
•

flClttTOSH

ROGRAMMlttCi

ECHtllQOES. ZE

flClttTOSH

ROGRflMMltt<i

ECHttlQOES. ZE

Dan Sydow

M&r ~ M&T Books

[
'·1111 ~ A Division of MIS:Press, Inc.
11111':: A Subsidiary of Henry Holt and Company, Inc.

115 West 18th Street

New York, New York 10011

© 1996 by M&T Books

Printed in the United States of America

All rights reserved. No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording, or
by any information storage and retrieval system, without prior written permission
from the Publisher. Contact the Publisher for information on foreign rights.

Limits of Liability and Disclaimer of Warranty

The Author and Publisher of this book have used their best efforts in preparing the
book and the programs contained in it. These efforts include the development,
research, and testing of the theories and programs to determine their effectiveness.

The Author and Publisher make no warranty of any kind, expressed or implied, with
regard to these programs or the documentation contained in this book. The Author and
Publisher shall not be liable in any event for incidental or consequential damages in con
nection with, or arising out of, the furnishing, performance, or use of these programs.

All products, names and services are trademarks or registered trademarks of their
respective companies.

Library of Congress Cataloging-in-Publication Data
Sydow. Dan Parks.

Macintosh programming techniques I Dan Parks Sydow. -- 2nd ed.
p. Cm.

ISBN 1-55851-458-9
1. Macintosh (Computer)--Programming. I. Title.

QA76.8.M3S9582 1996
005.265--dc20 95-51548

10987654321

Associate Publisher: Paul Farrell

Editor: Michael Sprague

Copy Edit Manager: Shari Chappell

Managing Editor: Cary Sullivan

Technical Editor: Peter Ferranti

Copy Editor: Suzanne Ingrao

Production Editor: Maya Riddick

CIP

DEDICflTIOri

To Nadine
-Dan

-,

ficKnOWLEDGMEnTS

Michael Sprague, Development Editor, M&T Books, for keeping things
rolling and on schedule.

Maya Riddick, Production Editor, M&T Books, for such a fine page
layout effort.

Carole McClendon, Waterside Productions, for making this book happen.

flCIHTOSH PROGRAMMING TECHHIQOES, ZE

Contents

Why This Book is for You .
.xx.I

Introduction ...
. • • . . . • •. .xx.Ill

Chapter 1: Macintosh Programming Overview .. . 1
Development Systems 1

Information Environments 2

Application Frameworks2

Programming Languages 3
About Macintosh Programming 3
Bitrnapped Graphics4

Event-Driven Programming5

Resources11

Resource Editors 12
Creating a Resource File and a Resource Using ResEdit 13
Resources, Source Code, and Applications 16
Resource Types 19

The Toolbox 19

vii

viii
Macintosh Programming Technlqaa. ZE

Resources, Source Code, and the Toolbox 21

Toolbox Routines and Application-Defined Routines 24
The Operating System 25
System Software ... 26

The System File and Finder 27

The System File .. 27
The Finder .. 28

Chapter Program: VeryBasics 30

Program Project: VeryBasics68K.µ or VeryBasics68K.7t 32
Program Listing: VeryBasics.c41
Stepping through the Code 43

Chapter Summary .. 51

Chapter Z: Macintosh Memory53
Memory Organization 53

System Partition Organization56
Application Partition Organization 57
Summary of Memory Organization 61

The Application Heap 63
Heap Fragmentation 63

Heap Compaction 65
Nonrelocatable and Relocatable Blocks 67

Macintosh Memory Management 72
Avoiding Heap Fragmentation 7 4

How Nonrelocatable Blocks Get Created 74
Nonrelocatable Blocks and Heap Fragmentation 76
Nonrelocatable Block Placement in the Heap 77
Reserving Memory to Reduce Fragmentation 79

Heap Management 84
Allocating Master Pointer Blocks 84

Contents
ix

Expanding the Heap 89
Setting the Application Partition Size of a Program 90

The User's Role in Setting the Partition Size 90
Setting an Application's Partition Size 92
Determining Your Application's Memory Needs 93

Writing 32-Bit Clean Programs 98
Chapter Program: MemoryBasics 101

Program Resources: MemoryBasics.rsrc 103
Program Listing: MemoryBasics.c 103
Stepping through the Code 105

Chapter Summary 107

Chapter 3: QuickDraw Graphics 109
About QuickDraw and Color QuickDraw 110

Initializing QuickDraw 110
Pixels and the Coordinate System 111

Graphics Ports .. 112
The GrafPort and GrafPtr 113
Color Windows and the CGrafPort 114
The Graphics Pen 116

Defensive Drawing 118
Changing Ports 118
Changing Characteristics of a Port 120

Drawing Shapes ... 122
Working with Rectangles 123
Working with Ovals 125
Working with Round Rectangles 127

Patterns .. 129
The PAT Resource 129
The PAT Source Code 131

x
Macintosh Programming Techniques. ZE

The ppat Color Pattern Resource 133
The ppat Color Pattern Source Code 134

Pictures and Animation 137
The PICT Resource 137
Displaying a PICT in a Program 139
Using PICT Resources to Create Animation 143

Pictures as Patterns 148
Converting a Picture to a ppat Resource Using Pict2ppat 148

The Cursor ... 153
Chapter Program: QuickDrawing 157

Program Resources: QuickDrawing.rsrc 158
Program Listing: ResourceUser.c 159
Stepping through the Code 164

Chapter Summary 166

Chapter 4: Working with Windows 169
Windows Primer .. 170

The WIND Resource 170
Loading a WIND 170
The WindowRecord, WindowPtr and WindowPeek 171

Event Handling ... 173
Windows and Events 178

Mouse Down Events 179
Single-Window Techniques 184

Activate Events 185
Updating a Window 185
Simple Window Techniques 191

Multiple-Window Techniques 193
Expanding the WindowRecord 194
Activates and Multiple Windows 199

Contents
xi

Updates and Multiple Windows 201
Chapter Program: MultiWindows 202

Program Resources: MultiWindows.rsrc 203
Program Listing: MultiWindows.c 204
Stepping Through the Code 214

Chapter Summary 238

Chapter 5: Dealing with Dialog Boxes 241
Alerts ... 242

Alert Resources: ALRT and DITL 242
Alert Source Code 244

Dialog Boxes ... 246
Dialog Box Resources 247

Dialog Item Types 247
The DLOG and DITL Resources 248

Working with Dialog Items 255
Getting Dialog Box Item Information 255
Working with Edit Text Items 256
Working with Checkbox Items 258
Working with Radio Button Items 259

Modal Dialog Boxes 260

The DialogRecord Data Structure 260
Modal Dialog Box Source Code 262

Modeless Dialog Boxes 265
Using User Items .. 270

The User Item Resource 270
The User Item Source Code 271

Chapter Program: DialogPlus 279
Program Resources: DialogPlus.rsrc 281
Program Listing: DialogPlus.c 283

xii
Macintosh Programming Techniques. ZE

Stepping through the Code 293
Chapter Summary305

Chapter 6: More About Windows307
About Menus ... 307
Menu Resources ... 308

The MENU Resource309
The MBAR Resource 311

Menu Source Code 313
Setting up the Menu Bar 313
Handling a Click in a Menu 316
Handling a Click in the Apple Menu320
Handling a Click in Other Menus 321

Keyboard Equivalents 321
The MENU Resource 323
Handling a Keystroke 324

Hierarchical Menus325
The MENU Resource326
Setting up the Hierarchical Menu 328

Changing Menu Characteristics332
Disabling and Enabling Menus and Menu Items 332
Adding a Check Mark to a Menu Item 336
Changing the Text of a Menu Item 340
Changing the Style of a Menu Item 342

Editing Text in a Modal Dialog Box 344
Modal Dialog Box Filter Function 346

Chapter Program: MenuMaster352
Program Resources: MenuMaster.rsrc 356
Program listing: MenuMaster.c 361
Stepping through the Code 371

Contents
xiii

Handling a Click in the Menu Bar 376
The Modal Dialog Box 379

Handling a Hierarchical Menu384
Chapter Summary384

Chapter 7: Text and Strings 387
String Data Types 387

The Str255 Data Type 388

Other String Data Types 390

Assigning a Str255 Variable a Value 391
Strings and Resources 392

The STR Resource393
The STR# Resource 396

Text Characteristics 399
Text Font · 399

Text Size ... 400
Text Style .. 401

Transfer Mode403
Chapter Program: StringHandler405

Program Resources: StringHandler.rsrc 409
Program Listing: StringHandler.c 411

Chapter Summary 433

Chapter 8: Power Mac Programming435
Universal Procedure Pointers (UPPs) 436

Procedure Pointers (ProcPtrs)
and Universal Procedure Pointers (UPPs)437

Chapter Program: MenuMaster (revisited) 441
Universal Procedure Pointers and User Items 443
Chapter Program: DialogPlus (revisited) 445

xiv
Macintosh Programming Techniques. ZE

Fat Applications ... 447
68K, PowerPC-Only, and fat Applications 447
Creating the fat Application 448

The fat App and the cfrg Resource 449

Metrowerks CodeWarrior and the DialogPlus fat app 450
Symantec and the DialogPlus fat app 453

Chapter Summary 458

Chapter 9: The Varying Mac459
The Features of a Macintosh 460

The Gestalt() function 461

Checking for the availability of Gestalt() 462
Determining Machine Features Using Gestalt()464

Checking for Traps 47 4
Toolbox Routines are Traps 47 4
Determining If a Toolbox routine is Implemented 482

Monitor-Aware ... 485

Dealing with Multiple Monitors 485

Dealing with Different Sized Monitors 492
Color Aware .. 493

Color Representation 493
Getting the Pixel Depth of a Monitor 494
Multiple Monitors and Pixel Depth 497
When to Call the Pixel Depth Routines 501

Chapter Program: InnerView504
Program Resources: InnerView.rsrc 505
Program Listing: InnerView.c506
Stepping Through the Code515

Chapter Summary527

Contents
xv

Chapter 10: Applications and the finder . . .529
Giving a Program an Icon530

The Finder and icons 530

Creating the BNDL resource531

Creating the icons that make up the BNDL resource 533
Setting the creator in the compiler 539

Apple Events ... 542
Making your application Apple event-aware543
Installing an Apple event handler547
The Quit Application Apple event handler 549

Chapter Program: FinderAware550

Program resources: FinderAware.rsrc551

Program listing: FinderAware.c553
Stepping through the code556

Chapter Summary 560

Appendix fl: Macintosh Data Types561

Appendix B: Determining a Trap•s Type 565
GetTrapType()566
NumToolTraps() 566
TraplsPresent() .. 566

Appendix C: Gestalt Definitions569
Addressing Mode Attributes 570

Selector code ... 570
Response parameter570

xvi
Macintosh Programming Techniques. ZE

Apple Events Attributes570

Selector code .. .570

Response parameter 570

AppleTalk Version570

Selector code570

Response parameter · . .571

Selector code .. .571

Response parameter 571

Easy Access Attributes571
Selector code ... 571

Response parameter571
Floating-Point Unit Type 571

Selector code .. .571

Response parameter572

Gestalt Version572

Selector code572

Response parameter 572

Hardware Attributes 572

Selector code _ 572

Response parameter572

Help Manager Attributes573

Selector code ... 573

Response parameter 573

Keyboard Type573
Selector code .. .573
Response parameter · 573

Logical RAM Size57 4

Selector code .. .57 4

Response parameter57 4
Low Memory Area57 4

Selector code .. .57 4

Contents
xvii

Response parameter57 4

Memory Management Unit Type 575
Selector code ... 575
Response parameter575

QuickDraw Version575

Selector code .. .575

Response parameter 575
Physical RAM Size 575

Selector code ... 575
Response parameter576

ROM Size .. 576
Selector code ... 576

Response parameter576~
ROM Version .. .576

Selector code .. .576
Response parameter576

Sound Attributes .. 576
Selector code ... 576
Response parameter577

System Version .. 577
Selector code ... 577
Response parameter577

Virtual Memory Attributes577
Selector code ... 577
Response parameter578

Appendix D: Toolbox Routine Summary579
QuickDraw ... 580

Constants .. 580
Global Variables 581

xviii
Macintosh Programming Techniques. ZE

Data Structures 581
Graphic Ports ... 582

Graphics Pen ... 582
Drawing Text .. .584
Patterns ... 585
Drawing Shapes586

Events ... 588

Constants .. 588

Data Structures 589
Event Reporting 590
Mouse Reporting 591

Windows .. 591
Constants ~ 591

Data Structures 592

Window Allocation593
Window Display594

Updating .. 596

Dialogs .. 596
Data Structures 596

Dialog Allocation597
Dialog Events .. .598

Alerts ... 599
Dialog and Alert Items 600

Menus ... 602
Constants .. 602
Data Structures 603
Menu Allocation and Display 603
Menu Selections 604
Hierarchical Menus 605

Changing Menu Characteristics 606
Memory ... 607

Contenb
xix

Utilities .. 609

Constants .. 609
Data Structures 610

Extracting Information From Long Ints 611
Causing a Delay 612
Cursors .. 612
Loading Resources 613

Sound ... 613

Playing a Sound 613

Index 615

ACIHTOSH PROCiRAMMIHCi TECHHIQ<IES. 2E

Why This Book
is for You

If you've programmed in C, whether on a Windows, DOS, or UNIX plat
form, and are now about to try your hand at programming the
Macintosh-this book is for you. If you've tried writing a Macintosh
program in the past, but had less than desirable results, this book is also
for you. This book starts out with the basics of Macintosh program
ming-topics such as the elements of a simple Mac application and how
the use of memory differs on a Mac compared to other computers. From
there you'll move on to working with windows, dialog boxes, and
menus. Macintosh Programming Techniques doesn't make a lot of assump
tions about what you already know as it teaches you the practical tech
niques that you will use again and again in all the Macintosh programs
you'll be writing.

This book is for anyone interested in learning the techniques and
concepts basic to writing programs that will run on the Macintosh and
Power Macintosh computers. The example code in the book is in the C
language. This book does not teach C; it is assumed that you already
know either C or C++. The book doesn't, however, assume you 've used
either of these languages on the Macintosh.

xxi

flCIHTOSH PROGRflMMIHG TECHHIQOES, 2E

Introduction
Chapter 1 is an introduction to the basic concepts you need to know in
order to program on the Macintosh. If you haven't programmed on the
Mac, you'll appreciate the definitions of Mac terminology. If you have
programmed the Mac, this chapter serves as a refresher. Chapter 1, like
every chapter in the book, ends with an example program.

Chapter 2 introduces you to the elementary organization of memory
in the Macintosh. Concepts and terms covered here will pop up
throughout the remainder of the book.

Chapter 3 covers QuickDraw-the Macintosh way of drawing.
You'll see how to draw shapes and patterns, in both monochrome and
color. This chapter also demonstrates how to add color to the content
and title bar of a window.

Chapter 4 discusses windows. Here, basic window management
techniques, such as dragging and closing a window, are covered. A large
part of this chapter is devoted to the handling of multiple windows.

Chapter 5 covers dialog boxes and alerts. This chapter describes the
items that appear in a dialog, including the powerful but seldom-dis
cussed user item. Here you'll see how to work with both stationary
(modal) dialogs and movable (modeless) dialogs.

Chapter 6 shows you how to manage menus. You'll see how to
define menus using resources and then how to change the characteris
tics of menus within your source code. After reading this chapter you'll
be able to enable and disable menus, change the text of menu items, and
add checkmarks to menu items.

xxiii

xxiv
Macintosh Programming Techniques, ZE

Chapter 7 discusses strings-how to store text in memory and on
disk. In this chapter you'll also see how to change the characteristics of
text. That is, how to change the size, font, and style of words that are
drawn to a window.

Chapter 8 provides you with the details of writing source code that
will properly compile and execute on the new Power Macintosh com
puters. Here you'll learn how to create a single program that takes
advantage of the speed of the PowerPC microprocessor when run on a
Power Macintosh, yet is also compatible with older Macintoshes-Macs
that don't have a PowerPC chip.

Chapter 9 covers the important topic of writing programs that are
compatible with the many Macintosh models and configurations now
on the market. You'll learn how to write programs that will run proper
ly on both monochrome and color Macs, and on a Macintosh that has
more than one monitor.

Chapter 10 topics are focused on the Finder, or desktop, and how
your program interacts with it. Here you'll learn how to allow the
Finder to communicate with your program. You'll also see how to give
your program a distinctive icon so that users can quickly identify it.

Each chapter ends with an example program. You start out with a
simple program that uses just the basics. As you progress through the
book, the example programs will become more involved.

The CD that is bundled with this book has three folders on it. One fold
er contains the example programs from this book. To eliminate your con
cern as to whether the examples will work with your compiler, three
versions of every example have been included. If you own Metrowerks
CodeWarrior, you'll find a folder that holds the source code files,
resource files, and project files for all of the programs presented in this
book. The same applies to you owners of the Symantec C++ compiler.
And even though Symantec is going to phase out their THINK C com
piler, you'll find that this book supports readers who own this prod
uct-there's a folder on the CD with versions of all the examples in
THINK C format. If you don't own a compiler yet, you can still run each

Introduction

of the programs-standalone versions of all nine programs, each ready
for you to run, are included.

The second folder contains a handful of Macintosh utility programs
that you'll find helpful in your programming endeavors. Among the
programs found in this folder is a utility called Swatch, which allows
you to "look inside" your own Macintosh. This small program watches
your Mac as it runs. It displays and constantly updates interesting and
important information about the memory used by each program.

The third folder contains a program called In Action! Mac Techniques.
This Macintosh program serves as a tutorial that reinforces many of the
techniques you'll read about. It displays over thirty animated scenes that
bring to life the concepts in this book.

Also on the CD is a limited version of Symantec C++ for the Mac. It
will only run on a Power Mac and doesn't contain all the libraries and
functionality of the complete version. However, if you don't own a com
piler, this will enable you to test-drive Symantec C++-the leading pro
gramming environment for the Macintosh.

WHAT Yoo tlEED

To understand this book you should be familiar with a higher-level lan
guage-preferably C or C++. While you should know one of these lan
guages, you don't have to have ever used one of these languages to
program the Mac.

All you need to run the example programs included on the disks is a
Macintosh computer that has a CD-ROM drive. If you want to edit, mod
ify, and recompile the included source code, you'll need either the THINK
C or Symantec C++ compiler, or the Metrowerks CodeWarrior compiler.

The In Action! Mac Techniques program is also ready to run. It runs on
any Macintosh that has System 6.0.7 or later, including System 7. It runs
on a monochrome or color Mac. Your Macintosh needs 1 MB of memory
or more to run it.

xxv

flCltlTOSH PROGRflMMltlG TECHtllQOES. 2E

Chaptczr 1

Macintosh
Programming OveNiew
When you look at a Macintosh screen with the menus, windows, and
icons that make up its graphical user interface, you discover that it's
visually quite different from a PC or mainframe computer screen. The
programming effort and techniques that go into achieving this effect are
different as well.

If you currently program in a text-based rather than a graphically
oriented system, this chapter will serve as your introduction to the dif
ferences between the two. If you program for MS Windows, you'll learn
the similarities and differences between Windows and the Macintosh.
And if you've programmed the Macintosh before, you'll get a refresher
on Macintosh basics and perhaps gain a better understanding of the
qualities unique to the Macintosh.

DEVELOPMEHT SYSTEMS

On a Macintosh, there are a variety of ways of accomplishing your pro
gramming goal. Besides using a programming language, you can also

1

z Macintosh Programming Techniques. ZE

create a program using an information environment or an application
framework.

Information Environments
Every Macintosh comes with an Apple program called HyperCard,
which runs HyperCard stacks. These are programs written expressly for
HyperCard and designed to display screens of information. A stack is
not a stand-alone application. In order for users to run stacks, they must
have HyperCard on their Macintoshes.

Although you can create simple stacks in a purely visual manner,
that is, without any programming, most of the interesting stacks are
written using HyperTalk, a language designed strictly for HyperCard.
HyperTalk's strength is its simplicity, but it is also its weakness. To
expand its usefulness, HyperTalk has the capability for adding func
tions written and compiled in a true programming language such as C
or Pascal.

HyperCard's competition comes in the form of an Allegiant product
called SuperCard. SuperCard is very similar to HyperCard, but its lan
guage is more powerful.

Application frameworks
An application framework is a sophisticated class library for object
oriented programming. A class library is a group of predefined classes.
These classes provide the kinds of functionality needed by most pro
grams, such as opening and closing files, printing, and working with
documents. The effect is to give you a functioning program shell. You
write a minimal amount of code to turn this generic shell into a complete
application that meets your needs.

Metrowerks's PowerPlant, Symantec's THINK Class Library, and
Apple's MacApp are application frameworks. With an application
framework, you write the guts of a program. As an example, you write
the code to display what goes into a window, while the prewritten
framework code manages the window for you.

Chapter 1 • Macintosh Programming Overview

Programming Languages
Most programmers who create programs for the Macintosh use a con
ventional programming language that allows them to write source code
and then compile and link that code into a stand-alone application. You
can buy a Macintosh compiler for any of the major, and most of the less
than-major, programming languages. These include C++, C, Pascal,
FORTRAN, and Lisp.

This book assumes you will be using a programming language,
rather than one of the information environments or an application
framework mentioned previously. Most of the example code provided in
this book is in C, but the concepts and techniques are applicable to any
higher-level language, including C++ and Pascal.

flaoor M11c1nTOSH PROGRRMMIHG

The Macintosh has gained its enormous popularity with users because of
its ease of use-its reputation as "the computer for the rest of us." For
programmers, its reputation is altogether different. While its GUI (graph
ical user interface) makes learning to use the Macintosh a simple process,
it does nothing to make programming it easy. The "Macintosh way" pre
sents a host of new challenges to programmers. If you are a PC or main
frame programmer, be prepared to reorient yourself-completely.

If you are an MS Windows programmer you already know many of
the programming concepts that will be new to others. But don't get too
relaxed-Windows programming differs from Macintosh programming
in many respects, and you'll still have much to learn.

If you've programmed the Macintosh, but aren't confident or satis
fied with the level you are now at, it may be because you've pieced
together your Macintosh applications without a sound knowledge of
basic Macintosh programming techniques.

This book covers the fundamentals of Macintosh programming
through in-depth discussions of general techniques. It then backs up that
theory by providing many straightforward examples. You will receive a

3

4
11aclntosh Programming Techniques. ZE

firm foundation on which you can build the Macintosh programs you
want, regardless of your choice of programming language.

BITMflPPED G~flPHICS
The Macintosh, like other systems that use a GUI, uses bitmapped graph
ics. Bitmapped means that every pixel, or display dot, shown on the
screen has a corresponding bit, or bits, in memory. The corresponding
memory controls the status of each pixel. For a monochrome system, the
memory keeps track of whether a pixel is on or off. For a color system,
the memory keeps track of the color of each pixel. By way of contrast, in
a character-mapped system a program cannot control pixels on the
screen; it can control only text characters. Characters are located on a
character grid, usually 25 rows by 80 columns.

In a bitmapped system, each pixel is specified by a pair of coordi
nates that define a point, as in (20, 75). The first coordinate in the pairing
describes the pixel's horizontal value; the second its vertical value. Pixel
numbering begins at the upper-left comer of the screen, which corre
sponds to point (0, 0). Using this numbering system you can reference
any pixel on the screen by listing its horizontal and vertical values.

To draw to the screen you must first specify a starting location, then
perform the drawing operation. Here's an example:

MoveTo(30. 50): /* move to pixel (30. 50) */
Line(O. 100); /*draw a line downward. 100 pixels in length*/

Unlike text-based systems, a bitmapped system allows you to draw text
anywhere on the screen. Note the use of the word draw when speaking

Chapter 1 • Macintosh Programming Overview

of placing text onto the screen. To the Macintosh, the distinction between
displaying text and drawing a shape is slight. In either case, specific pix
els are turned on to achieve the desired effect. Figure 1.1 shows both text
and graphics and an enlarged view of the affected pixels. Figure 1.1 also
illustrates the advantage of using bitmapped graphics-it's easy to mix
text and graphics and place them anywhere on the screen .

•
• • •

I •
• •

I

• • • •

Figure 1.1 On a Macintosh, both graphics and text are bitmapped.

EVEnT-DRIVEn PROGRflMMlnG
Programs that don't use a graphical user interface normally run in a
sequential manner. Each time you run a program of this type you exe
cute steps in the same order. For a program that displays four screens of
information, like that shown in Figure 1.2, the program's user would
generally view the four screens one after another in a predefined order.

5

6
Macintosh Programming Techniques. ZE

Figure 1.2 Structure of a non-Macintosh program.

The key difference between these two types of programs is something
Apple refers to as an event. A user's action, such as the press of a key or
a click of the mouse button, produces an event. When an event occurs,
the Macintosh system software automatically saves information about
the event in an event record. The event record consists of fields that con
tain information about an event. If the event was a mouse click, the
event's what field would then hold that information. That is, this field
would hold the type of event that just occurred. The event record's where
field would hold the screen location where the mouse click occurred.

Programs that use a GUI don' t follow this linear pattern, nor are they
limited to full screens to display their information. Instead, they use win
dows. The program's user is free to view the windows in any order. For
a Macintosh, the window selection would most likely be based on a
menu choice. The method used to make this selection is a keyboard or,
more often, a pointing device such as a mouse. Figure 1.3 shows the
structure of a Macintosh program.

Chapter 1 • Macintosh Programming Overview

Figure 1.3 The structure of a Macintosh program.

Macintosh programs are controlled by an event loop. The purpose of this
loop is to unceasingly retrieve and process events. As events occur they
are stored in an event queue, which is serviced by the event loop. Here's
a simple event loop:

Boolean allDone - false;
EventRecord theEvent;

while { allDone ~false
{

WaitNextEvent(everyEvent , &theEvent , 15L, nil);

switch (theEvent.what
{

case mouseDown:
HandleMouseDown();
break;

7

8
Macintosh Programming Techniques. 2E

case keyDown:
HandleKeyDownC):
break:

You use WaitNextEvent() to retrieve a single event, storing the infor
mation in the event record variable theEvent. Then, based on the event
type (found in the what field of the EventRecord), you process, or han
dle, the event. The preceding example reacts to two types of events: a
mouse click and a keystroke. It responds to an event by calling the
appropriate function that handles an event of that type-either
Handl eMouseDown() or Handl eKeyDown ().You are responsible for writ
ing these event-handling routines.

~
ft 0 T E

If you're an MS Windows programmer, retrieving events by calling
WaitNextEvent() from within a loop should sound very familiar to you.
Windows programmers poll for messages by calling GetMessage() from
within a loop. One big difference is that on a Macintosh there is a single
event stream that all applications are aware of, while on Windows each win
dow deals with its own designated message stream.

The accepted event-handling practice is outlined in the following steps.
Figure 1.4 illustrates these steps for a program that handles three differ
ent event types.

• Use Wai tNextEvent () to retrieve an event and store it in an
event record.

• Use a switch statement to determine the type of the event.
• Based on the event type, call a function to handle the event.
• Repeat the process.

Chaptczr 1 • Macintosh Programming Ovczrvlczw

I, Retrieve on event I
OD~

Handle
event
type 1

Handle
event
type 2

Handle
event
type3

Figure 1.4 The structure of an event-driven program.

If you've programmed in the past, but not on a platform with a graphi
cal user interface, this discussion shouldn't be entirely foreign to you.
You've still written programs that have a bit of this event-driven flavor
to them. You may have written a program that displayed a menu on the
screen, like the first one in Figure 1.5.

9

10
Me1clntosh Progre1mmlng Tczchnlques. 2E

1) CALCULATE
2> PRIHT
3) QUIT

EHTER CHOICE:

Non event-driven

CALCULATE
PRIHT ·-···················-
QUIT

Event-driven

Figure 1.5 Looping in non-event-driven and event-driven programs.

If you've written a program with output like that shown on the screen
on the left side of Figure 1.5, then your program did so using a loop. At
each pass through the loop, keyboard input might have been retrieved
using the scanf () function. How your program then handled things
depended on the value of the retrieved number. Here's an example:

Boolean allDone - false;
int theChoice:

while allDone ~ false
(

scanf("%d", &theChoice);

switch (theChoice
{

case 1:
DoCalculations();
break;

case 2:
PrintResults ();
break;

case 3:
~ allDone =true;

break;

The monitor pictured on the right side of Figure 1.5 shows how a
Macintosh would display choices to the user. While the scanf ()exam-

Chapter 1 • Madntosh Programming Overview

ple waits for user input and then responds to it, it is not truly event- dri
ven, it forces the user to wait at the screen until a choice is made from the
limited menu. The Macintosh, on the other hand, is aware of all types of
events, including keyboard input, mouse clicks, and the insertion of a
disk into the computer. Most importantly, the user's actions control the
type of event and the time the event will occur. This freedom and power
that the Macintosh user enjoys are what make events and the event loop
such an important aspect of Macintosh programming.

itESOORCES
All of the elements that make up a program's interface-such as menus,
windows, dialog boxes, and icons-are defined by resources. A resource
defines an element by holding descriptive information about that ele
ment. For example, a resource that defines a window will hold informa
tion about the window's size, placement on the screen, whether the win
dow has a zoom box in its title bar, and so forth.

Resources are not part of your source code, though your source code
will be aware of them, use them, and eventually become linked to them.
Instead, a resource is code that is held in a file separate from the source
code file. The code in the resource file is viewed not as words or numbers,
but as the interface element that the code defines.

It is advantageous to create an element of the interface as a resource
because a resource can be:

•

•

..
~
H 0 T E

Created and edited graphically, with no programming knowl
edge-even after a program has been developed and distributed.
Copied to another program for reuse .

For MS Windows programmers, much of this should sound familiar .
Macintosh resources and Windows resources are very similar. If you've only
programmed for non-Windows PCs, or mainframes, pay close attention. In
the Macintosh world, an appreciation for resources is very important.

11

12
MGclntosh ProgrGmmlng Tvchnlques. ZE

Resource Editors
To create a resource, you use a resource-editing program such as Apple's
ResEdit or Mathernaesthetics' Resorcerer. You save a resource, or sever
al resources, in a resource file. The icons for ResEdit and a ResEdit file
are shown in Figure 1.6.

~- De11elopment
14items 681 MBindisk

~ •
Projects Symantec Project Manager

~ \
VeryBasics.rsrc Res Edit

Figure 1.6 The icons of ResEdit and a ResEclit file.

Different elements of a program's interface are defined by different
resource types. Each resource type has a four-character, case-sensitive
name. For example, the resource type of a menu is MENU, the resource type
of a window is WIND, and the resource type of a dialog box is DLOG.

A program such as ResEdit allows you to graphically create a sepa
rate resource for each part of your application's interface. Figure 1.7
shows a MENU resource being created. Instead of writing source code to
define the items in a menu, you use ResEdit to create a MENU resource.

Chapter 1 • Macintosh Programming Ovvrvlcrw

~EJ'='='=!": = MENU ID= 128 from MyResFile.rsr c == -=-- •

Selected I t ern : ~Enabled

.Q.
TeHt: ® l ou~

~~~~~~~~~---' 

New .. . 
Open .. . 
Close 

0 ··-······ (separator line) 

Qui 
Color 

O has Submenu TeHt: I I 
Cmd-Key: D I I 

1:;=;:1 Mark: I None .,... II I 
~~~~~~~~~--'-~ 

~
H 0 T E

Figure 1.7 Editing a MENU resource in ResEdit.

MS Windows programmers may be familiar with editing resources using a
tool such as Borland's Resource Workshop or Microsoft's AppStudio.
ResEdit is Apple's version of a resource-editing program. As in Windows,
resources can be created by purely visual means or by compiling a text rep
resentation of resources. Unlike Windows, most Macintosh programmers
standardize on the visual method-ResEdit or Resorcerer.

Creating a Resource file and a Resource <Ising
Res Edit
When you launch ResEdit, you'll encounter a dialog box that asks you to
either open an existing resource file or create a new file. Click the New but
ton to create a new file. After typing in a file naming and clicking the New
button, you're ready to add a resource to the type picker. The type picker is
the name of the main ResEdit window. This window displays an icon for
each resource type in the resource file. Figure 1.8 shows a type picker for
a resource file that holds only one type of resource-the WIND type.

13

14
Macintosh Programming Techniques. ZE

Initially, the type picker for a new file will be empty. To add a
resource, select Create New Resource from the Resource menu. Scroll to
the name of the type of resource you wish to create, click once on the
name, and then click the OK button. When you do, ResEdit will open a
resource picker and a resource editor.

The type picker lets you know the different types of resources in a
file, but it doesn't reveal how many resources of any given type are in the
file. For example, a file usually holds several MENU resources-one for
each menu that will appear in a program's menu bar. To see the
resources of a given type, you double-click on the resource type's icon in
the type picker. When you do, you'll see a resource picker. The resource
picker lists each resource of a given type. In Figure 1.8, the WI ND resource
picker shows that this file holds a single WIND resource.

When you create a new resource-such as the new WIND resource cre
ated above-ResEdit opens an editor in which to edit the resource. To
view or edit an existing resource, double-click on its ID in the resource
picker. This brings up an editor. The look and actions of ResEdit editors
vary with the resource being edited. In Figure 1.8 you can see the result
of double-clicking on 128 in the resource picker. In that figure the
resource editor is the WI NO.editor. From the figure, you can see that it's
easy to change the size and placement of a window by typing in new val
ues in the four editable text boxes. Changing the look of the window is
accomplished by clicking on one of the icons in the row of icons at the
top of the WIND resource editor.

Chapter 1 • Macintosh Programming Owrvlcrw

OType picker

lle1 yBasics.rsrc J OResource picker

Cl l l
WINO~ from UeryBa\ICS.I ~· (0 Resource editor

'i(INI) !Q. Size. N•mo

126 27 l
- ~ WI ND ID • 128 from Uer::!l.88sics.rsrc - Iii r:n:c LJ D D LJ 0 [0] B []

C , .. H fl a.n.n. Color: @ Oef8Ult

r·
l illil

] o custom

•M••M••M••• .. ••HO•••-••••••-•••-->MH .. OMO•O"''''""'""""' ''''''''''OOM-.. MMOHHOOOO

Top:~ Height:~ 181 1 nitiBlly uislble

Left:~ Wldth:EJ
181 Close boH

Figure 1.8 Editing a WIND resource in ResEdit.

After adding a resource or resources to a file, select Save from the File
menu to save the file. Then either close the file or quit ResEdit.

-
15

16
Macintosh Programming Techniques. ZE

ResEdit doesn't only make window resource editing easy-other
interface elements are just as easy to define using this resource editor. In
Figure 1.9 you can see a menu being defined. As you'll see in Chapter 6,
the MENU resource allows your program to implement menus.

Untitled

~ - D
MENU \'/IND

~ ~IE MENU ID - 128 from Untitled

Calculations} I Selected I tern: 181 Enabled

01

~
" 0 TE

Square
@ I Square Roo~ I S_g_uare Root Te Ht:

0 (separator llne)

I

Color

D has Submenu TeHt: I I
Cmd-Key: D [I

~1 Mark: I None ... ,.
Figure 1.9 Editing a MENU resource in ResEdit.

As mentioned, a resource file can, and usually does, hold more than one type
of resource. Figure 1.9 shows a resource file with two types of resources in it.
A resource file can also hold more than one resource of any given resource
type. Figure 1.9 doesn't reveal how many WIND or MENU resources are in the
as yet untitled resource file-it only shows that there are two types of
resources present. To see the various resources of any given type, double
click on the resource icon in the type picker window of a resource file. For
example, double-clicking on the WIND icon would display the WIND resource
picker, which lists the different WIND resources in the file.

~•sources. Source Code. and Applications
When you look at your Macintosh monitor, everything you see originat
ed as a resource. Figure 1.10 illustrates the following:

ChC1pter 1 • MC1cintosh ProgrC1mmlng Owrvhrw

• The menu bar has an MBAR resource that specifies which indi
vidual menus are in it.

• Each individual menu has its own MENU resource that defines
the items in that menu.

• A window has a WIND resource that defines its size and initial
position on the screen.

• A dialog box has a D LOG resource that defines its size and initial
position.

• A dialog box has a second resource, the DI TL, that defines items
such as buttons that are to appear in the dialog box.

\ \ rl\.,. a File Edit Uiew
MBAR MENU y

\
l-llND

\\
DLDG DITL

Deuelopment

le Screen Snapz ..-1
~ CodeWanior IDE 1.3.pic .. .
~ CodeWanior IDE 1.3.pic .. .

~ CodeWanior IDE 1.3.pic .. . J•
r.;h .1.11
~ CodeWanior IDE 1.3.pic ... (1~·

~ Fmder.pict.01 '°'
Saue as ...

I Test.Picture

(f:j!~Ct

(Desktop J

n Saue D
Cancel

Figure 1.10 Everything that you see on your Macintosh screen
has a resource that defines it.

Once you've used a resource editor to create the resources that define the
interface elements of your program, you write source code that uses
these resources. Throughout this book the source code/resource connec
tion will be mentioned-and expanded upon.

17

18
Macintosh Programming Tvc:hnlqucrs. ZE

When it is time to turn your source code into a stand-alone applica
tion, your compiler compiles your source code, then joins the compiled
code with the resources in your resource file by linking them together.
The result is an application. This process is shown in Figure 1.11.

• I Edit > ~ I, Compile > Hf!
Symantec Project Manager Hel lo .c Hel lo.o Hell o

ResEdit Hel lo.rsrc

Figure 1.11 Source code and resources form an application.

Because the application that results from the combining of code with
resources holds a copy of each resource that was in the resource file, the
separate resource file is not needed by the application. An application
then consists of both executable code and resources.

An integrated development envirorunent (IDE) is a combination of a
source code editor, compiler, and linker. When you use an IDE like the
Symantec Project Manager (SPM) or Metrowerks Code Warrior, you won't
actually see a file such as the Hello.a file shown in Figure 1.11. A Macintosh
IDE holds all object code in something it calls a project file. Since your atten
tion will be directed toward the source code and the final application, the
fact that object files are invisible to you should not be a concern.

When you link a Macintosh project, the linker combines the object code
with the resources from a resource file. The result is a single file-the appli
cation, or program. If resources and source code are eventually joined, why
do they initially exist in separate files? Because source code is created with
a text editor, while resources are created with a resource editor.

Chapter 1 • Macintosh Programming Overview

Resource 1Ypes
There are more than 100 different resource types. You'll probably need to
use fewer than a dozen types in your programs. The following is a list of
some of the more common resource types. In your reading of this text
you'll encounter each of these types-and a few others.

ALRT Defines the look of an alert box
BNDL Relates an icon to a program
CODE All the instructions of a program
DITL Contents of a dialog box
DLOG Defines the look of a dialog box
ICN11 List of icons
PICT Picture
SIZE Partition size of a program
STR11 List of strings
WIND Defines the look of a window
snd Sound

THE TOOLBOX
With a resource editing tool such as ResEdit, creating menus, windows,
and dialog boxes is easy. But a resource contains only a description of a
piece of the interface-it doesn't do anything with it. For example, ResEd.it
easily allows you to list the items that will be in a menu. To then display
that menu-to track the user's mouse movements over it and then drop it
down and display the items in it-you need to write source code.

The menu scenario just described shows up in every Macintosh pro
gram. You can therefore infer that much of the code to perform that sce
nario should look the same in any Macintosh program. The phrase

19

20
Macintosh Programming Tcrc:hnlqua. ZE

"don't reinvent the wheel" comes up a lot in programming, and
Macintosh takes this phrase to its limit. Apple programmers wrote sev
eral thousand routines that handle all of the actions common to most
Macintosh programs. They then graciously gave them away-free. Well,
not exactly free. To get the thousands of routines, you have to buy a
Macintosh computer.

Instead of creating libraries of routines, as is the common practice
with languages for other computers, Apple has taken the code that
makes up these routines and burned it into ROM chips that are then
placed inside each Macintosh. Collectively, Apple refers to these routines
as the Macintosh User Interface Toolbox, or Toolbox for short.

~
H 0 T E

If you're a PC or mainframe programmer who has never programmed in a
windowed environment, don't let the idea of these invisible routines over
whelm you. On a mainframe or PC you also use routines that you didn't write,
like standard C library functions such as strl en C) and pri ntf C). You just
don't have a fancy name for them like the Macintosh User Interface Toolbox!

Figure 1.12 shows how the Toolbox will be shown in the remainder of
this chapter. This figure emphasizes the point that the code for Toolbox
routines lies in ROM and not in your source code.

~
H 0 T E

Toolbox

Figure 1.12 The Toolbox is in ROM.

PCs have software built into their ROMs too-the ROM BIOS services. The
difference? The Macintosh Toolbox is easier to use and provides a means to
display and work with graphics and a sophisticated user interface.

Chapter 1 • Macintosh Programming Overview

Resources. Source Code. and the Toolbox
Earlier it was stated that you first create a resource, then write source
code that uses that resource. This, of course, implies that source code
somehow communicates with resources. Toolbox routines provide this
communication link. Here's a brief example:

WindowPtr theWindow:
theWindow ~ GetNewWindowC 128, OL, CWindowPtr)-lL):

The routine GetNewWi ndow() is a Toolbox function that locates a WIND
resource and loads the resource data into memory. The code that makes
up the Apple-supplied function GetNewWi ndow() exists in ROM. When
your source code makes a call to GetNewWi ndow(), your program is
interrupted while the code in ROM is executed. In Figure 1.13 an appli
cation named Hello is shown as executable code (denoted here by a series
of ones and zeros) and two WIND resources (denoted here by ResEdit
icons). Figure 1.13 emphasizes that a call to GetNewWi ndow() means that
the program's code accesses Toolbox code in the Macintosh ROM.

~ 0010101101
Hal lo 1011110101

1101001100

\ \
i.mm t.lltiD

lOolbox
GetNewWindow() I
code is in ROM

r- -~ - . -- - >'--

Figure 1.13 Calling a Toolbox routine from within the Hello program.

The GetNewWi ndow() code in ROM searches the program's resources for
the desired WIND resource-that's shown in Figure 1.14. Notice in the
above example that there are parameters passed to GetNewWi ndow(). The
first parameter is an ID that tells the Toolbox which WIND is to be used.
Because an application may hold more than one WIND resource, it's nec
essary to specify which WIND resource to use.

21

zz Macintosh Programming Tcrchnlqua. ZE

r:ll
It 0 T E

00101 01101
101111 0101
1101001100

a.llND a.llND

(,______,l
Toolbox code accesses
application's resources

bolbox

Figure 1.14 Getting resource information from the application.

The fact that resources exist in a resource file, and then in an application, is
a source of confusion to many. Recall that resources begin their life in a
resource file-just as code begins its life in a source code file. When an appli
cation is generated from the CodeWarrior IDE or the Symantec Project
Manager, the code from the source code file and the resources from the
resource file get merged. The final stand-alone application contains both
code and resources, and thus no longer needs either the source code file or
the resource file in order to execute.

Once the correct WIND resource is found, its data gets loaded into mem
ory. Figure 1.15 illustrates this.

0010101101
1011110101
110100110 0

\ \
WIND WIND

WIND data gets
loaded into memory

010010
110101
100110
101100
110101
001010
101011
011110
-=- ~

Figure 1.15 Loading WIND resource data into memory.

Chapter 1 • Macintosh Programming OVervltw

If an application consists of both code and resources, shouldn't one part of a
program be able to access another part without going through the afore
mentioned song and dance? The answer, of course, is "No"-the code must
explicitly load the resource data. It all has to do with application launching
and memory. When a program is launched, all of its code and all of its
resources aren't loaded into memory. In particular, most of the resources
remain on disk. So when a program needs to access a resource, the resource's
data need to be loaded into memory.

GetNewWi ndow() finishes by returning a pointer to the data to the pro
gram. When the application needs to access the data, it can then do so by
accessing memory via this pointer. The window pointer variable, of the
Macintosh data type Wi ndowPtr, provides the means of identifying this
one particular window. When the application needs to perform opera
tions on the window-such as moving it or drawing graphics to it-the
window's pointer is used to reference the window. For example, if the
program wants to hide this newly created window from the view of the
user, the program will change some of the WI ND data that is now in mem
ory. This data manipulation won't be obvious, though. That's because
rather than directly altering data you'll let Toolbox routines do the dirty
work. Hiding a window, for example, can be done as follows:

HideWindow(theWindow):

In the above code, Hi deWi ndow() is a Toolbox routine and theWindow is
a Wi ndowPtr variable-the same window pointer returned by the call to
GetNewWi ndow(). By simply passing a Toolbox routine the address of a
window's data, you let the Toolbox do the work of locating the window
data and changing the appropriate part of that data to reflect the new
condition of the window. Figure 1.16 illustrates.

ZJ

24
Macintosh Programming Technlqaa. ZE

Toolbox code

Figure 1.16 The source code, resources, and the Toolbox.

~
n 0 T E

This section uses windows to demonstrate how the Toolbox loads resource
data into memory. In Chapter 4 you'll see more on this topic as it pertains to
windows. Other chapters will discuss the loading of other resource types.

Toolbox Routines and Application-Defined
Routines
The GetNewWi ndow() routine is just one of the thousands of functions
that make up the Macintosh Toolbox. This book covers many of these
Toolbox functions. The example snippets and programs often make calls
to Toolbox functions as well as calls to non-Toolbox functions. So that
you can readily tell the difference between the two types of functions,
discussions in this text will always refer to a Toolbox function as just
that-a Toolbox function. Other functions will be referred to as applica
tion-defined routines. Application-defined means that you define these
functions in your source code-they aren't supplied by Apple. Consider
the following snippet:

void main(void)
{

WindowPtr theWindow:

HideWindowC theWindow):

Chapter 1 • Macintosh Programming Overview

PerformCalculations();

In describing the above snippet, this text might say " ... the Toolbox func
tion Hi deWi ndow() is called before the application-defined function
PerformCal cul at ions() executes.

THE 0PERflTlrtG SYSTEM

Like the Toolbox, the code that makes up the Macintosh Operating
System is located in ROM-that's why Figure 1.17 is so similar to Figure
1.13. The Operating System is different from the System file, which is
found in the System Folder and is described in the next section.

Operating
System

Figure 1.17 The Operating System is in ROM.

The Operating System, like the Toolbox, consists of routines that you can
access by way of function calls in your source code. The difference
between the routines in the Toolbox and those of the Operating System
is in the level of the tasks they perform. Operating System routines deal
with low-level tasks such as allocating memory and handling keystrokes
and disk insertions. Toolbox routines deal with higher-level tasks. The
result of a higher-level chore is generally more noticeable to the user
the display of windows and the drawing of shapes or pictures in those
windows are accomplished by Toolbox routines.

You perform an Operating System task just as you do a Toolbox
task-you make the appropriate function call. An example of an

ZS

26
Macintosh Programming Tczchnlquvs. 2E

Operating System call is Eject (), whlch physically ejects a disk from
the floppy disk drive.

r=2I
H 0 T E

PC and mainframe programmers will appreciate the simplicity of accessing
the Macintosh Operating System. To perform a task, you need only know the
proper Operating System routine to call; you use no direct-memory address
ing using jumps or interrupts.

SYSTEM SOFTWARE
Now that you know what Toolbox routines and Operating System rou
tines are, you should also know that you can refer to them collectively as
system software. System software is divided into the two broad categories
of the Toolbox and the Operating System. It is then further sectioned into
groups of functionally related routines. These groups are called managers.

The Window Manager is an example of a manager. It consists of rou
tines that allow you to create and work with windows-the
GetNewWi ndow() and Hi deWi ndow() routines that you've seen in thls
chapter are part of the Window Manager. Some of the other managers
are shown in Figure 1.18.

Control Manager
Dialog Manager

Event Manager

Menu Manager

QuickDraw

Resource Manager

Window Manager

Operating
System

Device Manager

SCSI Manager

File Manager

Memory Manager

Process Manager

Figure 1.18 Some of the Macintosh managers.

Chapter 1 • Macintosh Programming Overview

From the names of the managers in Figure 1.18 you can see that the
Toolbox managers deal with the user interface: windows, dialog boxes,
and menus. The managers that comprise the Operating System, on the
other hand, deal with low-level tasks such as memory management and
the control of devices such as monitors. Many of the individual managers
shown in Figure 1.18 will be discussed in the remainder of this book.

THE SYSTEM flLE AnD flnDER
The System Folder that appears on every Macintosh contains two files of
particular note: the System file and the Finder.

The System File
The System file, not to be confused with the Operating System in ROM,
holds resources that are accessible by all programs. These resources
allow your programs to display the standard Macintosh graphical user
interface. The System file also holds the code for some Toolbox routines.
Earlier it was mentioned that the Toolbox routines were housed in
ROM-so the preceding statement requires some elaboration.

As years have gone by, the price of memory has dropped markedly,
and computers have become more sophisticated. New models of the
Macintosh have taken advantage of these two facts. Over the years, the
amount of ROM in a Mac has increased, as has the number of Toolbox
routines. That means that owners of newer model Macs have Toolbox
routines in their ROM that aren't found in the ROM of earlier model
Macintoshes. Owners of older Macs can't just replace the ROM chips in
their Macs-yet they can get access to the same routines found in the
new ROM chips. This is made possible by the inclusion of new Toolbox
routine in the System file. If the owner of an older Mac upgrades to a
newer version of the System file (say, from System 6.0.7 to System 7.5),
that owner gets access to the same new Toolbox routines that are present
in the ROM of newer Macs.

When the owner of the older Mac restarts his or her Mac, the routines
in the System file will be loaded into RAM. That means that when a pro
gram calls a Toolbox routine, the Operating System may find the code for
that routine in either ROM or RAM. Fortunately, it's not up to you, the

27

28
Macintosh Programming Techniques. ZE

programmer, to keep track of the whereabouts of Toolbox routines.
That's a job for the Mac Operating System.

Thcz Finder
The Finder is a program that, like most Macintosh programs, consists of
code and resources. The Finder is loaded into memory and starts run
ning when you tum on your computer. It is responsible for displaying
the desktop pattern and the icons you see on it, such as the trash can,
files, and folders. When you move, copy, and delete files the Finder is
doing the work. The Finder makes use of some of the common resources
in the System file to display the interface that the user sees. Figure 1.19
shows the System file and the Finder and what the Finder is responsi
ble for doing. In this figure you can see that the Finder, made up of
resources and code, interacts with the System file-also made up of
resources and code. Once the Finder has the system information it
needs, it displays a part of the user interface, as shown at the bottom of
·the figure.

~
H 0 T E

On PCs running DOS, there is no real equivalent to the Finder and to the
base-level user interface it provides. Unless you consider the C:> prompt in
DOS to be a user interface!

Chapter 1 • Macintosh Programming Overview
29

D
System Folder
~

I
l l
Q Em

Finder c=> System
J 01101 11110

b 11010

~
10100

11011 C=J 10101
01100 - 01101

-

D

Figure 1.19 The Finder and the System file.

30
Macintosh Programming Techniques. ZE

CHAPTER PROGRAM: VERYBASICS
This chapter, and every chapter hereafter, closes with a short example
program that demonstrates the topics discussed in the chapter. The pro
ject, resource, and source code files for each example are included on the
CD that came with this book. If you own a Metrowerks or Symantec
compiler, you can compile and run any of the programs. The CD also
contains a stand-alone application of each example so that you can
immediately test out each example without compiling the code.

This chapter's program, VeryBasics, simply displays a window on the
screen and then draws a line of text to it-as shown in Figure 1.20. To
quit the program click the mouse button.

Untitled

Chapter One Program

Figure 1.20 The result of running the VeryBasics program.

Though the VeryBasics program may not appear to do much, it does
illustrate several of the concepts discussed in this chapter. VeryBasics
demonstrates:

• Bitmapped graphics by drawing text to the window.

• Retrieving and processing an event using an event loop.
• Use of a resource file with a WIND resource.
• Calls to Toolbox functions.

Project Resource file: VeryBasia.rsrc
The resource file used in the creation of a full-featured Mac program con
sists of dozens-perhaps hundreds---of resources of a variety of types.
Because the VeryBasics program is the most minimal of Mac programs,
the resource file used in its development is much smaller. In fact, the

Chapter 1 • Macintosh Programming Overview

VeryBasics.rsrc file holds just a single resource. As shown in Figure 1.21,
this file consists of a single WIND resource with an ID of 128.

LleryBd~ic ~.ISIC d CJ LU I ND~ from LleryBasics.rsrc

VIND !Q. Siz:e Name

126 27 I
~Ld WIND ID = 128 from UeryBaslcs.rsrc -

- liiLJbJLJDDLJDQJBQ
! fll1 ldn ,.. w1na111 Color: ®Default

[~~~'] 0 Custom

-····-·-·········-······-··········-··· .. ··········--···-·· .. --.. ·-

Top:@!=:J Height:~ 181 lnltlelly ulslble

Left:~ Width:~
181 Close boH

Figure 1.21 The WIND resource for the VeryBasics project.

The following list provides the steps for creating a new resource file and
adding a WIND resource to it. While the VeryBasics.rsrc file is included on
this book's CD, you may want to create your own version so that you
feel comfortable with the process.

1. Launch ResEdit.
2. If an introductory dialog box opens, click on it to dismiss it.
3. Click the New button in the dialog box that opens.
4. Name the resource file VeryBasics.rsrc.
5. Click the New button.

6. Choose Create New Resource from the Resource menu.
7. Scroll to the WIND type, then click on it.

31

JZ Macintosh Programming Techniques. ZE

8. Click the OK button.
9. You now have a WIND resource. If you wish, click on one of the

small window icons to change the type of window. Type in new
values in the four size editable text boxes to change the dimen
sions of the window.

10. Choose Save from the File menu.
11. Choose Quit from the File menu.

Program Project: VeryBasics6BK.p or
VeryBasics6BK.n
All of the examples in this book compile using either the Metrowerks or
Symantec integrated development environment (IDE). An integrated devel
opment environment is, as its name implies, more than just a compiler.
Minimally, it's an editor, compiler and linker. Usually there's at least one
other programming utility included, such as a debugger. Since this chap
ter provides you with your first exposure to Mac programming, the
Very Basics project will be discussed for both the Metrowerks and Symantec
IDEs. Subsequent examples will assume you've become familiar with the
basics of the IDE your using, and will forego the details of project files.

All the files necessary to build a VeryBasics application are included
on this book's CD. If you'd like a little practice with your integrated
development environment, follow the steps in the next sections. If you
do that, you'll re-create the VeryBasics-related files found on the CD. If
you're a CodeWarrior user, read on. If you're using the Symantec IDE,
skip the next section and move on to the section titled "The Symantec
Project: VeryBasics68K.1t."

~
" 0 T E

Every Mac program starts as a project. A project is represented by a project
window that holds the names of the files that will get linked together to form
a stand-alone program. Regardless of the IDE you use, you'll want to keep
the following tips in mind-they apply to both Metrowerks and Symantec
project windows. You can move a file from one group to another by clicking
on its name and dragging it. You can create a new group by dragging a file
past, or beneath, the last group in the window. You can rename an existing
group (such as Sources or Resources) by double-clicking on the group name
and then typing in a new name. You can open a source code file or resource
file by double-clicking on its name in the project window.

Chapter 1 • Macintosh Programming Overview

Before creating a new project, as described below, create a new folder in
the main folder that holds your Symantec or Metrowerks IDE. Supply the
folder with a name of your choosing, then place the VeryBasics.rsrc file in
the folder. If you haven't already created that file, use ResEdit to do so
now. Name the file VeryBasics.rsrc and add a single WIND resource to it
the steps for doing so precede this section. Figure 1.21 shows that resource.

~
ft 0 T E

As you read the following pages you'll notice that the terms 68K and PPC
appear occasionally. Both the Metrowerks and Symantec IDEs let you speci
fy the final application's target machine. That is, you can choose whether the
resulting program should consist of code that uses the 680x0 instruction set
or the PowerPC instruction set. By selecting 68K as the target, the resulting
application will be one that runs on either a Mac (with one of the Motorola
680x0 microprocessors) or a Power Mac (with one of the PowerPC micro
processors). That's opposed to a PPC target, which results in an application
that will run only on a Power Mac. If you're working on a 680x0-based Mac,
choose 68K as your target so that you can run the program. If you're work
ing on a PowerPC-based Mac, you can choose either 68K or PPC as your tar
get. Chapter 8 discusses the advantages and disadvantages of both types of
applications, as well as the perfect compromise program-the fat app.

The Metrowerks CodeWarrior Project: VeryBasics6BK.p
To create the VeryBasics project, launch the CodeWarrior IDE, then select
New Project from the File menu. Use the pop-up menu at the top of the
dialog box that opens to move into your VeryBasics folder. Then type in
a name for the project. By convention, a Metrowerks project typically has
a.µ extension. To create theµ character, press them key while holding
down the Option key. As you're about to see, the VeryBasics project will
be generating 68K instruction set code-that's why the program name
includes 68K in it. Again, Chapter 8 provides the details regarding the
differences between 68K and PPC programs.

Before saving the new project, choose a project stationary from the
Project Stationary pop-up menu. When you create a project, you always
need to add at least one Metrowerks library to the project. Among other
purposes, libraries hold precompiled code that provide support for the
Macintosh Toolbox and the Metrowerks PowerPlant application frame
work. All that a project stationary does is tell CodeWarrior which
libraries to add to a project. This saves you the effort of determining
which libraries your project needs, and the chore of then adding those

33

34
Macintosh Programming Tczchniqaes • .ZE

libraries. In Figure 1.22 you can see that the VeryBasics68K.µ project is
using the Min MacOS 68K CIC++.µ stationary. Because the VeryBasics
program doesn't use any ANSI C functions, doesn't use the PowerPlant
application framework, and isn't a PowerPC program, this stationary
works fine. Because the stationary name includes 68K in it, you know
that the application that gets generated will consist of 680x0 code.

I a co 1 Dery Basics ..-1 G::J Hard Disk

~ UeryBasics.rsrc ~ Eject

Desktop

(New LJ J

Name the project as: (Cancel J

I UeryBasics68K • .u

Project Stationery:

n Saue JJ

..IMacOS 68k C/C++.Jl
MacOS PPC C/C++.Jl
PowerPlant 68K • .u
PowerPlant PPC • .u
-ANSI 68k C/C++.Jl
-ANSI PPC C/C++.Jl

Figure 1.22 Selecting project stationary to use with the VeryBasics CodeWarrior project.

After clicking the Save button, the new project will open in a project win
dow like the one shown in Figure 1.23. Using the selected project sta-

Chapter 1 • Macintosh Programming Overview

tionary causes CodeWarrior to add the CPlusPLus.Lib and MacOS.Lib
libraries to the project. If you had used a different stationary, different
libraries would be in the project. As denoted by the <replace me> names
in the window, it's now up to you to add the source code file and
resource file to the project.

glii Uei:.y_Bosics6BK.µ liij
file Code Dab __.

V Sources Di Oi • 1:1 0
<replacemeMac>.c ! Ol Ol • [il Fl ··v .. ·R;·sources--·-.. ········--··1M·-·····-,:i"r--··-· .. ·,»r .. -· t:r
<replace me > .rsrc i n/a i n/a i !El

··v--t1~c;·11·iir.ar1e·s---... -......... T·-·····or--·-··c;r· .. -... i!f
CPlusPlus.lib i 0 ! 0 i !El

......... t.:t.~.c:.l.l~.,.1.~.b. L.. 9.i...9.l... !D.

4 fite(s) 0 0

Figure 1.23 The VeryBasics CodeWarrior project before the source
code and resource file are added.

To make the VeryBasics.rsrc resource file a part of the project, choose Add
Files from the Project menu. When you do, you'll see a dialog box like
the one shown in Figure 1.24. If the project folder isn't named in the pop
up menu at the top of the dialog box, use the menu to move into that
folder. Then double-click on the name of the resource file, as is being
done in Figure 1.24. That moves the file from the top list to the bottom
list, and tells CodeWarrior that it should be added to the project. When
you click the Done button, the dialog box will be dismissed and the file
will appear in the project window.

35

36
Macintosh Programming Techniques, ZE

Figure 1.24 Adding a file to the VeryBasics CodeWarrior project.

To create a new text file to serve as the source code file, select New from
the File menu. Select Save As from the same menu to name and save the
file. You can give the file any name that ends with the .c extension. To
match the following figure, use the name VeryBasics.c. Now choose Add
Window from the Project menu. You won't have to go through the dia
log box shown in Figure 1.24 to add the file-CodeWarrior adds it for
you. Consider this menu item a shortcut for adding the frontmost win
dow to a project.

To remove one of the <replace me> marker files from the project win
dow, click on its name, then select Remove from the Project menu. After
removing both markers, your project window should look similar to the
one shown in Figure 1.25.

Chapter 1 • Macintosh Programming Overview

Uer_y_Basics68K.µ
File Code Data j(

'V Sources 01 01 • 13 {}
Very Basics .c ! 0 ! 0 ! • Ill t-"-1 ..

'V Resources i 0 i 0 i l3
YergBasics.rsrc ! n/a ! n/a ! [ti

.. v···11·a·c;··rib·r:·a·r:·i·;·5························r·············a-r·············a·r···········i:i··
CPlusPlus. lib ! 0 l 0 l ID

............... ~.~.~.9.~.~J.t~ l..9.1..9.lJil. ~

4 file(s) 0 0 Vlii

Figure 1.25 The VeryBasics CodeWarrior project after the source code and resource file
are added.

At this point the VeryBasics.c source code file is empty. Add the code by
typing in the C code from the listing that appears later in this chapter. If
you're satisfied that you now know how CodeWarrior projects work,
you can save a little typing by opening the VeryBasics.c source code file
included with this book and copy and pasting its contents into your own
VeryBasics.c file. Finally, select Run from the Project menu to compile and
run the program.

The Symantec Project: VeryBasia6BK.n
To create the VeryBasics project, launch the Symantec IDE. When you do,
you'll be faced with the dialog box shown in Figure 1.26. Use the pop-up
menu at the top of the dialog box to move into your VeryBasics folder.
Then type in a name for the project. By convention, a Symantec project
has a .1t extension. To create the 1t character, press the p key while hold
ing down the Option key. Because the VeryBasics project will be generat
ing 68K instruction set code, the program name includes 68K in it. As
mentioned, Chapter 8 provides more information about the differences
between 68K and PPC programs.

37

38
Macintosh Programming Techniques. ZE

Before clicking the Save button, choose a project model from the
Project Model pop-up menu. When you create a project, you always need
to add at least one Symantec library to the project. Libraries hold precom
piled code that provide support for the Macintosh Toolbox and the THINK
Class Library application framework, among other purposes. A project
model can be thought of as a template that tells the Symantec Project
Manager which libraries to add to a project. Letting the SPM determine
which libraries a project needs, and then add those libraries to the project,
saves you effort. In Figure 1.26 you can see that the VeryBasics68K.7t project
is using the C Mac Application model. Because the VeryBasics program
doesn't use any ANSI C functions and doesn't use the THINK Class
Library application framework, this model is a good choice.

la co1 Uery Basics...,~ c:::> Hard Disk

It UeryBasiu.ruc ~ (Eject)

(Desktop)

(New LJ)

'O (Cancel)

Create New Project: ((Saue ll
l UeryBasics68K.1f I
•=-•••r~ 11_11:11111 ../Empty Project

RNSI C
RNSI C++ (IOStreams)

I U!HllriHU

C++ Mac Application ~
Code Resource
Natiue MPW Tool
UR Rpp w/Shared TCL
UR Application

Figure 1.26 Selecting project stationary to use with the
VeryBasics Symantec project.

Chapter 1 • Macintosh Programming Owrvlcrw

After clicking the Save button, a new project will open. As shown in
Figure 1.27, the contents of a project are displayed in a project window.
Using the selected project model causes the SPM to add a folder that
holds the libraries necessary to support the code you'll be writing. You
can see the names of the libraries SPM selected by clicking on the
Triangle icon to the left of the folder. Note that if you had selected a dif
ferent project model, the contents of this folder would differ. As shown
in the figure, the Symantec Project Manager also added a "dummy"
main.c file that could be used to hold your code.

~ LJ Libraries

+ ~ main.c • 0

Totals 0

Figure 1.27 The VeryBasics Symantec project before the source code and
resource file are added.

To add the Ven;Basics.rsrc resource file to the project, choose Add Files
from the Project menu. That menu selection brings up the dialog box
shown in Figure 1.28. If the pop-up menu at the top of the dialog box
doesn't show the name of the project folder, use the menu to move into
that folder. Then double-click on the name of the resource file to move
the file from the top list to the bottom list. When you click the Done but
ton, the dialog box will be dismissed and the resource file will appear in
the project window.

39

40
Macintosh Programming Tcrchnlqucis. ZE

I a co 1 Uery Basics , E::> Hard Disk

Ej ect

Desktop

Cancel

Show: I Source Files ..,. I

n Add D
Add All

Remo1Je

Figure 1.28 Adding a file to the VeryBasics Symantec project.

To create a new, empty source coqe file, select New from the File menu.
Then choose Save As from the File menu to provide the file with a name
and to save the file to disk. While you can use any name that ends with
a .c extension, you might want to name the file VeryBasics.c to match the
figures. Next, select Ad~ "VeryBasics.c" from the Project menu. This
menu item allows you to bypass the Add Files dialog box to quickly add
the frontmost window to the project.

To remove the main.c file from the project window, click on its name
and select Remove "main.c" from the Project menu. After removing this
file, your project window should look like to the one shown in Figure 1.29.

Chapter 1 • Macintosh Programming Overview

=• ./ 1Jer_y_Basics60K. n
j[Aea~I Options I Ver~ Basics68K .11 l

!;(/ ~ Code

~ CJ Libraries o~

·~ Very Basics .c • 0

·~ VeryBasics.rsrc 0

Totals o-01
1i1

Figure 1.29 The VeryBasics Symantec project after the source code and resource file are
added.

The VeryBasics.c source code file that is a part of the project is empty. Add
the source code by typing in the C code from the listing that appears
next. If you're comfortable using the Symantec Project Manager, you can
save some typing by opening the VeryBasics.c source code file found on
the CD that came with this book Select all the code, then copy it and
paste it into your own VeryBasics.c file. To compile and test run the
VeryBasics code, select Run from the Project menu.

Program Listing: VeryBasics.c
Now it's time to take a look at the VeryBasics.c source code listing.
Following the program listing is a walk though of the key elements of
the source code.

II~~~~~~~~~~~~~~~~~~~~~~~~~
II Function prototypes

void InitializeToolbox(void);
void HandleMouseDown(void);

II~~~~~~~~~~~~~~~~~~~~~~~~~
11 Global constants

41

4Z
Macintosh Programming Technlqaes. ZE

//define rTextWindow 128

II ~~~~~~~~~~~~~~~~~~~~~-
II Global variables

Boolean gAllDone = false:

II ~~~~~~~~~~~~~~~~~~~~~-
II Program execution starts here

void main(void)
(

WindowPtr theWindow:
EventRecord theEvent:

InitializeToolbox():

theWindow = GetNewWindow(rTextWindow. nil. (WindowPtr)-lL);
ShowWindow(theWindow);
SetPort(theWindow);

MoveTo(30. 50 };
Drawstring("\pChapter One Program" };

while (gAllDone == false)
(

WaitNextEvent(everyEvent. &theEvent. lSL. nil } ;

switch C theEvent.what
(

case mouseDown:
HandleMouseDown();
break;

II ~~~~~~~~~~~~~~~~~~~~~-
II Handle a click of the mouse button

void HandleMouseDown(void)

Chapter 1 • Macintosh Programming Overview

SysBeep(1 >:

gAllDone ... true;

II ~~~~~~~~~~~~~~~~~~~~~~~~
II One-time initialization of the Macintosh Toolbox

void InitializeToolboxC void
{

InitGraf(&qd.thePort);
Initfonts();
InitWindowsC>:
InitMenus();
TEinit();
InitDialogs(OL);
FlushEvents(everyEvent, O);
InitCursorC>:

Stepping through the Code
If you're new to Mac programming, there are several lines of code in the
listing that will look unfamiliar to you. That code is examined here.

Where are the /Ii ncl ude Directives?
When you look at the C source code for programs that run on non
Macintosh platforms, the first thing you usually see are several
Iii ncl ude directives that include header files in the program. Macintosh
programs also use Iii ncl udes, but you usually need to include only one
header file, and that's done for you automatically.

Your C or C++ compiler gets its information about the calling con
vention of a Toolbox routine from a header file. Macintosh compilers
come with over 100 header files-the universal interface files written by
Apple. When you make a call to a Toolbox routine such as
GetNewWi ndow(), your compiler looks to the Windows.h header file to
find the prototype for GetNewWi ndow().

43

44
Macintosh Programming Techniques. ZE

Your IDE-whether Symantec or Metrowerks-includes a single pre
compiled file in each project. This file is the result of compiling several
of the most commonly used header files. If you use Symantec, your pro
ject will include one of four precompiled header files: MacHeaders for
68K C projects, MacHeaders++ for 68K C++ projects, PPC MacHeaders for
PowerPC C projects, or PPC MacHeaders++ for PowerPC C++ projects. If
you use Metrowerks, your project will include one of just two precom
piled header files: MacHeaders68K for any 68K project or MacHeadersPPC
for any PowerPC project. Both environments automatically include the
correct precompiled header file for the type of project your working on.
That means you don't have to use /Ii ncl ude directives for the precom
piled header file or for any of the universal interface files from which the
header file was created.

MS Wmdows programmers know that Windows programs always include
one large header file-Windows.h. If a Windows compiler automatically
included this header in all of its windows source code, it would function in

" 0 T E the same way as a Mac IDE that includes one of the precompiled
MacHeader files.

Sometimes, you will need to include some of the other Macintosh head
er files in a program. When you do, you simply use standard /Ii ncl ude
directives. Examples abound throughout this book. Like any other IDE,
a Macintosh IDE also allows you to write your own headers and include
them in a project.

function Prototypes
Prototypes aid the compiler in determining if functions are being called
properly. Though some compilers might let you slip by without them,
always use them. For the Macintosh, prototypes are written in the same
form as they are for any other computer whose compiler supports this
construct. You do not have to include a variable name when you list the
arguments, just the type of the argument. Here's the prototype of the
Handl eMouseDown () function used in the VeryBasics project:

void HandleMouseDown< void):

Chapter 1 • Macintosh Programming Overview

r2
n 0 TE

If you program on an older minicomputer or mainframe, it is possible that
your C compiler does not support prototypes-a relatively recent extension
to the C language. If so, consult any book that describes the ANSI standard
definition of the C language.

The /ldefi ne Directives
As you can tell from the listing, Macintosh programs use //define direc
tives in the same manner as 1/d e f i n es are used by compilers for other
computer systems. Here is the one 1/defi ne VeryBasics uses:

//define rTextWindow 128

The rTextWi ndow constant is used to define the ID of the WI ND resource
used in the call to GetNewWi ndow():

theWindow = GetNewWindow(rTextWindow, nil, CWindowPtr)-lL):

While not required, Macintosh source code usually follows the conven
tion of preceding a constant name with a lowercase character. The char
acter provides readers of your code with a hint of what the constant will
be used for. Here's the characters used in this book. You may want to
adopt this same technique in your own programs:

/ldefi ne
/ldefi ne
/ldefi ne
/ldefi ne

mFileMenu
rMyWindow
iQuit
kTaxRate

Global Variables

129 II 'm' for menu resource ID
128 II 'r' for other resource ID

4 II •;• for menu item number
0.05 II 'k' for non-resource constant

Variable declarations take on the same format for Macintosh C as they do
for other versions of C. Macintosh C, however, has some data types all
its own. Many of these types that are unique to the Mac will be described
at various places in this book and summarized in Appendix A. Here is
the one global variable used by VeryBasics:

Boolean gAllDone - false:

45

46
Macintosh Programming Techniques. 2E

The gA 11 Done variable is used to end the program. When the user clicks
the mouse button, VeryBasics toggles the value of gA 11 Done from its ini
tialized value of false to true.

To make it readily apparent that a variable is a global variable, Mac
programmers often precede a global variable name with a lowercase g.
Again, this isn't a requirement, just a commonly used convention.

The ma i n C) fandlon
Like other C programs, Macintosh programs always begin at the ma i n ()
function. And like all C programs, you don't explicitly call main () ; it is
automatically the first function to execute when you run a Macintosh
program. In a Mac program, the return type of ma i n () and the parame
ter to main () are both void.

void main(void)
{

11"'11
~
n 0 T E

MS Wmdows programs use Wi nMai n() rather than main().

The flpplication-Defined I n i ti a 1 i z e Too 1 box c) fanction
The various managers must be initialized before performing calls to
Toolbox routines. The initialization calls used in VeryBasics should be
included in every Macintosh program you write, in the order given here.
Since very program uses these same Toolbox function calls, for conve
nience you'll want to define a routine that you can copy and paste
between projects. Make sure to always call such an application-defined
routine at the start of your ma i n () function.

void InitializeToolbox(void
{

InitGraf{ &qd.thePort >:
Ini tFonts {):
InitWindows{):

InitMenus();
TEinit();
InitOialogs(OL);

Chapter 1 • Macintosh Programming Overview

Fl ushEvents (everyEvent, 0) ;
InitCursor();

The Macintosh requires several new ways of orienting the process of
writing a computer program. So you'll be happy to learn that when pro
gramming the Macintosh, you'll still do some things exactly as have in
the past! A function for a Macintosh program is written and invoked in
the same manner as a function you write for any other computer.

A call to a Toolbox routine that exists in a manager that was not initialized will
crash your program. For example, if the call to I ni tWi ndows () was omitted
from a program, a subsequent call to GetNewWi ndow() would cause a crash.

Loading a Window
Finally, some action! A call to GetNewWi ndow() loads a WI ND resource
into memory. When you create a WI ND resource in ResEdit, you have the
option of specifying whether the window should be visible or hidden
when this call is made. If you examine the WIND resource in the
Ven;Basics.rsrc file you'll see that the Initially visible check box is
checked. That means that when this call is complete a window will
appear on the screen. Here's the call that loads the WIND resource:

theWindow - GetNewWindow(rTextWindow, nil, (WindowPtr)-lL) ;
ShowWindow(theWindow);

As a precaution, you might want to follow a call to GetNewWi ndow()
with a call to ShowWi ndow(). This Toolbox routine displays a hidden
window. If the window is already visible, ShowWi ndow() has no effect.

The first parameter passed to GetNewWi ndow() is the ID of the WI ND
resource to load. The second parameter to GetNewWi ndow() tells the
Window Manager where in memory to store this newly loaded window.
Using a nil pointer here tells the Window Manager to use whatever
available memory it wants. Chapter 4 shows you how to be more specif
ic about where in memory the window should be stored.

47

48
Macintosh Programming Techniques. ZE

The last parameter to GetNewWi ndow() specifies whether the new
window should open in front of or behind all other open windows. This
is the program's only window, so this parameter doesn't have an impact
on the call. In general, you'll open a new window in front of all others.
A value of -1 accomplishes this. This parameter, however, must be a
pointer. Affixing an uppercase L to a value forces that value to occupy 4
bytes. In Macintosh programming, that's the same number of bytes used
to hold a pointer. There's one more step to turning the number -1 into an
acceptable parameter to GetNewWi ndow(). This third parameter can't be
any type of pointer-it must be a WindowPtr. Preceding the value -lL
with (Wi ndowPt r) casts the value -1 L to a Wi ndowPtr type.

~
H 0 T E

If you are a PC programmer or write code for a machine in which pointers
and integers are not the same size, you'll notice that Macintosh programmers
are much more relaxed about placing integer values such as -1 L and 0 L in
slots meant for pointers. Since they're both 32 bits in size, it all works out.

Drawing to a Window
Every window has its own drawing environment, or graphics port. That's
how different windows can do things like display text in fonts different
from one another. Before drawing to a window, you must set the port to
that window. A call to the Toolbox routine Set Po rt {) accomplishes this.
The parameter to SetPort{) is a pointer to the window whose port you
want to use:

SetPort(theWindow >:

To move to a particular area in a window, you use the Toolbox routine
MoveTo(). The first parameter is the horizontal location to move to, the
second parameter is the vertical position. The effect of Move To { 3 0 , 5 0) is
as follows: start at the window's upper-left comer; move 30 pixels to the
right; move 50 pixels down; then stay put until asked to move again or
until asked to draw. You'll find more in-depth discussion of drawing to
windows in Chapter 3.

The Toolbox routine Drawstring() draws a single line of text to a
window. The line of text is preceded by \p, and the entire string is placed
in double quotes. The Toolbox will be looking for a string in Pascal for
mat. Strings that are in Pascal format are not terminated with a null byte,

Chapter 1 • Macintosh Programming Ovvrvltw

as they are when in C format. Rather, Pascal strings begin with a byte
that contains the size of the string, followed by the text bytes of the
string. The "Chapter One Program" string is sent to DrawSt ring () from
a C program. The \ p lets the Toolbox know this so that it can make the
internal conversions necessary to display the string. You'll find a more
comprehensive discussion of strings and DrawStri ng() in Chapter 7.

1::21 PC progmnme<S U<e the \ <h""'°' .U the hm.,

H 0 T E

printf("Start a new line.\n"l;

It should make sense that the escape character\ is used to signal the com
piler that the letter p that follows does not stand for the letter in the alpha
bet, but rather indicates that the string that follows is in Pascal format.

The Event Loop
The event loop, the driving force of the program, appears just as dis
cussed earlier in the chapter. The only event type VeryBasics handles is a
click of the mouse. It handles this mouseDown event by calling an appli
cation-defined routine named Handl eMouseDown ():

while (gAllDone ~ fal se)
{

WaitNextEvent(everyEvent , &theEvent, 15L, nil l;

switch (theEvent.what l
{

case rnouseOown:
HandleMouseOown();
break;

The Toolbox function Wai tNextEvent() accepts four parameters. The
first tells the Event Manager what types of events the program is inter
ested ·in responding to. By passing the Apple-defined constant
everyEvent, VeryBasics tells the Event Manager to return information
about any type of event that occurs.

49

50
Macintosh Programming Techniques, ZE

The phrase Apple-defined will appear throughout this book. It simply refers to
the fact that a constant is defined in the Apple universal header files (the
same files that hold the function prototypes for all the Toolbox routines)

H 0 T E rather than by the application in its source code.

The second parameter to WaitNextEvent() is a pointer to a variable of
type EventRecord. After Wai tNextEvent() retrieves the next event
from the event queue, it returns descriptive information about that event
in this second parameter. The Event Manager does this by placing the
information in the various fields of an EventRecord data structure.
Here's how Apple defines the EventRecord structure:

struct EventRecord
{

} :

MacOSEventKind
Ulnt32
Ulnt32
Point
MacOSEventModifiers

what:
message:
when:
where:

modifiers:

As you can see in the VeryBasics event loop, the what field of the
EventRecord structure is used to hold information about the type of
event that was returned by WaitNextEvent(). VeryBasics compares the
value in the what field with the Apple-defined mouseDown constant. If
it's a match, the code under the mouseDown case label executes.

While VeryBasics compares the what field of the EventRecord vari
able theEvent to only one Apple-defined constant, your programs can
compare this field to several others. The following is a list of event type
constants that will be discussed in this book:

mouseDown
key Down
updateEvt
activateEvt

II mouse button was clicked
II keyboard key was pressed
II window contents need to be redrawn
II window has been activated or deactivated

The flpplication·Definecl Handl eMouseDown C) fundlon
When the user clicks the mouse, VeryBasics plays the system alert sound
and then quits. The application-defined Handl eMouseDown() routine

Chapter 1 • Macintosh Programming Overview

takes care of these two tasks. First, a call to the Toolbox routine
SysBeep() plays the system alert sound. This sound varies from Mac to
Mac-it's the sound that the user has previously selected using the
Sound Control Panel. Years ago, the Mac had only one system alert
sound, and SysBeepC) allowed you to use its parameter to specify the
duration for which that sound would play. Now, the parameter to
Sys Beep() goes unused. Though the number you pass to Sys Beep() has
no effect on the way the function operates, you still need to pass a value.

void HandleMouseDownC void)
{

SysBeep(1);

gA 11 Done "" true:
}

Finally, the global variable gA 11 Done is set to true. When
Handl eMouseDown () completes, program execution returns to the event
loop in ma i n () . When it does, the loop's wh i 1 e test will fail, and the loop
will end. As shown below, the body of the while statement executes only
when gAl 1 Done has a value offal se. The Handl eMouseDownC) routine
sets gA 11 Done to true, thus ending main C) and the program.

while (gAllDone -- false)

CHAPTER SUMMARY
The Macintosh graphical user interface, or GUI, presents special chal
lenges to programmers of the Macintosh. This book presents the tech
niques to overcome these challenges.

The Macintosh uses bitmapped graphics. You can tum each pixel, or
display dot, on or off on the screen. On a color monitor, each pixel has
more than the two states of on or off. Color systems allow a single pixel
to take on hundreds, thousands, or even millions of different values.
Whether a Mac uses a monochrome or color monitor, each pixel on the
screen has a pair of coordinates that make up a point that defines its
position on the screen.

51

sz Macintosh Programming Tcrc:hnlques. ZE

Macintosh programs don't run in a sequential, linear manner.
Instead, a Mac program responds to events-user actions such as a click
of the mouse button. An event record holds descriptive information
about a single event. A Macintosh program is driven by an event loop
code that repeatedly checks for and responds to these events.

All elements of a Macintosh program, such as its menu, windows,
and dialog boxes, are resources. A resource is a description of one of
these elements. A WIND resource, for example, holds the type, or look, of
a window. It also defines the size of the window and the screen location
where it will first appear. Resources can be graphically, or visually, edit
ed using a program such as Apple's ResEdit resource editor.

Resources are simply descriptions of interface elements; they don't
do anything with the elements. For that, you must write source code. So
that you don't have to start from scratch, Apple provides thousands of
prewritten functions to help you in working with resources. These rou
tines are stored in the ROM and the System file of your Macintosh and
are collectively referred to as the Toolbox.

The Macintosh Operating System, like the Toolbox, consists of rou
tines you access from within your source code. The Operating System
routines are low-level functions that perform tasks such as handling key
strokes, while the Toolbox routines are higher level, performing the more
noticeable tasks such as displaying windows and drawing pictures.

Collectively, the Toolbox and Operating System are called system
software. The system software is divided into groups of functionally
related routines-managers. The Window Manager and Menu Manager
are two examples.

The System file, found in the System Folder of each Macintosh, con
tains resources that are shared by programs. The Finder is another pro
gram found in the System Folder. It gets launched when your Macintosh
starts up, and remains running for as long as your Mac is running. The
Finder is responsible for displaying the desktop pattern and for per
forming file housekeeping like copying and deleting files.

flCltiTOSH PROGRAMMIHG TECHHIQ<IES. ZE

Chapter 2

Macintosh Memory
Understanding how the Macintosh works with memory is an important
and often understudied topic. A knowledge of what is going on in RAM
will aid you in writing programs that behave in a predictable manner.

The Macintosh uses a set of terminology and concepts all its own.
This chapter will make you familiar with the basic terms and techniques
of Macintosh memory. In Chapter 9 you will discover the details of
memory management and learn actual techniques you can use to avoid
memory problems.

In this chapter you will learn how memory is organized into parti
tions. You'll see how each partition is composed of the same basic areas
of memory. You'll also learn the techniques the Macintosh uses to make
the most efficient use of memory.

MEMORY 0RGArt1ZflTIOrt

The Macintosh Operating System divides a Mac's RAM into two main
sections, or areas. The area at the low end of memory is the system parti
tion; it is reserved by the Macintosh for its own use. The system partition
starts at the lowest memory address, OxOOOOOOOO. The Macintosh dedi-

53

54
Macintosh Programming Tcrchnlqoes, ZE

cates the other area to applications that you run. The Mac will further
subdivide this application area into application partitions. For every appli
cation you run, there is a corresponding application partition. Figure 2.1
illustrates this.

I!
I•

High memory

n
Low memory

~]
~]

Lowo'1 m•mo<y]
address (OxOOOOOOOO) ________ _,

Figure 2.1 Memory organization.

Free
memory

Application 1
partition

Application 2
partition

System
partition

What does a RAM partition contain? That depends on whether the parti
tion is a system partition or an application partition. Figure 2.2 shows
RAM when a single 68K application is running. The individual areas in
the application and system partitions are described in the following pages.

~
H 0 T E

...- -=

A5Wortd

Application stack

High memory Free memory

n Appllcatton heap

Low memory

System heap

System globals

Chapter 2 • Macintosh Mczmory

Free
memory

Application
partition

Free
memory

System
partition

Figure 2.2 The system and application partitions.

A native PowerPC application (a program generated by a PowerPC compil
er) in memory looks very similar to the 68K application shown in Figure 2.2.
The only difference is that a native application doesn't have an AS World in
its application partition. The topic of application type (68K or PowerPC) was
introduced in Chapter 1 and is discussed in greater detail in Chapter 8.

55

56
Macintosh Programming Techniques. ZE

System Partition Organization
The RAM of a Macintosh always contains a single system partition. This
is true whether the computer is a 680x0-based Mac or a PowerPC-based
Macintosh. It's also true regardless of the number of applications that are
running. The system partition is made up of two sections: one that con
tains system global variables and one called the system heap.

System Global Variables
At the bottom of memory, starting at address OxOOOOOOOO, the Mac
reserves a section of memory for system global variables. The operating
system uses these variables to keep track of what is going on in the oper
ating environment. There are also variables stored here that establish
constant environment values, such as the pixel height of the menu bar.
While it's possible to directly access these variables, you'll want to avoid
that practice. Apple reserves the right to change the layout of this area
and has so informed programmers. If your program directly alters this
memory (to, say, temporarily set the menu bar height to 0 to hide it), it
may not run properly in the future.

System Heap
Above the system global variables is the system heap. Only the
Operating System uses this section of memory; you will never have a
need to access information contained within it. The system heap contains
things such as system file resources that have been loaded into memory,
the code that makes up extensions, and the code necessary to run the
Finder. When you start up the Macintosh, the system heap size is set and
remains fixed until the next time the computer starts. At startup, exten
sions (such as Apple's QuickTime) call upon a software mechanism to
expand the system heap to accommodate them. That's why you have to
restart your computer after you move an extension into your System
folder-the system heap doesn't have room to accommodate a newly
added extension.

Chapter Z • Macintosh Memory

Application Partition Organization
When a program launches, the operating system reserves a section of
free RAM for that application's use. This application partition devotes
itself entirely to that application for the duration of the application's exe
cution. When you quit the application, the memory within that partition
becomes free for the Macintosh to use for a different application.

As was shown in Figure 2.2, the system partition for a 68K applica
tion has an AS World that holds application global variables, an applica
tion stack that holds application local variables, and an application heap
section that contains the program's code, resources, and data objects that
are created as the program executes.

AS World
A 68K program's global variables are stored in a section of the applica
tion partition called the AS World. The name AS World comes from the
fact that the operating system uses the 680x0 microprocessor's AS regis
ter to keep track of where this memory section starts.

Variables stored in the AS World of an application partition are acces
sible only to the program to which the application partition is devoted.
On the other hand, variables in the system partition ~re accessible by
both the system and any application that is executing. While the word
global can be used in describing variables in both an application parti
tion's AS World and the system partition's system globals section, the
difference is noteworthy. AS World variables are global to the application
residing in the application partition. That is, any function in the program
in the partition can make use of an AS World global variable. Variables
in the system partition, on the other hand, are global to the entire system.
Any program can make use of them. Figure 2.3 illustrates this.

57

58
Macintosh Programming Technlqucrs. ZE

~
H 0 T E

Onlythe 0
application in
this partition
can use these
variables

Any program
can use these
variables ~

ASWorld

Application stack

Free memory

Application heap

System heap

System globals

~

Free
memory

Application
partition

Free
memory

System
partition

Figure 2.3 Application global variables and system global variables.

A native PowerPC application doesn't use an AS World-it groups its glob
al variables together and stores them in a single block in the program's appli
cation heap.

Application Stack
The application stack is a section of memory used for holding the local
variables of the program to which the application partition is dedicated.
The stack also holds parameters as they are passed to functions.

The number of global variables in any single program is fixed. Upon
loading a 68K program into the application partition, the operating sys
tem can determine the exact amount of memory it should allot to the AS

Chapter Z • Macintosh Memory

World; this is why the size of the AS World is fixed when an application
is loaded. The exact number of local variables and passed parameters in
a program are not as well-defined. Variables local to functions are creat
ed and destroyed dynamically as the program executes. This necessitates
a stack that can grow and shrink in size.

The bottom of the stack is fixed in memory. For a 68K application, the
bottom of the stack is "anchored" just under the AS World. For a
Power PC application, the bottom of the stack is also fixed- there's no AS
World above it. As the stack adds variables, it grows downward in mem
ory. As the stack removes variables, the stack recedes back upwards.
Variables are always added and removed from the top of the stack.
Figure 2.4 shows the application stack. The shaded arrow emphasizes
that as the stack grows it moves toward the application heap.

Stack bottom ~
(fixed) L..,/

Stacktop ~
(movable) Ly/'

AS World

Application stack

-t1
Free memory

Application heap

System heap

System globals

Free
memory

Application
partition

Free
memory

System
partition

Figure 2.4 The application stack grows toward the application heap.

59

60
Macintosh Programming Tczchnlquczs. 2E

Application Heap
The next component of the application partition is the application heap.
The heap holds the executable code of an application and application
resources as they get loaded into memory. If a program creates data
objects dynamically, then those objects get added to the heap. Unlike the
stack, which stores variables in a linear manner, the heap can load, store,
and unload objects anywhere in the area of memory that the system has
established as the heap.

The word object is used in this book as a general term for the data in any one
block of memory in the heap. An object could be the resource data that gets
loaded when a call to GetNewWi ndow() is made, it could be a block of exe

rt 0 T E cu table code, or it could be the data from an application-defined data structure.

The application heap, like the stack, can grow and shrink as it needs more
space. In this respect, the application heap differs from the system heap,
which takes on a fixed size when you start your computer. The application
heap grows upward in memory, toward the stack; this is shown in Figure 2.5.

Heaptop ~
(movable) IL,/'

Heap bottom 11'
(fixed) '--t/

I•

AS World

Appllcatlon stack

Fm.oo
.. ,..

Appllcatlon heap

System heap

System globals]

Free
memory

Application
partition

Free
memory

System
partition

Figure 2.5 The application heap grows toward the application stack.

Chapter 1 • Macintosh Memory

Now that you know that the stack can grow down toward the heap, and
the heap can grow up toward the stack, a question may come to mind.
What prevents the stack and heap from running into one another? The
answer: sometimes they do run into each other! The Memory Manager
does its best to prevent this from occurring, and you can help the man
ager by using some of the simple memory management techniques dis
cussed in this chapter.

Summary of Memory Organization
Figure 2.6 summarizes several ideas and terms unique to Macintosh
memory organization.

Stack bottom ~
(fixed) L,/'

Stacktop ~
(movable) L-i/"

Heap top
(movable)

Heapbottom ~
(fixed) !!,/

Larger addresses

D
Smaller addresses

AS World
(68K appllcatlon only)

r-
Appllcatlon stack

• Free memory

• Appllcatlon heap

System heap

System globals

.
-=·

Free
memory

Application
partition

Free
memory

System
partition

Figure 2.6 Memory organization swnmary.

Up to this point, the discussions on memory have centered on examples
that have just a single application running, but a Macintosh allows a user

61

62
Macintosh Programming Techniques. ZE

to have multiple programs running at one time. Each program that runs
gets its own application partition, and each partition has its own AS
World (if it's a 68K application), application stack, and application heap.
Figure 2.7 shows memory when two applications are running: a native
PowerPC program and a 68K program.

Application stack

Free memory

~pllcation heap

A5Wortd

Application stack

Free memory

[Appllcation heap

System heap

System globals

'

Application
partition for
a PowerPC
program

Application
partition for
a 68K
program

J System
partition

Figure 2.7 Memory organization when more than one application is running.

As a programmer, you will have no control of-nor will you be very
interested in-what happens in the system partition. Any program that
you create for the Macintosh will end up in an application partition
when it executes. Since you'll be interested in how your program
behaves in memory, you'll be interested in the memory management of
application partitions. For this reason, the topics in the rest of this chap
ter apply only to application partitions. Of particular importance is the

Chapter 2 • Macintosh Memory

area of memory where your program's code and resources reside-the
application heap.

r:ll
n 0 T E

Is the computer that holds the memory shown in Figure 2.7 a Mac or a Power
Mac? That is, does the computer have a 680x0 microprocessor or a PowerPC
processor? From Chapter 1 you know that a 680x0-based Mac can only run
68K programs, while a PowerPC-based Mac is capable of running both 68K
programs and new native PPC programs. With those facts in mind, you
know that the memory pictured in Figure 2.7 must be from a Power Mac.

THE APPLICATIOH HEAP

For a given application, certain things will remain constant each time
the application is executed. When an application calls a particular func
tion it will always pass the same number of parameters. Each time the
function begins execution it will create the same number of local vari
ables. Each time the function terminates, the program disposes these
local variables. This is why an application's stack is designed to hold
objects in an orderly linear manner. The same cannot be said for an
application's heap.

As a program executes, it does so in a nonlinear manner. Running a
program twice may result in several different sections of code being exe
cuted and several different resources being used. Because of this, the
implementation of the heap is different from that of the stack.

Heap fragmentation
When a program loads a resource (such as a WI ND) to memory, the
resource data ends up in the heap. When a program is finished with a
resource, it may release, or dispose of, the memory that the resource data
occupied. As a program runs, "pockets" of free memory will develop in
the program's heap. When the program later loads another resource, it
will attempt to place the resource data in one of these free pools of mem
ory rather than simply adding the data to the top of the heap. If no one
single area of this free memory is large enough to hold the entire object,
the object will be placed on top of the heap, as shown in Figure 2.8.

63

64
Macintosh Programming Technlqua. ZE

Heap Heap Heap

I•

1: Ii

Ii
I!

~

[=

[ll
11

[
11 11

Five objects two removedone added

Figure 2.8 How the heap gets fragmented.

In Figure 2.8, the object that was added was not placed in free space
between existing objects because the object was larger than either of the
two free areas. When the Memory Manager adds an object to the heap it
always places it in contiguous memory-it never divides one object
between blocks of memory. This results in heap memory that is unused.
When several small areas of memory are free but (due to their small indi
vidual size) they are unused, fragmentation is said to exist. This is shown
in Figure 2.9.

Chapter 2 • Macintosh Memory

Heap

... is wasted if c)
a new object
won't fit in it

lrll """"'""""';=~=""IV Free 0 space ...

I

Heap

Figure 2.9 Fragmentation creates free memory blocks that may be unused.

Heap Compaction
Over time, the amount of wasted space, or fragmentation, could become
so great that a program is unable to bring new objects into memory, even
if there is plenty of free memory available. Obviously, this is unaccept
able. To prevent fragmentation, the Memory Manager uses a concept
called compaction. Compaction is the act of rearranging blocks of memo
ry in an application heap in order to reduce or eliminate small islands of

65

66
MGcintosh Progrqmmlng Tczc:hnlquvs, ZE

potentially unusable memory. Ideally, the Memory Manager would like
to make the most efficient use of memory by shifting objects in the heap
to fill the free spaces so they don't become wasted RAM. Figure 2.10
shows this. In the center version of the heap you can see that the two top
objects pictured in the left version of the heap have been moved down to
eliminate the gaps of free space. The right version of the heap has a new
object adtj.ed to it. Even with the addition of a new large object, the ver
sion of heap pictured on the right uses less memory than the precom
paction version on the left.

Heap Heap Heap

,,

Before addino an obiect. comoaction takes olace..increasino RAM efficiencv

Figure 2.10 Heap compaction restores wasted memory.

Chapter Z • Macintosh Memory

During memory compaction, the Memory Manager may decide to purge,
or remove from memory, some blocks. Only blocks that are not current
ly in use, and that are specifically marked as purgeable, can be removed.

"onrelocatable and ~•locatable Blocks
One of the attributes of a block is whether the block is marked as relo
catable or nonrelocatable. Blocks that are marked as relocatable can be
moved from one area of the heap to another by the Memory Manager.
Blocks that are marked as nonrelocatable always stay in one place-even
when memory is being compacted.

Because the Memory Manager can't move nonrelocatable blocks, you
might think they could cause fragmentation, and they do. Though it is
vastly preferable to use relocatable blocks, there are occasions when the
Macintosh must use nonrelocatable blocks. One such situation is dis
cussed later in this chapter.

With all this shifting of memory taking place, how do the Memory
Manager and your application keep track of where things in memory
will be at any given moment? For this, the Macintosh uses a technique
involving master pointers. A master pointer is a special pointer that points
to an object and stays fixed in memory, regardless of where the object to
which it points moves. If the object moves in memory, the contents of the
master pointer will change to reflect the object's new address, but the
placement of the master pointer in memory will never change.

Figure 2.11 shows an object in an application's heap memory. For no
particular reason (other than to provide a reference point in this and sub
sequent figures), the object starts at memory address Ox01234500.

67

68
Macintosh Programming Techniques. ZE

r2I
H 0 T E

Heap

objec<::J

Ox01234500

OxOllDEFOO
[

IJ
:::;

I~

Stack

Free
space

Heap

Figure 2.11 An object in heap memory.

When an object is placed into memory, its starting address is always smaller
than its ending address. Recall that when portraying Mac memory, lower
memory addresses are always shown toward the bottom, so in figures such
as Figure 2.11, an object appears to be "upside down" in memory. That is, the
starting address of the object appears at the bottom of the object. A pointer
to the object appears to be pointing to the bottom of the object, rather than to
the start of the object.

Figure 2.12 shows that the lowest object in the heap pictured in Figure
2.11 is a master pointer. The master pointer is set to point to the lone object
in the heap; it holds the starting address of this object, Ox01234500.

Ox01234500

Master

pointe~

OxOllDEFOO

Chaptczr 2 • Macintosh Memory

r
[

~, Ox0123~00 JI

Jl Stoci<

Free
space

Heap

Figure 2.12 A master pointer holds the address of a heap object.

The distinction between the contents of the master pointer and the
address of the master pointer can be a source of confusion. In Figure 2.12,
the content of the master pointer is Ox01234500, while the address of the
master pointer-where the master pointer is physically located in mem
ory- is OxllDEFOO.

The Memory Manager uses the master pointer to keep track of a
moving object. You, the programmer, still need one other device-a han
dle-so that your program can also keep track of this moving object. A
handle contains the address of a master pointer. To keep tabs on a mov
ing object in memory, you declare a handle variable in your program.

69

70
Macintosh Programming Tvchnlqun, 2E

Assuming the variable is local to a routine in the program (as opposed to
being declared as a global variable), it will reside on your application's
stack. While the variable might be on the stack, what it points to-the
master pointer-will always be in the heap. The handle variable will
contain the address of this master pointer. Figure 2.13 illustrates this.

~
H 0 T E

Handle~

II. Ox01l13llQ. JI
] sraok

J~~.
-=- "'=1

Ox01234500
[

Heap

t..::::==~ OxOllDEFOO
[I ~01234500

Figure 2.13 A handle holds the address of a master pointer.

If you compare Figures 2.13 and 2.12, you' ll see that the addition of the han
dle to the stack made the stack grow downward, as expected.

Once declared, the content, or value, of the handle variable will not
change. In Figure 2.13, you can see that the handle has the value of the

Chapter 2 • Macintosh Memory

master pointer-OxOllDEFOO. Because the master pointer never moves,
the handle's value will never change.

If the Memory Manager compacts memory, the value held in the
master pointer will change. In Figure 2.14, the object in memory is
moved from address Ox01234500 to address Ox01210000.

Free
space

Heap

Figure 2.14 The value in the master pointer is updated after the object moves.

Note in Figure 2.14 that the object has moved and the content of the mas
ter pointer has changed to reflect this move, but the value of the handle
remains the same.

If the value of the handle variable remains the same, how does your
program become aware of the memory movement? The updating of the
master pointer provides the answer. When your program looks to the
master pointer, still located at address OxOlDEFOO, it examines the con-

71

72
Macintosh Programming Techniques. ZE

tents of the master pointer to see where in memory it should look for the
object. The master pointer always contains this information, so the han
dle variable can also track down the object.

The term memory management refers to the allocation, movement, track
ing, and removing of objects in memory. These objects are often
resources. You know that menus, dialog boxes, and windows all start out
as resources. As you'll see in Chapter 8, if you're generating a 68K appli
cation, your program's code itself is turned into CODE resources that get
loaded and moved in memory. Together, these things may be referred to
generically as objects in memory.

At the heart of memory management is the Macintosh Memory
Manager. The Memory Manager does much of the behind-the-scenes
work to keep track what's going on in RAM. It also provides the pro
grammer with a set of routines to assist in memory-management tasks.
Because the Macintosh uses memory-management techniques not found
on most other computers, programmers new to the Macintosh often inject
memory-related bugs into their programs. A thorough understanding of
how the Macintosh works with memory, as described in this chapter,
along with the more specific programming techniques described on the
following pages, will help you reduce the number of bugs of this type.

Objects in memory can have different attributes applied to them.
These attributes, or characteristics, are discussed in some detail through
out this chapter. For now, here's a brief overview.

A block can be relocatable. A relocatable block can be moved about in
memory and released from memory by the Memory Manager, without
any intervention by your program. The Memory Manager would do this
in reaction to a scarcity of memory. A block can also be marked nonrelo
catable. If a block is nonrelocatable it is fixed in memory; the Memory
Manager will never move it or purge it on its own. It can only be released
from memory by your program explicitly calling a Toolbox routine to
dispose of it.

If a block is relocatable it can be either locked or unlocked. A locked
block cannot be moved in memory. If it's unlocked, it can be shuffled
about in memory during compaction. If it's unlocked, it can also poten-

Chapter Z • Macintosh Memory

tially be removed from memory by the Memory Manager. The locking
and unlocking of memory is often done on relocatable blocks. To guar
antee that the Memory Manager doesn't move a particular block during
some operation, a program can temporarily lock that block in place.

If a block is relocatable and unlocked it can be made either purgeable
or unpurgeable. If it's purgeable, the Memory Manager can release it from
memory if memory becomes scarce. If an object is important enough to
remain in memory even when memory is in short supply, it can be
marked as unpurgeable.

Although nowadays even many low-cost Macs come equipped with
8 MB of memory, memory remains a scarce resource. Why? The size of
applications-including the operating system- has grown at an equal
pace. So regardless of the amount of memory on the Mac your complet
ed program is running on, your program's code or data is likely to be
shuffled around in memory.

Figure 2.15 shows the different attributes that can be imposed on a
block. Notice that if a block is marked as nonrelocatable it can't be
unlocked or purged.

Non relocatable
block

I. Looked

Relocatable
block

I Unlocked I
o~

r== P"'"u,....rg-ea_b_le---=.]9
"'I ~U-n-pu_rg_e_a_b...,,le]~

Figure 2.15 Attributes of a block in memory.

73

74
Macintosh Programming Techniques. ZE

The remainder of this chapter is devoted to supplying you with the spe
cific techniques you need to be aware of in order to write Mac programs
that work with the Memory Manager.

flVOIDIHG HEAP fRflGMEHTflTIOH

Earlier in this chapter, heap fragmentation was discussed. You know that
objects get loaded into memory and then stay where they are, get moved,
or are eventually purged. It's the objects that don't move, the nonrelo
catable objects, that can play havoc on your program's execution. They
cause roadblocks in the heap that prevent efficient use of memory. This
heap fragmentation can literally kill a program; some memory-related
errors will cause a program to terminate or freeze. In this section, you'll
see how fragmentation can be minimized.

How tlonrelocatable Blocks Get Created
One of the attributes of a block in memory is whether the block is marked
as relocatable or nonrelocatable. Blocks that are relocatable can be moved
about in the heap by the Memory Manager. Blocks that are nonrelocatable
always stay in one place, even when memory is being compacted.

