh.

WRITING 32-BIT CLEAN PROGRAMS

The number of bits used to hold an address determines how many
addresses can be accessed. Before System 7, 24-bit addressing was used.
That allowed the Mac to access a maximum of 16 MB of RAM. With the
arrival of System 7 came 32-bit addressing. Using 32 bits to hold an
address gives the potential for accessing up to 4 gigabytes of RAM.

In 24-bit addressing versions of Mac system software, only 24 of the
32 bits of a pointer or handle were used to hold a memory address. The
remaining 8 bits were either ignored or used to store additional infor-
mation. The bits in a master pointer are an example. Prior to System 7,
the lower 24 bits of the master pointer were used to hold the starting
address of a relocatable block. The highest bit of a master pointer was
used to keep track of whether the block was locked in memory. Two of
the other upper 8 bits also held flags, and the remaining 5 bits went

Chapter Z = Macintosh Memory 99

unused. Figure 2.28 provides an enlarged view of a master pointer to
illustrate this.

-l
This bit
marks the
block as
locked or
unlocked

24 bits

Figure 2.28 Bits of a master pointer, pre-System 7.

With the advent of System 7, Apple discontinued the use of the upper 8
bits of a pointer for anything but part of an address and encouraged
developers to do the same. When the Memory Manager looks at 32 bits,
it will assume that all 32 bits comprise an address. If a program stores
other information in some of these bits, that information will not be rec-
ognized by the Memory Manager; they will be assumed to be part of an
address. The results, of course, can be disastrous.

Programs that are written with no extraneous information in any of
the 32 bits of an address are said to be 32-bit clean, that is, they will run
cleanly on a Macintosh that is using 32-bit addressing.

100

Macintosh Programming Techniques, 2E

Panel lets you switch between 24-bit and 32-bit addressing in System 7. It can
do this because ROMs that contain a 32-bit Memory Manager also contain,

NoOTE forcompatibility reasons, a 24-bit Memory Manager. The downside is that
with your Mac set to 24-bit addressing, only 8 MB of RAM will be accessible,
even if you have more than that.

B To allow you to run programs that aren’t 32-bit clean, the Memory Control
l

Because most users now use a version of System 7—and will soon be
moving on to Copland (System 8)—you’ll want all of your programs to
be 32-bit clean. Bits in master pointers used for purposes other than
addressing are the primary cause for an application not to be 32-bit
clean. This was an acceptable practice for pre-System 7 programs, but
not anymore.

Don't become alarmed by all this talk of “disastrous results.” If you don't try
anything really tricky, your programs will most likely be 32-bit clean. Take
the example in Figure 2.28. Rather than setting master pointer bits to lock a
block in memory, you'll use the Toolbox routine HLock (). The HLock() func-
tion won’t do what’s shown in Figure 2.28 (change a bit in the master point-
er). Instead, it stores block information elsewhere. By using the provided
Toolbox routine, you don’t have to worry about the structure of a master
pointer or exactly how the system locks a block (an example of HLock() is
provided in Chapter 3).

IMPORTANT

If you don’t use the Toolbox routine HLock() and instead you use your
knowledge of what the bits in a master pointer look like (or used to look like)
to try to set or clear the upper bit using direct bit manipulation, your pro-
gram will no longer be considered 32-bit clean.

Master pointer bit manipulation is one source of breaking 32-bit clean
standards. Another is using customized window definition functions
and customized control definition functions—resources of type WDEF
and CDEF. Definition functions let you create your own types of win-
dows and controls that differ from the standard types. Both of these top-
ics are beyond the scope of this book. If you plan to use either custom
window or custom control definitions, make sure your reference sources
were written with System 7 and 32-bit clean addressing in mind.

How can you be sure your program is 32-bit clean? Test it thorough-
ly on a Macintosh that has a version of System 7. Check the Memory

Chapter 2 = Macintosh Memory

Control Panel and make sure that 32-bit addressing is turned on. If it
isn’t, turn it on and reboot the system. Then run your program, testing
each aspect of it.

“Testing each aspect” of your program is something you’d want to do with
or without the issue of 32-bil addressing, right?

IMPORTANT

CHaPTER PROGRAM: MEMORYBa@sICS

This chapter’s example program is similar to the Chapter 1 VeryBasics
example. MemoryBasics opens a window and draws a line of text to it,
just as VeryBasics did. The window is shown in Figure 2.29. A click of the
mouse button ends the program.

IE==——= Untitled = —=|

1111}

Chapter Two Program

Figure 2.29 The window displayed by the MentoryBasics program.

After running MemoryBasics, you can verify that your Mac does indeed
set aside a separate area in memory for the MemoryBasics program.
Whether MemoryBasics (or any other program) runs successfully isn't
dependent on the total amount of memory in your computer; it's depen-
dent on the amount of memory allocated to the partition that will hold
the program. From the desktop, click once on the MemoryBasics icon,
then select Get Info from the File menu. Change the partition size values
to a very small number, like 12 KB. Then close the Get Info window.
When you do, you'll see the alert pictured in Figure 2.30. Click OK.

101

102

Macintosh Programming Techniques, 2E

You have set the Minimum and Preferred
sizes below 384K, which may cause
“MemoryBasics68K” to crash.

Are you sure you want to continue?

Figure 2.30 Setting a program’s partition to a value below its recommended
minimum size results in the display of a caution alert.

Rerun the MemoryBasics program. Just a moment after launching, the pro-
gram will suddenly quit and return to the Finder. An alert similar to one
of the two pictured in Figure 2.31 will be displayed. The rather cryptic
“error of type 15” message refers to a “Segment Loader Error.” You might
instead see “an error of type 25,” which is an “out of memory” error.

The application “unknown” has
unexpectedly quit, because an error of

type 15 occurred.

“MemoryBasics68K” could not be opened,
0 because its current memory size of 12K is
too low. To open “MemoryBasics68K,”
first select Get info and raise the
Minimum and Preferred memory sizes to

at least 384K.

Figure 2.31 Low memory error messages.

Your Mac has at least a few megabytes of memory, most likely 8 or more.
Of those megabytes, you might have several free when you run

Chapter 2 = Macintosh Memory

MemoryBasics, but with all this free memory, the MemoryBasics program
will still quit due to a shortage of memory. With possibly several
megabytes of free memory at your disposal, you saw a program that
needs just a little over 16 KB refuse to run. This should show you that
memory partitions are indeed real.

Program Resources: MemoryBasics.rsrc

The resource file for MemoryBasics is identical to that of last chapter’s
VeryBasics resource file. In fact, the resource file is nothing more than a
copy of the VeryBasics file. Opening the MemoryBasics.rsrc file will
reveal that it holds just one WIND resource.

Program Listing: MemoryBasics.c

As mentioned, the source code for MemoryBasics is almost identical to
that of VeryBasics.

/1

void InitializeToolbox(void):
void HandleMouseDown(void);

/1l

fidefine rTextWindow 128
//

Boolean gAllDone = false;

Ptr gWindStorage;

/]

void main(void)

{
WindowPtr theWindow;
EventRecord theEvent;

103

Macintosh Programming Techniques, 2E

104
MaxApplZone();
MoreMasters();
MoreMasters();
MoreMasters();
InitializeToolbox();
gWindStorage = NewPtr(sizeof(WindowRecord));
theWindow = GetNewWindow(rTextWindow, gWindStorage, (WindowPtr)-1L
):
if (theWindow == nil)
ExitToShell();
ShowWindow(theWindow);
SetPort(theWindow);
MoveTo(30, 50);
DrawString(“\pChapter Two Program”);
while (gAl1Done == false)
{
WaitNextEvent(everyEvent, &theEvent, 15L, nil);
switch (theEvent.what)
{
case mouseDown:
Hand1eMouseDown();
break;
}
}
}
/!
void HandleMouseDown(void)
{
SysBeep(1);
gAl1Done = true;
}

/1

Chapter 2 = Macintosh Memory

void InitializeToolbox(void)
{
InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(OL);
FlushEvents(everyEvent, 0);
InitCursor();

Stepping through the Code

MemoryBasics begins by calling MaxApp1Zone() to expand the applica-
tion’s heap to its maximum size. Without this call, MemoryBasics would
still be allotted the heap size you specified in your IDE when you built
the program. However, the program wouldn't allocate all the memory at
once. Instead, it would take it on demand, as it was needed to load
objects. Calling MaxApp1Zone() causes the program to grab the entire
heap memory just after the program starts up. That allows for better
heap management by the system—objects can be relocated more freely
when the entire heap is available.

the 68K version of MemoryBasics. The PowerPC version gets loaded into

To get the same results as described in the following discussion, work with
m memory differently from the 68K version. Chapter 8 provides more details.

NOTE

You can verify that MaxAppl1Zone() does what it claims by running
MemoryBasics twice. First, run the Swatch utility. Then run MemoryBasics.
Click once on the Swatch window and take note of the heap size for the
MemoryBasics program. The top window in Figure 2.32 shows the heap
for a version of MemoryBasics that has an application partition size of 384
KB. Click the mouse button to end the program. Next, comment out the
call to MaxApp1Zone() in the MemoryBasics.c source code file:

/1 MaxApplZone();

105

106

Macintosh Programming Techniques, 2E

MaxApplZone ()

=] system Watch ===
Heap Size Free 1 pixel : 2,048 bytes
System 3,229,516 110,056 ity
Finder 101,692 3,744
Swatch 77,440 37,754
MemoryBasics6... 384,636 378,344 | [N o
B :,Ez ’!’gﬁé!“: giyﬁfé,ﬁpi?i 3 Etllﬁl,pi ' A‘
// MaxApplZone ()
EM=——————— System Watch
Heap Size Free 1 pixel : 2,048 bytes
System 3,140,088 £9,120 et
Finder 101,692 3,744 | DN
Swatch 77,440 37,784
MemoryBasicsé... 7,100 so4 ([l
1%
e i o

Figure 2.32 Swatch reveals that a call to MaxApp1Zone() does expand the heap
to its maximum size.

Now rerun the program. Again, click on the Swatch window and note the
size of the MemoryBasic heap. As shown in the bottom window of Figure
2.32, the heap size will be nowhere near the partition size that was set in
the IDE.

After calling MaxApplZone(), the program calls MoreMasters()
three times. While the very short and simple MemoryBasics program cer-
tainly won’t need more than the 64 master pointers the system provides
any program, it's good programming to call MoreMasters() a few times
shortly after program startup.

Before opening the program’s one window, MemoryBasics reserves

enough memory to hold one WindowRecord. That reserved memory is
then used in the subsequent call to GetNewWindow().

Chapter 2 = Macintosh Memory

MemoryBasics uses one memory-checking trick not discussed in the
text. After calling a Toolbox routine that loads a resource, it's always a
good idea to verify that the request was granted. You can do this by
checking the value of the pointer or handle that the Toolbox returns to
your program. In the case of the loading of a WIND resource, check the
value of the returned WindowPtr. If the load failed, the system will give
the returned pointer a value of ni1 (0x00000000). If the load succeeded,
the pointer will hold a valid address—a value other than nil. If a load
fails, you can safely exit your program by calling the Toolbox routine
ExitToShel1(). In Chapter 7 you'll see how you can provide the user
with a descriptive error message before exiting.

The remaining MemoryBasics code is the same as that used by the
VeryBasics program. If you have any questions about the rest of the code,
refer back to Chapter 1.

CHAPTER SUMMARY

The Macintosh Operating System divides RAM into two main sections,
or partitions. It reserves one partition, the system partition, for its own
use. The other partition is dedicated to applications that you run. This
second partition is further subdivided into application partitions. There
is one application partition for every application that’s running.

The application partition of a 68K program is composed of three
main areas: the A5 World, the application stack, and the application
heap. The A5 World is used to store a program’s global variables. The
application stack is used to hold a program’s local variables. Finally, the
application heap is used to hold the bulk of a program: its resources,
including the program’s code resources. The application partition of a
PowerPC program is composed of just the application stack and heap—
there is no A5 World. Information normally held in the A5 World can be
found in the heap or has been eliminated.

The Memory Manager is the set of system routines that allocate the
blocks, or sections, of memory. A block of memory can hold many dif-
ferent things, such as program code or other resources. This book gener-
ically refers to these “things” as objects.

107

108

Macintosh Programming Techniques, ZE

Each block of memory has attributes, or characteristics, that can be
set. Whether a block is relocatable, or movable in memory, is one such
attribute. A relocatable block can be temporarily locked in memory.
Because a nonrelocatable block is always fixed in memory, it doesn’t
have a locked/unlocked attribute. A relocatable block can also be
marked as purgeable, which means that the system can remove it from
the heap if the space it occupies is needed. Because a nonrelocatable
block must be explicitly removed from memory by the program, and not
by the system, it doesn’t have a purgeable/unpurgeable attribute.

The section of memory called the application heap is the area of most
interest to a Macintosh programmer. Because some memory blocks can
be moved about in the heap, the heap can become fragmented—areas of
memory develop that are too small to fit an object. One technique that
the Memory Manager performs periodically on its own is compaction;
that is, blocks are rearranged to eliminate small pockets of wasted space
that lie between them. Chapter 3 covers programming techniques you
can use to help the Memory Manager minimize fragmentation.

Because blocks of memory that are purgeable can be shifted about in
memory, a special memory-management technique is necessary to keep
track of blocks. A master pointer is a special pointer that holds the
address of a single object. Though the object it points to can be moved,
the master pointer itself never moves. Instead, when the block the mas-
ter pointer points to is moved, the contents of the master pointer are sim-
ply updated to reflect the object’s new location.

The programs you write will have to keep track of where objects
reside in memory. A handle is a variable that allows a program to keep
track of an object that moves about in memory. Once declared, the value
of a handle doesn’t change because a handle holds the address of a mas-
ter pointer, which itself is a nonmoving object.

ACINTOSH PROGRAMMING TECHNIQUES, 2E

Chapter 3

QuickDraw Graphics

What would be the point of programming on a Macintosh if you
couldn’t draw? Drawing is fun, creative, and gives you a chance to
express yourself—something you can’t say about some other areas of
programming. If you have a color system, as most people now do, you
can really let loose. This chapter will show you how.

Here you'll learn just what QuickDraw and Color QuickDraw are,
and how they work. You'll also look at graphics ports—the data struc-
tures that allow drawing styles to change from one window to the next.

In this chapter you'll see how to draw lines and shapes. You'll then
add a little flair to your shapes by filling them with patterns, including
color patterns that you define. Next, you'll read about pictures and how
to display them. You’'ll also see how to combine two techniques to
achieve some very interesting graphical results—this chapter shows you
how to turn a picture, or part of a picture, into a small pattern that can
be repeatedly stamped across a window.

Lastly, you'll learn how to change the look of the cursor. In your
study of the cursor, you'll also pick up a hint and warning pertaining to
avoiding the pitfalls that accompany the Memory Manager’s practice of
moving objects in memory.

109

no

Macintosh Programming Techniques, 2E

Asoutr QuickDraw aND CoLOR QuickDRrRaw

Everything you see on a Macintosh screen is there because of
QuickDraw. QuickDraw is a group of Toolbox routines and is the single
largest group of Toolbox functions. QuickDraw consists of more func-
tions than any of the managers mentioned in Chapter 1.

