

Macintosh™
Revealed

Volume One: Unlocking the Toolbox

HAYDEN BOOKS

S eanZes 4‘4,««7

The Macintosh Library provides the most
current, hands-on information for optimal use
of the Macintosh computer. With each new
title we bring you up-to-date information
from outstanding and accomplished
Macintosh Authors.

Macintosh Revealed
Volumes One and Two
Second Edition
Stephen Chernicoff
Nos. 048400, 048401, $24.95 each

Advanced Macintosh Pascal™
Paul Goodman
No. 046570, $19.95

How to Write Macintosh™
Software
Scott Knaster
No. 046564, $27.95

MacAccess: Information in
Motion
Gengle and Smith
No. 046567, $21.95

Macintosh™ Multiplan®
Lasselle and Ramsay
No. 046555, $16.95

Personal Publishing with the
Macintosh™ (Featuring
PageMaker Version 2.0)

Second Edition
Terry M. Ulick
No. 048406, $19.95

Basic Microsoft® BASIC for the
Macintosh™
Coan and Coan
No. 046558, $19.95

MPW and Assembly Language
Programming
Scott Kronick
No. 048409, $24.95

Introduction to Macintosh™
Pascal
Jonathon Simonoff
No. 046562, $19.95

The Macintosh Advisor™
Harriman and Calica
No. 046569, $18.95

Object-Oriented Programming
for the Macintosh™
Kurt J. Schmucker
No. 046565, $34.95

Programming the 68000
Rosenzweig and Harrison
No. 046310, $24.95

The Excel Advanced User’s
Guide
Richard Loggins
No. 046626, $19.95

dBASE Mac Programmer’s
Reference Guide
Edward C. Jones
No. 048416, $19.95

For the retailer nearest you, or to order directly from the publisher,
call 800-428-SAMS. In Indiana, Alaska, and Hawaii call 317-298-5699.

Macintosh ™
Revealed

Volume One: Unlocking the Toolbox

Second Edition

Stephen Chernicoff

A

HAYDEN BOOKS

A Division of Howard W. Sams & Company
4300 West 62nd Strecet
Indianapolis, Indiana 46268 USA

For

Ann,

who likes the one with the mouse.

© 1985 and 1987 by Hayden Books
A Division of Howard W. Sams and Co.

SECOND EDITION
THIRD PRINTING—1988

All rights reserved. No part of this beok shall be reproduced,
stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent
liability is assumed with respect to the use of the information
contained herein. While every precaution has been taken in the
preparation of this book, the author and publisher assume no
responsibility for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the information
contained herein.

International Standard Book Number: 0-672-48400-5
Library of Congress Catalog Card Number: 85-8611

Acquisitions Editor: Michael McGrath

Macintosh Library Cover Design: Jim Bernard
Cover Art: Celeste Design

Index: Ted Laux

Composition: McFarland Graphics & Design, Inc.

Printed in the United States of America
Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks
or service marks are listed below. In addition, terms suspected

of being trademarks or service marks have been appropriately
capitalized. Hayden Books cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

AppleTalk, LaserWriter, and Lisa are registered trademarks of Apple
Computer Inc.

ImageWriter, ImageWriter II, Macintosh, MacPaint, MacWrite, and
MacWorks are trademarks of Apple Computer Inc.

Turbo Pascal is a registered trademark of Borland International.
Lightspeed Pascal is a trademark of THINK Technology.

Preface

If you're reading this book, you probably don’t need to be told that
Apple Computer’s Macintosh is an extraordinary personal com-
puter. It does things you may never have seen a computer do before,
in ways you'd never even imagined. If you've wondered what goes
on behind the scenes to make the magic happen, this book is for
you. By the time you've finished it, the inner workings of the
Macintosh will stand revealed before your eyes, and you'll be able to
use its built-in User Interface Toolbox to perform the same magic in
your own programs.

One thing must be said, however, right at the outset: the Tool-
box is for experienced programmers, not beginners. To get the most
out of this book, you should have some previous experience (the
more the better) in at least one high-level programming language.
The programming examples given here are written in Pascal, but the
general principles they embody are applicable in other languages as
well. If Pascal isn’t your native programming tongue, you should at
least be able to pick up enough of it to follow the logic of the
programming examples and apply them in your own preferred lan-
guage. The book will offer a few hints to help you over the rough
spots, but in general it's assumed that you're already acquainted
with the syntax and semantics of standard Pascal. (For hard-core bit
bangers, there's also information on how to use the Toolbox in
assembly language.)

The only other assumption is that you want to know how the
Macintosh user interface works from the inside. Whether you're a
professional software developer, a college student, a midnight
hacker, or just the kind of person who likes to take watches apart
and see what makes them tick, read on and behold the Macintosh
revealed.

STEPHEN CHERNICOFF
Berkeley, California

\ '

Acknowledgments

No book is ever the product of one person working alone—
especially a book of the size and complexity of this one. These are
some of the people who helped me bring the book to completion,
and to whom I owe a special debt of gratitude and appreciation:

First and forever, to my wife, Helen, whose love and under-
standing through the ordeal of living with an author have brought
new meaning to the word “patience”; and to my parents, Murray
and Annette Chernicotff, for their unwavering encouragement and
support.

To Chris Espinosa and Mike Murray, who, as my managers at
Apple, graciously afforded me the freedom to pursue this project as
an independent agent.

To Mike McGrath, Ronnie Groff, Mary Picklum, and Nancy
Ragle of Hayden Book Company, professionals all in the noblest
sense of the word, whose contributions were manifold and invalu-
able.

To Don Herrington, Jennifer Ackley, and Wendy Ford of
Howard W. Sams & Co., for their aid in preparing the second edition.

To David Casseres of Apple Computer, for his indispensable
assistance with the programming examples and his wise and
thoughtful counsel throughout.

To Scott Knaster of Apple Computer, for his thorough techni-
cal review of the manuscript and his inexhaustible patience with my
questions, intelligent and otherwise.

To Steven Smith of CommuniTree Group, who executed the
illustrations with imagination and panache.

And finally, to the men and women of Apple Computer’s
Macintosh Division, as talented and creative a group of people as I
have ever been privileged to work with; and to Steven Jobs, erst-
while chairman of the board of Apple Computer and general man-
ager of the Macintosh Division, who provided the vision and inspira-
tion for these remarkable people to bring Macintosh to reality.

vl

Contents

Chapter 1 All the Tools You Need 1
How This Book Is Organized 3
How to Use This Book 4
What's in the Reference Sections 5
Some Terms and Conventions 8

Chapter 2 Putting the Tools to Work 11
The Language Problem 11
The Trap Mechanism 13
The Stack 17
The Pascal Interface 18
Stack-Based and Register-Based Routines 19
The Assembly-Language Interface 20
Extended Features of Pascal 23
General-Purpose Utilities 27

Strings 28
Bit-Level Operations 29
Arithmetic Operations 31
Date and Time 33
Reference 34
2.1 Elementary Data Structures 34
2.11 Strings and Procedures 34
212 String Operations 35
2.2 Bit-Level Operations 38
2.2.1 Single Bit Access 38
222 Logical Operations 39
2.23 Word Access 40
2.24 Direct Storage 41
2.3 Arithmetic Operations 12
231 Fixed-Point Numbers 42
232 Fixed-Point Arithmetic 44

00
VIl Contents

233 Fractions a5
2.34 Fraction Arithmetic 46
2.3.5 Long Multiplication a7
2.3.6 Trigonometric Functions 48
2.3.7 Binary/Decimal Conversion 49
238 Random Numbers 50
2.4 Date and Time 51
24.1 Date and Time in Seconds 51
24.2 Date and Time Records 53
243 Date and Time Conversion 54
2.44 Date and Time Strings 55
Chapter 3 Thanks for the Memory 59
Memory Organization 59
The Application Global Space 62
The Stack and the Heap 65
Handles and Master Pointers 67
Relocatable and Nonrelocatable Blocks 70
Elementary Data Types 73
Error Reporting 74
Locking Blocks
Copying and Combining Blocks
Purging Blocks
Reference

3.1 Memory Basics
3.1.1 Elementary Data Types
3.1.2 Error Reporting
3.1.3 Machine Configuration
3.2 Heap Allocation
3.21 Allocating Blocks
3.2.2 Releasing Blocks
3.23 Size of Blocks
3.24 Properties of Blocks
3.25 Block Location
3.26 Copying Blocks
3.2.7 Combining Blocks
3.3 Heap Management
3.3.1 Available Space
3.3.2 Reclaiming Free Space
3.3.3 Purging Blocks
3.34 Heap Expansion

BRRRC2EEIZREES

101
103
104
104
106
107
109

L]
1IX Contents

Chapter 4 Any Port in a Storm 111
Initializing QuickDraw 112
Bits, Pixels, and Images 114
Coordinates, Peints, and Rectangles 117
Calculations with Points and Rectangles 121
Polygons and Regions 125
Bit Maps 131
Graphics Ports 134
Local and Global Coordinates 140
Reference 147
4.1 Mathematical Foundations 147

4.1.1 Points 147
412 Rectangles 149
413 Polygons 151
414 Defining Polygons 152
4.15 Regions 153
4.16 Defining Regions 165
4.1.7 Setting Regions 156
4.2 Graphical Foundations 158
421 Bit Maps 158
422 Graphics Ports 160
4.23 Pixel Access 163
4.3 Operations on Graphics Ports 164
4.3.1 Initializing QuickDraw 164
432 Creating and Destroying Ports 166
433 Current Port 167
4.34 Bit Map and Coordinate System 168
4.3.5 Port Rectangle 169
436 Clipping Region 170
4.4 Calculations on Graphical Entities 172
4.4.1 Calculations on Points 172
442 Coordinate Conversion 173
443 Testing for Inclusion 174
444 Calculations on One Rectangle 176
445 Calculations on Two Rectangles 177
446 Calculations on Polygons 178
447 Calculations on One Region 179
4.4.8 Calculations on Two Regions 181
449 Scaling and Mapping 183

X Contents

Chapter 5 Quick on the Draw 185
Line Drawing 186
Pen Size 191
Hiding the Pen 192
Patterns and Transfer Modes 193
Direct Bit Transfer 197
Icons 204
Drawing Shapes 205
Rectangles 206
Ovals 212
Rounded Rectangles 213
Arcs and Wedges 216
Polygons 218
Regions 219
Pictures 227
Nuts and Bolis 228
Reference 232
5.1 Drawing Fundamentals 232
5.1.1 Patterns 232
5.1.2 Standard Patterns 234
5.1.3 Transfer Modes 237
5.14 Low-Level Bit Transfer 242
5.1.5 Scrolling in a Bit Map 244
5.1.6 Special Operations 245

§.2 Line Drawing 247
5.21 Pen Characteristics 247
5.22 Setting Pen Characteristics 250
5.23 Hiding and Showing the Pen 251
5.24 Drawing Lines 252

5.3 Drawing Shapes 254
5.3.1 Basic Drawing Operations 254
532 Drawing Rectangles 255
5.3.3 Drawing Rounded Rectangles 256
534 Drawing Ovals 258
5.3.5 Drawing Arcs and Wedges 260
5.3.6 Drawing Polygons 263
5.3.7 Drawing Regions 264

5.4 Pictures and Icons 265
541 Picture Records 265
54.2 Defining Pictures 266
5.4.3 Drawing Pictures 287

544 Icons

xi

Contents

5.5 QuickDraw-Related Resources 269
5.5.1 Resource Type 'PAT’ 269
5.52 Resource Type ‘PATH 270
5.53 Resource Type 'ICON' 271
5.54 Resource Type 'ICN# 272
5.5.5 Resource Type 'PICT’ 273

Chapter 6 Summoning Your Resources 275

Identifying Resources 277

Resource Files 279

Access to Resources 282

Rescurce Attributes 230

Modifying Resources 292

Error Reporting 294

Nuts and Bolts 295

Reference 298

6.1 Resource Types 298
6.1.1 Resource Types 298

6.2 Resource Files 301
6.2.1 Opening and Closing Resource Files 301
6.22 Current Resource File 302

6.3 Access to Resources 304
6.3.1 Getting Resources 304
6.3.2 Disposing of Resources 305
6.3.3 Generating All Resources 307
6.34 Loading Resources 309

6.4 Properties of Resources 310
64.1 Identifying Information 310
64.2 Resource Attributes 312
6.4.3 Other Properties 314

6.5 Modifying Resources 315
6.5.1 Creating Resource Files 315
6.5.2 Marking Changed Resources 316
6.5.3 Adding and Removing Resources 317
6.54 Updating Resource Files 318
6.5.5 Purge Checking 320

6.6 Nuts and Bolis 321
6.6.1 Error Reporting 321
6.6.2 Resource File Attributes 323
6.6.3 ROM-Based Resources 326

(X]
XI1 Contents

Chapter 7 Getting Loaded 327
Code Segments 327
The Jump Table 329
Packages 333
Signatures and File Types 335
Finder Startup Information 337
Finder Resources 339
Drivers and Desk Accessories 343
The Desk Scrap 344
Nuis and Bolts 347
Reference 349
7.1 Siarting and Ending a Program 349

7.1.1 Starting a Program 349
7.12 Loading and Unloading Segments 351
7.1.3 Ending a Program 352
7.2 Packages 354
7.2.1 Standard Packages 354
7.2.2 Initializing Packages 357
7.3 Finder Information 358
7.3.1 Signatures and File Types 358
7.32 Finder Information Records 359
7.3.3 Accessing Finder Properties 361
7.34 Startup Information 363
7.4 Desk Scrap 366
7.4.1 Scrap Format 366
74.2 Scrap Information 367
74.3 Reading and Writing the Scrap 369
744 Loading and Unloading the Scrap 370
7.5 Resource Formats 371
7.5.1 Resource Type ‘CODE’ 371
7.5.2 Resource Type ‘PACK 373
7.5.3 Resource Type 'FREF 373
7.54 Resource Type 'BNDL’ 375
7.5.5 Resource Type 'DRVR' 377

Chapter 8 Upstanding Characters 379
The Macintesh Character Set 379
Keyboard Configurations 381
Graphical Representation of Text 382
Fonts and Font Numbers 384
Structure of a Font 386

200
X1l Contents

QuickDraw Text Characteristics 393
Drawing and Measuring Text 395
Nuts and Bolts 401
“Dead” Characters 401
Details of Keyboard Configurations 402
Reference 403
8.1 Keys and Characters 403
8.1.1 Character Set 403
8.1.2 Character Strings 407
8.1.3 Key Codes 408
8.14 Standard Keyboard Layout 411
8.2 Fonts 415
8.2.1 Standard Font Numbers 415
8.22 Font Records 418
8.23 The Font Image 421
8.24 Initializing the Toolbox for Fonts 124
8.25 Access to Fonts 425
8.26 Requesting Font Information 426
8.27 Locking a Font 428
8.28 Nuts and Bolts 428
8.3 Text and QuickDraw 431
8.3.1 QuickDraw Text Characteristics 431
832 Setting Text Characteristics 434
8.3.3 Drawing Text 435
8.34 Measuring Text 436
8.4 Text-Related Resources 438
8.4.1 Resource Type 'TEXT' 438
8.4.2 Resource Type 'STR’ 439
8.4.3 Resource Type 'STR# 440
8.4.4 Resource Type 'NIT’ 441
8.4.5 Resource Type 'FONT' 443
8.4.6 Resource Type 'FWID' 445
8.4.7 Resource Type 'FRSV' 446
Appendix A Volume One Toolbox Summary 447
Appendix B Resource Formats 489
Appendix C Memory Layouts 505
Appendix D Key Codes and Character Codes 511
Appendix E Error Codes 519
Appendix F Summary of Trap Macros and Trap Words 525
Appendix G Summary of Assembly Language Variables 539
Glossary 543
Index 567

CHAPTER

[R i

All the Tools You Need

What sets the Macintosh apart from other personal computers
is its revolutionary user interface. In plain English, an interface is a
junction or boundary where two things meet. In computerese, it
refers to the set of rules and conventions by which one part of an
organized system (like the Macintosh) communicates with another.
Wherever two components of the system come together, they
exchange information by way of an interface.

The Macintosh system consists partly of hardware (physical
components such as chips, circuits, and other electronic and
mechanical devices) and partly of software (programs). The most
important component of all is the human being “out there,”
peering at the screen and fiddling with the mouse and keyboard.
This flesh-and-blcod component of the system is known, in tech-
nical parlance, as the user. So the user interface is the set of
conventions that allow the human user to communicate with the
rest of the system.

In the past, user interfaces were typically based on a screen
full of text characters (usually displayed in garish green) and a
keyboard for typing them. To tell the computer what to do, you
had to memorize a complex command language, so you could
press exactly the right keys in exactly the right order. If your
actions didn’t conform to what the computer expected of you, it
would tell you so in terms ranging from curt to unintelligible. On

1

2 All the Tools You Need

the whole, it was sometimes hard to tell that the human was the
boss and the computer the servant, instead of the other way
around.

Macintosh changes all that. In place of the time-honored
character screen and keyboard, it uses a high-resolution, “bit-
mapped” display and a hand-held pointing device, called a mouse.
The result is a whole new way of communicating between people
and computers. The bit-mapped screen can present information
in vivid visual form, using pictorial “icons,” elaborate graphical
effects, and varied patterns and textures. Text can be depicted
exactly as it will appear on the printed page—in black characters
on a white background, with a variety of typefaces, sizes, and
styles. The mouse provides a direct, natural way of giving com-
mands, by pointing and manipulating images directly on the
screen instead of typing arcane command sequences from the
keyboard.

The programmers at Apple have put a great deal of thought
and effort into how best to take advantage of these features to
produce a user interface that feels natural and comfortable. The
result of their efforts is the User Interface Toolbox, a body of tightly
engineered, lovingly hand-crafted machine-language code that's
built into every Macintosh in read-only memory (ROM). With it, you
can write programs that use overlapping windows, pulldown
menus, scroll bars, dialog boxes, and all the other wonders you
see on the Macintosh screen. This book will teach you how.

Strictly speaking, the contents: of the Macintosh ROM are divided
into three parts: the Macintosh Operating System, which handles
low-level tasks such as memory management, disk input/output,
and serial communications; the QuickDraw graphics routines,
which adre responsible for everything displayed on the screen; and
the User Interface Toolbox, which implements the higher-level ¢on-
structs of the.user interface, such as windows and menus. As a rule,
we'll be using the term Toolbox to refer loosely to the entire body
of built-in code that's available to a running program; only oc-
casionally will we use it in the narrower sense of the user-interface
code alone, as distinct from the Operating System and QuickDraw.

3

How This Book Is Organized

How This Book Is Organized

The book is divided into two volumes. Volume One, Unlocking the
Toolbox (which you now have in your hands), presents the under-
lying foundations on which the Toolbox is built:

Chapter 2, “Putting the Tools to Work,” introduces the basic conven-
tions for calling the Toolbox from an application program and dis-
cusses a number of general-purpose Toolbox facilities that you’'ll find
useful in your programs.

Chapter 3, “Thanks for the Memory,” tells how the Macintosh’s
memory is laid out and how to allocate memory space for your
program'’s needs.

Chapter 4, “Any Port in a Storm,” presents the fundamental concepts
behind the QuickDraw graphics routines.

Chapter 5, “Quick on the Draw,” shows how to use QuickDraw to draw
on the screen.

Chapter 6, “Summoning Your Resources,” introduces the important
subject of resources, one of the cornerstones of the Macintosh software
design.

Chapter 7, “Getting Loaded,” covers the way programs are started up
and how code is loaded into memory for execution.

Chapter 8, “Upstanding Characters,” tells how character text is
represented inside the computer and displayed on the screen.

Once you've mastered these fundamentals, you'll be ready for

Volume Two, Programming with the Toolbox. There you'll learn
about the various parts of the Macintosh user interface and how they
work: events (the mechanism for monitoring the user’s actions
with the mouse and keyboard), windows, menus, cut-and-paste
text editing, controls (including scroll bars), alert and dialog boxes,
and disk input/output.

4 All the Tools You Need

Because the Toolbox includes such a broad range of facilities and
features, it's impossible to cover them all in this book. We've tried
to include those features that most programmers will need for most
applications, but unavoidably, some topics had to be left out
because of time and space limitations. Some of these missing topics,
such as printing, sound, and desk accessories, will be covered in our
forthcoming Volume Three, and the most recent additions to the
Macintosh family, the Macintosh SE and Macintosh II, in Volume
Four. The ultimate, comprehensive source of information on the
Toolbox is Apple’s own Inside Macintosh manual.

A central feature of Volume Two is a fully worked example
program, a simple interactive text editor named Minikdit, which
serves two purposes. First, it illustrates concretely how to use the
various parts of the Toolbox. Second, once you understand how it
works, you can use it as a “shell” within which to develop your
own application programs. The example program already includes
all the Toolbox calls needed to implement the standard features
of the user interface—for instance, to display pulldown menus
when the user presses the mouse in the menu bar, or move
windows around on the screen when the user drags them by their
title bars—so it can save you from having to “reinvent the wheel”
every time you write a program of your own. By returning the
mail-order form provided in Volume Two, you can order a software
disk containing the source code of the MiniEdit program. Then
instead of writing your own programs from scratch, you can just
modify the existing program for whatever application you choose.

How to Use This Book

with the exception of Chapter 1, each chapter in this book
consists of two complementary parts: the basic text of the chapter
and the subsequent reference sections. They are designed to be
used in parallel. The text chapters are intended to be read more
or less sequentially, from beginning to end. Their purpose is to
give you an overall conceptual understanding of the Toolbox and
how to use it, without attempting to cover all the minute details.
Cross-references enclosed in square brackets, such as [2.1.1], will
lead you to the relevant reference sections, where you'll find

5 What'’s in the Reference Sections

detailed descriptions of individual Toolbox procedures, functions,
constants, variables, and data types. When you encounter one of
these for the first time, follow the cross-reference to the reference
section for the details. Together, the text and reference sections
will teach you step by step what you need to know to use the
Toolbox in your own programs.

After you've learned the basic concepts, you'll find the
reference sections useful on their own for refreshing your memory
or looking up specific facts and details. The reference sections are
organized for quick reference rather than sequential reading. Al-
though their structure generally parallels that of the text chapters,
they don’t always treat topics in exactly the same order or build
logically on what's gone before. Thus you may find some of the
material in the reference sections hard to follow at first, because it
refers to topics you haven't yet learned. Try not to let this bother
you—just skip the parts that don’'t make sense and come back to
them later when you're better prepared to understand them. You'll
also find some subjects covered in the reference sections that
aren't discussed at all in the text chapters; once you've acquired a
working knowledge of the Toolbox, you can come back and pick
up these extra topics by browsing the reference sections on your
own.

What's in the Reference Sections

Each reference section is headed by a set of Pascal declarations
defining the Toolbox entities—procedures, functions, constants,
variables, and data types—discussed in that section. The declara-
tions give the names of the entities being defined, along with
additional information you need in order to use them, such as the
number, order, and types of a procedure’s parameters, the type of
value a function returns, or the names and types of a record’s
fields. Following the declarations are a series of notes explaining
the meaning and use of the Toolbox entities being discussed.
Finally, most reference sections end with a box containing further
information of interest to assembly-language programmers only.
For the benefit of readers unfamiliar with Pascal, let's look at
a few examples of the reference declarations and how to read
them. Program 1-1 shows a typical Pascal type declaration of the
kind you'll find in the reference sections. (This one, in fact, is taken
from section (5.2.1].) The declaration says that PenState is the name

6 All the Tools You Need

tyge

paloc : Point; {Current location of graphics pen in local coordinates}
pnSize : Point; {Width and height of pen in pixels}
pnode : INTEGER; (Transfer mcde for line drawing and area fill}
pnPat : Pattern {Pen pattern for line drawing}
end;

Program 1-1 A type declaration

of a record type with four components, or fields. The first field is
named pnLoc and holds a value of type Point; the second, pnSize,
also holds a Point; the third is named pnMode and is of type INTEGER;
and the fourth, pnPat, is of type Pattern. To the right of each field
definition is a comment (enclosed in the Pascal comment brackets
{ and }) describing the meaning of that field: for instance, field
pnLoc represents the current location of the graphics pen in local
coordinates. (We'll be learning about the graphics pen in Chapter
5 and the meaning of “local coordinates” in Chapter 4. If
thePenState is the name of a record in your program of type PenState,
the expression

thePenState.pnLoc

denotes a value of type Point giving the pen location in local
coordinates.

(hariz : INTEGER; {Horizontal coordinate to move to, in pixels}
vert : INTEGER); {Vertical coordinate to sove to, in pixels}

Program 1-2 A procedure declaration

Program 1-2 shows an example of a procedure declaration,
taken from reference section [5.2.4). This declaration defines the
procedure MoveTo, used to reposition the graphics pen to a new
set of coordinates. The procedure accepts two parameters named
horiz and vert, both of type INTEGER; as the explanatory comments
state, these represent the pen’s new horizontal and vertical coor-

rd What's in the Reference Sections

{point1 : Point; {First point to be cospared)
point2 : Point); {Second point to be compared)
¢ BOOLEAN; {Are they equal?}

Program 1-3 A function declaration

dinates, respectively. To move the pen to coordinates h and v, you
would use the statement

MoveTo (h, v)

Program 1-3 shows the declaration for the Toolbox function
EqualPt, taken from reference section (4.4.1]. This function compares
two points and tells whether theyre equal. Like the procedure
declaration we just looked at, a function declaration defines the
names and types of the parameters the function expects you to
supply. In addition, it also specifies the type of value the function
returns as a result, following the colon (:) on the last line of the
declaration. In this case the function accepts two parameters
named point1 and point2, both of type Point, and returns a result of
type BOOLEAN. You might call this function with a statement such
as

equalFlag := EqualPt (firstPoint, secondPoint)

where equalFlag is a variable of type BOOLEAN declared in your
program, and firstPoint and secondPoint are of type Point.

8 All the Tools You Need

If you compare the procedure and function declarations shown in
our reference sections with those given in Apple's Inside Macintosh
manual, you'll find that the names of the parameters are often
different. Since you don't actually use the parameter names when
you call a routine in your program, the names given in the declara-
tion have no effect on the way the routine is used—so we've taken
the liberty of changing many of the names to suggest more clearly
the meaning or purpose of the parameters.

Names that you do use directly in your own program, such as
those of constants and variables or of the fields in a record, are of
course listed the same way in our reference sections as in the Apple
documentation. Even here, however, you may notice slight varia-
tions in capitalization style; these make no difference, since Apple’s
Pascal compiler doesn’t distinguish between corresponding upper-
and lowercase letters.

Some Terms and Conventions

Before we get started, let's explain some of the terms and conven-
tions we'll be using. The microprocessor used in the Macintosh
(the Motorola MC68000, usually just called the “68000" for short)
works with data items of three different sizes: bytes of 8 bits each,
words of 16 bits (2 bytes), and long words of 32 bits (2 words, or 4
bytes). All memory addresses are long words, 32 bits in length, of
which only the last 24 bits are actually significant. Each address
designates a single 8-bit byte in memory. As a rule, word-length
and long-word data items in memory must begin at an even-num-
bered byte address, known as a word boundary.

Throughout the book, we use an alternate computer voice type-
face as a kind of implicit quotation mark to distinguish actual pro-
gram code from ordinary body text. This convention is also used
occasionally for characters typed on the Macintosh keyboard or
displayed on the screen.

In keeping with the convention used in many programming
languages (including Apple's versions of Pascal and assembly lan-
guage for the Macintosh), we use a dollar sign ($) to denote hexa-
decimal (base-16) constants. For instance, the constant $43 repre-
sents the same numerical value as decimal 67 (4 sixteens plus 3). As
usual, the letters A to F stand for hexadecimal digits with numerical

9 Some Terms and Conventions

values from 10 to 15—so the hexadecimal constant $BD stands for
11 sixteens plus 13, or decimal 189.

We've already mentioned that section numbers enclosed in
square brackets, such as [2.1.1], denote cross-references to the
designated reference section. References to Volume Two are
prefixed with a roman numeral II and a colon: for instance,
(I1:2.1.1] refers to Volume Two, section 2.1.1.

Throughout the text chapters, you'll see shaded boxes like this one.
These “by-the-way” boxes enclose side comments, helpful hints,
exceptional cases, and other material subordinate to the main
discussion. .

Several chapters end with a section titled “Nuts and Bolts.”
This section is for miscellaneous topics that don'’t fit anywhere
else in the chapter—the little unclassified odds and ends rattling
around in the bottom of the Toolbox. In general these are minor
points of only limited interest, or things that are useful only in
unusual or highly specialized circumstances.

In thxs new Maemlosh Plus edition, you'll often see Toolbox

routines or features identified in the reference sections as “available

only on Macintosh Plus.” This designation is understcod to apply

also to the Macintosh-512K Enhanced, Macintosh SE, Macintosh 11,

or to.any A other Macmtosh that includes the newer 128K or any later
- ROM.

That about does it for the preliminaries—it's time to get down
to the business at hand. If you're ready to see the Macintosh
revealed, read on and let's get started!

CHAPTER

Putlng the Tools
to Work

Like a genie in a bottle, the Toolbox waits patiently inside every
Macintosh, ready to perform its wonders for any program that
cares to summon it. But before it will serve you, you need to know
how to call it forth and command it to do your bidding. In this
chapter, we'll start learning the spells needed to make the Toolbox
work its magic. We'll learn about the underlying trap mechanism
that's used at the machine-language level to call the Toolbox
routines in the Macintosh ROM, as well as the higher-level calling
conventions used in Pascal and assembly language. Then we'll talk
about some nonstandard features of Apple’s version of Pascal that
are particularly useful for programming with the Toolbox. Finally
we'll discuss some of the general-purpose utility routines that are
included in the Toolbox for things like working with character
strings, low-level bit manipulation, arithmetic operations, and
reading or setting the date and time on the Macintosh’s built-in
clock chip.

The Language Problem

Exactly how you go about using the Toolbox depends on the
language you're programming in. The Toolbox doesn’t care what
language you use, as long as you follow the proper rules and

11

12 Pputting the Tools to Work

conventions to communicate with it. At the underlying machine
level, these rules are always the same; but in a higher-level
language, like Pascal or Basic or C, you normally don’t have to deal
with them directly. Instead, each language has its own way of
representing Toolbox calls and its own set of conventions that you,
as a programmer, have to follow.

When Apple first began developing the software for the Macin-
tosh, there wasn’'t any Macintosh to develop it on. Fortunately,
Mac's big sister Lisa (now known as the Macintosh XL) was around
to lend a hand. The Lisa already had a complete software develop-
ment system based on the same microprocessor used in the
Macintosh, the Motorola MC68000. This Lisa programming en-
vironment, with its Pascal compiler and 68000 assembler, became
the de facto standard for programming the Macintosh. All of
Apple's own Mac software—including the Toolbox itself—was writ-
ten in Lisa Pascal or assembly language, compiled or assembled
on a Lisa, and “ported” to the Macintosh to run. So was all the
application software produced by independent developers under
special pre-release licenses from Apple. In those early days, if you
wanted to program the Macintosh, you had to have a Lisa to do
your programming on.

Since Macintosh was released, that situation has changed
rapidly. A growing number of languages are now available for
programming directly on the Macintosh, including Pascal, Basic,
Fortran, Cobol, C, Lisp, Logo, and Forth. Most of these systems
include some sort of facility for calling the Toolbox routines in the
Macintosh ROM from within a running application program. Apple
itself has introduced the Macintosh Programmer's Workshop, a
complete development environment that includes both Pascal and
C compilers and a 68000 assembler, along with an interactive
program editor, linker, symbolic debugger, and full Toolbox sup-
port. ,

Because the Toolbox has its historical roots in the Lisa
development system, its internal data formats and calling conven-
tions are based on those of Lisa Pascal. In a sense, Pascal is the
Toolbox's “native language.” We'll be using it for all our program-
ming examples in this book, and our descriptions of Toolbox
routines and data structures will be given in Pascal form (along
with additional information on how to use them in assembly
language). If you're writing in another language, you'll have to

13 The Trap Mechanism

consult your documentation to find out how to convert the
information given here into the form you need.

At the time this book was written, no Macintosh-based Pascal
compiler was yet available. The example program MiniEdit that forms
the core of Volume Two was actually compiled on a Lisa and ported
to the Macintosh for execution. In theory, compilers such as TML's
MacLanguage Series Pascal, Borland International’s Turbo Pascal for
the Mac, Think Technologies' Lightspeed Pascal, and Apple’s own
Macintosh Programnmer’s Workshop (MPW) Pascal are supposed to
be completely compatible with the original Lisa Pascal at the lan-
guage level. In practicé, however, there may be slight differences.
Please forgive any confiision that may arise because of such minor
language incompatibilities. (As any programmer knows, there's no
difference between theory and practice in theory, but often a great
deal of difference between: theory and practice-in practice!)

The Trap Mechanism

At the machine level, all calls to Toolbox routines have to be
translated into subroutine jumps to the appropriate addresses in
the Macintosh ROM. The way this is done is rather ingenious. It's
based on a feature of the 68000 processor called the emulator trap,
which is used to add new operations to the processor’s instruction
set. These new operations look like ordinary machine instructions,
but the processor doesn't actually execute them directly: their
effects are “emulated” in software instead of hardware. The Macin-
tosh uses such emulated instructions to represent all Toolbox
operations built into the ROM.

A trap (also called an exception) occurs when the processor
detects an error or abnormal condition in the course of executing
a program. This causes it to suspend normal execution and save
the address of the next instruction to be executed, along with
some additional information about the processor’s internal state.
It then executes a trap handler routine to deal with the abnormal
condition. On completion, the handler routine restores the inter-
nal state of the processor, using the state information and return
address saved earlier, and resumes normal execution from the
point of suspension.

14 putting the Tools to Work

Traps can occur for a variety of reasons, such as an attempt
to divide by zero, a reference to an illegal address, or an interrupt
signal from an input/output device. Each type of trap has its own
trap handler. The addresses of the various trap handlers are called
trap vectors, and are kept in a vector table in the first kilobyte of
memory. When a trap occurs, the processor fetches the vector for
that type of trap from the vector table and uses it to locate the
proper handler routine to execute.

In particular, an emulator trap occurs when the processor, in
the course of program execution, encounters an instruction word
that it doesn't recognize as a valid machine-language instruction.
On the Macintosh, the trap vector for such unimplemented in-
structions is set up to point to a handler routine called the Trap
Dispatcher. The Trap Dispatcher locates the offending instruction,
examines its bit pattern to determine what Toolbox operation it
represents, and jumps to the corresponding Toolbox routine in
ROM. On completion, the Toolbox routine will return control to
the program instruction following the trap.

The unimplemented instruction used to represent a Toolbox
operation is called a trap word (see Figure 2-1). As the name
implies, a trap word is always one word (16 bits) long. Its first 4
bits are always 1010 (hexadecimal $A), the pattern that the 68000
processor recognizes as an unimplemented instruction. This is
followed by a bit that classifies it as either a Toolbox trap dealing
with the higher-level elements of the Macintosh user interface
(windows, menus, and so forth) or an Operating System (or OS)
trap representing some lower-level operation such as memory
management or input/output. The particular operation is iden-
tified by a trap number in the last 8 bits of the word (for OS traps)
or the last 9 bits (for Toolbox traps). The remaining bits are flags
giving additional information to the Trap Dispatcher about how to
carry out the operation; the details needn’t concern us here.

15 The Trap Mechanism

a. Toolbox Trap Word Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1i0i1:0:iQ@®
~ >’ Nemmm, e . = e’

Unimplemented Flags Trap number

instruction code

Specifies
“Toolbox” format
b. Operating System Trap Word Format

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

1i0i1i0i0@

Ny _— N o I

Unimplemented Flags Trap number
instruction code

Specifies

"Operating System”

format

Figure 2-1 Format of a trap word

The Trap Dispatcher locates the ROM routine for a given
Toolbox operation by looking it up in a table in memory called
the dispatch table. The 8- or 9-bit trap number taken from the trap
word is actually an index to an entry in the dispatch table, which
in turn gives the address of the corresponding routine in ROM.
The ROM itself contains a compressed version of its own dispatch
table, which is used to reconstruct the actual table in RAM
whenever the system is started up. This makes it easy to upgrade
the machine as newer versions of the ROM appear: all that's
needed is to substitute the new ROM chips for the older ones,
and everything will work just as before, even though all the
Toolbox routines may be at different locations in the new ROM.

16 Pputting the Tools to Work

The Macintosh Plus has two separate dispatch tables: one for
Toolbox traps, with room for up to 512 entries, and another for OS
traps, with a capacity of 256. Each entry in either table holds the
actual memory address of a Tdolbox or Operatirig System routine.
On older Macintosh models, Toolbox and OS traps share the same
dispatch table, limiting the number of traps to ‘512 for the two
categories combined. To save space, entries in this combined table
are encoded into a ‘more compact form than just a raw address,
and have to be decoded to find the actual location of the routine.
Again, the details aren’t important here: all that matters is that each
entry in the dispatch table somehow leads the Trap Dispatcher to
the correct address of the corresponding routine in memory.

A further wrinkle in the dispatch mechanism is that some
Toolbox and Operating System routines may actually reside in RAM
rather than ROM—for instance, to fix bugs discovered after the ROM
code was. already “frozen.” In this case the corrected version.of the
routine is loaded into RAM from the disk when the systemis started
up, and the relevant entry in the dispatch table is “patched” to lead
to the proper RAM address. This arrangement is completely
transparent to the running application program, which needn't
know or care whether a given routine happens to reside in. ROM
or RAM.

The Macintosh Plus takes advantage of the extra capacity afforded
by its 128K ROM and dual dispatch table to add a whole range of
new features and facilities to the Toolbox that weren't available on
earlier models. These new features must be used with caution,

- however. Any program that relies on them is limited to the Macin-
tosh Plus (or the Macintosh 512K Enhanced, Macintosh SE, Macin-
tosh I, or any other Macintosh that includes the 128K or later ROM);
they will crash the system if you attempt to use them with the old
64K ROM. All such features are identified as “available only on the
Macintosh Plus” in the reference notes at the end of each chapter of
this book. (This designation is understood to apply to any machine
equipped with ROM version $75 or greater.)

If you want your program to run on all models of Macintosh,
you have to take suitable precautions. Of course, you could just play
safe and avoid the new features altogether—but then what's the
point of having them in the first place? Another approach is to use
the Toolbox routine Environs [3.1.3] to check the version number of
the ROM in the machine you're running on, and 'use the new
features only if you know they're available. Don't threaten your
users with The Bomb!

17 The Stack

The Stack

Register A7

Base of
stack

Routines written in Pascal receive their parameters and return
their results on a pushdown stack in memory. To understand how
the stack works, picture a stack of trays in a self-service cafeteria.
Trays are always added or removed at the top of the stack, never
at the bottom; the base of the stack remains fixed on the counter
top. The next tray to be removed is always the last one added, so
the stack grows and shrinks in “LIFO” order (last in, first out).

A program's subroutines (procedures and functions) also
behave in LIFO fashion: the last routine called is always the first
to return to its caller. This means that their parameters and private
storage can be kept in a contiguous area of memory that grows
and shrinks at one end, just like the stack of trays on the lunch
counter (see Figure 2-2). One end of this area (the base of the stack)
remains fixed in memory, while items are added or removed at
the other end (the top). One of the processor’s registers, address
register A7, is reserved for use as the stack pointer: this register
always holds the address of the top of the stack.

When you call a routine in Pascal (or any other language that
follows the same calling conventions) the compiler generates
machine instructions to “push” the parameter values you supply
onto the top of the stack, along with the routine’s return link (the
instruction address where execution will continue when the
routine is finished). If the routine is a function, space is also
reserved on the stack for the result value that it will return. The

Register A7

Register A7

Register A7 always New item causes Item is removed;
points to top of stack. stack to grow. stack returns to

original length.
Figure 2-2 The stack

18 putting the Tools to Work

routine can then allocate additional stack space for its own local
variables, if any.

If this routine in turn calls any others, the space for their
parameters and local variables will be added to the top of the stack
above those of the calling routine. Before returning control to the
point of call, each routine “pops” its parameters, local variables,
and return link from the stack, leaving it in the same state it was
in before the routine was called. (In the case of a function, it leaves
its result on the top of the stack for the calling routine to do with
as it pleases.)

The Pascal Interface

All of the Toolbox routines and data structures that we’ll be
discussing in this book are defined in a set of Pascal interface
units. A unit is a collection of precompiled constant, type,
procedure, and function declarations that can be incorporated
wholesale into any Pascal program. The units that make up the
Toolbox interface are provided as part of most Pascal-based soft-
ware development systems. They include the following units:

* MemTypes defines a set of basic, general-purpose data types that are
used by all the other units.

¢ 0Sintf contains the interface to the Macintosh Operating System.
* QuickDraw contains the interface to the QuickDraw graphics routines.
¢ Toolintf contains the interface to the User Interface Toolbox proper.

* Packintf contains the interface to the disk-based subroutine packages
that supplement the Toolbox; these are discussed further in Chapter 7.

There are also a few other units for specialized uses not
covered in this book, such as printing, floating-point arithmetic,
transcendental functions, the AppleTalk network, and three-dimen-
sional graphics; see Volume Three and Inside Macintosh for infor-
mation.

Each unit consists of two files: a text interface file containing
the declarations that make up the unit in Pascal source form, and
an object module containing the corresponding compiled code.
To use the Toolbox in Pascal, you name the interface units in a
uses declaration:

uses MemTypes, 0SIntf, QuickDraw, Toolintf, Packintf;

}Ieunjooyqg

HOWARD W, SAMS & COMPANY

DEAR VALUED CUSTOMER:

Howard W. Sams & Company is dedicated to bringing you timely and authoritative
books for your personal and professional library. Our goal is to provide you with
excellent technical books written by the most qualified authors. You can assist us in
this endeavor by checking the box next to your particular areas of interest.

We appreciate your comments and will use the information to provide you with a
more comprehensive selection of titles.

Thank you,

Vice President, Book Publishing
Howard W. Sams & Company

COMPUTER TITLES:
Hardware
O Apple v O Macintosh i

0O Commodore no
O IBM & Compatibles 4

Business Applications
0O Word Processing Joi
O Data Base Jo4

O Spreadsheets jo2

Operating Systems
OMS-DOSkes O0S/2 ki
0O CP/M ko OOUNIX ko3

ELECTRONICS TITLES:

0 Amateur Radio To1

O Audioms |
0 Basic Electronics tz0

O Basic Electricity 21

O Electronics Design T12
O Electreonics Projects o4
0 Satellites o9

Other interests or comments:

Programming Languages

OC o3 O Pascal Los

O Prolog 112 O Assembly Lot
O BASIC o2 O HyperTalk L14

Troubleshooting & Repair

O Computers sos
O Peripherals st

Other

0O Communications/Networking mo3
O Al/Expert Systems 18

O Instrumentation Tos

O Digital Electronics 11
Troublesheoting & Repair

O Audiosn O Television se4

O VCR so1 O Compact Disc so2
O Automotive sos

O Microwave Oven so3

Name

Title

Company

Address

City
State/Zip

Daytime Telephone No.

A Diviston of Macmillan, Inc.
4300 West 62nd Street
Indianapolis, Indiana 46268

Book Mark

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 1076 INDIANAPOLIS, IND.

POSTAGE WILL BE PAID BY ADDRESSEE

HOWARD W. SAMS & CO.

ATTN: Public Relations Department
P.O. BOX 7092

Indianapolis, IN 46206

HOWARD W, SAMS
& COMPANY

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

19 stack-Based and Register-Based Routines

This makes all the constant, variable, type, and routine names
declared in the units available to your program at compilation
time, just as if they were Pascal standard identifiers like INTEGER or
SQRT. (Of course, you only need to include those units that you
actually use in your program: if you don’t use any of the routines
in the disk-based packages, for instance, you can omit the Packintf
unit from your uses declaration.) After compiling your program, you
link it with the corresponding object modules to incorporate the
compiled code of the units; for further information on this process,
see the documentation provided with whatever software develop-
ment system you're using.

Instead of a uses declaration, some Pascal systems use a $i (“in-
clude”) directive or some other method for including precompiled
units in your program. See your Pascal documentation for details.

Stack-Based and Register-Based Routines

Most of the Toolbox routines are stack-based: they accept their
parameters and return their results on the stack, as described in
the preceding section. This allows the Pascal compiler to generate
the same machine instructions to set up the parameters for these
predefined routines that it would use for an ordinary Pascal rou-
tine defined in your program. Remember, though, that routines in
ROM have to be called through the trap mechanism we discussed
earlier, rather than by jumping directly to a memory address in the
normal way. The Toolbox interface units use a special “Inline
declaration” for all stack-based ROM routines, telling the compiler
to place an appropriate trap word in-line—that is, directly into the
compiled object code—instead of the usual JSR (Jump to Sub-
routine) instruction.

Not all the ROM routines are stack-based, however; some of
them are register-based instead. In general these are Operating
System routines that perform relatively low-level operations such
as memory management and file input/output, and were originally
intended to be called only from assembly language rather than

20 Putting the Tools to Work

Pascal. So instead of using the stack like a Pascal routine, they
pass their parameters and results directly in the processor’s regis-
ters.

Later it was decided that some of these register-based routines
would be useful in Pascal as well as assembly language, so they
were added to the Pascal interface. Because of the difference in
calling conventions, however, an extra level of indirection had to
be introduced. When you call a register-based routine in Pascal,
what you're actually calling is a special interface routine that
mediates between the stack- and register-based calling conven-
tions. The interface routine moves the parameters from the stack,
where the Pascal calling program leaves them, to the registers
where the ROM routine expects to find them; then it traps to the
ROM routine. On return from the trap, it moves the results, if any,
back from the registers to the stack for the Pascal program’s
benefit. The interface routine serves as a kind of “glue” between
your Pascal program and the register-based routine in ROM, and
is sometimes referred to as a “glue routine.”

When you use the Pascal interface units, you don't have to worry
about the distinction between stack- and register-based routines.
You simply use the normal Pascal syntax for all your routine calls,
and the interface units see to it that everything gets fixed up to
work the way you expect. The difference between stack- and register-
based routines is really important only if you're using the Toolbox in
assembly language, as dlscussed in the next section,

The Assembly-Language Interface

To call a Toolbox routine in assembly language, you use a trap
macro that expands into the proper trap word for that routine.
For example, to call the routine HidePen [5.2.3], which hides the
“graphics pen” that the Toolbox uses to draw lines on the screen,
you would use the instruction

_HidePen

When assembled, this macro produces the trap word $A836, which
causes a trap to the HidePen routine in ROM.

21 The Assembly-Language Interface

The trap macros are defined in a set of assembly-language
files that you incorporate into your program with an .INCLUDE
directive:

» SysTraps, containing the macros for calling Operating System routines
¢ QuickTraps for the QuickDraw graphics routines

¢ ToolTraps for the User Interface Toolbox

* PackMacs for the disk-based packages

There’s also a set of definition files that use .EQU directives to
define assembly-language constants and addresses of global vari-
ables for use with the Toolbox:

* SysEqu for constants and variables relating to the Operating System
¢ QuickEqu for those relating to QuickDraw

* ToolEqu for those relating to the Toolbox proper

» SysErr for Operating System error codes

The assembly-language macro and definition files are included
with both the Consulair Macintosh Development System (MDS)
and Apple’s own Macintosh Programmer’s Workshop (MPW).

You'll find the names of all the trap macros (along with the
corresponding trap words) listed in summary boxes at the ends
of the reference sections following each chapter. Trap macro
names always begin with an underscore character (), followed by
the name of the routine. The routine name is generally spelled
the same way as in Pascal, but there are occasional exceptions;
these are noted where appropriate in the reference sections. The
reference sections also list useful Toolbox constants, addresses of
global variables, field offsets within Toolbox data structures, and

so forth, taken from the definition files.

Be warned that ‘the ‘values of constants, and especially the ad-
dresses’ of global variables, may be subject to change in future
versions of the Toolbox. To stay on the safe side, always refer to
them by name, rather than relying on the values and addresses
shown in our reference sections. :

22 putting the Tools to Work

Before calling a Toolbox routine with a trap macro, you have
to set up its parameters the way it expects to find them. For
stack-based routines, this means pushing the parameters onto the
stack in the order they're listed in the routine’s Pascal definition.
All parameter values must be in the same data formats used by
the Pascal compiler:

* Integers are 2 bytes long, long integers 4 bytes, both in two's-
complement form.

* All pointers (including handles, discussed in Chapter 3) are 4 bytes
long.

* Booleans occupy 2 bytes on the stack, with the actual value in bit 8,
the low-order bit of the first byte: 1 for TRUE, 0 for FALSE. The other 15
bits are ignored.

* Single characters (type CHAR) occupy 2 bytes, with the ASCII character
code in the second byte. The first byte is ignored.

* Character strings are represented on the stack by a 4-byte pointer to
the actual string in memory. The format of the string itself is described
later in this chapter and in reference section (2.1.1].

* Data structures such as records and arrays are usually represented by
a 4-byte pointer to the structure in memory. However, if the contents
of the structure are no more than 4 bytes long, they're stored directly
on the stack in place of the pointer.

* All variable parameters, regardless of type, are represented by a 4-byte
pointer giving the address of the variable in memory.

The routine will remove its parameters from the stack before
returning, so there's no need for you to do this yourself. If the
routine is a function, you must reserve stack space for its result
by decrementing the stack pointer the appropriate number of
bytes before pushing the parameters; on return from the trap,
you'll find the result on top of the stack.

For register-based routines, of course, you have to set up the
parameters in the appropriate registers rather than on the stack.
Register usage conventions for all such routines are given in the
reference sections; if no register information appears, you can
assume the routine is stack-based.

23 Extended Features of Pascal

A few of the routines listed in the reference sections don't reside
in ROM, but belong to the Pascal interface itself. These routines are
inaccessible via the trap mechanism and so are unavailable in
assembly language. In general, they exist only to provide a way of
doing something in Pascal that can be done more directly and
easily at the assembly-language level, such as by reading or setting
a global variable. Routines in this category are identified wherever
applicable in the reference sections.

Extended Features of Pascal

The version of the Pascal language supported by Apple’s MPW and
compatible systems has a few nonstandard features that we'll be
using in our programming examples. One of these is the data type
LONGINT (“long integer”), representing integers of twice the normal
length: 32 bits including sign, instead of only 16. This provides a
range of 12147483647, compared with +32767 for ordinary integers.
You can apply all the standard arithmetic operators to long-integer
operands as well as to ordinary integers. An ordinary integer will
automatically be converted to the equivalent long integer if you
combine it with a long integer in an arithmetic expression, or
assign it to a long-integer variable, or pass it to a routine that
expects a long integer as a parameter.

Many of the Toolbox routines accept long-integer parameters
or return long-integer results. Since memory addresses in the
68000 processor are 32 bits long, this type is particularly useful for
working with addresses and related quantities, such as the lengths
of memory blocks. For the same reason, all pointers on the
Macintosh (including handles, which we'll learn about in the next
chapter) are 32 bits long.

The built-in function ORD is a standard Pascal function for
converting any scalar value to a corresponding integer: for in-
stance, a character to its equivalent integer character code. On the
Macintosh, ORD will also accept a pointer and return the equivalent
long-integer address. For converting in the other direction, there’s
a built-in function named POINTER that accepts a long integer
representing a memory address and converts it into a pointer to
that address. The result is a “blind pointer” similar to the standard

24 Pputting the Tools to Work

Pascal constant NIL: it can be assigned to a variable of any pointer
type, regardless of the underlying base type the variable is
declared to point to.

The 0RD and POINTER functions can be used in combination to
convert from one pointer type to another. For instance, if you've
declared

var
this : ThisPtr;
that : ThatPtr;

where ThisPir and ThatPtr are two different pointer types, you can
convert one into the other by writing

this := POINTER(ORD(that))
or

that :

POINTER(ORD(this))

ORD converts the original pointer to a long-integer address, then
POINTER takes it back into a blind pointer that you can assign to a
variable of the other type.

However, Apple’'s Pascal compiler provides a more direct way
to convert data values (including pointers) from one type to
another. Just use the name of the target type as a function, giving
it as a parameter the value to be converted to that type. In the
example above, for instance, you could convert the pointers
directly with the statements

this := ThisPtr(that)
or
that := ThatPtr(this)

This technique is known as typecasting. It doesn’'t change the
underlying data representation (in this case, the memory address
that the pointers point to)—only the high-level data type that it’s
considered to represent. We'll see many examples of this tech-
nique later on, particularly when we begin to develop our example
program MiniEdit in Volume Two.

25 Extended Features of Pascal

Another useful feature is the @ operator, which produces a
pointer to whatever variable or routine you give it as an operand.
Once again, the result is a blind “pointer to anything.” For in-
stance, if you declare

var
aThing : Thing;
aThingPtr : "Thing;

then the statement

aThingPtr := @aThing

sets aThingPtr to point to the address of variable aThing. After you've
executed this assignment, the expression

aThingPtr
(which denotes whatever aThingPtr points to) is equivalent to the
variable aThing itself. You can use this expression on either side of
an assignment statement, or anywhere else that variable aThing
could be used: for instance, if something is another variable of type
Thing, the statement

something := aThingPtr"
is equivalent to

something := aThing
and

aThingPtr~ := something
is equivalent to

aThing := something

The @ operator can be applied to routines (that is, procedures
or functions) as well as to variables. Some of the Toolbox routines

and data structures have parameters or fields of type ProcPtr [2.1.1),
representing a pointer to a program routine. You can use the @

26 putting the Tools to Work

operator to create such routine pointers: for example, if Twiddle is
the name of a routine in your program, then the expression

@Twiddle

denotes a pointer to it. You can assign this routine pointer to a
variable of type ProcPtr, embed it in a data structure, or pass it to
any Toolbox routine that expects a ProcPtr as a parameter.

Technically, though, a ProcPtr is just defined as a pointer to a byte
in memory—presumably the address of the first instruction in the
routine. This means that there’s no way in Pascal to “open up” the
ProcPtr and execute the underlying routine it points to. That can
only be done at the machine- or assembly-language level, either by
the Toolbox or by an assembly-language routine of your own, using
a JSR (Jump to Subroutine) instruction.

One thing to watch out for is that the\@ operator doesn’'t work
properly on “nested” routines (those whose definitions are embed-
ded within another routine). Make sure you use it only on routines
that are defined at the top level of your program.

Another built-in function that’s sometimes handy is SIZEOF,
which accepts a variable of any type as a parameter and returns
the number of bytes that variable occupies in memory. If the
parameter is the name of a type, SIZEOF gives the number of bytes
occupied by a value of that type. For instance, if x is an integer
variable, then the expressions SIZEOF(x) and SIZEOF(INTEGER) both
have the value 2 (since an integer is 2 bytes long).

27 General-Purpose Utilities

In some versions of Pascal, the SIZEOF function won't accept a type
name as a parameter. To find the size of a given type, you have to
use a dummy variable of that type mstead of the type itself. For
example, instead of wrmng

SIZEOF(Thing)
you might declare ‘a Variable
var | o |
something : Thing; -
and then write

SIZEOF(samething).

One last feature worth mentioning is EXIT, which allows you to
take an immediate return from the middle of a procedure or func-
tion. The remainder of the routine is skipped, and control returns
immediately to the point of call. This feature is useful, for instance,
for escaping from a routine on detecting an error condition of
some sort; we'll be using it for this purpose in our MiniEdit program
in Volume Two.

The EXIT feafure isn't rﬁavavilabler»in‘ some versions of Pascal. You can.
achieve the same effect by using an (ugh!) goto to jump to an (ughl)
label at the very end of the routine you're exiting from.

General-Purpose Utilities

In the rest of this chapter, we'll be talking about some of the
general-purpose utility routines that are included in the Toolbox.
Generally, these are simple, straightforward operations dealing
with such things as character strings, bit-level manipulation, and
arithmetic. These topics aren’t essential to your overall under-
standing of the Toolbox: if you're in a hurry, you might just want
to skim this section for a general idea of the utilities available, then
refer back later when you need more detailed information.

28 Pputting the Tools to Work

Strings

For working with strings of character text, the Toolbox uses the
same data format as Apple's Pascal compiler. A string is stored
internally as a variable-length data structure consisting of 1 byte
giving the length of the string in characters, followed by the
characters themselves (Figure 2-3). Since the character count is 1
byte long, it can accommodate strings of up to 255 characters. The
actual character codes used to stand for the various characters
will be given in Chapter 8.

Strings of this form are normally represented in the Toolbox
interface by the data type S$tr255 [2.1.1], used for things like the titles
of windows and the names of menu items. Declared variables of
this type always take up 256 bytes of memory, regardless of the
actual length of the string. Those that are allocated dynamically
or embedded in Toolbox data structures take up only as many
bytes as are needed to hold the actual characters (along with the
length byte, of course). For instance, the string ‘Snark’ would be 6

Length byte—not
ASCII character “6”

/

® 5
0 0
i u
m [padding]

\

String format must be a
whole number of words so
an extra byte of “padding”
is needed here

Figure 2-3 Internal string format

29 General-Purpose Utilities

bytes long: 1 byte for the character count and 5 more for the
characters of the string. However, the string must always occupy
a whole number of words—that is, an even number of bytes. If the
number of bytes actually needed is odd, an extra, unused byte is
added at the end for “padding.” So the string ‘Boojum’ would take
up 8 bytes altogether: 1 for the character count, 6 for the charac-
ters, and 1 more to keep the overall length even. The empty string
takes up 2 bytes of memory: a character count of 0 and a byte of
padding.

The Toolbox function EqualString [2.1.2] compares two strings
and returns a Boolean result telling whether they're equivalent.
You can specify whether you want corresponding upper- and
lowercase letters to be considered the same or different. A similar
function, RelString (available only on the Macintosh Plus), also tells
whether one string alphabetically precedes or follows another. The
UprString routine (2.1.2] converts all letters in a string to uppercase
while leaving all other characters unchanged.

The Macintosh character set includes a variety of accented letters
and diacritical marks for: use in foreign languages. The EquaiString,
RelString, and UprString routines all accept Boolean parameters telling
them whether to take such foreign characters into account or. -
whether to ignore them .or remove them from the string. There’s
also an International Utilities Package for adapting a program to the
needs of foreign languages and countries. This package includes a
more sophisticated string comparison routine named IUEqualString (IU
_for “International Utilities”) that can be customized to the spelling
conventions used in a particular language. (For instance, in German
it can be set up to. treat the umlauted vowels & 6, and. i as
equivalent to the combinations ae, og; and ue.) See the Inside Macin-
tosh manual for information on the International Utilities Package:

Bit-Level Operations

For testing or changing single bits in memory, the Toolbox in-
cludes routines named BitSet to set a bit to 1, BitClr to clear it to 0,
and BitTst to test its current value [2.2.1]. These routines all accept
two parameters: a pointer to a base address and a bit number
relative to that address. Bits are numbered consecutively
throughout memory, beginning with 0 for the leftmost (high-order)

30 Putting the Tools to Work

Base address points here —»

16117 |18 1192021222324 |25]|26

32|33]..

Numbers represent bit
offset position from base
address.

Figure 2-4 Bit numbering for single-bit operations

bit at the designated base address (Figure 2-4). Thus bit numbers
0 to 7 refer to the byte at the base address itself, 8 to 15 refer to
the following byte, and so on through consecutive bytes of
memory. You can designate a bit at any distance forward from the
given base address by making the bit number as big as you like,
but negative bit numbers are not allowed.

Notice that this bit-numbering convention is the reverse of the one
usually used on the 68000 processor, where bits are numbered from
right to left within a byte or word.

The utility routines BitAnd, BitOr, BitX0Or, and BitNot [2.2.2] perform
the standard bitwise logical operations on 32-bit operands. BitShift
[2.2.2] shifts its operand a specified number of bit positions in
either direction. The shift is a logical one, in which bits shifted
out at one end of the operand are lost and 0s are shifted in at the
other end. HiWord and LoWord [2.2.3] extract the high-order and
low-order 16 bits, respectively, of a 32-bit operand.

The StuffHex procedure [2.24] “stuffs” consecutive bytes of
memory, beginning at a specified destination address, with the

31 General-Purpose Utilities

contents defined by a string of hexadecimal digits. The string
should contain no characters other than 0 to 9 and A to F. In
particular, it should not begin with the leading dollar sign (§)
usually used to denote hexadecimal constants.

StuffHex is a dangerous operation that can easily get you in trouble
if you use it carelessly. It does no range or validity checking, just
blindly stores into the specified locations in memory. If you give it
the wrong destination pointer, the consequences can be catastrophic.
Be careful what you stuff and where you stuff it!

Arithmetic Operations

The Toolbox includes facilities for working with 32-bit fixed-point
numbers. Type Fixed [2.3.1] is defined as equivalent to the built-in
Pascal type LONGINT, but is interpreted in a different way. Instead of
a full 32-bit integer, a fixed-point number is considered to have a
“binary point” in the middle, splitting it into a 16-bit integer part
and a 16-bit fraction. A pair of conversion functions, Long2Fix and
Fix2Long [2.3.1], convert numerical values between the two types.
The FixRatio routine [2.3.2] divides two 16-bit integers and produces
a 32-bit Fixed result. You can add and subtract fixed-point numbers
in the usual way, with the standard arithmetic operators + and —,
but for multiplication and division you have to use the special
Toolbox functions FixMul and FixDiv [2.3.2].

The FixRound function [2.3.1] converts a positive fixed-point
number to the nearest 16-bit integer. There's also a routine named
LongMul [2.3.5] that multiplies two 32-bit long integers and produces
a 64-bit integer result. The conversion routines NumToString and
StringToNum [2.3.7] convert between long integers and their equi-
valent representations as strings of decimal digits.

The Macintosh Plus Toolbox includes a new numerical type, Fract
[2.3.3), representing 32-bit fixed-point numbers with 2 integer and
30 fractional bits. Values of this type thus range between —2 and +2
at intervals of 2*°. There are routines for converting between the
new fractions and the older fixed-point numbers [2.3.3), for multiply-
ing, dividing, and finding square roots of fractions (2.3.4], and for
finding fractional sines and cosines of fixed-point quantities [2.3.4].

el . U
32 Putting the Tools to Work ;ﬁm Pgbo
function Randomize (range : INTEGER) (Desired range of random nuabers)}
+ INTEBER; {Randoa nusber between 0 and (range - 1)}

{ GBenerate randos nusbers over a specified range. 3

var

rawResult : LONGINT; ("Raw® randoa nuaber received from Toolbox}

begin (Randomize}

rawResult := ABS(Random); {Get randos nusber between 0 and 32767 [2.3.51}
Randomize := (rawResult & range) div 32748 {Scale to specified range}

end; (Randomize)

Program 2-1 Generate random numbers

Finally, there’s a Random function [2.3.8] that returns a different
integer result each time you call it. The results are distributed
uniformly over the entire range of integer values, from —32768 to
+32767. Program 2-1 shows how to scale the result to the range you
need: to generate an integer between 0 and (range — 1), convert the
“raw” result you receive from the Random function to a positive
value, multiply by range, and divide by the original range of 32768.
Notice the use of a LONGINT variable for the intermediate resuit.

The method used to generate random numbers is based on a
“seed” value kept in a global variable named RandSeed [2.3.8], which
is changed each time you call the Random function. The sequence of
numbers is really only “pseudo-random,” since you can reproduce
the same sequence again by starting out with the same seed value.
The seed is ordinarily initialized to a standard value of 1 at the
beginning of your program; if you want to produce a different
sequence of random numbers each time the program is run, you
have to change this setting to start with a different seed each time.
The easiest way to do this is to initialize the seed to the current
setting of the clock chip (see next section) at the time the program
is started.

33 General-Purpose Utilities

Date and Time

The Macintosh has a built-in clock chip that continuously keeps
track of the current date and time. The clock chip is powered
independently by a battery, and continues to keep time even when
the machine’s main power is switched off. The date and time are
expressed internally as a total number of seconds since the beginning
of time, which according to Apple’s painstaking research occurred at
midnight, January 1, 1904. You can read the clock in this “raw”
form with the Toolbox routine GetDateTime or set it with SetDateTime
[2.4.1].

Often, however, it's more convenient to work with a date and
time record (2.4.2], which has separate fields for the year, month,
day of the month, day of the week, hour, minute, and second. To
read or set the clock in this form, use GetTime or SetTime [2.4.2]
instead of GetDateTime or SetDateTime. There’s also a pair of utility’
routines named Secs2Date and Date2Secs [2.4.3] for converting be-
tween raw seconds on the one hand and date and time records
on the other. :

To convert the date and time into a readable character string
for human consumption, use |UDateString and IUTimeString (2.4.4].
These routines accept the clock reading in raw seconds and
return a string representing the date or time of day, respectively.
You can ask for the date in any of three formats: short

12/18/84
long
Tuesday, December 18, 1984
or abbreviated
Tue, Dec 18, 1984
and the time with seconds included
1:47:22 PM
or without

1:47 PM

REFERENCE

2.1 Elementary Data Structures

2.1.1 Strings and Procedures

Definitions

-

type)
Str255 = STRING[255]; {Any text string, maximum 255 characters}
ProcPtr = Ptr; {Pointer to a procedure or function [3.1.1]}
Notes

=

[

. Str255 stands for a string of text with a maximum length of 255
characters.

. The first byte (element 0) gives the length of the string in characters;
the remaining 1 to 255 bytes contain the characters themselves.

. Declared variables of type 5tr255 always take up 256 bytes of memory.
Those allocated dynamically (for instance, with NewPtr or NewHandle
[3.2.1] or with NewString, GetString, or SetString [8.1.2]), or embedded in

N

[

e

4

35 (212 String Operations

Toolbox data structures, include just enough bytes to hold the length
count and the actual characters of the string.

4. The string must always physically occupy a whole number of 16-bit
memory words. If necessary, an unused byte of “padding” is added
at the end to fill out the physical length to an even number of bytes.

5. ProcPtr is a pointer to a procedure or function.

6. To denote a ProcPtr to a given routine, prefix the name of the routine
with the pointer operator @.

2.1.2 String Operations

Definitions

function EqualString
(string1 . Str255; {First string to be compared}
string2 : Str255; {Second string to be compared}
caseCounts : BOOLEAN; ({Distinguish upper- and lowercase?}
marksCount : BOOLEAN) {Include diacritical marks?}

: BOOLEAN; {Are the two strings equivalent?}
function RelString ,
(string1 : Str255; {First string to be compared}
string2 : Str255; {Second string to be compared}

caseCounts : BOOLEAN; {Distinguish upper- and lowercase?}
marksCount : BOOLEAN) {Include diacritical marks?}
: INTEGER; {Which string comes first?}

procedure UprString 2
(var theString : Str255; {String to be converted}
stripMarks : BOOLEAN); {Eliminate diacritical marks?}

const
SortsBefore = —1; . {First string precedes second}
SortsEqual = O0; {Strings are equivalent}
SortsAfter = +1; {First string follows second}

36

General Utilities

Notes

2.

7

8.
9.

10.

11,

12,

. EqualString compares two strings for equality and returns a Boolean

result; RelString tells which of two strings precedes the other al-
phabetically.

RelString returns the value SortsBefore if the first string precedes the
second, SortsEqual if the two strings are equivalent, SortsAfter if the first
follows the second.

. If caseCounts is FALSE, corresponding upper- and lowercase letters are

considered identical for purposes of comparison; if TRUE, they're
considered different.

. If marksCount is TRUE, foreign-language accents and diacritical marks

are taken into account in the comparison; if FALSE, they're dis-
regarded.

A more sophisticated form of string comparison, allowing for special-
ized spelling conventions used in foreign languages, is available
through the IUEqualString routine of the International Utilities Package.
See Inside Macintosh for details.

. ReiString is available only on the Macintosh Plus.

UprString converts a string to full capitals, replacing any lowercase
letters with their uppercase equivalents.

Characters other than letters of the alphabet are left unchanged.

If stripMarks is TRUE, foreign-language accents and diacritical marks are
removed from the converted string.

The trap macro for EqualString is mamed _CmpString (“compare
string”).

When called from assembly language, these routines are register-
based: see register usage information below.

In assembly language, the Boolean parameters are represented by
flag bits in the trap word: 1 for TRUE, 0 for FALSE. caseCounts and
marksCount correspond to bits 10 and 9, respectively, of the _CmpString
and _ReiString traps, and stripMarks to bit 9 of the _UprString trap. The
trap macros accept optional parameters named CASE and MARKS for
setting these flag bits to 1: for example,

_UprString ,MARKS
—CmpString ,CASE
_RelString ,MARKS,CASE

37 [(21.2) String Operations

Assembly Language Information

Trap macros:

{(Pascal) (Assembly)
Routine name Trap macro Trap word
EqualString _CmpString $A03C
RelString _RelString $A050
UprString _UprString $A854
Register usage:
Routine Register Contents
EqualString AO.L (in) pointer to stringl
AlL (in) pointer to string2
DO.L (in) high word: length of string1
low word: length of siring2
DO.L (out) =0 if strings equal
0 if unequal
RelString AO.L (in) pointer to stringl’
AlL (in) pointer to string2
DO.L (in) high word: length of string1
low word: length of string2
DO.L (out) = —1 if stringl precedes string2
= 0 if strings are equivalent
= 1 if string1 follows string2
UprString AO.L (in) pointer to theString
DO.B (in) length of theString
AO.L (out) pointer to theString

Assembly-language constants (Macintosh Plus only):

Name Value Meaning

SortsBefore 1 First string precedes second
SortsEqual 0 Strings are equivalent
SortsAfter o First string follows second

38 General Utilities

2.2 Bit-Level Operations

2.2.1 Single Bit Access

r;l Definitions
=l

procedure BitSet

(bitsPtr : Pir; {Pointer to bits [3.1.1]}

bitNumber : LONGINT); {Number of bit to be set to 1}
procedure BitClr

(bitsPtr : Ptr; {Pointer to bits [3.1.1]}

bitNumber : LONGINT); {Number of bit to be cleared to 0}
funetion BitTst

(bitsPtr : Ptr; {Pointer to bits [3.1.1]}

bitNumber : LONGINT) {Number of bit to be tested}

: BOOLEAN; {Is bit set to 1?}

D-E | Notes

1. These routines operate on single bits in memory.

2. BitSet sets a bit to 1; BitCIr clears it to 0; BitTst tests it and returns a
Boolean result representing its value.

3. bitsPtr is a pointer to a base address in memory (the elementary data
type Ptr is defined in [3.1.1]). bitNumber identifies a single bit relative to
the base address.

4. Bits are numbered from left to right within each byte; notice that this
is the reverse of the usual 68000 convention.

5. bitNumber can have any nonnegative value, and can designate a bit at
any distance in memory from the base address. Bit numbers 0 to 7
refer to the byte designated by the base address, 8 to 15 refer to the
byte following it, and so on through consecutive bytes of memory.

6. Negative bit numbers are not allowed.

7. BitTst returns TRUE for a 1 bit, FALSE for a 0 bit.

39 (222] Logical Operations

Assembly Language Information

Trap macros:

(Pascal) (Assembly)

Routine name Trap macro Trap word
BitSet _BitSet $AB5E
BitClr _BitCir $A8BSF
BitTst -BitTst ' $A85D

2.2.2 Logical Operations

Ié! Definitions

function BitAnd

(bits1 : LONGINT; {First operand}
bits2 : LONGINT) {Second operand}
: LONGINT; {Bitwise "and"}
function BitOr
(bits1 : LONGINT; {First operand}
bits2 : LONGINT) {Second operand}
. LONGINT; {Bitwise "or"}
function BitXOr
(bits1 : LONGINT; {First operand}
bits2 : LONGINT) {Second operand}
: LONGINT; {Bitwise "exclusive or"}
function BitNot
(bits : LONGINT) {Bits to be complemented}
> LONGINT; {Bitwise complement}
function BitShift
(bits : LONGINT; {Bits to be shifted}

shiftCount : INTEGER) {Number of places to shift}
. LONGINT; {Result of shift}

40 General Utilities

Notes

. These routines perform bitwise logical operations on 32-bit (long-

word) operands.

. For BitAnd, BitOr, and BitX0Or, each bit of the result is obtained by

applying the given logical operation to the bits found at the cor-
responding position in the two operands.

. For BitNot, each bit of the result is the logical complement of the

corresponding bit in the operand. That is, each 1 bit in the operand
is transformed into a 0 bit in the result, and vice versa.

. The result returned by BitShift is obtained by shifting the operand bits

by the number of bit positions specified by shiftCount.

. shiftCount is interpreted modulo 32.
. Positive shift counts shift to the left, negative to the right.
. BitShift performs a logical shift. Bits shifted out at one end of the

operand are lost; positions vacated at the other end are filled with 0s.

Assembly Languagelnformatlon

Trap macros:

(Pascal . (Assembly)

Routine name Trap macro Trap word
BitAnd - -BitAnd) $A858
Bitor - _Bitor $AB5B
BitXer -BitX0r ' $A859
BitNot -BitNot $AB5A

BitShift . -_BitShift $A85C

2.2.3 Word Access

D‘eﬁniﬁo_n;s

function HiWord R
(longWord : LONGINT) - {32-bit operand} '
v INTEGER;: - {High-order 16 bits}
function LoWord - ‘
(longWord : LONGINT) {32-bit operand}
: INTEGER; {Low-order 16 bits}

41 {2.2.4) Direct Storage

Notes

1. These routines extract and return the high- and low-order 16-bit
words of a 32-bit long word.

2. HiWord and LoWord can be used to extract the integer and fractional
parts, respectively, of a fixed-point number [2.3.1).

Assembly Language
Trap macros:
, - ({Pascal) - ‘
- _aoutme name Trap word
HiWord - SAB6A

$A86B

LoWord

2.2.4 Direct Storage

Definitions

=

procedure StuffHex

Notes

[T

1. StuffHex stores “raw” bits into any designated data structure in
memory.

2. destPtr is a pointer to the beginning of the destination data structure.
The specified data will be “stuffed” into consecutive locations begin-
ning at this address.

3. hexString is a string representing the data to be stuffed, in hexadecimal
form.

4. hexString should contain no characters other than the hexadecimal
digits 0-9 and A-F. It should not begin with a dollar sign (8).

42 General Utilities

5. Nominally, the maximum length of hexString is 255 hexadecimal digits.
However, since data structures generally must consist of a whole
number of 16-bit words, the effective maximum is actually 252 digits,

or 63 words.

6. BEWARE: No range checking of any kind is performed.

Assembly Language Information

Trap macro:

(Pascal) (Assembly) ‘
Routine name Trap macro Trap word
StuffHex —StuffHex $A866

2.3 Arithmetic Operations

2.3.1 Fixed-Point Numbers

Definitions

|

type
Fixed = LONGINT,;

funetion Long2Fix
(theNumber : LONGINT)
: Fixed;

function Fix2Long
(theNumber : Fixed)
: LONGINT;

function FixRound
(theNumber : Fixed)
: INTEGER;

{Fixed-point number}

{Long integer to be converted}

{Fixed-point equivalent}

{Fixed-point number to be converted}
{Long-integer equivalent}

{Fixed-point number to be rounded}

{Number rounded to an integer}

43 {2.3.1) Fixed-Point Numbers

D-E Notes

1. Type Fixed represents a 32-bit fixed-point number, with 16 bits before
the binary point and 16 bits after it.

2. The value of a fixed-point number is equivalent to that of the cor-
responding long integer divided by 65536 (2'¢).

3. Use HiWord and LoWord [2.2.3] to extract the integer and fractional parts
of a fixed-point number, respectively.

4. Long2Fix and Fix2Long convert between fixed-point numbers and long
integers.

5. FixRound rounds a fixed-point number to the nearest integer.

6. On earlier Macintosh models, FixRound doesn’t work properly for
negative values: to round a negative fixed-point number, multiply it
by —1, round with FixRound, then multiply the result back by —1. This
problem has been corrected on the Macintosh Plus.

Assembly Lahgliage Information

Trap macros:

(Pascal) . (Assembly) :

Routine name ~ Trap macro Trap word
 FixRound | _FixRound $ABEC

Long2Fix . . . -Long2Fix $A83F

Fix2Long , ;Fix2Long $A840

44 General Utilities

2.3.2 Fixed-Point Arithmetic

rg Definiﬁons

function FixMul. . .. o ,
(number1 : Fixed; {First fixed-point operand}
number2 : Fixed) {Second fixed-point operand}
: Fixed; - {Fixed-point product}

function FixDiv N o
" (dividend : Fixed; “{Fixed-point dividend}
~divisor : Fixed) - {Fixed-point divisor}
.- Fixed; - {Fixed-point quotient}
function FixRatio ~
- {numerator, . INTEGER; . {Integer numerator}
’ r: INTEGER) - {Integer denominator}
7.« . 7 {Fixed-point quotient)

2 Notes

1. FixMul and FixDiv multiply and divide two fixed-point numbers and
produce a fixed-point result.

2. FixDiv is available only on the Macintosh Plus.
3. FixRatio divides two integers and produces a fixed-point result.

4. To add and subtract fixed-point numbers, just use the standard
operators.+ and —.

Assembly Language Information

Trap macros:

(Pascal} ' (Assembly)

Routine name ; Trap macro Trap word
FixMul . _FixMut $A868
FixDiv. : —FixDiv $A84D

FixRatio -FixRatio $A869

45 {2.3.3) Fractions

2.3.3 Fractions

Ig! Definitions

type
Fract = LONGINT;
funétion Fix2Frac , -

© (theNumber : Fixed) {Fixed-point number to be-converted}

- Fract; T {Fraction equivalent}
function Frac2Fix o

(theNumber : Fract) {Fraction to be converted}
: Fixed; . {Fixed-point equivalent}

ﬂg Notes

1. Type Fract represents a 32-bit fixed-point number, with 2 bits before
the binary point and 30 bits after it.

2. The value of a fraction is equivalent to that of the corresponding long
integer divided by 1073741824 (2%).

3. Fix2Frac and Frac2Fix convert between fractions and fixed-point num-
bers [2.3.1).

4. Type Fract and the routines that operate on it are available only on
the Macintosh Plus.

Assembly La:nguage Information

Trap macros: .
(Pascal) ' (Assembly)

Routine name L Trap macro Tg‘apword
Fix2Frac e _Fix2Frac $A841

Frac2Fix ~~ ~ _Frac2Fix $AB42

46 General Utilities

2.3.4 Fraction Arithmetic

';' Definitions
=l

funetion FracMul

(fraction1 : Fract; {First fractional operand}
fraction2 : Fract) {Second fractiona! operand}
: Fract; {Fractional product}
funetion FracDiv
(dividend : Fract; {Fractional dividend}
divisor : Fract) {Fractional divisor}
: Fract; {Fractional quotient}

function FracSqrt

(theNumber : Fract) {Fractional operand}
E% Notes

: Fract; {Fractional square root
1. FracMu! and FracDiv multiply and divide two fractions and produce a
fractional result.

2. To add and subtract fractions, just use the standard operators +
and —.
3. FracSqrt finds the square root of a fractional quantity.

4. FracSqrt interprets its parameter as an unsigned quantity: that is,
negative fractions between —2 and 0 are treated as positive values
between +2 and +4.

5. These routines are available only on the Macintosh Plus.

Assembly Language Information

Trap macros:

(Pascal) (Assembly)

Routine name Trap macro Trap word
FracMul —FracMul $AB4A
FracDiv —FracDiv $A84B

FracSqrt _FracSqrt $A849

47 [235) Long Multiplication

2.3.5 Long Multiplication

Ié! Definitions

type
Int64Bit = record - - v
hiLong : LONGINT; {High-order 32 bits}
loLong : LONGINT {Low-order 32 bits}
end;

procedure. LongMul
(numbert : LONGINT; {First 32-bit operand}
number2 : LONGINT; {Second 32-bit operand}
var product : Int64Bit); {Returns 64-bit product}

Notes

1. LongMul multiplies two 32-bit long integers and produces a 64-bit result.

Assembly Language Information

Trap macro:
(Pascal) (Assembly)
Routine name Trap macro Trap word

LongMul _LongyMul $A867

a8 General Utilities

2.3.6 Trigonomeitric Functions

L}

Definitions

L

function FracSin

(theAngle : Fixed) {Fixed-point angle in radians}
: Fract; {Fractional sine}
function FracCos
(theAngle : Fixed) {Fixed-point angle in radians}
. Fract; {Fractional cosine}

function FixATan2
(denominator : LONGINT; {Denominator of tangent}
numerator : LONGINT) {Numerator of tangent}
: Fixed; {Fixed-point arc tangent in radians}

Notes

i

1. FracSin and FracCos find the fractional sine and cosine of a given angle.

2. FixATan2 finds the arc tangent of a given ratio (that is, the angle whose
tangent is equal to that ratio).

3. The ratio is specified by giving a long-integer numerator and
denominator. Notice that the denominator is given first (unlike FixDiv
[2.3.2] and FracDiv [2.3.4], which take the numerator first).

4. All angles are expressed in fixed-point form, in radians (not degrees).
5. These routines are available only on the Macintosh Plus.

Assembly Language Information

Trap macros:

(Pascal) (Assembly)

Routine name Trap macro Trap word
FracSin _FracSin $AB48.
FracCos _FracCos $AB47

FixATan2 _FixATan2 - $A818

49 (237] Binary/Decimal Conversion

2.3.7 Binary/Decimal Conversion

Definitions

.

procedure. NumToString - -

procedure Strin_gToNljm

(theNum J LONGINT " {Number to be converted}
var theString : Str255); {Returns equivalent string}

(theString . Str255 {String to be converted}
-var theNumber : LONGINT); {Returns equivalent number}

Notes

il

1.

2.

3.

4.

6.

These routines convert a number between its internal binary represen-
tation and its external representation as a decimal character string.

The string consists entirely of decimal digits (0-9), except possibly for
a leading sign (+ or —).

NumToString doesn't produce a + sign for positive numbers, but
StringToNum will accept one.

NumToString suppresses leading zeros except in the case of the numeri-
cal value 0, which produces the one-character string '0".

The magnitude of the string provided to StringToNum should not exceed
23! — 1 (2147483647),

The binary/decimal conversion routines are not actually part of the
Toolbox proper; they're contained in a package, the Binary/Decimal
Conversion Package, that resides in the system resource file (or in
ROM on a Macintosh Plus) and is automatically loaded into memory
when needed. Package routines are defined in the interface file Packintf,
See Chapter 7 for further information on the package mechanism.

. The trap macros for these routines expand to call _Pack7 (7.2.1] with

the routine selectors given below.

50 General Utilities

Assembly Language Information

Trap macros and rotitine selectors:

(Pascal) (Assembly)
Routine name Trap macro Trap word Routine selector
NumToString _NumToString- SASEE 0
StringToNum _StringToNum SASEE 1
Register usage:
Routine Register Contents
NumToString DO.L (in) theNumber ‘
AO.L (out) pointer to theString
StringToNum AO.L (in) pointer to theString
DO.L (out) theNumber-

2.3.8 Random Numbers Se ew»y’c 2%

Definitions

L]

function Random
: INTEGER; {Random number}

var
RandSeed : LONGINT; {"Seed” for random number generation}

Notes

1. Random returns a different integer each time it's called, distributed
uniformly over the interval from —32768 to +32767.

2. The sequence of numbers generated is “pseudo-random”: the same
sequence can be duplicated by starting with the same “seed” value
in the global variable RandSeed.

3. RandSeed is initialized to 1 by the QuickDraw initialization procedure
InitGraf [4.3.1].

4. RandSeed is actually a QuickDraw global variable [4.3.1]. To access it in
assembly language, find the pointer to QuickDraw’s globals at the

51 [2.4.1) Date and Time in Seconds

address contained in register A5 then locate the variable relative to
that pointer using the offset constant RandSeed (below). See Chapter 3
and [4.3.1, note 4] for further discussion.

Assembly Language Information

Trap macro:

(Pascal) (Assembly)

Routine name Trap macro Trap word
Random —Random $A861
QuickDraw global variable:

Name Offset in bytes Meaning

RandSeed —126 “Seed” for random

number generation

2.4 Date and Time

2.4.1 Date and Time in Seconds

|g! Definitions

procedure GetDateTime
(var seconds : LONGINT); {Returns current date and time in “raw” seconds}

function SetDateTime

(seconds : LONGINT) {New date and time in “raw” seconds}
. OSErr; {Result code [3.1.2]}
const
ClkRdErr = —85; fUnable to read clock}

CIkWrErr = —86; {Clock not written correctly}

52 General Utilities

Notes

1. These routines read and set the current date and time in the Macin-
tosh’s built-in clock chip.

2. The user can set the date and time with the Alarm Clock or Control
Panel desk accessory.

3. The date and time are expressed as a total number of “raw” seconds
since midnight, January 1, 1904. This value can be converted to a date
and time record with Secs2Date [2.4.3], or to an equivalent character
string with |UDateString and IUTimeString [2.4.4].

4. The function result returned by SetDateTime is an Operating System
result code [3.1.2].

5. When called from assembly language, SetDateTime is register-based; see
register usage information below.

6. GetDateTime is not available in assembly language via the trap
mechanism. Instead, the current reading of the clock chip is directly
accessible in the global variable Time.

Assembly Language Information
Trap macro:
(Pascal) (Assembly)
Routine name Trap macro Trap word
SetDatetime -+ _SetDateTime $A03A
Register-usage:
Routine Register Contents
SetDateTime ~DO.L (in) : seconds

DO.W (out) result code

Assembly-language global variable:
Name Address Meaning

Time $20C Current date and time in
“raw” seconds

53 [2.4.2] Date and Time Records

2.4.2 Date and Time Records

g - Definitions

type

DateTimeRec = record N o
year : INTEGER; {Year}
month - : INTEGER; {Month: 1 (January) to 12 (December)}
day : INTEGER; {Day of month: 1 to 31}

hour : INTEGER; {Hour: 0 to 23}

minute : INTEGER; {Minute: 0 to 59}

second @ INTEGER; - {Second: 0 to 59} ,

dayOfWeek : INTEGER {Day of week: 1 (Sunday) to 7 (Saturday)}
end;

procedure GetTime : , Lo r :
‘ (var dateAndTime : DateTimeRec); {Returns current date and time}

procedure SetTime -
(dateAndTime : DateTimeRec); ~ {Current date:and time}

ﬂ% Notes

1. GetTime and SetTime read and set the current date and time in the
Macintosh’s built-in clock chip.

2. The user can set the date and time with the Alarm Clock or Control
Panel desk accessory.

3. The date and time are represented in the form of a record of type
DateTimeRec.

4. These routines are not available in assembly language via the trap
mechanism. Instead, you can read the clock chip directly via the
global variable Time or set it with SetDateTime [2.4.1] and convert between
“raw" seconds and date and time records with Secs2Date and Date2Secs
[2.4.3).

54 General Utilities

Assembly Language Information

Field offsets in a date and time record:

(Pascal) (Assembly) ‘

Field name Offset name Offset in bytes
year dtYear 0
month dtMonth 2

day dtDay 4

hour dtHour 6
minute dtMinute 8
second- dtSecond 10
dayOfWeek dtDayOfWeek 12

2.4.3 Date and Time Conversion

I I Definitions

procedure Secs2Date
(seconds : LONGINT; {Date and time in "raw” seconds}
var dateAndTime : DateTimeRec); {Returns equivalent date and time record}

procedure Date2Secs

(dateAndTime : DateTimeRec; {Date and time record}
var seconds : LONGINT); {Returns equivalent in "raw” seconds}
B Notes

1. These routines convert the date and time between ‘‘raw” seconds, as
reported directly by the built-in clock chip [24.1], and the more
convenient form of date and time records [2.4.2).

2. When called from assembly language, these routines are register-
based: see register usage information below.

55 [244] Date and Time Strings

Assembly Languiige Information

Trap -macros:

(Pascal) = (Assembly)
Routine name oo Trap macro Trap word
Secs2Date —Secs2Date $A9C6
Date2Secs —Date2Secs $A9C7
Register-usage:
Routine Register Contents
Secs2Date DO.L (in) seconds
AOL (ouf) pointer to dateAndTime

Date2Secs AOL (in) pointer to dateAndTime

: BO.L (out) seconds

2.4.4 Date and Time Strings

Definitions

type : |
DateForm = (ShortDate, LongDate, AbbrevDate);
procedure |UDateString 7
' (seconds : LONGINT; {Date and time in "raw” seconds}
format : DateForm; {Format desired for date}
var theString : Str255); {Returns equivalent character string}

procedure IUTimeString
(seconds : LONGINT; {Date and time in "raw” seconds}
withSeconds : BOOLEAN; {Include seconds in string?}
var theString : Str255); {Returns equivalent character string}

E : Notes

1. These routines convert a date and time in “raw” seconds, as reported
by ReadDateTime [2.4.1], to a character string representing the cor-
responding calendar date or time of day.

56 General Utilities

2.

3‘

Lo

5

8.

These routines are not actually part of the Toolbox proper; they're
contained in a package, the International Utilities Package, that resides
in the system resource file and is automatically loaded into memory
when needed. Package routines are defined in the interface file Packintf.
See Chapter 7 for further information on the package mechanism, and
Inside Macintosh for more on the International Utilities Package.

The exact formats used for dates and times may vary from one country

to another, under the control of the International Utilities Package. The
formats shown below are the standard ones for American use.

The format parameter to |UDateString identifies the format desired for the
date, as in the following examples:
Short: 6/ 8/84
10/15/84
Long: Friday, June 8, 1984
Monday, October 15, 1984
Abbreviated: Fri, Jun 8, 1984

Mon, Oct 15, 1984

Dates in the short format carry leading blanks or zeros if necessary,
so that they're always the same length (8 characters in the standard
American format).

. The withSeconds parameter to IUTimeString specifies whether to include

a seconds field in the time, as in the following examples:

With seconds: 10:47:13 AM
3:23:08 PM

Without seconds: 10:47 AM
3:23 PM

Times, whether with or without seconds, carry leading blanks or zeros
if necessary, so that they're always the same length (8 or 11 characters
in the standard American format).

The trap macros for these routines expand to call _Pack6 (7.2.1) with
the routine selectors given below.

57 [244] Date and Time Strings

Assembly Language Information

Trap macros:

(Pascal) {(Assembly)

Routine name Trap macro Trap word Routine selector
IUDateString _lUDateString $A9ED 0

IUTime String _IUTimeString $A9ED 2

Assembly-language constants:

Name Value Meaning
ShortDate 0 Short form of date
LongDate 1 Long form of date

AbbrevDate 2 Abbreviated form of date

the Memory

This chapter is about memory: how it's organized and how to
manage it. We'll learn what’s where in the Macintosh’s memory,
how to allocate blocks of memory for a program’s use, how to refer
to those blocks from within the program, how to copy and
combine them, and how to release them when they're no longer
needed. These are basic techniques that you'll use in every
program you write for the Macintosh.