You have only a limited amount of control when it comes to allocat
ing nonrelocatable blocks-any call your program directly makes to the
Toolbox function New Pt r () creates one. Additionally, your program will
indirectly call New Pt r () when it calls some Toolbox routines.
GetNewWi ndow()-the Toolbox routine that loads a window into memo
ry-is one such function. A call to GetNewWi ndow() makes a call to
New Pt r () to create the Wi ndowPt r that is returned to your program. The
Wi ndowPtr points to the nonrelocatable block that holds a
Wi ndowRecord-the data structure that is the recipient of the WI ND
resource data that GetNewWi ndow() loads. Figure 2.16 shows this.

~
H 0 T E

Chapter Z • Macintosh Memory

~~~ ~=l=~i=n='ld='ow""'P~t=-r=::'f ] Stock 

Iii! Nonrelocatable 
lll!I block 

~ Relocatable 
~block 

Heap 

D Free 
block 

Figure 2.16 The Wi ndowRecord structure is nonrelocatable and is 

referenced by a WindowPtr . 

In Figure 2.16, the Wi ndowPtr variable is shown on the stack. That means it's 
a local variable. If the program declared the Wi ndowPtr variable at the glob
al level, it would appear in the AS World if the program was a 68K program. 
PowerPC applications have no AS World, so if the program was a PowerPC 
application, the variable would appear somewhere in the heap. 

75 



76 
Macintosh Programming Techniques. 2E 

"onrelocatable Blocks and Heap fragmentation 
The Memory Manager will attempt to place a newly created nonrelocat
able block as low as possible in the heap. However, if it is placed above 
relocatable blocks and those blocks are eventually disposed of (purged), 
the nonrelocatable block becomes an island, with free memory on either 
side. A nonrelocatable block-no matter how small it is-creates an 
obstruction in memory, and because the block is nonrelocatable, heap 
compaction won't help. Figure 2.17 shows the same section of memory 
as Figure 2.16. In Figure 2.17, the relocatable block has been purged from 
memory (you might assume it held data from a resource that was no 
longer needed by the program). If the program is required to load a new 
object into memory (now assume that the program is going to load data 
from a different resource), that object must not be larger than the largest 
single free block of memory. As you can see in Figure 2.17, while there is 
enough total free memory to hold the new object pictured on the right, 
there is no one single block of memory large enough to hold it. That 
means the object can't be loaded. 

~ 
ft 0 TE 

A nonrelocatable block is always referenced by a pointer. A relocatable block 
is always referenced by a handle. 

When a window is closed, the nonrelocatable Wi ndowRecord block is 
removed from memory. That's good, but it could be too late. While the 
window is open, an attempt to load a large object into memory could fail. 
Additionally, some programs will keep one or more windows open for 
the entire duration of the program, eliminating the closing of the win
dow as a solution to this dilemma. 



WindowPtt 

Nonrelocatable 
block 

fml Relocatable 
[.22a block 

Chaptczr 2 • Macintosh Mczmory 

Stack 

D Free 
block 

Figure 2.17 A nonrelocatable block can create an island in memory. 

rtonrelocatable Block Placement in the Heap 
It should be obvious by now that nonrelocatable blocks are to be avoid
ed whenever possible. However, you don't want to go to such lengths as 

77 



78 
Macintosh Programming Techniques, 2E 

to try minimizing the number of windows in your programs; windows 
are what the Macintosh is all about. Fortunately, there is a way out of this 
predicament: load nonrelocatable blocks into memory first. That puts 
them low in the heap, where they don't form obstructive islands-no 
matter how long they remain in memory. Figure 2.18 shows the same 
objects in memory as were pictured in Figure 2.16. The only difference is 
that in Figure 2.18, the Wi ndowRecord block was loaded before the relo
catable block. Here you can see that the nonrelocatable window block is 
lower in the heap than it was in Figure 2.16. 

Wi ndowPt r 

~~i Nonrelocatable 101 Relocatable 
!!i •• block ~ block 

Stack 

Heap 

D Free 
block 

Figure 2.18 It is preferable to load a nonrelocatable block low in memory. 

If the relocatable block is now purged from memory, the total amount of 
free space will be the same as it was back in Figure 2.17. However, 
because the Wi ndowRecord block isn't left trapped in the middle of the 



Chapter 2 • Macintosh Memory 

heap, the free space is together in one block. As shown in Figure 2.19, the 
same object that couldn't be loaded before can be added to the heap now. 

WindowPtr 

II Nonrelocatable 
block 

~ Relocatable 
~block 

Stack 

Heap can now be expanded 
to allow this block to be added 

Heap 

D Free 
block 

Figure 2.19 With the nonrelocatable block low in memory, the Memory Manager 
can make more efficient use of free space. 

Reserving Memory to Reduce fragmentation 
The next best thing to avoiding a nonrelocatable block is participating in 
its placement. If you can control where the block goes, you can place it 
as low as possible in memory. As you've just read, if you do this it won't 
be an obstruction later as the Memory Manager attempts to load other 
objects into memory. 

79 



80 
Macintosh Programming Techniques. ZE 

When your program first starts up, you can reserve storage for your 
window-even if it hasn't been opened yet. If very early in your pro
gram's execution you reserve a block of memory large enough to hold a 
window's data, the block will be low in memory because the Memory 
Manager always attempts to place nonrelocatable blocks at lower 
addresses. Since there's very little in your application's heap immediate
ly after the program launches, the Memory Manager will have no prob
lem placing a nonrelocatable block very low in the heap. Figure 2.20 
shows memory for a program that reserves a block of memory the size 
of a Wi ndowRecord data structure. The program also declares a global 
variable of type Ptr. As shown in Figure 2.20, this generic pointer vari
able will be used to hold the address of the reserved block of memory. At 
a later time, when the program opens a window, this block will be used 
to hold the data loaded by the call to GetNewWi ndow ( ) . 

~ 
ft 0 TE 

In Figure 2.20, the Pt r variable is shown in the AS World of the application 
partition. That's where global variables are kept in 68K applications. H this 
were a PowerPC application, the variable would instead be in the heap. 

What if the window you've reserved storage for isn't opened until much 
later in your program? Doesn't this storage space go wasted until that 
time? Yes, but you aren't trying to save on memory here; you're trying to 
avoid fragmentation. Your memory storage may be as few as a hundred 
bytes or so. If you created a window without using storage, the resulting 
fragmentation brought on by a 100-byte window could make thousands 
of bytes unusable. 



r;=:~ 

Chapter 2 • Macintosh Memory 

] 

A5World 
t====~~~ (68K only) 

Ptr 
~!!!!!!~~~~ 

l"-----....-.i J Staok 

Block the size 
of a 

WindowRecord 
data structure •·- Heap 

Nonrelocatable ~ Relocatable 
block ~ block D Free 

block 

Figure 2.20 A block of memory reserved for future use and referenced 
by a generic Ptr variable. 

81 



IZ Macintosh Programming Techniques. JE 

Thousands of bytes? Sure. It depends on what your program is attempting 
to load. Imagine your application is up and running; it has 300 KB of free 
space-divided into two lSOKB areas by a nonrelocatable block. If your pro
gram tries to load a 200KB picture resource (a resource of type PI CT), it will 
fail. The program won't crash, but the picture won't be displayed. In case 
you're wondering, the situation of a 200KB picture is not unreasonable, espe
cially if your program has color pictures in its resource file. 

Your program can reserve a block of memory by using the Toolbox func
tion New Pt r ( ) . The one parameter passed to New Pt r ( ) is the number of 
bytes of memory to reserve. Rather than passing a value here, use the C 
s i z e of operator to obtain the number of bytes of the data structure for 
which the memory is being reserved. Consider an example that reserves 
a block of memory that will be used later to hold window data: 

Ptr gWindStorage: 

gWindStorage - NewPtr( sizeof( WindowRecord ) >: 

In the preceding snippet of code, s i zeof returns the size, in bytes, of the 
Wi ndowRecord data structure. NewPtr() then allocates a nonrelocatable 
block of memory of this size and returns a pointer to the start of the 
block. If New Pt r ( ) is called near the start of a program-such as just after 
Toolbox initialization takes place-then the Memory Manager will 
reserve the block very low in the heap, as desired. The following snippet 
of code provides a more comprehensive example: 

/ldefi ne rTextWindow 128 

Ptr gWindStorage: 
WindowPtr theWindow: 

InitializeToolboxC>: 

gWindStorage = NewPtrC sizeof( WindowRecord ) >: 

II The program can perform any number of tasks before opening a new 
II window. Not until the following line does the reserved memory 
II actually get used by the application 

theWindow - GetNewWindowC rTextWindow. gWindStorage. (WindowPtr)-lL ): 



Chapter Z • Macintosh Memory 

As was mentioned in Chapter 1, the second parameter to 
GetNewWi ndow() tells the Window Manager where in memory to store the 
newly loaded window. Using a n i 1 pointer (as has been the case up to this 
point) tells the Window Manager to use whatever available memory it 
wants. If your program instead passes a pointer as the second parameter, 
GetNewWi ndow() will store data in the block referenced by your pointer. 

Let's say you're writing a program that will open a window that 
allows the user to draw in it. Optionally, the user can open a second win
dow that will display a graph of some data the user has entered. With the 
possibility of two windows being opened, you know that your program 
should reserve space for two Wi ndowRecords. Here's a code fragment 
that reserves memory for two windows and then opens the windows: 

/ldefi ne 
/ldefi ne 

rDrawWindow 
rGraphWindow 

128 
129 

Ptr gDrawWindStorage; 
Ptr gGraphWindStorage; 

WindowPtr theWindow; 

InitializeToolbox(); 

II Reserve memory for both windows 
gOrawWindStorage = NewPtr( sizeof( WindowRecord ); 
gGraphWindStorage = NewPtr( sizeof( WindowRecord ); 

II Do stuff here ... then open the first window 
theWindow = GetNewWindowC rOrawWindow • gDrawWindStorage. 

CWindowPtr)-lL ); 

II Do stuff here ... then open the second window 
theWindow = GetNewWindowC rGraphWindow • gGraphWindStorage. 

CWindowPtr)-lL ); 

What if your program doesn't limit the user to a predefined known number 
of windows? One scheme that would provide at least some control over the 
positioning of nonrelocatable blocks would be to use the preceding tech
niques for known windows and then pass n i l as the second parameter to 
GetNewWi ndow() to let the Window Manager handle memory assignments 
for other windows. 

83 



84 
Macintosh Programming Techniques. ZE 

HEAP MAHflGEMEHT 
Setting aside window storage early in the execution of your program is 
a way of reserving memory for nonrelocatable blocks, but it's not the 
only memory-management scheme available to your applications. Your 
program can also reserve a small amount of memory that will help it 
work with relocatable blocks. Additionally, your IDE allows you to set 
the size of the heap to a value that is optimal for your type of program. 

Allocating Master Pointer Blocks 
Earlier in this chapter you saw that a master pointer is a special pointer. 
Like any pointer, it points to an object. But unlike a normal pointer, a 
master pointer can track moving objects-not just fixed ones-in memo
ry. A Wi ndowPtr is an example of a normal pointer; it points to a fixed 
nonrelocatable block of memory that holds the data of a Wi ndowRecord 
data structure. A master pointer, on the other hand, points to a relocat
able block. 

How does a relocatable block get formed? One means of allocating a 
relocatable block is by calling the Toolbox function NewHandl e( ). 
NewHandl e( ), like NewPtr( ), allocates a block of memory, the size of 
which is specified in the parameter to the function. The difference is that 
NewHandl e() allocates a relocatable block and returns a handle to the 
memory, while NewPtr() allocates a nonrelocatable block and returns a 
pointer to the memory. A second way to allocate a relocatable block is 
through the use of a Toolbox routine that allocates such a block and 
returns a handle to it. For example, the Get Picture() routine that you'll 
see in Chapter 3 loads a picture resource into memory and returns a han
dle to the relocatable block of memory that holds the picture data. Just as 
GetNewWi ndow() uses NewPtr() to allocate memory, GetPi cture() 
uses NewHandl e() to allocate a new block. 

When NewHandl e() is called, it returns a handle. As you saw earlier 
in this chapter, a handle contains the address of a master pointer. The 
Macintosh uses master pointer blocks to hold master pointers. A master 
pointer block is a contiguous area set aside for 64 master pointers. When 
your program starts up, the Memory Manager creates one master point
er block for your program's use. It does this immediately so that this 



ChGptcrr Z • MGclntosh Memory 

nonrelocatable block is placed low in your application's heap memory. 
Figure 2.21 shows such a block. Because the master pointers don't ini
tially point to any data, the figure shows the contents of each as a series 
of question marks rather than addresses. 

Block of 64 
master pointers 

I[ 

IL 

I 
![ 

I 
IL 

Ox??'i'??? ?? JI 

Ox???????? JI 

Ox???????? JI , 
~ 

Ox???????? ]I 

Ox???????? JI 

d] Stack 

~ Free d space 

Heap 

Figure 2.21 Master pointers are always present in blocks of 64. 

If your program calls NewHand l e() (or a Toolbox routine that calls 
NewHand l e( )), a block will be allocated in the heap and a handle 
returned to your program. The handle will hold the address of a master 
pointer, and the master pointer will hold the address of the newly allo
cated block. The master pointer will be one of the 64 master pointers 
available in the master pointer block reserved by the system for your 
program. The following snippet of code provides an example of how a 
handle variable can be declared and how NewHandl e () allocates memo-

85 



86 
Macintosh Programming T4Khnlquvs. 2E 

ry for a data structure. Figure 2.22 shows what memory might look like 
after this snippet of code executes: 

typedef 
( 

Str255 
short 
long 

struct 

name; 
position; 
salary; 

TeamMemberRec, *TeamMemberPtr, **TeamMemberHandle; 

TeamMemberHandle theShortStop; 

theShortStop = NewHandle( sizeof( TeamMemberRec ) ); 

IL Ox02121200 JI 

Ox06655440 

l! 
II. Ox???????? JI 

II. Ox????'???? JI 

IL Ox???????? JI 
[ :n 

Ox???????? 

Ox06655440 

Stack 

Free 
space 

Heap 

Figure 2.22 Allocating memory for an object referenced by a handle will 
cause one master pointer to be used. 



Chapter 2 • Macintosh Memory 

In Macintosh C programming, as in programming on other platforms, a point
er declaration is made by preceding the variable name with the * operator: 

long *thelongPtr II pointer to a long, allocate using NewPtr() 

A handle is declared by using the * operator twice: 

long **theLongHandle II handle to a long, allocate using NewHandle() 

The definition of the data structure in the code snippet that precedes this 
note defines three new data types: a data structure named TeamMemberRec, 
TeamMember Ptr (a pointer to a data structure of type TeamMemberRec), and 
TeamMemberHandl e (a handle to a data structure of type TeamMemberRec). 
Once defined, variables of any of these three types can be declared. 

In Figure 2.22, the variable on the stack is the handle variable 
theShortStop. Like any handle, it contains the address of a master point
er. The master pointer appears at the bottom of the figure and is one of the 
64 found in a master pointer block. The contents of the master pointer is 
the address of the block of memory allocated by the call to NewHandl e( ). 

One master pointer points to one relocatable block of memory. One 
master pointer block can thus point to 64 relocatable blocks. It may 
seem unlikely that your program would call NewHandl e() more than 64 
times, but it could. If your program has application-defined data struc
tures referenced by handles (such as the TeamMemberRec data struc
ture}, it could use a number of master pointers if the program creates 
numerous instances of the structure. Additionally, you know that some 
Toolbox functions (such as Get Picture ())return handles and thus also 
use master pointers. 

If your program uses all 64 master pointers in the master pointer 
block allocated to your program at application startup, the system sim
ply allocates a second block to your program; your program doesn't 
need to explicitly allocate the block. There is a potential problem that 
arises from allowing the system to allocate the block, however. If your 
program has been running for a while, the new block may end up in the 
middle of the application's heap. Since master pointers (and thus a mas
ter pointer block) are fixed in memory, this may cause fragmentation. 
The solution here is similar to the one proposed for allocating memory 
for windows: reserve memory early so that the allocated block is low in 

87 



88 
Macintosh Programming Tczchnlquczs, ZE 

the heap. For master pointers, a single Toolbox call does that. The 
MoreMasters () function not only reserves memory for a new block of 
master pointers, it creates the master pointers for your program's use. By 
calling this function a single time, your program will have 128 master 
pointers (the 64 from the original block and 64 from the block allocated 
by MoreMasters C )). 

When you reserve memory for windows, you do so based on the 
number of windows your program will open. To reserve memory for 
master pointers, you should base the number of master pointers on the 
number of relocatable blocks that your program will use, blocks created 
by calls to NewHandl e( ). How do you do this? It's not as easy as count
ing the number of times you use NewHandl e() in your source code-you 
might never call it, but the Toolbox will. Some Toolbox calls result in two 
or three calls to NewHandl e( ). All this makes calculating the number of 
calls to NewHandl eC) difficult. 

In determining how many times to call Mor eMa st er s C ) you should 
keep the following in mind. A pointer always holds an address, and an 
address on the Macintosh always occupies 4 bytes. Thus a pointer is 
always 4 bytes in size, regardless of the size of the block it points to. This 
means that a single master pointer block, which holds 64 master point
ers and an 8-byte header, is always 264 bytes in size. 

From the preceding paragraph you know that a master pointer block 
does not occupy a lot of memory. The second thing to consider is that a 
nonrelocatable object, no matter how small, can cause fragmentation. 
Whenever possible, you want to allocate nonrelocatable objects low in 
memory, where they can do the least amount of damage. 

From these two ideas you may accurately draw the conclusion that 
to avoid fragmentation, it is better to call MoreMasters () too many 
times than too few. Programmers generally call MoreMasters () about 
three or four times (though large applications may call it more than that). 
Including the block that the Memory Manager creates, that gives a pro
gram five master pointer blocks. 

You want your master pointer blocks low in memory so you want to make 
the calls to MoreMasters C) right away. Make the calls to MoreMasters ()just 
before or after other initialization calls, as in this example: 



main() 
{ 

InitializeToolboxC>: 

MoreMasters(): 
MoreMasters(): 
MoreMasters(): 

II rest of the program ... 

Expanding the Heap 

Chapter 2 • Macintosh Memory 

When your application first starts up, its application heap is set to a 
small size. As your program requires more memory the Memory 
Manager will gradually increase the size of the heap. This method of 
heap expansion can lead to fragmentation. A much more efficient 
method of enlarging the application's heap is to do so all at once at pro
gram startup; that gives the Memory Manager greater freedom in mov
ing relocatable blocks. Conveniently, there's a Toolbox routine that does 
just that. MaxApp 1 Zone ( ) should be one of the first calls your program 
makes. By expanding the heap all at once, future memory allocations 
will be carried out much more quickly. Here's how your ma i n ( ) routine 
should look, now that you know about MaxAppl Zone() and the 
MoreMasters () routine covered in the previous section: 

main() 
{ 

InitializeToolbox(): 

MaxApplZoneC>: 
MoreMastersC>: 
MoreMasters(): 
MoreMasters(); 

II rest of the program ... 

89 



90 
Macintosh Programming Techniques. 2E 

SETil"G THE fiPPLICflTIO" PARTITIO" SIZE OF fl 
PROGRAM 

When a user double-clicks on an application's icon in the Finder, the 
system sets up a memory partition for that application, then loads all or 
part of the program into the partition. The size of the application's par
tition is initially set up by the programmer, but it can be overridden by 
the user. 

The User•s Role in Setting the Partition Size 
All programs come with a partition size suggested by the program's 
developer. The program's user can change the partition size by select
ing Get Info from the File menu in the Finder. In any version of System 
6, the user can make just a single change to the partition size. Starting 
with System 7, however, the user can set both the minimum partition 
size and a preferred size. The minimum partition size is the limit below 
which the application will not run. The preferred partition size is th~ 
memory size at which the developer feels the application will run effec
tively. If the amount of memory entered in the preferred size is not 
available, the system will place the application into the largest avail
able block of memory. Allowing the user to configure the partition size 
lets the user base the program's partition on the amount of RAM 
installed in his or her Macintosh. The System 7 Get Info dialog box is 
shown in Figure 2.23. 



Chapter 2 • Macintosh Memory 

~ MemoryBasics68K 

Kind: application program 
Size: 6K on disk (1,977 bytes used) 

Yhere: Hard Disk : CW7 Gold: MPT Code: 
C02 Memory Basics: 

Created: Fri, Oct 20, 1995, I :41 AM 
Modified:Fr1,0ct20, 1995, 1 :41 AM 
Version: n/a 

Comments: 

r--Hemory Requirements···-······: 
l Suggested sia:e : 384 K I 
I Minimum size: IKJ K I 

0 Locked j Preferred sia:e: IKJ K I 
: .................. ·-······-·· ............................................... ; 

Figure 2.23 The Get Info window under System 7. 

Memory chip prices have fallen greatly in recent years, and the amount of 
memory in users' Macintoshes is increasing. Additionally, many users make 
use of virtual memory and RAM-doubling software. You may wonder if it's 
worth the extra effort to plan out partition size. After all, you could just do 
what many program developers do and assign a very large partition to your 
program, guaranteeing that the entire program will load in memory. That's 
why you shouldn't. As Macs get more memory, users are loading more of 
these large programs at once. While a user may have 8 MB or more of RAM, 
that person will typically have several programs running at once. Even with 
a large amount of RAM, that user might still find that he or she is just 100 KB 
shy of being able to load another program-maybe yours. 

91 



92 
Macintosh Programming Tec:hnlqua. 2E 

Setting an fipplication·s Partition Size 
You're the developer of your program, so you get to set the developer's 
suggested size for your program's partition. After you build an applica
tion from your project, the partition size values you specify in your pro
ject will appear as the minimum and preferred sizes in the Get Info dia
log box of the Finder's File menu. 

As you're about to see, both Symantec and Metrowerks make it easy 
for you to set the preferred and minimum heap sizes for your applica
tion before you build it. 

Setting an Application·s Partition Size <Jsing the Symantec IDE 
If you're working with a Symantec project, select Options from the 
Project menu. Click on the Project Type icon on the left side of the 
Options dialog box to display the page shown in Figure 2.24. Type in the 
minimum and preferred sizes, in KB, then click the Save button. When 
you perform a build, the stand-alone application will have these two 
sizes associated with it. 

Pro ect Options for "Memor eoslcsPPC.11" 

Options: I MemoryBosicsPPC.11 ..-1 

I 
~ Projtc\ Typt 

File Type~ Creotor~ ~ I Rppllcotlon ..-1 
Project I" r Ot s \in• \ion 

• ~·1 
J 181 Rlwoys osk for destinotlon 

( Set destinotlon •.. J lMemoryBoslcsPPC 

™ 
~ 

SIZE 

Flogs ~ I saco I cfr9 

Link•r Minimum size I 1 024 IK Custom stock size ~bytes 

rl~ 
I 

Preferred size l 1 024 ]K I 0 Mer9• 680x0 Applieation Extensions '"II 

Ji u; [ i::! 
_ (select opplicolion ... ) [ 

Pr ojtct VW'Miow I r•lo. . " . . , Thi.s 1s the $\l~tf'C p,.o)eCt Opt10M du1b). Click on .antJ itffll to find out more ~t tt"1.11t option. lil ·:il l 

PoworPC c ~ ( Concel J ( Foctory Settings J ([ Soue l) 

Figure 2.24 Setting your application 's partition size using the Symantec IDE. 



Chapter Z • Macintosh Memory 

Setting an flpplicatlon~ Partition Size Using the Metrowvrks IDE 
If you're working with a Metrowerks project, select Preferences from the 
Edit menu. Click on the 68K Project or PPC Project icon on the left side 
of the Preferences dialog box to display the panel shown in Figure 2.25. 
Type in the minimum and preferred sizes, in KB, then click OK. When 
you build the stand-alone application, it will have these two sizes asso
ciated with it. 

Apply to open project. 

i:..n ·~. Project Type: ._I _R ..... P .... Pl_ic_a_uo_n _____ ...,_,I 

llm ffi!~ r-Rpplication Info:--------------. 
Access Paths Hill .--------------. 

D ~
;!ii! File Name I MemoryBasics6BK I 
M;! 

Extra~ J~i 'SIZE' Flags ~ Creator ???? 
ml (~]i 
~ 1~,~ ... ~ .... 1 Type APPL 

Preferred Heap Size (k) 384 

Minimum Heap Size (k) j 384 D ~~ li11j .....__ ________________ __, 

ci1::. 

68K Linker ll~~ .a. I (rectory Settings I ( Reuert Panel I ( Cancel) n OK D 

Figure 2.25 Setting your application's partition size using the 
Metrowerks CodeWanior IDE. 

Determining Yoar flpplication•s Memory rteeds 
Determining the memory requirements of your program may be diffi
cult, especially if it is a large application that relies on a lot of dynamic 
memory allocation. There are many factors that play a role in the amount 
of memory a program needs. Here are some of those factors: 

• Loading of static CODE resources, such as CODE 1. 

• Loading and unloading of purgeable CODE resources. 

93 



94 
Macintosh Programming Techniques. ZE 

• Creation of objects in response to program menu commands; 
this can vary based on user's selections. 

• Amount of global data. 
• Size of the stack. 

Some factors you may be able to determine, including the amount of 
memory the static CODE resources will occupy. If you build a 68K appli
cation and open it using ResEdit, you'll see that it holds CODE resources. 
When the user launches your program, the system loads some of these 
CODE resources into memory. The CODE 1 resource always gets loaded. 
This means that you'll need to always allocate at least that much memo
ry for your application's partition. 

If you are familiar with debuggers, you can use MacsBug, Jasik Designs 
The Debugger, or TMON as a heap-exploring tool to help you determine 
the dynamic memory requirements of your program. Debuggers aren't 
covered here; their use is a topic worthy of an entire book. 

If you're planning on thumbing through every Macintosh book you can find 
in order to find a simple formula for the calculation of a program's partition 
size, save your time and energy. Such a formula doesn't exist. 

If you're feeling overwhelmed by the number of factors involved in 
determining memory use and you're not well versed in the use of debug
gers, you may be wondering if there are any "quick and dirty" methods 
of getting at least a rough idea of program memory use. Fortunately for 
you, there are. 

Watching Program Memory Using the Finder 
Regardless of the IDE you use, set your project's partition size as dis
cussed earlier, then build your application. If you wish, you can start 
with the default sizes that your IDE suggests. Leave your IDE and return 
to the desktop. Go to your program's icon in the Finder and double-click 
on it to run your program. 

Put your program through its paces. Select menu options, open dia
log boxes, force the program to use the data structures you've pro-



Chapt•n 2 • Macintosh Memory 

grarnmed into it. In short, do everything the user will be allowed to do, 
and do each thing more than once. 

As you're running your p~ogram, click periodically on the desktop. 
This will take you out of your program and into the Finder. The menu 
bar will change to that displayed by the Finder. Select About This 
Macintosh from the Apple menu. You'll see a window like that shown in 
Figure 2.26. 

~ RppleCD Rudio Player 
[J Automated Tasks ~ 

Rbout This Macintosh Iii 

System Software 7 .5 
© App le Computer , Inc. 1 983-1994 

Built-in Memory : 24 ,576K Largest Unused Block: 1 4 ,820K 
Total Memory : 24 ,576K 

~ MemoryBasics68K 384K D 
liJ Sy stem Software 4, 1 03K 

Figure 2.26 The About This Macintosh window. 

The window you see when you select About This Macintosh shows 
information about memory use for each application currently running 
on your Macintosh. The bar that displays your program's partition and 
the amount of it that is currently in use, will be of most interest to you. 
The bar consists of two parts: the light part (which is blue on a color 
monitor) shows the free memory in the heap of an application's parti
tion. The dark part (which is charcoal gray on a color monitor) shows the 
amount of memory in use in the heap. The overall length of the bar will 
remain fixed as your program runs, but the length of the dark part will 
fluctuate as your program runs. Figure 2.26 shows you that a small pro
gram named Memon;Basics68K is currently using very little of its allotted 

95 



96 
Macintosh Programming Techniques. ZE 

384 KB partition, while the operating system is using most of its almost 
4 MB partition. 

If you continue to run your program, will the partition fill complete
ly and crash the program? Maybe. Remember, memory allocation is 
dynamic in both directions-a program frees memory by purging objects 
from memory and consumes memory by loading objects. The next action 
taken by your program may cause, say, a large sound resource to be 
purged and a small picture resource to be loaded. This would free up 
some of the memory in the application1 s partition, causing the dark part 
of the bar in the About This Macintosh window to shrink. 

How can the About This Macintosh window be used to determine 
the partition size you should select for your application? First, give your 
program a thorough workout, watching its bar in the About This 
Macintosh window as you do so. If the dark part of the bar comes close 
to filling the entire length of the bar, you'll know that the program is 
reaching its partition limit, and you should increase the size of the pro
gram's partition to provide a buffer. If after a vigorous workout you 
notice that the dark part of the bar never goes anywhere near the end of 
the bar, you know that you can reduce your program's partition size so 
that your application doesn't needlessly tie up the user's RAM. 

After testing your program, quit and return to the desktop. Select 
Get Info from the Finder's File menu. Change the program's minimum 
and preferred sizes to values you think may be more appropriate. Again, 
run your program and test it vigorously. Check the About This 
Macintosh window periodically. Use this trial-and-error method until 
you settle on a partition size that seems right for your program. 

r2 
N 0 TE 

You can see that the MemoryBasics68K application heap has plenty of free 
memory-too much, in fact. There's a good chance that the partition size for 
this obviously small program could be reduced from 384 KB to about 100 KB. 

Before you build your final application, take note of the partition values 
you've settled on. Then open the program's project and use those values 
in your Symantec or Metrowerks IDE. Each time you build an applica
tion from the project, the resulting program will have this optimal parti
tion size. 



rt] 
H 0 T E 

Chapter 2 • Macintosh Memory 

All right, hard-core hackers, you're correct; this technique isn't meant to put 
debugger manufacturers out of business, but it is a quick and informative 
way to get a feel for the fluctuations in a program's memory requirements. If 
the topic of partition sizes seemed theoretical before, things should seem a 
little more real after this first-hand experience. 

Watching Program Memory <Ising Swatch 
Using the About This Macintosh menu option is about as quick and 
dirty as you can get. With that method you can get a very rough idea of 
your program's memory use without using any programming tools. To 
get a much more accurate idea of what's going on in RAM, try running 
a nifty utility program called Swatch. In fact, Swatch, written by Joe Holt, 
is so handy that M&T Books has included a copy of it on the CD includ
ed with this book. Swatch (which stands for System Watch) is a very small 
Macintosh program (about 40K) that has just one purpose: it watches the 
memory usage of all applications that are running. The window that 
Swatch displays, shown in Figure 2.27, gives much more information 
than the window you see using the About This Macintosh menu item. 

System 

Finder 

Swatch 

Hea Size 
2,955,740 

101,692 

77,440 

S stem Watch 

Free 1 ixel : 2 048 b tes 

14,740 

8,976 •• , • 

25, 144 1111::1111111 
Memory Basics6... 384 ,636 362 ,384 

• (Red) Nonrelocatable, or relocatable but locked, block 

• (Yellow) Relocatable block 

• (Orange) Relocatable purgeable block 

D (Green) Free block 

Figure 2.27 The Swatch window as Swatch views the system. 

Swatch shows the application heap for each running program. It shows 
not only how much of the heap is being used, but how it's being used. 

97 



98 
Macintosh Programming Techniques. ZE 

Parts of the heap that are nonrelocatable or are relocatable but locked are 
shown in black on a monochrome system or red on a color system. 
Figure 2.27 shows the Swatch window on a Mac that has a program 
named MemoryBasics68K running. The figure also adds a key that 
explains the color-coding for each type of block. 

Notice in Figure 2.27 that the cursor has the appearance of a magni
fying glass with a plus sign in it. By clicking the mouse you can magni
fy the right side of the window to get a more detailed view of memory. 
As shown, one pixel represents 2048 bytes of RAM. A click of the mouse 
will make one pixel represent only 1024 bytes. You can keep clicking to 
get more and more detail. Holding the Option key while clicking the 
mouse button will reduce the view. Swatch has a few other tricks that 
provide more insight into the memory your program uses; they're men
tioned in the text file included in the Swatch folder on the CD. 

Computer memory is an abstract concept that lends itself to much 
confusion for both beginning and advanced programmers. Swatch's abil
ity to allow you to visualize memory helps clarify what's going on in 
those mysterious RAM chips of the Macintosh. 

WRITlftG 32-BIT CLEflft PROGRAMS 
The number of bits used to hold an address determines how many 
addresses can be accessed. Before System 7, 24-bit addressing was used. 
That allowed the Mac to access a maximum of 16 MB of RAM. With the 
arrival of System 7 came 32-bit addressing. Using 32 bits to hold an 
address gives the potential for accessing up to 4 gigabytes of RAM. 

In 24-bit addressing versions of Mac system software, only 24 of the 
32 bits of a pointer or handle were used to hold a memory address. The 
remaining 8 bits were either ignored or used to store additional infor
mation. The bits in a master pointer are an example. Prior to System 7, 
the lower 24 bits of the master pointer were used to hold the starting 
address of a relocatable block. The highest bit of a master pointer was 
used to keep track of whether the block was locked in memory. Two of 
the other upper 8 bits also held flags, and the remaining 5 bits went 



Chapter 2 • Macintosh Memory 

unused. Figure 2.28 provides an enlarged view of a master pointer to 
illustrate this. 

...... / .. / ....... /// 

8 bits 

.· 
. · 

Memory block 

·· .. 

Memo!}' block address (Ox01432650) 

24 bits 

Figure 2.28 Bits of a master pointer, pre-System 7. 

·· ... 

With the advent of System 7, Apple discontinued the use of the upper 8 
bits of a pointer for anything but part of an address and encouraged 
developers to do the same. When the Memory Manager looks at 32 bits, 
it will assume that all 32 bits comprise an address. If a program stores 
other information in some of these bits, that information will not be rec
ognized by the Memory Manager; they will be assumed to be part of an 
address. The results, of course, can be disastrous. 

Programs that are written with no extraneous information in any of 
the 32 bits of an address are said to be 32-bit clean, that is, they will run 
cleanly on a Macintosh that is using 32-bit addressing. 

99 



100 
Macintosh Programming Techniques. ZE 

r21 n 0 T E 

To allow you to run programs that aren't 32-bit clean, the Memory Control 
Panel lets you switch between 24-bit and 32-bit addressing in System 7. It can 
do this because ROMs that contain a 32-bit Memory Manager also contain, 
for compatibility reasons, a 24-bit Memory Manager. The downside is that 
with your Mac set to 24-bit addressing, only 8 MB of RAM will be accessible, 
even if you have more than that. 

Because most users now use a version of System 7-and will soon be 
moving on to Copland (System 8)-you'll want all of your programs to 
be 32-bit clean. Bits in master pointers used for purposes other than 
addressing are the primary cause for an application not to be 32-bit 
clean. This was an acceptable practice for pre-System 7 programs, but 
not anymore. 

ll1 
IMPORTRMT 

Don't become alarmed by all this talk of "disastrous results." H you don't try 
anything really tricky, your programs will most likely be 32-bit clean. Take 
the example in Figure 2.28. Rather than setting master pointer bits to lock a 
block in memory, you'll use the Toolbox routine Hlock( ). The Hlock() func
tion won't do what's shown in Figure 2.28 (change a bit in the master point
er). Instead, it stores block information elsewhere. By using the provided 
Toolbox routine, you don't have to worry about the structure of a master 
pointer or exactly how the system locks a block (an example of H Loe k ( ) is 
provided in Chapter 3). 

If you don't use the Toolbox routine Hlock() and instead you use your 
knowledge of what the bits in a master pointer look like (or used to look like) 
to try to set or clear the upper bit using direct bit manipulation, your pro
gram will no longer be considered 32-bit clean. 

Master pointer bit manipulation is one source of breaking 32-bit clean 
standards. Another is using customized window definition functions 
and customized control definition functions-resources of type W DEF 
and CDEF. Definition functions let you create your own types of win
dows and controls that differ from the standard types. Both of these top
ics are beyond the scope of this book. If you plan to use either custom 
window or custom control definitions, make sure your reference sources 
were written with System 7 and 32-bit clean addressing in mind. 

How can you be sure your program is 32-bit clean? Test it thorough
ly on a Macintosh that has a version of System 7. Check the Memory 



Chapter 2 • Macintosh Memory 

Control Panel and make sure that 32-bit addressing is turned on. If it 
isn't, turn it on and reboot the system. Then run your program, testing 
each aspect of it. 

[l] 
IHPORTllHT 

"Testing each aspect" of your program is something you'd want to do with 
or without the issue of 32-bit addressing, right? 

CHAPTER PROGRAM: MEMORYBASICS 
This chapter's example program is similar to the Chapter 1 VeryBasics 
example. MemoryBasics opens a window and draws a line of text to it, 
just as Very Basics did. The window is shown in Figure 2.29. A click of the 
mouse button ends the program. 

Untitled 

Chapter Two Program 

Figure 2.29 The window displayed by the Memon1Basics program. 

After running MemoryBasics, you can verify that your Mac does indeed 
set aside a separate area in memory for the MemoryBasics program. 
Whether Memon;Basics (or any other program) runs successfully isn't 
dependent on the total amount of memory in your computer; it's depen
dent on the amount of memory allocated to the partition that will hold 
the program. From the desktop, click once on the MemoryBasics icon, 
then select Get Info from the File menu. Change the partition size values 
to a very small number, like 12 KB. Then close the Get Info window. 
When you do, you'll see the alert pictured in Figure 2.30. Click OK. 

101 



102 
Macintosh Programming Techniques. ZE 

You haue set the Minimum and Preferred 
sizes below 384K, which may cause 
"MemoryBasics68K" to crash. 

Rre you sure you want to continue'? 

( Cancel ) ([ OK l) 

Figure 2.30 Setting a program's partition to a value below its recommended 
minimum size results in the display of a caution alert. 

Rerun the MemoryBasics program. Just a moment after launching1 the pro
gram will suddenly quit and return to the Finder. An alert similar to one 
of the two pictured in Figure 2.31 will be displayed. The rather cryptic 
"error of type 15" message refers to a "Segment Loader Error." You might 
instead see "an error of type 25/' which is an "out of memory" error. 

The application "unknown" has 
uneHpectedly quit, because an error of 
type 15 occurred. 

(( OK )J 

"MemoryBasics68K" could not be opened, 
because its current memory size of 12K is 
too low. To open "MemoryBasics68K," 
first select Get Info and raise the 
Minimum and Preferred memory sizes to 
at least 384K. 

(( OK ]) 

Figure 2.31 Low memory error messages. 

Your Mac has at least a few megabytes of memory, most likely 8 or more. 
Of those megabytes, you might have several free when you run 



Chapter Z • Macintosh Memory 

MemoryBasics, but with all this free memory, the MemoryBasics program 
will still quit due to a shortage of memory. With possibly several 
megabytes of free memory at your disposal, you saw a program that 
needs just a little over 16 KB refuse to run. This should show you that 
memory partitions are indeed real. 

Program Resources: MemoryBasics.rsrc 
The resource file for MemoryBasics is identical to that of last chapter's 
VeryBasics resource file. In fact, the resource file is nothing more than a 
copy of the VeryBasics file. Opening the MemoryBasics.rsrc file will 
reveal that it holds just one WI ND resource. 

Program Listing: MemoryBasics.c 
As mentioned, the source code for MemoryBasics is almost identical to 
that of VeryBasics. 

//~~~~~~~~~~~~~~~~~~~~~~~ 

void InitializeToolbox( void >: 
void HandleMouseDown( void >: 

/Jdefi ne rTextWindow 

Boolean gAllDone =false: 
Ptr gWindStorage: 

void main( void ) 
{ 

WindowPtr theWindow: 
EventRecord theEvent: 

128 

103 



104 
Macintosh Programming techniques. ZE 

MaxApplZone(); 
MoreMasters(); 
MoreMasters(); 
MoreMasters(): 

InitializeToolbox(); 

gWindStorage = NewPtrC sizeof( WindowRecord ) ); 

theWindow = GetNewWindow( rTextWindow. gWindStorage. CWindowPtr)-lL 
) : 
if ( theWindow ==- nil 

ExitToShellC): 

ShowWindowC theWindow ): 
SetPortC theWindow >: 

MoveToC 30. 50 >: 
Drawstring( "\pChapter Two Program .. ): 

while ( gAllDone == false ) 
{ 

} 

Wai tNextEvent( everyEvent. &theEvent. 15L. nil ) : 

switch C theEvent.what ) 
{ 

case mouseDown: 
HandleMouseDownC>: 
break: 

void HandleMouseDownC void ) 
{ 

SysBeep( 1 ) : 

gA 11 Done ... true: 



void InitializeToolboxC void 
{ 

) . 

InitGraf( &qd.thePort ); 
InitFonts (): 
InitWindows(); 
InitMenusC>: 
TEinit(): 
InitDialogs( OL >: 
FlushEvents( everyEvent, 0 ): 
InitCursor<>: 

Stepping through the Code 

Chapter Z • Macintosh Memory 

MemoryBasics begins by calling MaxApp 1 Zone ( ) to expand the applica
tion's heap to its maximum size. Without this call, MemoryBasics would 
still be allotted the heap size you specified in your IDE when you built 
the program. However, the program wouldn't allocate all the memory at 
once. Instead, it would take it on demand, as it was needed to load 
objects. Calling MaxApp 1 Zone ( ) causes the program to grab the entire 
heap memory just after the program starts up. That allows for better 
heap management by the system-objects can be relocated more freely 
when the entire heap is available. 

1"'11 
~ n 0 T E 

To get the same results as described in the following discussion, work with 
the 68K version of MemoryBasics. The PowerPC version gets loaded into 
memory differently from the 68K version. Chapter 8 provides more details. 

You can verify that MaxApp 1 Zone ( ) does what it claims by running 
MemoryBasics twice. First, run the Swatch utility. Then run MemoryBasics. 
Click once on the Swatch window and take note of the heap size for the 
MemoryBasics program. The top window in Figure 2.32 shows the heap 
for a version of MemoryBasics that has an application partition size of 384 
KB. Click the mouse button to end the program. Next, comment out the 
call to MaxApp 1 Zone () in the MemoryBasics.c source code file: 

II MaxApplZoneC>: 

105 



106 
Macintosh Programming Techniques. 2E 

System 

Finder 

Swatch 

Memory Basics6 ... 

-IM 

System 

Finder 

Swatch 

Memory Basics6 ... 

He~Size 

3,229 ,516 

101,692 

77,440 

MaxApplZone () 

SJ1_stem Watch 
Free 1 p_ixel : 2 048 ~tes 

110,056 

3,744 • 1l 1M 
37,784 --

384 ,636 378 ,344 

11 MaxApplZone () I 
SJl_stem Watch 

He~Size Free !pixel : 2 048 ~tes 
3,140,088 89, 120 

101 ,692 3,744 .,,. 
77,440 37,784 ... 

7,100 804 0 izy 

Figure 2.32 Swatch reveals that a call to MaxAppl Zone() does expand the heap 
to its maximum size. 

Now rerun the program. Again, click on the Swatch window and note the 
size of the Memory Basic heap. As shown in the bottom window of Figure 
2.32, the heap size will be nowhere near the partition size that was set in 
the IDE. 

After calling Ma xA ppl Zone(), the program calls MoreMasters () 
three times. While the very short and simple Memon;Basics program cer
tainly won't need more than the 64 master pointers the system provides 
any program, it's good programming to call MoreMasters ()a few times 
shortly after program startup. 

Before opening the program's one window, Memon; Basics reserves 
enough memory to hold one Wi ndowRecord. That reserved memory is 
then used in the subsequent call to GetNewWi ndow( ). 



Chapter 2 • Macintosh Memory 

MemoryBasics uses one memory-checking trick not discussed in the 
text. After calling a Toolbox routine that loads a resource, it's always a 
good idea to verify that the request was granted. You can do this by 
checking the value of the pointer or handle that the Toolbox returns to 
your program. In the case of the loading of a WIND resource, check the 
value of the returned Wi ndowPtr. If the load failed, the system will give 
the returned pointer a value of ni 1 (OxOOOOOOOO). If the load succeeded, 
the pointer will hold a valid address-a value other than n i 1. If a load 
fails, you can safely exit your program by calling the Toolbox routine 
Exi tToShel 1 ().In Chapter 7 you'll see how you can provide the user 
with a descriptive error message before exiting. 

The remaining MemoryBasics code is the same as that used by the 
VeryBasics program. If you have any questions about the rest of the code, 
refer back to Chapter 1. 

CHAPTER SUMMARY 
The Macintosh Operating System divides RAM into two main sections, 
or partitions. It reserves one partition, the system partition, for its own 
use. The other partition is dedicated to applications that you run. This 
second partition is further subdivided into application partitions. There 
is one application partition for every application that's running. 

The application partition of a 68K program is composed of three 
main areas: the AS World, the application stack, and the application 
heap. The AS World is used to store a program's global variables. The 
application stack is used to hold a program's local variables. Finally, the 
application heap is used to hold the bulk of a program: its resources, 
including the program's code resources. The application partition of a 
PowerPC program is composed of just the application stack and heap
there is no AS World. Information normally held in the AS World can be 
found in the heap or has been eliminated. 

The Memory Manager is the set of system routines that allocate the 
blocks, or sections, of memory. A block of memory can hold many dif
ferent things, such as program code or other resources. This book gener
ically refers to these "things" as objects. 

107 



108 
Macintosh Programming TClchnlques. ZE 

Each block of memory has attributes, or characteristics, that can be 
set. Whether a block is relocatable, or movable in memory, is one such 
attribute. A relocatable block can be temporarily locked in memory. 
Because a nonrelocatable block is always fixed in memory, it doesn't 
have a locked/ unlocked attribute. A relocatable block can also be 
marked as purgeable, which means that the system can remove it from 
the heap if the space it occupies is needed. Because a nonrelocatable 
block must be explicitly removed from memory by the program, and not 
by the system, it doesn't have a purgeable/unpurgeable attribute. 

The section of memory called the application heap is the area of most 
interest to a Macintosh programmer. Because some memory blocks can 
be moved about in the heap, the heap can become fragmented-areas of 
memory develop that are too small to fit an object. One technique that 
the Memory Manager performs periodically on its own is compaction; 
that is, blocks are rearranged to eliminate small pockets of wasted space 
that lie between them. Chapter 3 covers programming techniques you 
can use to help the Memory Manager minimize fragmentation. 

Because blocks of memory that are purgeable can be shifted about in 
memory, a special memory-management technique is necessary to keep 
track of blocks. A master pointer is a special pointer that holds the 
address of a single object. Though the object it points to can be moved, 
the master pointer itself never moves. Instead, when the block the mas
ter pointer points to is moved, the contents of the master pointer are sim
ply updated to reflect the object's new location. 

The programs you write will have to keep track of where objects 
reside in memory. A handle is a variable that allows a program to keep 
track of an object that moves about in memory. Once declared, the value 
of a handle doesn't change because a handle holds the address of a mas
ter pointer, which itself is a nonmoving object. 



flCIHTOSH PROGRAMMIHG TECHHIO<IES. 2E 

Chapter 3 

QuickDraw Graphics 
What would be the point of programming on a Macintosh if you 
couldn't draw? Drawing is fun, creative, and gives you a chance to 
express yourself-something you can't say about some other areas of 
programming. If you have a color system, as most people now do, you 
can really let loose. This chapter will show you how. 

Here you'll learn just what QuickDraw and Color QuickDraw are, 
and how they work. You'll also look at graphics ports-the data struc
tures that allow drawing styles to change from one window to the next. 

In this chapter you'll see how to draw lines and shapes. You'll then 
add a little flair to your shapes by filling them with patterns, including 
color patterns that you define. Next, you'll read about pictures and how 
to display them. You'll also see how to combine two techniques to 
achieve some very interesting graphical results-this chapter shows you 
how to tum a picture, or part of a picture, into a small pattern that can 
be repeatedly stamped across a window. 

Lastly, you'll learn how to change the look of the cursor. In your 
study of the cursor, you'll also pick up a hint and warning pertaining to 
avoiding the pitfalls that accompany the Memory Manager's practice of 
moving objects in memory. 

109 



110 
Macintosh Programming Technlqaa, ZE 

flBOUT Qo1cKDRf1W flHD COLOR Qu1cKDRf1W 
Everything you see on a Macintosh screen is there because of 
QuickDraw. QuickDraw is a group of Toolbox routines and is the single 
largest group of Toolbox functions. QuickDraw consists of more func
tions than any of the managers mentioned in Chapter 1. 

Some things are obviously graphical, like the screen results of a paint 
program. But even windows, menus, and icons are all graphical images 
that have to be drawn. QuickDraw does this drawing. If any drawing 
has to be done, the managers rely on QuickDraw to do it. 

While your program constantly makes indirect use of QuickDraw 
via managers such as the Window Manager and Menu Manager, it will 
also directly use it by calling any of the hundreds of QuickDraw 
Toolbox functions. 

r:l-1 
N 0 TE 

If you're used to programming in a non-GUI environment, you might have 
written a few drawing routines of your own. Don't try bypassing 
QuickDraw by using or modifying any of your own routines. QuickDraw is 
fast, refined, and simple to use--you won't one-up it. 

Initializing QuickDraw 
QuickDraw has its own set of variables and data structures that need 
initialization. You've seen the following call in previous example pro
grams in this book: 

InitGrafC &qd.thePort >: 

Your program must call this function to initialize QuickDraw before any 
QuickDraw operations take place. Make this call right off the bat. 

Speaking of initializations, you may recall that several other calls are 
included along with In i tG r a f ( ) . They initialize other parts of the Toolbox, 



Chapter 3 • QulckDraw Graphics 

such as the Font Manager and the Wmdow Manager. Note that the order in 
which these calls take place is extremely important and should remain the 
same as has been shown. Here's another look at the call to Ini tGraf() and 
its place in the initialization of the Toolbox: 

void InitializeToolbox( void 
{ 

} 

InitGraf( &qd.thePort ); 
InitFonts(); 
InitWindows(); 
InitMenus(); 
TEinit(); 
InitDialogs( OL ); 
FlushEvents( everyEvent, O ); 
InitCursor(}; 

Pixels and the Coordinate System 
Chapter 1 introduced the pixel and the coordinate system. Remember 
from that discussion that the Macintosh uses bitmapped graphics; every 
pixel on the screen has one or more bits in memory that keep track of the 
state of that pixel. For a monochrome Mac the state is on or off. For a 
color system, the state is the color of the pixel. 

You can refer to each pixel by a pair of coordinates, which define a 
point. This coordinate system starts at point (0, 0) in the upper-left cor
ner of the screen and moves positively to the right and downward. 
Figure 3.1 shows two views of the upper-left corner of a Macintosh 
screen. The top view is close to actual size, while the bottom view is an 
enlarged look at the section pictured in the top view. Both views illus
trate where two pixels can be found. The first is the origin of the coordi
nate system-the point (0, 0). The second pixel that's referenced is found 
18 pixels in from the left of the screen and 7 pixels down from the top
it' s the point defined by the coordinate pair (18, 7). 

111 



112 
Macintosh Programming Techniques. ZE 

(0,0¥18,7) 

(0,0) 

~ 
(18 7) /j_. 

--. v·· .: 
Figure 3.1 The coordinate system. 

The screen isn't the only part of the Macintosh that has a coordinate sys
tem. As you'll see in the next section, every window on the screen has its 
own system. 

GRAPHICS PORTS 
When two windows are open on the screen, each is capable of display
ing different styles of text. This is possible because each window has its 
own set of properties independent of all other windows. 



Chapter J • QalckDraw Graphics 

The GrafPort and GrafPtr 
Associated with a window is a graphics port. The port is the drawing envi
ronment of the window. It describes the window's type and style of text, 
the thickness of drawn lines, and numerous other aspects of the graph
ics that are displayed in the window. 

With more than one window open on the screen you'll have to tell 
QuickDraw in which window or, more precisely, in which graphics port 
it should perform drawing operations. Issuing a call to the Toolbox func
tion Set Port ( ) does this. Set Po rt ( ) requires a pointer to the graphics 
port you wish to make the current port. A Graf Port is the structure that 
holds all this port information. A Graf Ptr is a pointer to a Graf Port. 

In previous chapters you've seen SetPort() in action in code that 
looks like this: 

WindowPtr theWindow; 

SetPortC theWindow ); 
MoveToC 30, 50 >: 
Drawstring( "\pChapter One Program" ); 

You may wonder how it was possible to pass Setport() a variable of 
type WindowPtr when you now know that SetPort() requires a 
Graf Ptr as its parameter. Figure 3.2 hints at the answer. This figure 
shows two sections of memory, each with a pointer pointing to an object. 
On the right, a Graf Ptr points to a Graf Port. On the left, a Wi ndowPtr 
points to a Wi ndowRecord structure. Within the Wi ndowRecord data 
structure, the very first member is a Graf Port. So the first thing that 
both a Graf Ptr and a Wi ndowPtr point to is a Graf Port-which is good 
enough for SetPort( ). Consider Figure 3.2 a brief introduction to the 
Wi ndowRecord-you'll leam all the sordid details about this data struc
ture in the next chapter. 

113 



114 
Me1clntosh Progre1mming Tec:hnlquvs. 2E 

r2I 
" 0 T E 

r;= NindowPtr r;= Grafpcr 

refCoh 

windowPic 

I• 
= 

visible 
Wi ndowRecor d 

windowltind 
~ 

Graf Port GrafPOrt 

L,.,,, .,_ i....,..., ...,... ..... 

Figure 3.2 The Wi ndowPtr and Graf Pt r both point to a GrafPort. 

While a graphics port is usually thought of as holding the drawing environ
ment for a window, it is actually a more general entity. For example, the look 
of the desktop is defined by a graphics port. Additionally, your printer serves 
as a graphics port during printing- printing involves sending QuickDraw 
drawing commands not to the port of a window, but to the printer port. 
Printing is a topic covered in the M&T book More Mac Programming Techniques. 

Color Windows and the CGrafPort 
The Macintosh was originally a monochrome-only machine. As such, the 
Graf Po rt-the data structure that holds all the information about a win
dow's graphics port-doesn't hold any information about color. For sev
eral years now the Mac has supported color, and for the last few years all 
Macs other than portables have been color machines. To support color 
windows, Apple defined a new type of graphics port-the color graph
ics port. Information about a color graphics port is held in a CGraf Port 
data structure. 



Chapter 3 • QalckDraw Graphics 

To create a window that is to be used to hold black and white graph
ics, you call the Toolbox function GetNewWi ndow(). To create a window 
that can hold color graphics, you call the Toolbox function 
GetNewCWi ndow( ). Both routines ask for the same number and type of 
parameters, and both return a Wi ndowPtr. Here's a call to each. 

/ldefi ne 
/ldefi ne 

rMonochromeWindow 
rColorWindow 

WindowPtr theMonoWindow; 
WindowPtr theColorWindow; 

128 
129 

theMonoWindow = GetNewWindowC rMonochromeWindow, nil, CWindowPtr}-lL ): 
theColorWindow = GetNewCWindowC rColorWindow, nil, CWindowPtr}-lL ); 

A few pages back you read about graphics ports and the Graf Port 
type-every window has one. Standard windows have a GrafPort. 
Color windows have a CGraf Port. Most of the differences will be trans
parent to you. Drawing operations in either type of port are similar, as 
you'll see later in this chapter. 

Whether or not the user of your program has a color system is impor
tant. Users with older systems have the original QuickDraw in their 
machines, not the newer Color QuickDraw. Toolbox routines you'll be 
calling to display color will fail on older machines-something you cer
tainly want to avoid. Color QuickDraw is a part of System 7. As the Mac 
approaches System 8 (Copland), you'll need to make the programming 
decision as to whether or not to support System 6 users. You'll find that 
most professionally developed applications now require System 7.0 or 
later. This book makes the assumption that you'll do the same. 

The Toolbox routine Gest a 1 t ( ) checks the machine a program is 
running on for a variety of things, including the presence of Color 
QuickDraw. Gesta 1 t () is covered in great depth in Chapter 9. Here you 
need only know how to use it-you won't need all the details on how it 
works. Near the start of your program, call Gestalt() with the two 
parameters shown below. 

OSErr theError; 
long theResponse: 

theError =Gestalt( gestaltQuickdrawVersion, &theResponse ); 

115 



116 
Macintosh Programming Tczc:hnlques. 2E 

The Gestalt() function checks for a number of system parameters. The 
rather ungainly Apple-defined constant gestal tOui ckdrawVersi on 
will tell the versatile Gest a 1 t C ) function that on this occasion it should 
check for the version of QuickDraw that is present on the user's 
Macintosh. Gesta 1 t C) will dig that information out of the Mac your pro
gram is running on and relay it to your program in the variable named 
theResponse. It will also notify your program if it somehow failed its 
mission; that's what the variable theError is for. 

Immediately after the call to Gestalt(), check the result. A response 
value equal to the Apple-defined constant gesta 1 tOri gi nal OD means 
the system has the original black and white version of QuickDraw. Any 
other value means that there's one of several versions of Color 
QuickDraw present. If Gestalt() has set theResponse to a value of 
gesta 1 tOri gi na 1 OD, then the user's Mac doesn't support color. If that's 
the case, you'll want your color program to exit: 

if ( theResponse == gestaltOriginalQD ) 
ExitToShell(): 

You'll see this color-checking code in the example program at the end of 
this chapter. And remember, you'll find a more thorough explanation of 
the Gestalt() function when you arrive at Chapter 9. 

The Graphia Pen 
A graphics port holds the graphical information about a window. When 
you draw to a window, QuickDraw uses the information held in that 
window's graphics port. By adjusting the settings of a port's graphics pen 
you can change many of the port's drawing properties. The graphics pen 
is an invisible drawing tool that exists as a convenience for making 
changes to the properties of lines drawn in a window. 

You saw the pen in use in the example program of Chapter 1 with the 
call to the Toolbox routine MoveToC ). MoveToC) moves the pen-without 
drawing-to the pixel coordinates you specify. The reference point for 
moving is the current window's upper-left comer. The companion func
tion to MoveToC) is Move(). Move() uses the pen's current position as a 
reference-not the window's comer. Figure 3.3 shows where the pen 



Chapter 3 • OuickDraw Graphics 

would end up after a call to MoveTo(150, 100). Figure 3.3 also shows 
that each port, including the desktop port, has its own coordinate system. 

~ile Edit 

(0, 0) 
Iii Windowl 

'V(O,O) ~lil 

h:)(O, 0) 

I 

Window2 

100 

y 
150 

:>!· (150, 100) 

Figure 3.3 Result of Move To ( 150, 100 ) in a window's port. 

You just saw that you can move the graphics pen. You can also change 
its characteristics. Call Pens i ze ( ) to change the size of the pen's tip. The 
first parameter to PenSi ze() controls the pen's pixel width, the second 
parameter controls the pen's pixel height. 

Changing the pen size will affect the thickness of lines drawn with all 
subsequent calls to Li n e To ( ) . The first parameter to Li n e To ( ) gives the 
horizontal length of a line, and the second parameter gives the vertical 
length. The reference point for the line is the window's upper-left comer. 
The companion to Li n e To ( ) is Li n e ( ) , which uses the current location of 
the pen as its reference. Here's a code fragment using all five of these calls. 

PenSize( 3, 3 ); 
MoveTo( 100 , 100 ); 
Line( 90 , -50 ) : 
Move( 100, 0 ); 
LineTo( 290, 140 ); 

117 



118 
Macintosh Programming Tczchniques, ZE 

Figure 3.4 shows the two lines that result from executing the above code. 
Take note of two things in this figure. First, calls to Move () and Move To () 
move the graphics pen, but don't result in lines being drawn. Second, a 
negative vertical value sends the pen upward. For the horizontal coordi
nate, a negative value would move the pen to the left. 

~· Drowing Window 

Lin e (90,-5 0) Move(l0 0 ,0) 

'".vtt~ > 
100 

100 140 
I+ ::>,, :;>: 

MoveTo (l00, 100) 90 

\) 
Lin eTo(290,140) 

•c;r;; > 
290 

Figure 3.4 The results of moving and line drawing. 

DEFEttSIVE D1tf1WlttG 
Every window has its own port, which makes it possible for a user to 
select different graphics settings in each window. It's not up to the user 
to keep track of all this; it's up to you, the programmer. Fortunately, the 
Toolbox contains a few routines that make this task painless. 

Changing Ports 
When you issue a command to QuickDraw, it will faithfully execute that 
command. The results of the command will always end up in the current 
port. If you have more than one window on the screen, you must tell 



Chapter 3 • QulckDraw Graphics 

QuickDraw which port should be considered the current port. The 
Toolbox function SetPortC) is your means of doing this. Before you 
begin drawing to a window, call Set Port ( ) . After calling Set Port ( ) , all 
subsequent drawing will take place in the window specified in the para
meter to SetPort( ). To draw to a different window, again call 
SetPortC ): 

WindowPtr theWindowl: 
WindowPtr theWindow2: 

SetPort( theWindowl ); 
II all subsequent drawing takes place in theWindowl 

SetPort( theWindow2 >: 
II all subsequent drawing takes place in theWindow2 

SetPort( theWindowl ); 
II all subsequent drawing again takes place in theWindowl 

When drawing, the best strategy is to first make a call to the Toolbox rou
tine Getport() to get a Graf Ptr to the current port. Only then do you 
call Set Port(). The call to GetPort() will capture, or preserve, the port 
that was current before you set the port. When your drawing is com
plete, return things to their previous state by setting the port to the pre
viously current port. Here's the format. 

void DrawSomething( WindowPtr theWindow 
{ 

GrafPtr theSavePort: 

GetPort( &theSavePort >: 
SetPortC theWindow >: 

II perform drawing here 

SetPortC theSavePort >: 
} ,.,.,. 
~ 

Notice that the GetPortC) routine accepts a pointer to a GrafPtr as its para
meter, while SetportC) accepts a Graf Ptr. Also, recall that because the first 
field of the data structure that a Wi ndowPtr points to is a Graf Port. A 
Wi ndowPtr variable can be used in place of a Graf Ptr variable as the para
meter to SetPort C ). 

H 0 TE 

119 



120 
Macintosh Programming Techniques. 2E 

r#I 
ILi 
IMPORTRltT 

Apple states that the misuse of SetPort() is one of the most common 
sources of errors in programming the Macintosh. Don't ignore Apple! Even 
if your application uses only one window you should still adhere to this 
strategy of preserving the current port before drawing. If in the future you 
add multiple-window support to your program, you'll be assured that your 
program's drawing routines will draw to the proper window. 

Changing Characteristics of a Port 
One of the reasons the Macintosh gained its reputation as a computer 
that is easy to use is because the Mac gives control to the user. Program 
users don't have to be programmers to change the look of text or to draw 
into windows. Macintosh applications let users make changes easily to a 
window's environment, or graphics port, through menu choices or dia
log box selections. 

When a user makes an effort to set graphics characteristics for a 
desired effect, that user will find it disconcerting if the characteristics 
change on their own. If you're going to change the state of the graphics 
pen, you'll want to first save the present state of the pen with the Toolbox 
function GetPenState ( ). Pass GetPenState () a variable of type 
PenState. You can then change properties of the pen with calls to rou
tines like Pen Size(). When done, return the pen to its previous condi
tion with a call to SetPenState( ). Here's a code fragment that does that: 

PenState theSaveState: 

GetPenStateC &theSaveState >: 

II change pen characteristics 

SetPenState{ &theSaveState >: 

When would a program allow both the user and the program itself to 
change the state of the pen? Figure 3.5 shows one possibility. In this 
hypothetical paint program, the user clicked on a line thickness of four 
to change the pen size. When the user drew a circle, it was drawn with 
the selected pen size. The program has a feature that automatically adds 
a crosshair to a circle-and always using a pen size of 1 pixel by 1 pixel. 



Chapter 3 • QulckDraw Graphics 

After the crosshair is drawn the program should return the pen to the 
state the user last selected-a size of four pixels. 

Drawing Window 

The user sets the pen 
size, then draws a circle 

The program changes 
the pen size, then 
draws the cross hair 

Figure 3.5 Both the user and program can control the pen. 

The following is a summarization of the defensive drawing tactics cov
ered in this section: 

• Save the state of the graphics pen with GetpenState( ). 

• Save the current port with Get Port (). 
• Make the port you're about to use the active port with Set Port(). 

• Make any desired pen changes. 
• Draw any desired shapes. 
• Reset the port to the previously active port with Set Po rt ( ) . 
• Reset the state of the pen with SetPenState(). 

The following snippet is another version of the application-defined 
DrawSomethi ng () function. You'll want to pattern all your routines that 
change the pen or draw to a window on this one. Keep in mind that the 

121 



111 
Macintosh Programming Techniques. ZE 

calls to these routines will add very little to the size of your final appli
cation-and may save you hours in trying to find the cause of bugs later. 

void DrawSomething( WindowPtr theWindow ) 
{ 

GrafPtr theSavePort: 
PenState theSaveState: 

GetPenStateC &theSaveState >: 
GetPort( &theSavePort >: 
SetPortC theWindow >: 

II change pen characteristics 
II perform drawing operations 

SetPort( theSavePort ); 
SetPenState( &theSaveState >: 

DRAWIHG SHAPES 

II save pen state 
II save port 
II change port 

II restore port 
II restore pen state 

The rectangle is the basis of many of the shapes QuickDraw creates. In 
Macintosh programming, the information about a rectangle is stored in a 
variable of the data type Re ct. A Re ct is a structure with four members
right, 1 eft, top, and bottom. Use the Toolbox routine Set Re ct C ) to set 
the pixel coordinates of a rectangle. Pass SetRect() a pointer to a Rect 
variable along with the pixel boundaries you want the rectangle to have. 
The order of the boundaries is important. Here's an example that sets the 
upper-left comer of a rectangle at coordinates (75, 40) and gives the rec
tangle a width of 100 pixels and a height of 50 pixels. 

//define 
/ldefi ne 
fldefi ne 
/ldefi ne 

kRectLeft 
kRectTop 
kRectRight 
kRectBottom 

75 
40 

175 
90 

SetRectC &the_rect. kRectleft. kRectTop. kRectRight. kRectBottom ); 

The upper-left comer of the window is the reference point for the rec
tangle's boundaries. Figure 3.6 shows where the rectangle would be 
located for the above example. The figure uses a dashed line to show the 



Ch<1ptczr 3 • OolckDrGW Cir<1phics 

rectangle because SetRect () only sets up a rectangle-it doesn't actual
ly display one. 

Drawing Window 

90 1c=:::::::~J~: - ----- - -, 
'_________ --- _J 

I• 

Jw 

75 

175 

Figure 3.6 SetRect() sets a rectangle's boundaries. 

Once you've set the boundaries for a rectangle you can perform several dif
ferent drawing operations on the rectangle, as discussed in the next section. 

Working with Rectangles 
With the coordinates of a rectangle established through a call to 
SetRect( ), you can frame it with the Toolbox function FrameRect( ): 

Re ct theRect; 

FrameRectC &theRect ); 

If you 'd like to fill the inside of a rectangle with a pattern, you can use 
the Toolbox function Fi 11 Re ct ().Pass Fi 11 Re ct () a pointer to the rec
tangle to fill and a pointer to the pattern to use for the fill. There are five 
standard patterns of the C data type Pattern available for your use: 
white, l tGray, gray, dkGray, and black. Each of these patterns exists as 
a field in a data structure named QDGl oba ls . To hold these patterns
and a few other items-the system defines a QDGl oba ls variable named 
qd. The fact that qd is a system global variable means that it is available 

123 



124 
Macintosh Programming Techniques, ZE 

for use by any program-without that program having to declare it. 
Keeping in mind that C is case-sensitive, use a pointer to one of these 
patterns as the second parameter: 

FillRect( &theRect. &qd.ltGray ); 

In the above call you can see that a pattern is accessed through the qd 
global variable. Each pattern is a field in the qd data structure variable, 
so you'll use the dot operator, as shown above. 

Earlier in this chapter you read about the graphics pen. You saw that 
it could draw black lines using Line() and Li neTo( ). Lines drawn with 
these functions normally appear in solid black, but they don't have to. 
You can change the pattern that the pen uses in drawing routines by call
ing the Toolbox function Pen Pat(). Include one of the predefined pat
terns as the sole parameter. Again, access the pattern through the q d 
global variable. Here's a call that draws a diagonal line in a dark gray 
pattern rather than black. 

PenPat( &qd.dkGray ); 
MoveTo( 20. 30 ); 
Line( 100. 100 >: 

Once you change the pen pattern, the change stays in effect until the next 
call to Pen Pat(). If the pen pattern is set to your liking, you can call 
Fi 11 Rect( )'s companion Toolbox routine Pai ntRect( ). The only differ
ence between the two is that Pai ntRect ( ) uses the current pen pattern to 
fill the rectangle, while Fi 11 Rect() requires that you pass a pattern as a 
parameter. 

Rect theRect: 

SetRect( &theRect. 20. 20. 120, 120 >: 
PenPat( &qd.gray >: 
PaintRect( &theRect ): 
SetRect( &theRect, SO, so. lSO. 150 >: 
FillRect( &theRect. black >: 

Figure 3.7 shows the result of the above code. Note that the call to 
Pai ntRect() uses the current pen pattern gray, as set by the call to 
Pen Pat (). Fi 11 Rect () ignores the current pen pattern and uses the passed 
pattern of b 1 a ck. The next section discusses patterns in greater detail. 



Chapter 3 • OulckDraw Graphics 

Drawing Window 

Figure 3.7 The result of calling Pai ntRect() and Fi 11 Rect(). 

You can invert a rectangle using the Toolbox function InvertRect( ). 
This routine doesn't add a pattern to a rectangle like Pai ntRect () or 
Fi 11 Rect( ). Instead, it inverts each pixel that falls within the bound
aries of the rectangle. If the window happens to be all white at the time 
of the call, the rectangle will be all black. 

InvertRect( &theRect ) 

When you're finished displaying a rectangle you can remove it with a call 
to the Toolbox routine EraseRect( ). This function wipes out the entire rec
tangle and replaces it with the background color, which is usually white. 

EraseRect( &theRect ) 

Working with Ovals 
Now that you know all about rectangles, ovals will be a breeze. An oval 
begins with a call to SetRect( ). Why set a rectangle to draw an oval? 
QuickDraw will not display the rectangle; it will only use it as a guide in 
which to inscribe the oval when you call the Toolbox function 

125 



126 
f1aclntosh Programming lfthnlqaes. ZE 

FrameOval ().Look at the following code, then check out the results in 
Figure 3.8. Take note that the dashed rectangle in Figure 3.8 is there only 
to give a feel for what bounds the oval; QuickDraw will not actually dis
play it. 

Rect theRect: 

SetRect( &theRect, 50, 50, 200, 150 >: 
FrameOval( &theRect ): 

All the operations that work on rectangles also work on ovals-there's 
an oval-drawing Toolbox routine that corresponds to each of the rectan
gle-drawing functions. You frame an oval with FrameOval ().Add pat
tern to an oval using Pai ntOval () and Fi 11 Oval ().You can invert an 
oval using InvertOval C) and erase it with EraseOval ().Here's a call 
to each: 

Re ct theRect; 

SetRect( &theRect, 60, 80, 200, 235 ) : 
FillOval( &theRect, &qd.dkGray ) : 

PenPat( &qd.black ); 

SetRectC &theRect, 150, 180, 300, 330 ) : 
PaintOval( &theRect ); 

SetRectC &theRect, 100, 100, 160, 185 ) ; 
InvertOvalC &theRect ); 

SetRectC &theRect, 200, 200, 250, 250 ) : 
EraseOval( &theRect >: 



Che1ptcrr 3 • OulckDrCIW Gre1phlcs 

-· Drnwtng Window 

(50, 50) 

1···--·····-·--····--··· 
·-·····- ···-···········-··i 

I 

! 
I i 

' ' 

I 
i 

:=---==-----·--·--····-···--i 
(200, 150) 

- -- ------= 

Figure 3.8 An oval is inscribed in the boundaries set by SetRect(). 

Working with Roond Rectangles 
The Macintosh has an interesting shape called the round rectangle, which 
is a rectangle with rounded-off edges. If you think back to the definition 
of an oval, you'll have a pretty good clue of how the Macintosh defines 
the round rectangle. 

short theRndWidth - 100; 
short theRndHeight - 50; 
Rect theRect; 

SetRect( &theRect , 40, 60, 240, 160 ) ; 
FrameRoundRect( &theRect, theRndWidth, theRndHeight ): 

127 



128 
Mcu:lntosh Programming Techniques. ZE 

First, set the boundary rectangle with SetRect ().Then define the pixel 
width and height of an imaginary oval that defines the degree of round
ing of the corners. QuickDraw uses this oval for rounding each corner. 
Pass the oval width and height to FrameRoundRect( ). Figure 3.9 illus
trates the result of executing above code snippet. 

Drawing Window 

100 
; t heRndWidth ; 

j< >l : / . -.: ~ r n~heRn~~e;ghc 

Figure 3.9 An oval defines the comers of a round rectangle. 

Don't be surprised to learn that round rectangles can have the same 
operations performed on them as rectangles and ovals. Frame a round 
rectangle with FrameRoundRect( ). Apply a pattern to a round rectangle 
using Paint Round Re ct ( ) or Fi 11 Round Re ct ( ) . Invert a round rectan
gle using InvertRoundRect( ). Finally, erase a round rectangle using 
EraseRoundRect( ). Once again, here is a call to each: 

short theRndWidth = 40; 
short theRndHeight = 75; 
Re ct t heRect; 

SetRect( &theRect, 10, 10, 200 , 200 ); 
FillRoundRect( &theRect, theRndWidth, theRndHeight, &qd . dkGray ) ; 

PenPat( &qd.ltGray ); 

SetRect( &theRect, 30, 200, 100 , 250 ); 



Chapter 3 • QalckDraw Graphics 

PaintRoundRectC &theRect, theRndWidth, theRndHeight ): 

SetRectC &theRect, 50, 45, 255, 320 >: 
InvertRoundRectC &theRect, theRndWidth, theRndHeight >: 

SetRect( &theRect, 200, 100, 250, 250 ): 
EraseRoundRectC &theRect, theRndWidth, theRndHeight >: 

PATIERHS 
The five standard patterns are handy to have around, but you'll find occa
sion to develop your own, especially if you want a pattern that includes 
color. That's easy to do with the aid of the PAT and ppat resource types. 
You'll use ResEdit (or Resorcerer) to first create and edit your own pat
tern. Then you'll add a little C or C ++ source code to your program to 
bring the pattern resource into memory and use it in drawing. 

Remember, every resource type has a four-character name. For the PAT type, 
there is a space after the letter 'T'. 

The PAT ~•source 
The PAT resource is used to create a black and white pattern, while the 
ppat resource is used for color patterns. In this section and the next, 
you'll see how to work with the PAT resource. After that, it's on to color. 

If you've created a WIND resource with ResEdit, you're proficiency 
with that resource editor is great enough to create a pattern resource by 
simply looking at the following steps: 

1. Choose Create New Resource from the Resource menu. 
2. In the Select New Type dialog box that opens, double-click on 

PAT in the list of resource types. 
3. A pattern editor will open. There, click the small pencil tool on 

individual pixels in the enlarged view of the pattern on the left 
side of the window. 

129 



130 
Macintosh Programming Techniques. ZE 

In the PAT editor you'll edit an 8-pixel-by-8-pixel square-that's always 
the size of a pattern resource. Later, when your program uses this pat
tern, QuickDraw will lay copies of that square end-to-end and side-by
side to fill whatever area you specify. ResEdit's PAT editor gives you an 
idea of how your pattern will look when it's used to fill an area. In Figure 
3.10, only one pixel has been turned on in the pattern. But the right side 
of the editor shows quite a few pixels on. That's because the right side of 
the editor provides an actual size view of how a rectangle 64 pixels 
across by 64 pixels in height would look when filled with the pattern 
being worked on in the editor. 

Figure 3.11 shows a completed PAT resource. In the next section 
you'll call on this resource to fill the lines and shapes that you display 
with QuickDraw calls. 

A single click of the pencil 
turns one pixel on in the 
pattern ... 

......... 

mo 
•o 
ea 
I I 

I 

. .. and will result in numerous 
pixels being on when the pattern 
is displayed repeatedly 

Figure 3.10 ResEdit's pattern editor in use. 



Chapter l • QulckDraw Graphics 

Patterns.rsrc 

PAT 

PATS from Patterns.rsrc: 

128 

Figure 3.11 A completed PAT in the pattern editor. 

The PAT Soorce Code 
By now you should be able to see the pattern for using resources-no 
pun intended. First, you use a resource editor to create the appropriate 
resource. Then you use a Toolbox call to load that resource into memory. 
The Toolbox supplies your program with a handle to the memory that 
holds the resource. That gives you something to work with-you then 
use this handle in calls to other Toolbox routines. 

131 



132 
Macintosh Programming Techniques. ZE 

Patterns follow this same process. You created a PAT resource in a 
resource editor such as ResEdit. Now, bring it into memory with a call to 
the Toolbox function GetPattern ().Pass Get Pattern ()the resource ID 
of the PAT to load. In return, Get Pattern ( ) will give your program a han
dle to the pattern in memory. Not just an ordinary handle, of course
you'll get a PatHandl e. The following snippet shows how this is done to 
load the PAT resource that was developed in the preceding section: 

f/defi ne rPatternZigZagline 128 

PatHandle thePenPatHand; 

thePenPatHand = GetPatternC rPatternZigZagline ); 

What can you do with the handle? By dereferencing the handle twice 
you move from a pattern handle to a pattern pointer, then to a Pattern. 
Note the capital 'P' in Pattern. When speaking of patterns in general, 
use lowercase. When referring specifically to the Macintosh C data type, 
use Pattern. You can pass a Pattern, or a doubly dereferenced 
PatHandl e variable, to PenPat() to change the current pattern of the 
pen. Then, any drawing that you do, whether it be lines or shapes, will 
make use of your new pattern. Here's a comprehensive example. Figure 
3.12 follows and shows the result. 

//define rPatternZigZagline 128 

PatHandle thePenPatHand: 
Rect theRect: 

thePenPatHand = GetPatternC rPatternZigZagline ); 
PenPat( **thePenPatHand >: 

PenSizeC 10, 10 >: 
MoveTo( 20. 20 >: 
Line( 300, 0 ) : 

SetRectC &theRect. 20, 50, 150, 100 ); 
PaintRectC &theRect ); 



Chapter 3 • QulckDraw Graphics 

Drawing Window 

llllllllllll!!!!i 

Figure 3.12 Drawing routines using a PAT resource. 

Creating a PAT resource is simple and fun. Using the resource in your 
source code is just as easy. Since the number of patterns you can devel
op is huge, the PAT resource can really open the door for you to express 
your own creativity. 

The ppat Color Pattern Resource 
The monochrome representation of a pattern is the 8-pixel-by-8-pixel 
square with a C data type of Pattern. For color, the size is the same, but 
each pixel can take on any of the available colors, not just black or white. 
The C data type for a color pattern is Pi xPat-a pixel pattern. There's 
also a color pattern resource, the ppat. 

The color ppat is analogous to the monochrome PAT. If you know 
how to use ResEdit's pattern editor, and you now do, then you already 
know how to make a ppat resource. Using ResEdit, select Create New 
Resource from the Resource menu. Scroll to the ppat name and double
click on it. The editor that opens will look similar to the PAT editor. One 
important difference is that the ppat editor has a pop-up menu that dis
plays 11 palette that allows you to select any of the available colors for use 
in the pattern. You cart use as many different colors as you want in a sin-

133 



134 
MGclntosh ProgrGmmlng Techniques, 2E 

gle ppat resource. For a color pattern you select colors for each pixel. 
Figure 3.13 shows a color pattern and the color selection palette-in 
black and white print, unfortunately-in ResEdit. 

~ 
H 0 T E 

P AT pp•t 

ppats from Patterns.rsrc 
ID Slzo 

mo 
DO 
eo 
[bdJ 

-D 
B &. W 

•••••••••••• ~m~~-· 

••••=====1 ~~=rJ., ••••tH. .. ~ 
•~n .. ., 

Figure 3.13 A ppa t resource in ResEdit's color pattern editor. 

The number of colors that appear in the palette depends on the number of 
colors your Mac is capable of displaying, and the color level setting you c~r
rently have your Mac set to via the Monitors control panel. 

The ppat Color Pattern Source Code 
Similar to Get Pattern ( ) , the call that brings a PAT into memory, 
Get Pi x Pat ( ) is the call that loads a ppa t into memory. As the following 



Chapter J • QalckDraw Graphics 

snippet shows, Get Pi xPat() returns yet another handle type, a 
Pi xPatHandl e: 

/idefi ne rPixPatPurple 128 

PixPatHandle thePixPatHand: 

thePixPatHand = GetPixPat( rPixPatPurple ): 

To change the current setting of the pen to your new color pattern, use the 
color version of Pen Pat ( ) : the Toolbox function Pen Pi x Pat ( ) . This routine 
conveniently takes a Pi xPatHandl e as its parameter, so there's no derefer
encing involved to get to the color pattern. You have the handle from the 
call to Get Pi xPat (),now use it in Pen Pi xPat (),shown as follows: 

fidefi ne rPixPatPurple 128 

PixPatHandle thePixPatHand: 
Rect theRect: 

thePixPatHand = GetPixPat( rPixPatPurple ); 
PenPixPat( thePixPatHand ): 

Pen Size( 10. 10 ) : 
MoveTo( 20, 20 ); 
Line( 300, O >: 

SetRect( &theRect, 20, 50, 150, 100 ): 
PaintRect( &theRect ): 

If the preceding example looks familiar, it should; the last five lines are 
the same as those of the monochrome pattern example a few pages back. 
Once the pen pattern is set, whether it be with a call to Pen Pat ( ) or a call 
to Pen Pi xPat( ), line drawing and shape painting takes place with the 
same calls. Shape filling is just a little different, as you'll soon see. 

Figure 3.14 shows the results you could expect from the preceding 
example, assuming the ppat pattern shown in Figure 3.13 is used. Again, 
the actual pattern displayed in the window will of course contain what
ever colors were used for the ppat resource. 

135 



136 
Macintosh Programming Techniques. 2E 

Drawing Window 

Figure 3.14 Drawing routines use the ppat resource. 

Now that you know about color patterns, the rest of color drawing is a 
snap. Everything you know from the "old" monochrome QuickDraw 
applies. Once you set the pen pattern using Pen Pi xPat( ), lines and 
painted shapes will use this new pattern. For instance, the preceding 
example used Line () and Pai ntRect (). 

A QuickDraw fill routine (such as Fi 11 Re ct ( ) ) requires that you 
specify the pattern to use; it ignores the current pen pattern. With color 
you're working with a Pi xPatHandl e and not a Pattern. Because of this 
the fill routines for color QuickDraw are somewhat different. Each of the 
monochrome Toolbox routines has a companion routine for color. Here's 
a call to each: 

#define rPi xPatPurpl e 128 

PixPatHandle thePi xPatHand: 
Rect theRect: 

thePi xPatHand = GetPixPatC rPixPatPurple ); 

SetRectC &theRect, 20, 150, 200, 250 ); 
FillCRectC &theRect, thePixPatHand ); 
FillCOvalC &theRect, thePixPatHand ): 
FillCRoundRectC &theRect, thePixPatHand ); 



Chapter J • QalckDraw Graphla 

Inverting shapes in monochrome is simple because black is defined as 
the opposite of white. For color, things aren't quite so simple. Just what 
is the opposite of light chartreuse, anyway? It is possible to invert all or 
part of a color shape by calling I nvertRect (),but you should avoid an 
inversion attempt such as this because of its unpredictable nature. 

Toolbox routines originally intended for monochrome systems will work in 
color windows. The reverse is not always true. A call to 
Fi 11 Rect C &theRect, &qd. 1 tGray) will draw a light gray rectangle in a 
color window. A call to Fi 11 CRect C &theRect, thePi xPatHand) will not 
draw anything if color QuickDraw is not present. 

P1CTCJRES 11no finlMflTIOn 
The PI CT resource is the Macintosh way of storing a graphical image for 
use by a program. A program can display pictures in its windows and 
dialog boxes. You can also use pictures to easily add simple animation to 
your programs. 

The PICT Resource 
If you have a drawing or painting application, you can create a PI CT 
resource. MacDraw, Canvas, and PixelPaint are just a few examples of 
programs you can use. After you draw a picture, find a piece of clip art 
you like, or open a digitized image, just select it from within your paint 
program and copy it. Then run your resource editor. Once you're in your 
resource editor, open your project's resource file and paste the picture 
into it. A resource editor such as ResEdit will automatically save the past
ed picture as a PICT resource. 

Figure 3.15 shows a sini.ple picture in a drawing program. If you fol
low the preceding procedure for transferring the picture to ResEdit, your 
resource file will have a new resource type in it-a PICT, as shown in 
Figure 3.16. 

137 



138 
Macintosh Programming Tcrchnlqucrs, 2E 

Drawing Window 

• 

Figure 3.15 A picture in a Macintosh paint program. 

Pictures.rsrc 

PICT 

PICTs from Plctures.rsrc 

120 
0 
Ii 

Figure 3.16 A single PI CT in a resource file viewed from ResEdit. 

Double-clicking on the PI CT icon in a resource file will open a window 
that displays all of the PI CT resources in the resource file. The example 
shown in Figure 3.16 has just one PI CT, an example presented later in 



Chapter J • OalckDraw Graphia 

this chapter has more. No matter how big the picture resource is, ResEdit 
will display it in a small rectangle like that of Figure 3.16. ResEdit will 
scale the picture as best it can. This shrunken version is for display only. 
If you double-click on the scaled picture, you'll see it at its actual size. 

Displaying a PICT in a Program 
Now that you have a picture safely tucked away into a resource file, you 
can display it in a program. 

You know all about handles from Chapter 2. Programs on the 
Macintosh have a special handle for working with pictures-the 
Pi cHandl e. To load a PICT resource into memory, you make a call to the 
Toolbox routine Get Picture(). This routine returns a Pi cHandl e for 
use by your program. Here's an example: 

/ldefi ne rPartyHatPicture 128 

PicHandle thePicture: 

thePicture = GetPicture( rPartyHatPicture ): 

GetPi cture() brings a PICT into memory; it doesn't display the pic
ture. To do that you make a call to the Toolbox routine DrawPi cture( ), 
which requires two parameters: a handle to a picture, and a rectangle in 
which to display the picture. 

You can display a picture in a rectangle of any size. DrawPi cture() 
will scale the original picture to fit the rectangle. But if you want to display 
the picture in its original, actual size, you'll need to determine that size. 

A Pi cHandl e is a handle to a data structure called a Picture. One of 
the members of this structure is the pi cFrame, which is a Rect that sur
rounds the picture. The pi cFrame member holds the boundaries of the pic
ture. To access the pi cFrame, you dereference the Pi cHandl e. The follow
ing snippet adds to the previous code fragment to show how this is done. 

/ldefi ne rPartyHatPicture 128 

PicHandle thePicture: 
Rect theRect: 

139 



140 
Macintosh Programming Techniques. ZE 

thePicture = GetPicture( rPartyHatPicture >: 
theRect = C**thePicture).picFrame: 

Now you have the rectangle that bounds the original picture. Your real 
inte!est is in the picture's size. You want to set up a rectangle of the prop
er size to display the picture anywhere in a dialog box or window. The 
pi cFrame rectangle might not have left and top coordinates of 0, so you 
can't just assume that the right and bottom coordinates reveal the pic
ture's size. Instead, subtract the value of the left coordinate from the 
value of the right coordinate to determine the picture's width. Determine 
the height from the bottom and top coordinates of pi cFrame. Here's an 
example that uses the rectangle variable theRect-the rectangle that 
holds the coordinates of pi cFrame: 

short theWidth: 
short theHeight: 

theWidth = theRect.right - theRect.left: 
theHeight = theRect.bottom - theRect.top: 

With the picture's width and height known, set up a new rectangle to be 
used to display the picture anywhere within a window. Select a top-left 
coordinate for the picture, then use the picture's width and height. The 
following snippet defines a rectangle with a top-left coordinate of (60, 
30). Figure 3.17 shows where the party hat picture would appear in a 
window if it were to be drawn to this rectangle. 

//define 
//define 

kPictureleft 
kPictureTop 

60 
30 

SetRectC &theRect, kPictureleft, kPictureTop. kPictureleft + 
theWidth. kPictureTop + theHeight >: 



Chapter 3 • QalckDraw Graphics 

Pictures 

theHeight 

theWidth 

Figure 3.17 Defining the placement of a picture in a window. 

Now you know how to get the original rectangle that holds the picture 
boundaries and how to set up your own display rectangle using 
SetRect( ). Finally, display the picture in your rectangle using 
DrawPi cture( ). Here's a complete example: 

/ldefi ne 
/ldefi ne 
fldefi ne 
fldefi ne 

WindowPtr 
PicHandle 
Re ct 
short 
short 

rPictureWindow 
rPartyHatPicture 
kPictureleft 
kPictureTop 

theWindow; 
thePicture; 
theRect; 
theWidth; 
theHeight: 

128 
128 

80 
50 

141 



142 
Macintosh Programming Techniques. ZE 

theWindow = GetNewWindowC rPictureWindow. nil. CWindowPtr)-lL >: 
if ( theWi ndow ..... ni 1 ) 

ExitToShellC>: 
SetPort( theWindow >: 

thePicture = GetPicture( rPartyHatPicture >: 

theRect = C**thePicture).picFrame: 
theWidth m theRect.right - theRect.left: 
theHeight - theRect.bottom - theRect.top: 

SetRectC &theRect. kPictureleft. kPictureTop. kPictureleft + 
theWidth. kPictureTop + theHeight >: 

DrawPictureC thePicture. &theRect >: 

Many of this book's short snippets that include code for opening a window 
don't include code for reserving memory for the window-they just pass n i l 
as the second parameter to GetNewWi ndowC) to let the Memory Manager take 

" ~('). T E care of the allocation. For your own full-featured application, consider using 
the memory-reserving technique described in Chapter 2. 

The above example loads the PI CT resource with an ID of 128 into mem
ory using Get Picture(). It then dereferences the Pi cHandl e that 
Get Picture() returned in order to access the pi cFrame member of the 
Picture data structure in which the PICT data was stored. The width 
and height of the original picture are determined from the pi c Fr a me. A 
rectangle is then set up to display the picture. This rectangle starts 60 pix
els in from the left of a window and 30 pixels down from the top. The 
width and height of the rectangle are the same as those of the original 
PI CT. Finally, the picture is displayed in the window with a call to 
DrawPi cture( ). 

Now you know exactly how to create a picture, save it as a PI CT 
resource, and display it in the window of a program. With just a little 
more work, you can use several PI CT resources to really add a little flair 
to your applications-especially in the form of animation. 



Chapter 3 • QulckDraw Graphics 

<Ising PICT Resources to Create Animation 
You can create animated effects in your programs by loading and dis
playing a series of PI CT resources one after another. To do this you first 
create a series of pictures and save them as PI CT resources. You then 
write a routine that includes a loop. Within the loop body you bring a 
PI CT into memory and display it in a window. If each pass through the 
loop displays a different picture, and does so over the previous picture to 
obscure the old picture, the effect of animation is achieved. 

Cr~ting a Serles of PICT Resources 
Figure 3.18 shows a screen shot of a document from a Macintosh paint 
program. In this figure the author shows off his drawing expertise by 
drawing four characters, each in a different pose. Actually, only the left
most character was drawn. The other three characters are copies of the 
first, each rotated using the paint program's free rotate feature to shift 
the character to a slightly different pose. 

Drawing Window 

Figure 3.18 Scenes for an animation, drawn in a paint program. 

Each of the characters in Figure 3.18 has a frame surrounding it for one 
reason only, so that each will be the same size when copied individually 

143 



144 
Macintosh Programming Techniques. ZE 

to the Scrapbook. When copying a single character, the selection is made 
just within, and not including, the border. After copying all four pictures 
to the Scrapbook, ResEdit can be launched and each of the pictures can 
in tum be pasted into the resource file for the current project. After doing 
so, double-clicking on the resource file's PICT icon opens a window that 
displays the four PI CT resources, as shown in Figure 3.19. 

§l!ilgg;;;;;;;:;g PICTs from QuickDrawln .rsrc ------=im"" 
0 

,----1 1~1 

l~J l~__I 
1~ 1~ 

,-~l 
i '?JV I 
l ........... -.......... _ ................ _ ................ -....... J 

0 
ii 

130 131 

Figure 3.19 A resource file after pasting four PI CT resources into it. 

After taking note of the resource ID of each PI CT, quit ResEdit and run 
your development environment. It's time to write some code. 

Animation Source Code 
Earlier in this chapter you learned how to display a PICT in a window 
by getting a Pi cHandl e to it using the Toolbox function Get Picture() 
and then showing the picture using another Toolbox routine: 
DrawPi cture( ). You'll use this same technique to create animation. 

As an example of simple animation, consider the application-defined 
AnimatePi ctureResource() routine. This function contains a loop that 
cycles through the four PI CT resources created in the last section. Recall 



Chapter J • QalckDraw Graphla 

that those PI CTs had resource IDs of 128, 129, 130, and 131, respectively. 
Drawing these four pictures gives the illusion that the character is danc
ing. Examine the function, then read the discussion of it that follows. 

fldefi ne 
/ldefi ne 
/ldefi ne 
//define 

rFirstDancerPicture 
kDancerDelay 
kDancerleft 
kDancerTop 

128 
7 

70 
20 

void AnimatePictureResource( WindowPtr theWindow 
{ 

PicHandle 
short 

thePicture: 
thePi ct ID: 
theRect: 
theWidth: 
theHeight: 
i. count: 
the Ticks: 

Re ct 
short 
short 
short 
1 ong 

thePicture = GetPicture( rFirstDancerPicture >: 

theRect = (**thePicture).picFrame: 
theWidth = theRect.right - theRect.left: 
theHeight = theRect.bottom - theRect.top: 
SetRectC &theRect. kDancerleft. kDancerTop. kDancerleft + 

theWidth. kDancerTop + theHeight >: 

count = 0: 
for C i - 1: <= 50: i++ > 
{ 

++count: 
switch C count ) 
{ 

case 1: 
thePictID = rFirstDancerPicture: 
break: 

case 2: 
thePictID = rFirstDancerPicture + 1: 
break: 

case 3: 
case 5: 

thePictID = rFirstDancerPicture + 2: 
break: 

case 4: 
thePictID = rFirstDancerPicture + 3: 

145 



146 

} 

Macintosh Programming Ttchnlqaes. ZE 

break: 
case 6: 

thePictID = rFirstDancerPicture + 1: 
count ... O: 
break: 

thePicture - GetPictureC thePictID >: 
OrawPictureC thePicture, &theRect >: 

Delay( kDancerDelay, &theTicks ): 

SetRect( &theRect, 0, 0, 1000, 1000 >: 
FillRect( &theRect, &qd.white ): 

Much of AnimatePi ctureResource() should look familiar to you. It 
uses GetPi cture() to get a handle to one of the PICT resources for the 
purpose of determining its pixel dimensions. This size is used to display 
each of the four pictures, thus the importance of making them all the 
same size in your drawing program. 

The heart of AnimatePi ctureResource() is the for loop. The loop 
body executes 50 times, though you can of course choose to make it exe
cute as few or as many times as you want. Within the loop body, the vari
able count keeps track of which of the four pictures is to be displayed 
during the current pass. One way to display the four pictures would be 
to draw them in order, that is, PI CT 128, PI CT 129, PI CT 130, then PI CT 
131. After the last picture was displayed, the sequence could repeat itself, 
again starting at PICT 128. Continually cycling through the four PICT 
resources in order would be a simple task, but would result in animation 
that looks jerky after showing the fourth picture and then jumping back 
to the first. AnimatePi ctureResource() uses a slightly different 
approach. After displaying the fourth PI CT, the routine ''backtracks" by 
displaying the third, then second, and finally the first picture. It's simi
lar to the motion of a pendulum. Figure 3.20 elaborates on this plan. 



count 

PICTID 

1 

128 

2 

129 

3 4 

130 131 

Chapter J • QulckDraw Graphics 

5 

130 

Reset count, 
repeat cycle ... 

6 1f 1 

129 LI 128 

~l~l~[~j[~J[~J~ 
Figure 3.20 Animation: Cycling through the PI CT resources. 

After using variable count to determine which PICT to use, the function 
gets a handle to the correct PICT and then displays the picture-right on 
top of the previous picture. That way the AnimatePi ctureResourceC) 
doesn't have to bother erasing the previous picture. 

After drawing one picture, and before displaying the next, 
AnimatePi ctureResource() pauses for a very short period. Some 
Macintosh computers, especially PowerPC-based ones, can run through 
this loop very quickly. Too quickly-the little man would be really danc
ing up a storm. By using the Toolbox function De 1 ay ( ) , a pause of about 
one-tenth of a second is added between the display of pictures to slow 
things down. 

The De 1 ay C ) function requires two parameters. The first is the length 
of the delay. Give the desired delay in sixtieths-of-a-second increments
that' show the Macintosh keeps track of time. Thus a value of 1 results in 
a delay of one-sixtieth of a second, while a value of 120 results in a two
second delay. You'll usually ignore the second parameter to De 1 ay ( ) . 
This is a pointer to a variable of type 1 ong. When the Delay() routine 
has finished, the Toolbox will have filled this variable with the time, in 
sixtieths of a second, since the system was started; that is, since the 
Macintosh was turned on. 

The QuickDrawing example program found near the end of this chap