Some things are obviously graphical, like the screen results of a paint
program. But even windows, menus, and icons are all graphical images
that have to be drawn. QuickDraw does this drawing. If any drawing
has to be done, the managers rely on QuickDraw to do it.

While your program constantly makes indirect use of QuickDraw
via managers such as the Window Manager and Menu Manager, it will
also directly use it by calling any of the hundreds of QuickDraw
Toolbox functions.

written a few drawing routines of your own. Don't try bypassing
QuickDraw by using or modifying any of your own routines. QuickDraw is

' If you're used to programming in a non-GUI environment, you might have
I
NOTE {ast refined, and simple to use—you won’t one-up it.

Initializing QuickDraw

QuickDraw has its own set of variables and data structures that need
initialization. You've seen the following call in previous example pro-
grams in this book:

InitGraf(&qd.thePort);

Your program must call this function to initialize QuickDraw before any

QuickDraw operations take place. Make this call right off the bat.
Speaking of initializations, you may recall that several other calls are

included along with InitGraf (). They initialize other parts of the Toolbox,

Chapter 3 = QuickDraw Graphics m

such as the Font Manager and the Window Manager. Note that the order in
which these calls take place is extremely important and should remain the
same as has been shown. Here’s another look at the call to InitGraf() and
its place in the initialization of the Toolbox:

void InitializeToolbox(void)
{
InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(OL);
FlushEvents(everyEvent, 0);
InitCursor();

Pixels and the Coordinate System

Chapter 1 introduced the pixel and the coordinate system. Remember
from that discussion that the Macintosh uses bitmapped graphics; every
pixel on the screen has one or more bits in memory that keep track of the
state of that pixel. For a monochrome Mac the state is on or off. For a
color system, the state is the color of the pixel.

You can refer to each pixel by a pair of coordinates, which define a
point. This coordinate system starts at point (0, 0) in the upper-left cor-
ner of the screen and moves positively to the right and downward.
Figure 3.1 shows two views of the upper-left corner of a Macintosh
screen. The top view is close to actual size, while the bottom view is an
enlarged look at the section pictured in the top view. Both views illus-
trate where two pixels can be found. The first is the origin of the coordi-
nate system—the point (0, 0). The second pixel that's referenced is found
18 pixels in from the left of the screen and 7 pixels down from the top—
it’s the point defined by the coordinate pair (18, 7).

m

Macintosh Programming Techniques, 2E

(0, 0) !i I (18,7)
"r!le
(0,0) (18,7)

H1

IENENER N

I
INENNEEENN

Figure 3.1 The coordinate system.

The screen isn’t the only part of the Macintosh that has a coordinate sys-
tem. As you'll see in the next section, every window on the screen has its
own system.

GRaPHICS PORTS

When two windows are open on the screen, each is capable of display-
ing different styles of text. This is possible because each window has its
own set of properties independent of all other windows.

Chapter 3 = QuickDraw Graphics

The GrafPort and GrafPtr

Associated with a window is a graphics port. The port is the drawing envi-
ronment of the window. It describes the window’s type and style of text,
the thickness of drawn lines, and numerous other aspects of the graph-
ics that are displayed in the window.

With more than one window open on the screen you’ll have to tell
QuickDraw in which window or, more precisely, in which graphics port
it should perform drawing operations. Issuing a call to the Toolbox func-
tion SetPort() does this. SetPort() requires a pointer to the graphics
port you wish to make the current port. A GrafPort is the structure that
holds all this port information. A GrafPtr is a pointer to a GrafPort.

In previous chapters you've seen SetPort() in action in code that
looks like this:

WindowPtr theWindow;

SetPort(theWindow);
MoveTo(30, 50);
DrawString(“\pChapter One Program”);

You may wonder how it was possible to pass SetPort() a variable of
type WindowPtr when you now know that SetPort() requires a
GrafPtr as its parameter. Figure 3.2 hints at the answer. This figure
shows two sections of memory, each with a pointer pointing to an object.
On the right, a GrafPtr points to a GrafPort. On the left, a WindowPtr
points to a WindowRecord structure. Within the WindowRecord data
structure, the very first member is a GrafPort. So the first thing that
both a GrafPtr and a WindowPtr point to is a GrafPort—which is good
enough for SetPort(). Consider Figure 3.2 a brief introduction to the
WindowRecord—you'll learn all the sordid details about this data struc-
ture in the next chapter.

N4

Macintosh Programming Techniques, 2E

WindowRecord

Figure 3.2 The WindowPtr and GrafPtr both point to a GrafPort.

ment for a window, it is actually a more general entity. For example, the look

. of the desktop is defined by a graphics port. Additionally, your printer serves
N 0TE @ agraphics port during printing—printing involves sending QuickDraw
drawing commands not to the port of a window, but to the printer port.

Printing is a topic covered in the M&T book More Mac Programming Techniques.

_h While a graphics port is usually thought of as holding the drawing environ-

Color Windows and the CGrafPort

The Macintosh was originally a monochrome-only machine. As such, the
GrafPort—the data structure that holds all the information about a win-
dow’s graphics port—doesn’t hold any information about color. For sev-
eral years now the Mac has supported color, and for the last few years all
Macs other than portables have been color machines. To support color
windows, Apple defined a new type of graphics port—the color graph-
ics port. Information about a color graphics port is held in a CGrafPort
data structure.

Chapter 3 = QuickDraw Graphics

To create a window that is to be used to hold black and white graph-
ics, you call the Toolbox function GetNewWindow(). To create a window
that can hold color graphics, you call the Toolbox function
GetNewCWindow(). Both routines ask for the same number and type of
parameters, and both return a WindowPtr. Here’s a call to each.

#define rMonochromeWindow 128
#define rColorWindow 129

WindowPtr theMonoWindow;
WindowPtr theColorWindow;

theMonoWindow = GetNewWindow(rMonochromeWindow, nil, (WindowPtr)-1L);
theColorWindow = GetNewCWindow(rColorWindow, nil, (WindowPtr)-1L);

A few pages back you read about graphics ports and the GrafPort
type—every window has one. Standard windows have a GrafPort.
Color windows have a CGrafPort. Most of the differences will be trans-
parent to you. Drawing operations in either type of port are similar, as
you'll see later in this chapter.

Whether or not the user of your program has a color system is impor-
tant. Users with older systems have the original QuickDraw in their
machines, not the newer Color QuickDraw. Toolbox routines you’ll be
calling to display color will fail on older machines—something you cer-
tainly want to avoid. Color QuickDraw is a part of System 7. As the Mac
approaches System 8 (Copland), you'll need to make the programming
decision as to whether or not to support System 6 users. You'll find that
most professionally developed applications now require System 7.0 or
later. This book makes the assumption that you'll do the same.

The Toolbox routine Gestalt() checks the machine a program is
running on for a variety of things, including the presence of Color
QuickDraw. Gestalt() is covered in great depth in Chapter 9. Here you
need only know how to use it—you won’t need all the details on how it
works. Near the start of your program, call Gestalt() with the two
parameters shown below.

0SErr theError;
long theResponse;

theError = Gestalt(gestaltQuickdrawVersion, &theResponse);

11é

Macintosh Programming Technlques, 2E

The Gestalt() function checks for a number of system parameters. The
rather ungainly Apple-defined constant gestaltQuickdrawVersion
will tell the versatile Gestalt() function that on this occasion it should
check for the version of QuickDraw that is present on the user’s
Macintosh. Gestalt () will dig that information out of the Mac your pro-
gram is running on and relay it to your program in the variable named
theResponse. It will also notify your program if it somehow failed its
mission; that’s what the variable theError is for.

Immediately after the call to Gestalt (), check the result. A response
value equal to the Apple-defined constant gestaltOriginalQD means
the system has the original black and white version of QuickDraw. Any
other value means that there’s one of several versions of Color
QuickDraw present. If Gestalt() has set theResponse to a value of
gestaltOriginalQD, then the user’s Mac doesn’t support color. If that’s
the case, you'll want your color program to exit:

if (theResponse == gestaltOriginalQD)
ExitToShell();

You'll see this color-checking code in the example program at the end of
this chapter. And remember, you'll find a more thorough explanation of
the Gestalt() function when you arrive at Chapter 9.

The Graphics Pen

A graphics port holds the graphical information about a window. When
you draw to a window, QuickDraw uses the information held in that
window’s graphics port. By adjusting the settings of a port’s graphics pen
you can change many of the port’s drawing properties. The graphics pen
is an invisible drawing tool that exists as a convenience for making
changes to the properties of lines drawn in a window.

You saw the pen in use in the example program of Chapter 1 with the
call to the Toolbox routine MoveTo(). MoveTo() moves the pen—without
drawing—to the pixel coordinates you specify. The reference point for
moving is the current window’s upper-left corner. The companion func-
tion to MoveTo() is Move(). Move() uses the pen’s current position as a
reference—not the window’s corner. Figure 3.3 shows where the pen

Chapter 3 = QuickDraw Graphics

would end up after a call to MoveTo(150, 100). Figure 3.3 also shows
that each port, including the desktop port, has its own coordinate system.

S\ File Edit

7(0,0)

' 3 0,00 [EE Window?2

\>(0- 0)

100

V— = (150, 10
150 (150, 100)

Figure 3.3 Result of MoveTo(150,100) in a window’s port.

You just saw that you can move the graphics pen. You can also change
its characteristics. Call PenSize() to change the size of the pen’s tip. The
first parameter to PenSize() controls the pen’s pixel width, the second
parameter controls the pen'’s pixel height.

Changing the pen size will affect the thickness of lines drawn with all
subsequent calls to LineTo(). The first parameter to LineTo() gives the
horizontal length of a line, and the second parameter gives the vertical
length. The reference point for the line is the window’s upper-left corner.
The companion to LineTo() is Line(), which uses the current location of
the pen as its reference. Here’s a code fragment using all five of these calls.

PenSize(3, 3);
MoveTo(100, 100);
Line(90, -50);
Move(100, 0);
LineTo(290, 140);

17

ns

Macintosh Programming Techniques, ZE

Figure 3.4 shows the two lines that result from executing the above code.
Take note of two things in this figure. First, calls to Move () and MoveTo()
move the graphics pen, but don’t result in lines being drawn. Second, a
negative vertical value sends the pen upward. For the horizontal coordi-
nate, a negative value would move the pen to the left.

E=——————— Drawing Window

Line (90, -50) Move(lOD 0)

I O e

MoveTo (100, 100)

\’i‘

LineTo(290,140)

290

Figure 3.4 The results of moving and line drawing.

DEFENSIVE DRAWING

Every window has its own port, which makes it possible for a user to
select different graphics settings in each window. It’s not up to the user
to keep track of all this; it’s up to you, the programmer. Fortunately, the
Toolbox contains a few routines that make this task painless.

Changing Ports

When you issue a command to QuickDraw, it will faithfully execute that
command. The results of the command will always end up in the current
port. If you have more than one window on the screen, you must tell

Chapter 3 = QuickDraw Graphics

QuickDraw which port should be considered the current port. The
Toolbox function SetPort() is your means of doing this. Before you
begin drawing to a window,, call SetPort (). After calling SetPort(), all
subsequent drawing will take place in the window specified in the para-
meter to SetPort(). To draw to a different window, again call
SetPort():

WindowPtr theWindowl;
WindowPtr theWindow?;

SetPort(theWindowl);
// all subsequent drawing takes place in theWindowl

SetPort(theWindow2);
// all subsequent drawing takes place in theWindow?2

SetPort(theWindowl);
// all subsequent drawing again takes place in theWindowl

When drawing, the best strategy is to first make a call to the Toolbox rou-
tine GetPort() to get a GrafPtr to the current port. Only then do you
call SetPort (). Thecall to GetPort() will capture, or preserve, the port
that was current before you set the port. When your drawing is com-
plete, return things to their previous state by setting the port to the pre-
viously current port. Here’s the format.

void DrawSomething(WindowPtr theWindow)

{ GrafPtr theSavePort;
GetPort(&theSavePort);
SetPort(theWindow);
// perform drawing here

. SetPort(theSavePort);

Notice that the GetPort () routine accepts a pointer to a GrafPtr as its para-
meter, while SetPort() accepts a GrafPtr. Also, recall that because the first
field of the data structure that a WindowPtr points to is a GrafPort. A
WindowPtr variable can be used in place of a GrafPtr variable as the para-
meter to SetPort().

n9

120

Macintosh Programming Techniques, 2E

i Apple states that the misuse of SetPort() is one of the most common
sources of errors in programming the Macintosh. Don’t ignore Apple! Even
if your application uses only one window you should still adhere to this

IMPORTANT Strategy of preserving the current port before drawing. If in the future you
add multiple-window support to your program, you’'ll be assured that your
program’s drawing routines will draw to the proper window.

Changing Characteristics of a Port

One of the reasons the Macintosh gained its reputation as a computer
that is easy to use is because the Mac gives control to the user. Program
users don’t have to be programmers to change the look of text or to draw
into windows. Macintosh applications let users make changes easily to a
window’s environment, or graphics port, through menu choices or dia-
log box selections.

When a user makes an effort to set graphics characteristics for a
desired effect, that user will find it disconcerting if the characteristics
change on their own. If you're going to change the state of the graphics
pen, you'll want to first save the present state of the pen with the Toolbox
function GetPenState(). Pass GetPenState() a variable of type
PenState. You can then change properties of the pen with calls to rou-
tines like PenSize(). When done, return the pen to its previous condi-
tion with a call to SetPenState(). Here’s a code fragment that does that:

PenState theSaveState;

GetPenState(&theSaveState);
// change pen characteristics
SetPenState(&theSaveState);

When would a program allow both the user and the program itself to
change the state of the pen? Figure 3.5 shows one possibility. In this
hypothetical paint program, the user clicked on a line thickness of four
to change the pen size. When the user drew a circle, it was drawn with
the selected pen size. The program has a feature that automatically adds
a crosshair to a circle—and always using a pen size of 1 pixel by 1 pixel.

Ch 3 = QuickD Graphi
apter uickDraw Graphics 121

After the crosshair is drawn the program should return the pen to the
state the user last selected—a size of four pixels.

The user sets the pen
size, then draws a circle

The program changes
the pen size, then
draws the cross hair

S

B SHHHTEEE iz

Figure 3.5 Both the user and program can control the pen.

The following is a summarization of the defensive drawing tactics cov-

ered in this section:

* Save the state of the graphics pen with GetPenState().

* Save the current port with GetPort ().

* Make the port you're about to use the active port with SetPort ().
* Make any desired pen changes.

* Draw any desired shapes.

* Reset the port to the previously active port with SetPort().
* Reset the state of the pen with SetPenState().