Memory Organization

The original Macintosh has 64 kilobytes—that is, 64 times 1024, or
65,536 bytes—of read-only memory (ROM), containing the built-in
code of the Toolbox. The new Macintosh Plus doubles the ROM
size to 128K. ROM addresses begin at hexadecimal $400000 and run
up to $40FFFF or $41FFFF, depending on the model. Since its contents
are permanent and unchangeable, this portion of memory is not
available for general use by a running program.

When we talk about memory allocation, we're really referring
only to the remaining read/write memory (commonly known by
the misleading term “random-access memory,” or RAM). The
original “Skinny Mac” has 128K of RAM, occupying addresses
$0-$1FFFF; the “Fat Mac” has 512K, from $0-$7FFFF. The Macintosh
Plus has a full megabyte (1024K, or 1,048,576 bytes), running from

59

60 Thanks for the Memory

128K 512K M
“Skinny Mac” “Fat Mac” Macintosh Plus
00
sfgg Trap Yectors sfoo Trap Vectors sfgg Trap Yectors
$400 System Globals $400 System Globals $400 System Globals
$800 Dispatch Table $800 Dispatch Table $800 0S Dispatch Table
$300 System Globals $800 System Globals System Globals
System Heap System Heap $C00
$4E00 — $C800 Toolbox Dispatch Table
Application Heap L $1400
------------ o Application Heap System Heap
........................ $CBOO
...........) S \
Ap;:i:':ion Application Heap
$1A700 Global Space
$IFCTF Main Screen Buffer '““"'"'"{ """"""
$1 FDOO YI/II/IIII//IIIII/III/I/I/I/II/.
Main Sound Buffer 4
SIFFE3 bz zzzzzzzzzzzzzzzd |- e
$1FFFF
Stack
Application
$7A700 Global Space j
o Msin Screen Buffer | f---eeeeseemcdececeen.
57;%5 LS LSS LLLLSSLS SIS ST SIS LSS LSS IS LY.
Mein Sound Buffer
$7FFES 777277 777 777702
$TFFFF Stack
Application
KEY A7 Global Space
7 $FA700 -
// // System Use SFFCTF Main Screen Buffer
7 SFFDOO 7/////////III/I////II/IIIII/II/,
1 Arrows show direction of growth $FFFE3 7////////////,
of stack and application heap. $FFFFF

Figure 3-1 Memory organization

$0-$FFFFF, and can be expanded to 2, 2.5, or even 4 megabytes;
future models will have even more memory. The Toolbox is de-
signed to adapt automatically to different memory configurations,
so that the same program can run without change on all models of
the machine and will automatically make use of whatever amount
of RAM is available.

Figure 3-1 shows how RAM is laid out. On all models of

61 Memory Organization

Macintosh, addresses $0-8FF hold the 68000 processor’s trap vec-
tors, which we discussed in the last chapter. The Toolbox keeps
its system globals (memory locations reserved for its own private
use) at addresses $100-83FF and $800-$AFF ($800-$BFF on the Macin-
tosh Plus). On older models, the dispatch table, which holds the
ROM addresses of the various Toolbox and Operating System
routines, is at addresses $400-§7FF. On the Macintosh Plus, this area
is reserved for the OS dispatch table only; the Toolbox has a
separate table of its own, running from $C00-$13FF.

All of the addresses given in this chapter may differ in future
maodels of the Macmtosh _

At the end of memory are the screen buffer, containing the
bits that define the image to be displayed on the Macintosh
screen, and the sound buffer, which controls the sounds emitted
by the built-in speaker. Table 3-1 shows the addresses of the
screen and sound buffers in the various models. Just before these
buffers in memory is the application global space, which contains
the application program’s global variables and other information
about the program as a whole. The space between the end of the
system globals and the beginning of the application globals is
available for dynamic memory allocation.

Table 3-1 Buffer addresses

Model

Memory Main Main Alternate Alternate
size screen buffer sound buffer screen buffer sound buffer

Skinny Mac
Fat Mac
Macintosh Plus

128K $1A700-$1FC7F $1FDOO-S1FFE3 $12700-817C7F $1A100-$1A3E3
512K $7A700-$7FC7F $7FDO0-$7FFE3 $72700-$77C7F $7A100-$7A3E3

1M $FA700-$FFC7F $FFDO0-$FFFE3 $F2700-$F7C7F $FA100-$FA3E3

62 Thanks for the Memory

Although most programs will use the main screen and sound
buffers at the addresses just given, there are also alternate buffers
available for unusual needs, at the locations shown in Table 3-1.
Since the application global space is always located right before the
lowest-addressed screen or sound buffer in use, using either or both
of the alternate buffers lowers the position of the global space in
memory and reduces the space available for dynamic allocation
accordingly. For the alternate sound buffer, the reduction is $600
bytes, or 1.5K; for the alternate screen buffer, it's $3000 bytes, or 32K.

The Application Global Space

The application global space holds three kinds of information
pertaining to a program: its global variables, application parameters,
and jump table (see Figure 3-2). The space needed for these varies
from one program to another, and is allocated at the time the
program is started up. (We'll have more to say about how this is
done, and about the contents and purpose of the jump table, in
Chapter 7; we'll be discussing the application parameters in just
a minute.)

At the machine-language level, the processor’'s address regis-
ter A5 always holds a pointer to the beginning of the application
parameters. If you're programming in a higher-level language such
as Pascal, of course, you never have to think about processor
registers; your language software will see to it that A5 is properly
maintained. Even so, you should understand how this register is
used at the machine level. The Toolbox initializes A5 when a
program is started, and uses it as a base address from which to
locate everything in the application global space: global variables
at negative offsets from A5, application parameters and the jump
table at positive offsets. (The global variables are allocated in the
reverse of the order they're declared. That is, the first variable
declared is last in memory, at the smallest negative offset from the
base address in A5.)

63 The Application Global Space

Low memory addresses

(Stack)

pplication Globals

_ QuickDraw Globals]
Register AS

Application parameters

[Main Screen Buffer)

High memory addresses

Figure 3-2 Application global space

If you're using assembly language, you have to remember that
register A5 is special and be careful not to disturb its contents. If
you absolutely must “borrow” this register temporarily, be sure to
restore it from the system global CurrentA5 [3.1.3] before calling any
Toolbox routine.

This “A5 world” is a vestige of the Lisa Pascal environment
from which much of the Macintosh software grew. On the Lisa,
the application parameters held important descriptive information
about the program that was used by various parts of the system.

64 Thanks for the Memory

Register AS

Most of these parameters are no longer used on the Macintosh, but
a few are still needed by parts of the Toolbox that preserve traces
of their Lisa origins. To keep these archaic parts of the Toolbox
happy, space (normally 32 bytes) is still reserved for the application
parameters when a program is started up, and a pointer to them
is placed in AS.

Only two of the application parameters are a tually used on
the Macintosh (Figure 3-3). At ddr s 0(A5) (that is, at an offset of
0 bytes from the base address reg ister Ab) is p ointer that the
QuickDraw graphics routm e to find their global variables;
we'll return to this subject i Ch apter 4. At 16(A5) is the startup
handle, used by the Finder to tell the program what files to open

starting up. (We'll be lea mgwht handle is later in this

h apter; the Finder startup handle is discussed in Chapter 7.) The
rest of the 32- byt applicatio par ame t area is reserved for
possible future u

(Application Globals)

"} Pointer to QuickDraw glbals 77777
87
. ////////////////////////////////
) 4/////////////
/////////////////////////////

.

(Jump Table)

J

Figure 3-3 Application parameters

65 The stack and the Heap

The Stack and the Heap

As noted earlier, the space available for dynamic memory alloca-
tion runs from the end of the system globals to the beginning of
the application globals. This area is shared between two different
forms of allocation, the stack and the heap, which grow toward
each other from opposite ends of the space (see Figure 3-4). The
stack is used mainly for holding parameters, local variables, return
addresses, and other temporary storage associated with a
program’s routines (procedures and functions). If you're an
assembly-language programmer, you already know all about the
stack and how to use it. In Pascal and other higher-level languages,
all stack management is handled for you automatically and you
needn’t concern yourself with it; all you really need to know is
that every variable you declare by name in one of your program’s
routines implicitly resides on the stack. The memory space
needed to hold such a variable is allocated on entry to the routine
that declares it, and released again on exit.

The stack actually grows backward in memory, from higher- toward
lower-numbered addresses. If you're an experienced programmer,
you should be used to this sort of thing—you also probably draw
your trees with their roots.t the top and their leaves at the bottom!

Unlike stack space, space in the heap is allocated and released

only by explicit request, never implicitly, even in high-level

~ languages. These requests can be issued in whatever order the

program requires, and are not tied to the program’s subroutine

call structure like the stack. If stack space is allocated in LIFO

order (“last in, first out”), heap allocation might be called LIOF:

“last in, OK, fine.” The heap extends forward from the end of the

system globals, and is divided into two parts, the system heap and
the application heap.

As you might expect, the system heap is used by the system
software for its own private memory needs. It begins right after the
end of the system globals, and has a fixed size of $4300 bytes
(16.75K) on a Skinny Mac, $C000 bytes (48K) on a Fat Mac, or $B700
bytes (45.75K) on a Macintosh Plus. Its contents aren’t destroyed

66 Thanks for the Memory

(System Heap)

Application Heap

Available space

(Application Global Space)

Figure 3-4 Stack and heap

67 Handles and Master Pointers

when one program ends and another is started; this allows the
system to maintain its private data structures from one program to
the next.

The sizes given for the system heap are correct as of the time of
writing. These sizes may vary in future releases of the system soft-
’wam. B . B

The application heap is for your program’s use; it contains
the code of the program itself and any data structures that the
Toolbox creates on your behalf, as well as space that you allocate
explicitly for your own data. The application heap follows the
system heap in memory, and is reinitialized every time a new
program is started. This destroys its previous contents and gives
each program a brand-new, empty heap to work with. The initial
size of the application heap is $1800 bytes (6K), but it can grow
bigger as the program runs if more space is needed.

Technically, what we're calling the system heap and application
heap are actually heap zones. The Toolbox can maintain any number
of heap zones: if you want, you can subdivide your original applica-
tion heap into two or more separate zones and allocate space from
each of them independently. This is an unusual thing to do, though,
and we won't go into it any further here; see Apple’s Inside Macin-
tosh manual if you want the details. Unless you explicitly specify
otherwise, all the memory allocation operations described. in this
chapter will automatically apply to the single application heap zone.

Handles and Master Pointers

You can allocate space from the heap in blocks of any size; when
you no longer need a block, you should release it so that the space
can be reused for another purpose. As blocks are allocated and
released, the available free space tends to become fragmented into
lots of little blocks scattered randomly throughout the heap. Such
fragmentation can sometimes make it impossible to allocate a
block of a given size even though the needed amount of free space

68 Thanks for the Memory

Before After

Data block

Free space

Figure 3-5 Heap compaction

is available, because no single free block is big enough. When this
happens, the Toolbox tries to create a block of the needed size by
moving all the allocated blocks together and coalescing the free
space into one big block. This is known as compacting the heap
(see Figure 3-5).

69 Handles and Master Pointers

Before After

i

Figure 3-6 Dangling pointer

For heap compaction to work, there must be a way to keep
track of the allocated blocks as theyre moved from one location
to another. Suppose you ask the Toolbox to allocate a block; it
gives you back a pointer to the new block, which you save in a
variable or embed in a data structure of some kind. Later, the heap
is compacted and the block is moved to a different location (see
Figure 3-6). This leaves your pointer pointing to where the block
used to be instead of where it is; what's actually there now is
anybody's guess. Trying to follow this “dangling pointer” is now
a one-way ticket to the Twilight Zone.

The solution to this problem is simple and elegant. Instead
of giving you a pointer when it allocates a block, the Toolbox keeps
its own master pointer to the block and gives you a pointer to the
master pointer, known as a handle to the block (Figure 3-7). Like
the block itself, the master pointer resides in the heap; but unlike
the block, the master pointer is never moved, even when the heap
is compacted. Since it remains at a known, fixed location, the
Toolbox can easily update it whenever the block is moved, so that
it always points correctly to the block's current location. When
you need to refer to the block, you do it by double indirection:
the handle leads you to the master pointer, which in turn leads
you to the block. Since the master pointer never moves, you'll
never lose track of the block, no matter where or how often it's
moved within the heap.

70 Thanks for the Memory

| Handle | After

Master Pointer

Figure 3-7 Handle and master pointer

Relocatable and Nonrelocatable Blocks

Blocks that are referred to by handles are called relocatable blocks,
since they can safely be moved around within the heap. You create
a relocatable block by calling the Toolbox routine NewHandle (3.2.1],
specifying the size of the block in bytes. For instance, suppose
your program defines a data type named Thing. To allocate a new
Thing from the heap, you would use a statement like

thatThing := NewHandle(SIZEOF(Thing))

(Recall that the SIZEOF function, applied to a type name, gives the
number of bytes occupied by a value of that type.) NewHandle will
allocate heap space for a block of the requested size and also for
its master pointer, set the master pointer to point to the block,
and give you back a pointer to the master pointer—that is, a handle
to the block. Thus the expression

thatThing"
denotes the master pointer, and

thatThing""

71 Relocatable and Nonrelocatable Blocks

refers to the underlying Thing itself. If a Thing is a record with a
field named widget, you can access the field with the expression

thatThing~~.widget

Once you allocate a block, its size isn’t frozen forever. You can
make it bigger or smaller at any time with the Toolbox routine
SetHandleSize [3.2.3]. (When you make a block bigger, things may
have to be moved around in the heap to make room; but of course
the master pointers will be fixed up properly, so all your handles
will remain correct.) To find out the current size of a block, use
GetHandleSize [3.2.3]. When you're all through with a block, release
it by calling DisposHandle (3.2.2] to make its space available for
reallocation.

You can also create nonrelocatable blocks, which will never
be moved even during heap compaction. To allocate such a block,
use NewPtr [3.2.1] instead of NewHandle:

otherThing := NewPtr(SIZEOF(Thing))

Since the block will never be moved, there’s no need for a master
pointer—so NewPtr doesn’t create one. Instead of a handle, it just
gives you back a pointer directly to the block itself (Figure 3-8). You
can then use this pointer to refer to your Thing by single rather
than double indirection

otherThing"
and access its fields with expressions like

otherThing~.widget

Like a relocatable block, a nonrelocatable one can be
lengthened or shortened at any time. You can change its size with

SetPtrSize [3.2.3), find out its current size with GetPtrSize [3.2.3], and
release it when the time comes with DisposPtr [3.2.2].

72 Thanks for the Memory

| Handle = pE= Master Pointer

vy BN LA U S T E AR

Pointer

Hand]e T e e el B
Master Pointer

(_Handle]
| Handle I pE% Master Pointer
[Handle]

: -
TaTiile Master Pointer

KEY

Nonrelocatable block

...............................

Relocatable block

«+.] Free space

Figure 3-8 Relocatable and nonrelocatable blocks

73 Elementary Data Types

Elementary Data Types

The Toolbox interface defines general-purpose data types [3.1.1]
for talking about pointers and handles. Type Pir stands for a
pointer to an arbitrary byte in memory, and Handle for a pointer to
a Ptr. Both are based on the underlying type SignedByte, which
represents a single memory byte as an integer between —128 and
+127. (There's also an alternate type just named Byte, which
represents a byte as an unsigned integer between 0 and 255.) For
specifying the size of a block on the heap, there's the type Size,
equivalent to a long integer (LONGINT).

The heap allocation routines NewPtr and NewHandle return
results of type Pir and Handle, respectively—that is, a pointer or a
handle to a SignedByte. In order to access a block's contents, you
have to convert these to some other type that more specifically
describes the block’s internal structure.

For instance, suppose your program defines the following

types:
type
LinkHandle = ~LinkPtr;
LinkPtr = “Link;
Link = record

data : INTEGER;
next : LinkHandle
end;

To allocate a new Link record from the heap and store into its data
field, you can't simply declare a variable

var
theLink : LinkHandle;

and write something like

theLink := NewHandle(SIZOF(Link));
theLink"~.data := 0

The first of these statements is not a valid assignment, because the
types don't match: NewHandle returns a general Handle (a handle to a
SignedByte), whereas the variable theLink expects a LinkHandle (a han-

74 Thanks for the Memory

Error Reporting

dle to a Link record). Nor can you correct the problem by changing
the declared type of theLink:

var
theLink : Handle;

Now the second statement
thelink*".data := 0

is invalid, because theLink*"~ is now a SignedByte instead of a Link, and
so doesn’t have a field named data.

The solution is to use the “typecasting” technique described
in Chapter 2 to convert the general Handle you get from the Toolbox
into a LinkHandle that you can work with:

var
the Handle : Handle;
the Link : LinkHandle;

.« ey

theHandle := NewHandle(SIZEOF(Link));
theLink := LinkHandle(theHandle);

theLink~~.data := 0

(Actually, of course, you could do it in one step by dispensing with
the intermediate variable theHandle and simply writing

theLink := LinkHandle(NewHandle(SIZEOF(Link)))

We did it in two steps here just to make sure it’s clear exactly what's
going on.)

Strictly speaking, the memory management routines are part of
the Macintosh Operating System, rather than the Toolbox proper.
Along with other Operating System routines, most of them post a
result code of type 0SErr [3.1.2] to report errors or signal successful
completion. At the machine level, the result code is returned in a

75 Error Reporting

register—the lower half of D0, to be precise. To allow you to access
it from Pascal, the interface unit 0SIntf includes a special function
named MeméError [3.1.2] that returns the result code posted by the
last memory management operation.

Notice, however, that MemError is part of the interface to the memory
management routines; not one of the routines actually built into
ROM. Other languages may have different mechanisms for accessing
Operating System result codes, or none at all. You'll have to consult
your own language documentation for details.

Result codes are always less than or equal to 0. A value of 0
(NoErr) means the routine was able to complete its job successfully;
a negative result code means that it was prevented from doing so
because of an error. The most important error reported by the
memory management routines is MemFullErr, which means that an
allocation operation failed for lack of heap space.

If you're programming in assembly language, you can just look in
register D0 for the result code returned by a memory management
(or other Operatmg System) routine. However, not all such routines
do in fact post a result code in this register; the register usage
information in the Reference Handbook will tell you which ones do
and which don’t.

Before returning from any ‘Operating System trap, the Trap
Dispatcher sets the processor’s condition codes to reflect the result
code (if there is one) by executing the instruction

TST.W DO

You can then just branch.on: the condition codes without perform-
ing a test of your own: for. example,

MOVEQ DO,#blockSize ; Indicate size of block
-NewHandle ~; Allgcate block
BMI Error - " | Branch on error

76 Thanks for the Memory

Locking Blocks

Whenever you allocate a block from the heap, you can choose
whether to make it relocatable (with NewHandle) or nonrelocatable
(with NewPtr). In general you should use relocatable blocks
whenever possible, since this allows the Toolbox to make the most
efficient use of the available heap space. However, relocatable
blocks also have their costs, in both space and time: they take up
an extra 4 bytes for the master pointer and require an extra
memory fetch to access, because of the second level of indirection.
Usually this is a negligible price to pay, but sometimes that extra
memory reference can be costly, if it occurs inside a tight inner
loop or some other part of your program where speed is critical.

In such cases, you can save time by converting the block's
handle to a copy of the master pointer

masterPtr := theHandle"
and then referring to the block by single indirection
masterPtr-

within the loop. This is known as dereferencing the handle (a
general term meaning to convert any pointer into the thing it
points to). However, keep in mind that all you have is a copy of
the master pointer, not the master pointer itself. If the heap is
compacted and the block is moved, the Toolbox will only update
the actual master pointer; the copy will be left pointing into the
Twilight Zone.

To keep your pointers from dangling, you can lock the block
before dereferencing its handle. This temporarily prevents the
block from being moved, even if the heap is compacted. You can
then safely dereference the handle and refer to the block by single
indirection. When you're through with your critical program sec-
tion, you can discard your copy of the master pointer and unlock
the block, so that it can again be moved around to make room in
the heap for other blocks. The Toolbox routines for locking and
unlocking a block are HLock and HUnlock [3.2.4); Program 3-1 shows
how to use them in dereferencing a handle. (Notice that only a
relocatable block can be locked; this makes it temporarily unmov-
able, while a nonrelocatable block is permanently unmovable.)

77 Locking Blocks

{ Skeleton code to illustrate use of a dereferenced handle. }

tyee
LinkHandle = “LinkPtr;
LinkPtr = “Link;

Link = recerd
data : INTEGER;
next : LinkHandle
end;
var
thellandle : Handle; {Untyped handle for creating the block}
theLink : LinkMandle; (Typed handle for referring to the block}
masterPtr : LinkPtr; {Typed peinter for dereferencing the handle}
begin
theHandle := NewHandle{SIZECF(Link)); {Allocate a relocatable block [3.2,11}
theLink := POINTER(ORD{theHandlel}; {Convert to typed handle}
L B ;
Hlock {thelink); (Lock the block [3.2.41}
masterPtr := thelink*; {Dereference the handle}
while . . . do
begin
. . o ;
. .masterPtr,..; {Use single indirection inside loop)
end;
Hunlock (theLink); {Unlock the block [3.2.413

Program 3-1 Dereferencing a handle

78 Thanks for the Memory

Certain Pascal constructs involving handles can also cause Apple’s
compiler to generate dangling pointers. For example, a with state-
ment based on a relocatable record

with aHandle*~ do
begin

end
will lead to trouble if the underlying record is moved or purged
because ‘of memory allocation performed inside the body of the

statement. To avoid problems, you always should lock the block
with

HLock (aHandle)

before executing such a with statement and then unlock it again
afterward.

Similarly, any call to a routine that can do heap allocation may
cause trouble if you pass it a field of a relocatable record as a
variable :

ARoutine (aHandle"~ field)
or assign its result to such a field
- aHandle"".field := ARoutine (. . .)

Instead of locking the block in these cases, you can use a temporary
variable:

temp. ;= aHandle~~.field;
ARoutine (temp)

or

temp := ARoutine (. . .);
aHandle*" .field := temp

Keep in mind that many Toolbox routines allocate heap ‘space
behind the scenes, without your being aware of it. To stay on the
safe side, you should assume that any Toolbox call is “dangerous”
and take suitable precautions.

79 Locking Blocks

| Handle _Il -I*;Ia-st.e.r .Pﬁi .nt.e'r Island

Pointer — i ———
Island

s o M SOOA S D A S
— Island

Handle Z-Z-I-I-I-I-_I-Z_-Z-I-I-I-Z-I-ﬁ':'I-ﬁ{{-Z-I-Z-Z-Z-Z-I-Z-Z-Z-Z-I
Master Pointer Island

| Handle I P& Master Pointer

Handle

Master Pointer

Nutiralocatalils ok B e e e e T T

...............................

Relocatable block

Note that Master Pointers
are nonrelocatable.

-7.7.7-7. ! Free space

Figure 3-9 Islands in the heap

80 Thanks for the Memory

In general, try not to keep a block locked any longer than you
have to, and remember to unlock it again as soon as you safely
can. An unmovable block, whether it's temporarily locked or
permanently nonrelocatable, forms an ‘island” in the heap that
can interfere with compaction and prevent the available free space
from being coalesced (Figure 3-9). You can avoid this problem,
however, by arranging to keep all the unmovable blocks together
at the beginning of the heap, out of the way of the movable ones.
For nonrelocatable blocks, the Toolbox does this automatically: it
allocates them as near as possible to the start of the heap, moving
other blocks out of the way if necessary to make room. To do the
same for a relocatable block (if you know it will be locked for long
periods of time), you can use the Toolbox routine ResrvMem [3.2.5].
This routine creates space near the beginning of the heap for a
block of a specified size, but doesn’t actually allocate the block.
You have to follow it with a call to NewHandle to do the actual
allocation:

ResrvMem (blockSize);
theHandle := NewHandle (blockSize)

If you're only locking a block for a short time, you can keep it out
of the way by moving it to the end of the heap instead of the
beginning, using the Toolbox routine MoveHHi [3.2.5]:

MoveHHi (theHandle);
HLock (theHandle)

Notice that MoveHHi operates on a block that already exists,

whereas ResrvMem just clears the heap space for a block about to
be created.

Copying and Combining Blocks

The Toolbox includes a number of utility routines for copying and
combining blocks in the heap. HandToHand (3.2.6) creates a new
relocatable block that's a copy of another. You give it a variable
containing a handle to the block you want to copy; it returns a
handle to the copy in this same variable (see Figure 3-10). For

81 Copying and Combining Blocks

result := HandToHand (theHandle)

Before After

Relocatable
copy of
original block

Figure 3-10 HandToHand

example, if thisHandle is a handle to the block to be copied, the
statements

thatHandle := thisHandle;
resultCode := HandToHand(thatHandle)

make thatHandle a handle to the fresh copy.

Notice that HandToHand, as well as the other routines discussed in
this section, returns its:result code as a function result rather than
through the MemError function.

PtrToHand and PtrToXHand [3.2.6] both copy an existing non-
relocatable block to a brand-new relocatable one. You can copy an
entire block or just part of one; both routines accept a byteCount
parameter that tells how many bytes of the original block to copy.
(However, the portion you copy must always start at the beginning
of the original block. Notice also that you can make a partial copy
of a nonrelocatable block only; a relocatable block must be copied

82 Thanks for the Memory

result := PtrToHand (fromPtr, toHandle, byteCount)
Before @ After

byteCount starts
from beginning
of original block

e

/////// . //

Relocatable copy
of (byteCount bytes

of) original block -ﬂ

Figure 3-11 PtrToHand

in its entirety, using HandToHand.) PtrToHand creates a new master
pointer to the copy and returns a pointer to it (a handle) through
a variable parameter (Figure 3-11), while PtrToXHand (X for “existing”)
sets an existing master pointer to point to the copy (Figure 3-12). In
the case of PtrToXHand, the previous contents of the master pointer
are lost; normally you'll want to give it an empty handle (a pointer
to a NIL master pointer) to be “stuffed” with the address of the
newly created copy.

HandAndHand and PtrAndHand [3.2.7] are used to combine existing
blocks by appending a copy of one block onto the end of another.
The block you're appending to is always relocatable, and is length-
ened to include the appended information. You can append a
copy of either a relocatable block (HandAndHand, Figure 3-13) or all or
part of a nonrelocatable block (PtrAndHand, Figure 3-14); in either
case, the original block being copied remains intact.

The most general copying utility of all is BlockMove [3.2.6],
which just copies “raw” bytes between memory locations. Watch
your step—this is a dangerous operation! It doesn't check for
errors, just blindly copies the bytes. The source and destination
pointers you give it aren’t restricted to the heap, but can lie

83 Copying and Combining Blocks

result := PtrToXHand (fromPtr, toHandle, byteCount)

e g

....................

‘| Relocatable copy

Figure 3-12 PtrToXHand

result := HandAndHand (appendHandle, aﬂerHandIe)

(will be relocated
if it won't fit here)

after Handle ::.:.':::::::::::::::::::::::::::::::':.:

= Master Pointer

| Eependfandre] [
—I Master Pointer

84 Thanks for the Memory

afterHandle |

——DI Master Pointer j Master Pointer —|

Block to be
appended to

appendPir

Block to
be appended

Purging Blocks

result := PtrAndHand (appendHandle, afterHandle, byteCount)
o [aftertandre] g e

Combined block
(will be relocated
if it won't fit here)

Copy of (byte-

...................................... block to be

Count bytes of)
block to be
appended o R O T R e

appendPtr

I

byteCuunt starts
J 7 from beginning of

""" .~ appended

Figure 3-14 PirAndHand

anywhere in memory. Give it the wrong parameters and it will
cheerfully reduce your program to a pile of rubble.

If the Toolbox can't find room for a requested block even after
compacting the entire heap, its next step is to try expanding the
size of the heap itself. From its initial size of 6K bytes, the heap
can grow in increments of 1K at a time, but only up to a certain
limit. Recall that the heap and the stack grow toward each other
from opposite ends of the same area in memory (Figure 3-4). The
Toolbox imposes a limit on the heap’s expansion to prevent it
from colliding with the stack. This application heap limit is initially
set to allow a maximum stack depth of 8K bytes, but you can adjust
it to your program's needs with the Toolbox routine SetApplLimit
[3.3.4]. GetApplLimit [3.3.4] tells you the current setting of the applica-
tion heap limit; StackSpace (3.3.4] tells how much more space is
available for the stack to grow before colliding with the heap.

85 Purging Blocks

Before

purgeHandle

Block purged

purgeHandle

Block reallocated
(data must be
reconstructed)

Figure 3-15 Purging and reallocating a block

86 Thanks for the Memory

If the needed space can't be created by expanding the heap,
the Toolbox will try to make room by purging existing blocks from
the heap. Only relocatable blocks can be purged; the block is
simply removed from the heap and its space is made available for
reallocation. The block’s master pointer remains allocated, but is
set to NIL to show that the block no longer exists in the heap. All
former handles to the block continue to point to this same master
pointer, but since the master pointer now points nowhere, the
handles are considered empty.

The Toolbox will never purge a block from the heap without
your permission. A block is always unpurgeable when it's first
created; you can make it purgeable with the Toolbox routine
HPurge, and unpurgeable again with HNoPurge [3.2.4]. Before attempt-
ing to access a purgeable block, you have to test its handle to
see if it's been purged. If the handle is empty (that is, if it points to
a NIL master pointer), you have to reallocate the block with the
Toolbox routine ReallocHandle [3.3.3] before you can access it. This
allocates fresh space for the block and updates the master pointer
to point to it (see Figure 3-15). However, it does nothing to restore
the information the block contained before it was purged; you have
to do that for yourself after reallocating the block.

Since all relocatable blocks are unpurgeable at first, you needn't
worry about checking for an empty handle and reallocating the
block unless you've explicitly made the block purgeable.

The Toolbox routine EmptyHandle [3.3.3] unconditionally purges a
block from the heap, even if the block is marked unpurgeable. By
calling this routine, you tacitly “give permission” for the block to
be purged; the Toolbox will assume: you know what you're doing
and will obediently purge the block, whether it's purgeable or not.
(The block must be unlocked, however.)

REFERENCE

3.1 Memory Basics

3.1.1 Elementary Data Types

|

Definitions
typs §
Byte = 0..255; {Any byte in memory}
SignedByte = —128..127; {Any byte in memory}
Ptr = “SignedByte; {General pointer}
Handle ="Ptr; {General handle}
Size = LON‘G[NT; {Size of a heap block in bytes}
Notes

i

1. Both Byte and SignedByte designate an arbitrary byte in memory, as
either an unsigned or a signed 8-bit integer.

2. Pir represents a general, untyped pointer to any byte in memory; Handle
represents an untyped handle, a pointer to a master pointer.

3. Size is a long integer representing the size of a heap block in bytes.

7

@

88 Memory

3.1.2 Error Reporting

Definitions

- S
" OSErr = INTEGER; " {Operating System result-(error) code}
const
NoErr = 0; {No error; all is well}
MemFullErr = —108; {No room; heap is full}
NilHandleErr = —109; {illegal operation on empty handle}
MemWZErr = -111; {lllegal operation on free block}
MemPurErr = —112; {lllegal operation on locked block}
MemLockedErr = —117; {Attempt to move locked block}
function MemError

: OSErr; - {Resultcode of last memory operation}

Notes

1. OSErr represents an integer result code returned by an Operating
System routine (such as those dealing with memory allocation).

2. The MemError function returns the result code posted by the last call
to a memory allocation routine.
3. A result code of NoErr means that all is well; no error has occurred.

4. MemFullErr means that not enough heap space is available to satisfy an
allocation request.

5. NilHandleErr means that a requested operation can’t be performed
because the specified handle is empty (points to a NIL master pointer).

6. MemWZErr means that a memory allocation routine that operates on
already-allocated blocks was given a free block instead. (The WZ in
MemWZErr stands for WhichZone, a low-level routine that tells which heap
zone a given block is in. Although WhichZone itself is not covered in
this book, it’s called by many of the routines that are.)

7. MemPurErr means that an attempt was made to purge a locked block.

8. MemLockedErr means that an attempt was made to move a locked block
to a new location within the heap.

.

89 [3.1.3] Machine Configuration

9. The MemError function isn’t available in assembly language. On return
from most memory allocation routines, the result code is in the lower
16 bits of register D0 and the processor's condition codes are set
accordingly.

AssemblyiLang;iage Information

Assembly-language consmhtsf <

Name Value ‘Meaning

NoErr 0. * No error; all is well

MemFullErr -108 No room; heap is full
NilHandleErr -109 Tllegal operation on empty handle
MemWZErr 111 Illegal operation on free block
MemPurErr -12 Illegal operation on locked block
MemLockedErr -17 . Attempt to move locked block

3.1.3 Machine Configuration

|é! Definitions

procedure Environs
(var romVersion : INTEGER; {Version number of installed ROM}
var machineType :- INTEGER);, {Type of machine}

funetion TopMem

: Ptr; i {Pointer to end of memory}
const 7 ,
MacXLMachine = 0; {Macintosh XL (Lisa)}
MacMachine =1, {Skinny Mac, Fat Mac, or Mac Plus}

% Notes

1. Environs returns information about the machine on which a program
is being run.

2. The variable parameter romVersion returns the version number of the
ROM code installed in the machine. Unmodified Skinny and Fat

920

Memory

30

4.

5

6.

7

9

10.

Macs have ROM version $69 (decimal 105); the initial Macintosh Plus
ROM is version $75 (decimal 117).

Features identified in these reference notes as “available only on the
Macintosh Plus” should be used only on machines with ROM version
$75 or greater.

The machineType parameter returns an integer code identifying the
type of machine the program is running on: 0 for a Macintosh XL (a
Lisa computer running under the MacWorks emulator software) or 1
for a true Macintosh.

Machine codes and ROM versions for the Macintosh SE and Macin-
tosh II are given in Volume Four.

The ROM version returned for a Macintosh XL is that of the ROM
image installed by the MacWorks emulator at system startup.

TopMem returns a pointer to the first address beyond the end of
physical RAM memory (not the last address actually existing in
memory). For example, in a 1-megabyte Macintosh Plus, whose last
byte of physical memory is at address $FFFFF, TopMem returns a
pointer to address $100000.

. These routines are part of the Pascal Toolbox interface, not part of

the Toolbox itself. They don’t reside in ROM and can'’t be called from
assembly language via the trap mechanism.

In assembly language, the global variable MemTop holds the address
one byte beyond the end of physical RAM. The other system globals
listed below hold the boundary addresses of various important areas
in memory.

To find the ROM version and machine type in assembly language,
look at the memory word beginning eight bytes past the beginning
of ROM (that is, at an address 8 greater than that contained in the
system global ROMBase). On a true Macintosh, this word will contain
the value $00vv, where vv is the version number of the ROM; on a
Macintosh XL, it will contain $vvFF. See Volume Four for information
on the Macintosh SE and Macintosh II.

91 (3.2.1] Allocating Blocks

Assembly Language Information

Assembly-language. global variables:

Name Address Meaning

SysZone - §2A6 - Pointer to start of system heap
AppiZone $2AA- Pointer to start of application heap
HeapEnd $114 Pointer to end of application heap
CurStackBase $908- . - Pointer to base of stack

CurrentAS $904 Base pointer for application globals
BufPtr $10C. Pointer to end of application global space
ScrnBase $824 Pointer to start of screen buffer =
SoundBase $266 Pointer to start of sound buffer ,
MemTop $108_ - Pointer to end of physical memory
ROMBase $2AE Pointer to start of ROM ‘

3.2 Heap Allocation

3.2.1 Allocating Blocks

Definitions

=

function NewHandle L :
(blockSize : Size) {Size of needed block in bytes}
: Handle;- {Handle to new relocatable block}

function: NewPtr
(blockSize : Size) {Size of needed block in bytes}
: Pty ~{Pointerto new nonrelocatable block}

function NewEmptyHandle
: Handle;: {New empty handle}

function RecoverHandle ,
(masterPir: Ptr) {Master pointer to relocatable block}
: Handle; . ‘{Handle to block}

Notes

1. NewHandle allocates a new relocatable block and returns a handle to it;
NewPtr allocates a new nonrelocatable block and returns a pointer to it.

92 Memory

2. blockSize gives the size of the needed block in bytes.
3. The block allocated by NewHandle is initially unlocked and unpurgeable.

4. If necessary, both NewHandle and NewPtr may compact the heap, expand
it, or purge blocks from it.

5. Both routines post the error code MemFuliErr [3.1.2] if a block of the
requested size can't be allocated.

6. In case of an error, a NIL handle or pointer is returned.

7. NewEmptyHandle allocates a new master pointer, sets it to NiL, and returns
a pointer to it (an empty handle).

8. RecoverHandle reconstructs a relocatable block’s handle from a copy of
its master pointer.

Assembly Language Information

Trap macros: ‘
(Pascal) : (Assembly) |
Routine name Trap macro Trap word
NewHandle _NewHandle $A122
NewPtr ~NewPtr $A1ME
NewEmptyHandle —NewEmptyHandle $A166
RecoverHandle —RecoverHandle $A128
Register usage:
Routine Register Contents
NewHandle - DO.L (in) blockSize
A0.L (out) function result
DO.W (out) result code
NewPtr - BO.L (in) blockSize
AO.L (out) function result
DO.W (out) result code
NewEmptyHandle AQ.L (out) function result
DO.W (out) result code
RecoverHandle AO.L.(in) masterPtr
AO.L (out) function result
DO.L (out) unchanged

93 (3.2.2] Releasing Blocks

3.2.2 Releasing Blocks

| . Definitions

procedure DisposHandle =~ |
(theHandle : Handle); {Handle to relocatable block to be deallocated}

procadure DisposPir
(thePtr : Ptr); {Pointer to nonrelocatable block to be deallocated}

ﬂ% Noteg

1. DisposHandie and DisposPtr deallocate a relocatable or nonrelocatable
block, respectively. The space occupied by the block becomes avail-
able for reuse.

2. All handles or pointers to the deallocated block become invalid. Don’t
use them after deallocating the block.

Assembly Language Information

Trapmacros \

(Pascal) ~ (Assembly)
Routine name . . . Trap macro, Trap word
Dispns_Héndle « ~DisposHandle $A023
DisposPir ; DisposPtr -$SA0IF
Register usage:
" Routine Register - Contents

DisposHandle AL (in) theHandle

' AOL (out) 0

DO.W (out) result code

DisposPtr AOL (in) thePtr

: c# ADL (out) 0

DO.W (out) result code

94 Memory

3.2.3 Size of Blocks

Definitions

|8

function GetHandleSize
(theHandle : Handle) {Handle to a relocatable block}

: Size; {Size of block in bytes}
function GetPtrSize
(thePtr : Ptr) {Pointer to a nonrelocatable block}
: Size; {Size of block in bytes}

procedure SetHandleSize ‘
(theHandle : Handle; {Handle to a relocatable block}

newSize : Size); (New size of block in bytes}
procedure SetPtrSize

(thePtr : Ptr; - {Pointerto a nonrelocatable block}

newSize : Size); {New size of biock in bytes}

Notes

1. GetHandleSize and GetPtrSize return the size of a block in bytes.

2. SetHandleSize and SetPtrSize change the size of a block to newSize bytes.
The block may be either lengthened or shortened.

3. If necessary to lengthen a block, SetHandleSize and SetPtrSize may com-
pact the heap, expand it, or purge blocks from it.

4. If the room needed to lengthen a block can't be found, SetHandleSize
and SetPtrSize post the error code MemFullErr [3.1.2].

5. GetHandleSize and SetHandleSize post the error code NilHandleErr [3.1.2] if
the given handle is empty (points to a NIL master pointer).

6. All four routines post the error code MemWZErr (3.1.2] if the specified
block is free (not allocated).

. In case of an error, GetHandleSize and GetPtrSize return 0 as the block size.

® =

. In assembly language, the condition codes on return from the
—GetHandleSize and _GetPtrSize traps are not valid, since they reflect only
the lower 16 bits of register D0 and these routines return a result in
the full 32-bit register (see table below). To test the status of D0 after
the trap, use your own TST.L instruction.

95

[3.2.3] Size of Blocks

Assembly Language Information

Trap macros:

(Pascal) (Assembly)
Routine name Trap macro Trap word
GetHandleSize _GetHandleSize $A025
GetPtrSize _GetPtrSize $A021
SetHandleSize _SetHandleSize $A024
SetPtrSize _SetPtrSize $A020
Register usage:
Routine Register Contents
GetHandleSize A0.L(in) theHandle

DO.L (out) if = 0, function result

if < 0, result code

GetPtrSize AO.L (in) thePtr

DO.L (out) if =0, function result

if <0, result code

SetHandleSize AO.L (in) theHandle

DO.L (in) newSize

DO.W (out) result code
SetPtrSize AO.L (in) thePtr

DO.L (in) newSize

DO.W (out) result code

96 Memory

3.2.4 Properties of Blocks

Definitions

L

procedure HLock

(theHandle : Handle); {Handle to arelocatable block}
procedure HUnlock

(theHandle : Handle); {Handle to arelocatable block}
procedure HPurge

(theHandle : Handle); {Handle to arelocatable block}
procedure HNoPurge

(theHandle : Handle); {Handle to a relocatable block}
procedure HSetRBit

(theHandle : Handle); {Handle to arelocatable block}
procedure HCIrRBit

(theHandle : Handle); {Handle to arelocatable block}
function HGetState

(theHandle : Handle) {Handle to arelocatable block}

: SignedByte; {Current properties of block}

procedure HSetState
(theHandle : Handle; fHandle to arelocatable block}
properties : SignedByte); [New properties of block}

Notes

1. HLock locks a relocatable block; HUnlock unlocks it. A locked block can
neither be moved nor purged from the heat.

2. HPurge makes a relocatable block purgeable; HNoPurge makes it unpurge-
able. An unpurgeable block can't be purged, but can be moved within
the heap.

3. On creation, a relocatable block is unlocked and unpurgeable.

4. HSetRBit marks a relocatable block for special treatment as a resource;
HCIrRBit clears this property. Resources are discussed in Chapter 6.

5. The lock, purge, and resource bits are all kept in the high-order byte
of the block’s master pointer. The assembly-language constants Lock,

97 (3.24) Properties of Blocks

6‘

70

9.

Purge, and Resourc are bit numbers within this byte, for use with the
BTST, BSET, BCLR, and BCHG instructions.

HGetState returns the current state of a master pointer’s flag bits;
HSetState changes them.

The definitions or locations of these flags may be subject to change
in future versions of the Toolbox. It's safer to use the Toolbox routines
described here than to manipulate the flags directly for yourself.

. Before using a master pointer in assembly language, the flag bits must

be masked off. The assembly-language global variable Lo3Bytes holds a
mask for extracting the actual memory address from the low-order 3
bytes of the master pointer.

All of these routines will post the error code NilHandleErr (3.1.2] if the
given handle is empty (points to a NIL master pointer), or MemWZErr if
the specified block is free (not allocated).
Assembly Language Information

“Trap macros: ‘

{Pascal) ' (Assembly)

Routine name ' o Trap macro Trap word

HLock —HlLock $A029

HUnlock - -Hunlock $A02A

HPurge ‘ ‘ _HPurge $A049

HNoPurge _HNoPurge $A04A

HSetRBit HSetRBit $A067

HCIrRBit - _HCIrRBit $A068

HGetState , —HeGetState $ACE9

HSetState - _HSetState $AC6A

99 (3.2.5] Block Location

3.2.5 Block Location

Definitions

procedure ResrvMem '
(blockSize : Size); {Size of needed block in bytes}

procedure MoveHHi o
(theHandle : Handle); {Handle to a relocatable block}

procedure: MoreMasters;

Notes

1. ResrvMem reserves space for a block of a requested size as near as
possible to the beginning of the heap, by moving existing blocks
upward, expanding the heap, or purging blocks if necessary.

2. ResrvMem doesn’t actually allocate a block, just creates space for it
near the beginning of the heap. The block must then be allocated
explicitly with NewHandle or NewPtr [3.2.1].

3. Call ResrvMem before allocating any relocatable block that will be
locked for long periods of time, to minimize interference with heap
compaction.

4. It isn't necessary to call ResrvMem for nonrelocatable blocks (or for
resources with the ResLocked attribute [6.4.2]), since they're automati-
cally allocated near the beginning of the heap.

5. MoveHHi moves an existing relocatable block as near as possible to
the end of the heap, moving other blocks downward if necessary to
make room.

6. Call MoveHHi before locking a block, to minimize interference with
heap compaction.

7. MoveHHi is available in assembly language, via the trap mechanism,
only on the Macintosh Plus. On earlier models it isn’t built into ROM,

but is part of the Pascal interface unit 0Sintf.
8. MoreMasters allocates a new block of master pointers.

MoreMasters doesn't allocate any relocatable blocks; just the master
pointers that will later be used to point to them. The master pointers
themselves are nonrelocatable.

100 Memory

10.

11.

12,

13.

Master pointers are normally allocated in blocks of 64 at a time; one
such block is allocated for you automatically at program startup.

To minimize heap fragmentation, it's generally a good idea to call
MoreMasters at the very beginning of your program, as many times as
necessary to preallocate all the master pointers you anticipate you'll
need. This is particularly important in programs that make extensive
use of code segments (see Chapter 7). It's better to waste a little heap
space by preallocating too many master pointers than to fragment
the heap by preallocating too few.

Both ResrvMem and MoreMasters will post the error code MemFullErr [3.1.2]
if a block of the needed size can’t be allocated or reserved.

MoveHHi will post the error code NilHandleErr [3.1.2] if the given handle
is empty (points to a NIL master pointer) or MemLockedErr if the
specified block is locked.

Assembly Language Information

Trap macros:

(Pascal) (Assembly) 4
Routine name) . Trap macro Trap word
ResrvMem -ResrvMem $A040
MoveHHi ~MoveHHi $A054
MoreMasters —MoreMasters $A036
Register usage:
Routine Register Contents
ResrvMem . - Do.L (im) blockSize
DO.W (out) result code
MoveHHi ~ AL (in) theHandle
DO.W (out) result code

MoreMasters ~ DO.W (out) result code

101

(3.2.6] Copying Blocks

3.2.6 Copying Blocks

o Dé Definitions -

funetion HandToHand
: “(var theHandle:-Handlg) -
: OSErr: ‘
function PtrToHand
~(fromPtr + Ptr;
var toHandle : Handle;
‘byteCount. . : LONGINT)
: OSErr; ‘ .
funetion PtrToXHand
~(fromPtr- : Ptr;
_toHandle : Handle;
byteCount LQN,GINT:_); _
: OSErr;,

procgdure BlockMove .
{fromPtr - : Ptr;
toPtr : Ptr;
bytecount Suze)

Notes

=

‘ {Handle to relocatable block to be copied}
-{Result code}

{Pointer to nonrelocatable block to be copied} -
{Returns handle to relocatable copy}
{Number of bytes to be copied}

{Result code}

{Pointer to nonrelocatable block to be copied}
{Handle to be set to relocatable copy}
{Number of bytes to be copied}

{Result code}

_?{Pmnter to data to be copled}

{Pointer_to destination location}

~ {Number of bytes to be copied}

1. HandToHand, PtrToHand, and PtrToXHand all copy an existing block. The
result in each case is a relocatable block, newly allocated from the

heap.

2. HandToHand copies a relocatable block. On entry, theHandle designates

the block to be copied; on exit, it returns a handle to the copy.

3. PrToHand and PtrToXHand both copy all or part of a nonrelocatable

block, designated by the parameter fromPtr.

4. The byteCount parameter tells how many bytes of the block to copy,
and must not exceed the overall size of the block. The portion to be

copied always starts at the beginning of the block.

5. For PtrToHand, toHandle is a variable parameter that returns a handle
to the copy. For PtrToXHand, it's an existing handle (a pointer to an

existing master pointer), which will be set to point to the copy.

102 Memory

6. All three routines may compact the heap, expand it, or purge blocks
from it in order to make rcom for the copy.

7. All three routines return the error code MemFullErr (3.1.2] if there isn't
enough room in the heap for the copy.

8. The result code is returned as the function result; it is not posted
in the usual way and is not available through MemError [3.1.2].

9. BlockMove copies byteCount bytes of “raw” data between two arbitrary
locations in memory, designated by the pointers fromPtr and toPtr.

10. BEWARE: BlockMove does no error checking of any kind.

Assembly Language Information

Trap macros:

(Pascal) (Assembly)
Routine name Trap macro Trap word
HandToHand _HandToHand SAQET |
PtrToHand _PtrToHand $AIE3
PtrToXHand —PtrToXHand $AIE2
BlockMove _BlockMove $A02E
Register usage:
Routine Register Contents
HandToHand A0.L (in) theHandle
A0.L (out) theHandle
DO.W (ocut) result code
PtrToHand A0.L (in) fromPtr -
BO.L (in) byteCount
AO.L (out) toHandle -
DO.W (out) result code
PtrToXHand AQ.L (in) framPtr
AlLL (in) toHandle:
DO.L (in) byteCount
AlL (out) toHandle
DO.W (out) result code
BlockMove AL (in) fromPtr
AlL (in) toPtr
DO.L (in) byteCount

DO.W (out) result code

103 (3.27) Combining Blocks

3.2.7 Combining Blocks

Definitions

—[=

funection HandAndHand

(appendHandle : Handle; {Handle to relocatable block to be appended}
afterHandie : Handle) {Handle to relocatable block to append to}

function PtrAndHand

: OSErr; {Result code}
(appendPtr : Ptr; {Pointer to nonrelocatable block to be appended}
afterHandle : Handle; {Handle to relocatable block to append to}
byteCount : LONGINT) {Number of bytes to append}
: OSErr; {Result code}
Notes

1. Both of these routines append a copy of one block to the end of
another.

2. The block appended to is always an existing relocatable block.

3. For HandAndHand, the block to be appended is an existing relocatable
block. For PtrAndHand, it's all or part of an existing nonrelocatable block;
the byteCount parameter tells how many bytes to append, and must
not exceed the overall size of the block. The portion to be copied
always starts at the beginning of the block.

4. Both routines may compact the heap, expand it, or purge blocks from
it in order to allocate more space for the destination block.

6. Both routines return the error code MemFullErr [3.1.2] if there isn't
enough room in the heap to lengthen the destination block.

6. The result code is returned as the function result; it is not posted in
the usual way and is not available through Memérror [3.1.2].

104 Memory

Assembly Language Information

Trap macros:

{Assembly)

(Pascal)
Routine name Trap macro Trap word
HandAndHand -HandAndHand SA9E4
PtrAndHand —PtrAndHand $ASEF
Register usage:
Routine ‘Register Contents
HandAndHand AOL (in) appendHandle
AlL (in) afterHandle
ALL (out) afterHandle
DO.W (out) result code
PtrAndHand AOL (in) appendPir
ALL (in) ~ afterHandle-
DO.L (in) - byteCount
AlL (out) afterHandle
_DO.W (out)

result aode

3.3 Heap Management

3.3.1 Available Space

Definitions

—=

function FreeMem

: LONGINT;
funetion MaxBlock

: LONGINT;

procedure PurgeSpace

(var totalBytes
var contigBytes

{Total free bytes in the heap}

{Largest contiguous block obtainable by compaction}

: LONGINT; {Total free bytes obtainable by purging}
: LONGINT); {Largest contiguous block obtainable by purging}

105 (3.3.1] Available Space

) - Notes

1. FreeMem returns the total number of free bytes in the heap.

2. Because of heap fragmentation, it may not actually be possible to
allocate a block this big.

3. MaxBlock returns the size in bytes of the largest contiguous block that
could be obtained by compacting the heap, without expanding it or
purging any blocks.

4. PurgeSpace returns the total number of free bytes and the size of the
largest contiguous block that could be obtained by purging and
compacting the heap.

8. The values returned for totalBytes and contigBytes include the amount
of existing free space before purging or compaction.

6. These operations do not actually purge or compact the heap.

Assembly Language Information

Trap macros; »

(Pascal ' " (Assembly)

Routine name - - Trap macro ~Trap word
FreeMem - . _FreeMem $A01C
MaxBlock —MaxBlock $A061
PurgeSpace =~ = ~ -PurgeSpace . $A162
Register usage:

Routine 7 ~ Register Contents
FreeMem - BO.L (out) function result
MaxBlock ~ DOL (out) function result
PurgeSpace - AQL (out) contigBytes

" DO.L (out) ' totalBytes

106 Memory

3.3.2 Reclaiming Free Space

Definitions

—

function

CompactMem
(sizeNeeded : Size) -~ {Size of needed block in bytes}

: Size;

{Size of largest free block after compactlon}

procedurs PurgeMem ; _
(sizeNeeded : Size); {Size of needed block in bytes}

function MaxMem
(var growBytes : Size) {Heturns maximum bytes by which heap can expand}
: Size; {Size of largest free block in heap}
ﬂ% Notes
1. CompactMem does a complete or partial compaction of the heap; PurgeMem

2.

purges all blocks that are relocatable, unlocked, and purgeable; MaxMem
reclaims all available heap space by purging all purgeable blocks and
compacting the entire heap.

CompactMem and PurgeMem terminate when a free block of at least
sizeNeeded bytes is found or created, or when the entire heap has been
compacted or purged. The block is not actually allocated.

. CompactMem returns the size in bytes of the largest free block found or

created during compaction.

. MaxMem returns the size in bytes of the largest available free block after

purging and compacting the entire heap.

. The growBytes parameter returns the number of additional bytes by

which the heap can expand. The heap is not actually expanded.

. If a free block of the specified size can't be found, PurgeMem will post

the error code MemFullErr [3.1.2).

107 (3.3.3] Purging Blocks

Assémbly Language Informatibn ‘

Trap macros:

(Pascal) - oo (Assembly) - -

Routine name : Trap macro Trap word

CompactVem ; . _CompactMem : $A04C

PurgeMem T _PurgeMem $A04D

MaxMem -MaxMem $A11D

Register usage:

Routine ' o ‘Register Contents

CompactMem - DO.L (in) sizeNeeded

DO.L (out) function result

PurgeMem i _ DOL (in) : sizeNeeded
: . DOW(out) . : result code

MaxMem AOL({out) growBytes

DO.L (out) . ‘ function result

3.3.3 Purging Blocks

Definitions

=

procedure EmptyHandle
(theHandle : Handle); {Handle to relocatable block to be purged}

pracedure ReallocHandle o
(theHandle : Handle; {Empty handle to be reallocated}
sizeNeeded : Size); . {Size of block to be allocated in bytes}

ﬂ% Notes

1. EmptyHandle purges a relocatable block from the heap.

2. The purged block’'s master pointer remains allocated, but is set to NIL.
All existing handles to the block become empty.

108 Memory

. The designated block is purged even if it's marked as unpurgeable;
however, a locked block will not be purged.

. ReallocHandle reallocates space for a purged block; the sizeNeeded
parameter tells how many bytes to allocate.

. The master pointer pointed to by theHandle is updated to point to the
reallocated black. All existing handles to the block become valid again.

. If theHandle already points to an existing block, that block is deallocated
before updating the handle.

. ReallocHandle may compact the heap, expand it, or purge blocks from
it in order to make room for the reallocated block. If the needed space
can't be found, it will post the error code MemFullErr [3.1.2].

. Both EmptyHandle and ReallocHandle will post the error code MemPurErr or
MemWZErr [3.1.2) if they're given the handle of a locked block or one
that’s free (unallocated).

Assembly Language Information

Trap macros:

(Pascal) .(Assembly)
Routine name . Trap macro Trap word
EmptyHandle —EmptyHandle $A028
ReallocHandle -ReallocHandle $A027
Register usage:
Routine Register Contents
EmptyHandle -AO.L (in) theHandle

DO.W (out) result code
ReallocHandle AO.L (in) theHandle

DO.L (in) sizeNeeded

AD.L (out) theHandle, or 0 if block

not reallocated

DO.W (out) result code

109 (3.3.4) Heap Expansion

3.3.4 Heap Expansion

‘Definitio ns

Procedure SetAppl'i:imit' ' :

(newkimit : Ptr);- {Pointer to new application heap limit}

function “‘GetAppiLimit -
: Pty -~ {Current application heap limit}

procedure: MaxApplZone;

function StackSpace
~ :LONGINT; . . {Amount stack can grow}

Notes

il

. SetApplLimit sets the application heap limit, which controls how far the

application heap can be expanded; GetAppiLimit returns the current
heap limit.

. newlLimit is a limit pointer to an address one byte beyond the maximum

to which the heap can be expanded. All allocatable space beyond this
address is reserved for the stack.

. Notice that newLimit is a pointer to an address in memory; it is not a

number of bytes representing the maximum size of the heap.

. The application heap limit is initially set to allow 8K bytes for the

stack.

. GetApplLimit is part of the Pascal Toolbox interface, not part of the

Toolbox itself. It doesn’t reside in ROM and can’t be called from
assembly language via the trap mechanism. Instead, the application
heap limit is accessible directly in the assembly-language global vari-
able ApplLimit.

. MaxApplZone expands the application heap to its maximum permissible

size, as defined by the current application heap limit.

. MaxApplZone is available in assembly language, via the trap mechanism,

only on the Macintosh Plus. On earlier models it isn’t built into ROM,
but is part of the Pascal interface unit 0Sintf.

. StackSpace returns the number of additional bytes by which the stack

can grow before colliding with the application heap limit.

110 Memory

Assembly Language Information

Trap macros:

(Pascal) (Assembly)

Routine name Trap macro Trap word
SetApplLimit _SetApplILimit $A02D
MaxApplZone _MaxApplZone $A063
StackSpace _StackSpace $A165

Register usage:

Routine Register Contents
SetApplLimit AO.L (in) newLimit

DO.W (out) result code
MaxApplZone DO.W (out) result code
StackSpace DO.L (out) function result

Assembly-language global variable:
Name Address Meaning

ApplLimit $130 Application heap limit

A
i

Any Port in a Storm

At the heart of the Macintosh user interface lies a remarkably
fast and versatile set of graphics routines called QuickDraw.
Everything you see on the Macintosh screen—text, pictures, win-
dows, menus—is put there by QuickDraw. When you call a Toolbox
routine, say, to draw a window at a certain location on the screen,
the Toolbox in turn calls QuickDraw to do the actual drawing.
When the Toolbox text-handling routines need to display text in a
window, they use QuickDraw to draw the characters. The basic
principles of QuickDraw are fundamental to the way the rest of the
Toolbox works.

Your program can also call QuickDraw directly. For instance,
after the Toolbox has drawn a window’s frame for you, you use
QuickDraw to fill in the window’s contents. Although QuickDraw
is mainly for drawing on the screen, you can also use it for other
purposes, such as printing on a dot-matrix printer or preparing
animation frames off-screen and then transferring them to the
screen all at once. In this chapter we'll discuss the underlying
principles and concepts behind QuickDraw. In Chapter 5 we'll
learn how to use it for actual drawing on the screen.

111

112 Any Port in a Storm

Initializing QuickDraw

Before attempting any QuickDraw operation, you first have to call
InitGraf [4.3.1] to initialize QuickDraw’s global variables and internal
data structures. As we mentioned in the last chapter, QuickDraw
locates its globals by means of a pointer at address 0(A5) in the
application parameters area of the program's “A5 world.” When
you initialize QuickDraw you supply this pointer as a parameter;
InitGraf stores it at address 0(A5), where the rest of the QuickDraw
routines expect to find it.

Figure 4-1 shows how QuickDraw’s global variables are ar-
ranged in memory. The pointer at 0(A5) points to the first of the
QuickDraw globals, ThePort [4.3.1]. Recall, though, that global vari-
ables are always allocated in the reverse of the order they're
declared. So this “first” global is physically positioned last in
memory, with all the other globals located at negative offsets from
the pointer. In Pascal, the space for the QuickDraw globals is
automatically reserved in your program'’s application globals area,
and all your own references to the variables are directed to the
corresponding addresses in this area. To make sure everything
works right, you should always pass a pointer to ThePort as the
parameter to InitGraf:

InitGraf (@ThePort)

In assembly language you can technically place the QuickDraw
globals anywhere you like in memory, provided that you reserve
enough space for them. (The number of bytes you need is defined
in the assembly-language: interface as a constant named GrafSize
{4.3.1].) The normal practice is to handle the QuickDraw globals the
same way they’re treated in Pascal: that is, to include them as part.
of the program’s own global variables and place them in the
application global space, as in Figure 4-1.

In any case, since the globalsare located with a simple pointer
instead of a handle, you'd better make sure they’re nonrelocatable.-
The pointer you pass to InitGraf must be ‘the address of the last
4 bytes in this space, which-will hold the variable ThePort. Thén make
sure you direct your 6wn references to the QuickDraw globalsito the
proper offsets relative to this same pointer.

/////////////////

lﬁlllﬁlﬁ/////////////////

Register AS |

Figure 4-1 QuickDraw globals

114 Any Port in a Storm

Bits, Pixels, and Images

QuickDraw manipulates graphical images made up of white and
black dots called pixels (short for “picture elements”). The pixels
are arranged in a two-dimensional array of rows and columns to
form the image, as shown in Figure 4-2. When displayed on the
Macintosh screen, each pixel appears as a square, white or black
dot approximately 1/72 of an inch on each side.

Internally, a graphical image is stored in the computer's
memory as a collection of bits called a bit image. Each bit
represents one pixel of the image: 0 for a white pixel, 1 for a black
one. Notice that bits and pixels aren’t the same thing. A pixel is
an element of a graphical image; a bit is its internal representation
in the computer’s memory. In casual reference the distinction is
often blurred, however, and we speak loosely of drawing bits on
the screen or setting pixels in memory.

To work with a bit image in Pascal, you group the bits into
16-bit memory words. You can then treat each word as an integer
and define the bit image as an array of integers. For example, the
bit image in Figure 4-2, which consists of 10 rows of 16 bits each,

16 bits = 2 bytes = 1 word

&10 rows

<

Figure 4-2 A graphical image

1185 Bits, Pixels, and Images

might be declared as

var
anlmage : array [1..10] of INTEGER;

with each element of the array representing one row of the image.

This image conveniently happens to be exactly 16 pixels wide,
but of course this won’t always be the case. When represented in
bits, however, each row of an image must consist of some whole
number of 16-bit words. If the image’s width is not a multiple of
16 pixels, there will be some unused bits at the end of each row.
These extra bits are just “padding” added to fill out the row to a
whole number of words. For example, the image shown in Figure
4-3 is 18 pixels wide by 12 high. To represent it in bits, you have
to allow two full words (32 bits) for each row

var
otherlmage : array [1..12, 1..2] of INTEGER;

leaving 14 bits unused at the end of the row.

The number of bytes (not words or bits) in each row is called
the image’s row width. Since each row must be a whole number
of words and a word is 2 bytes, the row width is always an even
number. For the image in Figure 4-2, the row width is 2 bytes; in
Figure 4-3, it's 4 bytes.

The most important bit image of all is the screen image, which
defines what the user sees displayed on the Macintosh screen.
The screen is 512 pixels wide by 342 high, a total of 175,104 pixels.
Its internal representation, the screen image, is equivalent to an
array of type

array [1..342, 1..32] of INTEGER

—that is, it consists of 342 rows of 32 words (512 bits) each.

The screen image occupies 175,104 bits (21,888 bytes, or 10,944
words) at a certain fixed block of locations in the computer’s
memory. This special area of memory is the screen buffer, which
we've already mentioned in our discussion of memory organiza-
tion in Chapter 3. The Macintosh’'s video display circuitry
automatically “paints” the contents of the screen buffer onto the
screen 60 times each second. When you ask QuickDraw to draw

116 Any Port in a Storm

32 bits = 4 bytes = 2 words

14 bits
|<— Image is —»'4—— unused in ——>|
18 bits wide each row

N N 12 rows

.....
.....
.....

&

Figure 4-3 Bit image with unused bits

something on the screen, it does so by storing the appropriate bits
into the screen buffer in memory.

The screen dimensions given above, and used throughout this book,
apply equally to the 128K Skinny Mac, the 512K Fat Mac, and the

1-megabyte (or larger) Macintosh ‘Plus. The Macintosh XL (Lisa) has a
larger screen: 720 pixels by 364, totahng 262,080 bits (32,760 bytes,
or 16,380' words). The new large-screen displays have more pixels
yet, and future models will undoubtedly have still different screen
sizes.

In principle, you can store bits directly into a bit image by
writing them as hexadecimal constants and assigning them to
elements of the array. For instance, to set row 6 of animage
(declared earlier) to alternating black and white pixels, you could
write

animage[6] := $AAAA

117 Coordinates, Points, and Rectangles

(since the hexadecimal digit $A is equivalent to binary 1010).
However, storing directly into individual words is not the recom-
mended way of drawing in a bit image. It's generally safer and
more convenient to use QuickDraw’s specialized drawing
routines—after all, drawing into bit images is what QuickDraw is
for!

If you must store a specific sequence of bits into a bit image,
the easiest way is to use the utility procedure StuffHex [2.2.4]. For
example, to set anlmage to the image shown in Figure 4-2, you
could write

StuffHex (@animage, CONCAT('01E(’,
'0738',
1C0C’,
'70C6",
'C1E3,
‘C1E3,
'70C6’,
'1C0C’,
'0738’,
"'01E0"))

(Here, since a string constant isn't allowed to run across a line
break, we've split the string into pieces and joined them together
with the built-in Pascal function CONCAT.)

Coordinates, Points, and Rectangles

Since a bit image may have to contain some unused bits at the
end of each row to fill out a whole number of 16-bit words, you
have to tell QuickDraw how many bits of each row really “count”
and how many are just padding. You do this by specifying a
boundary rectangle for the bit image, as shown in Figure 4-4. The
width and height of the boundary rectangle define the dimensions
of the actual image, in pixels. Bits in the bit image that lie beyond
the right edge of the boundary rectangle are ignored, and it
doesn’t matter what they contain; the same goes for any extra
rows below the rectangle’s bottom edge.

The boundary rectangle also imposes a system of coordinates
on the bit image. QuickDraw measures coordinates on a grid of
horizontal and vertical lines drawn between the pixels (not

118 Any Portin a Storm

midpoint
topLeft = (125, =751 = (134, —69) Boundary rectangle

.....
.....
.....

!

botRight = (143, —63)

Figure 4-4 Bit image with boundary rectangle

through them), as in the figure. The top-left corner of the boundary
rectangle is always assumed to be positioned just outside the first
pixel in the image. This top-left corner is called the origin of the
boundary rectangle, and you can give it any integer coordinates
you like; in the figure its coordinates are 125 horizontally and —75
vertically. The coordinates of any other point on the grid are then
determined relative to that point.

Here are some important things to remember about coor-
dinates in QuickDraw:

¢ All coordinates are expressed as 16-bit integers, running from a mini-
mum of —32768 to a maximum of +32767.

* Horizontal coordinates increase from left to right, vertical coordinates
from top to bottom. This matches the way English is written (whether
on the Macintosh screen or on a printed page), but runs counter to
the usual mathematical convention that vertical coordinates increase
from bottom to top.

¢ The coordinates on the grid enclose the pixels in the image, rather
than coincide with them. In Figure 44, for example, the top left pixel
in the bit image doesn't lie at coordinates 125 and —75, but rather
between 125 and 126 horizontally and between —75 and —74 vertically. If
you think of the coordinate grid as a sheet of graph paper, the pixels
fall in the squares between the lines, not at the intersections.

For designating positions on the coordinate grid, QuickDraw
provides a fundamental data type named Point [4.1.1]. It's defined

119 coordinates, Points, and Rectangles

as a Pascal variant record structure, so that you can treat the
point’s horizontal and vertical coordinates either as two separate
fields of the record or as a single two-element array indexed by
the scalar type VHSelect [4.1.1]. For example, if midpoint is a variable
of type Point, you can refer to its horizontal coordinate as either
midpoint.h
or
midpoint.vh[H]
and its vertical coordinate as either
midpoint.v
or

midpoint.vh[V]

at your convenience. So to set midpoint to the coordinates shown
for it in Figure 4-4, you can write either

with midpoint do

begin
h := 134;
v ;= —69
end

or

with midpoint do

begin
vh[H] := 134;
vh[V] := —69
end

or you can use the QuickDraw procedure SetPt [4.1.1]:
SetPt (midpoint, 134, —69)

Notice in the figure that midpoint denotes a point on the coordinate
grid, not a pixel in the image.

120 Any Portin a Storm

Notice careﬁx]ly that Point reeords reverse: the ‘customary: mathe-
matical convention -and ‘place the vertical coordinate before ‘the:
horizontal. In Pascal this ‘makes no difference, since you always
refer to the coordinates by name (h or v). But if you're programiming
in assembly: language, you hidve to be careful to keep the vertical
coordinate first. To further confound the. perplexed; noti
arguments to SetPt(as opposed:to the fields of a Polnt) are given- in
the conventional order, honzontal before vemcal. Aren't eomputers
fun? '

A rectangle on the coordinate grid can be defined in either of
two ways: as a pair of points specifying the top-left and bottom-
right corners of the rectangle, or as four integers giving the top,
left, bottom, and right coordinates separately. Again, QuickDraw
uses a variant record structure, Rect [4.1.2], so you can define your
rectangles in whichever way is convenient. If r is a variable of type
Rect, all the expressions shown on each line below are equivalent:

r.top r.topLeft.v r.topLeft.vh[V]
r.left r.topLeft.h r.topLeft.vh[H]
r.bottom r.botRight.v r.botRight.vh[V]
r.right r.botRight.h r.botRight.vh[H]

To set r to the boundary rectangle shown in Figure 4-4, you can
write

with r do
begin
top = =175
left = 125;
bottom := —63;
right := 143
end

or use the QuickDraw procedure SetRect [4.1.2]:

SetRect (r, 125, —75, 143, —63)

121 calculations with Points and Rectangles

Or, if origin and corner are points with coordinates (125, —75) and (143,
—63), respectively, you can use the assignments

with r do
begin
topLeft := origin;
botRight := corner
end

or the QuickDraw procedure Pt2Rect [4.1.2]:

Pt2Rect (origin, corner, r)
The points you give to Pi2Rect can be any pair of diagonally
opposite corners of the rectangle, not necessarily the top-left and

bottom-right.

Calculations with Points and Rectangles

QuickDraw includes a wealth of utility routines for performing
various calculations on graphical entities. In this section we'll see
how to compare points or rectangles for equality, add or subtract
their coordinates, and transform or combine them in a variety of
ways. In the next section we’ll talk about similar operations on
two classes of more complex figures, polygons and regions.

You can compare two points or two rectangles to find out
whether they're equal with EqualPt (4.4.1] or EqualRect [4.4.5]). Each
of these functions takes a pair of arguments (points for EqualPt,
rectangles for EqualRect), compares them coordinate by coordinate,
and returns a Boolean result: TRUE if the arguments are equal,
FALSE if they're unequal. Another useful comparison function is
PtinRect [4.4.3], which tests whether a given point lies within a given
rectangle.

The procedures AddPt and SubPt [4.4.1] perform simple arith-
metic on points. These procedures add or subtract the two points
you give them, coordinate by coordinate, and set the coordinates
of the second point to the result. The first point is unaffected. (An
alternate routine, DeltaPoint [4.4.1], also subtracts one point from
another, but returns the difference as a function result instead of
altering the coordinates of the second point.)

EmptyRect (4.4.4] tests whether a given rectangle is empty.

122 Any Port in a Storm

Remember that the boundaries of a rectangle run between the
pixels of an image, not through them. If the specified bottom-right
corner doesn't lie strictly below and to the right of the rectangle’s
origin—that is, if

r.top = r.bottom
or

r.left = r.right
—then the rectangle encloses no pixels and is considered empty.
I]:ﬁLtsti.s case, EmptyRect returns a value of TRUE; otherwise it returns

OffsetRect [4.4.4] adjusts a rectangle’s coordinates by a given
horizontal and vertical offset, as shown in Figure 4-5. This is

OffsetRect (r, —100, 70)

Position Before

je— —100 ———»]

(240,135)

<¢—— Rectangle r

Position After

(320,195)

(140,205)

OffsetRect, in this example, moves rectangle r
100 pixels to the left and 70 pixels down.

(220,265)

Figure 4-5 Offsetting a rectangle

123 Ccalculations with Points and Rectangles

equivalent to moving the rectangle within its coordinate system
while keeping its width and height fixed. If the horizontal offset
is positive, the rectangle is moved to the right; if it's negative, the
rectangle is moved to the left. Similarly, a positive vertical offset
moves the rectangle down and a negative offset moves it up.

InsetRect [4.4.4] adjusts a rectangle’s size by a horizontal and
vertical inset, as shown in Figure 4-6. The left and right edges of
the rectangle are both moved inward (toward the center) by the
specified horizontal inset, and the top and bottom by the vertical
inset. A negative value for either inset adjusts the edges of the
rectangle outward instead of inward in that dimension.

‘OffsetRect and InsetRect operate ona rectangle as a purely mathemati-
cal entity. All they d). is ‘adjust the values ‘of the rectangle’s coor-
-dinates; they have nothmg to do thh inovmg or: changmg pixels in,
a bnt image. :

InsetRect (r, 15, 10)

New rectangle r

1240, 135
wf

(255, 145) /

(305, 185

I__,l |<_,| (320, 195)
15 15

-—— QOriginal rectangle r

IOI

insetRect, in this example, moves rectangle rs sides in by
15 pixels at the left and right, 10 pixels at the top and bottom.

Figure 4-6 Insetting a rectangle

124 Any Portin a Storm

UnionRect (r1, r2, union)

-«— Rectangle r2

~————— |Inion

Rectangle i —>

UnionRect returns the smallest rectangle, union, that
contains both rectangles r1 and r2,

Figure 4-7 Union of two rectangles

UnionRect and SectRect [4.4.5] form the union and intersection
of a pair of rectangles and return the result as the value of their
third parameter (resultRect). The union of two rectangles is the
smallest rectangle that encloses them both (see Figure 4-7); the
intersection is the largest rectangle that lies entirely within both
(Figure 4-8). SectRect also returns a Boolean result that's TRUE if the
two rectangles intersect at all (that is, if their intersection is not
empty), FALSE if they don't.

125 Polygons and Regions

result := SectRect (r1, r2, intersection)

<«— Rectangle 12

Rectangle 11 —

T~ intersection

SectRect returns the largest rectangle, intersection, contained within
both rectangles r1 and r2.

Figure 4-8 Intersection of two rectangles

Calculanons mvolvmg two or more points or rectangles are mean-
mgfulonlylfthe' areexpnessedmthe same system of
coordinates. If they arent, you have to transform them into a
common coordinate system before performing the calculation. The
procedures LocafToGlobal and -GlobalToLocal [4.4.2) are useful for this
' purpose; they're: discuSsed below under “Local and Global Coor
dmates P

Polygons and Regions

QuickDraw provides two special types of structure, polygons and
regions, that you can use to define and manipulate graphical
figures of any shape. A polygon can be any shape that you can
describe with a closed series of connected straight lines, such as
the one in Figure 4-9. (“Connected” means that each line begins

126 Any Port in a Storm

(60,70)

{90,80)

(0,110)

(160,120}

(30,160) (150,160

Area inside polygon

Figure 4-9 A polygon

where the previous one ended; “closed” means that the last line
ends where the first one began, so that the figure’s outline con-
nects back to where it started.) A region is even more general, and
can be any shape that can be built up out of simpler shapes such
as rectangles, ovals, polygons, and even other regions. It can have
curved as well as straight edges, and can even have holes in it or
consist of two or more separate pieces (see Figure 4-10).

Both polygons and regions are represented internally by
variable-length data structures whose size depends on the figure's
complexity. Both structures, Polygon [4.1.3] and Region [4.1.5], begin
with a couple of fixed fields, followed by variable-length data to
define the figure's shape. The first field (polySize or rgnSize) is an
integer giving the overall length of the data structure in bytes. The
second (polyBBox or rgnBBox) is the figure’s bounding box, the
smallest rectangle that completely encloses it on the coordinate
grid. QuickDraw maintains these fields for you automatically; you
can access their contents, but normally you shouldn’t store into
them yourself.

127 Polygons and Regions

Entire shaded area can be
defined as one region.

Figure 4-10 A region

The rest of the data structure consists of the variable-length
data defining the figure’s shape. This part of the structure can't
be properly described in a Pascal type definition, so there's no
way to access it directly from a Pascal program. You can only
manipulate it indirectly, by calling the appropriate QuickDraw
routines to do the job for you. You define the shape of a polygon
or region by actually drawing it with QuickDraw’s various drawing
routines. Since drawing is the subject of the next chapter, we'll
postpone our discussion of polygon and region definitions until
then.

There are QuickDraw routines for performing a full range of
calculations on regions:

o EmptyRgn [4.4.7] tests whether a region is empty.
¢ EqualRgn [4.4.8] tests whether two regions are identical.
* PtinRgn [4.4.3] tests whether a point lies within a given region.

RectinRgn [4.4.3] tests whether a given rectangle and region intersect.
 OffsetAgn and InsetRgn [4.4.7] are analogous to the rectangle operations
OffsetRect and InsetRect, discussed earlier. (There's also an OffsetPoly
routine [4.4.6] for polygons.)

128 Any Portin a Storm

Region r2

These two regions are
combined in various ways
in the next five figures.

UnionRgn (rgn1, rgn2, union)

Shaded area shows
resulting region
(union).

Figure 4-11 Union of two regions

129 Polygons and Regions

SectRgn (rgnl, rgn2, intersection)

Y
\""--\.....,

Shaded area shows resulting region (intersection); dotted lines
show boundaries of original regions.

Figure 4-12 Intersection of two regions

e UnionRgn [4.4.8] forms the union of two regions, the set of all pixels that
lie within either of them (Figure 4-11).

e SectRgn [4.4.8] forms the intersection of two regions, the set of all pixels
that lie within both of them (Figure 4-12).

e DiffRgn [4.4.8] forms the difference of two regions, the set of all pixels
that lie within the first but not the second (Figure 4-13).

e XOrRgn [4.4.8] forms the “exclusive or” of two regions, the set of all pixels
that lie within either one of them but not the other (Figure 4-14).

130 Any Portin a Storm

DiffRgn (rgnl, rgn2, difference)

Shaded area shows
resulting region
(difference); dotted lines

show boundaries of original
regions.

\\‘ “\
DiffRgn (rgn2, rgn1, difference)
f’l \.“
s "
: L1
¢/ :
7
”u-- ~ ._..“ '/l
s R i shaded area shows
z £ nz?sulting region
; o, ; (difference) when
R =z order of the original regions
: Sae - .
H e, S is switched.
.\

Figure 4-13 Difference of two regions

131 Bit Maps

Bit Maps

XOrRgn (rgn1, rgn2, exclusiveOr)

Shaded area shows the
resulting region,
exclusiveOr. (Exclusive or =
union - intersection.)

Figure 4-14 “Exclusive or” of two regions

We said earlier that a bit image needs a boundary rectangle to tell
QuickDraw how many bits of each row really “count” and how
many are just padding. This combination of a bit image and a
boundary rectangle is called a bit map. Bit maps are the basic
medium in which QuickDraw does all of its drawing. The bit image
provides the bit map’s content; the boundary rectangle defines its
extent and gives it a system of coordinates.

Different bit maps can share the same bit image: for example,
every window on the screen has its own bit map, but they all share
the same screen image in memory. The boundary rectangle limits
the portion of the bit image that a particular bit map refers to.
The rest of the image is regarded as padding by this bit map

132 Any Port in a Storm

(though possibly not by others), and is not affected by any opera-
tion you perform on the bit map. Notice that, since a given bit
map may use just part of a larger, shared bit image, there can be
any amount of padding at the end of a row in the image, not
necessarily just enough to fill out the row to a multiple of 16 bits.

Conceptually, a bit map could be represented by a record
containing two fields: one for the bit image and another for the
boundary rectangle. But because of Pascal’s strong typing rules,
the record definition would have to include the dimensions of the
array containing the bit image: for example,

type
BitMap = record
image : array [1..12, 1..2] of INTEGER,;
bounds : Rect
end;

Under this definition, a bit map record could refer only to bit
images of one particular size—12 rows of 2 words each. To work
with images of different sizes, there would have to be a different
type of bit map for each size. So instead of including the bit image
itself as part of the bit map record, QuickDraw just uses a pointer
to the first byte of the image (its base address). That way, since
pointers have no dimensions, a single type of bit map can refer to
bit images of any size.

But now some important information has been lost. The
height and width of the boundary rectangle tell how many rows
there are and how many bits of each row count as part of the bit
map. But QuickDraw also needs to know how many bits of
padding to skip at the end of each row, in order to find the
beginning of the next row in memory. So the bit map record has
to include another field giving the row width of the bit image—the
total width of each row in bytes, including padding. Putting all
this together, the actual type definition for bit maps is as follows
[4.2.1):

type
BitMap = record
baseAddr : Ptr;
rowBytes : INTEGER,;
bounds : Rect
end;

133 Bit Maps

To create a bit map in your program corresponding to the
one shown earlier in Figure 4-4, you might declare

var
thelmage : array [1..12, 1..2] of INTEGER;
theMap : BitMap;

and then write something like

StuffHex (@thelmage, CONCAT('07000000’,
19000000,
22000000,
‘46000000',
"C7FF8000',
'8C004000,
'97FF8000,
'E4080000°,
'87F00000°,
‘84100000,
"C7E00000',
"7F800000'));

with theMap do
begin
baseAddr := @thelmage;
rowBytes := 4;
SetRect (bounds, 125, —75, 143, —63)
end

Remember that rowByles is expressed in bytes, not words, so it has
to be set to twicé the number of integers in each row of the bit
image.

Like a child with a coloring book, QuickDraw will carefully
keep all of its drawing in a bit map “inside the lines” defined by
the boundary rectangle. But it has to take your word for where
the lines are. Make sure the bit map’s base address pointer really
points to a bit image in memory, and that the image array is as
big as the bit map’s row width and boundary rectangle say it is!
If it isn’t, QuickDraw will “color outside the lines” and ruin your

134 Any Port in a Storm

Graphics Ports

pretty picture. Specifically, the number of bytes allocated for the
bit image must not be less than the row width times the height
of the boundary rectangle:

SIZEOF(thelmage) = theMap.rowBytes *
(theMap.bounds.bottom - theMap.bounds.top)

Similarly, the width of the boundary rectangle must be no
greater than the actual number of bits in each row:

(theMap.bounds.right - theMap.bounds.left)
< theMap.rowBytes * 8

As the screen image is the most important bit image of all,
the most important bit map is the screen map, which QuickDraw
keeps in a global variable named ScreenBits [4.2.1]. The screen map's
base address field points to the beginning of the screen buffer in
memory, with a row width of 64 bytes (512 bits). Its boundary
rectangle is the same size as the Macintosh screen, 512 pixels wide
by 342 high; the origin of the rectangle has coordinates (0, 0), plac-
ing its bottom-right corner at (512, 342).

On the Macintosh XL, with its larger screen, ScreenBits has a row
width of 80 bytes (720 bits} and a boundary rectangle 720 pixels
wide by 364 high. Remember, too, that screen dimensions are differ-
ent on large-screen displays and may vary on future models of
Macintosh. Instead of making dangerous assumptions, always use
the screen map's boundary rectangle (ScreenBits.bounds) to find out the
screen dimensions for the machine you're running on. !

There’'s much more to QuickDraw’s drawing environment than
just a bit map to draw into. There are foreground and background
patterns for filling in areas of an image; a pen size and location
for line drawing; a typeface, size, and style for displaying text.
Often a program needs to use more than one drawing environ-
ment: for example, the program may have several windows on the

135 Graphics Ports

screen, each with its own pen location, fill patterns, text charac-
teristics, and so forth.

Graphics ports enable you to switch quickly and easily from
one drawing environment to another. A graphics port is a com-
plete drawing environment containing all the information needed
for QuickDraw drawing operations. Each port has its own bit map,
fill patterns, pen properties, and everything else QuickDraw needs
to do its job. A program can have as many separate graphics ports
as it needs; in particular, every window on the screen has its own
port.

All the information associated with a graphics port is kept in
a record of type GrafPort (4.2.2], which normally resides in the heap.
For obscure reasons shrouded in the mists of antiquity, graphics
ports are nonrelocatable objects and are referred to by single
indirection, with simple pointers of type GrafPtr [4.2.2] rather than
handles. To create a new graphics port, you first allocate a GrafPort
record with NewPtr (3.2.1), then open the port for use with OpenPort
(4.3.2]:

rawPointer := NewPtr(SIZEOF(GrafPort));
newPort := GrafPtr(rawPointer);
OpenPort (newPort)

(where rawPointer is of type Ptr and newPort is of type GrafPtr). OpenPort
initializes the port’s fields and allocates its internal data struc-
tures; always be sure to call this routine after creating a port and
before attempting to use it in any way. (Another routine, InitPort
(4.3.2], reinitializes the fields of an existing port but doesn'’t reallo-
cate its internal structures.) When you're finished with a port,
remember to release the internal structures with ClosePort [4.3.2]
before destroying the port itself:

ClosePort (oldPort);
rawPointer := Ptr(oldPort);
DisposPtr (rawPointer)

At any given time, exactly one graphics port is in use, called
the current port. Many QuickDraw routines operate implicitly on
the current port, so you have to make sure the port you want is
current before calling the routine. You can always find out what
port is current with the QuickDraw procedure GetPort or change

136 Any Port in a Storm

the current port with SetPort [4.3.3). (A pointer to the current port
is also kept in the global variable ThePort [4.3.3].) If you're working
with more than one graphics port, it's a good idea to use GetPort
and SetPort in any procedure or function that changes the current
port, to save the previous port at the beginning of the routine and
restore it again at the end. Program 4-1 illustrates the technique.
Any routine written in this way is “transparent” to the setting of
the current port: it leaves the same port current on return from
the routine as when it was called.

Every graphics port has its own bit map to draw into, kept in
the portBits field of the GrafPort record. portBits is the port’s “canvas’:
QuickDraw operations directed to the port will draw into the bit
image belonging to this bit map, and the bit map’s boundary
rectangle establishes the port’s coordinate system. When you open
or initialize a port, its portBits field is set to a copy of the screen
map ScreenBits, with the screen image as its bit image, a row width
of 64 bytes (90 on a Macintosh XL), and a boundary rectangle the
same size as the screen with its origin at coordinates (0, 0). If neces-
sary, you can then use the QuickDraw routine SetPortBits [4.3.4] to

{ Skeleton procedure showing use of BetPort and SetPort to preserve curreat port setting. }

var

~oldPort : GrafPtr; (Pointer to previcus current port)

begin (DrawlnPort}

GetPort (oldPort); {Save old port on entry [4.3.31}

SetPort (shichPort); {Switch to specified port [4.3.31}

{Draw in port}

SetPert (cldPort) {Restore old port on exit [4.3.31}

end; {(DrawinPort}

Program 4-1 Saving and restoring the current port

137 Graphics Ports

change the bit map (for example, to one based on a bit image other
than the screen), or change the port's coordinate system by adjust-
ing the bit map’s boundary rectangle. Since the port’s bit map is
only a copy of the screen map, any changes you make to its fields
won't affect the screen map itself.

The portRect, visRgn, and clipRgn fields of a graphics port all
define clipping boundaries for drawing into the port. QuickDraw
will automatically confine its drawing activities within the intersec-
tion of all these boundaries, as well as the port’s boundary rec-
tangle (see Figure 4-15). Any drawing you attempt that lies outside
any one of the clipping boundaries will be suppressed (clipped) and
will have no effect on the bit image.

The port rectangle (portRect) defines the portion of the bit map
that the port can draw into. For a newly opened or initialized port,

& File Edit Search Fonts Program

This window obscures part
of the window behind it.

Figure 4-15 Clipping boundaries

138 Any Portin a Storm

b. Drawing is confined to
intersection of the
boundary rectangle,

Top-left corner of the boundary port rectangle, visible

rectangle is always the origin (0, 0) region, and clipping region.

of the global coordinate system. /
(0, 0)
(160, 80)
, ///
Port rectangle / /
(boundary
of window) /
Clipping region — /
L4
Area obscured (512, 342)
by other
window

Boundary rectangle. When
KEY the port is a window, the
boundary rectangle is the

% Visible region edge of the screen.

Area to which drawing is
confined

Figure 4-15 (continued)

139 Graphics Ports

the port rectangle is a copy of the screen map’s boundary rec-
tangle: top-left corner at coordinates (0, 0), bottom-right at (512, 342)
or (720, 364) or whatever. You can then change the port rectangle to
whatever coordinates are appropriate. For a port belonging to a
window on the screen, the port rectangle corresponds to the inte-
rior of the window, inside the window’s frame. For the window
shown in Figure 4-15, the port rectangle extends from coordinates
(160, 80) at the top-left to (340, 300) at the bottom-right.

The clipping region (clipRgn) is a general-purpose clipping
boundary that you can use any way you like. Notice that it's a
region, not a rectangle, which means you can make it any shape
you need. For example, in an adventure game you might use a
circular clipping region, as in the figure, to simulate the view
through a telescope or a ship’s porthole. Opening or initializing a
port sets its clipping region to an arbitrarily large rectangular
region extending from coordinates (—32768, —32768) to (32767, 32767),
sometimes called the “wide-open” region. You can then install a
different clipping region with SetClip or ClipRect, or access the port’s
current clipping region with GetClip [4.3.6]. We'll look at an example
that uses a port's clipping region in Chapter 5.

The visible region (visRgn) can also be of any shape, but it's there
for use by the Toolbox, not by your program. As windows are
moved around on the screen, the Toolbox uses this field to keep
track of the portion of each window’s port rectangle that's exposed
to view. Any part of the window that’s hidden behind another
window is excluded from the visible region, so drawing in that part
of the window is suppressed and won’t appear on the screen.
Figure 4-15 illustrates how a window’s visible region is determined
by its position on the screen in relation to other, overlapping
windows.

Most of the remaining fields of the GrafPort record are dis-
cussed in Chapter 5 (bkPat, fillPat, pnLoc, pnSize, pnMode, pnPat, pnVis)
and Chapter 8 (device, txFont, txFace, txMode, txSize, spExtra). The fgColor,
bkColor, and colrBit fields are reserved for future use with color
displays or printers; patStretch, picSave, rgnSave, and polySave are for
QuickDraw's private use. grafProcs is used for “customizing” Quick-
Draw operations to your own needs; see Volume Three for further
information.

140 Any Port in a Storm

Local and Global Coordinates

A port’s bit map belongs to just that port and no other. Even ports
that draw into the same bit image have separate bit maps based on
that same image. For instance, all ports that draw on the screen
share the one screen image in the Macintosh's memory, but refer
to it through different bit maps. Each has its own boundary rec-
tangle, whose coordinates can be set independently of all the
others.

Since the bit map’s boundary rectangle determines the coor-
dinate system of the graphics port, it follows that each port has
its own coordinate system, called the local coordinate system of
that port. The origin (top-left corner) of the boundary rectangle
always lies just outside the first pixel in the bit image; everything
else in the port is measured relative to the coordinates of that
point.