ter provides an example of animation using pictures. That program uses a 
version of the application-defined function AnimatePi ctureResource() 

147 



148 
Macintosh Programming Techniques. ZE 

that is almost identical to the one described here. The only difference is 
that the QuickDrawing version uses this chapter's defensive drawing 
techniques to preserve and restore the port. 

"11 
~ 
ft 0 T E 

Want to create really smooth, really fast, flicker-free animated effects? For 
that, you'll need to use offscreen graphics worlds. That topic is beyond the 
scope of this text. H you're interested, you'll find information about GWorlds 
in Graphics and Sound Programming Techniques for the Mac, published by M&T 
Books, and in the Imaging With QuickDraw volume of Inside Macintosh. 

PICTORES AS PATIERnS 
In this chapter you've seen how to use ResEdit to create a ppat resource 
that holds a color pattern of your own. A second way to create a ppat 
resource is to start with a picture and convert it to a pattern. Doing this 
enables you to easily create patterns that are far more sophisticated than 
anything you could create using ResEdit's simple pattern editor. Once 
the picture has been converted to a ppat resource, you can use it as you 
would any other color pattern: draw a shape and fill it with a few, sev
eral, or dozens of the now-miniaturized pictures. 

Converting a Picture to a ppat Resource Using 
PictZppat 
On the book's CD you'll find a copy of the utility program Pict2ppat-a 
shareware utility by John J. Calande III that converts any picture to a 
ppat color pattern resource. To create a ppat resource using this program, 
begin by finding a picture of interest. Make sure the picture is saved in a 
PICT or PICT2 file, then launch Pict2ppat. 

Got a picture that you like, but it's not in the form of a PICT or PICT2 file? 
Convert it. For example, if you have a GIF file, your GIF-reading software 
should have a Save As menu item in its File menu that allows you to save 
the GIF file in a different format, such as a PICT. As a last resort, you can 
open the picture of interest and perform a screen dump. Most screen capture 
utilities save the screen image to a PICT file that can be opened by Pict2ppat. 



Chaptczr 3 • OuickDraw Graphics 

To import your picture into Pict2ppat, click on the Get PICT button. Use 
the standard open file dialog box to navigate to the folder that holds 
your picture file and then open that file. When you do, Pict2ppat will 
display it on the right side of the Pict2ppat window. Figure 3.21 shows 
Pict2ppat after opening a file that holds a picture of a robot. Incidentally, 
this robot file, named Robot.PICT, can be found in this chapter's folder of 
example programs. 

Preuiew 3CL 

Get PICT ... 3CO J 

( Create ppat... 3CS J 

Figure 3.21 Pict2ppat with a PICT imported. 

In Figure 3.21 you can see that Pict2ppat has a pop-up menu that allows 
you to specify the pixel dimensions of the pattern you're about to create. 
Earlier you edited 8-pixel by 8-pixel patterns in ResEdit. Here, you can 
create much larger patterns-up to 128 pixels square. 

Next, take notice of the outline of a square that covers part of the pic
ture displayed in Pict2ppat. This outlined square shows which part of 
the opened picture will be turned into a pattern. You can click and drag 
on the square to move it about the picture. You can also move it in small 
increments by clicking on any of the four Arrow buttons on the left side 
of the window. To save more or less of the picture as a pattern, click on 
either of the two "mountain" buttons. 

149 



150 
MGcintosh Progrqmmlng Tvc:hnlquczs. 2E 

When you're satisfied that you've selected the part of your picture 
that should become a pattern, click the Create ppat button. When you 
do, you'll be prompted for a ppat name, as shown in Figure 3.22. What 
you're naming here isn't a file, but the ppat resource itself. Pict2ppat 
always saves newly created ppat resources in a file named 'ppat' File. 
Because this file can hold numerous ppat resources, you'll want to save 
each with a name so that you'll be able to identify them when you work 
with the resources at a later time. 

Pict2ppat•M 

Preulew 3€L 

[ Get PICT ... 3€0 

[ Create pp at... 3€S J 

Figure 3.22 Naming a new ppat resource in Pict2ppat. 

After naming the ppat, you'll quit Pict2ppat. At this time you have a new 
ppat resource, but it won't be of much use to you until it's in the resource 
file used by your current project. Launch your resource editor and open 
the file named 'ppat' File-you' ll find it in the same folder that holds the 
Pict2ppat application. Now, while still in the resource editor, also open 
the resource file for your project. Click once on the ppat icon in the file 
named 'ppat' File, then select Copy from the Edit menu. Now click on 
your project's resource file, then select Paste from the Edit menu. (See 
Figure 3.23.) This chapter's QuickDrawing example program uses three 
ppat resources-two of them created in ResEdit, one created by 



ChGptvr 3 • QuickDrCIW GrGphlcs 

Pict2ppat. In Figure 3.23 the one ppat created in Pict2ppat is being 
copied from the 'ppat' File to the QuickDrawing.rsrc file. 

ppat WIND 

Click on the ppat icon and Copy... . .. then Paste into your project's resource file 

Figure 3.23 Copying a ppat resource from the Pict2ppat file and 
pasting it to a project's resource file. 

Double-clicking on the ppat icon in the resource file will reveal a list of all 
of the patterns in the file. For example, double-clicking on the ppat icon 
in the QuickDrawing.rsrc file now shows that there are three pp at resources 
in the file. In Figure 3.24 you can see that the ppat copied from the 'ppat' 
File has a name (the name entered while creating the ppat in the Pict2ppat 
program) and an ID. The ID is a number randomly selected by Pict2ppat. 

QuickDrawing.rsrc 

D 
ppat WIND 

=!mi!! ppots from QulckDrowin 
ID Size 

128 110 
129 11 0 

Figure 3.24 A project resource file with three ppat resources in it. 

If you're using ResEdit and you double-click on the name of a ppat 
resource that was generated by Pict2ppat, you may see an alert that dis
plays an error message that says the resource is corrupted. The resource, 

151 



152 
Macintosh Programming Techniques. 2E 

in fact, isn't corrupted; it just can't be edited in ResEdit's ppat editor. It 
can, however, still be used by any of your programs. If you use 
Resorcerer as your resource editor, you can open a Pict2ppat-generated 
ppat resource for editing. Figure 3.25 shows what the Resorcerer ppat 
editor looks like. 

'ppat' File 
'ppat' (Color Pixel Pattern) Resource : 

<OF> 
pp at 

ppat 13900 "Robot" from 'ppat' File 

m Size(x,y) : (32,32) 
pp at 

Color 

~ 
1 bit 

[ Snapshot ) Cancel 

Figure 3.25 Using Resorcerer to edit a Pict2ppnt-generated 
ppat resource. 

Pict2ppat gives each ppat it creates an ID that is randomly generated. 
You can use this number in your source code or you can assign the ppat 
a different ID, perhaps one that better matches a resource-numbering 
scheme you use. To change the ID, select Get Resource Info from 
ResEdit's Resource menu. Figure 3.26 shows the ID of the Robot ppat 
being changed from the value Pict2ppat assigned it to a value of 130. 



Chapter 3 • QaickDraw Graphla 

~~ Info for ppot 130 from QuickDrowin_g_.rsrc ~ 

Type: ppot Size: 3298 

ID: 113~ 
Name: :n=ob:o=t================== 

Owner ID: 

Sub ID: 

Attributes: 

Owner type 
DRUR 
WDEF 
MDEF 

D System Heap D Locked D Preload 
D Purgeable D Protected D Compressed 

Figure 3.26 Renumbering a ppat resource in ResEdit. 

A ppat resource that's created from a picture is used in the same way as 
a ppat resource that is created from within ResEdit's ppat editor. First, 
call Get Pix Pat ( ) to load the resource data to memory and receive a han
dle to that memory. Then establish the boundaries of a shape that is to be 
filled with the pattern. Finally, call a Fi 11 Cxxx ( ) routine such as 
Fi 11 C Rec t () or Fi 11 C 0va1 () to fill the shape. The following snippet 
fills a rectangle that is 140by140 pixels with the robot pattern. 

f/defi ne rPixPatRobot 130 

PixPatHandle theRobotPixPatHand; 
Rect theRect; 

theRobotPixPatHand ~ GetPixPat( rPixPatRobot ); 

SetRect( &theRect. 140, 40. 280. 180 ); 
FillCRect( &theRect. theRobotPixPatHand ); 

THE CoRSOR 
In this book you've seen the Toolbox initialization calls packaged into 
one application-defined function named Initial i zeTool box(). The 

153 



154 
Macintosh Programming Techniques. ZE 

last call in that application-defined routine is a call to the Toolbox func
tion Ini tCursor( ). The Ini tCursor() function sets the cursor to the 
familiar arrow shape. You've noticed in many Macintosh programs that 
the cursor can take on different shapes. Often it looks like an arrow, but 
it can also take on other forms. A word processor, for example, sets the 
cursor to an I-beam shape when it's over a window that allows editing. 

As your program runs, you may want to change the appearance of 
the cursor. You can do that by using two Toolbox calls: GetCursor () and 
Set Cursor ( ) . The system defines five cursors for your use, and they' re 
stored as resources in the system resource file. 

InitCursor() sets the cursor to the default cursor, the arrow. For 
any of the other four cursors, use GetCursorC) to get a handle to the 
desired one. You supply the resource ID of the CURS resource you want 
to display. You don't have to know the CU RS IDs-the four system cursor 
resources can be referenced using Apple-defined constants: 
i BeamCursor, crossCursor, pl usCursor, and watchCursor. 

On a Macintosh, handles can be of the generic Handle type or a type 
specific to the object being worked with. For example, you've seen that 
a call to Get Picture() returns a Pi cHandl e. A call to GetCursor() 
loads the data that makes up a CURS resource and returns a CurHandl e 
to your program. After getting a CurHandl e, call SetCursor() to actu
ally make the cursor change shape. When passing the cursor handle to 
SetCursor( ), dereference it once-SetCursorC) is expecting a pointer 
to a cursor, and you've got a handle to one. 

Here's an example that lets the user know a short wait is in order. It 
sets the cursor to the watch, does some task that takes some time, then 
sets the cursor back to the arrow. 

CursHandle theWatchCursor: 

theWatchCursor = GetCursorC watchCursor >: 

Hlock( CHandle)theWatchCursor ): 
SetCursor( *theWatchCursor ): 



Chapter 3 • QalckDraw Graphla 

HUnlock( CHandle)theWatchCursor >: 

II do some time-consuming stuff 

InitCursor(): 

Yes, you're right, something new was indeed slipped into that code snip
pet. The call to SetCursor() is sandwiched between calls to two 
Toolbox functions: Hlock() and HUnl ock( ). The Hlock() function 
marks a relocatable block as nonrelocatable. HUnl ock() sets the block 
back to its normal condition of relocatable. 

What makes the call to SetCursor () so different from other Toolbox 
calls-so different that calls to this pair of previously unseen Toolbox 
routines is necessary? The difference is that this is the first time you've 
seen a dereferenced handle being used as a parameter to a Toolbox rou
tine. In Chapter 2, you learned about memory compaction. Memory 
compaction can take place during the execution of some Toolbox rou
tines. If it does, and that routine is working with a dereferenced handle, 
the results can be unpredictable. 

Recall that a handle holds the address of a master pointer. The mas
ter pointer won't ever move, but what it points to may. In a call to 
SetCursor( ), an address is passed-the address held in the master 
pointer. Imagine that memory compaction takes place in the middle of 
the call to Set Cursor ( ) . Set Cursor ( ) was passed the address of the 
object-the cursor. If the block that this address points to moves, 
SetCursor() will not find the cursor, and that's a big problem. 

The preceding scenario is re-created in Figure 3.27. The handle holds 
the address of a master pointer: Ox02233440 in the figure. Dereferencing 
a handle one time yields the contents of what it points to: the contents of 
the master pointer, or Ox03456700. So that's what is being passed when 
*theWatchCursor is used as a parameter: the address of the cursor data, 
Ox03456700. Just to complete this dereferencing story, if the cursor han
dle was dereferenced a second time you'd have the contents of address 
Ox03456700, the object itself-the cursor. 

155 



156 
Macintosh Programming Tvchnlquvs. ZE 

I [ Ox0223344..2_ JI 

~ Ox03456700 

---/.,, Ox02 233 440 
I Ox03456700 ]I 

Cursor Handle 
theWatchCursor 

Cursor data 
*theWa tchCursor 

Master pointer 
**theWa tchCur sor 

Figure 3.27 Cursor data in memory. 

Now, what happens if *theWatchCursor (the address Ox03456700) is 
passed to SetCursor( ), and memory gets compacted in the middle of the 
call? The relocatable block that holds the cursor might get moved. If it does, 
the master pointer that holds the blocks starting address will be properly 
updated. But the SetCursor ( ) Toolbox function doesn't have knowledge 
of, or access to, the master pointer. Instead, it has only the block's original 
address: Ox03456700. As SetCursor() works with the data at this address, 
the Memory Manager could move the cursor block. If that happens, 
SetCursor() will be accessing no data (free memory) or incorrect data (if 
a different block has taken the place of the original cursor block). 

Nesting code between calls to Hlock() and HUn l ock() prevents the 
above situation from occurring. The relocatable block used as the para
meter to H Lock ( ) will not move, even if the heap gets compacted. The 
advantage to this technique should be apparent: The Toolbox call work
ing with a dereferenced handle will work successfully. The downside is 
that while a relocatable block is locked, it can cause memory fragmenta-



Chapter 3 • QulckDraw Graphla 

tion. That's why a locked block should be unlocked immediately after its 
use is complete. 

Memory compaction takes place only at select times. Not all Toolbox 
calls are affected. In this book, any Toolbox routines that might be affected 
will be called from within the safety of H Loe k ( ) and HUn 1 oc k ( ) . The Inside 
Macintosh series of books lists the routines that may be affected by com
paction. If you don't have this information, feel free to play it safe and call 
H Loe k ( ) every time you pass a dereferenced handle. As long as you are cer
tain to call HUnl ock() when the call is complete, you can't go wrong. 

QuickDrawing, this chapter's example program, uses the same format as 
the preceding examples in that it simply puts a single window on the 
screen and then does its stuff. In this case, the "stuff" is drawing. 

When you run QuickDrawing you'll first see a short, animated 
sequence that involves the dancing man PI CT resources shown earlier in 
this chapter. See Figure 3.28.) 

~= ·. -~--· Untitled 

Figure 3.28 The QuickDrawing program begins with an animated sequence. 

When the animation stops, QuickDrawing demonstrates how the look of 
the cursor can be changed. The program comes to a halt for a few sec
onds and, as it does so, displays the watch cursor. Soon after that the pro
gram draws a fat line and four rectangles to the window. Each of these 
shapes uses a ppat resource, as shown in Figure 3.29. To end the pro
gram, click the mouse button. 

157 



158 
Macintosh Programming Techniques. ZE 

Figure 3.29 After the animation, QuickDrawing displays 
pattern-filled shapes. 

Program Resources: QuickDrawing.rsrc 
QuickDrawing uses resources of three types: PICT, ppat, and WIND. 
Figure 3.30 shows the project's resource file. The four PI CT resources are 
the same ones described earlier in this chapter. The first ppat resource is 
a light purple pattern, and the second is a red curl. The third ppat was 
created using the Pict2ppat utility. Figure 3.29 shows how each pattern 
looks in use. The WIND resource is typical of the window resources 
you've seen in the first two chapters. 



Chapter 3 • QulckDraw Graphla 

Quick0r8wing.rsrc 

PI c:Ts from QuickOrowin .rsrc 

----------1 -------1 
I~:: ! I • I 
I • I 
I I 
! i l---·-... - .... - ..................... - ... - ... - ... -1 l-·-·-·--·-.. --... - ... - ............... - ......... ~ 

128 129 

128 
129 
130 

Size 

110 
110 

3298 "Robot" 

Figure 3.30 The resource file used by the QuickDrawing project. 

Program Listing: ResourceOser.c 
The following is the source code listing, in full, for the QuickDrawing 
program. 

159 



160 
Macintosh Programming Techniques. 2E 

void InitializeToolbox( void ); 
void HandleMouseDownC void ): 
void DrawWithPixPatResources( WindowPtr ); 
void AnimatePictureResource( WindowPtr ); 

f/defi ne 
f/defi ne 
l/defi ne 
f/defi ne 
l/defi ne 
f/defi ne 
//define 
//define 
f/defi ne 

rDrawingWindow 
rPixPatPurple 
rPixPatRedCurls 
rPixPatRobot 
rFirstDancerPicture 
kProgramDelay 
kDancerDelay 
kDancerleft 
kDancerTop 

Boolean gAllDone = false: 
Ptr gWindStorage; 

void main( void ) 
{ 

WindowPtr 
Event Record 
long 
CursHandle 
long 

theWindow: 
theEvent: 
theResponse: 
theWatchCursor; 
thelong; 

MaxApplZone(); 
MoreMasters(); 
MoreMasters C): 
MoreMastersC>: 

InitializeToolbox(); 

128 
128 
129 
130 
128 
180 

7 
70 
20 



} 

Chapter J • QulckDraw Graphics 

Gestalt( gestaltQuickdrawVersion, &theResponse ): 
if ( theResponse == gestaltOriginalQD ) 

ExitToShellC>: 

gWindStorage ... NewPtr( sizeof( WindowRecord ) ): 
theWindow = GetNewCWindow( rDrawingWindow, gWindStorage, 

CWindowPtr)-lL ): 
if C theWindow == nil 

ExitToShellC>: 
ShowWindow( theWindow ): 

AnimatePictureResource( theWindow ): 

theWatchCursor = GetCursor( watchCursor >: 
Hlock( (Handle)theWatchCursor ): 

SetCursor( *theWatchCursor ); 
HUnlockC CHandle)theWatchCursor >: 
Delay( kProgramDelay, &thelong >: 
InitCursor<>: 

DrawWithPixPatResources( theWindow >: 

while C gAllDone ...... false ) 
{ 

Wai tNextEventC everyEvent, &theEvent. 15L. nil ) ; 

switch ( theEvent.what 
{ 

} 

case mouseDown: 
HandleMouseDown(); 
break: 

void HandleMouseDown( void ) 
{ 

SysBeepC 1 ); 

gAllDone ... true: 
} 

161 



162 
Macintosh Programming Technlqacrs. ZE 

void AnimatePictureResource( WindowPtr theWindow ) 
{ 

Graf Ptr 
Pen State 
PicHandle 
short 
Re ct 
short 
short 
short 
long 

theSavePort: 
theSaveState: 
thePicture: 
thePi ct ID: 
theRect: 
theWidth: 
theHeight: 
i. count: 
the Ticks: 

GetPenState( &theSaveState ): 
GetPort( &theSavePort >: 
SetPortC theWindow >: 

thePicture = GetPicture( rFirstDancerPicture >: 

theRect = (**thePicture).picFrame: 
theWidth = theRect.right - theRect.left: 
theHeight = theRect.bottom - theRect.top: 
SetRect( &theRect. kDancerleft. kDancerTop. kDancerleft + 

theWidth. kDancerTop + theHeight ): 

count 0: 
for ( = 1: i <= 50: i++ ) 
{ 

++count: 
switch C count 
{ 

case 1: 
thePictID = rFirstDancerPicture: 
break: 

case 2: 
thePictID = rFirstDancerPicture + 1: 
break: 

case 3: 
case 5: 

thePictID = rFirstDancerPicture + 2: 
break: 

case 4: 
thePictID = rFirstDancerPicture + 3: 
break: 



Chapter 3 • OaickDraw Graphla 

case 6: 
thePictID = rfirstDancerPicture + 1: 
count = 0: 
break: 

thePicture = GetPicture( thePictID ); 
DrawPicture( thePicture, &theRect ); 

Delay( kDancerDelay, &theTicks ); 

SetRect( &theRect, 0, 0, 1000, 1000 ); 
FillRectC &theRect, &qd.white ); 

SetPort( theSavePort ); 
SetPenStateC &theSaveState ): 

void DrawWithPixPatResources( WindowPtr theWindow ) 
{ 

Graf Ptr 
Pen State 
PixPatHandle 
PixPatHandle 
PixPatHandle 
Re ct 

theSavePort: 
theSaveState: 
thePenPixPatHand: 
thefillPixPatHand: 
theRobotPixPatHand: 
theRect: 

GetPenState( &theSaveState ): 
GetPortC &theSavePort ): 
SetPortC theWindow ); 

thePenPixPatHand = GetPixPatC rPixPatPurple ); 
thefillPixPatHand = GetPixPatC rPixPatRedCurls >: 
theRobotPixPatHand = GetPixPat( rPixPatRobot >: 

PenPixPatC thePenPixPatHand >: 

PenSize( 10, 10 ); 
MoveTo( 20, 20 ); 
Line C 200, O >: 

163 



164 
Macintosh Programming Tcrchnlques • .ZE 

SetRect( &theRect, 20, 40, 100, 80 ): 
PaintRect( &theRect >: 

SetRectC &theRect, 20, 100, 120, 180 ): 
FillCRectC &theRect, theFillPixPatHand ); 

SetRectC &theRect, 140, 40, 280, 180 >: 
FillCRectC &theRect, theRobotPixPatHand ): 

SetPortC theSavePort ); 
SetPenStateC &theSaveState ): 

void InitializeToolboxC void 
{ 

InitGrafC &qd.thePort ); 
InitFonts(); 
InitWindowsC); 
InitMenus(); 
TEI nit(): 
InitDialogsC OL >: 
FlushEventsC everyEvent, O >: 
InitCursor(); 

Stepping throagh the Code 
Stepping through QuickDrawing will be a breeze. All of its code was 
developed in this chapter, and there are no surprises. 

The define Directives 
To minimize the scattering of numbers throughout the source code list
ing, QuickDrawing.c uses several /Ide f i n e directives. The IDs of the first 
PICT, the WIND, and the three ppat resources each get their own 
/ldefi ne. The length of the pause between the display of frames in the 
animation (7 /60ths of a second) is established by the kDancerDel ay con
stant. The length of the pause in the program after animation has com
pleted (3 seconds) is governed by the kProgramDel ay constant. Finally, 



Chapter J • OalckDraw Graphics 

the placement of the pictures used in the animation is controlled by the 
kDancerleft and kDancerTop constants. 

/Jdefi ne 
//define 
/Jdefi ne 
//define 
/Jdefi ne 
//define 
#define 
//define 
/Jdefi ne 

rDrawingWindow 128 
rPixPatPurple 128 
rPixPatRedCurls 129 
rPixPatRobot 130 
rFirstDancerPicture 128 
kProgramDelay 180 
kDancerDelay 7 
kDancerleft 70 
kDancerTop 20 

Global Variables 
The gAll Done Boolean variable is used to signal the end of the pro
gram. Because this technique, and this variable, is used in each program 
in this book, this will be the last mention of it. The same applies to 
gWi ndStorage-the variable used to point to a section of memory 
reserved for a window. 

The main() fundion 
QuickDrawing first calls the Toolbox functions MaxApp 1 Zone () and 
MoreMasters () to perform a couple of simple memory management 
techniques, as described in Chapter 2. Next, the usual Toolbox initializa
tions are handled by the application-defined Initial i zeTool box() 
function. You'll see these same lines of code in each of the remaining 
examples, so, again, no further mention will be made of this code. 

QuickDrawing next makes a check to verify that the user's Mac has 
Color QuickDraw. If not, the program calls the Toolbox function 
Exi tToShel 1 () to quit. If Color QuickDraw is present, as is most likely 
the case, the QuickDrawing program reserves memory for a window 
and then opens a new window. Note that because the program will be 
displaying color patterns, it's a color window that gets loaded and 
opened. A call to GetNewCWi ndow() takes care of that. The program 
makes a quick check to ensure that the window was loaded successfully, 
then calls ShowWi ndow() to make sure that the window is visible. 

To display the dancing man, QuickDrawing uses an application
defined routine named Animate Pi ctureResource( ). You'll find a com-

165 



166 
Macintosh Programming Techniques. ZE 

plete explanation of this routine earlier in this chapter. Next, the program 
demonstrates how to change the look of the cursor using the Toolbox 
functions GetCursor() and SetCursorC ). 

To draw pattern-filled shapes, the application-defined 
DrawWi th Pi xPatResources () function is called. This routine calls the 
Toolbox function Get Pi xPat() three times-one time for each pattern. 
Each call loads one of the pp at resources and returns a handle to the 
ppat data in memory. These three patterns are then used in the drawing 
of a line and the filling of three rectangles. 

11"',Ji 
~ 
H 0 T E 

QuickDrawing uses a separate handle for each of the three patterns. That's a 
good plan if the patterns are going to be used several times, and not in a con
secutive order. Since QuickDrawing uses one pattern, then another, and then 
the third, without re-using any of the previous patterns, the same handle 
could be re-used. Here's an example of a second approach, one that would 
work just as well: 

PixPatHandle thePixPatHand: 

thePixPatHand - GetPixPatC rPixPatPurple ); 
II set pen pattern. draw a line and a painted shape 

thePixPatHand - GetPixPat( rPixPatRedCurls >: 
II fill a shape 

thePixPatHand = GetPixPatC rPixPatRobot ): 
II fill a shape 

CHAPTER SUMMfl~Y 
QuickDraw is a group of Toolbox routines-the single largest group of 
Toolbox functions. Besides drawing the shapes and pictures you see dis
played in windows, QuickDraw draws the window itself. In fact, 
QuickDraw is responsible for drawing everything on the Macintosh 
screen. QuickDraw, and other parts of the Toolbox, have to be initialized 
before use. 

Every window has its own graphics port or environment. A graphics 
port defines what lines and text will look like. When you give each win-



Chapter 3 • QulckDraw Graphics 

dow its own graphics port, you allow different windows to display dif
ferent styles of text and draw shapes of different patterns. You can 
change a graphics feature within a port by making a change to the port's 
graphics pen. The pen is invisible; it exists as a reference that aids you in 
manipulating graphics features. 

You use Toolbox routines to tell QuickDraw what to draw. Because 
each window has its own graphics port, you must make sure that 
QuickDraw knows which window it should draw to in response to the 
commands you give it. Before you draw to a window, you'll give 
QuickDraw this information in the form of a call to Set Port(). 

The primary shape that QuickDraw works with is the Rect, the C 
data type that represents a rectangle. By defining the boundaries of a rec
tangle, you give QuickDraw the information it needs to draw rectangles, 
ovals, and round rectangles (rectangles with rounded corners). The 
Toolbox contains a host of shape-drawing routines that allows you to 
frame, fill, invert, and erase these different types of shapes. 

You can add flair to your shapes by using patterns. The C data type 
Pattern allows you to choose from several defined patterns. You can 
also define your own monochrome patterns using PAT resources. Many 
Macintosh users now have color systems, and you can support these 
users by using Color QuickDraw. The color version of QuickDraw 
allows you to draw shapes in color, create color patterns using the ppat 
resource type, and add color to the frame or content of windows. 

167 



flClttTOSH PROGRflMMlttG TECHNIQUES, 2E 

Chapter 4 

Working with Windows 
Windows are what originally set the Macintosh apart from most other com
puters. To display information, a Macintosh program needs at least one 
window. In this chapter, you'll learn about window-handling techniques. 

This chapter's discussion begins with events-a topic you've been 
introduced to in previous chapters. Nothing happens to or with a win
dow until an event occurs. A click of the mouse button is usually what a 
window responds to, so the focus will be on events involving the mouse. 

Devising a system to handle events that involve one window is rel
atively straightforward. However, when more than a single window is 
on the screen, window-handling techniques become more complex. This 
chapter provides a strong background on the basic techniques of work
ing with a window. It also covers the more difficult topic of working 
with multiple windows. 

As do the previous chapters, this chapter finishes with a sample pro
gram that demonstrates the techniques highlighted in the chapter. 

169 



170 
Macintosh Programming Techniques. ZE 

W1noows PRIMER 
Before reading the details of window handling, take a look at a concise 
summary of just what a window is. 

The WIHD Resource 
A window starts as a WIND resource, created using a resource editor such 
as ResEdit or Resorcerer. Chapter 1 covered the WIND, so this chapter will 
simply show the WIND editing window, shown here in Figure 4.1. 

UeryBasil s.rsrc J 

CJ 11 
llllNOs from Uen1Basics.rsrc 

\\'IND !Q. Siz~ Namt 

128 27 ] 
w - WIND ID ,,. 128 from U'!!Y_Baslcs.rsrc :-_ - ---
ilLJr:lLJDDLJD[!]~[J 
~ '1111 11111 --- llll•dlal Color: ®Default 

r==!!~·J Qcustom 

----·--···---·--···-··------

Top:~ Height:~ [81 lnltially ulslble 

Left:~ Width:~ 
1:81 Close boH 

Figure 4.1 A WIND resource viewed in ResEdit. 

Loading a WIHD 
You've already seen the Toolbox routine GetNewWi ndow() in action sever
al times. It loads a window into memory and returns a pointer to the mem
ory that holds the window information. Here's a call to GetNewWi ndow( ): 



Chapter 4 • Working with Windows 

#define rGraphicsWindow 128 

WindowPtr theWindow: 

theWindow = GetNewWindowC rGraphicsWindow. nil. CWindowPtr)-lL ); 

The first parameter passed to GetNewWi ndow() is the resource ID of the 
WIND resource to use. The second parameter is a pointer that tells the 
Memory Manager where in memory to place the window. Passing a n i 1 
pointer here tells the Window Manager to allocate the memory for you. 
A value of n i 1 is the convention used by Macintosh programmers to 
serve as the n i 1 pointer. The third parameter signals the Window 
Manager to place the new window behind all others (0) or in front of all 
others (-1). The Toolbox is looking for a Wi ndowPtr here, so you'll have 
to cast the value (as done by placing the data type Wi ndowPtr in paren
theses) so that the compiler does not produce an error message. 

The WindowRecord. WindowPtr and 
WindowPeek 
Every window is, in a sense, a world unto itself. Each window can have 
its individual properties, such as the size and font of the text it will dis
play and whether the window is visible at this moment. The data struc
ture Wi ndowRecord holds this information. Here's the structure: 

struct WindowRecord 
{ 

Graf Port 
short 
Boolean 
Boolean 
Boolean 
Boolean 
RgnHandle 
RgnHandle 
RgnHandle 
Handle 
Handle 
StringHandle 
short 
Control Handle 

port: 
windowKind: 
visible: 
hil ited: 
goAwayFlag: 
spareFl ag: 
strucRgn: 
contRgn: 
updateRgn: 
windowDefProc: 
dataHandle: 
titleHandle: 
titleWidth: 
control List: 

171 



172 

} : 

Macintosh Programming Techniques. ZE 

struct 
PicHandle 
1 ong 

WindowRecord *nextWindow: 
windowPic: 
refCon; 

The heart of the Wi ndowRecord is the very first member, the port mem
ber: Graf Port. Recall from Chapter 3 that a Graf Port holds all the infor
mation about a graphics port, which is a drawing environment. 

You won't need to memorize the exact makeup of the Wi ndowRecord 
structure. Instead, you'll work with variables of type Wi ndowPtr. A 
Wi ndowPtr points to the Graf Port of a Wi ndowRecord. Once you have a 
Wi ndowPtr, you can do just about anything you want to a window 
through Toolbox calls. You call the Toolbox routine name and include the 
pointer to the window you want to work with as follows: 

f/defi ne rGraphicsWindow 128 

WindowPtr theWindow; 

theWindow - GetNewWindowC rGraphicsWindow. nil, CWindowPtr)-lL >: 

SetPort( theWindow ); II make the new window's port current 

ShowWindow( theWindow ); II show the window on the screen 

In addition to a Wi ndowPtr,there is also a Macintosh C type called a 
Wi ndowPeek. Both the Wi ndowPtr and Wi ndowPeek point to the start of a 
Wi ndowRecord-the port field. A variable of type Wi ndowPtr, however, 
can access only the port field of the Wi ndowRecord, while a variable of 
type Wi ndowPeek can access the entire Wi ndowRecord structure. Figure 
4.2 illustrates this. 

From Figure 4.2 it appears that the Wi ndowPeek is more powerful, 
because it allows access to all of the members of a Wi ndowRecord, not 
just the port. That is, in fact, true. But there are many instances where 
you won't need to access any of the members other than the port. In 
those cases, it's best to use the Wi ndowPt r-that minimizes the chance of 
inadvertently altering values in other fields of the Wi ndowRecord. You'll 
also use a Wi ndowPtr because many Toolbox routines expect a 
Wi ndowPtr as one of the parameters, and won't except a Wi ndowPeek. 



r ef Con 

windowPic 

visible 

windowKi nd 

Chopter 4 • Working with Windows 

WindowPeek 

WindowPtr 

WindowRecord 
accessible 
by 
WindowPeek 

..___po- rt __ ] ~e::::r 
Ox03335500 ~ 

Figure 4.2 A Wi ndowPtr and Wi ndowPeek. 

Just when should you use a Wi ndowPeek? You'll find out in the highlight of 
this chapter, the section that deals with working with multiple windows. 

EVEHT HAHDLIHG 

Chapter 1 pointed out that the event loop is a distinguishing feature of 
programs written for the Macintosh and other GUI systems. A 
Macintosh program calls WaitNextEvent() to retrieve an event, then 
processes that event. How it does that is dependent on the type of event 
retrieved. Below is the main ( ) function for a typical trivial Mac program. 

void main( void ) 
{ 

InitializeToolbox(); 

173 



174 
Macintosh Programming Techniques, ZE 

Eventloop Cl; 

The previous chapters covered the application-defined 
InitializeToolbox() routine. There, lnitia l izeToolbox() called 
the eight Toolbox initialization routines that you should call at the start of 
every program. 

Once the application-defined Event Loop ( ) routine is called, the pro
gram will not return to main() until it is ready to terminate. It is from 
within Eventloop() that the program's continuous process of event 
handling takes place. 

The general approach to handling a single event is to determine the 
type of the event, then branch to a routine that handles that particular 
event type. First, determine the general type of event, such as the updat
ing of a window or a click of the mouse button. For a click of the mouse 
button, further determine the location of the cursor when the mouse but
ton was pressed: the cursor could be over the menu bar, or over a win
dow's close box, and so forth. Figure 4.3 shows this branching technique, 
emphasizing an event that involves the mouse. 

Event 

~ u D u u 
~ I Key II Mouse 11 Activate 11 Update 

~ u G u u 
~ I Menu 1 1 Drag 11 Close 1 1 Content 

Figure 4.3 An event leads to branching. 



Chapter 4 • Working with Windows 

Figure 4.3 shows only a few of the event types-you can assume that 
there are several more types off to the left. The same is true of the loca
tions at which a mouse event could occur. Keeping Figure 4.3 in mind, 
take a look at what an Event loop() routine might look like. 

void Eventloop( void } 
( 

EventRecord theEvent; 

while ( gAllDone == false 
{ 

} 

Wai tNextEvent{ every Event. &theEvent. 15L. ni 1 ) ; 

switch ( theEvent.what ) 
( 

case mouseDown: 
HandleMouseDown( theEvent ); 
break; 

case keyDown: 
HandleKeyDown( theEvent ); 
break; 

case updateEvt: 
HandleUpdate{ theEvent); 
break; 

case activateEvt: 
HandleActivate( theEvent ); 
break; 

The Eventloop() routine begins by calling WaitNextEvent() to 
retrieve an event. After that, a switch statement is used to branch off to 
a routine written to handle just one type of event. In this example, events 
of type keyDown, mouseDown, updateEvt, and acti vateEvt are handled. 
These are Apple-defined constants, and there are a few more than appear 
in the example. Here's the complete list: 

175 



176 
Macintosh Programming Ttchniqaes. ZE 

nul 1 Event = 0 
mouseDown ... 1 
mouseUp = 2 
keyDown - 3 
keyUp = 4 
auto Key 5 
updateEvt = 6 
diskEvt = 7 
acti vateEvt = 8 
osEvt = 15 

You write the routines to handle an event. Some will be relatively short 
and straightforward. Others, such as the handling of a mouse click, will be 
more involved. That's because a mouse click can occur on different objects 
on the screen. An example follows of the handling of a mouse click. 

void HandleMouseDownC EventRecord theEvent 
{ 

WindowPtr theWindow: 
short thePart: 

thePart = FindWindow( theEvent.where, &theWindow ): 

switch ( thePart ) 
{ 

} 

case inMenuBar: 
II handle click in the menu bar 
break: 

case inDrag: 
II handle click in a window drag bar 
break: 

case inGoAway: 
II handle click in a window close box 
break: 

case inContent: 
II handle click in a window's content area 
break: 

The first thing Handl eMouseDown () does is to call Fi ndWi ndow(). This 
Toolbox routine determines where the cursor is on the screen when the 



Chapter 4 • Working with Windows 

mouse button is pressed. If it is over a window, Fi ndWi ndow() will 
return a pointer to that particular window. 

Handl eMouseDown () then handles the event depending on the screen 
location, (or part of the screen) where the cursor is located. The routine 
uses a switch statement to reach the code used to handle a mouse click on 
a specific screen part. In the preceding snippet, comments are shown 
rather than the event-handling code. The source code is described later in 
this chapter, and at other appropriate places in this book. The part codes, 
such as i nMenuBa r, are Apple-defined constants. Here's the entire list: 

inDesk ... O 
i nMenuBa r ... 1 
inSysWindow ... 2 
i nContent .. 3 
i nDrag = 4 
i nGrow = 5 
i nGoAway ... 6 
i nZoomln - 7 
i nZoomOut ... 8 

Figure 4.4 serves to summarize event handling. As you study the figure, 
keep in mind that it shows only a few of the possible event types and 
only a few of the screen parts. 

H.andle 
·ujldate 

Type of Event? 

Screen Part? 

Handle 
Activate 

~-Window 
~Content 

~ 
~ 

Figure 4.4 A summary of the handling of an event. 

177 



178 
Mudntosh Progrummlng Tczchnlqaes. ZE 

In case you forgot, this chapter is about windows. The previous discus
sion of events was a prerequisite to any serious explanation of windows. 
The previous section outlined how the processing of an event takes place 
but left some blanks, mainly some comments in place of source code. 
Many of those blanks deal with the handling of windows, so now is the 
time to fill them in. 

In this chapter, you'll look at three types of events that relate to win
dows: mouse down, window activate, and window update events. 
When a mouse down event occurs you'll want to look at things a little 
more closely; you'll want to know where the cursor was a the time the 
mouse down events occurred. For instance, the use could be clicking the 
mouse button while the cursor is over a window's drag bar, close box, or 
content region. Figure 4.5 illustrates the events types that will be covered 
in this chapter. The figure also highlights the three window parts that 
will be discussed here. 

Event I 

J ~v~ G u u 
~ I Key J I Mouse 1 I Activate 11 Update 

J u D u D 
~ I M°'nu 1 1 Drag 11 Close 

11 
Content 

Figure 4.5 Events and part codes relating to windows. 

By covering the handling of these particular events, you'll have a sound back
ground for the finale of this chapter-the handling of multiple windows. 



Chapter 4 • Working with Windows 

Moase Down Events 
When a click of the mouse button occurs in a window, your program 
should determine whether the click occurred in the window's drag bar, 
close box, or content region. Your program will then react accordingly. 

Handling a Mouse Ciiek in a Drag Bar 
Handling a mouse click in a window's drag bar is easy, thanks to 
the Toolbox routine DragWi ndow(). You need just one line in 
HandleMouseDownC): 

DragWindowC theWindow. theEvent.where. &gDragRect ): 

You'll add this line under the i nDrag part code case label. Here's that 
line in the context of Handl eMouseDownC ): 

void HandleMouseDownC EventRecord theEvent 
{ 

WindowPtr theWindow: 
short thePart; 

thePart ~ FindWindowC theEvent.where. &theWindow ); 

switch C thePart > 
{ 

II handle clicks in other parts here 

case inDrag: 
DragWindowC theWindow. theEvent.where. &gDragRect ); 
break; 

II handle clicks in other parts here 

Once called, the DragWi ndow() routine takes control until the mouse 
button is released. While the user holds down the mouse button and 
moves the mouse, DragWi ndow() moves the window to follow the 
motion of the mouse. 

179 



180 
Macintosh Programming Techniques. ZE 

The first parameter in DragWi ndow() is a pointer to the window to 
drag. Use the Wi ndowPtr variable that was filled in by the call to the 
Toolbox function Fi ndWi ndowC). 

The second parameter is the point coordinate at which the cursor 
was located when the user clicked the mouse button. 

The user can move a window about the screen by clicking the mouse 
button and holding it down while over the window's drag bar. To pre
vent the user from dragging the window off the edge of a screen and 
entirely hiding it, you create a boundary rectangle that defines the drag 
limits. This rectangle is passed as the third parameter in DragWi ndow( ). 

Apple provides you with a system global variable named qd-you 
were introduced to it in Chapter 3. One of the fields of this variable of the 
data structure type QDGl oba 1 s is screenBi ts. This field, which is itself 
a data structure, holds a map of the user's screen. The bounds field of 
this structure is of type Rect, and holds the coordinates of the user's 
desktop. Regardless of the size of the user's monitor, its coordinates will 
be found in the bounds field. 

To define a rectangle that establishes the dragging limits for win
dows, declare a global Rect variable. In this chapter, that variable is 
called gDragRect. Initialize this rectangle by setting it to the same size as 
the qd. screenBi ts. bounds rectangle. Next, inset this rectangle a few 
pixels. The inset value represents the amount of a window, in pixels, that 
must always remain on the screen no matter how far off the edge of the 
screen the user drags a window. The application-defined 
SetWi ndowDragBounda ri es ()routine bundles this short bit of code into 
a simple utility function that can be used in any program. 

f/defi ne kDragEdge 10 

Rect gDragRect: 

void SetWindowDragBoundaries( void ) 
{ 

} 

gDragRect = qd.screenBits.bounds: 
gDragRect.left += kDragEdge: 
gDragRect.right -= kDragEdge; 
gDragRect.bottom -= kDragEdge: 



Chapter 4 • Working with Windows 

This qd. screenBi ts. bounds method assumes that your program is running 
on a ~ys~em with only one monitor. Chapter ~ discusses a technique for 
establishing a boundary rectangle for dual-morutor systems. 

N 0 TE 

Once created, you'll be able to use this drag boundary rectangle anytime, 
thus the reasoning for making gDragRect a global variable. 

"andling a Mouse Click in a Close Box 
Should the user click the mouse button while the cursor is over a win
dow's close box (also called the go away box), the Toolbox routine 
TrackGoAway() should be called to then follow the movement of the 
mouse. If the user releases the button while the cursor is over the close 
box of a window, the routine returns a value of true, and your program 
should then close the window. 

A couple of simple housekeeping calls are all that's needed to close 
the window. Here's a fragment that demonstrates TrackGoAway( ): 

if C TrackGoAway( theWindow, theEvent.where ) ) 
{ 

HideWindowC theWindow >: 
DisposeWindowC theWindow ): 

} 

The first parameter in TrackGoAway () is a pointer to the window in 
question. The second parameter is the point at which the mouse click 
took place. As mentioned, TrackGoAway() returns a Boolean value that 
represents whether or not the cursor was over the close box. 

While the call to Hi deWi ndowC) is not strictly necessary, it is recom
mended. If a window has controls (such as scroll bars), then the house
keeping becomes more involved than shown here. You'll want the win
dow hidden so that clean up goes on behind the scenes. 
Di sposeWi ndow() closes a window and frees up the memory used by 
the window's Wi ndowRecord data structure. 

Here's TrackGoAway () in the context you'll use it in your 
Handl eMouseDown () routine. 

181 



182 
Macintosh Programming Techniques. ZE 

void HandleMouseDown{ EventRecord theEvent 
( 

WindowPtr theWindow; 
short thePart; 

thePart = FindWindow( theEvent.where. &theWindow ); 

switch { thePart ) 
( 

II handle clicks in other parts here 

case inGoAway: 
if { TrackGoAway{ theWindow. theEvent.where ) ) 
( 

HideWindow{ theWindow ); 
DisposeWindow{ theWindow ); 

} 

break: 

II handle clicks in other parts here 

Handling a Mouse Ciiek In a Content Region 
If many cases, a mouse button click in the content area of a window 
requires that you simply make the window active-if it isn't already so. 
The Toolbox routine FrontWi ndow() returns a pointer to the frontmost 
window. You can compare this pointer to the pointer to the clicked-on 
window-the pointer to that was returned by the Fi ndWi ndow() call 
that was made at the top of the Handl eMouseDown () function. If differ
ent, make a call to the Toolbox function Sel ectWi ndow(). This routine 
takes care of selecting a window by bringing it to the front and by pro
viding the proper highlighting to the clicked-on window and to the win
dow that was formerly the front window. 

if { theWindow != FrontWindow{) 
SelectWindow{ theWindow ); 

else 
{ 

I* handle the needs. if any. of a click in */ 
I* the contents of an active window *I 



Chapter 4 • Working with Windows 

What if your program uses a window that does more than simply dis
play information? Then you must write your program so that it is pre
pared to do more than just highlight a window. What else should it do? 
You'll see when you get to the end of the chapter. There you'll find a con
crete programming example along with the theory. 

Here's the code as you'd see it within the Handl eMouseDown () routine: 

void HandleMouseDown( EventRecord theEvent 
{ 

WindowPtr theWindow: 
short thePart; 

thePart = FindWindow( theEvent.where, &theWindow ): 

switch ( thePart ) 
{ 

II handle clicks in other parts here 

case inContent: 
if ( theWindow != FrontWindow() 

SelectWindow( theWindow ): 
else 
{ 

I* handle the needs, if any, of a click in */ 
I* the contents of an active window *I 

} 

break: 

II handle clicks in other parts here 

Handling Mouse Clicks in the Menu Bar 
The version of Handl eMouseDown() presented in this chapter includes a 
case label with the part code i nMenuBar. If your program includes 
menus and menu-handling capabilities, this is where menu-handling 
would take place. You'll find the code for managing menus in Chapter 6. 

Now that you know how to handle a mouse click involving each of 
the most commonly watched for part codes, it's time to look at a near
complete version of the application-defined Handl eMouseDown () rou
tine. Note that the code for the i nContent case will be completed in this 

183 



184 
Macintosh Programming Techniques. ZE 

chapter's Multiple-Window Teclmiques section. That section also dis
cusses dealing with window activate and update events. 

void HandleMouseDown( EventRecord theEvent ) 
{ 

} 

WindowPtr theWindow: 
short thePart: 

thePart = FindWindow( theEvent.where, &theWindow ); 

switch ( thePart ) 
{ 

} 

case inMenuBar: 
break: 

case inDrag: 
DragWindow( theWindow, theEvent.where, &gDragRect ); 
break: 

case inGoAway: 
if ( TrackGoAway( theWindow, theEvent.where ) ) 
{ 

HideWindow( theWindow ); 
DisposeWindowC theWindow }; 

} 

break: 

case inContent: 
if ( theWindow l= FrontWindow() 

SelectWindow( theWindow >: 
else 
{ 

/* handle the needs, if any, of a click in */ 
/* the contents of an active window */ 

} 

break: 

S1nGLE-W1noow TEcHn100Es 
The Event Loop() routine is the hub from which your program branch
es off to handle a particular event. So far, the focus has been on a mouse 



Chapter 4 • Working with Windows 

down event. For window handling you should be aware of two other 
event types: activates and updates. 

Activate Events 
Any Macintosh program has one and only one window active at any 
given time. The active, or current, window is the window that responds 
to user actions such as keystrokes or a click of the mouse. If there is more 
than one window on the screen, the active window is frontmost. The 
drag bar of the active window has a highlighted appearance that sets it 
apart from other windows. 

An activate event is represented by the Apple-defined 
acti vateEvt part code. For a program with more than one window, 
a click on a deactivated window will generate two activate events: 
one to signify the deactivation of the frontmost window and one to 
signify the activation of the clicked-on window. The Window 
Manager handles the changing highlight conditions of window 
frames; you will be responsible for handling changes to the content of 
a window. 

For a program that creates only one window, it is not uncommon to 
omit code that handles an activate event. That's because only one acti
vate event will occur in a program of this type. When the window is first 
created, GetNewWi ndow() will generate an activate event. 

You'll find more information about activate events in this chapter's 
pages that deal with the handling of multiple windows. 

Updating a Window 
When a covered, or obscured, window becomes exposed, its contents 
will need updating; that is, you need to redraw what is in the window. 
A window that needs updating will trigger the occurrence of an update 
event. An update event is represented by the Apple-defined updateEvt 
part code. To handle such an event, begin by branching from the appli
cation-defined Event Loop () function to another application-defined 
routine; one that handles an update. Here, this routine is aptly named 
Handl eUpdate( ): 

185 



186 
Macintosh Programming Techniques. ZE 

void Eventloop( void } 
{ 

EventRecord theEvent: 

while < gAllDone == false 
{ 

Wai tNextEvent( everyEvent, &theEvent, 15L, nil ) : 

switch C theEvent.what ) 
{ 

} 

II handle other event types here 

case updateEvt: 
HandleUpdate( theEvent}; 
break: 

Here's a typical Handl eUpdate() routine that updates a window in a 
program that displays a single window. 

void HandleUpdate( EventRecord theEvent 
{ 

WindowPtr theWindow: 

theWindow = ( WindowPtr }theEvent.message; 

BeginUpdateC theWindow }; 
DrawSomething( theWindow ): 

EndUpdate( theWindow }; 

Because it's best to use techniques that apply to all sorts of programs, 
Handl eUpdate() should be written in a manner that you can use, with 
some modification, in a program that has more than one window. 
Instead of assuming that a particular window will be updated, 
Handl eUpdate() gets a pointer to the window to update from the mes
sage field of the event record. The Event Manager conveniently places a 
pointer to the window that needs updating in the message member. As 
you can see from the listing for Handl eUpdate( ), a window update 
involves these steps: 



• 
• 
• 

Chapter 4 • Working with Windows 

A call to Begi nUpdate() 

The drawing of the window contents 
A call to EndUpdate () 

Mac programs that allow a window to be resized include one other step. 
Before drawing the window's contents, the contents are erased. If a window 
is enlarged, that's a necessary step in order to clear away the old scroll bars 
and grow box. H you see example code that includes a line that looks similar 
to the one below, you'll now know what's going on-the window's entire 
graphics port is being erased: 

EraseRect( theWindow->portRect ) 

You're at this point in your code because there's an update event in the 
event queue. The Mac knew a window had become exposed and placed 
the event there. What the Macintosh doesn't know on its own is when 
the update event has been handled by your code. The calls to the Toolbox 
routines Begi nUpdate () and End Update () tell the Mac just that, and let 
the computer know it should remove the update event from the queue. 

Note the indented code between the calls to Begi nUpdate() and 
EndUpdate(). This isn't required-it's this book's convention, intended to 
clarify the logic of the Handl eUpdate() routine. 

The Window Manager at all times keeps track of the portion of a window 
that is exposed, or visible. It keeps this area in the vi sRgn member of the 
window's Wi ndowRecord data structure. A call to Begi nUpdate() caus
es the Window Manager to save this value, and then to temporarily set 
the visible region to that area of the window that was obscured. When 
you draw the contents of the window, QuickDraw will be limited to 
drawing in only this temporarily visible region. The result is that 
QuickDraw doesn't update the entire window-only the part that was 
formerly obscured (see Figure 4.6). 

187 



188 
Macintosh Programming Techniques • .ZE 

s File Edit 

A window about to be moved BeginUpdate ( > sets the Your routine that draws the 
window contents is called, but 
QuickDraw limits drawing to 
the visible area 

back onto the screen visible region to the part that 
was hidden 

~ 
H 0 T E 

Figure 4.6 Updating a window. 

What about setting the port before updating? A common mistake in window 
updating is forgetting to set the port. If there is more than one window on the 
screen, QuickDraw will draw to the window whose port is current, regardless 
of whether that window needs the updating or not. Handl eUpdate() doesn't 
set the port, because it doesn't actually do any drawing-it calls the applica
tion-defined function DrawSomethi ng C) to take care of the task. So you can 
bet that DrawSomething() does make a call to SetPort( ). 

Now, on to that rather vaguely named routine DrawSomethi ng( ). What 
does this routine draw? The contents of the entire window. In short, 
everything your program drew to the window in the first place. Why 
redraw everything when only a portion of it may need updating? 
Remember, the call to Begi nUpdate() will tell QuickDraw what part of 
the window to draw to. When done, the call to EndUpdate() resets the 
window's visible region to its actual area, not to just the newly exposed 
area. So while your draw routine contains the code to draw an entire 
window's worth of content, QuickDraw will be smart enough to per
form only the drawing that needs to be done to satisfy the update. 

What your DrawSomethi ng ()routine will look like is entirely depen
dent on your application. In Figure 4.6, you can see that the content of 
the window is simply a picture-the display of a PI CT resource. Chapter 
3 covered PI CT resources and displaying pictures in a window. For the 



Chapter 4 • Working with Windows 

window shown in Figure 4.6 the code for DrawSomethi ng () might look 
like this: 

//define rWildManPicture 128 

void DrawSomething( WindowPtr theWindow 
{ 

PicHandle 
Re ct 
short 
short 
Graf Ptr 

thePicture: 
theRect: 
theWidth: 
theHeight: 
theSavePort: 

GetPort( &theSavePort ): 
SetPort( theWindow ): 

thePicture = GetPicture( rWildManPicture ); 

theRect ~ C**thePicture).picFrame; 
theWidth ~ theRect.right - theRect.left; 
theHeight = theRect.bottom - theRect.top: 
SetRect( &theRect, 10, 10, 10 + theWidth, 10 + theHeight ): 

DrawPictureC thePicture, &theRect ): 

SetPort( theSavePort ): 

~ 
~ 
ft 0 T E 

As this example demonstrates, you update a window by actually going 
through all of the work of redrawing the contents of the window. If you 
haven't programmed a Mac, you may have assumed you somehow get a 
"snapshot" of the contents of a window, then simply display that picture 
whenever appropriate. 

Window updating is an important topic. An improper window update is 
immediately noticeable to the user in the form of a blank white area in a 
window or the appearance of graphics in the wrong part of the window 
(or even in the wrong window). For those reasons, well take a look at 
another example. 

Displaying a picture is easy; it's an operation that is unchanging. 
But what if some or all of a window's contents depend on information 
the user supplied? Consider this example: Your program calls two 

189 



190 
Macintosh Programming Techniques. ZE 

application-defined routines-one that asks the user to enter the four 
coordinates of a rectangle, the other to then draw the rectangle. Later 
in the program, the user moves the window partially off screen, then 
back on. An update event is generated, and your Dra~Somethi ng () 
routine is called. Did you save those four values to some global vari
able, such as a Rect? Of course you did. If you hadn't, there would be 
no way to reproduce the rectangle now. Below is a code fragment to 
clarify this example. 

Rect gDisplayRect; 
Boolean gRectisDrawn = false; 

void GetRectDataFromUser( void 
{ 

II global - hold the rectangle 
II global - used in updating 

short left. right. top, bottom: 

II Display dialog box here. It's used to read in rectangle 
II coordinate values and save to variables 1, r, i, and b. 
II (Chapter 5 describes how to do this!) 

SetRect( gOisplayRect. left, right. top. bottom ); 

void DrawUsersRectangleC WindowPtr theWindow ) 
{ 

II local variables and save and set port calls here 

FillRect( &gDisplayRect, &qd.ltGray ): 
FrameRect( &gDisplayRect ): 

gRectlsDrawn = true: 

II restore port here 

After Dr a wU s er s Rec tang 1 e ( ) draws the rectangle, the function sets the 
global flag gRectlsDrawn to true. When it comes time to update the 
window, DrawSomethi ng() will check to see if gRectlsDrawn is true. If 
it is, the rectangle gets redrawn. And the rectangle coordinates to use? 
They were saved in the global Rect variable gDi spl ayRect in the 
GetRectData FromUser () function. 



Chapter 4 • Working with Windows 

void DrawSomething ( WindowPtr theWindow 
{ 

if ( gRectlsDrawn ~ true l 
DrawUsersRectangle( theWindow l; 

II draw anything else that should appear in the window here 

From this example, you can see that your updating routine might get 
quite involved and may contain decision-making logic, like the check of 
the gRectI sDrawn flag in the preceding example. 

Simple Window Techniques 
Before finishing this chapter with an example program that works with 
multiple windows, a quick look at some simple window techniques is in 
order. The following are all techniques that you can use in any program 
that has a window, or more than one window. All of the simple window 
manipulations described in the following sections revolve around using 
the correct Toolbox call to perform the task at hand. 

Moving a Window 
When you create a WIND window resource in ResEdit, you have the 
option of specifying whether a call to GetNewWi ndow() displays the win
dow when it loads the WIND into memory. If your program will be mov
ing the window upon opening, it is best to mark the WIND resource as 
invisible (see Figure 4.7). Then, after you load the window you can, 
unbeknownst to the user, move the window to wherever you want on 
the screen and show it. 

To mark a WIND invisible, 
leave unchecked 

Height:~ 

Width:~ 

O lnltlolly ulsible 

[81 Close boH 

Figure 4.7 Using ResEdit to mark a WIND as invisible. 

191 



192 
Macintosh Programming Techniques. 2E 

To move a window-even one that is invisible-use the MoveWi ndow() 
Toolbox routine. Pass a pointer to the window you want to move, the 
pixel coordinates of the screen location to move the window to, and a 
Boo 1 ean value that tells whether to activate (highlight) the window. 
Here's an example: 

/idefi ne 
/idefi ne 

kleftOffset 20 II 20 pixels from left of screen 
kTopOffset SO II SO pixels from top of screen 

WindowPtr theWindow; 
Boolean activateWind = true; 

MoveWindow( theWindow. kleftOffset. kTopOffset. activateWind ); 

Showing and Hiding a Window 
Earlier you learned that you can make a window invisible, or hidden, by 
using the Toolbox function Hi deWi ndow( ). You can make the same win
dow visible again with a call to another Toolbox routine: Sh owW i n d ow ( ) . 
Here's an example: 

WindowPtr theWindow; 

HideWindow( theWindow ); 
ShowWindow( theWindow ); 

Changing a Window's Title 
When you load a window with a call to GetNewWi ndow( ), the window's 
title will be "Untitled" -not a very polished look for your slick applica
tion. To give a window a title more befitting its purpose, use the Toolbox 
function SetWTi t 1 e (). 

/idefi ne kGraphi csWi ndowTi tl e "\pGraphi cs Window .. 

WindowPtr theWindow; 

SetWTitle( theWindow. kGraphicsWindowTitle ); 



Chapter 4 • Working with Windows 

MaLTIPLE-W1Hoow TECHH1aaEs 
A program that is capable of putting more than one window on the screen 
has a special set of needs that you must meet. There is a new twist to win
dow updating: the contents of one window might not be the same as those 
of another window. This means that you don't have the luxury of simply 
calling on one generic update routine to handle any and all updates. 

You'll need to devise a strategy that allows your program to distin
guish between different types of windows. In this section, you'll do just 
that. Imagine that you want to create a program that puts two types of 
windows on the screen. One window will be a control window with two 
buttons: one for drawing a shape, and one for erasing the shape. The sec
ond type of window will be a drawing window that displays the drawn 
shape. Additionally, the program will be capable of opening more than 
one drawing window. 

From the program description, you may have surmised that there are 
a few extra challenges presented by a program capable of working with 
multiple windows; challenges that you did not have to worry about 
when you planned out a program that would make use of just one win
dow. For the described program, here they are: 

• An update event must be handled in two different ways, 
depending on which type of window needs updating. 

• Once it has been determined that the update event corresponds 
to a drawing window, you must then determine which drawing 
window the event applies to. 

• The user must be allowed to choose which of the drawing win
dows a click in the control window corresponds to. 

These points make it clear that some planning is in order. That plan starts 
by examining a method that allows the addition of window information 
to the window's existing Wi ndowRecord structure. 

193 



194 
Macintosh Programming Techniques. ZE 

Expanding the Wi ndowRecord 
You know from earlier in this chapter that a Wi ndowPtr points to a win
dow. More specifically, it points to the port member of a Wi ndowRecord 
that holds the information about the window. You also know that you 
can use a Wi ndowPeek to gain access to the entire Wi ndowRecord; not just 
the port. The following figure, Figure 4.8, appeared at the start of this 
chapter. It appears again to drive home the difference between a 
Wi ndowPtr and a Wi ndowPeek. 

Wi ndowPeek 

Ox03335SOO WindowPtr 

-:::-:-:::=''?" 

ref Con Iii 
windowPic 

Id 

visible 

windowKind 
~ 

Graf Port 
port accessible 

by 
WindowPtr 

Ox03335500 1..E... 

Figure 4.8 A Wi ndowPtr and Wi ndowPeek. 

WindowRecord 
accessible 
by 
WindowPeek 



Chapter 4 • Working with Windows 

When you call GetNewWi ndow( ), the Window Manager selects a block of 
memory and puts the window information-based on the WIND 
resource-in that memory. This information needs to be stored in a 
known, consistent order so that it can be retrieved by the Window 
Manager as your program works with the window. The Wi ndowRecord 
provides that order. After placing the WIND data in memory in the format 
of a Wi ndowRecord, the Window Manager provides your program with 
a pointer to the first member of the Wi ndowRecord-the Graf Port. That 
allows your program to work with the window's graphics port. To work 
directly with other fields of the Wi ndowRecord your program can declare 
a Wi ndowPeek, then use typecasting on the Wi ndowPtr to access the win
dow's entire Wi ndowRecord. Here's an example. 

//define rDrawWindow 129 

WindowPtr theWindow: 
WindowPeek theWindPeek: 

theWindow - GetNewWindow( rDrawWindow, nil, CWindowPtr)-lL }; 

theWindPeek - (WindowPeek)theWindow: 

This is the standard way to call GetNewWindow(), and to create a 
Wi ndowPeek variable. There's another method you can use to create your 
own version of a Wi ndowPeek that enables you to store, and access, extra 
information along with a Wi ndowReco rd. 

This method involves creating your own data type by way of the C 
typedef keyword. Here's one example: 

typedef struct 
{ 

WindowRecord 
short 
Boolean 

theWindRecord: 
theWindType; 
isDrawnln: 

MyWindRecord, *MyWindPeek: 

195 



196 
Macintosh Programming Techniques. ZE 

This definition creates a structure that has three members. The first 
member is of type Wi ndowRecord-the same window record structure 
you've been working with all along. The remaining two members give 
additional information about a window-information specific to your 
program. The field theWi ndType will be used to specify the type of a 
window, while the i sDrawnin field will let the program know whether 
the window currently has a drawing in it. Like any structure, you can 
have as many or as few members as you want-whatever makes sense 
for the windows used by your application. 

The typedef names this new data type MyWi ndRecord. It also creates a 
type that is a pointer to the structure-MyWi ndPeek. You know that a vari
able of the Macintosh C type Wi ndowPeek points to an entire 
Wi ndowRecord. What will a variable of MyWi ndPeek type point to? A 
MyWi ndRecord. That means a variable of type MyWi ndPeek can be used to 
access everything in a Wi ndowRecord and some extra information. Figure 
4.9 illustrates the difference between a variable of type Wi ndowPeek and a 
variable of the application-defined type MyWi ndPeek. 

Note in Figure 4.9 that both a Wi ndowPeek pointer and a MyWi ndPeek 
pointer begin by pointing to the start of a Wi ndowRecord. What's at the 
start of a Wi ndowRecord-the very first member of the Wi ndowRecord? 
The port member, which is the window's graphics port. Making the first 
member of the MyWi ndRecord data type a Wi ndowRecord was not an 
accident. When loaded in memory, you'll want the start of your applica
tion-defined MyWi ndRecord window structure to be in the same format 
as Apple's Wi ndowRecord window structure-so its important that the 
first field of MyWi ndRecord be of type Wi ndowRecord. This allows you to 
use a variable of MyWi ndPeek anywhere that you would normally use a 
Wi ndowPt r or Wi ndowPee k. 



IL Ox03335500 JI 
IL OxlU.335500 JI 

isDrawnin 

t:heWindType 

ref Con 

windowPic 
-=; 

visible 

windowKind 

port 

Ox03335500 

Chapter 4 • Working with Windows 

WindowPeek 

MyWindPeek 

WindowRecord 
accessible 
by 
WindowPee k 

MyWindRecor d 
accessible 
by 
MyWindPee:< 

Figure 4.9 The difference between Wi ndowPeek and MyWi ndPeek. 

You've seen that the GetNewWi ndow() function offers you the option of 
allowing the Window Manager to assign the memory storage for a win
dow (by passing n i 1 as the second parameter) or of selecting the storage 
area yourself (by passing a pointer to an area in memory as the second 
parameter). When opening a window to have its data stored in an appli
cation-defined structure, your program must allocate the memory. 

197 



198 
Macintosh Programming Techniques. ZE 

Consider this the golden opportunity to use your own structure rather 
than the Macintosh Wi ndowRecord. When left alone to perform the mem
ory allocation, the Window Manager will always assume that only 
enough memory is needed for a Wi ndowRecord. Your application
defined window structure, however, requires additional memory. Here's 
your chance to set up that memory. 

I/define rDrawWindow 129 

WindowPtr theWindow; 
Ptr theStorage; 

theStorage = NewPtrC sizeof( MyWindRecord ) >: 

theWindow = GetNewWindow( rDrawWindow, theStorage, CWindowPtr)-ll >: 

Now you know how to define your own window structure and how to 
open a window that uses that structure. The only thing left to know is 
how to go about accessing the additional information that a window 
contains. First declare a variable to be of type MyWi ndPeek. Then set it to 
point, or peek, at a window by typecasting the window's pointer. With 
that accomplished you can examine and assign values to the structure 
members. A code fragment that should help you follows. 

I/define 

WindowPtr 
Ptr 
MyWindPeek 

rDrawWindow 

theWindow: 
theStorage; 

theWindPeek: 

129 

theStorage = NewPtr( sizeof( MyWindRecord ) ); 
theWindow = GetNewWindow( rDrawWindow, theStorage, CWindowPtr)-lL ); 
theWindPeek = CMyWindPeek)theWindow: 

II theWindPeek was just set to peek at this newly created 
II window. Assigning a value to a member of the structure 
II that theWindPeek points to only effects this one window. 

theWindPeek->isDrawnln = false: II nothing drawn in new window yet 

II Later in the program you can check to see if the window 
II has been drawn to by checking it's personal isDrawnin member. 
II First, make sure the variable theWindPeek is pointing to the 



Chapter 4 • Working with Windows 

II window to examine. Then check the isDrawnin member. 

theWindPeek = (MyWindPeek)theWindow: 

if ( theWindPeek->isDrawnin =- true ) 
II do something here 

II examine a member 

The above code "reuses" theWi ndPeek. It first assigns it to point to a 
newly created window in order to write some information (the value 
false) to one of the fields of the new window (the i sDrawnln field). 
Later, the program again uses theWi ndPeek in an assignment statement. 
This second assignment to theWi ndPeek is made so that one of the fields 
of the window can be read from (the i sDrawnln field). You can assume 
that between these two usages of theWi ndPeek, that drawing may or 
may not have occurred in this window. 

The method just described will be the backbone of the example pro
gram at the end of this chapter. It also can be a technique you use in any 
of your own multiple-window programs. 

This technique is one way to manage multiple-window types in an applica
tion. Another approach is to store a value in the refCon field of the 
Wi ndowRecord. The refCon field is a holder for any user-defined 32-bit 
value. Consult the Macintosh Toolbox Essentials volume of the Inside Macintosh 
series of books if this approach interests you. 

Activates and Multiple Windows 
Clicking the mouse on a window obscured by another window triggers 
the occurrence of an activate event. The clicked-on window appears to 
be brought to the forefront by a change in the highlighting of the win
dow's title bar and frame. For single-window programs, activate events 
usually aren't significant. For multiple-window programs, they may be. 

You can use an activate event to keep track of the most recently 
clicked on, or active, window. In the drawing window example that's 
been introduced, you could use a global Wi ndowPtr variable for this pur
pose. When the user clicks on the control window and clicks the 
Drawing button, action will take place in whichever window global 
variable gCurrentDrawWi ndow is pointing to. With that in mind, look at 
one way to handle an activate event. 

199 



200 
Macintosh Programming Ttchnlqaa. ZE 

//define 
//define 

kControlWindowType 
kDrawWindowType 

1 
2 

WindowPtr gCurrentDrawWindow; 

void HandleActivate( void ) 
{ 

} 

WindowPtr theWindow: // Window that was activated 
MyWindPeek theWindPeek: II Access to the window fields 
short theType; 

theWindow = CWindowPtr)theEvent.message; 

theWindPeek - CMyWindPeek)theWindow: // cast theWindow to 
II a MyWi ndPeek 

theType = theWindPeek->theWindType: 

if ( theType =- kDrawWindowType ) 
gCurrentDrawWindow = theWindow: 

As it does for updates, the Event Manager places a pointer to the win
dow that is being activated in the message element of the EventRecord. 
After your program has a pointer to this window, it should typecast it to 
a variable of MyWi ndPeek type so that the theWi ndType field of the 
MyWi ndRecord structure can be accessed. If the window that is activated 
is a drawing window, set the global gCurrentDrawWi ndow variable to 
point to it. That way you always know which drawing window was the 
most recently activated. Figure 4.10 summarizes the program flow from 
the start of the event to the pointer that's set to point to the activated 
window. The light arrows in the figure serve as a reminder that 
Eventloop() handles events of types other than acti vateEvt. 

When your program opens a window with GetNewWindowC ), it should ini
tialize the application-specific field information in the window's data struc
ture. For this example, that means that the call to GetNewWi ndow() that is 

ft 0 T E used to open a drawing window would be followed by code like this: 

theWindow = GetNewWindowC rDrawWindow. theStorage, CWindowPtr)-ll >: 
theWindPeek = (MyWindPeek)theWindow: 

theWindPeek->theWindType = kDrawWindowType: 
theWindPeek->isDrawnln = false; 



Chapter 4 • Working with Windows 

H: .: ·~~~~~~~F] 

[/ ' ~ 

Figure 4.10 Using an activate event to keep track of the 
current drawing window. 

Updates and Multiple Windows 
All of the window updating information you read for single-window 
programs applies to programs with more than one window. If you have 
different types of windows, as in the drawing example, you'll want to 
have separate routines to update each. Handl eUpdate() then becomes a 
branching point: 

//define 
fldefi ne 

kControlWindowType 
kOrawWindowType 

1 
2 

void HandleUpdateC EventRecord theEvent 
{ 

WindowPtr theWindow; 
MyWindPeek theWindPeek; 
short the Type; 

II Window to update 
II Access to the window type 

201 



202 
Macintosh Programming Techniques. ZE 

theWindow = CWindowPtr)theEvent.message: 

theWindPeek = (MyWindPeek)theWindow: 
theType = theWindPeek->theWindType: 

if ( theType =- kDrawWindowType ) 
UpdateDrawWindow( theWindow >: 

else 
UpdateControlWindow( theWindow ): 

Both update routines begin by getting and saving the ports. They then 
perform all the text and graphics drawing tasks necessary for a window 
of the type being updated. Each routine nests this code between calls to 
the Toolbox functions Begi nUpdate() and EndUpdate( ). Figure 4.11 
shows updating when more than one window is present. 

When a mouse-click makes 
this window active, an 
update event Is generated 

BeginUpdate () sets the 
vlslble region to the part that 
was hidden 

Your routine that draws the 
window contents Is called, but 
QuickOraw limits drawing to 
the visible area 

Figure 4.11 Updating a window in a multiple-window program. 

As a working example of the multiple-window techniques just dis
cussed, this chapter presents MultiWindows. As its name suggests, this 



Chapter 4 • Working with Windows 

program is capable of displaying multiple windows. MultiWindows will 
put two types of windows on the screen: a control window and a draw
ing window. Additionally, the program will open more than one draw
ing window. Figure 4.12 is a screen shot of the windows you'll see when 
you run MultiWindows. 

~ Control,.Window-~ 

l I Draw I I Cleer I 
Draw Window J 

Draw Window ] 
Draw Window 

'--I 

---
Figure 4.12 MultiWmdows program in action. 

MultiWindows allows the user to draw a pattern or erase an existing pat
tern in any one of the three drawing windows. The last drawing window 
selected will be the window where the action takes place. 

Program Resources: MultiWindows.rsrc 
The MultiWindows program has just two resources, both of type WIND. 
The WIND with ID 128 will be used for the control window, while WIND 
129 will serve as the template for each of the drawing windows. Figure 
4.13 shows the two resources. 

ZOJ 



204 
Macintosh Programming Tcrchnlquvs. 2E 

MultiWindows.rsrc J 
.l .l 

C"'] ED • ED w~EN~IDE~12e 
gj •t:eLJ~ WINDID = l29 

WIND ~ ~•C:CLJD 
I I 

D 
Top: 145 I Height: 130 I 
left: Is I Width: I• eo I Top: loo I Height:~ 

left : ! oo I Width:~ 

Figure 4.13 The two WIND resources for MultiWindows. 

Program Listing: MultiWindows.c 
Here is the source code listing for MultiWindows, in its entirety. A walk
through of the program follows. 

//~~~~~~~~~~~~~~~~~~~~~~~~ 
II 

void InitializeToolboxC void ); 
void In itializeVariables( void ); 
void SetWi ndowDragBounda ries( void ); 
void Event Loop( void ) : 
void HandleMouseDown( EventRecord >: 
void HandleUpdate( EventRecord ); 
void Handl eActi vate( Event Record ) : 
void OpenContro l Wi ndowC voi d ) ; 
void OpenDrawWi ndow( void ) ; 
void HandleControlWindow( WindowPtr , Point ); 
void UpdateControlWindowC WindowPtr ); 
void UpdateDrawWindow( WindowPtr ) ; 



Chapter 4 • Working with Windows 

OrawSomething( WindowPtr ); 
CloseOneWindowC WindowPtr ); 
SetWindowType( WindowPtr, short ): 

void 
void 
void 
short 
void 
Boolean 

OetermineWindowTypeC WindowPtr ); 
SetOrawnlnFlag( WindowPtr, Boolean ): 

/Jdefi ne 
//define 
/ldefine 
fldefi ne 
/ldefi ne 
/Jdefi ne 
/Jdefi ne 
#define 
//define 
/ldefine 
/ldefine 
/Jdefi ne 
/Jdefi ne 

DetermineOrawnlnFlag( WindowPtr ): 

rControlWindow 
rOrawWindow 
kControlWindowType 
kOrawWindowType 
kMaxWindows 
kWindowleft 
kWindowTop 
kWindowOffset 
kOragEdge 
kControlWindowTitle 
kOrawWindowTitle 
kOrawButtonTitle 
kClearButtonTitle 

typedef struct 
{ 

WindowRecord 
short 
Boolean 

theWindRecord: 
theWindType: 
isOrawnln: 

MyWindRecord, *MyWindPeek; 

Boolean 
Ptr 
WindowPtr 
short 
Re ct 
Re ct 
short 
Re ct 

gAllDone = false: 
gWindStorage: 
gCurrentDrawWindow: 
gWindowType: 
gOrawRect; 
gClearRect: 
gNumOrawWindsOpen: 
gOragRect; 

128 
129 

1 
2 
4 

30 
100 

20 
10 

"\pControl Window" 
"\pOraw Window" 
"\pOraw" 
"\pClear" 

zos 



Z06 
Macintosh Programming Techniques. ZE 

void main( void ) 
{ 

} 

MaxApplZone(): 
MoreMasters(); 
MoreMasters{); 
MoreMasters{): 

InitializeToolbox{): 
InitializeVariables{): 
SetWindowDragBoundaries(): 

OpenControlWindow(): 
OpenDrawWindow(): 
OpenDrawWindow(): 
OpenDrawWindow(): 

Eventloop(): 

void InitializeVariables( void ) 
{ 

gWindStorage = NewPtrC kMaxWindows * ( sizeof C MyWindRecord ) ) ); 

gNumDrawWindsOpen = 0: 

SetRectC &gDrawRect. 20, 6, 80, 23 >: 
SetRect( &gClearRect, 100, 6, 160, 23 >: 

} 

void SetWindowDragBoundaries( void ) 
{ 

gDragRect = qd.screenBits.bounds: 
gDragRect.left += kDragEdge: 
gDragRect.right -= kDragEdge: 
gDragRect.bottom -= kDragEdge: 



void OpenControlWindow( void ) 
{ 

WindowPtr theWindow; 
Ptr theWindStorage; 

theWindStorage = gWindStorage; 

Chapter 4 • Working with Windows 

theWindow ~ GetNewWindow( rControlWindow, theWindStorage, 
(WindowPtr)-lL ); 

if ( theWi ndow == nil ) 
Exi tToShell (): 

SetDrawnlnFlag( theWindow, false ); 
SetWindowType( theWindow, kControlWindowType ); 

SetWTitle( theWindow, kControlWindowTitle ); 
ShowWindow( theWindow ); 

void OpenDrawWindow( void ) 
{ 

WindowPtr theWindow: 
Ptr theWindStorage; 
short theleft, theTop; 
long theAddressOffset; 

theAddressOffset ~ ( 1 + gNumDrawWindsOpen ) * ( sizeof( 
MyWindRecord ) ); 
theWindStorage = gWindStorage + theAddressOffset; 

theWindow = GetNewWindow( rDrawWindow, theWindStorage, CWindowPtr)-ll 
) ; 

if ( theWi ndow ...... ni 1 ) 
ExitToShell(); 

SetDrawnlnFlag( theWindow, false ); 
SetWindowType( theWindow, kDrawWindowType ); 

1.01 



208 

} 

Macintosh Programming Techniques. ZE 

SetWTitle( theWindow. kDrawWindowTitle >: 
theleft = kWindowleft + C gNumDrawWindsOpen * kWindowOffset ); 
theTop = kWindowTop + C gNumDrawWindsOpen * kWindowOffset >: 
MoveWindowC theWindow. theleft. theTop. true >: 
ShowWindowC theWindow >: 

gNumDrawWindsOpen++: 

void Eventloop( void ) 
{ 

EventRecord theEvent: 

while ( gAllDone == false 
{ 

WaitNextEvent( everyEvent. &theEvent. ISL. nil ) : 

switch C theEvent.what 
( 

case mouseDown: 
HandleMouseDownC theEvent ): 
break: 

case updateEvt: 
HandleUpdate( theEvent): 
break: 

case activateEvt: 
HandleActivate( theEvent >: 
break: 

void HandleActivateC EventRecord theEvent ) 
{ 

WindowPtr theWindow: 

theWindow = C WindowPtr )theEvent.message: 



Chapter 4 • Working with Windows 

gWindowType = DetermineWindowType( theWindow ); 

if C gWindowType """"" kDrawWindowType 
gCurrentDrawWindow = theWindow; 

void HandleUpdate( EventRecord theEvent ) 
{ 

WindowPtr theWindow; 

theWindow - C WindowPtr )theEvent.message; 
gWindowType = DetermineWindowType( theWindow ); 

if ( gWindowType ...... kDrawWindowType ) 
UpdateDrawWindow( theWindow ); 

else 
UpdateControlWindow( theWindow ); 

void UpdateControlWindow( WindowPtr theWindow ) 
{ 

GrafPtr theSavePort; 

GetPortC &theSavePort ); 
SetPortC theWindow ); 
BeginUpdate( theWindow ); 

FrameRect( &gDrawRect ); 
MoveToC gDrawRect.left + 15, gDrawRect.bottom - 4 ); 
Drawstring( kDrawButtonTitle ); 
FrameRectC &gClearRect): 
MoveToC gClearRect.left + 15, gClearRect.bottom - 4 >: 
Drawstring( kClearButtonTitle >: 

EndUpdateC theWindow ); 
SetPort( theSavePort >: 

209 



210 
Macintosh Programming 'nlchnlqua. 2E 

void UpdateDrawWindowC WindowPtr theWindow 
{ 

} 

GrafPtr theSavePort: 

GetPortC &theSavePort ): 
SetPort( theWindow >: 
BeginUpdate( theWindow ); 

if ( DetermineDrawninFlag( theWindow ) ) 
DrawSomething( theWindow ): 

EndUpdate( theWindow >: 

SetPort( theSavePort >: 

void DrawSomething( WindowPtr theWindow 
{ 

GrafPtr theSavePort: 
Rect theRect: 
short i: 

GetPortC &theSavePort ): 
SetPortC theWindow >: 

for ( i - 1: i <- 10: i++ 
{ 

SetRect( &theRect, i*S. i*S. i*S+lOO, i*S+lOO >: 
FrameRect( &theRect >: 

} 

SetPort( theSavePort >: 

void HandleMouseDownC EventRecord theEvent > 
{ 

WindowPtr theWindow: 
short thePart: 

thePart - FindWindowC theEvent.where. &theWindow >: 



} 

Chapter 4 • Working with Windows 

switch ( thePart ) 
{ 

) 

case inMenuBar: 
break; 

case inDrag: 
DragWindow( theWindow. theEvent.where. &gDragRect ); 
break: 

case inGoAway: 
if ( TrackGoAway( theWindow, theEvent.where ) ) 

CloseOneWindow( theWindow ): 
break: 

case inContent: 
if ( theWindow !~ FrontWindow() 

SelectWindow( theWindow ): 
else 
{ 

gWindowType - DetermineWindowType( theWindow ): 
if C gWindowType -- kControlWindowType > 

HandleControlWindow( theWindow, theEvent.where >: 
) 

break: 

void HandleControlWindowC WindowPtr theWindow. Point thePoint ) 
{ 

GrafPtr theSavePort: 

SetPort( theWindow ); 
GlobalTolocal( &thePoint ); 

if C PtlnRect( thePoint. &gDrawRect ) ) 
( 

InvertRect( &gDrawRect ); 
if C DetermineDrawnlnFlag( gCurrentDrawWindow ) ...... false ) 
( 

DrawSomethingC gCurrentDrawWindow ): 
SetDrawnlnFlag( gCurrentDrawWindow, true ); 

211 



ZlZ 

} 

Macintosh Programming Technlqaes. JE 

InvertRect( &gDrawRect ); 
} 

if C PtlnRect( thePoint, &gClearRect ) ) 
{ 

InvertRect( &gClearRect ); 
if ( DetermineDrawnlnflag( gCurrentDrawWindow ) =- true ) 
{ 

} 

GetPortC &theSavePort ); 
SetPort( gCurrentDrawWindow ); 
EraseRect( &gCurrentDrawWindow->portRect ); 
SetDrawnlnFlag( gCurrentDrawWindow, false ); 
SetPort( theSavePort ); 

InvertRect( &gClearRect >: 

void SetWindowType{ WindowPtr theWindow, short theType ) 
{ 

} 

MyWindPeek theWindPeek: 

theWindPeek = CMyWindPeek)theWindow: 
theWindPeek->theWindType - theType; 

''~~~~~~~~----~--~--~~~~------~~~-

short DetermineWindowType{ WindowPtr theWindow 
{ 

MyWindPeek theWindPeek: 

theWindPeek = CMyWindPeek)theWindow: 
return C theWindPeek->theWindType >: 

void SetDrawnlnFlag{ WindowPtr theWindow, Boolean theDrawnFlag ) 
{ 



} 

Chapter 4 • Working with Windows 

MyWindPeek theWindPeek: 

theWindPeek = CMyWindPeek)theWindow: 
theWindPeek->isDrawnln - theDrawnFlag: 

Boolean DetermineDrawnlnFlag( WindowPtr theWindow ) 
{ 

MyWindPeek theWindPeek: 

theWindPeek - CMyWindPeek)theWindow: 
return ( theWindPeek->isDrawnln >: 

void CloseOneWindowC WindowPtr theWindow 
{ 

HideWindow( theWindow >: 
CloseWindowC theWindow >: 
DisposePtr( C Ptr )theWindow >: 
gA 11 Done = true: 
gNumDrawWindsOpen-: 

void InitializeToolboxC void 
{ 

InitGraf( &qd.thePort ): 
InitFontsC>: 
I ni tWi ndows (): 
InitMenus(): 
TEinit(): 
InitDialogs( OL ): 
FlushEvents( everyEvent. 0 >: 
InitCursor(): 

113 



214 
Macintosh Programming Techniques. ZE 

Stepping Through the Code 
Now, a walkthrough of the MultiWindows code, with emphasis on the 
new material. 

The define Diredives 
MultiWindows opens two types of windows, each defined by a WI ND 
resource template. Their resource IDs are defined in the source code by 
the constants rControl Window and rDrawWi ndow. To distinguish 
between the two window types, MultiWindows calls one a 
kControl Wi ndowType and the other a kDrawWi ndowType. The constant 
kMaxWi ndows exists to tell the program the maximum number of win
dows that will be open. The titles to the two window types and the two 
buttons are kept in the constants kCont ro 1 Wi ndowTi t 1 e, 
kDrawWindowTitle, kDrawButtonTitle, and kClearButtonTitle. 
After loading a drawing window, and before displaying it, the program 
moves the window on the screen to stagger it from other open drawing 
windows. The constants kWi ndowleft, kWi ndowTop, and 
kWi ndowOffset help there. The constant kDragEdge defines a pixel 
buffer that prevents a window from going completely off screen. 

//define 
//define 
//define 
//define 
//define 
//define 
//define 
//define 
//define 
//define 
//define 
//define 
//define 

rControlWindow 
rDrawWindow 
kControlWindowType 
kDrawWindowType 
kMaxWindows 
kWindowleft 
kWindowTop 
kWindowOffset 
kDragEdge 
kControlWindowTitle 
kDrawWindowTitle 
kDrawButtonTitle 
kClearButtonTitle 

128 
129 

1 
2 
4 

30 
100 

20 
10 

"\pControl Window" 
"\pOraw Window" 
"\pDraw" 
"\pClear" 



Chapter 4 • Working with Windows 

You could use rControlWi ndow and rOrawWi ndow as both WINO resource IDs 
and window type references-that would eliminate the need for the 
kControl Wi ndowType and kOrawWi ndowType constants. If you decide to add 
new window types to the program, however, you'll find it works better to 
use a separate set of constants for the WIND IDs and the window types. That's 
because it might make sense to use the same WIND for different window 
types. For example, the MultiWmdows program could have a drawing win
dow, text window, and pie chart window that all used WIND 128. 

Global Data 1Jpes 
This chapter devoted several pages to the description of a strategy that 
would allow a program to be able to distinguish one type of window 
from another. The MyWi ndRecord struct and the MyWi ndPeek that 
point to it are defined here exactly as they were earlier in this chapter. 

typedef struct 
{ 

WindowRecord 
short 
Boolean 

theWindRecord: 
theWindType: 
isDrawnin: 

} MyWindRecord, *MyWindPeek: 

Global Variables 
As with all chapter examples, MultiWindows looks to the global variable 
gA 11 Done to know when to quit. The program sets up rectangle 
gDragRect to prevent a window from disappearing off the screen. The 
program uses gCurrentDrawWi ndow to keep track of the drawing win
dow that was clicked on last. Variable gNumDrawWi ndsOpen is used to 
stagger the drawing windows as they open, as well as in the determina
tion of where in memory a new drawing window should be stored. The 
control window has two rectangles that serve as buttons. The gDrawRect 
and gCl ea rRect variables hold the boundaries of these rectangles. 

215 



216 
Macintosh Programming Technlqaa. ZE 

Boolean 
Ptr 
WindowPtr 
short 
Re ct 
Re ct 
short 
Re ct 

gAllDone = false: 
gWindStorage: 
gCurrentDrawWindow: 
gWindowType: 
gDrawRect: 
gClearRect: 
gNumDrawWindsOpen: 
gDragRect: 

The main() Function 
Like most good ma i n ( ) functions, this one is short and simple. First, it 
calls the usual memory-related Toolbox functions. Then three applica
tion-defined initialization routines are invoked. You're already quite 
familiar with I nit i a 1 i zeTool box(). The SetWi ndowDragRectangl e() 
was developed in this chapter. The In i ti a 1 i z e Va r i ab 1 es ( ) routine 
groups together a few miscellaneous one-time assignments. While it's a 
very short routine, In i ti a 1 i z e Vari ab 1 es ( ) deserves a closer examina
tion, which it gets just after the remainder of ma i n ( ) is covered. 

MultiWmdows opens four windows-one control window and three 
drawing windows. The best way to display the windows is to put the con
trol window on the screen, then to let the user select as many drawing win
dows as desired from a File menu. Menus aren't discussed until Chapter 6, 
so MultiWmdows simply calls the application-defined OpenDrawWi ndow() 
function three times to simulate three menu selections. The ma i n C ) function 
ends with a call to the ever-faithful Eventloop( )-the function that holds 
the whi 1 e loop that drives the program. 

void main( void ) 
{ 

MaxApplZone(): 
MoreMasters(): 
MoreMasters(): 
MoreMasters(): 

InitializeToolbox(): 
InitializeVariables(): 
SetWindowDragBoundaries(): 

OpenControlWindow(): 
OpenDrawWindow(): 



OpenOrawWindow(); 
OpenOrawWindow(); 

EventLoopC); 

Global Variable Initializations 

ChGpter 4 • Working with Windows 

Ini ti a 1 i zeVa ri ables () sets the global variable gNumOrawWi ndsOpen to 
0. As each drawing window is opened, this variable will be incremented. 
The two global Rect variables, gDrawRect and gCl ea rRect, are given 
their coordinates in In i ti a 1 i z e Va r i ab 1 es ( ) . Later in the program, these 
two rectangles will be used when drawing the two buttons in the control 
window. 

void InitializeVariables( void ) 
{ 

gWindStorage = NewPtr( kMaxWindows * ( sizeof( MyWindRecord ) ) ); 

gNumOrawWindsOpen - 0; 

SetRect( &gOrawRect, 20, 6, 80, 23 ); 
SetRect( &gClearRect, 100, 6, 160, 23 ); 

The first assignment in I n i ti a 1 i z e Va r i ab 1 es ( ) requires the most 
explanation-it might not be immediately apparent as to what's taking 
place here: 

gWindStorage - NewPtr( kMaxWindows * ( sizeof( MyWindRecord ) ) ); 

In Chapter 2, you saw that to avoiding memory fragmentation is 
ensured by to reserving a block of nonrelocatable memory at application 
startup. When the program is to open a window, the block of memory 
that is to hold that window's record should be allocated from this block. 
In this chapter, you saw an example that did just that for a window that 
used the application-defined MyWi ndRecord structure rather than 
Apple's Wi ndowRecord structure: 

/Jdefine rOrawWindow 129 

WindowPtr theWindow; 

117 



218 

\ 

Macintosh Programming Techniques. ZE 

Ptr theStorage; 

theStorage = NewPtr( sizeof( MyWindRecord ) ); 

theWindow = GetNewWindow( rDrawWindow. theStorage, CWindowPtr)-lL ); 

While the above approach works for opening a single window, it isn't 
sufficient for opening multiple windows. For that, your program should 
reserve a block larger than a single MyWi ndRecord-it should reserve a 
block large enough to hold all of the windows that will eventually be 
opened by the program. For the MultiWindows program, that means the 
block should be large enough to hold four MyWi ndRecord structures
one for the control window and one for each of the three drawing win
dows. That's exactly what the first line in Initial i zeVari ables() 
does. Keeping in mind that the constant kMaxWi ndows is defined to have 
a value of 4, and that gWi ndStorage is a global Ptr variable, take anoth
er look at the memory allocation: 

gWindStorage - NewPtr( kMaxWindows * ( sizeof( MyWindRecord ) ) ); 

In Figure 4.14, the MultiWindows program has been run from the 
CodeWarrior development environment, with its debugger on and a 
breakpoint set on the statement that allocates the block of memory. After 
stepping once to execute this statement, memory might look something 
like that pictured to the right of the debugger window. 



Chapter 4 • Working with Windows 

I "=ii: 

' 
r 

The global Ptr variable gWindstorage '~ 
is assigned a block of memory to point to 

.. · . Mult1Wlndows68K ~Ii 

~ 
~ gCleerRect OxOOEAAEl\E 0 
~ 9Dre.,..Rect Ox00EAAE86 

QNumOnt.'Wl rd;()~ 0 
~ 9WlndStorege DxOOE87654 imr-= 

;I void lnl ti al lzeVarlablesC void > t 
{ 

QlllndSlor<>oe = Ntd'lr< kMox Windo,.. • < ~ 

-· gNumOrawUlndsOpen • O; ~ k::-: le.I - Se tAec t C &QOrowRec t, 20, f» 80 ~ 23 ) ; li•fJ ~ 

- SelRtcl< 1L9ClearRect, 100, O, 100, 23 );~ 

T QI Li ne: 121 Source ... _l~lllU·?~::i;,;,,~ Ill 

Figure 4.14 Reserving a block of memory, as seen from 
the CodeWarrior debugger. 

A nonrelocatable 
block of memory 
the size of four 
MyWindRecord 
data structures 

The global Ptr variable gWi ndStorage points to the start of the newly 
allocated block. As you 'll soon see, when a window is to be opened, 
MultiWindows will use this pointer in setting up the memory area for 
the new window. 

219 



220 
Macintosh Programming Technlqaa, ZE 

Opening a Control Window 
When MultiWindows opens a new window it reserves memory the size 
of MyWi ndRecord rather than the size of the Macintosh C type 
Wi ndowRecord. This allows it to store the type of the window and a flag 
that tells whether the window has a drawing in it. The application
defined function OpenControl Window() does all of that. It also changes 
the title that appears in the window's title bar from "Untitled" to the 
more descriptive title "Control Window." 

First, take a look at how OpenCont ro 1 Window ( ) reserves memory for 
the control window, and then loads that window to memory: 

WindowPtr theWindow: 
Ptr theWindStorage: 

theWindStorage = gWindStorage: 
theWindow = GetNewWindowC rControlWindow. theWindStorage. 

(WindowPtr)-lL >: 

The memory location OpenControl Window() chooses for the control win
dow is that area pointed to by gWi ndStorage. Notice that NewPtr() isn't 
called here. As you saw just before, NewPtr() was called in 
Ini ti a 1 i zeVa ri ables ()to allocate the one block of memory that is large 
enough to accommodate four MyWi ndRecord data structures. Passing the 
address of this block to GetNewWi ndow() tells the Window Manager to 
place the control window at the start of this block, as shown in Figure 4.15. 



Chapter 4 • Working with Windows 

The structure that holds the control 
window data is to be placed at the 
start of the block of reserved memory 

Mult1Wlndows68K ii_ 

void OpenConlrolWlndo"< void ) 
{ 

W I ndowP lr lheW I ndow; 
Plr lhel-llndSlorage; 

• 1 lheW i ndS lo rage ~ gW i ndS lorage; ~ -1+ lheWindow • GelNawWlndow< rConlrolWlndo•-0-

fllID Line: 186 Source • 1<>1ml T¢- QI 

Figure 4.15 Placing the control window data structure at 
the start of the reserved memory block. 

As you'll see, the first drawing window that opens will get loaded just 
above the control window in the reserved block of memory. 

ZZl 



zzz Macintosh Programming Techniques. ZE 

After loading WIND resource data into memory, OpenContro 1 Window() calls 
the application-defined functions SetDrawn In Flag C ) and SetWi ndowType C ) to 
initializethevaluesofthecontrol window's i sDrawnln and theWi ndType fields. 
These two functions will be described a little latet: 

The OpenControl Window() function ends by setting the control win
dow's title to reflect the nature of the window. A call to the Toolbox func
tion SetWTi t 1 e () makes this change. Finally, a call to ShowWi ndow() 
displays the initially invisible window. 

void OpenControlWindow( void ) 
( 

WindowPtr theWindow: 
Ptr theWindStorage: 

theWindStorage - gWindStorage: 
theWindow - GetNewWindowC rControlWindow, theWindStorage, 

CWindowPtr)-lL >: 

if { theWi ndow == nil ) 
ExitToShellC): 

SetDrawninFlag( theWindow. false >: 
SetWindowTypeC theWindow. kControlWindowType ); 

SetWTitleC theWindow. kControlWindowTitle ): 
ShowWindow{ theWindow ); 

Opening a Drawing Window 
Opening a drawing window involves all of the same steps as opening a 
control window, and a few more. First, the determination of where in 
memory the window should reside requires an extra step: 



Chapter 4 • Working with Windows 

WindowPtr theWindow: 
Ptr theWindStorage: 
long theAddressOffset: 

theAddressOffset a C 1 + gNumDrawWindsOpen ) * 
C sizeofC MyWindRecord ) ): 

theWindStorage - gWindStorage + theAddressOffset: 

theWindow - GetNewWindowC rDrawWindow. theWindStorage. 
CWindowPtr)-lL >: 

The control window was opened first, so it was placed at the start of the 
memory reserve. Recall that the starting address for the control window 
was set to match the pointer value gWi n d Storage, which happened to be 
OxOOE87654 in this running of the program. Refer back to Figure 4.15 if 
you need to confirm that. The first drawing window should be placed in 
the memory reserve just after the control window. The first line of 
OpenDrawWi ndow() calculates the offset from the start of the reserve: 

theAddressOffset ~ C 1 + gNumDrawWindsOpen ) * 
( sizeof( MyWindRecord ) ); 

The offset is the number of open windows, times the memory used by 
one window. Because the control window was opened first, you know 
there is at least one window open. The global variable 
gNumDrawWi ndsOpen holds the number of drawing windows that are 
open. Because this is the first time OpenDrawWi ndow() is being called, 
gNumDrawWi ndsOpen still has its initial value of 0. That means the offset 
will be 1 times the size of MyWi ndRecord. Now add that offset to the base 
address of the memory reserve to define the starting ~ddress for the first 
drawing window. Figure 4.16 illustrates this. 

theWindStorage - gWindStorage + theAddressOffset: 

ZZJ 



224 
Me1clntosh Progre1mming Tvchnlquvs. 2E 

The structure that holds the first drawing 
window data is to be placed just after (above) 
the structure that holds the control window 
data in the block of reserved memory 

:Im Mult1Windows68K § ~~ 

LJ 
theAddressOffset l t 60 ~ the left . 160 
the Top !o 

I> theWindStorll<)e IOxOOE876F4 

I> ~~!ndo'!. __ ,_Ox_~~_Qp_~P.Q.Q_I 11 
~~penlO 

I> gWindStorege ! oxOOE8765~ 

i! '-"": 
void OpenOrawll i nd01J< void > ,.... 

- ( 
WlndOOll'lr lhell i ncto.; 
Plr lhe'-1 i ndS torage; 
short lhalefl, lheTop; 
I ong lheAddressOffsel; 

- lheAddressOffsel = < 1 + gNumOrallllln~~~ ~ ., lhtllU ndS lorogtt = gW I ndS loNl9• + lhtlAddro 
,.... 

-i• lh•lllndow = GelNewWlndow< r DrawWindow, ti 
llIJ[ID Lt ne: 2 12 ] Source '"' l~(.:~:J.1!! II 

·-

]

First 
drawing 
window 

] 

Control 
window 

Figure 4.16 Placing the first drawing window data structure just after the control win
dow in the reserved memory block. 

Figure 4.16 shows that the starting address for the control window is 
Ox00E87654 and the starting address for the drawing window is 
Ox00E876 F4. While it isn't likely that the Metrowerks compiler made a 
mistake, it is possible that the author did, so you might want to confirm 
that the memory allocation plan is sound! Here's how. Begin by running 
MultiWindows from your development environment, with its debugger 
turned on. 

To see if the reserved memory is being used as planned, determine the 
size of the MyWi ndRecord data structure. Your development environment 
can easily do that for you. If you use Code Warrior, select Show Expressions 
from the Window menu, then choose New Expression from the Data menu. 
Now type in the expression you want the debugger to calculate. The top of 
Figure 4.17 shows that typing in" s i zeof ( MyWi ndRecord)" and then press
ing the Return key results in a display of the number 160--the size of any 
MyWi ndRecord. If you use a Symantec IDE, just type the expression in the 



Chapter 4 • Working with Windows 

debugger's Data window and press return. As shown in the bottom of 
Figure 4.17, the value 160 will be displayed. 

r21 
H 0 T E 

Using the Metrowerks CodeWarrior JOE 

~ EHpressions ~ 
Expression Value 

160 i1£ 
~ 
'ii 

Using the Symantec Project Manager JOE 

Data Iii] 

11 10~ 
s izeof< MyWindRecord ) 160 ~ 

izy 
~ 

Figure 4.17 Evaluating an expression in both the Metrowerks and 
Symantec debuggers. 

At the time of this writing, the Apple-defined data type Wi ndowRecord has a 
size of 156 bytes-you can verify this by doing a si zeof(Wi ndowRecord) in 
your debugger. This is as you'd expect. Both of the fields that are added to 
the Wi ndowRecord field to make up the MyWi ndRecord structure are two 
bytes (a s hort occupies two bytes, as does a Boolean), so the total size of 
MyWi nd Record is 160 bytes. Note that "at the time of this writing" a 
Wi ndowRecord occupies 156 bytes. Apple reserves the right to change the size 
of its data structures-that's something that may be necessary when a new 
operating system such as Copland (System 8) is being developed. The possi
bility of a data structure being redefined is the reason NewPtr<) and 
NewHandle () should always be passed the value returned by sizeof() 
rather than a hard-coded numerical value such as 160. 

Knowing the base address of the reserved memory and the size of a 
MyWi ndRecord structure is all you need to determine if the drawing win
dow ended up in the anticipated area of memory. Since the first drawing 
window is expected to follow the control window in memory, adding the 

zzs 



226 
Macintosh Programming Tvchniquczs, ZE 

size of the control window to the base address should result in the start
ing address of the drawing window. Of course, since addresses are 
expressed as hexadecimal numbers, your addition should be in hexadec
imal. For this, you'll of course use the handy PCalc utility, developed by 
James Thomson and found on the CD that accompanies this book-right? 
Figure 4.18 shows that PCalc is a very slick version of a programmable 
scientific calculator. Here's how to make the check using PCalc: 

1. Press the Dec button, then enter 160. 

2. Press the Hex button to convert 160 decimal to a hexadecimal 
value. 

3. Press the plus ( +) key. 

4. While still in Hex mode, enter the base address. For this exam
ple, that's E87654. 

5. Press the equal(=) key. 

Figure 4.18 shows the result of the addition. Compare this value, 
OxOE876F4 with the address shown for theWi ndStorage in the debug
ger window of Figure 4.15. Unsurprisingly, its a match. The drawing 
window does indeed follow the control window in memory, so the mem
ory allocation scheme used by MultiWindows works. 

r nn1-1-1 I I co 101--1 I 
!''. '"···-··· ·-;····-·-.;·-····.:···-· ·:· ·-· ·····-· ...... -· ·· ·f 

.m :m ,ll!l ;till i!ll .! Pca1c : 
1·~-niii·r~~• :-rr.mf: a1·· -~--
1ru o u im m :lfml ·a . m -r··'--·· .......... _ .... ..;. -.. ~-- _ ..... -··· --· .· ·-- ... _--------· -··· ........ -
·uoo'am m1 mmm 
!uou:amm .~m1 1m .mm 
jD ·.DD!talmlJW(!Hmra . 
i~Bllm :D. 11:,W ~~ ~!EID 

Figure 4.18 The PCak calculator utility. 



Chapter 4 • Working with Windows 

Egads-that seems like an awful lot of work just to toss a window into mem
ory! Sure it is, but you don't have to go through all of that effort. This 
painstaking walkthrough exists only to enhance your understanding of 
Macintosh memory. Once you have a grasp of how memory is reserved and 
how data structures are stored in memory, you won't need to expend a large 
amount of time on such matters. 

Each time OpenDrawWi ndow() is called, the starting address for the new 
window that is about to be opened is recalculated. Each new window 
will be given a slice of the reserved block-just above the last window to 
be opened. 

Notice that MultiWindows' memory management scheme is tailored 
to this one program. For instance, it assumes that the program will 
always open a control window first-that's why the first drawing win
dow is placed 160 bytes from the start of the memory reserve. 
MultiWmdows also assumes there'll be up to four windows open at one 
time-that's why it starts by reserving a block of nonrelocatable memo
ry the size of four MyWi ndRecord structures. 

What if the MultiWindows program were to allow more windows to 
be opened at one time-say, up to six windows? One solution would be 
to simply change the value of kMaxWi ndows from 4 to 6. Then the appro
priate sized block would be reserved. What if the program were to allow 
any number of windows to be opened at one time, such as one, two, 
three, or thirty? How large a block should MultiWindows then reserve? 
One simple solution would be to reserve a block that would accommo
date most users. That might be the size of ten MyWi ndRecord structures
one for the control window and one for nine drawing windows. If 
gNumDrawWi ndsOpen ever exceeded nine, then GetNewWi ndow() could 
be called with a value of n i 1 as the second parameter. That would tell 
the Wmdow Manager to take care of the memory allocation. The perti
nent snippet is shown here: 

if C gNumDrawWindsOpen < 10 ) 
{ 

theAddressOffset = C 1 + gNumDrawWindsOpen ) * 

227 



ZZI 
Macintosh Programming Techniques. ZE 

( sizeof( MyWindRecord ) >: 
theWindStorage c gWindStorage + theAddressOffset: 

} 

else 
( 

theWindStorage =nil: 
} 