The following snippet is another version of the application-defined
DrawSomething() function. You’ll want to pattern all your routines that
change the pen or draw to a window on this one. Keep in mind that the

122

Macintosh Programming Techniques, 2E

calls to these routines will add very little to the size of your final appli-
cation—and may save you hours in trying to find the cause of bugs later.

void DrawSomething(WindowPtr theWindow)

{
GrafPtr theSavePort;
PenState theSaveState;
GetPenState(&theSaveState); // save pen state
GetPort(&theSavePort); // save port
SetPort(theWindow): // change port
// change pen characteristics
// perform drawing operations
SetPort(theSavePort); // restore port
SetPenState(&theSaveState); // restore pen state
}

DRAWING SHAPES

The rectangle is the basis of many of the shapes QuickDraw creates. In
Macintosh programming, the information about a rectangle is stored in a
variable of the data type Rect. A Rect is a structure with four members—
right, 1eft, top, and bottom. Use the Toolbox routine SetRect() to set
the pixel coordinates of a rectangle. Pass SetRect() a pointer to a Rect
variable along with the pixel boundaries you want the rectangle to have.
The order of the boundaries is important. Here’s an example that sets the
upper-left corner of a rectangle at coordinates (75, 40) and gives the rec-
tangle a width of 100 pixels and a height of 50 pixels.

fidefine kRectLeft 75
fdefine kRectTop 40
fidefine kRectRight 175
fidefine kRectBottom 90

SetRect(&the_rect, kRectLeft, kRectTop, kRectRight, kRectBottom);

The upper-left corner of the window is the reference point for the rec-
tangle’s boundaries. Figure 3.6 shows where the rectangle would be
located for the above example. The figure uses a dashed line to show the

Chapter 3 = QuickDraw Graphics

rectangle because SetRect () only sets up a rectangle—it doesn’t actual-
ly display one.

s@=————— Drawing Window
-
| 40
—— {90
75
¥
175

Figure 3.6 SetRect() sets a rectangle’s boundaries.

Once you've set the boundaries for a rectangle you can perform several dif-
ferent drawing operations on the rectangle, as discussed in the next section.

Working with Rectangles

With the coordinates of a rectangle established through a call to
SetRect(), you can frame it with the Toolbox function FrameRect ():

Rect theRect;
FrameRect(&theRect);

If you'd like to fill the inside of a rectangle with a pattern, you can use
the Toolbox function Fi11Rect (). Pass Fi11Rect() a pointer to the rec-
tangle to fill and a pointer to the pattern to use for the fill. There are five
standard patterns of the C data type Pattern available for your use:
white, 1tGray, gray, dkGray, and black. Each of these patterns exists as
a field in a data structure named QDG1obals. To hold these patterns—
and a few other items—the system defines a QDG1obals variable named
qd. The fact that qd is a system global variable means that it is available

123

124

Macintosh Programming Techniques, 2E

for use by any program—without that program having to declare it.
Keeping in mind that C is case-sensitive, use a pointer to one of these
patterns as the second parameter:

Fi11Rect(&theRect, &qd.l1tGray);

In the above call you can see that a pattern is accessed through the qd
global variable. Each pattern is a field in the qd data structure variable,
so you'll use the dot operator, as shown above.

Earlier in this chapter you read about the graphics pen. You saw that
it could draw black lines using Line() and LineTo(). Lines drawn with
these functions normally appear in solid black, but they don’t have to.
You can change the pattern that the pen uses in drawing routines by call-
ing the Toolbox function PenPat (). Include one of the predefined pat-
terns as the sole parameter. Again, access the pattern through the qd
global variable. Here’s a call that draws a diagonal line in a dark gray
pattern rather than black. '

PenPat(&qd.dkGray);
MoveTo(20, 30);
Line(100, 100);

Once you change the pen pattern, the change stays in effect until the next
call to PenPat(). If the pen pattern is set to your liking, you can call
Fil11Rect()’s companion Toolbox routine PaintRect (). The only differ-
ence between the two is that PaintRect () uses the current pen pattern to
fill the rectangle, while Fi11Rect () requires that you pass a pattern as a
parameter.

Rect theRect;

SetRect(&theRect, 20, 20, 120, 120);
PenPat(&qd.gray):

PaintRect(&theRect);

SetRect(&theRect, 50, 50, 150, 150);
Fil1Rect(&theRect, black);

Figure 3.7 shows the result of the above code. Note that the call to
PaintRect() uses the current pen pattern gray, as set by the call to
PenPat().Fil1Rect () ignores the current pen pattern and uses the passed
pattern of b1ack. The next section discusses patterns in greater detail.

Chapter 3 = QuickDraw Graphics

SlI=— Drawing Window

Figure 3.7 The result of calling PaintRect() and FilTRect().

You can invert a rectangle using the Toolbox function InvertRect().
This routine doesn’t add a pattern to a rectangle like PaintRect() or
Fil1Rect(). Instead, it inverts each pixel that falls within the bound-
aries of the rectangle. If the window happens to be all white at the time
of the call, the rectangle will be all black.

InvertRect(&theRect)

When you're finished displaying a rectangle you can remove it with a call
to the Toolbox routine EraseRect (). This function wipes out the entire rec-
tangle and replaces it with the background color, which is usually white.

EraseRect(&theRect)

Working with Ovals

Now that you know all about rectangles, ovals will be a breeze. An oval
begins with a call to SetRect(). Why set a rectangle to draw an oval?
QuickDraw will not display the rectangle; it will only use it as a guide in
which to inscribe the oval when you call the Toolbox function

125

126

Macintosh Programming Techniques, 2E

FrameOval(). Look at the following code, then check out the results in
Figure 3.8. Take note that the dashed rectangle in Figure 3.8 is there only
to give a feel for what bounds the oval; QuickDraw will not actually dis-
play it.

Rect theRect;

SetRect(&theRect, 50, 50, 200, 150);
FrameQval(&theRect);

All the operations that work on rectangles also work on ovals—there’s
an oval-drawing Toolbox routine that corresponds to each of the rectan-
gle-drawing functions. You frame an oval with FrameOval(). Add pat-
tern to an oval using PaintOval() and Fi110val(). You can invert an
oval using InvertOval() and erase it with EraseOval (). Here’s a call
to each:

Rect theRect;

SetRect(&theRect, 60, 80, 200, 235);
Fil10val(&theRect, &qd.dkGray);

PenPat(&qd.black);

SetRect(&theRect, 150, 180, 300, 330);
PaintOval(&theRect);

SetRect(&theRect, 100, 100, 160, 185);
InvertOval(&theRect);

SetRect(&theRect, 200, 200, 250, 250);
EraseOval(&theRect);

Chapter 3 = QuickDraw Graphics

127

[=—-= Drawing Window

(50, 50)

-
P

\
2

(200, 150)

Figure 3.8 An oval is inscribed in the boundaries set by SetRect().

Working with Round Rectangles

The Macintosh has an interesting shape called the round rectangle, which
is a rectangle with rounded-off edges. If you think back to the definition

of an oval, you'll have a pretty good clue of how the Macintosh defines
the round rectangle.

short theRndWidth = 100;
short theRndHeight = 50;
Rect theRect;

SetRect(&theRect, 40, 60, 240, 160);
FrameRoundRect(&theRect, theRndWidth, theRndHeight);

128

Macintosh Programming Techniques, ZE

First, set the boundary rectangle with SetRect (). Then define the pixel
width and height of an imaginary oval that defines the degree of round-
ing of the corners. QuickDraw uses this oval for rounding each corner.
Pass the oval width and height to FrameRoundRect (). Figure 3.9 illus-
trates the result of executing above code snippet.

=

Drawing Window =

100
theRndwidth

50
theRndHeight

Figure 3.9 An oval defines the corners of a round rectangle.

Don’t be surprised to learn that round rectangles can have the same
operations performed on them as rectangles and ovals. Frame a round
rectangle with FrameRoundRect (). Apply a pattern to a round rectangle
using PaintRoundRect() or Fil1RoundRect(). Invert a round rectan-
gle using InvertRoundRect(). Finally, erase a round rectangle using
EraseRoundRect (). Once again, here is a call to each:

short theRndWidth
short theRndHeight
Rect theRect;

40;
5%

[

SetRect(&theRect, 10, 10, 200, 200);
Fil1RoundRect(&theRect, theRndWidth, theRndHeight, &qd.dkGray);

PenPat(&qd.l1tGray);

SetRect(&theRect, 30, 200, 100, 250);

Chapter 3 » QaickDraw Graphics
129

PaintRoundRect(&theRect, theRndWidth, theRndHeight);

SetRect(&theRect, 50, 45, 255, 320);
InvertRoundRect(&theRect, theRndWidth, theRndHeight);

SetRect(&theRect, 200, 100, 250, 250);
EraseRoundRect(&theRect, theRndWidth, theRndHeight);

PATTERNS

The five standard patterns are handy to have around, but you’ll find occa-
sion to develop your own, especially if you want a pattern that includes
color. That's easy to do with the aid of the PAT and ppat resource types.
You'll use ResEdit (or Resorcerer) to first create and edit your own pat-
tern. Then you'll add a little C or C++ source code to your program to
bring the pattern resource into memory and use it in drawing.

there is a space after the letter ‘T".

: Remember, every resource type has a four-character name. For the PAT type,
Wi

NOTE

The PAT Resource

The PAT resource is used to create a black and white pattern, while the
ppat resource is used for color patterns. In this section and the next,
you’ll see how to work with the PAT resource. After that, it’s on to color.

If you've created a WIND resource with ResEdit, you're proficiency
with that resource editor is great enough to create a pattern resource by
simply looking at the following steps:

1. Choose Create New Resource from the Resource menu.
In the Select New Type dialog box that opens, double-click on
PAT in the list of resource types.

3. A pattern editor will open. There, click the small pencil tool on
individual pixels in the enlarged view of the pattern on the left
side of the window.

130

Macintosh Programming Techniques, ZE

In the PAT editor you'll edit an 8-pixel-by-8-pixel square—that’s always
the size of a pattern resource. Later, when your program uses this pat-
tern, QuickDraw will lay copies of that square end-to-end and side-by-
side to fill whatever area you specify. ResEdit’s PAT editor gives you an
idea of how your pattern will look when it’s used to fill an area. In Figure
3.10, only one pixel has been turned on in the pattern. But the right side
of the editor shows quite a few pixels on. That’s because the right side of
the editor provides an actual size view of how a rectangle 64 pixels
across by 64 pixels in height would look when filled with the pattern
being worked on in the editor.

Figure 3.11 shows a completed PAT resource. In the next section
you'll call on this resource to fill the lines and shapes that you display
with QuickDraw calls.

A single click of the pencil ...and will result in numerous
tums one pixel on in the pixels being on when the pattem
pattemn... is displayed repeatedly

Figure 3.10 ResEdit’s pattern editor in use.

Chapter 3 = QuickDraw Graphics
131

Patterns.rsrc

PATs from Patterns.rsrc

§§§§ E[EE PAT 1D = 128 from Pati =

LI
8]

Figure 3.11 A completed PAT in the pattern editor.

The PAT Source Code

By now you should be able to see the pattern for using resources—no
pun intended. First, you use a resource editor to create the appropriate
resource. Then you use a Toolbox call to load that resource into memory.
The Toolbox supplies your program with a handle to the memory that
holds the resource. That gives you something to work with—you then
use this handle in calls to other Toolbox routines.

132

Macintosh Programming Techniques, 2E

Patterns follow this same process. You created a PAT resource in a
resource editor such as ResEdit. Now, bring it into memory with a call to
the Toolbox function GetPattern(). Pass GetPattern() the resource ID
of the PAT to load. In return, GetPattern() will give your program a han-
dle to the pattern in memory. Not just an ordinary handle, of course—
you'll get a PatHand1e. The following snippet shows how this is done to
load the PAT resource that was developed in the preceding section:

#idefine rPatternZigZagline 128
PatHandle thePenPatHand;
thePenPatHand = GetPattern(rPatternZigZagline);

What can you do with the handle? By dereferencing the handle twice
you move from a pattern handle to a pattern pointer, then to a Pattern.
Note the capital ‘P’ in Pattern. When speaking of patterns in general,
use lowercase. When referring specifically to the Macintosh C data type,
use Pattern. You can pass a Pattern, or a doubly dereferenced
PatHandle variable, to PenPat() to change the current pattern of the
pen. Then, any drawing that you do, whether it be lines or shapes, will
make use of your new pattern. Here’s a comprehensive example. Figure
3.12 follows and shows the result.

fidefine rPatternZigZagline 128

PatHandle thePenPatHand;
Rect theRect;

thePenPatHand = GetPattern(rPatternZigZaglLine);
PenPat(**thePenPatHand);

PenSize(10, 10);
MoveTo(20, 20);
Line(300, 0);

SetRect(&theRect, 20, 50, 150, 100);
PaintRect(&theRect);

Chapter 3 » QuickDraw Graphics

sE@=————— Drawing Window

222222222222222222222222222222222222222

I

Figure 3.12 Drawing routines using a PAT resource.

Creating a PAT resource is simple and fun. Using the resource in your
source code is just as easy. Since the number of patterns you can devel-
op is huge, the PAT resource can really open the door for you to express
your own creativity.

The ppat Color Pattern Resource

The monochrome representation of a pattern is the 8-pixel-by-8-pixel
square with a C data type of Pattern. For color, the size is the same, but
each pixel can take on any of the available colors, not just black or white.
The C data type for a color pattern is PixPat—a pixel pattern. There’s
also a color pattern resource, the ppat.

The color ppat is analogous to the monochrome PAT . If you know
how to use ResEdit’s pattern editor, and you now do, then you already
know how to make a ppat resource. Using ResEdit, select Create New
Resource from the Resource menu. Scroll to the ppat name and double-
click on it. The editor that opens will look similar to the PAT editor. One
important difference is that the ppat editor has a pop-up menu that dis-
plays a palette that allows you to select any of the available colors for use
in the pattern. You can use as many different colors as you want in a sin-

134 Macintosh Programming Techniques, ZE

gle ppat resource. For a color pattern you select colors for each pixel.
Figure 3.13 shows a color pattern and the color selection palette—in
black and white print, unfortunately—in ResEdit.

Patterns.rsrc

PAT ppat
ppats from Patterns.rsrc
— D Size Narmne
128 110 |
EMEE ppat ID = 128 from Pa” =]
e
=
21
s
o])
@0
@O
B&YW

Figure 3.13 A ppat resource in ResEdit’s color pattern editor.

The number of colors that appear in the palette depends on the number of
' l colors your Mac is capable of displaying, and the color level setting you cur-

rently have your Mac set to via the Monitors control panel.

NOTE

The ppat Color Pattern Source Code

Similar to GetPattern(), the call that brings a PAT into memory,
GetPixPat() is the call that loads a ppat into memory. As the following

Chapter 3 » QuickDraw Graphics

snippet shows, GetPixPat() returns yet another handle type, a
PixPatHandle:

fdefine rPixPatPurple 128
PixPatHandle thePixPatHand;
thePixPatHand = GetPixPat(rPixPatPurple);

To change the current setting of the pen to your new color pattern, use the
color version of PenPat (): the Toolbox function PenPixPat (). This routine
conveniently takes a PixPatHand1e as its parameter, so there’s no derefer-
encing involved to get to the color pattern. You have the handle from the
call to GetPixPat (), now use it in PenPixPat (), shown as follows:

fidefine rPixPatPurple 128

PixPatHandle thePixPatHand;
Rect theRect;

thePixPatHand = GetPixPat(rPixPatPurple);
PenPixPat(thePixPatHand);

PenSize(10, 10);
MoveTo(20, 20);
Line(300, 0);

SetRect(&theRect, 20, 50, 150, 100 };
PaintRect(&theRect);

If the preceding example looks familiar, it should; the last five lines are
the same as those of the monochrome pattern example a few pages back.
Once the pen pattern is set, whether it be with a call to PenPat () or a call
to PenPixPat(), line drawing and shape painting takes place with the
same calls. Shape filling is just a little different, as you'll soon see.