Remember, though, that the area of the bit image that a port
can draw into is defined by the port rectangle, not by the boun-
dary rectangle of the port's bit map. Often it's more natural to
measure your coordinates relative to the port rectangle instead of
the boundary rectangle. The QuickDraw procedure SetOrigin [4.3.4]
allows you to set a port’s local coordinate system in terms of the
port rectangle. Like most QuickDraw routines, SetOrigin applies
implicitly to the current graphics port. It adjusts (the ten-dollar
word is “translates”) the port’s coordinate system to give the
top-left corner of the port rectangle the designated coordinates,
hOrigin and vOrigin. In so doing, it recalculates the coordinates of
the boundary rectangle, port rectangle, and visible region to keep
them all in the same spatial relationships in the new coordinate
system. You might call it a case of “simultaneous translation.”

For example, Figure 4-16a shows a port belonging to a window
on the Macintosh screen, which is partially hidden by another,
overlapping window; this is just a repeat of our earlier Figure
4-15b. The boundary rectangle of the port’s bit map extends from
coordinates (0, 0) at the top-left to (512, 342) at the bottom-right. The
port rectangle, representing the interior of the window, extends
from (160, 80) to (340, 300). Since the window is partially hidden on
the screen, its visible region is limited to the shaded area shown
in the figure.

Boundary rectangle

142 Any Portin a Storm

b e) SetOrigin (—160, —80)
(0— 0]') /Boundary rectangle

Port
rectangle

(512, 342)
1262, 2%2)

Visible region

Area to which

4 drawing is confined
() Global coordinates
[1 Local coordinates

Fo ;‘lre 4-16 (COntinucd)

143 Local and Global Coordinates

If you would prefer to express coordinates in this window
relative to the window itself instead of the screen, you can write

SetOrigin (0, 0)

The result is shown in Figure 4-16b. Notice that the port rectangle
and the visible region haven’'t changed their position on the
screen; only the coordinate system has been changed. The origin
of the boundary rectangle now has coordinates (—160, —80), placing
the origin of the port rectangle at (0, 0), as requested. The bottom-
right corners of the two rectangles have been recalculated, to keep
the sizes of the rectangles the same as before. The window’s visible
region has also been transformed to the new coordinate system,
keeping it in the same relative position on the screen.

Because each port has its own local coordinate system, coor-
dinates expressed in different ports aren’t directly comparable.
Before performing any calculation involving coordinates taken
from different ports, you have to convert them into a common
coordinate system. A convenient system to use for such purposes
is the global coordinate system, in which the point just outside
the first pixel of a port’s bit image always has coordinates (0, 0).

A port’s global coordinate system is independent of the boun-
dary rectangle, and so isn't affected by changes in the local
coordinate system. In Figure 4-16a, for instance, the port’s local
coordinate system coincides with the global system, since the
origin of the boundary rectangle has coordinates (0, 0). In Figure
4-16b, the local system has been transformed, but the global
system remains the same as before. Expressed in global coor-
dinates, the port rectangle and visible region still have the same
coordinates shown for them in Figure 4-16a, even though their
local coordinates have been changed to those in Figure 4-16b.

{ Program fragsent to find the intersection of two windows’ port
rectangles by converting both to global coordinates. }

var
portd, porth

rectd, rectB, inter : Rect;

nonEapty

GrafPtr;

BOOLEAN;

Program 4-2 Converting to global coordinates

144 Any Port in a Storm

begin
Ill;
porth := . . .
portB := . . . ;
rectf := portA®.portRect;
rectd := portB*.portRect;

SetPort (porth);
with recth do
begin
LocalToGlchal {topleft);
LocalTo6lobal (botRight)
end;
SetPert (portB);
with rectB do
begin
LocalTeGlchal (topleft);
Local ToSlebal (botRight)
end;

nonEspty ¢= SectRect (rectd, rectB, inter);
if nonEmpty
then
begin
with intersection dg
begin
GlobalTolocal {topleft);
6lobalTolocal (botRight)
end;

end

{Port A is first window’s port}

{Port B is second window’s port}

{First window’s port rectangle [4.2.213
{Second window’s port rectangle [4.2.21}
{6et into port A [4.3.31}

{Convert port rectangle to 3
{ global coordinates [4.4,21}

{Switch to port B [4.3.31}

{Convert port rectangle to
{ glabal coordinates [4.4,21}
{Find intersection [4.4.5]}

{Intersection is noneapty: }

{ convert intersection to }
{ port B’s local coordinates [4.4,2)}

{ and proceed with normal processing}

{Intersection is eapty: }
{ handle exceptional case}

Program 4-2 (continued)

145 Local and Global Coordinates

{ Program frageent to find the intersection of two windows’ port
rectangles by converting one to local coordinates of the other }

var
portA, portB s GrafPtr;
recth, rectB, inter : Rect;
nonEapty : DOOLEAN;
L] L] L] ;
begin
L] L] . ;
portA := . . . (Port A is first window’s port}
portB :=. . . ; {Port B is second window’s port}
e o 0 ;
rectA := port#*.portRect; {First window’s port rectangle [4.2.21}
rectB := portB*.portRect; {Second window’s port rectangle [4.2.21}
SetPort {porth); {Get into port A [4.3.31}
with recth do
begin
LocalToBlobal (topleft); {Convert port rectengle to 1}
LocalToBlobal (botRight) { global coordinates [4.4.21}
end;
SetPort (portB); {Switch to port B [4.3.31}
with recth do
begin
6labalTelocal (topleft); {Convert to port B’s }
6lobalTolocal (botRight) { local ceordinates [4.4.21}
end;

nonEapty :=
if nonEmpty

SectRect {rectf, rectB, inter); {Find intersection [4.4.51}

then {Intersection is nonespty: }
. { handle normal case }
else {Intersection is empty: 1}

end

; { handle excepticnal case}

Program 4-3 Converting between coordinate systems

146 Any Portin a Storm

Global coordinates provide a handy basis of comparison between
different ports, provided that the ports are based on the same
underlying bit image. For instance, for all ports corresponding to
windows on the screen, the global coordinate systemm measures /
coordinates with respect to the screen instead of the window.

Suppose you want to find the intersection of two windows on
the screen. Since each window’s port rectangle is expressed in
that window’s own local coordinates, you can't just apply SectRect
directly to the two rectangles. First you have to convert the
rectangles into a common coordinate system. Since the two win-
dows’ graphics ports are based on the same bit image (the screen),
you can use global coordinates as a common basis of comparison.

QuickDraw provides a pair of utility procedures, LocaiToGlobal
and GlobalToLocal [4.4.2], for converting between coordinate systems.
The local coordinate system involved is always implicitly that of
the current port, so you have to make sure the right port is current
for each conversion. Program 4-2 shows one way to do the job:

1. Convert both windows' port rectangles into global coordinates.

2. Find the intersection of the two port rectangles in global coordinates.

3. Convert the result back into the local coordinates of one of the two
windows.

A slightly more efficient way of doing the same thing is shown
in Program 4-3:
1. Convert one window’s port rectangle into global coordinates.

2. Convert this same rectangle from global coordinates into the local
coordinates of the other window.

3. Find the intersection directly in the second window’s local coor-
dinates.

This method requires only two coordinate conversions instead of
three.

REFERENCE

4.1 Mathematical Foundations

4.1.1 Points

;-I | Definitions

type _
VHSelect = (V, H);
Point = record

case INTEGER of-

0: (v : INTEGER;
h : INTEGER);

end;

pracedure SetPt
(var thePoint : Point;
hCoord : INTEGER,;
vCoord : INTEGER);

147

{Selector for coordinates of a point}

| {Vertical coo'rdinate‘}

{Horizontal coordinate}

1: (vh : array [VHSelect] of INTEGER) {Coordinates as a two-element array}

{?oihi to be set}
{Horizontal coordinate}
{Vertical coordinate}

148 QuickDraw Fundamentals

= Notes

1. A Point is a data structure representing a point on the QuickDraw
coordinate grid.

2. The variant record structure allows the point’s coordinates to be
accessed as two separate integers

thePoint.v
thePoint.h

or as a two-element array

thePoint.vh[V]
thePoint.vh[H]

3. The vertical coordinate comes first, contrary to the usual mathemati-
cal convention.

4. SetPt sets thePoint to a point with coordinates hCoord and vCoord.

5. Notice that the order of the coordinates in a call to SetPt is not the
same as in the Point record itself.

Assembly Language Information

Field offsets in a point record:

(Pascal) (Assembly) ,
Field name Offset name Offsetin bytes
v ' v 0

h h 2

Trap macro: ‘

{Pascal) {Assembly) ;
Routine name Trap macro Trap word
SetPt _SetPt $A880

149 [4.1.2] Rectangles

4.1.2 Rectangles

Definitions

type
Rect = record
case INTEGER of

0: (top : INTEGER;
left : INTEGER;
bottom : INTEGER;
right : INTEGER);

1: (topLeft : Point;
botRight : Point)

end;

procedure SetRect
(var theRect : Rect;

left : INTEGER;

top . INTEGER,;

right : INTEGER;

bottom : INTEGER);
procedure Pt2Rect

(point1 : Point;

point2 : Point;

var theRect : Rect);

Notes

{Top coordinate}
{Left coordinate}
{Bottom coordinate}
{Right coordinate}

{Top-left corner}
{Bottom-right corner}

{Rectangle to be set}
fLeft coordinate}
{Top coordinate}
{Right coordinate}
{Bottom coordinate}

{First corner}
{Diagonally opposite corner}
{Rectangle to be set}

1. A Rect is a data structure representing a rectangle on the coordinate

grid.

2. The variant record structure allows the rectangle’s coordinates to be

accessed as four separate integers

theRect.top
theRect.left
theRect.bottom
theRect.right

150 QuickDraw Fundamentals

4

5.

6.

7

or as a pair of points

theRect.toplLeft
theRect.botRight

representing the top-left and bottom-right corners.

If right < left or bottom < top, the rectangle is considered empty.

SetRect sets theRect to a rectangle with coordinates left, top, right, and
bottom.

Notice that the order of the coordinates in a call to SetRect is not the
same as in the Rect record itself.

Pt2Rect sets theRect to a rectangle defined by a pair of diagonally
opposite points point! and point2.

If point1 and point2 have the same horizontal or vertical coordinate, the
resulting rectangle will be empty.

Assembly Language Information

Field offsets in a rectangle record: | :

(Pascal) ' (Assembly)

Field name Offset name Offset in bytes
top top 0
left left 2
bottom bottom 4
right right 6 |
topLeft toplLeft 0
botRight botRight 4
Trap macros: ‘

(Pascal) {Assembly)

Routine name Trap macro Trap word
SetRect —SetRect $ABA7

Pt2Rect —Pt2Rect $ABAC

151 (4.1.3] Polygons

4.

1.3 Polygons

Definitions

type

PolyHandle = “PolyPtr;
PolyPtr = “Polygon;

Polygon = record
polySize : INTEGER; {Length of this data structure in bytes}
polyBBox : Rect; {Bounding box}
polyPoints : array [0..0] of Point {Variable-length array of vertices}

end;

Notes

l.

2.

3.

A Polygon is a variable-length data structure representing an arbitrary
polygon on the QuickDraw coordinate plane.

The shape of the polygon is defined by a series of connected sides,
specified with the line-drawing operations Line and LineTo [5.2.4]. Each
side begins where the previous side ended; their endpoints are the
polygon’s vertices.

If the first and last vertices don't coincide, an extra side is added
automatically to close the polygon.

. The dummy field polyPoints stands for a variable-length array of points

(not directly accessible in Pascal) representing the polygon's vertices.
The Toolbox maintains the contents of this array for you—you'll never
need to access or store into it yourself

. polySize is the overall length of this Polygon data structure in bytes,

including the variable-length polyPoints array.

polyBBox is the polygon’s bounding box, the smallest rectangle that
completely encloses it.

152 QuickDraw Fundamentals

Assembly Language Information

Field offsets in a polygon record:

(Pascal) (Assembly)

Field name Offset name Offset in bytes
polySize _ polySize , 0,
polyBBox polyBBox ' 2
polyPoints polyPoints : 10;

4.1.4 Defining Polygons

|g! Definitions

funetion OpenPoly o ‘ ‘
: PolyHandle; . - {Handle to new polygon}

procedure ClosePoI’y;

procedure KillPoly , ,
(thePolygon : PolyHandle); {Handle to polygon to be destroyed}

Notes

i

1. OpenPoly creates a new Polygon record [4.1.3], opens it for definition,
and returns a handle to it.

2. Subsequent calls to the line-drawing routines Line and LineTo [5.2.4)
will be accumulated into. the Polygon record to define the shape of
the polygon.

3. The graphics pen is hidden [5.2.3] while a polygon is open; the
line-drawing operations that define the polygon will not appear on
the screen.

4. The polygon’s outline is infinitely thin, and is unaffected by pen
characteristics such as size, pattern, and mode (5.2.1].

5. Only one polygon may be open at a time; don’t attempt to open
another without closing the one that’s already open.

6. ClosePoly closes the polygon currently open for definition, if any.

153 (4.1.5] Regions

7. The polygon’s bounding box [4.1.3] is recomputed to enclose all of
the points in the polygon.

8. The graphics pen is reshown [5.2.3]; subsequent line-drawing opera-
tions will appear on the screen instead of being accumulated into
the polygon definition.

9. KillPoly destroys a Polygon record and deallocates the memory space
it occupies. The polygon is no longer usable after this operation.

10. The trap macro for ClosePoly is spelled _ClosePgon.

Assembly Language Information

Trap macros:

(Pascal) ' {Assembly)

Routine name . - Trap macro Trap word
OpenPoly - -OpenPoly $A8CB
ClosePoly - _ClosePgon $A8CC

KillPoly ' KillPoly $ASCD

4.1.5 Regions

|é! Definitions
type.
RgnHandle = ~RgnPtr;
RgnPtr = “Region;
Region = record ‘
rgnSize : INTEGER; {Length of this data structure in bytes}
rgnBBox : Rect; . {Bounding. box}

{additional data defining shape of region}
end;

154 QuickDraw Fundamentals

Notes

l.

2.

A Region is a variable-length data structure representing an arbitrary
region on the QuickDraw coordinate plane.

The shape of the region is defined by a series of lines and shapes
specified with the line-drawing operations Move, MoveTo, Line, and LineTo
[5.2.4] and the shape-drawing operations FrameRect [5.3.2], FrameRoundRect
[5.3.3], FrameOval [5.3.4), FramePoly [5.3.6), and FrameRgn [5.3.7). The
region’s outline is formed by the specified lines and the boundaries
of the specified shapes.

. At the end of the Region record is variable-length data (not directly

accessible in Pascal) defining the shape of the region in compact,
encoded form. The Toolbox maintains this data for you—you’ll never
need to access or store into it yourself.

. rgnSize is the overall length of this Region data structure in bytes,

including the variable-length data defining the shape of the region.

. rgnBBox is the region's bounding box, the smallest rectangle that

completely encloses it.

For a strictly rectangular region, the variable-length data is absent; the
bounding box completely defines the shape of the region. In this case
rgnSize = 10 (2 bytes for the size and 8 for the bounding box).

Assembly Language. Information

Field offsets in a région record:

(Pascal) (Assembly) ,
Field name Offset name Offset in'bytes
rgnSize rgnSizé ' 0
rgnBBox - rgnBBox 2

rgnData 10

155 116 Defining Regions

4.1.6 Defining Regions

Ié! Definitions
T funetion NewRgn o :
: RgnHandle; {Handle to new region}
pracedura OpenRgn;
prucedura CloseRgn ' gk o o
(theRegion : RgnHandIe)‘ fHandle-to be:set'to defined region}
procedure DisposeRgn B
(theRegion : RgnHandle), {Handle to region to be destroyed}
k Notes

1. NewRgn creates a new Region record [4.1.5) and returns a handle to it.
The new region is initially empty. ,

2. OpenRgn begins a new region definition; subsequent calls to the
line-drawing routines Move, MoveTo, Line, and LineTo [5.2.4) and the
shape-drawing routines FrameRect [5.3.2], FrameRoundRect [5.3.3], FrameOval
(5.3.4), FramePoly [5.3.6), and FrameRgn [5.3.7) will be accumulated to
define the shape of the region.

3. The graphics pen is hidden [5.2.3] while a region is open; the line-

10.

and shape-drawing operations that define the region will not appear
on the screen.

. The region's outline is infinitely thin, and is unaffected by pen

characteristics such as size, pattern, and mode [5.2.1].

Only one region may be open at a time; don’'t attempt to open
another without closing the one that’s already open.

. CloseRgn closes the region definition currently open and sets an

existing region to the defined shape.

. The region must already have been created previously with NewRgn.
. The graphics pen is reshown [5.2.3); subsequent line- and shape-

drawing operations will appear on the screen instead of being
accumulated into the region definition.

. DisposeRgn destroys a Region record and deallocates the memory space

it occupies. The region is no longer usable after this operation.
The trap macro for DisposeRgn is spelled _DisposRgn.

156 QuickDraw Fundamentals

Assembly Language Information

Trap macros:

(Pascal) (Assembly)

Routine name Trap macro Trapword
NewRgn -NewRgn $A8DS
GpenRgn _OpenRgn $ABDA
CloseRgn _CloseRgn $A8DB
DisposeRgn _DisposRgn $A8D9

4.1.7 Setting Regions

Definitions

.

procedure SetEmptyRgn

(theRegion : RgnHandle);
procedure RectRgn
(theRegion : RgnHandie;
theRect : Rect);
procedure SetRectRgn
' (theRegion : RgnHandle;
left : INTEGER;
top : INTEGER,
right : INTEGER;
bottom : INTEGER);
procedure CopyRgn
(fromRegion : RgnHandle;
toRegion : RgnHandle);

{Handle to region to be set empty}

{Handle to region to be set}
{Rectangle to set it to}

{Handle to region to be set}

{Left coordinate of rectangle to set it to}
{Top coordinate of rectangle to set it to}
{Right coordinate of rectangle to set it to}
{Bottom coordinate of rectangle to set it to}

{Région to be copied}
{Region to copy it to}

157 (4.17) Setting Regions

ﬂ% Notes

1. SetEmptyRgn sets an existing region to empty, erasing its previous
structure.

2. The region remains in existence, but becomes empty (encloses no
pixels). The Region record itself [4.1.5] is not destroyed.

3. RectRgn and SetRectRgn both set an existing region to a specified rec-
tangle. For RectRgn, the rectangle is given as a Rect record [4.1.2]; for
SetRectRgn, it's given as four separate coordinates.

4. Ifright < left or bottom < top, the region is set to empty.
5. CopyRgn sets an existing region to the same shape as another.

6. In each case, the destination region (theRegion or toRegion) must already
have been created previously with NewRgn [4.1.6).

7. The trap macro for SetRectRgn is spelled _SetRecRgn.

Assembly Language Information

Trap macros: -

(Pascal) v (Assembly) - :

Routine name 17 . “Trap,macro- - Trap word
* GetEmptyRgn _SetEmptyRgn $A8DD

RectRgn —RectRgn $ABDF

SetRectRgn ~SetRecRgn $ABDE

CopyRgn - CopyRgn $ASDC

158 QuickDraw Fundamentals

4.2 Graphical Foundations

4.2.1 Bit Maps

Definitions

—

BitMap = record

2.

3.

8.

9.

baseAddr : Ptr; {Pointer to bit image}
rowBytes : INTEGER; {Row width in bytes}
bounds : Rect {Boundary rectangle}
end;
var ‘
ScreenBits : BitMap; {Bit map for Macintosh screen}
ke Notes
1. baseAddr is a pointer to the bit map’s bit image. The bits of the bit

image define the pixels of the bit map.

rowBytes is the bit map’s row width, the number of bytes in each row
of the bit image.

The row width should always be even, representing a whole number
of 16-bit words.

. bounds is the bit map’s boundary rectangle, which defines its extent

and coordinate system.

. The first pixel in the bit image lies just inside the top-left corner of

the boundary rectangle.

. The width of the boundary rectangle must not exceed the row width

of the bit image in bits (that is, 8 * rowBytes). Its height must not exceed
the number of rows in the bit image.

. Any bits of the bit image that lie beyond the right or bottom edge of

the boundary rectangle are ignored.

The global variable ScreenBits holds the screen map, a bit map
representing the Macintosh screen.

The screen map's bit image is the screen buffer in memory; its row
width is 64 bytes (512 bits); its boundary rectangle extends from coor-
dinates (0, 0) at the top-left to (512, 342) at the bottom-right. {These
values may differ on large-screen displays or on future models.) On a

159 (4.2.1] Bit Maps

Macintosh XL, its row width is 90 bytes (720 bits) and its boundary
rectangle extends from (0, 0) to (720, 364).

10. To access the screen map in assembly language, find the pointer to
QuickDraw’s globals at the address contained in register A5, then
locate the variable relative to that pointer using the offset constant
ScreenBits (below). See Chapter 3 and [4.3.1, note 4] for further discus-
sion.

Assembly Language Information

Field offsets in a bit map:

(Pascal) (Assembly)

Field name Offset name Offset in bytes
baseAddr baseAddr 0
rowBytes rowBytes 4
bounds bounds 6

Assembly-language constant:

Name Value Meaning

BitMapRec 14 Size of bit map record in bytes
QuickDraw global variable:

Name Offset in bytes Meaning

ScreenBits —122 Bit map for Macintosh screen

160

QuickDraw Fundamentals

4.2.2 Graphics Ports

|é! Definitions

type

GrafPtr = ~GrafPort;

GrafPort = record
device : INTEGER; {Device code for font selection [8.3.1]}
portBits : BitMap; {Bit map for this port}
portRect : Rect; {Port rectangle}
visRgn : RgnHandle; ({Visible region}
clipRgn : RgnHandle; {Clipping region}
bkPat : Pattern; {Background pattern [5.1.1]}
fillPat : Pattern; {Fill pattern for shape drawing [5.1.1]}
pnLoc : Point; {Current pen location in local coordinates [5.2.1]}
pnSize : Point; {Dimensions of graphics pen [5.2.1]} ‘
pnMode : INTEGER; {Transfer mode for graphics pen [5.1.3, 5.2.1]}
pnPat : Pattern; {Pen pattern for line drawing [5.1.1, 5.2.1]}
pnVis : INTEGER; {Pen visibility level [5.2.3]}
txFont : INTEGER; {Font number for text [8.2.1, 8.3.1]}
txFace : Style; {Type style for text [8.3.1]}
txMode- : INTEGER; {Transfer mode for text [5.1.3, 8.3.1]}
txSize : INTEGER; {Type size for text [8.3.1]}
spExtra : Fixed; {Extra space between words [8.3.1]}
fgColor : LONGINT; {Foreground color}
bkColor : LONGINT; {Background color}
colrBit : INTEGER; {Color plane}
patStretch: INTEGER; {Private}
picSave : Handle; {Private}
rgnSave : Handle; {Private}
polySave : Handle; {Private}

grafProcs : QDProcsPtr

end;

Notes

{Pointer to bottleneck procedures (note 15)}

1. A graphics port is a complete drawing environment containing all
the information needed for QuickDraw drawing operations.

2. Graphics ports are nonrelocatable objects in the heap and are always
referred to by simple pointers rather than handles.

161 (4.2.2) Graphics Port

5.

6.

7.

8‘

10.

11.

12.

13.

14.

15.

portBits is the bit map that this graphics port draws into.

The port's boundary rectangle is the same as that of its bit map,
portBits.bounds.

portRect is the port rectangle, the portion of the bit map that the port
draws into, in local coordinates.

visRgn is the port's visible region, the portion of the port rectangle
currently exposed to view on the screen. It's maintained privately by
the Toolbox to keep track of overlapping windows; never attempt to
manipulate this field yourself.

clipRgn is the clipping region, provided for general-purpose use by the
application.

All drawing in a port is clipped to the intersection of the port's
boundary rectangle, port rectangle, visible region, and clipping
region.

bkPat and fillPat are the port's background pattern and fill pattern,
used in shape drawing; see [5.1.1].

pnLoc, pnSize, pnMode, and pnPat are characteristics of the graphics pen,
used in line drawing; see [5.2.1].

pnVis is the pen level, which controls whether the pen is visible on
the screen; see [5.2.3].

device, txFont, txFace, txMode, txSize, and spExtra are the port’s text charac-
teristics, which control the drawing of text characters; see [8.3.1].

fgColor, bkColor, and colrBit are the port's color characteristics, used to
control drawing on a color display or printer; see Volume Four for
further information.

patStretch, picSave, rgnSave, and polySave are used privately by the Tool-
box.

grafProcs is a pointer to the port's low-level drawing procedures
(sometimes called “bottleneck procedures”). These procedures are
used to “customize”’ QuickDraw operations; see Volume Three for
further information.

162 QuickDraw Fundamentals

Assembly Language Information

Field offsets in a graphics port:

(Pascal) {Assembly)

Field name Offset name Offset in bytes
device device 0
portBits portBits 2
portRect portRect 16
visRagn visRan 24
clipRgn clipRan 28
bkPat bkPat 32
fillPat fillPat 40
pnLoc pnLoc 48
pnSize pnSize 52
pnMode pnMode 56
pnPat pnPat 58
pnVis pnVis 66
txFont txFont 68
txFace txFace 70
txMode txMode 72
txSize txSize 74
spExtra spExtra 76
fgColor fgColor 80
bkColor bkColor 84
colrBit colrBit 88
patStretch patStretch 90
picSave picSave 92
rgnSave rgnSave 96
polySave polySave 100
grafProcs grafProcs 104
portBits.bounds portBounds 8

Assembly-language constant:
Name Value Meaning

portRec 108 Size of graphics port record in bytes

163 [4.2.3] Pixel Access

4.2.3 Pixel Access

‘g! Definitions

function GetPixel S _
(hCoord : INTEGER; (Horizontal coordinate of pixel}
‘vCoord : INTEGER) = {Vertical coordinate of pixel}
* BOOLEAN; : {Is it-a black pixel?}

ﬂ% Notes

1. GetPixel returns the state of a designated pixel in the current graphics
port.

2. hCoord and vCoord are expressed in the local coordinate system of the
current port. The pixel returned will be the one immediately below
and to the right of these coordinates.

3. The function result is TRUE for a black pixel, FALSE for a white one.

4. For a graphics port on the screen (such as a window), the result is
meaningful only if the given coordinates lie within the port’s visible
region.

Assembly Language Information

Trap macro: e S
(Pascal) " (Assembly)
‘Routine name - © 'Trap macro Trap word

GetPixel . _GetPixel $ABG5

164 QuickDraw Fundamentals

4.3 Operations on Graphics Ports

4.3.1 Initializing QuickDraw

Definitions

.|

procedure InitGraf

(globalVars : Ptr); {Pointer to QuickDraw global variables}

var
ThePort : GrafPtr; {Pointer to current port [4.3.3]}
White : Pattern; {Solid white pattern [5.1.2]}
Black : Pattern; {Solid black pattern [5.1.2]}
Gray : Pattern; {Medium gray pattern [5.1.2]}
LtGray : Pattern; {Light gray pattern [5.1.2]}
DkGray : Pattern; {Dark gray pattern [5.1.2]}
Arrow : Gursor; {Standard arrow cursor [l1:2.5.2]}
ScreenBits : BitMap; {Bit map for Macintosh screen [4.2.1]}
RandSeed : LONGINT; .{Seed for random number generation [2.3.8]}
Notes

1. InitGraf must be called before any other QuickDraw operation, to initial-
ize QuickDraw’s global variables and internal data structures.

2. globalVars is a pointer to an area in memory where QuickDraw can
store its global variables.

3. In Pascal, globalVars should always be set to @ThePort.

4. In assembly language, QuickDraw’s global variables can be placed
anywhere in memory where enough space is available. The parameter
passed to InitGraf must be the address of the last global variable, ThePort,
in the last 4 bytes of the space reserved for the globals. InitGraf will
store this pointer at the address contained in register AS5; all the other
globals can then be found at negative offsets relative to this pointer,
using the offset constants given in the table below. See Chapter 3 for
further discussion.

5. The number of bytes needed for QuickDraw’s globals is defined by

the assembly-language constant GrafSize.

. Don't call InitGraf more than once in the same program.

165 [4.3.2) Creating and Destroying Ports

Assembly Language Information

Trap macro:

(Pascal) (Assembly)

Routine name Trap macro Trap word

InitGraf _InitGraf $ABGE

Assembly-language constant:

Name Value Meaning

GrafSize 206 Size in bytes of QuickDraw
global variables

QuickDraw public global variables:

Name Offset in bytes ~ Meaning

The Port : 0 Pointer to current port

White -8 Solid white pattern

Black —-16 Solid black pattern

Gray : —~24 Medium gray pattern

LtGray -32 Light gray pattern

DkGray —40 Dark gray pattern

Arrow -108 Standard arrow cursor

ScreenBits . -122 .. Bit map for Macintosh screen

RandSeed ~126 Seed for random number generation

4.3.2 Creating and Destroying Ports

Definitions

L

procedure OpenPort
(whichPort : GrafPtr); {Pointer to port to open}

procedurs InitPort
(whichPort = GrafPtr); {Pointer to port to initialize}

pracedure ClosePort
(whichPort : GrafPtr); {Pointer to port to close}

166 QuickDraw Fundamentals

Initial values of GrafPort fields:

Field Initial value

device 0 (screen)

portBits Copy of ScreenBits (4.2.1]

portRect (0, 0) to (512, 342)

visRgn Rectangular region (0, 0) to
(512, 342)

clipRgn Rectangular region (—32768, —32768)
to (32767, 32767)

bkPat White [5.1.2]

fillPat Black [5.1.2)

pnLoc (0, 0)

pnSize 1,1

pnMode PatCopy (5.1.3]

pnPat Black [5.1.2]

pnVis 0 (visible) (5.2.3]

txFont 0 (system font) [8.2.1)

txFace Plain (8.3.1]

txMode SrcOr [5.1.3]

txSize 0 (standard size) [8.3.1]

spExtra 0

Notes

5

. OpenPort initializes a graphics port and opens it for use; InitPort reini-

tializes a port that's already been opened.

Both routines set the fields of the GrafPort record to their standard
initial values, as shown in the table.

In both cases, the designated port becomes the current port.

. The bottom-right coordinates of portRect and visRgn reflect the actual

width and height of the screen. These values may vary from those
shown, depending on the model of Macintosh and the display device
being used.

OpenPort allocates space for the port’s internal data structures (the
visible region and clipping region); InitPort does not.

. The GrafPort record representing the port must already have been

allocated previously with NewPtr [3.2.1].

ClosePort destroys a port’s internal data structures (visible region and
clipping region), but not the GrafPort record itself.

167 (4.3.3) Current Port

8. Call this routine to deallocate the space occupied by the visible and
clipping regions before deallocating the port itself with DisposPtr [3.2.2].

Assembly Language Information

Trap macros:

(Pascal) (Assembly)

Routine name Trap macro Trap word
OpenPort —OpenPort $AB6F
InitPort InitPort $A86D
ClosePort —ClosePort $AB7D

4.3.3 Current Port

Definitions

procedure SetPort
(newPort : GrafPtr); {Pointer to port to be made current}

procedure GetPort .
(var curPort : GrafPtr); {Returns pointer to current port}

var
ThePort : GrafPtr; {Pointer to current port}

ﬂ% Notes

1. SetPort makes a designated graphics port the current port; GetPort
returns the current port.

2. Most QuickDraw operations apply implicitly to the current port.

3. A port must be opened with OpenPort [4.3.2] before it can be made
current with SetPort.

4. The global variable ThePort always contains a pointer to the current
port.

5. To access variable ThePort in assembly language, find the pointer to
QuickDraw’s globals at the address contained in register AS5; this
pointer leads directly to ThePort. See Chapter 3 and [4.3.1, note 4] for
further discussion.

168 QuickDraw Fundamentals

Assembly Language Information

Trap macros:

(Pascal) (Assembly) -
Routine name - Trap macro Trap word
SetPort - _SetPort $A873
GetPort ~GetPort ‘$AB74
QuickDraw global variable:

Name Offiset in bytes Meaning ‘
ThePort 0o Pointer to current port

4.3.4 Bit Map and Coordinate System

Definitions.

proacedure SetPortBits
(theBits : BitMap); {New bit map for current. port}

procedure SetOrigin s -
(hOrigin : INTEGER; {New horizontal coordinate of portrectangle}
vOrigin : INTEGER); {New vertical coordinate of port rectangle}

ﬂ% Notes

1. SetPortBits assigns a new bit map to the current port.
2. The bit map theBits is stored into the port’s portBits field [4.2.2).

3. The rectangle theBits.bounds becomes the port’s boundary rectangle and
establishes a new local coordinate system for the port.

4. SetOrigin changes the local coordinate system of the current port so as
to give the top-left corner of its port rectangle (not its boundary
rectangle!) the local coordinates hOrigin and vOrigin.

5. The bottom-right corner of the port rectangle, as well as the boundary
rectangle and the visible region, are adjusted to keep the same spatial
relationships relative to the port rectangle’s new origin.

169 [4.3.5] Port Rectangle

. The port’s clipping region and pen location are not adjusted. Their

coordinates remain unchanged, but are now interpreted relative to
the new coordinate system; this changes their spatial positions rela-
tive to the port rectangle.

. SetOrigin has no visible effect on the screen.
. A port’s initial bit map (after OpenPort or InitPort [4.3.2])) is a copy of the

screen map ScreenBits [4.2.1). Its initial boundary rectangle, port rec-
tangle, and visible region all extend from coordinates (0, 0) at the top
left to the dimensions of the screen at the bottom right.

. The trap macro for SetPortBits is spelled _SetPBits.

Assembly Language Information

Trap macros: .

(Pascal) ‘ {Assembly)

Routine name - - Trap macro Trap word
SetPortBits o _SetPBits : $ABTS
SetOrigin . SetOrigin --$AB78

4.3.5 Port Rectangle

Definitions

.|

procedure MovePortTo

(leftGiobal : INTEGER; {New Ieft“ed‘gé of portrectangle in global coordinates}
topGlobal : INTEGER); {New top edge of port rectangle in global coordinates}

procadure PortSize

(portWidth : INTEGER; {New Wi“dvthg of port rectangle} .
portHeight : INTEGER); {New height of port rectangle}

Notes

=

1. MovePortTo moves the current port’s port rectangle to a new position

within its bit map.

2. leftGlobal and topGlobal are the new global coordinates of the port

rectangle's top-left corner, and will be converted to the port's local
coordinate system.

170 QuickDraw Fundamentals

. The bottom-right corner of the port rectangle is adjusted so that its

width and height remain the same.

. Unlike SetOrigin [4.3.4], MovePortTo does not affect the port’s coordinate

system; it simply moves the port rectangle to a new location within
the existing coordinate system.

. PortSize adjusts the size of the current port’s port rectangle.
. The coordinates of the port rectangle’s bottom-right corner are ad-

justed to give it the new dimensions portWidth and portHeight. The top-left
corner of the rectangle is unchanged.

. These routines are used by the Toolbox to move and size windows

on the screen; application programs normally have no need for them.

. Neither routine has any immediate visible effect on the screen.
. A port’s initial port rectangle (after OpenPort or InitPort [4.3.2]) extends

from coordinates (0, 0) at the top left to the dimensions of the screen at
the bottom right.

Assembly Lnnguage Informatmn

Trap macros:

(Pascal) ' (Assembly)

Routine name o Trap macro Trap word
MovePortTo -MovePoriTo $ABT7

PortSize ’ -PortSize _ . $A876,

4.3.6 Clipping Region

Definitions

ﬂlﬂJ

procedure Setcnp

(newClip : RgnHandle) {Handle to new clipping region}

procedure ClipRect

(newClip : Rect); {Rectangle defining new clipping region}

procedure GetClip

(curClip : RgnHandle); - {Handle to current clipping regidn’}

171 (4.3.6) Clipping Region

Notes

i

1. SetClip sets the current port’s clipping region to a specified region,
which can be of any shape; ClipRect sets it equivalent to a given
rectangle.

2. The handle in the port’s clipRgn field is unchanged, but its master
pointer is set to point to the new clipping region.

3. SetClip copies the region designated by newClip, rather than using the
region itself.

4. The new clipping region or rectangle is expressed in the port’s local
coordinate system.

5. GetClip returns the current port’s clipping region in the handle curClip.

6. The handle itself is unchanged, but its master pointer is set to point
to a copy of the port’s clipping region.

7. A port’s initial clipping region (after OpenPort or InitPort [4.3.2]) extends
from coordinates (—32768, —32768) at the top left to (32767, 32767) at the
bottom right.

- Assembly Lang'uage Informailon -

Trap Macros:

(Pascal (Assembly) ,
Routine name v Trap macro Trap word
SetClip : -SetClip o $ABTS .
ClipRect oo ClipRect T . SA87B.

~ GetClip C — .-GetClip . $AB7A

172 QuickDraw Fundamentals

4.4 Calculations on Graphical Entities

4.4.1 Calculations on Points

r;] Definitions
==

procedure AddPt ‘
(addPoint : Point; {Point to be added}
var toPoint : Point); {Point to add it to}

procedure SubPt ‘
(subPoint : Point; {Point to be subtracted}
var fromPoint : Ppin't); {Point to subtract it erm}

function DeltaPoint '
(fromPoint : Point; {Point to subtract from}

subPoint : Point) {Point to be subtracted}
: LONGINT; {Difference between points}
function EqualPt e
(point1 :-Point; {First point to be compared}
point2 : Point) {Second point to be compared}
: BOOLEAN; : {Are they equal?}

= Notes

1. AddPt adds one point to another; SubPt subtracts one point from
another.

2. The horizontal and vertical coordinates of the two points are added
or subtracted independently.

3. The coordinates of the second point are set to the calculated results;
the first point is unaffected.

4. DeltaPoint also subtracts one point from another, but returns the dif-
ference as a function result rather than through a variable parameter.

5. Although nominally a long integer, the resulit is actually a Point record
(4.1.1], with the vertical difference in the high-order word and the
horizontal difference in the low.

6. EqualPt compares two points for equality and returns a Boolean result.
7. DeltaPoint and EqualPt leave both points unchanged.

173 [4.4.2) Coordinate Conversion

Assembly Language Information

Trap macros: |

(Pascal) - o (Assembly) :
Roufine name - ~ - .. ‘Trap macro. Trap word
AddPt - S AddPt o SABTE
SubPt <.+ _SubPt $AB7F
DeltaPoint —DeltaPoint SAYHF
EqualPt - B —EqualPt $A881

4.4.2 Coordinate Conversion

' Deﬁnitions

- procedurs LocalToGlobal : 5
- (var thePoint : Point); {Point to be ‘g'onve'rted}r
procedure GlobalToLocal 7

~ (var thePojnt : Point); {Point to be converted}

ﬂ% Notes

1. These two routines convert a point between local and global coor-
dinates.

2. The local coordinate system involved is always that of the current
port.

3. In the local coordinate systern, the top-left corner of the port’s bit
image has the coordinates given by the top-left corner of the boundary
rectangle.

4. In the global coordinate system, the top-left corner of the bit image
has coordinates (0, 0), independent of the boundary rectangle. This
provides a convenient basis of comparison between different ports
sharing the same bit image, such as the screen.

5. To convert a point from one port's coordinate system to that of
another, make the first port current with SetPort [4.3.3], convert the
point from local to global coordinates, make the second port current,
and convert from global to local coordinates.

174 QuickDraw Fundamentals

6. To convert a rectangle, polygon, or region from one coordinate system

to another, use OffsetRect [4.4.4), OffsetPoly [4.4.6], or OffsetRgn (4.4.7].

Assembly Language Information

Trap macros:

(Pascal) (Assembly}

Routine name Trap macro Trap word
LocalToGlobal —LocalToGlobal $A870
GlobalToLocal —GlobalToLocal $A871

4.4.3 Testing for Inclusion

Definitions

—H

function PtinRect
(thePoint : Point;
theRect : Rect)
: BOOLEAN;

funetion PtinRgn
(thePoint : Point;
theRegion : RgnHandle)
: BOOLEAN;

function RectinRgn .
(theRect : Reét;
theRegion : RgnHandle)

: BOOLEAN;

funetion PinRect
(thePoint : Point;
theRect : Rect)
: LONGINT;

{Point to be tested}
{Rectangle to test it against}
{ls the point in the rectangle?}

{Point to be tested}
{Handle to region to test it against}
{Is the point in the region?}

{Rectangle to be tested}
{Handle to region to test it against}
{Does the rectangle intersect the region?}

{Rectangle to pin to}
{Point to be pinned}
{Point pinned to rectangle}

175 (443 Testing for Inclusion

Notes

2.

4.

5.

. PtinRect and PtinRgn test whether a given point lies inside a given rectan-

gle or region.

The test actually applies not to the point itself, but to the pixel just
below and to the right of it. For example, PtinRect will return TRUE if the
given point lies on the top or left edge of the rectangle, but FALSE if it's
on the right or bottom edge (since the corresponding pixel is then
outside the rectangle).

RectinRgn tests whether a given rectangle and region intersect. It returns
TRUE if there is at least one pixel that lies inside both the rectangle and
the region, FALSE if they have no pixels in common.

PinRect “pins” a point to a designated rectangle: that is, if the point lies
outside the réctangle, PinRect converts it to the nearest point along the
rectangle’s boundary.

If the point is already inside the rectangle, it's returned unchanged.

The resulting point is returned as a long integer, with its vertical coor-
dinate in the high-order word and its horizontal coordinate in the low-
order word. Use HiWord and LoWerd (2.2.3] to extract the coordinates, or
typecasting (Chapter 2} to convert the long integer to a Point.

Assembly Language Information

Trap macros:

(Pascal) (Assembly)

Routine name ‘Trap macro Trap word
PtinRect —PtinRect $ABAD
PtinRgn —PtinRgn $ABES
RectinRgn ~RectinRgn $ABE9

PinRect _PinRect $AYE

176 QuickDraw Fundamentals

4.4.4 Calculations on One Rectangle

Definitions

m

procadure OffsetRect

(var theRect : Rect; {Rectangle to be offset}

hOffset : INTEGER; {Horizontal offsetin pixels}

vOffset : INTEGER); {Vertical offset in pixels}
procedure InsetRect

(var theRect : Rect; {Rectangle to be inset}

hinset : INTEGER; {Horizontal inset in pixels}

vinset : INTEGER); {Vertical inset in pixels}
function EmptyRect :

(theRect : Rect) {Rectangle to be tested}

: BOOLEAN; {ls the rectangle empty?}

Notes

il

. OffsetRect moves a rectangle to a new position within its coordinate

system without affecting its width and height.

. The given horizontal and vertical offsets are added to both the

rectangle’s top-left and bottom-right corners.

. A positive horizontal offset moves the rectangle to the right, negative

to the left; a positive vertical offset moves the rectangle downward,
a negative one moves it upward.

. This operation is useful for transforming a rectangle from one coor-

dinate system to another.

. InsetRect shrinks or expands a rectangle while leaving it centered at

the same position.

. The given horizontal and vertical insets are added to the rectangle’s

top-left corner and subtracted from its bottom-right corner.

. A positive inset in either dimension shrinks the rectangle in that

dimension; a negative inset expands it.

. If the rectangle becomes empty (right < left or bottom < top), all four

of its coordinates are set to 0.

. EmptyRect tests whether a rectangle is empty.
10.

None of these operations has any visible effect on the screen.

177 (4.4.5) Calculations on Two Rectangles

Assembly Languag;a_lnformation

Trap macros: :
(Pascal) , "~ (Assembly)

Routine name - Trap macro Trap word
OffsetRect <% OffsetRect - $ABA8
InsetRect - _InsetRect $A8A9

EmptyRect —EmptyRect $ABAE

4.4.5 Calculations on Two Rectangles

_;I Definitions
==

procedure UnionRect
(rectt : Rect; ~ {First rectangle}
rect2 : Rect; {Second rectangle}
var resultRect : Rect);.. {Returns union of two rectangles}

function SectRect

(rect1 : Rect; {First rectangie}

rect2 : Rect; {Second rectangle}

var resuitRect : Rect) . {Returns intersection of two rectangles}
: BOOLEAN; ~ {Do the rectangles intersect?}

function EqualRect

(rect1 : Rect; - {First rectangle}

rect2 : Rect) {Second rectangle}
: BOOLEAN; {Are the rectangles equal?}

ﬂ% Notes

1. UnionRect forms the union of two rectangles, the smallest rectangle that
completely encloses both of them.

2. SectRect forms the intersection of two rectangles, the largest rectangle
completely enclosed within both of them.

3. SectRect returns a Boolean result telling whether the intersection of the
two rectangles is nonempty (encloses at least one pixel).

178 QuickDraw Fundamentals

4, If the intersection is empty, all four coordinates of resuitRect will be set

5.

6.

to 0.

EqualRect tests whether two rectangles are equal {agree in all four
coordinates).

For any of these routines to produce meaningful results, both rect-
angles must be expressed in the same coordinate system.

7. None of these operations has any visible effect on the screen.

Assembly Language Information

Trap macros:

(Pascal) {Assembly) , ,
Routine name ~Trap macro . Trap word
UnionRect ' - _UnionRect SABAB
SectRect . _ SectRect $ABAA

EqualRect o _EqualRect ‘ SABAG

4.4.6 Calculations on Polygons

Definitions

I

procedure OffsetPoly
(thePolygon : PolyHandle; {Polygon to be offset}
hoffset’ % INTEGER; {Horizontal offsetin pixels}
vOffset 2 INTEGER); {Vertical offset in pixels}

Notes

. OffsetPoly moves a polygon to a new position within its coordinate

system without affecting its shape and size.

. A positive horizontal offset moves the polygon to the right, negative

to the left; a positive vertical offset moves the polygon downward, a
negative one moves it upward.

. This operation is useful for transforming a polygon from one coor-

dinate system to another.

. The operation has no visible effect on the screen.

179 (4.4.7) Calculations on One Region

Assembly Language lnfmgmaﬁon

Trap macro: ,
(Pascal) -~ - n . (Assembly) -
Routine name.- = = * - Trap macro . “Trap word

OffsetPoly ' -~ _OffsetPoly ‘ $ABCE

4.4.7 Calculations on One Region

Definitions

procedure. OffsetRgn .) : ,
- (theRegion':-RgnHandle; {Handle to region to be offset}
hOffset . INTEGER; {Horizontal offset in pixels}
vOffset JNTEGER);’ {Vertical offset in. pixels}

procedurs. InsetRgn o : :
(theRegion RgnHandle {Handle to region to be inset}
hinset : INTEGER;. {Horizontal inset in pixels}
vinset :CINTEGER): {Vertical inset in pixels}

function EmptyRgn
(theRegion : RgnHandle) {Handle to region to be tested}
: BOOLEAN; ’ {ls thé region empty?}

Notes

1. OffsetRgn moves a region to a new position within its coordinate system
without affecting its shape and size.

2. A positive horizontal offset moves the region to the right, negative to
the left; a positive vertical offset moves the region downward, a
negative one moves it upward.

180 QuickDraw Fundamentals

3. This operation is useful for transforming a region from one coordinate
system to another.

4. InsetRgn shrinks or expands a region while leaving it centered at the
same position.

5. All coordinates in the region’s definition are moved inward (toward
the center) by the given horizontal and vertical insets.

A positive inset in either dimension shrinks the region in that dimen-
sion; a negative inset expands it.

7. EmptyRgn tests whether a region is empty.

8. None of these operations has any visible effect on the screen.
9. The trap macro for OffsetRgn is spelled _OfsetRgn.

Assembly Language Information

Trap macros:

(Pascal) {Assembly) ’
Routine name ‘Trap macro Trap word
OffsetRgn ' _OfsetRgn $ABED
InsetRgn _InsetRgn $ABE1

EmptyRgn _EmptyRgn $ABE2

181 (4.4.8] Calculations on Two Regions

4.4.8 Calculations on Two Regions

|g! , Definitions

procedure UnionRgn . .
(region1
region2

resultRegion :

procedure SectBgn
(regioni
region2

resultRegion :

procedure DiffRgn
(regiont
region2

resultRegion :

proceddr XOrRgn
(region1
region2

resultRegion :

function EqualRgn

: RgnHandle; {Handle to first region}
: RgnHandle; {Handlie to second region}
RgnHandle); {Handle to be set to union of two regions} -

: RgnHandle; {Handle to first region}
: RgnHandle; {Handle to second region} SR
RgnHandle); {Handle to be set to intersection of two regions}

: RgnHandle; {Handle to ‘region to be subtracted from}
: RgnHandle; {Handle to region to subtract from it}
RgnHandle); {Handle to be set to difference of two regions}

: RgnHandle; {Handle to first region}
: RgnHandle; - {Handle to second region}
RgnHandie); {Handle to be setto “‘exclusive or” of two regions}

(region1 : RgnHandle; {Handle to first region}
region2 : RgnHandle) {Handle to second region}
: BOOLEAN; {Are the regions equal?}

% Notes

2.

3.

4.

5.

. UnionRgn forms the union of two regions, the smallest region that

completely encloses both of them.

SectRgn forms the intersection of two regions, the largest region
completely enclosed within both of them.

DiffRgn forms the difference of two regions, the portion of the first
region that doesn't lie within the second.

XOrRgn forms the “exclusive or” of two regions, the difference between
their union and intersection.

In each case, the destination region resultRegion must already have
been previously created with NewRgn [4.1.6].

182 QuickDraw Fundamentals

6. In each case, if the result of the calculation is the empty region,
resultRegion will be set to a rectangular region with all four coordinates
equal to 0.

7. EqualRgn tests whether two regions are equal (have the same shape,
size, and location).

8. Any two empty regions are considered equal.

9. For any of these routines to produce meaningful results, both regions
must be expressed in the same coordinate system.

10. None of these operations has any visible effect on the screen.

Assembly Language Information

Trap macros:

(Pascal) {Assembly)

Routine name Trap macro Trap word
UnionRgn . —UnionRgn $ABES
SectRgn _SectRan $ABE4
DiffRgn _DiffRgn $ABEG
XOrRgn —XOrRgn $ABE7

EqualRgn —EqualRgn $ABE3

183 (4.4.9) scaling and Mapping

4.4.9 Scaling and Mapping

Definitions

~procedura ScalePt

- “{var ith_ePo,ifnt {Point to be scaled}

fromRect {Rectangle to scale it from}
-toRect {Rectangle to scale it to}
procedure MapPt : ’ ,
(var thePoint : Point; ‘{Point to be mapped}
fromRect :Rect; {Rectangle to map it from}
toRect - :Rect); {Rectangle to map it to}
pracedure - MapRect - o '
(var theRect : Rect; = {Rectangle to be mapped}
fromRect :Rect; {Rectangle to map it from}
toRect : Rect); ' {Rectangle to map it to}
procedure MapPoly L ‘ : '
" (thePolygon : PalyHandle; {Polygon to be mapped}
fromRect : Rect; ~{Rectangle to map it from}
toRect - :.Rect); . - {Rectangle to map it to}
procedure MapRgn
(theRegion : RgnHandle; {Region to be mapped}
fromRect : Rect; {Rectangle to map it from}
toRect : Rect); {Rectangle to map it to}

ﬂ% Notes

. ScalePt scales a point by the ratio of the dimensions of two rectangles.

2. Each coordinate of thePoint is scaled by the ratio of toRect to fromRect in
the corresponding dimension. That is, the horizontal coordinate of
the point is multiplied by the ratio of the rectangles’ widths, and the
vertical coordinate by the ratio of their heights.

3. MapPt maps a point in one rectangle to the corresponding point in
another.

4. The mapping takes into account both the ratio of the rectangles'
dimensions and the offset between their top-left corners. The effect is
as if rectangle fromRect were moved and stretched or shrunk to coin-
cide with toRect.

[~

184 QuickDraw Fundamentals

5. MapRect, MapPoly, and MapRgn map an entire figure from one rectangle
to another by mapping each point of the figure as in MapPt.

6. In each case, the figure should be entirely contained within the
rectangle fromRect.

Assembly Language Information

Trap macros:

(Pascal) (Assembly)

Routine name Trap macro Trap word
ScalePt _ScalePt $ABF8
MapPt _MapPt SABFI
MapRect _MapRect SABFA
MapPoly _MapPaly SABFC

MapRagn) _MapRgn SABFB

CHAPTER

x

Quick on the Draw

uickDraw places a wide variety of drawing facilities at your
disposal. You can draw

* Lines, using a “pen” of any size and pattern (Figure 5-1a), with a variety
of graphical effects.

* Shapes, including rectangles with square or rounded corners, circles,
ovals, arcs, wedges, and polygons of any shape. All of these can be
outlined with any pen or filled with any pattern (Figure 5-1b).

* Regions made up of any combination of lines and shapes forming a
closed area. A region can have any shape whatever—even one with two
or more pieces or with holes in it. For instance, the shaded area in
Figure 5-1c could be defined as a single region.

* Text characters in a variety of typefaces, sizes, and styles (Figure 5-1d).

In addition, you can take any of these graphical elements and
stretch or condense it to any desired proportions, horizontally,
vertically, or both ways independently. You can “clip” one element
to the boundaries of another—for instance, to make one object
appear to be hidden behind another. (This is how the Toolbox
makes the windows overlap on your screen.) And you can define
pictures consisting of any combination of these elements and
operations, which you can then treat as a unit and redraw in a
single operation.

185

186 Quick on the Draw

Here's

lext

ina

variety of
fonts,

sizes and
stylesl

d. Text

c. Regions

Figure 5-1 QuickDraw graphical elements

Line Drawing

All line drawing in a graphics port is done with the graphics pen.
Every port has its own pen; you draw lines in the port’s bit map
by moving the pen from point to point on the coordinate grid.

187 Line Drawing

The pen'’s current location is kept in the pnLoc field of the graphics
port [4.2.2]; you can read it out at any time with the QuickDraw
procedure GetPen [5.2.4].

The routines for drawing lines with the pen are Move, MoveTo,
Line, and LineTo [5.2.4]. MoveTo simply moves the pen to a designated
pair of coordinates, without drawing anything; it's like picking the
pen up off the paper (that is, the bit map) before moving it. LineTo
puts the pen down on the paper and then moves it from its
current location to a new set of coordinates, drawing as it goes.
The result is a straight line directly from one point to another.
The pen is then left at the new location, ready to begin the next
line. For example, the statements

MoveTo (50, 50);

LineTo (150, 50);
LineTo (150, 150);
LineTo (50, 150);
LineTo (50, 50)

draw a square 100 pixels on a side, with its top-left corner at
coordinates (50, 50).

Everything the pen draws is:clipped to the intersection of the port’s
boundary rectangle, port rectangle, clipping region, and. visible

- region [4.2.2). The pen will go anywhere you tell it on the coordinate.
grid, even outside these boundaries, but only those lines (or parts
of lines) that fall ingide the clipping boundaries will actually be

. drawn: Anything dmwn autside the clipping boundaries is lost:

. even if you later enlarge the boundaries, the clipped parts of the
drawm,g won't reappear : ;

The procedures Move and Line are similar to MoveTo and LineTo,
but interpret the coordinates you give as a motion relative to the
current pen location, rather than as an absolute location on the
coordinate grid. A positive value for the horizontal coordinate
moves the pen to the right, negative to the left; a positive vertical
coordinate moves the pen downward, a negative one moves it

188 Quick on the Draw

upward. For example, the statements

MoveTo (50, 50); {Move to starting point}

Line (100, 0); {Draw 100 pixels to the right, }
Line (0, 100); { 100 down, }
Line (=100, 0); { 100 to the left, }
Line (0,—100) { and 100 up }

draw the same square as in the previous example.

When you shift the origin of the coordinate system with SetOrigin
[4.3.4], the pen goes along for the ride. The coordinates of the pen
remain unchanged, but those coordinates now lie at a new position
within the port's bit map. The pen is said to “stick to” the coor-
dinate system. Anything you've already drawn in the port, however,
sticks to the image: the existing pixels in the bit image remain the
same, but the coordinates of each pixel change because of the
change of origin.

Program 5-1 shows a simple example of line drawing.
Procedure StopSign draws the stop sign shown in Figure 5-2 into
the current graphics port, at any specified location and to any
specified scale. The parameters figureTop and figurelLeft locate the
figure within the port’s local coordinate system; scale gives the size
of the scale units in which the figure is drawn.

To simplify our drawing operations, we will temporarily
transform the coordinate system to give the origin (that is, the
top-left corner) of the figure the coordinates (0, 0). First we call
GetPort [4.3.3] to get a pointer to the current port, which we use to
find the origin of the port rectangle,

currentPort-.portRect.topLeft

Before transforming the coordinates of this point, we first save it in
the variable oldOrigin so that we can later restore the coordinate
system to its original state. Then we use Set0Origin [4.3.4] to subtract
the coordinates of the figure’s origin, figureLeft and figureTop, from
those of the port rectangle’s origin. This has the effect of subtract-
ing these same two values from the coordinates of every other

189 Line Drawing

point in the port as well: in particular, it transforms the point
(figureLeft, figureTop), which will be the origin of the figure, to (0, 0) as

we want,

Now we're ready to draw the figure: first the octagonal outline
of the stop sign, then the two horizontal lines, then each of the
letters in turn. All our drawing operations are defined in terms of
the specified scale unit; overall, the figure is 18 units wide by 18
high. Finally, we restore the port’s original coordinate system with

SetOrigin and exit.

procedure StopSign (figureTap : INTEGER
figuraleft : INTEGER;
scale : INTEGER);

{ Exasple of sisple line drawing.)

var
currentPort : GrafPtr;
oldOrigin : Point;

begin (StopSign}

GetPort (currentPort);
oldOrigin := currentPort”.portRect.topleft;
with oldOrigin do

SetOrigin th - figureleft, v - figureTop);

%oveTo (5 § scale, O);
Line (8 8 scale, 0 |H
Line (5 8 scale, 38 scalel;
Line (0 s 818 scale);
Line (-5 8 scale, 5 8 scale);
Lire (-8 & scale, 0 |H
Line (-5 ¢ scale, -5 ¢ scale);
Line (0O s -8 ¢ scale);

Line (5 8 scale, -5 8 scale);

{Top edge of figure in local coordinates}
{Left edge of figure in local coordinates}
(Size of scale unit in pixels}

(Pointer to current port [4.2,21}
{Crigin of port rectangle on entry [4.1.11}

{Get pointer to current port [4.3.313
{Save old origin of port rectangle (4.2.2, 4.1.21}

(Offset to origin of figure [4.3.41}

{Draw the octagon [5.2.41}

Program 5-1 Line drawing

190 Quick on the Draw

NoveTo { 0 , 58 scale); {Braw the horizontal lines [5.2.41}
Line (18 8 scale, 0 |H

HoveTo { 0 s 13 1 scale);

Line (18 ¢ scale, 0 |H

NoveTo { 4 § scale, 7 8 scale); (Draw the *5" [5.2.41}
Line (-2 8 scale, O);

Line (0 s 28 scale);

Line (2 8 scale, 0 |H

Lire (0 s 214 scalely

Line (-2 § scale, 0 |H

HoveTa (7 § scale, 7 8 scale); {Draw the *T* [5.2.41}
Line (0 s 48 scalel;

Nove (-1 § scale, -4 § scale);

Line (2 ¢ scale, 0)3

Hovelo (10 § scale, 7 8 scalel; {(Draw the "0" [5.2.41}
Line (2 8 scale, 0 IH

tine (0 s 48 scalel;

Line (-2 § scale, 0)3

Line (0 y -4 8 scale);

NoveTo (14 ¢ scale, 7 ¢ scale); {Draw the °P* [5.2.41}
Ltine (0 s 41 scale);

Nove (O , -4 8 scale);

Line (218 scale, 0 |H

Line (90 s 2 ¥ scale);

Line (-2 8 scale, 0 |H

with oldbrigin do
SetOrigin (h, v) {Restare old origin [4.3.41}

end; (StopSign}

Program 5-1 (continued)

191 Line Drawing

(5, 0) (13, 0
(0, 5) (18, 5)
(0, 13) (18, 13)
(5, 1) (13, 18)

All coordinates are
expressed in scale units.

Figure 5-2 Output of procedure StopSign

Pen Size

The “pen point” that you draw with is always rectangular in
shape, but it can be any size you like. When you open or reinitial-
ize a graphics port, its pen is set to the finest possible point, 1
pixel wide by 1 pixel high. You can then change its dimensions
with the QuickDraw procedure PenSize (5.2.2]. For example, to make
the pen 3 pixels wide by 7 high, you would write

PenSize (3, 7)

If you make: eltherdnnenslon of the pen zero or negative, the pen
vanishes completely and won't draw anything at all.

A port's pen location always refers to the top-left corner of
the pen; the rest of the pen “hangs” below and to the right of
those coordinates. It's important to keep this in mind when you
use pen sizes bigger than (1, 1). Lines drawn with Line or LineTo
don’t necessarily end at the coordinates you specify: they extend
to include the width and height of the pen as well. For example,
in Figure 5-3, a line drawn from coordinates (65, 140) to (80, 145),
using a pen 3 pixels wide by 7 high, will extend to coordinates (83,
152), the bottom-right corner of the pen.

192 Quick on the Draw

(65, 140)
Top-left corner
of pen's ~
starting o~ ... (80, 145)
position Top-left corner
. .. of pen’s ending
] e position
7 pixels
\\
i ‘;‘:_ (83, 152)
|<,_.i i Tip of pen extends
/ 7 pixels down and
d 3 pixels across
3 pixels
Figure 5-3 Pen size
Hiding the Pen

The pen draws into a port’s bit image only when it's visible. It can
also be hidden, in which case none of your drawing operations
have any effect on the image. You can hide the pen with HidePen
and later make it visible again with ShowPen [5.2.3]. These routines
control the pen's visibility by manipulating the pnVis field of the
current graphics port.

You might think that pnVis would be a simple Boolean field:
TRUE if the pen is visible, FALSE if it's hidden. Actually, it's an integer
called the pen level: the pen is hidden if the pen level is negative,
visible if it's zero or positive. The pen level is set to 0 when you
open a new port, making the pen initially visible. HidePen decre-
ments the level by 1, which hides the pen by making the pen level
negative; ShowPen increments the level by 1, undoing the effect of
the last HidePen. Notice that this doesn’t necessarily cause the pen
to become visible again: it just restores the pen level to whatever
value it had before the pen was last hidden. In effect, the pen level
counts how many times the pen has been hidden and not yet
reshown. This allows calls to HidePen and ShowPen to be “nested”
to any depth; only when every HidePen has been balanced by a
corresponding ShowPen will the pen become visible again.

193 Line Drawing

This arrangement is useful for writing routines that leave the
pen in the same state of visibility as when they found it. If a
routine needs to hide the pen, it can restore the previous pen level
by calling ShowPen before returning. If the pen was visible (PnVis =
0) on entry to the routine, this will make it visible again; if it was
already hidden (pnVis < 0), the routine will leave it hidden at the
same depth of nesting as before.

Notice that if the pen level ever becomes greater than 0, decrement-
ing it with HidePen won't make it negative and so won't hide the pen.
To keep this from happening, don't ever call ShowPen except to
balance a previous call to HidePen. This will keep the pen level from
going above 0, so the pen will always hide when you tell it to.

Patterns and Transfer Modes

You can achieve a variety of interesting graphical effects by varying
two more of the pen’s characteristics, its pattern and transfer mode.
A pattern [5.1.1] is a special bit image, always 8 pixels wide by 8 high,
that can be repeated indefinitely to fill an area in a bit map, like
identical floor tiles laid end to end (see Figure 5-4). You can use
the graphics pen to paint any pattern by setting the pen pattern
kept in the port’s pnPat field [4.2.2]. A port’s pen pattern is initially
set to solid black, but you can change it to some other pattern

Figure 5-4 Patterns

194 Quick on the Draw

White

Gray DkGray

Figure 5-5 Standard fill tones

with PenPat [5.2.2]. The pen will then paint in that pattern, just like
the paintbrush tool in MacPaint.

When you paint with a pattern, QuickDraw automatically aligns
each “tile” so that its top-left corner falls at an even multiple of 8
pixels from the origin of the port rectangle. This ensures that
adjacent areas of the same pattern will blend into one another
without creating visible “seams” along the boundaries.

The Toolbox provides five standard patterns representing a
range of tones from solid white to solid black (Figure 5-5). These
standard fill tones are available in the global variables White, LtGray,
Gray, DkGray, and Black [5.1.2], which are initialized when you call
InitGraf [4.3.1]. You can also define your own patterns by storing the
desired bits into them with StuffHex [2.2.4]. For example, if myPattern
is a variable of type Pattern, the statement

StuffHex (@myPattern, '3C66C39999C3663C’)

will set it to the third pattern shown in Figure 5-4.

195 Line Drawing

w

%
'

T

Figure 5-6 Standard pattern list

For a more varied selection than just the five standard fill tones, a
pattern list is available in the system resource file containing the
same 38 patterns that MacPaint offers on its pattern palette (see
Figure 5-6). We'll be learning about resources in the next chapter;

you can access individual patterns in the list with the Toolbox
routine GetindPattern [5.1.1].

Besides a pen pattern, every graphics port also has a back-
ground pattern (bkPat) and a fill pattern (fillPat.. The background
pattern is used for erasing things. It's normally solid white, but
you can set it to some other pattern with BackPat [5.1.1]. The fill
pattern is used privately by QuickDraw for certain shape-drawing
operations; you'll never need to set it yourself.

A port's pen mode [5.1.3] controls the way the pen paints its
pattern into the bit map. There are four basic pen modes, and
four more that are variants of the basic ones (see Figure 5-7). The
most straightforward is PatCopy, which simply copies the pixels of

196 Quick on the Draw

the pattern directly to the bit map, replacing whatever was there
before. The existing pixels of the bit map are simply “painted over”
by those of the pattern, both black and white. This is the mode
the pen is set to when you open a brand-new graphics port; to
switch to one of the other modes instead, use PenMode [5.2.2].

Overlay Existing
pattern pattern

SrcCopy, SrcOr, SrcX0r, SrcBic,
PatCopy PatOr PatX0r PatBic

NotSrcCopy, NotSrcOr, NotSrcXO0r, NotSrcBic,
NotPatCopy NotPatOr NotPatX0r NotPatBic

Figure 5-7 Transfer modes

197 Direct Bit Transfer

The other three basic pen modes each perform a particular
operation on the existing pixels of the bit map. They all use the
pattern as a “mask” to select which pixels of the bit map the
operation will affect. Wherever the pattern has a black pixel (that
is, a 1 bit), the corresponding pixel of the bit map will be affected;
a white pixel (0 bit) in the pattern leaves the existing pixel in the
bit map unchanged. The pen mode PatOr sets the selected bits in
the bit map to black, PatBic (“bit clear”) clears them to white, and
PatXOr (“exclusive or”) inverts them from one color to the other.

The four variant pen modes work the same as the four basic
ones, but reverse the roles of the white and black pixels in the
pattern. So NotPatCopy paints the inverse of the pattern: white pixels
where the pattern has black, and vice versa. NotPatOr, NotPatX0r, and
NotPatBic perform the same operations as their counterparts just
described, but they affect those pixels in the bit map correspond-
ing to white in the pattern, while leaving those corresponding to
black unchanged. (The bits of the pattern itself aren’'t inverted,
they’re just interpreted the opposite way.)

Together, the pen’s location, size, pattern, and mode make up
the port’s pen state. If you have to change any of the pen’s
characteristics for any reason, you can save the old state with
GetPenState and restore it later with SetPenState [5.2.1). The routine
PenNormal [5.2.2] resets the pen to its initial state: 1 pixel wide by
1 high, with a solid black pattern and a pen mode of PatCopy.

Direct Bit Transfer

QuickDraw’s fundamental drawing operation, on which all the
others are based, is CopyBits [5.1.4). It copies pixels directly from
any rectangle in one bit map (the source) to any rectangle in
another (the destination), in any of the eight transfer modes and
with optional scaling and clipping. You can use CopyBits to “stamp”
a copy of a small bit image into a designated location in another.
For example, to stamp the pointing hand of Figure 4-3, which we
defined in the last chapter as a bit map named theMap, into a larger
bit map named theCanvas at coordinates (85, 60), you could write

SetRect (atRect, 85, 60, 103, 72);

CopyBits (theMap, theCanvas,
theMap.bounds, atRect,
SrcCopy, NIL)

198 Quick on the Draw

(In this example the rectangle you're copying from is theMap.bounds,
the entire boundary rectangle of the source bit map; you could
also specify a smaller source rectangle to transfer just a part of the
bit map instead of the whole thing.)

Notice that the transfer mode in the example is specified as
SrcCopy, not PatCopy as in the preceding section. CopyBits has its own
set of eight source transfer modes [5.1.3], analogous to the pattern
transfer modes used with the graphics pen. It's important to keep
the two kinds of transfer mode straight, and to use the right kind
in a given situation. The pattern modes are for painting patterns
with the pen; the source modes are for transferring bits from one
bit map to another. As we'll see when we talk about character text
in Chapter 8, the characters in a font are also represented in the
form of a bit map, so source transfer modes are used for “painting”
text characters as well.

Another thing to notice in the example above is that the
destination rectangle atRect has the same dimensions as the source
rectangle theMap.bounds, 18 pixels wide by 12 high. This means the
source map will be copied directly, pixel for pixel, to the destina-
tion. The two rectangles aren’t required to be the same size,
however. If they aren't, the source pixels will be stretched or
condensed to fit the destination rectangle. For instance, if you
used a destination rectangle twice as wide and three times as
high, 36 pixels by 36,

SetRect (atRect, 85, 60, 121, 96)

the source image would be scaled accordingly and would come
out looking as in Figure 5-8.

Scaling an image to a different-size rectangle works best if both
dimensions of the destination rectangle are exact multiples or
divisors of the source dimensions. Otherwise the image tends to
come out looking distorted and ugly, like text scaled to an unavail-
able point size in MacPaint or MacWrite.

199

Original image

|«——— 18 pixels ——p|

i

|

12 pixels

Direct Bit Transfer

Scaled image

[36 pixels >

&

Figure 5-8 Scaling an image

36 pixels

200 Quick on the Draw

QuickDraw has utility routines for mapping standard figures such
as points, rectangles, polygons, and regions from ‘orie rectangle to.
another [4.4.9). These:routines transform each point in the original |
figure, relative to the origin of the source rectangle, to the cor
respondmg coordmates lative to -the. ongm of: the destmatmn

The last parameter to CopyBits is an arbitrary clipping region,
expressed in the coordinate system of the destination bit map.

MapPoly (thePolygen, fromRect, toRect)

fromRect toRect
(60, 60) \ (150, 100) |
(150, 85)
thePelygon
(before) (210, 150)
thePolygon
-~ (after)
(90, 135) {210, 135) -~
(240, 160)
(170, 250) (250, 250)
(270, 300)

Figure 5-9 Mapping a figure

201 Direct Bit Transfer

a. Source rectangle and
point before mapping
or scaling

MapPt (thePoint, fromRect, toRect)

b. The new position of
thePaint (210, 150) is
mapped with reference
to the origin of the
destination rectangle
(159, 100).

ScalePt (thePoint, fromRect, toRect)

c. The new position of
thePoint (100, 170) is
scaled without reference
to the origin of the
destination rectangle.

Boundary rectangle
|
(60, 60)
(150, 85)
®
thePoint | fromRect (source
(before) rectangle)
(240, 160)
(150, 100)
thePoint
(after)
°
(210, 150)
—— toRect (destination
rectangle)
(270, 300)
(150, 100)
thePoint
(after)
po
(100, 170) — toRect (destination
rectangle)
(270, 300)

Figure 5-10 Scaling and mapping a point

202 Quick on the Draw

You can use this to confine the bit transfer within any desired
boundary of any shape—only those bits that lie inside the given
boundary will actually be transferred. If you don’t want to specify
a clipping region, you can set this parameter to NIL, as in our
example above. However, CopyBits will always clip automatically to
the boundary rectangle of the destination bit map, and in the
common case where the destination is the bit map belonging to
the current graphics port (ThePort.portBits), it will also clip to the
port’s port rectangle, visible region, and clipping region.

The Macintosh Plus also has an alternate bit-transfer routine named
CopyMask (5.1.4). Instead of using a clipping region to confine the
transfer operation, CopyMask accepts a rectangular portion of a third
bit map to be used as a mask. Pixels are copied from the source
bit map to the destination only in those- posmons where the mask
has a black pixel; where the- mask pixel is white, the destination
pixel is left unchanged. Unlike the original CopyBits, CopyMask doesn’t
accept a mode parameter, but just does'a straight copy (equivalent
to transfer mode SrcCopy). Also, it won't scale one rectangle to
another of a different size: the source, mask, and destination rec-
tangles must all have the same dimensions for the transfer to work

properly.

A specialized form of bit transfer is ScrollRect [5.1.5], which
shifts the contents of a rectangle within the current port by a given
horizontal and vertical distance. As the name suggests, this opera-
tion is useful mainly for scrolling the contents of a window on the
screen. The results are clipped to the specified rectangle, as well
as to the usual clipping boundaries (boundary rectangle, port
rectangle, clipping region, and visible region). Pixels scrolled out
of the rectangle at one end are lost forever; the empty space
vacated at the other end is “erased” by filling it with the port's
background pattern, normally solid white (see Figure 5-11).

It's then your responsibility to fill in this cleared area with
whatever new information may have been scrolled into the win-
dow. As we'll see in the chapter on windows in Volume Two, this
involves adding the area to the window’s update region. ScrollRect
supports this chore by returning a handle to the affected region
through its updateRgn parameter; you can then add the region to

203 Direct Bit Transfer

rectangle
q——l
Scroll Background
direction pattern (White)

Rest of image fallen
off the edge and
lost forever

Figure 5-11 Scrolling a rectangle

204 Quick on the Draw

the window’s update region with the window-management routine
InvalRgn [11:3.4.2).

Icons

One particularly important category of bit images used extensively
in the Macintosh user interface are icons. These are images of a
standard size, 32 pixels by 32, used (among other things) to
represent objects on the Macintosh desktop that the user can
manipulate directly with the mouse (see Figure 5-12). There isn't
any special data type representing an icon; it's just a block of 1024

=

Disk EENEEEEEEEEEESNENEEENEEENEENES

(l

Trash EEENEENEEEEEEEEEER

Figure 5-12 Icons

205 Drawing Shapes

Drawing Shapes

bits (128 bytes, or 64 words) that resides in the heap and is referred
to by a handle.

Icons are commonly stored in resource files (Chapter 6) and
read in with the Toolbox routine Geticon (5.4.4], but you can also
create one for yourself as an

array [1..32] of LONGINT

and fill in its bits with StuffHex [2.2.4]. You can then draw the icon
anywhere in the current port with Ploticon [5.4.4). (The new Macin-
tosh Plus routine CopyMask [5.1.4] is also useful for drawing icons.)

In addition to simple line drawing and bit transfers, QuickDraw
can also perform a range of drawing operations on a wide variety
of standard shapes:

* Rectangles and squares, with both square and rounded corners

¢ Ovals and circles

* Arcs and wedges

* Polygons

* Regions of any shape

Shape-drawing operations are always performed in the current
graphics port, and the shapes to be drawn must be specified in the

coordinate system of that port. There are five standard drawing
operations [5.3.1]:

* Framing the shape (drawing its outline)

¢ Painting the shape with the port’s current pen pattern

* Filling the shape with any other designated pattern

* Erasing the shape (filling it with the port’s background pattern)

¢ Inverting the shape (changing white pixels to black and vice versa)

Even though some of these operations (framing and painting)
use the current pen characteristics, they're independent of the
pen location and don’t change it in any way. However, these
operations are affected by the pen level, and have no effect on the
bit map if the pen is hidden. As usual, all drawing operations are
clipped to the port’s boundary rectangle, port rectangle, clipping
region, and visible region.

206 Quick on the Draw

Rectangles

The simplest of all QuickDraw shapes is the rectangle, which we
discussed in Chapter 4. To illustrate how the various shape-
drawing operations work, let’s look at how they apply to rectangles
(5.3.2]. The equivalent operations on other shapes work in the
same general way.

The FrameRect routine (Figure 5-13) draws the outline of a
rectangle without affecting its interior. The outline is holiow:
whatever was inside the rectangle before the operation will still
show through afterward. The outline is drawn with the port's
graphics pen, so its appearance depends on the current pen size,
pattern, and mode. The pen is then returned to wherever it was
before, so the operation has no overall effect on its location.

In framing a shape, QuickDraw automatically adjusts for the current
pen size to keep its drawing confined “within the lines.” The outline
that’s drawn won't extend beyond the shape’s boundary at the right
and bottom, regardless of the pen’s size. In general, QuickDraw
drawing operations never affect any pixels outside the boundary of
the shape being drawn. (The one exception to this rule, as we'll see
later, occurs when you frame a polygon.)

FrameRect (r)

Figure 5-13 Framing a rectangle

207 Drawing Shapes

PaintRect (r)

Figure 5-14 Painting a rectangle

PaintRect, FillRect, and EraseRect all fill a rectangle with a pat-
tern—both its outline and its interior. PaintRect (Figure 5-14) uses the
port’s current pen pattern and pen mode; FillRect (Figure 5-15) uses
a pattern you supply as an argument, with a transfer mode of
PatCopy; EraseRect (Figure 5-16) uses the port's background pattern
and the PatCopy mode.

Finally, InvertRect (Figure 5-17) inverts all existing pixels within
the rectangle, changing white to black and black to white. The
entire rectangle is affected, both outline and interior.

Program 5-2 illustrates the use of these rectangle-drawing
operations to produce a dynamically changing work of “abstract
art.” The results (Figure 5-18) are reminiscent of the rectilinear style
of the Dutch painter Piet Mondrian. To keep things simple, we
adjust the origin of the current port’s port rectangle (presumably a
window on the screen) to coordinates (0, 0), after first saving the
previous coordinates in variable oldOrigin for later restoration. Then
we begin generating random rectangles based on the width and
height of the port rectangle, using our earlier Randomize function
(Program 2-1). Notice how we use Pt2Rect [4.1.2] to form the rectangle,
so that we don't have to worry about the relative positions of the
two points that define it: they can be any two diagonally opposite

\

\\

//////////

/// //////

\\\\\\\\

209 Drawing Shapes

InvertRect (r)

Figure 5-17 Inverting a rectangle

corners of the rectangle, not necessarily the top-left and bottom-
right.

The most interesting graphical effects are produced by using
the InvertRect operation to paint the rectangle on the screen. If we
inverted all our rectangles, however, the image would scon become
fragmented into tiny slivers of black and white with no discernible
shape or pattern. The effect is more pleasing if we throw in a
PaintRect or EraseRect every so often to restore part of the image to
solid black or solid white (assuming those are the port’s current fill
and background patterns). To decide which drawing operation to
use, we call Randomize again with a range determined by the con-
stant opRange. On the average, out of every opRange rectangles we
generate, we'll paint one black, erase one to white, and invert the
rest. The specific value we choose for opRange controls the degree of
visual fragmentation we're willing to tolerate: the higher the value,
the more fragmentation.

To slow things down to mere human speed, we pause to

210 Quick on the Draw

procedure Mondrian;

{ Example of sisple shape drawing using rectangles. }

const
cpRange = 103 {Constant controlling degree of visual fragaentation}
delaylnterval = 500; {Length of delay between rectangles}
var
correntPort : GrafPtr; {Pointer to current port [4.2,21}
oldOrigin : Point; {Origin of port rectangle on entry [4.1.11}
windowNidth : INTEGER; {Midth of port rectangle}
windoweight : INTEGER; {Height of port rectangle}
corner! : Point; {First corner of rectangle to be drawn [4.1.11)
corner2 : Point; {Second corner of rectangle to be drawn [4.1.11}
randosRect : Rect; {Rectangle to be drawn [4.1.21}
operation : INTEGER; {Drawing operatien to use}
delayCount ¢ INTEGER; {Counter for delay between rectangles}
begin (Nondrian}
GetPort (currentPort); {(Bet pointer to current port [4.3.31}
with currentPort*.portRect do
begin
oldOrigin := topleft; {Save old origin of port rectangle [4.1.21}
windowlidth := right - left; {Find disensions of port rectangle [4.2.21}
windoutieight := bottoa - top
end;
Setlrigin (0, 0); {Use origin of (0, O} for convenience [4.3.41}

Program 5-2 Drawing rectangles

211

repea

at
with cornerl do
begin
h := Randosize (windowNidth);
v := Randoaize (windowHeight)
end;
with corner2 do
begio
h := Randomize (windowlidth);
v := Randesize (windowheight)
end;

Pt2Rect (cornerl, corner2, randomRect);

cperation := Randomize (epRahge);
case operation of
0:
PaintRect (randosRect);
1:
EraseRect
atherwise

InvertRect {randosRect)
end; (case}

(randoaRect);

for delaylount := ! to delaylnterval dp
{nothing}

with oldOrigin do
SetOrigin {h, v)

end; (Mondrian}

Drawing Shapes

{Benerate randoa coordinates 1}
{ for first corner {Preg. 2-11}

{Generate randoa coordinates }
($or second corner {Prog. 2-11}

{Cosbine to fora rectangle [4.1.21}

{Generate randos drawing operation [Prog. 2-1))

{Fill with pen pattern (noraally black) £5.3.21}
{Fill with background pattern (norsally white) [5.3.21}

{Invert colors £3.3.21}

('ait i lhil! . v }

{Stop when souse button is pressed [11:2.4.21}

{Restare old origin [4.3.4]}

Program 5-2 (continued)

212 Quick on the Draw

Mondriagneeae—m———————|

Figure 5-18 Output of procedure Mondrian

count up to a constant delaylnterval after drawing each rectangle; we
can, of course, vary the length of the delay by changing the value of
this constant. (A better way to control a program delay is with the
Toolbox routines Delay or TickCount, which we'll be learning about in
Volume Two.)

Then we go back to generate and draw another rectangle, and
continue to repeat the cycle until the user presses the mouse
button. (The Toolbox function Button, also covered in Volume Two,
returns a Boolean value of TRUE if the mouse button is down at the
time of call, FALSE if it isn’t.) When the button is finally pressed, the
last order of business before leaving procedure Mondrian is to
restore the origin of the port rectangle to its previous coordinates,
leaving the port's coordinate system set the way we found it.

Ovals

The oval-drawing routines [5.3.4] all accept a rectangle as a
parameter. Instead of drawing the rectangle, however, they draw
an oval inscribed within the rectangle (see Figure 5-19). The rect-
angle determines the oval's width and height (in proper mathe-

213 Drawing Shapes

If the rectangle
is a
/ square . . .
-ati— . . .the resulting

oval is a circle.

Figure 5-19 Specifying an oval

matical terms, its major and minor axes); if the rectangle is a
perfect square, the resulting oval will be a perfect circle.

Program 5-3 (BigBrother) uses ovals to draw the unblinking eye
of Figure 5-20. Just as we did with our stop sign in Program 5-1,
we transform the top-left corner of the figure to coordinates (0, 0)
and draw the figure in terms of a scale unit whose size is specified
as a parameter. We draw the eye by first filling the outermost oval
with black, then the next one with white, and finally the innermost
with black again. The second oval, representing the inner edge of
the eyelids, is derived from the outer one by insetting by one scale
unit at the top and bottom; we also inset by 1 pixel at the left and
right to leave a thin black outline visible. The innermost oval
(actually a circle), representing the pupil of the eye, is inset again
from there: two scale units at the left and right, 1 pixel to leave a
little white space at the top and bottom. As usual, we carefully
restore the port’s coordinate system with SetOrigin before exiting.

Rounded Rectangles

In addition to ordinary rectangles, you can draw rounded rect-
angles [5.3.3] with curved corners instead of square ones. To
specify a rounded rectangle, you supply the rectangle itself, along

214 Quick on the Draw

progedure BigBrother (figureTop ¢ INTEGER
figureleft : INTEBER;
scale s INTEGER);

{ Exasple of siaple shape drawing using ovals. }

var

“currentPort : GrafPtr;
oldOrigin ¢ Point;
ovalRect : Rect;

begin (BigBrother}

GetPort (currentPort);
oldOrigin := currentPort®.portRect.topleft;
with oldlrigin do

SetOrigin th - figureleft, v - figureTap);

SetRect (ovalRect, 0, 0, 8 8 scale, & § scale);
FillOval (ovalRect, Black);

InsetRect (ovalRect, 1, scale);
FillGval {ovalRect, White);

InsetRect (ovalRect, 2 § scale, 1)
FillOval {ovalRect, Black);

with oldOrigin do
Setlrigin (h, v)

end; (BigBrother}

{Top edge of figure in local coordinates}
{Left edge of figure in local coordinates}
{Size of scale unit in pixels}

{Pointer to current port [4.2.21}
{Origin of port rectangle on entry [4.1.11}
{Rectangle for defining ovals [4.1,2]}

{Get pointer to cerrent port [4.3.31}
{Save old origin of port rectangle [4.2.2, 4.1.21}

{Offset to origin of figure [4.3.41}

{Set rectangle defining the cuter oval [4.1.21}
{Fill outer oval with solid black (3.3.4, 5.1.21}

{Inset 1 pixel horizentally, 1 scale unit vertically}
{Fill inner oval with solid white (5.3.4, 5.1.2)}

{Inset 2 scale units horizontally, 1 pixel vertically}
{Fill pupil with solid black [5.3.4, 5.1.21}

{Restore old origin [4.3.41}

Program 5-3 Drawing with ovals

with the width and height of the ovals forming the corners
(sometimes called the “diameters of curvature”). Each corner will
be a quarter of an oval with the given dimensions (see Figure 5-21).
QuickDraw won'’t allow the corner width or height to exceed those
of the rectangle itself, even if you try to make them bigger.

215 Drawing Shapes

Figure 5-20 Output of procedure BigBrother

Arcs and Wedges

There's also a set of routines for drawing arcs or wedges of an
oval [5.3.5]. You supply a rectangle defining the oval, along with a
pair of angles that tell where the arc begins and how far it extends.
The angles can be any whole number of degrees, measured
clockwise from the oval’s center, with 0 degrees at the top, 90 at
the right, 180 at the bottom, and 270 at the left. Negative angles are
measured counterclockwise, with —90 degrees at the left and —270
at the right. The arc in Figure 5-22, for instance, could be specified
with either a starting angle of 135 degrees and an arc angle of 90,
or a starting angle of 225 (or —135) and an arc angle of —80.

cornerHeight ‘ })
same oval

e

cornerWidth

i

Figure 5-21 Specifying a rounded rectangle

216 Quick on the Draw

FrameAre (r, 135, 90)

startAngle < Rectangle r
(135°)

L

arcAngle (30°)

FrameArc just draws the specified arc of the oval, as in Figure
5-22. All the remaining drawing operations, though they're called
PaintArc and so on, actually draw a wedge (Figure 5-23) bounded by
the arc itself and a pair of lines running from its endpoints to the
center of the oval. (Sort of a slice of pi.)

A related utility routine is PtToAngle [5.3.5], which measures the
angle of a given point from the center of a rectangle in the same
kind of rectangle-relative degrees described above. In Figure 5-24,
for example, the value of PtToAngle(thePoint) would be 135.

217 Drawing Shapes

PaintAre (r, 135, 90)

Rectangle r
e
startAngle (135°)

arcAngle
(90°)

(wedge)
Figure 5-23 Painting a wedge

PtToAngle (r, p, angle)

angle = 135°
\ : <€—— Rectangle r

Point p

Figure 5-24 Point to angle

218 Quick on the Draw

Polygons

As we mentioned in Chapter 4, you define the shape of a polygon
by drawing its outline with the line-drawing operations Line and
LineTo [5.2.4]. First you have to open the polygon definition by
calling OpenPoly [4.1.4]. This allocates a new Polygon data structure
[4.1.3] from the heap and returns a handle you can use to refer to
it. While the polygon is open, all your line-drawing operations will
be accumulated into the polygon definition. (OpenPoly automatically
hides the graphics pen, so that the lines defining the polygon
won't be drawn into the current port.)

When you're finished defining the polygon, you close it with
ClosePoly [4.1.4], which reshows the pen, calculates the polygon’s
bounding box, and stores it into the polyBBox field of the Polygon
record [4.1.3]. For example, you can define the polygon shown in
Figure 5-25 with the following statements:

thePolygon := OpenPoly;

MoveTo (150, 50);
Line (=100, 0);
Line (0, 100);
Line (100, 0);
Line (—50, —50);
Line (50, —50);

ClosePoly
(50, 50) (150, 50)
(100, 100)
(50, 150) (150, 150)

Figure 5-26 Defining a polygon

219 Drawing Shapes

Once a polygon is defined, you can draw it into the current port
with FramePoly, PaintPoly, and so on [5.3.6]. When you're completely
through with the polygon, use KillPoly [4.1.4] to destroy it.

In framing a polygon, QuickDraw makes no -adjustment for -the
current pen size; it simply- traces the outline of the polygon, from
vertex to vertex, with the top-left corner of the graphics pen. This
means that the outline that gets drawn will extend bsyond the
polygon’s edges. at the right and bottom by the pen’s-width and

. height. As mentioned earlier, this is the one exception to: the rule
that shape-drawing operations never go outside the boundaries of
the shape being drawn.

Program 5-4 (StopPoly) shows a version of our earlier stop sign
procedure that illustrates how to define and use a polygon.
Instead of just drawing the octagonal outline of the stop sign
directly, we define it as a polygon by enclosing our line-drawing
operations between calls to OpenPoly and ClosePoly. This prevents
the lines from being drawn immediately, and accumulates them
into the polygon definition instead.

Since we're now treating the octagon as a shape instead of a
simple line drawing, we can use a fill pattern to produce the
fancier version of the stop sign shown in Figure 5-26. First we use
FillPoly to fill the entire octagon with gray; then we draw in its
border with FramePoly. Next, to create the white background area
around the letters, we define a rectangle representing the area, fill
it with solid white, and frame it. Finally we use line-drawing opera-
tions to draw the letters, just as before.