theWindow = GetNewWindow( rDrawWindow, theWindStorage, (WindowPtr)-ll >: 

While the preceding approach may result in something you'd rather 
avoid-allocation of nonrelocatable blocks that may not be low in mem
ory-it can be considered a happy medium: under most circumstances, 
all of the windows will end up low in memory in the reserved block. 
Only in the unusual event where the user opens ten or more windows 
will memory be allocated outside the reserved block. 

MultiWmdows doesn't allow for the closing and reopening of windows. What 
if it did? Then the memory management scheme would work as written. As 
long as gNumOrawWi ndsOpen was incremented at the opening of each new win

" 0 T E dow, and decremented at the closing of each open window, then the value cal-
culated for theAddressOffset in OpenDrawWi ndowC) would be correct. 

OpenDrawWi ndow() finishes up by setting the window's title, then pret
tying things up a little by offsetting the window from any other newly 
opened drawing windows. It uses the number of open windows in the 
calculation of the location for the new window. The more windows that 
are open, the greater the offset will be. 

void OpenDrawWindow( void ) 
( 

WindowPtr theWindow: 
Ptr theWindStorage: 
short theleft, theTop: 
long theAddressOffset: 

theAddressOffset = ( 1 + gNumDrawWindsOpen ) * 
( sizeof( MyWindRecord ) ); 

theWindStorage = gWindStorage + theAddressOffset: 

theWindow = GetNewWindow( rDrawWindow, theWindStorage, (WindowPtr)-lL >: 

if ( theWindow == nil 
Exi tToShel 1(); 



Chapter 4 • Working with Windows 

SetDrawnlnFlag( theWindow, false ); 
SetWindowTypeC theWindow, kDrawWindowType >: 

SetWTitle( theWindow, kDrawWindowTitle ); 
theleft = kWindowLeft + ( gNumDrawWindsOpen * kWindowOffset ): 
theTop = kWindowTop + ( gNumDrawWindsOpen * kWindowOffset ): 
MoveWindow( theWindow, theleft, theTop, true >: 
ShowWindow( theWindow >: 

gNumDrawWindsOpen++: 

Marking and Examining a Window 
This chapter's Multiple-Window Techniques section worked out a strat
egy for adding information to a window so that it can contain more data 
than a Wi ndowRecord alone. MultiWindows makes full use of this tech
nique. When the program creates a window, the application-defined 
function SetWi ndowType () is called. This routine receives a pointer to 
the new window and then marks the window as one of the program's 
two types, depending on the passed-in type value. To access the 
theWi ndType, the Wi ndowPtr variable is cast to a MyWi ndPeek variable. 
Figure 4.19 shows what happens with this typecasting. 

void SetWindowType( WindowPtr theWindow, short theType 
{ 

MyWindPeek theWindPeek: 

theWindPeek = ( MyWindPeek )theWindow: 
theWindPeek->theWindType = theType: 

All of the windows that open in MultiWindows use the application
defined MyWi ndRecord data structure rather than a standard 
Wi ndowRecord data structure. If a program used both structures, be 
aware that the typecasting of a Wi ndowPtr variable to a MyWi ndPeek 
variable must occur only with a Wi ndowPtr variable that you are sure 
points to a MyWi ndRecord structure. Otherwise, theWi ndPeek
>theWi ndType will acces~ unrelated memory that lies beyond the end of 
the Wi ndowRecord structure! 

229 



230 
Macintosh Programming Techniques. 2E 

I[ Ox03335500 JI theWindow 

iBDrawnin 

theWindType 

ref Con 

windowPic 

visible 

windowKind 

port 

Ox0333SSOO 

MyWindRecord 
accessible by 
(MyWindPeek)theWi ndow 

WindowRecord 
accessible by 
theWindow 

Figure 4.19 Typecasting a Wi nd owPtr to a MyWi ndPeek. 

If you understand SetWi ndowType (), you'll understand the next three 
routines. Instead of setting a window's type, Determi neWi ndowType () 
returns the a window's type. It does this by examining the theWi ndType 
field of the window structure referenced by the passed-in Wi ndowPt r 
variable. Determi neWi ndowType() returns the window type so that the 
program can make decisions based on the this information. 

short DetermineWindowType( WindowPtr t heWindow ) 
{ 

MyWi ndPeek theWi ndPeek; 

theWindPeek - (MyWindPeek)theWindow; 
return ( theWindPeek->theW indType ); 



Chapter 4 • Working with Windows 

The SetDrawnlnFlag() and DetermineDrawnlnFlag() w-ork in the 
same w-ay as the preceding t'Wo routines. 

void SetDrawninFlag( WindowPtr theWindow. Boolean theDrawnFlag ) 
{ 

MyWindPeek theWindPeek: 

theWindPeek = (MyWindPeek)theWindow; 
theWindPeek->isDrawnin = theDrawnFlag; 

Boolean DetermineDrawninFlag( WindowPtr theWindow ) 
{ 

MyWindPeek theWindPeek: 

theWindPeek = (MyWindPeek)theWindow: 
return ( theWindPeek->isDrawnin ); 

Event Handling 
To handle events, MultiWindow-s uses the Eventloop() routine that 
you're already familiar w-ith. The program responds to three types of 
events: mouseDown, updateEvt, and acti vateEvt. 

void Eventloop( void ) 
{ 

EventRecord theEvent: 

while ( gAllDone == false 
{ 

WaitNextEvent( everyEvent. &theEvent. 15L. nil ) : 

switch C theEvent.what ) 
{ 

case mouseDown: 
HandleMouseDown( theEvent ); 
break; 

case updateEvt: 
HandleUpdate( theEvent); 

231 



ZJZ 

} 

Macintosh Programming Techniques. ZE 

break: 

case activateEvt: 
HandleActivate( theEvent >: 
break: 

There is only one task that Handl eActi vate() is responsible for han
dling: setting gCurrentDrawWi ndow to point to the activated window
provided, of course, the window is a drawing window. 

void HandleActivate( EventRecord theEvent ) 
{ 

} 

WindowPtr theWindow: 

theWindow = ( WindowPtr )theEvent.message: 
gWindowType = DetermineWindowType( theWindow ): 

if ( gWindowType ...... kDrawWindowType 
gCurrentDrawWindow = theWindow: 

Because more than one drawing window will be open, the program 
should keep track of which one is active. The question might arise as to 
why the global window pointer gCurrentDrawWi ndow isn't set to point 
to the window that opens in OpenDrawWi ndow(). If a window just 
opened, it surely must be the active, or current, window-right? Right. 
But there's no need to make note of that in OpenDrawWi ndow( ). The 
opening of a new window triggers an activate event. A mouse click on 
an obscured draw window will also trigger an activate event. So both a 
click on a window and the opening of a new window will lead the pro
gram to Handl eActi vate( ). If gCurrentDrawWi ndow is updated in 
Handl eActi vate( ), the program is assured of keeping that variable 
pointing at the right window no matter how the window gets activated. 

If the event is an update event, MultiWindows determines the type 
of window the update is for. It then branches to the correct routine for 
further processing. 



Chapter 4 • Working with Windows 

void HandleUpdate( EventRecord theEvent 
{ 

WindowPtr theWindow: 

theWindow = C WindowPtr )theEvent.message; 
gWindowType = DetermineWindowTypeC theWindow ); 

if C gWindowType == kDrawWindowType ) 
UpdateDrawWindowC theWindow >: 

else 
UpdateControlWindow( theWindow >: 

The control window is updated by redrawing the two rectangles that 
serve as its buttons. Since drawing is taking place, Set Port C) is called to 
make the control window's port current. 

void UpdateControlWindow( WindowPtr theWindow ) 
{ 

GrafPtr theSavePort: 

GetPortC &theSavePort >: 
SetPort( theWindow ); 
BeginUpdate( theWindow ): 

FrameRect( &gDrawRect ); 
MoveTo( gDrawRect.left + 15. gDrawRect.bottom - 4 >: 
Drawstring( kDrawButtonTitle >: 
FrameRect( &gClearRect); 
MoveToC gClearRect.left + 15, gClearRect.bottom - 4 >: 
Drawstring( kClearButtonTitle >: 

EndUpdate( theWindow >: 
SetPort{ theSavePort ); 

Speaking of drawing buttons, did you notice that MultiWindows didn't 
explicitly draw them when the control window was opened back in 
OpenControl Window()? Yet, the buttons were drawn at that time. That's 
because GetNewWi ndow() highlights the new window, then generates 
both an activate and update event. Handl eActi vate() doesn't do any
thing related to the control window, but Handl eUpdate() calls 
UpdateControl Window(), which then draws and labels the rectangles. 
Figure 4.20 illustrates this. 

233 



ZJ4 
Macintosh Programming Techniques. ZE 

GetNeWWindow () 

r=l_ 
"V 

I HandleActivate () I 
HanciletJpdate () 

I UpdatecontrolWindow<>I 

EL 
'Z7 

Figure 4.20 GetNewWi ndow() triggers two events. 

When a new drawing window is opened, or an existing window is acti
vated or moved from off screen to on screen, an update event occurs and 
UpdateDrawWi ndow() is called. This routine checks the i sDrawn In field 
of the window that needs updating to see if a drawing is present. If a 
drawing is present, DrawSomethi ng() is called to redraw the graphics. 
Because drawing might take place, the port is set and calls 
Begi nUpdate() and EndUpdate() and update are made. 

void UpdateDrawWindow( WindowPtr theWindow 
{ 

GrafPtr theSavePort: 

GetPort( &theSavePort ); 
SetPortC theWindow ); 
BeginUpdate( theWindow ); 

if C DetermineDrawninFlag( theWindow ) ) 



Chapter 4 • Working with Windows 

DrawSomething( theWindow >: 
EndUpdateC theWindow >: 

SetPort( theSavePort >: 

Earlier in this chapter, you saw a routine named DrawSomethi ng() used 
to load a PICT resource and to display it to a window. Here, 
DrawSomethi ng() uses a loop to frame ten overlapping rectangles. 
You'll be able to come up with something much more interesting for 
your own program, but for this book's examples, simplicity rules. 

void DrawSomething( WindowPtr theWindow 
{ 

GrafPtr theSavePort: 
Rect theRect: 
short i: 

GetPortC &theSavePort ); 
SetPort( theWindow >: 

for ( i = 1; i (a 10: i++ 
{ 

SetRect( &theRect, i*5, i*S, i*5+100, i*5+100 >: 
FrameRect( &theRect ): 

} 

SetPort( theSavePort >: 

A click of the mouse is the third and final type of event MultiWmdows 
handles. Because there are no menus, the program ignores a click in the 
menu bar. Calls to the appropriate Toolbox routines are made to handle 
a mouse click in the various parts of a window. A mouse click in the con
tent of a window warrants more discussion. If the window was not 
active before the click, Sel ectWi ndow() is called and the event is then 
considered to be handled. If the window is already active, a check is 
made to see if the window is the control window. If so, it needs to be 
determined if the cursor was over one of the two control window rec
tangles at the time of the mouse button click. The where field of 
the Event holds the screen pixel coordinates of the cursor at the moment 
the mouse button was pressed, so this value is passed onto the applica
tion-defined Handl eControl Wi ndowC) routine for further processing. 

ZJS 



Z36 
Macintosh Programming Techniques. 2E 

void HandleMouseDownC EventRecord theEvent ) 
{ 

WindowPtr theWindow: 
short thePart: 

thePart - FindWindow( theEvent.where, &theWindow >: 

switch C thePart ) 
{ 

case inMenuBar: 
break: 

case inDrag: 
DragWindow( theWindow, theEvent.where, &gDragRect >: 
break: 

case inGoAway: 
if ( TrackGoAway( theWindow, theEvent.where ) ) 

CloseOneWindow( theWindow ): 
break: 

case inContent: 
if ( theWindow !~ FrontWindow() 

SelectWindowC theWindow >: 
else 
{ 

gWindowType = DetermineWindowType( theWindow >: 
if ( gWindowType == kControlWindowType ) 

HandleControlWindowC theWindow, theEvent.where >: 
} 

break: 

Handl eControl Window() uses a Toolbox routine called 
G 1 ob a 1 To Lo ca 1 ( ) to determine if the cursor was over either of the con
trol window's two rectangles. The Point value passed into 
Handl eControl Window(), theEvent. where, is in global, or screen, coor
dinates. Drawing in a window takes place in local, or window coordi
nates. Figure 4.21 should clarify this idea. 

The Toolbox routine Pt In Re ct ( ) returns a value of true if the 
passed-in Point variable lies in the passed-in rectangle. H the mouse 
click is in the drawing rectangle, the rectangle is inverted to let the user 



Chapter 4 • Working with Windows 

know the click was registered. After that, the window's i sDrawnin field 
is examined. If the last drawing window to be active already has a draw
ing in it, the program won't want to bother drawing it again. If there isn't 
already a drawing in the window, a call to DrawSomethi ng ()needs to be 
made to do the drawing. Then the window's i sDrawnin field is set to 
mar~ the window as having a drawing in it-vital information needed 
during window updating. When complete, the Draw rectangle is invert
ed back to its original state. 

A mouse button click in the Clear button is handled in a manner sim
ilar to a click in the Draw button. 

void HandleControlWindowC WindowPtr theWindow, Point thePoint ) 
{ 

} 

GrafPtr theSavePort: 

SetPort( theWindow ): 
GlobalTolocalC &thePoint >: 

if ( PtlnRect( thePoint, &gDrawRect ) ) 
{ 

} 

InvertRect( &gDrawRect >: 
if C DetermineDrawnlnFlag( gCurrentDrawWindow ) == false 
{ 

DrawSomething( gCurrentDrawWindow >: 
SetDrawnlnFlag( gCurrentDrawWindow, true >: 

} 
InvertRect( &gDrawRect >: 

if C PtlnRect( thePoint, &gClearRect ) ) 
{ 

} 

InvertRect( &gClearRect ): 
if ( DetermineDrawnlnFlag( gCurrentDrawWindow ) """3 true > 

{ 
GetPort( &theSavePort >: 
SetPort( gCurrentDrawWindow >: 
EraseRect( &gCurrentDrawWindow->portRect >: 
SetDrawnlnFlag( gCurrentDrawWindow, false >: 
SetPort( theSavePort ): 

} 
lnvertRect( &gClearRect >: 

237 



238 
Macintosh Programming Ttchnlques. ZE 

9 Fiie Edit 

~(O,O)locW 
(O, 0) local 
(150, 50 ) global 

Figure 4.21 Global and local pixel coordinates. 

Since MultiWmdows has no menu bar, the program uses a click in a win
dow's Go Away box as the signal to end the program-a click on any win
dow's close box closes that window and then sets gA 11 Done to true. In a 
real world application, you'd omit the gA 11 Done line and instead set 
gA 11 Done tot rue when the user selects Quit from the program's File menu. 

Notice that to close the window, two Toolbox routines are called: 
Cl oseWi ndow() and Di sposePtr(). Earlier in this chapter you saw a 
window closed by simply calling a different Toolbox routine
Di sposeWi ndow(). When your program supplies the window storage 
for GetNewWi ndow( ), as MultiWindows does, call Cl oseWi ndow() and 
Di s pose Pt r ( ) . If you let the Mac handle window storage, as you do 
when you pass ni 1 as the second parameter, just call Di sposeWi ndow( ). 

void CloseOneWindow( WindowPtr theWindow 
{ 

HideWindow( theWindow >: 
CloseWindow( theWindow ): 
DisposePtrC ( Ptr )theWindow ): 
gA 11 Done ... true: 
gNumDrawWindsOpen-: 

CHAPTER SOMMflRY 
The WI ND resource type defines the look of a window. A call to 
GetNewWi ndow() loads a WIND resource into memory, ready to be dis
played on the screen with a call to ShowWi ndow(). 



Chapter 4 • Working with Windows 

The descriptive information about a window is read in from the WIND 
resource and, along with additional information that can be set within 
source code, is stored to a Wi ndowRecord. Rather than access the fields of 
the Wi ndowRecord directly, you use Toolbox routines. These Toolbox 
routines accept a Wi ndowPtr, a pointer to the Wi ndowRecord, rather than 
the Wi ndowRecord itself. 

Most window-related information that a programmer needs to 
access is available through use of the Wi ndowPtr, which points to a win
dow's graphics port. For those few times when you need to access other 
information, you'll use a Wi ndowPeek. A Wi ndowPeek points to the entire 
Wi ndowRecord, rather than just to the graphics port. 

Much of the work involved in handling a window occurs when a 
user presses the mouse button, causing a mouse down event. When your 
program receives a mouse down event you'll handle it according to the 
location on the window where the event took place. To drag a window, 
you'll call DragWi ndow(). To close a window, you can first hide it with a 
call to Hi deWi ndow( ), then dispose of it with Di sposeWi ndow( ). In 
response to a click in the content of the window, you can call 
Sel ectWi ndow() to bring the window to the front of the screen. 

When a covered window becomes exposed, you call the Toolbox rou
tines Begi nUpdate() and EndUpdate( ). In between the calls, you take 
care of any of the drawing that needs to be done for the particular win
dow that needs updating. 

Some applications make use of windows that perform different func
tions. One window may accept input from the user, while another displays 
some graphical output. For a multiple-window application, you have to 
use a technique that lets your application distinguish between these dif
ferent windows. Failure to do so will cause window-updating problems. 

One strategy for handling multiple windows is to expand the 
Wi ndowRecord. To do this you create your own data structure that con
tains an entire Wi ndowRecord and any additional information you want 
associated with a window. The primary new information will be a vari
able that holds the type of the window. 

Z39 



flCltlTOSH PROGRAMMING TECHHIQOES. ZE 

Chapter 5 

Dealing with Dialog 
Boxes 

The primary method of relaying information to a Macintosh program is 
through a dialog box. Allowing a user to adjust program settings is a 
typical use of a dialog box. A Macintosh program issues warnings to the 
user in the form of an alert, the simplest of dialog boxes. 

In this chapter, you'll learn how to create alerts using the ALRT and 
DITL resources. This will be the foundation for creating dialog box 
resources as well. Dialog boxes use the D LOG and DI TL resource types. 

Here you'll see the similarities between windows and dialog boxes. 
You will learn that dialog boxes are little more than embellished win
dows. This chapter will cover both the fixed modal dialog box and the 
movable modeless dialog box. 

Finally, the example program will demonstrate all the dialog box 
techniques covered in this chapter, along with a method for handling the 
case of both a window and a dialog box coexisting on the screen. 

241 



Z4Z 
Macintosh Programming Techniques. ZE 

ALERTS 
When a program's user makes a mistake, or is about to embark on a path 
the program's creator feels is dangerous, the user meets with an alert. 
An alert provides a warning. It can strictly prohibit the impending 
action from taking place, or it may provide a warning and then give the 
user the chance to back out or carry on. Figure 5.1 shows an alert. 

Are you sure you want to quit? 

Cancel ([ Quit ] 

Figure 5.1 A typical alert. 

An alert typically contains text and one or two push buttons, such as the 
Cancel and Quit buttons in Figure 5.1. You'll need two resource types 
for an alert: the ALRT and the DITL. Both these resource types are 
described in the next few pages. 

Alert Resources: AL RT and D IT L 
The ALRT resource defines the size and screen placement of an alert, just 
as the WIND resource defines the same for a window. Whereas you speci
fy the type of window to display for a WIND, you don't for an ALRT. An 
alert always has the appearance of the one pictured in Figure 5.1. 

An ALRT requires that you give the ID of yet another resource-a 
DITL that corresponds to the ALRT. The ALRT defines the size and place
ment of the alert; the DITL defines the contents of the alert. The contents 
of an alert consists of such things as the buttons and text that are to 
appear in the alert. Figure 5.2 shows an ALRT resource, viewed from 
within ResEdit. As can be seen in the title bar of the alert editor, the ALRT 
resource has an ID of 129. As shown in Figure 5.2, the ID of the DITL 
resource used by the ALRT resource is also 129. 



~ 
H 0 T E 

Chapter 5 • Dealing with Dialog Boxes 

RLRT ID= 129 from Dlolo Plus.rsrc 

Top: ~ Height: EJ 
Left:~ Width:~ 

Enter the ID of the DITL resource 
that will be used by this ALRT resource 

Color: @ Default 
0 Custom 

om ID: I 129 __ ...... 

Figure 5.2 The ALRT editor in ResEdit. 

The DITL that corresponds to an ALRT doesn't have to have the same ID as the 
ALRT, but because it makes sense to do so, programmers usually give it the 
same ID. 

You create the ALRT using the Create New Resource command from 
ResEdit's Resource menu. After sizing the alert in the alert editor and 
entering a DITL ID, you create the DITL. Once again you'll use the Create 
New Resource command. 

Figure 5.3 shows a typical DITL resource. The DITL (for dialog box 
item list) lists the items in an alert or a dialog box. The various items, 
such as buttons and checkboxes, appear in the floating palette in Figure 
5.3. You create an item by clicking on its picture in the floating palette 
and then, with the mouse button still held down, dragging the mouse 
over to the window. Releasing the mouse button places the item in the 
window. Figure 5.3 shows a DITL with three items: a static text item and 
two buttons. Alerts are meant to be simple; they don't have provisions 
for working with checkboxes and radio buttons. For those items you'll 
use a dialog box instead of an alert. 

243 



244 
Macintosh Programming Techniques. JE 

S Button 

IRre you sure you want to quit? L!J 181 Check Box 

® Radio Button 

Cancellaj [ Quit 9 ······-··---···-···--------1 
!;I Control 

1-·-····-·--···········---··---·-
T: Static Text 

~a::~~~:!:!.~~~:::::::: 
& Icon 

............. ·--··-···-··--·-······· 
I. Picture .............................................. 
Ill User Item 

Figure 5.3 The D IT L editor in ResEdit. 

To change the name or location of an item, double-click on it. That opens 
a window that allows you to do just that. 

Each item in a DI TL has an identifying number. When you select the 
Show Item Numbers option from the DITL menu, ResEdit displays the 
item number for each item-see Figure 5.3. 

In an alert, the button that is item 1 has special significance. When a 
program displays an alert, that button will appear with an outline-just 
as the Quit button does in Figure 5.1. That tells the user that pressing the 
keyboard's Return key will select that button, just as would clicking the 
mouse button while the cursor was over it. 

ResEdit numbers items in the order you create them. If you aren't sat
isfied with the numbering of items in a DITL use ResEdit's Renumber 
Items option from the DI TL menu to make changes. 

With the ALRT and DITL complete, you're ready to write the code that 
brings the alert to the screen. 

Alert Source Code 
To load an ALRT resource into memory and display the alert on the 
screen, use the Toolbox routine Alert(). There are two ways to use Alert(). 
The first is for an alert that does not give the user an option, like the alert 
on the left in Figure 5.4. The second use of A 1 e rt ( ) is for an alert that 



Chapter 5 • Dealing with Dlalog Boxes 

presents the user with more than one choice, such as Cancel and Quit. 
That type of alert is on the right in Figure 5.4. 

You can't 
do that! 

(C OK J) Cancel 

Do you really 
want to quit? 

Figure 5.4 An alert without an option, and one with options. 

The following snippet provides an example of one of the two ways you 
can use the A 1 e rt ( ) function. The first parameter to A 1 e rt C ) is the 
resource ID of the ALRT resource that is to be used when posting the alert. 
The second parameter specifies a pointer to an optional filter function. 
Filter functions are discussed later in this chapter. Here, a n i 1 pointer 
will be passed to tell the Toolbox to handle all event processing: 

f/defi ne rNoWayAlert 128 

Alert( rNoWayAlert. nil >: 

By definition, the return type of a call to A 1 ert C) is of type short. As 
shown in the preceding code snippet, your code can ignore the return 
value. A second way to call A 1 e rt C ) is to keep track of the returned 
value. Because the returned value indicates which button the user 
clicked, you'll want to use this next method of calling A 1 e rt ( ) when 
your program's alert has more than a single button: 

//define 
f/defi ne 
//define 

rQuitOrCancelAlert 
kQuitButton 
kCancelButton 

short theAlertitem: 

129 
1 
2 

theAlertltem &>Alert( rQuitOrCancelAlert. nil }; 

if ( theAlertltem == kQuitButton ) 

Z45 



246 
Macintosh Programming Techniques. ZE 

ExitToShell (}: 

II else go on with code as if nothing happened 

You may have noticed that the two alerts shown in Figure 5.4 have dif
ferent icons. There are four variations of the A 1 e rt ( ) routine. The first, 
A 1 e rt(), displays no icon. The other three, NoteA 1 ert (), 
CautionAlert( ), and StopAlert( ), all display different icons. Figure 
5.5 shows these icons. All four of the A 1 e rt ( ) routines have the same 
two parameters. 

Alert () NoteAlert ( ) CautionAlert() StopAlert () 

Figure 5.5 Variations of Al e rt ( ) and the icons they display. 

DIALOG BOXES 
A dialog box is similar to both an alert and a window. A dialog box is like 
an alert in that it has items in it, but it has a much greater variety of 
items. A dialog box requires a DI TL resource, just as an alert does. A dia
log box can take the appearance of a window and, like a window, can be 
movable. You can think of an alert as a stripped-down dialog box, and a 
dialog box as a souped-up window. 

This chapter discusses the two basic varieties of dialog box: modal 
and modeless. A modal dialog box is fixed on the screen-it can't be 
moved. No action unrelated to the dialog box can take place until the 
dialog box is dismissed. A modeless dialog box can be moved. Its behav
ior is similar to a window in that it can contain a title bar that allows the 
user to drag the dialog box. Figure 5.6 shows an example of both types 
of dialog boxes. 



Chapter 5 • OCZGllng with Dialog Boxes 

Find 
Number of 
decimal pl11ces: [IJ Find What: I formidable 

[ Done J ([ Find NeHt JJ ( Cancel J 

Modal dialog box Modeless dialog box 

Figure 5.6 Modal and modeless dialog boxes. 

DIALOG Box JtesooRcEs 
A dialog box can contain several types of items. Figure 5.7 shows the 
Search dialog box from Microsoft Word, a typical dialog box with sever
al item types. A brief description of the item types follows. 

----~-~ Replace 

Find What: I Indubitable I n Find NeHt B 
jrormat .,..I'-----------~ [ Bl't>lli1:<i ) 

I Special .... I [ Replace All ) 

Replace With: I undeniable 
jrormat .,..I'-----------~ 

[ Cancel ) 

I Special .... I 
Search: 

0 Match Whole Word Only O Match Case joown j .... I 

Figure 5.7 A typical dialog box. 

Dialog Item Types 
Almost every dialog box contains at least one button (sometimes called a 
push button) in the form of an OK or Cancel button. When you click on 
a button, an action will happen immediately, such as the dismissal of the 
dialog box with a click on a button labeled Done. 

A checkbox (or check box) is used to set options. A click on a checkbox 
toggles that box to its opposite state. When you check or uncheck a box, 

247 



Z48 
Macintosh Programming Technlquvs. ZE 

the action should not occur immediately. Rather, the action occurs later, 
such as when the dialog box is dismissed. 

Radio buttons also set options. But while a checkbox can be an inde
pendent entity, radio buttons are always found in groupings of two or 
more. When the mouse button is clicked while the cursor is over a radio 
button, that button is turned on and the button that was previously on in 
the grouping is turned off. 

An editable text item is your means of supplying text to the computer. 
Text is typed into the framed rectangle that makes up the item. Dialog 
box text that cannot be edited, such as instructions to the user, is com
posed of static text items. 

The graphics that appear in a dialog box can be made up of icons, 
pictures, or user items. An icon is always 32x32 pixels in size. Pictures 
and user items can be any size. A picture is defined by a PI CT resource, 
while a user item is a free-form type that can be made up of a picture, an 
icon, or a drawing defined by calls to QuickDraw routines. 

The D LOG and o IT L Resources 
The process of creating a dialog box is very similar to that for an alert. 
Instead of an ALRT resource, however, you'll use a DLOG, as shown in 
Figure 5.8. 

DLOG ID • 128 from 011110 Plus.rsrc 

Top:~ Height:~ 

Left:~ Width: ~ 

Color: @ oer11u1t 

0 Custom 

-----------
OITL ID: '~1_28_~ 

D lni ti111ly ulslble 

D Close boH 

Figure 5.8 The DLDG editor in ResEdit. 



Che1pter 5 • Dealing with Dle1log Boxes 

Like the WIND editor, the D LOG editor in ResEdit lets you choose the look 
of the dialog box by selecting from a row of icons. As you did for the 
ALRT resource, you also specify a DITL that will hold items for a DLOG. 
Figure 5.9 shows a DITL with the same ID, 128, as that used for the DLOG. 

~- Dill ID = 128 from Oialo Plus.rsrc 

IJEnter Title Here llJI 

lo Display windowlaj 

jO Hot Man Laj 
IO Cold Man Laj 

Heat Up Man~ 

Done ~ 

Figure 5.9 The DITL editor in ResEdit. 

8 Button 

181 C hec k Box 

® Redio Button 
.... i;I·--c-~~t~~i· .. -·-··· 
............................ ·-·-···-···· 

T: Stetic Text 
··a ···Ecii.t .. r~~·t········· 
............... ............................. 
& Icon 

L Picture 

lillJ User Item 

When you read about alerts, you learned how to add items to the D IT L 
by dragging them from the palette and dropping them into the DI TL 
window. The DI TL for a dialog box is the same resource type as the DI TL 
for an alert, so you already know how to create the DITL for a dialog box. 

Buttons, radio buttons, checkboxes, and editable text boxes are all 
items that the user clicks the mouse button on or types into. Besides dis
playing dialog box items with which the user interacts, you might also 
want to add graphics to a dialog box. ResEdit allows you to do this in a 
few different ways. 

If you have a graphic image that you want to display in a dialog box, 
and that image is to remain static, use an icon or a picture. A static graph
ic image does not move (as the dancing man did in Chapter 3) while the 
dialog box is on the screen. An example might be a company logo that 
appears in the comer of a dialog box. 

In Chapter 3, you saw how to create a PI CT resource. If the image is 
bigger than 32-pixels square, you can draw it in a paint program and then 
copy it to the resource file; ResEdit will save it as a PI CT resource. If your 

249 



zso Macintosh Programming Techniques, 2E 

image is small, you might want to just draw it in ResEdit' s icon editor 
rather than in your paint program. This editor is shown just ahead. 

If you'd like to include an icon or a picture in a dialog box, simply 
include the proper item in the dialog box's DI TL. Figure 5.10 shows a 
DITL with three items: a button, an icon, and a picture. The button item 
you've seen before. The picture and icon were added in the same way 
that the button was added-by dragging and dropping from the palette. 
The results aren't too impressive. Why? Because for every picture you 
add, you must have a PI CT resource, and you must have an I CON 
resource for every icon you add. You haven't added them yet, but you're 
about to. 

-r!J~ o 1n Io = 128 from Grophlcs.rsrc 

.. ·~· 1 ~-t• ... . . . . . . . . . . . . . . . . . . . ·.. . . . . . . . · ... . . . . . . . . . . . . . . . . . . . . . . . . 

( Done 

Figure 5.10 Adding a picture and an icon to a DITL. 

Adding a Plctare to a DI TL 
The picture item lets you specify the ID of the PI CT resource to use. You 
can double-click on the picture item to edit this information. Figure 5.11 
shows that this picture item will be looking for a PI CT with an ID of 128. 



Chapter 5 • Dealing with Dialog Boxes 

Edit Dill item #2 from Graphics.rsrc 

Resource ID: .... I 1_2_0 _ _, 

..--P-i-ct-u-re---T~I 

0 Enabled Top: ._I 1_s _-' 

Left: l._1_s _-' 

Height: ._I 6_o _ __, 

Width: l._1_90 _ __, 

Figure 5.11 Information window for a picture item. 

~ 
Notice the checkbox labeled Enabled in Figure 5.11. When you create certain 
items like buttons, checkboxes, and radio buttons, this checkbox will be 
checked. ResEdit does it for you. If an item is marked as enabled, your pro
gram will recognize mouse button clicks on the item. If an item is not 
enabled, mouse clicks by the user on the item will be ignored. Pictures usu
ally aren't enabled. You can enable a picture-or any item-if you want your 
program to respond to clicks on that item. 

H 0 T E 

From Chapter 3, you know how to create a picture and save it as a PI CT 
resource. Optionally, you can copy an existing PI CT from any other 
resource file and paste it into the resource file your working with. Next, 
use the palette that appears with the DITL editor to add a picture item to 
your DITL resource. Once added, double-dick on the picture item and, in 
the window that opens, enter the ID of the PI CT resource to use. In Figure 
5.12, you see the familiar dancing man picture-one of the four PI CT 
resources from the dancing man series back in Chapter 3 was pasted into 
a resource file named Graphics.rsrc. A look at the DITL shows that the 
rectangle that was the picture item now displays the dancing man pic
ture. Notice that in Figure 5.12 the picture seems distorted. In the window 

251 



252 
Macintosh Programming Techniques. 2E 

that allows you to enter the PICT ID (the window that appears when you 
double-click on the picture item), you can also enter the boundaries for 
the picture. The PI CT you specify will be sized to fit that area. You can 
double-click on the DI TL picture item and change the boundaries any 
time. The Information window was shown in Figure 5.11. 

= o 1n ID r::i 128 from &rep_bics.rsrc 

( Done J 

Figure 5.12 A DITL with a picture item in it. 

Adding an Icon to a o IT L 
When you add a picture item to a DI TL, you need to also supply a PI CT 
resource to display in that item. A similar situation exists with icons. As 
shown in Figure 5.12, using the DITL editor palette to add an icon item 
isn't enough to display an icon-you also need to supply an ICON 
resource. To do that, first double-click an icon item to set the resource ID 
of the ICON resource to display-just as you did for the picture. Then 
select Create New Resource from the Resource menu. Select the ICON 
type, then click the OK button. When you do that, ResEdit will open an 
icon editor like the one pictured in Figure 5.13. In that figure an icon has 
been created for the Acme Fence Company. 



P"JI 
~ 
H 0 T E 

Chapter 5 • Dciallng with Dlalog Boxes 

;'.;!J ICON ID= 128, frorn &raphlcs.rsrc 

' mo 
BO 
@>0 

••••• ••••• ••••• • •••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •••••••••••••••••••••••••••••••• • • • • • • • • • • •••••••••••••••••••••••••••••••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •••••••••••••••••••••••••••••••• • • • • • • • • • • ................................ 
I 11 11 11 I • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •••••••••••••••••••••••••••••••• 

Figure 5.13 ResEdit's I CON editor in use. 

~ 
~ 

There's also an icon resource type named ICN/I. And just what is the differ
ence between an ICN/I and an ICON? The ICN/I holds a series of related icons, 
while the I CON resource holds just a single icon. If you want to create sever
al versions of an icon, such as color, black and white, and small icons, use the 
I CN/I resource to create and hold this family of related icons. Chapter 10 pro
vides an example of using the ICN/I resource to create a number of versions 
of an application's icon to be displayed on the desktop. 

Figure 5.14 shows both the I CON and PI CT resources that were discussed 
in this chapter. Since the ICON has an ID of 128, it should now appear in 
the DITL, where the icon item has an ID of 128. Figure 5.15 shows that 
this indeed is the case. 

253 



254 
Macintosh Programming Techniques. ZE 

128 

I CONS from Graph 

..................................................................... ] 

I 

I 
L. ................................................................... .i 

128 

Figure 5.14 An ICON and a PICT resource in ResEdit. 

Done J 

Figure 5.15 The DITL with button, picture, and icon items. 

You've now seen two methods for adding graphics to a DI TL. There's a 
third way: the user item. When you select the user item from the ResEdit 
palette and drag and drop it into the DI TL window, a mysterious gray 
box appears. The only feature you can change in a user item is its size; 
the box will always remain gray. Where do the graphics come from? Your 
source code will determine that. Through your source code you'll be able 
to display a picture or icon or use QuickDraw commands to draw graph-



Chapter 5 • Deallng with Dlalog Boxers 

ics or text. User items are a very powerful and useful programming tool, 
and something you'll find omitted from most Macintosh programming 
books. This situation is remedied later in the chapter. 

WORKlnG WITH DIALOG ITEMS 

To load a DLOG resource into memory and display the dialog box on the 
screen, you'll use a call to GetNewDi a 1 og ().But before working with a 
dialog box, you'll learn to work with dialog box items. Once your pro
gram opens a dialog box, you'll need to know all the information cov
ered in the next four sections. 

Once a dialog box is on the screen, the user is free to enter text in 
editable text boxes or click in checkboxes, radio buttons, and buttons. It's 
up to you to write the code that responds to these user actions. Resources 
are a great help in designing and implementing a program's interface, 
but it's still up to you, the programmer, to write the code that makes 
things work. You didn't think everything would be as easy as creating 
resources, did you? 

Getting Dialog Box Item Information 
Chapter 2 introduced you to handles. You've had occasion to use them 
since then; for example, in Chapter 3 you used a Pi cHandl e to draw to a 
window a picture based on a PICT resource. A handle is your program's 
link to an object in memory-an object that the Memory Manager may 
shift, or relocate, in memory. Handles play a very important part in deal
ing with dialog boxes. When a dialog box is on the screen, you'll want to 
examine, and perhaps set, the state of some of the items in it. Before you 
can work with any dialog box item, you need to get a handle to that item. 

Get Di a 1 og I tern() is a Toolbox call you'll become very familiar with. 
You tell GetDialogitem() what dialog box you're working with, and 
which item in that dialog box you're interested in. In return, 
GetDi al ogltem() gives you three pieces of information about the item: 
the type of item, the rectangle that surrounds, or bounds, the item, and 
a handle to the item. In most instances your only concern will be with the 
item's handle. Here's a call to GetDi al ogltem( ): 

Z55 



256 
Macintosh Programming Technlqacrs. ZE 

//define 
//define 
lldefi ne 

kDoneButton 
kAutoSaveCheckBox 
kPasswordEditBox 

DialogPtr theDialog; 
short the Type; 
Handle theHandle; 
Rect theRect; 

1 
2 
3 

GetDialogltem( theDialog, kPasswordEditBox, &theType, 
&theHandle, &theRect ); 

After the above call to Get Di a 1 og I tern() is complete, your program can 
use theHandl e to obtain the text that the user typed in the dialog box's 
editable text box or to overwrite the text in the editable text box with new 
text. You'll now see just how to do that. 

Working with Edit Text Items 
If you want to store the string that the user types in an edit text box 
item, call the Toolbox routine Get Di a 1 og I temText (). Before calling 
this function, make a call to Get Di a 1 o g I t em ( ) to get a handle to the 
item. Use that handle as the first parameter to GetDi al ogltemText( ). 
The second parameter should be a St r 2 5 5 variable. It is in this variable 
that GetDi al ogltemText() will place the string that is currently in the 
editable text box item. Here's a snippet that gets the text from an 
editable text box and then writes the string to the upper-left comer of 
the dialog box. 

DialogPtr theDialog: 
short the Type; 
Handle theHandle; 
Rect theRect: 
Str255 theString: 

GetDialogitem( theDialog, kPasswordEditBox, &theType, 
&theHandle, &theRect ); 

GetDialogltemText( theHandle, theString ): 

SetPort( theDialog >: 
MoveTo( 15, 15 ): 
Drawstring( theString ): 



Chapter 5 • Deallng with Dlalog Boxes 

GetDi al ogitemText() always retrieves an edit text item value as a 
Str255 type, even if the user has typed in a number. If you want to con
vert this string to a number, use Stri ngToNum( ): 

Str255 theString: 
1 ong the Long: 

GetDialogltem( theDialog, kPasswordEditBox, &theType, 
&theHandle, &theRect ); 

GetDialogltemText( theHandle, theString ); 

StringToNum( theString, &thelong >: 

If you want to replace the text that's in an editable text box, call 
SetDialogitemTextC): 

GetDialogltem( theDialog, kPasswordEditBox, &theType, 
&theHandle, &theRect >: 

SetDialogltemText( theHandle, "\Welcome!" >: 

The following example uses all the Toolbox routines just covered. The 
code retrieves the text from an editable text box, converts it to a number, 
then changes the text in the same editable text box to a new string-a 
string based on the entered number. Here goes: 

//define 
f/defi ne 
tldefine 

DialogPtr 
short 
Handle 
Re ct 
Str255 

kPasswordEditBox 
kOutOfRangeString 
kValidNumberString 

theDialog; 
theType: 
theHandle: 
theRect: 
theString; 

3 
"\pMust be between 0 and 100." 
"\pValid number entered." 

GetDialogltem( theDialog, kPasswordEditBox, &theType, 
&theHandle, &theRect >: 

GetDialogltemTextC theHandle, theString >: 

StringToNum( theString, &thelong >: 

if ( ( thelong < 6 ) 11 ( thelong > 100 ) ) 
SetDialogltemText( theHandle, kOutOfRangeString >: 

else 
SetDialogltemTextC theHandle, kValidNumberString >: 

257 



258 
Macintosh Programming Techniques. ZE 

Working with Checkbox Items 
Some dialog box items have a state associated with them, such as on or 
off. The Macintosh gives these two states values: on is considered to have 
a value of 1, while off is 0. Items that have a value are called control items. 
Other dialog items such as icons, pictures, and edit text boxes don't have 
values associated with them. 

A checkbox is a control item. When the user clicks the mouse button 
on a checkbox, you call the Toolbox function GetControl Value() to get 
the control value. Whatever its value, zero or one, you set it to its oppo
site value using another Toolbox function: SetControl Value(). Here's 
an example that does just that: 

f/defi ne kAutoSaveCheckBox 2 
//define kControlOn 1 
/ldefi ne kControlOff 0 

DialogPtr theDialog: 
short theType: 
Handle theHandle: 
Re ct theRect: 
short theOldValue: 

GetDialogltem( theDialog, kAutoSaveCheckBox, &theType, 
&theHandle, &theRect ): 

theOldValue = GetControlValue( (ControlHandle)theHandle >: 

if ( theOldValue""""'" kControlOn ) 
SetControlValue( (ControlHandle)theHandle, kControlOff ): 

else 
SetControlValue{ {ControlHandle)theHandle, kControlOn ): 

Take special notice that both GetCont ro 1Va1 ue () and 
SetCont ro 1Va1 ue () accept only the Macintosh data type 
Control Handle as a parameter; they do not accept a generic Handle 
type. You must always typecast the handle you get from 
GetDi al ogltem( ), as done previously. 



Chapter 5 • Dealing with Dlalog Boxes 

Working with Radio Batton Items 
If you understood checkboxes, you're halfway home to working with 
radio buttons. Checkboxes work independently, and you might have just 
one in a dialog box. Radio buttons are dependent on one another and 
work in groups; you must have at least two. When the user clicks on one 
button in a group, the button that was on previous to the click turns off, 
and the newly clicked button goes on. 

Because of this interdependency, you'll always want to keep track of 
the radio button that is currently on. Do this by creating a global variable 
that holds the dialog box item number of the radio button item that's on. 
When the user clicks on a radio button, you'll tum what is now the old 
button off and the new button on. Use SetControl Value() to change 
the radio button values. 

The following is an example that assumes there exists a group of 
three radio buttons. When the snippet starts out the radio button labeled 
Maximum Volume is on. The snippet turns off that radio button and 
turns on a button labeled Midpoint Volume. The third button, labeled 
Minimum Volume, is off at the start and finish of the snippet. As you 
examine the code, keep in mind that the values of the first three con
stants (4, 5, and 6) refer to the dialog box item numbers of the three radio 
buttons, not to any kind of volume settings. 

//define 
f/defi ne 
//define 
//define 
f/defi ne 

kMinVolRadioButton 
kMidVolRadioButton 
kMaxVolRadioButton 
kControlOn 
kControlOff 

4 
5 
6 
1 
0 

short gOldButtonNum a kMaxVolRadioButton: 

DialogPtr theDialog; 
short theType: 
Handle theHandle: 
Rect theRect: 

GetDialogltem{ theDialog, gOldButtonNum, &theType, 
&theHandle, &theRect ); 

259 



260 
Macintosh Programming Tec:hnlqaa. ZE 

SetControlValue( CControlHandle)theHandle. kControlOff ); 

GetDialogltem( theDialog, kMidVolRadioButton. &theType. 
&theHandle. &theRect ); 

SetControlValue( (ControlHandle)theHandle, kControlOn ); 

gOldButtonNum = kMidVolRadioButton: 

Notice that the last thing the code does is update the global variable 
gOl dButtonNum to hold the dialog box item number of the radio button 
that was just turned on. Next time around, it will be considered the 
11 old" button. 

MODAL DIALOG BOXES 
A modal dialog box controls the screen, and no action can take place out
side the dialog box. In certain cases this disadvantage may cause you to 
use a modeless dialog box instead; they're discussed later in this chapter. 
If you're simply gathering information to use later-perhaps requesting 
that the user set some preferences for your program-then a modal dia
log box will do just fine. Because a modal dialog box owns the screen, 
you don't have to worry about the user interacting with other screen ele
ments such as menus, windows, or other dialog boxes. That makes the 
source code for handling a modal dialog box less complex than the code 
you write for a modeless dialog box. 

The DialogRecord Data Structare 
A dialog box, modal or modeless, is based on the DialogRecord data 
structure. Earlier it was stated that a dialog box had similarities to a win
dow. That was a bit of an understatement. The first member in a 
Di a 1 ogRecord is a Wi ndowRecord, which means that a dialog box is actu
ally a window, with a little embellishment. As shown below, Apple defines 
the Di a 1 ogRecord using the same window-structure technique described 
in Chapter 4. Recall that in that chapter, the first member in an application
defined window structure was a Wi ndowReco rd. Additional members 
could be of any data type and were used to hold information related to the 
new type of window. The Di a 1 ogRecord begins with a Wi ndowRecord 
field, which is followed by a member called i terns that is a handle to the 



C~apter 5 • Dealing with Dialog Boxes 

items in the dialog box. That's basically the difference between a window 
and a dialog box: a dialog box has items, a window doesn't. 

struct DialogRecord 
{ 

} ; 

WindowRecord 
Handle 
TEHandle 
short 
short 
short 

window; 
items; 
textH; 
editField; 
editOpen; 
aDefltem; 

You use a Di a 1 ogPtr to reference a dialog box. Because the first member 
in a DialogRecord is a WindowRecord, the first thing a DialogPtr 
points to is a Graf Port-just as a Wi nqowPtr does. Figure 5.16 illustrates 
this. This setup allows you to use a Di a 1 ogPt r as a parameter to Toolbox 
routines that require a Wi ndowPtr or Graf Ptr. This can be confusing. If 
you're satisfied that this works, skip the following technical note. 

[ DialogPtr 

F 
aOe.fitem 

items 

ref Con 

windowPic 

v.i.sible 

windowKind 

port 

' 

Wi ndowRecord 
(first field of the 
DialogRecord) 

DialogRecord 
consists of a 
WindowRecord 
and additional 
members 

Figure 5.16 A Di al ogPtr points to a Graf Port, just as a WindowPtr does. 

261 



Z6Z 
Macintosh Programming Techniques. ZE 

r21 
H 0 T E 

Doesn't the idea of being able to use a Graf Ptr, a Wi ndowPtr, and a 
DialogPtr interchangeably almost seem like cheating? H you look at the 
type definitions of each, you'll see why this works: 

typedef GrafPort *GrafPtr: 
typedef GrafPtr WindowPtr: 
typedef WindowPtr DialogPtr: 

r21 
ft 0 TE 

All three types are really pointers to a Graf Port. Their names are different as 
a convenience to programmers. 

A Wi ndowRecord contains a Graf Port and other members. A Di al ogRecord 
contains a Wi ndowRecord and other members. It therefore seems as if a 
Graf Port, WindowRecord, and Di al ogRecord should be different sizes; they 
are. But the first member of each type is the Graf Port, so that's what each of 
the three pointer types points to. 

Modal Dialog Box Source Code 
You load the data from a D LOG resource with a call to the Toolbox function 
GetNewDi a 1 og (). If the DLOG resource has its visible flag set, the dialog 
box will then appear on screen. A call to the Toolbox routine 
ShowWi ndow() will display the dialog box even if the visible flag isn't set: 

f/defi ne rDatainputDialog 128 

DialogPtr theDialog: 

theDialog ~ GetNewDialog( rDatainputDialog, nil, (WindowPtr)-lL ): 



Chqpter 5 • Deqllng with Dlqlog Boxes 

Since a modal dialog box controls the screen, you know that it will be 
dismissed before the program continues. Whatever memory it occupies 
while it exists will soon be returned to the pool of free memory. Thus, 
there is no need to reserve your own memory- let it land in memory 
wherever the Memory Manager puts it. In general, it won't cause frag
mentation because it won't be around to block things. 

~ 
H 0 T E 

The preceding text mentions that you can use ShowWi ndow() to display a 
loaded, but hidden, dialog box. Recall that a Di a 1 og Pt r is defined to be the 
same as a Wi ndowPtr (it just is able to access extra information beyond the 
data of a Wi ndowRecord). That means that any Toolbox routine that requires 
a WindowPtr asa parameter will work equally as well with a Di alogPtr. The 
ShowWi ndow( ) routine is one such function. Just ahead you'll see another 
window-related Toolbox routine being used with a dialog box-the 
Fi ndWi ndow() function. 

After creating the dialog box, your program should enter a loop. The 
loop repeats itself until the user dismisses the dialog box; that's how the 
modal dialog controls the screen. At the heart of the loop is a call to the 
Toolbox function Modal Di al og( ) . 

The powerful Mod a 1Dia1 og () routine takes control and determines 
if a mouse click by the user occurs on an enabled item in the dialog box. 
If an enabled item is clicked on, Mod a lDi a 1 og () returns the resource 
item number of the item to your program. Run that number through a 
switch statement to process the mouse click; that is, base your handling 
of the mouse click on the item the user clicked on. Figure 5.17 shows this 
journey from the click of the mouse to Mod a 1Dia1 og(). 

263 



264 
Macintosh Programming Tcrc:hniqua. 2E 

[8l Display 
ModalDi a l og( n i l , &theitem ) ; 

ndow title 

Handle DITL 
item #1 , the 
push button 

Figure 5.17 From user action to Modal Di al og ( ) . 

#2 

Handle DITL 
item #2, the 
checkbox 

A modal dialog box remains on screen as long as the Mod a l Di a l o g ( ) 
loop is executing. The loop ends when the loop test condition fails. The 
usual time for this to occur is when the user clicks the dialog box's 
Cancel, OK, or Done button, as shown in the following application
defined Handl eModal Di al og() routine. 

I/define 
/fdefi ne 
/!define 

kDisplayTitleDialog 
kDoneButton 
kPrintScoresCheckBox 

HandleModalDialog() 
{ 

DialogPtr 
short 
Boolean 

theDialog; 
the Item; 
dialogDone - false; 

128 
1 
2 

theDialog - GetNewDialog( kDisplayTitleDialog, nil. (WindowPtr ) -lL ); 
ShowWindow( theDialog ); 



} 

while ( dialogDone == false ) 
{ 

Chapter 5 • Deallng with Dialog Boxes 

ModalDialog( nil, &theitem ): 

switch C theitem ) 
{ 

case kDoneButton: 
dialogDone = true: 
break: 

case kPrintScoresCheckBox: 
SetCheckBox{ theDialog, theitem ): 
break: 

DisposeDialog( theDialog >: 

If the user clicks on the checkbox item, an application-defined routine 
named SetCheckBox() is called. This function uses the code developed 
previously in this chapter's "Working with Checkbox Items" section. 
This chapter's example program demonstrates how to make use of such 
a routine. When the user clicks the Done button, di al ogDone is set to 
true. When the loop again reaches the top, the w hi 1 e test will fail, the 
loop will end, and the dialog box will be dismissed by a call to the 
Toolbox routine Di sposeDi al og( ). 

This chapter's example program makes use of the more powerful 
modeless dialog box. For a working example of a modal dialog box, see 
the program presented near the end of Chapter 6. 

MODELESS DIALOG BOXES 
To display a modeless dialog box on the screen, you use the same rou
tine as that for a modal dialog box-GetNewDi a 1 og ( ) . For a modal dia
log box, you didn't specify where in memory the dialog box would go, 
because it wasn't going to be hanging around in memory anyway. For a 
modeless dialog box that might be around for the duration of your pro
gram's execution, consider the use of the Toolbox routine NewPtr() to 

Z65 



266 
Macintosh Programming Techniques. ZE 

set the storage. This process is identical to creating a new window. Refer 
to Chapter 4 if you need a review. 

//define rControlDialog 130 

DialogPtr theDialog: 
Ptr theStorage: 

theStorage = NewPtr( sizeof( DialogRecord ) >: 
theDialog = GetNewDialog( rControlDialog, theStorage, (WindowPtr)-lL >: 

Once a modeless dialog box is on the screen, it needs special handling 
considerations. In the previous chapter, you saw an application-defined 
routine named Event Loop ( ) . In Chapter 4, you saw that the 
Eventloop() routine held a loop which had the purpose of getting an 
event at each pass through. Here's that routine, slightly modified: 

void Eventloop( void ) 
{ 

EventRecord theEvent: 
Boolean isEventDialog: 

while ( gAllDone ==- false ) 
{ 

Wai tNextEvent( everyEvent. &theEvent. lSL. ni 1 ) : 

isEventDialog m HandleDialogEvent( theEvent ); 

if ( isEventDialog mm false 
{ 

switch { theEvent.what 
{ 

case mouseDown: 
HandleMouseDownC theEvent >: 
break: 

case updateEvt: 
HandleUpdate( theEvent): 
break: 



Chapter 5 • Dealing with Dlalog Boxes 

This version of Event Loop() makes use of a Boolean variable called 
is EventDi a 1 og. If a modeless dialog box is on the screen, Event Loop () 
wants to know about it. The Toolbox provides a few routines specifical
ly designed to handle an event that takes place in a dialog box. They're 
used in the application-defined Handl eDi a 1 ogEvent ()routine, which is 
described just ahead. 

If the Handl eDi a 1 ogEvent() function determines that an event is dia
log related, it handles the event and returns a value of true to 
Eventloop( ). If that's the case, then EventLoop() is satisfied that the 
event has been processed, and doesn't execute its switch statement. If, on 
the other hand, Hand 1 eD i a 1 og Ev en t ( ) doesn't handle the event, a value of 
fa 1 se is returned to Event Loop ( ) . If that happens, Eventloop () knows it 
must go ahead and handle the event-and does so in its switch statement. 

The workings of Handl eDi al ogEvent() have been glossed over so 
that you'd see the overall technique for handling an event in a program 
that uses a modeless dialog box. Now, it's time to closely examine this 
routine. 

Boolean HandleDialogEvent( EventRecord theEvent 
{ 

Boolean isEventDialog = false; 
DialogPtr theDialog; 
short the Item: 

if ( FrontWindow() != nil 
{ 

if C IsDialogEventC &theEvent 
{ 

if C DialogSelectC &theEvent, &theDialog, &theitem ) ) 
( 

} 

switch C theitem ) 
{ 

case kDialogDoneButton: 
gA 11 Done .. true; 
break: 

II case section to handle each enabled 
II item in the dialog box 

} 

Z67 



268 
Macintosh Programming Techniques. ZE 

isEventDialog g true; 

return ( isEventDialog ); 

The first thing Handl eDi al ogEvent() does is call the Toolbox routine 
FrontWi ndow( ), which returns a pointer to the frontmost window on the 
screen. If no windows-or dialog boxes-are on the screen, the routine will 
return a value of n i 1. This check verifies that the screen is not empty. If the 
screen is empty, Hand 1 eD i a 1 og Event ( ) can immediately exit, returning a 
value offal se to signal that the event wasn't handled by the routine. 

Next, Is Di al ogEvent() is called. This Toolbox routine determines 
if, at the time of the current event, the frontmost window is a dialog box. 
If a dialog box isn't in the forefront, you know the event is related to 
something other than a dialog box. If that's the case, Is Di a 1 og Event ( ) 
returns a value offal se, and Handl eDi al ogEvent() ends without han
dling the event. If the event does involve a dialog box, I s Di a 1 o g Event ( ) 
checks to see if the event involves the dialog box content region. For 
example, if the event was a mouse down event, and the cursor was over 
the dialog box title bar, then Is Di al ogEvent() again returns false. 
Your Event Loop() function has code for dealing with mouse clicks in a 
window's title bar, and you can use the same code for a mouse click in 
the title bar of a dialog box. To summarize, in order for 
Is Di al ogEvent() to return a value of true, a dialog box must be the 
frontmost window, and the event must involve the content area of that 
dialog box. Any other event results in Is Di al ogEvent() returning a 
value offal se, and the end of the Handl eDi al ogEvent() function. 

The Toolbox function Di a 1ogSe1 ect () is called next. If 
Handl eDi al ogEvent() has made it this far, then it has been established 
that the event is dialog related. Now it's time to handle the event. If the 
event was a mouse click on an enabled dialog box item (such as a button or 
checkbox), Di a 1ogSe1 ect () fills its third parameter with the item number 
of the clicked-on item and then returns a value of true. 
Hand 1 e Di a 1 og Event ( ) examines this returned value to see if in fact an 
item was clicked on. If one was, it's up to Handl eDi a 1 ogEvent() to process 
the mouse click. You can see from the listing for Hand 1 e Di a 1 o g Event() 
that it is from within the switch statement that item handling takes place. 



Chapter 5 • Dealing with Dlalog Boxes 

Di a 1ogSe1 ect () is a powerful routine that can take care of more sit
uations than mouse clicks in dialog box items. This function will do all 
of the work for you if a dialog box needs updating or activating, or if a 
user types in an editable text box. Because the handling of these types of 
events don't involve a click on a dialog box item, Di a 1ogSe1 ect ( ) will 
return a value of fa 1 s e after it completes its work. This tells 
Handl eDi al ogEvent() to skip the switch statement code that follows 
the call to Di a 1 o g Se 1 e ct ( ) . 

If Di a 1ogSe1 ect ( ) is called, it either handles the event itself or 
returns the item number of a clicked-on item and lets your code handle 
the event. In any case, if Di a 1 o g Se 1 e ct ( ) gets called by 
Handl eDi al ogEventC ), the event can be considered handled. That's 
why the Boolean variable isEventDialog is set to true anytime 
Di a 1ogSe1 ect () gets invoked. This value of true gets returned to 
Event Loop(), where the event is considered handled. Figure 5.18 sum
marizes how things work in Handl eDi al ogEvent( ). 

~f C FrontWindow() !• nil l 0 I l/erifyscrejlnlsnhmpty I 
i{· f ( IsDialogEvent ( &theEvent ) ) _An . __ Vi_e_,rify-fro_n_t_w_ln-do_w__, ~ _ Is a dialog box 

if 
{ 

DialogSelect( &theEvent, &theDialog, &theitem ) ) 

kJ> Handle dialog up~ate/activate or if an Item 
clicked, sltpply~program with dialog and Item 

switch ( theitem ) 

{ 11 handle clicks .b Handle clicked-on Item, as 
11 on dialog items¥ 1;1ppropriate for that Item 

isEventDialog = true; $ I , -Mark event as dialog-related I 
. . £h Tell·calllng routine whether 

return ( isEventDialog ) ; ~ event was dialog -related 

Figure 5.18 Handling a dialog-related event. 

Z69 



Z70 
Macintosh Programming Techniques. 2E 

Os1nG OSER ITEMS 
There may be a time when you want to include an item in a dialog box 
as your program executes, but not beforehand. That makes placing the 
item in the DI TL impossible. For example, your program might display 
one of two pictures, depending on the action the user takes. You could 
include a picture item in your DITL, but which PICT resource ID would 
you specify? A problem like this can be overcome using a resource type 
called a user item. 

The Oser Item Resource 
The user item is a dialog box item type tailor-made for situations like the 
above. When you add a user item to a DI TL it appears as a gray box. One 
such item appears on the left of the DITL in Figure 5.19. 

§!ID~ D Ill ID :::: 128 from PlctDispla 

0 Show Baby 

0 Show Adult 

( Display ) 

( Done ) 

@!) Button 

~ Check Box 

® Radio Button 

(;J Control 

T: Static Text 

:a::~~~:!::!.~:~:~:::::::: 
& Icon 

I .. Picture .............................................. 
llilllJ User Item 

Figure 5.19 A DITL with a user item. 

As with any other resource type, you can double-click on a user item to 
open the information window that allows you to move and resize the 
item. After that, your job in ResEdit is done. The rest of the work is 
accomplished in the source code. 



Chapter 5 • Dealing with Dlalog Boxes 

The Oser Item Source Code 
Earlier you saw that the Toolbox routine Di a 1ogSe1 ect () performs the 
very helpful task of updating a dialog box. When a partially obscured 
dialog box is exposed, Di a 1ogSe1 ect () will redraw buttons, checkbox
es, icons, and pictures: all the items that are the contents of the dialog 
box. All this is done without any work on your part, which is very help
ful indeed. The Dialog Manager knows exactly how to redraw these 
items without any help from your program because you defined these 
items in the DI TL resource, just as they are to appear in the dialog box. 
The Dialog Manager uses these definitions when it first displays a dialog 
box and again when it has to update, or refresh, a dialog box. 

The Dialog Manager can't update a user item on its own, as it can 
other item types. The DITL definition of a user item is incomplete; it just 
shows the display rectangle that will hold the item. Figure 5.20 shows an 
example of a dialog box that uses the DITL from Figure 5.19. An alert is 
obscuring part of the dialog box. Figure 5.20 takes the liberty of showing 
you what appears under the alert. A real alert would, of course, hide 
everything behind it. When the alert is dismissed, the area of the dialog 
box under the alert will need updating. 

@ Show Baby 

C.i Shou1 Buul1 

/···-······-············-··--·, 
l Di~JllU!.f J 
' ·····-···------····-

The Dialog Manager doesn't 
know how to redraw this item 

The Dialog Manager 
knows how to redraw 
items such as the 
radio button and the 
two push buttons 

Figure 5.20 Dialog box items will need updating by the Dialog Manager. 

271 



272 
Macintosh Programming Techniques. ZE 

You provide the Dialog Manager the help it needs to update a user item 
by writing a function that tells this manager just what to draw in the dis
play rectangle of the user item. You write this function, but you never 
call it directly. That's right: your source code never makes a call to the 
user item routine. Instead, your code performs a one-time initialization 
that associates the function with the user item. You bond the two togeth
er so that whenever an update occurs the Dialog Manager will call your 
function, on its own. 

You know that the Toolbox routine GetDialogltemC) is used to get 
information about an item: its type, its display rectangle, or a handle to 
it. The snippets you've seen so far have all been using GetDi al ogltem() 
to get a handle to an item. There's a companion routine to 
GetDi al ogltem( ), called SetDi al ogltem( ), and it's used-as you may 
have guessed-to set, or change, information about an item. 

If your program has a dialog box that makes use of a user item, you 
use SetDi al ogltem() to override the item's handle and replace it with 
a drawing procedure that tells the Dialog Manager just what to draw in 
the rectangle making up the user item. Here's an example: 

l/defi ne kPictureUserltern 3 

DialogPtr theDialog; 
short theType; 
Handle theHandle; 
Rect theRect; 

GetDialogltern( theDialog. kPictureUseritem. &theType. 
&theHandle. &theRect ); 

SetDialogitem( theDialog. kPictureUseritem. theType, 
(Handle)DoUserltem. &theRect ): 

What the above code does is first call Get Di a 1 og Item() to get all the 
information about a user item with the item number 3. It then calls 
SetDi al ogltem() to reset everything just as it was, with the exception 
of the handle to the item. In place of the handle is the name of an appli
cation-defined function that is responsible for drawing the contents of 
the user item-whatever the contents. The preceding code snippet uses 
a function named DoUserltemC ), but this routine can have any name 
you want. By the name given to the constant that holds the user item's 
number, k Pi ct u re User It em, you can assume that in the preceding snip-



Chapter 5 • Dealing with Dialog Boxes 

pet this user item will hold a picture. If the program is capable of dis
playing one of two pictures, then the DoUseritem() routine would be 
capable of loading and drawing pictures. 

In the call to Set Di a 1 og I tern(), omit the parentheses that normally fol
low a function name. You aren't calling the function here; you're passing 
the Dialog Manager the address of the function. Just as the name of an 
array signifies the memory address of the start of the array, to 
Set Di a 1 og I tern ( ) so does the name of a function signify the address of the 
start of the function. Finally, because SetDi al ogltem() is looking for a 
handle as the fourth parameter, you must typecast Douser Item to a handle. 

If you're generating PowerPC code, whether it be from a Symantec or 
Metrowerks compiler, the user item code you'll use has a couple of small
but very important-differences. Those differences are described in the 
chapter that deals with PowerPC programming, Chapter 8. If you're going to 
test out how user items work, create a 68K project for now. You'll notice that 
the book's CD holds only a 68K version of the project for this chapter's exam
ple program, DialogPlus. Chapter 8 presents the PowerPC version of the 
project for this same program. 

The DoUserltem() function is one that you write. Its purpose is to define 
what the Dialog Manager should draw in the user item. The Dialog 
Manager will be expecting DoUseritem() to have the following form: 

pascal void DoUserltem( DialogPtr theDialog, short theltem) 

User items appeared when Pascal was the native language of the 
Macintosh. The Dialog Manager is expecting to see a Pascal function 
here, and you're supplying a C function. Macintosh C provides a pas ca 1 
keyword; use it here and the Dialog Manager will be happy. The 
DoUserltemC) routine can have any name, but it must have two argu
ments: the first of type Di a 1 ogPtr, the second of type short. That's a 
requirement you must follow. 

Keeping Figure 5.20 in mind, take a look at how a user item function 
might be used. From Figure 5.20 you can assume that the user clicks on one 
of the two radio buttons, then the Display button. One of two pictures-
that of a baby or an adult-will then be drawn into the rectangle that 
bounds the user item. The click on a radio button sets a global variable 
gCu rrentPi ct to the PI CT resource ID of the proper picture, then an appli-

Z73 



274 
Macintosh Programming Techniques • .ZE 

cation-defined drawing routine named DrawBabyOrAdultPicture() is 
called. This function requires that the picture display rectangle be passed to 
it. Determining that rectangle is a simple enough task to perform: just call 
the Toolbox function GetDi al ogitemC ), passing the item number of the 
user item. Note that at this point, the user item routine hasn't been called. 
Here's a look at what the drawing routine might look like: 

f/def1 ne 
//def1 ne 

rBabyPicture 
rAdultP1cture 

short gCurrentPict; 

128 
129 

void DrawBabyOrManPicture( DialogPtr theDialog, Rect theRect ) 
{ 

GrafPtr theSavePort: 
PicHandle thePicture: 

GetPort( &theSavePort >: 
SetPort( theDialog ); 

if ( gCurrentPict =- rBabyPicture 
thePicture = GetPictureC rBabyPicture ); 

else 
thePicture = GetPicture( rAdultPicture ); 

DrawPictureC thePicture. &theRect ); 

SetPort( theSavePort >: 

There's nothing special about the code that makes up 
DrawBabyOrAdul tPi cture() or the code that invokes this routine. The 
new code comes in the form of the user item routine-an example of 
which is shown here: 

pascal void DoUserltem( DialogPtr theDialog. short theltem) 
{ 

short the Type: 
Handle theHandle: 
Rect theRect: 

GetDialogltem( theDialog. theltem, &theType, 
&theHandle. &theRect ); 



Chapter 5 • Deallng with Dialog Boxes 

OrawBabyOrAdultPictureC theOialog, theRect ): 
} 

DoUseritem() begins by calling GetDi a 1 ogltem() to get the display rec
tangle theRect that bounds the user item. Next, the application-defined 
picture-drawing routine is called. Here's a summary of how the user item 
routine fits into the given example. The user item in the dialog box DITL 
defines the rectangle in which drawing will take place. Should you ever 
want to change this drawing area, just change the DI TL resource and 
rebuild your program-your source code can remain untouched. The 
DrawBabyOrAdul tPi cture() is used to draw a picture into the user item. 
This type of routine could also be used without a user item function; it's 
simply a standard application-defined drawing routine. 
DrawBabyOrAdul tPi cture() is called by the program whenever the user 
selects a new picture to draw via the radio buttons and the Display but
ton. The application-defined DoUseritem() functioniscallednotbyyour 
program, but by the system. If the user drags the dialog box off screen, 
then back on, or if the dialog box becomes obscured by a window or alert, 
the dialog box needs to be updated. Should that be necessary, it is the sys
tem that will call DoUseritem( ). The system will pass DoUseritem() the 
pointer to the dialog box that needs updating, as well as the item number 
of the user item that needs to be redrawn. In the example, DoUseritem() 
calls DrawBabyOrAdul tPi cture() to handle the drawing. 

Earlier you saw that the Toolbox function Set Di a 1 og Item() was the 
device that binds the user item function to the user item itself. You only 
have to perform this task once, right after opening the dialog box in 
which the user item appears. Here goes: 

/Jdefi ne 
/idefi ne 
/ldefi ne 
lldefi ne 

rOisplayOialog 
kPictureUserltem 
rBabyPicture 
rAdultPicture 

DialogPtr theOialog: 
short theType: 
Handle theHandle: 
Rect theRect: 
Ptr theStorage: 

128 
3 

128 
129 

theStorage - NewPtrC sizeof( OialogRecord ) ): 
theOialog = GetNewOialog( rOisplayDialog, theStorage, CWindowPtr)-lL ): 

275 



276 
Macintosh Programming Techniques. 2E 

if C theDialog =-nil ) 
ExitToShell (): 

GetDialogltemC theDialog, kPictureUserltem, &theType, 
&theHandle, &theRect ): 

SetDialogltemC theDialog, kPictureUserltem, theType, 
{Handle)DoUserltem, &theRect >: 

gCurrentPict - rAdultPicture 

At this point, DITL item number 3, kPi ctureUseritem, is bound to the 
DoUseritemC) function-Set Di a 1 og Item() took care of that. The call to 
GetDi al ogitem() that precedes the call to SetDi al ogitemC) is neces
sary so that the proper values for the Type and theRect could be passed 
to SetDi al ogitem( ). If your program didn't have those values at the 
time of the call to SetDi al ogitem( ), "garbage" would be passed in as 
the third and fifth parameters. 

To start things off, assign gCurrentPi ct one of the two PICT IDs. 
When the dialog box needs updating-as it will when it is opened-the 
Dialog Manager will successfully draw the user item when it calls 
DoUserltemC ). 

That a function defined by your program never gets called by your program 
can be a confusing idea. Keep in mind that your code will never directly 
make a call to DoUserltem(). Rather amazing, isn't it? You can write a func

" 0 T E tion, then leave it to the Mac to call it when it wants to! 

The previous example was for a dialog box that contained a single user 
item. Your program is free to use any number of user items in a dialog 
box-the DialogPlus program that appears later in this chapter and on the 
book's CD demonstrates a modeless dialog box that has two user items. 

What if you want to have more than one user item? Now that you 
know what to do for one, working with more than one will be simple. 
Honest. Figure 5.21 adds a second user item to the DITL that you're 
already familiar with. 



Chapter 5 • Dealing with Dlalog Boxes 

O Show Boby 

O Show Adult 

Display 

( Done 

(9 Button 
............................................. 
181 Check Box 

® Radio Button 

!;! Control 
··········-···· .. ·····-··················· 

T: Static Text 
'IiifEdit·;:~·~·;··-···· 
"'&""i~~·~ .................... . 
............................................ 
I .. Picture 

m User Item lllllil 

Figure 5.21 A DI TL with two user items. 

If your program does in fact have a dialog box with more than one user 
item, you can still get by with writing a single user item drawing func
tion. Here's an example that would work for a dialog box that has two 
user items: 

/Jdefi ne 
/Jdefi ne 

kPictureUserltem 
kTitleUserltem 

3 
4 

pascal void DoUserltemC DialogPtr theDialog. short theltem) 
( 

short the Type; 
Handle theHandle: 
Rect theRect; 

GetDialogltemC theDialog. theltem. &theType. 
&theHandle. &theRect ); 

switch C theltem ) 
{ 

case kPictureUserltem: 
DrawBabyOrAdultPicture( theDialog. theRect ); 
break; 

277 



278 
Macintosh Programming Technlqaes, ZE 

case kTitleUserltem: 
DrawTitleC theDialog, theRect ); 
break: 

You may now see how more than one user item can use the same rou
tine. Look at the arguments for DoUserltem( ). One is the item number 
of the item to update. That's the key to the function's power. 

When the Dialog Manager calls DoUserltem() it passes along the 
item number of the user item that needs updating. You use that number 
when calling GetDi al ogltem() to get the display rectangle of the user 
item. You also use the item number in a switch statement. In the switch, 
the code appropriate for this one item is executed. Neat, huh? But there's 
still more to come. In the above example, if the user item to be updated 
is DITL item number 4, then an application-defined function named 
Dr a wT i t 1 e ( ) gets called. This function could be a routine that makes a 
call to DrawStri ng () to draw a title above the picture. The text of the 
title could be based on which picture is currently being displayed, as 
revealed by the global variable gCurrentPi cture. 

What if an alert or window is covering the dialog box, and, once 
uncovered, the dialog box needs both user items updated? The Dialog 
Manager will figure this out and will call your DoUserltem() routine 
twice. On the first call it will pass the item number of one of the user 
items, and on the second call it will pass the remaining item number. If 
you weren't amazed before, you've got to be now! 

If you could see each line of code executed during this updating, 
then you'd see that the DoUserltem() routine will get called twice. If 
you use the debugger when you run the DialogPlus example that 
appears later in this chapter, and if you place a break point at a line in 
DoUseritem( ), then you can verify that this does in fact happen. 

You know that when a dialog box containing a user item is first 
opened you use GetDi al ogltem() and SetDi al ogltem() to associate 
the user item with the user item function. If you have more than one user 
item, do this for each item. If your program defines only one user item 
routine, as this last example did, you associate each user item with this 
same routine. 



/ldefi ne 
I/define 
/ldefi ne 
/ldefi ne 
I/define 

rDisplayDialog 
kPictureUserltem 
kTitl eUserltem 
rBabyPicture 
rAdultPicture 

DialogPtr theDialog: 
short theType: 
Handle theHandle: 
Rect theRect: 
Ptr theStorage: 

Chapter 5 • Deallng with Dlalog Boxes 

128 
3 
6 

128 
129 

theStorage 0 NewPtrC sizeofC DialogRecord ) >: 
theDialog a GetNewDialog( rDisplayDialog. theStorage. (WindowPtr)-lL ): 
if { theDialog =- nil ) 

ExitToShel 1 {): 

GetDialogltem( theDialog. kPictureUserltem. &theType. 
&theHandle. &theRect >: 

SetDialogltem{ theDialog. kPictureUserltem. theType. 
CHandle)OoUserltem. &theRect ): 

GetOialogltem( theDialog. kTitleUserltem. &theType. 
&theHandle. &theRect ); 

SetDialogltemC theDialog. kTitleUserltem. theType. 
CHandle)OoUserltem. &theRect ): 

gCurrentPict = rAdultPicture 

User items are considered mysterious entities by many programmers 
new to the Macintosh-and by many who aren't. And because of the 
way the Dialog Manager gets involved with your code, user items real
ly are a little mystical. However, as you can see from the preceding 
examples, when it comes to writing the code to handle them, they aren't 
all that tricky. 

CHAPTER PROGRAM: DIALOGPWS 
DialogPlus is this chapter's example program. When you run the program, 
you'll come face to face with a modeless dialog box and the inescapable 

179 



ZIO 
Macintosh Programming Techniques. ZE 

dancing man. The dialog box contains an editable text box, a checkbox, two 
radio buttons, and two push buttons. By no coincidence, this program 
demonstrates the use of all the items with which a user commonly inter
acts. A screen shot of DialogPlus in action is shown in Figure 5.22. 

Enter Title Here 

I Enter Title Here 

181 Display window 

®Hot Man 
O Cold Man 

Heat Up Man 

Done 

New Window 

New thermostat, please ... 

Figure 5.22 A look at the DialogPlus program. 

Clicking on a radio button lets the program know which of two pictures 
the program should display when the Heat Up Man push button is 
pressed. As a bonus, a click of a radio button also changes the title dis
played in the Heat Up Man button-a simple little trick that never fails 
to amaze onlookers. 

Clicking on the Heat Up Man push button causes several things to 
happen. The program retrieves the user-entered text from the editable 
text box and displays it in the smaller of the two user items, the one that 
appears above the picture. The program also displays the proper picture 
in the second user item. 

If the user clicks on the Heat Up Man push button, and if the check
box is checked, then a window will open. The window serves two pur
poses. First, it provides an example of a program that supports the dis
play of both a dialog box and a window at the same time-a very real-



Chapter 5 • Dealing with Dialog Boxes 

world kind of thing. Second, by moving the window on and off the dia
log box, the Dialog Manager is forced to update things in the dialog box, 
including the two user items. 

To give a practical example of using an alert, DialogPlus throws up a 
stop alert when the Done push button is clicked on. This alert gives the 
user the option of canceling and returning to the program or quitting. 

Program Resources: DialogPlas.rsrc 
DialogPlus contains a couple of resources you've seen before, the WIND 
and the PICT, and a few that you're seeing for the first time in an exam
ple program: an ALRT, a DLOG, and two DITLs. 

You're familiar with the WI ND resource type, so it's not shown in a fig
ure. You've also seen plenty of PI CT resources, but since the two here are 
new, they're shown in Figure 5.23. 

PICTs from Oialo Plus.rsrc 
0 r··-·--·-···-······-········-·-·-······· .... 1 

· ?:iV: : 

I I 
l 

I 

129 128 

! 
t_ ................ -.. -·-·····-··················-·-·········-··! 0 

liS 

Figure 5.23 The two P IC T resources from DialogPI us. 

DialogPlus uses the alert shown in figures at the start of this chapter. The 
ALRT has an ID of 129, and so does the DITL associated with it. Figure 
5.24 shows the DITL. The DITL in the figure is displayed with ResEdit's 
Show Item Numbers menu item selected from the DITL menu. 

281 



282 
Macintosh Programming Techniques. ZE 

IRre you sure you want to quit?~ 

Cancellaj [ ~ ~uit _j 

Figure 5.24 The DITL used by the ALRT. 

DialogPlus has one DLOG, with an ID of 128, that makes use of DITL 128. 
Figure 5.25 shows that DITL. 

~- Dill ID = 128 from Dialo Plus.rsrc 

llEnter Title Here WI 
ID Display window@ 

lo Hot Man l4J 
lo Cold Man Laj 

Heat Up Man~ 

Done Llj 

Figure 5.25 The DITL used by the DLOG. 

Both an ALRT and a DLOG use the same type of resource to hold their con
tents-a DITL. Figure 5.26 shows the relationship of these three types, as 
used in DialogPlus. 



IPi!ll 
~ 
" 0 T E 

Chapter 5 • Deallng with Dlalog Boxes 

DITLS from DialogPlus.rsrc 

12 

Size 

176 
64 

Name 

Figure 5.26 DITL 128 is used by DLOG 128, while DITL 129 is used 

by ALRT 129. 

Again, the ID of a DITL resource doesn't have to match the ID of the ALRT or 
DLOG resource that uses it. It just makes sense to set things up that way. For 
example, if theALRT inFigure5.26had an ID of 500, it could still use DITL 129, 
provided the ALRT specified that 129 was the ID of the DITL to use. 

Program Usting: DialogPlas.c 
The complete source code listing for the DialogPlus program appears 
next. Following it is a discussion of the listing's key points. 

//define 
//define 
//define 
//define 
/fdefi ne 

rTemperatureWindow 
rQuitAlert 
kAlertDoneButton 
rTemperatureDialog 
kDialogOoneButton 

128 
129 

1 
128 

1 

283 



284 
Macintosh Programming Technlqaa. ZE 

I/define 
/!define 
/!define 
/!define 
/fdefine 
/fdefine 
/!define 
/!define 
/!define 
I/define 
/!define 
f!defi ne 
l!defi ne 

Boolean 
Ptr 
Ptr 
short 
short 
WindowPtr 

kClimateButton 
kShowWindCheckbox 
kHotRadioButton 
kColdRadioButton 
kManUseritem 
kTitleEditTextBox 
kTi tl eUseritem 
rManHotPicture 
rManColdPicture 
kHotManButtonTitle 
kColdManButtonTitle 
kControlOn 
kControlOff 

gAllDone - false; 
gDlogStorage; 
gWindStorage; 
gCurrentPict; 
gOldButtonNum; 
gTemperatureWindow; 

void main( void ) 
{ 

MaxApplZone(); 
MoreMasters(); 
MoreMasters(); 
MoreMasters(); 

InitializeToolbox(); 
InitializeVariables(); 

OpenTemperatureDialog(); 
OpenTemperatureWindow(); 

Eventloop(); 

2 
3 
4 
5 
6 
7 
8 

128 
129 

"\pHeat Up Man" 
"\pCool Down Man" 

1 
0 



void InitializeVariablesC void ) 
{ 

Chapter 5 • Dealing with Dlalog Boxes 

gOlogStorage - NewPtr( sizeof( DialogRecord ): 
gWindStorage - NewPtr( sizeof( WindowRecord ): 

void EventloopC void ) 
{ 

EventRecord theEvent: 
Boolean isEventDialog: 

while < gAllDone =a false ) 
{ 

WaitNextEvent( everyEvent, &theEvent, lSL, nil ): 

isEventDialog = HandleDialogEvent( theEvent ): 

if C isEventDialog ..... false 
{ 

switch C theEvent.what ) 
{ 

} 

case mouseDown: 
HandleMouseDown( theEvent >: 
break: 

case updateEvt: 
HandleUpdate( theEvent): 
break: 

285 



Z86 
Macintosh Programming Techniques. JE 

void SetCheckBox( DialogPtr theDialog. short theltem ) 
{ 

short theType: 
Handle theHandle: 
Rect theRect: 
short theOldValue: 

GetDialogitemC theDialog. theitem. &theType. &theHandle. &theRect ); 

theOldValue - GetControlValue( CControlHandle)theHandle >: 

if ( theOldValue ..... kControlOn ) 
SetControlValue( (ControlHandle)theHandle. kControlOff ); 

else 
SetControlValue( (ControlHandle)theHandle. kControlOn >: 

void SetRadioButtons( DialogPtr theDialog. short theNewButtonNum ) 
{ 

short the Type: 
Handle theHandle: 
Re ct theRect: 

GetDialogitemC theDialog. gOldButtonNum. &theType. 
&theHandle. &theRect >: 

SetControlValue( (ControlHandle)theHandle. kControlOff >: 

GetDialogitemC theDialog. theNewButtonNum. &theType. 
&theHandle. &theRect ); 

SetControlValueC CControlHandle)theHandle, kControlOn ): 

gOldButtonNum Q theNewButtonNum : 

void OpenTemperatureWindowC void ) 
( 

gTemperatureWindow ~ GetNewWindow( rTemperatureWindow. 



Chapter 5 • Dealing with Dlalog Boxes 

if C gTemperatureWindow """" nil 
ExitToShellC>: 

HideWindowC gTemperatureWindow >: 

gWindStorage, CWindowPtr)-ll >: 

II _________________________________________________ _ 

void OpenTemperatureDialog( void ) 
{ 

} 

short theType: 
Handle theHandle: 
Rect theRect: 
DialogPtr theDialog: 

theDialog ~ GetNewDialog( rTemperatureDialog, 

if C theDialog =- nil ) 
Exi tToShell (): 

gDl ogStorage. C Wi ndowPtr) -1 L ) : 

GetDialogltemC theDialog, kManUserltem. &theType. 
&theHandle. &theRect >: 

SetDialogltemC theDialog. kManUserltem, theType, 
CHandle)DoUserltem, &theRect ): 

GetDialogltem( theDialog, kTitleUserltem, &theType, 
&theHandle, &theRect ): 

SetDialogltem( theDialog, kTitleUserltem. theType. 
(Handle)DoUserltem, &theRect >: 

gCurrentPict = rManHotPicture: 
gOldButtonNum = kHotRadioButton: 

GetDialogltem( theDialog, gOldButtonNum. &theType. 
&theHandle, &theRect): 

SetControlValue( CControlHandle)theHandle, kControlOn >: 

ShowWindowC theDialog >: 

II _________________________________________________ _ 

287 



Zll 
Macintosh Programming Techniques. 2E 

pascal void DoUseritemC DialogPtr theDialog. short theitem) 
{ 

short the Type: 
Handle theHandle: 
Rect theRect; 

GetDialogitemC theDialog, theitem. &theType, 
&theHandle, &theRect >: 

switch C theitem ) 
{ 

case kManUseritem: 
ChangeManC theDialog, theRect >: 
break: 

case kTitleUseritem: 
DrawTitle( theDialog, theRect >: 
break; 

void ChangeManC DialogPtr theDialog, Rect theRect ) 
{ 

GrafPtr theSavePort; 
PicHandle thePicture: 

GetPort( &theSavePort ); 
SetPortC theDialog ); 

if C gCurrentPict -... rManHotPicture 
thePicture a GetPicture( rManHotPicture ); 

else 
thePicture = GetPictureC rManColdPicture >: 

DrawPictureC thePicture, &theRect ): 

SetPortC theSavePort ); 



Chapter 5 • Dealing with Dialog Boxes 

void DrawTitleC DialogPtr theDialog, Rect theUserRect ) 
{ 

short theType: 
Handle theHandle: 
Rect theRect; 
GrafPtr theSavePort; 
Str255 theString; 

GetPortC &theSavePort ): 
SetPort{ theDialog ); 

FillRect{ &theUserRect, &qd.white ); 

GetDialogltem{ theDialog, kTitleEditTextBox, &theType, 
&theHandle, &theRect >: 

GetDialogltemText{ theHandle, theString ): 

MoveToC theUserRect.left,theUserRect.bottom - 3 ); 
Drawstring{ theString >: 

SetPortC theSavePort ); 

Boolean HandleDialogEvent( EventRecord theEvent ) 
{ 

Boolean isEventDialog = false; 
DialogPtr theDialog: 
short the Item: 
short theAlertltem: . 
if ( FrontWindow() != nil 
{ 

if C IsDialogEventC &theEvent 
{ 

if C DialogSelectC &theEvent, &theDialog, &theltem ) ) 
{ 

switch C theltem ) 
{ 

case kDialogDoneButton: 
theAlertltem - StopAlert( rQuitAlert, nil ): 
if C theAlertitem ..... kAlertDoneButton ) 

Z89 



290 

} 

Macintosh Programming Techniques. 2E 

gAllDone = true: 
break: 

case kShowWindCheckbox: 
SetCheckBox( theDialog. theltem >: 
break: 

case kHotRadioButton: 
case kColdRadioButton: 

SetRadioButtons( theDialog. theltem ): 
SetClimateButtonC theOialog >: 
break: 

case kClimateButton: 
DoClimateButton( theDialog >: 
break: 

isEventDialog = true: 

return C isEventDialog ); 

void SetClimateButton( DialogPtr theDialog ) 
{ 

short the Type: 
Handle theHandle: 
Rect theRect: 

GetDialogltem( theDialog. kClimateButton. &theType. 
&theHandle. &theRect >: 

if ( gOldButtonNum ..... kHotRadioButton ) 
SetControlTitle( CControlHandle)theHandle. kHotManButtonTitle ): 

else 
SetControlTitle( (ControlHandle)theHandle. kColdManButtonTitle >: 



Chapter 5 • Dealing with Dialog Boxes 

void OoClimateButton( OialogPtr theOialog ) 
{ 

} 

short the Type: 
Handle theHandle: 
Rect theRect: 
short theControlValue: 

GetOialogltemC theOialog, kShowWindCheckbox. &theType. 
&theHandle, &theRect >: 

theControlValue - GetControlValue ( CControlHandle)theHandle >: 
if ( theControlValue ...... kControlOn > 

ShowWindow( gTemperatureWindow ): 
else 

HideWindow( gTemperatureWindow ): 

if ( gOldButtonNum == kHotRadioButton 
gCurrentPict - rManHotPicture: 

else 
gCurrentPict = rManColdPicture: 

GetOialogltem( theOialog. kManUserltem. &theType. 
&theHandle, &theRect ): 

ChangeMan( theOialog, theRect ): 

GetOialogltem( theOialog, kTitleUserltem. &theType. 
&theHandle, &theRect >: 

OrawTitle( theOialog, theRect ): 

void HandleUpdate( EventRecord theEvent 
{ 

WindowPtr theWindow: 
GrafPtr theSavePort: 

theWindow - CWindowPtr)theEvent.message: 

GetPort( &theSavePort >: 
SetPortC theWindow >: 

291 



292 
Macintosh Programming Techniques. ZE 

TextFontC systemFont >: 
TextSize( 12 >: 

BeginUpdateC theWindow >: 
MoveToC 20, 20 >: 
DrawString(ff\pNew thermostat, please ... "}: 

EndUpdate( theWindow >: 

SetPort( theSavePort >: 

void HandleMouseDownC EventRecord theEvent } 
{ 

WindowPtr theWindow: 
short thePart: 

thePart = FindWindow( theEvent.where, &theWindow }: 

switch ( thePart } 
{ 

case inMenuBar: 
break: 

case inDrag: 
DragWindow( theWindow, theEvent.where, &qd.screenBits.bounds }: 
break: 

case inGoAway: 
if ( TrackGoAway( theWindow, theEvent.where } } 

CloseOneWindow( theWindow ): 
break: 

case inContent: 
if ( theWindow != FrontWindow(} 

SelectWindowC theWindow >: 
break: 



Chapter 5 • Dealing with Dlalog Boxes 

void CloseOneWindow( WindowPtr theWindow } 
{ 

HideWindowC theWindow >: 
CloseWindow( theWindow ); 
DisposePtr( C Ptr )theWindow ): 
gA 11 Done = true: 
theWindow =nil: 

void InitializeToolbox( void 
{ 

InitGraf( &qd.thePort >: 
InitFontsC): 
InitWindows(): 
InitMenus(): 
TEinit(}; 
InitDialogs( OL ); 
FlushEvents( everyEvent, 0 ); 
InitCursor(}: 

Stepping through the Code 
As always, this chapter ends with a walkthrough of the example pro
gram. The coverage of the DialogPlus code will pause the longest at 
information pertinent to this chapter. 

The define Directives 
DialogPlus can display a window with ID of rTemperatureWi ndow, an 
alert with ID rQuitA 1 ert, and the modeless dialog box that has a 
resource ID of rTemperatureDi al og. 

The alert has a Quit button that has a DITL item number of 
kA 1 ertDoneButton. The dialog box has several items, each referred 
to in the code by a define: kDi a 1 ogDoneBut ton, kCl i mateButton, 
kShowWindCheckbox, kHotRadioButton, kColdRadioButton, 
kManUserltem, kTitleEditTextBox,and kTitleUserltem. 

193 



294 
Macintosh Programming Techniques. ZE 

The dialog box can display one of two PICT resources: 
rManHotPi cture or rManCol dPi cture. The text of the push button that 
displays the appropriate picture changes, depending on the radio button 
selected. The push button title will be one of two strings, as defined by 
the constants kHotManButtonTi tl e and kCol dManButtonTi tl e. 

When a control such as a radio button is on, it has a value of 
kControl On. When it's off, it has the value of kControl Off. 

/ldefi ne 
/ldefi ne 
/ldefi ne 
/ldefi ne 
/ldefi ne 
/ldefi ne 
/!define 
/!define 
/ldefi ne 
/ldefi ne 
/ldefi ne 
/ldefi ne 
/ldefi ne 
/ldefi ne 
#define 
/ldefine 
//define 
/!define 

rTemperatureWindow 
rQuitAlert 
kAlertDoneButton 
rTemperatureDialog 
kDialogDoneButton 
kClimateButton 
kShowWindCheckbox 
kHotRadioButton 
kColdRadioButton 
kManUseritem 
kTitleEditTextBox 
kTitleUseritem 
rManHotPicture 
rManColdPicture 
kHotManButtonTitle 
kColdManButtonTitle 
kControlOn 
kControlOff 

The Global Variables 

128 
129 

1 
128 

1 
2 
3 
4 
5 
6 
7 
8 

128 
129 

"\pHeat Up Man" 
"\pCool Down Man" 

1 
0 

Like the other programs in this book, DialogPlus uses gA 11 Done to 
denote the ending of the program's execution. DialogPlus reserves mem
ory for both the dialog box and the window at the start of the program
g D l ogStorage and gWi ndStorage are the pointers that keep track of 
these two blocks of nonrelocatable memory positioned low in the heap. 
The short variable gCurrentPi ct keeps track of which of two pictures 
is currently displayed in the dialog box. There's always one radio button 
on, and its item number is held in the variable gOl dButtonNum. The pro
gram can have only one window open. The Wi ndowPtr variable 
gTemperatureWi ndow is used to keep track of the window. 



Boolean 
Ptr 
Ptr 
short 
short 
WindowPtr 

gAllDone - false; 
gDlogStorage; 
gWindStorage; 
gCurrentPict: 
gOldButtonNum: 
gTemperatureWindow: 

The ma i n < ) function 

Chapter 5 • Deallng with Dialog Boxes 

The main() function performs the standard memory and Toolbox ini
tializations, then sets up memory that will hold the window and dialog 
box data. After that, both the dialog box and window are opened. Then 
it's on to the main event loop. 

void main( void ) 
{ 

} 

MaxApplZone(): 
MoreMasters(): 
MoreMasters(); 
MoreMasters(): 

InitializeToolbox(): 
InitializeVariablesC): 

OpenTemperatureDialog(); 
OpenTemperatureWindow(); 

Eventloop(); 

Handling Checkboxa and Radio Buttons 
This chapter showed you how to handle a mouse click in a checkbox. 
DialogPlus takes the example code shown earlier in this chapter, sur
rounds it with a pair of braces, and calls it SetChec kB ox ( ) . If you pass 
in the resource DITL item number of the clicked-on item and a pointer to 
the dialog box the item is in, as done here, you can use and re-use this 
routine in all your programs-without modification. 

void SetCheckBoxC DialogPtr theDialog, short theltem ) 
{ 

195 



296 
Macintosh Programming Technlqaes. ZE 

short the Type: 
Handle theHandle: 
Rect theRect: 
short theOldValue: 

GetDialogltemC theDialog. theitem. &theType, &theHandle, &theRect ): 

theOldValue = GetControlValue( (ControlHandle)theHandle ); 

if ( theOldValue c=:o kControlOn ) 
SetControlValue( (ControlHandle)theHandle. kControlOff ); 

else 
SetControlValue( (ControlHandle)theHandle, kControlOn ); 

Like SetCheckBox( ), the radio button routine SetRadi oButtons ()is a 
rehash of the code snippet shown in this chapter. It too asks for the item 
number of the clicked-on item and a pointer to the dialog box that item 
appears in. The routine then turns off the old button before turning on 
the newly clicked one. 

void SetRadioButtons( DialogPtr theDialog, short theNewButtonNum ) 
{ 

short the Type; 
Handle theHandle: 
Rect theRect: 

GetDialogltem( theDialog, gOldButtonNum, &theType, 
&theHandle. &theRect >: 

SetControlValue( (ControlHandle)theHandle, kControlOff ): 

GetDialogitem( theDialog, theNewButtonNum, &theType, 
&theHandle. &theRect ): 

SetControlValue( (ControlHandle)theHandle. kControlOn >: 

gOldButtonNum = theNewButtonNum : 

Opening a Window and a Modeless Dialog Box 
DialogPlus allows just one window to be opened. The user can open and 
close that same window as often as desired. Since that's the case, the pro-



Chapter 5 • Deallng with Dlalog Boxes 

gram can use a simple trick to give the illusion of the window opening 
and closing. At the start of the program the window is opened and a 
global Wi ndowPtr variable is set to point to it. Then, the window is hid
den through a call to the Toolbox routine Hi deWi ndow( ). The window 
stays open for the duration of the program. If the user elects to "open" 
the window, a call to the Toolbox function ShowWi ndow() is all that's 
needed. When the user want's to "close" the window, a call to 
Hi deWi ndow() is made. 

void OpenTemperatureWindow( void ) 
( 

gTemperatureWindow = GetNewWindow( rTemperatureWindow, 
gWindStorage, CWindowPtr)-ll ): 

if C gTemperatureWindow =- nil 
ExitToShell (): 

HideWindow( gTemperatureWindow ); 

The dialog box that opens in DialogPlus has two user items in it. So 
OpenTemperatureDi al og() calls SetDi al ogitem() twice to tell the 
Dialog Manager to be on the watch for a routine called DoUseritemC) 
when it's update time. 

The dialog box is going to display one of two pictures, so 
OpenTemperatureDi al og() assigns gCurrentPi ct the PICT ID of one 
of them here. The program must turn on one of the two radio buttons 
when the dialog box opens; the Dialog Manager doesn't do that on its 
own. Since DialogPlus begins with the display of the hot picture, the cor
responding radio button should initially be turned on. 

void OpenTemperatureDialog( void ) 
{ 

short theType; 
Handle theHandle: 
Rect theRect: 
DialogPtr theDialog: 

theDialog = GetNewDialog( rTemperatureDialog, 

if C theDialog == nil 
ExitToShell(): 

gOlogStorage, CWindowPtr)-ll ); 

Z97 



298 
Madntosh Programming Techniques, ZE 

GetDialogltem( theDialog, kManUserltem, &theType, 
&theHandle, &theRect ): 

SetDialogltemC theDialog, kManUserltem, theType, 
CHandle)DoUserltem, &theRect ): 

GetDialogltem( theDialog, kTitleUserltem, &theType, 
&theHandle, &theRect >: 

SetDialogltem( theDialog, kTitleUserltem. theType, 
CHandle)DoUserltem. &theRect ): 

gCurrentPict = rManHotPicture: 
gOldButtonNum = kHotRadioButton: 

GetDialogltem( theDialog, gOldButtonNum. &theType, 
&theHandle, &theRect): 

SetControlValue( (ControlHandle)theHandle. kControlOn >: 

ShowWindow( theDialog >: 

Drawing User Items 
The Douser Item() routine that appears in DialogPlus has the same format 
as the one shown in this chapter. Instead of drawing right here within the 
function, DoUserltemC) delegates drawing tasks to either ChangeMan ()or 
DrawTi tl e( ). Which of these two application-defined routines gets called 
depends on which of the two user items is being updated. 

pascal void DoUserltem( DialogPtr theDialog, short theltem) 
{ 

short the Type: 
Handle theHandle: 
Rect theRect: 

GetDialogltem( theDialog, theltem. &theType. 
&theHandle, &theRect ): 

switch { theltem ) 
{ 

case kManUserltem: 
ChangeMan{ theDialog, theRect ): 
break: 

case kTitleUserltem: 



Chapter 5 • Dealing with Dlalog Boxes 

DrawTitleC theDialog. theRect >: 
break: 

} 

If the user item that displays the picture needs updating, the program 
calls ChangeMan( ). This routine looks at gCurrentPi ct to see which 
PICT to load and display. Notice that the user item's display rectangle is 
passed to ChangeMan() so that the routine knows where to draw the pic
ture. 

void ChangeManC DialogPtr theDialog. Rect theRect ) 
{ 

GrafPtr theSavePort: 
PicHandle thePicture: 

GetPort( &theSavePort >: 
SetPort( theDialog ); 

if C gCurrentPict == rManHotPicture 
thePicture - GetPictureC rManHotPicture ): 

else 
thePicture = GetPicture( rManColdPicture ); 

DrawPicture( thePicture. &theRect >: 

SetPortC theSavePort >: 

If the smaller of the two user items is to be updated, DrawTi tl e() does 
the work. Before drawing a string in the user item, DrawTi tl e() clears 
out the old title by calling the Toolbox function Fi 11 Rect() to white out 
the user item. Then DrawTi t 1 e C ) calls Get Di a 1 og I tern C ) to get a handle 
to the editable text box to use in a call to GetDi al ogltemTextC }. With 
the contents of the editable text box retrieved, it's a simple matter to 
move the graphics pen into the user item box and draw the string. 

void DrawTitleC DialogPtr theDialog. Rect theUserRect ) 
{ 

short theType; 
Handle theHandle: 
Rect theRect; 
GrafPtr theSavePort: 

299 



JOO 
Madntosh Programming Techniques. ZE 

Str255 theString; 

GetPort( &theSavePort ); 
SetPort( theDialog ); 

FillRect( &theUserRect, &qd.white ); 

GetDialogltem( theDialog, kTitleEditTextBox, &theType, 
&theHandle, &theRect ); 

GetDialogltemText( theHandle, theString ); 

MoveTo( theUserRect.left, theUserRect.bottom - 3 ); 
Drawstring( theString ); 

SetPortC theSavePort ); 

Event Handling 
Before processing an event, Event Loop { ) calls Hand 1eDia1 og Event {) 
to give that routine the opportunity to handle it. If 
Handl eDi a 1 ogEvent {) doesn't handle the event, then one of the follow
ing is true about the event: 

1. The event wasn't dialog related; handle the event in the switch 
section of Event Loop{) as done in the past. 

2. The event was in the dialog box title bar, not its content region. 
A dialog box title bar is the same as a window title bar, so you 
can again use the old window code found in the application
defined Handl eMouseDown{) routine that is called from the 
switch section of Event Loop() to drag the dialog box. As the 
age-old saying goes," A title bar is a title bar .... " 

void Eventloop( void ) 
{ 

EventRecord theEvent; 
Boolean isEventDialog; 

while ( gAllDone == false ) 
{ 

WaitNextEvent( everyEvent, &theEvent, lSL, ni 1 ) : 



} 

Chapter 5 • Dealing with Dialog Boxes 

isEventDialog = HandleDialo~Event( theEvent ); 

if C isEventDialog == false 
{ 

switch C theEvent.what 
{ 

case mouseDown: 
HandleMouseDownC theEvent ); 
break: 

case updateEvt: 
HandleUpdate( theEvent); 
break: 

Hand 1 e Di a 1 o g Event ( ) only handles an event if it's dialog related. 
Because the user items aren't enabled in the D IT L, the Dialog Manager 
ignores mouse clicks on them. Figure 5.27 shows how a mouse button 
click on each dialog box item is handled . 

Acllckhere ... 

I Enter Title Here 

D Display window 

@Hot Men 
QCold Man 

Heat Up Man 

Done 

... results In this happening: 

Dialog Manager handles things. 

Call application-defined routine SetCheckBox () 

Call application-defined routine SetRadioButton <) 

to tum buttons on and off. Call application-defined 
SetClimateButton () to change title displayed in 

Call application-defined DoClimateBu t ton { ) to 
display title and correct picture, and to open a 
window. 

Put up stop alert. If user quits, set gAllDone to true. 

Figure 5.27 How items are handled in DialogPlus. 

301 



JOZ 
Macintosh Programming Techniques. ZE 

Boolean HandleDialogEventC EventRecord theEvent ) 
{ 

Boolean isEventDialog ... false: 
DialogPtr theDialog: 
short the Item: 
short theAlertitem: 

if ( FrontWi ndow() !"" ni 1 
{ 

} 

if ( IsDialogEvent( &theEvent 
{ 

if ( DialogSelect( &theEvent, &theDialog, &theitem ) ) 
{ 

switch C theitem > 
( 

} 

case kDialogDoneButton: 
theAlertitem = StopAlertC rQuitAlert, nil ): 
if ( theAlertitem == kAlertDoneButton ) 

gAllDone ... true: 
break: 

case kShowWindCheckbox: 
SetCheckBox( theDialog, theitem >: 
break: 

case kHotRadioButton: 
case kColdRadioButton: 

SetRadioButtonsC theDialog, theitem >: 
SetClimateButtonC theDialog ): 
break: 

case kClimateButton: 
DoClimateButton( theDialog >: 
break: 

isEventDialog = true: 

return ( isEventDialog ): 



Chapter 5 • Dealing with Dlalog Boxes 

A click on either radio button is treated in the same way. First, a call is 
made to the application-defined Set Ra di oButtons () function. After the 
buttons are set, a call is made to the application-defined routine 
SetCl imateButton(). This function changes the title displayed in the 
push button. This is accomplished by a call to the Toolbox function 
SetCont ro 1Tit1 e ( ) . Here the button title is set to match the current radio 
button setting-information held in the global variable gOl dButtonNum. 

void SetClimateButton( DialogPtr theDialog ) 
{ 

short theType: 
Handle theHandle; 
Rect theRect: 

GetDialogitem( theDialog, kClimateButton, &theType, 
&theHandle, &theRect ); 

if ( gOldButtonNum == kHotRadioButton ) 
SetControlTitle( (ControlHandle)theHandle, kHotManButtonTitle >: 

else 
SetControlTitle( (ControlHandle)theHandle, kColdManButtonTitle >: 

Clicking on the Climate radio button performs a few actions, all taken 
care of in the application-defined DoCl i mateButton () routine. First 
there is a call to Get Di a 1 og Item() to get a handle to the checkbox item. 
Then a call to GetControl Value() is made to find the value of the 
checkbox. Remember: you must typecast the generic handle returned by 
Get Di a 1 ogitem() into a Control Handle, as done here. If the checkbox 
is on, a call to the Toolbox function ShowWi ndow() results in the display 
of the previously opened and hidden window. 

Next, DoCl i mateButton () determines which radio button is on so 
that gCurrentPi ct can be set to hold the PICT resource ID of the prop
er picture-the picture that is about to be displayed. To do the actual pic
ture drawing, DoCl i mateButton () calls the application-defined 
ChangeMan () routine, passing along the display rectangle of the user 
item that will hold the picture. This is the same ChangeMan () routine 
called by DoUseritem() during dialog box updating. 

JOJ 



304 
Macintosh Programming Techniques. ZE 

The routine ends with a call to DrawTi tl e( ). This function displays 