Figure 3.14 shows the results you could expect from the preceding
example, assuming the ppat pattern shown in Figure 3.13 is used. Again,
the actual pattern displayed in the window will of course contain what-
ever colors were used for the ppat resource.

135

136

Macintosh Programming Techniques, ZE

Eli=——— Drawing Window

Figure 3.14 Drawing routines use the ppat resource.

Now that you know about color patterns, the rest of color drawing is a
snap. Everything you know from the “old” monochrome QuickDraw
applies. Once you set the pen pattern using PenPixPat(), lines and
painted shapes will use this new pattern. For instance, the preceding
example used Line() and PaintRect().

A QuickDraw fill routine (such as Fil1Rect()) requires that you
specify the pattern to use; it ignores the current pen pattern. With color
you're working with a PixPatHand1le and not a Pattern. Because of this
the fill routines for color QuickDraw are somewhat different. Each of the
monochrome Toolbox routines has a companion routine for color. Here’s
a call to each:

fidefine rPixPatPurple 128

PixPatHandle thePixPatHand;
Rect ; theRect;

thePixPatHand = GetPixPat(rPixPatPurple);

SetRect(&theRect, 20, 150, 200, 250);
Fi11CRect(&theRect, thePixPatHand);
Fi11C0Oval(&theRect, thePixPatHand);
FiT1CRoundRect(&theRect, thePixPatHand);

Chapter 3 = QuickDraw Graphics

Inverting shapes in monochrome is simple because black is defined as
the opposite of white. For color, things aren’t quite so simple. Just what
is the opposite of light chartreuse, anyway? It is possible to invert all or
part of a color shape by calling InvertRect (), but you should avoid an
inversion attempt such as this because of its unpredictable nature.

color windows. The reverse is not always true. A call to
Fil1Rect(&theRect, &qd.1tGray) will draw a light gray rectangle in a
color window. A call to Fil1CRect(&theRect, thePixPatHand) will not
draw anything if color QuickDraw is not present.

Toolbox routines originally intended for monochrome systems will work in
7

PICTURES a6ND ANIMATION

The PICT resource is the Macintosh way of storing a graphical image for
use by a program. A program can display pictures in its windows and
dialog boxes. You can also use pictures to easily add simple animation to
your programs.

The PICT Resource

If you have a drawing or painting application, you can create a PICT
resource. MacDraw, Canvas, and PixelPaint are just a few examples of
programs you can use. After you draw a picture, find a piece of clip art
you like, or open a digitized image, just select it from within your paint
program and copy it. Then run your resource editor. Once you're in your
resource editor, open your project’s resource file and paste the picture
into it. A resource editor such as ResEdit will automatically save the past-
ed picture as a PICT resource.

Figure 3.15 shows a simple picture in a drawing program. If you fol-
low the preceding procedure for transferring the picture to ResEdit, your
resource file will have a new resource type in it—a PICT, as shown in
Figure 3.16.

137

138 Macintosh Programming Techniques, 2E

Figure 3.15 A picture in a Macintosh paint program.

Pictures.rsrc

L&

PICT

==——— P|LTs from Pictures.rsrc =i
— b

a i =

| =]

Figure 3.16 A single PICT in a resource file viewed from ResEdit.

Double-clicking on the PICT icon in a resource file will open a window
that displays all of the PICT resources in the resource file. The example
shown in Figure 3.16 has just one PICT, an example presented later in

Chapter 3 = QuickDraw Graphics

this chapter has more. No matter how big the picture resource is, ResEdit
will display it in a small rectangle like that of Figure 3.16. ResEdit will
scale the picture as best it can. This shrunken version is for display only.
If you double-click on the scaled picture, you'll see it at its actual size.

Displaying a PICT in a Program

Now that you have a picture safely tucked away into a resource file, you
can display it in a program.

You know all about handles from Chapter 2. Programs on the
Macintosh have a special handle for working with pictures—the
PicHandle. To load a PICT resource into memory, you make a call to the
Toolbox routine GetPicture(). This routine returns a PicHandle for
use by your program. Here’s an example:

fidefine rPartyHatPicture 128
PicHandle thePicture;
thePicture = GetPicture(rPartyHatPicture);

GetPicture() brings a PICT into memory; it doesn’t display the pic-
ture. To do that you make a call to the Toolbox routine DrawPicture(),
which requires two parameters: a handle to a picture, and a rectangle in
which to display the picture.

You can display a picture in a rectangle of any size. DrawPicture()
will scale the original picture to fit the rectangle. But if you want to display
the picture in its original, actual size, you'll need to determine that size.

A PicHandle is a handle to a data structure called a Picture. One of
the members of this structure is the picFrame, which is a Rect that sur-
rounds the picture. The picFrame member holds the boundaries of the pic-
ture. To access the picFrame, you dereference the PicHand1e. The follow-
ing snippet adds to the previous code fragment to show how this is done.

{define rPartyHatPicture 128

PicHandle thePicture;
Rect theRect;

139

140

Macintosh Programming Techniques, 2E

thePicture = GetPicture(rPartyHatPicture);
theRect = (**thePicture).picFrame;

Now you have the rectangle that bounds the original picture. Your real
interest is in the picture’s size. You want to set up a rectangle of the prop-
er size to display the picture anywhere in a dialog box or window. The
picFrame rectangle might not have left and top coordinates of 0, so you
can’t just assume that the right and bottom coordinates reveal the pic-
ture’s size. Instead, subtract the value of the left coordinate from the
value of the right coordinate to determine the picture’s width. Determine
the height from the bottom and top coordinates of picFrame. Here’s an
example that uses the rectangle variable theRect—the rectangle that
holds the coordinates of picFrame:

short theWidth;
short theHeight;

theWidth = theRect.right - theRect.left;
theHeight = theRect.bottom - theRect.top;

With the picture’s width and height known, set up a new rectangle to be
used to display the picture anywhere within a window. Select a top-left
coordinate for the picture, then use the picture’s width and height. The
following snippet defines a rectangle with a top-left coordinate of (60,
30). Figure 3.17 shows where the party hat picture would appear in a
window if it were to be drawn to this rectangle.

fdefine kPicturelLeft 60
fdefine kPictureTop 30

SetRect(&theRect, kPictureLeft, kPictureTop, kPicturelLeft +
theWidth, kPictureTop + theHeight);

Chapter 3 = QuickDraw Graphics
P P %

EFE=——=—— Pictures ==—————3|

(60, 30)
) N
: theHeight
2 Y
e e
theWidth

Figure 3.17 Defining the placement of a picture in a window.

Now you know how to get the original rectangle that holds the picture
boundaries and how to set up your own display rectangle using
SetRect(). Finally, display the picture in your rectangle using
DrawPicture(). Here’s a complete example:

ffdefine rPicturelindow 128
fidefine rPartyHatPicture 128
fdefine kPicturelLeft 80
fidefine kPictureTop 50

WindowPtr theWindow;
PicHandle thePicture;
Rect theRect;
short theWidth;
short theHeight;

142

Macintosh Programming Techniques, 2E

theWindow = GetNewWindow(rPictureWindow, nil, (WindowPtr)-1L);
if (theWindow == nil)

ExitToShell();
SetPort(theWindow);

thePicture = GetPicture(rPartyHatPicture);
theRect = (**thePicture).picFrame;

theWidth = theRect.right - theRect.left;
theHeight = theRect.bottom - theRect.top;

SetRect(&theRect, kPictureLeft, kPictureTop, kPictureLeft +
theWidth, kPictureTop + theHeight);

DrawPicture(thePicture, &theRect);

don’t include code for reserving memory for the window—they just pass ni1
as the second parameter to GetNewWindow() to let the Memory Manager take

NoTE careoftheallocation. For your own full-featured application, consider using
the memory-reserving technique described in Chapter 2.

P Many of this book’s short snippets that include code for opening a window
J

The above example loads the PICT resource with an ID of 128 into mem-
ory using GetPicture(). It then dereferences the PicHandle that
GetPicture() returned in order to access the picFrame member of the
Picture data structure in which the PICT data was stored. The width
and height of the original picture are determined from the picFrame. A
rectangle is then set up to display the picture. This rectangle starts 60 pix-
els in from the left of a window and 30 pixels down from the top. The
width and height of the rectangle are the same as those of the original
PICT. Finally, the picture is displayed in the window with a call to
DrawPicture().

Now you know exactly how to create a picture, save it as a PICT
resource, and display it in the window of a program. With just a little
more work, you can use several PICT resources to really add a little flair
to your applications—especially in the form of animation.

Chapter 3 » QuickDraw Graphics

Using PICT Resources to Create Animation

You can create animated effects in your programs by loading and dis-
playing a series of PICT resources one after another. To do this you first
create a series of pictures and save them as PICT resources. You then
write a routine that includes a loop. Within the loop body you bring a
PICT into memory and display it in a window. If each pass through the
loop displays a different picture, and does so over the previous picture to
obscure the old picture, the effect of animation is achieved.

Creating a Series of PICT Resoarces

Figure 3.18 shows a screen shot of a document from a Macintosh paint
program. In this figure the author shows off his drawing expertise by
drawing four characters, each in a different pose. Actually, only the left-
most character was drawn. The other three characters are copies of the
first, each rotated using the paint program’s free rotate feature to shift
the character to a slightly different pose.

Drawing Window =

@ R|D
0S|l

Il

i

F Y

Figure 3.18 Scenes for an animation, drawn in a paint program.

Each of the characters in Figure 3.18 has a frame surrounding it for one
reason only, so that each will be the same size when copied individually

143

144

Macintosh Programming Techniques, ZE

to the Scrapbook. When copying a single character, the selection is made
just within, and not including, the border. After copying all four pictures
to the Scrapbook, ResEdit can be launched and each of the pictures can
in turn be pasted into the resource file for the current project. After doing
so, double-clicking on the resource file’s PICT icon opens a window that
displays the four PICT resources, as shown in Figure 3.19.

1]

[E==== PICTs from QuickDBrawing.rsrc E=====2
{3

=4

128 129

120 131

=<

Figure 3.19 A resource file after pasting four PICT resources into it.

After taking note of the resource ID of each PICT, quit ResEdit and run
your development environment. It’s time to write some code.

Animation Source Code

Earlier in this chapter you learned how to display a PICT in a window
by getting a PicHandle to it using the Toolbox function GetPicture()
and then showing the picture using another Toolbox routine:
DrawPicture(). You'll use this same technique to create animation.

As an example of simple animation, consider the application-defined
AnimatePictureResource() routine. This function contains a loop that
cycles through the four PICT resources created in the last section. Recall

Ch 3 = Qual hi
apter alckDraw Graphics 145

that those PICTs had resource IDs of 128, 129, 130, and 131, respectively.
Drawing these four pictures gives the illusion that the character is danc-
ing. Examine the function, then read the discussion of it that follows.

fidefine rFirstDancerPicture 128
{idefine kDancerDelay 7
#define kDancerlLeft 70
fidefine kDancerTop 20
void AnimatePictureResource(WindowPtr theWindow)
{

PicHandle thePicture;

short thePictlID;

Rect theRect;

short theWidth;

short theHeight;

short i, count;

long theTicks;

thePicture = GetPicture(rFirstDancerPicture);

theRect = (**thePicture).picFrame;

theWidth = theRect.right - theRect.left;

theHeight = theRect.bottom - theRect.top:

SetRect(&theRect, kDancerLeft, kDancerTop, kDancerLeft +
theWidth, kDancerTop + theHeight);

count = 0;
for (i =1; i <= 50; i+)
{
++count;
switch (count)
{
case 1:
thePictID
break;
case 2:
thePictID
break;
case 3:
case 5:
thePictID
break;
case 4:
thePictID

rFirstDancerPicture;

rFirstDancerPicture + 1;

rFirstDancerPicture + 2;

rFirstDancerPicture + 3;

146

Macintosh Programming Techniques, 2E

break;
case 6:
thePictID = rFirstDancerPicture + 1;
count = 0;
break;
}

thePicture = GetPicture(thePictID);
DrawPicture(thePicture, &theRect);

Delay(kDancerDelay, &theTicks);
]

SetRect(&theRect, 0, 0, 1000, 1000 };
Fil1Rect(&theRect, &qd.white);
}

Much of AnimatePictureResource() should look familiar to you. It
uses GetPicture() to get a handle to one of the PICT resources for the
purpose of determining its pixel dimensions. This size is used to display
each of the four pictures, thus the importance of making them all the
same size in your drawing program.

The heart of AnimatePictureResource() is the for loop. The loop
body executes 50 times, though you can of course choose to make it exe-
cute as few or as many times as you want. Within the loop body, the vari-
able count keeps track of which of the four pictures is to be displayed
during the current pass. One way to display the four pictures would be
to draw them in order, that is, PICT 128, PICT 129, PICT 130, then PICT
131. After the last picture was displayed, the sequence could repeat itself,
again starting at PICT 128. Continually cycling through the four PICT
resources in order would be a simple task, but would result in animation
that looks jerky after showing the fourth picture and then jumping back
to the first. AnimatePictureResource() uses a slightly different
approach. After displaying the fourth PICT, the routine “backtracks” by
displaying the third, then second, and finally the first picture. It's simi-
lar to the motion of a pendulum. Figure 3.20 elaborates on this plan.

Chapter 3 = QuickDraw Graphics

Reset count,
repeat cycle...

count 1 2 3 4 5 6 1
PICTID 128 129 130 131 130 129 128

Figure 3.20 Animation: Cycling through the PICT resources.

After using variable count to determine which PICT to use, the function
gets a handle to the correct PICT and then displays the picture—right on
top of the previous picture. That way the AnimatePictureResource()
doesn’t have to bother erasing the previous picture.

After drawing one picture, and before displaying the next,
AnimatePictureResource() pauses for a very short period. Some
Macintosh computers, especially PowerPC-based ones, can run through
this loop very quickly. Too quickly—the little man would be really danc-
ing up a storm. By using the Toolbox function Delay (), a pause of about
one-tenth of a second is added between the display of pictures to slow
things down.

The Delay () function requires two parameters. The first is the length
of the delay. Give the desired delay in sixtieths-of-a-second increments—
that’s how the Macintosh keeps track of time. Thus a value of 1 results in
a delay of one-sixtieth of a second, while a value of 120 results in a two-
second delay. You'll usually ignore the second parameter to Delay().
This is a pointer to a variable of type 1ong. When the Delay() routine
has finished, the Toolbox will have filled this variable with the time, in
sixtieths of a second, since the system was started; that is, since the
Macintosh was turned on.