Regions

Defining a region is similar to defining a polygon, but differs in a
few details. Unlike OpenPoly, the analogous routine OpenRgn (4.1.6]
doesn’t create the Region data structure for you; you have to do
that for yourself first with NewRgn [4.1.6]. OpenRgn simply begins a
new, anonymous region definition in the current port and starts
collecting your drawing operations into it. In addition to line-
drawing operations, a region definition can also include shape-
framing operations such as FrameRect, FrameOval, and so on; these
operations add the boundary of the framed shape to the boundary

220 Quick on the Draw

procedure StopPoly (fiqureTop : INTESBER (Top edge of figure in local coordinates)
figureleft : INTEGER; {Left edge of figure in lecal coordinates)
scale ¢+ INTEGER}; {Size of scale unit in pixels)

{ Exaample showing definition and use of a polygen.)

var
currentPort : BrafPtr; (Pointer to current port [4.2.21}
oldOrigin : Point; {Origin of port rectangle cn entry [4.1.11}
theGctagen : PolyHandle; (Handle to polygen defining cutline of sign [4.1.31)
theRect ¢ Rect; (Rectangle surrcunding letters [4.1.21}

begin (StopPoly}
GetPort {currentPert); (6et pointer to current port [4.3.31}
oldBrigin := currentPort”.portRect.topleft; (Save old ecrigin of port rectangle [4.2.2, 4.1.21}

with oldOrigin do
SetOrigin (h - figureleft, v - figureTop); (O¢fset to origin of figure [4.3.41}

theOctagon 3= CpenPoly; {Bpen polygon definition [4.1.41}

MoveTo (§ ¢ scale, 0 H {Draw the octagen [5.2.41)

Line (B % scale, 0 |

Lire (58 scale, 5 ¢ scale);

Line (0 , B ¢ scale);

Line {-§ ¢ scale, § & scale);

Line (-8 ¢ scale, 0 N

Line (-5 § scale, -5 § scale);

Line (0 y -8 8 scale);

Line (3 8 scale, -§ ¢ scalel;
ClasePoly; {Close polygon definition [4.1.41)
FillPoly (thebctagon, Gray); {Fill polygon with gray [5.3.41}
FrasePoly (theQctagon); {Qutline the polygen [5.3.61}
KillPoly (thelctagon); {Dispose of polygon record [4.1.41}

SetRect (theRect, 0, 5 § scala, 18 § scale, 13 § scale);

(Befine rectangle surrounding letters (4.1.21}
FillRect (theRect, White); {Clear rectangle to white [5,3.23}
FraseRect (theRect); {Cutline the rectangle [5.3.21}

Program 5-4 Defining and drawing a polygon

221 Drawing Shapes

NoveTa (4 8 scale, 7 ¢ scale); {Draw the "S* [5.2.41}
Line (-2 ¢ scale, 0 |H
Line (0 y 28 scale);
Line (24 scale, 0 | H
Line (0 s 218 scalel;
Line (-2 ¢ scale, 0);
NoveTo (7 § scale, 7 8 scale); {Oraw the *7" [3.2.41}
Line (0 y 48 scalel;
Hove (-1 ¢ scale, -4 ¢ scale);
Line (28 scale, 0);
KoveTo (10 § scale, 7 8 scale); {braw the *0" (5.2.4]}
Line (28 scale, 0 IH
Line (0 , 48 scale);
Line (-2 ¢ scale, O }s
Line (0 s -4 § stale);
Kovelo (14 § scale, 7 & scalel; {Draw the *P" [5.2.41}
Line (0 y 41 scale)s
Nove (0 s -4 § stale);
tire (28 scale, O |H
Line (0 s 28 stale);
Line (-2 8 scale, 0 |H

with cléCrigin do
SetOrigin th, v) (Restore old origin [4.3.41}

end; (StopPoly)

Program 54 (continued)

222 Quick on the Draw

(5, 0) (13, 0)

(0, 5) (18, 5)

(0, 13) g vy (18, 13)

(s, 1) (13, 18)

All coordinates are
expressed in scale units.

Figure 5-26 Output of procedure StopPoly

of the region. When you close the region definition with CloseRgn
(4.1.6], you supply the region handle you received from NewRgn and
QuickDraw sets it to the shape you've specified. The region shown
in Figure 5-27 might be defined with the statements

theRegion := NewRagn;

OpenRgn;
SetRect (theRect, 25, 50, 125, 150);
FrameOval (theRect);
SetRect (theRect, 75, 50, 175, 150);

FrameOval (theRect);
CloseRgn (theRegion)

and then drawn with FrameRgn, PaintRgn, and so on [5.3.7].
A given port can have only one polygon or region definition open

at a time. Always be sure to close one definition (with ClosePoly or
CloseRgn) before opening another.

223 Drawing Shapes

Shaded area is the region.

Figure 5-27 Defining a region

There are special routines, RectRgn and SetRectRgn [4.1.7], for the
common case of creating rectangular regions; one accepts a rec-
tangle as an argument, the other accepts four separate integer
coordinates. You can also copy one region to another with CopyRgn
[4.1.7] or set a region to empty (erasing its existing structure, if any)
with SetEmptyRgn [4.1.7]. All these routines merely set the shape of
an existing region; you always have to create the region for yourself
first with NewRgn. To destroy a region when you're finished with
it, use DisposeRgn [4.1.6].

Program 5-5 uses a region to define and draw Big Brother's
watchful eye, shown earlier in Figure 5-20. The logic is essentially
the same as in Program 5-3, except that the drawing operations
that define the eye are enclosed within a region definition
delimited by calls to OpenRgn and CloseRgn. Notice that we must
draw the ovals with FrameOval instead of FillOval as in the earlier
program, since framing is the only operation that accumulates a
shape into the open region definition. After the definition is
complete, a single drawing operation (in this case FillRgn) draws
the entire region at once, even if it has holes and separate pieces
like this one.

One use for region definitions is for setting a port's clipping
region, one of the clipping boundaries we discussed in Chapter 4.

224 Quick on the Draw

procedure BigBrother (figureTop : INTEGER
figureLeft : INTEGER;
scale s INTEGER);

(Top edge of figure in local coordinates)
{Left edge of figure in local ccordinates}
(Size of scale unit in pixels)

{ Example showing definition and use of a region. }

var
currentPort : GrafPtr;
oldOrigin : Point;
ovalRect : Rect;
theEye : RgnHandle;

begin {BigBrother}

GetPort (currentPort);
oldBrigin := currentPort*.portRect.topleft;
with oldOrigin do

SetCrigin (h - figureleft, v - figureTop);

theEye := NewRgn;
OpenRgn;

{Pointer to current port [4.2.2]}

{Origin of port rectangle on entry [4.1.1)}
{Rectangle for defining ovals [4.1.21}

(Handle to region defining the figure [4.1.5]}

{Get pointer to current port [4.3.31}
{Save old origin of port rectangle [4.2.2, 4.1.21}

(0ffset to crigin of figure [4.3.41}

{Create a new region [4.1.61}
{Open regicn definition [4.1.8)}

SetRect {ovalRect, 0, 0, 8 8 scale, 6 8 scale); (Set rectangle defining the cuter oval [4.1.21}

FraseOval (ovalRect);

InsetRect (ovaiRect, !, scale);
FraseOval (ovalRect);

InsetRect (ovalRect, 2 ¢ scale, 1);
FraseOval (ovalRect);

CloseRgn (theEye);

FillRgn (theEye, Black);
DisposeRgn (theEye);

with oldOrigin do
SetOrigin (h, v}

end; {BigBrother}

{Praw outer oval [5.3.41}

(Inset 1 pixel herizentally, i scale unit vertically)

(Braw inner oval [5.3.41}

{Inset 2 scale units horizontally, 1 pixel vertically)

{Draw pupil [5.3.41}
{Close region definition [4.1.61)

{Fill region with solid black [5.3.71}
(Dispose of region record (4.1.41}

{Restore old origin [4.3.41}

Program 5-5 Defining and drawing a region

225 Drawing Shapes

Recall that the clipping region is a general-purpose clipping boun-
dary that's available for you to use in any way you need. As an
example, Program 5-6 uses the clipping region to draw the globe
shown in Figure 5-28. Since the routine will change the current
port’s coordinate origin, pen width, and clipping region, we begin
by saving the old values so we can restore them again later. Then
we define a region globeRgn consisting of the globe’s circular
outline and install it as the port’s clipping region with SetClip [4.3.6].

figureleft s INTEGER;
diameter ¢ INTEGER;
edgeidth : INTEGER;
gridiidth : INTEGER;
nSteps t INTEGER);

{ Exasple showing use of a port’s clipping region.

var

turrentPort : GrafPtr;
oldOrigin @ Point;
oldState : PenState;
oldClip : RgnHandle;
globeRgn : RgnHandle;
ovalRect & Rect;
radius s INTEGER;
stepNusber : INTEGER;
stepSize : INTEGER;
offset 1 INTEGER;

begin {(Globe}

GetPert {(currentPort);
oldOrigin := currentPort”.portRect.tepleft;
with oldOrigin do

SetOrigin (h - figureLeft, v - figureTop);

SetPenState (oldStatel;
GetClip {oldClip);

{Top edge of figure in local coordinates}
{Left edge of figure in local ceordinates)
{Diaseter of figure in pixels}

{Pen width for drawing figure outline}
{Pen width for drawing grid lines}

{Nusber of divisions in grid}

}

(Pointer to current port [4.2.2]}

{Origin of port rectangle on entry [4.1.11}

(State of graphics pen on entry (5.2.11}

(Handle to old clipping region [4.1.51}

{Handle to region defining figure outline [4.1.51}
{Rectangle for defining ovals [4.1.21}

{Radius of figure in pixels)

{Counter for drawing grid}

(Size of grid unit in pixels}

(0ffset from center for drawing grid lines}

{Get pointer to current port [4.3.31)
{Save old origin of port rectangle [4.2.2, 4.1.21}

(Dffset to origin of figure [4.3.41}

{Save old pen state [35.2.1]}
{Save old clipping region [4.2.21}

Program 5-8 Using the clipping region

226

Quick on the Draw

globeRgn := NemRgn;

OpenRgn;
SetRect (ovalRect, 0, 0, diaseter, diameter);
Fraselval (ovalRect);

CloseRgn {globeRgn);

SetClip (globeRgn);

PenSize
FraseRgn

{edgeMidth, edgeWidth);
{globeRgn);

radius := diameter diy 2;
stepSize := diaseter diy nSteps;
PenSize (gridWidth, gridWidth);

for stepNusber := 0 to (nSteps div 2) do

begin
offset := stepNusher ¢ stepSize;

Novelo (0 , radius - offset);
Line (diaseter, 0);

NoveTo (0 , radius + offset);
Line (diameter, 0)
end;
for stepNusber := (nSteps div 2) downto 0 do
begin
offset := stepNuaber 8 stepSize;
SetRect (ovalRect,
radius - offset,

0,
radius + offset,
diameter);
Fraselval (ovalRect)
end;

Rovelo (radius, 0);

Line (0 , diaseter);

SetClip {oldClip);

SetPenState (oldState);

with oldbrigin do
SetOrigin (h, v};

DisposeRgn {globeRgn)

{61cbe}

{Create a new region [4.1.81}

{Open region definition [4.1.61}

{Set rectangle defining the outer oval [4.1.21}
{Draw ocutline of figure [5.3.41}

{Close regicn definition [4.1.61}

{Set port’s clipping region [4.3.51}

{Set pen size for figure outline [5.2.21}
{Draw outline of figure 5.3.71}

(Find radius}

(Find size of grid unit}

{Set pen size for grid [5.2.2))
(Draw parallels of latitude}

(Find offset froa center}

(Draw parallel north of equator [3.2.4)}

{Draw parallel south of equator £5.2.41)

{Draw seridians of longitude)

{Find offset fros center}

{Set rectangle defining oval [4.1.2): }
{ fros west of grise seridian }
{ at north pole }
{ to east of prise seridian }
(at south pole }
{Draw the seridians 3.3.4)}

{Draw prise seridian froa north)
{ to south pole [5.2.4) }

{Restore old clipping region [4.3.461}
{Restore old pen state [5.2.11}

{Restore old origin [4.3.4]}

{Dispose of region record [4.1.61}

Program 5-6 (continued)

227 Pictures

Pictures

f ‘ <+—— Qutline of globe
is used as the
clipping region
for drawing
grid lines

Figure 5-28 Output of procedure Globe

After drawing the outline on the screen with FrameRgn (5.3.7],
we proceed to draw in the parallels of latitude. This is where the
circular clipping region comes in handy. Instead of calculating the
endpoints where each parallel meets the circumference of the
globe, we simply draw a series of horizontal lines straight across
the full width of the figure, letting QuickDraw clip them to the
right lengths for us. For the meridians of longitude, we use a series
of ovals of decreasing widths running from north pole to south. A
final straight line drawn vertically between the poles marks the
prime meridian; then all that remains is to restore the port’s
original clipping region, pen size, and coordinate origin and dis-
pose of the region globeRgn.

Pictures are a very powerful, general mechanism for defining and
using graphical images of arbitrary complexity. A picture is like a
tape recording of a sequence of QuickDraw calls. Once you've
defined it, you can “play back” the recording at any time, duplicat-
ing the original sequence of calls and redrawing the picture.

Like a polygon or a region, a picture is represented by a
variable-length data structure (in this case, a record of type Picture
(5.4.1)). It consists of a picSize field giving the overall length of the
structure in bytes, a picFrame rectangle analogous to the polygon's
or region’s bounding box, and an indefinite amount of additional

228 Quick on the Draw

Nuts and Bolts

data defining the picture’s contents. A picture differs conceptually
from a polygon or region, however, in that it represents a dynamic
sequence of QuickDraw operations, not just a static shape on the
coordinate grid.

Defining a picture is similar to defining a polygon. You open
the definition by calling OpenPicture [5.4.2], supplying a rectangle for
the picture frame and getting back a handle to the new picture
record. You can then proceed to draw the picture, using any
QuickDraw operations you need. All of your calls will be recorded
for posterity in the picture definition. When you're finished draw-
ing the picture, call ClosePicture [5.4.2] to close the definition. To
“play back” the calls later, use DrawPicture [5.4.3], specifying a
rectangle in the current port where you want the picture drawn;
it will be stretched or shrunk, if necessary, to make its frame
coincide with the given rectangle.

One of the handiest things about pictures is that they allow
graphical images to be passed around from one program to
another by way of resource files (Chapter 6) or the desk scrap
(Chapter 7). The program drawing the picture doesn’'t have to
know anything about its contents, where it came from, or what it
represents; all that's necessary is to pass it to DrawPicture and the
picture will “draw itself.” This is what enables you to copy Mac-
Paint pictures to the Scrapbook or paste them into a MacWrite
document.

The Macintosh Plus version of the Toolbox includes a pair of new
QuickDraw routines. CalcMask and SeedFill [5.1.6], for performing
specialized MacPaint-style drawing operations. Both routines
operate on an existing bit image and use it to calculate a mask for
the new bit-transfer routine CopyMask (5.1.4]). The image to be
operated on is defined by a rectangular portion of an existing bit
map; the mask is generated in a rectangle of the same size in
another bit map.

CalcMask works like the MacPaint “lasso,” finding the largest
closed boundary that lies entirely within the given rectangle. It
produces a mask with black pixels (1 bits) corresponding to the
boundary and its interior; you can use this mask to copy the
“lassoed” image with CopyMask (see Figure 5-29). SeedFill finds the
smallest closed boundary surrounding a specified “seed” point in

229

Nuts and Bolts

sourceBits

Source bit map

[——rectwidth (words)_.'

Q

rectHeight
(pixels)

1

maskBits

I- sourceRow (bytes) Ajl
Mask bit map
fe———reciWidth (words)—|
rectHeight
(pixels)

| A |

1

I maskRow (bytes)

Figure 5-29 Operation of CalcMask

230 Quick on the Draw

Source bit map

fe—rectwidth (words)—]

sourceBits

(sesdHoriz, seedVert)

rectHeight
(pixels)

1

maskBits

Figure 5-30 Operation of SeedFill

}- sourceRow (bytes)
Mask bit map
Jo— rectwidth (words)—]
rectHeight
. (pixels)
maskRow (bytes)

231 Nuts and Bolts

the bit image, representing the area to be filled by clicking at that
point with MacPaint’'s “paint bucket” tool (Figure 5-30). To imple-
ment the paint bucket, you can then use CopyMask to fill this area
with a pattern. (Since CopyMask doesn’t take a pattern parameter,
you'll first have to set up a dummy bit map to copy from, filled
with the desired pattern.)

The calling conventions for CalcMask and SeedFill have been cleverly
devised for your mystification and entertainment. Here are some
things to watch out for:

* The pointers you pass for the sourceBits and maskBits parameters
point directly to the first byte of data within the rectangle to be
operated on—not to the beginning: of the bit map in which the
rectangle is embedded.

* The coordinates of the starting point for SeedFill are given as offsets

relative to the origin of the source rectangle itself, ‘not in‘the local
“coordinate system of its enclosing bit:map. ‘

¢ The dimensions of the source and mask bit maps and the relevant
rectangles within them are specified in three- different units: the
bit map’s row width in bytes, the width of the rectangle in words,
and the height of the rectangle in bits (pixels).

* All of these conventions differ from those for the related routine
CopyMask, which takes each of its three operands (source, mask,
and destination) as a normal bit map together with a rectangle
expressed in pixels, in local coordinates.

The programmer who thought all this up has been nominated for an
Apple Hero medal for imaginative soﬁware design.

REFERENCE

5.1 Drawing Fundamentals

5.1.1 Patterns

|é| Definitions

g
PatHandle = ~PatPtr;
PatPtr = *Pattern; , ,
Pattern = packed array [0..7] of 0..255; .

GrafPort = record

i)ki"a’t : Pattern;
fillPat : Pattern; -

pnPat : Pattern;
end;

procedure BackPat o =
(newPattern : Pattern);

GetPattern
(patternlD : INTEGER) . .
: PatHandle;

procedure GetlndPattern
(var thePattern : Pattern;
patListID : INTEGER;.
patindex : INTEGER);

function

232

{8 rows of 8 bits each}
{Background pattern}
- {Fill-pattern for shape drawing}

“{Pen pattern for line drawing [5.2.11}

{New background pattern}

{Resource ID of desired pattern}.

{Handle to pattern in memory}

{Returns desired pattern)

{Resource ID. of pattern list)
{Index of pattern within list}

233 [(5.1.1) Patterns

Notes

1. A pattern is an 8-by-8-bit “tile” that can be repeated indefinitely to
draw lines or fill areas in a graphical image.

2. When drawn in a graphics port, a pattern is aligned with the
coordinates of the port rectangle, so that adjacent patterned areas
will blend continuously without creating “seams.”

3. Use StuffHex [2.2.4] to fill in the bits defining a pattern, or read it from
a resource file with GetPattern or GetlndPattern (notes 9-13, below).

4. Three patterns are associated with each graphics port [4.2.2]:

* A pen pattern (pnPat) for drawing lines and shapes
* A fill pattern (fillPat) for filling areas
¢ A background pattern (bkPat) for erasing areas
5. The pen and fill patterns are initially solid black, the background
pattern solid white.
6. BackPat sets the current port’s background pattern.
7. To set a port’s pen pattern, use PenPat [5.2.2].

8. The fill pattern is used privately by QuickDraw for shape-filling
operations [5.3.1). Don't store into a port’s fillPat field yourself.

9. GetPattern gets a pattern from a resource file (Chapter 6), reads it into
memory if necessary, and returns a handle to it.

10. patterniD is the resource ID of the desired pattern; its resource type
is ‘PAT ’ [5.5.1].

11. GetindPattern gets a pattern from a pattern list in a resource file
(Chapter 6).

12, patlistlD is the resource ID of the pattern list (resource type 'PAT#
[5.5.2]); patindex is the index of the desired pattern within the list.

13. The pattern itself (not a handle) is returned via the variable parameter
thePattern.

14. GetindPattern is part of the Pascal Toolbox interface, not part of the
Toolbox itself. It doesn't reside in ROM and can’'t be called from
assembly language via the trap mechanism.

15. A set of standard patterns are available in the system resource file
and as QuickDraw global variables: see [5.1.2].

234 Drawing

Assembly Language Information

Field offsets in a graphics port:

(Pascal) [Assembly) /
Field name Offset name Offset in bytes
bkPat bkPat 32
fillPat fillPat 40

pnPat pnPat 58
Trap macros:

(Pascal) (Assembly)

Routine name Trap macro Trap word
BackPat —BackPat §A87C
GetPattern —GetPattern $A9B8

5.1.2 Standard Patterns

ASLL
RARA
RARN
RAA

Standard pattern list

235 [5.1.2] Standard Patterns

Definitions

var
White : Pattern; {Solid white}
LtGray : Pattern; {Light gray}
Gray : Pattern; {Medium gray}
DkGray : Pattern; {Dark gray}
Black : Pattern; {Solid black}

const
SysPatList = 0; {Resource ID of standard pattern list}
DeskPatlD = 16; {Resource ID of screen background pattern}
Notes

. The Toolbox provides five standard patterns for fill tones ranging from

solid white to solid black.

. The standard fill tones are available in the QuickDraw global variables

White, LtGray, Gray, DkGray, and Black.

. SysPatListlD is the resource ID of the standard pattern list (see figure)

in the system resource file; its recourse type is 'PAT# [5.5.2]. Use
GetindPattern [5.1.1] to access individual patterns in this list.

. DeskPatlD is the resource ID of the screen background pattern (resource

type 'PAT ’ [5.5.1]). The pattern itself is held in the assembly-language
global variable DeskPattern.

. To access the variables containing the standard fill tones in assembly

language, find the pointer to QuickDraw’s globals at the address
contained in register A5, then locate the desired variable relative to
that pointer using the offset constants given below. See Chapter 3 and
[4.3.1, note 4] for further discussion.

236 Drawing

Assembly Language Information

Assembly-language constant:

Name Value Meaning
DeskPatlD 16 : Resource ID of screen
background pattern

Assembly-language global variable:

Name Address . Meaning _
DeskPattern $A3C Screen background pattern
QuickDraw global variables:

Name Offset in bytes Meaning

White —8 Solid white pattern

Black —16 Solid black pattern

Gray . —4 = Medium gray pattern
LtGray —32 Light gray pattern

DkGray —40 Dark gray pattern

237 [5.1.3) Transfer Modes

5.1.3 Transfer Modes

Overlay Existing
pattern pattern

SrcCopy, SrcOr, SrcX0r, SrcBic,
PatCopy PatOr PatX0Or PatBic

NotSrcCopy, NotSrcOr, NotSrcXO0r, NotSreBic,
NotPatCopy NotPat0r NotPatX0r NotPatBic

238 Drawing
é' Definitions
4
GrafPort = record
pnMode : INTEGER: {Transfer mode for graphics pen [5.2.1]}
txMode : INTEGER: (Transfer mode for text [8.3.1]}
ond;
const ‘
SrcCopy = 0 {Copy source to destination}
SrcOr = 1 {Set selected bits to black}
SrcXO0r = 2; {invert selected bits}
SrcBic = 3 {Clear selected bits to white}
NotSrcCopy = 4; {Copy inverted source to destination}
NotSrcOr =5 {Leave selected bits alone, set others to black}
NotSrcXOr = 6; {Leave selected bits alone, invert others}
NotSrcBic = 7; {Leave selected bits alone, clear others to white}
PatCopy = §; {Copy pattern to destination} .
PatOr = 9 {Set selected bits to black}
PatXOr = 10; {Invert selected bits}
PatBic = 11; {Clear selected bits to white}
NotPatCopy = 12; {Copy inverted pattern to destination}
NotPatOr =13; {Leave selected bits alone, set others to black}
NotPatX0r = 14; {Leave selected bits alone, invert others}
NotPatBic = 15

; {Leave selected bits alone, clear others to white}

Notes

1. Transfer modes control the transfer of pixels between bit maps, or
between a pattern and a bit map.

2. The source transfer modes (SrcCopy to NotSrcBic) are used for transfers
from one bit map to another with CopyBits [5.1.4] and for drawing text
characters into a bit map (8.3.3).

3. The pattern transfer modes (PatCopy to NotPatBic) are used for drawing
lines and shapes and filling areas with a pattern [5.1.1].

239 [5.1.3) Transfer Modes

4. Each transfer mode denotes a way of combining pixels from the
source (bit map, character, or pattern) with the corresponding pixels
from the destination bit map. The resulting pixels are then stored
back into the destination.

5. SrcCopy and PatCopy copy pixels directly from the source to the
destination, replacing whatever was there before. Black pixels in the
source are set to black in the destination, white pixels to white:

Source Destination Result
pixel pixel pixel

black black black
black white black
white black white
white white white

6. SrcOr and PatOr set selected pixels of the destination to black. Black
pixels in the source select the destination pixels to be set; white
source pixels leave the corresponding destination pixels unchanged:

Source Destination Result
pixel pixel pixel

black black black
black white black
white black black
white white white

7. SrcXOr and PatX0r invert selected pixels of the destination, from white
to black and vice versa. Black pixels in the source select the destina-
tion pixels to be inverted; white source pixels leave the correspond-
ing destination pixels unchanged:

Source Destination Result
pixel pixel pixel

black black white
black white black
white black black

white white white

240 Drawing

8. SrcBic and PatBic (“bit clear”) clear selected pixels of the destination
to white. Black pixels in the source select the destination pixels to
be cleared; white source pixels leave the corresponding destination
pixels unchanged:

Source Destination Result
pixel pixel pixel

black black white
black white white
white . black black
white white white

9. The NotSrc and NotPat series of modes reverse the roles of black and
white source pixels in the tables above.

10. Two transfer modes are associated with each graphics port [4.2.2]:

* A pen mode (pnMode) for drawing lines and shapes [5.2.1]
* A text mode (txMode) for drawing text characters [8.3.1]

11. The pen mode should be one of the pattern transfer modes, the text
mode one of the source transfer modes.

12. To set a port’s pen mode, use PenMode [5.2.2]; to set the text mode,
use TextMode [8.3.2].

241 [5.1.3] Transfer Modes

Assembly Language Information

Field offsets in a graphics port:

(Pascal) (Assembly)

Field name Offset name Offset in bytes

pnMode pnMade 56

txMode txMode 72

Assembly-language constants:

Name Value Meaning

SrcCopy 0 Copy source to destination

SrcOr 1 Set selected bits to black

SrcX0r 2 Invert selected bits

SrcBic 3 Clear selected bits to white

NotSrcCopy 4 Copy inverted source to
destination

NotSrcOr 5 Leave selected bits alone,
set others to black

NotSrcXOr 6 Leave selected bits alone,
invert others

NotSrcBic 7 Leave selected bits alone,
clear others to white

PatCopy 8 Copy pattern to destination

PatOr 9 Set selected bits to black

PatXOr 10 Invert selected bits

PatBic 11 Clear selected bits to white

NotPatCopy 12 Copy inverted pattern to
destination

NotPatOr 13 Leave selected bits alone,
set others to black

NotPatXOr 14 Leave selected bits alone,
invert others

NotPatBic 15 Leave selected bits alone,

clear others to white

242 Drawing

5.1.4 Low-Level Bit Transfer

-

Definitions
procadure CopyBits
(fromBitMap : BitMap; {Bit map to copy from}
toBitMap : BitMap;. {Bit map to copy to}
fromRect :Rect; © {Rectangle to copy from}
toRect :Rect; . {Rectangle to copy to}
mode = INTEGER; {Transfer mode}

clipTo : RgnHandle); {Region to clip to}

procedure: CopyMask

(sourceMap : BitMap; {Bit map to copy from}
maskMap : BitMap; {Bit map containing mask}
destMap : BitMap;. ({Bit map to copy to}
sourceRect : Rect; - {Rectangle to copy from}
maskRect : Rect; - {Rectangle containing mask}

destRect :Rect); {Rectangle to copy to)

Notes

[=

. CopyBits transfers pixels from one bit map to another, in any transfer

mode and with any specified scaling and clipping.

. fromBitMap is the source bit map for the transfer, toBitMap the destina-

tion.

. mode specifies the transfer mode, and should be one of the eight

source transfer modes [5.1.3).

. fromRect tells which pixels of the source bit map to transfer; toRect tells

where in the destination bit map to transfer them to.

. Each of the two rectangles is expressed in the local coordinate

system of the corresponding bit map.

. If the dimensions of the two rectangles don’t match, the contents of

the source rectangle are scaled to the width and height of the
destination rectangle.

. The transfer operation is clipped to the destination bit map’s boun-

dary rectangle. If the destination is the bit map belonging to the
current port, the transfer is clipped to the port rectangle and the
port's visible and clipping regions as well.

243 (5.1.4} Low-Level Bit Transfer

80

9‘

10.

11.

12,

13.

14.
15

16'
17.

18.

clipTo is an additional clipping region to be used for this transfer only,
expressed in the destination bit map’s coordinate system. If clipTo =
NIL, no additional clipping region will be used.

CopyMask is an alternate transfer routine that transfers pixels from
one bit map to another under the control of a mask.

The source, mask, and destination are each specified by a bit map
and a rectangle within it.

Each rectangle is expressed in the local coordinates of its own bit
map.

No scaling is performed: all three rectangles must have the same
dimensions.

The source and destination bit maps may be the same, but the
rectangles must not overlap. There is no error checking for this
condition; the transfer simply will not work correctly.

The transfer mode is always SrcCopy [5.1.3).

Like CopyBits, CopyMask clips to the boundary rectangle of the destina-
tion bit map and, if it's the bit map belonging to the current port,
to the port's port rectangle, visible region, and clipping region.

Calls to CopyMask are not recorded in picture definitions [(5.4.2).
CopyMask is useful for drawing icons, particularly those that are stored
with their masks in resources of type ICN# [5.5.4, 7.5.3]. It can also
be used in conjunction with CalcMask and SeedFill [5.1.6] to implement
the MacPaint “lasso” and “paint bucket” tools.

CopyMask is available only on the Macintosh Plus.

" Assembly Langy

',I!*ap.;macms: -

(Pascal) .+ (Assembly) -
Routine name . = . Trap macro - -~ Trapword
CopyBits C s 4 CopyBits - ' $ABEC

‘CopyMask S —CopyMask - $A817

244 Drawing

5.1.5 Scrolling in a Bit Map

Definitions.

=

procedure

ScrollRect , S
(theRect : Rect; . {Rectangle to be scrolled}
hScroll : INTEGER; ~ {Horizontalscroll distance in pixels}
vScroll : INTEGER; - .{Vertical scroll distance in pixeis}
updateRgn: RgnHandle). V{Regnm scrolled into rectangle}

Notes

i

1

2.

3

»

5

ScrollRect shifts pixels horizontally and vertically within the bit map of
the current port.

theRect is a rectangle in the local coordinate system of the current port.
The pixels affected will be those within the intersection of this
rectangle with the port’s boundary rectangle, port rectangle, visible
region, and clipping region.

Pixels scrolled out of this region are lost irretrievably; the new space
scrolled in at the other end is filled with the port's background
pattern (bkPat [5.1.1)).

hScroll and vScroll give the horizontal and vertical scrolling distance, in
pixels.

Positive values of hScroll scroll to the right, negative to the left; positive
vScroll values scroll downward, negative values scroll upward.

Scrolling doesn't affect the port's coordinate system; it simply shifts
the scrolled pixels to new coordinates within the port. To restore the
pixels to their previous coordinates, follow ScroliRect with SetOrigin [4.3.4]
to adjust the port's coordinate system.

The coordinates of the port’s graphics pen [5.2.1] aren’t affected by
scrolling, so it remains at the same position in the port while the
image scrolls away from it. Adjusting the coordinate system with
SetOrigin will bring the pen back to its previous position relative to the
image.

. The region handle updateRgn is set to the area cleared to the back-

ground pattern as a result of scrolling. If the port is a window on the
screen, this region can be added to the window’s update region with
InvalRgn [11:3.4.2], forcing the contents of the scrolled-in area to be
drawn on the screen.

245 (5.16) Special Operations

s

Trap macros:

(Pascal) 7 (Assembly)

Routme name L -« “Trap macro ‘Trap word
SorolRect < _ScrollRect SABEF

5.1.6 Special Operations

|g! _ Definitions
prucsdurs Cachask T ‘
(sourceBits : Ptr; {Pointer to source image}
maskBits : Ptr; {Pointer to result mask}
~ sourceRow : INTEGER; {Row width of source bit map in bytes}
. maskRow : INTEGER;, {Row_width of mask bit map in bytes}

rectHeight | INTEGER; {Height of source.and mask rectangles in pixels}
rectWidth : INTEGER); {Wldth of source and mask rectangles in words}

procedure SeedFill o nn
(sourceBits : Ptr; {Pomter to source image}
maskBits :Ptr; {Pointer to result mask}
sourceRow : INTEGER; ~ {Row width of source bit map in bytes}
maskRow : INTEGER; {Row width of mask bit map in bytes}
rectHeight : INTEGER,; {He:ght of source and mask rectangles in pixels}
rectWidth : INTEGER; {Width of'source and mask rectangles in words}
seedHoriz : INTEGER: {Horizontal coordinate of starting point}
seedVert : INTEGER); {Vertical coordinate of starting point}

ﬂ% Notes

1. These routines help implement specialized MacPaint-style drawing
operations.

2. Both routines operate on an existing bit image and produce a mask
to be passed to the bit-transfer routine CopyMask [5.1.4]. The source
image and the resulting mask are each contained within a specified
rectangle embedded in an enclosing bit map.

246 Drawing

3.

5.

6.

7.

10.
11.

CalcMask finds the largest closed boundary lying entirely within the
given rectangle (like the MacPaint “lasso”) and produces a mask
representing the area inside this boundary; SeedFill does the same for
the smallest closed boundary surrounding a given starting point, like
the MacPaint “paint bucket.”

For both routines, sourceBits is a pointer directly to the first byte of
data in the source rectangle—not to the beginning of the bit map in
which the rectangle is embedded. Similarly, maskBits points directly
to the beginning of the rectangle in which the mask is to be stored,
not to the enclosing bit map.

sourceRow and maskRow are the row widths, in bytes, of the bit maps
in which the source and mask are embedded.

The source and mask rectangles are both the same size. The rectWidth
parameter gives their width in words, rectHeight their height in pixels.

seedHoriz and seedVert give the coordinates of the starting point for
SeedFill. The coordinates are expressed relative to the origin of the
source rectangle—not in the local coordinate system of its enclosing
bit map.

The source and mask may be embedded in the same bit map, but
the corresponding rectangles must not overlap. There is no error
checking for this condition; the operation simply will not work
correctly.

No clipping is performed to either bit map’s boundary rectangle or
to the current port’s port rectangle, visible region, or clipping region.

Calls to these routines are not recorded in picture definitions [5.4.2].
These routines are available only on the Macintosh Plus.

Assembly Language Information

Trap macros:

(Pascal) : ' (Assembly)
~_ Routine name ' Trap-macro Trap word
CalcMask : _CalcMask | $A838

SeedFill ,.Seedl-“_lti' $A839

247 [5.2.1) Pen Characteristics

5.2 Line Drawing

5.2.1 Pen Characteristics

‘;! ' Definitions

type
GrafPort = record

pnloc : Point; {Currentlocation of graphics pen in local coordinates}
pnSize : Point; - {Dimensions of graphics pen}

pnMode : INTEGER; {Transfer mode for graphics pen [5.1.3]}

pnPat : Pattern; {Pen pattern for line drawing [5.1.1]}

pnVis : INTEGER; {Pen level [5.2.3]}

.

&l{d;
PenState = record : i
pnLoc : Point; {Location of pen in bit map}
pnSize : Point; -~ {Width-and height of pen-in pixels}

pnMode : INTEGER; {Transfer-mode for line drawing and ar,,é_a fill}
pnPat : Pattern {Pen pattern}.
- end;

procedure GetPenState '
(var curState : PenState); {Returns current pen characteristics}

procedure SetPenState ; ‘
(newState : PenState); {New pen characteristics}

B Notes

1. Each port has its own graphics pen, used for drawing lines and text
characters.

2. The pen has a location, size, transfer mode, drawing pattern, and
visibility level, kept in the pnLoc, pnSize, pnMade, pnPat, and pnVis fields
of the graphics port [4.2.2].

3. pnLoc is the pen’s location, a point on the coordinate grid expressed
in the port’s local coordinate system. The pen is a rectangle with its
top-left corner at this point.

248 Drawing

4

5

6

7

8.

9

10

11

12.

pnSize is a point whose horizontal and vertical coordinates define the
width and height of the pen in pixels. If either coordinate is zero or
negative, the pen shrinks to nothing and will not draw.

pnMode is the pen’s transfer mode, which should be one of the eight
pattern transfer modes [5.1.3).

pnPat is the pen pattern (5.1.1], used for drawing lines and outlining
shapes.

prVis is the pen’s visibility level, which controls whether the pen is
visible or hidden; see [5.2.3] for further information.

The pen is initially 1 pixel wide by 1 high, located at coordinates
(0, 0), with transfer mode PatCopy and a solid black pen pattern, and
is initially visible (visibility level = 0).

A pen state record summarizes the pen’s characteristics. It's used
solely for manipulating the state of the pen with GetPenState and
SetPenState.

GetPenState returns a pen state record describing the current pen
characteristics of the current port.

SetPenState sets the current port’s text characteristics as specified by
a pen state record.

These routines are useful for saving and restoring the pen’s charac-
teristics to make a routine “transparent” to the state of the pen.

249

Assembly Language Information

[5.2.1] Pen Characteristics

Field offsets in a graphics port:

(Pascal) (Assembly)

Field name Offset name Offset in bytes
pnLoc pnLoc 48
pnSize pnSize 52
pnMode pnMode 56

pnPat pnPat 58

pnVis pnVis 66
Field offsets in a pen state record:

{Pascal) (Assembly)

Field name Offset name Offset in bytes
pnLoc psLoc 0
pnSize psSize 4
pnMode psMode 8
pnPat psPat 10

Assembly-language constant:

Name Value Meaning

PSRec 18 Size of pen state record
in bytes

Trap macros:

(Pascal) (Assembly)

Routine name Trap macro Trap word

GetPenState _GetPenState SAB98

SetPenState _SetPenState $ABIY

250 Drawing

5.2.2 Setting Pen Characteristics

Definitions

Procedure PenSize o
(newWidth : INTEGER; {New pen width}
newHeight : INTEGER); ~ {New pen height}

procedure PenPat _
(newPat : Pattern); {New pen pattern}

procedure PenMode ,
(newMode : INTEGER); {New pen transfer mode}

procedure P'e.nNdrrﬁali;

Notes

il

[

. These routines set the pen characteristics of the current port.
. PenSize, PenPat, and PenMode control individual pen characteristics.
. The current pen size, pattern, and mode can be read from the pnSize,

pnPat, and pnMode fields of the graphics port record [4.2.2].

. If either newWidth or newHeight is zero or negative, both the pen's width

and height are set to 0; the pen will not draw in this state.

. newMode should be one of the eight pattern transfer modes [5.1.3).
. PenNormal resets the pen to its initial state: 1 pixel wide by 1 high, with

a solid black pattern and transfer mode PatCopy (5.1.3].

. None of these routines affects the pen's location.

Assembly Language Information

Trap macros:

(Pascal) {Assembly)

Routine name Trap macro Trap word
PenSize _PenSize $A898
PenPat ' _PenPat $A83D
PenMode —PenMode _ $A89C

PenNormal _PenNormal $ABSE

251 (5.2.3] Hiding and Showing the Pen

5.2.3 Hiding and Showing the Pen

Definitions

type o
GrafPort = record

pnVis : INTEGER; {Pen visibility level}

end;
procedure HidePen;
procedure ShowPen; .

Notes

N

[~ I R -

. These routines control the visibility of the current port's graphics pen

by manipulating the pen level, an integer kept in the port's pnVis field
[4.2.2).

. The pen is visible if the pen level is zero or positive, hidden if it's

negative.

. Drawing operations have no effect when the pen is hidden.

. The pen level is initialized to 0 (visible) by OpenPort or InitPort [4.3.2].

. HidePen makes the pen invisible and decrements the pen level by 1.

. ShowPen undoes the effects of HidePen and restores the pen’s visibility

to its previous state. It increments the pen level by 1; if the result is
0, the pen becomes visible again.

. Calls to HidePen and ShowPen may be nested to any depth. Every call to

HidePen should be balanced by a corresponding call to ShowPen.

. The QuickDraw routines OpenPoly [4.1.4), OpenRgn (4.1.6), and OpenPicture

[5.4.2) call HidePen to prevent the drawing operations used to define a
polygon, region, or picture from affecting the screen. When the defini-
tion is complete, ClosePoly [4.1.4], CloseRgn [4.1.6}, and ClosePicture [5.4.2]
restore the pen'’s previous visibility with ShowPen.

252 Drawing

Assembly Language Information

Field offsets in a graphics port:

(Pascal) (Assembly)

Field name Offset name Offset in bytes
pnVis pnVis 66
Trap macros: ,

(Pascal) (Assembly)

Routine name Trap macro Trap word
HidePen _HidePen $AB36
ShowPen —ShowPen $AB97

5.2.4 Drawing Lines

I;‘ Definitions
=l |

procedure GetPen »
(var penLoc : Point);- {Returns current pen location}

procedure Move
(horiz : INTEGER; {Horizontal distance to move, in pixels}
vert : INTEGER); {Vertical distance to move, in pixels}

procedure MoveTo o
(horiz : INTEGER; fHorizontal coordinate to move to, in pixels}
vert : INTEGER); {Vertical coordinate to move to, in pixels}

procedure Line
(horiz : INTEGER; {Horizontal distance to draw, in pixels}
vert : INTEGER); {Vertical distance to draw, in pixels}

procedure LineTo
(horiz : INTEGER; {Horizontal coordinate to draw to, in pixels}
vert : INTEGER); {Vertical coordinate to draw to, in pixels}

253 [5.2.4) Drawing Lines

ﬂ% Notes

1. GetPen returns the current port’s pen location, a point expressed in
the port’s local coordinate system.

2. The current pen location is kept in the pnVis field of the graphics
port [4.2.2, 5.2.1).

3. Move and MoveTo move the current port's pen to a new location
without drawing anything.

4. Line and LineTo move the pen and draw a straight line from the old
pen location to the new one.

5. The thickness and appearance of the line are determined by the
port’s current pen size, pattern, and mode.

6. All drawing in a port is clipped to the intersection of its boundary
rectangle, port rectangle, clipping region, and visible region. The pen
can move freely outside these boundaries, but only those portions
of lines that fall within the clipping boundaries will actually be
drawn.

7. Drawing operations have no effect when the pen is hidden.

8. MoveTo and LineTo move the pen to a given absolute location, ex-
pressed in the local coordinate system of the current port.

9. Move and Line move the pen a given horizontal and vertical distance
from its current location.

10. Positive values of horiz move the pen to the right, negative to the left;
positive vert values move it downward, negative values move it up-
ward.

* Assembly Language Information

Trap macros: .~ .-~ -
(Pascal) "7 ‘{Assembly) ,
Routine pame * . ‘Trap macro Trap word
Getbenn . _GetPen . $hB9A
Move S Move $A8B94

" MoveTs ' T _MoveTo $AB93
Line . line . $AB92

LineTo _ lineTo shss

254 Drawing

5.3 Drawing Shapes

5.3.1 Basic Drawing Operations

.|

Definitions
type v
GrafVerb = (Frame, _{Draw outline}

Paint, {Fill with current pen pattern]
Erase, {Fill with background pattern}
Invert, - {Invert pixels}
1) {Fill with specified pattern}

Notes

il

1. The enumerated type GrafVerb represents the five basic shape-drawing
operations. Its only actual use in a program is for customizing

QuickDraw operations: see Volume Three for details.

2. Any of the five operations can be applied to rectangles (5.3.2], rounded
rectangles (5.3.3), ovals [5.3.4], arcs and wedges [5.3.5], polygons [5.3.6),

or regions [5.3.7].

3. Drawing always takes place in the current graphics port, and all

shapes are defined in that port's local coordinate system.

4. Framing a shape draws its outline, using the port’s current pen size,
pattern, and mode [5.2.1]. Pixels in the shape's interior are left

unchanged.

5. If a region definition (4.1.6] is open, framing any shape adds the
shape’s outline to the boundary of the region. (Exception: Arcs [5.3.5]

aren’t added to the region definition when framed.)

6. Painting a shape fills it completely with the current port's pen

pattern, using the current pen mode.

7. Filling a shape fills it completely with a specified pattern; the transfer
mode is always PatCopy [5.1.3]. The current port's pen pattern and

mode are unaffected.

8. Erasing a shape fills it completely with the current port’s background

pattern. The transfer mode is always PatCopy [5.1.3].

9. Inverting a shape reverses all pixels it encloses, from white to black

and vice versa.

255 (5.3.2] Drawing Rectangles

10. The location of the graphics pen is not changed by any shape-draw-
ing operation; however, drawing operations have no effect if the pen
is hidden.

11. All drawing operations are clipped to the intersection of the current
port’'s boundary rectangle, port rectangle, clipping region, and visible
region. Only those portions of shapes that fall within all of these
boundaries will actually be drawn.

12, Drawing operations never affect pixels outside the boundaries of the
shape being drawn. (Exception: Framing a polygon will draw outside
the polygon’s boundary; see [5.3.6).)

Assembly-language constants: _ |
Name : Value ‘Meaning
Frame = - - 0 " ‘Draw ouitline
Paint 1 ~_Fill with current pen pattern
Erase 2 Fill with background pattern
Invert 3 “Invert pixels -
Fill 4 Fill with specified pattern
5.3.2 Drawing Rectangles
|;! Definitions
procedure: FrameRect -~ Lo
(theRect : Rect); {Rectangie to be framed}
procedure PaintRect
(theRect ;. Rect); {Rectangle to be painted}
procedure FillRect - , |
(theRect :‘Rect;: {Rectangle to be filled}

- fillPat : Pattern); . {Pattern to fill it with}

procedure EraseRect = _
: (theRect : Rect); {Rectangle to be erased}

procedure InvertRect L '
(theRect : Rect); {Rectangle to be inverted}

256

Drawing

Notes

1. These routines perform the five basic drawing operations [5.3.1] on

rectangles.

2. The trap macro for InvertRect is spelled _InverRect.

“Assembly Language Information

Trap macros:
(Pascal) (Assembly)
Routine name Trap macro Trap word
FrameRect ~FrameRect $ABA1
PaintRect ~PaintRect $A8A2
FillRect _FillRect $ABAS
EraseRect —EraseRect §ABA3

- InvertRect . _‘;.I_vn,Ver’,Hect $ABAY

5.3.3 Drawing Rounded Rectangles

e
ll.... T
-
L]
L}
.

l cornerHeight
b ‘

] ’
§‘. .“
. o
Seq es?’
“"“Ql---ll""-.

cornerWidth

~
e TSR g

inRect —»

saaee T
pore e, PrILy .,
- L . .

Rounded rectangle

257 [5.3.3] Drawing Rounded Rectangles

|
(m

Definitions

procedure FrameRoundRect '
(theRect : Rect;
cornerWidth : INTEGER;

cornerHeight : INTEGER); -

procedure PaintRoundRect
(theRect : Rect;
cornerWidth : INTEGER;
cornerHeight : INTEGER);

procedure FillRoundRect
(theRect : Rect;
cornerWidth : INTEGER;
cornerHeight : INTEGER;

fillPat : Pattern);
procedure EraseRoundRect
(theRect : Rect;

cornerWidth : INTEGER;
cornerHeight : INTEGER);

procedure InvertRoundRect
(theRect : Rect;
cornerWidth : INTEGER;
cornerHeight : INTEGER);

Notes

{Body of rectangle}
{Width of corner oval}
{Height of corner ovall

{Body of rectangle}
[Width of corner oval}
{Height of corner oval}

{Body of rectangle}
{Width of corner oval}
fHeight of corner oval}
{Pattern to fill with}

{Body of rectangle}
{Width of corner oval}
{Height of corner oval}

{Body of rectangle}
{Width of corner oval}
{Height of corner oval}

1. These routines perform the five basic drawing operations [5.3.1] on

rounded rectangles.

2. cornerWidth and cornerHeight give the diameters of curvature, the horizon-
tal and vertical axes of the oval to be used for the rounded corners.

Each corner will be a quarter of this oval (see figure).

3. cornerWidth and cornerHeight can never exceed the width and height of

the body rectangle theRect, even if the values supplied are larger.

4. The trap macro for InvertRoundRect is spelled _InverRoundRect.

258 Drawing

Assembly Language Information

Trap macros:

(Pascal) (Assembly)

Routine name Trap macro Trap word
FrameRoundRect ~ _FrameRoundRect $ABB0
PaintRoundRect _PaintRoundRect $ABB1
FillRoundRect _FillRoundRect $A8B4
EraseRoundRect _EraseRoundRect $A8B2
InvertRoundRect _InverRoundRect $A8B3

5.3.4 Drawing Ovals

<«—— inRect

\
o

259 (5.34) Drawing Ovals

‘;! Definitions

procedure FrameOval
(inRect : Rect); {Rectangle defining oval}

procedure PaintOval
(inRect : Rect); {Rectangle defining oval}

procedure FillOval
(inRect : Rect; {Rectangle defining oval}
fillPat : Pattern); {Pattern to fill with}

procedure EraseQval
(inRect : Hept); {Rectangle defining oval}

procedure InvertOval
(inRect : Rect); {Rectangle defining oval}
ﬂ; Notes

1. These routines perform the five basic drawing operations [5.3.1] on
ovals.

2. The oval is inscribed in rectangle inRect.
3. If the specified rectangle is a square, the resulting oval will be a circle.

Assembly Language Information

Trap macros:

(Pascal) (Assembly)

Routine name Trap macro Trap word
FrameOval _FrameOQval $ABB7
PaintOval _PaintOval $A8BB
FillOval _Filloval $ABBB
EraseOval _EraseOval $A8B9

InvertOval _InvertOval $ABBA

260

Drawing

5.3.5 Drawing Arcs and Wedges

iy

.~

A ’
Nl
g

’

,

,
.

k
——startAngle
27 ‘\\~ e

90°

I ooe.

arcAngle

N

Arc

a BN
Vd N
' \\
%
135° A
— startAngle
FAN

«¢— inRect

arcAngle

261

Definitions

[5.3.5] Drawing Arcs and Wedges

1]

procedure FrameArc
(inRect

startAngle :
: INTEGER);

arcAngle

PaintArc
(inRect

procedure

startAngle :
: INTEGER);

arcAngle

FillArc
(inRect

procedure

startAngle :
: INTEGER;
: Pattern);

arcAngle
fillPat

procedure EraseArc
(inRect

startAngle :
: INTEGER);

arcAnale

procedure InvertArc
(inRect

startAngle :
: INTEGER);

arcAngle

procedure PtToAngle
(inRect
thePoint

var theAngle : INTEGER);

Notes

: Rect;

INTEGER;

: Rect;

INTEGER;

: Rect;

INTEGER;

: Rect;

INTEGER;

: Rect;

INTEGER,;

: Rect;
: Point;

{Rectangle defining oval}
{Starting angle}
{Extent of arc}

{Rectangle defining oval}
{Starting angle}
{Extent of arc}

{Rectangle defining oval}
{Starting angle}

{Extent of arc}

{Pattern to fill with}

{Rectangle defining oval}
{Starting angle}
{Extent of arc}

{Rectangle defining oval}
{Starting angle}
{Extent of arc}

{Rectangle to measure in}
{Point to be measured}

{Returns angle of point, in degrees}

1. These routines perform the five basic drawing operations [5.3.1] on
arcs and wedges.

2. The arc is a portion of the oval inscribed in rectangle inRect.

3. startAngle gives the angle at which the arc begins; arcAngle is the arc’s

angular extent (see figure).

4. All angles are expressed in degrees, modulo 360.

262 Drawing

5. Angles are measured from the center of the oval, with 0 degrees at
the top.

6. Positive angles are measured clockwise, negative ones counterclock-
wise.

7. All angles are measured relative to the given rectangle: for instance,
45 degrees designates the rectangle’s top-right corner. Unless the
rectangle is square, the angles will not be in true circular degrees.

8. FrameArc just draws the specified arc, using the current pen size,
pattern, and mode. All other drawing operations draw a wedge
bounded by the arc itself and the radii joining its two endpoints to
the center of the oval.

9. Unlike other framing operations, FrameArc doesn’t add what it draws
to any open region definition.
10. PtToAngle calculates the angle corresponding to a given point with
respect to a given rectangle, according to the same conventions just
given for specifying arcs.

11. The resulting angle is always between 0 and 359, measured clockwise
from 0 at the top.

Assembly Language Information

Trap macros: ‘ o
* (Pascall " (Assembly)

Routine name - *_Trap-macro ‘Trap word
FrameArc © " _FrameArc $ABBE
PaitArc _PaintArc - - SAGBF
FillAre _FillArc : $A8C2
EraseArc: © _EraseArc $ASCO
InvertArc. ~ _InvertArc $ABC1

PtToAngle ? ‘ : -PtToAngle $A§,63

263 [5.3.6] Drawing Polygons

5.3.6 Drawing Polygons

|;! Definitions | B | N

procedure FramePoly S L .
(thePolygon : PolyHandle); ~ {Handle to polygon to be framed}
procedure PaintPoly , : v : &
(thePolygon : PolyHandle); {Handle to polygon to be painted}
procedure FillPoly . ‘ R
(thePolygon : PolyHandle; {Handle to polygon to. be filled}
fillpat -~ : Pattern); {Pattern to fill it with} -
procedure ErasePoly o : : L e
(thePolygon : PolyHandle); {Handle to polygon te be erased}
procedure InvertPoly L P
(thePolygon : PolyHandle); ~ {Handle to polygon to beinverted}

ﬂ% Notes

1. These routines perform the five basic drawing operations [5.3.1] on
polygons.

2. FramePoly uses the standard line-drawing operations [5.2.4] to draw the
polygon's outline. This causes it to draw outside the actual outline at
the right and bottom by the width and height of the graphics pen.
This is the only shape-drawing operation that ever draws outside the
boundary of a shape.

Assembly Language Information

Trap macros:

(Pascal) ~ (Assembly)- , -
Routine name : . Trap macro —— Trapword
FramePoly _FramePoly) $ABCE
PaintPoly : _PaintPoly . . ., . $ABGT
FillPoly FillPoly $ASCA
ErasePoly —ErasePoly : . -$ABC8:

InvertPoly ~ InvertPoly $ABCO

264 Drawing

5.3.7 Drawing Regions

|g! Definitions

pracedure FrameRgn o 7
(theRegion : RgnHandle); {Handle to region.to be framed}

procedure PaintRgn B ,
(theRegion : RgnHaqute);;g '-{Hapdle‘to;regjpn to be painted}

procedure FillRgn
(theRegion : RgnHandle; ~ {Handle to region to be filled}
fillPat : Pattern); {Pattern to fill it with}

procedure EraseRgn , S :
(theRegion ; RgnHandle); {Handle to region to be era}sed}

procedure InvertRgn -
(theRegion : RgnHandle); {Handle to region tc be inverted}

ﬂ% Notes

1. These routines perform the five basic drawing operations [5.3.1] on
regions.

2. A region should always be drawn in the same graphics port in which
it was defined.

3. The trap macro for InvertRgn is spelled _InverRgn.

Assembly Language Information
Trap macros:) -
(Pascal} 4 {Assembly)
Routine name ‘Trap macro Trapw::rd
FrameRgn —FrameRgn $A_i}02
PaintRgn _PaintRgn. $A8D3
FillRgn ~ _FillRgn : $A8DS
EraseRgn _EraseRgn $ABD4

invertRgn _InverRgn. $ABD5

265 [5.4.1] Picture Records

5.4 Pictures and Icons

5.4.1 Picture Records

Definitions.

=

type

PicHandle = ~PicPtr;

PicPtr

= “Picture;

Picture = record

picSize : INTEGER; {Length of this data structure in bytes}

picFrame : Rect; = {Smallest rectangle enclosing the picture}
{additional data defining contents of picture}

end; ' o

Notes

1. A Picture is a variable-length data structure representing an arbitrary
sequence of QuickDraw operations for drawing an image.

2. At the end of the Picture record is variable-length data (not directly
accessible in Pascal) describing in compact, encoded form the opera-
tions needed to draw the picture. The Toolbox maintains this data for
you—you'll never need to access or store into it yourself.

3. picSize is the overall length of this Picture data structure in bytes,
including the variable-length data describing the drawing operations.

4. The Macintosh Plus can accommodate pictures up to 4 gigabytes (2%
bytes) long, with sizes expressed as long integers instead of plain
integers. To get the true size of a picture, use GetHandleSize (3.2.3]
instead of looking in the picSize field of the picture record. picSize holds
the low-order 16 bits of the true size, so it's still correct for pictures
of up to 32,767 bytes.

5. picFrame is the picture frame, the rectangle within which the picture is
drawn.

266 Drawing

Assembly Language Information

Field offsets in a picture record:’

(Pascal) (Assembly)

Field name Offset name Offset in bytes
picSize “picSize | ' 0
picFrame "picFrame 2

: - picData ' 10

5.4.2 Defining Pictures

Dé Definitions S

funetlon OpenPicture
(picFrame : Rect) {Frame for new picture}
: PicHandle; {Handle to new ‘picturen} .

procedure ClosePicture;

function GetPicture ,
(picturelD : INTEGER) - {Resource 1D of desired picture}
: PicHandle; o {Handle to picture in memory}

procedure KillPicture '
(thePicture : PicHandle); {Handle to picture to be destroyed}

ﬂ% Notes

1. OpenPicture creates a new Picture record [5.4.1], opens it for definition,
and returns a handle to it.

2. picFrame is the frame for the new picture.

3. Subsequent drawing operations will be accumulated into the picture
definition.

4. The graphics pen [5.2.1] is hidden while a picture is open; the
drawing operations that define the picture will not appear on the
screen.

267 (5.4.3) Drawing Pictures

5

8.

9.

10.

11.

Only one picture may be open for definition at a time; don’t attempt
to open another without closing the one that's already open.
ClosePicture closes the picture currently open for definition, if any.

The graphics pen is redisplayed on the screen; subsequent drawing
operations will appear on the screen instead of being accumulated
into the picture definition.

GetPicture gets a picture from a resource file (Chapter 6), reads it into
memory if necessary, and returns a handle to it.

picturelD is the resource ID of the desired picture; its resource type is
‘PICT’ [5.5.5].

KillPicture destroys a Picture record and deallocates the memory space
it occupies. The picture is no longer usable after this operation.

To dispose of a picture that has been read in as a resource [5.5.5),
use ReleaseResource [6.3.2] instead of KillPicture.

Assembly Language Information

Trap macros: SRy s
(Pascal) , (Assembly}

Routine name- 0+ Trap:macro : Trapword
OpenPicture - . —OpenPicture $ABF3
ClossPicture ~~ ~ _ClosePicture $ABF4
GetPicture , - . GetPicture $AIBC

KillPicture - KillPicture. $ABF5

5.4.3 Drawing Pictures

Definitions

procedure DrawPicture -

(thePicture : Picﬂandle; {Picture to be drawn}
inRect: . : Rect); . {Rectangle to draw it in}

268 Drawing

0 Notes

1. DrawPicture draws a specified picture in the current graphics port.

2. The picture will be scaled so that its picture frame coincides with the
given rectangle inRect.

Assembly Language Information

Trap macro:

(Pascal) (Assembly)

Routine name Trap macro Trap word
DrawPicture _DrawPicture $ABF6

5.4.4 Icons

l;-l Definitions
=l

function Geticon

(iconiD : INTEGER) - {Resource ID of desired icon}
: Handle; {Handle to icon in memory}
procedure Plotlcon ‘ ‘
(inRect : Rect; {Rectangle to plot in}

iconHandle : Handle); {Handle to icon}

1 Notes

1. An icon is a 32-by-32 bit image, commonly (but not necessarily) used
to represent an object on the screen.

2. Icons reside in the heap and are referred to by handles.

3. There is no defined data type representing an icon. If you have to
create one in your program, you can use an
array [1..32] of LONGINT

4. Icons are usually stored in resource files and read in as resources
(Chapter 6).

269 (5.5.1) Resource Type PAT

8. Getlcon gets an icon from a resource file (Chapter 6), reads it into
memory if necessary, and returns a handle to it.

6. IconiD is the resource ID of the desired icon; its resource type is 1CON’
[5.5.3].

7. Ploticon draws an icon in the current graphics port, scaled to a
specified rectangle.

8. The rectangle inRect is expressed in the local coordinate system of the
current port.

Assembly Language Information

_Trap macros: o

(Pascal) T ' (Assembly)

Routine name : ' Trap macro Trap word
Getlcon : 0 _Geticon $A9BB

Ploticon ST _Ploticon $A948

5.5 OQuickDraw-Related Resources

5.5.1 Resource Type PAT’

> 8 bytes

270 Drawing

Notes

il

1. A resource of type ‘PAT ’ contains a QuickDraw pattern.
2. The space in 'PAT ' is required.

3. The resource data consists of the bits (pixels) of the pattern, 8 rows
of 8 bits (1 byte) each.

4. Use GetPattern (5.1.1] to load a resource of this type.

5.5.2 Resource Type 'PAT#

Number of patterns

Pattern
........... (8 DgteS) ereessesne
] (]
] . (]
. .
. Any number
s . } of patterns
] .]
| .

Pattern

(8 bytes)

271 [5.5.3] Resource Type ‘ICON’

Netes

[

- A resource of type 'PAT# contains a list of QuickDraw patterns.

2. The resource data consists of a 2-byte integer giving the number of
patterns in the list, followed by the patterns themselves (8 bytes each,
as described under PAT ’ [5.5.1)).

3. Use GetindPattern [5.1.1] to access individual patterns in a pattern list.

4. The system resource file includes a standard pattern list [5.1.2) con-
taining the 38 patterns in MacPaint's standard pattern palette. The
resource ID for this standard pattern list is 0.

5.5.3 Resource Type 'ICON

Ro';v 1

(4 bytes)
Row 2
(4 bytes)
: ¢ 128 bytes

. . .
| | * a
[} [] []
a a

Rov; 32

...............

(4 DgteS)

Notes

1. A resource of type 1CON' contains an icon to be displayed on the
screen.

272 Drawing

2. The resource data consists of the bits (pixels) of the icon, 32 rows of
32 bits (4 bytes) each.

3. Use Getlcon [5.4.4] to load a resource of this type.

5.5.4 Resource Type 'ICN#

Icon
(128 bytes)

Icon
(128 bytes)

Any number
¢ oficons

Icon
(128 bytes)

Notes

1. Aresource of type 'ICN# contains a list of icons.

2. The resource data consists of any number of icons, 128 bytes each (32
rows of 4 bytes, as described under ICON’ (5.5.3)).

3. Resources of this type are commonly used to hold a file icon and its
mask for use by the Finder [7.5.3].

273 (5.5.5] Resource Type ‘PICT'

5.5.5 Resource Type 'PICT’

Length m bytes

Frame
(8 bytes)

Data defining picture

(indefinite length)

I

Notes

1. A resource of type ‘PICT’ contains a QuickDraw picture.

2. The resource data consists of a QuickDraw picture record [5.4.1], with
a 2-byte picSize field and an 8-byte picFrame rectangle, followed by any
number of bytes of the picture definition.

3. Use GetPicture [5.4.2] to load a resource of this type.

4. When you're finished with the picture, use ReleaseResource [6.3.2] (not
KillPicture [5.4.2)) to dispose of it.

CHAPTER

It

if]
/

Summoning Your
Resources

One of the brightest of the bright ideas in the Macintosh
Toolbox is the concept of resources. A program'’s resources can
include all the little odds and ends it needs to do its job: the
menus it offers in the menu bar, the icons and character fonts it
uses to display information on the screen, the layout and contents
of its dialog and alert boxes. Even the code of the program itself
consists of one or more code segments, each of which is a
resource. Looked at in a certain way, a Macintosh program is
nothing but a bundle of resources.

Resources were originally invented to help convert (the in
word is “localize”) Macintosh software for use in foreign countries.
From the start, Apple designed the Macintosh to be an interna-
tional product. The idea behind resources was to isolate those
aspects of a program'’s behavior that could vary from one country
to another. That way you could translate all the menus and error
messages into Dutch, or reconfigure the keyboard to the standard
French layout, or display text in a Japanese Katakana font, without
having to change the underlying program itself. By making proper
use of resources, you could write programs that would work just
as well in Brussels or Buenos Aires as they would in Boston or
Boise.

Resources were soon recognized, though, as a powerful and
general mechanism that could be useful for much more than just

275

276 summoning Your Resources

foreign localization. Separating the text of menus and dialogs from
the rest of the program makes it easy to correct misspellings or
change terminology. By making the code that draws windows on
the screen a resource, you can experiment with windows of
different shapes and styles without affecting either the code of a
particular program or the general window-management code built
into the Macintosh ROM. Not only application programs, but the
individual data files they work on can have resources of their own,
so that a text document, for instance, can carry its own font
information and illustrations with it even when it's copied from
one disk to another.

Resources have another important advantage as well: they
allow descriptive information about a program's behavior to be
separated into bite-sized “chunks” rather than embedded in the
code of the program itself. Because they're identified as separate enti-
ties, not all the “chunks” have to be kept in memory at once. They
can be read in from the disk on demand and then purged from
memory when no longer needed. This allows great flexibility in
managing the program’s memory space. In particular, it provides a
natural mechanism for breaking up the code itself into segments
that can be loaded into memory as needed and “swapped out”
when they're not actually being executed. We'll be coming back to
this subject in the next chapter.

In fact, resources are so useful that they've become a pervasive
part of the whole Macintosh software design. Just about every part
of the Toolbox uses them in one way or another, and they'll be
coming up again and again in the course of our discussions. Any
program you write will make extensive use of resources through
the Toolbox, even if you never explicitly refer to them yourself.

277 I1dentifying Resources

- ‘Although: this chapter tells how to use resources in a program,
there’s still the problem of creating the resources in the first place.
Historically, this has been done with a utility program named
‘BMaker, a “resource compiler” that reads a coded text file describing

. the desired resources and. produces an equivalent resource file.

* RMaker is included with many of the most popular software develop-
ment systems, such.as TML's MacLanguage Series Pascal, Borland's
Turbo Pascal for the Mac, and- Consulair's Macintosh Development
System (MDS). :

RMaker's main drawback is that its text format for describing a
program’s resources .amounts: to yet another language for you to
learn. Another utility, a “resource editor” named ResEdit, takes a
more conveniént approach. Instead of compiling your resources
from a coded text descnptlon, ResEdit allows you to define and

~ ‘modify them directly on your Macintosh screen with the mouse

-and keyboard. (This, in fact, is how the resources were created for
our example program MiniEdit in Volume Two.)

' ResEdit is included as part of Apple’s Macintosh Programmer’s
Workshop (MPW), and is also widely available in the public domain
through Macintosh clubs, user groups, and “bulletin boards.” MPW
also includes its own resource compiler and decompiler, named Rez
and DeRez..In addition,. there's a growing array of specialized tools for
handling specxﬁc types of resources, such as font editors, menu edi-

_tors, and Apples .own Font/DA Mover for copying existing fonts and
desk accessories from one resource file to another. For special needs
that aren’t-covered by any of these existing tools, you'll have to write
your own ad hoc programs to create the resources you need, using
the Toolbox facilities ‘described in this chapter, the information on
resource formats given in the rest of the beok, and your own

ingenuity.

Identifying Resources

Every resource has a resource type and a resource ID. The
resource type is a four-character string denoting the kind of
information the resource represents, such as 'ICON’ or ‘"MENU'. The
resource ID is an identifying number to distinguish one resource
from another of the same type. Together, the resource type and
resource ID make up a resource specification that uniquely iden-
tifies a particular resource.

278 Summoning Your Resources

A resource’s type determines what kind of information it
contains (the resource data) and how that information is struc-
tured internally. The name of a resource type can be any four
characters at all. The contents and structure of resources of that
type can follow any conventions agreed on between the program
that creates them and the one that uses them (which may or may
not be the same program). Certain standard resource types are
built into the Toolbox [6.1.1); you can also invent your own
resource types, provided that their four-character names don't
conflict with any of the standard ones.

The name, of a resource’ ‘type: must :always be exactly four characters
long. If it's shorter, it must include trailing spaces to fill it out to
four characters, .as in"STR * or 'PAT ', Upper--and lowercase. letters
are distinguished, so “BLOB', ‘Blab’, and ‘blap” would be considered
three: different respurce types. Notice also that the Pascal string
quotes () enclosing the type name are merely delimiters, not part
ofthe name itself: T e fa ‘ . .

A resource ID can be any 16-bit signed integer, as long as it
doesn’t conflict with another resource of the same type. (It's OK
for resources of different types to have the same ID number. In
fact, this can be a convenient way of indicating that the resources
are related in some way—such as a font resource of type 'FONT'
[8.4.5] and the corresponding character-width table of type 'FWID'
(8.4.6].) However, all negative ID numbers and positive ones up to
127 are reserved for system use. Resources that you create for
yourself must have positive IDs between 128 and 32767.

In addition to a type and an ID number, a resource may also
have a resource name, which can be any string up to 255 charac-
ters long. Resource names are optional, and are generally used
only for resources that will be listed on a menu, such as fonts or
desk accessories. A named resource can be identified by type and
name instead of type and ID number. To make sure the identifica-
tion is unique, resources of the same type must always have
different names. (Again, it's OK—although not necessarily ad-
visable—to have two distinct resources with the same name, as long
as they're of different types.)

279 Resource Files

Resource Files

Resources reside in resource files on the disk. A single resource
file can contain any number of resources of any types. The file's
contents are summarized in a table called the resource map,
stored as part of the file itself. Each entry in the resource map
holds all the pertinent information about one resource in the file:
its type, ID number, name (if any), attributes, and the location of
its data within the resource file (see Figure 6-1). The resource map
is read into memory from the disk when you open the file, and
remains in memory for as long as the file remains open.

Resource File

Resource Data

r Any
number
of
resources

Resource

(Map

Resources reside in resource files on the disk.

Figure 6-1 Resource map

280 Summoning Your Resources

Strictly, speaking, there’s really no such thing as a resource file
as such. Or, to look at it another way, every file on the disk is (at
least potentially) a resource file. Each file has two parts, or “forks”:
a data fork and a resource fork. It's almost as if there were two
distinct files with the same name, which are inseparably linked
and always travel together as a unit (for instance, when copied
from one disk to another with the Finder). To read or write a file’s
data fork, you use the ordinary input/output operations that we'll
be discussing in Volume Two, Chapter 8; to read or write the
resource fork, you use the resource operations described in this
chapter. The term “resource file” is just a convenient fiction: when
we speak of a resource file named, say, Rumpelstiltskin, what we're
really referring to is the resource fork of the file by that name.

For a file containing a document of some sort, the document’s
contents are kept in the data fork, while the resource fork can
hold document-specific resources such as fonts and icons. For a
file containing an application program, the data fork is usually
empty. (Remember, the code of the program is just another
resource like anything else.) Of course, a program can store into its
own data fork if it wants to—this can be a convenient place, for
instance, to stash global information that needs to be remembered
from one run of the program to the next.

The most important resource file of all is the system resource
file, which contains shared resources available to all programs.
These include such things as the standard fonts, icons, cursors,
and gray patterns; the standard keyboard layout; definition rou-
tines for the standard window, control, and menu tvpes; and the
code of desk accessories such as the Calculator, Alarm Clock, and
Scrapbook. The system resource file is actually the resource fork of
the file named System, which must be present on every startup disk.
(This file's data fork contains RAM-based system and Toolbox rou-
tines to be loaded into memory when the system is started up—
typically to correct errors in the ROM versions of the routines.) The
file is opened automatically when the system is started up, and
normally just remains open continuously.

On the Macintosh Plus, some of the most commonly used system
resources actually reside in ROM, rather than in the System file on
the disk. See [6.6.3] for more information.

281 Resource Files

Another important resource file is the application resource
file, which is the resource fork of the file containing the applica-
tion program itself. This is where a program normally keeps its
own private resources (including the actual code of the program).
The application resource file is opened automatically when a pro-
gram is started up, so there’s no need for the program to open it
explicitly.

In addition to the system and application resource files, you
can open any other resource files you need by calling OpenResFile
[6.2.1]. You designate the file to be opened by name; OpenResFile
gives you back a file reference number, which you use from then
on whenever you need to identify the file. (We'll learn more about
file reference numbers when we talk about files in Volume Two.)

All resource-related Toolbox routines that deal with file reference
numbers interpret a reference number of 0 to denote the system
resource file. This is merely.a convention, however; the file actually
has a true reference number different from 0.

All the open resource files are kept in a list, linked together
through a field of their resource maps in memory. When a new
file is opened, it's linked to the front of this list. So the files are
listed in reverse order chronologically, with the most recently
opened resource file first in the list, and the system resource file
last.

When you ask for a resource, the Toolbox searches each file
in the list until it finds a resource with the specified type and ID
(or type and name). The search always begins with the current
resource file and proceeds from there to the end of the list (see
Figure 6-2). Opening a new resource file makes it current, so
normally the current file is the first one in the list. If necessary,
you can change this by calling UseResFile or find out which file is
current with CurResFile [6.2.2]. Changing the current resource file
just causes some files at the beginning of the list to be bypassed;
you can’'t change the order of the list itself.

Closing a resource file removes it from the list and deallocates
the space occupied by its resource map. It also deallocates any of
the file's resources that may have been read into memory. All open
resource files (except the system file) are closed automatically

282 Summoning Your Resources

Most recently

Current Resource File

opened Application System
resource file Resource file resource file rescurce file
Link Link Link Link
Resource Resource Resource Resource
Map Map Map Map

When a resource file is opened, the map is read into memory, but the resource data remains on the disk.
The open resource files are linked through a field of their resource maps.

Figure 6-2 Current resource file

when a program terminates, but if you're pressed for space you
may want to close a file explicitly while your program is still
running. You can do this by calling CloseResFile [6.2.1], giving the
reference number of the file you want to close.

Closing the system.resourcé file automatically closes all other:open
resource files as well. This isn't something you'd normally want to
do, since other parts of the system depend on the systern resource
file. ' o -

Access to Resources

To use a resource, you first have to read it into memory from its
resource file. The usual way of doing this is with GetResource [6.3.1],
identifying the resource by its type and ID number. For resources
with names, you can use GetNamedResource, giving a type and name
instead of a type and ID. Both routines search the list of resource
files beginning with the current file, as described in the preceding

283 Access to Resources

section. When they find the resource you asked for, they allocate
space in the heap for the resource’s data, read the data in from
the file, and return a handle to it. You can then use this handle
to do whatever you need to do with the data. A copy of the handle
is also saved in the file’s resource map in memory. If the resource
is still in memory the next time you ask for it, you'll just get back
this same handle; the resource won'’t have to be read in again from
the disk.

One of the new features of the Macintosh Plus Toolbox is a collec-
tion of “one-deep” resource routines that apply only to the current
resource file, instead of the entire list of open resource files. The
new routines Get1Resource and Get1NamedResource [6.3.1] are analogous
~to GetResource and GetNamedResource, but look for a requested resource
in the current resource file only. If they don't find it there, they
simply abandon the search and report an error instead of going on
to the next file in the list. These routines can make some of your
resource operations more efficient—but bear in mind. that they
aren't available if you’re running on an older-model Macintosh. -

Like any other relocatable block, a resource in the heap can
be locked or unlocked, purgeable or unpurgeable. The resource’s
attributes (discussed in the next section) determine the initial
settings of these properties when the resource is first read in from
the disk. After that, you can change them as needed with HLock
and Hunlock, HPurge and HNoPurge (3.2.4].

If you make a resource purgeable, of course, then each time
you use it you have to check first to make sure it's still in memory.
The best way to do this is to call LoadResource (6.3.4] before each
use of the resource’s handle. If the handle is empty (the resource
has been purged), LoadResource will reload the resource from the
disk; if it isn’t empty (the resource is still in memory), LoadResource
does nothing. You might then want to make the resource tem-
porarily unpurgeable while it's in use (see Program 6-1).

284 Summoning Your Resources

{ Skeleton code showing the use of a purgeable rescurce. }

var
theHandle : Handle;
thePointer : Ptr;
begin
L] [L] ;
LoadRescurce {(theHandle); {Make sure resource is in sesory [5.3.41}
Hlack (theHandle); {Lock before dereferencing [3.2.41}
thePointer := theHandle*; {Dereference handle}
.« thePointer...; {Use simple pointer}
Hunlock (theHandle); {Unlock wher through [3.2.41}
d

Program 6-1 Using a purgeable resource

Whether to make a given resource purgeable or unpurgeable
depends on a number of factors, including the size of the resource,
how often you'll be referring to it, and how desperate you are for
‘heap space. In general, you'll probably want to make larger
resources (such as fonts) purgeable and smaller ones (such as
patterns) unpurgeable.

When you're all through with a resource, you can free the
memory space it occupies with ReleaseResource [6.3.2]. As usual, this
makes all handles to the resource invalid; it also sets the resource’s
handle in the resource map to NIL, so that the resource will be
reloaded from the disk the next time you ask for it. All the
resources in a resource file are released automatically when you
close the file.

Sometimes, though, you may want to hold onto a resource
even after the file it came from is closed. For instance, suppose

285 Access to Resources

you need a single resource from a particular resource file. Once
you have the resource, there’s no need to keep the file open, with
its resource map taking up space in memory. To keep the resource
from being deallocated when you close the file, you can detach it
first with DetachResource [6.3.2]. This clears the resource’s handle in
the resource map but doesn't deallocate the resource itself. The
resource isn't removed from the file; your copy of it in memory is
just decoupled from the file’s resource map, so that it won't go
away when you close the file (see Figure 6-3). Even after the file is

Resource Ma

A Handis Foi
o[_Handip e
b {_Hand1

Handle —

R REIRICAIIes Master Emnter
Handle Master Pointer

AN SAIARARL Master Pointer '—
Handle ==

Resource Data

rsrcHandle

Resource Data

Resource Data

To detach a resource, first create your own copy of
the handle (rsrcHandle).

Figure 6-3 Detaching a resource

286 Summoning Your Resources

DetachResource (rsrcHandle)

Resource Ma

; Handls
Note this s
handle e
set to NIL [t

Master Pointer
Master Pointer
Master Pointer \—

Resource Data

rsrcHandle

Resource Data

Resource Data

Procedure DetachResource sets the original
handle to NIL.

Figure 6-3 (continued)

287 Access to Resources

Master Pointer

rsrcHandle

Resource Data

The resource file has been closed; its map and all
resources it contained have been deallocated. The
detached resource remains.

Figure 6-3 (continued)

288 Summoning Your Resources

closed, your own copy of the resource’s handle remains valid and
you can continue to use it to refer to the resource cata, as in
Program 6-2.

You may sometimes want to perform some operation on all
available resources of a given type, or of every type. Program 6-3
shows how. The function CountTypes [6.3.3) returns the total num-
ber of distinct resource types contained in all open resource files.
You can then call GetlndType [6.3.3] once for each value of its index
parameter from 1 up to the number of types. Each time it will return
a different resource type. For each of these types, CountResources
[6.3.3] will return the total number of available resources of that
type in all open files; you can get each of the resources in turn
by calling GetindResource [6.3.3] once for each value from 1 to the
number of resources. We'll see a further example of this technique
in Chapter 8.

{ Skeleten code to get one single resource from a resource file. }

const
blebID = 128; {Resource 1D of desired "BLOB’ rescurce}
var
theFile ¢+ INTEGER; (Reference nusber of the rescurce file}
theBlob : Handle; {Handle to the resource}
begin
. . L] ;
theFile := OpenResFile (’Ruapelstiltskin’); {Open the file [6.2.11}
theBlob := BetRescurce (’BLOB’, blabID); {Get the rescurce [6.3.13}
DetachResource (theBlob); {Detach the resource [4.3.71}
CloseResFile (theFile); {Close the file [6.2.11}
...theBleb...; {Use the resource}
end

Program 6-2 Detaching a resource

289 Access to Resources

{ Skeleton code to generate all available resources. }

var

typelndex : INTEGER; {Index of resource type}
rsrcindex : INTEGER; {Index of individual reseurce}
theType : ResType; {(Resource type}
rsrciandle ¢ Handle; {Handle to resource}
begin
a 8 @ ;
for typelndex := 1 to Countlypes do {Loap over all resgurce types [6.3.31)
begin
SetindType (theType, typelndex); {Get next type [56.3.3)}
for rercindex := 1 to CountResources (theType) do (Loop over all rescurces of this type [4.3.31}
begin
rsrchandle := GetIndResource (theType, rsrcindex); {(Get handle to aext resocurce [6.3.31}
«sorsrchandle... {Use the handle}
end
ead;
end

Program 6-3 Generating all resources

v Notme that these n'outmes always operate on all open resource files,
‘no matter which one’ happens to'be currént. On the Macintosh Plus,
. you can limit your operations to just one - particular resource file by
making that file currert with: UseResFile [(6.2.2], then using the new
one-deep routine cnuntﬁypes, GetlindType, CountiResources, and Getlind-
‘Resoirce [6.3:3] to.géneraté the résources. On older machines, where
‘thé one-deep routines aren’t available, you can achieve the same
_effect by generating all available resources with the old routines and
testing each one:with HomeResFile [6.4.3] to see if it belongs to the file
of interest.. Th1 method éls much slower than using the one-deep
mutmes, how v :

290 Summoning Your Resources

Resource Attributes

Besides its resource data, every resource has some additional
items of information associated with it. These additional items are
kept in the resource’s entry in its file's resource map. They fall into
two categories: identifying information and resource attributes.

The identifying information for a resource consists of its
resource type, ID number, and (optional) name. Given a handle to
the resource, you can find out its identifying information with
GetResInfo or change it with SetResinfo [6.4.1]. (You can't change a
resource’s type, just its ID and name.) To find out the size of a
resource’s data, in bytes, use SizeResource [6.4.3].

If speed is more unportant than absolute accuracy, you can save
some time (on the Macintosh Plus only) by using the new routine
MaxSizeRsrc [6.4.3) rather than SizeResource. Instead of exarnining the
resource: itself (which may have to be read from the disk if it isn’t
already in memory), MaxSizeRsrc just looks in the resource map and
finds the number of bytes between the beginning of this resource’s
data and that of the next resource following it in the file. This is a
quick operation, since the resource map is always lmmed:ate_ly
available:in memory—but the result may not accurately reflect the
true size of the resource. If the resource has been shortened while
in memory, there may be some extra, unused space following it that
won't be closed up until the file is written back out to the disk.
Thus the resource can never be larger than the value reported by
MaxSizeRsrc, but-it may be smaller. If you really need the exact size,
use SizeResource instead.

A resource’s attributes are a set of 1-bit flags describing
various properties of the resource. They're collected in a single
“attribute byte” of the resource map entry, with the format shown
in Figure 6-4. The Toolbox provides the routines GetResAttrs and
SetResAttrs [6.4.2] for reading and changing a resource's attributes,
as well as constants for referring to each of the individual attribute
bits. In every case, the constant's name tells the meaning of the
corresponding attribute bit when set to 1; a bit value of 0 has the
opposite meaning. (For instance, a resource is protected if its
ResProtected bit is set to 1, unprotected if it’s 0.)

291 Resource Attributes

Low-order byte (high-order
byte not used)

7 6 5 4 3 2 1 0

ResChanged
ResPreload
ResProtected
RasLocked

ResPurgeable
ResSysHeap

Figure 6-4 Resource attributes

You can use these attribute constants along with the bit-
manipulation routines BitAnd, BitOr, BitXOr, and BitNot (2.2.2] to oper-
ate on the individual attribute bits of a resource. For example,
if theResource is a handle to a resource, you might turn on its
ResProtected attribute as follows:

attrs := GetResAttrs (theResource);
attrs := BitOr (attrs, ResProtected);
SetResAttrs (theResource, attrs)

The ResSysHeap attribute tells whether the space for a resource’s
data is allocated from the system heap or the application heap.
ResLocked and ResPurgeable control whether the resource is initially
locked and made purgeable when it's loaded from the disk. Chang-
ing these attributes does not immediately lock or unlock the
resource or change its purgeability—you still have to do that in the
usual way, with HLock and HUnlock, HPurge and HNoPurge [3.2.4].
Changing the ResLocked and ResPurgeable attributes only affects what
will happen the next time the resource is read in from the disk.

The ResProtected attribute prevents you from removing a re-
source from its resource file or changing its name or ID. (You can

292 summoning Your Resources

still change the resource’s attributes, however—if you couldn't,
there would be no way to turn off the ResProtected attribute itself))
ResPreload causes the resource to be read into memory immediately
when its resource file is opened, instead of waiting for you to get or
load it explicitly. Finally, ResChanged means that the resource has
been changed since the last time it was read in from the disk, and
must be written back out before the file is closed. (We'll have more
to say about this process in the next section.) The first and last bits
of the attribute byte are reserved for private use by the Toolbox.

Not only individual resources, but whole resource files have
attributes of their own, which you can access and change with
GetResFileAttrs and SetResFileAttrs [6.6.2]. You'll rarely have to deal with
resource file attributes, but there are a few cases when they're
useful. Some examples are given in the “Nuts and Bolts” section at
the end of this chapter.

Maodifying Resources

So far, we've assumed that all you want to do is read and use exist-
ing resources from existing resource files. In most applications
that's all you'll need, but occasionally you may want to add new
resources to a resource file, remove old ones, change existing ones,
or even create whole new resource files.

When you change a resource, you have to take special
measures if you want the change to be incorporated permanently
on the disk. Simply changing the resource in memory isn't
enough—you also have to mark it as changed by setting its
ResChanged attribute. When the file is later updated, all resources
that have been marked as changed will be written out to the disk. A
resource file is automatically updated when it’s closed (and recall
that all except the system resource file are closed automatically
when your program terminates). If for some reason you want to
update a resource file without closing it, use UpdateResFile [6.5.4].

You can add resources to the current resource file with
AddResource and remove them with RmveResource [6.5.3]. Both of
these routines make the appropriate changes in the resource map
of the current file; AddResource also marks the new resource as
changed, so it will automatically be written out to the disk when"
the file is updated. When you add a resource, you can use UniquelD
(6.5.3] to make sure the ID number you give it doesn’t conflict with

293 Modifying Resources

another resource of the same type. To create a brand-new
resource file, use CreateResFile [6.5.1] and then add whatever
resources the new file is to contain.

When you make any change in the data of an existing
resource in memory (or change its resource map information with
SetReslInfo or SetResAttrs [6.4.2)), you can choose whether to make the
change permanently on the disk, or just temporarily for as long
as the resource remains in memory. To make the change per-
manent, you have to call ChangedResource [6.5.2] to mark the
resource as changed. This ensures that it'll be written out when
the resource file is updated. (Always use ChangedResource for this
purpose; never directly manipulate a resource’s ResChanged attribute
yourself))

If any single resource. in a file is marked as changed, the entire
resource map will always be written out when the file is updated.
This means that changes in some other resource's identifying
information or attributes may be written back to the disk even
though you haven't marked that specific resource as changed. If
you want such a change to be temporary, it's up to you to undo
the change before the ﬁle isupdated.

The situation is especially tricky when the resource you're
modifying is purgeable. First of all, you have to make sure the
resource isn't purged from the heap while you're in the middle of
changing it. To prevent this, always use HNoPurge to make the
resource temporarily unpurgeable while you're modifying it, then
HPurge to make it purgeable again when you're through. But even
if you take this precaution, there’s still the danger that the
resource may be purged after you've changed it and before its
resource file is updated. In that case your changes will be lost,
and empty (zero-length) data will be written to the file for that
resource.

One way to make sure your changes aren't accidentally lost
is to write the resource out explicitly with WriteResource [6.5.4] as
soon as you finish changing it, and before you make it purgeable
again. Another way to do it is with SetResPurge [6.5.5). The call

SetResPurge(TRUE)

294 Summoning Your Resources

Error Reporting

tells the Toolbox to check every time it purges a block from the
heap, to see if the block is a changed resource. If it is, the Toolbox
will write it out to its resource file before purging it. This
guarantees that all your changes will be saved eventually, although
you have no control over exactly when.

SetResPurge(FALSE)
turns off this feature, so that blocks are again purged from the heap

without any checking. Automatic purge checking is initially off, so
you have to turn it on explicitly with SetResPurge if you want it.

The routines dealing with resources use an error-reporting
mechanism similar to the one used in memory management,
which we discussed in Chapter 3. The function ResError [6.6.1] is
analogous to MemError [3.1.3]: after a call to any resource-related
routine, this function returns an integer result code. A code of 0
(NoErr) means that all is well; a nonzero code reports an error of
some kind. If the routine reporting the error is a function, it gener-
ally returns some special value, such as NIL or —1, to alert you that
an error has occurred; if it's a procedure, it typically just posts the
error and returns without doing anything.

In assembly language, you can find the. result code from the last
resource-related operation in the global variable ResErr.

The list given in [6.6.1] includes only those error codes that
deal specifically with resources. It's also possible for ResError to
return error codes related to other parts of the Toolbox. For
instance, you may get a code of MemFullErr [3.1.2] if you try to load
a resource from the disk when there isn't enough room for it in
the heap. See Appendix E for a complete list of possible error
codes.

295 Nuts and Bolts

Nuts and Bolts

Since a resource’s identifying information and attributes reside in
the resource map, it isn't necessary to load the resource into
memory to work with them. A routine called SetResLoad [6.3.4]
allows you to get a handle to a resource without loading its data
from the resource file. The call

SetResLoad(FALSE)

turns off the automatic loading of resources by GetResource [6.3.1],
GetNamedResource [6.3.1], and GetindResource [6.3.3] (and their one-deep
counterparts). If the resource you ask for is already in memory,
these routines will still return a handle to it, as usual; but if it isn't,
they'll give you back an empty handle instead of loading the
resource from the file. This empty handle identifies the resource
well enough for those routines that operate on its resource map
entry (GetResInfo and SetReslnfo [6.4.1], GetResAttrs and SetResAttrs [6.4.2],
HomeResFile and MaxSizeRsrc [6.4.3]). If you later need to refer to the
resource’s data, you can read it in explicitly with LoadResource
(6.3.4].

Be careful, though! Turning off automatic resource loading is
tricky, and can lead to a number of subtle problems if you don't
watch your step. For one thing, some parts of the Toolbox rely on
automatic loading and won't work properly without it. So if you
do turn it off, be sure to turn it back on again as soon as possible
with

SetResLoad(TRUE)

It's especially crucial to turn automatic loading back on before
terminating your program and exiting back to the Finder. Don't
forget that the code of the Finder, like that of any other program
(including your own), is stored on the disk as a resource. If you
leave automatic loading turned off, the Toolbox will 'be unable to
load the Finder into memory for execution, and will crash the
system instead. : :

296 Summoning Your Resources

For another thing, recall that if any one resource in a resource
file is marked as changed, the entire resource map will be written
out when the file is updated. Changes you make to a resource’s
identifying information or attributes in the resource map (even if
you intend them to be temporary) may accidentally be incor-
porated into the permanent disk copy of the file because of
changes made to other resources. If you've made any other
changes, you have to be careful to undo the temporary ones and
restore the resource’s map entry to its original state before the file
is updated.

Yet another trap awaits you if you do want your changes to
be permanent. SetResinfo and SetResAttrs don’t automatically mark
the affected resource as changed; to make sure your changes are
written out when the file is updated, you have to mark the
resource explicitly with ChangedResource (6.5.2]. But if you've turned
off automatic resource loading with SetResLoad, to get a handle to
a resource without loading its data from the disk, the resource
map will now contain an empty handle for that resource. When
the file is updated, the empty handle will cause the existing
resource data to be replaced with empty (zero-length) data.