a title in the second user item rectangle. 

void DoClimateButton( DialogPtr theDialog ) 
{ 

short the Type; 
Handle theHandle; 
Rect theRect; 
short theControlValue; 

GetDialogitemC theDialog, kShowWindCheckbox, &theType, 
&theHandle, &theRect ); 

theControlValue = GetControlValue C CControlHandle)theHandle ); 
if ( theControlValue ==- kControlOn ) 

ShowWindowC gTemperatureWindow ); 
else 

HideWindow( gTemperatureWindow ); 

if ( gOldButtonNum =-- kHotRadioButton 
gCurrentPict = rManHotPicture; 

else 
gCurrentPict = rManColdPicture; 

GetDialogitem( theDialog, kManUseritem, &theType, 
&theHandle, &theRect ); 

ChangeMan( theDialog, theRect ); 

GetDialogitemC theDialog, kTitleUseritem, &theType, 
&theHandle, &theRect ); 

DrawTitle( theDialog. theRect ); 

If Hand 1 e Di a 1 o g Event ( ) doesn't handle the current event, it returns a 
value offal se to Event Loop(). The switch statement at the bottom of 
Event Loop ( ) is then entered. If the event is an update event, and 
Handl eDi al ogEvent() didn't handle it, it must be window related. 
There's only one window that can be on the screen, so there's no decision 
making to perform here; just write to the window. 

void HandleUpdateC EventRecord theEvent 
{ 

WindowPtr theWindow; 
GrafPtr theSavePort: 



Chapter 5 • Deallng with Dlalog Boxes 

theWindow = CWindowPtr)theEvent.message; 

GetPort( &theSavePort ); 
SetPort( theWindow ); 

TextFont( systernFont >: 
TextSize( 12 ): 

BeginUpdate( theWindow >: 
MoveToC 20, 20 >: 
DrawString("\pNew thermostat, please ... "): 

EndUpdate( theWindow ): 

SetPort( theSavePort >: 

Handl eOi al ogEvent() doesn't handle a mouse down event in a title 
bar, whether it's a window or dialog box. An event of that type takes the 
program to Handl eMouseDown ().This routine, written almost exactly as 
it was for windows back in Chapter 4, works here for the window or 
dialog box. 

CHAPTER SoMMflRY 
When a user makes a mistake, or is about to do something that could 
result in a loss of data, a Macintosh program will display an alert. The 
size and screen location of an alert is defined by an ALRT resource. The 
items in the alert, such as an informative message and a Cancel or OK 
button, are defined in a DI TL resource. The Toolbox routine Al e rt ( ) dis
plays an alert, using the ID of the passed-in ALRT resource ID. 

Dialog boxes can be modal-fixed on the screen; or they can be mod
eless-movable. The style, size, and screen location of both types are 
defined by the DLOG resource type. Like an ALRT, a DLOG has a related 
Dill that defines the items that are to appear in the dialog box. 

The Toolbox routine Modal Di al og() does much of the work in han
dling a modal dialog box. It tracks the user's mouse movements and 
reports back to the program when a user clicks on an item in the dialog box. 

Modeless dialog boxes require more work on the programmer's part. 
The Toolbox routine Is Di al o g Event ( ) determines if a dialog box was 

305 



306 
Macintosh Programming Techniques. 2E 

the frontmost window when an event occurred. If so, the Toolbox rou
tine Di al ogSe l ect () is called to handle updates or activates to the dia
log box. Di a 1 o g Se 1 e ct ( ) also tracks the user's actions to determine if he 
or she clicked on an item in the dialog box. 

Dialog boxes can contain several types of items: push buttons, radio 
buttons, checkboxes, and editable text boxes are the most common. 
Pictures and icons can also be used as items. The user item is a less used, 
but very powerful, item type. This item type allows an item to change as 
a program executes. 



flCIHTOSH PROGRflMMIHG TECHHIQOES. 2E 

Chapter 6 

More About Windows 
Windows and menus are what originally set Macintosh programs apart 
from those designed for other computers. Menus allow an application to 
be nonlinear; that is, it doesn't follow a set sequence of events. Thanks 
to menus, a user is free to perform different actions each time he or she 
runs a program. 

In this chapter you'll learn about the two resource types used to create 
menus. The MENU is the template for a single menu. The MBAR resource is a 
collection of MENU resources used to form a single menu bar. 

Here you'll learn that once you get a handle to a menu, you can 
make several changes to the characteristics of a menu and its menu 
items. You'll disable and enable a menu, change the text and style of text 
for a menu item, and place a check mark by an item. 

ABOOT MErtOS 
Every application has its own menu bar running along the top of the 
screen. Your program will define the individual menu names in the 
menu bar-the menus. It will also define all the menu items-the individ
ual items that appear in each menu. 

307 



308 
Macintosh Programming Technlqaa • .ZE 

As conditions in a program change, the action of a menu item may 
not be applicable. At those times you'll want to disable that menu item. 
Disabling the item dims it and makes it impossible to select. Later, when 
the action of that menu item is usable, you can enable it to again make it 
selectable. 

You can use separator lines in a menu to logically group menu items. 
Though technically an item, a separator line is never selectable. It serves 
only to visually divide a menu into sections. 

For a commonly used menu command you can define a keyboard 
equivalent, or Command equivalent. Rather than making the selection from 
the menu, the keyboard equivalent allows the user to carry out the menu 
option by using the command key in conjunction with some other key. 

Figure 6.1 shows a menu bar that contains the three standard menus 
found in almost all Macintosh programs: the Apple, File, and Edit menus. 

Menu 

_______ ./"')Menu bar 

Edit 1/-
New XN 

Enabl~d r--"\.. Open... XO 
menu item L...,,( 

I 
Close XW 

...................................................... 
S<n•(~ ~j!tS 

Disabled ~-·.. s ·u ... .t ,i ... •t .. ,(u;.,.,JJy,,, 

menu 1 em ....................................... - ............ .. 

Print ••• 

Separator line 
menu item 

Quit sgq , Keyboard-equivalent 
"--------...i-- (Command-equivalent) 

Figure 6.1 A typical Macintosh menu. 

Merta REsooRCES 
You'll rely on two resource types to define the menu and menu items for 
your program. The MENU resource defines a single menu and the items in 



Chapter 6 • More flboat Windows 

it. The MBAR resource groups the individual MENU resources together into 
a single menu bar. 

The MEN u Resource 
For each menu that your program will have in its menu bar, you'll cre
ate a MENU resource. Let's step through that process now. 

As is the case for any new resource, select Create New Resource 
from ResEdit's Resource menu. Then double-click on MENU in the Select 
New Type dialog box. You'll then see a window like the one shown in 
Figure 6.2. 

You'll want one of your MENU resources to represent the Apple 
menu-the one that holds the items the user keeps in the Apple Menu 
Items folder in the System Folder. To do this click, on the ti (Apple 
menu) radio button, as shown in Figure 6.2. 

For any menu except the 9, click here 

Click here to 
designate that the menu be the Iii 
menu-you don't need to type in a title 

181 Enabled 

Color 

Title:lllJ 

I tern Te Ht Default: Ill) 
Menu Background: D 

Figure 6.2 ResEdit's MENU editor. 

To add menu items to a MENU, whether the Apple menu or another menu, 
choose Create New Item from the Resource menu. Then type the menu 

309 



310 
Macintosh Programming Techniques, ZE 

item name. Figure 6.3 illustrates typing in the About item that is typi
cally the first menu item in the Apple menu. 

MENU I 0 = 128 from MathTutor.rsrc 

[!]_ 181 Enabled 
About MathTu -0-

tzy 

0 ········-· (separator line) 

Color 

TeHt: I I 
Cmd-Key:D• 

Marie: I None ...,. ll l 

Figure 6.3 Typing in a menu item name. 

To add a separator line between menu items, as is done to separate the 
About item from the names of the other Apple menu items, again select 
Create New Item from the Resource menu. Instead of typing in a name, 
click the (separator line) radio button, as shown in Figure 6.4. 

MENU ID = 128 from MathTutor.rsrc 

__.
8 
..... b_ou_t_M_a_t_h_Tu_t_or-•• -. --"T""-0-...., I Selected.-l-te_m_: _____ D_E_n_a_b1_e.....,d 

TeHt: Q 

I ® ........... (separator line) 

I 0 ''"' Sutimanu [md-Ket;e[l ~1 
'----------~<>--' "' '1ork: r-;;,;m;-----;-· 

Figure 6.4. Adding a separator line in a menu. 

Figure 6.4 represents a completed MENU. An application's Apple menu 
contains other items, but you don't add them here. That's because they 



Chapter 6 • More About Windows 

vary from computer to computer. Your program will add the items only 
after the user launches it_ that way it can add the items that are partic
ular to the user's Mac. As you'll see later in this chapter, a call to a single 
Toolbox function allows your program to do this. 

You need a MENU resource for each menu your program displays. 
Figure 6.5 shows a second menu-the traditional File menu. Apple rec
ommends that all programs contain the Apple, File, and Edit menus. 
They contain items that are necessary in most programs, and they give 
users a sense of familiarity when your program starts up. 

MENU ID = 12 9 from MathTutor.rsrc 

Entire Menu: ! 
..-N·e~w~~~~~~~~~o~ i 

[8J Enabled 

•• • - ••• • - ••••••••• ••• ••• •••••••••••••••••••••••••••OMOO••••••oooooooo oooooooooooo O•OOOo• ! 
Ou it ' 

j 

I 
! 

I 
<> I 

0 s (Rpple menu) 

Color 

Title: I I 
Item TeHt Default: I I 
Menu Background: D 

Figure 6.5 A File menu MENU resource. 

The MBAR Resource 
You've defined each of your program's menus with MENU resources. Now 
its time to package them together using an MBAR resource. The MBAR 
defines which MENU resources will appear in your program's menu bar 
and in what order. 

r:ll 
H 0 T E 

Why would you have to specify which MENU resources to use in the menu 
bar? Why would you define a MENU that wouldn't be there? A program can 
have more than one menu bar. Depending on certain conditions during the 
running of the program, that program could switch menu bars as the pro
gram runs. This book won't cover applications that make use of mul tiple 
menu bars. 

311 



312 
Macintosh Programming Techniques. ZE 

ResEdit makes creating an MBAR resource easy. Select Create New 
Resource from the Resource menu. You'll see an MBAR editor like that 
shown in Figure 6.6. 

l'fili MBRR ID - 128 from MathTutor.rsrc 

# of menus 0 

1) ***** 

Figure 6.6 The MBAR editor in ResEdit. 

The first MENU that you add will end up being the leftmost menu in a pro
gram's menu bar-so the first MENU listed in the MBAR should be the 
Apple menu. Click on the number 1 in the MBAR editor, then select Insert 
New Field from the Resource menu. Enter the ID of the Apple MENU in 
the box that appears. Since the Apple MENU created earlier had an ID of 
128, that's what is entered in Figure 6.7. After you've entered the 
resource ID of each MENU, the MBAR is complete. 

~ 
ft 0 T E 

In case you haven't noticed, ResEdit usually gives the first resource of any 
resource type an ID of 128. That's because for some resource types, Apple 
reserves resource IDs in the 0 to 127 range for its own use. 



Click on the number, then 
select Insert New Fleld 
from the Resource menu 

=o~ MBRR ID= 128 fro 

. menus 3 

1) ***** 
Menu res ID 126 

2) ***** 
Menu res ID I 129 

3) ***** 
Menu res ID I 130 

4) ***** 

Chapter 6 • More Aboat Windows 

ResEdit will then add 
this box-type the ID of 
a MENu resource in it 

The order in 
which menus 

j - will be placed in 
the menu bar, 
from left to right 

Figure 6.7 Adding MENU resources to an MBAR. 

Mena SOORCE CODE 

The interface between the Menu Manager and you, the programmer, is a 
particularly good one. There are only a few Toolbox commands you need 
to become familiar with in order to work with menus. 

Setting ap the Mena Bar 
When your program starts up, one of the first things it should do is set 
up the menu bar; the user will be expecting it to be there immediately. 
Calling the Toolbox function GetNewMBa r ( ) does this for you. Pass this 
routine the ID of an MBAR resource and it will create a menu list. which 
contains a handle to each individual menu-each MENU resource. Here's 
a call that uses an MBAR with an ID of 128: 

313 



314 
Macintosh Programming Techniques. ZE 

/ldefi ne rMenuBar 128 

Handle theMenuBar: 

theMenuBar - GetNewMBarC rMenuBar ); 
if C theMenuBar = nil ) 

Exi tToShel 1 C): 

It's unlikely that the Menu Manager will fail in its attempt to load your 
menu resources, but it's a good idea to ensure that the menu bar has been 
set up. Check the handle returned by GetNewMBa r ( ) to verify that it's 
not empty. A missing menu bar, while a rarity, is one of those severe 
errors that spells immediate doom to a program. The user will have no 
way of quitting, so you'll want to do that for him with a call to 
Exi tToShel 1 ( ). 

With the menu list established, call the Toolbox function SetMenuBar() 
to install the individual menus within the menu bar. 

SetMenuBarC theMenuBar ): 
DisposeHandle( theMenuBar ): 

After setting the menu bar, you no longer need the handle to it; dispose 
of it with a call to the Toolbox function Di sposeHandl e(). 

This chapter later discusses several different menu item properties you 
can change, such as dimming an item to disable it. Any time you work 
with a menu item you'll need a handle-a MenuHandle-to the menu 
that item is in. Given the resource ID of a MENU (not an MBAR), the Toolbox 
function GetMenuHandl e() returns a MenuHandl e to that menu. 

While you're setting up the menu bar you can get a MenuHandl e to 
some or all of the individual menus. If you save each as a global variable, 
they'll be available any time your program needs to work with a menu 
or menu item. The following snippet returns a handle to the Apple 
menu. In this snippet mApp 1 eMen u is the resource ID of the MENU that rep
resents the Apple menu. 

/ldefi ne mAppleMenu 128 

MenuHandle gAppleMenu: 

gAppleMenu - GetMenuHandle( mAppleMenu ); 



Chapter 6 • More About Windows 

If your program has an Apple menu, and it should, you'll need to make 
a call to the Toolbox function AppendResMenu(). The contents of the 
Apple menu vary from computer to computer, so this menu needs some 
special treatment. 

In System 6, desk accessories were stored as resources of type DRVR 
in the system resource file. On pre-System 7 Macs, these resources get 
placed into the Apple menu. For System 7, desk accessories and any
thing else the user wants in the Apple menu are stored in the Apple 
Menu Items folder in the System Folder. The contents of this folder, col
lectively called desktop objects, will have to be added to the Apple menu. 

. 

ft 0 TE 

DRVR stands for driver. A driver is the middleman in charge of the transfer of 
data between a program and a device. A printer is an example of a device . 

Whether your program is running on System 7 or an earlier system, a call 
to Append Res Menu () will fill the Apple menu. 

AppendResMenuC gAppleMenu, 'ORVR' ); 

With the menus all loaded there's one last thing you must do-display the 
menu. A call to the DrawMenuBa r () Toolbox routine accomplishes this: 

OrawMenuBar(); 

The following application-defined routine groups the menu set up calls 
into one nice neat function-suitable for use in just about any of your pro
grams. The SetUpMenuBa r () routine makes three calls to 
GetMenuHandl e( )-one call for each of the three standard menus includ
ed in just about every program: the Apple, File, and Edit menus. If your 
program will include additional menus, and you want your program to 
be able to change characteristics of items in those menus, add a global 
MenuHandl e variable and a call to GetMenuHandl e() for each new menu. 

void SetUpMenuBar( void ) 
{ 

Handle theMenuBar: 
MenuHandle theSubmenu: 

315 



316 
Macintosh Programming Techniques. 2E 

theMenuBar - GetNewMBarC rMenuBar >: 
if C theMenuBar ...... ni 1 ) 

ExitToShell(): 

SetMenuBar( theMenuBar >: 
DisposeHandle( theMenuBar >: 

gAppleMenu = GetMHandle( mAppleMenu >: 
gFileMenu = GetMHandle( mFileMenu >: 
gEditMenu = GetMHandle( mEditMenu >: 

AppendResMenu( gAppleMenu, 'DRVR' ): 

DrawMenuBarC>: 

Handling a Click in a Menu 
A mouse click, whether in a menu bar or not, is an event. It will be cap
tured as a mouseDown event in your program's Event Loop() function. 
From there it will be passed on to a routine that handles strictly mouse 
down events. Here's a refresher: 

void Eventloop( void ) 
{ 

II get most recent event from event queue 

switch ( theEvent.what ) 
{ 

case mouseDown: 
HandleMouseDown( theEvent >: 
break: 

II handle other event types 

In the past Handl eMouseDown ()has been used to deal with mouse clicks 
in various parts of a window. HandleMouseDown() will still handle all 
those tasks, but now it will additionally take care of a mouse click in the 
menu bar. Here's the new Handl eMouseDown ( ): 



Chapter 6 • More flboat Windows 

void HandleMouseDownC EventRecord theEvent > 
{ 

WindowPtr theWindow; 
short thePart; 
long theMenuChoice; 

thePart = FindWindow( theEvent.where, &theWindow ); 

switch C thePart ) 
{ 

case inMenuBar: 
theMenuChoice = MenuSelectC theEvent.where >: 
HandleMenuChoice( theMenuChoice ); 
break: 

II other case sections to handle inDrag, inGoAway, etc. 

Menu Se 1 ect ( ) is the Toolbox routine that monitors menu selections. 
This routine will save you a great deal of program.ming effort. In fact, it's 
a Toolbox routine so powerful that you'll want to kiss an Apple Toolbox 
developer for creating it for you! When the user clicks the mouse button 
in the menu bar, MenuSel ect() takes control until the user releases the 
button. Here's a summary of what Men use 1 ect ( ) does: 

• It tracks the cursor as the mouse is dragged, dropping down 
menus as the cursor travels across the menu bar. 

• It highlights menu items as the user moves the cursor up and 
down over a dropped menu. 

• It flashes a menu item a few times when the user finally makes 
a selection. 

• It determines the menu item number and the ID of the MENU 
resource for a menu selection the user makes. It returns this 
information to your program for processing. 

Take a good look at a call to MenuSel ect( ). MenuSel ect() returns both 
the ID of the MENU resource that holds the selected menu item and the 
item number itself. Yet MenuSelect() only returns one value-a vari
able of type 1 on g. How can this be so? 

317 



318 
Macintosh Programming Techniques, ZE 

long theMenuChoice: 

theMenuChoice = MenuSelect( theEvent.where ): 

MenuSel ect() can do this feat by treating the long variable as two sep
arate variables. It stores both the MENU ID and the menu item number 
within the same variable. A simple means of extracting these two values 
is discussed ahead. 

With the display of the menu complete, and the menu selection 
returned to your program, call an application-defined routine to take 
care of the menu selection. This snippet defines such a function: 

void HandleMenuChoice( long theMenuChoice ) 
{ 

} 

short theMenu: 
short theMenultem: 

if ( theMenuChoice != 0 
{ 

theMenu = HiWord( theMenuChoice >: 
theMenultem = LoWord( theMenuChoice >: 

switch ( theMenu ) 
{ 

} 

case mAppleMenu: 
HandleAppleChoice( theMenultem ): 
break: 

case mFileMenu: 
HandleFileChoice( theMenultem >: 
break: 

case mEditMenu: 
HandleEditChoice( theMenultem >: 
break: 

HiliteMenu( 0 >: 



Chapter 6 • More About Windows 

If the user scans the menu bar and then backs out of his or her decision 
to make a menu selection, MenuSel ect() will return a value of 0. 
Handl eMenuChoi ce () checks to see if this is the case. If not, it's time to 
extract those two pieces of information tucked inside variable the 
MenuChoi ce. 

MenuSel ect() stores both the MENU ID and the menu item number 
in one 1 ong variable. It places the MENU ID in the upper 16 bits of the 32-
bit 1 ong variable and the menu item number in the lower 16 bits. Since 
the Toolbox performs a little trick like this, it also conveniently provides 
a couple of routines for extracting the two pieces of information from the 
one variable: Hi Word ( ) and LoWo rd C ) • Figure 6.8 shows this. 

theMenuChoice = MenuSelect( theEvent.where ); 

I tt14t--------theMenuChoice ------94•1 
11 H - Mmm~ll!li:.iD ·-· -ti I .~:tiu~~~D·~ ··• 1 

theMenu = H:Q-( -t-h-eM_e_n-uC_h_o._..i ..... ce ...... -)-; -u 
theMenuitem = LoWord( theMenuChoice ); 

Figure 6.8 Extracting the menu and menu item from one variable. 

Once you know which menu was clicked in, all you need do is branch to a 
routine written to handle mouse clicks in that particular menu. So that the 
application-defined routine knows what action to take, pass the item num
ber of the selected menu item. The routine Hand 1 eMen uC ho i ce ( ) works for 
a program that has just the three standard menus: Apple, File, and Edit. 

When a menu item is selected, MenuSel ect() inverts the menu name 
in the menu bar. After the menu item selection is handled, your code must 
call Hi 1 i teMenu() toagaininvertthemenuname back to its original state. 

319 



320 
Macintosh Programming Technlqacn • .ZE 

Handling a Click in the Apple Menu 
How the selection of a particular menu item is handled depends on the 
item selected. Your program may have a menu item that does things no 
other program does. But some menu choices are standard fare and are 
always handled in much the same way. The items in the Apple menu fall 
into this category. 

The first menu item in the Apple menu is usually the About item. 
Selecting this item puts up an alert that displays some information about 
the program's copyright. You learned how to display an alert in the pre
vious chapter. 

The remaining items in the Apple menu are the names of desk acces
sories, programs, documents, folders, and aliases that the user places in 
the Apple Menu Items folder of his or her Mac. Regardless of what the 
item is, a call to Open Des kAcc () will get things going. Pass 
OpenDeskAcc() the name of the item to open. You can get the name by 
calling GetMenultemText( ). This routine can be used to return the text 
of a menu item in any menu, not just the Apple menu. 

/ldefi ne rAboutAlert 128 

MenuHandle gAppleMenu: 

void HandleAppleChoiceC short theltem 
{ 

Str255 theltemName: 
short theReference: 

switch C theltem ) 
{ 

} 

case iShowAboutApple 
Alert( rAboutAlert, nil ): 
break: 

default : 
GetMenultemTextC gAppleMenu, theltem, theltemName ): 
theReference ~ OpenDeskAcc( theltemName ): 
break: 



Chapter 6 • More flboat Windows 

Handling a Click in Other Menus 
The format of Handl eAppl eChoi ce() is the standard format for all your 
application-defined menu-handling routines will have. Pass the item 
number of the selected menu item to the routine, then use a switch state
ment to get to the code written for that particular item. This chapter's 
example program provides several examples. 

This section finishes with Figure 6.9-a figure that recaps how a click of 
the mouse gets transformed into a menu selection. This figure shows the 
path that's traversed when a selection is made from a program's Edit menu. 

EventLoop ( ) 

0 Mouse click ... 

HandleMouseDown() 

0 .. .In the menu bar •.. 

HandleMenuChoice() 

0 .. .in lhe Edtt menu ... 

HandleEditMenuChoice() I 
... handle according 
to menu item selected 

Figure 6.9 The path from mouse down to menu selection. 

l<EvBOflRD EOOIVflLEnTS 
To make things easy for users you'll want to provide them with keyboard 
equivalents to the most common menu selections. A keyboard equivalent, 
also referred to as a keyboard alias or Command-key equivalent, allows 
the user to bypass the menu bar and make a menu selection from the 

3Z1 



JZZ 
Macintosh Programming Techniques. 2E 

keyboard. Pressing the Command key in conjunction with one or more 
other keys does the same thing as using the menu. 

Consistency between Macintosh applications is essential to the 
Apple philosophy of keeping the Mac user-friendly. To this end Apple 
has reserved some of the keyboard equivalents for common commands 
found in many Macintosh programs. You can use any of these reserved 
combinations in your own programs, but you should use them only for 
the commands shown in Table 6.1. 

Table 6.1 Keyboard Equivalents Reserved by Apple 

Keyboard Equivalent Menu Command 

88-A Select All 

38-C Copy 

88-N New 

H-0 Open ... 

H-P Print... 

H-Q Quit 

88-S Save 

H-V Paste 

H-W Close 

88-X Cut 

88-Z Undo 

You can use ResEdit to add a keyboard equivalent to any menu item. 
That discussion is next. 



Chapter 6 • More flboot Windows 

The MEN u Resoarce 
To add a keyboard equivalent to a menu item, use ResEdit to edit the 
MENU resource in which the menu item appears. Click on the menu item 
name, then enter the character that will be used along with the 
Command key. Figure 6.10 shows the addition of a keyboard equivalent 
to the Quit command in the File menu. 

MENU ID Cl 129 from MathTutor.rsrc 
: 

, Entire Menu: 181 Enabled 
N-e~w----------.-<>-.j 

........................................................................................... · Title: ® I Quit 

Quit 1111 Q I 0 ..... _ .. -..... -.. (_s_e_p-or_o_t_or-li-ne_) ___ __. 

I 0 hes Submenu TeHt: r·0~ 
! Cmd-Key:~ 

, _______ __._.o ....... I Merle: I None lJ~ 

Click on the item that is to 
get the keyboard equivalent. .. 

... then type in the letter that will 
serve as the keyboard equivalent 

Figure 6.10 Adding a keyboard equivalent to a MENU. 

By convention, the character that is typed along with the Command key is 
displayed in uppercase in a program's menu even though the user won't be 
using the Shift key. Take the Quit menu item keyboard equivalent, 
Command-Q, for example. The user types the Command key and the letter 
'q'. The user doesn't use the Shift key to type an uppercase 'Q'. When you 
type a character in the Cmd-Key editable text box in ResEdit, type it in 
uppercase, as shown in Figure 6.10. 

323 



324 
Macintosh Programming Techniques. 2E 

Handling a Keystroke 
If you want to include keyboard equivalents in your application, you 
have to make your program aware of keystrokes. That's something you 
haven't worried about up to this point. To do this, add a case section for 
a keyDown event in your Event Loop() routine. 

void Event Loop( void ) 
{ 

II get next event here 

switch ( theEvent.what ) 
{ 

case keyDown: 
HandleKeyDown( theEvent ); 
break; 

case mouseDown: 
HandleMouseDown( theEvent }; 
break; 

Of course, that's only part of the work. Now you have to write the 
Handl eKeyDown () routine. As shown below, this is a short and simple 
routine. 

void HandleKeyDown( EventRecord theEvent ) 
{ 

short theChar: 
long theMenuChoice: 

theChar = theEvent.message & charCodeMask: 

if ( ( theEvent.modifiers & cmdKey ) != 0 ) 
{ 

if ( theEvent.what != autoKey ) 
{ 

theMenuChoice = MenuKey( theChar >: 
HandleMenuChoice( theMenuChoice }; 



Chapter 6 • More About Windows 

When an event involving the keyboard occurs, the message element of 
the event's EventRecord holds the key that was pressed. The message 
field consists of 32 bits that hold more information than just that, though. 
To access only the portion that contains the character the user typed 
you'll need to use the constant charCodeMask in conjunction with the 
bitwise & operator. 
At this point you are only interested in a keystroke performed in con
junction with the Command key. The modifiers field of the event holds 
this information. As you did for the character, though, you have to use 
the & operator on the field to extract only the information you need. If 
the result is non-zero, the Command key was down. 

One last check: was the key pressed and held down? That's called an 
auto key, and that's not a keyboard equivalent. If the keystroke survives 
the battery of tests, then you know that the user held down the 
Command key while pressing a character. That is a keyboard equivalent. 
At this point, call the Toolbox routine Menu Key(). 

Menu Key ( ) accepts a typed character and returns a long integer-just 
as Men use 1 e ct C ) does for an item selected from the menu via the 
mouse. The 1 ong contains both the ID of the menu and the ID of the 
menu item that the Command key combination represents. With that 
information you can then call Handl eMenuChoi ce() to handle things 
just as if a menu selection had been made. 

"IERflRCHICflL MEHOS 
To offer the user additional menu choices you can use a hierarchical 
menu, which is a menu that has a submenu associated with it. Figure 
6.11 illustrates an example of a menu with a submenu attached to it. 

Beginner 
Intermediate 
Rduanced 

Figure 6.11 A hierarchical menu. 

325 



326 
Macintosh Programming Techniques. ZE 

Adding a hierarchical menu requires a few minimal additions to both 
your resources and source code. 

The MEN u Resource 
You designate a submenu for a menu item by checking the has Submenu 
checkbox in ResEdit. The submenu itself will be defined by a MENU 
resource-just as "normal" menu. List the resource ID of that MENU in the 
editable text box labeled ID. Figure 6.12 takes the File MENU resource 
developed earlier and changes the second item from a separator line to 
an item named Lesson. It also designates that this menu item be a hier
archical menu. 

MENU ID"" 129 from MathTutor.rsrc 

Selected I tern: 18] Enabled 
New 

Quit 
Lesson TeHt: ®_I L_e_ss_o_n ______ __. 

0 ·····-···· (~•~f>nrntor Hm~) 

Color 

TeHt: II [I 

~=• 

Check here to give the Lesson Enter the ID of the MENU resource that 
menu item a submenu will define the items in the submenu 

Figure 6.12 Adding a submenu to a menu item. 

Next, create a new MENU resource. This one will contain the items that 
appear in the submenu. You create it and edit it as you would any other 
MENU. Don't, however, add its ID to the MBAR resource. Figure 6.13 shows 
an example of a submenu. When used in conjunction with one another, 
the MENU resources shown in Figure 6.12 and 6.13 will produce the hier
archical menu shown back in Figure 6.11. 



Chapter 6 • More About Windows 

-- MENU ID"" 201 from MathTutor.rsrc ---

--------.-/\. ...... 1 Entire Menu: 181 En8bled 
Beginner "1.1" 

lntermedi8te j ntle: ®I 
0 s (Apple menu) 

Color 

Rduenced I 

m1e: 1•1 

{}I 
Item TeHt Default: 1!11 
Menu Background: D 

Figure 6.13 A MENU resource to be used as a submenu. 

When you create the new MENU by selecting Create New Resource from 
ResEdit's Resource menu, ResEdit will most likely will not give the new 
MENU the same ID you specified in the original MENU-201inFigure6.12. 
Changing the MENU ID is a two step process. First, click once on the MENU 
resource in ResEdit' s pictorial list of menus. Then select Get Resource 
Info from ResEdit' s Resource menu and change the ID in the informa
tion window, as shown in Figure 6.14. Next, select Edit Menu & MDEF 
ID from the MENU menu and change the Menu ID there as well. Figure 
6.15 shows this. 

'"'Im~ Info for MENU 201 from MathTutor.rsrc ~ 

Type: MENU Size: 64 

Owner type 

Owner ID: 

Sub ID: 

DRUR ~ 
WDEF 

~ MDEF 

Attributes: 
D System Heap D Locked D Preload 
D Purgeable D Protected D Compressed 

Figure 6.14 Changing a MENU ID in ResEdit's Get Resource Info window. 

JZ7 



JZI Macintosh Programming Technlqaes. ZE 

Please enter the Menu ID and 
the resource ID of the MDEF to 
be used below. 

Menu ID:I ...._ 2_01 _ ____, 

MDEF ID:I ~o __ _ 

(Cancel ) [( OK l 

Figure 6.15 Changing a MENU ID in ResEdit's Edit Menu 
& MDEF ID window. 

Make sure to leave the MDEF ID set to 0. Then click the OK button. 
That's it for resource changes. Now it's on to the source code. 

Setting ap the Hierarchical Mena 
When you give a menu item a submenu you are, in effect, changing the 
item from a menu item to a menu. In Figure 6.16, the Edit menu is obvi
ously a menu. Clicking on it displays the drop-down menu containing 
what appears to be three menu items: New, Lesson, and Quit. But the 
Lesson item is not quite as obviously a menu. Clicking on Lesson also 
displays a drop-down menu, just as did clicking on Edit. 

Menu item 

Beginner 
Intermediate 
Rduanced 

Menu item v-------
Menu item y __ .....__,. 

Menu item L.-________ .....,._,..... __ __ 

Figure 6.16 Menus and menu items. 



Chapter 6 • More flboat Windows 

You know that when you set up your program's menu bar with 
GetNewMBar( ), a menu list is created that contains a handle to each 
menu in the menu bar. Your program can obtain a copy of one of these 
handles by calling the Toolbox function GetMenuHandl e( ): 

//define 
//define 

rMenuBar 
mFileMenu 

MenuHandle gFileMenu; 

Handle theMenuBar; 

128 
129 

theMenuBar = GetNewMBar( rMenuBar >: 

gFileMenu = GetMenuHandleC mFileMenu ); 

GetNewMBa r () reads in the descriptions of the menus that will appear in 
the menu bar from the MENU resources listed in the MBAR resource. It also 
notes the menu ID of any submenus. It does not, however, read in the 
description of submenus. To read in that data, you use the Toolbox func
tion GetMenu ().Pass this routine the ID of the MENU resource to load into 
memory, and GetMenu() will do that and return a handle to the menu 
data. After that, you need to insert the submenu into the menu list using 
the Toolbox function InsertMenu(). Here's an example: 

f/defi ne mlessonSubMenu 201 

MenuHandle theSubmenu: 

theSubmenu = GetMenu( mlessonSubMenu ); 
InsertMenuC theSubmenu. -1 ); 

The -1 parameter passed to InsertMenu() tells the Menu Manager that 
this menu is a submenu. 

The following snippet is a revision of the SetUpMenuBar() routine 
introduced near the start of this chapter. This new version adds the code 
for the insertion of a submenu into the File menu. 

//define 
//define 

rMenuBar 
mAppleMenu 

128 
128 

329 



330 
Macintosh Programming Techniques. ZE 

f/defi ne 
//define 
//define 

mFileMenu 
mEditMenu 
mlessonSubMenu 

129 
130 
201 

void SetUpMenuBar( void ) 
{ 

} 

Handle theMenuBar: 
MenuHandle theSubmenu: 
Style theltemStyle: 

theMenuBar = GetNewMBarC rMenuBar >: 
if C theMenuBar = nil ) 

ExitToShellC>: 

SetMenuBar( theMenuBar >: 
DisposeHandleC theMenuBar }: 

gAppleMenu = GetMenuHandleC mAppleMenu >: 
gFileMenu = GetMenuHandleC mFileMenu >: 
gEditMenu - GetMenuHandleC mEditMenu >: 

theSubmenu = GetMenuC mlessonSubMenu }: 
InsertMenu( theSubmenu. -1 >: 

AppendResMenuC gAppleMenu. 'DRVR. >: 

DrawMenuBar(): 

You'll be pleased to find that once a hierarchical menu is displayed, you 
handle it in the same way you handle traditional menus. Begin by 
including the hierarchical menu's MENU resource ID in your 
Handl eMenuChoi ce() routine, done as follows. 

//define 
//define 
//define 
//define 

mAppleMenu 
mFileMenu 
mEditMenu 
mLessonSubMenu 

128 
129 
130 

201 

void HandleMenuChoice{ long theMenuChoice 
{ 

II extract menu and menu item from theMenuChoice 

switch ( theMenu ) 



} 

{ 

} 

Chapter 6 • More flboat Windows 

case mAppleMenu: 
HandleAppleChoice( theMenultem ); 
break; 

case mFileMenu: 
HandleFileChoice( theMenultem ); 
break: 

case mlessonSubMenu: 
HandlelessonHierarchicalMenu( theMenultem ): 
break: 

case mEditMenu: 
HandleEditChoice( theMenultem ): 
break: 

HiliteMenu( O >: 

The application-defined routine that handles a selection from your pro
gram's hierarchical menu should be centered around a switch state
ment,just as are the application-defined routines for handling selections 
from other menus. As a simplistic example, consider the submenu shown 
in Figure 6.16. If a selection of any of the three menu items (Beginner, 
Intermediate, or Advanced) in the Lessons hierarchical menu item was 
to result in the display of an alert that held some informative text, then 
Handl elessonHi era rchi ca 1 Menu () might look like this: 

I/define 
/ldefi ne 
/ldefi ne 
fldefi ne 
/ldefi ne 
/ldefi ne 

iBeginnerSubMenultem 1 
ilntermediateSubMenultem 2 
iAdvancedSubMenultem 3 
rBeginnerAlert 501 
rlntermediateAlert 502 
rAdvancedAlert 503 

void HandlelessonHierarchicalMenuC short theltem 
{ 

switch C theltem ) 
{ 

case iBeginnerSubMenultem: 
Alert( rBeginnerAlert, nil >: 

331 



JJZ Macintosh Programming Techniques. ZE 

break: 

case ilntermediateSubMenultem: 
Alert( rlntermediateAlert. nil ): 
break: 

case iAdvancedSubMenultem: 
Alert( rAdvancedA l ert. nil ) : 
break: 

CHfl"Gl"G MEna CHARACTERISTICS 
When working with various Macintosh programs, you've noticed that 
menu items might occasionally change during the running of a program. 
A menu item may have a check mark placed to the left of it, or the text 
of a menu item might change. The most common change in a menu item 
or an entire menu is being enabled or disabled-so that topic is dis
cussed first. 

Disabling and Enabling Menas and Mena Items 
During the running of a program, not all menu options apply to all situ
ations. When a menu item is not applicable, you should disable, or dim, 
the item to prevent the user from choosing it. The most common exam
ple of the disabling of a menu item might be the Paste command in the 
Edit menu. If the user hasn't cut or copied anything, the clipboard will 
be empty and there will be nothing to paste. That's when a program will 
disable the Paste menu item. 

You can disable a single item within a menu or an entire menu. In 
either case, the user can still click on the menu name in the menu bar to 
drop down the menu. H the entire menu is disabled, then the name in the 
menu bar will dim, along with the name of every item in the menu. 
Figure 6.17 shows that case on the left side of the picture. Disabling a sin
gle item in the menu does just that; every other item in the menu, along 
with the menu name in the menu bar, appear normal. That's shown on 
the right side of Figure 6.17. 



Disabled menu 

j File Horoscope 
Undo ~it~Z 

[ ut 
[OtHJ 

P•~S1(~ 

Chapter 6 • More About Windows 

Disabled menu item 

s File Horoscope 
Undo sgz 

Cut 
Copy 
Pns1<~ 

Figure 6.17 A disabled menu and a disabled menu item. 

To disable a single item use the Di s ab 1 e It em ( ) Toolbox function, pass
ing a handle to the menu in which the item appears and the number of 
the item. Using the Edit menu pictured in Figure 6.17, the following code 
disables the Paste item. It then goes on to use the Toolbox function 
Enabl el tern() to enable the same item. Remember, even though a 
dashed line in a menu can't be selected by the user, it still counts as a 
menu item. 

fjdefi ne mEditMenu 130 
fjdefi ne iUndo 1 
II 
/!define iCut 3 
//define iCopy 4 
fldefi ne i Paste 5 

MenuHandle gEditMenu: 

gEditMenu = GetMenuHandleC mEditMenu >: 

Disableltem( gEditMenu. iPaste ): 

II do other stuff here 

Enableltem( gEditMenu. iPaste >: 

Both Di sabl el tern() and Ena bl el tern() accept the same parameters. 
The first is a MenuHandle to the menu that holds the affected item, while 
the second is the number of the item. 

Disabling an entire menu is just as easy as disabling a single menu 
item. In fact, you use the same Toolbox routine. The difference is in the 

]JJ 



334 
Macintosh Programming Techniques. ZE 

value you pass as the second parameter. A menu item value of zero tells 
Di sabl el tern() to disable the entire menu; that means the menu name 
in the menu bar, as well as each item in the menu. Here's how you'd dis
able, then enable, the Edit menu. 

f/defi ne mEditMenu 130 

MenuHandle gEditMenu: 

gEditMenu = GetMenuHandle( mEditMenu ): 

Disableltem( gEditMenu, O >: 

II do other stuff here 

Enableltem( gEditMenu, O ); 

Various circumstances can lead to the disabling and enabling of menu 
items. Every program may be different. Rather than scattering menu set
ting calls all about your source code, try the commonly used technique 
of grouping all the calls within one function. 

For an example of menu highlighting, take a look at a hypothetical 
program named Horoscope; its menu bar is pictured back in Figure 6.17, 
while the Horoscope menu itself is pictured in Figure 6.18. Assume that 
under certain conditions, either the Enter Information item or the Show 
Forecast item may be disabled. When a condition occurs that requires a 
change in the state of a menu item, a global_Boo 1 ea n variable is appro
priately set. When there is a call to the menu-setting routine these flags 
are checked and the state of each menu item is set accordingly. 

//define mHoroscope 131 
//define i Enter Info 1 
II 
I/define iPrintSign 3 
I/define iNoPrintSign 4 
II 
//define iShowForecast 6 

MenuHandle gHoroscopeMenu 
Boolean gAllowlnfolnput: 
Boolean gAllowShowForecast: 



Chapter 6 • More About Windows 

gHoroscopeMenu - GetMenuHandle( mHoroscope ): 

II as program runs. the two Boolean flags get set 

void EnableDisableMenuitemsC void 
{ 

if ( gAllowlnfolnput ==true ) 
Enableltem( gHoroscopeMenu. iEnterinfo >: 

else 
Disableltem( gHoroscopeMenu. iEnterlnfo ): 

if ( gAllowShowForecast ==- true ) 
Enableltem( gHoroscopeMenu. iShowForecast ); 

else 
Disableltem( gHoroscopeMenu. iShowForecast ); 

The only time a user sees a menu item is when he clicks the mouse in the 
menu bar. So that's the only time you need to worry about each menu 
item being in its proper state. If you've set all flag variables at the appro
priate places in the program, and if you place the call to 
Ena bl eDi sabl eMenuitems ()at a place in your code that corresponds to 
the handling of a mouse click in the menu bar, then that's the one and 
only time you have to make the call. 

As you saw earlier in this chapter, the Toolbox routine MenuSe 1 ect ( ) 
is your means to handling all menu selections. If you call your menu-set
ting routine right before MenuSel ect(). you'll be assured of having all 
your menu items in the proper state. 

void HandleMouseDown( EventRecord theEvent 
{ 

II declare variables. determine part of screen hit by click 

switch ( thePart ) 
{ 

case inMenuBar: 
EnableDisableMenuitems(); 
theMenuChoice = MenuSelect( theEvent.where ); 
HandleMenuChoice( theMenuChoice ): 
break: 

335 



336 
Macintosh Programming Techniques. ZE 

Adding a Check Mark to a Menu Item 
A menu item can have a check mark to the left of it to mark it as the cur
rent selection. Often a menu item that can be marked in this way is found 
in a group of two or more items. These items act as radio buttons in a dia
log box-only one item in the grouping can be checked at any given 
time. Figure 6.18 shows a grouping of two menu items. 

s File Edit 

../ Print Zodiac Sign 
Don't Print Zodiac Sign 

Show Forecast 

Only one of these two items 
will be checked at any given time 

Figure 6.18 A menu item with a check mark. 

Use the Toolbox routine Checkltem() to place a check mark by an item or to 
remove a mark by an item. Pass Check! tern( ) a handle to the affected menu, the 
number of the item to check or uncheck, and a value oft rue to check the item or 
false to uncheck it Here's an example that places a check by the third item-the 
Print Zodiac Sign item-in the Horoscope menu. 

//define mHoroscope 131 
//define i Enter Info 1 
II 
//define iPrintSign 3 
//define iNoPrintSign 4 
II 
//define iShowForecast 6 

MenuHandle gHoroscopeMenu: 
Boolean gAllowinfoinput: 
Boolean gAllowShowForecast: 

gHoroscopeMenu = GetMenuHandleC mHoroscope } ; 



Chapter 6 • More flboat Windows 

Checkltem( gHoroscopeMenu. iPrintSign, true >: 

The preceding snippet shows the checking of an item. You'll also have to 
uncheck whichever item was checked previously. The example program 
in Figure 6.18 illustrates that process. A selection in any menu is handled 
by Handl eMenuChoi ce(). From there a routine is called to handle the 
particular menu selected; in this case the program ends up at 
Handl eHoroscopeChoi ce(). Here's that routine: 

void HandleHoroscopeChoiceC short theltem ) 
{ 

switch ( theltem ) 
{ 

case iEnterlnfo: 
OpenlnfoDialog(): 
break: 

case iPrintSign: 
case iNoPrintSign: 

HandleMenuCheckedltemC theltem >: 
break: 

case iShowForecast: 
OpenHoroscopeWindowC>: 
break: 

The two menu items involved in the checkmarking are both handled in 
the same way by Handl eMenuCheckedltem( )-as shown here: 

Boolean gPrintSignFlag; 

void HandleMenuCheckedltemC short theltem ) 
{ 

if C theltem == iPrintSign ) 
{ 

} 

CheckltemC gHoroscopeMenu. iNoPrintSign. false >: 
gPrintSignFlag = true: 

else 
{ 

CheckltemC gHoroscopeMenu. iPrintSign. false ): 

337 



338 
Madntosh Programming Techniques. ZE 

gPrintSignFlag - false: 
} 

CheckltemC gHoroscopeMenu. theltem. true ); 
} 

The one value passed to Handl eMenuCheckeditemC) is the number of 
the menu item selected; that is, the menu item to check. This number is 
first used in an if-else statement to uncheck the item that was on. Then the 
same number is used to check the selected item. 

What if the user selects a menu item that is already checked? The 
preceding code shows that Checkltem() will be called to uncheck an 
already unchecked item. Using Check Item() to uncheck an unchecked 
item has no effect. The same applies to using the routine to check an 
already checked item. That's why the technique used in 
Handl eMenuCheckedltem() works. Figure 6.19 shows what happens if 
the Print Zodiac Sign item is already checked when it is again selected. 
Figure 6.20 shows the case of Print Zodiac Sign in an unchecked state 
when this menu item is selected. 

Figure 6.19 Selecting an already checked item has no ill effect. 



Chapter 6 • More flboat Windows 

[ 
.......................................................................................... . 

Print Zodiac Sign (J 
Don't Print Zodiac Sign .. ·. · •· · Uncheck menu item 4 

.............................................. -.. ·-·--·-······........................... -

............................................................................................ ~ 
./ Print Zodiac Sign y Check selected item, item 3 

Don't Print Zodiac Sign 

Figure 6.20 Selecting an unchecked item checks it. 

Notice that in Handl eMenuCheckedltem() the global Boolean variable 
gPri ntSi gnFl ag is set according to the selection made. This flag vari
able could then be used at some other point in the program, perhaps to 
determine whether to display the user's astrological sign on each page 
of his horoscope when Show Forecast is selected. 

One last point: If you're including menu items that get checked, 
make sure to check one and set any pertinent flags when you first set up 
the menu: 

fidefi ne mHoroscope 131 
fidefi ne iEnterlnfo 1 
II 
fidefi ne iPrintSign 3 
/idefi ne iNoPrintSign 4 
II 
//define iShowForecast 6 

MenuHandle gHoroscopeMenu: 
Boolean gPri ntSi gnflag: 

339 



340 
Madntosh Programming Ttchnlqaes. ZE 

void SetUpMenuBar( void ) 
{ 

II other menu code here 

gHoroscopeMenu - GetMenuHandleC mHoroscope ): 
Checkltem( gHoroscopeMenu. iPrintSign, true ): 
gPrintSignFlag ~ true: 

II other menu code here 
} 

Changing the Text of a Menu Item 
You define the text that makes up each item in a menu in the MENU 
resource of your program's resource file. If you want to change the text 
of a menu item during the execution of your program, use the Toolbox 
routine SetMenultemTextC). This function requires a handle to the 
effected menu, the item number of the menu item to change, and a string 
that represents the new text. Here's an example that changes the text of 
a menu item from its resource definition of Enter Information... to 
Supply Missing Info ... : 

/ldefi ne 
/ldefi ne 

mHoroscope 
iEnterlnfo 

MenuHandle gHoroscopeMenu: 

131 
1 

gHoroscopeMenu ~ GetMenuHandleC mHoroscope >: 

SetMenultemTextC gHoroscopeMenu, iEnterlnfo, 
"\pSupply Missing Info .•. "): 

Figure 6.21 shows the results of executing the previous snippet. If you're 
concerned about the length of the new text exceeding the width of the 
drop down menu,don't be. The Menu Manager knows to set the size of 
the menu according to the number of characters in the longest item string. 



Chapter 6 • More flboat Windows 

Enter Information •.. .___ __ .....," 
./ Print Zodiac Sign ./ Print Zodiac Sign 

Don't Print Zodiac Sign Don't Print Zodiac Sign 

Show Forecast Show F orecost 

Figure 6.21 Changing the text of a menu item. 

If you like the liberal use of 1/defi ne directives you might want to pre
define the two titles the menu item might have: 

t/define 
//define 

kEnterinfoStr 
kMissinginfoStr 

"\pEnter Information ... " 
"\pSupply Missing Info ... " 

SetMenultemTextC gHoroscopeMenu, iEnterlnfo, kMissinglnfoStr ); 

• . 

. 

N 0 T E 

If you really want to do things right, you'll follow Apple's recommendation 
of not including text strings in your source code; they make it difficult to con
vert your program to another language. Instead, make each of the two menu 
item titles STR1# resources and store them in your project's resource file. 
What's that, you say you aren't familiar with the STR/# resource? After read
ing Chapter 7, you will be. 

Of course, you won't be changing menu item text randomly. In Figure 
6.21, the decision to change the name of the menu item might be based 
on the amount of information the user entered in an Information dialog 
box. When the user closes the Information dialog box, the program can 
check for missing data and set the value of a global variable, 
gDataMi ssi ng, based on the results of this check: 

II close Information dialog box 

II check for missing user-supplied information and 
II set gDataMissing accordingly 

341 



342 
Macintosh Programming Techniques. ZE 

if C gDataMissing ...... true ) 
SetMenultemTextC gHoroscopeMenu, iEnterlnfo. kMissinglnfoStr >: 

else 
SetMenultemTextC gHoroscopeMenu, iEnterlnfo, kEnterlnfoStr ); 

If you want to find out the current text of a menu item, use the sister rou
tine of SetMenultemText(): GetMenultemText(). You were intro
duced to the routine earlier in this chapter in the discussion on opening 
items from the Apple menu. 

Changing the Style of a Mena Item 
Now that you know you can change the text of a menu item, you may 
have guessed that you can also change the style of an item. The 
SetltemStyl e() function is your means of doing this. 

The Macintosh has a Style data type that is used to change the look 
of text. A variable of type Sty 1 e can take on any the following Apple
defined constant values: plain, bold, italic, underline, out-
1 i ne, shadow, condense, and extend. You can set a variable of type 
Style to any one of these values or, to apply more than one style, you can 
add values. The following code sets a Style variable to bold and italic. 

Style theltemStyle: 

theltemStyle = bold + italic; 

With the style set, make a call to SetltemStyl e(). Pass 
SetltemStyl e() a MenuHandl e and the item number corresponding to 
the menu item to change. A good time to do this is when you're setting 
up the menu bar. Here's an example that will outline the fourth of four 
menu items. Figure 6.22 shows the result. 

/ldefi ne mHoroscope 131 
/ldefi ne iEnterlnfo 1 
II 
/ldefi ne iPrintSign 3 
/ldefi ne iNoPrintSign 4 
II 
/ldefi ne iShowForecast 6 



Chapter 6 • More About Windows 

MenuHandle gHoroscopeMenu: 

Style theltemStyle: 

gHoroscopeMenu - GetMenuHandle( mHoroscope >: 

theitemStyle = outline: 
SetitemStyle( gHoroscopeMenu, iShowForecast, theitemStyle >: 

j File Edit 

Enter Information ••• 

./ Print Zodiac Sign 
Don't Print Zodiac Sign 

Figure 6.22 A menu item with the outline style applied to it. 

Perhaps you'll want your program to allow the user to change a menu 
item's style. If so, you might not know just how a menu item is being dis
played at any given time. In this case you can use the Toolbox routine 
GetitemStyl e(). The parameters to this function are the same as those 
for SetitemStyl e(), except that the last one is a pointer to a Style 
variable rather than a Sty 1 e variable. This allows the Toolbox to change 
its value, and it does. It will return a number that represents the menu 
item's current style, or combination of styles. Here's a call to 
GetitemStyle(): 

Style theCurrentitemStyle: 

GetitemStyle( gHoroscopeMenu, iShowForecast, &theCurrentltemStyle >: 

Each style has a value, shown as follows. A menu item's current style is 
the sum of all the styles that have been applied to that item. As an exam
ple, if GetitemStyl e () sets theCurrentitemStyl e to a value of 35, you 
know that the menu item is displayed in a combination of condensed, 
italic, and bold styles (32 + 2 + 1). 

343 



344 
Macintosh Programming Techniques. ZE 

plain 0 
bold 1 
italic 2 
underline 4 
outline 8 
shadow 16 
condense 32 
extend 64 

To determine which individual styles are in the sum, check for the largest 
value, as defined by the extend constant. If it's there, subtract that value 
from the returned style total and move on down the line. Here's an 
example that looks to see if a menu item has the extend or condense 
styles applied to it. 

Boolean isStyleExtend = false: 
Boolean isStyleCondense = false: 
Style theCurrentltemStyle: 

GetitemStyleC gHoroscopeMenu, iShowForecast, &theCurrentitemStyle ); 

if ( theCurrentltemStyle >= extend 
{ 

isStyleExtend = true: 
theCurrentltemStyle -= extend: 

if C theCurrentitemStyle >= condense 
{ 

isStyleCondense = true: 
theCurrentitemStyle -= condense: 

} 

II add same tests for other styles 

EDITl"G TEXT 1n fl MODAL DIALOG Box 
Before System 7 a modal dialog box owned the screen entirely. If the dia
log box appeared due to a menu selection, the menu name would invert 
in the menu bar, and all the menu names would dim. The user could not 
use the Edit menu to edit text in an edit text item. This situation is shown 
in the left of Figure 6.23. 



Chapter 6 • More flboat Windows 

System 7 adds a handy feature to the use of modal dialog boxes. If 
your application displays a modal dialog box with one or more editable 
text items, the system is now more generous. It will check to see if your 
program has a menu with the keyboard equivalents Command-X, 
Command-C, and Command-V. If your program does, the system will 
allow the user access to the Edit menu by enabling that menu, along with 
the Cut, Copy, and Paste items found in that menu. It will also take care 
of the editing, whether the user makes use of the menu or keyboard 
equivalents. The System 7 screen for this situation is shown on the right 
side of Figure 6.23 

System 6 

U. t=H<~ EdU Horoscope 

Sign:llm 

([ OK D 

System 7 

sign: Imm 

n OK ll 

Figure 6.23 The menu while a modal dialog box is on the screen. 

If you are absolutely sure that the program you're writing will never run 
on a preSystem 7 machine, you're all set. The system will take care of 
Cut, Copy, and Paste in a dialog box. If your program might run on a 
Mac equipped with pre-System 7 software, but you aren't concerned 
with allowing the user access to cut and paste features in a dialog box, 
you're again all set. 

Before System 7, many programmers wrote their own code that 
allowed text editing in a modal dialog box. To do this, they placed the 
code in a filter function and then instructed the Toolbox function 
Mod a 1Dia1 og () to call that function. Now that the Mac takes care of text 
editing in a modal dialog box, that use of a filter function is obsolete. As 
you'll see on the upcoming pages, there are plenty of other reasons you 
might want to familiarize yourself with the filter function, though. 

345 



346 
Macintosh Programming Techniques. 2E 

Modal Dialog Box filter function 
In the previous chapter you saw that the Toolbox routine 
Mod a 1Dia1 og () takes care of most of the work of handling a modal dia
log box. Here's a refresher: 

II open modal dialog 

while < dialogDone == false 
( 

} 

ModalDialog( nil. &theltem ); 

switch ( theltem } 
{ 

} 

case kDialogOKButton: 
dialogDone = true; 
break: 

II handle clicks on other dialog items 

What Chapter 5 didn't tell you is that you can handle an event that 
occurs in a modal dialog box however you see fit-before 
Mod a 1Dia1 og () gets a crack at things. After you do process the event, 
you can then tell Mod a 1 Di a 1 o g ( ) to further handle things if you want. 

The first parameter passed to Mod a 1 Di a 1 o g ( ) is the name of a filter 
function that does any special handling of the current event. This routine 
is optional. If you don't want to write one, pass in a n i 1 pointer, as 
you've done up to now. The time to use a filter function is when you 
have a dialog box with special needs that Mod a 1Dia1 og ( ) can't handle. 

Mod a lDi a 1 og () handles update and activate events. It also inter
cepts mouse-down events and determines if an event occurred in an 
enabled item in the dialog box. If it did, it lets your program know which 
item was involved. 

Mod a 1Dia1 og () will also track the user's actions in edit text boxes. It 
will flash the insertion bar in an edit text box, display typed characters, 
and invert selected text. It will also take care of any editing performed 
using keyboard equivalents for commands such as Cut, Copy, and Paste. 



Chapter 6 • More flboat Windows 

One thing that Mod a 1Dia1 og ( ) won't do is handle keystrokes that 
aren't related to an editable text item. For instance, if you want to allow 
the user to type Command-H in order to display some help information 
in the dialog box, Mod a 1 Di a 1 o g ( ) won't be of assistance-the keystrokes 
will be ignored. So the recognizing and handling of keystrokes that don't 
pertain to editable text items is a perfect application for a filter function. 

To create a filter function, you write a function that performs the 
chores your dialog box needs. The filter function always has three argu
ments: a pointer to the dialog box itself, a pointer to an EventRecord, 
and a pointer to a variable of type short. The return type of the function 
is always Boo 1 ea n. The filter function needs to be prefaced with the pas
c a 1 keyword. Here's a partial definition of a filter function called 
DialogHelpFilter(): 

pascal Boolean DialogHelpFilter( DialogPtr theDialog, 
EventRecord *theEvent, 
short *theltem ) 

II check keystrokes. handle certain ones 

Here's what a call to Mod a 1Dia1 og ()would look like using a filter function: 

ModalDialog( DialogHelpFilter. &theltem ); 

Do you find it a little distressing that you can just use the name of a function 
as a parameter, without any parentheses or parameters? It's possible because 
Mod a 1 Di al og() is expecting a pointer to a function as the first argument, not 
a call to a function. Modal Di al og{) uses the filter function name as a point
er to the function. It takes this pointer and uses it to go off into memory in 
search of your filter function. 

When your program reaches a call to Mod a 1Dia1 og (). it branches off to 
the filter function. If the user performed some action that the filter func
tion needs to handle, it does. It then returns a value of true to 
Mod a 1Dia1 og (). The question is, "Did the filter function handle the 
event?," and the answer is yes-or true. If the filter function handled the 
event, Mod a 1Dia1 og ( ) doesn't have to. If it turns out that the user action 
did not require handling by the filter function, the function will return 

347 



348 
Macintosh Programming -..Chnlqua. ZE 

fa 1 se. Mod a 1Dia1 og () knows it must then handle things itself. Figure 
6.24 sums this all up. 

r2I n 0 T E 

If you're generating PowerPC code, your filter function can be written exact
ly as it is for a program that will run only on a 68K machine. The code that 
calls the filter function, however, will need a couple of minor, but important, 
changes. Those changes are described in the Chapter 8, "PowerPC 
Programming". It want to test the filter function code, create a 68K project 
for now. The Book's CD holds only a 68K version of the project for this chap
ter's example program, MenuMaster. Chapter 8 presents the PowerPC ver
sion of the project for this same program. 

GJ~---------> ~yFilter( ... ) 

ModalDialog( MyFilter, theltem ) ; ~ return 

true 

ModalDialog( ... ) 
{ 

true/false 
______ .. 

0 Filter function called 

f:\ Return true if event handled, 
~ false if not handled 

~ If true, skip ModalDialog ( ) 
\V Toolbox code, if false, execute 

switch ( theltem ) 
{ 

II handle click on an item 

Figure 6.24 Course of action when Mod a 1Dia1 og C) uses a filter function. 

Enough theory-now it's time for a look at a real filter function. The 
Di a 1 o g He 1 p Fi 1 te r ( ) shown below allows the user to type Command
H in order to display an alert that holds some help information. 



/ldefi ne 
/ldefi ne 
/ldefi ne 

rHelpAlert 
kReturnKey 
kEnterKey 

Chapter 6 • More flboat Windows 

300 
Cchar)OxOD 
Cchar)Ox03 

pascal Boolean DialogHelpFilter( DialogPtr theDialog. 

char theChar: 

if C theEvent->what !~ keyDown ) 
return ( false ): 

EventRecord *theEvent. 
short *theltem ) 

theChar - theEvent->message & charCodeMask: 

if ( ( theEvent->modifiers & cmdKey ) != 0 ) 
( 

switch C theChar ) 
( 

case 'h': 
Alert( rHelpAlert. nil >: 
break: 

return ( true >: 

if ( ( theChar ...... kReturnKey ) 11 ( theChar =- kEnterKey ) ) 
( 

*the Item "" 1: 
return ( true ): 

return ( false >: 

Mod a 1Dia1 og () passes the filter function each and every event it sees. 
The filter is only interested in events that involve the Command key. If 
the event didn't involve a keystroke, the filter function will let 
Mod a 1Dia1 og C) handle it. So the very first thing the filter does is check 
the what field of the event's EventRecord to see if the event is a key
stroke. If it isn't, the filter is through. It bails out and passes back a value 
of fa 1 se; the event was not processed. 

349 



350 
Macintosh Programming Techniques. 2E 

If the event survives the first test, it's an event involving a keystroke. 
The next step is to determine which key was pressed. This is done in the 
same way as this chapter's Handl eKeyDown () routine did it. That rou
tine was covered in the discussion on keyboard equivalents: 

theChar = theEvent->message & charCodeMask; 

In Handl eKeyDown() the above line looked like this: 

theChar = theEvent.message & charCodeMask; 

Remember your C? A structure member is accessed using the structure 
member operator, commonly called the dot: 

EventRecord theEvent; 

theEvent.message 

If you're working with a pointer to a structure, rather than the structure 
itself (as is the case in Di al ogHel pFi 1 ter( >)you must use the structure 
pointer operator: a hyphen followed by the greater than symbol: 

EventRecord *theEvent: 

theEvent->message 

Now, you want to see if the Command key was pressed. This too was 
done back in Handl eKeyDown (). It involves looking at the modifiers 
member of the current event's EventRecord: 

if C C theEvent->modifiers & cmdKey ) != O ) 



Chapter 6 • More About Windows 

If the Command key was pressed, the filter might actually be doing 
some real work! If the character key pressed along with the Command 
key is an 'h', the user wants to see the help alert displayed. The filter uses 
the Toolbox routine A 1 ert C) to take care of that. The event is handled, 
so the filter returns true. 

The last test the filter makes is to see if the key that was pressed was 
either the Return key or the Enter key. The snippet defines two character 
constants that represent the two keys. The ASCII table you keep handy 
will tell you that the Return key has a value of OxOD, or 13, while the Enter 
key has a value of Ox03, or 3. If the typed key was either of these charac
ters, the filter treats the event as if was a mouse-click on item l , the Done 
or OK button. It does this by setting the passed item variable to 1. That's 
why a pointer was passed in-so the filter could change its value. 

Wait! Doesn't Modal Di al og () normally assume that a press of the Return or 
Enter key is the same as a click on the OK button? The answer is "yes ... some
times." If a dialog box doesn't have any editable text items, then pressing 
either of these two keys will result in the dismissal of the modal dialog box. 
If, on the other hand, a dialog box has an editable text item, then keystrokes 
are aJI directed at that editable text box. This includes the press of the Return 
key. The Di al ogHel pFi lter() makes sure that typing either of these two 
keys will have the same effect as clicking on the OK button of the dialog box. 

If none of the preceding cases applied to the event, the event wasn't 
handled, so the filter returns a value of fa 1 se to let Mod a 1Dia1 og () 
handle things. 

If that breakdown of the filter function seemed a bit wordy, then you 
know it's time for a figure. Figure 6.25 sums it all up. 

351 



352 
Macintosh Programming Techniques. ZE 

if ( theEvent->what 1 = keyDown ) ../1-1 Event doesn't involve a keystroke, 
return ( false ) ; "'1-1 '-e_v_e_nt_n_o_t h_a_n_d_1e_d._r_et_u_m_f_a_1s_e_-i 

theChar = theEvent->rnessage & charcodeMask;o I Extract the character I 
~f ( ( theEvent->rnodifiers & cmdKey l ! = O ) 0 I Command key pressed? I 

switch ( theChar ) 
{ 

case 'h': ~ 
Alert( rHelpAlert, nil);~ 

break; 

Call Toolbox function to 
display an alert that 
holds help information 

} ./1-i Event handled, return true 
return (true);~ 

if ( ( theChar == kReturnKey ) I I ( theChar == kEnterKey ) ) 
{ 

*theitern = 1: ,/'-, If Return or Enter key pressed, change Item 
return ( true > : '\,-1 to Item #1, event handled, return true 

return ( false); 0 Made It all the way through filter function 
without event being handled, return false 

Figure 6.25 A closer look at a dialog box filter function. 

CHAPTER PROGRAM: MEnOMASTER 
The example program for this chapter is MenuMaster. When you run the 
program, you'll see a menu bar with three menus in it. Of most interest 
will be the File menu, shown in Figure 6.26. 



Chapter 6 • More About Windows 

Edit 
Open Modal Dialog 
SllBID Dbaat ...... 

¥'Check Me 
No, Check Me 

Disable 'Open Modal Dialog' 
Disable 'Edit' Menu 

Submenu I tern 1 
I • 

Quit 

Figure 6.26 MenuMaster's file menu. 

A good deal of this chapter was devoted to demonstrating various tech
niques for changing the look of menu items. MenuMaster shows how 
these techniques work. It does all of the following: 

• Includes the Apple menu in the menu bar. 
• Enables and disables a menu item. 
• Enables and disables an entire menu. 
• Places a check mark by menu items. 
• Changes the text of menu items. 
• Changes the style of the text of a menu item. 
• Displays a hierarchical menu. 
• Uses a keyboard equivalent for a menu item. 

Figure 6.27 shows the File menu of MenuMaster after a few of the menu 
items have been changed. 

353 



J54 
Macintosh Programming Techniques. ZE 

0fH~n Modal Ott~lOtJ 
ShDIU DbDlll .... 

Check Me 
./ No, Check Me 

Enable 'Open Modal Dialog' 
Disable 'Edit' Menu 

Hierarchical Menu ~ 

Quit ggq 

Figure 6.27 MenuMaster's File menu, with a few items changed. 

Selecting the About MenuMaster item from the Apple menu displays an 
alert that tells a little (a very little) about the program. That alert is shown 
in Figure 6.28. 

MenuMaster 
uersion 1.0 

[ Done D 

Figure 6.28 The About MenuMaster alert. 

Selecting Open Modal Dialog from the File menu opens the modal dia
log box shown in Figure 6.29. This dialog box demonstrates that the 
text in an editable text box can be edited without any help from your 
code. It also provides an example of how a filter function works. By 
pressing Command-D, the user causes the picture to disappear and in 
its place appears a promo for the software company that developed 
this sophisticated program! Figure 6.30 shows the results of pressing 
Command-D. 



Chapter 6 • More flboot Windows 

Enter some teHt, then edit 
it using the Edit menu or 
Comm11nd- key editing: 

l~dit TeHt 

Figure 6.29 MenuMaster's modal dialog, boxes with editing capabilities. 

~ 
n 0 T E 

Enter some teHt, then edit 
It using the Edit menu or 
Comm11nd-key editing: 

liEdit TeHt 

Buy D11nclng 
M11n Softw11re! 

Figure 6.30 The modal dialog box after pressing Command-0. 

The 'D' in Command-0 stands for "Dancing," of course. If a "feature" such 
as this isn't documented in the program's user's manual, then it's referred to 
as an easter egg. Generally, an easter egg is implemented through a key com
bination or a click of the mouse button while the cursor is over a particular 
part of a dialog box. Here's an example of an easter egg, as supplied by 
Apple. If you have System 7.5 on your Mac, select Stickies from the Apple 
menu. In the new, empty note that opens, type Antler! and press the Return 
key to see a picture added to the note. 

355 



356 
Macintosh Programming lWchnlques. ZE 

The Show About item in the File menu displays the very same alert that 
the About MenuMaster item in the Apple menu displays. 

When you choose the Check Me or No, Check Me!, that item will 
receive a check mark by it. 

The Disable 'Open Modal Dialog' menu item does just that. 
Selecting it disables the first item in the File menu. With the first menu 
item now disabled, it would now be more appropriate if the text of the 
Disable 'Open Modal Dialog' read Enable 'Open Modal Dialog'-and 
it does. 

The Disable 'Edit' Menu item works in the same manner as the pre
vious item. It, however, disables an entire menu rather than just a single 
menu item. 

The menu item titled Hierarchical Menu is exactly that. It has two 
items in its submenu: Submenu Item 1 and Submenu Item 2. Each 
opens an alert that displays which choice was made. The alert for the 
first submenu item is shown in Figure 6.31. 

~ Submenu, I tern 1 

([ OK )J 

Figure 6.31 A hierarchical submenu selection displays an alert. 

The last menu item in the File menu is Quit. You can use the keyboard 
equivalent Command-Q to quit the program. 

Program Resources: MenuMaster.rsrc 
MenuMaster demonstrates menus in a Macintosh program and gives 
you a quick review of some of the topics found in the previous chapter. 
The program uses two alerts and one dialog box. Figure 6.32 shows the 
six resource types used by the application. 



ALRT Dill 

Chapter 6 • More flbout Windows 

MenuMaster.rsrc 

DLOG MBAR 

~·-............... 
·---·--
MENU 

Figure 6.32 The resource file for the MenuMaster project. 

The two ALRT resources have IDs of 128 and 129. So do their corre
sponding DI TL resources. The DI TL resources are shown in Figure 6.33. 

DITLI0=128 

IMenuMaster Laj 
luersion 1.0 l!J 

Done~ 

D ITL I 0 = 129 from MenuMa· 

ro ~ 
[ OK ~ 

Figure 6.33 The DITL resources used by MenuMaster's two ALRT resources. 

Of particular note is the strange "0 text in item 2 in DITL 129, as shown 
in Figure 6.33. The alert that uses this DI TL is displayed by MenuMaster 
when either of the two items in its hierarchical submenu is selected. But 
rather than displaying "0, the text in item 2 will be either Submenu, 
Item 1 or Submenu, Item 2. How do you use one alert to display differ
ent strings on different occasions? The answer is simple and clever, and 
involves just one Toolbox call: ParamText( >.:. 

You pass Par amT ext ( ) four strings. Your program will retain these four 
strings, and may use them in any alert or dialog box that has one or more 
static items. How does it know which string to use in which item? The text 
of the static text item, defined when you create the DI TL, must be one or 
more of the following: "0, "1, "2, "3. Your program will substitute the four 
ParamText() strings for each of these "x strings. Here's an example: 

357 



358 
Macintosh Programming Techniques. ZE 

/ldefi ne kDayAlert 128 

ParamText("\pMonday ", "\pTuesday", "\pWednesday ", "\pThursday"}: 
Alert( kDayAlert, nil ): 

Figure 6.34 shows a 0 IT L resource that displays all four of the 
Pa ramText () strings. Figure 6.35 shows the alert that results from exe
cuting the preceding code. In Figure 6.35, you can see that the strings 
will be word-wrapped to the confines of the static text item. 

§IEi§ o 1n Io = 128 from Strin Tester.rsrc _ 

OK L1j 

Figure 6.34 A DITL with a static text item to display four strings. 

~:~ 
Monday Tuesday Wednesday 
Thursday 

(( OK l 

Figure 6.35 An alert that displays ParamText() strings. 

Now, what would happen if your program called ParamTextC) again, 
this time substituting different strings? The same call to A 1 e rt ( ) would 
result in the display of different text. Here's the code: 



Chapter 6 • More flboat Windows 

//define kDayAlert 128 

ParamText("\pMonday ", "\pTuesday", "\pWednesday ", "\pThursday"): 
Alert( kDayAlert, nil >: 
ParamText("\pFriday ", "\pSaturday ", "\pSunday ", "\p"): 
Alert( kOayAlert, nil ) : 

When the previous snippet executes, the alert pictured in Figure 6.35 
would be displayed. After clicking the OK button, the alert shown in 
Figure 6.36 would then appear. Remember, both these alerts are using 
the same DI TL-the one pictured back in Figure 6.34. 

~ A~i~ 
h.ey Saturday Sunday 
"3~ 

(( OK J) 

Figure 6.36 The same alert pictured in Figure 6.35, now displaying 
different Pa ramText C) strings. 

Notice in Figure 6.36 that only three strings seem to be displayed. The 
call to Pa ram Text ( ) defined the fourth string, the one to be displayed in 
the A3 spot, as a null string-"\p". 

If you look back a few pages you'll see that this whole discussion 
started with Figure 6.33. In that figure you saw DI TL 129, which con
tained a static text item with the text "0 in it. This D IT L will be used in 
an alert that will substitute a single string in place of the AO text in the 
static text item. 

The third and final DI TL resource is used for the dialog box displayed 
when the user selects Open Modal Dialog from the File menu. It's pic
tured in Figure 6.37. 

359 



360 
Macintosh Programming Techniques. ZE 

~WI~ Dill ID= 130 from M ~ 

Enter some teHt, then edl.! 
it using the Edit menu or 
Command-key edjting: 

llEdit TeHt WI 

Figure 6.37 The DITL for MenuMaster's modal dialog. 

Now, to the menu-related resources. MenuMaster's MBAR resource is pic
tured in Figure 6.38. You can tell from the figure that the program will 
display a menu bar that holds three menus. Figure 6.39 shows the three 
MENU resources used in the menu bar, and the one MENU that will serve as 
the hierarchical menu. 

~!18 MBRR ID = 128 from MenuMaster.rsrc 

= of menus 3 

1) ***** 
Menu res ID j 12a 

2) ***** 
Menu res ID I 129 

3) ***** 
Menu res ID I 130 

i) ***** 

Figure 6.38 The MBAR for MenuMaster. 



Chapter 6 • More flboat Windows 

m MENUS from MenuMaster.rsrc r ................................................................... 1 

I About MenuMaste i 

l·----·-·--·---·--··-·-·-J 

1·--;~;;:~;;::'.::: .. ··1 

l ...... ~ ...................................................... J 
128 129 

r ..................................................................... 1 

I ~ut XH 

L.'..'.: ... :'. ____ . __ 

r ..................................................... " ............ 1 
! i 

I ~=:==~= : ::= ~ I 

L--·-·-·--·-·-·-·-...J 130 201 

Figure 6.39 The three MENU resources for MenuMaster. 

The final resource used by MenuMaster is a PI CT with an ID of 128. As 
shown in Figure 6.37, this PICT is used by item 2 in the DITL that is asso
ciated with the program's modal dialog box. 

Program listing: MenuMaster.c 
The following is the complete source code listing for the MenuMaster 
program. As always, a walk through of the code appears after the listing. 

//define 
//define 
//define 

rAboutAlert 
rlnformationAlert 
rModalDialog 

128 
129 
130 

361 



J6Z 
Macintosh Programming Techniques. ZE 

//define kDialogOKButton 1 
//define kManPictureitem 2 

//define rMenuBar 128 

//define mAppleMenu 128 
//define iShowAboutApple 1 

//define mFileMenu 129 
//define iOpenDialog 1 
//define iShowAboutFile 2 
II item 3 is a dashed line 
//define iCheckMe 4 
//define iNoCheckMe 5 
II item 6 is a dashed line 
//define iDisableOpenDialog 7 
//define iDisableEditMenu 8 
II item 9 is a dashed line 
II item 10 is hierarchical menu 
II item 11 is a dashed line 
//define iQuit 12 

//define mSubMenu 201 
//define iSubmenuiteml 1 
//define iSubmenuitem2 2 

//define mEditMenu 130 
//define iCut 1 
//define iCopy 2 
//define iPaste 3 

//define kEntireMenu 0 
//define kReturnKey Cchar)OxOD 
//define kEnterKey Cchar)Ox03 

II 

Boolean gAllDone = false: 
MenuHandle gAppleMenu: 
MenuHandle gFil eMenu: 
MenuHandle gEditMenu: 
Boolean gCheckMeitemChecked = false: 
Boolean gOpenDialogltemDisabled = false: 
Boolean gEditMenuDisabled = false: 



Chapter 6 • More About Windows 

void main( void ) 
{ 

} 

MaxApplZone(); 
MoreMastersC>: 
MoreMastersC>: 
MoreMastersC): 

InitializeToolboxC>: 

SetUpMenuBar(); 

Eventloop(): 

void SetUpMenuBar( void ) 
{ 

Handle theMenuBar: 
MenuHandle theSubmenu: 
Style theltemStyle: 

theMenuBar = GetNewMBar( rMenuBar >: 
if ( theMenuBar -= nil ) 

ExitToShellC): 

SetMenuBar( theMenuBar >: 
DisposeHandleC theMenuBar ): 

gAppleMenu - GetMenuHandle( mAppleMenu ); 
gfileMenu = GetMenuHandle( mFileMenu >: 
gEditMenu = GetMenuHandleC mEditMenu >: 

theSubmenu - GetMenu( mSubMenu ); 
InsertMenu( theSubmenu. -1 >: 

theltemStyle = bold + 1talic: 
SetltemStyle( gfileMenu, iShowAboutFile, theltemStyle >: 

Checkltem( gfileMenu. iNoCheckMe, true ); 

AppendResMenuC gAppleMenu, 'DRVR' ); 

363 



364 
Macintosh Programming Techniques. ZE 

DrawMenuBarC>: 

void Eventloop( void > 
{ 

} 

EventRecord theEvent: 

while C gAllDone == false 
{ 

} 

Wai tNextEvent( everyEvent, &theEvent, 15L, nil >: 

switch C theEvent.what 
{ 

case keyDown: 
HandleKeyOown( theEvent ): 
break: 

case mouseDown: 
HandleMouseDown< theEvent >: 
break: 

void HandleKeyOown( EventRecord theEvent ) 
{ 

short theChar: 
long theMenuChoice: 

theChar - theEvent.message & charCodeMask: 

if ( ( theEvent.modifiers & cmdKey ) != 0 ) 
{ 

if ( theEvent.what != autoKey ) 
{ 

theMenuChoice = MenuKey{ theChar ); 
HandleMenuChoice( theMenuChoice >: 



Chapter 6 • More flboat Windows 

void HandleMouseDownC EventRecord theEvent 
{ 

} 

WindowPtr theWindow: 
short thePart: 
long theMenuChoice: 

thePart = FindWindow( theEvent.where. &theWindow >: 

switch ( thePart ) 
{ 

} 

case inMenuBar: 
theMenuChoice = MenuSelectC theEvent.where ); 
HandleMenuChoice( theMenuChoice ); 
break: 

void HandleMenuChoice( long theMenuChojce ) 
{ 

short theMenu: 
short theMenultem: 

if ( theMenuChoice != 0 
{ 

theMenu = HiWord( theMenuChoice ); 
theMenultem = LoWord( theMenuChoice ): 

switch ( theMenu ) 
{ 

case mAppleMenu: 
HandleAppleChoice( theMenultem >: 
break: 

case mFileMenu: 
HandleFileChoiceC theMenultem >: 
break: 

365 



366 

} 

Macintosh Programming Techniques. 2E 

case mSubMenu: 
HandleHierarchicalMenu( theMenultem ); 
break: 

case mEditMenu: 
break; 

HiliteMenuC O ); 

void HandleAppleChoiceC short theltem ) 
{ 

Str255 theltemName: 
short theReference: 

switch ( theltem ) 
{ 

case iShowAboutApple 
Alert( rAboutAlert, nil ); 
break; 

default : 
GetMenultemText( gAppleMenu, theltem, theltemName ); 
theReference - OpenDeskAcc( theltemName ); 
break; 

void HandlefileChoice( short theltem ) 
{ 

switch ( theltem ) 
{ 

case iOpenDialog: 
OpenModalDialog(); 
break; 

case iShowAboutFile: 



} 

Alert( rAboutAlert, nil ): 
break: 

case iCheckMe: 
case iNoCheckMe: 

Chapter 6 • More flboat Windows 

HandleMenuCheckedltem( theltem ): 
break: 

case iDisableOpenDialog: 
HandleDisableOpenDialogltem(): 
break: 

case iDisableEditMenu: 
HandleDisableEditltem(): 
break: 

case iQuit: 
gA 11 Done = true: 
break: 

void OpenModalDialog( void 
{ 

DialogPtr theDialog: 
short the Item: 
Boolean dialogDone = false: 

theDialog = GetNewDialog( rModalDialog, nil, CWindowPtr)-lL ): 
ShowWindowC theDialog ): 

while ( dialogDone == false ) 
{ 

ModalDialog( DialogPromoFilter. &theltem >: 

switch C theltem ) 
{ 

case kDialogOKButton: 
dialogDone = true: 
break: 

367 



368 
Macintosh Programming Techniques. 2E 

DisposeDialog( theDialog ); 

pascal Boolean DialogPromoFilterC DialogPtr theDialog. 

char theChar: 
short the Type; 
Handle theHandle: 
Rect theRect: 

if theEvent->what != keyDown ) 
return C false >: 

EventRecord *theEvent. 
short *theltem ) 

theChar = theEvent->message & charCodeMask: 

if C C theEvent->modifiers & cmdKey ) != 0 ) 
{ 

switch ( theChar 
{ 

} 

case 'd': 
SetPortC theDialog >: 
GetDialogitem( theDialog. kManPictureltem. &theType. 

&theHandle. &theRect >: 
EraseRectC &theRect ); 
MoveTo( theRect.left + s. theRect.top + 45 ); 
Drawstring( "\p Buy Dancing" >:: 
MoveToC theRect.left + s. theRect.top + 60 ); 
Drawstring( "\pMan Software!" ); 
break: 

return C true >: 

if C C theChar = kReturnKey ) 11 { theChar - kEnterKey ) ) 
{ 

*theltem = 1: 
return C true ) : 



Chapter 6 • More flboat Windows 

return C false ): 
} 

void HandleMenuCheckedltemC short theltem 
{ 

} 

if C theltem =-- iCheckMe 
{ 

} 

Checkltem( gFileMenu. iNoCheckMe. false ): 
gCheckMeltemChecked - true: 

else 
{ 

} 

CheckltemC gFileMenu. iCheckMe. false >: 
gCheckMeltemChecked = false: 

Checkltem( gFileMenu. theltem. true >: 

void HandleDisableOpenDialogltemC void ) 
{ 

} 

if ( gOpenDialogltemDisabled -- true ) 
{ 

Enableltem( gFileMenu. iOpenDialog ): 
SetMenultemText( gFileMenu. iDisableOpenDialog. 

"\pDisable 'Open Modal Dialog'" >: 
gOpenDialogltemOisabled = false: 

else 
{ 

Disableltem( gFileMenu. iOpenDialog >: 
SetMenultemText( gFileMenu. iDisableOpenDialog, 

"\pEnable 'Open Modal Dialog'" >: 
gOpenDialogltemDisabled = true: 

369 



370 
Macintosh Programming Techniques • .ZE 

void HandleDisableEditltem( void ) 
{ 

} 

if < gEditMenuDisabled == true > 
( 

} 

Enableltem( gEditMenu, kEntireMenu ): 
DrawMenuBarC>: 
SetMenultemText( gFileMenu, iDisableEditMenu, 

"\pDisable 'Edit' Menu" ): 
gEditMenuDisabled = false: 

else 
( 

Disableltem( gEditMenu, kEntireMenu >: 
DrawMenuBar(): 
SetMenultemTextC gFileMenu, iDisableEditMenu, 

"\pEnable "Edit' Menu" >: 
gEditMenuDisabled ~ true: 

void HandleHierarchicalMenu( short theltem ) 
{ 

} 

switch C theltem ) 
( 

} 

case iSubmenulteml: 
ParamTextC"\pSubmenu, Item l", "\p", "\p", "\p" >: 
NoteAlert( rlnformationAlert, nil ): 
break: 

case iSubmenultem2: 
ParamTextC"\pSubmenu, Item 2", "\p", "\p", "\p" ); 
NoteAlert( rlnformationAlert, nil ): 
break: 

void InitializeToolbox< void 
{ 

InitGraf( &qd.thePort >: 



} 

In it Fonts C); 
InitWindows(); 
InitMenus ( >; 
TEinit(); 
InitDialogs( OL ); 
FlushEvents( everyEvent. O ); 
InitCursor(); 

Stepping through the Code 

Chapter 6 • More flboat Windows 

Once again, it's time to step through the source code to see just what's 
going on. 

The 1/d e f i n e Directives 
All but three of the constants defined by this program are resource IDs or 
resource item numbers. If you want to make any changes to 
MenuMaster's resource file, you only have to go to one place in the source 
code to make changes or additions-the /Ide f i n e directives section. 

The two ALRT resources have IDs of rAboutA 1 ert and 
rlnformationAlert. The modal dialog box has a DLOG ID of 
rModa 1Dia1 og. The OK button in that dialog box has an item number of 
kDi a 1 ogOKButton, while the picture item has an item number of 
kManPi ctureltem. 

The MBAR has an ID of rMenuBar. This resource makes use of three 
MENU resources-mAppl eMenu, mFi 1 eMenu, and mEdi tMenu. The first 
MENU resource has one item, i ShowAboutAppl e. The second MENU has 12 
items, but four of them are dashed lines and one is a hierarchical menu
so those five don't require constants. That leaves i Open Di a 1 og, 
i ShowAboutFi 1 e, i CheckMe, i NoCheckMe, i Di sabl eOpenDi al og, 
i Di sabl eEdi tMenu, and i Quit. 

The hierarchical menu that appears in the File menu has its own 
MENU resource to define the items in it. The two items in this menu are 
Submenulteml i and i Submenultem2. 

The final MENU in the menu bar, the Edit menu, has three items in it. 
As the source code will demonstrate, you won't be using any of them 
directly, so they don't require constants. 

371 



J7Z 
Macintosh Programming Techniques. ZE 

Normally a call to Di sabl eitem() disables a single menu item. If 
you pass the routine kEnti reMenu as a parameter, though, an entire 
menu will be disabled. 

kReturnKey and kEnterKey are the character constants for the 
Return key and the Enter key. The filter function for Modal Di al og () will 
use them. 

//define rAboutAlert 128 
//define rlnformationAlert 129 
//define rModalDialog 130 
//define kDialogOKButton 1 
//define kManPictureltem 2 

/ldefi ne rMenuBar 128 

//define mAppleMenu 128 
//define iShowAboutApple 1 

//define mFileMenu 129 
/ldefi ne iOpenDialog 1 
//define iShowAboutFile 2 
//define iCheckMe 4 
//define iNoCheckMe 5 
I/define iDisableOpenDialog 7 
//define iDisableEditMenu 8 
//define iQuit 12 

//define mSubMenu 201 
I/define iSubmenulteml 1 
//define iSubmenuitem2 2 

//define mEditMenu 130 
//define iCut 1 
//define iCopy 2 
f/defi ne iPaste 3 

f/defi ne kEntireMenu 0 
f/defi ne kReturnKey Cchar)OxOD 
f/defi ne kEnterKey {char)Ox03 



Chapter 6 • More About Windows 

The Global Variables 
Like the previous examples, MenuMaster uses gA 11 Done to signal the 
end of the program. You'll want a global MenuHandl e variable for each, 
so that you can easily work with MenuMaster' s three menus. They are 
gAppl eMenu, gFi 1 eMenu, gEditMenu. MenuMaster will be toggling the 
text of some menu items. Simplistically, you'll be checking for something 
like this: if a selected menu item is named A, change its name to B. If its 
name is B, change it to A. These Boolean variables will keep track of the 
current state of three of the menu items: gCheckMeltemChecked, 
gOpenDialogltemDisabled,andgEditMenuDisabled. 

Boolean 
MenuHandle 
MenuHandle 
MenuHandle 
Boolean 
Boolean 
Boolean 

gAllDone = false: 
gAppleMenu: 
gFileMenu: 
gEditMenu: 
gCheckMeitemChecked - false: 
gOpenDialogitemDisabled - false; 
gEditMenuDisabled = false: 

The ma i n ( ) function 
Earlier in this chapter, you saw that your program should put up the 
menu bar soon after starting. MenuMaster does just that. Right after the 
traditional initialization of the Toolbox and memory, the application
defined routine Set Up Menu Ba r ( ) is called. 

void main( void ) 
{ 

MaxApplZone<>: 
MoreMasters(); 
MoreMasters(); 
MoreMasters(): 

InitializeToolbox<>: 

SetUpMenuBar(); 

Eventloop(); 

J7J 



374 
Macintosh Programming Ttchniqua. ZE 

Setting Op the Mena Bar 
MenuMaster calls SetUpMenuBar() to put the menu bar on the screen. 
This routine is similar to the one by the same name developed in this 
chapter's Setting Up the Hierarchical Menu section-just a few lines are 
new. This version adds a Style variable named theitemStyl e and these 
three lines: 

theltemStyle = bold + italic: 
SetltemStyle( gFileMenu, iShowAboutFile, theltemStyle >: 

Checkltem( gFileMenu, iNoCheckMe, true ); 

The name of the second item in the File menu, the Show About item, 
appears in the menu in bold and italic. To accomplish this, the desired 
styles are added together, and the result is passed to SetitemStyl e(). 
This is the only place the style change needs to be made; the menu item 
text will appear in this style for the remainder of the program's execu
tion. 
MenuMaster has two items that can receive a check mark. The program 
starts with one of the items checked, so that's taken care of here with a 
call to Chee kl tern(). 

void SetUpMenuBar( void 
{ 

Handle theMenuBar: 
MenuHandle theSubmenu: 
Style theltemStyle: 

theMenuBar = GetNewMBar( rMenuBar ); 
if ( theMenuBar = ni 1 ) 

ExitToShell (): 

SetMenuBarC theMenuBar >: 
OisposeHandle( theMenuBar >: 

gAppleMenu = GetMenuHandle( mAppleMenu >: 
gFileMenu = GetMenuHandle( mFileMenu ); 
gEditMenu = GetMenuHandleC mEditMenu >: 

theSubmenu = GetMenu( mSubMenu ); 
InsertMenu( theSubmenu, -1 >: 



Chapter 6 • 11ore About Windows 

theltemStyle = bold + italic: 
SetltemStyle( gFileMenu, iShowAboutFile, theltemStyle ); 

Checkltem( gFileMenu. iNoCheckMe, true >: 

AppendResMenu( gAppleMenu, 'DRVR' ); 

DrawMenuBar(); 

Handling a Keystroke 
The Event Loop ( ) routine should be old-hat by now. This program's ver
sion has just one addition-the handling of a keystroke. A case section 
has been added to handle a keyDown event. Under the case the applica
tion-defined Handl eKeyDown ()is called. This routine appears exactly as 
it was developed in this chapter's Handling A Keystroke section. 

void EventloopC void ) 
{ 

EventRecord theEvent: 

while ( gAllDone == false 
{ 

WaitNextEventC everyEvent. &theEvent. 15L. nil ) : 

switch ( theEvent.what ) 
{ 

} 

case keyDown: 
HandleKeyDown( theEvent >: 
break: 

case mouseDown: 
HandleMouseDown( theEvent ): 
break: 

void HandleKeyDownC EventRecord theEvent ) 
{ 

short theChar: 

375 



376 

} 

Macintosh Programming Techniques, ZE 

long theMenuChoice: 

theChar = theEvent.message & charCodeMask: 

if C C theEvent.modifiers & cmdKey ) != O ) 
{ 

if C theEvent.what != autoKey ) 
{ 

theMenuChoice - MenuKey( theChar >: 
HandleMenuChoiceC theMenuChoice >: 

ttandling a Click in the Menu Bar 
A mouse click results in a call to Handl eMouseDown C ), which in turn calls 
Handl eMenuChoi ce( ). Here's Handl eMouseDownC ): 

void HandleMouseDownC EventRecord theEvent ) 
{ 

} 

WindowPtr theWindow: 
short thePart; 
long theMenuChoice: 

thePart = FindWindowC theEvent.where. &theWindow >: 

switch C thePart ) 
{ 

} 

case inMenuBar: 
theMenuChoice = MenuSelect( theEvent.where ): 
HandleMenuChoiceC theMenuChoice ): 
break: 

Regardless of the program it appears in, the routine 
Handl eMenuChoi ce() has the same form: first call the Toolbox functions 
Hi Word ()and LoWord ()to determine the selected menu and menu item, 
then enter a switch statement that determines which menu-handling 
routine to branch to. 



Chapter 6 • More flboat Windows 

MenuMaster has three menus in the menu bar, yet there are four 
case sections in the switch. That's because MenuMaster has a hierar
chical menu; don't forget to include all hierarchical menus in the body of 
the switch. Even though the user goes through the File menu to reach 
the hierarchical menu, it still acts as if it were a menu perched in the 
menu bar. 

Notice that a click in the Edit menu doesn't get any attention. That's 
because MenuMaster only uses the Edit menu when the modal dialog 
box is open. When that's the case, the system will handle things. 

void HandleMenuChoiceC long theMenuChoice ) 
{ 

} 

short theMenu: 
short theMenultem: 

if C theMenuChoice != 0 
{ 

} 

theMenu - HiWordC theMenuChoice >: 
theMenultem ~ LoWord( theMenuChoice >: 

switch C theMenu ) 
{ 

case mAppleMenu: 
HandleAppleChoice( theMenultem ): 
break: 

case mFileMenu: 
HandleFileChoice( theMenultem >: 
break: 

case mSubMenu: 
HandleHierarchicalMenuC theMenultem ); 
break: 

case mEditMenu: 
break; 

Hil iteMenu( 0 ) : 

377 



378 
Macintosh Programming Technlqaa. ZE 

A menu selection in the Apple menu brings the program to 
Handl eAppl eChoi ce( ). This is a typical "cut and paste" routine; it 
will appear, as is, in almost any program you write. What would make 
you change this routine? If you have more than one item in the menu, 
other than the user's Apple Menu Item folder contents. Figure 6.40 
gives an example. 

void HandleAppleChoice( short theltem > 
{ 

Str255 theitemName: 
short theReference: 

switch ( theltem ) 
{ 

case iShowAboutApple 
Alert ( rAboutA l ert. nil >: 
break: 

default : 
GetMenuitemText( gAppleMenu, theltem. theitemName ): 
theReference = OpenDeskAcc( theitemName >: 
break: 

About DoubleDealer ... 
Registering DoubleDealer ... 

~ Alarm Clock 

filill Calculator 

~Chooser 
~Key Caps 

Figure 6.40 Example of a "nonstandard" Apple menu. 

A selection in the File menu sends the program to Handl eFi 1 eChoi ce( ). 
Typical of menu-handling routines, this routine isn't much more than a 
branching-off point. A Show About selection simply puts up the same 



Chapter 6 • More flbout Windows 

alert that was used for the Apple menu's About MenuMaster item. 
Choosing Quit just sets the global variable gA 11 Done to true. The other 
menu items are a bit more complicated, so they have their own applica
tion-defined routines. 

void HandleFileChoiceC short theltem ) 
( 

} 

switch ( theltem ) 
( 

case iOpenDialog: 
OpenModalDialog(); 
break: 

case iShowAboutFile: 
Alert( rAboutAlert. nil >: 
break; 

case iCheckMe: 
case iNoCheckMe: 

HandleMenuCheckedltem( theltem ); 
break; 

case iDisableOpenDialog: 
HandleDisableOpenDialogitemC): 
break: 

case iDisableEditMenu: 
HandleDisableEditltemC); 
break: 

case iQuit: 
gA 11 Done ""' true: 
break: 

The Modal Dialog Box 
A menu choice of Open Modal Dialog takes the program to a routine 
called OpenModalDi al og( ). How's that for descriptive naming? The 
source code for this routine is pretty much straight out of the Modal 
Dialog Source Code section of Chapter 5. 

379 



380 
Macintosh Programming Techniques. ZE 

void OpenModalDialog( void 
( 

DialogPtr theDialog: 
short the Item: 
Boolean dialogDone = false: 

theDialog - GetNewDialog( rModalDialog. nil. (WindowPtr)-ll >: 
ShowWindow( theDialog >: 

while ( dialogDone c=:a false ) 
( 

ModalDialog( DialogPromoFilter, &theltem >: 

switch ( theltem ) 
( 

case kDialogOKButton: 
dialogDone = true: 
break: 

DisposeDialog( theDialog >: 

The modal dialog box uses a filter function so that the user's keystrokes 
can be monitored. If the user presses the Return key or the or Enter key, 
the Di al ogPromoFi l ter() function that gets called by Modal Di al og() 
sets theltem to a value of 1 to "trick" Open Modal Di al og () into thinking 
that the user clicked the mouse button while the cursor was over the OK 
button. If both the Command key and the D key are pressed by the user, 
Di al ogPromoFi l ter () handles things by erasing the dialog box picture 
and replacing it with a short promotional blurb. All in all, the 
Di al ogPromoFil ter() function follows the same format of the filter 
function discussed earlier in this chapter-the difference is in which 
Command-key combination is handled, and how. 

pascal Boolean DialogPromoFilter( DialogPtr theDialog, 

{ 
char theCha r: 
short the Type: 
Handle theHandle; 
Rect theRect: 

EventRecord *theEvent. 
short *theitem ) 



Chapter 6 • More flboat Windows 

if ( theEvent->what != keyDown ) 
return ( false ); 

theChar = theEvent->message & charCodeMask; 

if ( ( theEvent->modifiers & cmdKey ) la 0 ) 
{ 

} 

switch ( theChar ) 
{ 

case 'd': 
SetPortC theDialog ); 
GetDialogltem( theDialog. kManPictureltem. &theType, 

&theHandle, &theRect ); 
EraseRect( &theRect ); 
MoveTo( theRect.left + 5, theRect.top + 45 ); 
Drawstring( "\p Buy Dancing" );; 
MoveTo( theRect.left + 5, theRect.top + 60 ); 
Drawstring( "\pMan Software!" >: 
break: 

return C true >: 

if ( ( theChar = kReturnKey ) 11 C theChar --- kEnterKey > ) 

{ 

} 

*the Item "" 1: 
return C true ); 

return ( false >: 

Checking a Menu Item 
This chapter demonstrated how to use Checkltem() to either set or clear 
a check mark by a menu item. MenuMaster uses this same technique. 

void HandleMenuCheckedltem( short theltem ) 
{ 

if C theltem == iCheckMe } 
{ 

} 

Checkltem( gFileMenu. iNoCheckMe. false >: 
gCheckMeltemChecked = true: 

381 

/ 



JIZ 

\ 

Macintosh Programming Techniques. ZE 

else 
{ 

} 

Checkltem( gFileMenu, iCheckMe, false >: 
gCheckMeitemChecked = false: 

CheckitemC gFileMenu. theltem. true >: 

Dlsabllng and Enabling a Mena and Mena Item 
If the user selects the File menu item Disable 'Open Modal Dialog', 
check the global flag gOpenDi al ogitemDi sabled to see which state this 
item is already in. Whatever the state, toggle it to its opposite state. The 
Handl eDi sabl eOpenDi al ogitem() routine performs two tasks. It 
enables or disables the first item in the File menu, and then makes a call 
to SetMenuitemText() to change the text of the selected item to what
ever title is appropriate. Figure 6.41 shows the two possible scenarios. 

void HandleDisableOpenDialogltem( void ) 
{ 

} 

if C gOpenDialogitemDisabled == true } 
{ 

Enableltem( gFileMenu, iOpenDialog >: 
SetMenuitemTextC gFileMenu. iDisableOpenDialog. 

"\pDisable 'Open Modal Dialog'" >: 
gOpenDialogitemDisabled = false; 

} 

else 
{ 

DisableitemC gFileMenu. iOpenDialog ); 
SetMenuitemTextC gFileMenu, iDisableOpenDialog. 

"\pEnable 'Open Modal Dialog'" }; 
gOpenDialogitemDisabled = true; 



This item is enabled ... 

So this item now lets 
the user disable it 

This item is disabled ... 

So this item now lets 
the user enable it 

Chapter 6 • More flboat Windows 

./Check Me 
No, Check Me 

Disable 'Open Modal Dialog' 
Disable 'Edit' Menu 

Otu~n Mount Ointo~l 
S/111m 8/10111 ... 

./Check Me 
No, Check Me 

.................................................................... -......................... . 
Enable 'Open Modal Dialog' 
Disable 'Edit' Menu 

Figure 6.41 Enabling/disabling an item and changing an item's text. 

Handl eDi sabl eEdi t!tem() works in the same way as the previous rou
tine. The difference is in the second parameter passed to Ena bl el tern() 
and Di s ab 1 e I t em ( ). By passing a value of 0 ( k Ent i r eM en u ) to either 
Ena bl el tern() or Di sabl el tern(), MenuMaster is telling the Toolbox to 
enable or disable the entire Edit menu-not a particular item in it. 

void HandleDisableEditltemC void ) 
{ 

if C gEditMenuDisabled == true ) 
{ 

EnableltemC gEditMenu. kEntireMenu >: 
DrawMenuBar(); 
SetMenultemTextC gFileMenu. iDisableEditMenu. 

J83 



384 

\ 

Macintosh Programming Technlqaes. ZE 

"\pDisable 'Edit' Menu" }: 
gEditMenuDisabled = false: 

else 
( 

DisableitemC gEditMenu. kEntireMenu >: 
DrawMenuBar(}: 
SetMenuitemTextC gFileMenu. iDisableEditMenu. 

"\pEnable 'Edit' Menu" }; 
gEditMenuDisabled = true: 

Handling a Hierarchical Mena 
MenuMaster displays an alert if either of the hierarchical submenu items 
are selected. To display two different strings in the same alert the pro
gram uses the Param Text() trick discussed earlier. 

void HandleHierarchicalMenuC short theitem } 
( 

switch ( theitem } 
( 

case iSubmenuiteml: 
ParamText("\pSubmenu. Item l", "\p", "\p", "\p" }; 
NoteAlert( rinformationAlert. nil >: 
break: 

case iSubmenuitem2: 
ParamTextC"\pSubmenu, Item 2", "\p", "\p", "\p" >: 
NoteAlertC rinformationAlert, nil >: 
break; 

CHAPTER SOMMflRY 
To display a menu bar in your Macintosh program you use MENU 
resources and a single MBAR resource. Each MENU resource defines the 
menu items that appear in a single pull-down menu. The MBAR resource 
packages the individual MENU resources into single menu bar. 



Chapter 6 • Morcz About Windows 

Several Toolbox routines are involved in setting up an application's 
menu bar. GetNewMBa r ( ) creates a menu list that holds a handle to each 
menu in the menu bar. SetMenuBar() installs the individual menus 
within the menu bar. AppendResMenu () fills the Apple menu with the 
names of the items in the Apple Menu Items folder in the user's System 
Folder. Finally, the menu bar is displayed on the screen with a call to 
DrawMenuBar(). 

To get access to a handle to an individual menu-a MenuHandl e
call GetMenuHandl e( ). You'll then use this handle in subsequent calls to 
Toolbox routines that change the characteristics of the menu or items in 
it. Some of the changes you can make are: enabling and disabling a menu 
item, changing the name of a menu item, and displaying a check mark 
by an item. 

When the user clicks the mouse button, you'll want to check to see if 
the click took place in the menu bar area of the screen. A call to 
Fi ndWi ndow() determines that. If the mouse down event did occur in 
the menu bar, you'll call the powerful Toolbox routine MenuSel ect() to 
track the mouse in the menu bar, dropping down menus as the user 
moves the mouse over them. 

If the user makes a selection from a menu, call MenuSel ect() to 
determine what item was selected. You'll use the Toolbox routines 
Hi Word () and LoWord () to extract both the menu and the menu item 
from the single value that MenuSe 1 ect () returns. 

You can make things easier for the user by creating keyboard equiv
alents for commonly-used menu selections. You'll include the keyboard 
equivalent in the MENU resource, then write a Handl eKeyDown () routine 
that keeps watch for this keystroke combination. 

You can expand the amount of information in a menu by changing a 
menu item into a hierarchical menu. By marking a menu as such in the 
MENU resource you'll add a pull-down menu to a menu item. You make 
your program aware of a hierarchical menu when you set up the pro
gram's menu bar. At that time you call GetMenu () and I nsertMenu () 
for each hierarchical menu your program has. 

To change menu characteristics you'll again rely on the Toolbox. 
Enabl el tern() and Di sabl el tern() enable and disable a single menu 
item or an entire menu. Depending on the parameters you pass to it, the 
Check Item() routine adds or takes away a checkmark from alongside a 

385 



386 
Macintosh Programming Technlqaes, ZE 

menu item. You can use SetltemStyl e() to change the look of a menu 
item. You can give a menu item text characteristics such as bold or outline. 

You can use a special filter function to give the user access to special 
commands available only through Command-equivalents. Your pro
gram will call this filter function every time it calls the Toolbox routine 
Mod a 1Dia1 og ( ) . 



AClfiTOSH PROGRAMMlfiG TECHfilQOES. 2E 

Chapter 7 

Text and Strings 
The distinction between text and graphics is blurred in a graphical user 
interface environment like the Macintosh operating system. Text, like 
graphics, gets drawn to a window or dialog box. Because your program 
can treat text like it would graphics, your program can display text in a 
rich variety of formats. In this chapter, you'll learn how to use a number 
of Toolbox routines to change the font, size, style, and transfer mode (how 
text interacts with its background) of the strings your program draws. 

While you no doubt program in C or C++, the Macintosh is most 
comfortable with strings that are in a Pascal format. In this chapter, 
you'll see the difference between C-formatted strings and Pascal-for
matted strings. Knowing the format of Macintosh strings will also pro
vide you with an understanding of how to convert a user-entered string 
into the floating-point number-a task that can't be handled by a single 
Toolbox function. 

STRIHG DATA TvPES 
While you no doubt program the Mac using either C or C++, when it 
comes to working with text you'll be using Pascal-style strings. When 
the Macintosh came into existence just over a decade ago, Pascal was the 

387 



388 
Macintosh Programming Techniques. 2E 

high-level language of choice. A holdover from those times is that many 
Toolbox functions that expect a string as a parameter expect that string 
to be in the form of a Pascal string. 

The StrZ55 Data 1Jpe 
In C, a string is an array of characters. To designate the end of the string, 
the last character in the array must be the null character, \0. Because an 
array element must be reserved for this string terminator escape 
sequence, the number of elements in a string array must be at least one 
greater than the number of characters in the text of the string. For exam
ple, the five characters in the string "Hello" require a string declaration 
as follows: 

char theString[5] = "Hello"; 

The first element in a C array always has an index of 0, so the array 
theStri ng consists of six elements (numbered 0 through 5). As shown 
in Figure 7.1, the compiler automatically adds the null character to the 
end of the string. 

theString[4] 
theString[O]~ ~ ~theString[Sl 

;;:=..~~~~~~----~-------. 

rlffif ~ 111 ml ~: ~ 
14 theString •I 

Figure 7.1 AC-formatted string in memory. 

Like a C-formatted string, a Pascal-formatted string is an array of char
acters. And again like a string in C, a string in Pascal requires that one 
element be used to denote the end of the string. A Pascal string always 
uses the first element for this purpose. This first element defines the 
number of bytes in the text of the string. Thus the "Hello" string in 
Pascal would have a memory representation, as shown in Figure 7.2. 



Chapter 1 • Text and Strings 

theString[l] 
theString[O<\:J 

0 0 
theString[S] 