The QuickDrawing example program found near the end of this chap-

ter provides an example of animation using pictures. That program uses a
version of the application-defined function AnimatePictureResource()

147

148

Macintosh Programming Techniques, 2E

that is almost identical to the one described here. The only difference is
that the QuickDrawing version uses this chapter’s defensive drawing
techniques to preserve and restore the port.

that, you'll need to use offscreen graphics worlds. That topic is beyond the

scope of this text. If you’re interested, you'll find information about GWorlds
NOTE .inGraphicsand Sound Programming Techniques for the Mac, published by M&T

Books, and in the Imaging With QuickDraw volume of Inside Macintosh.

B Want to create really smooth, really fast, flicker-free animated effects? For
’

PICTURES as PATTERNS

In this chapter you've seen how to use ResEdit to create a ppat resource
that holds a color pattern of your own. A second way to create a ppat
resource is to start with a picture and convert it to a pattern. Doing this
enables you to easily create patterns that are far more sophisticated than
anything you could create using ResEdit’s simple pattern editor. Once
the picture has been converted to a ppat resource, you can use it as you
would any other color pattern: draw a shape and fill it with a few, sev-
eral, or dozens of the now-miniaturized pictures.

Converting a Picture to a ppat Resource Using
Pict2ppat

On the book’s CD you'll find a copy of the utility program Pict2ppat—a
shareware utility by John J. Calande III that converts any picture to a
ppat color pattern resource. To create a ppat resource using this program,
begin by finding a picture of interest. Make sure the picture is saved in a
PICT or PICT?2 file, then launch Pict2ppat.

Convert it. For example, if you have a GIF file, your GIF-reading software
should have a Save As menu item in its File menu that allows you to save
NOTE the GIF file in a different format, such as a PICT. As a last resort, you can
open the picture of interest and perform a screen dump. Most screen capture
utilities save the screen image to a PICT file that can be opened by Pict2ppat.

. : Got a picture that you like, but it’s not in the form of a PICT or PICT2 file?
i

Chapter 3 = QuickDraw Graphics

To import your picture into Pict2ppat, click on the Get PICT button. Use
the standard open file dialog box to navigate to the folder that holds
your picture file and then open that file. When you do, Pict2ppat will
display it on the right side of the Pict2ppat window. Figure 3.21 shows
Pict2ppat after opening a file that holds a picture of a robot. Incidentally,
this robot file, named Robot.PICT, can be found in this chapter’s folder of
example programs.

Pict2ppat™

LPreuieu.l %L]

[GetpiCT.. ®0 |
(Create ppat... %5 |

Figure 3.21 Pict2ppat with a PICT imported.

In Figure 3.21 you can see that Pict2ppat has a pop-up menu that allows
you to specify the pixel dimensions of the pattern you're about to create.
Earlier you edited 8-pixel by 8-pixel patterns in ResEdit. Here, you can
create much larger patterns—up to 128 pixels square.

Next, take notice of the outline of a square that covers part of the pic-
ture displayed in Pict2ppat. This outlined square shows which part of
the opened picture will be turned into a pattern. You can click and drag
on the square to move it about the picture. You can also move it in small
increments by clicking on any of the four Arrow buttons on the left side
of the window. To save more or less of the picture as a pattern, click on
either of the two “mountain” buttons.

149

150

Macintosh Programming Techniques, 2E

When you're satisfied that you've selected the part of your picture
that should become a pattern, click the Create ppat button. When you
do, you'll be prompted for a ppat name, as shown in Figure 3.22. What
you're naming here isn’t a file, but the ppat resource itself. Pict2ppat
always saves newly created ppat resources in a file named ‘ppat’ File.
Because this file can hold numerous ppat resources, you’ll want to save
each with a name so that you'll be able to identify them when you work
with the resources at a later time.

[Preview 3L
[GetpICT.. ®0 |
[Create ppat... 38§]

Figure 3.22 Naming a new ppat resource in Pict2ppat.

After naming the ppat, you'll quit Pict2ppat. At this time you have a new
ppat resource, but it won’t be of much use to you until it’s in the resource
file used by your current project. Launch your resource editor and open
the file named ‘ppat’ File—you'll find it in the same folder that holds the
Pict2ppat application. Now, while still in the resource editor, also open
the resource file for your project. Click once on the ppat icon in the file
named ‘ppat’ File, then select Copy from the Edit menu. Now click on
your project’s resource file, then select Paste from the Edit menu. (See
Figure 3.23.) This chapter’s QuickDrawing example program uses three
ppat resources—two of them created in ResEdit, one created by

Chapter 3 = QuickDraw Graphics 151

Pict2ppat. In Figure 3.23 the one ppat created in Pict2ppat is being
copied from the ‘ppat’ File to the QuickDrawing.rsrc file.

= 'ppat File =& QuickDrawing.rsrc
[ﬁl EEJIE.
[ppat | ppat WIND
= |
Click on the ppat icon and Copy... ... then Paste into your project's resource file

Figure 3.23 Copying a ppat resource from the Pict2ppat file and
pasting it to a project’s resource file.

Double-clicking on the ppat icon in the resource file will reveal a list of all
of the patterns in the file. For example, double-clicking on the ppat icon
in the QuickDrawing.rsrc file now shows that there are three ppat resources
in the file. In Figure 3.24 you can see that the ppat copied from the ‘ppat’
File has a name (the name entered while creating the ppat in the Pict2ppat
program) and an ID. The ID is a number randomly selected by Pict2ppat.

QuickDrawing.rsrc

ppat WIND

EEZ ppats from QuickDrawing.rsrc SE=|
— D Size Name
128 110 kfy
129 110

Figure 3.24 A project resource file with three ppat resources in it.

If you're using ResEdit and you double-click on the name of a ppat
resource that was generated by Pict2ppat, you may see an alert that dis-
plays an error message that says the resource is corrupted. The resource,

152

Macintosh Programming Techniques, 2E

in fact, isn’t corrupted; it just can’t be edited in ResEdit’s ppat editor. It
can, however, still be used by any of your programs. If you use
Resorcerer as your resource editor, you can open a Pict2ppat-generated
ppat resource for editing. Figure 3.25 shows what the Resorcerer ppat
editor looks like.

‘ppat’ File
Types: 1 ‘ppat’ (Color Pixel Pattern) Resource:
<DF>» <LH 4
p’at —1 -
S[i=——— ppat 13900 “Robot” from 'ppat’ File %ﬁ
© ,
i 3 i Size(x,u): (32,32)
| b ppat q{ E llll:llll.u= p
E Lo : En!or
C G /
== ~|£7 1 bit
Ald
g2
|8
g [Olas| |5 . it
snﬂnsnﬂt l O @ =Ig Il.lllvﬂﬁl.lBEEl u l'='...:: XG l Cancel

Figure 3.25 Using Resorcerer to edit a Pict2ppat-generated
ppat resource.

Pict2ppat gives each ppat it creates an ID that is randomly generated.
You can use this number in your source code or you can assign the ppat
a different ID, perhaps one that better matches a resource-numbering
scheme you use. To change the ID, select Get Resource Info from
ResEdit’s Resource menu. Figure 3.26 shows the ID of the Robot ppat
being changed from the value Pict2ppat assigned it to a value of 130.

Chapter 3 = QuickDraw Graphics
e P 153

It
1

Info for ppat 130 from Quicklrawing.rsrc ==

Type: ppat Size: 3298
1D: 139 |
Name: |Robot I
Owner type
Owner 1D: DRUR
. WDEF

Sub 1D: MDEF
Attributes:
[JSystem Heap [JLocked [Preload

[Purgeable [OProtected [JCompressed

Figure 3.26 Renumbering a ppat resource in ResEdit.

A ppat resource that's created from a picture is used in the same way as
a ppat resource that is created from within ResEdit’s ppat editor. First,
call GetPixPat() toload the resource data to memory and receive a han-
dle to that memory. Then establish the boundaries of a shape that is to be
filled with the pattern. Finally, call a Fi11Cxxx() routine such as
Fi11CRect() or Fi11COval() to fill the shape. The following snippet
fills a rectangle that is 140 by 140 pixels with the robot pattern.

{fdefine rPixPatRobot 130

PixPatHandle theRobotPixPatHand;
Rect theRect;

theRobotPixPatHand = GetPixPat(rPixPatRobot);

SetRect(&theRect, 140, 40, 280, 180);
Fi11CRect(&theRect, theRobotPixPatHand);

THE CURSOR

In this book you’ve seen the Toolbox initialization calls packaged into
one application-defined function named InitializeToolbox(). The

154

Macintosh Programming Techniques. ZE

last call in that application-defined routine is a call to the Toolbox func-
tion InitCursor(). The InitCursor() function sets the cursor to the
familiar arrow shape. You've noticed in many Macintosh programs that
the cursor can take on different shapes. Often it looks like an arrow, but
it can also take on other forms. A word processor, for example, sets the
cursor to an I-beam shape when it’s over a window that allows editing.

As your program runs, you may want to change the appearance of
the cursor. You can do that by using two Toolbox calls: GetCursor() and
SetCursor(). The system defines five cursors for your use, and they're
stored as resources in the system resource file.

InitCursor() sets the cursor to the default cursor, the arrow. For
any of the other four cursors, use GetCursor() to get a handle to the
desired one. You supply the resource ID of the CURS resource you want
to display. You don’t have to know the CURS IDs—the four system cursor
resources can be referenced using Apple-defined -constants:
iBeamCursor, crossCursor, plusCursor, and watchCursor.

On a Macintosh, handles can be of the generic Hand1e type or a type
specific to the object being worked with. For example, you've seen that
a call to GetPicture() returns a PicHandle. A call to GetCursor()
loads the data that makes up a CURS resource and returns a CurHandle
to your program. After getting a CurHandle, call SetCursor() to actu-
ally make the cursor change shape. When passing the cursor handle to
SetCursor(), dereference it once—SetCursor() is expecting a pointer
to a cursor, and you've got a handle to one.

Here’s an example that lets the user know a short wait is in order. It
sets the cursor to the watch, does some task that takes some time, then
sets the cursor back to the arrow.

CursHandle theWatchCursor;
theWatchCursor = GetCursor(watchCursor);

HLock((Handle)theWatchCursor);
SetCursor(*theWatchCursor);

Chapter 3 = QaickDraw Graphics

HUnlock((Handle)theWatchCursor);
// do some time-consuming stuff
InitCursor();

Yes, you're right, something new was indeed slipped into that code snip-
pet. The call to SetCursor() is sandwiched between calls to two
Toolbox functions: HLock() and HUnlock(). The HLock() function
marks a relocatable block as nonrelocatable. HUnlock() sets the block
back to its normal condition of relocatable.

What makes the call to SetCursor() so different from other Toolbox
calls—so different that calls to this pair of previously unseen Toolbox
routines is necessary? The difference is that this is the first time you've
seen a dereferenced handle being used as a parameter to a Toolbox rou-
tine. In Chapter 2, you learned about memory compaction. Memory
compaction can take place during the execution of some Toolbox rou-
tines. If it does, and that routine is working with a dereferenced handle,
the results can be unpredictable.

Recall that a handle holds the address of a master pointer. The mas-
ter pointer won't ever move, but what it points to may. In a call to
SetCursor(), an address is passed—the address held in the master
pointer. Imagine that memory compaction takes place in the middle of
the call to SetCursor(). SetCursor() was passed the address of the
object—the cursor. If the block that this address points to moves,
SetCursor() will not find the cursor, and that’s a big problem.

The preceding scenario is re-created in Figure 3.27. The handle holds
the address of a master pointer: 0x02233440 in the figure. Dereferencing
a handle one time yields the contents of what it points to: the contents of
the master pointer, or 0x03456700. So that’s what is being passed when
*theWatchCursor is used as a parameter: the address of the cursor data,
0x03456700. Just to complete this dereferencing story, if the cursor han-
dle was dereferenced a second time you’d have the contents of address
0x03456700, the object itself—the cursor.

155

156

Macintosh Programming Techniques, ZE

Cursor Handle
theWatchCursor

Cursor data
| TR =J *theWatchCursor
e 003456700

Master pointer
**theWatchCursor

== 0%02233440

Figure 3.27 Cursor data in memory.

Now, what happens if *theWatchCursor (the address 0x03456700) is
passed to SetCursor(), and memory gets compacted in the middle of the
call? The relocatable block that holds the cursor might get moved. If it does,
the master pointer that holds the blocks starting address will be properly
updated. But the SetCursor() Toolbox function doesn’t have knowledge
of, or access to, the master pointer. Instead, it has only the block’s original
address: 0x03456700. As SetCursor () works with the data at this address,
the Memory Manager could move the cursor block. If that happens,
SetCursor() will be accessing no data (free memory) or incorrect data (if
a different block has taken the place of the original cursor block).

Nesting code between calls to HLock () and HUnlock() prevents the
above situation from occurring. The relocatable block used as the para-
meter to HLock () will not move, even if the heap gets compacted. The
advantage to this technique should be apparent: The Toolbox call work-
ing with a dereferenced handle will work successfully. The downside is
that while a relocatable block is locked, it can cause memory fragmenta-

Chapter 3 = QuickDraw Graphics

tion. That's why a locked block should be unlocked immediately after its
use is complete.

Memory compaction takes place only at select times. Not all Toolbox
calls are affected. In this book, any Toolbox routines that might be affected
will be called from within the safety of HLock () and HUnTock (). The Inside
Macintosh series of books lists the routines that may be affected by com-
paction. If you don’t have this information, feel free to play it safe and call
HLock() every time you pass a dereferenced handle. As long as you are cer-
tain to call HUn1ock() when the call is complete, you can’t go wrong.

CHaPTER PROGRAM: QUICKDRAWING

QuickDrawing, this chapter’s example program, uses the same format as
the preceding examples in that it simply puts a single window on the
screen and then does its stuff. In this case, the “stuff” is drawing.

When you run QuickDrawing you’ll first see a short, animated

sequence that involves the dancing man PICT resources shown earlier in
this chapter. See Figure 3.28.)

FHE=— Untitled =

Figure 3.28 The QuickDrawing program begins with an animated sequence.

When the animation stops, QuickDrawing demonstrates how the look of
the cursor can be changed. The program comes to a halt for a few sec-
onds and, as it does so, displays the watch cursor. Soon after that the pro-
gram draws a fat line and four rectangles to the window. Each of these
shapes uses a ppat resource, as shown in Figure 3.29. To end the pro-
gram, click the mouse button.

157

158

Macintosh Programming Techniques, 2E

E=——==——_ Untitled

Figure 3.29 After the animation, QuickDrawing displays
pattern-filled shapes.

Program Resources: QuickDrawing.rsrc

QuickDrawing uses resources of three types: PICT, ppat, and WIND.
Figure 3.30 shows the project’s resource file. The four PICT resources are
the same ones described earlier in this chapter. The first ppat resource is
a light purple pattern, and the second is a red curl. The third ppat was
created using the Pict2ppat utility. Figure 3.29 shows how each pattern
looks in use. The WIND resource is typical of the window resources
you've seen in the first two chapters.

Chapter 3 = QuickDraw Graphics
P P 159

QuickDrawing.rsrc
&
ppat WIND

PICTs from QuickDrawing.rsrc

128 129
i
(P\\ 15 ppets from QuickDrawing.rsrc EHE
Wi - D Size Name

128 110
129 110

130 3298 “Robot” T

3

Figure 3.30 The resource file used by the QuickDrawing project.