One way to prevent this from happening is to turn on the
resource file’s MapChanged attribute with SetResFileAttrs [6.6.2] instead
of marking the resource itself with ChangedResource. This will cause
the resource map to be written out when the file is updated
(making your changes permanent), but since the resource itself
isn’t marked as changed, the empty handle in the resource map
won't replace the existing resource data in the file with empty
data.

Another occasional use for SetResFileAttrs has to do with the
file's MapCompact attribute. Certain changes that you make in a
resource file create “holes” in the file: areas of the file’s contents
that are no longer in use and can be closed up by compaction
when the file is written back to the disk. The MapCompact attribute
tells the Toolbox to compact the file's contents the next time it's
updated.

Some operations that create holes in the file, such as
RmveResource [6.5.3], cause this attribute to be set automatically.
Similarly, if you increase the length of a resource’s data, the new
data has to be written at the end when the file is upclated, since
it will no longer fit at its original location within the file. This
leaves a hole where the resource used to be. So again, the file's

297 Nuts and Bolts

MapCompact attribute is set automatically whenever you lengthen
the data of any resource. For some reason, however, MapCompact is
not set automatically when you shorten a resource, even though
this also creates a hole that could be closed up by compaction.
So in this case you can use SetResFileAttrs to turn on the MapCompact
attribute yourself and force a compaction when the file is updated.

This problem has been corrected on the Macintosh Plus: any
operation that creates a hole in the resource file correctly sets the
file’s MapCompact attribute.

One final use for SetResFileAttrs is to “protect” a resource file
by turning on its MapReadOnly attribute. This prevents the file from
being updated at all, ensuring that any and all changes you make
will be temporary and will never be written out to the disk.

REFERENCE

6.1 Resource Types

6.1.1 Resource Types

Definitions

type I U : ,
ResType = packed array [1..4] of CHAR; = {Resource type}

298

299 (6.1.1) Resource Types

Resource See
type Description section
‘PAT’ QuickDraw pattern [5.5.1])
'PATH' Pattern list (5.5.2]
‘ICON' Icon [5.5.3]
'ICN# Icon list [5.5.4]
‘PICT’ QuickDraw picture [5.5.5]
‘CODE’ Code segment [7.5.1]
"PACK' Package [7.5.2)
'FREF' Finder file reference [7.5.3]
'BNDL' Finder bundle (754]
‘DRVR' 1/0 driver (including desk accessories) (7.5.5]
TEXT' Any text (8.4.1]
‘STR’ Pascal-format string (8.4.2]
‘STR#' String list (8.4.3)
‘INIT’ Initialization resource (including

keyboard configurations) [8.4.4]
‘FONT' Font [(8.4.5)
'NFNT' Non-menu font [8.4.5]
"FWID’ Font width table (8.4.6]
"FRSV' Reserved font list (8.4.7]
‘CURS’ Cursor (11:2.9.1]
‘FKEY’ Low-level keyboard routine (112.9.2]
"WIND' Window template [11:3.7.1]
"MENU' Menu [11:4.8.1]
'"MBAR' Menu bar (I1:4.8.2]
"CNTL' Control template (11:6.6.1)
"ALRT’ Alert template (I17.6.1]
‘DLOG' Dialog template (I1.7.6.2]
DITL Dialog or alert item list (11:7.6.3]
'MACS’ Macintosh system autograph
"FOND’ Font family definition
'WDEF' Wwindow definition function
‘MDEF' Menu definition procedure
‘CDEF' Control definition function

‘LDEF List definition procedure

300 Resources

'PDEF Printing code

‘PREC’ Print record

'SERD’ Serial driver

‘INTL International localization resource
‘DSAT “Dire straits” alert table

"‘CACH' RAM cache code

‘FMTR’ Disk formatting code

'PTCH’ System patch code

‘ROvr’ ROM override code

‘ROV#’ ROM override list

‘APPL’ Finder application table

‘FOIR’ Finder directory

'FOBJ Finder object

'FCMT’ Finder comment

‘LAYO Finder folder layout

‘MINI’ MiniFinder resource

‘FBTN' File button (MiniFinder)

'NBPC’ Name-Binding Protocol code (AppleTalk)
'PAPA’ Printer Access Protocol address (AppleTalk)
‘RDEV' Remote device (Chooser)

'PRER’ Printer remote (Chooser}

‘PRES’ Printer serial (Chooser)

'SIZE' Partition size (Switcher)

‘TMPL’ Resource type template (ResEdit)
Notes

1
2.

3

4

Names of resource types are always exactly four characters long.

Type names may include any characters without restriction, including
letters, digits, spaces, and special characters. Notice that the space is
significant (and required) in names such as 'STR' and 'PAT".

Upper- and lowercase letters are considered distinct: for example,
'BLOB’, 'Blob’, and 'blob’ are three different resource types.

Resource types listed in the table above have reserved meanings
assigned to them by the Toolbox; those that you invent for your own

301 [6.2.1] Opening and Closing

5.

use must not conflict with them. In addition, all type names consist-
ing entirely of lowercase letters (such as ‘blob’) are reserved by Apple
for the private use of the Toolbox.

Resource types for which no section number is given in the table are
not covered in this book; see Volume Three or Apple's Inside Macin-
tosh manual for information. (However, some of these are private to the

Toolbox and are not documented even in Inside Macintosh.)

6.2 Resource Files

6.2.1 Opening and Closing Resource Files

Definitions - -

function OpenResFile

(fileName : 5fr255) “{Name of resource file to be opened}

INTEGER; . L h{ngte_r'ejnvce number of file}

procadura 'Close:ResF'ile R T L. B v S
‘ ~(refNum : INTEGER); . {Réte‘rence number of resource file to be closed}

Notes

E

1.

2.

3.

4.
5.

6.
7.

8.

OpenResFile opens a resource file; CloseResFile closes it.

OpenResFile accepts the name of the resource file to be opened and
returns the file’s reference number. Thereafter, the reference number
is used whenever you want to refer to the file.

The file's resource map is read into memory and remains there for
as long as the file remains open.

The designated file becomes the current resource file.

If the designated resource file is already open, OpenResFile just returns
its reference number.

In case of an error opening the file, OpenResFile returns —1.

The system resource file is opened automatically at system startup
and the application resource file when the application is started.
These files need not be explicitly opened within the program itself.

CloseResFile releases the space occupied by the file's resource map
and all its resources.

302 Resources

9. If the file or any of its resources have been changed, the file is
updated on the disk before closing.

10. A reference number of 0 denotes the system resource file.

11. Closing the system resource file causes all other open resource files
to be closed as well.

12. All open resource files except the system resource file are closed
automatically when a program terminates.

Assembly Language Information

Trap macros:

{Pascal) (Assembly)

Routine name Trap macro Trap word
OpenResFile —OpenResFile $A§97
CloseResFile —CloseResFile $AZ9A

6.2.2 Current Resource File

‘é! Definitions

funetion CurResFile ‘
: INTEGER; {Reference number of current resource file} _

procedure UseResFile
(refNum : INTEGER); {Reference number of resource file to be made current}

B B Notes

1. CurResFile returns the reference number of the current resource file;
UseResFile makes a designated file the current resource file.

2. The search for a requested resource begins with the current resource
file and proceeds backward chronologically through all resource files
opened earlier.

3. A reference number of 0 denotes the system resource file.

303 [6.2.2] Current Resource File

4. The reference number of the current resource file is available in
assembly language in the global variable CurMap.

5. On the Macintosh Plus, ROM-based resources are searched before the
current resource file; see [6.6.3] for details.

Assembly Language Information

Trap macros:

(Pascal) (Assembly)

Routine name Trap macro Trap word
CurResFile _CurResFile $A994
UseResFile _UseResFile $A998

Assembly-language global variables:

Name Address Meaning

CurMap $A5A Reference number of current
resource file

CurApRefNum $900 Reference number of applica-
tion resource file

SysMap $A58 True reference number (not 0) of
system resource file

SysResName '$AD8 Name of system resource file
(string, maximum 19 characters)

SysMapHnd| $A54 Handle to resource map of system
resource file

TopMapHndl $AS50 Handle to resource map of most

recently opened (not necessarily
current) resource file

304 Resources

6.3 Access to Resources

6.3.1 Getting Resources

|él Definitions

1=l

function GetResource P : '
(rsrcType : ResType; {Resource type}
rsrclD : INTEGER) {Resource D}
: Handle; {Handle to resource}

function GetNamedResource SR v
(rsrcType : ResType; {Resource type}
rsrcName :-Str255) - {Resource name}

: Handle; {Handle to resource}

function Get1Resource- , ;
(rsrcType :'ResType; {Resource type}
rsrclD : INTEGER) {Resource ID}
~: Handle; - {Handle to resource}
function Get1NamedResource ' -
(rsrcType : ResType; - {Resource type}
rsrcName : Str255) {Resource name}
: Handle; * {Handle to resource}

Notes

1. These routines search the list of open resource files for a designated
resource, read it into memory if necessary, and return a handle to it.

2. The resource is identified by type and ID number (GetResource,
Get1Resource) or type and name (GetNamedResource, GetiNamedResource).

3. GetResource and GetNamedResource begin with the current resource file
[6.2.2] and search backward chronologically through all resource files
opened earlier. The “one-deep” operations Get1Resource and GetiNamed-
Resource search the current resource file only.

4. The resource’s handle is saved in the file’s resource map in memory
for future use.

5. If the resource is already in memory, its existing handle is returned.
6. In case of an error, the handle returned is NIL.

305 (632 Disposing of Resources

7. Automatic loading of resources into memory can be suppressed with
SetResLoad [6.3.4]. In this case, an empty handle is returned if the
requested resource isn't already in memory. This empty handle is suf-
ficient to identify the resource for routines that operate only on the
resource map, such as GetResinfo and SetResInfo (6.4.1], GetResAttrs and
SetResAttrs [6.4.2), HomeResFile and MaxSizeRsrc [6.4.3]. It can also be used
to load the resource into memory later with LoadResource [6.3.4].

8. If ROMMapinsert [6.6.3] is set, GetResource and GetNamedResource search
ROM-based resources before the current resource file; Get1Resource and
GetiNamedResource search ROM-based resources only.

9. Get1Resource and GetINamedResource are available only on the Macintosh
Plus.

-Assembly Language Information

Trap macros:

(Pascal) . L {Assembly)

Routine name Trap macro ° Trap word
GetResource - _GetResource $A9A0
GetNamedResource .. . _GetNamed Resource $A9A1
Get1Resource : _Get1Resource $AB1F

GetINamedResource - _GetiNamedResource $A820

6.3.2 Disposing of Resources

[;.I Definitions
=l

procedure ReleaseResource
(theResource : Handle); {Resource to be released}

procedure DetachResource
(theResource : Handle); {Resource to be detached}

306 Resources

Notes

1. ReleaseResource deallocates the space occupied by a resource and
removes its handle from its file's resource map in memory. All existing
handles to the resource become invalid.

2. DetachResource removes the resource’s handle from the resource map,
but doesn’'t deallocate the resource itself. Existing handles remain
valid, but are no longer recognized as referring to a resource.

3. In both cases, later attempts to get the resource with GetResource [6.3.1},
GetNamedResource [6.3.1], or GetindResource [6.3.3) (or the corresponding
“one-deep routines” GetlResource [6.3.1], GetiNamedResource (6.3.1), or
GettindResource (6.3.3]) will cause it to be reread into mernory from its
resource file and a new handle allocated.

4. Detaching a resource prevents it from being deallocated when its
resource file is closed.

5. A resource may not be detached if its ResChanged attribute [6.4.2] is set.
Attempting to do so results in the error ResErrAttr [6.6.1].

Assembly Language Information -

Trap macros: o
(Pascal) {Assembly)
Routine name Trap macro ' Trap'word
ReleaseResource —ReleaseResource '$A9A3
- —DetachResource

DetachResource

$A092

307 (6.3.3) Generating All Resources

6.3.3 Generating All Resources

|;! " Definifions =

function CountTypes ,
-INTEGER; .- {Total number of resource types}

proeeﬂurs GetindType
(var rsrcType : ResType “{Returns next resource type}
index . .+ INTEGER); - {Index of desired resource type}

function . CountResources . ,
' (rsrcType : ResType) “{Resource type}
: INTEGER; , o {Total number of resources of this type}

function GetlndResource
' (rsrcType : ResType; © {Resource type}

index : INTEGER) {Index (not ID) of desired resource}
: Handle; -~ {Handlie to resource}

function Count1Types : o

, :INTEGER; {Total number of resource types}

procedure GetilndType - '
- (var rsecType ResType “{Returns' next resource type}
index INTEGER) {ln_d_,ex of desired resource type}

function Count1Resources
(rsrcType :ResType) - .{Resource type}

- INTEGER; {Total number of resources of this type}
function GetilndResource ' , '
(rsrcType : ResType; - {Resource type) ‘
index INTEGER) {Index (not ID) of desired resource}
+ Handle; - {Handle to resource}
Notes

i

1. These routines are used to iterate through all available resources of
a given type or of all types.

2. CountTypes returns the total number of distinct resource types con-
tained in all open resource files. For each value of index from 1 up to
this count, GetindType returns a different resource type in the variable
parameter rsrcType.

308 Resources

3.

4
5.

&

7.

8.

9.

CountResources returns the total number of resources of a given type
contained in all open resource files. For each value of ind2x from 1 up
to this count, GetindResource returns a different resource of the desig-
nated type.

In case of an error, GetindResource returns NIL.

These routines always operate on all open resource files, regardless
of which one is current.

If ROMMapinsert [6.6.3] is set, these routines include ROM-based
resources as well as those that reside in open resource files.

Count1Types, Get1indType, Count1Resources, and GetlindResource work the same
way as the first four routines, but apply to the current resource file
only (or only to ROM-based resources if ROMMaplnsert is set).

Count1Types, GetlindType, CountiResources, and GetlindRescurce are available
only on the Macintosh Plus.

The trap macros for Get1indType and GetlindResource are spelled _GetiixType
and _Get1IxResource.

Assembly Language Infbr'maﬁon

Trap macros: ,
(Pascal) , {Assembly)

Routine name Trap macro ‘Trap word
CountTypes. ~CountTypes $AQ9E
GetindType —GetindType $AISF
CountResources _CountResources $A9SC
GetindResource . GetindResource. $A99D
CountiTypes _CountiTypes $A81C
Get1indType —Get1IxType $AB0F
Count1Resources ~Count1Resources $A80D
GetlindResolrce " _GetlIxResource $ABOE

309 (634 Loading Resources

6.3.4 Loading Resources

Definitions :

'pimadjur.a SetResLoad

(onOrOff : BOOLEAN) " {Turnautomatic loading on or off?}

procedure LoadResource

(theResource : l,-!v‘and,‘lje); {Resource to be loaded}

Notes

1.

5.

7.

SetResLoad controls whether resources are automatically loaded into
memory from their resource files by GetResource [6.3.1], GetNamedResource
(6.3.1], and GetindResource [6.3.3] (or the corresponding “one-deep”
routines Get1Resource [6.3.1], GetiNamedResource [6.3.1], and GetlindResource
(6.3.3)).

When automatic loading of resources is on, the ‘“get” routines
automatically load any requested resource into memory if it isn’t
already there. When automatic loading is off, they just return an
empty handle if the requested resource isn’t already in memory.

Automatic loading is initially off.
Automatic loading overrides the ResPreload attribute of an individual
resource [6.4.2]; it forces all resources to be preloaded when their

resource file is opened, regardless of whether this attribute is on or
off.

The flag that controls automatic loading is accessible in machine
language as the global variable ResLoad. Set this flag to $FF to turn
automatic loading on, $00 to turn it off.

. Don't turn off automatic loading for any longer than is absolutely

necessary, since some parts of the Toolbox depend on it. In particular,
make sure you turn it back on before your program terminates, or the
Toolbox will be unable to load the code of the program you're exiting
to (normally the Finder).

LoadResource accepts an empty handle to a resource and loads the
resource into memory from its resource file. If the handle isn't empty,
LoadResource does nothing.

. The empty handle may have been returned by GetResource, Get-

NamedResource, or GetindResource f{or Get1Resource, GetiNamedResource, or

310 Resources

GetlindResource) when automatic loading was off, or it may have become
empty because the resource it refers to was purged from memory.

9. Call LoadResource before using any handle to a purgeable resource, to
make sure the resource is in memory.

Assembly Language Information -

Trap macros: .

(Pascal) - (Assembly)

Routine name Trap macro Trapword
SetResLoad - _SetResLoad ‘$A99B
LoadResource -LoadResource $ABA2:
Assembly-language global variable:

Name ' Address. ‘Meaning '
Reskoad ' $ASE - - Loadresourcesautomatically?

6.4 Properties of Resources

6.4.1 Identifying Information

[oo

procedure GetResinfo - :
(theResource : Handle; {Handle to resource}
~var rsrclD : INTEGER; {Returns resource :[D}
var rsrcType : ResType; {Returns resource type}
var rsrcName : Str255); {Returns resource name}

procedure SetResinfo
(theResource : Handle; {Handle to resource}
rsreiD . INTEGER; {New resource iD}
rsrcName. : Str255); {New resource name}

311 (64.1] Identifying Information -

Notes

[

1. GetResinfo returns the identifying information of a resource (resource
type, ID number, and name) via its var parameters.

2. SetResinfo sets a resource’s ID and name; the resource type can't be
changed.

3. The identifying information of a protected resource can’t be changed.

4. An empty string as the rsrcName parameter to SetResinfo removes the

resource’s name, if any; a NIL value leaves the existing name un-
changed.

5. Changing the name or ID number of a resource in the system
resource file is dangerous, since the Toolbox or other programs may
depend on them.

 Assembly Language Information

 Trapmacros: .0t

. (Pascal) . . {Assembly) . ,

- Routine name: - ‘Trapmacro = Trapword
GetReglnfo .~ . - GetResinfo . SAGAB
SetResinfo .~ -SetResinfo . Sh9ms

312 Resources

6.4.2 Resource Attributes

procedure SetResAttrs

Q Definitions
Mnctinﬁ GetResAttrs

(theResource : Handle) @{_,Ha;ﬁldle;to: resource}
: INTEGER; - {Current resource attributes}

(theRescurce : Hfa:‘nfdlg_;f f{_l:l/aj;dl_ﬁe_,,'to resource} ,
 newAttrs : INTEGER); {New resource attributes}

3'

const S SETEE AR ,
ResSysHeap = $0040; - -{Resides:in system heap} !
ResPurgeable = $0020; {Purgeable from heap} ,
ResLocked = $0010; =~ - {Locked during heap.compaction}
" ResProtected = $0008; {Protected from change}
ResPreload ~ = $0004; ~- - :{Preload when file opened}
ResChanged = $0002; ~ _{Has been changed in memory}
D% Notes
1. GetResAttrs returns the attributes of a resource; SetResAttrs sets them.

. The constants for the individual attribute bits can be combined with

BitAnd, BitOr, BitXOr, and BitNot [2.2.2] to form any combination of at-
tributes you need.

The ResSysHeap attribute tells whether the resource data resides in
the system (1) or application (0) heap.

. The ResPurgeable and ResLocked attributes define the initial settings of

these properties when the resource is loaded from the disk—not their
current settings. To change these properties for a resource already in
memory, you must use HLock and HUnlock, HPurge and HNoPurge [3.2.4).

. A protected resource (ResProtected = 1) can't be removed from its

resource file or have its identifying information changed. Unlike other
attributes, changes in the ResProtected attribute take effect immediately.

. The ResPreload attribute causes a resource to be loaded into memory

immediately when its resource file is opened, instead of waiting to
be loaded explicitly with GetResource [6.3.1], GetNamedResource [6.3.1],
GetindResource [6.3.3], or LoadResource [6.3.4] (or the “one-deep” routines
Get1Resource (6.3.1], GetINamedResource [6.3.1], or GetlindResource [6.3.3]).

313 (6.4.2) Resource Attributes

7. The ResPreload attribute is overridden by SetResLoad [6.3.4]. Resources
are always preloaded when automatic loading is on, regardless of
the setting of this attribute.

8. The ResChanged attribute tells whether a resource has been changed
in memory and so must be written out to the disk when its resource
file is updated.

The assembly-language constants ResSysHeap, ResPurgeable, etc. (below)
are bit numbers for use with the BTST, BSET, BCLR, and BCHG instruc-
tions.

9

10. Always use ChangedResource [6.5.2] to mark a resource as changed,
never SetResAttrs. Make sure all calls to SetResAttrs preserve the existing
value of the ResChanged attribute. In assembly language, the constant
RCBMask is a mask to be used for this purpose.

Assembly Language Information

Trap macros:

(Pascal) (Assembly)

Routine name - Trap macro Trap word
GetResAttrs - _GetResAttrs. $A9A6
SetResAttrs ~SetResAttrs $A9A7

Bit numbers of resource attributes:

Name Value Meaning

ResSysHeap 6 Resides in system heap
ResPurgeable 5 Purgeable from heap
ResLocked 4 Locked during compaction
ResProtected -8 Protected from change
ResPreload 2 Preload when file opened
ResChanged 1 Has been changed in memory
Assembly-language constant:

Name Value Meaning

RCBMask $FD Mask for ResChanged bit

3 14 Resources

6.4.3 Other Properties

Definitions

function SizeResource
(theResource : Handle) f{Handle to resource}
- LONGINT; {Size of resource data, in bytes}

function MaxSizeRsrc
(theResource : Handle) {Handle to resource}
: LONGINT; {Approximate size of resource data, in bytes}

function HomeResFile
(theResource : Handle) {Handle to resource}
: INTEGER; {Reference number of home resource file}

Notes

(i

1. SizeResource returns the size of a resource’s data, in bytes.

2. The resource need not be in memory; its size will be read from the
resource file if necessary.

3. The trap macro for SizeResource is spelled _SizeRsrc.
4
5

MaxSizeRsrc quickly finds the approximate size of a resource’s data.

The value returned is the number of bytes between the beginning of
this resource’s data and the beginning of the next resource fol-
lowing it in the resource file. Since the needed information is found
in the file’s resource map (which is always immediately available in
memory), MaxSizeRsrc is often faster than SizeResource (which may have
to read in the resource itself from the disk.

8. The true size of the resource may be smaller than the value returned
by MaxSizeRsrc, but can never be bigger. If absolute accuracy is essen-
tial, use SizeResource instead.

7. MaxSizeRsrc is available only on the Macintosh Plus.

8. HomeResFile returns the reference number of the resource file that
contains a given resource.

9. A reference number of 0 denotes the system resource file; 1 denotes
a ROM-based resource [6.6.3].

10. In case of an error, all three functions return —1.

315 [6.5.1] Creating Resource Files

Assembly Language Information

Trap macros:

(Pascal). | (Assembly) ,

Routine name Trap macro Trap word
SizeResource _SizeRsrc $A9A5
MaxSizeRsrc ~MaxSizeRsrc $A821
HomeResFile _HomeResFile $A9A4

6.5 Modifying Resources

6.5.1 Creating Resource Files

|;! Definitions

procedure CreateResFile _
(fileName :'Str255); {Name of resource file to be.created}

% | Notes

1. CreateResFile creates a new, empty resource file with the given name.

2. The new file is not opened and no reference number is returned; call
OpenResFile [6.2.1] to get a reference number for the file.

3. If no file of the specified name exists, a new one is created with both
its data and resource forks empty.

4. If there’s already a file of this name with no resource fork, it is given
one.

5. If there’s already a file of this name with a nonempty resource fork,
an error is posted.

316 Resources

Assembly Language Information

Trap macro:

(Pascal) (Assembly)

Routine name Trap macro Trap word
CreateResFile _CreateResFile $A9B1

6.5.2 Marking Changed Resources

Definitions

i]

procedure ChangedResource
(theResource : Handle); {Resource to be marked as changed}

ﬂ s Notes

1. ChangedResource marks a resource as changed, so that it will be written
out to its resource file the next time the file is updated.

2. Always use ChangedResource to mark a resource as changed; never
change the ResChanged attribute yourself with SetResAttrs [6.4.2].

3. ChangedResource checks to see whether there’s enough disk space to
write out the new version of the resource to its file. If not, it will post
the error code DskFulErr [6.6.1] and will not set the resource’s ResChanged
attribute. Consequently, when the resource file is later updated, the
resource will not be written out; no error will be reported at that time.
To detect this problem, you must check for an error at the time you
mark the resource as changed, by following ChangedReso rce with a call
to ResError [6.6.1].

317 (653 Adding and Removing

Assembly Language Information

Trap macro:

(Pascal) (Assembly)

Routine name Trap macro Trap word
ChangedResource _ChangedResource SA9AA

6.5.3 Adding and Removing Resources

|;! Definitions

procedure AddResource

(rsrcData : Handle; fHandle to data of new resource}
rsrcType : ResType; {Type of new resource}

rsrclD : INTEGER; {ID number of new resource}
rsrcName : Str255); {Name of new resource}

procedure RmveResource
(theResource : Handle); {Resource to be removed}

function UniquelD
(rsrcType : ResType) {Resource type}

: INTEGER; {Unique ID number for this type}
function UniquellD
(rsrcType : ResType) {Resource type}
: INTEGER; {Unique ID for this type in current resource file}

D 0 Notes

1. AddResource adds a new resource to the current resource file;
RmveResource removes an existing resource.

2. The resource affected is automatically marked as changed, so that the
change will be incorporated permanently on the disk the next time
the resource file is updated.

3. RmveResource doesn’t deallocate the resource’s data from the heap; do
it yourself with DisposHandle [3.2.2].

318 Resources

5.

7.

. AddResource adds a new resource to the current resource file, with the

resource data given by rsrcData and the identifying information given
by rsrcType, rsrclD, and rsrcName. It's an error if rsrcData is already a
handle to an existing resource.

RmveResource removes an existing resource from the current resource
file. It's an error if theResource doesn't belong to the current file.

. Removing a resource from the system resource file is dangerous, since

other programs and parts of the Toolbox may depend on it.

UniquelD returns a positive ID number for a new resource that doesn't
conflict with that of any existing resource of the given type in any
open resource file. UniquellD returns an ID number that's unique with
respect to the current resource file [6.2.2] only.

Unique1lD is available only on the Macintosh Plus.

Assembly Language Information

Trap macros:

(Pascal) (Assembly)

Routine name Trap macro Trap word
AddResource _AddResource $SAJAB
RmveResource _RmveResource SA9AD
UniquelD - ~UniquelD $A9C1
UniquellD _UniquellD $A810

6.5.4 Updating Resource Files

Definitions

procedure UpdateResFile
(refNum

: INTEGER); {Reference number of resource file to be updated}

procedure WriteResource
(theResource : Handle); {Resource to be written out}

319 (6.5.4]) Updating Resource Files

Notes

[=

1

2.
3

5

6.

®

9.

10.

11.

UpdateResFile writes out a new version of the designated resource file
on the disk, incorporating all changes since the file was last opened
or updated.

All resources marked as changed (ResChanged = 1) are written out.

If at least one resource is marked as changed, the file’s entire
resource map is written out.

The updated version of the file is compacted to remove any empty
space resulting from changes in the file.

If the file’s MapReadOnly attribute [6.6.2] is set, UpdateResFile will post the
error code MapReadErr (6.6.1].

A reference number of 0 designates the system resource file.
Closing a resource file updates it automatically.

WriteResource writes out a single resource to the disk if the resource
has been changed.

If the resource's ResChanged attribute [6.4.2] is 1, the resource data is
written to its file and ResChanged is cleared to 0; if ResChanged is already
0, WriteResource does nothing.

Protected resources are never written out to the disk by either
UpdateResFile or WriteResource.

If a resource to be written out by either UpdateResFile or WriteResource
has been purged, the resource data written to the file will be empty
(zero-length).

Assembly Language Information

Trap macros: ,

(Pascal) (Assembly)

-Routine name - Trap'macro Trap word
UpdateResFile : ~UpdateResFile $AS99

WriteResource _WriteResource $A9BO

320 Resources

6.5.5 Purge Checking

Definitions

procedure SetResPurge = .
(onOrOff: BOOLEAN); {Turn purge checking on or 0ff?}

Notes

i

1. SetResPurge is used to turn purge checking on or off.

2. When purge checking is on, any block about to be purged from the
heap is checked to see if it's a changed resource; if so, it's written out
to its resource file before being purged.

3. When purge checking is off, no special checking is performed when
a block is purged.

4. Purge checking is initially off.

Assembly Language Informamm

Trap macro: . ‘
{Pascal) (Assembly}
Routine name Trap macro Trap word

SetResPurge - _SetResPurge _$A993

321 (6.6.1) Error Reporting

6.6 Nuts and Bolts

.|

6.6.1 Error Reporting

Deﬁniti»ons

function ResError

: INTEGER;

const
NoErr
ResNotFound
ResFNotFound
AddResFailed
RmvResFaiied
ResErrAttr
MapReadErr
DskFulErr

| T | | YT I

Notes

0!.

—192:

—-193;

~104;
-1 96_';

~198:
=199;
—34; .

{Re_suu codejtromzlast resource-related operation}

{No-error; all is well}
{Resource not found}
{Resource file not found}
f{AddResource failed}

{RmveResource failed}

{Operation prohibited by resource attribute}

-{Error reading resource map}

{Disk full} - _

1. ResError returns the result code from the last resource-related proce-
dure or function call.

2. The result code returned in the normal case is 0 (NoErr). Any nonzero
result code denotes an error.

3. Error codes listed here are only those directly related to resources.
Errors from other parts of the Toolbox can also occur in the course
of resource-related operations, and will be reported by ResError.

4. In assembly language, the result code is also available in the global
variable ResErr.

322 Resources

Assembly Language Information

Trap macro:

(Pascal) (Assembly)

Routine name Trap macro Trap word
ResError _ResError SA9AF

Result codes:

Name Value Meaning
NoErr 0 No error; all is well
ResNotFound —-192 Resource not found
ResFNotFound —-193 Resource file not found
AddResFailed —-194 AddResource failed
RmvResFailed —19 RmveResource failed
ResErrAttr —198 Operation prohibited by
resource attribute
MapReadErr —199 Error reading resource map
DskFulErr —34 Disk full

Assembly-language global variable:
Name Address Meaning

ResErr SAG0 Result code from last
resource-related call

323 (6.6.2) Resource File Attributes

6.6.2 Resource File Attributes

Definitions

function GetResFileAttrs , '
(refNum : INTEGER) - {Reference number of resource file}
: INTEGER; {Current resource file attributes}

procedure SetResFileAttrs e
(refNum : INTEGER; - {Reference number of resource filé}
newAttrs : INTEGER); {New resource file attributes}

const e :
MapReadOnly = 128; = . {No changes allowed} ‘
MapCompact = 64; =~~~ {Compact file when updated}
- MapChanged = 32; ~ {Write resource map when updated}
Notes

1. GetResFileAttrs returns the current attributes of a resource file; SetRes-
FileAttrs changes them.

2, The MapReadOnly attribute prevents the file from being updated. No
changes made to the file or its resources in memory will be written
out to the disk.

3. MapCompact tells the Toolbox to compact the file when it's updated, in
order to squeeze out unused space.

324 Resources

4. The MapCompact attribute is set automatically when a resource is
removed from the file or when the data of a resource is lengthened,
but not when it's shortened.

5. MapChanged tells the Toolbox to write out the file’s resource map when
the file is updated.

6. The MapChanged attribute is set automatically when a resource is added
to or removed from the file or when any resource is marked as
changed.

7. The assembly-language constants MapReadOnly, MapCompact, and Map-
Changed (below) are bit numbers for use with the BTST, BSET, BCLR, and
BCHG instructions.

Assembly Language Information

Trap macros:

(Pascal) ~ (Assembly)

Routine name Trap macro Trap vyord
GetResFileAttrs —GetResFileAttrs $ASF6.
SetResFileAttrs —SetResFileAttrs $A9F7

Bit numbers of resource file attributes:

Name Value Meaning

MapReadOnly 7 No changes allowed
MapCompact 6 Compact file when updated
MapChanged 5 Write resource map when

updated

325 [6.6.3) ROM-Based Resources

6.6.3 ROM-Based Resources

Resource Resource

Type ID Description
‘CURS’ 1 I-beam cursor [11:2.5.2, 11:2.9.1]
2 Cross cursor [11:2.5.2, 11:2.9.1]
3 Plus-sign cursor (I1:2.5.2, 11:2.9.1]
4 Wristwatch cursor [I1:2.5.2, 11:2.9.1]
'FONT’ 0 Name of system font [8.2.1, 8.4.5]
12 System font [8.2.1, 8.4.5]
"WDEF' 0 Standard window definition function
‘MDEF' 0 Standard menu definition procedure
'PACK’ 4 Floating-Point Arithmetic Package (7.2.1,
7.5.2)
5 Transcendental Functions Package [7.2.1,
7.5.2)
7 Binary/Decimal Conversion Package [7.2.1,
7.5.2]
‘DRVR' 2 Printer driver shell {.Print) [7.5.5]
3 Sound driver (.Sound) [7.5.5]
4 Disk driver (.Sony) [7.5.5]
9 AppleTalk driver, Macintosh
Packet Protocol (MPP) {7.5.5]
10 AppleTalk driver, AppleTalk
Transaction Protocol (.ATP) (7.5.5]
‘SERD’ 0 Serial drivers (.Aln, .AQut, .BIn, .BOut) (7.5.5]

ﬂ% | Notes

1. On a Macintosh Plus, the standard system resources listed in the
table reside in ROM, rather than in the disk-based system resource
file.

2. The assembly-language global flag ROMMaplnsert controls whether the
ROM-based resources are to be included in the next resource-related
operation. If this flag is TRUE ($FF), the operation applies first to the
ROM-based resources, then to the list of open resource files, begin-

326 Resources

3

®

ning with the current resource file (6.2.2]. If the flag is FALSE ($00), the
ROM-based resources are skipped and the operation begins with the
current resource file.

One-deep routines (Get1Resource, GetINamedResource (6.3.1), Count1Types,
GetlindType, CountiResources, GetlindResource [6.3.3], and UniqueilD [6.5.3])
apply only to the ROM-based resources if ROMMaplnsert is TRUE. If the
flag is FALSE, these routines skip the ROM-based resources and apply
to the current resource file instead.

When ROMMaplinsert is TRUE, the assembly-language flag TmpResLoad
controls automatic resource loading for the next operation only,
overriding the global ResLoad flag {6.3.4]. The previous ReslLoad setting
is restored after the operation.

. If ROMMaplnsert is FALSE, TmpResLoad is ignored.

Both ROMMaplinsert and TmpResLoad are “one-shot” flags: they're
automatically cleared to FALSE (800) after each resource operation, and
must be explicitly set again before the next operation if they are to
remain in effect.

Both flags are one byte in length.

The Toolbox always sets ROMMapinsert and TmpResLoad to TRUE before
performing any resource operation on its own behalf; on operations
requested by your program, both flags are normally FALSE. In as-
sembly language, you can set the flags for yourself if you wish before
the operation. (There is no straightforward way to set these flags in
Pascal.)

The foregoing notes apply to the Macintosh Plus only. On earlier
models, all system resources reside in the system resource file on
the disk; there are no ROM-based resources and no ROMMaplinsert and
TmpResLoad flags. Attempting to store into these locations on an
earlier-model Macintosh will destroy information in the system heap,
with unpredictable but predictably catastrophic results.

Assembly Language Information

Assembly-language global variables (Macintosh Plus onlyj:

Name Address Meaning

ROMMaplnsert $BIE Include ROM-based resources in
search? (1 byte)

TmpResLoad $BIF Load resources automatically

just this once? (1 byte)

CHAPTER

Gettlng Loaded

Code Segments

N ow that we know something about resources, we're ready to
discuss the way programs are started up and how code is loaded
into memory for execution. Most of the information in this chapter
is offered strictly for purposes of “curriculum enrichment”; you
don't really need to know it in order to write small, straightforward
application programs. You'll find it useful, however, if you want to
produce “stand-alone” programs that can be started directly from
the Finder, or define your own icons to stand for your program
and its files on the Finder desktop, or support cut-and-paste
editing between your program and other programs or desk acces-
sories. If you're in a hurry and want to skip most of this chapter,
you should at least read the section on packages, since you'll need
it to understand certain other topics discussed elsewhere in the
book, such as the Standard File Package (Volume Two, Chapter 8).

We mentioned in the last chapter that the code of an application
program is stored in the application’s own resource file. The
resources containing it are called code segments, and have
resource type ‘CODE’ [7.5.1). Their resource data consists mainly of
executable machine-language code, ready to be loaded into
memory and run. (There’s also a short segment header that we'll

327

328 Getting Loaded

be discussing later.) The entire program can be contained in a
single code segment, or it can be divided into as many separate
segments as you like.

Code segments are meaningful only for programs that .ar¢ as-
sembled or compiled directly into-executable machine language. If

- you're doing your programming in an interpreter-based system; the
program has no machine code as- such, so there aren’t -any code
segments.

The main advantage of code segments is that they allow you
to divide a program into separate pieces that don't all have to be
in memory at once. Like any resource, a code segment can be read
into memory from the disk when needed and then purged when
you're finished with it, freeing the space for another use. This
means you can isolate seldom-used portions of your program in
segments of their own, so that they won't take up precious
memory space when they're not actually in use. It also means you
can write programs bigger than the Macintosh’s available memory,
by breaking them into segments that can be “swapped” in and
out as needed.

Exactly how you go about breaking your program into seg-
ments depends on the language you're writing in; you'll have to
consult your language documentation for details. Typically you
give each segment a name, and switch from one segment to
another with a compilation-time directive of some sort. Code will
then be compiled (or assembled) into the segment you name until
you switch to another. Such segment names are meaningful only
at compilation time, however; the Toolbox just identifies each
segment by its resource ID, known as a segment number. The
compiler will assign a number to correspond to each segment
name, then place the segment’s code in a ‘CODE’ resource with
that number as its resource ID. (If you never mention segments at
all, the whole program will be placed in a single segment by
default.)

329 The Jump Table

The Jump Table

Calls from one code segment to another are made through a jump
table in RAM. The jump table is part of your program'’s application
global space, or “A5 world,” which we discussed in Chapter 3. The
contents and organization of the application global space are
repeated for reference in Figure 7-1.

The information needed to set up the application global space
is stored in a special 'CODE’ resource with 1D number 0, created
automatically by the language software when the program is
compiled or assembled. Every stand-alone program must have a

Low memory addresses

(Stack])

Application Globals §
QuickDraw Globals]

Register AS

Application parameters

Jump Table

[Main Screen Buffer)

High memory addresses

Figure 7-1 Application global space

330 Getting Loaded

"Above AS size
(4 bytes)

"Below AS size
(4 bytes)

Length of iump table
(4 bytes)

Offset from AS to jump table
(4 bytes)

Contents of jump table

(indefinite length)

Figure 7-2 Contents of segment 0

segment 0 in addition to the one or more segments holding the
actual code. Figure 7-2 shows the format of this special segment,
which includes the following information:

e The “above A5” size: the total number of bytes to be reserved between
the beginning of the screen buffer (or the alternate sound buffer) and
the base address in register A5, including both the application
parameters and the jump table

¢ The “below A5" size: the number of bytes to be reserved for application
globals between the A5 address and the base of the stack

¢ The length of the jump table in bytes

¢ The length of the application parameters (normally 32 bytes), which is
also the offset from the A5 address to the beginning of the jump table

¢ The contents of the jump table

331 The Jump Table

When a program is started up, the Toolbox reads in this informa-
tion from segment 0 and uses it to reserve the memory needed for
the application global space, set up the jump table, initialize
register A5, and position the base of the stack.

The jump table handles routine calls from one segment to
another. It contains one 8-byte entry for every routine in the
program that can be called from a segment other than the one it's
in; routines that are called only from within the same segment are
not included. The first entry in the table corresponds to the
program’s main entry point, where execution begins when the
program is first started up. Initially only the segment containing
this main entry point (the main segment is loaded into memory;
other segments will be read in only when they're actually needed.

When a segment is not in memory, the jump table entry for
each of its routines has the form shown in Figure 7-3a. The first
2 bytes give the relative location of the routine’s entry point within
the segment, as an offset from the beginning of the segment’s

a. Unloaded state

Offset from begi nni ng of segment
(2 bytes)

Machine instruction to push
segment number onto stack

{ 4 bytes)

LoadSég trap
(2 bytes)

b. Loaded state

Segment'number
(2 bytes)

Machine instruction to jump
to routine in memory

{6 bytes)

Figure 7-3 Jump table entry

332 Getting Loaded

code. This is followed by 6 bytes of actual machine instructions
that push the segment number onto the stack as a parameter and
then trap to the Toolbox routine LoadSeg [7.1.2]. Each “external
reference” to this routine from another segment will be represented
in machine code by a subroutine jump to these instructions in
the jump table entry. They in turn call LoadSeg, which reads in the
code segment containing the routine from the application resource
file and locks it into the heap. Then it uses the offset in the first
2 bytes of the table entry to locate the routine within the segment
and jump to it.

Once the segment has been loaded into memory, there's no
need to load it again the next time. So before jumping to the
routine, LoadSeg “patches” the jump table entries for all routines
in the segment into the form shown in Figure 7-3b. Here the first
2 bytes of the entry hold the segment number and the last 6
contain a direct jump instruction to the beginning of the routine
in memory. Subsequent calls to any routine in the segment will
thus be directed straight to the proper memory address, bypassing
the LoadSeg call.

The information about which entries in the jump table belong
to a given segment (and so must be patched when the segment is
loaded) is found in a 4-byte segment header at the beginning of
the segment itself (see Figure 7-4). The first 2 bytes of the header
give the offset in bytes from the start of the jump table to the first
entry for this segment; the last 2 bytes give the number of entries
belonging to the segment.

Jump table offset of fi rst routine in segment
(2 bytes)

Number of jump table entries for segment
(2 bytes)

Figure 7-4 Segment header

333 Ppackages

Packages

When a segment is no longer needed in memory, you release
it by calling UnloadSeg [7.1.2). You identify the segment by passing
a pointer to any of its routines; UnloadSeg marks the segment
purgeable to free the heap space it occupies, and patches its jump
table entries back to the original “unloaded” state of Figure 7-3a.
The next time you call one of the segment’s routines, LoadSeg will
again be called to load it back into memory from the resource file.

“Notice that you: have tocall UnloadSeg for yourself, whereas LoadSeg

is always called lmphcltly, by way of the instructions in a jump
.. “table.entry, when you tiy'to: call a reutine in an unloaded segment.
. In fact, LoadSeg. won't work properly unless it's called through the
.. jump table; you shauld never. h;y to call it explicitly from within
. your.own. pmgram. .

Another kind of code-containing resource, similar in some ways
to a code segment, is a package. Like a code segment, a package
is a collection of routines grouped together as a unit, which reside
in a resource file and are loaded into memory only when needed.
It differs from a code segment, however, in that it isn't a part of
any particular program: it's a set of general-purpose routines that
are available for any program to use, and normally resides in the
system resource file (or in ROM on a Macintosh Plus) rather than
in a program’s own application resource file.

The Toolbox can accommodate as many as eight separate
packages, referred to by package numbers from 0 to 7. (The Macin-
tosh Plus Toolbox can handle up to sixteen packages, numbered
0 to 15) The package number is simply the resource ID of the
package in the systemn resource file; its resource type is 'PACK’
[7.5.2]). The standard System file found on Macintosh software disks
includes the following standard packages:

¢ The List Manager Package (package number 0) displays scrollable lists
of items from which the user can choose with the mouse (like the one
used in selecting files to be read from the disk).

¢ The Disk Initialization Package (package number 2) takes corrective
action when an unreadable disk is inserted into the disk drive, usually
by initializing the disk.

334 Getting Loaded

¢ The Standard File Package (package number 3) provides a convenient,
standard way for the user to supply file names for input/output
operations.

» The Floating-Point Arithmetic Package (package number 4) performs
arithmetic on floating-point numbers in accordance with the “IEEE
standard” published by the Institute of Electrical and Electronic En-
gineers, using the Standard Apple Numeric Environment (SANE).

* The Transcendental Functions Package (package number 5) calculates
various transcendental functions on floating-point numbers, such as
logarithms, exponentials, trigonometric functions, compound interest,
and discounted value.

* The International Utilities Package (package number 6) helps a program
conform to the prevailing conventions of different countries in such
matters as formatting of numbers, dates, times, and currency; use of
metric units; and alphabetization of foreign-language accents, diacriti-
cals, and ligatures.

* The Binary/Decimal Conversion Package (package number 7) converts
numbers between their internal binary format and their external
representation as strings of decimal digits.

Only the Disk Initialization [I1:8.4], Standard File [II:8.3], and
Binary/Decimal Conversion [2.3.7] packages are covered in Volumes
One and Two of this book. For information on the List Manager
Package, see Volume Three; for the others, see Apple’s Inside
Macintosh manual. Package numbers 1 and 8-15 are reserved for
future expansion.

The List Manager Package (number 0) was introduced at the same
time as the Macintosh Plus, and is available only in versions 3.0 or
greater of the System file. Also, on the Plus, the Floating:Point
Arithmetic, Transcendental Functions, and Binary/Decimal Conver-
-sion packages (numbers 4, 5, and 7) reside in ROM instead of the
System file. '

At the machine-language level, packages are called via the
Toolbox “package traps,” _Pack0 to _Pack15 (7.2.1]. To call a routine
that belongs to a package, you push the routine’s parameters onto
the stack, then push an integer routine selector to identify the
particular routine you want within the package, and finally ex-
ecute the trap corresponding to the package the routine belongs

335 Signatures and File Types

to (for instance, _Pack? for the Binary/Decimal Conversion Package).
If the package isn't already in memory, the Toolbox reads it in
from the resource file and locks it into the heap. Then it jumps
to the routine, using the routine selector to look up its address
within the package in a small table at the beginning of the package
itself.

Ordinarily, though, you needn’t worry about routine selectors
and package traps. The Pascal interface to the Toolbox includes a
unit named Packintf for calling the routines in the standard
packages. This unit contains “glue routines” to convert your Pascal
calls into the proper low-level trap sequences, as described above.
By including Packintf in your program with a uses declaration (or
a $i directive, or whatever method your particular Pascal System
requires), you can call all the package routines in the normal way,
as if they were part of the Toolbox proper. Thus you needn’t ever
think about whether a given routine resides in ROM or in a
package on the disk. Similarly in assembly language, the interface
file PackMacs defines macros for calling all the standard package
routines. You simply push the routine’s parameters onto the stack
and execute the macro for that routine; the macro pushes the
routine selector and executes the package trap for you.

Signatures and File Types

The normal way for a user to start up an application program is to
open a file in the Finder, either by selecting the file's icon with the
mouse and choosing the Open command from the Finder's File
menu, or by the equivalent shortcut of double-clicking the icon. At
this point one of three things may happen:

« If the selected file contains an application program, the Finder starts
up the program.

« If the file contains a document belonging to some application program,
the Finder starts up that program.

o If the file isn’'t identified as belonging to a particular application
program, or if the program it belongs to isn’t available on the disk, the
Finder displays an alert message: An application can't be found for this
document.

The Finder decides what to do by looking at two special pieces of
information that are associated with every file on the disk, the file
type and creator signature [7.3.1]. Both of these are four-character

336 Getting Loaded

strings, just like a resource type. Whenever a prograrn creates a
new file, it must supply a file type and creator signature.

The Finder keeps track of each file’s type and creator (along
with other items such as the location of the file's icon on the
screen) in a special desktop file for each disk. The desktop file is
invisible to the user: the Finder never displays an icon for it on
the screen, so there’s no danger of the user’s destroying or
damaging it. The Toolbox routine GetFinfo (7.3.3] returns all the
Finder information associated with a given file, summarized in a
Finder information record (7.3.2). SetFinfo [7.3.3] accepts a Finder
information record as a parameter and sets the file’s Finder
information accordingly.

The creator signature attached to a file tells the Finder what
program the file belongs to, so it can start up that program when
the user opens the file. Every application program ‘has its own
four-character signature: for example, the signature of the Mac-
Paint graphics editor is ‘MPNT". If you were writing an interactive
music editor named Allegro, you might give it the signature ‘BRI0’.

A program -ordinarily puts its own signature on any file it creates,
but in some cases you may want to use another program'’s signature
instead. For instance, a program that creates a MacPaint drawing
should put MacPaint's signature on it, so that the Finder will start
up MacPaint when the user opens the file. A file that is not to be
opened at all from the Fmder should carry the creator s1gnature
. :

The data files that a program works on are called document
files, or simply documents. Most programs just deal with one
particular type of document, although it's possible to support
several distinct document types in the same program, containing
different kinds of information to be used for different purposes.
Each kind of document is identified by its own four-character file
type. For instance, MacPaint documents have file type PNTG’ (for
“painting”); a document produced by our hypothetical music
editor Allegro, representing a musical score, might have file type
‘SCOR. In Volume Two, we'll learn how to use the Standard File
Package to offer the user a scrollable list of files from which to
select with the mouse. In doing this, you can designate one or

337 Finder Startup Information

more specific file types to be listed. Thus you can use different file
types to restrict the user’s choice to only those files that are
appropriate in a given situation.

To avoid conflicts, all “serious” Macintosh applications are sup-
posed to be registered with Apple’s Macintosh Technical Support
group so they can be assigned unique signatures and file types.
Unless you're a professional software developer, you probably won’t
want to go to this extreme—but you should still take care not to use
a signature or file type that's already used by another program or
that conflicts with an existing resource type.

There are two standard file types of particular interest. A file
containing a stand-alone program to be started from the Finder
should be of type "APPL’ (for “application”) and carry the program'’s
own signature as its creator. File type TEXT' identifies a text file
consisting of a stream of “raw” text characters, without any addi-
tional formatting or other information. This type of file is useful
for exchanging pure text between different programs: for instance,
MacWrite writes a text file when it's asked to save a document
with the Text Only option, and will accept text files written by
another program.

Finder Startup Information

When the user selects and opens one or more document files, the
Finder examines their creator signatures to find out what applica-
tion program they belong to. If the signatures aren’t all the same,
it just puts up an alert message (Please open only documents of the same
kind); otherwise it starts up the designated application, passing it
a handle to a table of startup information [7.3.4] identifying which
documents were selected. Recall from Chapter 3 that this startup
handle is one of the program's application parameters, located at
address 16(A5) in the application global space (that is, at an offset
of 16 bytes from the base address kept in register A5). The program
can then use the startup handle to find out which document files
to open on first starting up.

338 Getting Loaded

One way to access the startup information is with the Toolbox
routine GetAppParms [7.34]. This returns a copy of the startup
handle, along with the name and file reference number of your
program'’s application resource file. However, you're then faced
with the problem of deciphering the startup information to find
out which documents to open—an awkward task in Pascal, since
the startup information is a variable-length data structure that
can't be properly described in a Pascal type declaration.

It's generally more convenient to use CountAppFiles and GetApp-
Files, letting the Toolbox parse the startup information for you.
CountAppFiles [7.3.4] tells you the number of document files to be
opened. It also returns an integer “message” telling whether the
user chose the Finder's Open command after selecting the docu-
ments (in which case you should open them for work in the usual
way) or whether they were opened with the Finder's Print com-
mand (in which case you should just print each of the selected
documents and then exit back to the Finder). The subject of
printing is covered in Volume Three.

Once you know how many documents there are, you use
GetAppFiles (7.34] to find out their names. GetAppFiles accepts an
index number as a parameter, ranging from 1 up to the number
of documents reported by CountAppFiles. For each index value, it
returns an information record of type AppFile [7.3.4] giving the
document's file name, file type, and other identifying information.
After opening (or printing) each file, you should call CirAppFiles
[7.3.4] to notify the Finder that the file has been duly processed.
Putting all this together, your startup code should run something
like this:

CountAppFiles (openOrPrint, nFiles);
for index := 1 to nFiles do
begin
GetAppFiles (index, infoRecord);
if openOrPrint = AppOpen then
with infoRecord do
{Open document for work}
else
with infoRecord do
{Open and print document};
CirAppFiles (index)
end;
it openOrPrint = AppPrint then
ExitToShell

339 Finder Resources

(ExitToShell [7.1.3] terminates the program and starts up the Finder
in its place. This routine is needed only for taking an immediate
exit from somewhere in the middle of the program, as in this
example; there’s no need to call it when the program terminates
in the normal way, by “falling out the bottom” of its main program
body.)

Finder Resources

A program can provide its own icons to stand for its files on the
Finder desktop. There can be a separate icon for each distinct file
type the program works with, as well as one for the application
file (file type 'APPL) containing the program itself. The icons and
their association with the various file types are defined by a set of
Finder resources in the program’s application resource file. If a
program doesn't provide its own file icons, the Finder will use the
standard ones shown in Figure 7-5 for the application file and its
documents.

Every stand-alone program, whether it defines its own file
icons or not, must have a special resource called an autograph in
its resource file. The resource type of the autograph is always the
same as the program’s own signature; by convention, its resource
ID should be 0. Whenever the program is copied from one disk to

n
" " -)
. = H " w.

" s - 2 "s

- . o SEEREEN

. . £ g

. n H =

o a n]

- " - i

- L =]

.I. a" un " " n H

sEm_m =n] u

. EEEE EEEEEEEE wEEE u =

" (] 7] u]

s "un man n]

L EEEEENEE__EEE u n

. St g £

L - -

Application " Document T ——-

Figure 7-5 Standard file icons

340 Getting Loaded

another, the Finder will copy its autograph resource into the
desktop file on the new disk. The sole purpose of the autograph
is to serve as the program'’s representative in the desktop file.

The Finder never looks at the autograph’s resource data, so
you can use it for any purpose you like. Typically it's used to hold
a string identifying the version of the program, such as

Allegro version 2.0, 8 November 1984

(For this reason, the autograph is sometimes referred to as the
program’s ‘‘version data” resource.) Notice that an autograph
resource is required for every stand-alone application file; the rest
of the Finder resources discussed in this section are optional.

Every file icon that a program defines is represented in the
application resource file by an icon list resource of type 'ICN#
[5.5.4]. The icon list must contain exactly two icons of 32 by 32
bits each. The first is the file icon itself and the second is a mask
telling the Finder how to draw the icon against the existing
background on the screen. A white (0) bit in the mask means to
leave the background pixel unchanged at that position; a black (1)
bit means to replace it with the corresponding pixel of the file
icon. The mask usually just consists of the icon’s outline, filled in
with solid black: for example, Figure 7-6 shows a possible applica-
tion and document icon and their masks for our music editor.

The connection between a file type and its icon is established
by a file reference resource of type ‘FREF’ (7.5.3]. The resource data
consists of the four-character file type and the resource ID of the
corresponding icon list. (For the icon representing the application
file itself, the file type would of course be 'APPL’).

Actually, the ID number of the icon list as given in a file
reference isn’t necessarily the same as its true resource ID in the
application resource file. The translation from this “local ID” to
the actual resource ID is given by yet another Finder resource
called a bundle (resource type 'BNDL’ [7.5.4]). Any program that
defines its own file icons must include a bundle resource to tie
all of its other Finder resources together. The bundle gives the
program’s signature and the ID number of its autograph resource,
then goes on to define a series of correspondences between local
and actual resource IDs for any number of resource types. The
other Finder resources can then refer to each other by their local
IDs; the bundle tells the Finder the actual IDs under which to look
for them in the application file.

341 Finder Resources

Application icon

.‘l'h
==

Document icon Document mask

Figure 7-6 File icons and masks

342 Getting Loaded

When a program is copied from one disk to -another, its Finder-
related resources have to travel along with it. The program’s bundle
bit tells the Finder whether there are any such resources that need
to be copied (other than the autograph, which must always be
present). The bundle bit is one of the bits in the fdFlags field of the
Finder information record [7.3.2]. If it’s set, the Finder will copy the
program’s bundle resource to the desktop file on the new disk,
along with any other Finder resources that are identified in the
bundle. If the bundle bit isn’t set, none of the program’s Finder
" resources will be installed in the new disk’s desktop file.

Using local IDs allows the Finder to resolve (“arbitrate”) con-
flicts among different programs. If two programs use the same IDs
for their file icons or other Finder resources, the Finder can avoid
a conflict by changing the actual IDs for one of the programs when
it copies the resources to a disk’s desktop file. It can then adjust
the actual IDs given in the bundle resource to reflect the change,
without affecting the local IDs that the resources use to refer to
one another.

The format of a bundle resource is general enough to define:local
IDs for any number of resource types. At present, bundles are useful
only for file references (FREF) and icon lists (1CN#), but the same
mechanism may eventually be used for other purposes as well.

As an example, recall that our music editor Allegro has the
signature ‘BRI0’ and that it works with document files of type
‘SCOR. The program might then have the following Finder
resources in its application resource file:

3

* An autograph resource (resource type ‘BRI0’, ID 0) containing a string
identifying the program version and date

* Two file references (resource type 'FREF’, IDs 1000 and 1001) associating
file types ‘APPL’ and 'SCOR’ with icon lists 0 and 1, respectively

¢ Two icon lists (resource type ICN#, IDs 1000 and 1001) containing the
icons and associated masks for the two file types

* A bundle (resource type ‘BNDL, ID 0) giving the type and'ID of the
autograph resource (‘BRI0', 0) and associating the local icon-list IDs 0 and
1 with actual IDs 1000 and 1001

343 Drivers and Desk Accessories

Drivers and Desk Accessories

The Macintosh can communicate with a variety of input/output
devices, some of them built in (screen, speaker, disk drive), others
peripheral and connected via cables (printer, modem, hard disk).
Since each device has its own characteristics and peculiarities, a
certain amount of specialized knowledge is needed to communi-
cate with it. This “expertise” about a particular device is isolated
in a piece of low-level software called a device driver. Each
different kind of 1/0 device has its own driver; the rest of the
system communicates with the device through the driver.

The drivers for‘devices that are built into the Macintosh are
stored permanently in ROM, where they're always available. These
include the sound driver, the disk driver for the standard Sony
disk drive, and the serial driver for communicating through the
serial ports on the back of the machine. Other drivers are stored
in resource files under resource type ‘DRVR’ [7.5.5], and are loaded
into RAM only when needed; one important example of such a
RAM-based driver is the printer driver.

The Macintosh: Plu”" al :has drivers in ROM for the AppleTalk
- network, ‘as well as a built-in“shell” for the printer driver. (The shell
. inturn calls the'actu pm er dnver, which is still loaded from the
+ disk as béfore. This- allows it-to be changed ‘easily to configure the -
. system: for dxﬂ'erent types of pmnter, such as the ImageWnter or
- LaserWriter.)' E

Every driver, whether ROM- or RAM-based, has a name, which
conventionally begins with a period (.), and a unit number from 0
to 31. For drivers that reside in resource files, the driver name and
unit number are also the resource name and resource ID. When
a driver is opened for use, it is also given a driver reference
number by which it is always referred to. The driver reference
number is always a negative number from —1 to —32, and is derived
from the unit number by the formula

refNum = —(unitNum + 1)

344 Getting Loaded

The Desk Scrap

For example, the sound driver has a unit number of 3 and a
reference number of —4. The names and numbers of the standard
device drivers are summarized in [7.5.5].

A very important special class of drivers are desk accessories
like the Calculator, Scrapbook, and Control Panel. These behave
like device drivers from the Toolbox’s point of view, but they're
actually “mini-applications” that can coexist on the screen with
an ordinary application program (and with each other). Desk
accessories are stored under resource type ‘DRVR’, just like bona
fide device drivers, and are supposed to have unit numbers
(resource IDs) of 12 and above.

Unlike the names of éidinary drivers, those of desk accessories,don’t
begin with a period. We'll sé in Volume Two-that this-allows them
to' be listed by name on 4 nary -drivers begin with a

period preclsely 80" that they will be suppressedﬁ’om the menu.

The Toolbox includes all the facilities you need to give the
user access to desk accessories while running your program. The
program itself doesn’t need to know what accessories are available,
what they do, or how they work. In Volume Two we'll learn how
to offer a menu of available desk accessories for the user to choose
from, how to open, close, and manipulate the system windows
they appear in, and how to pass them the user's mouse and
keyboard actions for processing. See Volume Three if you're inter-
ested in writing desk accessories of your own.

The desk scrap is what allows the user to cut and paste between
application programs, between a program and a desk accessory,
or between accessories. It corresponds to what Macintosh user
manuals call the Clipboard: the place to which the standard
editing commands Cut and Copy transfer information, and from
which Paste retrieves it. When you cut or copy a picture from
MacPaint and paste it into a MacWrite document, or transfer text
from MacWrite to MacPaint, the information travels by way of the
desk scrap. Similarly pictures can be moved to or from the Scrap-
book desk accessory, and text to or from the Scrapbook, Note Pad,

345 The Desk Scrap

Key Caps, or even the Calculator. In each case the desk scrap
serves as the intermediary vehicle for transferring the information
from one program or accessory to another.

In a program that performs any sort of cut-and-paste editing, it's
up to you to make sure the contents of the desk scrap are properly
maintained. Normally. this just means copying information directly
to the scrap whenever the user issues a Cut or Copy command, and
back from the scrap on a Paste command. As we'll see in Volume
Two, however, the Toolbox text editing routines maintain an inter-
nal text scrap of their own, separate from the desk scrap. If you're
using these routines and want to be able to exchange information
with other programs, you have to arrange to. transfer the informa-
tion between this Toolbox internal scrap and the desk scrap at the
appropriate times: on entry and exit, and whenever control passes
to or from a desk accessory. We'll see - how to do this when we take’
up text editing in Volume Two, Chapter 5.

Conceptually, the scrap always holds a single item, the last to
be cut or copied. In reality, it may contain several different items
representing the same underlying information in different forms
[7.4.1]. This allows the contents of the scrap to be handled in
different ways depending on what program they're passed to.
Each separate representation is stored as a resource of some kind;
if there are more than one, they should all be of different resource
types.

Two resource types in particular are considered standard:
TEXT’ [8.4.1], consisting of straight ASCII text characters, and 'PICT’
[5.5.5], containing a QuickDraw picture definition. These standard
types serve as a “lingua franca” for exchanging text and graphics
among programs. Every application or desk accessory that uses
the desk scrap is expected to deliver at least one of the standard
types as output, and to accept at least one, and preferably both,
as input. In addition, a program may use the desk scrap for any
other type of data it likes. For instance, our music editor might
write the same musical fragment to the scrap both in its own
private data format and also as a QuickDraw picture for displaying
the notes graphically on the screen or printing them in a hard

copy.

346 Getting Loaded

The contents of the desk scrap normally reside in the applica-
tion heap, and are located through a handle kept in a system
global named ScrapHandle. You can get a copy of this handle by
calling the Toolbox function InfoScrap (7.4.2). This returns a scrap
information record that includes the scrap handle, the current size
of the scrap in bytes, and other descriptive information.

Usually, though, you'll want to use GetScrap [7.4.3] to access
the scrap's contents. You specify the particular resource type
you're interested in, and supply a handle (normally empty) to be
filled with an item from the scrap. Like most of the Toolbox
routines dealing with the scrap, GetScrap is a function that returns
an Operating System result code, similar to those we discussed in
Chapters 3 and 6 on memory management and resources. If the
scrap contains an item of the requested type, GetScrap will make a
copy of the item's resource data and set the handle you supply to
point to the copy; if there's no such item, GetScrap will return the
result code NoTypeErr.

To transfer an item to the desk scrap, use PutScrap (7.4.3]. You
supply a pointer (not a handle) to the item’s resource data, along
with its resource type and length in bytes. PutScrap simply adds
the new item to the existing contents of the scrap; it doesn’t delete
any other items already there. It's up to you to make sure the
scrap doesn’t already contain an item of the same resource type.
To completely replace the contents of the scrap, clear the old
contents with ZeroScrap (7.4.3] before storing the new contents with
PutScrap.

Any call to ZeroScrap also changes the value of the scrap count.
This is an integer maintained by the Toolbox, whose value is
always available as one of the fields in the information record
returned by InfoScrap (7.4.2]. The numerical value of the scrap count
has no intrinsic meaning; its sole purpose is to tell you when the
scrap’'s contents have been changed. When the user activates a
system window (one that contains a desk accessory), vou can save
the old value of the scrap count before passing control to the
accessory, then compare it with the new value when control
returns to your program. If the scrap count has changed, then the
accessory must have called ZeroScrap, and has presumably replaced
the previous contents of the scrap. You can then copy the desk
scrap to the internal Toolbox scrap, or take whatever other action
is appropriate. If the scrap count is the same on return from the
accessory as it was before, then the scrap hasn’'t changed and no

347 nNuts and Bolts

Nuts and Boits

special action is needed. Again, we'll see an example of how this
works in the chapter on text editing in Volume Two.

The contents of the desk scrap normally reside in the applica-
tion heap. However, if heap space is scarce or the scrap is large,
you may want to keep it in a disk file instead. The Toolbox
routines LoadScrap and UnloadScrap [7.4.4] transfer the scrap between
a file and the heap. The usual name of the scrap file, if there is one,
is Clipboard File. The Toolbox keeps a pointer to this file name in
the system global ScrapName; in assembly language, you can change
the name of the scrap file by storing a new string pointer into this
global. There's no way to change the scrap file name in Pascal,
but you can find out the current name via the ScrapName field of
the information record returned by InfoScrap [7.4.2].

The Toolbox routine that the Finder uses to start up an applica-
tion program is called Launch [7.1.1]. This routine reinitializes the
application heap, the application global space, and the stack for
the new program, destroying their previous contents. (However, it
leaves the system heap intact from one application to the next.) It
opens the new program’s application resource file and reads in
the contents of segment 0, which it then uses to allocate the
application global space, set up the program’s jump table, and
initialize register A5. Finally, it starts up the program by transfer-
ring control to its main entry point through the first entry in the
jump table.

The only thing in the old application heap that gets preserved
across the launch of a new program is, of course, the desk scrap.
The Launch routine locates the scrap by means of the system scrap
handle in low memory and copies it temporarily into the stack.
Then, after reinitializing the application heap, it retrieves the scrap
from the stack, reinstalls it in the new heap, and fixes the system
scrap handle to point to it at its new location. Thus the scrap is
preserved even though everything else in the heap is lost.

Ordinarily the Finder is the only program that should ever
call the Launch routine; however, there’s a related routine named
Chain [7.1.1] that you may sometimes find useful. Like Launch, Chain

348 Getting Loaded

terminates the program that called it and starts up another in its
place. The difference is that Chain doesn't reinitialize the applica-
tion heap; it leaves it intact, so that the first program can leave
information there for the second program to use. Neither Launch
nor Chain can be called through the Pascal interface to the Toolbox;
they're available only from assembly language via the trap
mechanism. See [7.1.1] for details.

REFERENCE

7.1 Starting and Ending a Program

7.1.1 Starting a Program

Q T L T
B © procedure Launch © - (Assembly language only}
- procedure Chain ~ ~ {Assembly language only}

ﬂ% Notes

1. Both of these routines start up a new application program.

2. The previous program’s application resource file is closed and the
new one'’s is opened.

3. The information given in segment 0 in the application resource file is
used to allocate the program’s application global space, set up its
segment jump table, initialize register A5, and position the base of the
stack.

4. Launch reinitializes the application heap, destroying its previous con-
tents, before starting the new program.

349

350 Program Startup

5. The contents of the desk scrap (7.4] are preserved by copying them
temporarily to the stack. After initialization, the scrap is retrieved
from the stack and reinstalled in the new heap, and the global scrap
handle is updated to point to it.

6. Launch is normally used only by the Finder, not by a running program.

7. Chain leaves the entire application heap intact, and can be used to
pass information from one application program to the next.

8. Both routines can be called from assembly language only, via the trap
macros _Launch and _Chain.

9. On entry to either routine, register A0 contains the address of a 4-byte
pointer, which in turn points to a string giving the name of the file
containing the application program to be started.

10. Following the file name pointer in memory is a 2-byte integer telling
which screen and sound buffers the program will use:

Value Screen buffer Sound buffer
Zero Main Main
Positive Main Alternate
Negative Alternate Alternate

The value passed for this integer is kept in the assembly-language
global CurPageOption.

351 (7.1.2] Loading and Unloading Segments

Assembly Language Information

Trap macros: -
(Assembly)
Trap macro Trap word
_Launch $AQF2
—Chain $ASF3
Register usage:
Routine Register Contents
Launch AOL (in) Pointer to parameter block:
G{A0) Pointer to name of application file
4(A0) Coded integer specifying screen and
: sound buffers (see note 10)
Chain AOL (in) Pointer to parameter block:
0(A0) - ‘Pointer to name of application file
4A0) - Coded integer specifying screen and
' sound buffers (see note 10}
Assembly-language global variable:
Name Address Meaning
CurPageOption ~ $936 - integer specifying screen and sound
buffers

7.1.2 Loading and Unloading Segments

Definitions

procedure LoadSeg {Assembly language only}

procedure UnloadSeg ‘ :
(anyRoutine : Ptr); {Pointer to any routine in the segment}

352 Program Startup

Notes

i

1. LoadSeg loads a code segment from the application resource file on
the disk and locks it into the application heap.

2. The segment isn't reloaded if it's already in memory.

3. The segment to be loaded is identified by a segment number passed
on the stack.

4. After the segment is loaded, all of its jump table entries are patched
to jump directly to the corresponding routines in memory.

5. LoadSeg can be called only at the machine-language level, and only
from within a jump table entry. It will not work properly if called from
within the body of a program.

6. UnloadSeg unloads a segment from memory, freeing its space for some
other purpose.

7. The parameter anyRoutine is a pointer to any routine in the segment.
The segment number is obtained from the jump table entry for this
routine.

8. The unloaded segment is made purgeable, but is not immediately
purged from the heap.

9. All jump entries for the segment are restored to the “unloaded” state,
so that they will reload the segment the next time it's needed.

Assembly Language Information

Trap macros: :

(Pascal) . (Assembly)

Routinepame =~~~ - Trap macro Trap word
o ~ _LoadSeg $AGFO

UnloadSeg ~ -UnloadSeg $ASF1

7.1.3 Ending a Program

Definitions 7

.|

procedure ExitToSh‘e’H:
procedure Restart;

353 (7.1.3] Ending a Program

Notes

1.

2.
3.

4.

5‘

6.

7.

8.

ExitToShell terminates a program and immediately returns control to

the Finder.

The application heap is reinitialized, destroying its previous contents.

The contents of the desk scrap (7.4] are preserved. After initialization,
the scrap is reinstalled in the new heap and the global scrap handle

is updated to point to it.

A Pascal program need not call ExitToShell when it terminates in the

normal way, by “falling out” of its main program body.

Restart restarts the entire system, just as if the power had been turned

off and back on.

Restart is part of the Pascal Toolbox interface, not part of the Toolbox
itself. It doesn’t reside in ROM and can't be called from assembly

language via the trap mechanism.

To restart the system in assembly language, jump to the memory
address ten bytes past the beginning of ROM (that is, to the address

$0A greater than that contained in the system global ROMBase (3.1.3]).

BEWARE: Restarting the system unexpectedly or without proper pre-

cautions can cause the user to lose valuable information.

Assembly Language Information

Trap macro:

(Pascal) ' (Assembly)

Routine name Trap macro Trap word
ExitToShell ' _ExitToShell $A9F4

Assembly-language global variable:
Name Address . - Meaning

FinderName $2E0 Name of program to exit to
(maximum 15 characters)

354 Program Startup

7.2 Packages

7.2.1 Standard Packages

Ié! Definitions
const
ListMgr = 0; {List Manager Package}
Dskinit =2; - {Disk:Initialization Package}
StdFile = 3; {Standard File Package}
FIPoint = 4; {Floating-Point Arithmetic Package}
TrFunc ~ = §; {Transcendental Functions Package:
IntUtil = 6; {International Utilities Package}
BDConv =7; . . {Binary/Decimal Conversion Package}
D% Notes
| 1. Code packages are stored as resources of type ‘PACK’ [7.5.2].
2. The resource ID is the same as the package number, which must be

4.
5

.

7.

between 0 and 7. The Toolbox can accommodate no more than eight
packages at a time, including the standard ones. (The Macintosh Plus
Toolbox can handle up to sixteen packages, numbered 0 to 15.)

. The standard packages are included in the system resource file

provided on Macintosh software disks. (On the Macintosh Plus, the
Floating-Point Arithmetic, Transcendental Functions, and Binary/
Decimal Conversion packages, numbers 4, 5, and 7, reside in ROM
instead (6.6.3].)

Package numbers 1 and 8-15 are reserved for future expansion.

The List Manager Package displays scrollable lists of items from
which the user can choose with the mouse (like the one used in
selecting files to be read from the disk). This package was introduced
at the same time as the Macintosh Plus, and is available only in
versions of the System file numbered 3.0 or higher. See Volume Three
for details.

The Disk Initialization Package [I1:8.4] takes corrective action when
an unreadable disk is inserted into the disk drive, usually by initializ-
ing the disk.

The Standard File Package [11:8.3) provides a convenient, standard
way for the user to supply file names for input/output operations.

355 (7.2.1] Standard Packages

8.

9.

10.

11.

12.

The Floating-Point Arithmetic Package performs arithmetic on
floating-point numbers in accordance with the “IEEE standard”
published by the Institute of Electrical and Electronic Engineers,
using the Standard Apple Numeric Environment (SANE). See Inside
Macintosh for details.

The Transcendental Functions Package calculates various transcen-
dental functions on floating-point numbers, such as logarithms,
exponentials, trigonometric functions, compound interest, and dis-
counted value. See Inside Macintosh for details.

The International Utilities Package helps a program conform to the
prevailing conventions of different countries in such matters as
formatting of numbers, dates, times, and currency; use of metric
units; and alphabetization of foreign-language accents, diacriticals,
and ligatures. See [2.4.4] and Inside Macintosh for more information.

The Binary/Decimal Conversion Package (2.3.7] converts numbers
between their internal binary format and their external representa-
tion as strings of decimal digits.

Each routine within a package is identified by an integer routine
selector; see the sections on individual routines for specific values.
To call such a routine in assembly language, push the selector onto
the stack and execute the appropriate trap (_Pack0 to _Pack15) for the
package it belongs to. The Pascal interface routines in unit Packintf
and the assembly-language macros in file PackMacs do this automati-
cally for all routines in the standard packages.

356 Program Startup

Assembly Language Information

Trap macros:

(Assembly)

Trap macro Trap word
_Pack0 $A9ET
_Packl $A9E8
_Pack2 $A9E9
_Pack3 SAQEA
_Pack4 $ASEB
_Packs $A9EC
_Packé $A9ED
_Pack? SAQEE
_Pack8 $A816
_Pack9 $A82B
_Pack10 $A82C
_Packii $AB2D
—Pack12 $A82E
_Pack13 $AB2F
_Pack14 $A830
_Packi5 $A831

Standard package numbers:

Name Number Meaning

ListMgr 0 List Manager Package (System file
3.0 or later)

Dsklnit 2 Disk Initialization Package

StdFile 3 Standard File Package

FIPoint 4 Floating-Point Arithmetic Package
TrFunc 5 Transcendental Functions Package
IntUtil 6 International Utilities Package
BDConv 7 Binary/Decimal Conversion Package

357 [7.2.2] Initializing Packages

7.2.2 Initializing Packages

‘é! Definitions

procedure InitPack
(packNumber : INTEGER); {Package number}

procedure |InitAllPacks;

ﬂ% Notes

1. These routines initialize the standard packages, making them available
for use in a program.

2. InitPack initializes a single package; [nitAllPacks initializes all of the
standard packages at once.

3. InitAllPacks is called automatically at program startup; there’s normally
no need to call either of these routines from within a running
program.

Assembly Language Information

Trap macros:

(Pascal) (Assembly)
Routine name Trap macro Trap word
InitPack _InitPack $A9E5

InitAllPacks _InitAllPacks $AIEE

358 Program Startup

7.3 Finder Information

7.3.1 Signatures and File Types

Definitions

type
0SType = packed array [1..4] of CHAR; {Creator signature or file type}

Notes

1. Every file has a file type and a creator signature, assigned when the
file is first created [(11:8.2.1].

2. The creator signature identifies the application program to be started
up when the file is opened from the Finder.

3. The signature ???? denotes a file that is not to be opened from the
Finder.

4. The file type determines the icon the Finder uses to represent the file
on the screen, and controls the user’'s access to the file via the
Standard File Package [II:8.3.2].

5. File type 'APPL’ identifies a file containing an application program to
be run from the Finder. Such a file should carry the program'’s own
signature as its creator.

6. File type TEXT' denotes a file consisting of pure text characters, with
no additional formatting or other information.

7. Serious commercial applications should have their signatures and
associated file types registered for uniqueness with Apple’s Macintosh
Technical Support.

359

[7.3.2] Finder Information Records

7.3.2 Finder Information Records
;l Definitions
A
type
Finfo = record
fdType : 0SType; {File type}
fdCreator : 0SType; {Creator signature}
fdFlags : INTEGER; {Finder flags} _]
fdLocation : Point; {Top-left corner of file's icon in local (window) coordinates}
fdFldr : INTEGER {Folder or window containing icon}
end;
const
FHasBundle = $2000; fApplication has Finder resources}
Finvisible = $4000; {File not visible on desktop}
FDisk = {; {lcon is in main disk window}
FDesktop = —2; {lcon is on desktop}
Flrash, = —3; flcon is in trash window}

14

L Private

Inited

Changed

Busy
Bozo

System
Bundle

Invisible

Locked

360 Program Startup

Notes

i

1.

2.

3.

4.

5.

9.

10.

ll.

12.

13.

A Finder information record summarizes a file’s Finder-related
properties.

fdType and fdCreator are the file type and creator signature (7.3.1],
respectively.

fdFlags is a word of flags representing Finder-related attributes of the
file.

Bit 15 (the high-order bit) of the flag word is the lock bit. A 1 in this
bit prevents the file from being deleted, renamed, or replaced.

Bit 14 of the flag word is the invisible bit. A 1 in this bit means that
the file's icon is not to be displayed on the screen by the Finder.
The constant Finvisible is a mask for manipulating this bit.

Bit 13 of the flag word is the bundle bit. A 1 in this bit means that
the file has a “bundle” of Finderrelated resources (7.5.4] to be in-
stalled in the Finder’s desktop file. The constant FHasBundle is a mask
for manipulating this bit.

. Bit 12 of the flag word is the system bit. A 1 in this bit means that

the file is needed by the system for proper operation.

Bit 11 of the flag word is the bozo bit (named for the Apple program-
mer who invented itl. A 1 in this bit prevents the file from being
copied: a protection scheme so feeble that only a bozo would think
of it. Recent versions of the Finder (version 5.0 or greater) don't even
pay any attention to this bit.

Bit 10 of the flag word is the busy bit. A 1 in this bit means that the
file is currently in use—that is, it has been opened and not yet
closed.

Bit 9 of the flag word is the change bit. A 1 in this bit means that the
file's contents have been changed and must be updated on the disk.

Bit 8 of the flag word is the init bit. A 1 in this bit means that the
file's Finder-related resources (7.54] have been installed in the
desktop file.

The low-order byte of the flag word (bits 7-0} is reserved for private
use by the Finder.

fdFidr specifies the location of the file's icon on the Finder screen.
Common locations are the main window for the disk the file resides
on (FDisk), out on the desktop (FDesktop), or in the trash window
(FTrash). Any positive, nonzero value is a folder number assigned by
the Finder to designate a subsidiary folder on the disk.

361 [7.3.3) Accessing Finder Properties

14. fdLocation gives the position of the top-left corner of the file’s icon, in
the local coordinate system of the window designated by fdFldr.

15. If the icon is on the desktop (fdFidr = FDesktop), fdLocation.is in global
(screen) coordinates.

16. The fdFidr field is unused under the new Hierarchical File System (see
Volume Two, Chapter 8).

Assembly Language Inforniaﬁon)

—

Field offsets in a Finder information record:

(Pascal) = (Assembly) ,

Field name : Offset name Offset in bytes
fdType - o fdType | : 0
fdCreator fdCreator 4
fdFlags fdFlags 8
fdLocation - fdLocation 10
fdFldr o fdFidr 14
Assembly-,language;mnstams’:_ ’

Name: . ‘ Val:u,er Meaning

FHasBundle ‘ 52000 Mask for bundle bit

Flnvisible ~ $4000 Mask for invisible bit

7.3.3 Accessing Finder Properties

Definitions

[

function GetFinfo v '
(fName : Str255; {File name}

vRefNum : INTEGER; {Volume or directory}
var finderinfo : Finfo) - {Returns current Finder information [7.3.2]}
: OSErr; ' .. {Result code}
function SetFinfo '
(fName : Str255; {File name}
vRefNum : INTEGER; {Volume or directory}
finderinfo : Finfo) ‘ {New Finder information [7.3.2]}

: OSErr; {Result code}

362 Program Startup

Notes

1. These routines return or change a file’s Finder-related properties
(7.3.2].

2. The file is identified by its name and the reference number of the
volume or directory it resides in. Volumes, directories, and their
reference numbers are discussed in Volume Two, Chapter 8.

3. Afile needn't be open in order to get or set its Finder information.

4. These routines are part of the high-level file system and are not
directly available from assembly language. The trap macros cor-
respond to the low-level file routines PBGetFinfo and PHSetFinfo. (See
Volume Two, Chapter 8 for the distinction between high- and low-level
file systems, and Inside Macintosh for details on PBGetFirfo and PBSet-
Finfo.)

5. The trap macros are spelled _GetFilelnfo and _SetFilelnfo.

Assembly Language vlnformaﬁdn

Trap macros:

(Pascal) | (Assembly)
Routine name "Trap. macro v Trap word
PBGetFinfo _GetFilelnfo $AOOC

PBSetFinfo __SetFilelnfo $A0C0D

363 [7.3.4] startup Information

7.3.4 Startup Information

0 =Open file
1 =Print file

Message :(2 bytes)

Number of files (2 bytes)

First volume refereﬁce number (2 bytes)

File .tgpe
(4 bytes)

Version number (1 byte)

Length of file name (1 byte)

File name
(indefinite length)

Any
* number
of files

Last volume referen:ce number (2 bytes)

Length of file name (1 byte)

| |
|]
[}
Filetype
(4 bytes)
Version number (1 byte) Not used
a
a
-

File name
{indefinite length)

364 Program Startup

Definitions

o

procedure CountAppFiles

(var message : INTEGER;
: INTEGER);

var count

procedure GetAppFiles
(index

procedure ClrAppFiles

: INTEGER;
var theFile : AppFile);

(index : INTEGER);
procedure GetAppParms

(var appName r
var appResFile : INTEGER;
var startHandle : Handle);

const
AppOpen = 0;
AppPrint = 1;
type
AppFile = record
vRefNum : INTEGER;
fType. : 0SType;
versNum- : INTEGER;
fName : Str255
end;
Notes

: Str255;

{Open or prrint?}
{Returns number of files selected}

{Index number of desired file}
{Returns identifying information about file}

{Index number of file to be cleared}

{Returns name of application file}
{Returns reference number of application resource file}

{Returns handle to startup information}

{Open document file}
{Print document file}

{Volume or directory}
{File type}

{Version number}
{Name of file}

1. These routines are used for accessing a program's Finder startup
information, which identifies the document files the user selected in
the Finder when starting up the program.

2. CountAppFiles returns the number of documents selected by the user.

3. The value returned in the message parameter tells whether the docu-
ments are to be opened for work (AppOpen) or for printing (AppPrint).
See Volume Three for information on printing.

4. GetAppFiles returns identifying information for one of the documents
selected by the user.

365 (734 Startup Information

5.

6‘

7.

8.

10.

The index parameter is an integer ranging from 1 to the count value
returned by CountAppFiles.

The identifying information is returned as a record of type AppFile,
giving the volume or directory reference number, file name, file type
[7.3.1], and version number. Volume and directory reference numbers
and version numbers are discussed in Volume Two, Chapter 8.

After opening or printing a document identified by GetAppFiles, call
CirAppFiles to notify the Finder that the document has been processed.

These routines are not available in assembly language via the trap
mechanism. Instead, you can access the Finder startup information
directly via the startup handle at address 16(A5) in the application
global space; a copy of the startup handle is also kept in the system
global variable AppParmHandle. The internal structure of the startup
information is shown in the figure.

GetAppParms returns the name of the program’s application file, the
reference number of its application resource file, and a handle to its
“raw” startup information.

In assembly language, the same information is available directly in
the system globals CurApName, CurApRefNum, and AppParmHandle.

~ Assembly Language Information

Trap macro: v
(Pascal) . {Assembly) :
-Boutingname. = - - Trap macro : Trap.word

GetAppParms. - ' _GetAppParms | $ASF5

' Assembly-language global variables:

Name . .. Address ‘Meaning

CirApName . ", “§8i0 Name of current application

, . (maximum 31 characters)
CurApRefNum T se0 Reference number of
' : C application. resource file

_AppParmHandle . SAEC Handle to Finder startup

information

366 Program Startup

7.4 Desk Scrap

7.4.1 Scrap Format

Resour‘::e type
{4 bytes)

Lengthzof data
(4 bytes)

. Item data
i (indefinite length)
n
.

Any number
r of items

Length of data

(4 bgtes)

:
........ Resource type
(4 bytes)

. Item data

I (indefinite length) I
/

Format of desk scrap

367 (7.4.2] Scrap Information

Notes

. The desk scrap may contain any number of separate items, each of

which is a single resource of any type. They should all represent the
same underlying information in different forms.

. For each item, the scrap contains a four-character resource type and

a long integer giving the length of the resource data in bytes, followed
by the actual resource data.

. The data must physically consist of an even number of bytes. If the

specified length count is odd, there must be an extra byte of “pad-
ding” at the end to keep the physical length to a whole number of
16-bit words.

. Two resource types are considered standard for the scrap: TEXT

[8.4.1), consisting of plain, unformatted ASCII text, and 'PICT’ [5.5.5],
representing a QuickDraw picture. Any program that uses the scrap
at all should deliver at least one of these types to the scrap, and
should be able to accept at least one and preferably both.

7.4.2 Scrap Information

Definitions

L]

type

PScrapStuff = ~ScrapStuff;
ScrapStuff = record

scrapSize : LONGINT; {Overall size of scrap.in bytes}

scrapHandle : Handle; {Handle to scrap in memory}

scrapCount : INTEGER; ({Current scrap count}

scrapState : INTEGER; {is scrap in memory?}

scrapName : StringPtr {Pointer to name of scrap file}
end;

function InféScrap

: PScrapStuff; - {Pointer to current scrap information}

368 Program Startup

Notes

1. infoScrap returns a scrap information record summarizing the current
contents and properties of the desk scrap.

2. scrapSize is the overall length of the scrap in bytes, including all items.

3. scrapHandle is a handle to the contents of the scrap in memory. If the
scrap is on the disk, this field is NIL.

4. scrapCount is the current value of the scrap count, which is changed
whenever ZeroScrap (7.4.3] is called. This number has no intrinsic
meaning; its sole purpose is to enable a program to tell whether the
scrap’s contents have been changed on regaining control from a desk
accessory.

5. scrapState is zero if the scrap currently resides on the disk, nonzero if
it's in memory.
6. scrapName is a pointer to the name of the scrap file.

7. The scrap file is normally named Clipboard File, and resides on the
startup volume. If the startup volume is hierarchical, the scrap file
resides in the system folder. (Hierarchical volumes are discussed in
Volume Two, Chapter 8.)

8. In assembly language, the contents of the scrap inforrnation record
are accessible directly in the global variables listed below.

Assembly Language Information

Trap macro:

(Pascal) "~ .(Assembly)

Routine name - Trapmacro Trapword
InfoScrap - ~InfoScrap $ASF9

Assémﬁly-l”anguajge'g'lbb‘ali}vaﬁables:

Name » Address Meaning

ScrapSize $960- ~ Current scrap size
ScrapHandle $964- Handle to scrap contents
ScrapGount $968 Current scrap count
ScrapState : $96A Current scrap state

ScrapName $96C - Pointer to scrap file name

369 (7.4.3) Reading and Writing the Scrap

7.4.3 Reading and Writing the Scrap

|g| Definitions
u
function GetScrap ; o £
(theltem : Handle; {Handle to be set to requested item}
itemType : ResType; {Resource type of desired item}
var offset : LONGINT) {Returns byte offset of item data within scrap contents}
: LONGINT; {Length of item data in bytes, or error code}
function PutScrap
(itemLength : LONGINT; {Length of item data in bytes}
itemType : ResType; {Resource type of item} '
theltem : Ptr) {Pointer to item data}
: LONGINT; {Result code}
function ZeroScrap : . '
: LONGINT; {Result code}

const
NoScrapErr = —100;
NoTypeErr = —102;

{Desk scrap not initialized)
{No item of requested type}

Notes

. GetScrap reads an item from the desk scrap; PutScrap writes one;

ZeroScrap empties the scrap.

. The itemType parameter to GetScrap identifies the resource type of the

desired item.

. If the scrap contains an item of the requested type, a copy of the item

is made and the handle theltem is set to point to the copy. The offset
parameter returns the offset in bytes from the beginning of the scrap
to the beginning of the item's data; the function result gives the
(logical) length of the item’s data in bytes.

. If the scrap doesn’t contain an item of the requested type, GetScrap

returns the error code NoTypeErr. theltem and offset are undefined.

. Pass NIL for theltem to get an item’s length and offset, but no handle

to its data. This allows you to check whether an item of a given type
is present, or find out its length, without making a copy of the item
itself.

370 Program Startup

. PutScrap doesn't replace the existing contents of the scrap; it merely

adds an item. To replace the scrap completely, call ZeroScrap first, to
clear its previous contents.

. PutScrap doesn’t check for an existing item of the same type you're

adding. It's up to you to avoid placing two items of the same type in
the scrap.

3. Notice that PutScrap accepts a pointer to the data of the new item, not

a handle.

. In addition to emptying the scrap, ZeroScrap changes the value of the

scrap count [{7.4.2]. This enables you to detect when the scrap’s
contents have been changed by a desk accessory.

Assembly Language Information

Trap macros:

(Pascal) . {Assernbly)

Routine name = Trap macro. Trapword
GetScrap _ _GetScrap $ASFD
PutScrap . _PutScrap " SA9FE
ZeroScrap v _ZeroScrap $ASFC

7.4.4 Loading and Unloading the Scrap

- Definitions

-

funetion LoadScrap

~ : LONGINT; {Result code}
function UnloadScrap -~ -
: LONGINT; {Result code}

Notes

i

1. These routines transfer the desk scrap between memory and the disk.

LoadScrap reads the scrap into memory from the scrap file; UnloadScrap
writes the scrap out to the scrap file.

371 [7.5.1) Resource Type 'CODE'

2. A pointer to the name of the scrap file is kept in the system global
ScrapName, and is accessible via the InfoScrap routine [7.4.2).

3. The scrap file is normally named Clipboard File, and resides on the
startup volume. If the startup volume is hierarchical, the scrap file
resides in the system folder. (Hierarchical volumes are discussed in
Volume Two, Chapter 8.)