~~~"--~~~~~---'=='O m iJJ ~rm oo JiJ 
I• theString

Figure 7.2 A Pascal-formatted string in memory.

In Macintosh programming, the Str255 is the data type that is typically
used to hold the text that makes up a single string. As shown below, this
data type is nothing more than an array of 256 characters, meaning the
text that makes up a single string of type St r 2 5 5 can have up to 255 char
acters, along with the first character that holds the length of string.

typedef unsigned char Str255[256]:

A char can be either signed (meaning it can take on both positive and neg
ative values) or it can be unsigned (meaning it can have only positive val
ues). While both types can hold up to 256 different values, the range of val
ues each type can support differs. As i gned char has a range of-128 to +127,
while an unsigned char has a range of 0 to 255. The conventional ASCII
character set defines character codes in the range of 0 to 128 (OxOO to Ox7 F).
The Macintosh supports the St~dard Roman character set, which adds
addiponal characters to the conventional ASCII character set. These addi
tional charact~rs have codes from 129 to 255 (Ox80 to Ox FF). Because any one
chara~er in a string can thus represent a character with a code in the range
of 0 to 255, each character in the string must be declared to be of type
unsigned char-as is the case with the definition of the Str255 type.

When programming the Macintosh in C or C++, the declaration of the
"Hello" string would look like this:

Str255 theString - H\pHello":

The "\p" that starts off the string is an escape sequence that tells the
compiler to expect a string in Pascal format rather than C format. Among
other things, specifyiµg that the string is in Pascal format will tell the

389

390
Macintosh Programming Ttchnlques. ZE

compiler that the first byte of the string isn't a printable character, but
instead holds the number of bytes of text in the string.

n 0 T E

While unusual looking, including the \p sequence in a string is no different
than any other C escape sequence. For example, to denote that a string should
end with the newline character, you include the \ n escape sequence, as in:

char theString[6] = "Hello\n":

Toolbox routines that expect a string as one parameter usually expect
that string to be in the form of a St r 2 5 5 variable, as in this call to the
Toolbox routine DrawStri ng():

Str255 theString = "\pQuickTime is not installed":
MoveToC 20, 50):
Drawstring(theString);

Optionally, you can pass a string directly-provided that you specify
that the string is in Pascal format. The following snippet produces the
same results as the previous one:

MoveTo(20, 50);
Drawstring("\pQuickTime is not installed" >:

Other String Data 1Jpes
A variable of type Str255 always occupies 256 bytes, no matter how
many characters of text actually are in the string. In the following snip
pet, the compiler would reserve 256 bytes for each of the two strings:

Str255 theRightString = "\pThat answer is correct!":
Str255 theWrongString = "\pWrong!";

H you know that the string or strings you'll be working with will be con
siderably shorter, you can use one of the other five string data types defined
by Apple. The Str63 type is used for strings up to 63 characters in length,
while the shortest string type, the St r 15 type, is used for strings up to 15
characters in length. Here are the definitions of the half-dozen string types:

typedef unsigned char Str255[256]:
typedef unsigned char Str63[64]:
typedef unsigned char Str32[33]:
typedef unsigned char Str31[32]:
typedef unsigned char Str27[28]:
typedef unsigned char Str15[16]:

Chapter 7 • Tat and Strings

In general, you'll be best off "wasting" a few bytes and declaring your string to
be of type Str255-that's the data type most Toolbox routines are looking for.

'
'

" 0 T E

You will use two other string-related data types-the Stri ngPtr and the
Stri ngHandl e-whose definitions appear below. In the next section,
you'll see that the Stri ngHandl e data type is used when working with
some strings that are stored as resources.

typedef unsigned char *StringPtr, **StringHandle:

Assigning a st r 2 5 5 Variable a Valae
Except during initialization, the C language does not allow the assign
ment of an array of characters to be made in "one shot." That is, while
the assignment of theBegi nMonth is valid, the assignment of
theEndMonth is not:

Str255 theBeginMonth = "\pMarch": II valid assignment
Str255 theEndMonth:

theEndMonth = "\pMay": II invalid assignment!!

Like any array type, a Str255 can be assigned a value character-by
character:

Str255 theEndMonth:

theEndMonth[l] = 'M':
theEndMonth[2] = 'a':
theEndMonth[3] - 'y':
theEndMonth[O] - 5: II specify number of characters

391

392
Macintosh Programming Techniques. ZE

While the preceding method does work, you can see that it is somewhat
awkward-especially for lengthy strings. To easily assign a string a
value, you can use instead the general-purpose memory-copying routine
Bl ockMoveData ().This routine is used to copy a sequence of bytes from
one memory location to another. After Bl ockMoveData ()executes, both
the string theDestStr and the string theSourceStr will have the same
value. Using either as the parameter in a call to DrawStri ng ()will result
in My test string being drawn to a window.

Str255 theSourceStr = u\pMy test string.";
Str255 theDestStr:
Size theNumBytes;

theNumBytes = theSourceStr[O] + 1;
BlockMoveData(theSourceStr. theDestStr. theNumBytes);

The first parameter in Bl ockMoveData () is a pointer to the data to
copy-the source data. The second parameter is a pointer to the area in
memory that is to receive the data-what will become the destination
data. The final parameter tells Bl ockMoveData () how many bytes to
copy from the source to the destination. The value of this parameter
should be the number of characters in the string (theSourceStr[O]
yields that number) plus one byte for the first byte in the string
(theSourceStr[OJ itself). The Size data type is nothing more than a
1 ong-it exists to provide a little descriptive flair. Because Callows an
array name to be used as a pointer, and because a St r 2 5 5 variable is
nothing more than an array, Bl ockMoveData () will accept a Str255
variable as either the first or second parameter-that's what's happening
in the preceding snippet.

Sm1nGs 11no REsou~cEs
A major advantage of a program that relies heavily on resources, as all
Macintosh programs do, is that you can make many changes to a pro
gram even after compiling it. Apple recommends that programmers
store all displayable text as resources. Then, if you want to make a ver
sion of your program usable by non-English speaking people, you can
edit the text within the program's resources. Depending on other factors

Chapter 1 • Text and Strings

in your program, you might not even have to change any source code or
recompile your program. This, of course, is easier said than done; in
practice, internationalizing, or localizing, an application is more involved.
But resource editing provides a very good start.

If your program includes just a couple of strings, you might want to
store each in a separate string resource-a ST R resource. If your program
uses several strings, then you can group the strings together into a sin
gle string list resource-a STR// resource. Both resource types are covered
on the following pages.

The s TR ~esoarce
To create a STR resource in ResEdit, select Create New Resource from the
Resource menu. Type STR in the editable text box found in the Select
New Type window, then click the OK button. Note that like all resource
types, the STR resource name consists of four characters. Here, the fourth
character is a space.

In the string editor, click in the editable text box labeled The String
and type up to 255 characters. As shown in Figure 7.3, that's all there is
to creating a STR resource.

StringUser.rsrt

EJ
STR

I... STRs from StringUser.rsrc
.lQ. s;ze Name

128 12 1
F!lfil -... STR ID = 128 from StringUser.rsrc

The String IPowerPC 601 I .Q

Data $1 I

-0
'@)

Figure 7.3 A Pascal-formatted string in memory.

393

394
Macintosh Programming Technlqaa. ZE

Using a String in a Program
To load a string from a STR resource to memory, use the Toolbox function
GetSt ring (). Pass this routine the ID of a STR resource and
GetStri ng() will load the string into memory and return a handle to
the start of the block of memory that holds the string. Here's an example
that loads the STR resource pictured in Figure 7.3:

//define kProcessorTypeStringRes 128

StringHandle theStringHand;

theStringHand = GetString(kProcessorTypeStringRes);

A handle to a string is of limited value when working with the Toolbox
Toolbox functions look for a pointer to a string as a parameter. A variable
of the array data type St r 2 5 5 serves as a pointer, as does a variable of
the Stri ngPtr data type. So too does a string handle that's been deref
erenced once. The following snippet opens a window based on WI ND
resource 200, then loads to memory the string resource shown in Figure
7.3. The StringHandle variable returned by GetString() is derefer
enced once when used as a parameter to the Toolbox function
DrawStri ng(). Figure 7.4 shows the result of running the following
code.

lldefi ne
/ldefi ne

rDisplayWindow
kProcessorTypeStringRes

WindowPtr theWindow;
StringHandle theStringHand;

200
128

theWindow = GetNewWindow(rDisplayWindow, nil, (WindowPtr)-lL);
ShowWindow(theWindow);
SetPort(theWindow);

theStringHand = GetString(kProcessorTypeStringRes);
MoveTo(10, 20);
Drawstring("\pTested on a ");
Drawstring(*theStringHand);

Chapter 1 • Text and Strings

:l!i Untitled

Tested one PowerPC 601

Figure 7.4 The result of using a STR resource in a call to DrawStri ng().

A string that has been loaded from a STR resource can be used by your
program just as it would use any St r255 variable. In the following snip
pet, a window is opened and, before the window is displayed on the
screen, its title is set to the string PowerPC 601. Once again the STR
resource pictured back in Figure 7.3 is used. Figure 7.5 shows the result.

fldefi ne
/ldefi ne

rDisplayWindow
rProcessorTypeStringRes

WindowPtr theWindow;
StringHandle theStringHand;

200
128

theWindow - GetNewWindow(rDisplayWindow, nil, (WindowPtr)-ll >:

theStringHand = GetString(rProcessorTypeStringRes);
SetWTitle(theWindow, *theStringHand);

ShowWindow(theWindow);
SetPortC theWindow);

=Im PowerPC 601

Figure 7.5 The result of using a STR resource in a call to SetWTi tl e().

395

396
Macintosh Programming Techniques. ZE

The STR ~esoarce
A STR// resource is a list of strings, each up to 255 characters in length.
Figure 7.6 shows how ResEdit displays the four strings in a typical
ST R// resource.

StringUser.rsrc

EJ -·--··
STR STR•

-- STR#s from StringUser.rsrc

m. Size Name

128 53 I
- STR# ID= 128 from Strln_gUser.rsrc ~

HumStrings 4
Q

1) *****
The string !Motorola 68040 I
2) *****
The string IPomerPC 601 I
3) *****
The string IPomerPC 603 I
4) *****
The string IPowerPC 604 I
5) *****

~
~

Figure 7.6 A STRll resource that holds four strings.

The strings in the STR// resource pictured in Figure 7.6 could be instead
stored in four separate STR resources. It makes more sense to use a sin
gle ST R// resource instead, though; here's why:

• It's easier to edit and view the strings in a single STR// resource
than it is to do so in separate STR resources.

• It makes for a logical grouping of strings. For instance, one STR//
resource could be devoted to storing processor name strings, as
shown in Figure 7.6, while another STR// resource could be
devoted to holding, say, monitor screen size strings.

Chapter 7 • Text and Strings

• The system reads strings from a list more efficiently than it does
strings stored individually.

To create the STR// resource, select Create New Resource from the
Resource menu in ResEdit. You'll then see the Select New Type window.
Scroll to the STR/I type in the window's list and click on it, or type in the
type yourself. Then click the OK button.

To add a new string to the STR/I, first click the mouse button on the
row of asterisks in the string lists editor. Next, select Insert New Field(s)
from the Resource menu. ResEdit will respond by adding an editable
text box in which you can type your new string.

Using a String in a Program
To use a string stored in string list resource, your code must first load it
into memory with a call to the Toolbox routine GetlndStri ng(). Because
a STR/I contains more than one string, you must specify which string in the
list you want. This is done by including an index to the string. The first
string in the STR// has an index of 1, the second an index of 2, and so forth.

Unlike GetStri ng(), which results in your program having access
to a handle to a string, GetlndStri ng() provides your program with a
Str255 variable. The first parameter in GetindStri ng() should be a
Str255 variable that will be used to hold the returned string. The sec
ond parameter is the ID of the STR/I resource that holds the string, while
the third parameter is the index of the string.

As shown in the following snippet, you'll typically define a constant
that holds the ID of a STR// resource, along with a constant for each string
in the string list resource. If you refer to Figure 7.6 you'll see that after
executing the following code variable the St r i n g will hold the string
PowerPC 601-the second string of the string list resource with ID 128.

//define
/ldefi ne
lldefi ne
/ldefi ne
/ldefi ne

rProcessorStringlist
kM68040Index
kPPC601Index
kPPC603Index
kPPC604Index

Str255 theString;

128
1
2
3
4

GetlndString(theString, rProcessorStringlist, kPPC601Index);

397

398
Macintosh Programming Techniques. ZE

Earlier you saw how to use the string from a STR resource to change a
window's title, and how to write that string to a window. You can do the
same with strings obtained from a STR/fa resource. Because each call to
GetlndStri ng() returns a string as a Str255 variable rather than a
handle, there's now no need to worry about dereferencing-simply use
the returned string as a parameter to a Toolbox call. The following snip
pet loads both the third and fourth of the four strings from STR/fa 128.
The third string is used for the window's title, and the fourth string is
drawn to the window's content area. Figure 7.7 shows the result.

/ldefi ne
//define
//define
//define
//define
//define

rDisplayWindow
rProcessorStringlist
kM68040Index
kPPC601Index
kPPC603Index
kPPC604Index

WindowPtr theWindow:
Str255 theString;

200
128

1
2
3
4

theWindow = GetNewWindow(rDisplayWindow, nil. CWindowPtr)-lL >:

GetindString(theString, rProcessorStringList, kPPC603Index >:
SetWTitle(theWindow, theString >:

ShowWindow(theWindow):
SetPort(theWindow):
GetindString(theString, rProcessorStringlist, kPPC604Index):
MoveToC 10, 20 >:
Drawstring("\pTested on a " >:
Drawstring(theString):

li3 PowerPC 603

Tested on a PowerPC 604

Figure 7.7 The result of using two strings from a single STR/I resource.

Chapter 1 • Tat and Strings

TEXT CHARACTERISTICS
The Macintosh Toolbox offers a host of functions that make it easy for
your program to change the look of the text it draws to the screen.

Text font
To change the font that's used by D rawSt ring () , call the Toolbox routine
TextFont(). This function requires a single parameter-a short that
holds an identifying number for the font that is to be used. You can pass
Text Font() any of the Apple-defined constants shown here:

systemFont
applFont
newYork
geneva
monaco
venice
london
a thens
sanFran
toronto
cairo
losAngeles
times
helvetica
courier
symbol
mobile

Once the font has been changed, the new font remains in effect until
another call to Text Font() is made. The following snippet draws three
lines of text to a window-each line using a different font. The results are
shown in Figure 7.8.

TextFontC newYork);
MoveToC 10. 20);
Drawstring("\pNew York");

TextFont(systemFont);

399

400
Macintosh Programming Techniques. ZE

MoveToC 10. 40);
Drawstring("\pChicago");

TextFontC sanFran);
Move To(10. 60) ;
Drawstring("\pSan Francisco");

New York

Chicago

Untitled

ean IPPoneUeo

Figure 7.8 Changing the font using Text Font().

Text Size
To change the size of text drawn with calls to Dr a wS tr i n g () • use the
Toolbox function TextSi ze(). Pass TextSi ze() the new size, in points,
to be used for drawn text. Once called, the text drawn by all subsequent
calls to DrawStri ng() will be affected.

The following snippet sets the font to New York, then draws two
lines of text in 24 point size and a third line in 14 point size. The result is
shown in Figure 7.9.

TextFontC newYork);

TextSize(24):
MoveTo(10. 30):
Drawstring("\pQuickTime"):
MoveToC 10. 55) ;
Drawstring("\pMusical Instruments");

TextSize(14):

Chapter 7 • Text and Strings

MoveTo(10. 75 >:
Drawstring("\pAdding music to your applications" >:

Untitled

Quick Time
Musical Instruments
Adding music to your applications

Figure 7.9 Changing the font size using TextSi ze().

Text Style
Chapter 6 introduced you to the idea that a font's style can be easily
altered. In that chapter, the text of a menu item was changed using a call
to TextFaceC). Recall from Chapter 6 that you pass Text Face() an
Apple-defined constant-or a combination of constants-that describe
the look you wish subsequently drawn text to have. Here's the list of
Apple-defined text styles, or faces:

normal
bold
italic
underline
outline
shadow
condense
extend

A call to Text Face() changes the look of all text drawn using
DrawStri ng(). To combine two or more different styles, add the appro
priate Apple-defined constants. To return text to a normal, or plain, look,
use the Apple-defined normal constant as the parameter in Text Face().
The following snippet draws five lines of text in a variety of styles. Refer
to Figure 7.10 to see the output generated by each pair of calls to
TextFace() and DrawStri ng().

401

40Z
Macintosh Programming Techniques. ZE

TextFont(times >:
TextSizeC 14 >:

TextFace(bold >:
MoveToC 10, 20 >:
Drawstring("\pBold style" >:

TextFaceC underline >:
MoveToC 10, 40 >:
Drawstring("\pUnderline style"):

TextFaceC shadow >:
MoveTo(10, 60 >:
Drawstring("\pShadow style" >:

TextFace(bold+ underline);
MoveToC 10, 80):
Drawstring("\pBold and underline style" >:

TextFace(norma 1) :
MoveTo(10, 100);
Drawstring(H\pPlain style" >:

=ISJ Un ti tied

Bold style
Underline stm

~ ...
Bold and underline siy,k
Plain style

Figure 7.10 Changing the font style using TextFace().

Rather than pass a constant directly to Text Face(), you can use a Style
variable as the parameter:

Style theStyle:

theStyle - shadow + condense:
TextFace(theStyle >:

Chapter 1 • Tat and Strings

MoveToC 10, 20);
Drawstring("\pShadow and condense style" >:

Transfer Mode
When a string is drawn using Dr a wS tr i n g () , the text is drawn using the
foreground color-typically black. Text is also typically drawn without
regard for the values of the pixels that are being drawn over. That is,
black text will be drawn over a white, black, or colored background.
Figure 7.11 illustrates. In this figure the same string is drawn twice: one
over an all white background, once over a white and black background.

Untitled

Text drawn wlthout regard for the background

Text'" witho ard background

Figure 7.11 Text is typically drawn in black, regardless of what

is being drawn over.

Your program can change the transfer mode of text-the way text interacts
with the pixels it is being drawn against. The Toolbox function
TextMode() allows you to do this. Pass TextMode() one of the eight
Apple-defined text transfer mode constants shown as follows, and the
way strings drawn by subsequent calls to Drawstring() appear in a
window will be altered.

srcCopy
srcOr
srcXor
srcBic
notSrcCopy
notSrcOr
notSrcXor
notSrcBic

403

404
Macintosh Programming Techniques. 2E

Whena window opens, its graphics port is set to draw text in srcOr trans
fer mode. That produces the effect shown in Figure 7.11. If you'd like to
change the way characters appear against the bit image over which they
are drawn, change the mode. Once finished, you'll most likely want to
return the mode to srcOr so that text drawn later on appears in the mode
users are familiar with. Figure 7.12 draws the same string eight times to
demonstrate how a text drawn against both a white and black background
looks in each transfer mode. The top view shows the window before
drawing takes place, the bottom view shows the window afterward.

Testing o

srcCopy

srcOr

s rcxor

srcBic

notSrcCopy

notSrcOr

notSrcXor

notsrcBic

Figure 7.12 Changing the font mode using TextMode ().

The following snippet changes the text transfer mode to notSrcCopy.
The string that is then drawn will appear in white text on a black back
ground-regardless of what is already drawn in the window at the time
of the call to DrawStri ng(). After drawing a single string, the snippet
returns the transfer mode to the default setting of s re Or:

Chapter 1 • Tat and Strings

TextModeC notSrcCopy >:
MoveTo(30. 20 };
Drawstring("\pThis text will be white on black" >:
TextMode(srcOr >:

Besides the eight transfer mode constants already mentioned, Apple
defines another text transfer mode that is of limited use, but still quite
handy. If you want to draw text that matches the look of the text of a dis
abled menu item or dialog box item, use the grayi shTextOr mode. The
following snippet provides an example. Note that this mode works best
for the system, or Chicago, font-other fonts may appear unreadable.
Figure 7.13 shows the results of executing the following code:

Textfont(systemFont >:
TextSizeC 12 >:

TextMode(grayishTextOr);
MoveTo(20. 40 };
Drawstring("\pThis mode works best with the system font .. >:
TextMode(srcOr >:

Untitled

"U'tis m<1d<~ worh best wi1h 1h<~ ~1js1em fon1

Figure 7.13 Changing the font mode to a gray, or dimmed, look.

CHAPTER PROGRAM: STRIHGHflHDLER
This chapter's example program demonstrates how to read strings from
STR and STR1/ resources, and how to then use those strings in a program.
It also illustrates how a string that represents a floating-point value can
be converted to a fl oat variable-a very handy feature that you'll find
useful in many other programs you write. StringHandler also provides
an example of changing the font, size, and style of text draw to a dialog
box using DrawStri ng (). Finally, StringHandler is, of all things, actu-

405

406
Macintosh Programming Techniques. ZE

ally quite useful! The program shows how easy it is to display a picture
and then scale the picture to a size of the user 's choosing. Figure 7.14
shows how your screen will look when you run StringHandler.

Scaling Factor: ~

~ (OK

Figure 7.14 StringHandler's display window and Scaling dialog box.

StringHandler begins by opening a window and displaying a picture in
the window. It then posts a modal dialog box that allows the user to scale
the picture to a smaller or larger size. As shown in Figure 7.15, pressing
the Help button enlarges the dialog box (a simple but useful feature in
itself) and draws a few lines of instructions to the new area in the dialog

Chapter 7 • Tut and Strings

box. The instructions are drawn in a variety of fonts and styles. It's not a
very visually appealing look, but it provides for a demonstration of how
the various characteristics of text can be altered.

Scaling Factor: EJ
~ OK

Tlle Yalue.·
May include a decimal point.
Must trn ~Jnrnt (ff ttl<irl 0.
Must be less than 2.

Figure 7.15 The Scaling dialog box after it has been enlarged
to accommodate additional text.

When the OK button is clicked the dialog box is dismissed and the pic
ture is redrawn at its new size-a size based on the scaling value entered
in the modal dialog box editable text item. Figure 7.16 shows the picture
redrawn at one and a half times its original size.

407

408
Macintosh Programming Techniques. 2E

Figure 7.16 StringHandler's display window after its picture has been
resized and redrawn.

If you attempt to enter a number that is either too small (zero or less) or
too large (greater than 2), StringHandler will respond by displaying an
alert and ignoring your request to resize the picture. The alert message
for a scaling factor that is too large is shown in Figure 7.17. In all cases,
once the dialog box is dismissed the program ends at the next click of the
mouse button.

Chapter 1 • Text and Strings

I'S Error: number too large

((OK JJ

Figure 7.17 StringHandler posts an alert if the user-entered
scaling value is out of range.

Program ~•sources: StringHandler.rsrc
StringHandler uses a variety of resources-you can see the seven differ
ent types in Figure 7.18. Only the STR and STR/I resource types are new
to this chapter.

~ Strin_g_Hondler.rsrc @]

[l2TI] E1
0

ml]
1-=-1

~.i
ALRT DITL DLOG PICT

EJ -·--~- CJ
STR STR• 'w'IND

1--
-0
~

Figure 7.18 The resource types found in the StringHandler project's
resource file.

409

/

410

\.

Macintosh Programming Ttchnlqaes • .ZE

The StringHandler project's resource file has one ALRT resource and one
DLOG resource, so it also holds two DITL resources. Figure 7.19 shows all
four resources. StringHandler uses a single alert to display two different
error messages: one message for a user-entered scaling factor that is too
small, another message for a scaling-factor that is too large. The "0 string
in the alert' s DI TL resource hints that the StringHandler source code will
be calling the Toolbox function ParamText().

ALRTs from StringHandler.rsrc
.IQ. Size Name

250 12 l
D ITL ID = 250 from StringHandler.1

DLOGs from StringHandler.rsrc

.IQ. Size Name

700 21

§l!rn D Ill ID = 700 from 51 ~ 1--

~

!scaling Factor:L1Jll1.s WI

(Hel@ [OK L11

-•
Figure 7.19 The ALRT, DLOG and two DITL resources found in the StringHandler pro

ject's resource file.

StringHandler keeps a STR resource that holds a string that will be used in
the title bar of its one window. As shown in Figure 7.20 its ID is 300. There's
also a STR/I resource with an ID of 400. This string list holds a descriptive
string of each of the errors StringHandler is aware of. While the list holds
only two strings, this technique of storing error strings in a resource could
be expanded easily to handle any number of error messages.

Chapter 1 • Tat and Strings

STRs. from StringHandler.rsrc:

m. Size N&me

300 15 1
STR ID ""' 300 from StringHandler.rsrc

.....
The String loisplay Uindow I
Data $f l

1--

STR#s from StringHandler.rsn

m. Size Name

400 50 l
~IB= STR# ID = 400 from Stri~Handler.rsrc ---

...... .Q
NumStrlngs 2

I) *****
The string I Error: number too smal I I
2) *****
The string I Error: number too large I
3) ***** -0

ii

Figure 7.20 The STR and STR/1 resources found in the StringHandler
project's resource file.

The remaining two resources used by StringHandler are a PI CT resource
and a WIND resource-types you've become quite familiar with already.

Program Usting: StringHandler.c
Once again, the chapter closes with a complete source code listing for the
chapter example, then a source code walkthrough.

//define
#define
//define
//define
//define

rDisplayWindow
rErrorAlert
rScalingDialog
kOKButton
kHelpButton

200
250
700

1
2

411

41Z
Macintosh Programming Techniques. ZE

fldefi ne

/ldefi ne

//define
//define
//define

//define

//define
/ldefi ne
//define

Boolean
PicHandle
Re ct

kScalingEditTextBox

rWindowTitleStringRes

rErrorMessageStringlist
kErrorNumTooSmalllndex
kErrorNumTooBiglndex

rMomAndBabyPicture

kDialogNormalWidth
kDialogNormalHeight
kDialogExpandHeight

gAllDone - false:
gCurrentPicture:
gPictureRectangle:

void main(void)
{

MaxApplZone():
MoreMasters<>:
MoreMasters<>:
MoreMasters<>:

InitializeToolbox():

OpenDisplayWindow<>:

LoadPicture():

OpenScalingDialog():

Eventloop():

3

300

400
1
2

500

230
100
180

void OpenDisplayWindow(void)
{

WindowPtr theWindow:
StringHandle theStringHand:

Chapter 1 • Tat and Strings

theWindow = GetNewWindowC rDisplayWindow, nil, (WindowPtr)-lL >:

theStringHand = GetString(rWindowTitleStringRes):
SetWTitleC theWindow, *theStringHand >:

ShowWindow(theWindow);
SetPort(theWindow);

void LoadPictureC void)
{

gCurrentPicture = GetPicture(rMomAndBabyPicture >:

gPictureRectangle ~ (**gCurrentPicture).picFrame:
OffsetRect(&gPictureRectangle, -gPictureRectangle.left.

-gPictureRectangle.top);

DrawPicture{ gCurrentPicture, &gPictureRectangle >:

void OpenScalingDialogC void
{

DialogPtr theDialog;
short the Item:
Boolean dialogDone = false;

theDialog - GetNewDialog(rScalingDialog, nil. CWindowPtr)-lL):
ShowWindowC theDialog):

while { dialogDone == false)
{

Moda 1Dia1 og(nil • &the Item) :

switch (theltem >

413

414
Macintosh Programming Techniques. ZE

case kHelpButton:
SetPortC theDialog);
SizeWindow(theDialog. kDialogNormalWidth.

kDialogExpandHeight. true);

TextFont(newYork);
TextSizeC 12);
TextFaceC bold + italic);
MoveToC 10. 120);
Drawstring("\pThe value:");

TextFace(normal) ;
MoveToC 10, 135);
Drawstring("\pMay include a decimal point.");

TextFontC systemFont);
TextModeC grayishTextOr);
Move To(10, 150) ;
Drawstring("\pMust be greater than O.");

TextModeC srcOr >:
MoveTo(10, 165);
Drawstring("\pMust be less than 2.");
break;

case kOKButton:
RecalculatePictureSizeC theDialog);
dialogDone = true;
break;

DisposeDialog(theDialog);

void RecalculatePictureSizeC DialogPtr theDialog)
{

short the Type;
Handle theHandle;
Rect theRect;
Str255 theString;

Chapter 7 • Ttxt and Strings

float theFloat:

GetDialogitem(theDialog. kScalingEditTextBox.
&theType. &theHandle. &theRect >:

GetDialogitemText(theHandle. theString):

theFloat "" ConvertStringToFloat(theString >:

if (theFloat < 0.1)
{

GetindString(theString. rErrorMessageStringlist,
kErrorNumTooSmallindex):

ParamTextC theString. "\p", "\p". "\p");
NoteAlert(rErrorAlert, nil):

}
else if C theFloat > 2.0)
{

GetindString(theString, rErrorMessageStringlist,
kErrorNumTooBigindex);

ParamTextC theString, "\p". "\p". "\p"):
NoteAlertC rErrorAlert. nil);

}

else
{

gPictureRectangle.right *= theFloat:
gPictureRectangle.bottom *= theFloat:

}

float ConvertStringToFloat(Str255 theString)
{

short
short
long
float
float
Boolean
int

thelength:
thePlaces = O:
thelong:
theDivisor = 1:
thefloat:
isfloat - false:
i :

thelength = theString[OJ:

for (i "" thelength; i > 0: i-

415

416
Macintosh Programming Techniques. ZE

}

if { theString[i] == • '
{

i = O;
isFloat "" true;

}

else
{

thePlaces++;

if isFloat == false)
{

StringToNum{ theString, &thelong);
theFloat "" thelong * 1.0;

return { theFloat);

for { i "" thelength - thePlaces; i < thelength; i++)
{

theString[i] "" theString[i + 1];
}

theString[OJ = thelength - 1;

StringToNum{ theString, &thelong >:

for { i = 1; i <= thePl aces: i++
theDivisor *"" 10.0:

theFloat = thelong I theDivisor;

return { theFloat >:

''~~~~~~~~~~~~~~~~~~~~~~~~-

void HandleUpdate{ EventRecord theEvent
{

GrafPtr theSavePort;
WindowPtr theWindow:

Chapter 1 • Tcrxt and Strings

theWindow = CWindowPtr)theEvent.message:

GetPortC &theSavePort >:
SetPort(theWindow);

BeginUpdateC theWindow >:
EraseRgn(theWindow->visRgn >:
DrawPicture(gCurrentPicture, &gPictureRectangle);

EndUpdate(theWindow >:

SetPortC theSavePort >:
}

void Eventloop(void)
{

EventRecord theEvent:

while (gAllDone == false
{

Wai tNextEventC every Event, &theEvent, 15L. nil) :

switch (theEvent.what)
{

case updateEvt:
HandleUpdate(theEvent >:
break;

case mouseDown:
gA 11 Done ... true:
break;

void InitializeToolboxC void
{

InitGraf(&qd.thePort >:
InitFonts():

417

418
Macintosh Programming Techniques. ZE

InitWi ndows ():
InitMenus();
TEI nit ();
InitDialogs(OL >:
FlushEvents(everyEvent. 0);
InitCursor();

The //define Directives
As usual, most of the listing's constants are resource related. The WI ND
resource has an ID of rDi spl ayWi ndow, while the ALRT resource has an
ID of rErrorA 1 ert. The DLOG resource has an ID of rSca 1ingDia1 og.
The OK button in the dialog box has an item number of kOKButton and
the Help button has an item number of kHel pButton. The editable text
item used to hold the scaling factor has an item number of
kScalingEditTextBox.

The single STR resource has an ID of rWi ndowTitl eStri ngRes. The
list of strings, the STR/I resource, has an ID of
rErrorMessageStri ngl i st. Each string in the list is given its own con
stant. To make it easy to reference a particular string, each string constant
has a descriptive name: kErrorNumTooSmal 1 Index and
kErrorNumTooBigindex.

The picture displayed in the program's window is stored as a PICT
resource with an ID of rMomAndBabyPi cture. Of course you're free to
replace the supplied PICT with one of your own.

When the program expands the dialog box in response to a user's
mouse click on the Help button, the dimensions of the dialog box need
to be known to the program. The constants kDialogNormalWidth,
kDi al ogNormal Height, and kDi al ogExpandHei ght hold that infor
mation. The unexpanded height of the dialog box,
kDi a 1 ogNorma l Height, goes unused by the program, but will be of use
if you add a feature to the program that returns the dialog box to its orig
inal size.

/!define
fldefi ne
fldefi ne
fldefi ne
fldefi ne
//define

fldefi ne

fldefi ne
f/defi ne
//define

//define

fldefi ne
fldefi ne
fldefi ne

Chapter 7 •Tut and Strings

Many of the resources in previous examples have each had an ID of 128-the
default ID ResEdit gives to the first resource of most resource types. Just to
emphasize that there's nothing magic about the number 128, the
StringHandler resources have a variety of different IDs. Remember, to use
ResEdit to change the ID of a resource you first click on its name or number
of the resource, then select Get Resource Info from the Resource menu.

rDisplayWindow 200
rErrorAlert 250
rScalingDialog 700
kOKButton 1
kHelpButton 2
kScalingEditTextBox 3

rWindowTitleStringRes 300

rErrorMessageStringlist 400
kErrorNumTooSmalllndex 1
kErrorNumTooBiglndex 2

rMomAndBabyPicture 500

kDialogNormalWidth 230
kDialogNormalHeight 100
kDialogExpandHeight 180

The Global Variables
As is true of all the book example's, StringHandler uses gA 11 Done to
keep track of when it should terminate. To allow easy updating of the
display picture, a handle to it is kept in the global Pi cHandl e variable
gCurrentPi cture. The same applies to the boundaries of the picture.
The rectangle coordinates that define where the picture will be drawn in
the window are stored in the global variable g Pi ~tu re Re ct an g 1 e. These
coordinates will change when the user enters a scaling factor and clicks
the dialog box OK button to redraw the picture.

419

420
Macintosh Programming Techniques. ZE

Boolean
PicHandle
Re ct

gAllDone = false:
gCurrentPicture:
gPictureRectangle:

The ma i n () function
StringHandler starts with the usual initializations, then opens a window,
loads a picture, and displays that picture in the window. The program
then opens the Scaling dialog box to allow user input. A real-world Mac
application could implement the opening of the window and dialog box
via menu selections, as discussed in Chapter 6.

void main(void)
{

MaxApplZone();
MoreMasters();
MoreMastersC>:
MoreMasters();

InitializeToolbox();

OpenDisplayWindow();

LoadPicture();

OpenScalingDialog();

Eventloop():

Using a String from a s TR ltesoorce
A STR resource is loaded into memory by calling the Toolbox function
GetString(). After dereferencing once, the StringHandle that is
returned by this function can be used just like any St r 2 5 5 variable. In
StringHandler the STR resource is used in a call to the Toolbox function
SetWTitl e() to change the window's title from Untitled to Display
Window.

void OpenDisplayWindow(void)
{

WindowPtr theWindow:
StringHandle theStringHand;

Chapter 1 • Text and Strings

theWindow a GetNewWindow{ rDisplayWindow. nil. CWindowPtr)-lL);

theStringHand = GetStringC rWindowTitleStringRes);
SetWTitle(theWindow. *theStringHand);

ShowWindow(theWindow >:
SetPort(theWindow >:

Loading and Displaying a Picture
From Chapter 3 you already know how to load a PI CT resource-call the
Toolbox function Get Pi ct u re () . The application-defined
Load Picture() routine does that, then saves the returned Pi cHandl e to
the global variable gCurrentPi cture. It also offsets the picture to guar
antee that it gets positioned in the upper-left corner of the window and
saves the picture's frame in the global Rect variable
gPi ctureRectangl e. You'll see both of these global variables again
~hen the window gets updated in the application-defined
Handl eUpdate() function. LoadPi cture() ends by drawing the picture
to the window using the Toolbox function Dr a wP i ct u re () .

void LoadPictureC void)
{

}

gCurrentPicture = GetPictureC rMomAndBabyPicture >:

gPictureRectangle = {**gCurrentPicture).picFrame:
OffsetRect(&gPictureRectangle, -gPictureRectangle.left, -
gPictureRectangle.top >:

DrawPicture(gCurrentPicture, &gPictureRectangle);

In most instances, it wouldn't be necessary to call DrawPi cture() here. As
you look over the code, you'll see that DrawPi cture() is called when an
update event that involves the window occurs. When the window is opened,
an update event is generated-so normally the picture would get drawn by
the update routine. In StringHandler, however, the window is opened, then
the modal dialog box is opened-~efore Event Loop () is ever called. Thus the
dialog box appears on the screen-and owns the screen-before the program
enters its event loop. So the update event generated by the opening of the
window doesn't get processed until after the modal dialog box is dismissed.

421

422
Macintosh Programming Techniques. ZE

The Modal Dialog Box
The application-defined OpenSca 1ingDia1 og () function is responsible
for opening and handling the program's modal dialog box. If you need
a refresher on the details of working with modal dialog boxes, refer to
Chapter 6.

A mouse click on the dialog box Help button results in the dialog box
changing size. This is a simple trick performed through the use of the
Toolbox routine Si zeWi ndow(). Recall that a Toolbox routine that
expects a Wi ndowPtr as a parameter will also accept a Di al ogPtr. The
width of the dialog box remains the same, so the constant
k Di a 1 o g Norma 1 W i d th is used as the second parameter. The value of this
constant was obtained from looking at the D LOG resource in ResEdit. The
height of the dialog box does change-it gets larger. The value of
kDi al ogExpandHei ght was selected after estimating how much space
the four lines of about-to-be-drawn help instructions would need.

After expanding the dialog box, four lines of text are drawn in it. While
a single font, size, and style would make for easier reading, each line is
given a different look in order to demonstrate the use of the Toolbox func
tions Text Font (), TextSi ze(), Text Face(), and TextMode ().

case kHelpButton:
SetPort(theDialog);
SizeWindow< theDialog, kDialogNormalWidth,

kDialogExpandHeight, true);

TextFont(newYork);
TextSize(12 >:
TextFace(bold + italic);
MoveTo(10, 120);
Drawstring("\pThe value:");

TextFace(norma 1) :
MoveToC 10, 135);
Drawstring("\pMay include a decimal point.");

TextFont(systemFont);
TextMode(grayishTextOr);
MoveToC 10, 150);
Drawstring("\pMust be greater than O.");

TextMode(srcOr);

MoveToC 10. 165 >:
Drawstring{ "\pMust be less than 2."):
break:

Chapter 1 • Text and Strings

If the OK button is clicked, an application-defined function named
Recal cul atePi ctureSi ze() is called to determine the new size of the
picture-based on the user-entered scaling factor. After that, the dialog
box is dismissed.

case kOKButton:
RecalculatePictureSizeC theOialog >:
dialogDone - true:
break;

Recalcalatlng a Picture's Size
After the user enters a scaling factor and clicks the OK button, the application
defined Rec al cul atePi ctureSi ze() function is called. This routine relies on
the Toolbox routines GetDi al ogltem() and GetDi al ogltemTextC) to obtain
the number the user entered in the dialog box scaling factor editable text item.
Both of these routines are described in detail in Chapter 5.

short the Type:
Handle theHandle:
Rect theRect:
Str255 theString:

GetDialogltemC theDialog. kScalingEditTextBox.
&theType. &theHandle. &theRect):

GetOialogltemText(theHandle. theString):

The number that the user enters is retrieved as a string. To be of use to the
StringHandler program, this string must be converted to a number. If the
program restricted the user to integer input only, this would be a simple
case of calling the Toolbox function Stri ngToNum(). Integers won't due
here, though. StringHandler wants to give the user great freedom in resiz
ing the picture, so it allows fractional scaling values. Once the string is
retrieved, the application-defined function ConvertStri ngToFl oat() is
called. This routine, discussed in the next section, converts the user
entered string to a floating-point value and returns that number to the
caller-Recalculate Pi ctureSi ze() in this case.

4Z3

4Z4
Macintosh Programming Techniques. 2E

theFloat = ConvertStringToFloatC theString):

After ConvertStri ngToFl oat() returns the scaling factor,
Reca 1 cul ate Pi ctureSi ze() performs a series of tests to see if the user
entered number is valid. StringHandler expects the number to be greater
than 0 (so that the redrawn picture is visible) and less than or equal to 2.0
(much bigger and it would exceed the content area of the display window).
Heither of these conditions isn't met, an alert is displayed. The same ALRT
resource is used in either case, but the text displayed in the static text item
of the ALRT differs. The text that is displayed in either alert comes from the
ST R11 resource pictured in Figure 7.20-the Toolbox function
Get Ind St r i n g C) is used to load the appropriate string. Calls to the
Toolbox function Par amT ext () enable the same AL RT to be used for either
error type. ParamText() is described in detail in Chapter 6. H no error is
encountered, the size of the picture's bounding rectangle is changed. The
left and top values, which were both offset to 0 when the picture was
loaded in the application-defined Load Picture() routine, are left constant,
while the right and bottom values are multiplied by the sc~g factor.

if C theFloat < 0.1)
{

}

GetindString(theString, rErrorMessageStringList,
kErrorNumTooSmallindex):

ParamText(theString, ff\p", "\p", "\p"):
NoteAlert(rErrorAlert, nil):

else if (theFloat > 2.0)
{

GetlndString(theString, rErrorMessageStringlist,
kErrorNumTooBigindex):

ParamTextC theString, u\p", ff\p", u\p"):
NoteA l ert(rErrorA l ert, nil) :

}
else
{

gPictureRectangle.right *= theFloat:
gPictureRectangle.bottom *- theFloat:

Chapter 7 • Tat and Strings

Because the dialog box overlaps the display window, the dismissal of the
dialog box triggers an update event. When the display window gets
updated, the picture will be redrawn using the new picture boundaries.

void RecalculatePictureSizeC DialogPtr theDialog)
{

short the Type:
Handle theHandle;
Re ct theRect:
Str255 theString;
float theFloat:

GetDialogltem(theDialog, kScalingEditTextBox,
&theType, &theHandle, &theRect >:

GetDialogltemText(theHandle, theString);

theFloat = ConvertStringToFloatC theString >:

if (theFloat < 0.1)
{

}

GetlndString(theString, rErrorMessageStringlist,
kErrorNumTooSmalllndex >:

ParamTextC theStri ng, "\p", '"\p". "\p") :
NoteAlertC rErrorAlert, nil >:

else if C theFloat > 2.0)
{

GetlndString(theString, rErrorMessageStringlist,
kErrorNumTooBiglndex):

ParamTextC theString, .. \p", .. \p", .. \p") :
NoteAlertC rErrorAlert, nil >:

}
else
{

gPictureRectangle.right *= theFloat:
gPictureRectangle.bottom *m theFloat:

425

426
Macintosh Programming Techniques. ZE

Converting aString to a floating-Point number
Converting a string to an integral value (a number without a decimal
point) is easy-just pass the string to the Toolbox routine Stri ngToNum().
The Toolbox will do the conversion work and return the result in a para
meter of type 1 on g. Converting a string to a floating-point value requires
a little extra work on your part.

There are several approaches to tackling the problem of converting a string to
a floating point number. The most sophisticated approach is to use number for
mat specification strings, an involved topic described in the Text volume of the
Inside Macintosh series of books. If you' re familiar with ANSI C standard func
tions and libraries, then the sscanf{} function is another tool you can use in
string conversions. As you're about to see, this book uses a third approach.

The StringHandler program uses an application-defined function named
ConvertStringToFl oat() to perform the conversion of a numerical
string stored in a St r 2 5 5 variable to a floating-point number stored in a
fl oat variable. Here's an overview of how ConvertStringToFl oat()
performs this task:

1. Convert the floating-point string to an integral string by remov
ing the decimal point from the string.

2. Use the Toolbox function Stri ngToNumC) to convert the string
to a long integer.

3. Divide the resulting long number by the appropriate value (10,
100, 1000, etc.) to tum the integer into a floating-point value.

ConvertStri ngToFl oat() begins by getting the length of theStri ng
the string to convert:

Str255 theString:
short thelength:

thelength = theString[O];

Next, a for loop is entered. The purpose of the loop is to start at the last
character in the string and, working toward the front of the string, to
examine each character to see if it is a decimal point. Once the decimal
point is found, the number of digits to the right of the decimal point is

Chapter 1 • Text and Strings

known-variable thePl aces holds that information. If the string 1.54 is
used as an example, then the length of the string is four and the value of
thePl aces is 2, as shown in Figure 7.21.

short thePlaces - 0:
Boolean isFloat = false:
int i:

for C i = thelength: i > 0: i
(

if { theString[i]
(

i - 0; II decimal found, exit the loop
isFloat - true: II yes. the string represents a float

}
else
(

thePlaces++: II decimal not found, increment
}

theStr ing [0 J \:J 2 places

Li u
----------------~----

theLength = theString[O] = 4

thePlaces = digits to right of decimal = 2

Figure 7.21 Determining the length of a string and the number of digits to the right
of the string's decimal point.

If no decimal point is encountered, the string represents an integral
value-and the Boolean variable i sFl oat will still have its initial value
of fa 1 s e. Because the numerical string represents an integer, it can be
converted by simply using the Toolbox function Stri ngToNum(). The
return type of ConvertStri ngToFl oat() is fl oat, so the 1 ong variable
returned by Stri ngToNum() is multiplied by 1.0 to convert it to a float-

427

428
Macintosh Programming Techniques. ZE

ing-point value. ConvertStri ngToFl oat() has completed its task, so it
ends by returning the following converted number:

1 ong the long;

if C isfloat == false
{

StringToNum(theString, &thelong);
theFloat = thelong * 1.0:

return (thefloat >:

If the numerical string contains a decimal point, it's time to strip out the
decimal point. A simple for loop takes care of that by shifting each char
acter that is currently to the right of the decimal point one element to the
left. Figure 7.22 shows how this step works for the string 1.54. Using this
example string, thelength would have a value of 4 and thePl aces
would have a value of 2. The top part of the figure shows the string after
the first of two passes through the for loop, while the bottom part of the
figure shows the string after the second pass.

for (i = thelength - thePlaces: i < thelength: i++)
{

}
theString[i] = theString[i + 1]:

0
theString[3]

theString[2] = theString[3]

dp·;·A·.,.~_·-_;-.·.:i·_
~:

theString[3] = theString[4]

Figure 7.22 Removing the decimal point from a string.

Chapter 1 • Text and Strings

After removing the decimal point, the string is one character shorter. The
following assignment makes the necessary adjustment. Figure 7.23
shows that the 1.54 example string is now 154.

theString[O] = thelength - 1:

theString[OJ~

,......--------

theString[O] = theLength - 1 = 3

Figure 7.23 Resetting the string's length after removing the decimal point.

Now that the string has been converted to an integral value, the Toolbox
routine Stri ngToNum() can be called:

StringToNumC theString, &thelong);

At this point, the program has a number to work with (in this example,
the number 154), rather than a string. All that's left to do is divide the
integer by an appropriate power of 10 to convert it to a floating-point
value. Continuing with the example, the number 154 needs to be divid
ed by 100 to result in a value of 1.54. Regardless of the numerical value
of the initial string, the number to divide by can be determined from the
number of digits to the right of the decimal point-information calculat
ed earlier and saved to the variable the Pl aces:

float theDivisor = 1:

for (i = 1: i <= thePlaces; i++)
theDivisor *= 10.0:

For the number 154, which started out as the string 1.54, thePl aces has
a value of 2. That means the for loop executes twice, and theDi visor
ends up with a value of 100. To turn the integral value held in the long
to a floating-point value, divide the Long by theDi visor:

theFloat = thelong I theDivisor:

419

430
Macintosh Programming Techniques. ZE

Finally, return the resulting floating-point value to the calling function:

return (theFloat >:

Here's a look at the completed ConvertStri ngToFl oat() function
each line has been just discussed above.

float ConvertStringToFloat(Str255 theString
{

short
short
long

thelength:
thePl aces "" O:
thelong:
theDivisor "" 1:
theFloat:
isFloat "" false:
i :

fl oat
float
Boolean
int

thelength = theString[OJ:

for (i = thelength: i > 0: i
{

if C theString[iJ
{

i = O:
isFloat = true:

else
{

thePlaces++:

if (isFloat """" false
{

StringToNum(theString, &thelong);
theFloat = thelong * 1.0:

return C theFloat);

for (i = thelength - thePlaces: 1 < thelength: i++)
{

theString[iJ - theString[i + 1]:
}

}

theString[O] = thelength - 1:

StringToNum(theString, &thelong):

for C i ... 1: i <= the Pl aces: i++
theDivisor *= 10.0:

thefloat = thelong I theDivisor:

return C thefloat);

Checking for Valld 1Jped Input

Chapter 1 • Text and Strings

The ConvertStri ngToFl oat() function works just fine, assuming the
user entered a number of some sort in the dialog box editable text box.
You shouldn't, however, assume that the user will always do so. For
instance, if the user types 1.a, the StringHandler program will still
attempt to convert this string to a floating-point value. You already know
the solution to limiting the user's input-take a moment to think about
the problem before reading on!

Times up. To check each key as it's typed, have Mod a 1Dia1 og () call
a modal dialog box filter function, as described in Chapter 6. In the filter
function, make a check to ensure that only one of the ten digit keys or the
period key was pressed. The following example is just such a filter func
tion.

//define
//define
//define

kPeriodKey
kZeroKey
kNineKey

Cchar)Ox2E
Cchar)Ox30
Cchar)Ox39

pascal Boolean DialogNumberOnlyFilter(DialogPtr theDialog,

char theChar;

if (theEvent->what != keyDown)
return C false >:

EventRecord *theEvent,
short *theltem)

theChar = theEvent->message & charCodeMask:

431

432
Macintosh Programming Techniques. ZE

if C (theChar >- kZeroKey) && C theChar <- kNineKey > >
return (false);

else if C theChar =- kPeriodKey
return (false):

else
{

SysBeep(1);
return C true >:

Di al ogNumberOnlyFil ter() first checks to see if the event was a key
press. If it wasn't, the event isn't handled by the filter-so fa 1 se is
immediately returned to Mod a 1Dia1 og (). If the event was a key press,
the typed character is determined and then the check for a valid charac
ter begins.

If the value of the typed character is in the range of Ox30 (ASCII 48)
to Ox39 (ASCII 57), then the character was in the range of 0 to 9-a valid
keystroke. The filter doesn't handle valid characters, it lets
Mod a 1Dia1 og () do that. Mod a 1Dia1 og () handles a valid character as it
always does-it echoes the character to the editable text box. The same
applies to the next test. If the character is a period, then assume the user
is entering a decimal point for a floating-point number. Again, let
Mod a 1Dia1 og () handle this valid character.

If the keystroke is any other character, let the filter function handle
it and return true. Di al ogNumberOnl yFi 1 ter() handles an invalid
character by sounding the system alert. By then returning a value of
true, the character doesn't get echoed to the editable text box.
Mod a 1 Di al og ()has been told that the event was suitably handled, so it
doesn't take the liberty of working with the event-it won't echo the
character to the dialog box.

Updating the Display Window
When the dialog box is dismissed, an update event occurs. The display
window, which was partially obscured by the dialog box, is the focus of
this event. The application-defined Handl eUpdate() function-called
from the Event Loop() routine-takes care of updating the window. In
StringHandler, this is a simple task: erase the current contents of the win
dow with a call to the Toolbox function EraseRgn(), and then redraw

Chapter 7 • Tat and Strings

the picture by calling the Toolbox function Dr aw Pi ct u re () . As described
in Chapter 5, window updating takes place between calls to the Toolbox
functions Beg i n Update() and End Update().

void HandleUpdate(EventRecord theEvent
{

GrafPtr theSavePort:
WindowPtr theWindow:

theWindow - CWindowPtr)theEvent.message:

GetPortC &theSavePort >:
SetPortC theWindow >:

BeginUpdate(theWindow >:
EraseRgn(theWindow->visRgn):
DrawPicture(gCurrentPicture, &gPictureRectangle >:

EndUpdateC theWindow >:

SetPortC theSavePort >:

CHAPTER SoMMflRY
A Macintosh Toolbox function that expects a string as a parameter gen
erally requires that the string be of type Str255. The Str255 data type is
an array of 256 characters and holds a single string in Pascal format. The
first byte of a Pascal string holds the length of the string. That is, it holds
a number that tells how many of the remaining 255 bytes are occupied
by the characters that make up the string.

A variable of type St r 2 5 5 can be assigned a string value at declara
tion, but not later in the program. Rather, use the Toolbox function
Bl ockMoveData () to copy a hard-coded string or the contents of anoth
er string to a Str255 variable.

To create strings that can be edited without altering or recompiling
source code, use one of the two string resource types. Strings can be held
in resources of type STR or STR//. The STR resource holds a single string,
while the STR// is a string list that holds a number of strings. To load a
string from a STR resource, use the Toolbox function GetStri ng(). To

434
Macintosh Programming Techniques. 2E

load one of the strings from a STR11 resource, call the Toolbox routine
GetindString().

Because the Macintosh treats text as it does other graphic entities,
changing the characteristics of a string is easy. The Toolbox holds several
routines that can be used to change the look of a string that is to be drawn
with DrawStri ng(). To change the font, call Text Font(). To change the
size of drawn text, call TextSi ze(). The style of text can be altered by
using Text Face(). Finally, the transfer mode-how text interacts with
the bits it is drawn against-can be changed with a call to TextMode().

flCIHTOSH PROGRflMMIHG TECHHIQOES, 2E

Chapter 8

Power Mac
Programming

Porting older source code that was created for the 68K-based Macs so
that it compiles and runs on the newer Power Macs is often trivial. For
the smallest of programs, such as most of the examples in this book, the
same source code file can be used when compiling with either a 68K
compiler or a PowerPC compiler. No changes are necessary. More
involved programs, however, may require some source code modifica
tion. Fortunately, any necessary changes usually involve a single pro
gramming topic-the universal procedure pointer, or UPP. This type of
pointer is new to Macintosh programming-there was no need for it
before the Power Macs came into existence. In this chapter you'll learn
about the UPP and how it may effect your code.

A program that is built using a 68K compiler runs on both Macintosh
and Power Macintosh computers, but when running on a Power Mac it
doesn't take advantage of the speed inherent in the PowerPC chip. A
program that is built using a PowerPC compiler will run fast on a Power
Mac, but it won't run at all on a 68Kbased Mac. The solution to this
dilemma is to merge two versions of the same program into one appli
cation. The resulting program will run on both types of Mac, and will
take advantage of the power of the PowerPC chip when running on a

435

436
Madntosh Programming Techniques. ZE

Power Mac. As you'll see in this chapter, you can build this fat binary
application after you've modified your source code such that it compiles
and executes on both 68Kbased Macs and Power Macs.

O"IVERSflL PROCEDURE POl"TERS (OPPs)
Even though a Macintosh and a Power Mac have microprocessors that
come from different families, and thus work with different instruction
sets, the PowerPC-based Macintosh computer is capable of running code
that was generated for the 68Kbased Mac. For reasons of both necessity
and user support, Apple went to great lengths to ensure that this was so.

A Power Mac excels when it runs native code-when it is processing
instructions that are from the PowerPC instruction set. While the ideal
scenario would be for a Power Mac to execute only native code, this is
almost never the case. That's because while much of the Macintosh
Toolbox has been ported and recompiled to native code, some of it has
not. So even a program that was built using a PowerPC compiler will be
at times executing instructions from the 68K instruction set.

A Toolbox that isn't completely native is one reason the Power Mac
must be able to work with 68K-based code. A second reason is user-sup
port. Many owners of Power Mac computers have a substantial invest
ment in older Mac software-programs developed before the advent of
the Power Macs. So as not to force these users to lose out on their possi
bly large software investments, Apple made sure that older programs
ran on newer computers.

Apple achieved backwards compatibility through the inclusion of
emulation software and the Mixed Mode Manager. The emulator is soft
ware that translates instructions from the 68K instruction set to the
PowerPC instruction set. As a Power Mac executes a program that isn't
100% native (which is almost always the case), the mode of the Power
Mac is constantly switching. One moment a native instruction is being
executed directly by the PowerPC microprocessor, and the next moment
a 68K instruction is being passed to the emulator and then onto the
PowerPC chip. Keeping track of this perpetual mode switching is the job
of the code that is a part of the Mixed Mode Manager.

Chapter 8 • Power Mac Programming

For the user, the emulator and the Mixed Mode Manager take all of
the worry out of code compatibility-a Mac user never considers what
mode his or her computer is currently in. For the Mac programmer, the
emulator and the Mixed Mode Manager take most of the worry out of
code compatibility-there are a couple of areas where the programmer
most make a programming effort to ensure code will run properly on a
PowerPC-based Mac. The use of procedure pointers, or ProcPtrs, is the
area of compatibility of most interest to you, the Mac programmer.

Procedare Pointers (ProcPtrs) and Universal
Procedare Pointers (OPPs)
In Chapter 6, you were introduced to the ProcPtr data type, though you
might not have been aware of it. There you saw that the first parameter
to the Toolbox routine Mod a 1Dia1 og C) could be the name of a filter func
tion, as in this snippet:

ModalDialog{ DialogPromoFilter. &theltem);

DialogPromoFilter is the name of an application-defined filter func
tion. In the preceding code Di al ogPromoFil ter serves as a pointer to
the Di al ogPromoFi lter() routine. Before the arrival of the Power
Macs, a parameter that was a pointer to a routine was a procedure point
er, and had a data type of ProcPtr.

When storing executable code and loading executable code into
memory, Power Macs follow a different set of rules than 68K-based
Macs. A Power Mac keeps code in a code fragment, which may or may
not be a part of the application that uses the code. Because of this and
other complexities, each function that is in the memory of a Power Mac
has a routine descriptor data structure to hold information about the func
tion. One piece of information in a routine descriptor is a ProcPtr. On a
Power Mac, a ProcPtr isn't quite the same as it is on a 68K-based Mac.
On a Power Mac, a ProcPtr points to still another data structure-a
transition vector, or TVector. The TVector consists of two pointers, one of
which is the address of the start of the function's executable code. Figure
8.1 shows the differences between a ProcPtr on a 68K-based Mac and on
a Power Mac.

437

438
Macintosh Programming Techniques. ZE

68K-based Mac Power Mac

Functfon's Function's
exec$ble

code
executable

'code'

Function address
TVector

ProcPtr ProcPtr
LI
Routine descriptor

~

[
~

Figure 8.1 How the system accesses a user-defined function on both a 68K-based and
PowerPC-based Mac.

If it sounds like things are getting a bit confusing, you'll enjoy this next
sentence. As a programmer, you won't have to keep track of routine
descriptors, TVectors, or ProcPtrs. In fact, you won't have to even fully
understan~ what they exist for. Instead, you'll just have to know about
the universal procedure pointer, or UPP. The UPP, represented by the
Universal ProcPtr data type, indirectly leads to the starting address of
a function. As shown in Figure 8.2, a UPP holds the address of a func
tion's routine descriptor. The routine descriptor in turn contains a
Pro c Pt r that holds the address of a TVector, which in tum holds a point
er to a function's executable code.

~
n 0 T E

Chapter 8 • Power Mac Programming

Function's
executable

code

Function address
TVector

[
ProcPtr

cd

lJ
Routine descriptor

d
~

UniversalProcPtr

Figure 8.2 How the system uses a universal procedure pointer to
access a user-defined function.

If you're a glutton for punishment, you can obtain more details about rou
tine descriptors, TVectors, and other PowerPC-related data structures by
picking up Programming the PowerPC by M&T Books or the PowerPC System
Software volume from the Inside Macintosh series.

Using a Universal ProcPtr is easy-almost as easy as using a ProcPtr
when programming for a 68K-based Macintosh. First, declare a univer
sal procedure pointer variable. Then use one of several Toolbox func-

439

440
Macintosh Programming Techniques. ZE

tions to associate the UPP with an application-defined function. Finally,
use the UPP as you would use a ProcPtr on a 68K-based machine.

Apple has defined several UPP data types. Each data type is identi
cal-they're all really nothing more than the Universal ProcPtr type
renamed. Here's a few of those definitions:

typedef UniversalProcPtr ModalfilterUPP:
typedef UniversalProcPtr UseritemUPP:
typedef UniversalProcPtr FilefilterUPP:

The preceding definitions, and all of the other UPP definitions, exist as a
convenience to programmers. The names of the individual types provide
some extra description to those who might be perusing your code.

This discussion opened with mention of the Toolbox function
Mod a 1Dia1 og (). In specific, it was stated that when programming for a
68K-based Mac the first parameter to this routine is of type ProcPtr.
When programming for a Power Mac, the first parameter is instead a
universal procedure pointer. To be more precise, the parameter is of type
Modal Fi 1 terUPP. From the preceding snippet you know that this para
meter is really nothing more than type Uni versa 1 Pro c Pt r. Here's how
Apple defines Mod a 1Dia1 og () :

void ModalDialog(ModalfilterUPP modalfilter, short *itemHit)

When programming for a 68K-based Mac, here's how Mod a 1 Di a 1 og ()
would be called when using a filter function named
DialogPromoFilter():

ModalDialog(DialogPromofilter, &theitem >:

When programming for a PowerPC-based Mac, here's how things are done:

ModalfilterUPP thefilterUPP:

theFilterUPP = NewModalfilterProcC DialogPromoFilter >:

II open dialog box, then enter ModalDialog() loop

ModalDialog(thefilterUPP, &theitern):

Chapter 8 • Power Mac Programming

The above snippet declares a variable of type Mod a 1Fi1 terUPP. It then calls
the Toolbox function NewModa 1Fi1 terProc() to associate the application
defined Di a 1 og Promo Fi 1 te r () function with the UPP. Once the dialog box
is opened, Mod a 1 Di a 1 og () is called with the UPP as the first parameter.

Chapter Program: MenuMaster (revisited)
The Chapter 6 example program was named MenuMaster. Selecting
Open Modal Dialog from the program's File menu displayed the modal
dialog box pictured in Figure 8.3.

Enter some teHt, then edit
it using the Edit menu or
Command-key editing:

llEdit TeHt

Figure 8.3 The modal dialog box displayed by the MenuMaster program.

The MenuMaster program includes a function named
OpenModa 1Dia1 og C) . Below is that same function, modified so that it
compiles using a PowerPC compiler. Lines that differ from the Chapter
6 version of the function are shown in italic type.

void OpenModalDialog(void)
{

DialogPtr theDialog;
short the Item;
Boolean dialogDone = false;
Hoda1Fi1terUPP theFf 7terUPP:

441

442
Macintosh Programming Techniques, 2E

theFilterUPP - NewModalFilterProc(DialogPromoFilter);

t heDial og - GetNewDialog(rModalDialog, nil , (WindowPtr)-lL) ;
ShowWindow(theDialog);

while (dialogDone -- false
{

Hoda/Dialog(theFilterUPP. &theltem);

switch (theltem)
{

}

case kDialogOKButton:
dialogDone - true;
break;

DisposeRoutineDescriptor(theFilterUPP);
DisposeDialog(theDialog);

The previous version of OpenModa 1Dia1 og () begins by declaring a
Mod a 1Fi1 terUPP variable, which is then initialized by calling the
Toolbox function NewModal Fi 1 terProc(). The UPP is then used in the
call to Mod a 1 Di a 1 o g () . When it comes time to dismiss the modal dialog
box, the Toolbox function Di s poseRouti neDescri ptor() is called to
release the memory allocated by Open Mod a 1Dia1 og ().

~
WARHIHG

Any time you're writing code that (a) will be compiled with a PowerPC com
piler and (b) uses a filter function with ModalDi al og(), you must take the
steps shown in the above example: declare a variable of type
Mod alFilter UPP, call NewModalFilterProc(), then pass the
Mod a 1 Fil terUPP variable to Mod a 1Dia1 og C). Omitting any of these steps
will result in a compile-time error. Omitting the last step, the calling of
Di s pose Routi neDescri ptor() to dispose of the allocated data structures, is
considered good housekeeping-thoughyour code will still compile and run
without this Toolbox function call.

The remainder of the PowerPC version of the MenuMaster code is iden
tical to that found in the 68K version presented in Chapter 6. If your

- --

Chapter 8 • Power Mac Programming

development system includes both a 68K compiler and a PowerPC com
piler, try compiling and running both versions. Whether you own a
Metrowerks or Symantec IDE, you'll find projects for each in the Chapter
6 and Chapter 8 folders on this book's CD.

A reminder: A program built using a PowerPC compiler is a PowerPC-only
application. Attempting to run the resulting application on a 68K-based Mac
won't work-the system will display a-192 error alert upon your attempt to
launch the app. Later in this chapter you'll see how to make a fat app-an
application compiled using a PowerPC compiler, but able to run on any Mac.

Universal Procedure Pointers and User Items
Using a filter function with Mod a lDi a 1 og () is one instance of when a
UPP is necessary. Another is when your program makes use of a user
item. Recall from Chapter 5 that when a dialog box includes a user item,
your program must pair the user item with an application-defined rou
tine that updates that item. The means to making this association is the
Toolbox function Set Di a 1 o g I tern () . The fourth parameter to this func
tion is the name of the user item updating function-typecast to a
Handle. The following snippet is from the Chapter 5 version of the
Di a 1 og P 1 us program. In that program the user item drawing function is
named DoUseritem().

//define kManUserltem 6

short theType:
Handle theHandle:
Rect theRect:
DialogPtr theDialog:

II open dialog box

GetDialogltemC theDialog, kManUserltem, &theType,
&theHandle, &theRect):

SetDialogltemC theDialog, kManUserltem, theType,
CHandle)DoUserltem, &theRect):

Macintosh Programming Techniques. ZE

Just when do you use a universal procedure pointer? Here's the UPP rule of
thumb. If your code passes a function name as a parameter in a call to anoth
er function, and you're compiling with a PowerPC compiler, you need to use

n 0 ~T E universal procedure pointers.

The fact that in this program SetDi al ogitem() requires a routine name
as a parameter is the give away that a ProcPtr is involved-a function
name as a parameter serves as a pointer to that function. If this code is to
be compiled with a PowerPC compiler, it will have to be modified such
that the ProcPtr is replaced with a universal procedure pointer.

~
" 0 TE

Take heed of this note-it's important. Normally, when you compile code that
requires a universal procedure pointer, and you haven't used one, your
PowerPC compiler will choke-it won't compile the code and will return an
error message. Not so with calls to SetDi al ogltem(). That's because the fourth
parameter to SetDialogltemC)-the parameter that must be a UPP when
working with a user item-gets typecast to type Handle. That means your
PowerPC compiler will be looking for a handle as the fourth parametei: The
compiler won't be able to tell if the thing you're typecasting is a UPP, or a
ProcPtr, or anything else for that matter-so it won't issue any error message
if you forget to port your code. However, when you attempt to run the program
it will fail. You can avoid this hard-to-detect bug by searching your source code
for SetDi al ogltem and SetDitem (the older, now obsolete name for this func
tion) and then confirming that you've made the necessary changes.

Using a UPP with SetDi al ogltem() is similar to using one with
Mod a 1Dia1 og ():declare a UPP variable, call a Toolbox routine to associ
ate that variable with the application-defined function, then use the UPP
as a parameter to the Toolbox routine that requires it. Here's a specific
example that assumes the user item update function is named
DoUseritem():

UserltemUPP theUserUPP;

theUserUPP - NewUseritemProc(OoUserltem J;

II open dialog box

GetDialogitem(theDialog, kManUseritem, &theType,
&theHandle, &theRect >:

SetDialogitemC theDialog, kManUseritem, theType,
CHandle)theUserUPP, &theRect):

Chapter 8 • Power Mac Programming

Just as the Mod a lDi a 1 og () example declared a universal procedure
pointer variable, so to does the SetDialogltem() example. For the
Mod a 1Dia1 og ()example, the variable was of type Mod a 1Fi1 terUPP. For
this example, the variable is of type User I temU PP. Recall that both data
types are equivalent to the Uni versa 1 ProcPtr data type.

After the UPP variable is declared, it needs to be associated with an
application-defined routine. Again, as was the case in the
Mod a 1Dia1 og () example, a Toolbox function handles this task. Here the
NewUserltemProc() routine is used. After that, the UPP is passed to
SetDi a 1 og I tern () . Because this fourth parameter is defined to be of type
Handle, the UPP must be typecast.

Chapter Program: DialogPlas (revisited)
The Chapter 5 example program DialogPlus displays a modeless dialog
box that includes two user items. Figure 8.4 serves as a reminder of what
the user sees when DialogPlus is running.

Enter Title Here

I Enter Title Here

r8J Display window

®Hot Mon
QCold Mon

Heot Up Mon

Done

- New Window ===--
New thermostat, pleose •••

Figure 8.4 The modeless dialog box displayed by the DialogPlus program.

For the PowerPC version of the DialogPlus program, a UPP will be needed.
The OpenTemperatureDi a 1 og () function, which calls SetDi a 1 ogltem()
twice to associate the application-define DoUserltem() function with each
user item, is the only routine that needs to be altered. Lines that differ from
the Chapter 5 version of the function are shown in italic type.

445

446
Madntosh Programming Technlqaa. ZE

void OpenTemperatureDialog(void)
{

}

short theType:
Handle theHandle:
Rect theRect:
DialogPtr theDialog:
UserltemUPP theUserUPP:

theUserUPP = NewUserltemProc(DoUserltem);

theDialog - GetNewDialog(rTemperatureDialog,

if C theDi a 1 og ~ ni 1 >
ExitToShell():

gDlogStorage, CWindowPtr)-lL >:

GetDialogltem(theDialog, kManUseritem, &theType,
&theHandle, &theRect):

SetDia1ogltem(theDia1og, kManUserltem, theType,
(Hand1e)theUserUPP, &theRect J:

GetDialogitem(theDialog, kTitleUseritem, &theType,
&theHandle, &theRect >:

SetDia1ogltem(theDia1og, kTit1eUserltem, theType,
(Hand1eJtheUserUPP, &theRect J:

gCurrentPict - rManHotPicture:
gOldButtonNum = kHotRadioButton:

GetDialogitem(theDialog, gOldButtonNum. &theType.
&theHandle, &theRect):

SetControlValue< CControlHandle)theHandle, kControlOn);

ShowWindow(theDialog >:

This version of OpenModal Di al og() begins by declaring a UseritemUPP
variable. That variable is then initialized by calling the Toolbox function
NewUseritemProc(). The universal procedure pointer is then used in
the two calls to SetDi al ogltem().

Notice that unlike the first UPP example in this chapter-the one that
used a UPP with a call to Mod a 1Dia1 og C)-this example doesn't call
Di sposeRouti neDescri ptor(). Though both examples in this chapter
use a universal procedure pointer with a dialog box, the UPP used in

Chapter I • Power Mac Programming

each example must be treated differently. In the Menu Manager example,
the dialog box was modal. When the application-defined
OpenModa 1Dia1 og C) function ended, the dialog box was dismissed with
a call to the Toolbox routine Di sposeDi a 1 og C). In this DialogPlus exam
ple, the dialog box is modeless. It doesn't get dismissed at the end of the
OpenTemperatureDi al og() function-it remains open for the duration
of the program. While the UPP variable theUserUPP won't be used after
the OpenTemperatureDi al og() function ends, the information it pro
vides to the system will be used. The two calls to Set Di a 1 ogltem() have
associated the user items with the DoUserltem() update function, and
the system will use the routine descriptor allocated by the call to
NewUserltemProc() to access the DoUserltem() code.

If you experiment with the source code and add a call to
Di sposeRout i neDescri pt or<) at the end of the OpenTemperatu re Di a 1 og <)
function, you'll find that the program terminates almost immediately after
you try running it. The program will fail the first time the system tries to
update the user items-which will be upon opening the dialog box. That's
because the system won't be able to find the executable code for the
DoUseritem() routine.

Macintosh computers and Power Mac computers have different micro
processors, and thus have different instruction sets. The instructions that
make up a program designed to run on one machine aren't understood
by the other machine. Yet you know from experience that many Mac
applications can in fact run on either type of machine. There are two
ways to create a single program capable of performing this feat, but only
one method takes advantage of the speed of the PowerPC chip.

681<. PowerPC-Only. and fat Applications
Most programs that were developed long before the Power Macintosh
came into existence will run flawlessly on a Power Mac. As mentioned,
Apple made this possible by including emulation software in each
Power Mac computer. When a program compiled for a 68K-based

447

448
Macintosh Programming Techniques. ZE

Macintosh runs on a PowerPC-based Mac, the instructions that make up
that program are sent through the emulation software and converted to
PowerPC instructions. The advantage to this scheme is that it is possible
to run a 68K program on a Power Mac. The disadvantage is that emula
tion slows processing, and the program won't take advantage of the
speed of the PowerPC microprocessor.

A program that was developed with the purpose of running on
Power Macs can't run on a 68K-based Macintosh. While a Power Mac is
capable of translating 68K instructions to PowerPC instructions, the
reverse isn't true-a 68K-based Mac won't recognize PowerPC instruc
tions. The advantage to developing a PowerPC application is that the
program will be made up of native PowerPC code; its instructions will
execute without the need to pass through the emulator. The disadvan
tage js that owners of 68K-based Macs will be unable to run the program.

To capture the best of both worlds-a program that runs on a 68K
based Macintosh and runs quickly on a Power Mac-a developer creates
a fat binary application, or fat app. A fat app is nothing more than the com
bination of two versions of the same program into a single application.

Creating the fat Application
Both the Metrowerks and Symantec development environments are
capable of easily creating fat applications. Regardless of the develop
ment environment you use, the process is similar. A little later in this
chapter, you'll see a specific example of creating a fat application. For
now, here's an overview of how this task is accomplished:

1. Create a 68K project.
2. Compile and build a 68K application from the 68K project.
3. Create a PowerPC project.
4. Add the 68K application to the PowerPC project.
5. Compile and build a PowerPC application from the PowerPC

project.

Including the 68K application itself in the PowerPC project causes your
IDE to embed the 68K program within the PowerPC program. The result

Chapter 8 • Power Mac Programming

is two versions of the same program within a single file. The resulting
application will have a single icon and will appear to the user as a single
program. The only indication the user might have is in the size of the fat
app. Because it holds two versions of the same program, it will occupy
more disk space than either the 68K or PowerPC version alone.

Once you've built the fat binary application, there are two ways you
can verify that it is indeed a fat app. One way is to run the program on
both a 68K-based Mac and on a Power Macintosh. Since you'll have built
the fat app from a PowerPC project, this will tell you that the app is in
fact fat-an application built from a PowerPC project that doesn't
include a merged 68K application won't run on a 68K-based Mac. A sec
ond way to verify that your application is fat is to run ResEdit and open
the fat application. Don't open the project resource file, open the appli
cation itself. If the application's resource fork contains both a cfrg
resource and CODE resources, it's a fat app.

The fat flpp and the cfrg Resoarce
Each and every PowerPC application contains a cfrg resource-a
resource type which was created with the advent of the Power Mac.
You're not responsible for creating a cf rg resource for your applica
tion-one will be added to the resource fork of your program by your
IDE at the time the application is built.

The cfrg resource tells the system where to find the executable code
that makes up a program. While 68K applications store executable code
in CODE resources in the application's resource fork, PowerPC applica
tions generally keep executable code in the data fork of the application.
When a 68K application gets launched, the system knows exactly where
the executable code is-in the CODE resources in the application's
resource fork. When a PowerPC application gets launched, the system
needs some help in determining where the executable code is-the code
may not be at the very start of the data fork. The cfrg resource holds this
information.

A fat app holds two sets of executable code. The code for the 68K ver
sion exists in CODE resources in the resource fork of the fat app. The code
for the PowerPC version exists in the data fork of the fat app. When the
user double-clicks on the icon of a fat app, only one set of code will end

449

450
Macintosh Programming Techniques. ZE

up in memory. The proper code gets loaded into memory thanks to the
presence of the fat app's cfrg resource.

A resource of type cfrg is recognized by a Power Mac, but ignored
by a 68K-based Macintosh. If a fat application resides on the drive of a
Power Mac, double-clicking on its icon will cause the system to look at
the application's cfrg resource. That leads the system to the fat app's
data fork, where the PowerPC version of the executable code resides. If
the same fat app is copied to the drive of a 68K-based Mac, double-click
ing on the program icon will have a different result. The 68K system soft
ware is unaware of cfrg resources, so the system won't attempt to exam
ine the fat app's cfrg resource. Instead, the system will simply load the
executable code found in the CODE resources in the resource fork of the
fat app.

Metrouvvrks CockNlarrior and the DialogPkls fat app
H you use the CodeWarrior IDE, read this section to see an example of
creating a fat application from the DialogPlus program described in
Chapter 5 and in this chapter. If you're a Symantec IDE owner, skip to
the next section-the information you need lies there.

To create a fat binary version of the DialogPlus application, you'll
make use of both the 68K DialogPlus and the PowerPC DialogPlus pro
ject so if you haven't already built a 68K version of DialogPlus, use the
Chapter 5 DialogPlus.µ project to do that now. Then, copy the
DialogPlus68K application to a new folder. Next, copy the source code
file and PowerPC project file for this chapter's version of the DialogPlus
program to the same folder (Figure 8.5).

Chapter 8 • Power Mac Programming

COS OialogPlus68K
41telTI$ 666.7 MB in disk 364.1 MBavai

D
01al09Plus68K.11 • ~

Dlalo9Plus68K D1a109Plus.c

~
Dial09Plus.rsrc

~~COB The Fat App §lmj
41tell'I$ 666. 7 MB in disk

~
.:Q:

Dlalo9Pl us68K

COB OialogPlusPPL
D

D1e109Pl usPPC.11

~
Dial09PI us.rsrc

~
D

01al09PI usPPCJl • • Dlal09Pl usCOB.c
~

¢1 I91n

D1a109PlusPPC Dlal09Plu$C08.c

Figure 8.5 Creating a new folder that holds the files to be used for a fat application
built using the CodeWarrior IDE.

You'll create the fat application from the new version of the PowerPC
project-that's shown in the COB The Fat App folder in Figure 8.5. From
within the CodeWarrior IDE, open this project. Then click once on the
name of the resource file, DialogPlus.rsrc, in the project window. Select
Remove Files from the Project menu to remove the resource file from the

451

452
Macintosh Programming Techniques. ZE

project. The fat application needs resources, but it will get them all from
the 68K application that your about to add to the project. Next, select
Add Files from the Project menu. Now add the 68K version of the appli
cation to the project, just as you'd add a source code file or resource file.
Figure 8.6 shows what the project window should look like.

~
H 0 T E

Dialo_g_PlusPPC.J.l
File Code Data _.

V Sources 2K! 250 ! • i=J 0
Dfa logPlus .o I 2848 f 250 ~ • ID ~ .. v .. ·ti·a·c ... Hb·r:a·;:·ie-5 T 6iCT" i"iCT"········r:r
lnterfacelib j 0 j 0 ~ ID
Hathlib ! o! o! ID
HYCRuntime.Lib I 6608! 1318! ID

·--~~~~t~:.~.~~:~~1~~·~_-.-.-.-.-.~·.·.·.·.~~·.-.-::r.·:.r~·.?.~F~···~~I!~F··~~~~~~~~·
............... ~.~.~I!.9.~!~~-~.!~L. ~.t..~.L. ~.l~.L. tit-0

8 file(s) 130K 21 K ~

Figure 8.6 The CodeWarrior PowerPC project used to build a fat app
version of the DialogPlus program.

You can add the 68K application to any group, of course. If you'd like to
place it in its own group for organizational purposes, as shown in Figure 8.6,
drag the file below the last group in the project window. That will create a
new group. To rename this group, double-click on the group's name and
type in a new name, such as 68K Application as was done in Figure 8.6.

Before building the new application, select Preferences from the Edit
menu. Click once on the PPC Project icon in the icon list found on the
left side of the Preferences dialog box. In the Project panel, enter the
name you'd like the fat application to have. For this example,
DialogPlusFat seems quite appropriate (seeFigure 8.7). Click the OK but
ton to dismiss the Preferences dialog box.

Chapter 8 • Power Mac Programming

Rpply to open project.

[E :
Pascal Warnings IW

II 1i:11r

l'lC
PPC Proctssor ;:;;<

Di:;:
PPC Linkor

D i:i::
PPC PEF :{

Project Type: I Rpplication ..-1
Rpplication Info:__'.:=::=::=::=::=::=::~---~

File Name

'SIZE' Flags~

I DialogPlusFat

Creator ????

Type RPPL

Preferred Heap Size (k) 384

Minimum Heap Size (k) 384

Stock Size (k) 64

.. I:':~.
mm.. ~ (Factory Settings} ,__ __ _.a.;._, (Reuert Panel J (Cancel } ([OK D

Figure 8.7 Supplying ~e CodeWarrior IDE with the name that it should use when
building the fat application version of DialogPlus.

To create the fat app, select Make from the Project menu. When you
return to the desktop you'll find the fat application DialogPlusFat-all
ready for you to test.

Symantec and the DialogPlos fat app
If you're a Code Warrior IDE owner, skip this section-you now have

the information you need in order to create a fat application. Symantec
owners, read on.

To create a fat app version of DialogPlus, you'll make use of both the
68K DialogPlus project and the PowerPC DialogPlus project. If you
haven't already done so, use the Chapter 5 DialogPlus.7t project and your
THINK C compiler to build a 68K version of the DialogPlus program.

453

454
Macintosh Programming Techniques. ZE

Then, copy the DialogPlus68K application to a new folder. Now copy the
source code file, resource file, and Symantec C++ PowerPC project file
for this chapter's version of the DialogPlus program to the same fold
er(Figure 8.8).

(0'5 OialogPlus60K
4 ltel\1$ 666. 7 MB In disk 364. I MB evel

[i
Dlalo0Plus6Bt::.11

~ ~
DlelogPlus.c Dh1l09Plus6Bt::

~
Dlal09Plus6Bt::.11.rsrc

~
Dielo0PI us6Bt::

• COS DialogPlusPPC

~
Diel09PlusPPC.11.pef

~
• Diel09PI usPPC.11

~

Diel09PI usPPC.11

~
01e1o0PI useoa.c

~
Diel09Pl us.nrc

DlolOQPI usPPC Diel09PI usCOB .c

~ [E
Dlel09PI usPPC.11.rsrc DlelooPI us.rare

Figure 8.8 Creating a new folder that holds the files to be used for a fat application
built using the Symantec IDE.

IPJI
~
ft 0 T E

Chapter 8 • Power Mac Programming

Symantec's next IDE, which may be available as you read this will be truly
integrated. You won't need to use THINK C to create a 68K application and
Symantec C++ to create a PowerPC application. Instead, the process will be
much like that used by Metrowerks CodeWarrior owners: A single IDE will
be able to generate both 68K and PowerPC apps.

You'll create the fat application from the new version of the PowerPC
project-the one shown in the COS The Fat App folder in Figure 8.8.
From within the Symantec Project Manager, open this project. Then
select Options from the Project menu. Click on the Project 'fype icon in
the column of icons on the left side of the Project Options dialog box.

The Project Type page of the Project Options dialog box allows you
to set a variety of project options. Figure 8.9 shows how you can use this
page to set the name of the fat application when it gets built later on.
First, click the Set destination button. In the dialog box that opens, type
in a name for the program. After dismissing the dialog box, the entered
name will appear in the Project Type page-to the right of the Set desti
nation button.

The second, and most important, task to perform on the Project Type
page is the setting of the Merge feature. Click on the Merge 680x0
Application checkbox to check it. Then click the Select application but
ton. When you that, a dialog box like the one shown in Figure 8.10 opens.
From this dialog box, you select an application to merge with the
PowerPC application during the build process. For this example, select
the 68K version of the DialogPlus application, as is being done in Figure
8.10. After you dismiss the dialog box, the name of the selected applica
tion will appear in the Project Type page, just to the right of the Select
application button. Now click the Save button to dismiss the Project
Options dialog box.

455

456
Macintosh Programming Techniques. 2E

I
Projtct

~
WWW

~
linkff

~~
Extf'nsions

rD •
Pro j•et 'w'indow

~
Po'W'trPC C

~
r-

!

!<¢

Click here, then enter the name to
use when building an application

,--
The entered n~ will show up here

= ~ ct Options for"[~gPlusPPC.'IJ" E~- =-==-

tlons: L Dini~ l>PC.'lf Tj
Projoot T~po -
~ lie Type~ Creator 11111 I ~n ... J

Ir- Ou ttnatton

'=-'

.:::,L 181 RIV osk for destination
(Set destination ... J j DlologPlusFot J

SIZE

Flogs ~ i seco I LT" Minimum size j 1 024 I Custom stock slzeLJbytes

Preferred size j 1 024 I ll
r Mor90 680x0 /\pp lio>Uon

.(' ~eel appllcotlon ... J ~ Olal~gPlus68K I
I-='

[lways or destination .. is on# i.io ~ .ailw~s be prompted for the dtsttn1tton ftlt .

--
!!_nee
i------

(Factory Settings) ((Sf\UB ~
I==

'--.J '--.J

Check here The name of the selected
application will show up here -

Click here, then select the
68K application to merge

Figure 8.9 Supplying the Symantec IDE with the name of the 68K program to merge
with, and the name to use for the fat app.

= Hord Drlue

0 [Jee t

Desktop

Cancel

Select

-!) None

Figure 8.10 Selecting the 68K program that will be merged with the PowerPC program.

Chapter 8 • Power Mac Programming

As shown in Figure 8.11, the project window won't appear any different
than it did before the merge; it still appears to hold just the source code
file, resource file, and libraries used to build the PowerPC version of
DialogPlus. Don't worry, though. After performing the build, you will in
fact have a fat application.

<>

<> II Dl•lo9f'_,sC08.o •

~ <> CJ Llbnrlu

Totals S (0 c?)

NIA {}

2792

2128

4920 0
B

Figure 8.11 The Symantec PowerPC project used to build a fat app
version of the DialogPlus program.

To create the fat app, select Build Application from the Build menu.
Because you set the destination in the Project Options dialog box (see
Figure 8.9), the application name will already appear in the editable text
box of the dialog box that opens, as shown in Figure 8.12. Simply click
the Save button to build the fat application. After the program builds,
return to the desktop to find the icon for the fat application
DialogPlusFat. If you have access to both a 68K-based Mac and a Power
Mac, execute the program on each machine so that you're satisfied that
the program is indeed a fat binary.

lesi COO The F11t App.,... I
~ OialogPlus.rsrr

~ Oi11logPlus68K

~ 01alogPlusroe.c
~ OialogPlusPPC.TT

=H11rd Drlue

~ Eject J

Desktop J

New CJ J

fol C11ncel J

~Bu-l-ld_"_Di_11_lo-gP-l-us-P-PC-.-T1'-"-11s-:~~~ ~, D

I

Figure 8.12 Supplying CodeWarrior with the name that it should use when building
the fat application version of DialogPlus.

457

458
Macintosh Programming Techniques. ZE

CHAPTER SaMMflRY
Porting older source code that was created for the 68K-based Macs so
that it compiles and runs on the newer Power Macs often involves work
ing with universal procedure pointers, or UPPs. This pointer type, which
is new to the Power Mac, replaces the procedure pointer, or ProcPtr,
used by programs that run on 68K machines. The use of a UPP is
straightforward. First, declare a UPP variable. Then call a Toolbox rou
tine that creates the data structures the system will need in order to
access the function the UPP will point to. Finally, in place of a ProcPtr
use the now-initialized UPP as a parameter to a Toolbox function.

When developing a program, you'll derive the greatest marketabili
ty from it if you tum it into a fat binary application, or fat app. A fat app
is a single program that actually contains two versions of executable
code. One version is created using a 68K compiler, and its code is stored
in CODE resources in the resource fork of the fat app. The second version
is created using a PowerPC compiler, and its code is stored in the data
fork of the fat app. Both versions share the same resources, which are
stored in the fat application's resource fork. When a user launches a fat
app only one set of executable code gets loaded into memory-the set
appropriate for the machine the user is working on. Both the
Metrowerks and Symantec development environments support the cre
ation of fat applications.

flClttTOSH PROGRAMMUtG TECHttlQ<JES. 2E

Chapter 9

The Varying Mac
When the Macintosh was introduced a decade ago, there was just a sin
gle model. Now there are numerous models, each with a slightly differ
ent configuration. A user further complicates the picture by customizing
a machine with a floating-point coprocessor, extra RAM, or a large
screen color monitor. The system software that drives the Macintosh has
also evolved over the years.

While every Mac owner would like to have the most current, fea
ture-laden model, the truth is that millions of Macintosh owners are run
ning programs on older machines. As a service to this varied audience,
and to ensure that your program has the widest distribution and usage
as possible, you will want to write applications that execute on as many
Macintosh models as possible.

Writing code that is guaranteed to run on several different models
requires a little extra work on your part, but the effort will be worth it. This
chapter describes the programming tricks necessary to ensure that anyone
using a Macintosh will also be able to use your applications easily.

459

460
Macintosh Programming Techniques. JE

THE fEflTORES OF fl MACIHTOSH
The different members of the Macintosh family of computers differ in
their hardware features. They can also differ in the version of System
software they run. To make matters worse (for you, the compati.bility
minded programmer), users can make a host of changes to both the hard
ware and software once they get their computers home or to the office.

There will be times when you want to know if the computer your
program is running on has a particular hardware or software feature.
One way to get some of this information is by making a call to the
Toolbox routine Sys Environs ().Here's a typical call:

SysEnvRec theMaclnfo:
SysEnvironsC curSysEnvVers, &theMaclnfo >:

As Macintosh features have evolved, so has SysEnvi rons ()-there is
more than one version available. To make use of SysEnvi rons(), you
pass it the version you'll be using. Always pass curSysEnvVers as the
version number. You needn't worry about the value of this Apple
defined constant-it's listed in the universal header files that accompa
nied your compiler.

The second parameter to pass to SysEnvi rons() is a pointer to a
variable of type SysEnvRec. After making the call, the several members
of the Sys Env Rec data structure will yield useful information such as the
CPU the machine has and the version of the System software currently
running. The SysEnvRec structure follows:

struct SysEnvRec
{

} :

short
short
short
short
Boolean
Boolean
short
short
short

environsVersion:
machineType:
systemVersion:
processor:
hasFPU:
hasColorOD:
keyBoardType:
atDrvrVersNum:
sysVRefNum:

Chapter 9 • The Varying Mac

As this section ends, you'll notice that I haven't provided you with an in
depth example of SysEnvi rons ().The next section tells you why.

The Gestalt() function
Starting with the 1989 release of System 6.0.4, the use of Sys Environs ()
became virtually obsolete. After reading the material in the last section,
you're probably wondering why this fact wasn't mentioned a little sooner!

System 6.0.4 introduced a new Toolbox routine, Gest a 1 t () . This
function is capable of returning all of the same information that
Sys Environs () returns, and much more. When it comes to determining
the various features on a Macintosh, Sys En vi ro n s () pales in compari
son to Gest a 1 t () . Figure 9.1 sums this up.

Gestalt{)
Some~f the lnformatlon,ftcan,supply

r
,sysEnvirons ()

Al/of the Information it sup{>lles

Machine type
System version
CPU type
FPU present
Color QuickDraw present
Keyboard type

AppleTalk version
Directory of System file

FPU type
QuickDraw version
Amount of RAM
AUX version
Sound capabilities
ROM size
ROM version
NuBus slot information
MMUtype
Help Manager present
Power Manager Information
And much, much more ...

Figure 9.1 The advantages of Ges ta 1 t < >.

Now that you know about the existence of the amazing Gest a 1 t () func
tion, why would you ever bother with Sys Environs ()?Because there's

461

462
Macintosh Programming Techniques. ZE

a catch to Ges ta 1 t () ; it's not available on Macs running an older version
of the system software. If it is available, you'll want to use it; if not, you'll
have to use the older Sys Environs () routine.

Checking for the availability of Gestalt()
The Gest a 1 t () function is available on Macs running System 6.0.4 and
later, including any version of System 7. Since System 6.0.4 was released
in 1989, most Mac owners have a version at least that new on their Macs.
That means ther~'s a very good chance that any Mac your application
runs on will support Gestalt(). But you, of course, can't make that
assumption.

Life is hard enough for those unfortunate enough to still be working
on pre-1989 Macs-don't aggravate them by crashing their machines!
Instead, make a check very early in your program to see just what ver
sion of system software is on the Mac your program is running on.
Because you won't immediately know if Gestalt() is available, use
SysEnvi rons ().Here's an example:

SysEnvRec theMaclnfo:

SysEnvironsC curSysEnvVers, &theMaclnfo);

if C theMaclnfo.systemVersion < Ox0700)
ExitToShell();

The Sys Environs() routine was added to the Toolbox back in 1986, so
it's a pretty safe bet that it's available on any Mac your program will see.
Your right-that's making an assumption about the user's equipment.
Normally, assumptions are bad; they can lead to the display of the dread
ed bomb alert. Here's one more assumption, made to justify that last one:
anyone still using a pre-1986 Macintosh won't possibly be interested in
paying money for the amazing, state-of-the-art application you'll be
writing anyway!

Now, back to work. When Apple released System 7, a host of new
features were added to the system software. Many programs support
some of these features and aren't designed to run on Macs that use aver-

Chapter 9 • The Varying Mac

sion of System 6. With Copland (System 8) on the horizon (or possibly
available as you read this), you might consider following suit.

If you're using Metrowerks Code Warrior to compile your code, then you're
using a program that requires System 7. Page through any Mac mail-order
catalog and you'll find several others. Adobe Photoshop, Microsoft Office,

" 0 T E and Symantec Norton Utilities are a few examples of applications that now
require System 7.

If you want to require users to have a version of System 7 or later as their
operating system, check to see if the systemVersi on field of the
Sys EnvRec has a value of at least Ox0700. After making the call to
SysEnvi ron() your program can examine any of the members of the
SysEnvRec structure. Typically, your application will check the
systemVersi on member. This hexadecimal value holds the system ver
sion in its last three digits. For example, a value of Ox0607 represents
System 6.0.7, a value of Ox0701 represents System 7.0.1, and a value of
Ox0752 represents system software version 7.5.2.

You'll be using Gesta 1 t () to check for some Mac features, SO· you
want to establish that the Mac contains a System with the Gest a 1 t ()
function. If it doesn't, use a call to the Toolbox function Exi tToShel 1 ()
to terminate your program.

It's a good idea to exit a program in a more graceful manner than
shown in the preceding example. Before you ever abnormally terminate
a program, you will want to give the user some information as to why he
or she is being whisked back to the Finder. This information can come in
the form of an alert that displays an descriptive message. Here the pre
vious example has been rewritten to include the display such an alert.
This chapter's example program does the same. Figure 9.2 shows a typ
ical alert that could be used here.

/ldefine rSysincompatibleAlert 128

SysEnvRec theMacinfo:

SysEnvironsC curSysEnvVers. &theMacinfo):

if (theMacinfo.systemVersion < Ox0700)

Macintosh Programming Techniques • .ZE

StopAlert(rSyslncompatibleAlert, nil);
ExitToShell();

Sorry, your computer doesn't meet the
minimum requirements to run this program:

• System 7 or later

[EHit to Finder]

Figure 9.2 Letting the user know what needs to be done in order
to run your program.

Once you've made it past this check, you know that your application is
running on a Macintosh that supports Gest a 1 t () . That means that you
can freely use Gest a 1 t () anywhere in your program.

Determining Machine featares Using Gestalt()
To use Gest a 1 t () , you pass it a selector code that tells Gest a 1 t () what hard
ware or software feature you want to examine. In exchange for the selector
code, Gest a 1 t () fills the second parameter, the response parameter, with
information pertinent to the request. The response parameter then holds the
answer to the question you posed in the selector code. Here's an example
that checks for the version of QuickDraw present on the user's Mac:

OSErr theError:
long theResponse;

theError = Gestalt(gestaltQuickdrawVersion, &theResponse):

In this example, gesta 1 tQui ckdrawVers ion is the Apple-defined selec
tor code, and theResponse is the response parameter. This call asks
Gestalt() to return the version of QuickDraw present on the machine

Chapter 9 • Th• Varying Mac

the program is currently executing on. After the call to Gestalt() is
complete, the response will have one of the following values:

gestaltOriginalOD
gestaltBBitOD
gestalt32BitOD
gestalt32BitQD11
gestalt32BitQD12
gestalt32BitQD13

You can use the above as constants because your compiler recognizes
them from their definitions in the Gestalt.h universal header file. Here
are the actual values from part of that enum:

gestaltOriginalQD
gestalt8BitOD
gestalt32BitOD
gestalt32Bit0Dll
gestalt32BitOD12
gestalt32BitQD13

= OxOOO,
= OxlOO,
= Ox200,
... Ox210,
= Ox220,
= Ox230,

II original 1-bit OD
II 8-bit color OD
II 32-bit color OD
II 32-bit color ODvl.1
II 32-bit color ODvl.2
II 32-bit color QDvl.3

The constant gestaltQuickdrawVersion, along with numerous other
selector codes, is also defined in the Gestalt.h header file. Appendix C
shows many of the selector codes and responses included in this file.

Gestalt() gives you verification that it was able to return the
requested information in the form of a result code of type OSErr. After a
call to Ges ta 1 t () , always compare the result code to the Apple-defined
constant no Err. Apple defines no Err to have a value of zero.

If Gest a 1 t () returns a result code of 0, the call was successful. If it's
any other value, you should not base the code that follows on the
response that Gestalt() returned. The following example shows a call
to Ge s ta 1 t () and a test of the returned result code:

OSErr theError:
long theResponse:

theError - Gestalt(gestaltOuickdrawVersion, &theResponse >:

if C theError == noErr)
{

if (theResponse ...- gestaltOriginalOD

465

Macintosh Programming l'Wchnlqacn, JE

}
else

DrawString("\pYou have the original version of QuickDraw.");

DrawString("\pGestalt error: QuickDraw version unknown.");

Figure 9.3 sums up what goes on in a typical call to Gestalt().

OSErr theError;
long theResponse;

Pass the selector code that
Indicates the info you need

Gestalt() returns

theError =Gestalt(gestaltQuickDrawVersion, &theResponse);

if (theError == noErr) ~ Verify that Gestalt.()
obtained the info without error

'---------------------'
. . . ~ Base a decision on the
1 f (theResponse == gestal tOr1g1nalQD) '\r-1 returned response .

Drawstring("\pYou have the original version of QuickDraw");

Figure 9.3 Using Gestalt<).

Now that you know just how to use Ges ta 1 t () , what can you use it for?
The following sections cover a few of the Macintosh features you can
determine with Gest a 1 t () . Appendix C covers several more.

Determining the QulckDraw Version
The drawing routines that make up QuickDraw have been improved
and increased over the years. The original version did not support color;
subsequent versions do.

If you're working with color, the Mac your program runs on must
have a version of QuickDraw that supports color. Use the selector
gesta 1 tQui ckdrawVers ion to determine the version of QuickDraw that
is present on the user's Mac.
Selector code:

gestaltQuickdrawVersion II QuickDraw version

Response parameters:

gestaltOriginalQD
gestalt8BitOD
gestalt32BitOD
gestalt32Bit0Dll
gestalt32BitOD12
gestalt32Bit0013

Example:

Chapter 9 • The Varying Mac

II original 1-bit OD
II 8-bit color OD
II 32-bit color OD
II 32-bit color OD vl.1
II 32-bit color OD vl.2
II 32-bit color OD vl.3

Boolean
OS Err

usersMacHasColor - false:
theError:

1 ong theResponse:

theError =Gestalt(gestaltOuickdrawVersion, &theResponse >:

if (theError =- noErr)
(

if < theResponse == gestaltOriginalQD
usersMacHasColor = false:

else
usersMacHasColor = true:

else
Drawstring("\pGestalt error: QuickDraw version unknown" >:

Notice that the preceding snippet initializes the Boo 1 ea n value. If for some
odd reason the call to Gestalt() fails, then usersMacHasCol or will have the
"safer" of the two values--false. That way the program won't attempt to
work with color on what may not be a color system.

Determining the CPO 1Jpe
All Macintoshes use a CPU (central processing unit) from either the
Motorola 680x0 family or the PowerPC family. You can determine which
family the user's processor is from by passing the
gesta 1 tSysArchi tecture selector code to Gestalt ().

Selector code:

gestaltSysArchitecture II system architecture

467

468
Macintosh Programming Techniques. ZE

Response parameters:

gestalt68k
gestaltPowerPC

Example:

II Motorola MC68k architecture
II IBM PowerPC architecture

Boolean
OS Err
long

usersMaclsPowerMac - false:
theError:
theResponse:

theError = Gestalt(gestaltSysArchitecture, &theResponse);

if (theError =- noErr)
{

if C theResponse -- gestaltPowerPC
usersMacisPowerMac - true:

else
usersMacisPowerMac = false:

}

else
Drawstring("\pGestalt error: CPU family unknown"):

Gestalt() allows you not only to determine the family the user's
processor belongs to, but to determine the specific type of chip within a
family. To get this more detailed information, use the
gestal tNati veCPUtype selector code.
Selector code:

gestaltNativeCPUtype

Response parameters:

gestaltCPU68000
gestaltCPU68010
gestaltCPU68020
gestaltCPU68030
gestaltCPU68040
gestaltCPU601
gestaltCPU603
gestaltCPU604

II central processor type

II Motorola 68000
II Motorola 68000
II Motorola 68000
II Motorola 68000
II Motorola 68000
II IBM PowerPC 601
II IBM PowerPC 603
II IBM PowerPC 604

Example:

OSErr theError:
long theResponse:

Chapter 9 • The Varying Mac

theError =Gestalt(gestaltNativeCPUtype, &theResponse);

if C theError noErr)
{

if < theResponse """" gestaltCPU68000 >
Drawstring("\pSorry, that feature requires a faster Mac" >:

}
else

Drawstring("\pGestalt error: CPU type unknown" >:

Determining the Amount of Physical RAM
In the last few years, RAM prices have dropped considerably.
Consequently, many Macs have plenty of RAM. You may be fortunate
enough to have a Mac loaded with RAM, but compatibility concerns dic
tate that you keep in mind the less fortunate! Millions of Macs with 4 MB
of RAM were sold, and many are still in daily use. Much of that 4 MB is
taken up by the Mac OS, leaving precious little left over for applications.

If you want to check for the amount of RAM a machine has, use the
gestal tPhysi cal RAMSi ze selector in a call to Gestalt(). The response
will be the number of bytes of physical RAM. It will be up to your pro
gram to convert that value to megabytes, if that value is necessary.
Selector code:

gestaltPhysicalRAMSize

Response parameters:

II physical RAM size

II long value that holds the number of bytes of RAM

Example:

/ldefi ne kByteslnOneKB 1024L

long theNumKB - -99:

469

470
Macintosh Programming Techniques. ZE

long theNumMB - -99:
OS Err theError;
long theResponse;

theError = Gestalt(gestaltPhysicalRAMSize, &theResponse);

if (theError == noErr)
{

theNumKB = theResponse I kBytesinOneKB:
theNumMB = theResponse I (kBytesinOneKB * kBytesinOneKB);

else
Drawstring(u\pGestalt error: Amount of RAM unknown");

~
~ n 0 T E

r2J
n 0 TE

Because the preceding snippet initializes theNumKB and theNumMB to "impos
sible" RAM amounts, these two variables will have predictable values
should the call to Gest a 1 t C) fail. Later in the program-when either of these
variables is used-a check can be made to verify that they hold valid, posi
tive values.

If you're compiling your code on a 68K-based Mac, include the above snip
pet in a test program. Change the value of kBytes InOneKB, which is defined
to be 1024L, to 1024-then compile the test code. Depending on what envi
ronment you're using, either your compiler responded by posting a compile
time error message or the source compiled and started to run, but quit when
the code that uses kByteslnOneKB was executed. This occurs because the
//define directive doesn't explicitly state that kBytes I nOneKB should be
interpreted as a 1 ong value. Later in the snippet kByteslnOneKB is multi
plied by itself. The result, which is a value greater than one million, needs to
be stored in a 1 ong. Unless you explicitly tell the compiler the byte size of
kBytes InOneKB, it won't know how many bytes to use to store the multi
plication result. When you create a /ldefi ne, and you want to force your
compiler to recognize the defined value as a 1 ong, add an uppercase L char
acter to the value.