Program Listing: ResourceUser.c

The following is the source code listing, in full, for the QuickDrawing
program.

Macintosh Programming Techniques, 2E

//

void InitializeToolbox(void);

void HandleMouseDown(void);

void DrawWithPixPatResources(WindowPtr);
void AnimatePictureResource(WindowPtr);

//

fidefine rDrawingWindow 128
fidefine rPixPatPurple 128
fidefine rPixPatRedCurls 129
ftdefine rPixPatRobot 130
fidefine rFirstDancerPicture 128
jidefine kProgramDelay 180
{idefine kDancerDelay 7
fidefine kDancerlLeft 70
fidefine kDancerTop 20
/!

Boolean gAllDone = false;

Ptr gWindStorage;

//

void main(void)

{
WindowPtr theWindow;
EventRecord theEvent:

long theResponse;
CursHandle theWatchCursor;
long thelong;
MaxApplZone();

MoreMasters();
MoreMasters();
MoreMasters();

InitializeToolbox();

Chapter 3 = QuickDraw Graphics
P P 161

Gestalt(gestaltQuickdrawVersion, &theResponse);
if (theResponse == gestalitOriginalQD)
ExitToShell();

gWindStorage = NewPtr(sizeof(WindowRecord));
theWindow = GetNewCWindow(rDrawingWindow, gWindStorage,
(WindowPtr)-1L);
if (theWindow == nil)
ExitToShell();
ShowWindow(theWindow);

AnimatePictureResource(theWindow);

theWatchCursor = GetCursor(watchCursor);

HLock((Handle)theWatchCursor);
SetCursor(*theWatchCursor);

HUnlock((Handle)theWatchCursor);

Delay(kProgramDelay, &thelong);

InitCursor();

DrawWithPixPatResources(theWindow);
while (gAl1Done = false)
{
WaitNextEvent(everyEvent, &theEvent, 15L, nil);

switch (theEvent.what)

{
case mouseDown:
Hand1eMouseDown();
break;
}
}
1
1/

void HandleMouseDown(void)

{
SysBeep(1);

gAl1Done = true;
1

162 Macintosh Programming Techniques, 2E

/1

void AnimatePictureResource(WindowPtr theWindow)
{

GrafPtr theSavePort;

PenState theSaveState;

PicHandle thePicture;

short thePictlID;
Rect theRect;

short theWidth;
short theHeight;
short i, count;
long theTicks;

GetPenState(&theSaveState);
GetPort(&theSavePort);
SetPort(theWindow);

thePicture = GetPicture(rFirstDancerPicture);

theRect = (**thePicture).picFrame;

theWidth = theRect.right - theRect.left;

theHeight = theRect.bottom - theRect.top;

SetRect(&theRect, kDancerLeft, kDancerTop, kDancerlLeft +
theWidth, kDancerTop + theHeight);

count = 0;
for (i =1; i <= 50; i++)
{
++count;
switch (count)
{
case 1:
thePictID
break;
case 2:
thePictID
break;
case 3:
case 5:
thePictID
break;
case 4:
thePictiD
break;

rFirstDancerPicture;

rFirstDancerPicture + 1;

rFirstDancerPicture + 2;

rFirstDancerPicture + 3;

Chapter 3 « QuickDraw Graphics
P P 163

case 6:
thePictID = rFirstDancerPicture + 1;
count = 0;
break;
}

thePicture = GetPicture(thePictID);
DrawPicture(thePicture, &theRect);

Delay(kDancerDelay, &theTicks);
}

SetRect(&theRect, 0, 0, 1000, 1000);
Fil1Rect(&theRect, &qd.white);

SetPort(theSavePort);
SetPenState(&theSaveState);

}
//
void DrawWithPixPatResources(WindowPtr theWindow)
{
GrafPtr theSavePort;
PenState theSaveState;

PixPatHandle thePenPixPatHand;
PixPatHandle theFill1PixPatHand;
PixPatHandle theRobotPixPatHand;
Rect theRect;

GetPenState(&theSaveState);
GetPort(&theSavePort);
SetPort(theWindow);

thePenPixPatHand = GetPixPat(rPixPatPurple);:
theFillPixPatHand = GetPixPat(rPixPatRedCurls);
theRobotPixPatHand = GetPixPat(rPixPatRobot);

PenPixPat(thePenPixPatHand);
PenSize(10, 10);

MoveTo(20, 20);
Line(200, 0);

Macintosh Programming Techniques, 2E

164

SetRect(&theRect, 20, 40, 100, 80);
PaintRect(&theRect);
SetRect(&theRect, 20, 100, 120, 180);
Fi11CRect(&theRect, theFillPixPatHand);
SetRect(&theRect, 140, 40, 280, 180);
FiT1CRect(&theRect, theRobotPixPatHand);
SetPort(theSavePort);
SetPenState(&theSaveState);

}

/1

void InitializeToolbox(void)

{
InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(OL);
FlushEvents(everyEvent, 0);
InitCursor();

}

Stepping through the Code

Stepping through QuickDrawing will be a breeze. All of its code was
developed in this chapter, and there are no surprises.

The define Directives

To minimize the scattering of numbers throughout the source code list-
ing, QuickDrawing.c uses several #define directives. The IDs of the first
PICT, the WIND, and the three ppat resources each get their own
fidefine. The length of the pause between the display of frames in the
animation (7/60ths of a second) is established by the kDancerDelay con-
stant. The length of the pause in the program after animation has com-
pleted (3 seconds) is governed by the kProgramDelay constant. Finally,

Chapter 3 = QuickDraw Graphlcs
P 4 165

the placement of the pictures used in the animation is controlled by the
kDancerLeft and kDancerTop constants.

fHdefine rDrawingWindow 128
fidefine rPixPatPurple 128
fidefine rPixPatRedCurls 129
fidefine rPixPatRobot 130
{idefine rFirstDancerPicture 128

{define kProgramDelay 180
fidefine kDancerDelay 7
ftdefine kDancerlLeft 70
fidefine kDancerTop 20
Global Variables

The gA11Done Boolean variable is used to signal the end of the pro-
gram. Because this technique, and this variable, is used in each program
in this book, this will be the last mention of it. The same applies to
gWindStorage—the variable used to point to a section of memory
reserved for a window.

The main() Function

QuickDrawing first calls the Toolbox functions MaxApplZone() and
MoreMasters() to perform a couple of simple memory management
techniques, as described in Chapter 2. Next, the usual Toolbox initializa-
tions are handled by the application-defined InitializeToolbox()
function. You'll see these same lines of code in each of the remaining
examples, so, again, no further mention will be made of this code.

QuickDrawing next makes a check to verify that the user’s Mac has
Color QuickDraw. If not, the program calls the Toolbox function
ExitToShel1() to quit. If Color QuickDraw is present, as is most likely
the case, the QuickDrawing program reserves memory for a window
and then opens a new window. Note that because the program will be
displaying color patterns, it’s a color window that gets loaded and
opened. A call to GetNewCWindow() takes care of that. The program
makes a quick check to ensure that the window was loaded successfully,
then calls ShowWindow() to make sure that the window is visible.

To display the dancing man, QuickDrawing uses an application-
defined routine named AnimatePictureResource(). You’ll find a com-

166

Macintosh Programming Techniques, 2E

plete explanation of this routine earlier in this chapter. Next, the program
demonstrates how to change the look of the cursor using the Toolbox
functions GetCursor() and SetCursor().

To draw pattern-filled shapes, the application-defined
DrawWithPixPatResources() function is called. This routine calls the
Toolbox function GetPixPat() three times—one time for each pattern.
Each call loads one of the ppat resources and returns a handle to the
ppat data in memory. These three patterns are then used in the drawing
of a line and the filling of three rectangles.

good plan if the patterns are going to be used several times, and not in a con-
secutive order. Since QuickDrawing uses one pattern, then another, and then

0 TE the third, without re-using any of the previous patterns, the same handle
could be re-used. Here’s an example of a second approach, one that would
work just as well:

QuickDrawing uses a separate handle for each of the three patterns. That's a
I

PixPatHandle thePixPatHand;

thePixPatHand = GetPixPat(rPixPatPurple);
// set pen pattern, draw a line and a painted shape

thePixPatHand = GetPixPat(rPixPatRedCurls);
// fill a shape

thePixPatHand = GetPixPat(rPixPatRobot);
// fi11 a shape

CHAPTER SUMMARY

QuickDraw is a group of Toolbox routines—the single largest group of
Toolbox functions. Besides drawing the shapes and pictures you see dis-
played in windows, QuickDraw draws the window itself. In fact,
QuickDraw is responsible for drawing everything on the Macintosh
screen. QuickDraw, and other parts of the Toolbox, have to be initialized
before use.

Every window has its own graphics port or environment. A graphics
port defines what lines and text will look like. When you give each win-

Chapter 3 = QuickDraw Graphics

dow its own graphics port, you allow different windows to display dif-
ferent styles of text and draw shapes of different patterns. You can
change a graphics feature within a port by making a change to the port’s
graphics pen. The pen is invisible; it exists as a reference that aids you in
manipulating graphics features.

You use Toolbox routines to tell QuickDraw what to draw. Because
each window has its own graphics port, you must make sure that
QuickDraw knows which window it should draw to in response to the
commands you give it. Before you draw to a window, you'll give
QuickDraw this information in the form of a call to SetPort().

The primary shape that QuickDraw works with is the Rect, the C
data type that represents a rectangle. By defining the boundaries of a rec-
tangle, you give QuickDraw the information it needs to draw rectangles,
ovals, and round rectangles (rectangles with rounded corners). The
Toolbox contains a host of shape-drawing routines that allows you to
frame, fill, invert, and erase these different types of shapes.

You can add flair to your shapes by using patterns. The C data type
Pattern allows you to choose from several defined patterns. You can
also define your own monochrome patterns using PAT resources. Many
Macintosh users now have color systems, and you can support these
users by using Color QuickDraw. The color version of QuickDraw
allows you to draw shapes in color, create color patterns using the ppat
resource type, and add color to the frame or content of windows.

167

ACINTOSH PROGRAMMING TECHNIQUES, 2E

Chapter 4
Working with Windows

Windows are what originally set the Macintosh apart from most other com-
puters. To display information, a Macintosh program needs at least one
window. In this chapter, you'll learn about window-handling techniques.

This chapter’s discussion begins with events—a topic you've been
introduced to in previous chapters. Nothing happens to or with a win-
dow until an event occurs. A click of the mouse button is usually what a
window responds to, so the focus will be on events involving the mouse.

Devising a system to handle events that involve one window is rel-
atively straightforward. However, when more than a single window is
on the screen, window-handling techniques become more complex. This
chapter provides a strong background on the basic techniques of work-
ing with a window. It also covers the more difficult topic of working
with multiple windows.

As do the previous chapters, this chapter finishes with a sample pro-
gram that demonstrates the techniques highlighted in the chapter.

169

170

Macintosh Programming Techniques, ZE

Winoows PRIMER

Before reading the details of window handling, take a look at a concise
summary of just what a window is.

The WIND Resource

A window starts as a WIND resource, created using a resource editor such
as ResEdit or Resorcerer. Chapter 1 covered the WIND, so this chapter will
simply show the WIND editing window, shown here in Figure 4.1.

UeryBasics.rsrc

!l WINDs fram UeryBasics.rsrc
WIND D Size Name

128 27 |

EH=———— WIND ID = 128 from UeryBasics.rsrc Eee—m=]

| l ﬁ S ﬂ 16000 ?
Color: @ Default
O Custom
Top: Helght: & Initially visible
Left: Width: X Close box

Figure 4.1 A WIND resource viewed in ResEdit.

Loading a WIND

You've already seen the Toolbox routine GetNewWindow() in action sever-
al times. It loads a window into memory and returns a pointer to the mem-
ory that holds the window information. Here’s a call to GetNewWindow():

Chapter & » Working with Windows

fdefine rGraphicsWindow 128

WindowPtr theWindow;

theWindow = GetNewWindow(rGraphicsWindow, nil, (WindowPtr)-1L);

The first parameter passed to GetNewWindow() is the resource ID of the
WIND resource to use. The second parameter is a pointer that tells the
Memory Manager where in memory to place the window. Passing a ni1
pointer here tells the Window Manager to allocate the memory for you.
A value of nil is the convention used by Macintosh programmers to
serve as the nil pointer. The third parameter signals the Window
Manager to place the new window behind all others (0) or in front of all
others (-1). The Toolbox is looking for a WindowPtr here, so you'll have
to cast the value (as done by placing the data type WindowPtr in paren-
theses) so that the compiler does not produce an error message.

The WindowRecord, WindowPtr and
WindowPeek

Every window is, in a sense, a world unto itself. Each window can have
its individual properties, such as the size and font of the text it will dis-
play and whether the window is visible at this moment. The data struc-
ture WindowRecord holds this information. Here’s the structure:

struct WindowRecord

{
GrafPort port;
short windowKind;
Boolean visible;
Boolean hilited;
Boolean goAwayFlag;
Boolean spareflag;
RgnHandle strucRgn;
RgnHandle contRgn;
RgnHandle updateRgn;
Handle windowDefProc;
Handle dataHandle;
StringHandle titleHandle;
short titleWidth;
ControlHandle controllist;

mnm

172

Macintosh Programming Techniques, 2E

struct WindowRecord *nextWindow;
PicHandle windowPic;
long refCon;

};

The heart of the WindowRecord is the very first member, the port mem-
ber: GrafPort. Recall from Chapter 3 that a GrafPort holds all the infor-
mation about a graphics port, which is a drawing environment.

You won’t need to memorize the exact makeup of the WindowRecord
structure. Instead, you'll work with variables of type WindowPtr. A
WindowPtr points to the GrafPort of a WindowRecord. Once you have a
WindowPtr, you can do just about anything you want to a window
through Toolbox calls. You call the Toolbox routine name and include the
pointer to the window you want to work with as follows:

ftdefine rGraphicsWindow 128

WindowPtr theWindow;

theWindow = GetNewWindow(rGraphicsWindow, nil, (WindowPtr)-1L);
SetPort(theWindow); // make the new window’s port current
ShowWindow(theWindow); // show the window on the screen

In addition to a WindowPtr,there is also a Macintosh C type called a
WindowPeek. Both the WindowPtr and WindowPeek point to the start of a
WindowRecord—the port field. A variable of type WindowPtr, however,
can access only the port field of the WindowRecord, while a variable of
type WindowPeek can access the entire WindowRecord structure. Figure
4.2 illustrates this.

From Figure 4.2 it appears that the WindowPeek is more powerful,
because it allows access to all of the members of a WindowRecord, not
just the port. That is, in fact, true. But there are many instances where
you won't need to access any of the members other than the port. In
those cases, it’s best to use the WindowPtr—that minimizes the chance of
inadvertently altering values in other fields of the WindowRecord. You'll
also use a WindowPtr because many Toolbox routines expect a
WindowPtr as one of the parameters, and won't except a WindowPeek.