4. The trap macros are spelled _LodeScrap and _UnlodeScrap.

Assembly Language Information

Trap macros: :
(Pascall " (Assembly]
' Routine name - -, Trap.macro “Trap word:
loadScrap - = _LodeScrap ’ $ASFB
UnloadScrap . . <. .. -UnlodeScrap $AGFA
7.5 Resource Formats
7.5.1 Resource Type 'CODE
Jump table offset of fi rst routine in segment
{2 bytes)
+ Segment header

Number of jump table entries for segment
(2 bytes)

Code of segment

(indefinite 1ength)

372

Program Startup

"Above AS size
(4 bytes)

“Below AS" size
(4 bytes)

Length of jump table
(4 bytes)

........

Offset from AS to jump table
(4 bytes)

........

Contents of jump table

(indefinite length)

Format of segment 0

Notes

. A resource of type ‘CODE’ contains executable machine-language code.
. The resource ID is called the segment number.

. The resource data begins with a 4-byte segment header identifying
which entries in the jump table belong to this segment; this is

followed by the code of the segment itself.

. The first 2 bytes of the segment header give the offset in bytes from the
beginning of the jump table to the first entry belonging to this seg-
ment. The last 2 bytes give the number of jump table entries belonging

to this segment.

. Every application program has one special segment, resource ID 0,
containing information needed to initialize the program’s application
global space and jump table. The format of segment 0 is shown in the

second figure above.

373 (7.5.2) Resource Type PACK'

7.5.2 Resource Type 'PACK’

Package header

Code of package

(indefinite length)

Notes

1. A resource of type 'PACK’ contains a package of predefined machine-
language routines.

2. The resource data begins with a header used internally by the Toolbox
to find the starting addresses of routines within the package; this is
followed by the code of the routines themselves.

3. Resource IDs of packages, called package numbers, must be between
0 and 15.

4. The standard packages (7.2.1) are included in the system resource file.
(On the Macintosh Plus, the Floating-Point Arithmetic, Transcendental
Functions, and Binary/Decimal Conversion packages, numbers 4, 5,
and 7, reside in ROM instead [6.6.3).)

7.5.3 Resource Type ‘FREF

File type
(4 bytes)

Local ID of icon list (2 bytes)

374 Program Startup

Notes

1. A resource of type 'FREF’ (“file reference”) establishes a correspon-
dence between a file type associated with an application program and
the icon to be used by the Finder to represent files of that type on
the screen.

2. The icon is defined by an icon list of resource type ICN# [5.5.4). The
list contains two icon definitions: the first representing the actual
icon, the second a mask to be used for drawing it on the screen. The
mask is normally just the outline of the icon, filled in with solid black.

3. The resource data of a file reference consists of the four-character file
type [7.3.1], followed by the “local ID"” of the corresponding icon list.
The translation from this local ID to the true resource ID is defined
by a bundle resource (7.5.4).

375 [7.5.4) Resource Type ‘BNDL'

7.5.4 Resource Type ‘BNDL’

Signature
(4 bytes)
i

Resource ID of autegraph
(2 bytes)

Number of resource types minus 1

(2 bytes)

Resour;:e type
(4 bytes)

i

Number of resources minus 1
(2 bytes)

Local ID
{2 bytes)

Actual resource ID
(2 bytes)

Ahy number
of resources

Local ID
(2 bytes)

Actual resource 1D
[]
[

(2 bytes)
[]

(4 bytes)

Number of resources minus 1
(2 bytes)

Local ID
(2 bytes)

Actual resource 1D
(2 bytes)

l
I
»
L]
[]
| ,,,,, Resour:ce type

Any number
of resources

Local ID
(2 bytes)

Actual resource ID
(2 bytes)

1.1

Format of resource type ‘BNDL’

Any
number
of
resource

types

376 Program Startup

Notes

1.

2.

3.

4.

A resource of type ‘BNDL’ (“bundle”) identifies all of the Finder-related
resources associated with an application program.

The resource data begins by defining the program’s signature (7.3.1]
and the resource ID of its autograph resource (note 6). This is followed
by bundle entries for any number of resource types.

For any given resource type, the bundle may contain any number of
individual resources. Each resource has a local ID by which other
resources in the bundle refer to it. The bundle defines the correspon-
dence between these local IDs and the true IDs under which the
resources are actually stored.

At present, the only resource types in a bundle that are meaningful
to the Finder are ‘FREF’ [7.5.3] and ICN# [5.5.4], in addition to the
program’s autograph (note 6). In the future, bundles may also be used
for other purposes and may contain other resource types as well.

5. Any program with a bundle should have the bundle bit set in the

6.

7.

tdFlags field of its Finder information record (7.3.2). This tells the Finder
to install the resources contained in the bundle into the desktop file
when copying the program to another disk.

Any program with a bundle must also have an autograph resource.
The resource type of the autograph is the same as the program's
signature; its resource ID is defined in the program’s bundle, and is
conventionally 0.

The autograph can have any information at all as its resource data.
Typically it contains a text string identifying the program and version.

377 [7.5.5) Resource Type DRVR'

7.5.5 Resource Type 'DRVRK’

Unit Reference Driver
number number name Description
2 -3 .Print Printer driver
3 -4 .Sound Sound driver
4 -5 Sony Sony disk driver
5 -6 Aln Serial driver, port A (modem port) in
6 -7 AOut Serial driver, port A (modem port) out
7 -8 .Bin Serial driver, port B (printer port) in
8 -9 .BOut Serial driver, port B (printer port) out
9 -10 .MPP Network driver (Macintosh Packet
Protocol)
10 -1 ATP Network driver (AppleTalk Transaction
Protocol)
12 -13 Calculator Calculator desk accessory
13 -14 Alarm Clock Alarm Clock desk accessory
14 —-15 Key Caps Key Caps desk accessory
15 —16 Puzzle Puzzle desk accessory
16 -17 Note Pad Note Pad desk accessory
17 -18 Scrapbook Scrapbook desk accessory
18 —-19 Control Panel Control Panel desk accessory
19 =20 Chooser Chooser desk accessory
Notes

1. A resource of type DRVR’ contains the code of an input/output device
driver or a desk accessory.

2. A driver’s resource ID is the same as its unit number, and must be
between 0 and 31.

3. The unit number also determines the driver reference number, by the
formula

refNum = —(unitNum + 1)

378 Program Startup

4. Every driver resource must have a resource name as well as a resource
ID. For true device drivers, the name begins with a period (.); for desk
accessories, it must not.

5. The table lists the standard device drivers and desk accessories. The
sound, disk, and serial drivers (and the network drivers on the
Macintosh Plus)} are permanently resident in ROM. The printer driver
and desk accessories are resources included in the system resource
file.

6. The unit and reference numbers shown in the table may differ in
some versions of the System file.

7. See Volume Three for further information on devices and drivers.

CHAPTER

[
—
|
o
;
—

Utandlng
Characters

The Macintosh can display text on the screen in an almost
endless variety of typefaces, sizes, and styles. In this chapter we'll
learn how text is represented internally and how to display it and
control its appearance on the screen.

The Macintosh Character Set

Every text character is represented by an 8-bit character code
[8.1.1). The Macintosh character set is based on the 7-bit ASCII
code (American Standard Code for Information Interchange)
widely used throughout the computer industry. Character codes
from 0 to 127 ($7F) correspond to the standard ASCII characters; the
remaining 128 codes are used for additional, non-ASCII characters
available only on the Macintosh.

In the standard ASCIlI character set, the first 32 character
codes, from 0 to 31 ($1F), along with 127 ($7F), stand for “control
characters” with no direct visual representation. These were
devised in early medieval times (circa 1940) to control teletype
transmission, and many have outmoded or arcane meanings such
as “end of tape,” “negative acknowledge,” and “synchronous idle.”
The Macintosh has no use for most of them; in fact, there isn't
even any way to type them, since the Macintosh keyboard doesn’t
have the Control key found on most other computers. The only

379

380 Upstanding Characters

control characters that have their standard meanings on the
Macintosh are backspace (ASCII code $08), tab ($09), and carriage
return ($0D). A few more can be typed from the Macintosh keyboard
or keypad but have nonstandard meanings: the Enter key produces
the ASCII Control-C or “end-of-text” character ($03), and others are
generated by the Clear and arrow keys [8.1.1].

There are also a few control characters that can't be typed
from the keyboard but have special graphical representations on
the Macintosh screen, including the “cloverleaf’ command sym-
bol, the check mark for marking menu items, and the Apple
symbol used for the title of the menu of desk accessories. The
character codes for these screen-only characters are defined as
Toolbox constants for use in your programs [8.1.1]. For instance,
you can refer to the Apple character as CHR(AppleMark).

Character codes of 128 (380) and above denote extra characters
added to the Macintosh character set for business and scientific
purposes, as well as accents and other special characters used in
foreign languages. Most of these special characters can be typed
from the keyboard by holding down the Option key in combina-
tion with some other character. If you happen to be proficient in
Dutch or Italian, Norwegian or Portuguese (or Albanian, Basque,
or Rhaeto-Romansch, for that matter), you'll find the Macintosh
provides all the characters you need to type your grocery list in
those languages; if you haven't a clue what some of these charac-
ters are good for, don’t lose any sleep over it.

As we learned in Chapter 2, the Toolbox uses an internal
format for character strings consisting of a 1-byte character count
followed by a series of bytes containing the character codes
themselves. Strings of this form can be stored in resource files
under resource type 'STR ' [8.4.2] or 'STR# [8.4.3], and read into
memory with GetString or GetndString (8.1.2). (Notice that the space
in 'STR ' is required) There are also utility routines [8.1.2] for
copying strings within the heap: NewString simply returns a brand-
new handle to the copy, while SetString accepts an existing handle
and sets it to point to the copy.

Notice, though, that since the character count for such “Pas-
cal-format” strings is limited to 1 byte, they can be no more than
255 characters long. For longer blocks of text there's resource type
‘TEXT' [8.4.1], which has no count byte and unlimited length. (You
can find out its length with SizeResource [6.4.3].) It's recommended
that you use string and text resources for all text your program

381 Keyboard Configurations

displays on the screen, such as window titles and error or prompt-
ing messages. This makes it easy to reword messages, change
terminology, correct misspellings, or translate your messages into
alien tongues (such as English) without having to change the
program itself.

Keyboard Configurations

Not only is the Macintosh character set designed for international
use, but even the physical arrangement of characters on the
keyboard can be tailored to the needs of different countries. The
Macintosh keyboard is configurable to any desired layout. The
correspondence between physical keys and the characters they
stand for is defined by a keyboard configuration that's read from
the system resource file (under resource type 'INIT' [8.4.4) each
time the system is started up. On software disks for use in a
foreign country, the system file will include that country’s preferred
keyboard configuration. Starting the machine with such a disk
transforms the keyboard into a German QWERTZ or a French
AZERTY instead of the familiar American QWERTY layout. Fans of
the more efficient Dvorak arrangement can reconfigure their key-
boards that way if they prefer. (Of course, they'll have to rearrange
the physical keycaps for themselves!)

When reporting the user’s keystrokes to your program, the
Toolbox gives both a key code and a character code. A program
that uses this information properly will work the same way no
matter how the user’s keyboard is laid out. The key code (8.1.3]
identifies the physical key that was pressed, and is unaffected by
the keyboard configuration in effect; the character code [8.1.1] tells
what character the key stands for, as determined by the keyboard
configuration. The Shift, Caps Lock, Option, and Command keys
are modifier keys that don’t generate any characters of their own,
but may change the meanings of the remaining character keys.
(For instance, the Shift key normally changes lowercase letters to
capitals.) Exactly what effect the modifier keys have on the charac-
ters keys is determined by the keyboard configuration; for details
on the standard American configuration, see [8.1.4].

382 upstanding Characters

You'll probably never have occasion to define your own keyboard
configuration, but if you do—orif you're just curious abouit how the
mechanism works—you'll find further information in [84.4] and in
the “Nuts and Bolts” section at the.end-of this chapter.

Graphical Representation of Text

You can control the appearance of text on the screen by specifying
its typeface, size, and style. The term typeface (or just “face”) refers
to the overall form or design of the characters, independent of size
or style. Macintosh typefaces are conventionally named after world
cities, such as New York, Geneva, or Athens. The type size is theoreti-
cally measured in printer’s points; 72 points equal approximately
one inch. (In practice this is more of a fiction than a reality: the
actual type sizes aren’t exact enough to satisfy a professional
typographer, but nevertheless theyre often called “point sizes.”)
Type style (or “text style” or “character style”) refers to variations
in the basic form of the characters such as bold, italic, underline,
outline, or shadow. Together, the typeface, size, and style deter-
mine the exact form of a character as it appears on the screen.

What we're calling typefaces ‘are commonly referred to as “fonts,”
but that term also has another, more restricted meaning, as‘we'll
see later. This unfortunate double use of the same term leads to a
certain amount. of confusion in terminology. To try to minimize the
ambiguity, we'll use: typeface as:defined here and reserve font for
the second meamng to be: mtraduced later : :

The graphical representation of a character on the screen (or
on a printer or other output device) is an array of pixels called a
character image (Figure 8-1). The image is defined relative to a
reference line called the baseline and a point on the baseline
called the character origin. The character origin marks the posi-
tion of the QuickDraw graphics pen when the character is drawn;
the character width tells QuickDraw how far to advance the pen
after drawing the character.

383 Graphical Representation of Text

Image widths

ANEEE

N =R

AR EE EE =N

AN EE BN BN
SEEEEE BEE BEE

AR EE EE EN

SN EN BN BEE

SR EHE EE__EE

—7‘.... ...==-‘——— Baseline
Character (] \

Next character
origin

Character
widths

Figure 8-1 Character images

The character image isn’'t confined to these boundaries,
however. The second character in Figure 8-1, for example, extends
to the left of the character origin, causing it to jut slightly below
the preceding character. In printer’s lingo this is known as a kern—
in this case, a backward kern. A character can also kern forward,
if its image extends beyond the character width to the right. The
actual width of the character image, in pixels, is called the image
width. The character's ascent and descent measure how far it
extends above and below the baseline.

Notlce that the- character mdth and the image w1dth aren't the
same thing. The character width controls the positioning of the
graphics pen as text is drawn, and is always measured from the
origin of one character to that of the next. It includes not only the
width of the character itself, but also the extra space separating it
from the next character. The image width measures the actual
wndth of the character 1mage itself Either of the two may be 0: a
space character; forinstance; has a zero image width but a nonizero
character width. A zéro tharacter width produces.a “dead” charac- -
ter that doesi't advance the pen, such as an accent that combines
with the letter followingit. ‘

384 upstanding Characters

Fonts and Font Numbers

The collection of all the character images of a given typeface and
size is called a font. Fonts are kept in resource files and are read
into memory as needed; their resource type, reasonably enough,
is 'FONT’ [8.4.5]. You don't normally have to deal with fonts directly:
you just specify the typeface, size, and style you want and let the
Toolbox take care of the details. Before it can do so, though, you
have to initialize it for font handling with InitFonts [8.2.4]. Always
make sure you call this routine at the beginning of your program,
after calling InitGraf [4.3.1] and before InitWindows [II:3.2.1].

You identify a font by giving a font number [8.2.1] and a type
size. The font number should really be called a “face number,”
since it designates a particular typeface independent of size. Legal
font numbers run from 0 to 255, and type sizes can range from 1
to 127 points. The 8-bit font number combines with the 7-bit size
to form a 15-bit resource ID for the corresponding font. This is
equivalent to multiplying the font number by 128 and adding the
size: for example, font number 3 stands for the Geneva typeface, so
the resource ID for the 12-point Geneva font would be 3+128 + 12,
or 386.

Font number 0 stands for the system font. (It should really be
the “system face.”) This is the typeface the Toolbox uses for all
text it displays on the screen, such as window titles and menu
items. The standard system font for American use is named Chicago,
and the Toolbox always uses it in a standard size of 12 points. A
program can also have its own application font, denoted by font
number 1. There is no actual typeface with this number; it refers to
some other existing face whose true font number is found in the
system global ApFontlD. The application font is initialized to Geneva
each time a new application program is started up, but you can
change it to any other typeface you wish in assembly language,
anyway by storing the desired font number into this variable.
(There's no easy way to change the application font in a high-level
language like Pascal.)

Font numbers from 2 to 127 are reserved for typefaces provided
by Apple itself. So far there are 15 such faces available in addition
to the Chicago system font, five of which are designed specifically
for use with the new LaserWriter printer. The font numbers for
these standard typefaces are included in the Toolbox interface as

385 Fonts and Font Numbers

predefined constants [8.2.1]. Licensed Macintosh software devel-
opers can register their own typefaces with Apple and have them
assigned font numbers from 128 to 255.

The Toolbox routines GetFontName and GetFNum [8.2.5] convert
between a font number and the corresponding typeface name. The
Toolbox finds the name by looking for a font resource with the
given font number and a point size of 0. The resource name of
this resource gives the name of the typeface: for example, font
resource number 384 (3+128 + 0) has the resource name 'Geneva'.
This “0-point” font has no resource data; it exists solely to carry
the name of the typeface. The real fonts, those with nonzero point
sizes, have no resource names.

The Macintosh Plus version-of the Toolbox uses a more elaborate
scheme of font identification based on a new data structure, the
family record. There's one: family record for each typeface, stored
on the disk as a: resource -of type ‘FOND' (“font definition”). The
mtemal structure .of the family record is too complex to discuss
here; it's described in detail in the Macintosh Plus supplement
(Volume IV) of Apple’s Inside Macintosh manual. Among other
things, it includes a table giving the resource IDs of the available
font resources for various sizes-and styles of a typeface.
Under the new scheme, the name and font number (now called
a “family number”) of each typeface are given by the resource name
.and ID' of its 'FOND' resource: However, the original version of the
Toolbox knows nothing of farnily records, and pays no attention to
‘FOND’ resources. Although the new Toolbox can deal with family
(font) numbers from —32768 to +32767, the old one only recognizes
 those between 0 :and 255. ‘To maintain compatibility with older
* machines, all fonts falling within this range must still follow the old
numbering and naming conventions deseribed above.

386 Uupstanding Characters

| 'Not every point size actually exists for a given typeface. If ybu ask

to use a face and size that can’t be found in any open resource file,
the Toolbox will automatically choose a. suitable existing fcnt in'that

| ‘typeface and scale it to-the requested size. The results aren't always

pleasing to the eye, however—as you can see by looking at, say,
12-point Athens in MacWrite or MacPaint. To find out if a given

- combination.actually exists, use the Toolbox routine RealFont (8.2.5].

On.the Macintosh Plits, you also have the option of turnirig off
automatic font scaling with a new routine named SetFScaleDisable

 [8:2.8). Instead of scaling-an existing font to the requested (nonexis-

fent) pomt :size, the Toolbox will simply use the next smaller
available size but space the characters farther apart, as if they were

" in the size you askeéd for. This method is both faster and more

readable than scaling; and gives a truer approximation to the proper
word placements, line breaks, and so forth. Font scaling is initially

" turned on, for backward - compaﬁblhty with existing applications,

Structure of a Font

'Maclntosh;! Plus.

but you’ll probably. ‘want to tum it off if you're running on a

The complete definition of a font is contained in a font record
[8.2.2]. This is a complex data structure that includes the character

images themselves, along with additional information about the
font's overall characteristics. The Toolbox normally handles font
records for you, so you don’t really need to know their internal

structure. The following discussion is intended purely for your
background understanding, and you can safely skip it if you're in

a hurry.

387 Structure of a Font

Do keep in mind, though, that font records are large objects and
take up a lot of space in memory or on the disk. It takes a great
many bits to define all those character images, and since the images
are two-dimensional, they grow with the square of the point size.
Besides the actual character.images, there's also a sizable fixed -

“overhead for every font record. A typical 9-point font occupies about
2K bytes, an i8:point font about 5K, and a 24-point font about 8K.
Fonts intended for use with the LaserWriter printer can be twice
these sizes or even larger.

A program that uses many fonts will find that it can’t keep
them all in memory at once, particularly on machines with smaller
memory capacities. Such a program tends to become “disk-bound,”
spending most of its time-waiting for fonts to be read in from the
disk. To see this effect for yourself, try making up a MacWrite
document that usés ten or twelve different fonts on the same line
of text, and listeri to. the disk spin when you try to select an
msemon pomt on that line w1th the mouse.

Figure 8-2 shows some of the font characteristics that are
defined in the font record. If all the individual character images
in the font are superimposed with their character origins coincid-
ing, the font rectangle is the smallest rectangle, relative to the
baseline and character origin, that encloses them all. Its width,
fRectWidth, encloses the image widths of all the characters. (Don't
forget that the image width isn't the same as the character width;
the font’s maximum character width, from character origin to
character origin, is given by the widMax field.) The maximum ascent
and descent for any individual character determine the overall
ascent and descent of the font, and thus establish its ascent line
and descent line with respect to the baseline. Together, the ascent
and descent give the font height, the overall height of the font
rectangle from ascent line to descent line. Leading (rhymes with
“heading,” not “heeding”) is the amount of extra vertical space
between lines of text, from the descent line of one to the ascent
line of the next.

The heart of the font record is the font image [8.2.3], which
defines the appearance of every character. This is a rectangular
bit image made up of all the individual character images laid end
to end in one long horizontal row, often called a “strike” of the

388

Character
origin

%

i----nﬁ

Character
origin e

*

Ascent line

Font height

Baseline

Descent line

Next ascent line

.

origin

! Next character

Upstanding Characters

Font rectangle

Font ascent

’

Font descent

|
Next character
origin

|e———— fRectWidth ————»

Character
T —
origin

/

Next character
origin

Font rectangle

Character origin

Next character origin of

/ widest character

Baseline

!

Leading

maxKern

The font rectangle would enclose all of the individual characters in the font if they were superimposed
with their character origins coinciding. fRectMax, the width of the font rectangle, is the font's
maximum image width; widMax is the maximum character width.

Figure 8-2 Font characteristics

389 Structure of a Font

B e, R R
e Hife oESREEE, PR ERR ESER EENE EEED
height e] ENENEEE NN LU]

st § RGN BRR emghes fuax BN QRS B3 HD
l P OB LI ML e

Missing
characters \ /
/

be«otrmmn JO5A567895<=> 7GRBIDEF GHKLMNDPORS TUALIVZINT_abedefghi Jdmnopgrstuusa -
l Row width

i

™ e Hoox ST f7A. . ARNEE—** d \x"::g';is
Missing
characters

Figure 8-3 A font image

font (see Figure 8-3). The height of the font image is simply the
font height; its row width is given by the rowWords field of the font
record. (Notice that the row width is given in words, not in bytes
as in a QuickDraw bit map [4.2.1].)
The character images are arranged within the strike by as-
/cending character code. There needn’'t be an image for every
possible character; characters that aren’t included in the strike are
said to be missing from the font. Every font includes a special
missing symbol (typically a hollow square) to be used in place of
all missing characters. The missing symbol is always the last
character image in the strike. The font record’s firstChar and lastChar
fields give the character codes of the first and last character
actually defined. Characters outside this range are understcod to
be missing, and some of those within the range may be missing
as well.
To locate each individual character within the strike, there’s
a location table [8.2.3] with an entry for each character from
firstChar to lastChar. The location table entry gives the horizontal

390 Upstanding Characters

offset, in pixels, from the beginning of the strike to the left edge
of the character. The character’s image width is found by subtract-
ing this offset from that of the next character, taken from the next
entry in the location table. (Notice that for this arrangement to
work properly, the location table entry for a missing character
must always be the same as that of the next defined character.)
At the end of the location table are two extra entries, one for the
missing symbol and another to mark the end of the strike; this
last entry is simply the total width of the strike in pixels.

Following the location table is the offset/width zable [8.2.3],
which controls the positioning of the graphics pen as text is
drawn. Like the location table, the offset/width table is indexed
from firstChar to lastChar + 2. An entry of —1 in this table marks a
character as missing. Otherwise, the second byte of the 2-byte
table entry gives the character width, the distance the pen ad-
vances after drawing the character. The first byte positions the
character image with respect to the character origin (which marks
the pen position when the character is drawn). This positioning
is done in a somewhat roundabout way, which we'll discuss in a
minute. After the entry for lastChar is one for the missing symbol,
then a final entry of —1 marking the end of the table.

Because the font image, locatlon table, and offset/width table all
vary in length from one font to another, they can't be included in
a valid Pascal declaration for the font record. (Notice that they're
shown in comment brackets in [8.2.2].) The Toolbox has no trouble
accessing them, of course, since it’s written in assembly language;
they can even be reached in Pascal if you're willing to do some
(ugh!) pointer arithmetic. The owTLoc field of the font record serves
as a guidepost by giving the distance in words (not bytes!) from itself
to the beginning of the offset/width table.

Returning to the font rectangle shown in Figure 8-2, notice
that it extends to the left of the character origin by an amount
equal to the font’s maxKern field, the maximum leftward kern of any
character in the font. Because it's measured from right to left,
maxKern always has a negative (or zero) value; in the figure, it would
be —2. Now suppose that a given character kerns by less than the
maximum—say by one pixel instead of two (see Figure 8-4). Then

391 Structure of a Font

Character

rectangle] Font rectangle
Character

origin

Baseline
‘ l—- Character kern = —1
Character offset = +1
——

————— maxKern = —2

Figure 8-4 Character offset

the left edge of the character lies one pixel in from the left edge
of the overall font rectangle. This character offset is what's kept
in the high-order byte of an offset/width table entry. Adding the
character offset (+1 in the figure) to the font’s maximum kern (—2)
gives the kern for the individual character (—1). For a character
with no kern at all, the character offset is the negative of maxKern
(+2 in the example), so when they're added together they cancel
and produce a character kern of 0.

Kerning is more flexible on the Macintosh Plus: the size of a
character’s kern can vary depending on the character preceding or
following it. The kerning information for each typeface is given by
a kerning table in the family record; see Inside Macintosh, Volume
IV, for details. . '

392 upstanding Characters

To take advantage of high-resolution devices such as the LaserWriter
printer, the Macintosh Plus Toolbox allows the character widths for
a font to be expressed as fixed-point fractions instead of integers.
The Toolbox will automatically round such fractional character
widths to a whole number of dots at whatever resolution is available
on a given device (for example, 72 dots per inch for the screen, 144
for the ImageWriter printer, or 300 for the LaserWriter). The use of
this feature is optional, and is controlled by a global flag named
FractEnable. For compatibility with older applications, fractional
widths are disabled by default; all character placements are calcu-
lated in whole pixels at screen resolution, as they were under the
original Toolbox. If you wish, you can enable fractional widths with
the Pascal interface routine SetFractEnable [8.2.8], or by storing directly
into the global variable FractEnable in assembly language.

To support fractional character widths, two extra tables are
added at the end of the font record, following the offset/width table.
The new tables are not required, and old fonts are still usable
without them; they simply improve the speed and accuracy with
which text is drawn. If present, they're the same length as the
location and offset/width tables: 2 bytes per entry, indexed from
firstChar to lastChar + 2. The fontType field of the font record [8.2.2] tells
whether they're included.

The character-width table gives the width of each character in
fixed-point form, with an 8-bit integer part and an 8-bit fraction. If
it's omitted, the integer character widths found in the offset/width
table will be used instead. The only penalty is less accurate charac-
ter placement on the LaserWriter or other high-resolution devices.

The image-height table gives the true height of each character
image, relative to the overall font height defined by the font's ascent
and descent lines. The first byte of each entry tells how rnany rows
of empty white space to skip from the ascent line to the first pixel
of the character; the second gives the number of nonwhite rows in
the actual character image. If this table is missing, the Toolbox can
construct one for itself when it reads the font in from the disk, using
the information already present in the font image and location
table. Including an image-height table in the font resource just
speeds things up a bit; most fonts don't have one.

393 QuickDraw Text Characters

QuickDraw Text Characteristics

Like anything else you put on the screen, text gets drawn through
the medium of a QuickDraw graphics port. The GrafPort record
includes six fields that control the way text is drawn in that port
[8.3.1). The QuickDraw routines to set these fields, as well as those
that draw and measure text, operate implicitly on the current
port—so before using them you have to “get into” the right port
with SetPort [4.3.3).

Unfortunately, the names of the port'’s text-related fields suffer from
the inconsistent terminology mentioned earlier. The txFont field
doesn't really identify a font, but a typeface (that is, a “font num-
ber”); the field named txFace doesn’t refer to the typeface at all, but
to what we're calling the character style, such as bold or italic.
Please make the appropriate mental annotations on your concep-
tual map.

A newly created graphics port is initially set up to display text
in the system font (font number 0) at the standard size of 12 points,
with plain character style. You can change the typeface for the
current port with TextFont, the point size with TextSize, the character
style with TextFace, or the transfer mode used for drawing text with
TextMode [8.3.2]. Character styles are expressed as Pascal sets con-
taining values of the enumerated type Styleltem [8.3.1]. For instance,
the set [Underline] denotes underlining, [Bold, Underline] denotes bold
and underline in combination, and the empty set [] stands for
plain character style, with none of the fancy variations. You can
do “set arithmetic” to turn individual style variations on or off
without affecting the others: for example, the statement

TextFace (ThePort~.txFace + [Underline])
turns on underlining without affecting the remaining settings, and
TextFace (ThePort~.txFace — [Underline])

turns it off.

394 Upstanding Characters

QuickDraw ordinarily produces these style variations by applying
transformations to the character images it gets from the font. For
instance; it produces boldface by thickening the character horizon-
tally a suitable number of pixels, and italic by skewing the pixels
horizontally depending on their height above or below the baseline.
In the original Toolbox, such style transformations aren’t noxmally
reflected in the font itself.

On the Macintosh Plus, however, there can be separate font
definitions for such variations as bold and italic, producing better-
looking results than those obtained by applying mechanical
transformations to the plain-text font. The family record for each
typeface includes the resource IDs of any such variant fonts that
may be available. To keep them from showing up in menus and
font lists, they're stored under resource type 'NFNT' (“non-menu
font”), which has exactly the same structure as 'FONT' [8.4.5], The
sole purpose of ‘NFNT' ‘is to- provide an alternative form of font
-resource that won't be included when you ask for a menu of
available resources of type 'FONT'. ‘NFNT' resources are meaningless
to the old Toolbox; it will ignore them and continue to preduce its
style variations the old way, by mechanically transforming the
characters of the plain font. v

The spExtra field of the graphics port (set with SpaceExtra [8.3.2]
is useful mainly for justifying text to both a left and a right margin
at the same time. This field holds a fixed-point number [2.3.1] with
a 16-bit integer part and a 16-bit fraction. When drawing text,
QuickDraw uses this information to widen the space characters
so as to make the text come out even at both margins. To find the
proper spExtra value for a line of text, divide the excess line width
(the width between margins minus the measured width of the text)
by the number of spaces in the line, using the utility function
FixRatio (2.3.2] to produce a fixed-point result.

Finally, there's a device field that tells what output device the
port is intended to draw on, such as the screen or a printer. The
Toolbox uses this information to select the appropriate fonts for
that particular device. When you create a port, its device field is
initialized to 0, representing the Macintosh screen, and for most
ordinary purposes you'll just want to leave this setting alone.

395 Drawing and Measuring Text

Drawing and Measuring Text

To draw text in the current graphics port, you use the QuickDraw
routines DrawChar, DrawString, and DrawText [8.3.3). DrawChar is the
basic routine, which just draws a single character; the other two
routines call it repeatedly to draw the text a character at a time.
DrawString accepts a Pascal string, which is expected to begin with
a 1-byte character count. DrawText accepts a pointer to an arbitrary
data structure, which doesn’t start with a character count; the text
to be drawn can be any specified sequence of bytes from within
the structure.

DrawText is useful for displaying the contents of TEXT' resources
[8.4.1], but notice that you have to convert the handle you get from
GetResource [6.3.1] into a simple pointer to pass to DrawText. To be safe,
you'd better lock the text into the heap before dereferencmg the
handle—and don't forget to unlock it again when youve through
drawing it!

Text is always drawn in the port’s current typeface, size, style,
and text mode. Each character is drawn with its character origin
at the port's current pen position (pnLoc [5.2.1]); the pen then
advances to the right by the character width, adjusted for style
variations if necessary. The operation leaves the pen positioned
on the baseline just after the last character drawn. ASCII control
characters such as carriage return, line feed, tab, and backspace
have no special meaning to QuickDraw; if you want to use these
characters for formatting purposes, you have to test for them and
reposition the pen yourself with Move or MoveTo [5.2.4].

Program 8-1 (ShowFonts) shows an example of text drawing.
This routine finds every available font in all open resource files
and displays a sample of each in the current graphics port, as in
Figure 8-5. (Of course, if the current port is a window on the
screen, it may not have room to display this much text all at once.
In that case, some of the text will fall outside the window’s port
rectangle and won't be drawn: QuickDraw will suppress it
automatically, as it always does when you try to draw anything
outside a port’s clipping boundaries.)

396 upstanding Characters

{ Display sasples of all available fonts. }

const
leftMargin = 10; {Margin from left edge of window, in pixels}
topMargin = 10; {Margin from top edge of window, in pixels)
var
turrentPort : GrafPtr; {Pointer to current port [4.2.21)
oldlrigin : Point; {Previous origin of port rectangle [4.1.11}
oldPenloc : Point; {Previous position of graphics pen [4.1.11}
oldFont : INTEGER; (Previgus typeface (“font nuaber®) (8.3.11}
oldSize : INTEGER; {Previous point size [8.3.11}
oldFace : Style; {Previcus text style ("face®) 18.3.11}
baseline : INTEGER; {Vertical position of baseline in pixels}
nFonts ¢+ INTEGER; {Tatal nuaber of font rescurces available}
thisFont : INTEGER; (Index for accessing individual fonts}
rsrcHandle : Handle; {Handle to font resource [3.1.11}
rsrcib s INTEGER; {Resource 1D of font)
rsrcType @ ResType; {Resource type of font [4.1.11}
rsrcName @ Str235; {Rescurce nase of font [2.1.11}
faceNusber : INTEGER; {*Font nuaber® for typeface}
faceNase : Str255; {Naze of typeface [2.1.11}
pointSize : INTEGER; {Type size in points}
pointString : Str255; {Type size as character string [2.1.11}
thelnfo : Fontlnfo; . {Font infcreation record [8.2.41}

begin {ShosFonts}

GetPort {currentPort); {6et pointer to current port [4.3,31}
with currentPort* do
begin
oldOrigin := portRect.topleft; (Save old origin of port rectangle [4.2.2, 4.1.21}
GetPen (oldPenLoc); {Save old pen position [5.2.41}

Program 8-1 Display available fonts

397 Drawing and Measuring Text

oldFont := txFont; (Save old typeface {"font number*®) [8.3.11}
oldSize := txSize; {Save old point size [8.3.11}
oldFace := txFace {Save old text style (*face®) [8.3.11}
end;
SetOrigin (-leftMargin, -topMargin); (D¢fset to origin of text [4.3.41}
baseline := 0; {Start text at top sargin}
TextFace ([1); {Use plain text style [8.3.2])
nFents := CountResources (’FONT’); {6et total number of available fonts [4,3.31}
for thisFont := 1 to nFonts do (Iterate through available fonts}
begin

rsrcHandle := BetIndResource ('FONT’, thisFont); {Get next fent [6.3.31}
BetResInfo (rsrcHandle, rsrciD, rsrcType, rsrcNase}; (6et resource inforsation [6.4.11}

faceNuaber := rsrclD div 128; (Isolate typeface nuaber)

pointSize := rsrciD sod 128; { and point size }

if pointSize (> 0 then {Ignore duamy "font nase® ressurces}

begin

TextFont {faceNuaber); {Set port’s typeface [8.3.21}
TextSize {pointSizel; {Set port’s type size [8.3.21}
GetFontInfo (thelnfo); {6et font measuresents [B.2.61}
baseline := baseline + thelnfo.ascent; ({Advance baseline by fant ascent [8.2.61}
NoveTe {0, baseline); {Position pen at start of line {3.2.41}

BetFontNase (faceNusber, fareName); (Get name of typeface [8.2.5)}
DrawString {(faceNase); {Display typeface nase [8.3.31}
DrauChar (' ’); {Insert space character for separation [8.3.31}

NuaToString {pointSize, pointString); (Convert type size to string [2.3.73}
DrauString {pointString); {Display type size [8.3.31}

with thelnfo do (Rdvance to next ascent line [8.2.81}
baseline := baseline + descent + leading

end (if}

Program 8-1 (continued)

398 upstanding Characters

TextFont (oldFont); {Restore previcus typeface (“font nuaber®) [8.3.21}
TextSize (oldSizel; {Restore previous point size {8.3.21}
TextFace (oldFace); {Restore previous text style ("face") [8,3.2]}

with oldfrigin do
Setlrigin th, v); (Restore previous origin [4.3.41}

with oldPentoc do
foveTo (h, v) (Restore previcus pen position [5.2.43}

end; (ShowFonts}
Program 8-1 (continued)

We begin by saving various properties of the current port that
we'll be changing within the routine (the coordinate origin, pen
position, typeface, type size, and type style), so we can restore
their previous settings before returning. For convenience, we
transform the coordinate origin to the top-left corner of the area
where the font samples will be displayed, as defined by the pair
of constants leftMargin and topMargin. The baseline for text drawing
is initialized to the very top of this area; we’ll be advancing it
downward by the appropriate distance as we draw each line of
text.

After setting the port's type style with TextFace [8.3.2] to plain
text (no bold, italic, or other variations), we're ready to start
generating the available font resources, using the Toolbox routines
CountResources and GetindResource [6.3.3]. As we learned in Chapter 6,
CountResources tells how many resources there are of a given type
(in this case 'FONT') in all open resource files. By calling
GetindResource with an index number (thisFont) ranging from 1 up to
this total number, we can get a handle to each individual font
resource in turn.

For each font resource, we call GetResInfo [6.4.1] to find out the
resource 1D, which we then break down with the Pascal div and
med operators into an 8-bit typeface number and a 7-bit point size.
Remember, though, that some of the fonts in a resource file are
“dummy” fonts with a point size of 0, which exist solely to carry
the typeface name; these “0-point” fonts have no character images
to display text with, so we just ignore them. For every font with a
nonzero point size, we set the current port’s text characteristics to
the font’s typeface and size with TextFont and TextSize [8.3.2], then

399 Drawing and Measuring Text

Chicago 12

Geneva 9
Geneva 10

Geneva 12
Geneva 14

Geneva 18
Geneva 20
Geneva 24

New York 9
New York 10

New York 12
New York 14

New York 18
New York 20

New York 24

Monaco 9
Monaco 12

Venice 14

Tondon 18
Athens 18

Figure 8-5 Output of procedure ShowFonts

call GetFontinfo [8.2.6] to get the font’s ascent, descent, and leading
measurements.

The ascent value tells us how far to lower our baseline to
position it for the line of text we're about to display. Then we
move the graphics pen to the beginning of the new baseline to get
ready to display the characters. We get the name of the font's
typeface by calling GetFontName [8.2.5] and display it with DrawString
[8.3.3). (Notice that we can’t simply use the resource name we

400 upstanding Characters

received earlier from GetResInfo, since only the dummy “0-point”
fonts have resource names; the resource representing a “real” font
has no name of its own.) Following the typeface name, we insert
a space character with DrawChar [8.3.3] to separate it from the point
size; then we convert the point size from an integer to a character
string with NumToString [2.3.7] and use DrawString again to display
the result. Finally we advance the baseline by the font’s descent
and leading, to prepare for the next line of text, and repeat the
loop. :

After all available fonts have been generated, we restore the
port’s original typeface, size, style, pen position, and coordinate
origin, then exit from the routine. Notice that at the beginning of
the routine we saved the pen position before adjusting the port’s
coordinate origin. When we get to the end of the routine, we have
to be careful to restore the original pen position after the coor-
dinate origin, so that it's expressed in the same system of coor-
dinates in which it was originally reported.

Sometimes you just want to measure how wide a piece of text
would be if you drew it, but without actually drawing it. (For
instance, you might be calculating how much extra space you
need between words to justify a line of text to the left and right
margins.) For this, you can use CharWidth, StringWidth, and TextWidth
[8.3.4). These routines measure the width of the specified text in
pixels, using the text characteristics of the current graphics port.
No text is actually drawn and the pen is not moved.

B E I

The Macintosh: Plus has a new routine named MeasureText [8.3.4] that
measures all sequences of characters up to a given maximum
length, beginning at a designated position in a piece of text. (That
is, it measures the width of the first character at that position, the
first two characters; the first three, and so on, up to the specified
maximum.) This information is particularly useful for finding line
breaks: it tells. you which character in a line exceeds the maximum
width, so you can decide where to break the line and start a new
one. e

401 Nuts and Bolts

Nuts and Bolts

QuickDraw doesn’t need a font's actual character images to measure
text, just the character widths given in the font’s offset/width table.
So to conserve heap space; there's a special, abbreviated form of font
record especially ‘for measuring text, called a font width table. It's’
identified by the constant FontWid in the font's fontType field [8.2.2],
and contains no font image, location table, or rowWords field. Width
tables are stored in resource files under resource type ‘FWID' [8.4.6];
the resource ID is the same as for the corresponding font. If such a
resource is available for a given font, ‘the Toolbox will use it for
text-measuring operations. If no 'FWID' resource is available, the full
font is used instead. (Font width tables are used only by the original
version of the Toolbox; they're ignored on the Macintosh Plus.)

“Dead” Characters

Some of the accented foreign letters in the Macintosh character
set have no direct keyboard equivalents, even using the Option
key. Instead, theyre typed as two-character sequences: first the
accent, followed by the letter it applies to. For instance, to type a
circumflex “e” (¢, character code $80), you have to type the circum-
flex (°) first, then the letter e.

The Macintosh keyboard driver—the part of the system
software that reads characters typed from the keyboard and feeds
them to the running program by way of the Toolbox—automatically
detects such sequences and converts them into the corresponding
accented letters. By the time the program sees them, it receives
the single accented letter instead of the two-character sequence
that was actually typed. In effect, the accents (acute, grave, cir-
cumflex, umlaut, and tilde) function as “dead keys”: typing them
doesn’t advance the insertion point, so the next letter is combined
with the accent instead of following it separately.

Actually, the accents combine with the following letter only if
the resulting combination exists as a distinct single character in
the Macintosh character set. Otherwise, the accent and the letter
remain two separate characters. For instance, although the cir-
cumflex accent combines with a following e to form the character

402 upstanding Characters

e ($90) as described above, a circumflex followed by an f would
remain two separate characters.

Notice, also, that three of the accents are included in the
standard ASCII character set, with character codes below $7F: grave
(*, code $60), circumflex (°, $5E), and tilde (7, $7E). Each of these
characters can be typed in two different ways, on different keys,
one with and one without the Option key. When typed without
Option, the accent always stands alone as a separate character.
With Option, it becomes a “dead” character and will combine with
the following letter if appropriate (for instance, the tilde will
combine with a following n). If you find all this a little hard to
follow, try experimenting for yourself with the Key Caps desk
accessory.

Details of Keyboard Configurations

The job of translating the “raw” keystrokes typed by the user into
characters to be sent to the program is performed by a pair of
low-level machine language routines, one for the keyboard and
another for the numeric keypad. Pointers to these routines are
kept in the system globals Key1Trans and Key2Trans. The configura-
tion routines are loaded from the system resource file each time
the system is started up; they have resource type 'INIT' [8.4.4] and
resource IDs 1 (keyboard) and 2 (keypad). The resource data is
simply the machine-language code of the routine.

The configuration routines receive their arguments and return
~ their results directly in the processor’s registers, so they can only
be written in and called from assembly language. They receive a
key code in register D2 and a word giving the state of the modifier
keys in D1, and return a character code in D0 (or 0 for no character).
See [8.4.4] for further details.

REFERENCE

8.1 Keys and Characters

8.1.1 Character Set

|é! | Definitions

const R

_CommandMark = §11, {Character code of command mark}
CheckMark = $12; {Character code of check mark}

- DiamondMark = $13; {Character code of diamond mark}
AppleMark = = §14; {Gharacter code of Apple mark}

403

404 Text
First hex digit

0 $2 83 %4 8 % $ 8 9 $A $B $C $D $E SF
MLlQlseeel 0 |@|P | |p|AFEEFT |0 |- |1 | &
O(s|'|1]|an|la|la|qfAZeq||i|—-|-]|0O
glv|"|2|B|R[{b|r{CcEijc|c|~|«“|, |0
O|e|{#|3]|C|S|c]|s Eridel|:|v]” o | 0
O(&|s$|a4|D|T |[d|t ENZTI]S |¥|f | |%]|U
D({O|%|S|E|vle|ub0ZiFe |n|=]|"|[A]1
olo|le|s|F|v|f|viiZa]a|o|a|=[E|"
Second ojo|' |?7|6|wlg|wfaZe s |Z|«|o|A]|"
g‘;’i‘t olo|(|s|u|sln|nfazoje|u|>» ,g/? E |-
w]O|) (9|1 |Y]i |yEKazo é @|mw ¥V |E |~

ol » JlzljlzFazog™|1 /i
of+|; |K|I |k|{ Ea%dcq - | a7 |°
o, |[<jo (N[t |l |a¢ga] < |0,

w|O|-]|=|M[1|m|[}) |¢ful=]|0 > |

0|0 >|IN[~[n|~FéeZalr|ea fi|od
o|Of|/|?2]|0]|-]|o e7il18 |8 fllo|O

Characters with shading are typed as two-character combinations

Character codes

405 [8.1.1) Character Set

Notes

i

2.

. Character codes stand for the characters themselves, not the keys that

produce them. The character produced by a given key depends on
which modifier keys were held down along with it and on the
keyboard configuration in effect.

Character codes from $00 to $7F follow the standard ASCII character
set (American Standard Code for Information Interchange).

. Most ASCII control characters (character codes $00 to $1F, as well as

$7F) can't be generated from the Macintosh keyboard or keypad.
Exceptions are:

Character

code Key

$03 Enter

$08 Backspace
$09 ‘ Tab

$0D Return

$1B Clear

$1C Left arrow
$1D Right arrow
$1E Up arrow
$IF Down arrow

The original-model keyboard doesn't include the Clear and arrow
keys; these are available only on the optional numeric keypad. The
Macintosh Plus keyboard has the keypad built in.

. The following ASCII control characters are redefined as special sym-

bols for use on the Macintosh screen:

Character

code Symbol Name

$1 8 Command mark
$12 v Check mark

$13 . Diamond mark
$14 € Apple mark

These characters are intended only for display on the screen, and
can't be typed from the keyboard.

406 Text

8

The command mark is used for displaying Command-key equivalents
of items on a menu; the check mark for marking menu items [114.6.4];
the Apple mark for the title of the menu of desk accessories.

. The diamond mark is a vestige of earlier versions of the Macintosh

user interface and no longer has any specific use.

. Character codes of $80 and above denote special characters added to

the Macintosh character set for international, business, and scientific
use. Those beginning with $D9 are included for use on the LaserWriter
printer, and are generally available only in fonts designed specifically
for the LaserWriter [8.2.1].

Characters shaded in the figure aren't generated directly from the
keyboard. Instead they're typed as two-character combinations, a
diacritical (accent) mark followed by the letter it is combined with.
The Toolbox automatically converts such two-character combinations
into the corresponding single accented characters.

Assembly Language Information

Assembly language constants:

Name ’ Value - Meaning |
CommandMark Eh| Character code of command mark
CheckMark - $12 . Character code of check mark
DiamondMark $13 Character code of diamond mark

AppleMark $§14 Character code of Applemark

407 [8.1.2] Character Strings

8.1.2 Character Strings

Deﬁnitions . :

é— e
type L . :
StringPtr = ~Str265; {Pointer to a string}
StringHandle = ~StringPtr; {Handle to a string}
function NewString
(oldString : Str255) - {String to be copied}

: StringHandle; {Handle to copy}
function GetString =0 '
(stringlD : INTEGER) {Resource ID of desired string}
v _’:»«Sgt'r:i‘r;;gHfan'dile;' e {Handle to string in memory}
procedure GetindString ‘
© (war theString : Str255; - {Returns requested string}
stringListID - : INTEGER; {Resource ID of string list}
'stringlndex .: INTEGER); {Index of string within list}
procedure SetString -
~ (theString : StringHandle; {Handle to be set}
setTo . : 5tr255); {String to set it to}

Notes

7.

. StringPtr and StringHandle are a pointer and a handle to a string, respec-

tively.
NewString allocates heap space for a new, relocatable copy of a given
string and returns a handle to the copy.

GetString gets a string from a resource file, reads it into memory if
necessary, and returns a handle to it.

stringlD is the resource ID of the desired string; its resource type is ‘STR'
(8.4.2).

GetindString reads a string from a string list stored in a resource file and
returns a copy of it in the variable parameter theString.

stringListiD is the resource ID of the string list; its resource type is ‘STR¥
(8.4.3]. stringIndex is the index of the desired string within the list.

If the specified string list doesn’t exist or the index is out of range,
the empty string is returned.

408 Text

8. GetlndString is part of the Pascal interface to the Toolbox, not part of
the Toolbox itself. It doesn't reside in ROM and can't be called from
assembly language via the trap mechanism.

9, SetString makes a copy of a given string and sets an existing string
handle to point to the copy.

Assembly Language Information

Trap macros:

(Pascal) (Assembly)

Routine name Trap macro Trap word
NewString ~ _NewString $A906
GetString _GetString $A9BA

SetString . _SetString : $A907

8.1.3 Key Codes

ﬂ% Notes

1. Key codes stand for physical keys on the Macintosh keyboard or
keypad, not the characters the keys represent. They're independent
of any particular keyboard configuration and are not affected by
modifier keys.

2. The modifier keys (Shift, Caps Lock, Option, Command) have no key
codes, since they don't generate characters by themselves.

409 (8.1.3] Key Codes

[L)

s28 | soF N[s2c [538
’ . 7 Shift

Original keyboard

T
TEEEE

I
STl

Original keypad

Key codes

410 Text
832 |l $12 N s13 | s14 N s15 Qif $17 N s16 NI s1a |\ s1c N s19 N sio |f s18 f s18 Bss::(~
. 1 2 3 |l 4 5 6 (|| 2 8 9 0 - = |[[| space
'$30 soc Il soo N soe N sof N s11 NI S0 N s20 N s22 | st¢ DT s23 N s21 N 1€
Tab 0 u E R T 4 u | 0 P [1
$39 soo)T sot i so2) so3 N sos |f so4 NI s26 |Iff s28 N\ $25 N s29 N[se7 $24
CapsLock||| A S D F G H J K L ; * ||l Return
$38 s06 |\ s07 N[s08 N soe N so8) s20 N\ s2e N see N\ sz N s2c $38 $4D
shift 4 R c U B N n s i/ Y shire jfif *
B $37 $31 I IEAED
Option ® \ - = 3

Macintosh Plus keyboard
$47 I s48 ff s4p ||| 42
Clear|| = | / *
59 ||| ss8 ||| ssc | see
? 8 9 -
$56 $57 $58 $46
4 5 6 +
$53 $54 $55
1 2 3 il sac
$52 $41
0 o ||{{Enter

Macintosh Plus keypad

411 (8.14] Standard Keyboard Layout

8.1.4 Standard Keyboard Layout

Standard keyboard layout (with Shift)

412 Text

Standard keyboard layout (with Option)

Key Caps

..............................

of{0|0
Oo{0|0
g(¢|e

Standard keyboard layout (with Option-Shift)

413 (8.1.4) Standard Keyboard Layout

Macintosh Plus keyboard layout (unshifted)

Macintosh Plus keyboard layout (with Shift)

414 Text

Macintosh Plus keyboard layout (with Option)

Key Caps

Macintosh Plus keyboard layout (with Option-Shift)

415 [8.2.1] Standard Font Numbers

Notes

8.2 Fonts

1. The keyhoard layouts shown are for the standard (American) keyboard
configuration.

2. Keys left blank in the diagrams have no character assignment for that
modifier combination.

3. The Caps Lock key has the same effect as Shift, but for letter keys
only; it has no effect on other keys.

8.2.1 Standard Font Numbers

Definitions

const
SystemFont
ApplFont
NewYork
Geneva
Monaco
Venice
London
Athens
SanFran
Toronto
Cairo
LosAngeles

[TETIS =S =
DL OEONDUEWN O

I

—r

Times
Helvetica
Courier
Symbol
Taliesin

I
(o0 S BT S I)
SN SO

Ay

L L

416 Text

Notes

1.
2.
3‘

4.

5.

6.

lo.

11.

12.

A font number identifies a typeface, independent of size or style.
Font numbers must not exceed 255.

To get the resource ID of the font for a given typeface and size,
multiply the font number by 128 and add the type size in points.

Font number 0 refers to the system font, used for menu items,
window titles, and other text displayed on the screen by the system.
The system font is named Chicago, and is always displayed in a
standard size of 12 points. The system font cannot be changed.

The assembly-language global variable ROMFont0 holds a handle to the
font record [8.2.2] for the system font.

. Font number 1 refers to the application font, which is always some

other existing typeface with a (true} font number of its own. There
is no actual typeface with this number.

. By default, the application font is set to Geneva each time a new

application program is started up. The font number of this default
application font is kept in the global variable SPFont.

. To change the application font in assembly language, store the

desired font number into the global variable ApFontlD. There is no
straightforward way to change this setting in Pascal.

The Times, Helvetica, Courier, and Symbel typefaces (font numbers 20-23)
are designed specifically for use with the LaserWriter printer.

Font numbers from 2 to 127 are reserved for Apple’s own typefaces,
128 to 255 for those formally registered with Apple by licensed Macin-
tosh software developers.

Font numbers on the Macintosh Plus are called family numbers, and
can range from —32768 to +32767. Fonts belonging to a given typeface
are identified by means of a family record of resource type 'FOND’
(“font definition”), rather than by the numbering convention
described in note 3, above. However, since the original Toolbox
recognizes font numbers between 0 and 255 only, all typefaces within
this range must still follow the old numbering convention for com-
patibility. Typefaces outside the original range are unavailable under
the old Toolbox.

417 (8.2.1) Standard Font Numbers

418

Text

8.2.2 Font Records

—Q Definitions
type
FontRecord = record
fontType : INTEGER; {Font type (proportional or fixed-width)}
firstChar : INTEGER; {Character code of first defined character}
lastChar : INTEGER; {Character code of last defined character}
widMax : INTEGER; {Maximum character width in pixels}
kernMax : INTEGER; {Maximum backward kern in pixels}
nDescent : INTEGER; {Negative of descent in pixels}
fRectWidth : INTEGER; {Width of font rectangle in pixels}
fRectHeight : INTEGER; {Height of fant rectangle in pixels}
owTLoc : INTEGER; {Offset to owTable in words}
ascent : INTEGER; {Ascent in pixels}
descent - : INTEGER; {Descent in pixels}
leading : INTEGER; {Leading in pixels}
rowWords : INTEGER; {Row width of bitimage in words}
{bitimage : array [1..rowWords, 1..fRectHeight] of INTEGER;}
{Font image. [8.2.3]}
{locTable : array [firstChar..lastChar+2] of INTEGER;}
{Locatjon table [8:2.3]} ~
{owTable : array [firstChar..lastchar+2] of INTEGER;}
: {Offset/width table [8.2.3]}
{widthTab : array [firstChar..lastChar+2] of INTEGER;}
{Character-width table (optional)}
{heightTab : array [firstChar..lastChar+2] of INTEGER}
{image-height table (optional)}
end;
const ‘ o
PropFont = = $9000; {Font type for propartional font}
PrpFntH = = $9001; { Proportional font with height table [8.2.3}}
PrpFntW = $9002; { Proportional font with width table [8.2.3]}
PrpFntHW = $9003; { Proportional font with height and width tables [8.2.3]}
FixedFont = $B000; {Font type for fixed-width font}
FxdFntH = $B001; { Fixed-width font with height table [8.2.3]}
FxdFntW = $B002; { Fixed-width font with width table [8.2.3]}
FxdFntHW = $B003; [Fixed-width font with height and width tables [8.2.3]}
FontWid = $ACBO; {Font type for font width table}

419 [8.2.2) Font Records

Notes

1.

2.

3.

4.

5.

6.

7.

8.

10
11

12

.

13.

14.

15.

A font record defines the character images and other characteristics
of a single font.

Font records are used internally by the Toolbox; there’s normally no
need for an application program to refer to them directly.

Font records are stored in resource files under resource types ‘FONT’
and ‘NFNT' [8.4.5) and read into the heap with GetResource (6.3.1).

fontType identifies the font as a proportional font (character widths
vary), a fixed-width font (all characters the same width), or a font
width table [8.4.6].

A font width table has no rowWords, bitimage, and locTable fields.

firstChar and lastChar are the character codes of the first and last
characters defined in this font.

fRectWidth and fRectHeight give the dimensions of the font rectangle. If
all the individual character images in the font are superimposed with
their character origins coinciding, the font rectangle is the smallest
rectangle enclosing them all. (In older versions of the Toolbox inter-
face, the fRectWidth and fRectHeight fields are named fRectMax and
chHeight.)

widMax is the maximum character width for any single character in
the font; fRectWidth is the width of the font rectangle, enclosing all the
individual image widths.

ascent and descent define the font's vertical extent relative to the
baseline. Their sum gives the overall font height, fRectHeight.

nDescent should always equal the negative of descent.

kernMax is the maximum negative (leftward) kern of any character in
the font, and should never be greater than 0. This value determines
the position of the character origin within the font rectangle.

leading is the amount of extra vertical space in pixels between lines
of text, from the descent line of one to the ascent line of the next.

The leading value given in the font record is merely recommended,
and is not binding on the application program. Some parts of the
Toolbox—notably the TextEdit routines for cut-and-paste editing
(Volume Two, Chapter 5)—will use this value by default, but you can
override it to produce whatever vertical spacing you like.

The remaining fields (owTLoc, rowWords, bitimage, locTable, owTable, widthTab,
heightTab) are discussed in [8.2.3].

Older and more recent versions of the assembly-language Toolbox
interface define different names for the field offsets within a font
record. The table below shows both sets of names.

420 Text

Assembly Language Information

Field offsets in a font record: ‘
(Pascal) (Assembly) oid Offset
Field name Offset name offset name inhytes
fontType fFontType fFormat 0
firstChar fFirstChar fMinChar 2
lastChar fLastChar fMaxChar 4
widMax. fWidMax fMaxwd 6
kernMax fKernMax 1BBOX 8
nDescent , fNDescent fBBOY 10
fRectWidth fFRectWidth fBBDX 12
fRectHeight. fFRectHeight fBBDY 14
owTLoc fOWTLoc fLength 16
ascent fAscent fAscent 18
descent "~ fDescent fDescent 20
leading fLeading fLeading 2
rowWords - fRowWords - fRaster 24
Assembly-language constants:
Name Value Meaning
PropFont §3000 Font type for proportional font
PrpFntH $9001 Proportional font with height table
PrpFntW $9002 Proportional font with width table
PrpFtHW $9003 Proportional font with height and
width tables
FixedFont $BC00 Font type for fixed-width font
FxdFntH $B001 Fixed-width font with height table
FxdFntW $Bom2 - Fixed-width font with width table
FxdFntHW $B003 Fixed-width font with height and
width tables

FontWid $ACBO Font type for font width table

421 (8.2.3) The Font Image

8.2.3 The Font Image

Font E..= - E=l Eii. E==E..E==:":.;§l lll
height E '.EH : .‘“‘.,EE. E-EEE- E'E . %

Missing characters \ /
/\ |

Be oI ST, 03A567005¢=> T @ABCDE KL MNIPORS TWLURYZIN

Font image

Location table

entry for 0
Location table

/ entry for p
] | [] =III-
[[] EEE EEEE N
| [1] l== EEENE W
EEER N ANEE N
H EEE NEN EEEEEEE
i EEEEEE EEER
n EEEEE NEENN
| EEEE EEEE
| E EEEE BN

Image Width

Image Width

422 Text

Character

rectangle Font rectangle

Character
origin

Baseline

i
| L Character kern = —1

Character offset = +1

———
L maxKern=—2

Character offset

Notes

[=

1.

3.

4

5.

6.

The font image, location table, and offset/width table for a font are
the last three required fields of its font record [8.2.2]. There are also
two more optional fields, the character-width and image-height
tables. These are all variable-length structures and can't be included
(except as comments) in a valid Pascal type declaration for the font
record. They're accessible in assembly language, or in Pascal via
pointer manipulation with POINTER, ORD, and @ (Chapter 2).

The font image (bitimage) is a bit image containing all the font's
character images arranged consecutively in a single horizontal
llst[,ike‘lb

The row width of the font image (rowWords) is given in words, not in
bytes as in a QuickDraw bit map [4.2.1].

Every font has a missing symbol to be used for drawing characters
that are missing from the font. The missing symbol is always the last
character in the font image, following the last defined character.

A character is considered missing if its character code is less than
firstChar or greater than lastChar [8.2.2], or if its entry in the offset/width
table is —1.

The ASCII null character (character code $00), horizontal tab ($09), and
carriage return ($0D) must not be missing; they must be defined in
the font image, even if only with zero image width. The tab character,
in particular, is commonly defined to be equivalent to an ordinary
space.

423 (8.2.3] The Font Image

7.

8

lo.

11.

12.

13.
14.

15.

16.

17.

18.

The location table (locTable) gives the horizontal offset, in pixels, from
the beginning of the font image to the beginning of each character
image.

A character’s image width is found by subtracting its location table
entry from that of the next character. The entry for a missing charac-
ter should be the same as that of the next defined character in the
font.

. The next-to-last entry in the location table, locTable[lastChar+1}, gives the

location of the missing symbol within the font image. The last entry,
locTable[lastChar+2], contains the total width of the font image (strike) in
pixels.

The offset/width table (owTable) is located within the font record by
means of the owTLec field, which gives the offset in words from itself
to the beginning of the table.

The low-order byte of an offset/width table entry gives the character
width in pixels.

The high-order byte gives the character offset, the difference between
this character’s leftward kern and maxKern. This determines the posi-
tion of the character rectangle relative to the overall font rectangle,
and thus locates the character origin (QuickDraw pen position) within
the character image.

Missing characters have an offset/width table entry of —1.

The next-to-last entry in the offset/width table, owTable[lastChar+1], gives
the offset and width of the font's missing symbol. The last entry,
owTable[lastChar+2), is always —1.

The character-width and image-height tables are optional fields used
only by the Macintosh Plus version of the Toolbox. The fontType field
of the font record [8.2.2] tells whether either or both of these tables
are present.

Both tables are indexed from firstChar to lastChar+2, the same as the
location and offset/width tables.

The character-width table (widthTab) gives the width of each character
in fixed-point form, for use with the new fractional character width
feature [8.2.8). Although nominally declared as an array of integers,
this table actually contains fixed-point values with an 8-bit integer
part and an 8-bit fraction.

For a font with no character-width table, the integer character widths
given in the offset/width table are used instead. Such a font is still
usable, but character positioning is less precise, particularly on
high-resolution devices such as the LaserWriter printer.

424 Text

19. The image-height table (heightTab) gives the true height of each charac-
ter image in pixels, for faster text drawing. The first byte of each entry
is the number of empty rows between the font’s overall ascent line
and the first pixel of the character image; the second is the number
of nonempty rows in the image.

20. Most fonts don't include an image-height table, since the Toolbox
can construct one for itself from the information in the font image
and location table.

8.2.4 Initializing the Toolbox for Fonts

Deﬁniﬁnps

procedurs InitFonts;

B Notes

1. InitFonts must be called before any other operation involving fonts
directly (such as drawing or measuring text (8.3.3, 8.3.4]) or indirectly
{such as displaying windows, menus, and so forth).

2. It initializes the Toolbox’s font-related data structures, reads the
system font into memory if necessary, and initializes the application
font to its default setting [8.2.1].

3. InitFonts should be called after InitGraf [4.3.1] and before |nitWindows

(I1:3.2.1).
Assembly Language. Information
Trap macro: o
(PHSCE-“. i v (Assembly) S ' 8
Routine name “Trap macro : __Trapword

InitFonts © nitFonts

425 [8.2.5] Access to Fonts

8.2.5 Access to Fonts

Definitions

- |

procedure GetFontName 7
(fontNumber : INTEGER;
var pame - : Str255);

procedure GetFNum
{name : Str255;
var fontNumber : INTEGER);

function RealFont
(fontNumber : INTEGER;
pointSize : INTEGER)
: BOOLEAN;

{Font number}
{Returns name of typeface)}

{Name of typeface}
{Returns font number}

{Desired font number}
{Desired point size}
{Does font exist?}

Notes

i

1. GetFontName returns the name of the typeface with a given font number;
GetFNum returns the font number of the face with a given name.

2. If no such typeface exists, GetFontName returns the empty string and
GetFNum returns 0.

3. RealFont returns a Boolean result telling whether a 'FONT' resource
exists for a given combination of typeface (font number) and point
size. If this result is FALSE, requests to draw or measure text in that
face and size will be carried out by substituting (and possibly scaling)
a suitable existing font; see [8.2.8] and [8.3.1, note 4].

4. The trap macro for GetFontName is spelled _GetFName.

Assembly Language Information

Trap macros:
(Pascal) (Assembly)

Routine name Trap macro Trap word
GetFontName —GetFName SABFF
GetFNum —GetFNum $AS00
RealFont ~RealFont $A302

426 Text

8.2.6 Requesting Font Information

Definitions

-

g
procedure GetFontinfo

(var theinfo : Fontinfo); {Returns metric information about current textifont}

type ,
Fontinfe = record :
ascent : INTEGER; {Ascent in pixels}
descent : INTEGER; {Descent in pixels}
widMax : INTEGER; {Maximum character width in pixels}
leading : INTEGER {Leading in pixels}
end; N

procedure FontMetrics

(var thelnfo : FMetricRec); {Returns metric information about current text font}

type
FMetricRec = record
ascent : Fixed; {Ascent in fractional points}
descent : Fixed; {Descent in fractional points}
leading : Fixed; {Leading in fractional points}
widMax : Fixed; {Maximum character width in fractional points}

wTabHandle : Handle {Handle to global width table}

end;

Notes

| - o

. These routines return information on the metric characteristics of a

font.

. The information returned is for the font identified by the txFont and

txSize fields [8.3.1) of the current graphics port, and is adjusted for the
character style specified in the txFace field.

. GetFontinfo returns the metrics in integer form; FontMetrics gives them in

more precise fixed-point form.

. The metric information returned by FontMetrics is expressed in device-

independent printer’s points, 72 points to the inch.

. FontMetrics is available only on the Macintosh Plus.
. The wTabHandle field of the font metric record is a handle to the font's

global width table, which holds the individual fixed-point character

427 (8.2.6) Requesting Font Information

widths and other low-level data about the font. The global width table
is of interest mainly to the Toolbox itself; if you can’t live without
knowing the contents of this enthralling data structure, see the
Macintosh Plus supplement (Volume IV) of Inside Macintosh.

7. In assembly language, the global variable WidthTabHandle holds a handle
to the global width table for the current font. This variable exists only
on the Macintosh Plus.

8. Notice that Fontinfo and FMetricRec have their widMax and leading fields in
opposite orders, just to see if you're paying attention.

Assembly Ianguage Informaﬁon

Trap macros:

(Pascal) . ; , (Assembly)
Routine name ' Trap macro Trap word
GetFontinfo ' : —GetFontinfo $A88B

FontMetrics FontMetrics ' $A835

Field offsets in a font information record:

(Pascal) o {(Assembly) , ‘
Field name Offset name Offset in bytes
ascent ascent 0
descent " descent : 2
widMax widMax 4
leading leading 6

Field offsets in a font metric record:

(Pascal) (Assembly)

Field name * Offset name ’ Offset in bytes
ascent . fmAscent ; 0
descent ~ fmDescent ' : 4
leading fmLeading 8
widMax fmWidMax 12

wTabHandle fmWTabHandle S 16

Assembly-language global variable (Macintosh Plus only):
Name Address Meaning

WidthTabHandle $B2A Handle to global width table for
current font

428 Text

8.2.7 Locking a Font

Q Definitions
=l

pracedure SetFontLock

(lock : BOOLEAN); {Lock or unlock?}
D% Notes

. SetFontLock locks or unlocks a font in the heap.
2. Alocked font can't be moved or purged.

-

3. The font affected is the last one used in any text-drawing opera-
tion (8.3.3].

4. Fonts are normally unlocked by default.

Assembly Language Information

Trap macro:

(Pascal) (Assembly)

Routine name Trap macro Trapword
SetFontLock —SetFontLock $A803

8.2.8 Nuts and Bolts

|;I Definitions
l_'l procedure SetFractEnable

(useFracts : BOOLEAN); {Use fractional character widths?}

procedure SetFScaleDisablie
(noScaling : BOOLEAN); {Turn off font scaling?}

429 [8.2.8) Nuts and Bolts

Notes

1. SetFractEnable controls the use of fractional character widths for draw-
ing text.

2. When fractional widths are enabled, all character placements will be
rounded to the nearest integer at the available resolution of the
device they're drawn on. This results in more accurate text position-
ing on high-resolution devices such as the LaserWriter printer.

3. If fractional widths are disabled or are unavailable for a particular
font, the integer widths given in the font's offset/width table [8.2.3]
will be used instead.

4. Fractional character widths are available only on the Macintosh Plus;
the original Toolbox always uses integer widths.

5. SetfractEnable is part of the Pascal interface to the Toolbox, not part
of the Toolbox itself. It doesn't reside in ROM and can't be called
from assembly language via the trap mechanism.

6. To control the use of fractional character widths in assembly
language, just set the byte-length global flag FractEnable for yourself:
$FF (TRUE) to enable fractional widths, $00 (FALSE) to disable.

7. BEWARE: The FractEnable flag exists only on the Macintosh Plus.
Attempting to set it on earlier models will destroy other, unrelated
information in the system heap.

8. SetFScaleDisable controls the method of font substitution to be used
when a requested font is unavailable.

9. When font scaling is enabled, an existing font in the requested
typeface will be enlarged or reduced to the specified size. If possible,
an even multiple or submultiple (such as double or halfi of the
requested size will be used. If no such multiple is available, some
other size will be used instead, producing ugly or unreadable results.

10. When font scaling is disabled on the Macintosh Plus, the next
smaller available size of the requested typeface will be used, but with
the characters spaced farther apart, according to the character widths
of the size requested. The results are faster and more readable, and
more closely approximate the proper character placements and line
breaks for the requested type size.

11. When font scaling is disabled under the original Toolbox, the sub-
stituted font may be either larger or smaller than the size requested.
In either case, the characters will be positioned according to their
own character widths rather than those of the requested size.

12. Font scaling is controlled by the byte-length global flag FScaleDisable:
$00 (FALSE) for scaling, $FF (TRUE) for no scaling.

430 Text

13. Scaling is initially enabled by default.

14. On the Macintosh Plus, always use the Toolbox routine SetFScaleDisable
to turn font scaling on or off; merely setting the global flag is not
sufficient. On earlier models, you can simply set the flag for yourself
in assembly language, but there is no straightforward way to set it
from Pascal: the SetFScaleDisable routine is available only on the Macin-
tosh Plus.

Assembly Language Information

Trap macro:

{(Pascal) (Assembly)

Routine name Trap macro Trap word
SetFScaleDisable —SetFScaleDisable $A834

Assembly-language globa] variables:
Name Address - ‘Meaning ‘
~ FractEnable $BF4 Use fractional character widths?
' (1 byte, Macintosh Plus only)
FScaleDisable §A63 Turn off font scaling? (1 byte)

431 [8.3.1) QuickDraw Text Characteristics

8.3 Text and QuickDraw

8.3.1 OQuickDraw Text Characteristics

Definitions

L

type

GrafPort. = record

device : I,Nv_T"EGE‘R; ~ {Device code (see notes 10-12)}

‘txFont : INTEGER; {Font number of typeface}
txFace : Style; . {Type style}
txMode : INTEGER; {Transfer mode for text}
txSize : INTEGER; {Type size in points}
spExtra : Fixed; - - {Extra'space between words, in pixels}

s

Styleltem = (Bold, Italic, Underline, Outline’,VShadow, Condense, Extend);

Style.

= st of Styleltem; -

Notes

. These fields of the GrafPort record (4.2.2] pertain to the drawing of text

in a given graphics port.

. txFont is a font number identifying the typeface to be used; 0 desig-

nates the system font.

. txSize is the type size in points; 0 specifies the standard size of 12

points.

. If no font exists for the requested combination of typeface and size,

another size of the same face will be substituted. If the requested
typeface isn't available in any size, the application font [8.2.1] will be
used; if the application font isn’t available in any size, the system
font [8.2.1] will be used. If font scaling [8.2.8] is enabled, the sub-
stituted font will be scaled to the size requested.

. txFace identifies the text style as a Pascal set of type Style. The set can

include any combination of individual style properties of type
Styleltem.

432 Text

7

10

11.

12,
13.

The assembly-language constants BoldBit, IltalicBit, etc. (below) are bit
numbers within the byte representing a Style set, for use with the
BTST, BSET, BCLR, and BCHG instructions.

txMode is the transfer mode for text in this graphics port, and should
be one of the eight source transfer modes [5.1.3].

Under the original Toolbox, only the SrcOr, SrcX0r, and $rcBic modes
can be used for text drawing. The Macintosh Plus supports all eight
modes.

spExtra is a fixed-point number (2.3.1] consisting of a 16-bit integer
part and a 16-bit fraction. It specifies the amount of extra space, in
pixels, to be added to each space character for text justification.

device identifies the output device on which text will be drawn. This
information is used in choosing the appropriate fonts for use on the
device.

The high-order byte of the device code is the reference number of
the device driver, which is always negative; the low-order byte is a
device-dependent modifier controlling the way the device is to be
used (for example, the dot resolution on a printer with a choice of
resolutions).

A device code of 0 denotes the Macintosh screen.

A newly created graphics port is initialized to draw text on the
screen, using the system font at the standard size of 12 points, with
a transfer mode of SrcOr [5.1.3], plain character style, and no extra
width for spaces.

433

Assembly Language Information

[8.3.1) QuickDraw Text Characteristics

Field offsets in a graphics port:

{Pascal) (Assembly)

Field name Offset name Offset in bytes
device device 0
txFont txFont 68
txFace txFace 70
txMode txMode 72
txSize txSize 74
spExtra spExtra 76
Bit numbers in a Style byte:

Name Bit Number Meaning
BoldBit 0 Bold
ItalicBit 1 Italic
UlineBit 2 Underline
OutlineBit 3 Outline
ShadowBit 4 Shadow
CondenseBit B Condense
ExtendBit 6 Extend

434 Text

8.3.2 Setting Text Characteristics

Iél Definitions
procedure GrafDevice 7 , '
(deviceCode : INTEGER); {Device code [8.3.1]}
procedure TextFont N
(fontNumber : INTEGER); {Font number of desired typeface [8.2.1]}
procedure TextSize L ,
(pointSize : INTEGER); {Type size in points}
procedure TextFace. : I ‘
(typeStyle : Style); {Type style [8.3.1]}
procedure TextMode ; -
(mode. : INTEGER); {Transfer mode for text [5.1.3]}
procedura SpaceExtra , o
(extraSpace : Fixed); {Extra_spacg between words, in pixels [2:3.1]}
Notes

=

. These routines set the text characteristics of the current graphics port

[8.3.1]. All subsequent text will be drawn with the specified charac-
teristics.

. If the point size specified to TextSize isn't available in the current

typeface, another size will be substituted (and possibly scaled) to
match; see [8.2.8] and [8.3.1, note 4].

. mode should be one of the eight source transfer modes (5.1.3]. (Under

the orignal Toolbox, it must be one of the three modes Src0r, SrcXOr, or
SrcBic.)

. extraSpace is a fixed-point number (2.3.1] consisting of a 16-bit integer

part and a 16-bit fraction, specifying the amount of extra space to be
added between words.

. To obtain the proper value of extraSpace for a line of justified text, use

FixRatio [2.3.2] to divide the excess line width in pixels by the number
of spaces in the line.

435 [8.3.3) Drawing Text

Assembly Language Information

Trap macros:

(Pascal) (Assembly)

Routine name Trap macro Trap word
GrafDevice _GrafDevice $A872
TextFont _TextFont $A887
TextSize _TextSize SABBA
TextFace _TextFace $A888
TextMode _TextMode $AB89
SpaceExtra _SpaceExtra SABSE

8.3.3 Drawing Text

Definitions

m

procedure DrawChar

(theChar : CHAR); {Character to be drawn}
procedure DrawString :

(theString : Str255); {String to be drawn}
procedure DrawText

(theText : Ptr; fPointer to text to be drawn}

firstChar : INTEGER; {Index of first character within text}
charCount : INTEGER); {Number of characters to be drawn}

Notes

1. These routines draw text in the current graphics port, using the port's
current typeface, size, style, and other text characteristics [8.3.1].

2. Each character is drawn with its character origin at the current pen
position; the pen is then advanced to the right by the character width.

3. Characters not defined in the port's current font are replaced with
the font’s missing symbol.

4. Space characters include any extra space called for by the port's
spExtra field [8.3.1].

436 Text

§. ASCII control characters such as carriage return, line feed, tab, and
backspace have no special meaning; if these characters are to be used
for formatting, their effects must be simulated by explicitly moving the
pen with Move and MoveTo (5.2.4).

6. The pen is left positioned beyond the last character drawn, ready for
the next drawing operation.

Assembly Language Information

Trap macros:

(Pascall x - (Assembly) :

Routine name - . Trap macro Trapword
DrawChar ~* _DrawChar $A883
DrawString _DrawString A $A884
DrawText : o _DrawText $A885

8.3.4 Measuring Text

g " Definitons | o

function CharWidth

(theChar : CHAR) {Gharacter to. be measured}
: INTEGER; {Width of character}
funstion StringWidth
(theString : Str255) {String to be measured}
. INTEGER; {Width of string}
function TextWidth _
(theText : Ptr; - {Pointer to text to be measured}

firstChar : INTEGER; - (Index of first character within' text}
charCount : INTEGER) {Number of characters to be measured}
: INTEGER; _ {Width of text}

procedure MeasureText SO
(charCount : INTEGER; {Number of characters to be measured}
theText : Ptr; {Pointer to text to be measured}
widthTable : Ptr);. {Pointer to table of text widths}

437 (834 Measuring Text

Notes

1.

2.

3.

4‘

5.

6.
7.

8.

10.

11.

These routines measure the width of the specified text without
drawing it.

The result is the distance in pixels that the pen would be advanced
if the text were drawn in the current graphics port, using the port's
current typeface, size, style, and other text characteristics [8.3.1].
Characters not defined in the port’s current font are considered to
have the same width as the font's missing symbol.

Space characters include any extra space called for by the port's
spExtra field [8.3.1].

ASCII control characters such as carriage return, line feed, tab, and
backspace have no special meaning, but are just treated as ordinary
characters.

The port’s graphics pen is not moved from its previous position.
MeasureText measures the width of the first character in the desig-
nated text, the first two characters, the first three, and so on up to
the specified character count. The results are equivalent to calling
TextWidth repeatedly for each text length from 1 to charCount.

This operation is particularly useful for finding line breaks in a text
passage to be displayed on the screen.

The widthTable parameter should point to an array of type
array [0..charCount] of INTEGER

Each element i of this array will be filled with the width of the first
i characters of theText. (Element 0 will always contain the value 0.)

BEWARE: No type or range checking is performed. To avoid destroy-
ing other information, make sure widthTable points to an array of at
least charCount + 1 words.

MeasureText is available only on the Macintosh Plus.

438 Text

Assembly Language Information
Trap macros: .
(Pascal) (Assembly)
Routine name Trap macro ‘Trap word
: CharWi_dth ~CharWidth $A88D
StringWidth ' _StringWidth $A88C
TextWidth , _TextWidth $A886

MeasureText - -MeasureText $A837

8.4 Text-Related Resources

8.4.1 Resource Type TEXT'

Characters of text
(indefinite length)

A Texr resource does not begin with a length byte.

439 (8.4.2) Resource Type ‘STR ’

Notes

1. A resource of type TEXT' contains any number of characters of “raw”
text.

2. The resource data doesn't include a character count. The length of
the text can be found with SizeResource [6.4.3).

8.4.2 Resource Type 'STR’

Length of string (0-255)

. Characters of string
(indefinite length)

The maximum length of a.'sTs ‘ resource is 255 characters.

Notes

1. A resource of type 'STR ' contains a character string in internal Pascal
format.

2. The space in 'STR’ is required.

3. The first byte of resource data gives the length of the string, which

cannot exceed 255 characters. The rest of the data consists of the
characters themselves.

440 Text

8.4.3 Resource Type 'STR#

Number of strings (2 bytes)

Length of first string

Characters of first string
(indefinite length)

...................................

Length of last string

..

Characters of last string
(indefinite length)

Any number
of strings

441 (84.4] Resource Type ‘NIT

Notes

il

15

14

1. A resource of type 'STR# contains a list of character strings.

2. The resource data consists of a 2-byte integer giving the number of
strings in the list, followed by the strings themselves in internal Pascal
format (1-byte character count, 0 to 255 characters), as described
under ‘STR' [8.4.2].

3. Use GetindString [8.1.2] to retrieve individual strings from a resource of
this type.

8.4.4 Resource Type 'lNIT’

.................... Code of
initialization routine

(indefinite 1ength)

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Option key
Caps Lock key
Shift key

Command key l '

Register D1 contains the fourth word of the system key map
which includes the state of the four modifier keys.

Modifier bits for configuration routines

442 Text

Notes

1.

3
4

8.

9.

10.

Resources of type ‘INIT' contain system initialization routines.
Whenever the Macintosh system is started up (such as when the
power is turned on), all resources of this type found in the system
resource file are executed.

The resource data is simply the machine-language code of the
initialization routine. Its entry point must be at the beginning.

The order in which ‘INIT' resources are executed is unpredictable.

Versions 3.0 and later of the system resource file (System) contain a
special INIT' resource (ID 31) that searches the system folder on the
startup disk for files with a file type (7.3.1] of 'INIT". It then executes any
‘INIT" resources that these files in turn contain. This allows a program
to define initialization routines of its own and have them executed at
system startup, without installing them in the system resource file
itself.

The ‘INIT' resources with IDs 1 and 2 are used to install pcinters to the
keyboard configuration routines into the system globals Key1Trans and
Key2Trans. These routines are then used by the low-level keyboard
driver to translate the user’s keystrokes into corresponding charac-
ters to be passed to the running program.

. ‘INIT" resource 1 installs the configuration routine for the keyboard,

resource 2 the one for the numeric keypad. These two routines are
separate even on the Macintosh Plus, which has the keypad physi-
cally built into the keyboard unit.

The configuration routines must be written in assembly language,
since they accept their arguments and return their results directly
in the processor's registers.

On entry to the configuration routine, register D2 contains the key
code [8.1.3) for the key to be translated. D1 contains the fourth word
of the system key map [II:2.6.1], which includes the state of the four
modifier keys (see figure). The routine can use this modifier informa-
tion in any way it wishes.

The routine returns the character code corresponding to the given
key and modifiers in the low-order byte of register DO.

The routine should preserve the contents of all registers except D0.

443 (84.5) Resource Type ‘FONT'

Assembly Language Information

Assembly-language global variables:

Name Address Meaning
KeyiTrans -~ $29E Pointer to keyboard configuration routine

Key2Trans $2A2 ~ Pointer to keypad configuration routine

8.4.5 Resource Type 'FONT’

Notes

il

1.

2.

6.

7.

A resource of type 'FONT' contains a complete font record (8.2.2),
including the variable-length fields bitimage, locTable, and owTable [8.2.3].

The resource ID for a font consists of an 8-bit font number [8.2.1] iden-
tifying the typeface, followed by a 7-bit point size. Thus the resource
ID is equal to the font number times 128, plus the point size.

For each typeface, the 'FONT' resource corresponding to a point size
of 0 is a dummy resource with no data, which exists solely to carry
the name of the typeface as its resource name. “Real” fonts with
nonzero point sizes have no resource name.

On the Macintosh Plus, fonts belonging to a typeface are identified by
means of a family record stored as a resource of type 'FOND’ (“font
definition”). See Inside Macintosh, Volume IV, for the structure of a
family record.

For compatibility with older versions of the Toolbox, all typefaces with
font numbers between 0 and 255 must still follow the numbering and
naming conventions described in notes 2 and 3 above.

The Macintosh Plus Toolbox also recognizes font resources of type
'‘NFNT' (“non-menu font”), with the same structure shown here. The
sole purpose of ‘NFNT' is to provide an alternative form of font resource
that won't be included when you create a menu of available resources
of type 'FONT', using the Toolbox routines AddResMenu or InsertResMenu
(11:4.3.3).

The original Toolbox ignores resources of types ‘FOND' and ‘NFNT'.

444

Text

fontType (2 bytes)

firstChar (2 bytes)

lastChar (2 bytes)

widMax (2 bytes)

kernMax (2 bytes)

nDescent (2 bytes)

fRectWidth (2 bytes)

fRectHeight (2 bytes)

owTloc (2 bytes)

ascent (2 bytes)

descent (2 bytes)

leading (2 bytes)

rowWords (2 bytes)

bitimage

(indefinite length)

8 § I

locTable

(indefinite length)

I (indefinite length)

owTable

——— .

445 (8.4.6] Resource Type 'FWID'

r.-'ont' I"ILII'I.'IDBF. (9 »En'ts') ' 'Poi'nt s%ze i? bits)

Resource ID of a font

8.4.6 Resource Type FWID'

fontType (2 bytes)
firstChar (2 bytes)
lastChar (2 bytes)
widMax (2 bytes)
kernMax (2 bytes)

nDescent (2 bytes)
fRectWidth (2 bytes)
fRectHeight (2 bytes)

owTloc (2 bytes)

ascent (2 bytes)

descent (2 bytes)

leading (2 bytes)

owTable

| (indefinite length) I

446 Text

Notes

1. A resource of type ‘FWID' contains a font width table.

2. The resource data consists of an abbreviated font record (8.2.2] with
no rowWords, bitimage, and locTable fields [8.2.3].

3. The fontType field always contains the constant FontWid (8.2.2].
4, The owTLoc field is always set to 4.

5. The resource ID for a font width table is the same as for the
corresponding font [8.4.5].

6. Font width tables are not used on the Macintosh Plus; all resources
of type ‘FWID' are ignored.

8.4.7 Resource Type 'FRSV

Number of fo:nts (2 bytes)

Resource ID of fii‘st font (2 bytes)

Any number
of fonts

Resource ID of la:st font (2 bytes)

Notes

il

1. A resource of type ‘FRSV' identifies one or more reserved fonts that
are needed by the Toolbox for proper operation.

2. The fonts are identified by resource ID, under resource type 'FONT'
(8.4.5].

3. There should be exactly one 'FRSV' resource in the system resource
file, with an ID of 1. Fonts designated by this resource must be present
in the system resource file for the Toolbox to function properly.

4. Apple’s Font/DA Mover utility program examines ‘FRSV' resource number

1 and will refuse to delete any of the designated fonts from the System
file.