Determining the Macintosh Machine 1Jpe
You can determine the type of Macintosh, or machine, your application is
running on by passing the gestaltMachineType selector to Gestalt().
But be aware that two Macs of the same type may be running different sys
tems, have different amounts of memory, or differ in other ways. Because

Chapter 9 • The Varying Mac

they may differ in many respects, you should not use the machine type to
assume certain features do or don't exist on the user's computer.
Selector code:

gestaltMachineType

Response parameters:

gestaltClassic
gestaltMacXL
gestaltMac512KE
gestaltMacPlus
gestaltMacSE
gestaltMacII
gesta ltMacIIx
gestaltMacllcx
gestaltMacSE030
gestaltPortable
gestaltMacIIci
gestaltMacIIfx
gestaltMacClassic
gestaltMacllsi
gestaltMacLC
gestaltQuadra900
gestaltPowerBook170
gestaltQuadra700
gestaltClassicll
gestaltPowerBooklOO
gestaltPowerBook140
gestaltQuadra950
gesta ltMacLCI II
gestaltPerforma450
gestaltPowerBookDuo210
gestaltMacCentris650
gestaltPowerBookDuo230
gestaltPowerBook180
gestaltPowerBook160
gestaltMacQuadra800
gestaltMacQuadra650
gesta ltMacLCII
gestaltPowerBookDuo250
gestaltAWS9150_80
gestaltPowerMac8100_110
gestaltAWS8150_110

II machine type

471

472
Macintosh Programming Techniques. ZE

gestaltMacllvi
gestaltMacllvm
gestaltPerforma600
gestaltPowerMac7100_80
gestaltMacllvx
gestaltMacColorClassic
gestaltPerforma250
gestaltPowerBook165c
gestaltMacCentris610
gestaltMacQuadra610
gestaltPowerBook145
gestaltPowerMac8100_100
gestaltMacLC520
gestaltAWS9150_120
gestaltMacCentris660AV
gestaltPerforma46x
gestaltPowerMac8100_80
gestaltAWS8150_80
gestaltPowerBooklBOc
gestaltPowerMac6100_60
gestaltAWS6150_60
gestaltPowerBookDuo270c
gestaltMacQuadra840AV
gestaltPerforma550
gestaltPowerBook165
gestaltMacTV
gestaltMacLC475
gestaltPerforma47x
gestaltMacLC575
gestaltMacQuadra605
gestaltQuadra630
gestaltPowerMac6100_66
gestaltAWS6150_66g
gestaltPowerBookDuo280
gestaltPowerBookDuo280c
gestaltPowerMac7100_66
gestaltPowerBook150

Example:

OSErr theError:
long theResponse:

theError - Gestalt(gestaltMachineType. &theResponse);

if C theError == noErr }
{

switch (theResponse }
{

case gestaltPowerMac6100_60:
case gestaltPowerMac7100_66:
case gestaltPowerMac8100_80:

Chapter 9 • The Varying Mac

Drawstring("\pYou have one of the original Power Macs!" >:
break:

}
}

else
Drawstring("\pGestalt error: Mac model type unknown" >:

Determining the Operating System Version
The operating system version number can be determined by using the
gesta l tSystemVers ion selector. Like the machine type, knowledge of
the operating system version may not lend enough information to make
programming decisions regarding the features of a particular Macintosh
model.

The response that Gest al t () returns is a hexadecimal representation
of the system version. For example, if the system is version 6.0.4, the
parameter theResponse will have a value of Ox0604. If the system ver
sion is 7.1.0, theResponse will have a value of Ox0710.

Selector code:

gestaltSystemVersion II operating system version

Response parameters:

II hexadecimal value that holds the version number of the OS

Example:

OSErr theError:
long theResponse:

theError - Gestalt(gestaltSystemVersion, &theResponse >:

if (theError == noErr }

473

474
Macintosh Programming Techniques. JE

if (theResponse < Ox0701)
{

else

Drawstring("\pThis program requires System 7.0.1 or later");
ExitToShel 1 ();

Drawstring("\pGestalt error: system version unknown");

CHECKIHG FOR TRAPS
The machine instructions for routines that you write exist, of course,
within your compiled source code. The machine instructions for Toolbox
routines, such as DrawStri ng(), exist outside your compiled source
code. This Toolbox machine code is housed in ROM, or occasionally, in
RAM. A Toolbox routine is also called a trap. The technique for placing
shared system code outside your compiled application is sometimes
called dynamic linking or shared libraries. This is different from the ANSI
library routines such as st r c py () that are compiled and linked together
with your application code so that every application has its own copy of
the compiled code.

If you are a Windows programmer, the Toolbox routines are similar to rou
tines found in Windows DLLs (Dynamic Link Libraries).

Toolbox Routines are Traps
A Toolbox routine is usually located in ROM, though the System may
on occasion load a routine in RAM. Where, exactly, is any particular

Chapter 9 • The Varying Mac

routine located in memory? The memory location of the routine is
determined from the routine's trap number. Each trap (each Toolbox
routine) has a unique trap number. The trap number is used by the sys
tem when the code that makes up a Toolbox routine needs to be exe
cuted. If your application makes a call to DrawStri ng(), the execution
of your application will be interrupted while the processor makes use
of the DrawStri ng() trap number to locate the code for the
DrawSt ring () routine.

~
~
H 0 TE

Chapter 1 stated that Toolbox routines are in ROM. Why renege here in
Chapter 9 by saying that some may be in RAM? For any given Macintosh,
the contents of ROM are fixed. A new and improved ROM with additional
routines may be included with the newer Macs. Can an older, existing
model, with its older ROM, ever get these newer routines? Yes, when Apple
provides a new system software. The new system software may contain
patches-code that loads routines from the System file into RAM. Such a
routine can be found in the ROM of a newer Mac and, via the patch, be
placed in the RAM of an older Mac.

Trap numbers are stored in a dispatch table in RAM. Each trap number
serves as an index to an entry in the dispatch table. Each entry is an
address. An address to? Yes, finally-an address to the code that makes
up a trap, or Toolbox routine.

Figure 9.4 shows how a call to a hypothetical Toolbox routine called
Routi neB() results in the system first going to a trap number in RAM
Trap 2 in this simplified example. The address associated with Trap 2 is
the address of the executable code for Routi neB()-address
Ox00400500. This address is the memory address of Routi neB(). From
there, the processor goes to address Ox00400500 to find and execute the
code for the function RoutineB(). Whether this address is a RAM or ROM
address is unimportant to you, the programmer.

475

476
Macintosh Programming Tlchnlqaes, ZE

RAM

RoutineC ():Trap 3

Routines ():Trap 2

RoutineA () : Trap 1

ROM

Rou~in~,(J · .
·exe.ctrtitb.@J!()~e;

Figure 9.4 A trap number leads to a Toolbox routine.

Figure 9.5 summarizes what's been covered up to this point. This figure
shows what happens when your application makes a call to the Toolbox
routine DrawStri ng().

As mentioned, while the executable code for most of the Toolbox routines
exists in ROM, some does exist in RAM-it gets loaded there from the
System file each time your Mac boots up.

Chapter 9 • The Varying Mac

Ci)
Drawstring("\pHello, world!•) ; <.--------------~

RAM ROM ~

Ci) A call to Drawstring ().

Drawstring (>
.executabte code

~IB~ New Windom El

Hello, World!

@ Using the Drawstring () trap number, check in RAM to find the address

@ Using the address from RAM, find the Drawstring () code in ROM.

@ Execute the code that makes up the Drawstring<) function.

@ After execution of Drawstring () is complete, return to the application code.

Figure 9.5 Sequence of events in a call to DrawSt ring ().

477

478
Macintosh Programming Techniques. ZE

Each Toolbox routine is represented by a trap, and all of the traps are
grouped together in the RAM dispatch table. The dispatch table thus
holds the starting address of each of the thousands of Toolbox routines.
For simplicity, imagine that the latest version of the Toolbox contains just
three routines generically named Routi neA(), Routi neB(), and
Routi neC(). Figure 9.6 shows the dispatch table for this hypothetical
Toolbox. Since the topic is now hypothetical, the figure doesn't show
actual addresses-it simply labels the addresses as address!, address2,
etc. for reference.

Unimplemented: Trap 6

Trap5

Trap4

Routinec ():Trap 3

RoutineB ():Trap 2

RoutineA ():Trap 1

address6

address6

address6

address3

address2

addressl

1
The rest
of RAM

~
l

Dispatch
table

J
Figure 9.6 A hypothetical dispatch table in RAM.

Figure 9.6 serves as a reminder that a trap represents a Toolbox routine,
and has both a trap number and an address associated with it. Notice
further that there are traps that don't represent any function; in this

Chapter 9 • The Varying Mac

hypothetical example those traps are Trap 4 and Trap 5. Notice further
that these two empty traps both have the same address-address6. This
is the same address as the dispatch table entry labeled Uni mp 1 emented.
Take careful note of this point; it will serve as the basis for determining
whether a Toolbox routine exists in the Toolbox of the computer your
application is running on.

The unimplemented trap exists not only in the hypothetical
Macintosh-it exists in every real Macintosh computer as well. And
Apple guarantees that it will never change its trap number and will never
use it to house the address of a Toolbox routine. You'll see the relevance
of this just ahead.

A dispatch table is not full. As you saw in Figure 9.6, it has empty
entries. As Apple releases new versions of the system software, some of
these previously empty entries will contain valid addresses that direct the
processor to the code of new Toolbox routines. Figure 9.7 illustrates this.

Unimplemented: Trap 6

Traps

Trap4

RoutineC ():Trap 3

Routines ():Trap 2

RoutineA(): Trap 1

Dispatch table
for Old Toolbox

addre~s6

address6

address6

ad.dress3

addre~s2

addressl

~

Dispatch table
for New Toolbox

address6

. address6

address4

' address3

acidress2

'addressl

New dispatch
/1-i table entry, for
~ new function

RoutineD()

Figure 9.7 The dispatch table for an old and a new Toolbox.

479

480
Macintosh Programming Techniques. ZE

In Figure 9.7, the new dispatch table and the old dispatch table differ by
just one entry. For the new Toolbox, Trap 4 now holds the address of a
new Toolbox routine, Rout i neD C).

Now, after that very lengthy introduction to traps, it's time to cover
the topic that is really of interest to you. Namely, if different Macs con
tain different versions of the Toolbox, how can you be sure that a Toolbox
call you'd like to include in your source code is present on the Macintosh
that will be running your application?

~ Why all the fuss about traps and their availability? Quite simply, if you attempt
~ to make a call to a nonpresent Toolbox routine, your application will crash.

N 0 TE

The answer to the preceding question lies in the fact that dispatch table
entries that are empty all contain the identical address: the one found in
the unimplemented trap. Figure 9.8 illustrates this.

Unimplemented: Trap 6

Trap 5

Trap4

RoutineC ():Trap 3

RoutineB ():Trap 2

RoutineA(): Trap 1

·address6

.address6

aqdress:6
. . ',

.address3

adqress2

.addressl

The address of the
always-present

0
unimplemented trap •..

/1-i ... is given to all
~ empty entries in <CJ the dispatch table.

Figure 9.8 Addresses in empty entries of the dispatch table.

Chapter 9 • The Varying Mac

To determine if a Toolbox routine is present, you compare its address to
the address of the unimplemented trap. In doing so, you'll rely on the
trap numbers to supply your program with the addresses. Remember,
empty dispatch table entries have been assigned the same address as
that placed in the unimplemented trap. That means that if your compar
ison results in two identical addresses, the routine is not present in the
version of the Toolbox you are checking. Figure 9.9 illustrates this, again
using the hypothetical Toolbox.

Traps

Trap5

Trap4

Trap3

Trap2

Trap 1

'

Dispatch table
for Old Toolbox

addresa6

a~dre~s6

addre$s6·

address3

addres.s.2

addressl

Trap 4 entry empty, thus
routine not implemented

Dispatch table
for New Toolbox

address6

address6

address4

address3

adaress2

ad(lressl

Trap 4 entry not empty,
routine is implemented

To test for the presence of RoutineD (), with a trap number of 4 ...

Compare: the address in the unimplemented trap, Trap 6,
To: the address in RoutineD () trap, Trap 4.

Figure 9.9 Testing for routine Toolbox implementation.

481

482
Macintosh Programming Techniques. ZE

Now that you know the theory behind checking for implemented
Toolbox routines, it's time to move on to the real thing: the code to
include in your application to perform this check.

Determining If a Toolbox routine is Implemented
In the previous section, you saw that each Toolbox routine has a trap num
ber by which the code for the routine is accessed. In that section generic
names and numbers were used for the traps. Here's a look at a real C def
inition of a real trap number-the trap number for GetNewCWi ndow(), the
Toolbox routine that loads a color window into memory:

41defi ne _GetNewCWindow OxAA46

The Traps.h universal header file included with the Symantec IDE and
the Metrowerks IDE takes care of definitions such as the above. You can
include _GetNewCWi ndow and other traps in your program, and your
IDE will compile your source code without complaint.

To refer to a trap in your source code, you simply preface the routine
name with an underscore; it is not necessary to know the trap number.
The trap number exists for the processor to use as an index into the dis
patch table. Here's an example that uses the Toolbox function
NGetTrapAddress () to get the memory address of the
GetNewCWi ndow() code, as found in the dispatch table:

UniversalProcPtr theCWindTrapAddr:
theCWindTrapAddr = NGetTrapAddress(_GetNewCWindow. ToolTrap >:

In pre-PowerPC days NGetTrapAddress () was defined such that it returned
a long value. The four bytes of a long were perfect for holding the 4-byte
address of a Toolbox routine's code. As shown in the above snippet, newer
versions of Apple's Traps.h universal header file define the return value of
NGetTrapAddress () as type Universal ProcPtr. Whether you're compiling
with a 68K compiler or PowerPC compiler, the above code will work.

The preceding code by itself is not very useful. But when you also get the
address of the unimplemented trap, and then make a comparison of the
two addresses, you have the solution to the problem of determining if a
routine is present in the Toolbox. Below is a snippet that can be used to

Chapter 9 • The Varying Mac

check to see if the GetNewCWi ndow() function is in the Toolbox of the
user's machine:

UniversalProcPtr theCWindTrapAddr:
UniversalProcPtr theUnimplementedAddr;

theCWindTrapAddr - NGetTrapAddress(_GetNewCWindow, ToolTrap);
theUnimplementedAddr ~ NGetTrapAddress(_Unimplemented, ToolTrap);

if (theCWindTrapAddr == theUnimplementedAddr)
{

II the GetNewCWindow() function is not available

-else
{

II the GetNewCWindow() function is available

The second parameter in the call to NGetTrapAddress ()-ToolTrap
may have caught your eye. There is one final point to make about traps.
There are actually two separate dispatch tables in RAM. One holds the
traps for Operating System routines, while the other holds the traps for
Toolbox routines. In general, Operating System routines are functions
that perform low-level tasks. An example of an Operating System rou
tine is Eject () , which, not surprisingly, ejects a disk from the disk
drive. Examples of Toolbox routines are MoveWi ndow () , which moves a
window, and the numerous drawing routines, such as FrameRect()
and Pai n t 0 v a 1 () .

To allow you to distinguish between the Operating System traps and
the Toolbox traps, Apple has created the Macintosh C enumerated type
Trap Type. There are two members to this type: OSTrap and ToolTrap.

In the previous code fragment, how would you know that
GetNewCWi ndow() was a Toolbox trap and not an Operating System
trap? One method is to look up the routine name in Apple's Inside
Macintosh series of books. All trap numbers begin with $A. If the next
digit in the trap number is between 0 and 7, then the trap is in the OS
dispatch table and is of the OSTrap type. If the digit is instead between 8
and F, then the trap is in the Toolbox dispatch table and is a ToolTrap
type. You know that GetNewCWi ndow() is a ToolTrap type because the
digit following the $A (it too just happens to be an A) falls in the range of
8 and F. Figure 9.10 shows a listing of a few Toolbox trap numbers.

483

484
Macintosh Programming Tczchnlques. ZE

_GetNamedResource $A9Al

_GetNewControl $A9BE

GetNewCWindow $AA46

- Toolbox traps 0 ~ II the next digit ls In
start with $A the range of 8-F, the

trap Is a Tool Trap

Figure 9.10 Determining the type of trap.

If you don't have a reference book handy, there is a second method to
determine a trap's type. It's done by writing a couple of routines of your
own, and it's a little tricky. By now you probably already know more
about traps than you ever hoped you would. For that reason, those
application-defined functions have been thrown into an appendix. If
you're brave, or perhaps masochistic, refer to Appendix B.

So that you can fully understand what was transpiring, the previous
snippet was intentionally made a little wordy. Now that you are a trap
master, that code can be tightened up a little:

Boolean colorWindAvail;

colorWindAvail = C NGetTrapAddressC _GetNewCWindow, ToolTrap)
!= (NGetTrapAddress(_Unimplemented, ToolTrap));

if (colorWindAvail == true)
{

II call GetNewCWindow() to open a color window

else
{

II the GetNewWindow() to open a regular window

A general approach is to make your Boolean variable global and perform
the trap check near the start of your code. Then you can use the Boolean
every time you have to check for the presence of this one Toolbox routine.

Chapter 9 • The Varying Mac

MO"ITOlttiWflRE
The original Ford Model T car came in a choice of colors: black, or
black. Like the car, the original Macintosh model came with your
choice of monitor: built-in 9-inch diagonal black and white or ... you
get the point. No choice of size, no choice of color display. Things have
changed in ten years, and so have the tricks you'll need to use to make
sure the programs you write are compatible with both color and mono
chrome monitors, with monitors of different sizes, and with Mac sys
tems with more than one monitor. The topic of multiple monitors is
covered first.

Dealing with Multiple Monitors
Though most users have just a single monitor, don't assume this is so. If
you don't allow the user to drag windows across monitors, or a window
comes up centered between two monitors, the user will quickly become
frustrated with your program.

Setting the Wlndo~ Drag Region
In Chapter 4 tJle boundaries of the screen were used to set the bound
aries for dragging a wind~w. That method works just fine for a system
that has a singl~ monitor. If you don't want to make that assumption
(and you shouldn't), you'll need to use a reference other than the
screen boundaries.

For a system with multiple monitors, it is important that you prop
erly set the boundaries for window dragging. The size of this drag
boundary rectangle is dependent on the size of the monitor. More cor
rectly, it is dependent on the area that makes up the desktop. Because the
desktop is usually gray, this area is known as the gray region. Formally,
it consists of a region that is the union of any active screen devices (mon
itors) minus the menu bar. Figure 9.ll shows the gray region for a dual
inonitor system that is made up of a Mac with a built-in monitor and an
additional 15" display.

485

486
Macintosh Programming Techniques. 2E

•• II lllll llll!! II Ill II!! I

• + • = the gray region

Figure 9.11 The gray region of a dual-monitor system.

If you want to give the user the ability to drag windows created by your
application across monitors, you need to set up your drag boundary rec
tangle so that it encompasses the entire gray region. Luckily, a routine
you call during initialization does much of the work for you. When your
initialization routine calls I ni tWi ndows () it calculates this region and
saves it to a global rgnHandl e variable called GrayRgn. To get the value
of this variable, call the Toolbox routine LMGetGrayRgn (),as shown here:

RgnHandle theGrayRegion;
theGrayRegion - LMGetGrayRgn();

The following application-defined function is a replacement for the
SetWi ndowDragBounda ri es () routine created in Chapter 4. This new
version creates a rectangle independent of the number of monitors run
ning-a drag rectangle set to the size of the gray region. The rest of the
routine is the same as the old version. Recall that the constant kDragEdge
is used to inset the drag rectangle a few pixels so that the drag area is not
quite as big as the gray region, thus preventing the user from dragging
windows off the screen. Here's the new routine:

#define kDragEdge 10

Re ct gDrag Re ct:

void SetWindowDragBoundaries(void)

{
RgnHandle theGrayRegion:

theGrayRegion = LMGetGrayRgn();

gDragRect = C**theGrayRegion).rgnBBox;
gDragRect.left += kDragEdge;
gDragRect.right -= kDragEdge;
gDragRect.bottom -= kDragEdge;

Chapter 9 • The Varying Mac

After getting the value of the desktop area, the region handle is derefer
enced twice in order to access the rgnBBox field of the Region data struc
ture. The rgnBBox member holds the boundaries of the region.

Accessing System Global Variables
Before moving on to the next monitor-related topic, this section provides
a few words regarding system global variables-a topic just introduced
with the new version of the application-defined function
SetWindowDragBoundaries().

The discussion of the gray region brought up mention of the system
global variable GrayRgn. In the past, Mac programmers often included
variables such as GrayRgn in their code. Because a system global variable
is defined system-wide, any application can use it without first declaring
it. In the preceding section, though, GrayRgn wasn't used directly, as in:

gDragRect = C**GrayRgn).rgnBBox:

Instead, a Toolbox function was used to obtain the value of GrayRgn and
to then return this value to your program:

RgnHandle theGrayRegion:

theGrayRegion = LMGetGrayRgn();

System global variables are stored in the very bottom of the system par
tition-that's why they're also called low-memory global variables. While
programmers have included low-memory global variables in their code,
Apple states that the best approach to using these variables is to do so
through Toolbox accessor functions. Letting an accessor function find the

487

488
Macintosh Programming Tczc:hnlquvs. ZE

global variable and return its value provides Apple the freedom to relo
cate these variables in the future-something that may or may not be
necessary. If your code relies directly on a system global variable, it will
"break" at a later date should that variable be moved to a different mem
ory location.

You'll find numerous accessor functions in the LowMem.h universal
header file. You've already seen one such function-LMGetGrayRgn().

Setting the Center Point for Windows
As a programmer writing an application that may run on a dual-moni
tor system, you should be concerned with the centering of windows and
dialog boxes. If you're still excited about your introduction to the gray
region, and why wouldn't you be, your first thought may be just to cen
ter windows according to the value of the global GrayRgn variable. It's a
good thought, but you should reconsider.

Centering a window by the GrayRgn works fine for a single-monitor
system. For a dual-monitor Mac it would place the window between the
two monitors, something that the user would find less than desirable.
Figure 9.12 illustrates the results of window centering using GrayRgn.

l llllllllll llllllDlll'I

Figure 9.12 An improper window centering on a dual-monitor system.

Instead of using the entire desktop for centering, as you do for window
dragging, you can use just the main screen: the screen that displays the
menu bar. The window or dialog box you're going to bring to the screen
and center is no doubt a result of the user choosing a menu option. So it
is most likely that's where the user is focused-on the monitor with the
menu bar.

Chapter 9 • The Varying Mac

If your program is designed so that it requires System 7 or later, you
can use your resource editor to set window centering for a window. In
ResEdit, open the WIND resource that will be used for the window that is
to be centered. Then select Auto Position from the WIND menu. Using
the pop-up menu found on the left of the dialog box that opens, mark the
WIND as one that will be used to open windows that are centered on the
user's screen main screen, as is being done in Figure 9.13.

Rutomatlcally Position the Window
(Works only with System 7 .O or later.)

Main Screen

n OK ,

..... ,

Figure 9.13 Using ResEdit to mark a WIND resource for automatic centering.

As stated in the ResEdit Auto Position window, marking the WIND
resource for centering only works for programs running under System 7
or later. If you'll be allowing users with System 6 to run your program,
you can't rely on the ResEdit trick. Instead, you'll have to perform win
dow centering from within your application's source code.

To center the window, you need to get the gray area of that one monitor.
You can accomplish this with a call to the Toolbox routine Get Main Device C) .

A monitor is a graphic display device. When the Mac starts up it
checks its expansion slots for display devices. The Mac stores the infor
mation it obtains for a device in a device structure-a GDevi ce data
structure to be exact. It then stores these structures in a device list. You'll
learn more about devices later in this chapter when color issues are dis
cussed. For now, your only interest will be in getting a handle to the
main display device; that is, the device that displays the menu bar. That's
exactly what GetMai nDevi ce() does.

One of the members of a GDevi ce structure is gdRect. This rectangle
is the boundary rectangle of the device's display. Figure 9.14 shows the

489

490
Macintosh Programming Techniques. 1E

relationship between GDHandl e and GDevi ce. For simplicity, just a cou
ple of the members of the GDevi ce structure are shown.

GDHandle I Ha!ldl& ioc •• > struct GDevice
{

PixMapHandle gdPMap;

Screen boundaries c:) Rect gd.Rect;

Figure 9.14 GDHandl e is a handle to a GDevi ce structure.

The boundary rectangle includes both the gray area and the area of the
menu bar. You can thus use the bounds of gdRect to determine the cen
ter of the main screen. Here's how:

Point gScreenCenter:

void DetermineScreenCenterC void)
{

short theMBarHeight:
GDHandle theMainDevice:
Rect theBoundsRect:

theMBarHeight = LMGetMBarHeight();
theMainDevice = LMGetMainDevice();

theBoundsRect = (**theMainDevice).gdRect:

gScreenCenter.h = (theBoundsRect.right /2):
gScreenCenter.v = (theBoundsRect.bottom/2) + (theMBarHeight/2 >:

The Determi neScreenCenter() routine begins by calling the accessor
function LMGetMBa rHei ght () to determine the height of the menu bar
that value will need to get factored into calculation of the screen's center.
Next, another accessor function is called. The Toolbox routine
LMGetMa i nDevi ce () returns a handle to the display device holding the
main screen. Dereference the handle so that you can look at this screen's

Chapter 9 • The Varying Mac

boundary rectangle, gdRect. Make the Point variable that holds the cen
ter point, gScreenCenter, global so that you can use it throughout your
program for centering any windows, dialog boxes, or alerts.

n 0 TE

Data structures and routines that Apple introduced to support the use of
graphics devices are a part of Color QuickDraw. If the user doesn't have
Color QuickDraw, your program can't use them.

A second method for centering a window on the main screen is to use the
screenBi ts field of the global variable qd. The screenBits field is a
structure that represents a bitmap of the main screen. The bounds mem
ber is a Rect that defines the boundaries of the screen of the main dis
play. Here, in its entirety, is a means to determine the center of the main
screen without using graphics device structures:

short theMBarHeight:

theMBarHeight = LMGetMBarHeight(};

gScreenCenter.h = qd.screenBits.bounds.right/2:
gScreenCenter.v = (qd.screenBits.bounds.bottom/2 } +

(theMBarHeight/2 >:

Easy, huh? So why were you forced to go through the much longer explana
tion using the GDHandl e? Because you'll need all of this information ~n
graphics devices for the upcoming discussion about working with color.
Determining the screen center from the GDHandl e provides you with a sound
explanation of device theory.

Once you know the center of the screen it's simple math to center a win
dow or dialog box. The following snippet uses a call to GetNewWi ndow()
to demonstrate how to center a window using the gScreenCenter
point.

//define
f/defi ne
/ldefi ne

rDisplayWindow
kWindowWidth
kWindowHeight

Point gScreenCenter:

128
350 // obtain from ResEdit
200 // obtain from ResEdit

491

492
Macintosh Programming Techniques. 2E

void OpenAndCenterWindowC void >
{

}

WindowPtr theWindow:
short theTop;
short theleft:

theWindow - GetNewWindowC rDisplayWindow. OL, CWindowPtr)-ll);

if C theWi ndow = nil)
ExitToShell ():

theleft - gScreenCenter.h - C kWindowWidth /2);
theTop - gScreenCenter.v - C kWindowHeight/2 >:

MoveWindowC theWindow. theleft. theTop, true >:

ShowWindowC theWindow >:

After GetNewWi ndow() loads a window into memory, use the Point
variable gScreenCenter to establish the top left comer of the window.
You set the width and height of the window when you create the WIND
resource in ResEdit. Use MoveWi ndow() to move the window to the cen
ter of the screen.

If the WIND resource that defines this window made the window invis
ible, then the centering of the window took place behind the scenes-as
desired. Now it's time to display it with a call to ShowWi ndow().

Dealing with Different Sized Monitors
In the previous section, you saw how to use the accessor function
LMGetGrayRgn () to determine the boundaries of the desktop for a sys
tem that has more than one monitor. You then learned how to make a
call to another accessor function-LMGe tMa i n Devi ce ()-to help deter
mine the center of the screen that holds the menu bar. Both of these tech
niques, which are used to avoid problems should multiple monitors be
present, work for a single monitor system regardless of the screen size
of the monitor.

You should use the last section's SetWi ndowDragBounda ri es () rou
tine in all of your applications; it works for single- or dual-monitor sys-

Chapter 9 • The Varying Mac

terns, regardless of the size of the monitor or monitors. The same is true
for the Determi neScreenCenter() routine and the window centering
technique used in the OpenAndCenterWi ndow() example.

COLOR fiWflRE
The way in which your program behaves may be dependent on the mon
itor on which it is displayed. To make your program truly compatible
with the variety of Macintosh systems on the market, you'll want it to be
able to display color on a color Macintosh while still being able to run on
a monochrome or grayscale system.

Color Representation
A monochrome monitor represents a single pixel on the screen using a
single bit of memory. A bit has two possible values, 0 and 1, so any pixel
on the screen of a monochrome monitor can have two possible values:
white or black.

To allow a pixel to be capable of displaying more than two colors,
that pixel must be represented by more than a single bit of memory. If 2
bits are used per pixel, then a pixel can take on any one of four colors.
Four bits per pixel yields 16 colors, while 8 bits gives 256 colors. Using 8
bits (a byte) of memory per pixel is common. After 8 bits comes 16-bit
and 24-bit color representation. Systems that use 16-bit color are becom
ing more common, but 24-bit color is still usually reserved for high-end,
expensive systems.

The number of bits that represent a single pixel is the monitor's pixel
depth, or pixel value. Determining a monitor's pixel depth will be the pri
mary focus of this section.

Knowing the pixel depth of the monitor that is displaying your pro
gram is important because your program may make decisions based on
the level of color the monitor can display. Here's a typical decision your
program might make:

if machine has color. and monitor is set to display color
draw color text

493

494
Macintosh Programming Techniques. ZE

otherwise
draw black and white text

Another example is the displaying of pictures. If your program is to dis
play a picture in a window, you might want to have two or three sepa
rate ones to pick from. The picture the program displays will depend on
the amount of color the user's Macintosh can display. When a black and
white Mac shows a color picture, the computer translates the colors to
black and white. A monochrome Mac displays similar shades of a dark
color as black. If these colors are adjacent, the areas that should be sepa
rate and distinct will blend into one. Figure 9.15 shows the display of the
same picture on a 16-color, four-color, and monochrome monitor. Note
that the monochrome monitor can't make the distinction between shades
and produces an undesirable display of the picture.

I I I
I ! I

I i I

4-bit color
(16 colors)

2-bit color
(4 colors)

1-bit color
(2 colors)

Figure 9.15 The same picture viewed at 4-, 2-, and 1-bit color.

Getting the Pixel Depth of a Monitor
In this chapter's discussion of how to determine the center of a monitor,
the concepts of graphics devices and the device list arose. A monitor is a
graphics device. More technically, a video card or built-in video interface

Chapter 9 • The Varying Mac

is a graphics device. The RAM memory that holds the value of each dis
play pixel is located on the video card, not the RAM in the Macintosh.
Information about a graphics device is stored in a GDevi ce structure,
which is in tum placed in a device list. Recall that a GDHandl e is a han
dle to a GDev ice structure.

r2
" 0 T E

Video devices such as a plug-in video card or a built-in video interface are
actually just one of three types of graphics devices. Offscreen graphics
worlds (used to store an image in memory) and printing graphics ports
(used to send graphics and text to a printer) are the second and third types
of graphics devices. The M&T publication Graphics and Sound Programming
Techniques for the Mac covers offscreen graphics worlds in detail. The book
More Mac Programming Techniques, also by M&T Books, describes printing
from within Macintosh applications.

You obtain a handle to the first device in the device list by calling the
Toolbox routine Get Device List () . Once you have the handle, pass it to an
application-defined routine that determines the pixel depth of the display:

GDHandle theCurrentDevice:
short thePixelDepth:

theCurrentDevice = GetDevicelist();
thePixelDepth = GetPixelDepthC theCurrentDevice >:

Before you look at GetPi xel Depth(), a little background information is
necessary. A graphics device has a pixel map that is represented by a
Pi xMap data structure. A Pi xMap is a structure that holds such informa
tion as the starting address of the device's video RAM and the depth of
each pixel in the map. What you're after is the pixel depth; that is, the
pixel Size member of the Pi xMap structure.

One member of the GDevi ce structure, gdPMap, is a handle to the
pixel map of the screen-a Pi xMapHandl e. Once you have the handle to
the screen's pixel map, look at the pixel Size member of the Pi xMap.
This gives you the pixel depth of the display. Figure 9.16 shows the path
to the pixel depth.

495

496
Macintosh Programming Techniques. ZE

GDHandle I Handleto •.• > ~truct GDevice

PixMapHandle gdPMap;

Rect gdRect;

PixMapHandle I Handle to •.• >
pixel depth c)

struct PixMap
{

short pixelSize;

Figure 9.16 The path from GOHandl e to pixel Size.

Now that you have background information on Pi xMaps,
Get Pi xe 1 Depth () should make sense to you. Here it is:

short GetPixelDepth(GDHandle theDevice
{

PixMapHandle screenPMapH:
short thePixelDepth:

screenPMapH = C**theDevice).gdPMap:
thePixelDepth - (**screenPMapH).pixelSize:
return C thePixelDepth >:

GetPi xel Depth() first takes the passed in GDHandl e variable and deref
erences it get to the GDevi ce structure. There you get gdPMap, a Pi xMap
handle to the screen of the device being examined. Because you have a

Chapter 9 • The Varying Mac

handle, not the actual pixel map itself, you have to dereference it to get
to the pi x el Si z e member of the Pi xM a p.

Now that you have the pixel depth of a monitor, how do you use it?
One use is for displaying pictures to a window. Your technique might be
to store two pictures in a resource file-one designed for monochrome
systems and one for color systems, as shown in Figure 9.17. Which pic
ture gets drawn to the window is dependent on the current pixel depth
of the user's monitor.

PICT 301
for color
systems

Figure 9.17 Two similar PICT resources: one for color, one

for monochrome systems.

Multiple Monitors and Pixel Depth
What about a system that has more than one monitor? If there is more
than one display device, your interest will be in determining the pixel
depth of each monitor and saving the minimum depth. Why? If one
monitor is black and white, and a second is color, you'll want to display
program features in monochrome so that they are properly viewed on
both monitors. If you displayed PI CT 301 from Figure 9.17 in a window
that spanned both monochrome and color monitors, the result would be
undesirable, as demonstrated in Figure 9.18.

497

498
Macintosh Programming TCKhnlquvs. 2E

Black and white monitor Color monitor

Figure 9.18 A color picture displayed across two monitors.

To avoid the problem shown in Figure 9.18, you'd display the picture
designed for the monitor with the lower pixel depth, PI CT 302, as shown
in Figure 9.19. The same discussion holds true for a system that has two
color monitors; your program should execute as if it were running on a
system of the smaller depth.

Black and white monitor Color monitor

Figure 9.19 A monochrome picture displayed across two monitors.

This discussion brings up another point. The GetPi xel Depth() routine
determines and returns the pixel depth of a single device. Since your

Chapter 9 • The Varying Mac

application may be running on a dual-monitor system, shouldn't you
check each device? Good point. You'll want to check the pixel depth of
each device and set a global variable to keep track of the smallest (shal
lowest?) depth.

Instead of directly calling GetPixelDepth(), call an application
defined routine that loops through each graphics device, checking the
pixel depth of each and adjusting a global variable as it finds a device of
a smaller depth.

If there is more than one device, there will be more than one item in
the device list. So the device list is what you'll loop through. As before,
use the Toolbox function GetDevi eel i st() to return the first device in
the list. Use the Toolbox routine GetNextDevi ce () to return the follow
ing entry in the device list. When GetNextDevi ce() returns a value of
nil, you know you've reached the end of the list.

Begin by setting the local variable theMi nimumDepth to the largest
value you're likely to encounter-most likely 24-bit color. Then get a han
dle to the first device in the device list. Enter a loop and check the pixel
depth. If the pixel depth is smaller than the previous low value, reset the
theMi ni mumDepth to this new lower value. Call GetNextDevi ce () in the
loop to get a handle to the next device.

What happens if the system has just one monitor? At the first call to
GetNextDevi ce() you'll get a value of ni 1. When you go to the top of
the while loop the test will fail and the loop will end. In that case,
theMi ni mumDepth will hold the pixel depth of the one monitor. Here's
the code, along with a reprint of Get Pixel Depth ():

/idefi ne
/!define
/idefi ne
/jdefi ne
/idefi ne
/idefi ne

kPixelOepthBW
kPixe1Depth2Bit
kPixelDepth4Bit
kPixelDepth8Bit
kPixelDepth16Bit
kPixelDepth24Bit

short GetMinPixelDepthC void
{

GDHandle theCurrentDevice:
short thePixelDepth:
short theMinimumDepth:

1
2
4
8

16
24

theMinimumDepth = kPixelDepth24Bit:

II 1 bit = 2 colors
II 2 bits - 4 colors
II 4 bits = 16 colors
II 8 bits = 256 colors
II 16 bits=thousands of colors
II 24 bits=millions of colors

499

500

}

Macintosh Programming Techniques. ZE

theCurrentDevice = GetDevicelist():
whi 1 e C theCurrentDevi ce !=- ni 1)
{

}

thePixelDepth = GetPixelDepthC theCurrentDevice >:
if C thePixelDepth < theMinimumDepth)

theMinimumDepth = thePixelDepth:
theCurrentDevice - GetNextDevice(theCurrentDevice):

return theMinimumDepth:

short GetPixelDepth(GDHandle theDevice
{

PixMapHandle screenPMapH:
short thePixelDepth:

screenPMapH = (**theDevice).gdPMap:
thePixelDepth = C**screenPMapH).pixelSize:
return (thePixelDepth >:

Note that the previous snippet defines several constants, one for each
possible values theMi nimumDepth might have. Though they aren't used
here, you might use them later on in various tests. Here's an example
from a program that runs best on a machine displaying 256 colors. It calls
the GetMi nPi xel Depth() routine to set a global variable,
theMi ni mumDepth, to the lowest pixel depth.

short gMinPixelDepth:

gMinPixelDepth = GetMinPixelDepth():

switch (gMinPixelDepth)
{

case kPixelDepthBW:
Drawstring("\pThis program looks better in color!" >:
break;

case kPixelDepth2Bit:
case kPixelDepth4Bit:

Drawstring("\pSet your monitor(s) to 256 color if available."):
break:

case kPixelDepth8Bit:

Chapter 9 • The Varying ttac

Drawstring(H\pleave monitor settings as they are now.");
break:

default:
Drawstring(ff\pThis program displays only 256 colors." >:
break;

When to Call the Pixel Depth Routines
Your program can test for the availability of Color QuickDraw shortly
after it launches. If your program requires color and the user has a mono
chrome system, exit-or post a descriptive alert and then exit:

//define
I/define

rNoColorAlert
rFailedGestaltAlert

OSErr theError;
long theResponse:

128
129

theError =Gestalt(gestaltOuickdrawVersion, &theResponse):

if (theError """'" noErr)
{

if (theResponse == gestaltOriginalOD
{

else
{

Alert(rNoColorAlert, nil);
ExitToShell();

Alert(rFailedGestaltAlert, nil):
ExitToShell();

if your program prefers color, but will run on a monochrome system,
you can set a global flag variable based on the value returned by the call
to Gestalt ():

Boolean gColorQDPresent:

501

502
Macintosh Programming Techniques. ZE

OSErr theError;
long theResponse;

theError = Gestalt(gestaltQuickdrawVersion. &theResponse);

if (theError == noErr)
{

if C theResponse == gestaltOriginalQD
gColorQDPresent = true;

else

}
else
{

gColorQDPresent = false;

Alert(rFailedGestaltAlert. nil); II don't quit. just play it
gColorODPresent =false; II safe and assume monochrome

If the user's machine has color QuickDraw, determine the lowest color
level setting of the attached monitors. If Color QuickDraw isn't present
you can, of course, safely assume a pixel depth of 1 bit:

/ldefi ne kPixelDepthBW 1 II 1 bit= black and white

short gMinPixelDepth:

if C gColorQDPresent == true)
gMinPixelDepth = GetMinPixelDepthC):

else
gMinPixelDepth = kPixelDepthBW;

The Macintosh is a computer with flexible features; there are Macintosh
models designed to please all types of users. One of the features that can
be varied is the level of colors the monitor will display. As a convenience
to the user, Apple lets users change the color level at any time, even dur
ing the running of your application. This can be accomplished from the
Monitors Control Panel or the Control Strip (depending on the Mac the
user has), or from third-party utilities such as Ambrosia Software's
ColorSwitch. All three of these color-setting solutions are pictured in
Figure 9.20. Your program should be aware of the fact that the user can
change the color depth during the running of your program, and it
should thus not assume that the level of color at the onset of execution
will be the color level throughout the program's entire execution.

Chapter 9 • The Varying Mac

If the color level can be changed at any time, how can you possibly
know when to check to see if the user has made a change? If the user
selects the Monitor's control panel (or any other color-changing utility)
while your program is running, an update event will occur. Your pro
gram, ever watchful for the occurrence of an event, will be aware of this
update event. When an update event occurs, it's your cue to check if the
color level changed.

;;;[}== • Monitors
Setti'19s of s•lfl:ttd monitor : v7 .5

@Grays : Black & 'r(hite ~ 0 Colors :
4 I Options ...)
16

0
[ldenlify I

Drag monitors and menubar to rearrange duktop.

ii

0 RHrrange On Restart

® Rearrange On Close [

Uolume ~

Black & White
4 Colors
16 Colors

.t256 Colors
Thousands
Millions

Mui~~ SCdfl Oisp /411
• 256 Grays

256 Colors

Figure 9.20 The Monitors Control Panel, ColorSwitch, and the Control Strip.

If your program makes use of color, place a call to GetMi nPi xe l Depth ()
within the updateEvt case of the switch statement in your program's
event loop. Then, every time an update event occurs, your program will
recalculate gMi nPi xel Depth in case the update event was generated due
to a change in the color level. Here's the affected section of the event loop:

switch C theEvent.what
(

case mouseDown:
HandleMouseDown () ;
break;

II other event types here

503

504
Macintosh Programming Tcrc:hnlqua, ZE

case updateEvt:
gMinPixelDepth - GetMi nPixelDepth();
HandleUpdateEvent();
break;

CHAPTER PROGRAM: lttttERVIEW
This chapter's example program, InnerView, shows off the concepts pre
sented in this chapter in two ways. Ffrst, it does important behind-the
scenes work to determine the type of Macintosh it's running on. Second,
it shows you how to give a user feedback about his own machine. Figure
9.21 shows the window that the user will see when the program runs.

CPU Type:

RAM (MB):

System:

lnnerulew Results

PowerPC 601

24

7.5.2

Figure 9.21 lnnerView program in action.

Before jumping right into the display of information, Innerview follows
this chapter's recommendation to make sure that the user's machine
has what it takes to run the program. Innerview cj.emonstrates how to
use the Gestalt () function to verify that the user has System 7 or later
on his or her machine-a common requirement of many of today's
Macintosh programs. If the user is running a version of System 6, the
alert shown in Figure 9.22 is displayed. When the alert is dismissed,
Innerview qui ts.

Chapter 9 • The Varying Mac

Sorry, your computer doesn't meet the
minimum requirements to run this program:

• System 1 or later

([EHit to Finder)J

Figure 9.22 InnerView requires that the user's Mac have System 7 or later.

Program Resources: lnnerView.rsrc
The InnerView program has one ALRT and one DITL resource for dis
playing the alert that appears should the user be running a machine that
doesn't have System 7 or later. Figure 9.23 shows the DITL, along with a
look at the four types of resources used by Innerview.

I nnerUiew.t'Srt

Al.RT Din PICT 'w'INI>

~~ __ 0_1_11 __ s_f_t~_m __ ln_n_e_.rU_i_e~_•_.r_sr_c __ --t

!Q. Siu Name

126 156

DITL ID"" 128 from lnnerUlew.rsrc

Sorry, your computer doesn't meet the
minimum requirements to run this program:

• System 1 or later

(EHit to Finder J

Figure 9.23 The DITL used in the lnnerview alert.

505

506
Me1clntosh Progre1mmlng Techniques. ZE

InnerView has one WIND resource to be used for a window that displays
system information. The window also displays a picture. InnerView has
two PI CT resources, as shown in Figure 9.24. PI CT 128 is drawn in black
and white, while PI CT 129 was created using color-you'll see that when
you run the program or view the resource file in ResEdit.

While the Innerview resource file holds two pictures, only one will
be shown during the running of the program. If the user's monitor is set
to display 256 or fewer colors (meaning the user's system is using 8 bits
or less to keep track of any one color), Inner View will display PI CT 128.
If the user's monitor is set to display 16-bit or greater color, the program
will put up PI CT 129. Since the bits-per-color information may not be
meaningful to nonprograrnrners running Innerview, the picture displays
the number of colors the user's machine is capable of displaying at the
time the program is running.

PICTs from lnnerUlew.rsrc

.----~--.. '

, ____ J~___j
128

Thousands
or Millions
of Colors

129

Figure 9.24 InnerView's two PICT resources.

Program Listing: lnnvrView.c
Here, in its entirety, is the InnerView source code. Much of it will look
familiar to you. The portions not familiar will be covered in the sections
that follow.

//define rResultsWindow 128

kWindowTitleString
rSysincompatibleAlert
r8BitOrLessPicture
rGreaterThan8BitPicture
kPixe1Depth8Bit
kPixelDepth24Bit
kPictureleft
kPictureTop
klnfoNameX
kinfoMacX
kinfoStartY

Chapter 9 • The Varying Mac

"\pinnerview Results"
128
128
129

8
24

240
5

30
120
60
20

/ldefi ne
//define
//define
//define
fldefi ne
i/defi ne
//define
//define
//define
/ldefi ne
ildefi ne
I/define
I/define
//define
//define
//define
I/define
//define
fldefi ne

klineSpacing
kinfoProcessorY
kinfoMemoryY
kinfoSystemY
kDragEdge
kASCIIzero

kinfoStartY + CO * klineSpacing
kinfoStartY + Cl * klineSpacing
kinfoStartY + (2 * klineSpacing

Boolean
Re ct
Boolean
short

kASCIIperiod
kBytesinOneKB

gAllDone = false:
gDragRect;
gCPUisPowerPC;
gMinPixelDepth:

void main(void)
{

MaxApplZone():
MoreMasters():
MoreMasters();
MoreMasters();

InitializeToolbox():
CheckSystem():
SetWindowDragBoundaries();

OpeninnerViewWindow():

Eventloop():

20
Cchar)Ox030
Cchar)Ox02E

1024L

507

508
Macintosh Programming Techniques. ZE

void CheckSystemC void)
{

SysEnvRec theMacinfo:
OSErr theError:
long theResponse:

SysEnvironsC curSysEnvVers. &theMacinfo >:

if C theMacinfo.systemVersion < Ox0700)
{

StopAlertC rSysincompatibleAlert. nil):
ExitToShel 1 C):

theError =Gestalt(gestaltSysArchitecture. &theResponse);
if C theResponse ==- gestaltPowerPC)

gCPUisPowerPC = true:
else

gCPUisPowerPC = false;

gMinPixelDepth = GetMinPixelDepth();

short GetMinPixelDepthC void)
{

GDHandle theCurrentDevice:
short thePixelDepth:
short theMinimumDepth:

theMinimumDepth = kPixelOepth24Bit;
theCurrentDevice = GetDeviceList();
while C theCurrentDevice != nil)
{

thePixelDepth - GetPixelDepthC theCurrentDevice >:
if C thePixelDepth < theMinimumDepth)

theMinimumDepth - thePixelDepth:
theCurrentDevice = GetNextDeviceC theCurrentOevice);

return theMinimumDepth:
}

short GetPixelDepth(GDHandle theDevice
{

PixMapHandle screenPMapH;
short thePixelDepth:

Chapter 9 • The Varying Mac

screenPMapH = C**theDevice).gdPMap:
thePixelDepth = (**screenPMapH).pixelSize:
return C thePixelDepth);

void SetWindowDragBoundariesC void)
{

RgnHandle theGrayRegion;

theGrayRegion = LMGetGrayRgn();

gDragRect - C**theGrayRegion).rgnBBox;
gDragRect.left += kDragEdge:
gDragRect.right -= kDragEdge:
gDragRect.bottom -= kDragEdge;

/! __ _

void OpenlnnerViewWindowC void)
{

WindowPtr theWindow:

theWindow = GetNewCWindowC rResultsWindow. nil, (WindowPtr)-lL);

if < theWindow == nil
ExitToShell();

SetWTitleC theWindow, kWindowTitleString):

509

510
Macintosh Programming Techniques. ZE

ShowWindowC theWindow);

void Eventloop(void)
{

EventRecord theEvent:

while C gAllDone:: false
(

WaitNextEvent (everyEvent, &theEvent, 15L, nil) :

switch (theEvent.what
{

case mouseDown:
HandleMouseDownC theEvent):
break:

case updateEvt:
gMinPixelDepth = GetMinPixelDepth();
HandleUpdate(theEvent):
break:

void HandleMouseDownC EventRecord theEvent)
{

WindowPtr theWindow:
short thePart;

thePart = FindWindowC theEvent.where, &theWindow);

switch C thePart)
{

case inDrag:
DragWindow(theWindow, theEvent.where, &gDragRect);
break:

case inGoAway:

Chapter 9 • The Varying Mac

if C TrackGoAwayC theWindow, theEvent.where))
gA 11 Done ... true:

break:

case inContent:
if C theWindow != FrontWindow()

SelectWindowC theWindow):
break:

void HandleUpdateC EventRecord theEvent)
{

WindowPtr theWindow:
GrafPtr theSavePort:

theWindow = CWindowPtr)theEvent.message:

GetPort(&theSavePort):
SetPortC theWindow):

TextFont(systemFont >:
TextSize(12 >:

BeginUpdate(theWindow >:
DrawMacPicture();
DrawSystemlnfoHeadings();
GetSystemlnfoC>:

EndUpdate(theWindow):

SetPort(theSavePort):

void DrawMacPicture(void
{

PicHandle thePicture:
Rect theRect:
short theWidth:
short theHeight;

511

512
Macintosh Programming Technlqaa. 2E

short thePicturelD;

if C gMinPixelDepth > kPixelDepth8Bit
thePictureID = rGreaterThan8BitPicture;

else
thePictureID = r8Bit0rlessPicture;

thePicture = GetPicture{ thePictureID);

theRect ~ C**thePicture).picFrame:
theWidth = theRect.right - theRect.left;
theHeight = theRect.bottom - theRect.top;
SetRectC &theRect, kPictureleft, kPictureTop,

kPictureleft + theWidth, kPictureTop + theHeight);

DrawPictureC thePicture, &theRect);

void DrawSystemlnfoHeadings{ void)
{

MoveToC klnfoNameX, klnfoProcessorY);
Drawstring("\pCPU Type:");
MoveToC klnfoNameX, klnfoMemoryY);
Drawstring{ "\pRAM CMB):");
MoveToC klnfoNameX, klnfoSystemY);
Drawstring{ "\pSystem:");

void GetSystemlnfo{ void)
{

}

GetUsersProcessorType{);
GetUsersAmountOfRarnC);
GetUsersSystemVersion();

void GetUsersProcessorTypeC void)

Chapter 9 • The Varying Mac
513

OS Err theError:
1 ong theResponse:

theError = Gestalt(gestaltNativeCPUtype, &theResponse >:
if C theError == noErr)
{

MoveToC klnfoMacX, klnfoProcessorY) :

switch C theResponse)
{

case gestaltCPU68000:
Drawstring("\p68000") :
break:

case gestaltCPU68010:
Drawstring("\p68010") :
break:

case gestaltCPU68020:
Drawstring("\p68020") :
break:

case gestaltCPU68030:
Drawstring("\p68030") :
break:

case gestaltCPU68040:
Drawstring("\p68040") :
break:

case gestaltCPU601:
Drawstring("\pPowerPC 601") :
break:

case gestaltCPU603:
Drawstring("\pPowerPC 603") :
break:

case gestaltCPU604:
Drawstring("\pPowerPC 604") :
break:

default:
Drawstring("\pType unknown" >:
break:

}

514
Macintosh Programming Technlqaes. 2E

void GetUsersAmountOfRam(void }
{

OSErr theError:
long theResponse:
long theNumMB:
Str255 theMegabyteString;

theError =Gestalt(gestaltPhysicalRAMSize, &theResponse >:
if (theError == noErr }
{

theNumMB = theResponse/C kBytesinOneKB * kBytesinOneKB >:
NumToString(theNumMB, theMegabyteString };

MoveTo(klnfoMacX, klnfoMemoryY }:
Drawstring(theMegabyteString >:

void GetUsersSystemVersion(void }
{

OSErr theError:
long theResponse;
long theTemp;
short theDigit;
Str255 theVersionString:

theError ~Gestalt(gestaltSystemVersion, &theResponse };
if (theError -= noErr }
{

theTemp = theResponse;
theDigit = C theTemp &= OxOFOO) I OxOlOO:
theVersionString[l] - theDigit + kASCIIzero:
theVersionString[2] - kASCIIperiod:

theTemp = theResponse;
theDigit = (theTemp &= OxOOFO } I Ox0010:
theVersionString[3J = theDigit + kASCIIzero:
theVersionString[4] - kASCIIperiod;

theTemp = theResponse:
theDigit = (theTemp &= OxOOOF) I OxOOOl:
theVersionString[S] - theDigit + kASCIIzero;

theVersionString[OJ - 5:

MoveTo(kinfoMacX, kinfoSystemY >:
Drawstring(theVersionString);

}

void InitializeToolbox(void
{

}

InitGraf(&qd.thePort):
Initfonts();
InitWindows();
InitMenus();
TEinit();
InitDialogs(OL);
FlushEvents(everyEvent, 0);
InitCursor();

Stepping Through the Code

Chapter 9 • The Varying Mac

Once again it's time to take a journey through the example's source code,
emphasizing on the new material.

The #define directives
InnerView has a slew of /ldefi ne directives. Ready? rResul tsWi ndow is
the resource ID of the program's window. The title for the window is
held in the string kWindowTitl eString.

rSys I ncompat i b 1eA1 ert is the ID of the ALRT resource for the alert
displayed if the user's machine isn't up to snuff.

The program has two PICT resources-r8Bi tOrlessPi cture is a
black and white picture, and rGreaterThan8Bi tPi cture has color.
That's it for the resources. kPixelDepth8Bit and kPixel Depth24Bit
will be used in the determination of the pixel depth of the user's monitor.

InnerView draws text and a picture in its one window. All of the fol
lowing constants are used to help evenly space things: kPi ctureleft,
kPi ctureTop, kl nfoNameX, kl nfoMacX, kl nfoSta rtY, kl i neSpaci ng,

515

516
Macintosh Programming Technlqua, 2E

kinfoProcessorY, kinfoMemoryY, and kinfoSystemY. By relying on
these constants, you can easily make changes to the layout of the win
dow-just go to the #define section of the source code listing and change
the pixel values of some of the constants. If you want to make lnnerview
more useful by giving it the ability to provide more feedback to the user,
you'll want to add more information names (headings) and resulting
Macintosh information (the returned values about the user 's machine).
Again, the use of constants will make this task easy. Figure 9.25 shows
just how the above-mentioned constants are used.

kinfoNamex kinf oMacx kPictureLef t

I nneruiew Results

kLineSpacing

Figure 9.25 The constants used to place graphics and text in the
Innerview window.

The constant kDragEdge is used to limit window dragging. kASCI I zero
and kASCI Iperi od are used when creating a string from a hexadecimal
variable that holds the version number of the user's system. Finally,
kBytes I nOneKB is used in converting bytes to megabytes.

#define
#define
#define
//define
#define
#define
#define

rResultsWindow
kWindowTitleString
rSysincompatibleAlert
r8Bit0rlessPicture
rGreaterThan8BitPicture
kPi xe l Depth8Bit
kPixelDepth24Bit

128
"\plnnerview Results•

128
128
129

8
24

//define
//define
//define
//define
//define
//define
//define
//define
//define
//define
//define
//define
//define

kPictureleft
kPictureTop
klnfoNameX
klnfoMacX
klnfoStartY
klineSpacing
klnfoProcessorY
klnf oMemoryY
klnfoSystemY
kDragEdge
kASCIIzero
kASCIIperiod
kByteslnOneKB

The Global Variables

Chapter 9 • The Varying Mac

240
5

30
120

60
20

klnfoStartY + CO * klineSpacing)
klnfoStartY + Cl * klineSpacing)
klnfoStartY + (2 * klineSpacing)

20
Cchar)Ox030
Cchar)Ox02E

1024L

InnerView uses global variable gA 11 Done to signal the end of the pro
gram. The variable gDragRect is used for window dragging. The
Boolean variable gCPUi sPowerPC takes on a value of true if the pro
gram is running on a PowerPC-based Mac, false if the program is run
ning on a 68K-based computer. For keeping track of the color setting of
the user's monitor, gMi nPi xel Depth is used.

Boolean gAllDone - false:
Rect gOragRect:
Boolean gCPUisPowerPC:
short gMinPixelDepth:

The main() function
InnerView's main () function should look familiar; it's much like the
ma i n () of previous examples. It starts with program initializations and,
as always, ends with the event-handling routine Event Loop () .

void main(void)
{

MaxApplZoneC>:
MoreMasters():
MoreMasters();
MoreMasters();

InitializeToolboxC);

517

518
Macintosh Programming Techniques. ZE

CheckSystem(>:
SetWindowDragBoundaries();

OpeninnerViewWindow():

Eventloop():
}

Checking the System
Because the Macintosh scene is constantly changing, you can never be
sure on just what kind of Macintosh a program you write will be run
ning. You've got to cover all bases. That's what this chapter is all about.
The application-defined routine CheckSystem() demonstrates a few of
the topics discussed in this chapter. This function first calls the Toolbox
function SysEnvi rons () and checks the returned information to verify
that the user's Mac is running System 7 or later. If it is, the routine car
ries on by checking to see if the Mac is PowerPC based or 68K based.
This information will be written to the program's window later. If your
own program finds this information useful, it should save it in a global
Boolean variable, as done in CheckSystemC). CheckSystem() ends by
calling the application-defined routine GetMi nPi xe 1 Depth () to deter
mine the color level of the user's Mac. All your Mac programs should
have a routine similar to InnerView's CheckSystem() routine and the
utility routines it calls.

void CheckSystem(void
{

SysEnvRec theMaclnfo:
OSErr theError:
long theResponse:

SysEnvironsC curSysEnvVers. &theMacinfo);

if (theMacinfo.systemVersion < Ox0700)
{

StopAlert(rSysincompatibleAlert. nil);
ExitToShel 1 ():

theError =Gestalt(gestaltSysArchitecture, &theResponse >:
if (theResponse -= gestaltPowerPC)

gCPUisPowerPC = true:
else

gCPUisPowerPC = false:

gMinPixelDepth = GetMinPixelDepth():

Chapter 9 • The Varying Mac

After CheckSystem() are several utility functions. These are functions
that will appear in many or all of your programs, with little or no mod
ification. GetMi n Pi xe 1 Depth () determines the minimum color level of
all monitors connected to the Macintosh. It appears just as it was devel
oped earlier in this chapter. GetMi n Pi xe 1 Depth () calls
GetPixel Depth(), also covered in this chapter.

short GetMinPixelDepth(void)
{

GDHandle theCurrentDevice:
short thePixelDepth:
short theMinimumDepth:

theMinimumDepth = kPixelDepth24Bit:
theCurrentDevice ... GetDevicelistC>:
while (theCurrentDevi ce ! ... nil)
{

}

thePixelDepth ... GetPixelDepth(theCurrentDevice >:
if (thePixelDepth < theMinimumOepth)

theMinimumOepth ... thePixelOepth:
theCurrentDevice ... GetNextDevice(theCurrentDevice >:

return theMinimumDepth:

short GetPixelDepth{ GDHandle theDevice
{

PixMapHandle screenPMapH;
short thePixelOepth:

screenPMapH ... C**theOevice).gdPMap:
thePixelDepth = C**screenPMapH).pixelSize:
return < thePixelDepth);

SetWi ndowDragBounda ri es () sets the limits that a window can be
dragged, based on the desktop area of the Macintosh monitor or moni-

519

520
Macintosh Programming Ttchnlques. ZE

tors. Note the use of the accessor function LMGetGrayRgn (),as described
in this chapter.

void SetWindowDragBoundaries(void)
{

RgnHandle theGrayRegion:

theGrayRegion - LMGetGrayRgn();

gDragRect - (**theGrayRegion).rgnBBox:
gDragRect.left += kDragEdge:
gDragRect.right -- kDragEdge:
gDragRect.bottom -= kDragEdge;

This chapter showed a few methods of determining the center of the
main screen-the screen that holds the menu bar. One method used a
call to GetMai nDevi ce() to return a GDHandl e. Since graphics device
routines are part of Color QuickDraw, this method won't work for
monochrome systems. Another method simply uses the QuickDraw
global variable screenBi ts. This method works on any system. Finally,
programs that run only on Macs equipped with System 7 can use a WI ND
that is marked to automatically open centered on the user's screen. Since
Innerview requires System 7 or later, this final approach is the one the
program uses.

Opening a Window
Open~nnerVi ewWi ndowC) opens and display a color window by calling
GetNewCWi ndow(). Since Innerview requires System 7, and System 7
includes Color QuickDraw, you know this is safe. If your program may
be running on older machines and under older versions of the Mac OS,
your program should call Ges ta 1 t () to ensure that Color QUickDraw is
available. If it isn't, and you wish to go ahead and allow your program
to execute anyway, your program should set a global flag variable indi
cating that the user doesn't have color. This is a technique described in
this chapter's When to call the pixel depth routf~es section. If color isn't
available, call GetNewWi ndow() rather than GetNewCWi ndow().

Chapter 9 • The Yarylng Mac

After opening the window, Open I nnerVi ewWi ndow() goes on to set the
window's title and then display the window, as described in Chapter 4.

void OpenlnnerViewWindow(void)
{

}

WindowPtr theWindow;

theWindow - GetNewCWindowC rResultsWindow, nil, CWindowPtr)-lL);

if (theWindow == nil)
ExitToShellC);

SetWTitle(theWindow, kWindowTitleString);

ShowWindow(theWindow);

Event Handling
InnerView looks for two event types: updateEvt and mouseDown. This
program's version of Eventloop() is similar to previous versions, with
one new addition. As mentioned earlier in this chapter, the occurrence of
an update event is used as a signal to check for the pixel depth. Why? If
the user selects the Monitors control panel and changes the color setting
of his monitor (or uses some other utility to perform this task), it will trig
ger an update event. How do you know that a particular update event
was caused by selecting Monitors and not by some other situation? You
don't, so you run the pixel depth check with every update-just in case.

void EventloopC void)
{

EventRecord theEvent;

while C gAllDone,. false
{

WaitNextEventC everyEvent, &theEvent, 15L, nil);

switch C theEvent.what)
{

SZ1

522
Macintosh Programming Techniques. ZE

case mouseOown:
HandleMouseOownC theEvent);
break:

case updateEvt:
gMinPixelOepth ~ GetMinPixelOepth();
HandleUpdate(theEvent);
break;

A click of the mouse is handled by Hand 1 eMo use Down () . This function
allows the user to drag the window. A click in the window's Close box
ends the program. Nothing new here; everything you see in this routine
has been covered in earlier chapters.

After a mouse down event, the second event type handled is an
update event. After saving and setting the port, the Handl eUpdateO
function makes a couple of calls to Toolbox routines to set the text to the
system font in a 12 point size. The program nests three routines between
calls to Begi nUpdate() and EndUpdate(). These three routines are
described next.

void HandleUpdate(EventRecord theEvent
{

WindowPtr theWindow:
GrafPtr theSavePort:

theWindow ~ CWindowPtr)theEvent.message:

GetPort(&theSavePort):
SetPort(theWindow):

Textfont(systemfont):
TextSize(12 >:

BeginUpdate(theWindow >:
DrawMacPicture();
OrawSystemlnfoHeadings():
GetSystemlnfo();

EndUpdate(theWindow);

SetPort(theSavePort);

r:2I
H 0 T E

Chapter 9 • The Varying Mac

With only one window, why bother setting the port? Because there are
other ports on the screen, including the screen itself! Always keep track of
ports, as is done here. Remember, the screen, or desktop, is a port. If you
don't set the port there's a good chance that any drawing you do will end
up on the desktop, not in your window. You can see for yourself by com
menting out the SetPort() line in InnerView.c, and then recompiling and
rerunning the program.

DrawMacPi cture() draws a picture in the InnerView window. If the
user's system currently has color set to 256 or fewer colors,
DrawMacPi cture() will load into memory and then draw PICT
128-the black and white picture. The results are shown in the top
window of Figure 9.26. If the color level is greater, PI CT 129 will
instead be loaded and drawn-that's shown in the bottom window
of the same figure .

ID

CPU Type:

RRM (MB):

System:

CPU Type:

RRM (MB):

System:

I nneruiew Results

PowerPC 601 ~ Jl 24
7.5.2 1--....__

lnneruiew Results

PowerPC 601

24
7.5.2

2,;6 or
Fewer
Colors

Thousands
or Millions
of Colors

Figure 9.26 InnerView is capable of displaying two different pictures.

523

524
Macintosh Programming Tczchnlqucn. lE

If you have a color monitor and a system capable of displaying more than
256 colors, try running InnerView with the color level set at 256 colors or
less. At that color level Innerview will display the monochrome picture.
Then, with InnerView still running, use the color-setting utility on your
Mac to change the color level to thousands or millions of colors. When you
do that, Innerview will update its window to display the color picture.

void DrawMacPicture(void
(

PicHandle
Re ct
short
short
short

thePicture:
theRect;
theWidth;
theHeight;
thePi ctureID;

if (gMinPixelDepth > kPixelDepth8Bit
thePictureID - rGreaterThan8BitPicture;

else
thePictureID - r8Bit0rlessPicture:

thePicture - GetPicture(thePictureID);

theRect - (**thePicture).picFrame;
theWidth - theRect.right - theRect.left;
theHeight - theRect.bottom - theRect.top;
SetRect(&theRect, kPictureleft, kPictureTop.

kPictureleft + theWidth, kPictureTop + theHeight) ;

DrawPicture(thePicture, &theRect);

DrawMacPi cture{) draws to a window, yet it doesn't lead off with port-sav
ing and port-setting calls. If you look back a bit you'll see that this task is
taken care of in Handl eUpdate{). The Handl eUpdate{) function makes con

" 0 T E secutive calls to three application-drawing routines.

The DrawSystemlnfoHeadi ngs () routine is nothing more than a series
of pen movement and text drawing Toolbox calls. This function draws
the headings, or titles, of the three categories of information displayed by
Innerview. If you'd like to enhance the Innerview program, you might
consider moving the strings that make up the heading into a string list
STR1f resource.

void DrawSystemlnfoHeadings(void)
{

MoveToC klnfoNameX, klnfoProcessorY):
DrawStri ng C "\pCPU Type:"):
MoveToC klnfoNameX, klnfoMemoryY);
Drawstring("\pRAM CMB):");
MoveToC klnfoNameX, klnfoSystemY);
Drawstring("\pSystem:");

Chapter 9 • The Varying Mac

Now it's time to obtain the information from the user's Mac. To do this,
GetSystemlnfo() relies on three application-defined functions. Each
routine calls Gest a 1 t () to get one piece of information. Once you under
stand how one routine works, you can easily add more of your own.

void GetSystemlnfo(void)
{

GetUsersProcessorType{);
GetUsersAmountOfRamC):
GetUsersSystemVersion{);

GetUsersProcessorType() calls Gestalt() with a selector code of
gestal tNati veCPUtype. Each possible response has its own case label
in the routine's switch section.

GetUsersAmountOfRam() passes a selector code of
gestaltPhysicalRAMSize to Gestalt(). The returned value is the
number of bytes of RAM memory installed in the user's Mac. This value
is divided by the number of bytes in one megabyte (1024*1024) to get the
number of megabytes-a more informative number for the user.

GetUsersSystemVersionC) calls Gestalt() withaselectorcodeof
gestaltSystem Version. The rest of the routine is devoted to individually
converting to characters each of the three system digits from
theResponse, and then merging these characters into one string. Here's
a look at how the first digit is converted:

/ldefi ne
//define

kASCIIzero
kASCIIperi ad

long theResponse;
long theTemp;
short theDigit;

Cchar)Ox030 // decimal 48
Cchar)Ox02E // decimal 46

525

526
Macintosh Programming Techniques. ZE

Str255 theVersionString:

theTemp - theResponse:
theDigit = C theTemp &= OxOFOO) I OxOlOO;
theVersionString[l] = theDigit + kASCIIzero:
theVersionString[2] = kASCIIperiod:

If the user has, say, System 7.5.2 on his machine, theResponse will have
a value of Ox0752. This value is first saved in the Temp. Then, the Temp
is ANDed with OxOFOO. That serves to extract the 7 from Ox0752. If you
know your Boolean logic operations, you know that an AND operation
is performed bit-by-bit on a pair of binary numbers. You also know that
an AND operation on a pair of bits results in a binary 1 only when both
values that are ANDed are each a 1. If either value is a binary 0, the result
is a 0. With that in mind, here's how the AND operation for the given
example looks:

0000 0111 0101 0010
0000 1111 0000 0000

0000 0111 0000 0000

II binary of Ox0752
II binary of OxOFOO

II binary of Ox0700

Because the &= operator is used, the result of the AND operation is stored
back in the Temp:

II theTemp &= OxOFOO is the same as: theTemp = theTemp & OxOFOO

Dividing theTemp by Ox0100 results in a value of 7:

II Ox070010x0100 = 7

This single digit is then converted to a character by adding 48
(kAS CI I zero) to it. You can check your ASCII chart to confirm that ASCII
55 is the character that represents the number 7. This character is then
stored in element 1 of a Str255 variable:

theVersionString[l] = theDigit + kASCIIzero:

Next, element 2 of the same string is assigned to be a period, or decimal
point:

theVersionString[2] = kASCIIperiod:

Chapter 9 • The Varying Mac

The preceding steps are repeated until theResponse has been converted
to a string. Then the length of the string is set to 5-the three digits found
in a system version, plus the two decimal points that appear between the
digits, as in 7.5.2-the version used in this example.

void GetUsersSystemVersionC void >
{

OSErr theError:
long theResponse:
long the Temp:
short theDigit:
Str255 theVersionString:

theError = Gestalt(gestaltSystemVersion, &theResponse);
if (theError =- noErr)
{

theTemp = theResponse;
theDigit = (theTemp &= OxOFOO) I Ox0100:
theVersionString[l] = theDigit + kASCIIzero:
theVersionString[2] = kASCIIperiod;

theTemp = theResponse;
theDigit = C theTemp &= OxOOFO) I OxOOlO:
theVersionString[3] = theDigit + kASCIIzero:
theVersionString[4] = kASCIIperiod:

theTemp = theResponse:
theDigit = C theTemp &= OxOOOF) I OxOOOl:
theVersionString[S] = theDigit + kASCIIzero:
theVersionString[O] ~ 5:

MoveToC klnfoMacX. klnfoSystemY);
Drawstring(theVersionString);

CHAPTER SUMMARY
Thousands of Toolbox routines exist in the ROM chips of each
Macintosh. A Toolbox routine is also called a trap, and each trap has a
trap number. When you include a call to a Toolbox routine in your code,

5Z7

528
Macintosh Programming Techniques. ZE

the trap number for that routine tells the processor where in memory it
will find the code that makes up that routine.

As Macintosh computers are improved, so is the ROM. New versions
of ROM contain new Toolbox calls, and thus new trap numbers. Many of
the Toolbox functions you call will have been present in the ROM of the
first Macintosh computer, and in every Macintosh since. Some routines
you'll want to use, however, only reside in more recent versions of ROM. If
a user has an older ROM set but a recent version of system software, then
that user may have most or all of the available Toolbox routines on his or
her machine. That's because the system software also contains versions of
many of the Toolbox routines. It's up to you to determine if the computer
your program is running on supports the calls you're going to make.

The NGetTrapAddressC) routine is a powerful means of determin
ing the availability of a Toolbox function. By passing it the name of a rou
tine, preceded by an underscore, you can see if that routine exists on any
given Macintosh. If it doesn't, you'll want to either use a substitute rou
tine or exit the program and return to the Finder.

The Gest a 1 t C) function is used to determine many different hardware
and software features of the machine your program is running on. By pass
ing Gest a 1 t () different selector codes, you can find out whether a
Macintosh supports color, what version of the system is installed, the
amount of RAM in the computer, and a host of other environmental factors.

flClrtTOStl PROGRflMMlrtG TECtlrtlQOES. 2E

Chapter 10

Applications and
the finder

Anyone who uses a Macintosh is constantly using the Finder applica
tion-though that person might not be aware of it. The Finder is the
"middleman" between the user and the Macintosh desktop. One the
primary tasks the Finder is responsible for is keeping track of, and dis
playing, application icons. In this chapter you'll see how to provide your
application with a distinct icon of its own. You'll also see how to make
the Finder aware of this unique icon.

Through the use of a high level event type named the Apple event,
the Macintosh makes it possible for programs to communicate with one
another. One of the primary uses of the Apple event is to facilitate com
munication between an application and the Finder. In this chapter you'll
learn how to add Apple event support to your own applications so that
the Finder will be able to quit your application in response to a user's
request to shut down the Mac.

529

530
Macintosh Programming Techniques. ZE

G1v1nG A PROGRAM An Icon
When you use a Macintosh compiler to build, or create, your application
it ends up with the generic icon displayed in Figure 10.1. If you want
your application to display its own custom icon on the desktop, you'll
need to create a BNDL resource in the program's resource file before
building the program.

7 items

~
MacDraw Pro

Applications
6 79.3 MB in disk

M.
~ ~

SimpleText Fi nderAwarePPC

Figure 10.1 Typical program icons on the desktop

The Finder is responsible for displaying an icon for each program and
program file that appears on the desktop. To keep track of what file gets
what icon, the Finder makes use of a file's type and creator identifiers.
The following paragraphs cover the essential background informatio~
you'll need before working with a BNDL resource.

The Finder and icons
Every program has an icon, a type identifier, and a creator identifier. The
Finder looks to a program's identifiers to see what icon it should display
on the desktop to represent that program. All applications have a type
of 'APPL'. Each application should have a four letter creator code that is
unique to that application.

You can give your application any combination of four upper- and
lowercase letters for it to use as its creator code. At the end of this chap-

Chapter 10 • flppllcatlons and the Finder

ter is a sample program called FinderAware. When you read about this
program you'll see that it has a creator name of 'Fawr', though any one
of countless combinations of letters would have worked equally as well.

For any one program you develop, you will specify the creator name
at two times: when you create a BN D L resource for the program and when
you build your program.

Creating the BHDL resource
In ResEdit, selecting Create New Resource from the Resource menu
allows you to create a BNDL resource. You'll be presented with the Select
New Type dialog box. There, scroll to the BNDL type and double click on
it. When you do, you'll see the BNDL editor shown in Figure 10.2.

tg[EJ§ BNDL ID = 128 from FinderRware ~

Signature: 1-1
Type Finder I cons

Figure 10.2 The BNDL resource in ResEdit

In this editor you'll type in your program's signature, which is simply
another name for the creator (the creator is also referred to as the creator
signature). This chapter's FinderAware program uses a signature of
'Fawr' -as shown in Figure 10.3.

531

532
Macintosh Programming Tcrchnlques. 2E

~[ig BNDL ID = 128 from FinderRware ~

Signature: IF awr I
Type Finder Icons

Figure 10.3 The program's signature, or creator, gets typed
into the BNDL resource

Next, you want to add an icon that the Finder will display for your appli
cation. Select Create New File Type from the Resource menu. The BNDL
editor will then look like the one pictured in Figure 10.4. Then click the
mouse on the question marks that appear under the Type column and type
in the four uppercase characters 'APPL'. An application is a file, and all files
have a four character type. Applications always have a type of 'APPL'.

~la~ BNDL ID • 128 from FinderRware ~

Signature: I Fawr I

Figure 10.4 Adding a new file type to the BNDL resource

Chapter 10 • flppllcatlons and the Finder

Creating the icons that make ap the BnDL
resoarce
The bundle resource is used to bundle, or associate, a few icons with an
application. Figure 10.4 shows that up to six icons can be associated with
the application.

To create the icons, double-click on any of the six gray boxes in the
Finder Icons column of the BNDL. You'll see a dialog box like that in Figure
10.5. You're creating the icons from scratch, so click the New button.

Choose an icon for the type RPPL:

(New J Edit) ({ Cancel D (OK

Figure 10.S Click the New button to open the icon family editor

Now you'll be in the icon family editor. Here you can select a tool, such
as the pencil, from the tool palette and then draw your own icon. The
FinderAware program demonstrates how a program communicates with
the Finder via Apple Events. This is symbolized in the example icon in
Figure 10.6 by drawing a small versions of a Macintosh and application
icon, then adding arrows.

533

534
Macintosh Programming Techniques. 2E

.......
11111!1 0

•o
e o
I I

Icon Famll ID= 128 from FlnderRware.rsrc

•• • • •••••••• • • • • • • • • •••• • • • • • • • •• • • • • • • •••••
•••••••••• • • • •••••••• • • • • •

••• • • • • • • • • • •• • • • • • • • • • •• • •• •••• •• • • •• • • •••••• • • •• • • • • • • • • • •• • •
.. =··= = •••••••• • • • • • • •••• • • • •••••••••• ••••••••••

• • • • • • ••••••• • • ••

Dg
ic18

Dg
ic14

Figure 10.6 Editing an icon using the icon family editor

After creating the icon, look back at the B ND L resource window. You'll see
that one of the six boxes is no longer gray-it now displays the icon you
just created (see Figure 10.7). As you create other icons, they'll appear in
the BNDL window as well.

~m:rn BNDL ID = 128 from FinderRware ===
Signature: I Fawr I
Type Finder Icons

APPL

Figure 10.7 Editing an icon using the icon family editor

Chapter 10 • flppllcatlons and the Finder

As you draw the icon you'll see it displayed in actual size in the right
side of the icon family editor. You may be wondering why there are so
many blank icons shown there. If you want to fully accommodate users
of System 7 you can create several versions of each icon-a family of
icons. Here's a summary of what the different versions are for:

IC NII The original icon resource that has been used for years and
years. The Finder will use this version to display a black
and white icon.

i c 14 The Finder will display the icon that is here if the user has
a 4-bit, or 16-color system.

i c 18 If the user has an 8-bit (256-color) or greater system, the
user will see this icon.

i cs/I The Finder sometimes displays a small icon for a program.
When it does, it uses an ics# icon for black and white.

i cs4 A small 4-bit (16 color) color icon.
i cs8 A small 8-bit (256 color) color icon.

You can get a jump start on your icon by using ResEdit to open other files.
Dou~le-clic~ on var~ous .icon resources to see how ~ifferent icons are dra~.
The icon pictured m Figure 10.6 was created with the help of two ics#

H · 0· · T E resources found in the System file.

The minimum requirement for a custom program icon is that you create
the I CNll version. Then, no matter what color level the user's system has,
the Finder will display this black and white icon.

You can reduce the work in creating new versions of an icon by
first creating the black and white IC NII, then clicking the mouse on the
small picture of it in the icon editor. While holding the mouse button
down, drag to any of the other small boxes in the area of the small
view of the I CN/I. This will copy the existing icon to the new version.
Figure 10.8 shows an IC NII being dragged down to the i c 1 8 icon rec
tangle. When you start editing the icon, you'll be working on this new
i c 1 8 version.

535

536
Macintosh Programming Tczchnlqua. 2E

¥§1 Icon F11mll ID • I 28 from FlnderRw11re.rsrc· ·.. ,,~ID
•••••••= •. .• •. - ics• E • • • •• a· ·.. ..·::.:· . I D -

B D I I •• •. •1•••11 iose

•o I I •.•
• 0 .. :::::... 1•0 1
~ : !••·-·= E •• E E ~ ; • • • • • •••• • • E • • • • • • • • • •

= = .. r•n••• • •••• • ••
·······-··· •• • •••

Dg
icl4

D!
Mask

Figure 10.8 Creating an i cl 8 icon from an ICN# icon

If you're working with any of the color icons, you can of course add color
to them. Click on the small rectangle fourtd in the lower-left of the icon
editor to display a color palette-as shown in Figure 10.9. Selecting a
color from the palette effects the tools in the tool palette of the icon edi
tor. Figure 10.10 shows the i cl 8 icon after color has been added.

I con F11mll ID • 128 from Flnderflw11re.rsrc

•• • • =······· .. • • • • • •••• • • • • • • • •• • • • • • • •••••

Figure 10.9 Adding color to an icon using the color palette

..........

• D
•o
•o -~

Chaptcrr 10 • Applications and thll Findcrr

;,;;;;;; Icon F11mll ID a 128 from FinderAw11re.rsrc -

•• •• •• • • • • • • ~p ~ lCs •
1CN•

•• • •• ••• 1 1 .. ~, D
• .. •••• •• ..JI

•. • II [J..., ios8

•• •• •• . Dg
icl4

Dg
Muk

Figure 10.10 An i c 18 icon with color added to it

When you look at the main window of the resource file you'll notice that
there are several new resource types, as shown in Figure 10.11. Creating
a BNDL resource will automatically add an FREF resource to the file.
Depending on what icons types you created in the icon editor, ResEdit
will also add the various icon resource types to the file. Each icon you
create through the BNDL resource is represented by its own icon resource
type. On the previous pages you saw I CN# and i cl 8 icons being created
in the icon editor opened from the BNDL resource. Thus the resource file
now contains I C N# and i cl 8 resources. Res Edit also adds a resource
with the signature, or creator, name. In Figure 10.11 you can see that a
resource of type Fawr has been added to the file.

-o FinderRware.rsrc 0
0 10 11101 r:JD 0

~~ 00101001 ~~ L:JD t-=-
0 1 101010

EIEI 000 1 1110 El El ~···· ~ -·· · 01000000

BNDL Fawr FREF ic18 ICN'*

-0
~

Figure 10.11 A resource file gains new resources after a 8NDL
resource is added

537

538
Macintosh Programming Tethniqua. ZE

r2I
H 0 T E

You won't need to be concerned with the contents of the resources added by
ResEdit. The FREF resource is used to help the Finder associate the icons in the
resource file with the application-that helps resolve conflicts if other applica
tions have icons with the same ID numbers as the ones used by your program.

After viewing the resource file's main window, return to the icon editor.
Complete the creation of all of the icons by dragging the small view of a
completed icon to the small views of the other icons-including the one
labeled Mask. The icon mask effects the "hot" area of an icon-the area
that recognizes mouse button clicks. As you complete the icons you'll
notice that the far-right side of the icon editor displays several views of
the currently selected icon. Figure 10.12 shows a completed icon family.
Figure 10.13 shows how the icon family looks from the BNDL resource
the resource that "links" these various icons together.

I con Family ID = 128 from FinderRware.rsrc

• • • • • • • • • • • • • •• . . . -~ ~

• •• •••• •• IFIP ~ • • •• l!.:I"" ~
• ••••••• ics8 ·.... .. ~

~~ 1cs4

1r:1~
Mask

Mask

Figure 10.12 A completed icon family

Chapter 10 • flppllcatlons and the Finder

s W§ BNDL ID = 128 from FinderRware -

Signature: I Fawr I
Type Finder Icons

HPPL ~~rP~i~r: ~~ gf~ ';, ~ ~~
0 t-=-

-0

Figure 10.13 A completed icon family, as viewed from the BNDL resource

Setting the creator in the compiler
Once your B ND L resource is complete you'll want to let your project in on
things. You do this by telling your IDE the four character signature, or
creator, you used in the BNDL resource. As you're about to see, accom
plishing this task varies depending on the IDE you use.

Setting the creator In the THIHK C IDE
In the THINK C environment you enter the creator by selecting Set
Project Type from the Project menu. That results in the display of the
dialog box shown in Figure 10.14. There you enter a four-letter creator
name in place of the four question marks that the IDE supplies as a
default creator value.

539

540
Macintosh Programming Techniques. ZE

® Rppllcatlon

O Desk Accessory

O Deulce Drluer

0 Code Resource

FlleTgpe ~

creetor IDIFAI

Partition (K) 1394 I D Far CODE
,____ _ __, 0 far DATA

SIZE flogs~ loooo I D separete STRS

Cancel n OK D

Figure 10.14 Setting a project's creator in the THINK C IDE

Setting the creator in the Symantec C IDE
In the Symantec C ++ IDE you enter the creator by first selecting Options
from the Project menu. Then bring up the Project Type page by clicking on
the Project Type icon in the options dialog box-as shown in Figure 10.15.
In the Creator field, enter the four-letter creator name in place of the four
question marks that the Symantec IDE uses as the default creator value.

· ---· ··-.-·--==~ Pro ect Options for "flnderAworePPC. n" e- -.. .-'*""-----:-·- -- :...)$

Figure 10.15 Setting a project's creator in the Symantec C++ IDE

Chapter 10 • Applications and the finder

Setting the creator in the Metrowerks CodeWarrior IDE
If you're working with CodeWarrior, select Preferences from the Edit
menu. Then click on the 68K Project or PPC Project icon to bring up the
Project panel. Replace the four question marks in the Creator field by
typing the four characters used as the BNDL resource signature-as
shown in Figure 10.16.

Rpply to open project.

Extras

D
68K Processor

D
68K Linker

Am

Project Type: ._R...;.p...;.p_li_ca_t_io_n _____ _,I
j:~!~ Rpplication Info~: -----------~

I FinderRware68K File Name

'SIZE' Flags~ Creator I
Type I RPPL

Preferred Heap Size (k) 1512

Minimum Heap Size (k) 1384

Clo•!,,, ,,;'. (Foctory Setung•) [Reuect Ponel) (Conoel) It':'-(!!!!!!!OK!!!!!!!~ll

Figure 10.16 Setting a project's creator in the Metrowerks CodeWarrior IDE

Making the Finder aware of the icon
After your project's resource file has a BNDL resource and your project
has the creator set to match the BNDL signature, you're all set to perform
a build, or make, of the project. After you do that, you'll have a new
icon in your project's folder. It might, however, appear as nothing more
than the generic icon you're used to seeing after you create a stand
alone application. If that's the case, there is one more step you need to
take to see your application's custom icon on the desktop: you must
rebuild the desktop.

541

542
Macintosh Programming Techniques. 2E

The Finder stores icons in a file called the Desktop file. To get the
Finder to notice a new icon you'll need to rebuild the desktop. This
scary-sounding practice is really quite simple-you simply restart the
Macintosh, holding down the Command and Option keys as the Mac
starts up. If you keep these keys pressed, in a little while you'll see an
alert like that shown in Figure 10.17. Press the OK button to continue.

r2
H 0 T E

Are you sure you want to rebuild the
desktop file on the disk "Hard Driue"?
Comments in info windows will be lost.

(Cancel) ([OK B

Figure 10.17 A last chance to back out of the desktop rebuild

ff you have one or more external hard drives attached to your Mac, you'll see
the above alert more than once. You only need to rebuild the desktop file for
the hard drive that holds the project file. After that, click the Cancel button
when the alert appears for each additional hard drive.

Giving your program its own unique icon, rather than the generic one
issued to new programs that don't have a BNDL resource, is an easy way
to add polish to your final application.

APPLE EVE"TS
Apple events are high-level events that allow programs to communicate
with the Finder. While Apple defines numerous Apple events, this chap
ter will focus on just one type-the Quit Application Apple event.

If you've ever selected Restart or Shut Down from the Special menu
of the desktop, you've noticed that your Mac doesn't immediately turn
itself off. Instead, it brings each running application to the front, one at a
time. Each time it brings an application to the front, it quits that program.
When all the running applications have been quit, only then does your

Chapter 10 • flppllcatlons and the Finder

computer tum off. This gracefu.l shutdown is accomplished through the
use of the Quit Application Apple event.

If an application doesn't implement the Quit Application Apple
event, it can't be a part of the shutdown process. Though the system will
bring that application to the front, it won't have adequate means of com
municating with the program. Instead, after a brief pause you'll see the
alert shown in Figure 10.18. After dismissing the alert, the shutdown
process will end without your Mac being turned off. You can verify that
this is indeed what happens by running last chapter's Innerview pro
gram, which doesn't use Apple events. With the program running, click
on the desktop. Then select Restart from the Special menu.

The shutdown could not be completed,
because the application "lnnerUiew68K"
could not quit.

([OK Jl

Figure 10.18 A shutdown foiled by an application that doesn't
use Apple events

In the next section you'll see how easy it is to add the Quit Application
Apple event to any of your programs.

Making your application Apple event-aware
You'll need to do two things to make sure your program recognizes Apple
events when they occur. One of these things is to add a case label to the
switch statement in your program's event loop. Then, when your
Event Loop() routine checks events returned by Wai tNextEvent(), it will
look for Apple events as well as the standard event types such as mouseDown,
updateEvt, and keyDown. The Apple-defined constant used to denote an
event as an Apple event is kHi ghlevel Event. If your event loop's call to
Wai tNextEvent() does return an event of this type, you're application
should call the Apple Event Manager function AEProcessAppl eEvent().
This Toolbox routine expects a pointer to an EventRecord as its only para-

543

544
Macintosh Programming Techniques. ZE

meter. Here's a look at a version of Event Loop() that is capable of handling
mouse down events and Apple events:

void EventLoopC void)
{

}

EventRecord theEvent:

while C gAllDone == false
{

WaitNextEvent{ everyEvent. &theEvent. 15L, nil) :

switch { theEvent.what
{

case mouseDown:
HandleMouseDownC theEvent >:
break:

case kHighlevelEvent:
AEProcessAppleEvent{ &theEvent >:
break;

The second step to making sure your application is Apple event-aware is
to ensure that the project is high level-event aware. The process for doing
this is straightforward, but varies depending on the development envi
ronment you're using. ,..
~
N 0 TE

This step is important! If you fail to make the following change to your pro
ject, your program won't recognize the Quit Application Apple event-even
if you add all the correct code to your project's source code file. Look over
the following sections to find the one that pertains to the IDE you're using.

Making your THl"K C project flpple event-aware
In the THINK C environment you make your project high level event
aware by selecting Set Project Type from the Project menu. In the dialog

Chapter 10 • Applications and the finder

box that appears, click on the small menu icon labeled SIZE Flags. Select
HighLevelEvent-Aware from the pop-up menu.

® Application

0 Desk Accessory

0 Deuice Driuer

O Code Resource

File Type I APPL I
Creator I F awr I

MultlFinder-Aware

Partition (K) ._I 3_8_4 _ ____,I D Far CODE
0 Far DATA

SIZE Flags ~ I 0040 I D Separate STRS

Background Null Euents O
Suspend & Resume Euents

Background Only
Get FrontClicks
Accept ChildDiedEuents

32-Bit Compatible
Higlll eL• e IEL•en t-Aware
Accept Remote HighleuelEuents
Stationery-Aware
Use TeatEdit Seruices

([OK J)

Figure 10.19 Making an application high level event-aware in the THINK C IDE

Making yoar Symantec C project flpple event-aware
To make your Symantec C ++ project high level event-aware, begin by
selecting Options from the Project menu. Then bring up the Project Type
page by clicking on the Project Type icon in the options dialog box. Next,
click on the small menu icon labeled Flags. When you do that, a pop-up
menu will appear. If the HighLevelEvent-Aware item isn't already
checked, select it now-as is being done in Figure 10.20.

545

546
Madntosh Programming Techniques. ZE

-zs; Pro ect Options for "FlnderRwarePPC.11" IP - ~---1&4f

Options: I FlnderRwarePPC.11 •I

I·- Projtct T11P• !IJ '."' ' I Rppllcatlon •I Fiie Typel•n~e§dl creator I Fawr I
Projtct :~!ii; I~ Dtstin.tion -.. - - ----~-- _____ ------ -

A _:l_!r1·_ (set destination ...) [~-~~~~!!~ .. ~~~ ~~.~~~~~,~~!.~0 ~. -·-············· ~
~ ~'tW - FinderRwarePPC i I

~:~::;;~~t!~~~-.~~~~J· -r~::~_ ~ .. ~.k~-~;:~~byte~
..1MultlFinder-Rwore I 1024 I K l ____ ---·-- --------·- _ __J

Background Only
Get FrontClicks
Accept ChlldDledEuents
1------------~

c"tton -

'SIZE' fla;s with this mtnu .

..132-Blt Compotlble

lllmllllll!Z!Dlmillmmill!--1--~---
Accept Remote HlghleuelEuents
Stotlonery-Rware
Use TeHtEdlt Seruices

(Factory Settings) ll Saue JJ

Figure 10.20 Making an application high level event-aware
in the Symantec C++ IDE

Making your Metrowerks project Apple event-aware
If you're using the Metrowerks Code Warrior IDE, select Preferences from
the Edit menu. Then click on the 68K Project or PPC Project icon to dis
play the Project panel. Click on the small checkmark icon labeled 'SIZE'
Flags. A pop-up menu will then appear. If the isHighLevelEventAware
item isn't already checked, select it now-as shown in Figure 10.21.

Chapter 10 • Applications and the finder

Apply to open project.

Project Type: l.__A_.P_P_li_ca_t_io_n _____ __.I
Application Info:-------------~

File Name I FinderAware68K

68K Processor 'SIZE' Flags [!! .,1 acceptSuspendResumeEuents
. ~ .,1 canBackground
: U .,1 doesActiuateOnFGSwitch

A: I ~-----iJ~~~~~~~;~;= ... n 1: ,,,.,.:~:::;:~~~= ..
c/c++ Language~ (Factory Settinj isStationeryAware

v useTeHtEditSeruices
isDisplayManagerAware

Figure 10.21 Making an application high level event-aware
in the Metrowerks CodeWarrior IDE

Installing an Apple event handler

OK])

Each Apple event that your application is capable of recogruzrng
requires an Apple event handler routine. This application-defined func
tion specifies exactly how a particular Apple event should be handled by
your program. In the next section you'll see the two lines of code that
make up a typical Quit Application Apple event handler. Here, you'll see
how a handler routine is installed.

547

548
Macintosh Programming Techniques. JE

Installing a handler routine is necessary so that your program asso
ciates your application-defined handler routine with a particular Apple
event. If your program was capable of working with, say, three different
types of Apple events, it would have three handler routines. Without
installing each routine, your application-and the Finder-wouldn't dif
ferentiate these routines from any other application-defined functions in
your program.

When an Apple Event that affects your program occurs, the
Event Loop() call to AEProcessAppl eEvent() will invoke the installed
routine that matches the Apple event type to be processed.

Installing an Apple event handler routine is accomplished through a
call to the Toolbox function AEinstal 1 EventHandl er(). Here's a typi
cal call to this routine:

AEinstallEventHandler(kCoreEventClass,
kAEQuitApplication,
NewAEEventHandlerProc(AEHandleQuit),
o.
false);

A E I n st a 11 Event Hand 1 er () requires five parameters. The first is the
event class of the event to be handled. The Quit Application Apple event
is a core event, so the installer routine is passed the Apple-defined con
stant kCoreEventCl ass.

The second parameter in AEinstal 1 EventHandl er() is an event ID
used to specify which particular Apple event is to be processed by the
application-defined event handler routine that is being installed. For.the
Quit Application Apple events, this ID is the Apple-defined constant
kAEQuitApplication.

The third parameter is a pointer to the application-defined function
that will handle this one Apple event. Regardless of the Apple event that
is to be handled, pass the Toolbox function NewAEEventHandl erProc()
as this parameter. Use the name of the application-defined handler func
tion as the parameter in NewAEEventHandl erProc(). In the above snip
pet the application-defined handler routine is named AEHandl eQui t ().
You're free to use any name of your own choosing.

Chapter 10 • flppllcatlons and the finder

The fourth parameter AEinstal 1 EventHandl er() is a reference
value that the Apple Event Manager will use each time it invokes the
event handler function. Simply pass a value of 0 for this parameter. The
final parameter to is a Boolean value that specifies in which Apple event
dispatch table the handler should be added. This table creates a correla
tion between an Apple event and your application-defined event han
dler routine. A value of fa 1 s e provides the Apple Event Manager with
the information it needs to fill in the correct table.

As you'll see in this chapter's example program, an event handler
routine should be installed early in your program-typically just after
Toolbox initialization.

The Quit Application Apple event handler
Many Apple event handlers require information about an Apple event in
order to properly handle the event. Some Apple event handlers return
information to the event. All Apple event handlers return an error result
to let the event know if the event was handled successfully.

While the internals of application-defined Apple event handler rou
tines will vary, they will all have a similar look. Each event handler
routine starts with the pas ca 1 keyword, and has a !eturn type of
OS Err. An event handler always has three parameters. The first is a
pointer to the Apple event to handle. The second parameter is a point
er to a structure that is capable of holding information that gets
returned to the Apple event. The last parameter is a reference value
that your application can typically ignore. Here's the format of an
Apple event handler:

pascal OSErr RoutineName{ AEDesclist *theAppleEvent,
AEDesclist ~theReply,
long theRefCon)

II handle the Apple event

II return an OSErr value
}

549

550
Macintosh Programming Techniques. ZE

Now, here's an actual application-defined routine that's used to handle
a Quit Application Apple event:

pascal OSErr AEHandleQuit(AEDesclist *theAppleEvent,
AEDesclist *theReply,
long theRefCon)

All_Done ... true:
return no Err:

All a Quit Application event handler usually needs to do to process a Quit
Application Apple event is set the application's global variable gA 11 Done
to true. In a trivial routine such as this you can assume that the assign
ment of a Boolean value to a variable won't generate an operating sys
tem error. With that in mind, return the Apple-defined constant no Err.

~
~
N 0 T E

The event handler routine can also invoke other application-defined func
tions. If your program gives the user the opportunity to save user-entered
data, then you'll want to call the same application-defined function that
would get called when the user selects Save or Save As from the File menu
of your program.

CHAPTER PROGRAM: flriDERfiWflRE
This chapter's example program, FinderAware, demonstr.ates how to
make an application Apple event-aware, and how to provide an appli
cation with its own icon on the desktop. As a bonus (and to give the pro
gram something to do), FinderAware provides you with the simple tech
nique for playing a sound from your Mac's speakers.

If you look in this chapter's project folder you'll see that the
Finder Aware application has its own icon. Figure 10.22 shows that the icon
is the same one used in this chapter's Giving a Program an Icon section.

Chapter 10 • Applications and the Finder

~ c 1 o FlnderRware Im~
6 items 682.5 MB in disk 348.3 MB available

Ii D @~
{}
1-=i

. ti~
Fi nderA"Ware.c Fi nderAware68K.u Fi nderAware68K

~ D gj
Fi nderAware.rsrc Fi nderAwarePPC . .u Fi nderAwarePPC

-0
¢1 l~> WJ

Figure 10.22 The FinderAware application has its own distinct icon

When you run FinderAware, you'll see a window like the one pictured
in Figure 10.23. You'll also hear a sound playing for a few seconds. When
the sound completes, the words in the window will disappear. To quit
the program, simply press any key.

Window

Playing sound ...

Figure 10.23 The FinderAware window as it appears when
a sound is playing

Program resources: Finderflware.rsrc
As Figure 10.24 shows, the FinderAware project file holds resources of
eleven different types. All but two of the resources are related to the icons
used by the application. Those two resources are of type WIND and snd.

551

552
Macintosh Programming Techniques. ZE

§(E!j FinderAware.rsrc lei§

~~
01011101

~~ rDD 0
0010 1001 t-=1
01101010

1313 0001 1110 EIE'l ~···· 01000000

BNDL Fawr FREF ic14

mao L:J[j CJ [) 61[)
~ ~ ~ ~ ...

ic18 ICN# ics# ics4

mDCI <J>~ CJ ~ ... 'zy
ics8 snd WIND ii

Figure 10.24 The resources used by the FinderAware project

You're already quite familiar with the WIND resource type. In this book you
haven't, however, encountered the snd resource. As it's name implies, a
snd resource holds data that represents a sound. As you'll see later in this
chapter, your program can easily load to memory the data from a sound
resource, then play that data as a sound from the Mac's speakers. Figure
10.25 shows that the sound resource used by the FinderAware program
has an ID of 9000 and contains about 45 KB of data. To view the sound data
in ResEdit you can double-dick on the sound's ID-just as you do for a
resource of any type. Be forewarned, though, that double-clicking on the
sound resource will result in the hexadecimal display of the sound data
information that you won't find meaningful.

=!ill snds from FinderAwore.rsrc rm~
.IQ. Size Name

9000 44640 "The Good, the Bad, and the Ugly" ~
~
~

Figure 10.25 A snd resource in the FinderAware resource file

Chapter 10 • flppllcatlons and the Finder

Sound resources are available from a variety of sources. Mail order compa
nies sell CD-ROMs that contain hundreds or thousands of digitized sounds.
You can also download public domain sound from the libraries of online ser
vices such as America Online and CompuServe. You can also use your Mac's
microphone to record your own sounds. The M&T Books text Graphics and
Sound Programming Techniques for the Mac provides more details.

Program listing: Finderflware.c
The following is the complete listing for this book's last example pro
gram. Following the listing is the usual source code walkthrough.

#include <Sound.h>

void InitializeToolbox(void >:
void OpenWindowAndPlaySound(void):
void Eventloop(void);

pascal OSErr AEHandleQuit{ AEDescList *. AEDescList *. long):

//define
/ldefi ne

rSoundPlayingWindow
rGoodBadUglySound

Boolean gAllDone ... false:

128
9000

SSJ

554
Macintosh Programming Ttchnlqaes. ZE

void main{ void)
{

}

MaxApplZone{);
MoreMasters{);
MoreMasters():
MoreMasters{):

InitializeToolbox<>:

AEinstallEventHandler(kCoreEventClass, kAEQuitApplication,
NewAEEventHandlerProcCAEHandleQuit),
O. false >:

OpenWindowAndPlaySound{);

Eventloop():

pascal OSErr AEHandleQuit(AEDesclist *theAppleEvent,
AEDesclist *theReply,

gA 11 Done = true:
return noErr:

long theRefCon)

void OpenWindowAndPlaySound(void)
{

WindowPtr
Handle
OS Err
Re ct

theWindow:
theSound:
theError:
theRect:

theWindow = GetNewWindow{ rSoundPlayingWindow, nil, CWindowPtr)-ll):
ShowWindowC theWindow >:
SetPort{ theWindow >:

MoveTo(20, 20 >:
Drawstring{ u\pPlaying sound ... "):

Chapter 10 • flppllcatlons and the Finder

theSound = GetResource('snd • rGoodBadUglySound);
if (theSound = ni 1)

ExitToShellC>:

theError = SndPlayC nil, CSndListHandle)theSound, true);
if C theError != noErr)

ExitToShell();

SetRect(&theRect, 5, 5, 125, 25 >:
EraseRect(&theRect >:

void EventLoopC void)
{

EventRecord theEvent:

while C gAllDone == false
{

WaitNextEvent(everyEvent, &theEvent. 15L, ni 1) :

switch (theEvent.what)
{

case key Down:
gA 11 Done = true:
break:

case kHighLevelEvent:
AEProcessAppleEventC &theEvent >:
break:

void lnitializeToolboxC void
{

InitGraf(&qd.thePort);
InitFonts (>:
InitWindows():
lnitMenus();

555

556
Macintosh Programming Techniques. ZE

TEinit();
InitDialogs(OL);
FlushEvents(everyEvent. 0);
InitCursor();

Stepping through the code
One last time: it's time to walk through the example program's source
code listing.

The /Ii nc 1 ude files
Your IDE automatically includes many of the Apple universal header
files in each project you compile. But it doesn't include all of the one
hundred plus header files. One of the headers it doesn't include is
Sound.h. Normally that doesn't present a problem-if your project does
n't make any calls to sound-related Toolbox functions, there's no need
for your compiler to know the definitions for these routines.
FinderAware does, however, call a sound-related Toolbox routine. So
you'll need to include Sound.h at the top of your source code listing.

#include <Sound.h>

The /Ide f i n e directives
FinderAware makes use of just two application-defined constants. The
first is rSoundPl ayi ngWi ndow, which defines the ID of the WI ND
resource. The second is rGoodBadUgl ySound, which defines the ID of
the snd resource.

//define
//define

rSoundPlayingWindow
rGoodBadUglySound

128
9000

A snd , like any resource, has an ID. Apple has reserved ID numbers 0 to
8191 for its own use. You can change the ID of a snd by selecting the resource
and the choosing Get Resource Info from ResEdit's Resource menu. Then
type in a new ID. Taking into consideration the reserved numbers,
FinderAware uses 9000 as the ID of its one sound resource.

Chapter 10 • Applications and the Finder

The global variables
FinderAware needs only a single global variable-the Boo 1 ean variable
gA 11 Done.