Ch 4 = Working with Wind
apter rking ndows 173

: r WindowPeek

WindowPtr

WindowRecord
| accessible

[by
WindowPeek

GrafPort
accessible
by

| WwindowPtr

Figure 4.2 A WindowPtr and WindowPeek.

Just when should you use a WindowPeek? You'll find out in the highlight of
this chapter, the section that deals with working with multiple windows.

EVENT HANDLING

Chapter 1 pointed out that the event loop is a distinguishing feature of
programs written for the Macintosh and other GUI systems. A
Macintosh program calls WaitNextEvent() to retrieve an event, then
processes that event. How it does that is dependent on the type of event
retrieved. Below is the main () function for a typical trivial Mac program.

void main(void)
{

InitializeToolbox();

174

Macintosh Programming Techniques, 2E

EventLoop();
}

The previous chapters covered the application-defined
InitializeToolbox() routine. There, InitializeToolbox() called
the eight Toolbox initialization routines that you should call at the start of

every program.

Once the application-defined EventLoop () routine is called, the pro-
gram will not return to main() until it is ready to terminate. It is from
within EventLoop() that the program’s continuous process of event
handling takes place.

The general approach to handling a single event is to determine the
type of the event, then branch to a routine that handles that particular
event type. First, determine the general type of event, such as the updat-
ing of a window or a click of the mouse button. For a click of the mouse
button, further determine the location of the cursor when the mouse but-
ton was pressed: the cursor could be over the menu bar, or over a win-
dow’s close box, and so forth. Figure 4.3 shows this branching technique,
emphasizing an event that involves the mouse.

=

’ Key ‘ Mouse ‘ Activate Update

~
N1

Menu Drag Close Content

Figure 4.3 An event leads to branching.

Chapter & = Working with Windows

Figure 4.3 shows only a few of the event types—you can assume that
there are several more types off to the left. The same is true of the loca-
tions at which a mouse event could occur. Keeping Figure 4.3 in mind,
take a look at what an EventLoop() routine might look like.

void EventLoop(void)

{
EventRecord theEvent;

while (gAll1Done = false)

{
WaitNextEvent(everyEvent, &theEvent, 15L, nil);

switch (theEvent.what)
{
case mouseDown:
HandleMouseDown(theEvent);
break;

case keyDown:
HandleKeyDown(theEvent);
break;

case updateEvt:
HandleUpdate(theEvent);
break;

case activateEvt:
HandleActivate(theEvent);
break;

}

The EventLoop() routine begins by calling WaitNextEvent() to
retrieve an event. After that, a switch statement is used to branch off to
a routine written to handle just one type of event. In this example, events
of type keyDown, mouseDown, updateEvt, and activateEvt are handled.
These are Apple-defined constants, and there are a few more than appear
in the example. Here's the complete list:

175

176

Macintosh Programming Techniques, 2E

nullEvent
mouseDown
mouselp
keyDown
keyUp
autoKey
updateEvt
diskEvt
activatekvt
osEvt

OOV WN =O

[y

You write the routines to handle an event. Some will be relatively short
and straightforward. Others, such as the handling of a mouse click, will be
more involved. That’s because a mouse click can occur on different objects
on the screen. An example follows of the handling of a mouse click.

void HandleMouseDown{ EventRecord theEvent)
{

WindowPtr theWindow;

short thePart;

thePart = FindWindow(theEvent.where, &theWindow);

switch (thePart)
{
case inMenuBar:
// handle click in the menu bar
break;

case inDrag:
// handle click in a window drag bar
break;

case inGoAway:
// handle click in a window close box
break;

case inContent:

// handle click in a window’s content area
break;

}

The first thing Hand1eMouseDown() does is to call FindWindow(). This
Toolbox routine determines where the cursor is on the screen when the

Chapter & = Working with Windows 1m

mouse button is pressed. If it is over a window, FindWindow() will
return a pointer to that particular window.

HandleMouseDown () then handles the event depending on the screen
location, (or part of the screen) where the cursor is located. The routine
uses a switch statement to reach the code used to handle a mouse click on
a specific screen part. In the preceding snippet, comments are shown
rather than the event-handling code. The source code is described later in
this chapter, and at other appropriate places in this book. The part codes,
such as inMenuBar, are Apple-defined constants. Here's the entire list:

inDesk
inMenuBar
inSysWindow
inContent
inDrag
inGrow
inGoAway
inZoomlIn
inZoomQut

]

O~NOTO W= O

Figure 4.4 serves to summarize event handling. As you study the figure,
keep in mind that it shows only a few of the possible event types and
only a few of the screen parts.

Type of Event?
Upda Mouse ctivate
Handle ' Handle - Handle
“Update Mouse « | Activate
Screen Part?
Menu Window Window
Bar Close 5 Content
Handle Handle . - ‘Handle:
Menu bar Close Content

Figure 44 A summary of the handling of an event.

178

Macintosh Programming Techniques, ZE

WiNDows aND EVENTS

In case you forgot, this chapter is about windows. The previous discus-
sion of events was a prerequisite to any serious explanation of windows.
The previous section outlined how the processing of an event takes place
but left some blanks, mainly some comments in place of source code.
Many of those blanks deal with the handling of windows, so now is the
time to fill them in.

In this chapter, you'll look at three types of events that relate to win-
dows: mouse down, window activate, and window update events.
When a mouse down event occurs you'll want to look at things a little
more closely; you'll want to know where the cursor was a the time the
mouse down events occurred. For instance, the use could be clicking the
mouse button while the cursor is over a window'’s drag bar, close box, or
content region. Figure 4.5 illustrates the events types that will be covered
in this chapter. The figure also highlights the three window parts that
will be discussed here.

Event

C Y ¥ U

Key Mouse Activate Update

Content

Menu Drag

Figure 4.5 Events and part codes relating to windows.

By covering the handling of these particular events, you'll have a sound back-
ground for the finale of this chapter—the handling of multiple windows.

Chapter 4 = Working with Windows
179

Mouse Down Events

When a click of the mouse button occurs in a window, your program
should determine whether the click occurred in the window’s drag bar,
close box, or content region. Your program will then react accordingly.

Handling a Moase Click in a Drag Bar

Handling a mouse click in a window’s drag bar is easy, thanks to
the Toolbox routine DragWindow(). You need just one line in
HandleMouseDown():

DragWindow(theWindow, theEvent.where, &gDragRect);

You'll add this line under the inDrag part code case label. Here’s that
line in the context of Hand1eMouseDown():

void HandleMouseDown(EventRecord theEvent)

{
WindowPtr theWindow;
short thePart;
thePart = FindWindow(theEvent.where, &theWindow);
switch (thePart)
{
// handle clicks in other parts here
case inDrag:
DragWindow(theWindow, theEvent.where, &gDragRect);
break;
// handle clicks in other parts here
}
}

Once called, the DragWindow() routine takes control until the mouse
button is released. While the user holds down the mouse button and
moves the mouse, DragWindow() moves the window to follow the
motion of the mouse.

Macintosh Programming Techniques, 2E

The first parameter in DragWindow() is a pointer to the window to
drag. Use the WindowPtr variable that was filled in by the call to the
Toolbox function FindWindow().

The second parameter is the point coordinate at which the cursor
was located when the user clicked the mouse button.

The user can move a window about the screen by clicking the mouse
button and holding it down while over the window’s drag bar. To pre-
vent the user from dragging the window off the edge of a screen and
entirely hiding it, you create a boundary rectangle that defines the drag
limits. This rectangle is passed as the third parameter in DragWindow().

Apple provides you with a system global variable named qd—you
were introduced to it in Chapter 3. One of the fields of this variable of the
data structure type QDGlobals is screenBits. This field, which is itself
a data structure, holds a map of the user’s screen. The bounds field of
this structure is of type Rect, and holds the coordinates of the user’s
desktop. Regardless of the size of the user’s monitor, its coordinates will
be found in the bounds field.

To define a rectangle that establishes the dragging limits for win-
dows, declare a global Rect variable. In this chapter, that variable is
called gDragRect. Initialize this rectangle by setting it to the same size as
the qd.screenBits.bounds rectangle. Next, inset this rectangle a few
pixels. The inset value represents the amount of a window, in pixels, that
must always remain on the screen no matter how far off the edge of the
screen the wuser drags a window. The application-defined
SetWindowDragBoundaries() routine bundles this short bit of code into
a simple utility function that can be used in any program.

#define kDragEdge 10
Rect gDragRect;

void SetWindowDragBoundaries(void)
{
gDragRect = qd.screenBits.bounds;
gDragRect.left += kDragEdge;
gDragRect.right -= kDragEdge;
gDragRect.bottom -= kDragtdge;

Chapter & = Working with Windows

This qd.screenBits.bounds method assumes that your program is running
on a system with only one monitor. Chapter 8 discusses a technique for
establishing a boundary rectangle for dual-monitor systems.

NOTE

Once created, you'll be able to use this drag boundary rectangle anytime,
thus the reasoning for making gDragRect a global variable.

Handling a Mouse Click in a Close Box

Should the user click the mouse button while the cursor is over a win-
dow’s close box (also called the go away box), the Toolbox routine
TrackGoAway () should be called to then follow the movement of the
mouse. If the user releases the button while the cursor is over the close
box of a window, the routine returns a value of true, and your program
should then close the window.

A couple of simple housekeeping calls are all that’s needed to close
the window. Here’s a fragment that demonstrates TrackGoAway():

if (TrackGoAway(theWindow, theEvent.where))
{

HideWindow(theWindow);

DisposeWindow(theWindow);
1

The first parameter in TrackGoAway() is a pointer to the window in
question. The second parameter is the point at which the mouse click
took place. As mentioned, TrackGoAway () returns a Boolean value that
represents whether or not the cursor was over the close box.

While the call to HideWindow() is not strictly necessary, it is recom-
mended. If a window has controls (such as scroll bars), then the house-
keeping becomes more involved than shown here. You'll want the win-
dow hidden so that clean up goes on behind the scenes.
DisposeWindow() closes a window and frees up the memory used by
the window’s WindowRecord data structure.

Here’s TrackGoAway() in the context you’ll use it in your
Hand1eMouseDown () routine.

181

182 Macintosh Programming Techniques, 2E

void HandleMouseDown({ EventRecord theEvent)

{
WindowPtr theWindow;
short thePart;

thePart = FindWindow(theEvent.where, &theWindow);
switch (thePart)
{

// handle clicks in other parts here

case inGoAway:
if (TrackGoAway(theWindow, theEvent.where))

{
HideWindow(theWindow);
DisposeWindow(theWindow);
}
break;

// handle clicks in other parts here
}

Handling a Mouse Click in a Content Region

If many cases, a mouse button click in the content area of a window
requires that you simply make the window active—if it isn’t already so.
The Toolbox routine FrontWindow() returns a pointer to the frontmost
window. You can compare this pointer to the pointer to the clicked-on
window—the pointer to that was returned by the FindWindow() call
that was made at the top of the Hand1eMouseDown () function. If differ-
ent, make a call to the Toolbox function SelectWindow(). This routine
takes care of selecting a window by bringing it to the front and by pro-
viding the proper highlighting to the clicked-on window and to the win-
dow that was formerly the front window.

if (theWindow != FrontWindow())
SelectWindow(theWindow);

else

{
/* handle the needs, if any, of a click in */
/* the contents of an active window */

Chapter 4 = Working with Windows

What if your program uses a window that does more than simply dis-
play information? Then you must write your program so that it is pre-
pared to do more than just highlight a window. What else should it do?
You'll see when you get to the end of the chapter. There you'll find a con-
crete programming example along with the theory.

Here's the code as you'd see it within the Hand1eMouseDown () routine:
void HandleMouseDown(EventRecord theEvent)
{ WindowPtr theWindow;

short thePart;

thePart = FindWindow(theEvent.where, &theWindow);

switch (thePart)

{
// handle clicks in other parts here
case inContent:
if (theWindow != FrontWindow())
SelectWindow(theWindow);
else
{
/* handle the needs, if any, of a click in */
/* the contents of an active window */
}
break;
// handle clicks in other parts here
}

Handling Mouse Clicks in the Menua Bar

The version of Hand1eMouseDown () presented in this chapter includes a
case label with the part code inMenuBar. If your program includes
menus and menu-handling capabilities, this is where menu-handling
would take place. You'll find the code for managing menus in Chapter 6.

Now that you know how to handle a mouse click involving each of
the most commonly watched for part codes, it’s time to look at a near-
complete version of the application-defined Hand1eMouseDown() rou-
tine. Note that the code for the inContent case will be completed in this

183

184 Macintosh Programming Techniques, ZE

chapter’s Multiple-Window Techniques section. That section also dis-
cusses dealing with window activate and update events.

void HandleMouseDown(EventRecord theEvent)

{
WindowPtr theWindow;
short thePart;
thePart = FindWindow(theEvent.where, &theWindow);
switch (thePart)
{
case inMenuBar:
break;
case inDrag:
DragWindow(theWindow, theEvent.where, &gDragRect);
break;
case inGoAway:
if (TrackGoAway(theWindow, theEvent.where))
{
HideWindow(theWindow);
DisposeWindow(theWindow);
}
break;
case inContent:
if (theWindow != FrontWindow())
SelectWindow(theWindow);
else
{
/* handle the needs, if any, of a click in */
/* the contents of an active window */
}
break;
}
}

SINGLE-WiNDOW TECHNIQUES

The EventLoop() routine is the hub from which your program branch-
es off to handle a particular event. So far, the focus has been on a mouse

Chapter 4 = Working with Windows

down event. For window handling you should be aware of two other
event types: activates and updates.

@Activate Events

Any Macintosh program has one and only one window active at any
given time. The active, or current, window is the window that responds
to user actions such as keystrokes or a click of the mouse. If there is more
than one window on the screen, the active window is frontmost. The
drag bar of the active window has a highlighted appearance that sets it
apart from other windows.

An activate event is represented by the Apple-defined
activateEvt part code. For a program with more than one window,
a click on a deactivated window will generate two activate events:
one to signify the deactivation of the frontmost window and one to
signify the activation of the clicked-on window. The Window
Manager handles the changing highlight conditions of window
frames; you will be responsible for handling changes to the content of
a window.

For a program that creates only one window, it is not uncommon to
omit code that handles an activate event. That’s because only one acti-
vate event will occur in a program of this type. When the window is first
created, GetNewWindow() will generate an activate event.

You'll find more information about activate events in this chapter’s
pages that deal with the handling of multiple windows.