APPENDIX

Volume One |
Toolbox Summary

Chapter 2 General Utilities

2.1 Elementary Data Structures

2.1.1 Strings and Procedures

type
Str255 = STRING[255]; {Any text string, maximum 255 characters}
ProcPtr = Ptr; {Pointer to a procedure or function}

2.1.2 String Operations

function EqualString
(string1 : Str255; {First string to be compared}
string2 : Str2bs; {Second string to be compared}
caseCounts : BOOLEAN; {Distinguish upper- and lowercase?}
marksCount : BOOLEAN) {Include diacritical marks?}
: BOOLEAN; {Are the two strings equivalent?}

447

448 Appendix A
function RelString
(string1 : Str255; {First string to be compared}
string2 : Str255; {Second string to be compared}
caseCounts : BOOLEAN; {Distinguish upper- and lowercase?}
marksCount : BOOLEAN) {include diacritical marks?}
: INTEGER; {Which string comes first?}

procedure UprString
(var theString : Str255;

stripMarks : BOOLEAN);
const
SortsBefore = —1;
SortsEqual = 0
SortsAfter = +1;

2.2 Bit-Level Operations

{String to be converted}
{Eliminate diacritical marks?}

{First string precedes second}
{Strings are equivalent}
{First string follows second}

2.2.1 Single Bit Access

procedure BitSet
(bitsPtr . Ptr;
bitNumber : LONGINT);

procedure BitClr
(bitsPtr : Ptr;
bitNumber : LONGINT);

function BitTst
(bitsPtr : Ptr;
bitNumber : LONGINT)
: BOOLEAN;

2.2.2 Logical Operations

funetion BitAnd
(bits1: LONGINT;
bits2 : LONGINT)
: LONGINT;

function BitOr
(bits1 : LONGINT:
bits2 : LONGINT)
: LONGINT;

{Pointer to bits}
{Number of bit to be set to 1}

{Pointer to bits}
{Number of bit to be cleared to 0}

{Pointer to bits}
{Number of bit to be tested}
{Is bit set to 1?}

{First operand}
{Second operand}
{Bitwise “and”}

{First operand}
{Second operand}
{Bitwise “or”}

449

function BitXOr
(bits1: LONGINT;
bits2 : LONGINT)
: LONGINT;

function BitNot
(bits : LONGINT)
: LONGINT;

function BitShift
(bits : LONGINT;
shiftCount : INTEGER)
: LONGINT;

2.2.3 Word Access

function HiWord
(longWord : LONGINT)
. INTEGER;

function LoWord
(longWord : LONGINT)
: INTEGER;

2.2.4 Direct Storage

procedure StuffHex
(destPtr : Ptr;
hexString : Str255);

2.3 Arithmetic Operations

Volume One ToolBox Summary

{First operand}
{Second operand}
{Bitwise “exclusive or’"}

{Bits to be complemented}
{Bitwise complement}

{Bits to be shifted}
{Number of places to shift}
{Result of shift}

{32-bit operand}
{High-order 16 bits}

{32-bit operand}
{Low-order 16 bits}

{Pointer to data structure to be stuffed}
{String representing data in hexadecimal}

2.3.1 Fixed-Point Numbers

type
Fixed = LONGINT;

function Long2Fix
(theNumber : LONGINT)
: Fixed;

function Fix2Long
(theNumber : Fixed)
: LONGINT;

function FixRound
(theNumber : Fixed)
. INTEGER;

{Fixed-point number}

{Long integer to be converted}
{Fixed-point equivalent}

{Fixed-point number to be converted}
{Long-integer equivalent}

{Fixed-point number to be rounded}
{Number rounded to an integer}

450 Appendix A
2.3.2 Fixed-Point Arithmetic

function FixMul
(number1 : Fixed;
number2 : Fixed)
: Fixed;
funetion FixDiv
(dividend : Fixed;
divisor : Fixed)
: Fixed;
function FixRatio
(numerator : INTEGER;

denominator : INTEGER)
: Fixed;

2.3.3

type
Fract = LONGINT;
funetion Fix2Frac

(theNumber : Fixed)
: Fract;

Fractions

funetion Frac2Fix
(theNumber : Fract)
. Fixed;

2.3.4 Fraction Arithmetic

funetion FracMul
(fractiont : Fract;
fraction2 : Fract)
: Fract;

function FracDiv
(dividend : Fract;
divisor : Fract)
: Fract;

funetion FracSqrt
(theNumber : Fract)
: Fract;

{First fixed-point operand}
{Second fixed-point operand}
{Fixed-point product}

{Fixed-point dividend}
{Fixed-point divisor}
{Fixed-point quotient}

{Integer numerator}
{Integer denominator}
{Fixed-point quotient}

{Fixed-point number to be converted}
{Fraction equivalent}

{Fraction to be converted}
{Fixed-point equivalent}

{First fractional operand}
{Second fractional operand}
{Fractional product}

{Fractional dividend}
{Fractional divisor}
{Fractional quotient}

{Fractional operand}
{Fractional square root}

451 volume One ToolBox Summary

2.3.5 Long Multiplication

type
Int64Bit = record
hiLong : LONGINT;
loLong : LONGINT
end;

procedure LongMul
(number1 : LONGINT;
number2 : LONGINT;
var product : Int64Bit);

2.3.6 Trigonometric Functions

function FracSin
(theAngle : Fixed)
: Fract;

function FracCos
(theAngle : Fixed)
: Fract;
funetion FixATan2
(denominator : LONGINT;
numerator : LONGINT)
. Fixed;

{High-order 32 bits}
{Low-order 32 bits}

{First 32-bit operand}
{Second 32-bit operand}
{Returns 64-bit product}

{Fixed-point angle in radians}
{Fractional sine}

{Fixed-point angle in radians}
{Fractional cosine}

{Denominator of tangent}
{Numerator of tangent}
{Fixed-point arc tangent in radians}

2.3.7 Binary/Decimal Conversion

procedure NumToString
(theNumber : LONGINT;
var theString : Str255);

procedure StringToNum
(theString : Str255;
var theNumber : LONGINT);

2.3.8 Random Numbers

function Random
. INTEGER;

var
RandSeed : LONGINT;

{Number to be converted}
{Returns equivalent string}

{String to be converted}
{Returns equivalent number}

{Random number}

{"Seed” for random number generation}

452 Appendix A

2.4 Date and Time

2.4.1 Date and Time in Seconds

procedure GetDateTime
(var seconds : LONGINT);

SetDateTime
(seconds : LONGINT)
: OSErr;

function

const
CIkRdErr = —85;
ClkWrErr = —86;

2.4.2 Date and Time Records

type
DateTimeRec = record
year : INTEGER;
month : INTEGER;
day : INTEGER;
hour . INTEGER;
minute . INTEGER;
second : INTEGER;
dayOfWeek : INTEGER
end;

procedure GetTime
(var dateAndTime : DateTimeRec);

procedure SetTime
(dateAndTime : DateTimeRec);

2.4.3 Date and Time Conversion

procedure Secs2Date
(seconds : LONGINT;
var dateAndTime : DateTimeRec);

procedure Date2Secs
(dateAndTime : DateTimeRec;
var seconds : LONGINT);

{Returns current date and time in “raw” seconds}

{New date and time in “raw” seconds}
{Result code}

{Unable to read clock}
{Clock not written correctly}

{Year}

{Month: 1 (January) to 12 (December)}
{Day of month: 1 to 31}

{Hour: 0 to 23}

{Minute: 0 to 59}

{Second: 0 to 59}

{Day of week: 1 (Sunday) to 7 (Saturday)}

{Returns current date and time}

{Current date and time}

{Date and time in “raw” seconds}
{Returns equivalent date and time record}

{Date and time record}
{Returns equivalent in “raw” seconds}

453

2.4.4 Date and Time Strings
type

Volume One Toolbox Summary

DateForm = (ShortDate, LongDate, AbbrevDate);

pracedure IUDateString

(seconds : LONGINT;

format : DateForm;

var theString : Str255);
procedure IUTimeString

(seconds : LONGINT;

withSeconds : BOOLEAN;

var theString : Str255);

Chapter 3 Memory

{Date and time in “raw” seconds}
{Format desired for date}
{Returns equivalent character string}

{Date and time in “raw” seconds}
{Include seconds in string?}
{Returns equivalent character string}

3.1 Memory Basics

3.1.1 Elementary Data Types

type
Byte = 0..255;
SignedByte = —128..127;
Ptr = “SignedByte;
Handle = *Ptr;
Size = LONGINT;

3.1.2 Error Reporting

type
OSErr = |INTEGER;
const
NoErr = 0;
MemFullErr = —108;
NilHandleErr = —109;
MemWZErr = —111;
MemPurErr = -112;
MemLockedErr = —117,;
function MemError

: OSErr;

{Any byte in memory}
{Any byte in memory}

{General pointer}
{General handle}

{Size of a heap block in bytes)

{Operating System result (error) code}

{No error; all is well}

{No room; heap is full}

{lllegal operation on empty handle}
{lllegal operation on free block}
{lllegal operation on locked block}
{Attempt to move locked block}

{Result code of last memory operation}

454 Appendix A

3.1.3 Machine Configuration

procedure Environs

(var romVersion : INTEGER;

{Version number of installed ROM}

var machineType : INTEGER); {Type of machine}

function TopMem
. Ptr;

const
MacXLMachine

0;
MacMachine 1;

3.2 Heap Allocation

{Pointer to end of memory}

{Macintosh XL (Lisa)}
{Skinny Mac, Fat Mac, or Mac Plus}

3.2.1 Allocating Blacks

function NewHandle
(blockSize : Size)
: Handle;

function NewPtr
(blockSize : Size)
. Ptr;
function NewEmptyHandle
: Handle;

function RecoverHandle
(masterPtr : Ptr)
: Handle;

3.2.2 Releasing Blocks

procedure DisposHandle
(theHandle : Handle);

procedure DisposPir
(thePtr : Ptr);

3.2.3 Size of Blocks

function GetHandleSize
(theHandle : Handle)
: Size;
function GetPtrSize

(thePtr : Ptr)
: Size;

{Size of needed block in bytes}
{Handle to new relocatable block}

{Size of needed block in bytes}
{Pointer to new nonrelocatable block}

{New empty handle}

{Master pointer to relocatable block}
{Handle to block}

{Handle to relocatable block to be deallocated}

{Pointer to nonrelocatable block to be deallocated}

{Handle to a relocatable block]}
{Size of block in bytes}

{Pointer to a nonrelocatable block}
{Size of block in bytes}

455 Volume One Toolbox Summary

procedure SetHandleSize
(theHandle : Handle;
newSize : Size);

procedure SetPtrSize
(thePtr : Ptr;
newSize : Size);

3.2.4 Properties of Blocks

procedure HLock
(theHandle : Handle);

procedure HUnlock
(theHandle : Handle);

pracedure HPurge
(theHandle : Handle);

procedure HNoPurge
(theHandle : Handle);

procedure HSetRBit
(theHandle : Handle);

procedure HCIrRBit
(theHandle : Handle);

function HGetState
(theHandle : Handle)
. SignedByte;

procedure HSetState
(theHandle : Handle;

properties : SignedByte)

3.2.5 Block Location

procedure ResrvMem
(blockSize : Size);

procedure MoveHHi
(theHandle : Handle);

procedure MoreMasters;

3.2.6 Copying Blocks
function HandToHand

(var theHandle : Handle)

: OSErr;

{Handle to a relocatable block}
{New size of block in bytes}

{Pointer to a nonrelocatable block}
{New size of block in bytes}

{Handle to a relocatable block}
{Handle to a relocatable block}
{Handle to a relocatable block}
{Handle to a relocatable block}
{Handle to a relocatable block}
{Handle to a relocatable block}

{Handle to a relocatable block}
{Current properties of block}

{Handle to a relocatable block}
{New properties of block]}

{Size of needed block in bytes}

{Handle to a relocatable block}

{Handle to relocatable block to be copied}

{Result code}

456 Appendix A

funetion PtrToHand
(fromPtr : Ptr;
var toHandle : Handle;

byteCount : LONGINT)

: OSErr;

function PtrToXHand
(fromPtr : Ptr;
toHandle : Handle;
byteCount : LONGINT)
: OSErr;

procedure BlockMove
(fromPtr : Ptr;
toPtr : Ptr;
byteCount : Size);

3.2.7 Combining Blocks

function HandAndHand
(appendHandle : Handle;
afterHandle : Handle)
. OSErr;

function PtrAndHand
(appendPtr : Ptr;
afterHandle : Handle;
byteCount : LONGINT)
: OSErr;

3.3 Heap Management

{Pointer to nonrelocatable block to be copied}
{Returns handle to relocatable copy}

{Number of bytes to be copied}

{Result code}

{Pointer to nonrelocatable block to be copied}
{Handle to be set to relocatable copy}
{Number of bytes to be copied}

{Result code}

{Pointer to data to be copied}
{Pointer to destination location}
{Number of bytes to be copied}

{Handle to relocatable block to be appended}
{Handle to relocatable biock to append to}
{Result code}

{Pointer to nonrelocatable block to be appended}
{Handle to relocatable block to append to}
{Number of bytes to append}

{Result code}

3.3.1 Available Space

function FreeMem
. LONGINT;

function MaxBlock
: LONGINT;

procedure PurgeSpace

(var totalBytes : LONGINT;
var contigBytes : LONGINT);

{Total free bytes in the heap}

fLargest contiguous block obtainable by compaction}

{Total free bytes obtainable by purging}
fLargest contiguous block obtainable by purging}

457 Volume One Toolbox Summary

3.3.2 Reclaiming Free Space

function CompactMem
(sizeNeeded : Size) {Size of needed block in bytes}
: Size; {Size of targest free block after compaction}

procedure PurgeMem
(sizeNeeded : Size); {Size of needed block in bytes}

function MaxMem
(var growBytes : Size)} {Returns maximum bytes by which heap can expand}
: Size; {Size of largest free block in heap}
3.3.3 Purging Blocks

procedure EmptyHandie
(theHandle : Handle); {Handle to relocatable block to be purged}

procedure ReallocHandle
(theHandle : Handle; {Empty handle to be realiocated}
sizeNeeded : Size); {Size of block to be allocated in bytes}
3.3.4 Heap Expansion

procedure SetApplLimit
(newLimit : Ptr); {Pointer to new application heap limit}

funetion GetApplLimit
. Ptr; {Current application heap limit}

procedure MaxApplZone;

function StackSpace
: LONGINT; {Amount stack can grow}

458 Appendix A

Chapter 4 QuickDraw Fundamentals

4.1 Mathematical Foundations

4.1.1 Points

type
VHSelect = (V, H);
Point = record
case INTEGER of
0: (v: INTEGER;
h: INTEGER);
1: (vh : array [VHSelect] of INTEGER)
end;

procedure SetPt
(var thePoint : Point;

hCoord : INTEGER;
vCoord : INTEGER);
4.1.2 Rectangles
type
Rect = record
case INTEGER of
0: (top : INTEGER,;
left : INTEGER;

bottom : INTEGER;
right : INTEGER);

1: (topLeft : Point;
botRight : Point)
end;

procedure SetRect
(var theRect : Rect;

left . . INTEGER;
top : INTEGER;
right . INTEGER,;
bottom : INTEGER);

{Selector for coordinates of a point}

{Vertical coordinate}
{Horizontal coordinate}

{Coordinates as a two-element array}

{Point to be set}
{Horizontal coordinate}
{Vertical coordinate}

{Top coordinate}
{Left coordinate}
{Bottom coordinate}
{Right coordinate}

{Top-left corner}
{Bottom-right corner}

{Rectangle to be set}
{Left coordinate}
{Top coordinate}
{Right coordinate)
{Bottom coordinate]}

459 volume One Toolbox Summary

procedure Pt2Rect
{pointi : Point;
point2 : Point;
var theRect : Rect);

{First corner}
{Diagonally opposite corner}
{Rectangle to be set}

4.1.3 Polygons

type

PolyHandle = ~PolyPtr;

PolyPtr = “Polygon;

Polygon = record
polySize : INTEGER; {Length of this data structure in bytes}
polyBBox : Rect; {Bounding box}
polyPoints : array [0..0] of Point {variable-length array of vertices}

end;

4.1.4 Defining Polygons

function OpenPoly
: PolyHandle; {Handle to new polygon}

procedure ClosePoly;
procedure KillPoly
(thePolygon : PolyHandle); {Handle to polygon to be destroyed}

4.1.5 Regions

type

RgnHandle = ~RgnPtr;

RgnPtr = “Region;

Region = record
rgnSize : INTEGER; {Length of this data structure in bytes}
rgnBBox : Rect; {Bounding box}
{additional data defining shape of region}

end;

4.1.6 Defining Regions

funetion NewRgn
: RgnHandle; {Handle to new region}

procedure OpenRgn;

procedure CloseRgn
(theRegion : RgnHandle); {Handle to be set to defined region}

460 Appendix A

procedure DisposeRgn
(theRegion : RgnHandle);

4.1.7 Setting Regions

procedure SetEmptyRgn
(theRegion : RgnHandle);

procedure RectRgn
(theRegion : RgnHandle;
theRect : Rect);

procedure SetRectRgn
(theRegion : RgnHandle;

left : INTEGER;
top : INTEGER,;
right . INTEGER,;
bottom : INTEGER);

procedure CopyRgn
(fromRegion : RgnHandle;
toRegion : RgnHandle);

4.2 Graphical Foundations

.{Handle to region to be destroyed}

{Handle to region to be set empty}

{Handle to region to be set}
{Rectangle to set it to}

{Handle to region to be set}

{Left coordinate of rectangle to set it to}
{Top coordinate of rectangle to set it to}
{Right coordinate of rectangle to set it to}
{Bottom coordinate of rectangle to set it to}

{Region to be copied)
{Region to copy it to}

4.2.1 Bit Maps

BitMap = record
baseAddr : Ptr;
rowBytes : INTEGER,;
bounds : Rect
end;

var
ScreenBits : BitMap;

{Pointer to bit image}
{Row width in bytes}
{Boundary rectangle}

{Bit map for Macintosh screen}

461 volume One Toolbox Summary

4.2.2 Graphics Ports

type
GrafPtr = ~GrafPort;

GrafPort = record

device : INTEGER,; {Device code for font selection}
portBits : BitMap; {Bit map for this port}
portRect : Rect; {Port rectangle}

visRgn : RgnHandle; {Visible region}
clipRgn : RgnHandle; {Clipping region}

bkPat . Pattern; {Background pattern}

fillPat : Pattern; {Fill pattern for shape drawing}

pnLoc : Point; {Current pen location in local coordinates}
pnSize : Point; {Dimensions of graphics pen}

pnMode : INTEGER; {Transfer mode for graphics pen}

pnPat : Pattern; {Pen pattern for line drawing}

pnVis . INTEGER; {Pen visibility level}

txFont . INTEGER; {Font number for text}

txFace . Style; {Type style for text}

txMode : INTEGER; {Transfer mode for text}
txSize : INTEGER,; {Type size for text}

spExtra : Fixed; {Extra space between words}
fgColor : LONGINT; {Foreground color}

bkColor : LONGINT; {Background color}

colrBit : INTEGER; {Color plane}

patStretch : INTEGER; {Private}

picSave : Handle; {Private}

rgnSave : Handle; {Private}

polySave : Handle; {Private}

grafProcs : QDProcsPtr {Pointer to bottleneck procedures}
end;

4.2.3 Pixel Access

function GetPixel
(hCoord : INTEGER; {Horizontal coordinate of pixel}
vCoord : INTEGER) {Vertical coordinate of pixel}
: BOOLEAN; {Is it a black pixel?}

462 Appendix A

4.3 Operations on Graphics Ports

4.3.1 Initializing QuickDraw
procedure InitGraf

(globalVars : Ptr); {Pointer to QuickDraw global variables}

var

ThePort : GrafPtr; {Pointer to current port}

White : Pattern; {Solid white pattern}

Black : Pattern; {Solid black pattern}

Gray : Pattern; {Medium gray pattern}

LtGray : Pattern; {Light gray pattern}

DkGray : Pattern; {Dark gray pattern}

Arrow : Cursor; {Standard arrow cursor]

ScreenBits : BitMap; {Bit map for Macintosh screen}

RandSeed : LONGINT; {Seed for random number generation}

4.3.2 Creating and Destroying Ports

procedure OpenPort
(whichPort : GrafPtr); {Pointer to port to open}

procedure InitPort
(whichPort : GrafPtr); {Pointer to port to initialize}

procedure ClosePort
(whichPort : GrafPtr); {Pointer to port to close}
4.3.3 Current Port

procedure SetPort
(newPort : GrafPtr); {Pointer to port to be made current}

procedure GetPort
(var curPort : GrafPtr); {Returns pointer to current port}

var
ThePort : GrafPtr; {Pointer to current port}

4.3.4 Bit Map and Coordinate System

procedure SetPortBits
(theBits : BitMap); {New bit map for current port}

procedure SetOrigin
(hOrigin : INTEGER; {New horizontal coordinate of port rectangle}
vOrigin : INTEGER); {New vertical coordinate of port rectangle}

463 volume One Toolbox Summary

4.3.5 Port Rectangle

procedure MovePortTo
(leftGlobal : INTEGER;
topGlobal : INTEGER);

procedure PortSize
(portWidth : INTEGER;
portHeight : INTEGER);

4.3.6 Clipping Region

procedure SetClip
(newClip : RgnHandle);

procedure ClipRect
(newClip : Rect);

procedure GetClip
(curClip : RgnHandle);

{New left edge of port rectangle in global coordinates}
{New top edge of port rectangle in global coordinates}

{New width of port rectangle}
{New height of port rectangle}

{Handle to new clipping region}

{Rectangle defining new clipping region}

{Handle to current clipping region}

4.4 Calculations on Graphical Entities

4.4.1 Calculations on Points

procedure AddPt
(addPoint : Point;
var toPoint : Point);

procedure SubPt

(subPoint : Point;
var fromPoint : Point);
function DeltaPoint
(fromPoint : Point;
subPoint : Point)
: LONGINT;
function EqualPt

(point1 : Point;
point2 : Point)
: BOOLEAN;

4.4.2 Coordinate Conversion

procedure LocalToGlobal
(var thePoint : Point);

procedure GlobalToLocal
(var thePoint : Point);

{Point to be added}
{Point to add it to}

{Point to be subtracted}
{Point to subtract it from}

{Point to subtract from}
{Point to be subtracted}
{Difference between points}

{First point to be compared}
{Second point to be compared}
{Are they equal?}

{Point to be converted}

{Point to be converted}

464 Appendix A

4.4.3 Testing for Inclusion

funetion PtinRect
(thePoint : Point;
theRect : Rect)
: BOOLEAN;

function PtinRgn
(thePoint : Point;
theRegion : RgnHandle)
: BOOLEAN;

function RectinRgn
(theRect : Rect;
theRegion : RgnHandle)
: BOOLEAN;

function PinRect
(theRect : Rect;
thePoint : Point)
- LONGINT;

{Point to be tested}
{Rectangle to test it against}
{ls the point in the rectangle?}

{Point to be tested}
{Handle to region to test it against}
{ls the point in the region?}

{Rectangle to be tested}
{Handle to region to test it against}
{Does the rectangle intersect the region?}

{Rectangle to pin to}
{Point to be pinned}
{Point pinned to rectangle}

4.4.4 Calculations on One Rectangle

procedure OffsetRect
(var theRect: Rect;
hOffset : INTEGER;
vOffset . INTEGERY);

procedure InsetRect
(var theRect: Rect;
hinset : INTEGER,;
vinset : INTEGER);

function EmptyRect
(theRect : Rect)
: BOOLEAN;

{Rectangle to be offset}
{Horizontal offset in pixels}
{Vertical offset in pixels}

{Rectangle to be inset}
{Horizontal inset in pixels}
{Vertical inset in pixels}

{Rectangle to be tested}
{Is the rectangle empty?}

4.4.5 Calculations on Two Rectangles

procedure UnionRect
(recti : Rect;
rect2 : Rect;
var resultRect : Rect);

function SectRect

(rectl : Rect;
rect2 : Rect;
var resultRect : Rect)
. BOOLEAN;

{First rectangle}
{Second rectangle}
{Returns union of two rectangles}

{First rectangle}

{Second rectangle}

{Returns intersection of two rectangles}
{Do the rectangles intersect?}

465 Volume One Toolbox Summary

function EqualRect

(rect1 : Rect; {First rectangle}
rect2 : Rect) {Second rectangle}
: BOOLEAN; fAre the rectangles equal?}

4.4.6 Calculations on Polygons
procedure OffsetPoly

(thePolygon : PolyHandle; {Polygon to be offset}
hOffset : INTEGER; {Horizontal offset in pixels}
vOffset : INTEGERY); {Vertical offset in pixels}

4.4.7 Calculations on One Region
procedure OffsetRgn

(theRegion : RgnHandle; {Handle to region to be offset}

hOffset : INTEGER; {Horizontal offset in pixels}

vOffset : INTEGER); {Vertical offset in pixels}
procedure InsetRgn

(theRegion : RgnHandle; {Handle to region to be inset}

hinset . INTEGER; {Horizontal inset in pixels}

vinset : INTEGER); {Vertical inset in pixels}
function EmptyRgn

(theRegion : RgnHandle) {Handle to region to be tested}

: BOOLEAN; {ls the region empty?}

4.4.8 Calculations on Two Regions
procedure UnionRgn

(regiont - RgnHandle; {Handle to first region}

region2 : RgnHandle; {Handle to second region}

resultRegion : RgnHandle); fHandle to be set to union of two regions}
procedure SectRgn

(regioni : RgnHandle; {Handle to first region}

region2 : RgnHandle; {Handle to second region}

resultRegion : RgnHandle); {Handle to be set to intersection of two regions}
procedure DiffRgn

(region1 : RgnHandle; fHandle to region to be subtracted from}

region2 : RgnHandle; {Handle to region to subtract from it}

resultRegion : RgnHandle); {Handle to be set to difference of two regions}
procedure XOrRgn

(region1 : RgnHandle; {Handle to first region}

region2 : RgnHandle; {Handle to second region}

resultRegion : RgnHandle), {Handle to be set to “exclusive or” of two regions}

466 AppendixA

function EqualRgn
(region1 : RgnHandle;
region2 : RgnHandle)

: BOOLEAN;

4.4.9 Scaling and Mapping

procedure ScalePt
(var thePoint : Point;
fromRect : Rect;
toRect . Rect);

procedure MapPt
(var thePoint : Point;
fromRect : Rect;
toRect : Rect);

procedure MapRect
(var theRect : Rect;
fromRect : Rect;
toRect : Rect);

procedure MapPoly
(thePolygon : PolyHandle;
fromRect : Rect;
toRect : Rect);

procedure MapRgn
(theRegion : RgnHandle;
fromRect : Rect;
toRect : Rect);

Chapter 5 Drawing

{Handle to first region}
{Handle to second region}
{Are the regions equal?}

{Point to be scaled}
{Rectangle to scale it from}
{Rectangle to scale it to}

{Point to be mapped}
{Rectangle to map it from}
{Rectangie to map it to}

{Rectangle to be mapped}
{Rectangle to map it from}
{Rectangle to map it to}

{Polygon to be mapped}
{Rectangle to map it from}
{Rectangle to map it to}

{Region to be mapped}
{Rectangle to map it from}
{Rectangle to map it to}

5.1 Drawing Fundamentals

5.1.1 Patterns

type
PatHandle = ~PatPtr;
PatPtr = ~Pattern;

Pattern = packed array [0..7] of 0..255;

{8 rows of 8 bits each}

467 volume One Toolbox Summary

GrafPort = record

kaat . Pattern; {Background pattern}
fillPat : Pattern; {Fill pattern for shape drawing}
-pr.llsa't : Pattern; {Pen pattern for line drawing}
anﬁ{'
procedure BackPat
(newPattern : Pattern); {New background pattern}
function GetPattern
(patterniD : INTEGER) {Resource ID of desired pattern}
: PatHandle; {Handle to pattern in memory}
procedure GetindPattern
(var thePattern : Pattern; {Returns desired pattern}
patListiD : INTEGER; {Resource ID of pattern list}
patindex : INTEGER); {index of pattern within list}

5.1.2 Standard Patterns

var
White : Pattern; {Solid white}
LtGray : Pattern; {Light gray}
Gray : Pattern; . {Medium gray}
DkGray : Pattern; {Dark gray}
Black : Pattern; {Solid black}
const
SysPatList = 0; {Resource ID of standard pattern list}
DeskPatiD = 16; {Resource ID of screen background pattern}

5.1.3 Transfer Modes
GrafPort = record

pnMode : INTEGER; {Transfer mode for graphics pen}
ix.lvio'de . INTEGER; {Transfer mode for text}

anii;.

468 Appendix A

const
SrcCopy
SrcOr
SrcX0r
SrcBic
NotSrcCopy
NotSrcOr
NotSrcXO0r
NotSrcBic

PatCopy
PatOr
PatXOr
PatBic
NotPatCopy
NotPatOr
NotPatXOr
NotPatBic

0
1
2
3
4
5
6
7
8.
9
0
1
2
3
4
5

o nnn

10;
11;
12;
13;
14;
15;

5.14 Low-Level Bit Transfer

procedure CopyBits
(fromBitMap : BitMap;

toBitMap : BitMap;
fromRect : Rect;
toRect . Rect;

mode : INTEGER;
clipTo : RgnHandle);

procedure CopyMask
(sourceMap : BitMap;
maskMap : BitMap;
destMap : BitMap;
sourceRect : Rect;
maskRect : Rect;
destRect : Rect);

5.1.5 Scrolling in a Bit Map
procedure ScrollRect

(theRect . Rect;
hScroll : INTEGER;
vScroll : INTEGER;

updateRgn : RgnHandle);

{Copy source to destination}

{Set selected bits to black}

flnvert selected bits}

{Clear selected bits to white}

{Copy inverted source to destination}

{Leave selected bits alone, set others to black}
{Leave selected bits alone, invert others}

{Leave selected bits alone, clear others to white}

{Copy pattern to destination}

{Set selected bits to black}

{invert selected bits}

{Clear selected bits to white}

{Copy inverted pattern to destinationl

{Leave selected bits alone, set others to black}
{Leave selected bits alone, invert others}

{Leave selected bits alone, clear others to white}

{Bit map to copy from}
{Bit map to copy to}
fRectangle to copy from}
{Rectangle to copy to}
{Transfer mode}

{Region to clip to}

{Bit map to copy from}

{Bit map containing mask}
{Bit map to copy to}
{Rectangle to copy from}
{Rectangle containing mask}
{Rectangle to copy to}

{Rectangle to be scrolled}
{Horizontal scroll distance in pixels)
{Vertical scroll distance in pixels}
{Region scrolled into rectangle}

469 volume One Toolbox Summary

5.1.6 Special Operations
procedure CalcMask

(sourceBits : Ptr; {Pointer to source image}

maskBits : Ptr; {Pointer to resuft mask}

sourceRow : INTEGER; fRow width of source bit map in bytes}
maskRow : INTEGER; fRow width of mask bit map in bytes}
rectHeight : INTEGER; {Height of source and mask rectangles in pixels}

rectWidth : INTEGER); {Width of source and mask rectangles in words}
procedure SeedFill

(sourceBits : Ptr; {Pointer to source image}

maskBits : Ptr; {Pointer to result mask}

sourceRow : INTEGER,; {Row width of source bit map in bytes}
maskRow : INTEGER; {Row width of mask bit map in bytes}
rectHeight : INTEGER; {Height of source and mask rectangles in pixels}
rectWidth : INTEGER; {Width of source and mask rectangles in words}
seedHoriz : INTEGER; {Horizontal coordinate of starting point}

seedVert : INTEGER); {Vertical coordinate of starting point}

5.2 Line Drawing

5.2.1 Pen Characteristics

type
GrafPort = record

pnLoc : Point; {Current location of graphics pen in local coordinates}
pnSize : Point; {Dimensions of graphics pen}
pnMode : INTEGER,; {Transfer mode for graphics pen}
pnPat : Pattern; {Pen pattern for line drawing}
pnVis : INTEGER; {Pen level}

end;

PenState = record

pnLoc : Point; {Location of pen in bit map}
pnSize : Point; {Width and height of pen in pixels}
pnMode : INTEGER,; {Transfer mode for line drawing and area fill}
pnPat : Pattern {Pen pattern}

end;

pracedure GetPenState
(var curState : PenState); {Returns current pen characteristics}

procedure SetPenState
(newState : PenState); {New pen characteristics}

470 Appendix A

5.2.2 Setting Pen Characteristics

procedure PenSize
(newWidth : INTEGER; {New pen width}
newHeight : INTEGER); {New pen height}

procedure PenPat
(newPat : Pattern); {New pen pattern}

precedure PenMode
(newMode : INTEGER); {New pen transfer mode}

procedure PenNormal;

5.2.3 Hiding and Showing the Pen

type
GrafPort = record

pnVis : INTEGER: {Pen visibility level}

end;
procedure HidePen;
procedure ShowPen;

5.2.4 Drawing Lines
procedure GetPen

(var penLoc : Point); {Returns current pen location}
procedure Move

(horiz : INTEGER; {Horizontal distance to move, in pixels}

vert : INTEGER); {Vertical distance to move, in pixels}
procedure MoveTo

(horiz : INTEGER,; {Horizontal coordinate to move to, in pixels}

vert : INTEGER); {Vertical coordinate to move to, in pixels}
procedure Line

(horiz : INTEGER; {Horizontal distance to draw, in pixels}

vert : INTEGER); {Vertical distance to draw, in pixels}

procedure LineTo
(horiz : INTEGER; {Horizontal coordinate to draw to, in pixels}
vert : INTEGER); {Vertical coordinate to draw to, in pixels}

471

Volume One Toolbox Summary

5.3 Drawing Shapes

5.3.1 Basic Drawing Operations

type
GrafVerb = (Frame,
Paint,
Erase,
Invert,
Fill);

5.3.2 Drawing Rectangles

procedure FrameRect
(theRect

procedure PaintRect
(theRect

procedure FillRect
{theRect
fillPat

procedure EraseRect
(theRect

procedure InvertRect
(theRect

: Rect);

: Rect);

: Rect;

: Pattern);

: Rect);

. Rect);

{Draw outline}

{Fill with current pen pattern}
{Fill with background pattern}
{Invert pixels}

{Fill with specified pattern}

{Rectangle to be framed}
{Rectangle to be painted}

{Rectangle to be filled}
{Pattern to fill it with}

{Rectangle to be erased}

{Rectangle to be inverted}

5.3.3 Drawing Rounded Rectangles
procedure FrameRoundRect

(theRect

cornerWidth
cornerHeight

: Rect;

procedure PaintRoundRect

(theRect

cornerWidth
cornerHeight

. INTEGER,;
: INTEGER);

: Rect;

procedure FillRoundRect

(theRect

cornerWidth
cornerHeight

fillPat

: INTEGER;
: INTEGER);

: Rect;

. INTEGER;
: INTEGER,

: Pattern);

{Body of rectangle}
{Width of corner oval}
{Height of corner oval}

{Body of rectangle}
{Width of corner oval}
{Height of corner oval}

{Body of rectangle}
{Width of corner oval}
{Height of corner oval}
{Pattern to fill with}

472 AppendixA

procedure EraseRoundRect
(theRect : Rect; {Body of rectangle}
cornerWidth : INTEGER; {Width of corner oval}
cornerHeight : INTEGER); {Height of corner oval}

procedure InvertRoundRect
(theRect : Rect; {Body of rectangle}
cornerWidth : INTEGER; {Width of corner oval}
cornerHeight : INTEGER); {Height of corner oval}

5.3.4 Drawing Ovals
procedure FrameOval

(inRect : Rect); {Rectangle defining oval}
procedure PaintOval

(inRect : Rect); {Rectangle defining oval}
procedure FillOval

(inRect : Rect; {Rectangle defining oval}

fillPat : Pattern); {Pattern to fill with}
procedure EraseOval

(inRect : Rect); {Rectangle defining oval}

procedure InvertOval
(inRect : Rect); {Rectangle defining oval}

5.3.5 Drawing Arcs and Wedges
procedure FrameArc

(inRect . Rect; {Rectangle defining oval}
startAngle : INTEGER; {Starting angle}
arcAngle : INTEGER); {Extent of arc}
procedure PaintArc
(inRect : Rect; {Rectangle defining oval}
startAngle : INTEGER; {Starting angle}
arcAngle : INTEGER); {Extent of arc}
procedure FillArc
(inRect : Rect; {Rectangle defining oval}
startAngle : INTEGER; {Starting angle}
arcAngle : INTEGER; {Extent of arc}
fillPat : Pattern); {Pattern to fill with}
procedure EraseArc
(inRect : Rect; {Rectangle defining oval}
startAngle : INTEGER; {Starting angle}

arcAngle : INTEGER); {Extent of arc}

473 Volume One Toolbox Summary

procedure InvertArc
(inRect . Rect;
startAngle : INTEGER;
arcAngle : INTEGER);

procedure PtToAngle
(inRect : Rect;
thePoint : Point;

var theAngle : INTEGER);

5.3.6 Drawing Polygons
procedure FramePoly

(thePolygon : PolyHandle);

procedure PaintPoly

(thePolygon : PolyHandle);

procedure FillPoly

(thePolygon : PolyHandle;

fillPat : Pattern);
procedure ErasePoly

(thePolygon : PolyHandle);

procedure InvertPoly

(thePolygon : PolyHandle);

5.3.7 Drawing Regions
procedure FrameRgn

(theRegion : RgnHandle);

procedure PaintRgn

(theRegion : RgnHandle);

procedure FillRgn

(theRegion : RgnHandle;

fillPat : Pattern);
procedure EraseRgn

(theRegion : RgnHandle);

procedure InvertRgn

(theRegion : RgnHandle);

{Rectangle defining oval}
{Starting angle}
{Extent of arc}

{Rectangle to measure in}
{Point to be measured}
{Returns angle of point, in degrees}

{Handle to polygon to be framed)
{Handle to polygon to be painted}

{Handle to polygon to be filled}
{Pattern to fill it with}

{Handle to polygon to be erased}

{Handle to polygon to be inverted}

{Handle to region to be framed}
{Handle to region to be painted}

{Handle to region to be filled}
{Pattern to fill it with}

{Handle to region to be erased}

{Handle to region to be inverted}

474

5.4 Pictures and Icons

Appendix A

5.4.1 Picture Records

type
PicHandle = ~PicPtr;
PicPtr = “Picture;

Picture = record
picSize : INTEGER;
picFrame : Rect;

{Length of this data structure in bytes}
{Smallest rectangle enclosing the picture}

{additional data defining contents of picture}

end;

5.4.2 Defining Pictures

function OpenPicture

(picFrame : Rect)

: PicHandle;
procedure ClosePicture;
function GetPicture
(picturelD : INTEGER)
: PicHandle;

procedure KillPicture
(thePicture : PicHandle);
5.4.3 Drawing Pictures

procedure DrawPicture
(thePicture : PicHandle;

inRect : Rect);
5.4.4 Icons
function Getlcon
(iconiD : INTEGER)
: Handle;
procedure Ploticon
(inRect : Rect;

iconHandle : Handle);

{Frame for new picture}
{Handle to new picture}

{Resource ID of desired picture}
{Handle to picture in memory}

{Handle to picture to be destroyed}

{Picture to be drawn}
{Rectangle to draw it in}

{Resource ID of desired icon}
{Handle to icon in memory}

{Rectangle to plot in}
{Handle to icon}

475 Volume One Toolbox Summary

Chapter 6 Resources

6.1 Resource Types

6.1.1 Resource Types

type
ResType = packed array [1..4] of CHAR; {Resource type}

6.2 Resource Files

6.2.1 Opening and Closing Resource Files
function OpenResFile

(fileName : Str255) {Name of resource file to be opened}
: INTEGER,; {Reference number of file}
procedure CloseResFile
(refNum : INTEGER}); {Reference number of resource file to be closed}

6.2.2 Current Resource File

funetion CurResFile
. INTEGER; {Reference number of current resource file}

procedure UseResFile
(refNum : INTEGER); {Reference number of resource file to be made current}

6.3 Access to Resources

6.3.1 Getting Resources
function GetResource

(rsrcType : ResType; {Resource type}
rsrciD : INTEGER) {Resource 1D}
: Handle; {Handle to resource}
function GetNamedResource
(rsrcType : ResType; {Resource type}
rsrcName : Str255) {Resource name}
: Handle; {Handle to resource}
function Get1Resource
(rsrcType : ResType; {Resource type}
rsrclD : INTEGER) {Resource ID}

: Handle; {Handle to resource}

476 AppendixA

function GetiNamedResource
(rsrcType : ResType;
rsrcName : S$tr255)
: Handle;

6.3.2 Disposing of Resources

procedure ReleaseResource
(theResource : Handle);

procedure DetachResource
(theResource : Handle);

6.3.3 Generating All Resources

function CountTypes

. INTEGER;

procedure GetindType
(var rsrcType : ResType;
index . INTEGER);

CountResources
(rsrcType : ResType)
: INTEGER;

GetindResource
(rsrcType : ResType;
index : INTEGER)

. Handle;

funetion

function

function Counti1Types

: INTEGER,;

procedure Get1indType
(var rsrcType : ResType;

index - INTEGER);
function CountiResources
(rsrcType : ResType)
. INTEGER;
function GetlindResource

(rsrcType : ResType;
index : INTEGER)
: Handle;

{Resource type}
{Resource name}
{Handle to resource}

{Resource to be released}

{Resource to be detached}

{Total number of resource types}

{Returns next resource type}
{Index of desired resource type}

{Resource type}
{Total number of resources of this type}

{Resource type}
{Index (not 1D) of desired resource}
{Handle to resource}

{Total number of resource types}

{Returns next resource type}
{Index of desired resource type}

{Resource type}
{Total number of resources of this type}

{Resource type}
{Index (not ID) of desired resource}
{Handle to resource}

477 Volume One Toolbox Summary

6.3.4 Loading Resources
procedure SetReslLoad

(onOrOff : BOOLEAN); {Turn automatic loading on or off?}
procedure LoadResource
(theResource : Handle); {Resource to be loaded}

6.4 Properties of Resources

6.4.1 Identifying Information
procedure GetResinfo

(theResource : Handle; {Handle to resource}
var rsrclD : INTEGER; {Returns resource 1D}
var rsrcType : ResType; {Returns resource type}
var rsrcName : Str255); {Returns resource name}
procedurs SetResinfo

(theResource : Handle; {Handle to resource}
rsrclD : INTEGER,; {New resource ID}
rsrcName @ Str255); {New resource name}

6.4.2 Resource Attributes
function GetResAttrs

(theResource : Handle) {Handle to resource}
: INTEGER; {Current resource attributes}
procedure SetResAttrs
(theResource : Handle; {Handle to resource}
newAttrs : INTEGER); {New resource attributes}
const
ResSysHeap = $0040; {Resides in system heap}
ResPurgeable = $0020; {Purgeable from heap}
ResLocked = $0010; {Locked during heap compaction}
ResProtected = $0008; {Protected from change}
ResPreload = $0004; {Preload when file opened}
ResChanged = $0002; {Has been changed in memory}

6.4.3 Other Properties

function SizeResource
(theResource : Handle) {Handle to resources}
: LONGINT; {Size of resource data, in bytes}

478 Appendix A

function MaxSizeRsrc

(theResource : Handle) {Handle to resource}
: LONGINT; {Approximate size of resource data, in bytes}
function HomeResFile
(theResource : Handle) {Handle to resource}
. INTEGER; {Reference number of home resource file}

6.5 Modifying Resources

6.5.1 Creating Resource Files

procedure CreateResFile
(fileName : Str255); {Name of resource file to be created}

6.5.2 Marking Changed Resources

procedure ChangedResource
(theResource : Handle); {Resource to be marked as changed}

6.5.3 Adding and Removing Resources
procedure AddResource

(rsrcData : Handle; {Handle to data of new resource}
rsrcType : ResType; {Type of new resource}

rsrciD . INTEGER; {ID number of new resource}
rsrcName : Str255); {Name of new resource}

procedure RmveResource
(theResource : Handle); {Resource to be removed}

function UniquelD

(rsrcType : ResType); {Resource type}
: INTEGER {Unique ID number for this type}
function UniquellD
(rsrcType : ResType) {Resource type}
: INTEGER; {Unique ID for this type in current resource file}

6.5.4 Updating Resource Files

procedure UpdateResFile
(refNum : INTEGER); {Reference number of resource file to be updated}

procedure WriteResource
(theResource : Handle); {Resource to be written out}

479 volume One Tcolbox Summary

6.5.5 Purge Checking

procedure SetResPurge
(onOrOff : BOOLEAN); {Turn purge checking on or off?}

6.6 Nuts and Bolts

6.6.1 Error Reporting
function ResError

: INTEGER; {Result code from last resource-related operation}

const

ResNotFound = —192; {Resource not found}

ResFNotFound = —193; {Resource file not found}

AddResFailed = —194; {AddResource failed}

RmvResFailed = —196; {RmveResource failed}

ResErrAttr = —198; {Operation prohibited by resource attribute}

MapReadErr = —199; {Error reading resource map}

DskFulErr = — 34, {Disk full}

6.6.2 Resource File Attributes
function GetResFileAttrs

(refNum : INTEGER) {Reference number of resource file}
: INTEGER; {Current resource file attributes}
procedure SetResFileAttrs
(refNum : INTEGER; {Reference number of resource file}
newAttrs : INTEGER); {New resource file attributes}
const
MapReadOnly = 128; {No changes allowed}
MapCompact = 64; {Compact file when updated}
MapChanged = 32; {Write resource map when updated}

Chapter 7 Program Startup

7.1 Starting and Ending a Program

7.1.1 Starting a Program
procedure Launch {Assembly language only}
procedure Chain {Assembly language only}

480 Appendix A

7.1.2 Loading and Unloading Segments

procedure LoadSeg

procedure UnloadSeg
(anyRoutine : Ptr);

7.1.3 Ending a Program

procedure ExitToShell;

procedure Restart;

7.2 Packages

{Assembly language only}

{Pointer to any routine in the segment}

7.2.1 Standard Packages

const
ListMgr = 0;
Dskinit = 2;
StdFile = 3;
FIPoint = 4;
TrFunc = 5;
IntUtil = 6;
BDConv = 7;

)

7.2.2 Initializing Packages

procedure InitPack
(packNumber : INTEGER);

procedure InitAliPacks;

7.3 Finder Information

{List Manager Package}

{Disk Initialization Package}
{Standard File Package}
{Floating-Point Arithmetic Package}
{Transcendental Functions Package}
{International Utilities Package}
{Binary/Decimal Conversion Package}

{Package number}

7.3.1 Signatures and File Types

type
0SType = packed array [1..4] of CHAR;

{Creator signature or file type}

481 Volume One Toolbox Summary

7.3.2 Finder Information Records
type
Finfo = record
fdType : 0SType;
fdCreator : OSType;
fdFlags : INTEGER,;
fdLocation : Point;
fdFidr : INTEGER
end;
const
FHasBundle = $2000;
Finvisible = $4000;
FDisk = 0
FDesktop = —2;
FTrash = -3;

7.3.3 Accessing Finder Properties

function GetFinfo

(fName : Str255;
vRefNum : INTEGER;
var finderinfo : Finfo)
: OSErr;
function SetFinfo
(fName . Str255;

vRefNum : INTEGER;
tinderinfo : Finfo)
: OSErr;

7.3.4 Startup Information

procedure CountAppFiles
(var message : INTEGER,;

var count . INTEGER);
procedure GetAppFiles
(index . INTEGER;

var theFile : AppFile);

procedure ClrAppFiles
(index : INTEGER);

procedure GetAppParms
(var appName : Str255;
var appResFile : INTEGER;
var startHandle : Handle);

{File type}

{Creator signature}

{Finder flags}

{Top-left corner of file's icon in local (window) coordinates}
{Folder or window containing icon}

{Application has Finder resources}
{File not visible on desktop}

{lcon is in main disk window}
{lcon is on desktop}
{lcon is in trash window}

{File name}

{Volume or directory}

{Returns current Finder information}
{Result code}

{File name}

{Volume or directory}
{New Finder information}
{Result code}

{Open or print?}
{Returns number of files selected}

{Index number of desired file}
{Returns identifying information about file}

{iIndex number of file to be cleared}

{Returns name of application file}
{Returns reference number of application resource file}
{Returns handle to startup information}

482 Appendix A

const
AppOpen = 0; {Open document file}
AppPrint = 1; {Print document file}
type
AppFile = record
vRefNum : INTEGER,; {Volume or directory}
fType : 0SType; {File type}
versNum : INTEGER; {Version number}
fName : Str255 {Name of file}
end;

7.4 Desk Scrap

7.4.2 Scrap Information

type
PScrapStuff = *ScrapStuff;

ScrapStuff = record
scrapSize : LONGINT; {Overall size of scrap in bytes]
scrapHandle : Handle; {Handle to scrap in memory}
scrapCount : INTEGER; {Current scrap count}
scrapState : INTEGER; {ls scrap in memory?}
scrapName : StringPtr {Pointer to name of scrap file}
end;

funetion InfoScrap

: PScrapStuff; {Pointer to current scrap information}
7.4.3 Reading and Writing the Scrap
function GetScrap

(theltem : Handle; {Handle to be set to requested item}

itemType : ResType; {Resource type of desired item}

var offset : LONGINT) {Returns byte offset of item data within scrap contents}
. LONGINT; {Length of item data in bytes, or error code}

function PutScrap

(itemLength : LONGINT; {Length of item data in bytes}

itemType : ResType; {Resource type of item}

theltem : Ptr) {Pointer to item data}
: LONGINT; {Result code}

function ZeroScrap
: LONGINT; {Result code}

483 volume One Toolbox Summary

const
NoScrapErr = —100;
NoTypeErr = —102;

{Desk scrap not initialized}
{No item of requested type}

7.4.4 Loading and Unloading the Scrap

function LoadScrap
: LONGINT;

function UnloadScrap
: LONGINT;

Chapter 8 Text

{Result code}

{Result code}

8.1 Keys and Characters

8.1.1 Character Set

const
CommandMark = $11;
CheckMark = §$12;
DiamondMark = $13;
AppleMark = §$14;

8.1.2 Character Strings

type
StringPtr = ~§1r255;
StringHandle = ~StringPtr;

function NewString
(oldString : Str255)
: StringHandle;

function GetString
(stringlD : INTEGER)
: StringHandle;

procedure GetlndString
(var theString : Str255;
stringlistiD : INTEGER,;
stringindex : INTEGER);

procedure SetString
(theString : StringHandle;
setTo : Str255);

{Character code of command mark}
{Character code of check mark}
{Character code of diamond mark}
{Character code of Apple mark}

{Pointer to a string}
fHandle to a string}

{String to be copied}
{Handle to copy}

{Resource ID of desired string}
{Handle to string in memory}

{Returns requested string}
{Resource ID of string list}
{Index of string within list}

{Handle to be set}
{String to set it to}

484

Appendix A

8.2 Fonts

8.2.1 Standard Font Numbers

const
SystemFont
ApplFont
NewYork
Geneva
Monaco
Venice
London
Athens
SanFran
Toronto
Cairo
LosAngles

Times
Helvetica
Courier
Symbol
Taliesin

weENIOORELNM SO

—h
—r

—
»

I

I
N N N
N = o

= 23;
24;

8.2.2 Font Records

type

FontRec = record

fontType
firstChar
lastChar
widMax
kernMax
nDescent
fRectWidth :
fRectHeight :
owTlLoc
ascent
descent
leading
rowWords
{bitimage

{locTable

: INTEGER;
: INTEGER;
. INTEGER,;
: INTEGER,
: INTEGER;
: INTEGER;

INTEGER;
INTEGER;

: INTEGER;
: INTEGER;
. INTEGER,;
: INTEGER;
: INTEGER;
. array [1..rowWords, 1..chHeight] of INTEGER;}

{Font type (proportional or fixed-width)}
{Character code of first defined character}
{Character code of last defined character]
{Maximum character width in pixeis}
{Maximum backward kern in pixels}
{Negative of descent in pixels}

{Width of font rectangle in pixels}
{Height of font rectangle in pixels}
{Offset to owTable in words}

{Ascent in pixels}

{Descent in pixels}

{Leading in pixels}

{Row width of bitimage in words}

{Font image}

. array [firstChar..lastChar+2] of INTEGER;}

{Location table}

485 Volume One Toolbox Summary

fowTable : array [firstChar..lastChar+2] of INTEGER;}
{Offset/width table}

{widthTab : array [firstChar..lastChar+2] of INTEGER;}
{Character-width table (optional)}

{heightTab : array [firstChar..lastChar+2] of INTEGER}
{Image-height table (optional)}

end;
const
PropFont = $9000; {Font type for proportional font}
PrpFntH = $9001; { Proportional font with height table}
PrpFntW = $9002; { Proportional font with width table}
PrpFntHW = $3003; { Proportional font with height and width tables}
FixedFont = $B000; {Font type for fixed-width font}
FxdFntH = $B001; { Fixed-width font with height table}
FxdFntW = $B002; { Fixed-width font with width table}
FxdFntHW = $B003; { Fixed-width font with height and width tables}
FontWid = $ACBO; {Font type for font width table}

8.2.4 Initializing the Toolbox for Fonts
procedure InitFonts;

8.2.5 Access to Fonts

procedure GetFontName
(fontNumber : INTEGER; {Font number}
var name : Str255); {Returns name of typeface}

procedure GetFNum
(name : Str2ss; {Name of typeface}
var fontNumber : INTEGER); {Returns font number}

function RealFont
(fontNumber : INTEGER; {Desired font number}
pointSize : INTEGER) {Desired point size}
: BOOLEAN,; {Does font exist?}

8.2.6 Requesting Font Information

procedure GetFantinfo
(var thelnfo : Fontinfo); {Returns metric information about current text font}

486 Appendix A

type
Fontinfo = record
ascent : INTEGER;
descent : INTEGER;
widMax : INTEGER;
leading : INTEGER
end;

procedure FontMetrics
(var thelnfo : FMetricRec);

type
FMetricRec = record
ascent : Fixed;
descent : Fixed;
leading : Fixed;
widMax : Fixed;
wTabHandle : Handle
end;

8.2.7 Locking a Font
procedure SetFontLock

(lock : BOOLEAN);
8.2.8 Nuts and Bolts

procedure SetFractEnable
(useFracts : BOOLEAN);

procedure SetFScaleDisable
(noScaling : BOOLEAN);

{Ascent in pixels}
{Descent in pixels}
{Maximum character width in pixels}
{Leading in pixels}

{Returns metric information about current text font}

{Ascent in fractional points}

{Descent in fractional points}

{Leading in fractional points}

{Maximum character width in fractional points}
{Handle to global width table}

{Lock or unlock?}

{Use fractional character widths?}

{Turn off font scaling?}

487 volume One Toolbox Summary

8.3 Text and QuickDraw

8.3.1 QuickDraw Text Characteristics

type
GrafPort = record
device : INTEGER;
txFont : INTEGER:
txFace : Style;
txMode : INTEGER;
txSize : INTEGER;
spExtra: Fixed;
enﬂ;' .
Styleltem =
Style = set of Styleltem;

{Device code}

{Font number of typeface}

{Type style}

{Transfer mode for text}

{Type size in points}

{Extra space between words, in pixels}

(Bold, Italic, Underline, Qutline, Shadow, Condense, Extend);

8.3.2 Setting Text Characteristics

procedure GrafDevice

(deviceCode : INTEGER);

procedure TextFont

(fontNumber : INTEGER);

procedure TextSize
(pointSize : INTEGER);

procedure TextFace
(typeStyle : Style);

procedure TextMode
(mode : INTEGER);

procedure SpaceExtra
(extraSpace : Fixed);
8.3.3 Drawing Text

procedure DrawChar
(theChar : CHAR);

procedure DrawString
(theString : Str255);

{Device code}

{Font number of desired typeface}
{Type size in points}

{Type style}

{Transfer mode for text}

{Extra space between words, in pixels}

{Character to be drawn}

{String to be drawn}

488

procedure DrawText
(theText : Ptr;
firstChar : INTEGER;
charCount : INTEGER);

8.3.4 Measuring Text

function CharWidth
(theChar : CHAR)
: INTEGER;
function StringWidth
(theString : Str255)
. INTEGER;
function TextWidth
(theText : Pir;
firstChar : INTEGER;
charCount : INTEGER)
: INTEGER;

procedure MeasureText
(charCount : INTEGER;
theText : Ptr;
widthTable : Ptr);

Appendix A

{Pointer to text to be drawn}
{index of first character within text}
{Number of characters to be drawn}

{Character to be measured}
{Width of character}

{String to be measured}
{Width of string}

{Pointer to text to be measured}

{index of first character within text}
{Number of characters to be measured}
{Width of text}

{Number of characters to be measured}
{Pointer to text to be measured}
{Pointer to table of text widths}

APPENDIX

—
—
|
—
aa—
E——

Resource Formats

489

490 Appendix B

Resource Type 'BNDL' [7.5.4]

Any number
of resources

Any number
of resources

Signature
(4 bgtes)

Resource |D of autegraph
(2 bytes)

Number of resource types minus 1
(2 bytes)

Resource type
(4 bytes)

Number of resources minus 1
(2 bytes)

Local ID
(2 bytes)

Actual resource ID
(2 bytes)

Local 1D
(2 bytes)

Actual resource ID
(2 bytes)

LIl

Resource type
(4 bytes)

Number of resources minus 1
(2 bytes)

Lecal ID
(2 bgtes)

Actual resource ID
(2 bytes)
[]
= °
[]

Lecal ID
(2 bytes)

Actual resource ID
(2 bytes)

Any
number
of
resource

types

491 Resource Formats

Resource Type 'CODE' [7.5.1]

Jump table offset of first routine in segment
(2 bytes)

Segment
header

Number of jump table entries for segment
(2 bgtes)

Code of segment

(indefinite length)

492 Appendix B

Resource Type FONT' [8.4.5]

fontType (2 bytes)

firstChar (2 bytes)

lastChar (2 bytes)

widMax (2 bytes)

kernMax (2 bytes)

nDescent (2 bytes)

fRectWidth (2 bytes)

fRectHeight (2 bytes)

owTloc (2 bytes)

ascent (2 bytes)

descent (2 bytes)

leading (2 bytes)

rowwords (2 bytes)

bitimage

(indefinite length)

locTable

(indefinite length)

owTable

[]
[

‘ (indefinite length) I'

493 Resource Formats

Resource Type FREF' [7.5.3)

File type
(4 bytes)

Local ID of icon list (2 bytes)

' Resource Type FRSV' [8.4.7]

Number of fo:nts (2 bytes)

Resource ID of fir:’st font (2 bytes)

| Resource ID of 1a:st font (2 bytes) |

494 Appendix B

Resource Type 'FWID' [8.4.6]

fontType (2 bytes)
firstChar (2 bytes)
lastChar (2 bytes)
widMax (2 bytes)
kernMax (2 bytes)

nDescent (2 bytes)
fRectWidth (2 bytes)
fRectHeight (2 bytes)

owTloc (2 bytes)

ascent (2 bytes)

descent (2 bytes)

leading (2 bytes)

owTable

I (indefinite length) |

495 Resource Formats

Resource Type ICN# [5.5.4]

lcon
(128 bytes)

Icon
(128 bytes)
Any number
¢ of icons
. . .
[]) []

icon

(128 bytes)

496 Appendix B

Resource Type 'ICON’ [5.5.3]

Row 1

(4 bytes)
Row 2
(4 bytes)
: 128 bytes
. . .

Row 32
(4 bytes)

Resource Type 'INIT' [8.4.4]

initialization routine

(indefinite 1ength)

497 Resource Formats

Resource Type 'NFNT' [8.4.5]

fontType (2 bytes)

firstChar (2 bytes)

lastChar (2 bytes)

widMax (2 bytes)

kernMax (2 bytes)

nDescent (2 bytes)

fRectWidth (2 bytes)

fRectHeight (2 bytes)

owTloc (2 bytes)

ascent (2 bytes)

descent (2 bytes)

leading (2 bytes)

rowwords (2 bytes)

bitimage

(indefinite length)

locTable

(indefinite length)

owTable

(indefinite length) I

498 Appendix B

Resource Type PACK' [7.5.2]

Package header

Code of package

(indefinite length)

Resource Type 'PAT ' [5.5.1]

L 8 bytes

499 Resource Formats

Resource Type PAT# [5.5.2]

Number of patterns

Pattern
(8 bytes)

] a
] . a
] a
. L Any number
of patterns
] n
» o n
[} a

Pattern

(8 bytes)

500 AppendixB

Resource Type 'PICT’ [5.5.5]

Length m bytes

.....................

Frame
........... (8 DgteS) essesnanes:

.....................

Data defining picture

(indefinite length)

501 Resource Formats

Resource Type STR ' [8.4.2]

Length of string (0-255)

Characters of string
(indefinite length)

The maximum length of a 'Stk ‘ resource is 255 characters.

502 Appendix B

Resource Type ‘STR# (8.4.3]

Number of strings (2 bytes)

Length of first string

Characters of first string
(indefinite length)

Any number
> of strings

Length of last string

Characters of last string
(indefinite length)

503 Resource Formats

Resource Type TEXT' [8.4.1)

Characters of text
(indefinite 1ength)

A 'TEXT' resource does not begin with a length byte.

APPEN

DIX

emory Layouts

128K “Skinny Mac”
128K
Macintosh
S% Trap Yectors
$400 System Globals
$800 Dispatch Table
$800 System Globals
S4E00 System Heap
Application Heap
Stack
Application
$1A700 Global Space
$1FC7F {MMain Screen Buffer
$1FD Main Sound Buffer
KEY $1FFE3
S$1FFFF

N\

///% System Use

Arrows show direction of

growth of stack and

application heap.

505

506 Appendix C

512K “Fat Mac”
512K

Macintosh

S?g Trap Vectors
$400 System Globals
$800 Dispatch Table
$800 System Globals

$CB00 System Heap

Application Heap

Stack

ApElication
Global Space

S$7AT00
$7FC7F JMain Screen Buffer

STFD00pzzzzzr727222272277777
¢7¢read Main Sound Buffer
STFFFF LLELELIIIII TSI SIIITY.

507 Memory Layouts

1M Macintosh Plus

$00 Trap Vectors
$100 System Globals
::gg 0S Dispatch Table
System Globals
$C00
| Toolbox Dispatch Table
$1400
System Heap
$CB00
Application Heap
Stack
Application
SFA700 Global Space
$FFC7F
$FFDOO

$FFFE3
SFFFFF

Main Screen Buffer
D SISLSLLS LSS LSS IS SIS S SIS ISISS S
Main Sound Buffer
VILLSLSSSS SV LSISL LTSS SIS TSI SIS,

508

Appendix C

512K Macintosh XL (Lisa)

$00
$100
$400
$800
$B00

$CB00

$4EF86

512K
Macintosh XL
Trap Yectors
System Globals
Dispatch Table
System Globals

System Heap

Application Heap

Application

Global Space

Z

Main Screen Buffer

SLLLSSSSLLLIL LSS LSS S s

509 Memory Layouts

1M Macintosh XL (Lisa)

M
Macintosh XL
$00
Trap Yectors
$100
$400 System Globals
$800 Dispatch Table
$800 System Globals
t
$C800 System Heap
Application Heap
Stack
Application
$CEF86 Global Space

//,,

Maln Screen Buffer

P72 I

APPENDIX

KeCdes and
Character Codes

Key Codes for the Standard Macintosh Keyboard and Keypad

$32 $12 $13 $14 515 $ 7 $16 SlA $1C {[l| $19 (|| $2D |||} $1B $18 $33
Back-

N 8 9 0 - = space
$30 $0C $0D $0F $11 $10 $20 $22 $1F ||| $23 $21 $1E ||| $2A
Tab 1] I 0 P [] \

$39 SOO $01 $02 303 $05 526 8 $25 $29 $27 |||l $24

Caps Lock | L H ' Return

.$38 $06 507 808 $09 $OB $ZD $2B ||{| $2F ||{| $2C ||| $38
Shift 2 s . 7/ Shift

| $37 $31 $34 op-
8 Enter ti',’,,.

$3A Original keyboard $3A
$47 ||| S4E [|[| 346 ||[| 842
Clear|l|| - + *
$59 ||| $5B ||l $5C |||| $4D
? 8 9 /
$48
L2 |
$4C

1

$56 |||| $57 ||| $58
L4 | _;“E
$53 |||| $54 ||| $55
CIELST .

S Original keypad
o [e

511

512 Appendix D

Key Codes for the Macintosh Plus Keyboard

$32 Il s12 N1 s13 |f s14] s15 $I7 sus $1A || s1c NI s19 NI s10 N s18 | s18 Bssi _
. 2 3 il 4 7 8 |l 9 0 - = || Space
$30 $0C $op ||| SOE soF || st $20 $IF $23 ||| s21 33
Tab 1] u E R T] 0 P []
$39 soo $01 soz $05 $26 |\ s28 N[s25 N s29 | s27 $24
Caps Lock S 6 J K L ; ' Return
$06 so7 so8 |l soo || so8 ||| s20 s28 Il seF)] sec $38 $4D
‘ Shnft V4 c v B N s . /||l shift ||| +
T sar || 53 s2a N\ s46 Iff s42 | s48
Dptlon 3 \ - =» 3

$47 $48 $40 $42
Clear = / *
$59 $58 $5C $4E
7 8 9 -
$56 $57 $58 $46
4 5 6 +
$53 $54 $55
1 2 3 i sec
$52 $41
0 o |l[[Enter

Macintosh Plus keypad

513 Key Codes and Character Codes

Standard Keyboard Layouts

EO

Standard keyboard layout (unshifted)

Keg l:ﬂps

Standard keyboard layout (with Shift|

514 Appendix D

Standard keyboard layout (with Option-Shift)

515 Key Codes and Character Codes

Key Caps

Macintosh Plus keyboard layout (with Shift)

516 Appendix D

Macintosh Plus keyboard layout (with Option)

Key Caps

Macintosh Plus keyboard layout (with Option-Shift)

517

Character Codes

Key Codes and Character Codes

Second 7

hex
digit

First hex digit

$O $1 $2 $3 $4 8 $6 $8 $C $D SE S§F
MUl |swecj 0 | @) P | olé |- |1 |&
O|s|{!'|1|Aa]|Q|a s |i|—-|-]0
Ojv|“|2|B|R|D cf~fef, |0
O|le|#|3|Cc|S|c 2 (v |, |0
o|€|s |4(D|T |d ¥ f | |%|U
olo|%|{s|E|ule wl=|" A
o|O|&|6 |F |Db|f 2 |a|+|E|”
o|o|" [?7]6|w|g s|l«]o ||~
o|lO|lC|8|H|R|h mi|» g, E |
me [O|) |9 |1 Y| i .. E |
o= Jl2z]]j f i
O|+1|; [K]|I [k a il°
ol, <o |\ o T,
w|0fl=-|=|™M[]1]|m aQf i
o|0 >IN|[~|n @ 0
olo}/7 ({210~]o o 0|0

Characters with shading are typed as two-character combinations

APPENDIX

ErmCodes

Operating System Errors

The following is a complete list of Operating System error codes. Not
all are covered in this book, and some of the meanings may be
obscure. (I don’t know what a bit-slip nybble is either.) For the errors
you're most likely to encounter, see reference sections (3.1.2, 6.6.1,

11:8.2.8].
Number Name Meaning
0 NoErr No error; all is well
-1 QErr Queue element not found during
deletion
-2 VTypErr Invalid queue element
-3 CorErr Trap (“core routine”) number out of
range
—4 UnimpErr Unimplemented trap
-8 SENoDB No debugger installed
=17 ControlErr Driver error during Control operation
—18 StatusErr Driver error during Status operation
-19 ReadErr Driver error during Read operation
-2 WritErr Driver error during Write operation
-21 BadUnitErr Bad unit number

519

520 Appendix E
Number Name Meaning

=22 UnitEmptyErr No such entry in unit table
-23 OpenErr Driver error during Open operation
-4 CloseErr Driver error during Close operation
-25 DRemovErr Attempt to remove an open driver
-26 DinstErr Attempt to install nonexistent driver
=27 AbortErr Driver operation aborted
-28 NotOpenkrr Driver not open
-3 DirFulErr Directory full
-34 DskFulErr Disk full
-35 NSVEr No such volume
-36 10Err Disk 1/0 error
-3 BdNamErr Bad name
-38 FNOpnErr File not open
-39 EOFErr Attempt to read past end of file
—40 PosErr Attempt to position before start of file
-41 MFulErr Memory (system heap) full
—-42 TMFOErr Too many files open (more than 12)
—43 FNFErr File not found
—44 WPrErr Disk is write-protected
—45 FLckdErr File locked
—46 VLckdErr Volume locked
—47 FBsyErr File busy
—48 DupFNErr Duplicate file name
—49 OpWrErr File already open for writing
-50 ParamErr Invalid parameter list
-51 RfNumErr Invalid reference number
~52 GFPErr Error during GetFPos
—~53 VolOffLinErr Volume off-line
—54 PermErr Permission violation
-85 VolOnLinErr Volume already on-line
—56 NSDrvErr No such drive
-57 NoMacDskErr Non-Macintosh disk
—58 ExtFSErr External file system
—59 FSRnErr Unable to rename file
—60 BadMDBErr Bad master directory block
—-61 WrPermErr No write permission
—64 NoDriveErr No such drive
—65 OffLinErr Drive off-line
—66 NoNybErr Can't find 5 nybbles
—67 NoAdrMKErr No address mark ,
—68 DataVerErr Data read doesn't verify
—69 BadCksmErr Bad checksum {address mark)
-70 BadBtSIpErr Bad bit-slip nybbles (address mark)
-71 NoDtaMKErr No data mark
-72 BadDCksum Bad checksum (data mark)

521

Error Codes

Number Name

Meaning

=73
~74
=75
-76
=77

-78
-79
—-80
-81

-85
—86
-87
—88
-89
-0

-91
-92

-93
-94

—-95
-97
—98

—-99

—-100
—-102

—108
-109
-110
-1
-112
-113
-114
-115
-116
-117

-120
—121
-122
—-123

—127

BadDBtSIp
WrUnderrun
CantStepErr
TkOBadErr
InitIWMErr

TwoSideErr
SpdAdjErr
SeekErr
SectNFErr

CIkRdErr
CIKWrErr
PRWrErr
PRInitErr
RevrErr
BreakRecd

DDPSktErr
DDPLenErr

NoBridgeErr
LAPProtErr

ExcessCollsns
PortinUse
PortNotCf

MemROZError

NoScrapErr
NoTypeErr

MemFullErr
NilHandleErr
MemAdrErr
MemWZErr
MemPurErr
MemAZErr
MemPCErr
MemBCErr
MemSCErr
MemLockedErr

DirNFErr
TMWDOErr
BadMovErr
WrgVolTypErr

FSDSIntErr

Bad bit-slip nybbles (data mark)

Write underrun

Can't step disk drive

Track 0 bad

Can't initialize disk chip (“Integrated
Wozniak Machine”)

Two-sided operation on one-sided drive

Can't adjust disk speed

Seek to wrong track

Sector not found

Error reading clock

Error writing clock

Error writing parameter RAM
Parameter RAM uninitialized

Receiver error (serial communications)
Break received (serial communications)

Socket error (AppleTalk, Datagram
Delivery Protocol)

Packet too long (AppleTalk, Datagram
Delivery Protocol)

No bridge found (AppleTalk)

Protocol error (AppleTalk, Link Access
Protocol)

Excessive collisions (AppleTalk)

Port already in use (AppleTalk)

Port not configured for this connection
(AppleTalk)

Error in read-only zone

No desk scrap
No item in scrap of requested type

No room; heap is full

Illegal operation on empty handle
Bad memory address

Ilegal operation on free block
Illegal operation on locked block
Address not in heap zone

Pointer check failed

Block check failed

Size check failed

Attempt to move a locked block

Directory not found

Too many working directories open
Invalid move operation

Wrong volume type (not HFS)

Internal file system error

522 Appendix E
Number Name Meaning
—192 ResNotFound Resource not found
-193 ResFNotFound Resource file not found
—194 AddResFailed AddResource failed
—196 RmvResFailed RmveResource failed
-198 ResErrAttr Operation prohibited by resource
attribute
—199 MapReadErr Error reading resource map
—1024 NBPBuffOvr Buffer overflow (AppleTalk, Name-
Binding Protocol)
—1025 NBPNoConfirm Name not confirmed (AppleTalk, Name-
Binding Protocol)
—1026 NBPConfDift Name confirmed for different socket
(AppleTalk, Name-Binding Protocol)
—1027 NBPDuplicate Name already exists (AppleTalk, Name-
Binding Protocol)
—-1028 NBPNotFeund Name not found (AppleTalk, Name-
Binding Protocol)
-1029 NBPNISErr Names information socket error
(Appletalk, Name-Binding Protocol)
—1096 ReqFailed Request failed (AppleTalk)
—1097 TooManyReqs Too many concurrent requests
(AppleTalk)
—1098 TooManySkts Too many responding sockets
(AppleTalk)
—1099 BadATPSkt Bad responding socket (AppleTalk
Transaction Protocol)
-1100 BadBuffNum Bad buffer number (AppleTalk)
-1101 NoRelErr No release received (AppleTalk)
—1102 CBNotFound Control block not found (AppleTalk)
-1103 NoSendResp AddRespense before SendResponse
(AppleTalk)
—1104 NoDataArea Too many outstanding calls (AppleTalk)
—1105 ReqAborted Request aborted (AppleTalk)
-3101 Buf2SmallErr Buffer too small (AppleTalk)
—-3102 NoMPPError Driver not installed (AppleTalk,
Macintosh Packet Protoccl)
—-3103 CkSumErr Bad checksum (AppleTalk)
-3104 ExtractErr No tuple in buffer (AppleTalk)
3105 ReadQErr Invalid socket or protocol type
(AppleTalk)
—3106 ATPLenErr Packet too long (AppleTalk Transaction
Protocol)
3107 ATPBadRsp Bad response (AppleTalk Transaction
Protocol)
-3108 RecNotFnd No AppleBus record (AppleTalk)
-3109 SktClosedErr Socket closed (AppleTalk)

523 Error Codes

“Dire Straits” Errors

The following errors are reported directly to the user—not to the
running program—by the “Dire Straits” Manager (officially called
the System Error Handler). Errors in this category are considered so
serious that recovery is impossible: the Toolbox simply displays a
“dire straits” alert box (the one with the bomb icon) on the screen,
forcing the user to restart the system. Some people insist that DS
really stands for “deep spaghetti” but most Macintosh pro-

grammers prefer a more colorful term.

Number Name Meaning
1 DSBusErr Bus error
2 DSAddressErr Address error
3 DSHlinstEre Illegal instruction
4 DSZeroDivErr Attempt to divide by zero
5 DSChkErr Check trap
6 DSOvflowErr Overflow trap
7 DSPrivErr Privilege violation
8 DSTraceErr Trace trap
9 DSLineAErr “A emulator” trap
10 DSLineFErr “F emulator” trap
1" DSMiscErr Miscellaneous hardware exception
12 DSCoreErr Unimplemented core routine
13 DSIRQErr Uninstalled interrupt
14 DSIOCoreErr 1/0 core error
15 DSLoadErr Segment Loader error
16 DSFPErr Floating-point error
17 DSNoPackErr Package 0 not present
18 DSNoPk1 Package 1 not present
19 DSNoPk2 Package 2 not present
20 DSNoPk3 Package 3 not present
2 DSNoPk4 Package 4 not present
2 DSNoPk5 Package 5 not present
23 DSNoPk6 Package 6 not present
24 DSNoPk7 Package 7 not present
25 DSMemFullErr Out of memory
2 DSBadLaunch Can't launch program
27 DSFSErr File system error
28 DSStkNHeap Stack/heap collision
30 DSReinsert Ask user to reinsert disk
31 DSNotTheGne Wrong disk inserted
84 MenuPrgErr Menu purged from heap

Suary of Trap Macros
and Trap Words

Trap Macros

The following is an alphabetical list of assembly-language trap
macros covered in this volume, with their corresponding trap
words. For routines belonging to the standard packages, the
trap word shown is one of the eight package traps (_Pack0 to _Pack?)
and is followed by a routine selector in parentheses. Routines
marked with an asterisk (*) are available only on the Macintosh Plus.

Trap . Trap Reference
macro name word section
_AddPt $ASTE (4.4.1)
_AddResource $A9AB [6.5.3]
_BackPat $A87C [5.1.1)
_BitAnd $A858 [2.2.2]
_BitCIr $A85F [2.2.1])
_BitNot $A85A [2.2.2)
_BitOr $A858 [2.2.2])
_BitSet $A8SE [2.2.1]
_BitShift $A85C [2.2.2]
_BitTst $A85D (2.2.1]
_Bitxo0r $A859 [2.2.2)
_BlockMove $AQ2E (3.2.6]

525

526 Appendix F

Trap Trap Reference
macro name word section
*_CalcMask $A838 (5.1.6]
_Chain $ASF3 (7.1.1]
_ChangedResource $A9AA (6.5.2])
_CharWidth $A88D [8.3.4]
. _ClipRect $A878 [4.3.6]
_ClosePgon $A8CC [4.1.4]
_ClosePicture $A8F4 [5.4.2)
—ClosePort $A87D [4.3.2)
_CloseResFile $A39A [6.2.1]
_CloseRgn $A8DB [4.1.6)
_CmpString $A03C [2.1.2)
—CompactMem $A04C (3.3.2]
_CopyBits $ABEC (5.1.2]
*_CopyMask $A817 [5.1.4]
_CopyRgn $A8DC (4.1.71
_CountResources $A99C (6.5.3]
_CountTypes $A99E [6.3.3]
*_CountiResources $A80D [6.5.3]
*_CountiTypes $AB1C [6.3.3)
—CreateResFile $A9B1 (6.5.1)
~CurResFile $A994 (6.2.2)
_Date2Secs $A9C7 {2.4.3]
_DeltaPoint $A%4F [4.4.1)
_DetachResource $A992 [6.3.2)
_DiffRgn $ABES (4.4.8)
_DisposHandle $A023 [3.2.2]
_DisposPtr $AO1F (3.2.2])
_DisposRgn $A8DS [4.1.6]
_DrawChar $A883 [8.3.3]
_DrawPicture $ABF6 (5.4.3]
_DrawString $A884 [8.3.3]
_DrawText $A885 (8.3.3]
_EmptyHandie $A028 [3.3.3]
_.EmptyRect $SABAE [4.4.4]
—EmptyRan $ABE2 (4.4.7]
_EqualPt $A881 [4.4.1)
_EqualRect $ABAG [4.4.5)
_EqualRgn $ASE3 [4.4.8)
_EraseArc $A8CO [5.3.5]
_EraseOval $A8B9 [5.3.4]
_ErasePoly $A8C8 [5.3.6]
—EraseRect $ABA3 [5.3.2]
_EraseRgn $A8D4 [5.3.7]
_EraseRoundRect $A8B2 (5.3.3]

_ExitToShell $A9F4 (7.1.3]

527

Summary of Trap Macros and Trap Words

Trap Trap Reference
macro name word section
_FillArc $A8C2 [5.3.5]
_FillQval $A8BB [5.3.4]
_FillPoly $ABCA [5.3.6]
_FillRect $ABAS5 [5.3.2]
_FillRgn $A806 [5.3.7]
_FillRoundRect $A8B4 [5.3.3]
*_FixATan2 $A818 [2.3.6]
*_FixDiv $A84D [2.3.2]
_FixMul $A868 2.3.2]
_FixRatio $AB69 [2.3.2]
_FixRound $A86C [2.3.1]
*_Fix2Frac $A841 [2.3.3]
*_Fix2Long $AB40 [2.3.1]
*_FontMetrics $A835 (8.2.6]
*_FracCos $A847 [2.3.6]
*_FracDiv $A848 (2.34]
*_FracMul $AB4A (2.3.4]
*_FracSin $A848 [2.3.6]
*_FracSqrt $AB49 [2.3.4]
*_Frac2Fix $A842 [2.3.3]
_FrameArc $ASBE (5.3.5]
_FrameOval $A8B7 [5.3.4]
_FramePoly $A8C6 (5.3.6]
_FrameRect SA8A1 [5.3.2]
_FrameRgn $A8D2 [5.3.7]
_FrameRoundRect $A8B0 [5.3.3]
_FreeMem $A01C (3.3.1]
_GetAppParms $A9F5 [7.3.4])
_GetClip $AB7A [4.3.6]
_GetFilelnfo $A00C [7.3.3)
_GetFName $ASBFF [8.2.5]
_GetFNum $AS00 {8.2.5)
_GetFontinfo $A88B [8.2.6)
_GetHandleSize $A025 [3.2.3]
—GetIndResource $A99D [6.3.3)
_GetindType $ASOF [6.3.3]
_GetNamedResource $A9A1 (6.3.1)
—GetPattern $A9B8 [5.1.1]
_GetPen $A89A [5.2.4]
_GetPenState $A898 (5.2.1]
_GetPicture $A9BC (5.4.2])
_GetPixel $A865 [(4.2.3]
—GetPort $A874 [4.3.3]
_GetPtrSize $A021 (3.2.3]
_GetResAttrs $A9A6 [6.4.2)

528 Appendix F

Trap Trap Reference
macro name word section
_GetResFileAttrs $A9F6 [6.6.2)
_GetReslnfo $A9A8 [6.4.1)
_GetResource $A9A0 [6.3.1]
—GetScrap $ASFD (7.4.3]
_GetString $A9BA [8.1.2)
*_Get1IxResource $AB0E [6.3.3]
*_Get1IxType $AB0F (6.3.3]
*_Get1NamedResource $A820 [6.3.1]
*_Get1Resource $ABIF [6.3.1]
_GlobalToLocal $A871 [4.4.2]
_GrafDevice $A872 [8.3.2]
_HandAndHand $A9E4 [3.2.7]
_HandToHand $ASE1 [3.2.6)
*_HCIrRBit $A068 [3.2.4)
*_HGetState $A069 (3.2.4)
_HidePen $A896 [5.2.3]
_HiWord $AB6A [2.2.3]
_HLock $A029 (3.2.4]
_HNoPurge SAM4A [3.2.4]
_HomeResFile $A9A4 [6.4.3)
_HPurge $A049 (3.2.4]
*_HSetRBit $A067 [3.2.4]
*_HSetState $ACSA [3.2.4]
_HUnlock $A02A [3.2.4]
_InfoScrap $A9F9 [7.4.2]
_InitAllPacks $AIE6 [7.2.2)
_InitFonts $ASFE [8.2.4]
_InitGraf SA86E (4.3.1)
_InitPack $ASE5 [7.2.2)
_InitPort $A86D (4.3.2)
_InsetRect $ABA9 (4.4.4]
-InsetRgn $ABE1 [4.4.7)
_InverRect $ABA4 [5.3.2]
_lnverRgn $A8DS (5.3.7]
_InverRoundRect $A8B3 (5.3.3]
_InvertArc $A8CH [5.3.5]
_lnvertOval $ABBA [5.3.4]
_InvertPoly $A8C9 5.3.6)
_lUDateString $ASED (0) (2.4.4)
_IUTimeString $AQED (2) (2.4.4]
~KillPicture $A8FS (54.2)

—KillPoly $ABCD [4.14]

529

Summary of Trap Macros and Trap Words

Trap Trap Reference
macro name word section
_Launch $ASF2 [7.1.1)
_Line $A892 [5.24]
_LineTo $A891 [5.2.4]
_LoadSeg $AIF0 (7.1.2)
_LocalToGlobal $A870 (4.4.2)
_LodeScrap $A9FB (7.4.4]
_LongMul $A867 [2.3.5)
*_Long2Fix $A83F (2.3.1]
_LoWord $A868 [2.2.3]
_MapPoly $ABFC [4.4.9)
_MapPt $A8F9 [4.4.9)
_MapRect $ASFA [4.4.9]
_MapRgn $ABFB [4.4.9]
*_MaxAppiZone $A063 (3.34]
*_MaxBlock $A061 (3.3.1]
_MaxMem $A11D (3.3.2)
*_MaxSizeRsrc $A821 (6.4.3]
*_MeasureText $A837 (8.3.4]
_MoreMasters $A036 (3.2.5]
_Move $A894 (5.2.4]
*_MoveHHi $A064 [3.2.5)
_MovePortTo $A877 [4.3.5)
_MoveTo $A893 [5.2.4]
*_NewEmptyHandle $A166 (3.2.1)
_NewHandle $A122 [3.2.1}
_NewPtr SA11E [3.2.1]
_NewRgn $A8D8 [4.1.6)
_NewString $AS06 [8.1.2]
_NumToString $ASEE (0) [2.3.7]
_OffsetPoly $ASCE [4.4.6)
_OffsetRect $ABAS (4.4.4)
_0OfsetRgn $ASEQ (4.4.7]
_OpenPicture $A8F3 (5.4.2]
_OpenPoly $A8CB (4.1.4)
_OpenPort $AB6F (4.3.2)
_OpenResFile $AQ97 (6.2.1)
_Openfign $ABDA (4.1.6)
_Pack0 $AQE7 [7.2.1]
_Pack1 $A9ES [7.2.1]
_Pack2 $AQE9 [7.2.1)
_Pack3 $AJEA [7.2.1)
_Pack4 $ASEB [7.21]
_Packb $ASEC [7.2.1)

530 Appendix F

Trap Trap Reference
macro name word section
_Packé $ASED [7.2.1]
—Pack7 $ASEE [7.2.1]
*_Pack8 $A816 [7.2.1)
*_Pack9 $A828 [7.2.1)
*_Pack10 $A82C [7.2.1)
*_Pack11 $A82D [7.2.1)
*_Packi2 $AB2E (7.2.1)
*_Pack13 $AB2F [7.2.1]
*_Pack14 $A830 [7.2.1]
*_Pack15 $A831 [7.2.1]
_PaintArc $ABBF [5.3.5]
_PaintOval $ABBS [5.3.4]
_PaintPoly $ABC7 (5.3.6]
_PaintRect $ABA2 [5.3.2)
_PaintRgn $A8D3 (5.3.7]
_PaintRoundRect $A8B1 [5.3.3]
_PenMode $A89C (5.2.2]
_PenNormal $ABSE (5.2.2]
_PenPat $A89D [5.2.2]
_PenSize $A89B [5.2.2)
_PinRect $A%E [4.4.3)
_PortSize $A876 [4.3.5])
_Pt2Rect $ASAC (4.1.2)
_PtinRect $ABAD [4.4.3)
_PtinRgn $ABES [44.3)
_PtrAndHand $AQEF [3.2.7]
_PtrToHand $A9E3 [(3.2.6]
_PtrToXHand $AQE2 [3.2.6)
_PtToAngle $ABC3 [5.3.5]
_PurgeMem $A04D (3.3.2)
*_PurgeSpace $A162 (3.3.1]
_PutScrap $AQFE (7.4.3)
—Random $A861 - [2.3.8]
_RealFont $AS02 [8.2.5]
_ReallocHandle $A027 [3.3.3)
_RecoverHandle $A128 [3.2.1]
—RectinRgn $ABE9 [4.4.3])
—RectRgn $ABDF [4.1.7)
_ReleaseResource $A%A3 [6.3.2)
*_RelString $A050 [2.1.2]
_ResError SA9AF [6.6.1]
_ResrvMem $A040 [5.2.5)

_RmveResource $A9AD [6.5.3]

531 summary of Trap Macros and Trap Words

Trap Trap Reference
macro hame word section
_ScalePt $ABF8 (4.4.9]
_ScrollRect SABEF [5.1.5]
_Secs2Date $A9C6 [2.4.3]
_SectRect $ABAA [4.4.5]
_SectRgn $ABE4 (4.4.8]
*_SeedFill $A839 [5.1.6]
_SetApplLimit $A02D [3.3.4]
_SetClip $A879 (4.3.6]
_SetDateTime $A03A [24.1)
_SetEmptyRgn $A8DD [4.1.7]
_SefFilelnfo $A00D [7.3.3]
-SetFontLock $A903 [8.2.7]
*_SetFScaleDisable $A834 {8.2.8]
_SetHandleSize $A024 [3.2.3])
_SetOrigin $A878 (4.3.4]
_SetPBits $A875 [4.34]
_SetPenState $A899 [5.2.1]
_SetPort $A873 [4.3.3]
_SetPt $A880 [4.1.1)
_SetPtrSize $A020 [3.2.3]
_SetRecRgn $A8DE [4.1.7]
-SetRect $ABAT7 (4.1.2]
_SetResAtirs $A9A7 [6.4.2]
—SetResFileAttrs $ASF7 [6.6.2]
_SetReslInfo $A9A9 (6.4.1)
_SetResPurge $A993 [6.5.5]
_SetString $AS07 [8.1.2]
_ShowPen $A897 [5.2.3)
_SizeRsrc $A9A5 (6.4.3)
_SpaceExtra $A88E [8.3.2)
*_StackSpace $A065 (3.3.4]
_StringToNum $ASEE (1) [2.3.7])
_StringWidth $A88C (8.3.4]
_StuffHex $A866 [2.2.4)
_SubPt $AB7F [4.4.1]
_TextFace $A888 [8.3.2]
_TextFont $A887 [8.3.2]
_TextMode $A889 [8.3.2]
_TextSize $A88A [8.3.2)

_TextWidth $A886 [8.3.4]

532 Appendix F

Trap Trap Reference

macro name word section
_UnionRect $A8AB [4.4.5]
_UnionRgn $ASES [4.4.8)
_UniquelD $A9C1 [6.5.3)
*_Unique1lD $A810 [6.5.3]
_UnloadSeg $A9F1 [7.1.2)
_UnlodeScrap $AIFA [7.4.4)
_UpdateResFile $A999 [6.5.4]
-UprString $A854 [2.1.2]
—UseResFile $A998 [6.2.2]
_WriteResource $A9B0 [6.5.4])
_XOrRgn $ABE7 (4.4.8)
_ZeroScrap $ASFC (7.4.3)

Trap Words

Here is the same list sorted numerically by trap word. Again, routine
selectors are given in parentheses following the trap word for
routines belonging to the standard packages, and routines marked
with an asterisk (*) are available only on the Macintosh Plus.