Boolean gAllDone =false;

The ma i n <) function
Finder Aware' s ma i n () function starts with program initializations and
ends with the event-handling routine EventLoop(). In between the pro
gram's one Apple event handler is installed, a window is opened, and a
sound is played.

void main(void)
{

MaxApplZone();
MoreMasters();
MoreMasters();
MoreMasters();

InitializeToolbox();

AEinstallEventHandler(kCoreEventClass, kAEQuitApplication,
NewAEEventHandlerProcCAEHandleQuit),
0, false);

OpenWindowAndPlaySound();

Eventloop():

The Quit flppllcation Apple Event Handler
Apple event handler routines should be installed right near the start of a
program. FinderAware does this by installing the Quit Application Apple
event handler routine AEHandl eQui t() just after the Toolbox is initialized.

AEinstallEventHandler(kCoreEventClass, kAEQuitApplication,
NewAEEventHandlerProc(AEHandleQuit),
0, false);

557

558
Macintosh Programming Techniques. ZE

Like any Apple event handler, the Quit Application Apple event han
dler found in the FinderAware program is an application-defined rou
tine. It follows the format outlined in this chapter:

pascal OSErr AEHandleQuit{ AEDesclist *theAppleEvent.

gA 11 Done = true;
return noErr;

AEDesclist *theReply,
long theRefCon)

Playing a sound from a sound resource
Playing a sound from a sound resource is a simple process. Begin by call
ing the Toolbox function Get Resource() to load the sound resource data
into memory. The GetResource(·) function can be used to load the data
of various resource types, so you need to specify the resource type in the
first parameter. Notice that the fourth character in the four-character
resource name is a space. The name of every resource type consists of
four characters, and the sound resource is no exception. When naming
the resource type in the first parameter to GetResource(), enclose the
four characters in single quotations. The second parameter to
GetResource() is the resource ID of the resource to load. In the follow
ing snippet, snd resource 9000 is being loaded into memory:

/ldefi ne rGoodBadUglySound

Handle theSound;
OSErr theError;

9000

theSound = GetResource{ 'snd ·• rGoodBadUglySound);

theError = SndPlay{ nil. CSndlistHandle)theSound. true);

After loading the sound resource data, play the sound by calling the
Toolbox function SndPl ay(). The first parameter to SndPl ay() specifies
the sound channel to use. If you pass a n i 1 pointer, as done here, then the
Sound Manager takes care of opening and closing a sound channel for
you. The second parameter is a handle to the sound resource data that

Chaptvr 10 • flpplicatlons and thv flndvr

was previously loaded into memory. The third parameter tells the Sound
Manager whether the sound is to be played asynchronously-that is,
whether this is the only sound playing (asynchronous) or if more than
one sound will be playing at the same time (synchronous). You will just
be playing one sound at a time, so set this parameter to true.

rl1
rt 0 T E

As of this writing the THINK C and Symantec C++ compilers don't require
typecasting of the second parameter to SndPl ay()- so the FinderAware.c file
found in the THINK C and Symantec C++ folders on the included CD pass a
Handle rather than a Sndl i stHandl e. Whether this parameter gets typecast
depends on the version of the universal header files included with your IDE.
If you 're using one of these two compilers, and you get a compile-time error
at this line of code, add the typecasting as shown in the above snippet.

FinderAware plays its sound from the OpenWi ndowAndPl aySound()
routine. That function begins by opening and displaying a small win
dow. Just before the sound is played a call to DrawSt ri ng () is made to
inform the user that the sound is playing. This note will come in handy
for users who have the volume set to 0-without the notice they might
not realize what the program is doing. When SndPl ay() completes the
playing of the sound, the note is erased using a call to the Toolbox func
tion EraseRect().

Event handling
FinderAware looks for two event types: keyDown and kHi ghlevel Event.
In response to a press of a key, the program ends. In response to an Apple
event, the Toolbox function A E Process Appl e Event () is called. This is the
function that is responsible for invoking the application-defined Quit
Application Apple event handler routine AEHandl eQui t ():

void Eventloop(void)
{

EventRecord theEvent;

whil e (gAllDone ~ false
{

Wai tNextEvent(everyEvent, &theEvent , 15L, nil) ;

switch (theEvent .what)
{

559

560
Macintosh Programming Tlchnlqaes, ZE

}
}

case key Down:
gAllDone = true;
break;

case kHighlevelEvent:
AEProcessAppleEvent(&theEvent);
break;

CHAPTER SaMMflRY
Giving a program its own icon to be displayed in the Finder is the fin
ishing touch that makes your program look professional. The BNDL
resource allows you to create your own icon and associate it with a pro
gram you write.

When the user elects to shut down his or her Macintosh, the Finder
will attempt to quit all applications that are currently running. The Finder
will be successful only if each currently running program supports the
Quit Application Apple event. You can add Apple event support to your
own program by writing a simple application-defined Quit Application
Apple event handler routine and installing that routine in your program.

flClttTOSH PROGRflMMlttG TECHttlOUES. 2E

Appendix fi

Macintosh Data Types
ANSI C data types, such as int, fl oat, and char, all exist in the
Macintosh programming world. But to meet the special GUI needs of
the Macintosh, Apple has created several new data types. These types
allow access to the Toolbox, provide you with a means to create and
work with the graphical user interface, and give you the resources to
work within Apple's memory addressing scheme. Many of these data
types are defined alphabetically in this appendix.

C<irafPort
The color version of a Graf Port. See GrafPort.

Control Handle
The push buttons, radio buttons, and check boxes found in dialog boxes
are controls. To work with them, Toolbox routines use handles called
Control Handles .

Cars or
The data type that represents a 16-by-16 bit image that defines a cursor.
The on-screen cursor is set to the arrow cursor by a call to

561

562
Macintosh Programming Techniques. ZE

In i t Cursor () . To access the other four system-defined cursors, use the
constants i BeamCursor, crossCursor, pl usCursor, and watchCursor.

CCI rs Handle
Cursors are stored as CU RS resources and are accessed by Toolbox rou
tines that return, and expect as a parameter, the cursor handle
CursHandl e.

DlalogPtr
A pointer to another Macintosh data type, the Di a 1 ogRecord. The
Di al ogRecord holds information about a dialog box. You access this
information via Toolbox calls that require a Di al ogPtr rather than the
Di al ogRecord itself. Many Toolbox routines that work with
Wi ndowPtrs also work with a Di a 1 ogPtr as the parameter.

Dialog Record
A structure that holds information about a single dialog box-descrip
tive information needed by the Dialog Manager. You seldom need to
work directly with a Di a 1 ogRecord. Instead, you access information
indirectly through Toolbox routines that use a Di a 1 og Pt r, a pointer to a
Di a 1 ogRecord.

EventRecord
An EventRecord holds information about a single event. An
EventRecord is created for every event that occurs. These
Event Records are held in an event queue. Unlike some Macintosh data
types, that you deal with through the use of pointers or handles, you
work with events directly through the record itself.

GrafPort
A graphics port is a drawing environment that defines how text and
shapes will be drawn. So that it can display unique text or shape styles,
each window has its own graphics port. A Graf Port is the Macintosh
data type that holds this information about a graphics port. To access

Appendix A • Macintosh Data Types

information within a graphics port you use a pointer to a Graf Port,
rather than the Graf Port itself.

GrafPtr
A pointer to a Graf Port. A Graf Port is the data structure that holds
information about a graphics port. See Graf Port.

Handle
A pointer to a master pointer. A master pointer keeps track of the loca
tion of a relocatable block in the application's heap. Some Toolbox func
tions return a Handle to your program. To make use of this generic
Hand 1 e in future Toolbox calls, you may have to typecast it to a specific
type of handle, such as a Control Handle.

Menu Handle
A handle to a menu record. A menu record holds information about a
single menu-descriptive information needed by the Menu Manager.
Toolbox routines that work with menus use MenuHandl es rather than the
menu record itself.

PatHandle
A data type. Patterns can be created and stored in PAT resources.
Toolbox routines that work with Patterns obtained from a resource file
use the PatHandl e data type.

Pattern
An 8-by-8 bit image that defines a design that can be repeated to fill an
area of any given size. There are five system Patterns defined by the
constants white, 1 tGray, gray, dkGray, and black.

Pie Handle
A handle type. Pictures, or PI CT resource types, are accessed through a
handle of type Pi cHandl e. Toolbox routines that work with pictures will
expect a Pi c Hand 1 e as a parameter.

563

564
Macintosh Programming Techniques. ZE

Point
Any pixel on the Macintosh screen can be referred to by a pair of coor
dinates. That data type Point holds one such pair.

Rect
A rectangle. It is the Macintosh data type that is used as a basis for draw
ing rectangles, ovals, and round rectangles. The coordinates that make
up a rectangle's upper-left comer and the two that make up its lower
right comer define a rectangle. The Macintosh data type that holds this
information is the Rect.

WlndowPtr
A pointer to another Macintosh data type, the Wi ndowRecord. The
Wi ndowRecord holds information about a window. You'll access this
information via Toolbox calls that require a Wi ndowPt r rather than the
Wi ndowRecord itself.

WlndowRecord
A structure that holds information about a single window-descriptive
information needed by the Window Manager. You seldom need to work
directly with a Wi ndowRecord. Instead, you access information indirect
ly through Toolbox routines that use a Wi ndowPtr, a pointer to a
Wi ndowRecord.

flCHiTOSH PROGRAMMING TECHNIQUES, ZE

Appendix B

Determining
a Trap•s Type

Chapter 9, The Varying Mac, thoroughly covered the concept of traps.
For you trap fanatics, here's a little more.

If your program is running on a computer that has System 6.0.4 or
later, you can use the Gestalt() function to determine the availability
of a trap quickly and easily. The Gestalt() routine is discussed in
Chapter 9. If you're on a machine that is pre-1989, you have to use the
NGetTrapAddress () function in place of Gest al tC).

If you're using NGetTrapAdd ress (),and you know the trap you are
looking for is a Toolbox trap (as opposed to an Operating System trap),
you can simply make the comparison to the Unimplemented trap.
Here's the example used in Chapter 9:

Boolean colorWindAvai l;

colorWindAvail - (NGetTrapAddress(_GetNewCWindow, ToolTrap)
!- (NGetTrapAddress(_Uni mpl emented, ToolTrap));

If, however, you're writing a program that is to run on a pre-1989
Macintosh, and you don't know the type of the trap, ToolTrap or

565

566
Macintosh Programming Techniques. ZE

OSTrap, you'll need to include extra code in your program. Below is the
necessary code. The routine TraplsPresent() and the two routines that
it calls are summarized here.

GetTrapType ()
The setting of one bit of a trap-bit 11-determines whether the trap is
a Toolbox trap (ToolTrap) or an Operating System trap (OSTrap). This
routine performs an & operation on this one bit to determine if it is set
or not.

tlumToolTraps ()
Macintosh models may have one of two different sized trap tables. This
routine uses the trap for the Ini tGraf ()routine, present on all Macs, to
determine if the Toolbox has 512 (Ox200) Toolbox traps or 1024 (Ox400)
Toolbox traps.

TraplsPresent()
This routine makes use of the GetTrapType() and NumToolTraps()
routines and the Toolbox routine NGetTrapAddress () to determine if
the trap you've passed in is present.
Now, the code. For in-depth trap-checking, copy the following three
routines to your source code-even if you don't fully understand them!
Then, to check for the availability of a trap, simply call
TraplsPresent(), passing in the trap to check for. Following the rou
tines is an example of a call to TraplsPresent().

Boolean TrapisPresent(short):
TrapType GetTrapType{ short >:
short NumToolTraps(void >:

Boolean TrapisPresent{ short theTrap
{

}

Appendix B • Determining a Trap's 1Jpe

TrapType theType:
Boolean isPresent:

theType = GetTrapType(theTrap >:

if C C theType ToolTrap) &&
C (theTrap &= Ox07FF) >= NumToolTraps()))
isPresent = false:

else
isPresent = (NGetTrapAddress(_Unimplemented. ToolTrap !=

NGetTrapAddressC theTrap. theType) >:

return isPresent;

TrapType GetTrapType(short theTrap
{

if ((theTrap & Ox0800) == 0)
return C OSTrap);

else
return (ToolTrap);

short NumToolTraps(void)
{

if C NGetTrapAddressC OxA86E. ToolTrap } ==
NGetTrapAddressC OxAA6E. ToolTrap })

return (Ox200 >:
else

return C Ox400):

Here's an example that checks for the presence of Wai tNextEvent ().
If its not available, an alert will be posted.

//define rWNEnotHereAlert 128

if C TraplsPresentC_WaitNextEvent) --- false
A 1 ertC rWNEnotHereA 1 ert. ni 1) :

567

ACIHTOSH PROGRAMMIHG TECHHIQOES, 2E

Appendix C

Gestalt Definitions
Chapter 9 gave several examples for obtaining information about a
Macintosh using the Ges t al t () function. Here are several more selector
codes that yield system software and hardware information. If you plan
on expanding Chapter B's InnerView example program into a more use
ful utility, you'll want to add Gest a 1 t() calls that include many of these
selector codes.

Use any of the selector codes as shown in Chapter 9. Here's an example:

OSErr theError;
long theResponse :

theError - Gestalt(gestaltQuickdrawVersion, &theResponse);

if (theError ~ noErr)
{

if (theResponse ~ gestaltOriginalQD
DrawString("\pYou have the original version of QuickDraw.");

569

570
Macintosh Programming Technlqaa. ZE

flDDRESSIHG MODE flTIRIBOTES

Selector code

gestaltAddressingModeAttr

Response parameter

gestalt32BitAddressing = 0
gestalt32BitSysZone - 1
gestalt32BitCapable = 2

Selector code

gestaltAppleEventsAttr

Response parameter

I* using 32-bit addressing mode */
I* 32-bit compatible system zone */
I* 32-bit capable machine */

gestaltAppleEventsPresent = 0 I* true if Apple Events present */
gestaltScriptingSupport = 1
gestaltOSLinSystem = 2

flPPLEfflLK VERSIOH

Selector code

gestaltAppleTalkVersion

Appendix c • Gczstan Definitions

Response parameter
Returns version number of installed AppleTalk driver.
A/UX Version

Selector code

gestaltAUXVersion

Response parameter
Returns version number of A/UX if it is currently executing.

EASY flCCESS flTTRIBOTES

Selector code

gestaltEasyAccessAttr

Response parameter

gestaltEasyAccessOff g O
gestaltEasyAccessOn = 1
gestaltEasyAccessSticky g 2
gestaltEasyAccesslocked - 3

I* Easy Access present, but off */
I* Easy Access On */
I* Easy Access Sticky */
I* Easy Access Locked */

fLOflTl"G-POl"T U"IT TvPE

Selector code

gestaltFPUType

571

57Z
Macintosh Programming Techniques. ZE

Response parameter

gestaltNoFPU = O
gestalt68881 = 1
gestalt68882 = 2
gestalt68040FPU = 3

GESTALT VERSIOH

Selector code

gestaltVersion

I* no FPU */
I* 68881 FPU */
I* 68882 FPU */
I* 68040 built-in FPU */

Response parameter
Returns the current version. As of this writing the current version is 6,
returned as $0006.

HARDWARE fi~IBOTES

Selector code

gestaltHardwareAttr

Response parameter

gestaltHasVIAl m 0 /* VIAl exists */
gestaltHasVIA2 = 1 I* VIA2 exists */
gestaltHasASC - 3 I* Apple Sound Chip exists */
gestaltHasSCC - 4 I* sec exists */
gestaltHasSCSI - 7 I* SCSI exists */
gestaltHasSoftPowerOff = 19 I* has software power off */

gestaltHasSCSI961 = 21
gestaltHasSCSI962 = 22
gestaltHasUniversalROM = 24
gestaltHasEnhancedltalk = 30

Appendix C •Gestalt Definitions

I* 53C96 SCSI controller internal bus */
/* 53C96 SCSI controller external bus */
/* has a Universal ROM */
I* has a Enhanced LocalTalk */

tlELP MAnflGER flTIRIBUTES

Selector code

gestaltHelpMgrAttr

Response parameter

gestaltHelpMgrPresent = 0 I* true if help mgr is present */
gestaltHelpMgrExtensions = 1 /* true if help mgr extensions are

installed */

KEvaOflRD lYPE

Selector code

gestaltKeyboardType

Response parameter

gestaltMacKbd "" 1 /* Mac keyboard *I
gestaltMacAndPad "" 2 I* Mac keyboard w/pad *I
gestaltMacPlusKbd = 3 I* MacPlus keyboard *I
gestaltExtADBKbd = 4 I* extended ADB keyboard *I
gestaltStdADBKbd "" 5 I* standard ADB keyboard *I
gestaltPrtblADBKbd "" 6 I* portable ADB keyboard *I
gestaltPrtblISOKbd ""' 7 I* portable ISO keyboard *I

573

574
Macintosh Programming Technlqaes. ZE

gestaltStdISOADBKbd ~ 8
gestaltExtISOADBKbd = 9
gestaltADBKbdII = 10
gestaltADBISOKbdII = 11
gestaltPwrBookADBKbd = 12
gestaltPwrBookISOADBKbd = 13
gestaltAppleAdjustKeypad = 14
gestaltAppleAdjustADBKbd = 15
gestaltAppleAdjustISOKbd = 16
gestaltJapanAdjustADBKbd = 17
gestaltPwrBkExtISOKbd = 20
gestaltPwrBkExtJISKbd = 21
gestaltPwrBkExtADBKbd = 24

LOGICAL RAM SIZE

Selector code

I* standard ISO ADB keyboard */
/* extended ISO ADB keyboard */
I* ADB keyboard II */
I* ADB ISO keyboard II */
I* Powerbook ADB keyboard */
/* Powerbook ISO ADB keyboard */

I* Japan Adjustable Keyboard */
I* PowerBook Extd International */
I* PowerBook Extended Japanese */
I* PowerBook Extended Domestic */

gestaltlogicalRAMSize I* logical ram size*/

Response parameter
Returns the amount of logical memory available, in bytes.

Low MEMORY fiREfl

Selector code

gestaltlowMemorySize I* size of low memory area */

Response parameter
Returns the size, in bytes, of the low-memory area. This area is used for
vectors, global variables, and dispatch tables.

Appendix C • Gestalt Definitions

MEMORY Mfl"flGEME"T O"IT TvPE

Selector code

gestaltMMUType

Response parameter

gestaltNoMMU = 0
gestaltAMU - 1
gestalt68851 = 2
gestalt68030MMU = 3
gestalt68040MMU = 4
gestaltEMMUl = 5

/* no MMU */
I* address management unit */
I* 68851 PMMU */
/* 68030 built-in MMU */
I* 68040 built-in MMU */
I* Emulated MMU type 1 */

Qo1cKDRflW VERSIO"

Selector code
gestaltQuickdrawVersion

Response parameter

gestaltOriginalQD = OxOOO
gestalt8BitQD = OxlOO
gestalt32BitQD = Ox200
gestalt32BitQD11 = Ox210
gestalt32BitQD12 = Ox220
gestalt32BitQD13 = Ox230

I* original 1-bit QuickDraw */
I* 8-bit color QuickDraw */
I* 32-bit color QuickDraw */
I* 32-bit color QuickDraw vl.1 */
I* 32-bit color QuickDraw vl.2 */
I* 32-bit color QuickDraw vl.3 */

PHYSICAL itflM SIZE

Selector code

gestaltPhysicalRAMSize

575

576
Macintosh Programming Techniques. ZE

Response parameter
Returns the number of bytes of physical RAM currently installed.

ROM SIZE

Selector code

gestaltROMSize

Response parameter
Returns the size of the installed ROM.

ROM VERSIOH

Selector code

gestaltROMVersion

Response parameter
Returns the version number of the installed ROM.

Souno flTTRIBOTES

Selector code

gestaltSoundAttr

flppendlx C • Gestalt Definitions

Response parameter

gestaltStereoCapability ~ O /* stereo compatabile hardware */
gestaltStereoMixing = 1 /* external speaker stereo mixing */
gestaltSoundIOMgrPresent - 3 /* Sound 1/0 Manager is present */
gestaltBu1ltlnSoundlnput - 4 /* built-in Sound Input hardware */
gestaltHasSoundlnputDevice = 5 /* Sound Input device available */
gestaltPlayAndRecord = 6 /*built-in simul. play/record */
gestalt16BitSoundIO a 7 I* play and record 16-bit samples */
gestaltStereolnput a 8 /* record stereo */
gestaltl1nelevellnput - 9 I* sound input requires line level */
I* the following bits are not defined prior to Sound Mgr 3.0 */
gestaltSndPlayDoubleBuffer - 10 /* SndPlayDoubleBuffer available */
gestaltMultiChannels ~ 11 /* multiple channel support */
gestalt16BitAudioSupport - 12 /* 16 bit audio data supported */

SVSTEM VERs1on

Selector code

gestaltSystemVersion

Response parameter
Returns the version number of the active System file.

VIRTOflL MEMORY flTIRIBOTES

Selector code

gestaltVMAttr

577

578
Macintosh Programming Techniques. ZE

Response parameter

gestaltVMPresent = 0 I* true if virtual memory is present */

flClttTOSH PROGRflMMlttG TECHttlQOES. 2E

Appendix D

Toolbox itoutine
Summary

This appendix summarizes the Toolbox calls used throughout this book.
The calls are divided into the following eight sections:

• QuickDraw

• Events
• Windows

• Dialogs

• Menus
• Memory
• Utilities
• Sound

579

580
Macintosh Programming Techniques. ZE

Qa1cKDRf1W
This section describes many of the important QuickDraw routines
found in the Toolbox.

Constants

I/define systemFont 0
//define applFont 1
/ldefi ne newYork 2
I/define geneva 3
//define monaco 4
//define venice 5
//define 1 ondon 6
//define a thens 7
//define sanFran 8
//define toronto 9
/ldefi ne cairo 11
//define losAngeles 12
I/define times 20
//define helvetica 21
/ldefi ne courier 22
/ldefi ne symbol 23
//define mobile 24

Text Font() changes the font that subsequent calls to DrawStri ng ()
uses. Pass TextFont() any of the above constants to set drawing to
that font.

lldefi ne normal 0
/ldefi ne bold 1
//define italic 2
fldefi ne underline 4
/ldefi ne outline 8
/ldefi ne shadow OxlO
/ldefi ne condense Ox20
//define extend Ox40

TextStyl e() sets the style of text drawn by DrawStri ng(). Pass
TextStyl e() any of the above values or add any number of Styles
together for a combined effect.

Appendix D • Toolbox RoaUne Summary

Global Variables

Pattern dkGray:
Pattern ltGray:
Pattern gray:
Pattern b 1 ack:
Pattern white:

The system defines five Patterns for your use in calls such as Pen Pat ()
or Fi 11 Re ct () . You can use any of the five variables without declaring
them in your program. When using one of the above constants, preface
its name with qd, and include the dot operator-as in qd. l tGray.

Data Structures

struct Graf Port
(

short
BitMap
Re ct
RgnHandle
RgnHandle
Pattern
Pattern
Point
Point
short
Pattern
short
short
Style
char
short
short
Fixed
long
long
short
short
Handle
Handle

device;
portBits:
portRect:
visRgn:
clipRgn;
bkPat:
fi 11 Pat;
pnloc:
pnSize:
pnMode:
pnPat:
pnVis:
txFont;
txFace;
filler;
txMode:
txSize:
spExtra:
fgColor:
bkColor:
col rBit:
patStretch;
picSave:
rgnSave:

581

582
Macintosh Programming Techniques. ZE

Handle polySave:
QDProcsPtr grafProcs:

} :

typedef struct GrafPort GrafPort:
typedef GrafPort *GrafPtr:

A Graf Port is the drawing environment of a window. Each window has
its own Graf Port. The fields within a Graf Port are changed through the
use of Toolbox calls rather than direct manipulation.

Graphic Ports
Set Port() makes the graphics port pointed to by the Port the current
port. Subsequent drawing operations will be performed in this port. Call
Set Port() before first drawing to a port to ensure that graphics opera
tions are drawn to the proper window. Before calling SetPort(), call
Get Port() to save the current port so that it can be restored later.

void SetPort(GrafPtr thePort);
void GetPort(GrafPtr *thePort >:

GetPort() gets the current port and saves a pointer to it in thePort.
Before drawing to a port, call GetPort() to save the current port, then
call Set Port () to set the port to the new port.

Graphics Pen

void GetPenState(PenState *thePenState):

GetPenState() gets the current state of the pen and stores it in
thePenState. After making location, size, or pattern changes to the pen,
you can restore the previous pen state with a call to SetPenState().

void SetPenStateC PenState *thePenState >:

Before making changes to the state of the graphics pen you can call
GetPenState() to save the current state in thePenState. Then, after
drawing is complete, call SetPenState(). Pass the same thePenState
to restore the pen to its previous condition.

Appendix D • Toolbox Routine summary

void PenPat(Pattern thePattern):

Pen Pat() sets the pattern used by the graphics pen to thePattern. All
subsequent drawing operations performed in the current graphics port
will use this pattern until Pen Pat() is again called. Use Get Pattern ()
to load a PAT resource for use by Pen Pat () , or use one of the standard
Patterns defined as global variables and listed under the Global
Variables heading of this section.

void PenPixPat(PixPatHandle thePatHandle >:

PenPi xPat() sets the pattern used by the graphics pen to the pattern
accessed through thePatHandl e. All subsequent drawing operations
performed in the current graphics port will use this pattern until
Pen Pi x Pat () is again called. Ca 11 Ge tp i x Pat () to load a color pp at
resource for use by Pen Pi xPat ().

void PenSize(short theWidth.
short theHeight):

Set the width and height of the graphics pen with a call to PenSi ze(). The
parameters th eWi d th and t heH e i g ht are the pixel dimensions the pen will
acquire. All subsequent lines drawn with the pen will be drawn in this size.

void PenNormalC void);

To restore the pen to its default settings, call Pen Norma 1 ().Pen Norma 1 ()
sets the pen's size to (1,1) and its pattern to black.

void MoveToC short theHoriz.
short theVert);

Move To () moves the pen to the horizontal pixel coordinate theHori z
and the theVert pixel coordinate vert. The origin is the left top comer of
the current port. No drawing is performed.

void Move(short theHoriz,
short theVert):

Move() moves the pen theHori z pixels in the horizontal direction and
theVert pixels in the vertical position from the pen's current position. A

583

584
Macintosh Programming Techniques. 2E

negative theHori z value moves the pen to the left. A negative theVert
value moves the pen up. No drawing is performed.

void LineToC short theHoriz,
short theVert):

LineTo() draws a line to the horizontal pixel coordinate theHori z and
the theVert pixel coordinate vert. The origin is the left top comer of the
current port.

void Line(short theHoriz.
short theVert);

Line() draws a line theHori z pixels in the horizontal direction and
theVert pixels in the vertical position from the pen's current position.
A negative theHori z value draws a line to the left. A negative theVert
value draws a line up.

Drawing Text

void GetindString(Str255 theStr,
short theStrlistID,
short theindex);

GetindStri ng() loads a string into theStr from the STR// list with an
ID of theStrlistlD. From this list GetindString() selects the
the Index string in the list; e.g. if the Index= 2, the second string in the
list will be loaded. Once loaded, theStr can be used as any other
Str255 variable.

void TextFont(short theFontNum);

TextFont() sets the font to the font number theFontNum. All subse
quent text will be drawn in this font. Many fonts are defined by con
stants given under the Constants heading of this section.

void TextFace(Style theFace);

flppendlx D • Toolbox Routine summary

Text Face() sets the style of text to the Face. The style can be one Style
or a combination of Styles. All subsequent text will be drawn in this
style. See the Constants heading in this section for a listing of the avail
able Styles.

void TextSize< short theSize >:

Set the size of text with a call to TextSi ze(). The size is given in points,
where approximately 72 points equals one inch. All subsequent text will
be drawn in this size.

void DrawChar(short theChar >:

Dr a we ha r () draws a single character the Ch a r to the current port. The
current font, style, and size are used. The starting location of the charac
ter is the current position of the graphics pen.

void Drawstring{ Str255 theStr >:

DrawSt ring () draws string theSt r to the current port. The current
font, style, and size are used. The starting location of the character is the
current position of the graphics pen.

Patterns

PatHandle GetPattern(short thePatternID):

GetPattern () returns a PatHandl e to the PAT resource with the ID of
thePatternlD. Once you've obtained a PatHandl e, dereference it twice
and then use it as a Pattern type in QuickDraw calls, such as Pen Pat().

PixPatHandle GetPixPat(short theppatID >:

GetPixPat() works like GetPattern(). GetPixPat() returns a
Pi xPatHandl e to the ppat resource with the ID of theppatID. Once
you've obtained a Pi xPatHandl e, use it in QuickDraw calls, such as

585

586
Macintosh Programming Techniques. JE

PenPixPat(). Color QuickDraw routines that work with color patterns
accept handles to them-you do not have to dereference it.

Drawing Shapes

void SetRect(Rect *theRect,
short the left,
short theTop,
short theRi ght,
short theBottom);

Set Re ct () sets the boundaries of rectangle theRect. The coordinates of
the rectangle use the current graphics port's left top comer as the origin.

Always use SetRect() to establish a rectangle before performing
shape-drawing operations involving a rectangle, oval, or round rectan
gle. SetRect () does not display a rectangle.

void FrameRect(Rect *theRect);

FrameRect () frames rectangle the Re ct. Before framing, establish the
boundaries of theRect with a call to SetRect(). FrameRect() does not
fill in the rectangle, it merely outlines it with a frame.

void PaintRect(Rect *theRect);

Pai ntRect() fills the rectangle theRect with the current pen pattern.
Call SetRect() to establish the boundaries of theRect.

void FillRect(Rect *theRect,
Pattern thePat);

Fi 11 Rect() fills the rectangle theRect with the pattern the Pat. The
current pen pattern is unaffected by the call to Fi 11 Rec t () . Call
Set Re ct () to establish the boundaries of theRect.

void EraseRectC Rect *theRect >:

EraseRect() fills rectangle theRect with the background pattern, which
is usually white. Call SetRect() to establish the boundaries of theRect.

void InvertRectC Rect *theRect);

Appendix D • Toolbox Routine Summary

InvertRect() changes the state of each pixel in rectangle theRect. All
white pixels become black; all black pixels become white.

void FrameOval(Re ct *theRect):

void PaintOval(Re ct *theRect):

void Fil 1Ova1C Rect *theRect.
Pattern thePat);

void EraseOvalC Rect *theRect):

void InvertOvalC Rect *theRect):

Each of the previous five routines that perform operations on rectangles
have an analogous Toolbox routine that performs the same operation on
an oval. For each oval routine, the oval is drawn within the rectangle
theRect.

void FrameRoundRect(Rect *theRect.
short theWidth.
short theHeight >:

void PaintRoundRect(Rect *theRect.
short theWidth.
short theHeight >:

void Fil 1 RoundRect (Rect *the Re ct.
short theWidth.
short theHeight,
Pattern thePat):

void EraseRoundRect(Rect *theRect,
short theWidth,
short theHeight >:

void InvertRoundRect(Rect *theRect,
short theWidth.
short theHeight):

Each of the five routines that perform operations on rectangles have an
analogous Toolbox routine that performs the same operation on a round
rectangle. The amount of rounding to the comer of a round rectangle is
determined by width and height.

587

588
Macintosh Programming Techniques, ZE

void FillCRect(Rect *theRect,
PixPatHandle theppatHandle >:

To fill a rectangle with a colored pattern, use Fi 11 CRect().
Fi 11 CRect() fills rectangle theRect with the Pi xPat accessed through
theppatHandl e. The window that is being drawn to should be a color
window created with a call to GetNewCWi ndow().

void FillCOvalC Rect *theRect,
PixPatHandle theppatHandle >:

To fill an oval with a colored pattern, use Fi 11COva1 ().This routine fills
the oval inscribed into theRect with the Pi xPat accessed through
the pp at Hand l e. The window that is being drawn to should be a color
window created with a call to GetNewCWi ndow().

void FillCRoundRect(Rect *theRect,
short theWidth,
short theHeight,
PixPatHandle theppatHandle >:

To fill a round rectangle with a colored pattern, use Fi 11 CRoundRect().
This routine fills the round rectangle described by theRect with the
PixPat accessed through theppatHandl e. The window that is being
drawn to should be a color window created with a call to
GetNewCWi ndow().

EVE HTS

This section describes the important Event Manager routines found in
the Toolbox.

Constants

//define
//define
//define
/ldefi ne
/ldefi ne

null Event
mouseDown
mouseUp
key Down
key Up

0
1
2
3
4

//define
//define
//define
fldefi ne
//define

auto Key
updateEvt
diskEvt
activateEvt
osEvt

5
6
7
8
15

Appendix D • Toolbox Routine Summary

After a call to WaitNextEvent(), the what field of the returned
EventRecord will contain one of the above constants.

//define mDownMask 2
//define mUpMask 4
//define keyDownMask 8
lldefi ne keyUpMask 16
//define autoKeyMask 32
I/define updateMask 64
//define diskMask 128
f/defi ne activMask 256
//define highlevelEventMask 1024
//define osMask -32768
I/define everyEvent -1

WaitNextEvent() is passed a mask that tells them which events to
watch for. Most applications will use everyEvent as this mask. The
occurrance of any type of event will be reported to your program, and
the logic of your program can then determine which event types to
respond to.

//define
/ldefi ne
fldefi ne
fldefi ne

charCodeMask
keyCodeMask
adbAddrMask
osEvtMessageMask

OxOOOOOOFF
OxOOOOFFOO
OxOOFFOOOO

OxFFOOOOOO

To determine which character is the result of a keystroke, perform an &
operation on the message field of the most recent event and the
cha rCodeMa s k.

Data Stractares

struct EventRecord
{

short what:
long message:

589

590
Macintosh Programming Techniques. ZE

} :

1 ong when:
Point where:
short modifiers:

typedef struct EventRecord EventRecord:

Unlike some record data structures, you'll access the fields of the
EventRecord directly, without using a pointer or handle.

The what field holds the type of an event, such as mouseDown or
updateEvt.

The message field holds information that varies from one event type
to the next.

The when field gives the time on the system clock when the event
occurred.

The where field holds the location of the cursor at the time the event
occurred.

The modi fie rs field holds the modifier keys that were pressed at the
time of the event. The Command and Option keys are examples of mod
ifier keys.

Event Reporting

Boolean WaitNextEvent(short theEventMask,
EventRecord *theEvent,
unsigned long theSleep,
RgnHandle theMouseRgn >:

Wai tNextEvent () sets theEvent to the next available event of the type
or types specified by theEventMask. To receive events of all types, set
theEventMask equal to the constant everyEvent. After
WaitNextEvent() receives the information that makes up theEvent, it
will remove it from the event queue in anticipation of handling the next
event.Wai tNextEvent () will return a value of true if the event is of a
type your program is looking for, as defined by theEventMask.
Otherwise it returns a value offal se. The theSl eep parameter tells the
system the maximum number of ticks that your program is willing to
relinquish between events. A single tick is one sixtieth of a second. A
theSl eep value of zero requests that the system return control to your

Appendix D • TOolbox Routine Summary

program as soon as possible. The theMouseRgn parameter is used to aid
in cursor display. If your program changes the look of the cursor at dif
ferent screen locations, you'll want to give theMouseRgn a value other
than ni 1, or OL.

Mouse Reporting

void GetMouse(Point *theMouseloc):

GetMouse() returns the location of the mouse at the time the call is
made. The location will be given in local coordinates-that is,
theMouseloc will be described in terms of the coordinates of the current
Graf Port.

Boolean Button(void):

Button () will return a value of true if the mouse button is down at the
time of the call.

Wl"DOWS
This section details the most commonly used routines that involve the
Window Manager.

Co"STfl"TS
I/define inDesk 0
I/define inMenuBar 1
f/defi ne inSysWindow 2
fldefi ne inContent 3
/ldefi ne inDrag 4
//define inGrow 5
//define inGoAway 6
/ldefi ne inZoomln 7
/ldefi ne inZoomOut 8

Fi ndWi ndow() returns the part of the window in which a mouse-down
event occurred.

591

592
Macintosh Programming Techniques. JE

Data Structures

struct WindowRecord
{

Graf Port port;
short windowKind;
Boolean visible;
Boolean hilited;
Boolean goAwayFlag;
Boolean spareFlag;
RgnHandle strucRgn:
RgnHandle contRgn;
RgnHandle updateRgn:
Handle windowDefProc;
Handle dataHandle;
StringHandle titleHandle:
short titleWidth:
Control Handle control List:
struct WindowRecord *nextWindow;
PicHandle windowPic;
1 ong ref Con:

) :

typedef struct WindowRecord WindowRecord:
typedef WindowRecord *WindowPeek;

typedef GrafPtr WindowPtr;

You'll seldom have cause to directly access any of the fields of a
Wi ndowRecord other than the port member, the Graf Port. Instead,
you'll indirectly access the fields using Toolbox calls. For the times you
need direct access, use a pointer to the entire WindowRecord-a
Wi ndowPeek.

A Wi ndowPtr points to the first field of the Wi ndowRecord by the fol
lowing definitions:

struct Graf Port
{

[Graf Port members
) ;

typedef struct GrafPort GrafPort;

flppendix D • Toolbox Routine Sammary

typedef GrafPort *GrafPtr:

typedef GrafPtr WindowPtr:

The above states that a Wi ndowPtr is the same as a Graf Ptr. A Graf Ptr is a
pointer to a Graf Port. AWi ndowPtr is a Graf Ptr, and points to a Graf Port
the first member of the Wi ndowRecord structure. See the QuickDraw section
of this appendix for the complete definition of a Graf Port.

Window flllocatlon

WindowPtr GetNewWindow(short theWindID.
Ptr theStorage,
WindowPtr theBehind):

GetNewWi ndow() loads a window into memory using a WIND resource.
The description of the window is read in from the WIND resource with ID
theWi ndID. Pass a ni 1 pointer, OL, for the theStorage if you want the
Window Manager to choose the memory location for the window. A
behind value of (W i n d ow Pt r) -1 L places the window in front of all other
windows, a value of n i 1, 0 L, places it behind.

WindowPtr GetNewCWindow(short theWindID,
Ptr theStorage,
WindowPtr theBehind >:

GetNewCWindowC) loads a color window into memory using a WIND
resource. If color attributes have been defined in the WIND resource with
ID theWi nd ID, they will appear in the window when it is displayed. The
last two parameters are the same as for GetNewWi ndow(). Note that both
GetNewCWi ndow() and GetNewWi ndowC) return a Wi ndowPtr. This
pointer can be used in any Toolbox routines that require a Wi ndowPtr as
a parameter.

void CloseWindowC WindowPtr theWindow >:

Cl oseWi ndow() erases theWindow and removes it from the list of open
windows. It does not release the memory used by the window's
Wi ndowRecord. Use this routine only if you supplied the window storage

593

594
Macintosh Programming Techniques. 2E

in your call to GetNewWi ndow() or GetNewCWi ndow(). To free the memo
ry associated with the Wi ndowRecord, call Di sposePtr((Ptr)the_wi n
dow) after Clos eWi ndow() .

void DisposeWindow(WindowPtr theWindow);

Di sposeWi ndow() erases theWi ndow and removes it from the list of open
windows. It also frees the memory used for theWi ndow' s Wi ndowRecord.
Use Di sposeWi ndow() if you passed a ni 1 pointer, OL, as the window
storage in your call to GetNewWi ndow<) or GetNewCWi ndow().

Window Display

void SetWTitleC WindowPtr theWindow,
Str255 theTitle >:

SetWTi t 1 e () sets the title of theWi ndow to the text that makes up the
Str255 variable title.

void GetWTitleC WindowPtr theWindow,
Str255 theTitle >:

GetWTi tl e() reads the current title of theWi ndow and sets the Str255
variable title to that value.

WindowPtr FrontWindowC void >:

FrontWi ndow() returns a Wi ndowPtr to the active window that is, the
window that is currently frontmost on the screen. H the screen is empty
of windows, FrontWi ndow() will return a nil pointer-OL.

void SelectWindow(WindowPtr the_window >:

Sel ectWi ndow() activates theWi ndow. The previously active window is
unhighlighted, theWi ndow is placed in front of all others, theWi ndow is
properly highlighted, and an activate event is generated.

void HideWindowC WindowPtr theWindow):

Appendix D • Toolbox Routine summary

Hi deWi ndow() makes theWi ndow invisible. It does not dispose of it. If
the_window is already invisible, Hi deWi ndowC) has no effect. If any other
windows exist, the one that is behind theWi ndow becomes the active win
dow. To make the hidden window again visible, use ShowWi ndow().

void ShowWindowC WindowPtr theWindow):

ShowWi ndow() makes the_window visible. If theWi ndow is already vis
ible, ShowWi ndow() has no effect. ShowWi ndow() highlights theWi ndow
but does not change the front-to-back ordering of windows. To show a
hidden window and bring it to the front, use Sel ectWi ndow() in con
junction with Sh owW i n d ow () . To make the shown window again hidden,
use HideWindowC).

void MoveWi ndow(Wi ndowPtr theWi ndow •.
short theHoriz.
short theVert.
Boolean theFront):

MoveWi ndow() moves theWi ndow to the screen location specified by the
second and third arguments. The top left comer of the window will be
placed at the screen point defined by horizontal and vertical. The size of
theWi ndow will be unaffected. If the value of front is true, then
theWi ndow will become the active window.

void DragWindow(WindowPtr theWindow.
Point theStartPt.
Rect *theDragRect):

DragWi ndow() should be called in response to a mouseDown event in
theWi ndow drag region. The theSta rt Pt should be set to the location
of the cursor when the mouse was pressed, as given in the where field of
the EventRecord. Window movement will be restricted to the bound
aries of the rectangle defined by theDragRect.

Windows and the Mouse

short Fi ndWi ndowC Point the Point.
WindowPtr *theWindow):

595

596
Macintosh Programming Techniques. ZE

A call to Fi ndWi ndow() yields both the window (theWi ndow) and the
part of the window (the short return value) in which a mouseDown event
occurred. The returned short value will be one of the constants listed
above in the Constants section, such as inDrag or i nGrow. Set the Point
to the location of the cursor when the event occurred. This can be
obtained from the where field of the EventRecord.

Updating

void EraseRgn(RgnHandle theUpdateRgn);

void BeginUpdate(WindowPtr theWindow);

Call Begi nUpdate() in response to an updateEvt for theWi ndow. After
calling Beg i n Update () , call Er as e R g n () , passing Er as e R g n () the
visRgn of theWindow, as in: EraseRgn(&theWindow->visRgn). Then
perform all the drawing necessary to draw the entire contents of the win
dow. The EraseRgn () call will restrict the actual updating to only the
area needed updating. After drawing to the window, call EndUpdate().

void EndUpdateC WindowPtr the_window);

EndUpdate () restores the vis Rgn of theWi ndow. This region was altered
during Begi nUpdate().

DIALOGS
This section describes many of the Toolbox routines that involve the
Dialog Manager.

Data Structures

struct DialogRecord
{

WindowRecord
Handle
TEHandle

window;
items:
textH;

Appendix D • Toolbox Routine summary

short editField:
short editOpen:
short aDefltem:

} :

typedef struct DialogRecord DialogRecord:
typedef DialogRecord *DialogPeek:

typedef WindowPtr DialogPtr:

As with a Wi ndowRecord, you'll seldom need direct access to any of the
fields of a Di al ogRecord. You will instead use a Di al ogPtr. The first
member of the Di al ogRecord is a Wi ndowRecord. The first member of a
WindowRecord is the port-the GrafPort. A DialogPtr, like a
Wi ndowPtr, points to a Graf Port. A Di al ogPtr can thus be used in
Toolbox calls expecting a Wi ndowPtr as an argument. See the Constants
section of the Windows heading of this appendix for more information.

For the few times you need direct access to fields other than the port,
use a pointer to the entire Di a 1 ogRecord-a Di a 1 ogPeek.

Di~log flllocation

DialogPtr GetNewDialog(short theDialogID,
Ptr theStorage,
WindowPtr theBehind):

GetNewDi a 1 og ()loads a dialog into memory using a DLOG resource. The
description of the dialog is read in from the DLOG resource with ID
theDi a 1 og'I D. Pass a ni 1 pointer, OL, for the theStorage if you want the
Dialog Manager to choose the memory location for the dialog. A behind
value of (Wi ndowPtr) -1 L places the dialog in front of all other windows,
a value of n i 1, 0 L, places it behind.

There is no separ~te call to create a color dialog as there is for creat
ing a color winqow. Instead, you use ResEdit to add color to any ele
ment-siich as the frame or title bar-of the dialog's DLOG resource. That
will create a dctb resource. Existence of the dctb resource tells
GetNewDi a 1 og () to base the new dialpg on a color graphics port.

void CloseDialog(DialogPtr theDialog):

597

598
Macintosh Programming Techniques. ZE

Cl oseDi a 1 og () erases theDi a 1 og and removes its window from the list
of open windows. It does not release the memory used by the dialog's
Di al ogRecord or by the dialog's item list. Use this routine only if you
supplied the dialog storage in your call to GetNewDialog(). To free the
memory associated with the Di a 1 ogRecord, call
Di s po s e Pt r ((Pt r) the Di a 1 o g) after C 1 o s e Di a 1 o g () .

void DisposeDialog(DialogPtr theDialog):

Di sposeDi a 1 og () erases theDi a 1 og and removes its window from the
list of open windows. It also frees the memory used for the Di a 1 og ' s
Di a 1 ogRecord and item list. Use Di sposeDi a 1 og () if you passed a ni 1
pointer, 0 L, as the dialog storage in your call to GetNewDi a 1 og ().

Dialog Events

void ModalDialog(ModalFilterUPP Filterfunction,
short *theitem);

Modal Di al og() performs event handling for a modal dialog box. When
an event involves an enabled item, the item number of that item is
returned to the program as the Item.

Mod a 1Dia1 og () optionally accepts a pointer to a filter function. H this
value is nil, OL, Modal Di al og() is responsible for all handling of the
event. If a pointer to a filter function is included in the call, the filter func
tion will handle some or all of the events. The filter function name, with
out parentheses, serves as the Moda 1 Fil terUPP. The filter function is
application defined. Its format is given below. ·

pascal Boolean Filterfunction(DialogPtr theDialog,
EventRecord *theEvent,
short *theitem):

Fi 1 terFunct ion () is an application-defined function that should be
written to perform any dialog-related tasks not performed by
Mod a 1Dia1 og (). The function can have any name, but it must have the

Appendix D • Toolbox Routine Summary

three arguments listed. The first is a pointer to the active dialog. The
EventRecord should be the event currently being handled. The the Item
parameter will be the item selected by the user. See Chapter 8 for a dis
cussion of filter functions as they pertain universal procedure pointers
(UPPs) and to PowerPC compilers.

Boolean IsDialogEvent(EventRecord *the_event);

I sDi a 1 ogEvent () determines if, at the time of the current event, the
frontmost window was a dialog box. If a dialog box wasn't in the fore
front the event is not dialog related, and I s Di a 1 o g Event () returns a
value off a 1 se to the calling routine.

Boolean DialogSelect(EventRecord *theEvent,
DialogPtr *theDialog,
short *theltem);

Di a 1ogSe1 ect () does all the work for you if a dialog needs updating or
activating. Call it after Is Di al ogEvent() has returned a value of true.

If the event was dialog related but wasn't an update or activate
event, Di a 1ogSe1 ect () doesn't handle it. Instead, Di a 1ogSe1 ect ()
returns a pointer to the dialog and the item number of the clicked-on
item for further processing by your program.

void DlgCut(DialogPtr theDialog);

D 1 gCut () handles the Cut command for text within a dialog's edit text item.

void DlgPaste(DialogPtr theDialog);

01 gPaste() handles the Paste command for text within a dialog's edit
text item.

void DlgCopy(DialogPtr theDialog);

01 gCopy() handles the Copy command for text within a dialog's edit
text item.

' ''

f1aclntosh Programming Techniques. ZE

600 --

ALERTS

short Alert(short theAlertID,
ModalFilterUPP FilterFunction >:

A 1 ert () loads, displays, and handles and alert defined by an ALRT
resource with an ID of theA 1 ert ID. It displays no icon, as the other three
forms of the A 1 ert () function do. The Moda 1Fi1 terUPP argument is a
pointer to an optional filter function that handles each event before pro
cessing by the A 1 ert () function. See Mod a 1Dia1 og () for more informa
tion on filter functions. A 1 e rt () returns a value of type short that con
tains the item number selected by the user.

short StopAlert(short theAlertID,
ModalFilterUPP FilterFunction >:

StopAlert() is identical to Alert() except that it displays a stop-sign
icon in the alert' s top left comer.

short NoteAlertC short theAlertID,
ModalFilterUPP FilterFunction >:

NoteA 1 ert () is identical to A 1 ert () except that it displays a message
icon in the alert' s top left comer.

short CautionAlert(short theAlertID,
ModalFilterUPP FilterFunction >:

CautionAlert() is identical to Alert() except that it displays a cau
tionary icon in the alert' s top left comer.

Dialog and Alert Items

void ParamTextC Str255 strO,
Str255 strl,
Str255 str2,
Str255 str3 >:

Pa ramText () allows up to four strings to be substituted in an alert or
dialog. If a static text item contains the string "AO", the text that com-

Appendix D • Toolbox Routine Summary

prises strO will be substituted for ""0". In addition strl will replace
""l", str2 will replace ""2", and str3 will replace ""3". Less than four
strings can be defined in ParamText() by using one or more empty
strings ("\p").

void GetDialogitem(DialogPtr theDialog,
short the Item.
short *theType.
Handle *theHandle.
Rect *theRect };

To obtain information about a dialog item, pass GetDi al ogltem() a
pointer to the dialog and the item number of the item in question. The
item number for any item can be found in the dialog's DITL resource.
After GetDi a 1 ogltem() has executed, the Type will contain the item's
type, theHandl e will hold a handle to the item, and theRect will hold
the display rectangle that holds the item.

void SetDialogitem(DialogPtr theDialog,
short the Item.
short theType.
Handle theHandle.
Rect *theRect >:

The description of an item can be changed using SetDi al ogltem(). All
parameters are the same as they are for GetDi al ogltem().

void GetDialogitemText(Handle theitem.
Str255 theStr >:

GetDi al ogltemText() returns the text from a text item in a dialog.
Parameter the Item is a handle to the item. This handle can be obtained
by first calling GetDi al ogltem(). After the call to
GetDi al ogltemText(), theStr will hold the contents of the text item.

void SetDialogitemText(Handle theitem.
Str255 theStr >:

Set Di a 1 og I temText () changes the text in a dialog text item. Parameter
theltem is a handle to the item and can be obtained by first calling
GetDi al ogltem(). The Str255 parameter theStr is the text to set the
item to.

601

602
Macintosh Programming Technlqaes. ZE

void SetControlTitleC ControlHandle theControl,
Str255 title);

SetCont ro 1Tit1 e () sets the title of theCont ro 1 to the text in title. You
can get a Handle to the control by first calling GetDi al ogltem(). The
returned handle should be typecast to the proper type when calling
Se tCo n t ro 1 Ti t 1 e () . Assuming the_handle is of type Handle and was
returned by Get Di a 1 og I tern(), a call to SetCont ro 1Tit1 e () would look
like the following: SetControlTitle((ControlHandle)the_handle.
title):

void GetControlTitleC ControlHandle theControl,
Str255 theTitle);

GetControlTitle() returns the current title of the item pointed to by
theControl. See SetControlTitle() for information on obtaining this
Control Handle.

void SetControlValueC ControlHandle theControl,
short theValue);

SetControl Value() sets the value of the item pointed to by
theControl. See SetControl Title() for information on obtaining this
Control Handle. Parameter theVal ue should be either a 1or0. A value
of 1 turns the control on; a value of 0 turns it off.

short GetControl Value(Control Handle theControl) ;

GetControl Value() returns the value of the item pointed to by
theControl. See SetControl Title() for information on obtaining this
Control Handle. The returned short type will be either 1or0. A value of
1 means the control is on; a value of 0 means that it is off.

MErtOS
This section describes the important Menu Manager routines found in
the Toolbox.

Appendix D • Toolbox Routine Sammary

Constants

/ldefi ne normal 0
//define bold 1
/ldefi ne i ta 1 i c 2
/ldefi ne underline 4
/ldefi ne outline 8
/ldefi ne shadow OxlO
/ldefi ne condense Ox20
/ldefi ne extend Ox40

The style of the text of a menu item can be changed with a call to
SetltemStyl e(). Pass in one or a combination of the above Style con
stants.

Data Structares

typedef unsigned char Style:

A call to SetltemStyl e() changes the text style of a menu item. Use the
Style constants defined above. To combine Styles, declare a variable of
type Style, then add the constants that will yield the desired combina
tion:

Style item_style:
item_style - bold + italic + shadow:

struct Menulnfo
{

} :

short
short
short
Handle
long
Str255

menu ID;
menuWidth;
menuHeight:
menuProc;
enableFlags:
menuData:

typedef struct Menulnfo Menulnfo;
typedef Menulnfo *MenuPtr, **MenuHandle:

603

604
Madntosh Programming Techniques. ZE

As with a Wi ndowRecords and Di al ogRecords, you'll seldom need
direct access to any of the fields of a Menu Info. You will instead use a
MenuHandl e.

Menu Allocation and Display

Handle GetNewMBar(short theMenuBarID >:

GetNewMBa r C) creates a menu list, using the individual MENU' s specified
in the MBAR resource with an ID of theMenuBarlD. The list contains a
handle to each individual menu that will appear in the menu bar.
GetNewMBa r C) does not install the individual menus or display the
menu bar.

void SetMenuBar(Handle theMenuList >:

SetMenuBa r () installs the individual menus in the menu bar specified
by theMenuL i st. This handle should be the one returned by
GetNewMBarC). The effect of SetMenuBarC) is to make theMenuL i st the
current menu list; a resource file can have more than one MBAR resource.

MenuHandle GetMenuHandle(short theMenu10· >:

GetMenuHandl e() returns a handle to the MENU with a resource ID of
theMenu ID. You'll then be able to change characteristics of this menu and
items in it using other Toolbox routines.

void AppendResMenu(MenuHandle theMenu.
ResType theType) :

AppendResMenu() locates all items of type the Type and appends them
to theMenu. For the Apple menu, theType should be DRVR.
Append Res Menu C) adds all the desk accessories in the user's system to
the Apple menu. Under System 7, Append Res Menu C) will also append all
items located in the Apple Menu Items folder in the System Folder. The
MenuHandl e theMenu should be obtained with a call to
GetMenuHandl e().

Appendix D • Toolbox Routine summary

void DrawMenuBar(void);

None of the preceding calls actually displays the menu bar on the screen.
After a menu setup has been performed, call DrawMenuBar() to draw it.

Menu Selections

long MenuSelect(Point theStartPt);

When an event is of mouseDown type, and it is further determined that
the location of the mouse down was inMenuBar, call MenuSelect().
Pass the where field of the event as the theSta rt Pt. Menu Se 1 ect() han
dles the dropping and displaying of menus as the user moves the mouse
over the menu bar. Both the user-selected menu and menu item will be
determined by Menu Se 1 ect () and saved in the returned 1 ong type.

long MenuKey(short chr);

If a key Down event occurs, and the Command key was pressed simulta
neously, call Menu Key(). Given the typed character chr, MenuKey() will
determine which menu and menu item this keystroke combination is
equivalent to, and return it in the 1 ong type. The value returned by
Menu Key () will be identical to that which Men use 1 ect () would return if
the menu choice had been made with the mouse rather than with a
Command-key equivalent.

Hierarchical Menus

MenuHandle GetMenu(short theMenuID);

When GetNewMBa r () reads in the MENU descriptions of the menu that
will appear in the menu bar, it takes note of submenu IDs but does not
read in their descriptions. GetMenu() does this. The theMenuID is the ID
of the MENU that represents the submenu of the hierarchical menu. Call
I nsertMenu () after calling GetMenu ().

605

606
Macintosh Programming Techniques. ZE

void InsertMenu{ MenuHandle theMenu,
short theBeforeID >:

After reading in the description of a submenu using GetMenu(), call
InsertMenu() to insert the submenu into the menu list. The parameter
theMenu should be the MenuHandl e returned by GetMenu(). Assign
theBeforeID a value of-1 to let the Menu Manager know this is a sub
menu rather than a menu in the menu bar.

Changing Menu Characteristics

void SetMenultemText{ MenuHandle theMenu.
short the Item,
Str255 theStr >:

SetMenultemText() changes the text of menu item the Item in
theMenu. The new text that will appear in the menu will be that of
theStr. Use GetMenuHandl e() to get a handle to the menu.

void GetMenultemText{ MenuHandle theMenu.
short the Item,
Str255 theStr >:

GetMenultemText() getsthetextofmenuitem the Item in theMenu and
places it in the Str255 variable theStr. Use GetMenuHandl e() to get a
handle to the menu.

void Disableltem{ MenuHandle theMenu,
short theltem >:

Di sabl el tern() disables the menu item the Item in theMenu by dim
ming it and ignoring user attempts to select it. If the It em is given a
value of zero, the entire menu will be disabled. The menu name in the
menu bar, and all menu items in the menu, will become dim. Use
GetMenuHandl e() to get a handle to the menu. Use Enabl el tern() to
enable a disabled menu or menu item.

flppendlx D • Toolbox Roatine Sammary

void Enableltem(MenuHandle theMenu,
short theltem):

Enabl el tern() enables the menu item the Item in theMenu by highlight
ing the dimmed item. If the Item is given a value of zero, the entire menu
will be enabled. The menu name in the menu bar and all menu items in
the menu will be highlighted. Use GetMenuHandl e() to get a handle to
the menu. Use Di sabl el tern() to disable an enabled menu or menu item.

void Checkltem< MenuHandle theMenu,
short the Item,
Boolean isChecked >:

Checkltem() places a checkmark to the left of the text in the Item in
theMenu, if i sChecked is true. If i sChecked is false, the checkmark
will be removed from the left of that item. Attempting to check an
already checked item has no effect. The same is true for an attempt to
uncheck a menu item that has no checkmark by it. Use Di sabl el tern()
to disable an enabled menu or menu item. Use GetMenuHandl e() to get
a handle to the menu.

void SetitemStyle(MenuHandle theMenu,
short the Item,
Style theStyle >:

The text of a menu item does not have to appear in its default style of
plain. SetltemStyl e() changes the style of the text of the Item in
theMenu to that given by theStyl e. The style can be one or any combi
nation of Styles from the set listed in the Constants heading of this sec
tion. Use GetMenuHandl e() to get a handle to the menu.

void GetitemStyle{ MenuHandle theMenu,
short the Item,
Style *theStyle):

GetltemStyl e() returns the Style of the text in the Item in theMenu.
Use GetMenuHandl e() to get a handle to the menu.

607

608
Macintosh Programming Techniques. 2E

MEMORY
This section describes the important Toolbox routines that work with
memory.
Memory Allocation

void MaxApplZone(void >:

At program startup the application's heap is set to a small size. If left in
that state, it will grow as objects are loaded into it. For more efficient
heap management, call MaxApp 1 Zone () at program startup to immedi
ately increase the heap to its maximum size.

void MoreMasters{ void):

Master pointers are allocated in blocks. When your program starts up,
the Memory Manager gives you one block. If, during the course of pro
gram execution, your program runs out of master pointers, the Memory
Manager will place another block in memory. This can lead to fragmen
tation. Call MoreMasters () four or five times at the very start of your
program to ensure that the Memory Manager doesn't do so later on.

Handle NewHandle{ Size theNumBytes >:

NewHandl e() returns a handle to a relocatable block of memory. The size
of the block is theNumBytes bytes.

void DisposeHandle{ Handle theHandle >:

Di sposeHandl e() frees the memory occuppied by the block accessed by
theHandl e. Once disposed of, any other existing handles that access this
same block become invalid.

Ptr NewPtr{ Size theNumBytes):

New Pt r () returns a pointer to a nonrelocatable block of memory. The
size of the block is theNumBytes bytes.

void DisposePtrC Ptr thePtr >:

flppendlx D • Toolbox Roatlne Sammary

Di sposePtr() frees the memory occupied by the block accessed by
the Pt r. Any other existing pointers that point to this same block become
invalid Once the memory is disposed of.

void ExitToShell(void):

Always check the result of a memory allocation. If the allocation fails, it
will return a value of nil. To avoid a crash, call Exi tToShel 1 () at that
point. A call to Ex i t T oS he 11 () prevents a frozen screen and allows your
application to exit gracefully by releasing the application heap and
returning the user to the Finder.

0TIUTIES

This section describes the important general-purpose functions found in
the Toolbox.

Constants

//define curSysEnvVers 2

The Sys Environs () routine returns information about the system of the
machine on which your program is running. Use the constant
curSysEnvVers in calls to SysEnvi rons(). Should Apple update the
SysEnvi rons() over time, the curSysEnvVers value will be changed
and your calls can remain unchanged.

//define envMac -1
//define envXL -2
fldefi ne envMachUnknown 0
//define env512KE 1
//define envMacPlus 2
f/define envSE 3
//define envMacII 4
fldefi ne envMacllx 5
fldefi ne envMacllcx 6
://define envSE30 7

609

610
Macintosh Programming Techniques, ZE

/ldefi ne
//define
/ldefi ne

envPortable
envMacIIci
envMacIIfx

8
9

11

SysEnvi rons () fills the fields of a SysEnvRec. Those fields are given
below in the Sys EnvRec structure listing. You may find the machineType
field the most important. You can check the value of that field at program
start up. If the returned value indicates that your program is running on
a machine that is too old (as determined by you), you may wish to exit
the program. Information from all of the other fields can be better
obtained by a call to Gest a 1 t (),which is described later in this section
and throughout this book.

//define
/ldefi ne
//define
//define

iBeamCursor
crossCursor
plusCursor
watchCursor

1
2
3
4

The standard arrow-shaped cursor can be changed to any one of four
system-defined cursors using calls to Get Cursor () and Set Cursor () .
Use one of the above constants in the call to GetCursor().

Data Stractures

struct SysEnvRec
{

} :

short
short
short
short
Boolean
Boolean
short
short
short

environsVersion:
machineType:
systemVersion:
processor:
hasFPU:
hasColorOD:
keyBoardType:
atDrvrVersNum:
sysVRefNum:

typedef struct SysEnvRec SysEnvRec;

A call to SysEnvi rons () fills a SysEnvRec with system information
about the Macintosh on which your program is currently running. In
most cases, you'll want to use the newer Gest a 1 t () Toolbox function,

Appendix D • Toolbox Roatlne Sammary

which provides more information. On Macintoshes running older sys
tem software, however, Gest a 1 t () may not be available.

struct Cursor
{

Bitsl6 data:
Bits16 mask:
Point hotspot:

} :

typedef struct Cursor Cursor:
typedef Cursor *CursPtr, **CursHandle:

The system defines five cursors. You won't have to access fields of the
Cursor structure itself. Instead, you use GetCursor() to receive a
CursHandl e with which to work.
System Features

OSErr SysEnvironsC short theVersion,
SysEnvRec *theSysEnvRec >:

A call to SysEnvi rans () fills the SysEnvRec theSysEnvRec with sys
tem information about the machine currently running your program. Set
version equal to the constant curSysEnvVers. You can then examine
fields of the SysEnvRec. The SysEnvRec structure is given under the
Data Structures heading of this section.

OSErr Gestalt(OSType theSelector,
long *theResponse);

long NGetTrapAddress(short theTrapNum,
TrapType theTrapType);

When passed trap number trap_num and the type of trap, trap_type,
NGetTrapAddress () returns the address of the trap, or routine. To test
for the availability of a Toolbox routine, call NGetTrapAddress () twice.
On the first call, set the Trap N um to the trap number of the routine in
question. On the second call, set theTrapNum to the unimplemented trap
number. If the returned results of both calls are not equal, the trap exists
and it is safe to call that routine.

611

612
Macintosh Programming Techniques. ZE

Extracting Information From Long lnts

short HiWord(long thelongNum >:

HiWordC) returns the high-order 16 bits of the 32-bit theLongNum.

short LoWordC long thelongNum):

LoWord() returns the low-order 16 bits of the 32-bit theLongNum.

Causing a Delay

void Delay(long theNumTicks.
long *theTotalTicks >:

Delay() pauses your program for theNumTi cks ticks. A single tick is
one sixtieth of a second. When the pause is completed, the Tota 1 Ticks
will be filled in with the number of ticks from system startup to the end
of the delay.

Don't attempt to use a loop, as in:

for c ; ... o: 1<10000: i++ >

: /* do nothing. just killing time */

Rather, use the De 1 ay C) routine. A loop is processor dependent; That is,
a loop will execute more quickly on a faster processor. The De 1 ay () rou
tine is processor independent its delay effect is the same on all CPUs.

Cursors

CursHandle GetCursor(short theCursorID >:

GetCursor() loads the CURS resource specified by theCursorID into
memory and returns a CursHandl e to it. It does not display the cursor.
Use SetCursorC) for that.

void SetCursor(Cursor *theCursorHandle >:

Appendix D • Toolbox Roatlne Sammary

SetCursor() changes the shape of the cursor to that specified by the
cursor. First call GetCursorC) to get theCursorHandl e. Dereference that
handle once to get a pointer to a cursor, as required by SetCursorC).

void InitCursor(void >:

InitCursorC) sets the cursor to the familiar arrow shape. You do not
have to call GetCursor() first.

Loading ~•sources

Handle GetResource(ResType theType,
short theID);

GetResource() returns a generic handle to the resource with a resource
ID of the ID. The parameter the Type can be any resource type. Include
single quotes around the type, as in this call that loads a sound resource
with an ID of 9000:
GetResource(• snd •, 9000) ;

SOOHD
This section describes the Sound Manager routines covered in this book.

#include <Sound.h>

Playing a Sound

OSErr SndPlay(SndChannelPtr theChannel,
Handle theHandle,
Boolean async);

SndPl ay() plays a snd resource that has been loaded into memory. First
call Get Resource() using 'snd' as the first parameter and the resource
ID of the snd as the second parameter. GetResourceC) will return a
handle to the sound; use this as theHandl e. Depending on what version

613

614
Macintosh Programming Tlchnlqaa. ZE

of compiler you're using, you may have to typecast this second parame
ter to a Sn d Li st Hand 1 e-as in (Sn d Li st Hand 1 e) the Hand 1 e. Pass a
value of true for async if this is the only sound that will be playing
(asynchronous) or fa 1 se if there will be multiple sounds playing at the
same time (synchronous). See the Utilities section of this appendix for
information on GetResource().

Note that your snd resource should have a resource ID greater than
8192 so that it won't conflict with Apple's reserved 'snd 'resource num
bering 0 to 8191.

flCltlTOSH PROGRflMMltlG TECHtllQUES. 2E

Index
\p, 48-49, 389-390
"0 notation, 357

24-bit addressing, 98-99
32-bit clean applications, 98-99
68K, 33

680x0,33

fl
accessor functions, see system global variables
activateEvt Apple-defined event type, 50, 175-

176, 200, 231-232
AEinstallEventHandler() Toolbox function,

548-549
AEProcessAppleEvent() Toolbox function,

543,548
Alert() Toolbox function, 244-245, 600
ALRT resource

creating, 243
defined, 19, 242
om numbering, 243

alerts
Alert() Toolbox function, 244-245
CautionAlert() Toolbox function, 246
defined,242
loading to memory, 244
NoteAlert() Toolbox function, 246
resources, 242-244

StopAlert() Toolbox function, 246

text in, changing, 357-359
Allegiant SuperCard, 2
animation

flicker free, 148
PICT resources and, 143-148

AppendResMenu() Toolbox function, 315, 604
APPL application type, 530, 532
application icon, see icon, application
Apple events

AEinstallEventHandler() Toolbox function,
548-549

AEProcessAppleEvent() Toolbox function,
543, 548

application-aware, 543-547
defined,542
handler routine, 547-549
kAEQuitApplication Apple-defined con-

stant, 548
kCoreEventClass Apple-defined constant,

548
kHighLevelEvent Apple-defined constant,

543
NewAEEventHandlerProc() Toolbox func

tion, 548
Quit Application, 542-543, 549-550

application frameworks, 2
AppStudio resource editor, 13
autoKey Apple-defined event type, 176

615

616
Madntosh Programming Techniques. ZE

B
BeginUpdate() Toolbox function, 187-189, 234,

522,596
bitmapped graphics

defined,4
text-based, vs., 4

BNDL resource
creating, 531-532

defined, 19, 530

Borland Resource Workshop resource editor,
13

Button(), 591

c
Calande, John J., 148

Canvas graphics program, 137
CautionAlert() Toolbox function, 246, 600
CDEF resource, 100

Checkltem() Toolbox function, 336-338, 607

CGrafPort data type, 114, 561
CloseDialog(), 597-598
CloseWmdow() Toolbox function, 238, 593
CODE resource,

defined,19

loading, 93-94

PowerPC applications and, 449
color, pixel representation, 493-494
Control Strip software, 502

ControlHandle data type, 258, 303, 561
ColorSwitch utility, 502

crossCursor Apple-defined constant, 154
CurHandle data type, 154, 562
CURS resource

arrow cursor, 154-155

crossCursor Apple-defined constant, 154
CurHandle data type, 154
defined,154

GetCursor() Toolbox function, 154
iBeamCursor Apple-defined constant, 154
loading, 154

plusCursor Apple-defined constant, 154

SetCursor() Toolbox function, 154, 155-157
watchCursor Apple-defined constant, 154-

155
Cursor data type, 561

cursor see CURS resource

i>
debuggers, 94, 218-225

decimal numbers, converting, 226
Delay() Toolbox function, 147, 612
desktop, rebuilding, 541-542
dialog boxes

checkboxes, 258
defined, 241

DialogPtr data type, 261-262

DialogRecord data type, 260-262

DialogSelect() Toolbox function, 267-269
editable text boxes, 256-258
enabling items in, 251

FrontWindow() Toolbox function, 267

GetControlValue() Toolbox function, 258
GetDialogltem() Toolbox function, 255-256,

258

GetDialogitemText() Toolbox function, 256-
257

GetNewDialog() Toolbox function, 255,
262,265

icons in, 252-254

IsDialogEvent() Toolbox function, 267-268
item information, 255-256
items in, 244, 247-249

loading to memory, 255

memory, reserving, 265-266
modal, 246, 260-265, 344-352
ModalDialog() Toolbox function, 263-265,

346-352
modeless, 246, 265-269
pictures in, 249-252
radio buttons, 259-260
resources,247-255

SetControlValue() Toolbox function, 258,
259

StringToNum() Toolbox function, 257

user items, 270-279

DialogPlus example program

#define directives, 293-294

checkbox handling, 295-296

defined, 279-281

dialog box opening, 297-298

event handling, 300-305

fat application version, 450-457

global variables, 294-295

main() function, 295

PowerPC version, 445-447

radio button handling, 296

resource file, 281-283

source code listing, 283-293

user items, drawing, 298-300

window opening, 296-297

DialogPtr data type, 261-262, 562

DialogRecord data type, 260-262, 562, 596

DialogSelect() Toolbox function, 267-269, 599

Disableltem() Toolbox function, 333-335, 606

diskEvt Apple-defined event type, 176

DisposeDialog(), 598

DisposeHandle() Toolbox function, 314, 608

DisposePtr() Toolbox function, 238, 608

DisposeRoutineDescriptor() Toolbox function,
442,446-447

DisposeWmdow() Toolbox function, 238, 594

DITL resource

creating, 243

defined, 17, 242

enabling items in, 251

items in, 244, 249

DlgCopy(), 599

DlgCut(), 599

DlgPaste(), 599

DLOG resource

defined,12,17,248

editing, 248

DOS programming, xxi

DragWmdow() Toolbox function, 179, 595

DrawChar(), 585

DrawMenuBar() Toolbox function, 315, 605

DrawPicture() Toolbox function, 139, 141

Inda

DrawString() Toolbox function, 48-49, 580, 585

Dynamic Link Libraries, 474

dynamic linking, 474

E
Eject() Toolbox function, 26

Enableltem() Toolbox function, 333-335, 607

EndUpdate() Toolbox function, 187-189, 234,
522,596

EraseOval() Toolbox function, 126, 587

EraseRect() Toolbox function, 125, 586

EraseRgn(), 596

EraseRoundRect() Toolbox function, 128, 587

event-driven programs

defined,5

event loop, 7, 49-50

summarized, 8-9

EventRecord data type

defined,50

message field, 186

modifiers field, 325

what field, 6, 175

where field, 6, 235

events,

activateEvt Apple-defined event type, 50,
175-176

defined, 6

handling of, 177

keyDown Apple-defined event type, 50,
175-176

mouseDown Apple-defined event type, 50,
175-176

processing, 17 4-175

retrieving, 8, 30, 175

updateEvt Apple-defined event type, 50,
175-176, 185-186

WaitNextEvent(), 175

everyEvent Apple-defined constant, 49

example programs

compiler requirements, xxiv

system requirements, xxv

ExitToShell() Toolbox function, 314, 463, 609

617

618
Macintosh Programming Techniques. ZE

F
fat binary applications

cfrg resource, 449-450
CODE resources and, 449
CodeWarrior and, 450-453

creating, 448-449
defined,447-448
Symantec and, 453-457

fat applications, 33
fill patterns, see patterns
FillCOval() Toolbox function, 136, 153, 588
FillCRect() Toolbox function, 136, 153, 588
FillCRoundRect() Toolbox function, 136, 153,

588
FillOval() Toolbox function, 126, 587
FillRect() Toolbox function, 124, 586
FillRoundRect() Toolbox function, 128, 587
filter functions, ModalDialog(), 346-352

Finder, 28-29

FinderAware example program
#define directives, 556

defined, 550-551
event handling, 559-560
global variables, 557
#include directives, 556
main{) function, 557
Quit Application Apple event, 557-558
resource file, 551-553

snd resource, 552

sound playing, 558-559
source code listing, 553-556

FindWindow() Toolbox function, 176, 182, 591,
595

FindWindow{) Toolbox function, 176
FORTRAN,3
FrameOval{) Toolbox function, 126, 587
FrameRect() Toolbox function, 123, 586
FrameRoundRect() Toolbox function, 127-129,

587
FREF resource, 537
FrontWmdow() Toolbox function, 182, 267, 594

Ci
gAllDone application-defined global variable,

51
GDevice data type, 495-496
GDHandle data type, 489-491, 495
Gestalt() Toolbox function

availability of, 462

defined, 461

determining features
A/UX version, 571
addressing mode attributes, 570

Apple event attributes, 570
AppleTalk version, 570-571
CPU type, 467-468

Easy Access, 571
floating-point unit, 571-572
Gestalt version, 572
hardware attributes, 572-573

Help Manager, 573

keyboard type, 573-574
low memory area, 574

Macintosh modal, 470-473
memory, logical, 574
MMU type, 575
operating system version, 473-474, 577
QuickDraw version, 466-467, 575
RAM, amount of, 469-470, 575-576
ROM, amount of, 576
ROM, version, 576

sound attributes, 576-577

virtual memory attributes, 577-578

gestaltMachineType selector code, 470
gestaltNativeCPUtype selector code, 468
gestaltOriginalQD Apple-defined constant,

116
gestaltPhysicalRAMSize selector code, 469
gestaltQuickdrawVersion Apple-defined

selector code, 115-116
gestaltQuickdrawVersion selector code, 464
gestaltSysArchitecture selector code, 467
gestaltSystem Version selector code, 473
introduced, 115

QuickDraw version determination, 115-116

response parameter, 464

selector code, 464

SysEnvirons(), vs., 461-462

gestaltMachineType selector code, 470

gestaltNativeCPUtype selector code, 468

gestaltOriginalQD Apple-defined constant,
116

gestaltPhysicalRAMSize selector code, 469

gestaltQuickdrawVersion selector code, 115-
116, 464

gestaltSysArchitecture selector code, 467

gestaltSystem Version selector code, 473
GetControlTitle(), 602

GetControlValue() Toolbox function, 258, 602

GetCursor() Toolbox function, 154, 612

GetDeviceList() Toolbox function, 495, 499

GetDialogitem() Toolbox function, 255-256,
258, 272, 278, 601

GetDialogitemText() Toolbox function, 256-
257, 601

GetlndString() Toolbox function, 397-398, 584

GetltemStyle() Toolbox function, 343-344, 607

GetMenu() Toolbox function, 329, 605-606

GetMenuHandle() Toolbox function, 314, 343,
604

GetMenultemText() Toolbox function, 320, 606

GetMessage() MS Windows function, 8

GetMouse(), 591

GetNewCWmdow() Toolbox function, 115,
165,593

GetNewDialog() Toolbox function, 255, 262,
265,597

GetNewMBar(), 604
GetNewWindow() Toolbox function, 21, 47-48,

170-171, 593

GetNextDevice() Toolbox function, 499
GetPattem() Toolbox function, 132, 585

GetPenState() Toolbox function, 120-122, 582
GetPicture() Toolbox function, 84, 87, 139-140,

146
GetPixPat() Toolbox function, 134-135, 166, 585

GetPort() Toolbox function, 119, 582

GetResource() Toolbox function, 558, 613

Inda

GetString() Toolbox function, 394
GetWTitle(), 594

GIF file format, 148

global variables, see system global variables

GlobalToLocal() Toolbox function, 236

GrafPort data type, 113, 562, 581-582, 592

GrafPtr data type, 113, 563

graphical user interface (GUI), 3, 6

graphics pen
defined, 116

line drawing, 117-118

Line() Toolbox function, 117

LineTo() Toolbox function, 117

Move() Toolbox function, 116
MoveTo() Toolbox function, 116-117

moving, 116-117
PenSize()Toolbox function, 117

graphics ports
CGrafPort data type, 114

changing current, 118-120

color, 114-115

defined, 113

GetNewCWindow() Toolbox function, 115

GetPenState() Toolbox function, 120-122

GetPort() Toolbox function, 119

GrafPort data type, 113
GrafPtr data type, 113

graphics pen, 116-118
line drawing in, 117-118

moving within, 116-117

preserving features of, 120-122
saving current, 118-120

SetPenState() Toolbox function, 120-122

SetPort() Toolbox function, 113

WmdowPtr vs. GrafPtr, 113-114

graphics worlds, 148

H
Handle data type, 563

HandleKeyDown() application-defined
function, 8

619

620
Madntosh Programming Techniques. ZE

HandleMouseDown() application-defined
function,8,49,50-51, 176-177, 179

handles

dereferencing, 155

locking and unlocking, 155-157

hardware features, see Macintosh features

hexadecimal numbers, converting, 226

HideWindow() Toolbox function, 23, 181, 192,
594

high-level events, see Apple events

HiliteMenu() Toolbox function, 319

HiWord() Toolbox function, 319, 376, 612

HLock() Toolbox function, 100

HLock() Toolbox function, 155-157

HUnlock() Toolbox function, 155-157

HyperCard, 2

HyperTalk, 2

I
iBeamCursor Apple-defined constant, 154

icl4 resource, 535

icl8 resource, 535, 536-537

icon, application

APPL application type, 530, 532

BNDL resource, 530, 531-539

creating, 533-539

creator code, application, 530, 539-41

defined,530

Finder awareness of, 541-542

Finder interaction, 530-531

identifier, application, 530

mask,538

signature, application, 531

ICN# resource,

creating, 535

defined,19,253,535

ICON resource

creating, 252, 253

ics# resource, 535

ics4 resource, 535

ics8 resource, 535

IDE, see integrated development environment

In Action tutorial program, xxv

inContent Apple-defined part code, 177, 183

inDesk Apple-defined part code, 177

inDrag Apple-defined part code, 177, 179

information environments, 2

inGoAway Apple-defined part code, 177

inGrow Apple-defined part code, 177

InitCursor(), 613

InitGraf() Toolbox function, 110

InitializeToolbox() application-defined func-
tion, 46-47

inMenuBar Apple-defined part code, 177, 183

InnerView example program

#define directives, 515-517

BeginUpdate() Toolbox function, 522

binary operations, 525-527

defined, 504-505

EndUpdate() Toolbox function, 522

event handling, 521-527

global variables, 517

main() function, 517-518

output, formatting, 524-525

picture drawing, 523-524

pixel depth, 519

PowerPC processor, checking for, 518

processor type, determining, 525

RAM, determining amount, 525

resource file, 505-506

source code listing, 506-515

System 7, checking for, 518

system version, determining, 525

update event, 522

window drag boundaries, 519-520

window, opening, 520-521

input, validity of, 431-432

lnsertMenu() Toolbox function, 329

inSysWmdow Apple-defined part code, 177

integrated development environment (IDE),
18, 32

InvertOval() Toolbox function, 126, 587

InvertRect() Toolbox function, 125, 586-587

InvertRoundRect() Toolbox function, 128, 587

inZoomln Apple-defined part code, 177

inZoomOut Apple-defined part code, 177

IsDialogEvent() Toolbox function, 267-268, 599

J
Jasik Designs The Debugger source code

debugger, 94

K
kAEQuitApplication Apple-defined constant,

548
kCoreEventClass Apple-defined constant, 548
keyDown Apple-defined event type, 50, 175-

176

keystrokes,

handling, 324-325

keyDown events and, 324

MenuKey() Toolbox function, 325

keyUp Apple-defined event type, 176

kHighLevelEvent Apple-defined constant, 543

L
libraries, 33

Line() Toolbox function, 117, 124, 584

LineTo() Toolbox function, 117, 124, 584

Lisp, 3

LMGetGrayRgn() Toolbox function, 486

LMGetMainDevice() Toolbox function, 490

LMGetMBarHeight() Toolbox function, 490

locking memory blocks, 100

low-memory global variables, see system glob
al variables

LoWord() Toolbox function, 319, 376, 612

M
MacApp,2
MacDraw graphics program, 137

machine features, see Macintosh features

Index

Macintosh features,

SysEnvirons() Toolbox function, 460

SysEnvRec data type, 460

System 7, requiring, 462-464

see also Gestalt() Toolbox function

Macintosh Toolbox

application-defined, vs., 24

defined, 19-20

initializing, 46-47, 111

Macintosh User Interface Toolbox, see
Macintosh Toolbox

MacsBug source code debugger, 94

managers, 26-27

Mathemaesthetics Resorcerer, see Resorcerer
resource editor

MaxApplZone() Toolbox function, 89, 105-106,
608

MBAR resource,

creating, 311-313

defined, 17, 308

MemoryBasics example program

defined, 101

MaxApplZone() Toolbox function, 105-106

memory requirements, 96, 101-103

resource file, 103

source code listing, 103-105

memory management

attributes, of objects in memory, 72-73

defined, 72

locked and unlocked blocks, 72-73

Memory Manager, 72
NewPtr() Toolbox function, 74, 82

nonrelocatable blocks

creating, 74-75

placement in memory, 77-83

Ptr data type, 80

purgeable and unpurgeable blocks, 73

relocatable blocks, creating,

WindowRecord data type, 74, 187

memory organization

AS register, 57

AS World, 55, 57, 58-59

application

heap, 60-61, 63-72

621

6ZZ
Macintosh Programming Techniques. ZE

partition, 54-55, 57-61
stack, 58-59

compaction, of heap, 65-67, 71
fragmentation, of heap, 63-65, 74-83
handle, 69-72
master pointer, 67-72, 84-89

nonrelocatable blocks, 67-72
partitions, defined, 53

relocatable blocks, 67-72
summary of, 61-63
system

global variables, 56, 57-58
heap,56
partition, 53-56

see also memory management

menu bar, 307
menu items

AppendResMenu() Toolbox function, 315

Apple Menu Items folder, 315
checking,336-340
Checkltem() Toolbox function, 336-338
command equivalents, 308, 321-322
defined,307
desk accessories, 315

desktop objects, 315

Disableltem() Toolbox function, 333-335
disabling, 308

disabling, 332-333

DRVR resources, 315
Enableltem() Toolbox function, 333-335
enabling, 308, 332-333
GetltemStyle() Toolbox function, 343-344
GetMenultemText() Toolbox function, 320
hierarchical, marking as having, 326-328
highlighting, 319

HiliteMenu() Toolbox function, 319
keyboard equivalents, 308, 321-322
MenuI<ey() Toolbox function, 325
MenuSelect() Toolbox function, 317-319
mouse-click in, 316-321
OpenDeskAcc() Toolbox function, 320
selecting, 317-319
separator lines as, 308

SetltemStyle() Toolbox function, 343
SetMenultemText() Toolbox function, 340-

342
text of

changing, 340-342
style, 342-344

menu list, 313-314

MENU resource

creating, 309
defined,12,17,308

hierarchical, marking as having, 326-328
items, adding to, 309-311
keyboard equivalent, adding, 323

MenuHandle data type, 314, 563

MenuI<ey() Toolbox function, 325, 605

MenuMaster example program

#define directives, 371-372
defined, 352-356

disabling menu items, 382-384
enabling menu items, 382-384
global variables, 373

hierarchical menu handling, 384
item checking, 374-375, 381-382
keystroke handling, 375-376
main() function, 373

menu bar set up, 374-375

modal dialog box display, 379-381

mouse-dick in menu bar, 376-379
PowerPC version, 441-443
resource file, 356-361

source code listing, 361-371
menus

AppendResMenu() Toolbox function, 315
Apple Menu Items folder, 315
Apple menu, 309, 315, 320-321

desk accessories, 315
desktop objects, 315
Disableltem() Toolbox function, 333-335
disabling entire, 333-334

DisposeHandle() Toolbox function, 314
DrawMenuBar() Toolbox function, 315
DRVR resources, 315
Enableltem() Toolbox function, 333-335

enabling entire, 333-334
GetMenu() Toolbox function, 329
GetMenuHandle() Toolbox function, 314,

343
GetNewMBar() Toolbox function, 313-314
hierarchical, 325-332
highlighting, 319
HiliteMenu() Toolbox function, 319

HiWord() Toolbox function, 319, 376
InsertMenu() Toolbox function, 329

list, 313-314
LoWord() Toolbox function, 319, 376
MenuHandle data type, 314
MenuSelect() Toolbox function, 317-319
mouse-click in, 316-321
OpenDeskAcc() Toolbox function, 320
resources,308-312

selecting item from, 317-319
SetMenuBar() Toolbox function, 314

setting up, 313-316
MenuSelect() Toolbox function, 317-319, 605
Metrowerks CodeWarrior compiler

68K and PPC, 33
adding files to a project, 35
Apple events and, 543-544, 546-547
book example projects and, xxiv,
CPlusPlus.lib library, 35

creating a new text file, 36
creator code, setting, 541
fat applications, 450-453

libraries, 33
MacOS.lib library, 35
naming convention, 33
partition size, setting, 93
project stationary, 33

ModalDialog() Toolbox function, 263-265, 346-
352, 598

ModalFilterUPP data type, 440, 442, 445
Monitors control panel, 502
monitor

color vs. monochrome, 493-494
color, 493-504
GDevice data type, 495-496

Inda

GDHandle data type, 489-491, 495
GetDeviceLlst() Toolbox function, 495, 499

GetNextDevice() Toolbox function, 499
graphics devices, 494-495
LMGetGrayRgn() Toolbox function, 486

multiple monitor awareness, 485-492, 497-
504

pixel depth of, 494-504
PixMap data type, 495
PixMapHandle data type, 495
window drag region, 485-487

MoreMasters() Toolbox function, 88-89, 608
mouse-click handling, 176-177
mouse-click handling, 176-177
mouseDown Apple-defined event type, 50,

175-176

mouseUp Apple-defined event type, 176
Move() Toolbox function, 116, 583
MoveTo() Toolbox function, 48, 116-117, 583
MoveWmdow() Toolbox function, 192, 595

multiple-window techniques
activate events, 199-201

challenges of, 193
defined,193
update events, 201-202
WmdowPeek and, 194-195
WmdowRecord, expanding upon, 194-199

MultiWindows example program
#define directives, 214
defined, 202-203

rt

event handling, 231-238
global data types, 215
global variables, 215-216, 217-219
main() function, 216
resource file, 203-204
source code listing, 204-213
window type, setting, 229-231

New AEEventHandlerProc() Toolbox function,
548

NewHandle() Toolbox function, 84-89, 608

623

624
Macintosh Programming Techniques. ZE

NewModalFitlerProc() Toolbox function, 441,
442

NewPtr() Toolbox function, 74, 82, 608

NewUserltemProc() Toolbox function, 445,
446-447

NGetTrapAddress() Toolbox function, 482-484
611 I

noErr Apple-defined constant, 465
NoteAlert() Toolbox function, 246, 600

nullEvent Apple-defined event type, 176

0
OpenDeskAcc() Toolbox function, 320

operating system code, 25

OSErr data type, 465

OSEvt Apple-defined event type, 176

OSTrap Apple-defined constant, 483

p
PaintOval() Toolbox function, 126, 587

PaintRect() Toolbox function, 124, 586

PaintRoundRect() Toolbox function, 128, 587

ParamText() Toolbox function, 357-359, 600

part codes, 177

partition size

., determining, 93-98

minimum size, 90

preferred size, 90

setting, 90-93

Pascal, 3

PAT resource,

creating, 129-131

defined,129

GetPattern() Toolbox function, 132

PenPat() Toolbox function, 132

using, 131-134

PatHandle data type, 563

Pattern data type, 123, 132, 563

patterns

filling shapes, 123-125, 131-133, 134-137

PAT resource, 129-133

PICT, creating from, 148-153

ppat resource, 133-137

system-defined, 123

PCalc calculator utility, 226

PenNormal() Toolbox function, 583
PenPat() Toolbox function, 124, 132, 583

PenPixPat() Toolbox function, 135, 583

PenSize() Toolbox function, 117, 583

PicHandle data type, 139, 142, 563

PICT file format, 148

PICT resource,

animation and, 143-148

creating, 137

defined, 19, 137

displaying in a resource file, 138

DITL items, as, 249-252

GetPicture() Toolbox function, 139-140, 146

loading into memory, 139

pattern, converting to, 148-153

Pict2ppat application, 148-153

see also pictures

PICT2 file format, 148

Pict2ppat application, 148-153

Picture data type, 139

pictures

animation and, 143-148

boundaries, establishing, 139-140

DrawPicture() Toolbox function, 139, 141

GetPicture() Toolbox function, 139-140, 146

loading to memory, 84

picFrame Picture member, 139-140

PicHandle data type, 139, 142

Pict2ppat application, 148-153

Picture data type, 139

size of, 82

size, changing, 423-425

see also PICT resource

PixelPaint graphics program, 137

pixels

color, 493-494

coordinates of, 4

defined,4

depth, 493-494

PixMap data type, 495
PixMapHandle data type, 495
PixPatHandle data type, 136

plusCursor Apple-defined constant, 154

Point data type, 236, 564

Power Macintosh
cfrg resource, 449-450
DialogPlus, PowerPC version, 445-447
DisposeRoutineDescriptor() Toolbox func-

tion, 442, 446-447
emulator, 436

fat binary applications, 447-457

MenuMaster, PowerPC version, 441-443

Mixed Mode Manager, 436
ModalFilterUPP data type, 440, 442, 445

native code, 436
NewModalFitlerProc() Toolbox function,

441, 442
NewUserltemProc() Toolbox function, 445,

446-447
portingcodeto,435

procedure pointers, 437-441

routine descriptor, 437
SetDialogltem() Toolbox function, 444-445

TVector, 438-439
universal procedure pointer (UPP), 436-447
UniversalProcPtr data type, 438-439
UserltemUPP data type, 445, 446

PowerPlant application framework, 2

ppat resource,
creating, 133-134, 148-153
defined, 133

editing, 152
FillCOval() Toolbox function, 136, 153
FillCRect() Toolbox function, 136, 153
FillCRoundRect() Toolbox function, 136,

153
GetPixPat() Toolbox function, 134-135, 166
PenPixPat() Toolbox function, 135
PixPatHandle data type, 136
using, 134-137, 153

PPC, defined, 33
printf() standard C function, 20

ProcPtr data type, 437

projects
CodeWarrior example, 33-37
defined,32
Symantec example, 37-41

PtlnRect() Toolbox function, 236
Ptr data type, 80

Q

Inda

qd system global variable, 123, 124, 180, 491

QDGlobals data type, 123, 180
QuickDraw graphics

bypassing, 110
defined, 110
InitGraf() Toolbox function, 110

initializing, 110
pixels coordinates, 111
see also graphics ports

QuickDrawing example program
#define directives, 164

CodeWarrior project file, 32-37

defined,157

R

function prototypes, 44-45
global variables, 165

#include directives, 43-44
InitializeToolbox() application-defined

function, 46-47
loading a color window, 165
main() function, 165

resource file, 158-159
source code listing, 159-164
Symantec project file, 32-33, 37-41

Rect data type, 564
ResEdit resource editor

creating a new file, 13
introduced, 12
ppat editing, 151-152
resource editor, 14
resource picker, 14

625

616
Macintosh Programming Technlqaa. ZE

saving a file, 15

type picker window, 13

Resorcerer resource editor

introduced, 12

ppat editing, 152

resource editors,

defined, 12

ResEdit, 12

Resorcerer, 12

resource files,

creating, 13, 31-32

defined, 11

example of, 30

resources,

defined, 11

graphical interface elements and, 17

loading,47-48,84,107

source code relationship, 18, 21-23

see also specific resource type
ROM BIOS services, 20

ROM chips, 20, 27

s
scanf() standard C function, 10-11

screen parts, 177

screenBits.bounds qd field, 180

SelectWindow() Toolbox function, 182, 235,
594

SetControlTitle(), 602

SetControlValue() Toolbox function, 258, 259,
602

SetCursor() Toolbox function, 154, 155-157,
612-613

SetDialogltem() Toolbox function, 272, 278,
444-445, 601

SetDialogltemText(), 601

SetltemStyle() Toolbox function, 342-343, 603.
607

SetMenuBar(), 604

SetMenultemText() Toolbox function, 340-342,
606

SetPenState() Toolbox function, 120-122, 582

SetPort() Toolbox function, 48, 113, 582

SetRect() Toolbox function, 122-123, 586

SetWTitle() Toolbox function, 192, 395, 398,
594

shape drawing

EraseOval() Toolbox function, 126

EraseRect() Toolbox function, 125

EraseRoundRect() Toolbox function, 128

filling with pattern, 123-125, 131-133, 134-
137

FillOval() Toolbox function, 126

FillRect() Toolbox function, , 124

FillRoundRect() Toolbox function, 128

FrameOval() Toolbox function, 126

FrameRect() Toolbox function, 123

FrameRoundRect() Toolbox function, 127-
129

InvertOval() Toolbox function, 126

InvertRec:t() Toolbox function, 125

InvertRoundRect() Toolbox function, 128

Line() Toolbox function, 117, 124

lines, 117-118, 124

LineTo() Toolbox function, 117, 124

ovals, 125-126

PaintOval() Toolbox function, 126

PaintRect() Toolbox function, 124

PaintRoundRect() Toolbox function, 128

pen-moving, 116-117, 124

PenPat() Toolbox function, 124

rectangles, 122-125

round rectangles, 127-129

SetRect() Toolbox function, 122-123

shared libraries, 474

ShowWindow() Toolbox function, 47, 192, 595
SIZE resource, 19

snd resource, 19

SndPlay() Toolbox function, 558-559, 613-614

sound playing, 558-559

StopAlert() Toolbox function, 246, 600
STR resource,

creating, 393

defined, 393

GetString() Toolbox function, 394

loading to memory, 394
STR# resource,

creating, 397
defined, 19, 396-397
GetlndString() Toolbox function, 397-398
loading to memory, 397
menu item names, storing in, 341

Str255 data type, 256
string to number conversion, 257
StringHandler example program

#define directives, 418
defined, 405-409
global variables, 419-420
main() function, 420
modal dialog box, 422-423
picture

loading, 421
display, 421
size, changing, 423-425

resource file, 409-411
source code listing, 411-418
STR resource, 420-421
string to float conversion, 426-431
window updating, 432-433

StringPtr data type, 391

strings
\ p notation, 389-390
assignment of, 391-392
BlockMoveData() Toolbox function, 392
conversions, to number, 257, 426-431
DrawString() Toolbox function, 392
floating-point, conversion to, 426-431
format of, 48-49
GetlndString() Toolbox function, 397-398
GetString() Toolbox function, 394
input, validity of, 431-432
integer, conversion to, 257
length,ofstring,388
null character, 388
resources, stored as, 392-398
Size data type, 392
Str15 data type, 390

Str255 data type, 388-390
Str27 data type, 391
Str32 data type, 391
Str33 data type, 391

Str63 data type, 390
string data types, 387-391
StringPtr data type, 391

Inda

StringToNum() Toolbox function, 257, 427
StringToNum() Toolbox function, 257, 427
strlen() standard C function, 20
Style data type, 342, 402-403
SuperCard, 2
Swatch memory-watching utility, xxv
Symantec C++ compiler,

68K and PPC, 37
adding files to a project, 39
Apple events and, 543-545
book example projects and, xxiv
creating a new text file, 40
creator code, setting, 539-540
fat applications, 453-457
nantingconvention,37
partition size, setting, 92
project model, 38
Symantec Project Manager (SPM), 18

SysBeep() Toolbox function, 51
SysEnvirons() Toolbox function, 460-462, 610
SysEnvRec data type, 460
System 7, requiring, 462-464
System file, 27
system features, see Macintosh features
system global variables

accessing,487-488,490
defined,487
GrayRgn, 487, 488
LMGetGrayRgn() Toolbox function, 486
LMGetMainDevice() Toolbox function, 490
LMGetMBarHeight() Toolbox function, 490

system software
defined,26
managers and, 26-27

627

/

628
Macintosh Programming Techniques. ZE

T
text-based systems, 4
text

background and, 403-405
drawing, 5, 30, 48-49

editing, in modal dialog, 344-352
font

changing, 399-400
names,399

grayishTextOr Apple-defined constant, 405
modes,403
size, changing, 400-401
string format, 48-49

style
changing, 401-403
faces, 401

Style data type, 402-403
TextFace() Toolbox function, 401

TextFont() Toolbox function, 399
TextMode() Toolbox function, 403-405
TextSize() Toolbox function, 400
transfer mode, changing, 403-405
see also strings

TextFace() Toolbox function, 401, 584-585
TextFont() Toolbox function, 399, 580, 584

TextMode() Toolbox function, 403-405

TextSize() Toolbox function, 400, 585

The Debugger source code debugger, 94

THINK C compiler, example projects and, xxiv
THINK Class Library (TCL), 2
Thomson, James, 226

TMON source code debugger, 94
Toolbox, see Macintosh Toolbox
ToolTrap Apple-defined constant, 483
TrackGoAway() Toolbox function, 181
traps

defined, 474-475

dispatch table, 475

NGetTrapAddress() Toolbox function, 482-
484

OSTrap Apple-defined constant, 483
Toolbox routine relationship, 474-482
ToolTrap Apple-defined constant, 483

TrapType data type, 483
type, determinging, 565-567
unimplemented, 479-481
use of, 482-484

TrapType data type, 483

typedef C keyword, 195

a
UniversalProcPtr data type, 438-439

UNIX programming, xxi
updateEvt Apple-defined event type, 50, 175-

176, 185-186,231,233-238
user items

defined,270

drawing function, 272-279

GetDialogltem() Toolbox function, 272, 278
resources, 270

SetDialogltem() Toolbox function, 272, 278
UserltemUPP data type, 445, 446

v
valid input, checking for, 431-432

VeryBasics example program
#define directives, 45

CodeWarrior project file, 32-37
defined,30

function prototypes, 44-45
global variables, 45-46

#include directives, 43-44

InitializeToolbox() application-defined
function, 46-47

loading a window, 47-48
main() function, 46
resource file, 31-32
source code listing, 41-43

Symantec project file, 32-33, 37-41
visRgn field of WmdowRecrod, 187

32-bit clean programs, 98-101
application partition size

setting, 90-93
determining, 93-98

watching, 94-98
expanding the heap, 89
Finder as a tool, 94-97
locking memory blocks, 100
master pointer blocks, 84-89
Max.ApplZone() Toolbox function, 89, 105-

106

MoreMasters() Toolbox function, 88-89
NewHandle() Toolbox function, 84-89

Swatch memory-watching utility, 97-98,
105-106

w
WaitNextEvent() Toolbox function, 8, 49-50,

175, 589, 590-591

watchCursor Apple-defined constant, 154-155

WDEF resource, 100

WIND resource,
creating in ResEdit, 13-15, 31-32
defined, 12, 17, 19

editing, 170
example of, 30-32
GetNewWmdow(), 170-171
loading.to memory, 47-48, 170-171

Wmdow Manager, 26, 47
Wmdow programming, xxi

WmdowPeek data type, 172-173, 194-195

WmdowPtr data type, 23, 171-172, 564
WmdowRecord data type, 74, 171-172, 187,

1 ~4-199, 564, 592
windows

activating, 185
BeginUpdate() Toolbox function, 187-189,

234

center4tg, 488-492
OoseWmdowQ Toolbox function, 238
closing, 181-182
closing, 238
content, mouse-click in, 181-182
displaying, 192
DisposeWindow() Toolbox function, 238

disposing, 238
dragging boundary, 180

Index

dragging, 179-181
DragWmdow() Toolbox function, 179
EndUpdate() Toolbox function, 187-189,

234

events and, 178-184
FindWindow() Toolbox function, 182

FrontWmdow() Toolbox function, 182

GetNewWmdow() Toolbox function, 170-
171

HideWmdow() Toolbox function, 181, 192

hiding, 192
inContent Apple-defined part code, 177,

183
inDrag Apple-defined part code, 177, 179
inGoAway Apple-defined part code, 177
inGrow Apple-defined part code, 177
inZoomln Apple-defined part code, 177
inZoomOut Apple-defined part code, 177
loading a window, 47-48, 170-171

memory, reserving for, 218-229
MoveWmdow() Toolbox function, 192

moving, 191-92

parts of, 177
screenBits.bounds qd field, 180, 491
SelectWindow() Toolbox function, 182, 235
SetWTitle() Toolbox function, 192
showing,192

ShowWindow() Toolbox function, 192

title,changing,192
TrackGoAway() Toolbox function, 181

type,setting,229-231
updating, 185-191
WmdowPeek data type, 172-173
WindowPtr data type, 171
WmdowPtr data type, 172
WindowRecord data type, 74, 171-172
see also multiple-window techniques

629

/

About This CD
The CD-ROM included with this book contains several folders. To copy
the contents of any folder to your hard drive, simply select the folder on
the CD and _drag it to your hard drive' s icon on the desktop of your Mac.

The first of the folders, Book Examples Projects, itself contains three
folders. One holds Metrowerks CodeWarrior versions of each of the
example projects discussed in the book. A second folder has Symantec
C++ versions of each example, while the third folder contains THINK C
versions. You'll only need to make use of one of these three folders-the
one that holds the projects that are for your compiler. Make sure to copy
the one appropriate folder to your hard drive-your compiler won't be
able to work with the projects properly if they are on the CD. You won't
nee.d ~he other two project folders-you can save space on your hard
drive by not copying these fol~ers .

. The next three folders, the Utilities folder, contains a handful of use
ful programming utility programs such as Swatch, the memory-watch
ing program. Swatch displays the contents of memory for every pro
gram that is running on your Mac-including programs you write.

A third folder on the CD contains a tutorial program named In
Action! Mac Techniques. Through the use of text, graphics, and anima
tions, this program demonstrates many of the programming techniques
discussed in the Macintosh Programming Techniques book. To use In
Action! Mac Techniques, copy the entire In Action! Tutorial folder to
your M.ac's hard drive.

Also on the CD is a limited version of the Power Mac compiler for
Symantec C++ for the Macintosh. While you cannot create new pro
jects with this compiler, you can use it to compile and play with exist
ing projects. Symantec C++ is the leading compiler for the Macintosh,
and we hope you enjoy a chance to experiment with version 8 before
you buy it.

•

',

• I
i
I

'

'

Get a complete introduction to:

>- Macintosh resources

>- Memory management

>- Fat binaries and Power Mac
programs

>- QuickDraw graphics and
animation

>- Macintosh windows, menus
and dialogs

>- Event handling