Updating a Window

When a covered, or obscured, window becomes exposed, its contents
will need updating; that is, you need to redraw what is in the window.
A window that needs updating will trigger the occurrence of an update
event. An update event is represented by the Apple-defined updateEvt
part code. To handle such an event, begin by branching from the appli-
cation-defined Eventloop() function to another application-defined
routine; one that handles an update. Here, this routine is aptly named
HandleUpdate():

185

186 Macintosh Programming Techniques, 2E

void EventlLoop(void)

{
EventRecord theEvent;

while (gAllDone == false)

{
WaitNextEvent(everyEvent, &theEvent, 15L, nil);

switch (theEvent.what)

{
// handle other event types here
case updateEvt:

HandleUpdate(theEvent);
break;

}

Here’s a typical Hand1eUpdate() routine that updates a window in a
program that displays a single window.

void HandleUpdate(EventRecord theEvent)

{
WindowPtr theWindow;
theWindow = (WindowPtr)theEvent.message;
BeginUpdate(theWindow);
DrawSomething(theWindow);
EndUpdate(theWindow);
}

Because it’s best to use techniques that apply to all sorts of programs,
HandleUpdate() should be written in a manner that you can use, with
some modification, in a program that has more than one window.
Instead of assuming that a particular window will be updated,
HandleUpdate() gets a pointer to the window to update from the mes-
sage field of the event record. The Event Manager conveniently places a
pointer to the window that needs updating in the message member. As
you can see from the listing for HandleUpdate(), a window update
involves these steps: '

Chapter 4 = Working with Windows

e A call to BeginUpdate()
¢ The drawing of the window contents
e Acall to EndUpdate()

Before drawing the window’s contents, the contents are erased. If a window
is enlarged, that’s a necessary step in order to clear away the old scroll bars

NoOTE andgrowbox. If youseeexample code that includes a line that looks similar
to the one below, you'll now know what’s going on—the window’s entire
graphics port is being erased:

Gl Mac programs that allow a window to be resized include one other step.
l

EraseRect(theWindow->portRect)

You're at this point in your code because there’s an update event in the
event queue. The Mac knew a window had become exposed and placed
the event there. What the Macintosh doesn’t know on its own is when
the update event has been handled by your code. The calls to the Toolbox
routines BeginUpdate() and EndUpdate() tell the Mac just that, and let
the computer know it should remove the update event from the queue.

Note the indented code between the calls to BeginUpdate() and
EndUpdate(). This isn’t required—it’s this book’s convention, intended to
J clarify the logic of the Hand1eUpdate() routine.

NOTE

The Window Manager at all times keeps track of the portion of a window
that is exposed, or visible. It keeps this area in the visRgn member of the
window’s WindowRecord data structure. A call to BeginUpdate() caus-
es the Window Manager to save this value, and then to temporarily set
the visible region to that area of the window that was obscured. When
you draw the contents of the window, QuickDraw will be limited to
drawing in only this temporarily visible region. The result is that
QuickDraw doesn’t update the entire window—only the part that was
formerly obscured (see Figure 4.6).

187

Macintosh Programming Techniques, ZE

(& File Edit (& File Edit (& File Edit
dow = (lindow
.O

&

A window about to be moved BeginUpdate() sets the Your routine that draws the
back onto the screen visible region to the part that window contents is called, but
was hidden QuickDraw limits drawing to
the visible area

Figure 4.6 Updating a window.

What about setting the port before updating? A common mistake in window
updating is forgetting to set the port. If there is more than one window on the
screen, QuickDraw will draw to the window whose port is current, regardless
NOTE ©fwhether that window needs the updating or not. Hand1eUpdate() doesn’t
set the port, because it doesn’t actually do any drawing—it calls the applica-
tion-defined function DrawSomething() to take care of the task. So you can
bet that DrawSomething() does make a call to SetPort ().

Now, on to that rather vaguely named routine DrawSomething(). What
does this routine draw? The contents of the entire window. In short,
everything your program drew to the window in the first place. Why
redraw everything when only a portion of it may need updating?
Remember, the call to BeginUpdate () will tell QuickDraw what part of
the window to draw to. When done, the call to EndUpdate() resets the
window’s visible region to its actual area, not to just the newly exposed
area. So while your draw routine contains the code to draw an entire
window’s worth of content, QuickDraw will be smart enough to per-
form only the drawing that needs to be done to satisfy the update.

What your DrawSomething () routine will look like is entirely depen-
dent on your application. In Figure 4.6, you can see that the content of
the window is simply a picture—the display of a PICT resource. Chapter
3 covered PICT resources and displaying pictures in a window. For the

Chapter & » Working with Windows
189

window shown in Figure 4.6 the code for DrawSomething() might look
like this:

fdefine riildManPicture 128

void DrawSomething(WindowPtr theWindow)

{
PicHandle thePicture;
Rect theRect;
short theWidth;
short theHeight;
GrafPtr theSavePort;
GetPort(&theSavePort);
SetPort(theWindow);
thePicture = GetPicture(rWildManPicture);
theRect = (**thePicture).picFrame;
theWidth = theRect.right - theRect.left;
theHeight = theRect.bottom - theRect.top;
SetRect(&theRect, 10, 10, 10 + theWidth, 10 + theHeight);
DrawPicture(thePicture, &theRect);
SetPort(theSavePort);

}

through all of the work of redrawing the contents of the window. If you
haven’t programmed a Mac, you may have assumed you somehow get a

NOTE snapshot” of the contents of a window, then simply display that picture
whenever appropriate.

As this example demonstrates, you update a window by actually going
S

Window updating is an important topic. An improper window update is
immediately noticeable to the user in the form of a blank white area in a
window or the appearance of graphics in the wrong part of the window
(or even in the wrong window). For those reasons, well take a look at
another example.

Displaying a picture is easy; it’s an operation that is unchanging.
But what if some or all of a window’s contents depend on information
the user supplied? Consider this example: Your program calls two

190

Macintosh Programming Techniques, 2E

application-defined routines—one that asks the user to enter the four
coordinates of a rectangle, the other to then draw the rectangle. Later
in the program, the user moves the window partially off screen, then
back on. An update event is generated, and your DrawSomething()
routine is called. Did you save those four values to some global vari-
able, such as a Rect? Of course you did. If you hadn’t, there would be
no way to reproduce the rectangle now. Below is a code fragment to
clarify this example.

Rect gDisplayRect; // global - hold thé rectangle
Boolean gRectIsDrawn = false; // global - used in updating

void GetRectDataFromUser(void)

{
short left, right, top, bottom;
// Display dialog box here. It’s used to read in rectangle
// coordinate values and save to variables 1, r, t, and b.
// (Chapter 5 describes how to do this!)
SetRect(gDisplayRect, left, right, top, bottom);

}

void DrawUsersRectangle(WindowPtr theWindow)

[// local variables and save and set port calls here
FillRect(&gDisplayRect, &qd.1tGray):
FrameRect(&gDisplayRect);
gRectIsDrawn = true;

: // restore port here

After DrawUsersRectangle() draws the rectangle, the function sets the
global flag gRectIsDrawn to true. When it comes time to update the
window, DrawSomething() will check to see if gRectIsDrawn is true. If
it is, the rectangle gets redrawn. And the rectangle coordinates to use?
They were saved in the global Rect variable gDisplayRect in the
GetRectDataFromUser() function.

Chapter 4 = Working with Windows

void DrawSomething(WindowPtr theWindow)

{
if (gRectIsDrawn = true)
DrawUsersRectangle(theWindow);
// draw anything else that should appear in the window here
}

From this example, you can see that your updating routine might get
quite involved and may contain decision-making logic, like the check of
the gRectIsDrawn flag in the preceding example.

Simple Window Techniques

Before finishing this chapter with an example program that works with
multiple windows, a quick look at some simple window techniques is in
order. The following are all techniques that you can use in any program
that has a window, or more than one window. All of the simple window
manipulations described in the following sections revolve around using
the correct Toolbox call to perform the task at hand.

Moving a Window

When you create a WIND window resource in ResEdit, you have the
option of specifying whether a call to GetNewWindow() displays the win-
dow when it loads the WIND into memory. If your program will be mov-
ing the window upon opening, it is best to mark the WIND resource as
invisible (see Figure 4.7). Then, after you load the window you can,
unbeknownst to the user, move the window to wherever you want on
the screen and show it.

To mark a WIND invisible,
leave unchecked .

-CI Initially visible

=al

‘ Height:
‘ S [Close box

Figure 4.7 Using ResEdit to mark a WIND as invisible.

191

192

Macintosh Programming Techniques, 2E

To move a window—even one that is invisible—use the MoveWindow()
Toolbox routine. Pass a pointer to the window you want to move, the
pixel coordinates of the screen location to move the window to, and a
Boolean value that tells whether to activate (highlight) the window.
Here’s an example:

fHdefine kLeftOffset 20 // 20 pixels from left of screen
ftdefine kTopOffset 50 // 50 pixels from top of screen

WindowPtr theWindow;
Boolean activateWind = true;

MoveWindow(theWindow, kLeftOffset, kTopOffset, activateWind);

Showing and Hiding a Window

Earlier you learned that you can make a window invisible, or hidden, by
using the Toolbox function HideWindow(). You can make the same win-
dow visible again with a call to another Toolbox routine: ShowWindow().
Here’s an example:

WindowPtr theWindow;

HideWindow(theWindow);
ShowWindow(theWindow);

Changing a Window's Title

When you load a window with a call to GetNewWindow(), the window’s
title will be “Untitled”—not a very polished look for your slick applica-
tion. To give a window a title more befitting its purpose, use the Toolbox
function SetWTitle().

fidefine kGraphicsWindowTitle “\pGraphics Window”
WindowPtr theWindow;

SetWTitle(theWindow, kGraphicsWindowTitle);

Chapter 4 = Working with Windows

MartipLE-WINDOW TECHNIQUES

A program that is capable of putting more than one window on the screen
has a special set of needs that you must meet. There is a new twist to win-
dow updating: the contents of one window might not be the same as those
of another window. This means that you don’t have the luxury of simply
calling on one generic update routine to handle any and all updates.

You’ll need to devise a strategy that allows your program to distin-
guish between different types of windows. In this section, you’ll do just
that. Imagine that you want to create a program that puts two types of
windows on the screen. One window will be a control window with two
buttons: one for drawing a shape, and one for erasing the shape. The sec-
ond type of window will be a drawing window that displays the drawn
shape. Additionally, the program will be capable of opening more than
one drawing window.

From the program description, you may have surmised that there are
a few extra challenges presented by a program capable of working with
multiple windows; challenges that you did not have to worry about
when you planned out a program that would make use of just one win-
dow. For the described program, here they are:

e An update event must be handled in two different ways,
depending on which type of window needs updating.

¢ Once it has been determined that the update event corresponds
to a drawing window, you must then determine which drawing
window the event applies to.

¢ The user must be allowed to choose which of the drawing win-
dows a click in the control window corresponds to.

These points make it clear that some planning is in order. That plan starts
by examining a method that allows the addition of window information
to the window’s existing WindowRecord structure.

193

194

Macintosh Programming Techniques, Z2E

Expanding the WindowRecord

You know from earlier in this chapter that a WindowPtr points to a win-
dow. More specifically, it points to the port member of a WindowRecord
that holds the information about the window. You also know that you
can use a WindowPeek to gain access to the entire WindowRecord; not just
the port. The following figure, Figure 4.8, appeared at the start of this
chapter. It appears again to drive home the difference between a
WindowPtr and a WindowPeek.

WindowPeek

WindowPtr

WindowRecord
1 accessible

by

1 WindowPeek

GrafPort
| accessible

{ by
WindowPtr

L==» 0x03335500

Figure 4.8 A WindowPtr and WindowPeek.

Chapter 4 = Working with Windows

When you call GetNewWindow(), the Window Manager selects a block of
memory and puts the window information—based on the WIND
resource—in that memory. This information needs to be stored in a
known, consistent order so that it can be retrieved by the Window
Manager as your program works with the window. The WindowRecord
provides that order. After placing the WIND data in memory in the format
of a WindowRecord, the Window Manager provides your program with
a pointer to the first member of the WindowRecord—the GrafPort. That
allows your program to work with the window’s graphics port. To work
directly with other fields of the WindowRecord your program can declare
a WindowPeek, then use typecasting on the WindowPtr to access the win-
dow’s entire WindowRecord. Here’s an example.

fHdefine rDrawWindow 129

WindowPtr theWindow;
WindowPeek theWindPeek;

theWindow = GetNewWindow(rDrawWindow, nil, (WindowPtr)-1L);
theWindPeek = (WindowPeek)theWindow;

This is the standard way to call GetNewWindow(), and to create a
WindowPeek variable. There’s another method you can use to create your
own version of a WindowPeek that enables you to store, and access, extra
information along with a WindowRecord.

This method involves creating your own data type by way of the C
typedef keyword. Here’s one example:

typedef struct

{
WindowRecord theWindRecord;
short theWindType;
Boolean isDrawnln;

} MyWindRecord, *MyWindPeek;

195

196

Macintosh Programming Techniqaes, 2E

This definition creates a structure that has three members. The first
member is of type WindowRecord—the same window record structure
you've been working with all along. The remaining two members give
additional information about a window—information specific to your
program. The field theWindType will be used to specify the type of a
window, while the isDrawnIn field will let the program know whether
the window currently has a drawing in it. Like any structure, you can
have as many or as few members as you want—whatever makes sense
for the windows used by your application.

The typedef names this new data type MyWindRecord. It also creates a
type that is a pointer to the structure—MyWindPeek. You know that a vari-
able of the Macintosh C type WindowPeek points to an entire
WindowRecord. What will a variable of MyWindPeek type point to? A
MyWindRecord. That means a variable of type MyWindPeek can be used to
access everything in a WindowRecord and some extra information. Figure
4.9 illustrates the difference between a variable of type WindowPeek and a
variable of the application-defined type MyWindPeek.

Note in Figure 4.9 that both a WindowPeek pointer and a MyWindPeek
pointer begin by pointing to the start of a WindowRecord. What's at the
start of a WindowRecord—the very first member of the WindowRecord?
The port member, which is the window’s graphics port. Making the first
member of the MyWindRecord data type a WindowRecord was not an
accident. When loaded in memory, you'll want the start of your applica-
tion-defined MyWindRecord window structure to be in the same format
as Apple’s WindowRecord window structure—so its important that the
first field of MyWindRecord be of type WindowRecord. This allows you to
use a variable of MyWindPeek anywhere that you would normally use a
WindowPtr or WindowPeek.

Chapter 4 = Working with Windows

197

| WindowPeek

MyWindPeek

| WindowRecord
| accessible

by
WindowPeek

0x03335500

MyWindRecord
accessible
by

| MywindpPeek

Figure 4.9 The difference between WindowPeek and MyWindPeek.

You've seen that the GetNewWindow() function offers you the option of
allowing the Window Manager to assign the memory storage for a win-
dow (by passing ni1 as the second parameter) or of selecting the storage
area yourself (by passing a pointer to an area in memory as the second
parameter). When opening a window to have its data stored in an appli-
cation-defined structure, your program must allocate the memory.

198

Macintosh Programming Techniques, 2E

Consider this the golden opportunity to use your own structure rather
than the Macintosh WindowRecord. When left alone to perform the mem-
ory allocation, the Window Manager will always assume that only
enough memory is needed for a WindowRecord. Your application-
defined window structure, however, requires additional memory. Here’s
your chance to set up that memory.

fdefine rDrawWindow 129

WindowPtr theWindow;
Ptr theStorage;

theStorage = NewPtr(sizeof(MyWindRecord));
theWindow = GetNewWindow(rDrawWindow, theStorage, (WindowPtr)-1L);

Now you know how to define your own window structure and how to
open a window that uses that structure. The only thing left to know is
how to go about accessing the additional information that a window
contains. First declare a variable to be of type MyWindPeek. Then set it to
point, or peek, at a window by