Trap Trap Reference
word macro name section
$A00C _GetFilelnfo [7.3.3]
$AC0D _SetFileinfo [7.5.3]
$A01C _FreeMem {3.3.1)
$A11D _MaxMem [3.3.2)
$AUE _NewPtr [3.2.1]
$AO1F _DisposPtr [3.2.2)
$A020 _SetPtrSize (3.2.3)
$A021 _GetPtrSize [3.2.3])
$A122 _NewHandle [3.2.1]
$A023 _DisposHandle [3.2.2]
$A024 _SetHandleSize (3.2.3]
$A025 ~GetHandleSize [3.2.3]
$A027 _ReallocHandle (3.3.3]
$A128 ~RecoverHandle (3.2.1]
$A029 _HLock [3.2.4]
$A02A _HUnlock (3.2.4]
$A02B —EmptyHandle [3.3.3)
$A02D ~SetApplLimit (3.3.4]

$A02E _BlockMove [3.2.6)

533

Summary of Trap Macros and Trap Words

Trap Trap Reference
word macro name section
$A036 _MoreMasters [3.2.5]
$A03A -SetDateTime [2.4.1)
$A03C ~CmpString [2.1.2]
$A040 —ResrvMem (3.2.5]
$A049 _HPurge [3.2.4]
$A04A _HNoPurge [3.2.4]
$A04C _CompactMem [3.3.2]
$A04D ~PurgeMem (3.3.2)
*$A050 _RelString [2.1.2]
*$AC61 _MaxBlock [3.3.1)
*$A162 _PurgeSpace [3.3.1]
*$A063 _MaxAppiZone [3.34]
*$A064 —MoveHHi [3.2.5]
*$A065 StackSpace [3.3.4]
*$A166 _NewEmptyHandle (3.2.1)
*$A067 _HSetRBit [3.2.4]
*$A068 _HCIrRBit [3.2.4]
*$A069 —HGetState [3.2.4]
*$AC6A _HSetState (3.2.4]
*$A80D —Count1Resources [6.3.3]
*$AB0E _GetlIxResource [6.3.3]
*$A80F _GetlIxType [6.3.3]
*$A810 ~UniquellD (6.5.3}
*$A816 _Packs [7.2.1)
*$A817 _CopyMask (5.1.4]
*$A818 _FixATan2 [2.3.6)
*$A81C _Count1Types [6.3.3]
*$AB1F _Get1Resource [6.3.1]
*$A820 _Get1NamedResource [6.3.1]
*$A821 _MaxSizeRsrc (6.4.3]
*$A828 _Pack9 [7.2.1)
*$A82C _Pack10 [7.2.1]
*$A82D -Pack11 [7.21]
*$AB2E -Pack12 [7.2.1]
*$A82F —Pack13 [7.2.1]
*$A830 _Pack14 (7.2.1]
*$A831 _Pack15 {(7.21]
*$A834 _SetFScaleDisable [8.2.8]
*$A835 _FontMetrics (8.2.6]
*$A837 _MeasureText (8.3.4]
*$A838 _CalcMask (5.1.6]
*$A839 _SeedFill (5.1.6]
*$A83F _Long2Fix [2.3.1]

534 Appendix F
Trap Trap Reference
word macro name section
*$A840 _Fix2Long [2.3.1]
*$A841 _Fix2Frac (2.3.3]
*$A842 _Frac2Fix [2.3.3]
*$A847 _FracCos [2.3.6]
*$A848 _FracSin (2.3.6]
*$AB49 _FracSqrt [2.3.4]
*$AB4A _FracMul [2.3.4]
*$A84B _FracDiv [2.3.4]
*$A84D _FixDiv [2.3.2)
$A854 _UprString [2.1.2]
$AB58 _BitAnd [2.2.2]
$A859 _BitX0r [2.2.2]
$A85A _BitNot [2.2.2]
$AB5B _BitOr [2.2.2]
$A85C _BitShift [2.2.2]
$A85D _BitTst (2.2.1]
$A85E _BitSet [2.2.1)
$A85F _BitCIr [2.2.1)
$A861 _Random [2.2.8)
$A865 —GetPixel [4.2.3)
$A866 _StuffHex [2.2.4)
$A867 _LongMul [2.5.5]
$A868 _FixMul [2.53.2]
$A869 _FixRatio (2.3.2]
$A86A _HiWord [2.2.3)
$A868 _LoWord [2.2.3]
$A86C _FixRound [2.3.1]
$A86D _InitPort [4.3.2)
$AB6GE _InitGraf [4.3.1)
$AB6F ~OpenPort [4.3.2)
$A870 _LocalToGlobal (4.4.2]
$A871 _GlobalToLocal (4.4.2)
$A872 _GrafDevice (8.3.2]
$A873 _SetPort (4.3.3]
$A874 _GetPort [4.3.3]
$A875 _SetPBits [4.3.4)
$A876 _PortSize (4.3.5)
$A877 _MovePortTo [4.3.5]
$A878 _SetOrigin (4.3.4]
$A879 _SetClip (4.3.6]
SA87A _GetClip [4.3.6)
$A878 _ClipRect (4.3.6]
$A87C _BackPat [5.1.1]
$A87D _ClosePort [4.3.2)
$A87E _AddPt (4.4.1)
$A87F _SubPt [4.1.1]

535

Summary of Trap Macros and Trap Words

Trap Trap Reference
word macro name section
$A880 _SetPt [4.1.1)
$A881 _EqualPt [4.4.1)
$A883 _DrawChar [8.3.3]
$A884 _DrawString [8.3.3)
$A885 _DrawText [8.3.3]
$A886 _TextWidth (8.3.4]
$A887 _TextFont [8.3.2]
$A888 _TextFace (8.3.2]
$A889 _TextMode [8.3.2]
$ABBA _TextSize [8.3.2]
$A88B _GetFontlnfo (8.2.6]
$A88C _StringWidth (8.3.4)
$A88D _CharWidth [8.3.4]
$ABBE _SpaceExtra (8.3.2]
$A891 _LineTo (5.2.4)
$A892 _Line [5.2.4]
$A893 _MoveTo (5.2.4)
$A894 _Move (5.2.4)
$A8%6 _HidePen [5.2.3)
$A897 _ShowPen [5.2.3]
$A898 _GetPenState [5.2.1)
$A899 _SetPenState [5.2.1]
$A89A _GetPen [5.2.4]
$A89B _PenSize [5.2.2]
$A89C _PenMode [5.2.2)
$A89D _PenPat [5.2.2]
$ASSE _PenNormal [5.2.2]
SABA1 _FrameRect (5.3.2]
$ABA2 _PaintRect (5.3.2)
$ABA3 _EraseRect [5.3.2])
$ABA4 _InverRect {5.3.2)
$ABAS _FillRect (5.3.2]
$ABAG _EqualRect [4.4.5]
$ABAT _SetRect [4.1.2)
$ABA8 _OffsetRect [4.4.4])
$ABA9 _InsetRect [4.44)
$ABAA _SectRect [4.4.5)
$ABAB _UnionRect [4.4.5]
$ASAC _Pt2Rect (4.1.2)
$ASAD _PtinRect (4.4.3]
$ABAE _EmptyRect [4.4.4)
$A8B0 _FrameRoundRect [5.3.3]
$A8B1 _PaintRoundRect [5.3.3]
$A8B2 _EraseRoundRect (5.3.3]

536 Appendix F

Trap Trap Reference
word macro name section
$A8B3 _InverRoundRect [5.3.3)
$A8B4 _FillRoundRect [5.3.3)
$ABB7 _FrameOval [5.34]
$A8B3 _PaintOval [5.3.4]
$A8B9 ~EraseOval [5.3.4]
$ABBA —InvertOval (5.3.4]
$A8BB _Filioval (5.3.4)
$ABBE _FrameArc (5.3.5)
$ABBF —PaintArc (5.3.5]
$A8CO —EraseArc (5.3.5]
$ABC1 _InvertArc (5.3.5)
$ABC2 _FillArc [5.3.5)
$A8C3 —PtToAngle (5.3.5)
$A8C6 _FramePoly (5.3.6]
$A8C7 —PaintPoly [5.3.6)
$ASCS ~ErasePoly (5.3.6)
$A8CY _InvertPoly [5.3.6]
$ABCA _FillPoly (5.3.6]
$A8CB —OpenPoly {4.14]
$ASCC ~ClosePgon [4.1.4)
$ABCD —KillPoly [4.1.4]
$ABCE _OffsetPoly (4.4.6]
$A8D2 _FrameRgn [5.3.7)
$ABD3 —PaintRgn [5.3.7]
$ABD4 _EraseRgn [5.3.7]
$A8D5 —InverRgn [5.3.7)
$A8D6 _FillRgn [5.3.7]
$A8D8 _NewRgn [4.1.6)
$A8D9 _DisposRgn [4.1.6]
$ABDA _OpenRgn [4.1.6]
$A8DB -CloseRgn [4.1.6]
$A8DC —CopyRgn (4.1.7)
$A8DD —SetEmptyRgn (4.1.7)
$ABDE _SetRecRgn [4.1.7]
$ABDF —RectRgn (4.1.7]
$ABEOD _OfsetRgn (4.4.7)
SABE1 _lInsetRgn [4.4.7]
$ABE2 —_EmptyRgn [4.4.7]
$ABE3 ~EqualRgn (4.4.8)
$ABE4 -SectRgn [4.4.8)
$ABES —UnionRgn [4.4.8]
$ABEG _DiffRgn [4.4.8]
$ABE7 -XOrRgn (4.4.8)

537 Summary of Trap Macros and Trap Words

Trap Trap Reference
word macro name section
$ABES _PtinRgn [4.4.3]
$ABE9 —RectinRgn [4.4.3)
$ABEC _CopyBits [5.1.2]
$ABEF _ScrollRect (5.1.5)
$A8F3 _OpenPicture [5.4.2)
$A8F4 _ClosePicture [5.4.2]
$A8F5 _KillPicture [5.4.2]
SABF6 _DrawPicture (5.4.3]
$ABF8 _ScalePt [4.4.9]
$ABF9 _MapPt (4.4.9)
$ABFA _MapRect 4.4.9)
$ABFB _MapRgn [4.4.9)
$ABFC _MapPoly [4.4.9)
$ABFE _InitFonts [8.2.4]
$SASFF _GetFName [8.2.5)
$AS00 _GetFNum (8.2.5]
$AS02 _RealFont (8.2.5]
$AS03 _SetFontLock {8.2.7)
$A906 —NewString (8.1.2)
$A07 _SetString (8.1.2]
$A4E _PinRect (4.4.3]
$AG4F _DeltaPoint (4.4.1]
$A992 _DetachResource {6.3.2])
$A993 -SetResPurge (6.5.5]
$A994 _CurResFile [6.2.2)
$A997 _OpenResFile [6.2.1]
$A998 _UseResFile [6.2.2]
$A999 _UpdateResFile (6.5.4]
$A99A _CloseResFile [6.2.1]
$A99C _CountResources [6.3.3]
$A99D _GetindResource [6.3.3)
$A99E _CountTypes [6.3.3]
$ASSF _GetindType [6.3.3]
$A9A0 _GetResource (6.3.1]
$A9A1 _GetNamedResource [6.3.1]
$A9A3 _ReleaseResource (6.3.2)
$A9A4 —HomeResFile (6.4.3)
$A9A5 _SizeRsrc [6.4.3)
$A9A6 _GetResAttrs (6.4.2]
$A9A7 _SetResAttrs [6.4.2])
$A9A8 —GetReslnfo [6.4.1)
$ASA9 _SetResInfo (6.4.1)

538 Appendix F

Trap Trap Reference
word macro name section
$A9AA —ChangedResource (6.5.2]
$A9AB _AddResource [6.5.3]
$A9AD —RmveResource (6.5.3]
$A9AF —ResError (6.6.1]
$A9B0 _WriteResource (6.5.4]
$ASB1 _CreateResFile (6.5.1)
$A9B8 _GetPattern [5.1.1]
$A9BA _GetString (8.1.2])
$A9BC _GetPicture (5.4.2]
SASC1 _UniquelD [6.5.3]
$A9C6 _Secs2Date (2.4.3]
$A9C7 _Date2Secs [2.4.3]
$A9E1 _HandToHand [3.2.6]
$A9E2 _PtrToXHand [3.2.6)
$A9E3 _PtrToHand (3.2.6]
$ASE4 _HandAndHand (3.2.7]
$A9ES _InitPack [7.2.2)
$AQEG _InitAllPacks (7.2.2]
$A9E7 _Pack0 [7.2.1)
$A9E8 _Packi1 (7.2.1]
$A9E9 _Pack2 [7.2.1]
$AJEA _Pack3 (7.2.1]
$AIEB _Pack4 [7.2.1)
$ASEC _Packs [7.2.1]
$A9ED _Packé [7.21]
$A9ED (0) _lUDateString [2.4.4]
$A9ED (2) _IUTimeString [2.4.4]
$SASEE _Pack7 [7.2.1]
$ASEE (0) _NumToString (2.3.7]
SASEE (1) _StringToNum (2.3.7)
SAGEF —PtrAndHand (3.2.7]
$AIFO0 —LoadSeg (7.1.2]
$ASF1 _UnloadSeg (7.1.2]
$A9F2 _Launch (7.1.1]
$A9F3 _Chain (7.1.1]
$A9IF4 _ExitToShell (7.1.3]
$A9F5 _GetAppParms (7.3.4]
$ASF6 _GetResFileAttrs [6.5.2]
SASF7 _SetResFileAttrs (6.5.2]
$A9F9 _InfoScrap (7.4.2]
$AIFA ~UnlodeScrap (7.4.4)
$AIFB _LodeScrap [7.4.4)
$A9FC ~ZeroScrap [7.4.3]
$A9FD _GetScrap [7.4.3]
$ASFE _PutScrap {7.4.3]

APPENDIX
=|G

Summary of Assembly
Language Variables

System Globals

Listed below are all assembly-language global variables covered in
this volume, with their hexadecimal addresses. Warning: The
addresses given may be subject to change in future versions of the
Toolbox; always refer to these variables by name rather than using
the addresses directly.

Hexa-
Variable decimal Reference
name address section Meaning
ApFontiD $984 [8.2.1} True font number of current
application font
AppiLimit $130 (3.3.4] Application heap limit
ApplZone $2AA (3.1.3) Pointer to start of applica-
tion heap
AppParmHandle $AEC (7.3.4] Handle to Finder startup
information
BufPtr $10C [3.1.3] Pointer to end of application
global space
CurApName $910 (7.3.4] Name of current application
(maximum 31 characters)
CurApRefNum $900 (6.2.2, Reference number of
7.34] application resource file

539

540 Appendix G
Hexa-
Variable decimal Reference
name address section Meaning
CurMap $ABA [6.2.2] Reference number of current
resource file
CurPageOption $936 (7.1.1] Integer specifying screen
and sound buffers
CurrentAS $904 [3.1.3] Base pointer for application
globals
CurStackBase $908 (3.1.3] Pointer to base of stack
DeskPattern $A3C (5.1.2] Screen background pattern
FinderName $2E0 [7.1.3] Name of program to exit to
(maximum 15 characters)
*FractEnable $BF4 [8.2.8) Use fractional character
widths? (1 byte)
FScaleDisable ~ $A63 (8.2.8) Turn off font scaling?” (1 byte)
HeapEnd $114 [3.1.3]) Pointer to end of application
heap
Key1Trans $29E (8.4.4] Pointer to keyboard con-
figuration routine
Key2Trans $2A2 (8.4.4] Pointer to keypad configura-
tion routine
Lo3Bytes $31A (3.2.4) Mask for extracting address
from a master pointer
MemTop $108 (3.1.3] Pointer to end of physical
memory
ResErr $A60 [6.6.1] Result code from last
resource-related call
ResLoad $ASE (6.3.4] Load resources automati-
cally?
ROMBase $2AE [3.1.3] Pointer to start of ROM
ROMFont0 $980 [8.2.1] Handle to system font
*ROMMaplinsert $BOE (6.6.3] Include ROM-based
resources in search?
(1 byte)
ScrapCount $968 (7.4.2] Current scrap count
ScrapHandle $964 (7.4.2] Handle to contents of desk
scrap
ScrapName $96C [7.4.2) Pointer to scrap file name
ScrapSize $960 (7.4.2] Current size of desk scrap
ScrapState $96A [7.4.2) Current state of desk scrap
ScrnBase $824 (3.1.3] Pointer to start of screen
buffer
SoundBase $266 (3.1.3] Pointer to start of sound
buffer
SPFont $204 [8.2.1) True font number of default

application font

541 Summary of Assembly Language Variables

Hexa-
Variable decimal Reference
name address section Meaning
SysMap $A58 [6.2.2) True reference number (not 0)
of system resource file
SysMapHndl $AS4 (6.2.2] Handle to resource map of
system resource file
SysResName $AD8 (6.2.2] Name of system resource
file (string, maximum 19
characters)
SysZone $2A6 3.1.3] Pointer to start of system
heap
Time $20C (2.4.1) Current date and time in
“raw” seconds
*TmpResLoad $B9F [6.6.3] Load resources automatically
just this once? (1 byte)
TopMapHnd| $AS50 [6.2.2) Handle to resource map of
most recently opened (not
necessarily current)
resource file
*WidthTabHandle $B2A [8.2.6] Handle to global width table

QuickDraw Globals

for current font

The QuickDraw global variables listed below are located at the given
offsets relative to the QuickDraw globals pointer, which in turn is
pointed to by address register AS.

Variable Offset Reference

name in bytes section Meaning

ThePort 0 [4.3.3] Current graphics port
White -8 (5.1.2] Standard white pattern
Black —-16 (5.1.2] Standard black pattern
Gray —24 (5.1.2) Standard gray pattern
LtGray -32 [5.1.2] Standard light gray pattern
DKGray —40 (5.1.2) Standard dark gray pattern
Arrow —108 (I1:2.5.2] Standard arrow cursor
ScreenBits —122 [4.21] Screen bit map

RandSeed —-126 [2.3.8]) “Seed” for random number

generation

GLOSSARY

The following is a glossary of technical terms used in this volume.
Note: Terms shown in italic are defined elsewhere in this glossary.

A5 world—Another name for a program'’s application global space, located
by means of a base address kept in processor register A5.

“above A5” size—The number of bytes needed between the base address
in register A5 and the end of the application global space, to hold a
program’s application parameters and jump table.

access permission—The form of communication allowed for a particular
file, such as read-only, write-only, or read/write.

allocate—To set aside a block of memory from the heap for a particular
se.

and—A bit-level operation in which each bit of the result is a 1 if both
operands have 1s at the corresponding bit position, or 0 if either or both
have 0s.

Apple mark—A special control character (character code $14) that appears
on the Macintosh screen as a small Apple symbol; used for the title of
the menu of desk accessories.

AppleTalk—A network to which the Macintosh can be connected for
communication with other computers.

AppleTalk drivers—The pair of device drivers used for communicating
with other computers over the AppleTalk network.

application file—A file containing the executable code of an application
program, with a file type of 'APPL’ and the program’s own signature as
its creator signature.

application font—The standard typeface used by an application program;
normally Geneva, but can be changed to some other typeface if desired.

c

Qu

43

544 Glossary

application global space—The area of memory containing a program's
application globals, application parameters, and jump table; normally
situated just before the screen buffer in memory and located by means of
a base address kept in processor register AS.

application globals—Global variables belonging to the running applica-
tion program, which reside in the application global space and are
located at negative offsets from the base address in register AS.

application heap—The portion of the heap available for use by the
running application program.

application heap limit—The memory address marking the farthest point
to which the heap can expand, to prevent it from colliding with the stack.

application parameters—Descriptive information about the running
program, located in the application global space at positive offsets from
the base address in register A5. The application parameters are a vestige
of the Lisa software environment, and most are unused on the Macin-
tosh; the only ones still in use are the QuickDraw globals pointer and the
startup handle.

application resource file—The resource fork of a program'’s application
file, containing resources belonging to the program itself.

arc—A part of an oval, defined by a given starting angle and arc angle.
arc angle—The angle defining the extent of an arc or wedge.

ascent—(1) For a text character, the height of the character above the
baseline, in pixels. (2) For a font, the maximum ascent of any character
in the font.

ascent line—The line marking a font's maximum ascent above the
baseline.

ASCII—American Standard Code for Information Interchange, the in-
dustry-standard 7-bit character set on which the Macintosh's 8-bit
character codes are based.

@ operator—An operator provided by Apple's Pascal compiler, which
accepts a variable or routine name as an operand and produces a blind
pointer to that variable or routine in memory.

attribute byte—The byte in a resource map entry that holds the resource
attributes.

autograph—A Finder resource whose resource type is the same as a
program’s signature, and which serves as the program’s representative
in the desktop file; also called a version data resource.

background pattern—The pattern used for erasing shapes in a given
graphics port.

545 Glossary

base address—In general, any memory address used as a reference point
from which to locate desired data in memory. Specifically, (1) the address
of the bit image belonging to a given bit map; (2) the address of a
program'’s application parameters, kept in processor register A5 and used
to locate the contents of the program’s application global space.

base of stack—The end of the stack that remains fixed in memory and
is not affected when items are added and removed; compare top of stack.

base type—In Pascal, the data type to which a given pointer type is
declared to point: for example, the pointer type "INTEGER has the base
type INTEGER.

baseline—The reference line used for defining the character images in a
font, and along which the graphics pen travels as text is drawn.

“below A5” size—The number of bytes needed between the beginning of
the application global space and the base address in register A5, to hold
a program's application globals.

Binary/Decimal Conversion Package—A standard package, provided in
the system resource file (or in ROM on the Macintosh Plus), that converts
numbers between their internal binary format and their external
representation as strings of decimal digits.

binary point—The binary equivalent of a decimal point, separating the
integer and fractional parts of a fixed-point number or a fraction.

bit image—An array of bits in memory representing the pixels of a
graphical image.

bit map—The combination of a bit image with a boundary rectangle. The
bit image provides the bit map's content; the boundary rectangle defines
its extent and gives it a system of coordinates.

bit-mapped display—A video display screen on which each pixel can be
individually controlled.

blind pointer—A Pascal pointer whose base type is unspecified, and
which can consequently be assigned to a variable of any pointer type.
The standard Pascal constant NIL is a blind pointer; two nonstandard
features of Apple’'s Pascal compiler, the POINTER function and the @
operator, also produce blind pointers as their results.

block—An area of contiguous memory within the heap, either allocated
or free.

bottleneck procedure—A specialized procedure for performing a low-
level drawing operation in a given graphics port, used for customizing
QuickDraw operations.

boundary rectangle—(1) For a bit map, the rectangle that defines the bit

map's extent and determines its system of coordinates. (2) For a graphics
port, the boundary rectangle of the port’s bit map.

546 Glossary

bounding box—The smallest rectangle enclosing a polygon or region on
the coordinate grid.

bozo bit—A Finder flag that prevents a file from being copied; named for
the Apple programmer who invented it.

bundle—A Finder resource that identifies all of a program’s cther Finder
resources, so that they can be installed in the desktop file when the
program'’s application file is copied to a new disk.

bundle bit—A Finder flag that tells whether an application file has any
Finder resources that must accompany it when it's copied to a new disk.

busy bit—A Finder flag that tells whether a file is currently in use (has
been opened and not yet closed).

byte—An independently addressable group of 8 bits in the computer’s
memory.

Caps Lock key—A modifier key on the Macintosh keyboard, used to
convert lowercase letters to uppercase while leaving all nonalphabetic
keys unaffected.

chain—To start up a new program after reinitializing the stack and
application global space, but not the application heap; compare launch.

change bit—A Finder flag that tells whether a file's contents have been
changed and must be updated on the disk.

character code—An 8-bit integer representing a text charactar; compare
key code.

character image—A bit image that defines the graphical representation
of a text character in a given typeface and type size.

character key—A key on the keyboard or keypad that produces a
character when pressed; compare modifier key.

character ofiset—The horizontal distance, in pixels, from the left edge
of the font rectangle to that of the character image for a given character;

equal to the difference between the character's leftward kern and the
maximum leftward kern in the font.

character origin—The location within a character image marking the
position of the graphics pen when the character is drawn.

character style—See type style.

character width—The distance in pixels by which the graphics pen
advances after drawing a character; compare image width.
character-width table—An optional table in a font record, containing
fractional character widths for the characters in the font. Used only by
the Macintosh Plus Toolbox; ignored on earlier models.

check mark—A special control character (character code $12) that ap-

pears on the Macintosh screen as a small check symbol; used for marking
items on a menu.

547 Glossary

clip—To confine a drawing operation within a specified boundary, sup-
pressing any drawing that falls outside the boundary.

Clipboard—The term used in Macintosh user’s manuals to refer to the
scrap.

clipping boundaries—The boundaries to which all drawing in a given
graphics port is confined, consisting of the port’'s boundary rectangle,
port rectangle, clipping region, and visible region.

clipping region—A general-purpose clipping boundary associated with a
graphics port, provided for the application program'’s use.

clock chip—A component of the Macintosh, powered independently by
a battery, that keeps track of the current date and time even when the
machine's main power is turned off.

code segment—A resource containing all or part of a program's ex-
ecutable machine code.

Command key—A modifier key on the Macintosh keyboard, used in
combination with character keys to type keyboard equivalents to menu
items.

command mark—A special control character (character code $11) that
appears on the Macintosh screen as a “cloverleaf” symbol; used for
displaying Command-key equivalents of menu items.

compaction—The process of moving together all of the relocatable blocks
in the heap, in order to coalesce the available free space.

complement—A bit-level operation that reverses the bits of its operand,
changing each 0 to a 1 and vice versa.

control—An object on the Macintosh screen that the user can manipulate
with the mouse, in order to operate on the contents of a window or
control the way they're presented.

control character—An ASCII text character with a character code from
$00 to $IF (as well as the character $7F). Most control characters have no
special meaning and no visual representation on the Macintosh, but a
few are defined as special-purpose symbols for use on the screen: see
Apple mark, check mark, command mark, diamond mark.

creator signature—A four-character string identifying the application
program to which a given file belongs, and which should be started up
when the user opens the file in the Finder.

current port—The graphics port in use at any given time, to which most
QuickDraw operations implicitly apply.

current resource file—The resource file that will be searched first in
looking for a requested resource, and to which certain resource-related
operations implicitly apply.

cursor—A small (16-by-16-bit) bit image whose movements can be con-
trolled with the mouse to designate positions on the Macintosh screen.

548 Glossary

customize—To redefine an aspect of the Toolbox’s operation to meet the
specialized needs of a particular program.

cut and paste—The standard method of editing used on the Macintosh,
in which text, graphics, or other information is transferred from one
place to another by way of an intermediate scrap or Clipboard.

dangling pointer—An invalid pointer to an object that no longer exists
at the designated address.

data fork—The fork of a file that contains the file’s data, such as the text
of a document; compare resource fork.

date and time record—A data structure representing a calendar date and
clock time, with fields for the year, month, day of the month, day of the
week, hour, minute, and second; used for reading or setting the Macin-
tosh’s built-in clock chip.

dead character—(1) A text character with a zero character width, which
doesn’t advance the graphics pen when drawn. (2) A character (such as
a foreign-language accent) that combines with the character following it
to produce a single result character (such as an accented letter).

definition file—An assembly-language file containing definitions of Tool-
box constants and global variables, to be incorporated into an assembly-
language program with an .INCLUDE directive.

dereference—(1) In general, to convert any pointer to the value it points
to. (2) Specifically, to convert a handle to the corresponding master
pointer.

descent—(1) For a text character, the distance the character extends
below the baseline, in pixels. (2) For a font, the maximum descent of any
character in the font.

descent line—The line marking a font's maximum descent below the
baseline.

desk accessory—A type of device driver that operates as a “mini-
application” that can coexist on the screen with any other program.

desk scrap—The scrap maintained by the Toolbox to hold information
being cut and pasted from one application program or desk accessory to
another.

desktop—(1) The gray background area of the Macintosh screen, outside
of any window. (2) The arrangement of windows, icons, and other objects
on the screen, particularly in the Finder.

desktop file—A file containing Finderrelated information about the files
on a disk, including their file types, creator signatures, and locations on
the Finder desktop.

detach—To decouple a resource from its resource file, so that the
resource will remain in memory when the file is closed.

549 Glossary

device code—An integer identifying the output device a graphics port
draws on, used in selecting the appropriate fonts for drawing text.

device driver—The low-level software through which the Toolbox com-
municates with an input/output device; an important special category of
device drivers are desk accessories.

diameters of curvature—The width and height of the ovals forming the
corners of a rounded rectangle.

diamond mark—A special control character (character code $13) that
appears on the Macintosh screen as a small diamond symbol. This
symbol is a vestige of earlier versions of the Macintosh user interface and
no longer has any specific use.

directory—A table containing information about the files on a disk. Under
the Hierarchical File System, directories may in turn contain other
directories, and correspond to folders displayed on the desktop by the
Finder.

disk driver—The device driver built into ROM for communicating with
the Macintosh'’s built-in Sony disk drive.

Disk Initialization Package—A standard package, provided in the system
resource file, that takes corrective action when an unreadable disk is
inserted into the disk drive, usually by initializing the disk.

dispatch table—A table in memory, used by the Trap Dispatcher to locate
the various Toolbox routines in ROM.

document—A coherent unit or collection of information to be operated
on by a particular application program.

document file—A file containing a document.

driver reference number—An integer between —1 and —32, used to refer
to a particular device driver; derived from the driver’'s unit number by the
formula refNum = —(unitNum + 1).

empty handle—A handle that points to a NiL master pointer, indicating
that the underlying block has been purged from the heap.

empty rectangle—A rectangle that encloses no pixels on the coordinate
grid.

empty region—A region that encloses no pixels on the coordinate grid.
emulator trap—A form of trap that occurs when the MC68000 processor
attempts to execute an unimplemented instruction; used to “emulate”
the effects of such an instruction with software instead of hardware.
enclosing rectangle—The rectangle within which an oval is inscribed.
erase—To fill a shape with the background pattern of the current port.

error code—A nonzero result code, reporting an error of some kind
detected by an Operating System routine.

550 Glossary

event—An occurrence reported by the Toolbox for a program. to respond
to, such as the user's pressing the mouse button or typing on the
keyboard.

exception—See trap.

exclusive or—A bit-level operation in which each bit of the result is a 1
if the corresponding bits of the two operands are different, or 0 if they're
the same.

EXIT—A nonstandard feature of Apple’'s Pascal compiler that allows an
immediate return from the middle of a procedure or function.

external reference—A reference from one code segment to a routine
contained in another segment.

family record—A data structure containing information about a given
typeface; used only by the Macintosh Plus Toolbox.

Fat Mac—A model of Macintosh introduced in Autumn 1984, with a
memory capacity of 512K and a single-sided disk drive.

field—One of the components of a Pascal record.
file—A collection of information stored as a named unit on a disk.
file icon—The icon used by the Finder to represent a file on the screen.

file reference—A Finder resource that establishes the connection be-
tween a file type and its file icon.

file reference number—An identifying number assigned by the file
system to stand for a given file.

file system—The part of the Toolbox that deals with files on a disk or
other mass storage device.

file type—A four-character string that characterizes the kind of informa-
tion a file contains, assigned by the program that created the file.

fill—To color a shape with a specified pattern.

fill pattern—A pattern associated with a graphics port, used privately by
QuickDraw for filling shapes.

Finder—The Macintosh program with which the user car manipulate
files and start up applications; normally the first program to be run when
the Macintosh is turned on.

Finder flags—A set of Boolean flags associated with a file, specifying
attributes of interest to the Finder; see bozo bit, bundle bit, busy bit,
change bit, init bit, invisible bit, lock bit, system bit.

Finder information record—A data structure summarizing the Finder
related properties of a file, including its file type, creator signature, and
location on the Finder desktop.

Finder resources—The resources associated with a program that tell the

Finder how to represent the program's files on the screen. Finder
resources include autographs, icon lists, file references, and bundles.

551 Glossary

Finder startup handle—See startup handle.
Finder startup information—See startup information.

fixed-point number—A binary number with a fixed number of bits before
and after the binary point; specifically, a value of the Toolbox data type
Fixed, consisting of a 16-bit integer part and a 16-bit fractional part.

Floating-Point Arithmetic Package—A standard package, provided in the
system resource file (or in ROM on the Macintosh Plus), that performs
arithmetic on floating-point numbers in accordance with the IEEE stan-
dard, using the Standard Apple Numeric Environment (SANE).

floating-point number—A binary number in which the binary point can
“float” to any required position; the number’s internal representation
includes a binary exponent, or order of magnitude, that determines the
position of the binary point.

folder—An object in a disk's desktop file, represented on the screen by
an icon or a window, that can contain files or other folders; used for
organizing the files on the disk. Under the Hierarchical File System,
folders correspond to directories.

folder number—The integer used by the Finder to identify a particular
folder.

font—(1) A resource containing all of the character images and other
information needed to draw text characters in a given typeface and type
size. (2) Sometimes used loosely (and incorrectly) as a synonym for
typeface, as in the terms font number and text font.

font height—The overall height of a font's font rectangle, from ascent line
to descent line.

font image—A bit image consisting of all the individual character images
in a given font, arranged consecutively in a single horizontal row; also
called a strike of the font.

font information record—A data structure containing metric informa-
tion about a font in integer form; compare font metric record.

font metric record—On the Macintosh Plus, a data structure containing
metric information about a font in fixed-point form; compare font infor-
mation record.

font number—An integer denoting a particular typeface.

font record—A data structure containing all the information associated
with a given font.

font rectangle—The smallest rectangle, relative to the baseline and
character origin, that would enclose all of the character images in a font
if they were superimposed with their origins coinciding.

font scaling—The enlargement or reduction of an existing font to sub-
stitute for an unavailable font of a different size.

552 Glossary

font width table—A resource containing all of the information on the
character widths in a given font, but without the character images
themselves; used for measuring the width of text without actually draw-
ing it.

fork—One of the two parts of which every file is composed: the data fork
or the resource fork.

fraction—A fixed-point value of the Toolbox data type Fract, consisting of
a 2-bit integer part and a 30-bit fractional part.

fractional character widths—A new feature, available only on the Macin-
tosh Plus, that allows the character widths for a font to be expressed as
fractional, rather than integral, numbers of points. The resulting character
positions are then rounded to the available resolution of whatever device
they're drawn on (such as the screen or a printer).

frame—To draw the outline of a shape, using the pen size, pen pattern,
and pen mode of the current port.

free block—A coritiguous block of space available for allocation within
the heap.

global coordinate system—The coordinate system associated with a
given bit image, in which the top-left corner of the image has coordinates
(0, 0); the global coordinate system is independent of the boundary rect-
angle of any bit map or graphics port based on the image.

global width table—A table used internally by the Macintosh Plus Tool-
box, holding the fractional character widths and other low-level data
about a font.

glue routine—See interface routine.
graphics pen—The imaginary drawing tool used for drawing lines and
text characters in a graphics port.

graphics port—A complete drawing environment containing all the in-
formation needed for QuickDraw drawing operations.

handle—A pointer to a master pointer, used to refer to a relocatable
block.

heap—The area of memory in which space is allocated and deallocated
at the explicit request of a running program; compare stack.

heap zone—An independently maintained area of the heap, such as the
application heap or the system heap.

HFS—See Hierarchical File System.
Hierarchical File System—The file system built into the Macintosh Plus
Toolbox in ROM, designed for use with double-sided disks, hard disks,

and other large-capacity storage devices; also available for older models
in RAM-based form.

553 Glossary

icon—A bit image of a standard size (32 pixels by 32), used on the
Macintosh screen to represent an object such as a disk or file.

icon list—A resource containing any number of icons; commonly used to
hold a file icon and its mask for use by the Finder.

identifying information—The properties of a resource that uniquely
identify it: its resource type, resource ID, and (optional) resource name.
IEEE standard—A set of standards and conventions for floating-point
arithmetic, published by the Institute of Electrical and Electronic En-
gineers.

image-height table—An optional table in a font record, containing infor-
mation on the heights of the character images in the font. Used only by
the Macintosh Plus Toolbox; ignored on earlier models.

image width—The horizontal extent of a character image; the width in
pixels of a character's graphical representation. Compare character
width.

ImageWriter—A dot-matrix impact printer manufactured and marketed
by Apple Computer.

init bit—A Finder flag that tells whether the Finder resources belonging
to an application file have been installed in the desktop file of the disk
it resides on.

Inside Macintosh—The comprehensive manual on the Macintosh Tool-
box, produced by Apple Computer and published by Addison-Wesley
Publishing Company, Inc.

interface—A set of rules and conventions by which one part of an
organized system communicates with another.

interface file—A text file that contains the declarations belonging to an
interface unit in source-language form, to be incorporated into a Pascal
program with a uses declaration (or a $i directive in some versions of
Pascal).

interface routine—A routine, part of an interface unit, that mediates
between the stack-based parameter-passing conventions of a Pascal call-
ing program and those of a register-based Toolbox routine; also called a
“glue routine.”

interface unit—A precompiled unit containing declarations for Toolbox
routines and data structures, making them available for use in Pascal
programs.

International Utilities Package—A standard package, provided in the
system resource file, that helps programs conform to the prevailing
conventions of different countries in such matters as formatting of
numbers, dates, times, and currency; use of metric units; and alpha-
betization of foreign-language accents, diacriticals, and ligatures.

554 Glossary

interrupt—A trap triggered by a signal to the MC68000 processor from a
peripheral device or other outside source.

interrupt handler—The trap handler for responding to an interrupt.
invert—(1) Generally, to reverse the colors of pixels in a graphical image,

changing white to black and vice versa. (2) Specifically, to reverse the
colors of all pixels inside the boundary of a given shape.

invisible bit—A Finder flag that marks a file as invisible, so that the Finder
will not display its icon on the screen.

jump table—A table used to direct external references between code
segments to the proper addresses in memory; located in the application
global space, at positive offsets from the base address kept in register AS5.

K—See kilobyte.

kern—The amount by which a character image extends leftward beyond
the character origin or rightward beyond the character width.

kerning table—An optional table in a family record, containing informa-
tion on the amount of kern between pairs of characters in a typeface;
used only by the Macintosh Plus Toolbox.

key code—An 8-bit integer representing a physical key on the keyboard
or keypad; compare character code.

key map—An array of bits in memory representing the state of the keys
on the keyboard and keypad.

keyboard configuration—The correspondence between keys on the
Macintosh keyboard or keypad and the characters they produce when
pressed.

keyboard driver—The low-level part of the Toolbox that communicates
directly with the keyboard and keypad.

keyboard routine—A routine to be executed directly by the keyboard

driver when the user types a number key while holding down the
Command and Shift keys; stored on the disk as a resource of type 'FKEY'.

keypad—See numeric keypad.

kilobyte—A unit of memory capacity equal to 2'° (1,024) bytes.
LaserWriter—A high-resolution laser printer manufactured and mar-
keted by Apple Computer.

launch—To start up a new program after reinitializing the stack, applica-
tion global space, and application heap; compare chain.

leading—The amount of extra vertical space between lines of text,
measured in pixels from the descent line of one to the ascent line of the
next; rhymes with “heading,” not “heeding.” Although every font specifies
a recommended leading value, the recommendation need not be fol-
lowed when drawing text in a graphics port.

555 Glossary

length byte—The first byte of a Pascal-format string, which gives the
number of characters in the string, from 0 to 255.

LIFO—Last in, first out; the order in which items are added to and
removed from the stack. Compare LIOF.

ligature—A text character that combines two or more separate characters
into a single symbol, such as a.

limit pointer—A pointer that marks the end of an area of memory by
pointing to the address following the last byte.

line drawing—Drawing in a graphics port by moving the graphics pen,
using the QuickDraw routines Move, MoveTo, Line, and LineTo.

LIOF—"Last in, OK, fine"; describes the allocation and deallocation of
items in the heap, which can occur in any order at all. Compare LIFO.

Lisa—A personal computer manufactured and marketed by Apple Com-
puter; the first reasonably priced personal computer to feature a high-
resolution bit-mapped display and a hand-held mouse pointing device.
Now called Macintosh XL.

List Manager Package—A standard package, provided in the system
resource file, that displays scrollable lists of items from which the user
can choose with the mouse (like the one used in selecting files to be
read from the disk). This package was introduced at the same time as
the Macintosh Plus, and is available only in versions 3.0 or later of the
System file.

load—To read an object, such as a resource or the desk scrap, into
memory from a disk file.

local coordinate system—The coordinate system associated with a given
graphics port, determined by the boundary rectangle of the port’s bit
map.

local ID—The identifying number by which a Finder resource is referred
to by other resources in the same bundle; not necessarily the same as
its true resource ID.

localize—To tailor a program’s behavior for use in a particular country.
location table—A table giving the horizontal position of each character
image in a font, measured in pixels from the beginning of the font image.
lock—To temporarily prevent a relocatable block from being purged or
moved within the heap during compaction.

lock bit—(1) A flag in the high-order byte of a master pointer that marks
the associated block as locked. (2) A Finder flag that prevents a file from
being deleted, renamed, or replaced.

logical shift—A bit-level operation that shifts the bits of a given operand
left or right by a specified number of positions, with bits shifted out at
one end being lost and 0s shifted in at the other end.

5 5 6 Glossary

long integer—A data type provided by Apple’s Pascal compiler, consist-
ing of double-length integers: 32 bits including sign, covering the range
+2147483647.

long word—A group of 32 bits (2 words, or 4 bytes) beginning at a word
boundary in memory.

Macintosh—A personal computer manufactured and marketed by Apple
Computer, featuring a high-resolution bit-mapped display and a hand-
held mouse pointing device.

Macintosh Development System—A 68000 assembler and software
development system produced by Consulair, Inc., and marketed by Apple
Computer.

Macintosh Operating System—The body of machine code built into the
Macintosh ROM to handle low-level tasks such as memory management,
disk input/output, and serial communications.

Macintosh Plus—An upgraded model of Macintosh introduced in January
1986, with a memory capacity of 1 megabyte (expandable to 4 megabytes)
and featuring an updated and expanded version of the Toolbox, a
double-sided disk drive, a redesigned keyboard, and a SCSI parallel port.

Macintosh Programmer’s Workshop—A software development system
produced and marketed by Apple Computer, including a Pascal compiler,
C compiler, 68000 assembler, and other development tools.

Macintosh XL—A Lisa computer running Macintosh software under the
MacWorks emulator.

MacWorks—The software “emulator” program that enables a Lisa to run
Macintosh software without modification.

main entry point—The point in a program’s cade where execution begins
when the program is first started up.

main segment—The code segment containing a program’'s main entry
point.

master pointer—A pointer to a relocatable block, kept at a known, fixed
location in the heap and updated automatically by the Toolbox whenever
the underlying block is moved during compaction. A pcinter to the
master pointer is called a handle to the block.

MC68000—The 32-bit microprocessor used in the Macintosh, manufac-
tured by Motorola, Inc.; usually called “68000" for short.

megabyte—A unit of memory capacity equal to 2?° (1,048,576) bytes.

menu—A list of choices or options from which the user can choose with
the mouse.

MiniEdit—The extensive example program developed in Volume Two of this
book.

557 Glossary

missing character—A character for which no character image is defined
in a given font; represented graphically by the font's missing symbol.
missing symbel—The graphical representation used for drawing missing
characters in a given font.

modifier key—A key on the Macintosh keyboard that doesn’t generate a
character of its own, but may affect the meaning of any character key
pressed at the same time; see Shift key, Caps Lock key, Option key,
Command key.

mouse—A hand-held pointing device for controlling the movements of
the cursor to designate positions on the Macintosh screen.

nonrelocatable block—A block that can’'t be moved within the heap
during compaction, referred to by single indirection with a simple
pointer; compare relocatable block.

numeric keypad—A set of keys for typing numbers into the computer.
On the Macintosh Plus, the keypad is physically built into the keyboard
unit; on earlier models, it's an optional separate unit that connects to
the keyboard with a cable.

object module—The file containing the compiled code of a Pascal unit,
to be linked with that of an application program after compilation.

ofiset/width table—A table giving the character offset and character
width for each character in a given font.

one-deep operation—On the Macintosh Plus, a resource-related opera-
tion that applies only to the current resource file, rather than to all open
resource files.

Operating System—See Macintosh Operating System.

Option key—A modifier key on the Macintosh keyboard, used to type
special characters such as foreign letters and accents.

or—A bit-level operation in which each bit of the result is a 1 if either
or both operands have 1s at the corresponding bit position, or 0 if both
have 0s.

ORD—A standard Pascal function for converting any scalar value to a
corresponding integer (for instance, a character to its equivalent integer
character code); on the Macintosh, ORD will also accept a pointer and
return the equivalent long-integer address.

origin—(1) The top-left corner of a rectangle. (2) For a bit map or graphics
port, the top-left corner of the boundary rectangle, whose coordinates
determine the local coordinate system.

oval—A graphical figure, circular or elliptical in shape; defined by an
enclosing rectangle.

558 Glossary

package—A resource, usually residing in the system resource file (or in
ROM on the Macintosh Plus), containing a collection of general-purpose
routines that can be loaded into memory when needed; used to supple-
ment the Toolbox with additional facilities.

package number—The resource ID of a package; must be between 0 and
7 (0 and 15 on the Macintosh Plus).

package trap—A Toolbox trap used at the machine-language level to call
a routine belonging to a package. In the original Toolbox there are eight
package traps, named _Pack0 to _Pack7; on the Macintosh Plus there are
sixteen, named _Pack0 to _Pack15.

paint—To fill a shape with the pen pattern of the current port.
Pascal-format string—A sequence of text characters represented in the
internal format used by Apple’s Pascal compiler, consisting of a length
byte followed by from 0 to 255 bytes of character codes.

pattern—A small bit image (8 pixels by 8) that can be repeated indefinitely
to fill an area, like identical floor tiles laid end to end.

pattern list—A resource consisting of any number of patterns.

pattern transfer modes—A set of transfer modes used for drawing lines
or shapes or filling areas with a pattern.

pen—See graphics pen.

pen level —An integer associated with a graphics port that determines the
visibility of the port's graphics pen. The pen is visible if the pen level is
zero or positive, hidden if it's negative.

pen location—The coordinates of the graphics pen in a given graphics
port.

pen mode—The transfer mode with which a graphics port draws lines
and frames or paints shapes; should be one of the pattern transfer
modes.

pen pattern—The pattern in which a graphics port draws lines and
frames or paints shapes.

pen size—The width and height of the graphics pen belonging to a
graphics port.

pen state—The characteristics of the graphics pen belonging to a graphics
port, including its pen location, pen size, pen mode, and pen pattern.
picture—A recorded sequence of QuickDraw operations that can be
repeated on demand to reproduce a graphical image.

picture frame—The reference rectangle within which a picture is defined,
and which can be mapped to coincide with any other specified rectangle
when the picture is drawn.

pixel—A single dot forming part of a graphical image; short for “picture
element.”

559 Glossary

point—(1) A position on the QuickDraw coordinate grid, specified by a pair
of horizontal and vertical coordinates. (2) A unit used by printers to
measure type sizes, equal to approximately 1/72 of an inch.

point size—See type size.
POINTER—A function provided by Apple’s Pascal compiler, which accepts a

long integer representing a memory address and returns a blind pointer
to that address.

polygon—A graphical figure defined by any closed series of connected
straight lines.

pop—To remove a data item from the top of a stack.

port—(1) A connector on the back of the Macintosh for communication
with a peripheral device, such as a printer or modem. (2) Short for
graphics port.

port rectangle—The rectangle that defines the portion of a bit map that
a graphics port can draw into.

printer driver—The device driver for communicating with a printer
through one of the Macintosh’s built-in ports.

pseudo-random numbers—Numbers that seem to be random but can
be reproduced in exactly the same sequence if desired.

purge—To remove a relocatable block from the heap to make room for
other blocks. The purged block’s master pointer remains allocated, but
is set to NIL to show that the block no longer exists in the heap; all
existing handles to the block become empty handles.

purge bit—A flag in the high-order byte of a master pointer that marks
the associated block as purgeable.

purgeable block—A relocatable block that can be purged from the heap
to make room for other blocks.

push—To add a data item to the top of a stack.

pushdown stack—See stack.

QuickDraw—The extensive collection of graphics routines built into the
Macintosh ROM.

QuickDraw glebals pointer—A pointer to the global variables used by
QuickDraw, kept at address 0(A5) in the application global space and
initialized with the InitGraf routine.

RAM—See random-access memory.

random-access memory—A common but misleading term for read/write
memory.

560 Glossary

read-only memory—Memory that can be read but not written; usually
called ROM. The Skinny Mac and Fat Mac have 64K of ROM containing
the built-in machine code of the Macintosh Operating System, QuickDraw,
and the User Interface Toolbox. The Macintosh Plus has an expanded
128K ROM that also includes some packages, device drivers, and other
frequently used resources. Compare read/write memory.

read/write memory—Memory that can be both read and written; com-
monly known by the misleading term random-access memory, or RAM.
The Skinny Mac has 128K of read/write memory; the Fat Mac has 512K;
the Macintosh Plus has 1 megabyte, expandable to 4 megabytes. Compare
read-only memory.

reallocate—To allocate fresh space for a relocatable block that has been
purged, updating the block’s master pointer to point to its new location.
Only the space is reallocated; the block’s former contents are not re-
stored.

rectangle—A four-sided graphical figure defined by two points specifying
its top-left and bottom-right corners, or by four integers specifying its top,
left, bottom, and right edges.

region—A graphical figure that can be of any arbitrary shape. It can have
curved as well as straight edges, and can even have holes in it or consist
of two or more separate pieces.

register-based—Describes a Toolbox routine that accepts its parameters
and returns its results directly in the processor’s registers; compare
stack-based.

release—To deallocate a block of memory that's no longer needed,
allowing the space to be reused for another purpose.

relocatable block—A block that can be moved within the heap during
compaction, referred to by double indirection with a handle; compare
nonrelocatable block.

resource—A unit or collection of information kept in a resource file on
a disk (or in ROM on the Macintosh Plus) and loaded into memory when
needed.

resource attributes—A set of flags describing properties of a resource,
kept in the attribute byte of its resource map entry.

resource bit—A flag in the high-order byte of a master pointer that
marks the associated block as a resource.

resource compiler—A utility program that constucts resources accord-
ing to a coded definition read from a text file.

resource data—The information a resource contains.

resource editor—A utility program with which resources can be defined
or modified directly on the screen with the mouse and keyboard.

561 Glossary

resource file—A collection of resources stored together as a unit on a
disk; technically not a file as such, but merely the resource fork of a
particular file.

resource file attributes—A set of flags describing properties of a resource

file.

resource fork—The fork of a file that contains the file’s resources;
usually called a resource file. Compare data fork.

resource ID—An integer that identifies a particular resource within its
resource type.

resource map—The table that summarizes the contents of a resource
file, stored as part of the file. itself and read into memory when the file
is opened.

resource name—An optional string of text characters that identifies a
particular resource within its resource type, and by which the resource
can be listed on a menu.

resource specification—The combination of a resource type and
resource ID, or a resource type and resource name, which uniquely
identifies a particular resource.

resource type—A four-character string that identifies the kind of infor-
mation a resource contains.

result code—An integer code returned by an Operating System routine
to signal successful completion or report an error.

return link—The address of the instruction following a routine call, to
which control is to return on completion of the routine.

ROM—See read-only memory.

rounded rectangle—A graphical figure consisting of a rectangle with
rounded corners; defined by the rectangle itself and the dimensions of
the ovals forming the corners.

routine selector—An integer used to identify a particular routine within
a package.

row width—The number of bytes in each row of a bit image.

SANE—See Standard Apple Numeric Environment.

scrap—The vehicle by which information is cut and pasted from one
place to another.

scrap count—An integer maintained by the Toolbox that tells when the
contents of the desk scrap have been changed by a desk accessory.

scrap file—A disk file holding the contents of the desk scrap.

scrap handle—A handle to the contents of the desk scrap, kept by the
Toolbox in a system global.

scrap information record—A data structure summarizing the contents
and status of the desk scrap.

562 Glossary

screen buffer—The area of memory reserved to hold the screen image.

screen image—The bit image that defines what is displayed on the
Macintosh screen.

screen map—The bit map representing the Macintosh screen, kept in the
QuickDraw global variable ScreenBits. Its bit image is the screen image; its
boundary rectangle has the same dimensions as the screen, with the
origin at coordinates (0, 0).

scroll—To move the contents of a window with respect to the window
itself changing the portion of a document or other information that's
visible within the window.

scroll bar—A control associated with a window that allows the user to
scroll the window’s contents.

SCSI—Small Computer Standard Interface, a parallel interface built into the
Macintosh Plus for communicating with peripheral devices; commonly
pronounced “scuzzy” (or “sexy,” according to personal temperament).
seed—The starting value used in generating a sequence of pseudo-random
numbers.

segment header—Information at the beginning of a code segment iden-
tifying which entries in the program's jump table belong to this segment.
segment number—The resource ID of a code segment.

segment 0—A special code segment containing the information needed
to initialize a program’s application global space.

serial driver—The device driver built into ROM for communicating with
peripheral devices through the Macintosh's built-in serial ports.

serial port—A connector on the back of the Macintosh for communicat-
ing with peripheral devices such as a hard disk, printer, or modem.
shape—Any of the figures that can be drawn with QuickDraw shape-draw-
ing operations, including rectangles, rounded rectangles, ovals, arcs and
wedges, polygons, and regions.

shape drawing—Drawing shapes in a graphics port, using the operations
frame, paint, fill, erase, and invert.

Shift key—A modifier key on the Macintosh keyboard, used to convert
lowercase letters to uppercase or to produce the upper character on a
nonalphabetic key.

signature—A four-character string that identifies a particular application
program, used as a creator signature on files belonging to the program
and as the resource type of the program'’s autograph resource.
68000—See MC68000.

SIZEOF—A function provided by the Apple Pascal compiler, which accepts
a variable or type name as a parameter and returns the number of bytes
of memory occupied by that variable or by values of that type.

563 Glossary

Skinny Mac—The original model of Macintosh, introduced in January
1984, with a memory capacity of 128K and a single-sided disk drive.

sound buffer—The area of memory whose contents determine the
sounds to be emitted by the Macintosh speaker.

sound driver—The device driver built into ROM for controlling the
sounds emitted by the Macintosh speaker.

source transfer modes—A set of transfer modes used for transferring
pixels from one bit map to another or for drawing text characters into a
bit map.

stack—(1) Generally, a data structure in which items can be added
(pushed) and removed (popped) in LIFO order: the last item added is
always the first to be removed. (2) Specifically, the area of Macintosh RAM
that holds parameters, local variables, return addresses, and other tem-
porary storage associated with a program’s procedures and functions;
compare heap. One end of the stack (the base} remains fixed in memory,
while items are added or removed at the other end (the top); the stack
pointer always points to the current top of the stack.

stack-based—Describes a Toolbox routine that accepts its parameters
and returns its results on the stack according to Pascal conventions;
compare register-based.

stack pointer—The address of the current top of the stack, kept in
processor register A7.

Standard Apple Numeric Environment—A set of routines for performing
arithmetic on floating-point numbers in accordance with the IEEE stan-
dard; available on the Macintosh through the Floating-Point Arithmetic
Package. Commonly called by the acronym SANE.

Standard File Package—A standard package, provided in the system
resource file, that provides a convenient, standard way for the user to
supply file names for input/output operations.

standard fill tones—A set of five patterns representing a range of
homogeneous tones from solid white to solid black, provided as global
variables by the QuickDraw graphics routines.

standard patterns—The 38 patterns included on the standard MacPaint
pattern palette, available as a pattern list resource in the system resource
file.

starting angle—The angle defining the beginning of an arc or wedge.
startup handle—A handle to a program's startup information, passed to
the program by the Finder as an application parameter.

startup information—A list of document files selected by the user to be
opened on starting up an application program.

strike—See font image.

‘564 Glossary

string list—A resource consisting of any number of Pascal-format strings.

system bit—A Finder flag that marks files needed by the system for proper
operation.

system font—The typeface (Chicago) used by the Toolbox for displaying its
own text on the screen, such as window titles and menu items.

system globals—Fixed memory locations reserved for use by the Tool-
box.

system heap—The portion of the heap reserved for the private use of the
Macintosh Operating System and Toolbox.

system resource file—The resource fork of the file System, containing
shared resources that are available to all programs.

text characteristics—The properties of a graphics port that determine
the way it draws text characters, including its text face, text size, text
style, and text mode.

text face—The typeface in which a graphics port draws text characters.

text file—A file of file type TEXT', containing pure text characters with no
additional formatting or other information.

text font—A term sometimes used loosely (and incorrectly) as a synonym
for text face.

text mode—The transfer mode with which a graphics port draws text
characters.

text size—The type size in which a graphics port draws text characters.
text style—The type style in which a graphics port draws text characters.
Toolbox—(1) The User Interface Toolbox. (2) Loosely, the entire contents

of the Macintosh ROM, including the Macintosh Operating System and
QuickDraw in addition to the User Interface Toolbox proper.

top of stack—The end of the stack at which items are added and
removed; compare base of stack.

Transcendental Functions Package—A standard package, provided in
the system resource file (or in ROM on the Macintosh Plus), that calcu-
lates various transcendental functions on floating-point numbers, such as
logarithms, exponentials, trigonometric functions, compound interest,
and discounted value.

transfer mode—A method of combining pixels being transferred to a bit
map with those already there.

translate—To move a point or a graphical figure a given distance horizon-
tally and vertically.

trap—An error or abnormal condition that causes the MC68(00 processor
to suspend normal program execution temporarily and execute a trap
handler routine to respond to the problem; also called an exception.

565 Glossary

Trap Dispatcher—The trap handler routine for responding to the
emulator trap, which examines the contents of the trap word and jumps
to the corresponding Toolbox routine in ROM.

trap handler—The routine executed by the MC68000 processor to
respond to a particular type of trap.

trap macro—A macroinstruction used to call a Toolbox routine from an
assembly-language program; when assembled, it produces the ap-
propriate trap word for the desired routine. Trap macros are defined in
the assembly-language interface to the Toolbox and always begin with
an underscore character (_).

trap number—The last 8 or 9 bits of a trap word, which identify the
particular Toolbox routine to be executed; used as an index into the
dispatch table to find the address of the routine in ROM.

trap vector—The address of the trap handler routine for a particular type
of trap, kept in the vector table in memory.

trap word—An unimplemented instruction used to stand for a particular
Toolbox operation in a machine-language program. The trap word in-
cludes a trap number identifying the Toolbox operation to be performed;
when executed, it causes an emulator trap that will execute the cor-
responding Toolbox routine in ROM.

type size—The size in which text characters are drawn, measured in
printer’s points and sometimes referred to as a “point size.”

type style—Variations on the basic form in which text characters are
drawn, such as bold, italic, underline, outline, or shadow.

typecasting—A feature of Apple's Pascal compiler that allows data items
to be converted from one data type to another with the same underlying
representation (for example, from one pointer type to another).

typeface—The overall form or design in which text characters are drawn,
independent of size or style. Macintosh typefaces are conventionally
named after world cities, such as New York, Geneva, or Athens.

unimplemented instruction—A machine-language instruction whose ef-
fects are not defined by the MC68000 processor. Attempting to execute
such an instruction causes an emulator trap to occur, allowing the effects
of the instruction to be “emulated” with software instead of hardware.

unit—A collection of precompiled declarations that can be incorporated
wholesale into any Pascal program.

unit number—The resource ID of a device driver; an integer between 0
and 31, related to the driver reference number by the formula refNum =
—(unitNum + 1).

unload—To remove an object, such as a code segment or the desk scrap,
from memory, often (though not necessarily) by writing it out to a disk
file.

566 Glossary

unlock—To undo the effects of locking a relocatable block, again allowing
it to be moved within the heap during compaction.

unpurgeable block—A relocatable block that can’t be purged from the
heap to make room for other blocks.

update—(1) To write a new version of a resource file to the disk, incor-
porating all changes made in the file’s resources in memory. (2) To
redraw all or part of a window that has been exposed to view on the
screen as a result of the user’s manipulations with the mouse.

update region—The region defining the portion of a window that must
be redrawn when updating the window.

user—The human operator of a computer.

user interface—The set of rules and conventions by which a human user
communicates with a computer system or program.

User Interface Guidelines—An Apple document (part of the Inside
Macintosh manual) that defines the standard user interface conventions
to be followed by all Macintosh application programs.

User Interface Toolbox—The body of machine code built into the
Macintosh ROM to implement the features of the standard user interface.

uses declaration—A declaration that incorporates the code of a precom-
piled unit into a Pascal program.

vector table—A table of trap vectors kept in the first kilobyte of RAM,
used by the MC68000 processor to locate the trap handler routine to
execute when a trap occurs.

version data—Another name for a program’s autograph resource, so
called because its resource data typically holds a string identifying the
version and date of the program.

visible region—A clipping boundary that defines, for a graphics port
associated with a window, the portion of the port rectangle that's exposed
to view on the screen.

wedge—A graphical figure bounded by a given arc and the radii joining
its endpoints to the center of its oval.

wide-open region—A rectangular region extending from coordinates
(—32768, —32768) to (+32767, +32767), encompassing the entire QuickDraw
coordinate plane.

window—An area of the Macintosh screen in which information is dis-
played, and which can overlap and hide or be hidden by other windows.
word—A group of 16 bits (2 bytes) beginning at a word boundary in
memory.

word boundary—Any even-numbered memory address. Every word or
long word in memory must begin at a word boundary.

Index

Addition, fixed-point, 31
AddP\, 121, 172-173, 463
AddResource, 292, 317-318, 478
Address register, 62-64
Alternate buffers, 61-62
ApFontiD system global, 384, 539
AppFile record, 364-365, 482
APPL file type, 337
Application font, 384
Application global space, 61-64,
329, 331
Application heap, 67, 84
Application parameters, 63-64
Application resource file, 281
Arcs, 215-217, 260-262, 472-473
Arithmetic operations, 31-32, 42-
51, 449-451
Arrays, as parameters, 22
Ascent line, 387
ASCII codes, 379-381, 403-406,
517
Assembly language
interface for, 20-23
variables for, 539-541
At sign operator, 25-26
Attributes, resource, 290-292,
312-313, 323-324, 477,
479

567

Autograph resource, 339-340
Automatic resource loading, 295

BackPat, 195, 232-234, 467

Baseline, 382

Binary/Decimal Conversion
Package, 334, 354-356.
See also Conversions

Bit images, 114-117, 131

Bit maps, 131-134, 158-159, 460

and ports, 136-137, 140,

168-169, 462

BitAnd, 30, 3940, 291, 448

BitCir, 29, 38-39, 448

Bit-level operations, 29-31, 38-42,
448-449

BitMap record, 132, 158, 460

BitNet, 30, 39-40, 291, 449

BitOr, 30, 39-40, 291, 448

Bits, 114-117

numbering of, 29-30, 38

BitSet, 29, 38-39, 448

BitShift, 30, 39-40, 449

BitTst, 29, 38-39, 448

BitX0r, 30, 39-40, 291, 449

Blind pointers, 23-24

BlockMove, 82, 84, 101-102, 456

Blocks
copying and combining of,
80-84, 101-104, 455-456
locking of, 76-80, 96-98, 455
memory allocation of, 67-72,
91-95, 454-455
purging of, 84-86, 107-108,
457
relocation of, 70-72, 76, 81,
99-100, 455
BNDL resource, 340, 375-376, 490
Booleans, as parameters, 22
Boundary rectangle, 117-118,
131
Bounding box, 126
Buffers, 61-62, 115-116, 134
Bundle bit, 342
Bundles, 340
Button, 212
Byte type, 73, 87, 453
ByteCount parameter, 81
Bytes, 8

CalcMask, 228, 245-246, 469
Case sensitivity, of resource
names, 278

Chain, 347-351, 479

568

Index

ChangedResource, 293, 296, 316-317,
478
Character cades, 381, 517
Character images, 382-383, 389-
390
Character offset, 391
Character origin, 382
Character set, 379-381, 403-406,
483
Character strings. See Strings
Characters, as parameters, 22
Character-width table, 392
CharWidth, 400, 436-438, 488
Clipboard File, 347
Clipping boundaries, 137-138
and graphics pen, 187
Clipping region, 139, 170-171,
463
with CopyBits, 200, 202
setting, 223, 225
ClipRect, 139, 170-171, 463
Clock chip, 32-33
ClosePicture, 228, 266-267, 474
ClosePoly, 152-153, 218, 459
ClosePort, 135, 165-167, 462
CloseResFile, 282, 301-302, 475
CloseRgn, 155-156, 222, 459
ClrAppFiles, 338, 364-365, 481
CCDE, resource type, 371-372, 491
and code segments, 327-329
Code segments, 327-333, 480
and resources, 275-276
Comments, Pascal, 6
CompactMem, 106-107, 457
Compatibility, and computer
models, 16
Control characters, 379-380, 405-
406
Conversions
of coordinate systems, 143-
146, 173-174, 463
of date and time, 33, 54-55,
452
of numbers and strings, 31,
42-43, 45, 49-50, 334,
354-356, 451
Coordinates and coordinate
systems, 168-169
for bit images, 117-121

Coordinates and coordinate
systems—cont.
conversions of, 143-146,
173-174, 463
global, 143-146
local, 140-146
CopyBits, 197-204, 242-243, 468
CopyMask, 202, 205, 228-229, 231,
242-243, 468
CopyRgn, 156-157, 223, 460
Cosines, 31, 48, 451
Count1Resources, 289, 307-308, 476
Count1Types, 289, 307-308, 476
CountAppFiles, 338, 364-365, 481
CountResources, 288, 307-308, 398,
476
CountTypes, 288, 307-308, 476
CreateResFile, 293, 315-316, 478
Creator signatures, 335-337, 358,
480
Current port, 135-136, 167-168,
462
Current resource file, 281-282,
302-303, 475
CurrentAS system global, 63, 540
CurResFile, 281, 302-303, 475

Dangling pointers, 69, 78

Data fork, 280

Date, 33, 51-57, 452-453

Date2Secs, 33, 54-55, 452

DateForm type, 55, 453

DateTimeRec record, 33, 53-54, 452

Dead characters, 401-402

Declarations, Pascal, 5-6

Definition files, 21

Delay, 212

DeltaPoint, 121, 172-173, 463

Dereferencing, of handles, 76-77

DeRez, resource decompiler, 277

Descent line, 387

Desk accessories, 344

Desk scrap, 344-348, 366-371,
482-483

Desktop files, 336, 342

DetachResource, 285, 305-306, 476

Device drivers, 343-344

DiffRgn, 129, 181-182, 465

“Dire straits” errors, 523

Direct bit transfer, 197-204, 242-
243, 468

Disk Initialization Package, 333,
354-356

Dispatch table, 15-16

memory addresses for, 61

DisposeRgn, 155-156, 223, 460

DisposHandle, 71, 93, 454

DisposPtr, 71, 93, 454

Division, 31, 44

Document files, 336-337

Double indirection, 69

DrawChar, 395, 400, 435-436, 487

DrawPicture, 228, 267-268, 474

DrawString, 395, 399-400, 435-436,
487

DrawText, 395, 435436, 488

Driver reference numbers, 343

Drivers, device, 343-344

DRVR resource type, 343-344, 377-
378

EmptyHandle, 86, 107-108, 457
EmptyRect, 121-122, 176-177, 464
EmptyRgn, 127, 179-180, 465
Emulator traps, 13-14
Environs, 16, 89, 454
.EQU directives, 21
EqualPt, 121, 172-173, 463
EqualRect, 121, 177-178, 465
EqualRgn, 127, 181-182, 466
EqualString, 29, 35-37. 447
EraseArc, 261-262, 472
EraseOval, 259, 472
ErasePoly, 263, 473
EraseRect, 207, 209, 255-256, 471
EraseRgn, 264, 473
EraseRoundRect, 257-258, 472
Error codes
“dire straits”, 523
operating system, 519-522
Error conditions, and EXIT, 27
Error reporting
memory management, 74-
75, 88-89, 453
with resources, 294, 321-
322, 479
Exceptions, 13-16

569

Index

Exclusive or, of regions, 129,
131, 181-182

EXIT, 27

ExitToShell, 338-339, 352-353, 480

Family records, 385, 391
Fat Mac
memory layout of, 506
RAM of, 59-61
system heap size of, 65
Fields, Pascal, 6
File reference numbers, 281
File reference resocurce, 340
File types, 335-337, 358, 480
Fill pattern, 195
FillArc, 261-262, 472
Filloval, 223, 259, 472
FillPoly, 219, 263, 473
FiliRect, 207, 255-256, 471
FillRgn, 223, 264, 473
FillRoundRect, 257-258, 471
Finder, 361-362
and file types, 335-337, 358
information record, 336,
342, 359-361, 480-482
resources, 339-342
and signatures, 335-337, 358
startup information for, 64,
337-339, 363-365
Finfo record, 359-361, 481
Fix2Frac, 45, 450
Fix2Leng, 31, 42-43, 449
FixATan2, 48, 451
FixDiv, 31, 44, 450
Fixed type, 31, 42-44, 449-450
FixMul, 31, 44, 450
FixRatio, 31, 44, 394, 450
FixRound, 31, 42-43, 449
Floating-Point Arithmetic
Package, 334, 354-356
FMetricRec record, 426-427, 486
FOND resource type, 385
FONT resource type, 325-326, 384,
443-445, 492
Font/DA Mover, and resource files,
277
Fontinfo record, 426-427, 486
FontMetrics, 426-427, 486

FontRecord record, 386-392, 418-
420, 484-485
Fonts
access to, 425-427, 485-486
height, 387
image, 387, 389-390, 421-
424 ’
initialization for, 384, 424,
485
locking of, 428, 486
numbers, 384-386, 415-418,
484
record, 386-392, 418-420,
484-485
rectangle, 387
scaling of, 386, 428-430, 486
width table, 401
Foreign languages
characters for, 380, 401-402
and International Utilities
Package, 29, 334, 354-356
and resources, 275
and strings, 29
Frac2Fix, 45, 450
FracCos, 48, 451
FracDiv, 46, 450
FracMul, 46, 450
FracSin, 48, 451
FracSqrt, 46, 450
Fract type, 31, 45, 450
FractEnable global flag, 392
Fraction arithmetic, 31, 45-46,
450
FrameArc, 216, 261-262, 472
FrameOval, 223, 259, 472
FramePoly, 219, 263, 473
FrameRect, 206, 255-256, 471
FrameRgn, 227, 264, 473
FrameRoundRect, 257-258, 471
FreeMem, 104-105, 456
FREF resource type, 340, 342,
373-374, 493
FRSV resource type, 446, 493
Functions, Pascal, 7
FWID resource type, 401, 445-446,
493

Get1indResource, 289, 307-308, 476
Get1indType, 289, 307-308, 476

Get1NamedResource, 283, 304-305,
476

Get1Resource, 283, 304-305, 475

GetAppFiles, 338, 364-365, 481

GetAppiLimit, 84, 109-110, 457

GetAppParms, 338, 364-365, 481

GetClip, 139, 170-171, 463

GetDateTime, 33, 51-52, 452

GetFinfo, 336, 361-362, 481

GetFNum, 385, 425, 485

GetFontinfo, 399, 426-427, 485

GetFontName, 385, 399, 425, 485

GetHandleSize, 71, 94-95, 454

Getlcon, 205, 268-269, 474

GetindPattern, 195, 232-234, 467

GetindResource, 288, 295, 307-308,
398, 476

GetIndString, 380, 407-408, 483

GetlndType, 288, 307-308, 476

GetNamedResource, 282-283, 295,
304-305, 475

GetPattern, 232-234, 467

GetPen, 187, 252-253, 470

GetPenState, 197, 247-249, 469

GetPicture, 266-267, 474

GetPixel, 163, 461

GetPort, 135-136, 167-168, 188,
462

GetPtrSize, 71, 94-95, 454

GetResAttrs, 290, 312-313, 477

GetResFileAttrs, 292, 323-324, 479

GetReslnfo, 290, 293, 296, 310-311,
398, 477

GetResource, 282-283, 295, 304-305,
395, 475

GetScrap, 346, 369-370, 482

GetString, 380, 407-408, 483

GetTime, 33, 53, 452

Global coordinate system, 143-
146

Global variables, 61-64

QuickDraw, 112-113, 541

GlobalToLocal, 125, 146, 173-174,
463

Goto, 27

GrafDevice, 434-435, 487

GrafPort record, 135-136, 160-161,
238-241, 461

and graphics pen, 247, 251,

469-470

570

Index

GrafPort record—cont.
and patterns, 232, 467
and QuickDraw, 393, 431-
433, 487
and transfer modes, 238-
241, 467
GrafPtr type, 135, 160, 461
GrafSize constant, 112
GrafVerb type, 254-255, 471
Graphics. See Graphics pen;
Graphics ports;
QuickDraw; Text
Graphics pen, 186-197, 253, 390,
395
characteristics, 247-250,
469-470
hiding and showing, 192-
193, 251-252, 470
level, 192
modes, 195-197, 250
and ports, 186-187
size, 191-193, 219, 250
Graphics ports, 134-139, 160-162,
461-463
and coordinate systems,
140-146
and graphics pen, 186-187,
193-197
operations on, 164-171
See also GrafPort record

HandAndHand, 82-83, 103-104, 456
Handte type, 73, 87, 453
Handles, 67-72, 76-77
HandToHand, 80-82, 101-102, 455
HCIrRBit, 96-98, 455
Heap and heap management, 65-
67, 104-105, 109-110,
454-457
compaction of, 68-69, 79-80,
106-107
See also Blocks
Heap zones, 67
Hexadecimal numbers, 8-9, 29-30
HGetState, 96-98, 455
HidePen, 192-193, 251-252, 470
HiWord, 30, 40-41, 449
HLock, 76, 96-98, 283, 455
HNoPurge, 86, 96-98, 455

HNoPurge—cont.

and resource files, 283, 293
HomeResFile, 289, 314-315, 478
HPurge, 86, 96-98, 455

and resource files, 283, 293
HSetRBit, 96-98, 455
HSetState, 96-98, 455
HUnlock, 76, 96-98, 283, 455

ICN# resource type, 272, 340,
342, 495
ICON resource type, 271-272, 496
Icons, 204-205, 268-269, 474
and Finder resources, 339-
341
Identification, of resources, 277-
278, 290, 310-311, 477
Image width, 390
Image-height table, 392
Images
bit. See Bit images
screen, 115
INCLUDE directives, 19, 21
InfoScrap, 346-347, 367-368, 482
INIT resource type, 381, 402, 441-
443, 496
InitAllPacks, 357, 480
InitFonts, 384, 424, 485
InitGraf, 112, 164-165, 384, 462
InitPack, 357, 480
InitPort, 135, 165-167, 462
InitWindows, 384
Inline declarations, 19
InsetRect, 123, 176-177, 464
InsetRgn, 127, 179-180, 465
Int64Bit record, 47, 451
Integers, as parameters, 22
Interface routines and units, 18-
20
Interfaces
assembly-language, 20-23
Pascal, 18-19
user, 1
International Utilities Package,
29, 334, 354-356. See also
Foreign languages
Intersection
of rectangles, 124-125, 177-
178, 464

Intersection—cont.

of regions, 129, 181-182,

465

InvertArc, 261-262, 473
InvertOval, 259, 472
InvertPoly, 263, 473
InvertRect, 207, 209, 255-256, 471
InvertRgn, 264, 473
InvertRoundRect, 257-258, 472
{UDateString, 33, 55-57, 453
IUEqualString, 29
|UTimeString, 33, 55-57, 453

Jump table, 62-63, 329-333

Kerning, 390-391
Key codes, 381, 408-410
for Macintosh Flus, 512
for standard Macintosh, 511
Key1Trans system global, 402, 540
Key2Trans system global, 402, 540
Keyboard
configurations for, 381-382,
402
driver, 401-402
standard layouts of, 411-
414, 513-516
KillPicture, 266-267, 474
KillPoly, 152-153, 219, 459

Languages
foreign. See Foreign
languages
programming, and Toolbox,
11-13
Launch, 347-351, 479
Leading, 387
LIFO, and the stack, 17
Line, 187-188, 191, 218, 252-253,
470
Line drawing, 186-197, 247-253,
469-470
LineTo, 187, 191, 218. 252-253,
470
Lisa, and Macintosh, 12-13, 63-64
List Manager Package, 333, 354-
356

571

Index

LoadResource, 283, 295, 309-310,
477

LoadScrap, 347, 370-371, 483

LoadSeg, 332-333, 351-352, 480

Local coordinate system, 140-146

Local IDs, and resource IDs, 340,
342

LocalToGlobal, 125, 146, 173-174,
463

Location table, 389-390

Logical operations, 30, 39-40,
291, 448-449

Long words, 8

Leng2Fix, 31, 42-43, 449

LONGINT data type, 22-23

LongMul, 31, 47, 451

LoWord, 30, 40-41, 449

Macintosh Plus
memory layout of, 507
RAM of, 59-61
system heap size of, 65
Macintosh Technical Support
group, 337
Macintosh XL, memory layout
of, 508-509
Main entry point, 331
Main segment, 331
MapChanged resource attribute,
296, 323-324, 479
MapCompact resource attribute,
296-297, 323-324, 479
Mapping, and scaling, 183-184,
466
MapPoly, 183-184, 466
MapPt, 183-184, 466
MapReadOnly resource attribute,
297, 323-324, 479
MapRect, 183-184, 466
MapRgn, 183-184, 466
Masks
and bit maps, 197, 202
with icons, 340-341
Master pointers, 67-72
MaxApplZone, 109-110, 457
MaxBlock, 104-105, 456
MaxMem, 106-107, 457
MaxSizeRsre, 290, 314-315, 478
MC68000. See Microprocessor

MeasureText, 400, 436-438, 488
MemError, 75, 81, 88-89, 453
MemFullErr error report, 75, 88-89,
294, 453
Memory
addressing, 8, 23
allocation of. See Memory
allocation
application global space, 61-
64, 329, 331
handles and master
pointers, 67-70
and heap. See Heap and
heap management
layouts of, 505-509
organization of, 59-62
random-access, 16, 59-62
read-only. See Read-only
memory
and SIZEOF, 26-27
stack and heap, 65-67
Memory allocation
of blocks, 67-72, 76-86, 454-
456
and code segments, 328
and fonts, 387
and resource files, 281-282
and resources, 276, 284-285,
305-306
and variables, 65
MemTypes interface unit, 18
Microprocessor (MC68000), 8-9
register A5, 62-64, 112, 329-
331, 337
register A7, 17
register DO, 75, 402
register D1, 402
register D2, 402
MiniEdit text editor, 4
Missing symbols, 389
Modifier keys, 381
MoreMasters, 99-100, 455
Move, 187, 252-253, 470
MoveHHi, 80, 99-100, 455
MovePortTo, 169-170, 463
MoveTo, 187-188, 252-253, 470
Multiplication, 31, 44, 47

NewEmptyHandle, 91-92, 454

NewHandle, 70, 73, 80, 91-92, 454
NewPtr, 71, 73, 91-92, 454
and ports, 135

NewRgn, 155-156, 219, 223, 459

NewString, 380, 407-408, 483

NFNT resource type, 394, 497

Nonrelocatable blocks, 70-72, 76,
81

NotPatBic transfer mode, 197, 238-
241, 468

NotPatCopy transfer mode, 197,
238-241, 468

NotPatX0Or transfer mode, 197, 238-
241, 468

NotSrcBic transfer mode, 197, 238-
241, 468

NumToString, 31, 49-50, 400, 451

Object modules, 18

Offset/width table, 390

OfisetPoly, 127, 178-179, 465

OffsetRect, 122-123, 127, 176-177,
179-180, 464

OffsetRgn, 127, 179-180, 465

OpsnPicture, 228, 266-267, 474

OpenPoly, 152-153, 218, 459

CpenPort, 135, 165-167, 462

OpenResFile, 281, 301-302, 475

OpenRgn, 155-156, 219, 459

Operating system, traps for, 14,
16

Option key, 402

ORD, and pointers, 23-24

Origin, of boundary rectangle,
118

OSErr type, 74-75, 88, 453

0Sintf interface unit, 18, 75

0SType type, 358, 480

Ovals, 212-213, 258-259, 472

PACK resource type, 325-326, 333,
373, 498

Package numbers, 333, 354-356

Package traps, 334-335

Packages, 333-335, 354-357, 480

Packintf interface unit, 18, 335

PackMacs trap macros, 21, 335

572

Index

Padding
with bit images, 115
of strings, 29
PaintArc, 216, 261-262, 472
PaintOval, 259, 472
PaintPoly, 219, 263, 473
PaintRect, 207, 209, 255-256, 471
PaintRgn, 264, 473
PaintRoundRect, 257-258, 471
Parameters, trap macro, 22
Pascal, 5-8
extended features of, 23-27
interface for, 18-19
PAT resource type, 269-270, 498
PAT# resource type, 270-271, 499
PatBic transfer mode, 197, 238-
241, 468
PatCopy transfer mode, 195, 197,
238-241, 468
PatHandle type, 232, 466
PatOr transfer mode, 197, 238-
241, 468
PatPtr type, 232, 466
Pattern list, 195
Pattern type, 232, 466
Patterns, 193-196, 232-236, 466-
467
PatX0r transfer mode, 197, 238-
241, 468
Pen. See Graphics pen
PenMode, 195-196, 250, 470
PenNormal, 197, 250, 470
PenPat, 194, 250, 470
PenSize, 191-192, 250, 470
PenState record, 247, 469
PicHandle type, 265, 474
PicPr type, 265, 474
PICT resource type, 273, 345, 500
Picture record, 227, 265-266, 474
Pictures, 227-228
defining, 265-267, 474
drawing, 267-268, 474
PInRect, 174-175, 464
Pixels, 114-117, 163, 461
Pioticon, 205, 268-269, 474
Point record, 118-120, 147-148, 458
POINTER, 23-24
Pointers, 23-26, 67-73
and bit maps, 132-133
dangling, 69, 78
and desk scrap, 346

Pointers—cont.
and graphic ports, 135
as parameters, 22
and QuickDraw, 112
Points, 147-148, 458
calculations with, 121, 172-
173, 463
Polygon record, 126, 151, 459
Polygons, 125-131, 459
calculations on, 178-179, 465
defining, 151-153
drawing, 218-219, 263, 473
PolyHandie type, 151, 459
PolyPtr type, 151, 459
Pop, and the stack, 18
Port rectangles, 137-139, 143,
169-170, 463
Ports, graphics. See Graphics
ports
Portsize, 169-170, 463
Procedures, Pascal, 6-7
ProcPtr type, 25-26, 34, 447
Programming flexibility, and
resources, 276
Programs
BigBrother (ovals), 213-214
coordinate conversion, 143-
145
dereferencing handles, 77
Globe (clipping regions), 223-
225
graphics ports, 136
Mondrian (rectangles), 210-212
Randomize, 32
resources, 284, 288, 289
ShowFonts, 395-398
startup, 338-339
StopPoly (regions), 220-222
StopSign (ines), 189-191
PScrapStuff type, 367-368, 482
Pt2Rect, 121, 149-150, 207, 459
PtinRect, 121, 174-175, 464
PtinRgn, 127, 174-175, 464
Pir type, 73, 87, 453
PtrAndHand, 82, 84, 103-104, 456
PtrToHand, 81-82, 101-102, 456
PtrToXHand, 81-83, 101-102, 456
PtToAngle, 216, 261-262, 473
PurgeMem, 106-107, 457
PurgeSpace, 104-105, 456
Push, and the stack, 17

PutScrap, 346, 369-370, 482

QuickDraw, 111, 185-186, 458-
466
and direct bit transfer, 197-
204
globals, 112-113, 541
and icons, 204-205
initialization of, 112-113,
164-165, 462
interface unit, 18
line drawing with, 186-197
shape drawing with, 205-
227
text characteristics of, 393-
394, 401, 431-438, 487-
488
QuickEqu definition file, 21
QuickTraps trap macros, 21

RAM (random-access memory),
16, 59-62
Randem and random numbers, 32,
50-51, 451
Random-access memory, 16, 59-
62
RandSeed global variable, 32, 50-
51, 451
Read-only memory
and dispatch table, 15
divisions of, 2
and system resources, 280,
325-326
ReatFont, 386, 425, 485
ReallccHandle, 86, 107-108, 457
Records, as parameters, 22
RecoverHandle, 91-92, 454
Rect record, 120, 149-150, 458-459
Rectangles, 169-170, 458-459
calculations with, 121-125,
176-178, 464-465
defining, 120-121, 149-150
drawing of, 206-215, 255-
256, 471
rounded, 213, 215, 256-258,
471472
scrolling of, 202-203, 244-
245, 468
RectinRgn, 127, 174-175, 464

573

Index

RectRgn, 156-157, 223, 460
Reglon record, 126, 153-154, 459
Regions, 125-131
calculations on, 179-182,
465-466
defining, 153-157, 459-460
drawing of, 219-227, 264,
473
Register-based routines, 19-20
Registers. See Microprocessor
ReleassResource, 284, 305-306, 476
Relocatable blocks, 70-72, 76, 81
RelString, 29, 35-37, 448
ResChanged attribute, 292, 312-313,
477
ResEdit, resource editor, 277
ResError, 294, 321-322, 479
ResLocked attribute, 291, 312-313,
477
Resource data, 278
Resource files, 279-282, 301-303,
315-320, 323-324, 478-
479
Resource fork, 280
Resource ID, 277-278
Resource maps, 279, 281, 290
Resource name, 278
Resource specification, 277
Resources, 275-276, 295-297,
314-315, 489-503
access to, 282-289, 304-310,
475-477
attributes of, 290-292, 312-
313, 323-324, 477, 479
error reporting with, 294,
321-323, 479
files. See Resource files
Finder, 339-342
identifying, 277-278, 310-
311, 477
list of, 298-301
modification of, 292-294,
315-320, 478
QuickDraw-related, 269-273
ROM based, 325-326
text-related, 438-446
types, 277-278, 298-301, 475
See also specific resource
types
ResPreload, attribute, 292, 312-313,
477

ResProtected, attribute, 291-292,
312-313, 477

ResPurgeable, attribute, 291, 312.
313, 477

ResrvMem, 80, 99-100, 455

ResSysHeap, attribute, 291, 312-
313, 477

Restart, 352-353, 480

ResType type, 298-301, 475

Result codes, 74-75, 88-89, 453

and HandToHand, 81

ResuitRec parameter, 124

Return link, 17

Rez, resource compiler, 277

RgnHandle type, 153-154, 459

RanPtr type, 153-154, 459

RMaker, resource compiler, 277

RmveResource, 292, 296, 317-318,
478

ROM. See Read-only memory

Rounded rectangles, 213, 215,
256-258, 471-472

Row width, 115, 132

ScalePt, 183-184, 200, 466
Scaling
of fonts, 386, 428-430, 486
of images, 198-201
and mapping, 183-184, 466
of random numbers, 32
Scrap count, 346
Scrap information record, 346
ScrapHandle global variable, 346
ScrapName system global, 347
ScrapStuff record, 367-368, 482
Screen buffer, 115-116, 134
memory addresses for, 61
Screen image, 115
Screen map, 134
ScreenBits global variable, 134,
136, 158-159, 460
ScroliRect, 202, 244-245, 468
Secs2Date, 33, 54-55, 452
SectRect, 124, 177-178, 464
SectRgn, 129, 181-182, 465
Seed, random-number, 32, 51
SeedFill, 228, 230, 245-246, 469
Segment header, 332
Segment numbers, 328

Segments, code. See Code
segments
SetApplLimit, 84, 109-110, 457
SetClip, 139, 170-171, 225, 463
SetDateTime, 33, 51-52, 452
SetEmptyRgn, 156-157, 223, 460
SetFinfo, 336, 361-362, 481
SetFontLock, 428, 486
SetFractEnable, 392, 428-430, 486
SetFScaleDisable, 386, 428-430, 486
SetHandleSize, 71, 94-95, 455
SetOrigin, 140-143, 168-169, 188-
189, 213, 462,
SetPenState, 197, 247-249, 469
SetPort, 135-136, 167-168, 393,
462 '
SetPortBits, 136-137, 168-169, 462
SetPt, 119-120, 147-148, 458
SetPtrSize, 71, 94-95, 455
SetRect, 120, 149-150, 458
SetRectRgn, 156-157, 233, 460
SetResAttrs, 2980, 293, 296, 312-313,
477
SetResFileAttrs, 292, 296-297, 323-
324, 479
SetResinfo, 280, 296, 310-311, 477
SetResLoad, 295-296, 309-310, 477
SetResPurge, 293-294, 320, 479
SetString, 380, 407-408, 483
SetTime, 33, 53, 452
Shapes, drawing. See specific
shapes
Shift operation, 30, 39-40, 449
ShowPen, 192-193, 251-252, 470
Signatures, 335-337, 358, 480
SignedByte type, 73, 87, 453
Sines, 31, 48, 451
Size type, 73, 87, 453
SIZEOF, 26-27
SizeResource, 290, 314-315, 380,
477
Skinny Mac
memory layout of, 505
RAM of, 59-61
system heap size of, 65
Sound buffer, 61
SpaceExtra, 394, 434-435, 487
Square roots, 31, 46
SrcCopy transfer mode, 198, 238-
241, 468

574

Index

Stack, 17-18, 65-67, 84
and trap macro parameters,
22
Stack-based routines, 19-20
StackSpace, 84, 109-110, 457
Standard File Package, 334, 354-
356
Standard packages, 333-335, 354-
357, 480
Standard patterns, 234-236, 467
Startup handle, 64, 337-338
Startup information, 337-339,
349-352, 363-365, 479-
481
STR resource type, 380, 439,
501
STR# resource type, 380, 440-441,
502
Str255 type, 28, 34, 447
Strikes, and fonts, 387, 389-390
StringHandle type, 407-408, 483
StringPtr type, 407-408, 483
Strings, 28-29, 34-37, 407-408,
447-448, 483
conversion of, 31, 49-50,
451
date and time, 33, 55-57,
453
formats of, 380-381
as parameters, 22
StringToNum, 31, 49-50, 451
StringWidth, 460, 436-438, 488
StuffHex, 30-31, 41-42, 449
for bit images, 117
for icons, 205
and pattern storing, 194
Styleltem type, 393, 487
SubPt, 121, 172-173, 463
Subtraction, fixed-point, 31
SysEqu definition file, 21
SysErr definition file, 21
System Error Handler, 523
System file, 280, 333-334
System font, 384
System globals
chart of, 539-541
memory addresses for, 61
System heap, 65-67
System resource file, 280

SysTraps trap macros, 21

Tangent, 48, 451
Text
characteristics of, 434-435,
487
drawing of, 395-401, 435-
436, 487-488
measuring of, 436-438, 488
and QuickDraw, 393-394,
431-433, 487
TEXT file type, 337
Text interface file, 18
TEXT resource type, 345, 380,
395, 438-439, 503
TextFace, 393, 398, 434-435, 487
TextFont, 393, 398, 434435, 487
TextMode, 393, 434-435, 487
TextSize, 393, 398, 434-435, 487
TextWidth, 400, 436-438, 488
ThePort global variable, 112, 136,
164, 167-168, 462, 541
TickCount, 212
Time, 33, 51-57, 452-453
Toolbox traps, 14, 16
ToolEqu definition file, 21
Toolintf interface unit, 18
ToolTraps trap macros, 21
TopMem, 89-30, 454
Transcendental Functions
Package, 334, 354-356
Transfer modes, 196-197, 237-
241, 467-468
Trap Dispatcher
and error reporting, 75
handler routine, 14-15
Trap handlers, 13
Trap macros, 20-21, 525-532
Trap numbers, 14
Trap vectors, 14
memory addresses for, 61
Trap words, 14-15, 532-538
Traps, 13-16
Trigonometric functions, 31, 48,
451
Typecasting, 24, 74
Typefaces, 382-384. See also
Fonts

Underscore symbol, for trap
macros, 21
UnionRect, 124, 177-178, 464
UnionRgn, 129, 181-182, 465
Unique1iD, 317-318, 478
UniquelD, 292-293, 317-318, 478
Unit numbers, for drivers, 343
UntoadScrap, 347, 370-371, 483
UnloadSeg, 333, 351-352, 480
Update region, in windows, 202,
204
UpdateResFile, 292, 318-319, 478
Upgrading, and new ROMs, 15
UprString, 29, 35-37, 448
UseResFile, 281, 302-303, 289, 475
Uses declaration, 18-19

Variables
assembly language, 539-541
global. See Global variables
memory allocation for, 65
as parameters, 22

Vector tables, 14

Version data resource, 340

VHSelect record, 119, 147-148, 458

Visible region, 139-147, 160-161,

187

Wedges, 215-217, 260-262, 472-
473
Windows
and bit maps, 131-132
ports for, 135, 139-143, 146
and resources, 276
update region in, 202, 204
With statements, and dangling
pointers, 78
Word boundaries, 8
Words, 8, 40-41
WriteResource, 293, 318-319, 478

XOrRgn, 129, 181-182, 465

ZeroScrap, 346, 369-370, 482

/8

HAYDEN BOOKS

e W g e D >
The Macintosh Library provides the most
current, hands-on information for optimal use
of the Macintosh computer. With each new
title we bring you up-to-date information
from outstanding and accomplished
Macintosh Authors.

=iy

MacAccess

Advanced Macintosh Pascal™
Paul Goodman
No. 046570, $19.95

How to Write Macintosh™ Software
Scott Knaster
No. 046564, $27.95

MacAccess: Information in Motion
Gengle and Smith
No. 046567, §21.95

Macintosh™ Multiplan®
Lasselle and Ramsay
No. 046555, $16.95

MPW and Assembly Language
Programming
Scott Kronick
No. 048409, $24.95

Personal Publishing with the
Macintosh™, Second Edition
Featuring PageMaker 2.0
Terry M. Ulick
No. 048406, $19.95

Basic Microsoft® BASIC for
the Macintosh™
Coan and Coan
No. 046558, $19.95

IBM® PC and Macintosh Networking
Steve Michel
No. 048405, $21.95

Introduction to Macintosh™ Pascal
Jonathon Simonoff
No. 046562, $19.95

The Macintosh Advisor™
Harriman and Calica
No. 046569, $18.95

Macintosh™ Revealed, Yolume One
Second Edition
No. 048400, $26.95

Macintosh™ Revealed, Volume Two
Second Edition
Stephen Chernicoff
No. 048401, $26.95

) ”.l.'\ to Wrie.
Macintosh Software

Object-Oriented Programming for
the Macintosh™
Kurt J. Schmucker
No. 046565, $34.95

Programming the 68000
Roesenzwelg and Harrison
No. 046310, $24.95

The Excel™ Advanced User's Guide
Richard Loggins
No. 46626, $19.95

HyperTalk Programming
Dan Shafer
No. 048426, 524.95

dBASE® Mac Programmer's
Reference Guide
Edicard C. Jones
No. 048416, $21.95

DCo6

Hf HAYDEN BOOKS

Please send the quantities and titles
indicated on the right. (Add $2.50
per book for postage & handling
plus applicable sales tax.) I enclose

$____ (check or money order)
or charge my order:

| Act No
OVISA OMC O Am Ex
Signature
Exp.

Prices and Availability Subject to
Change Without Notice.

A Division of Howard W. Sams & Company
4300 West 62nd Street, Indianapolis, IN 46268

Advanced Macintosh Pascal (046570)@$19.95
Basic Microsolt BASIC (046558)@$19.95
How to Write Macintosh Software
(046564)$27.95

Introduction to Macinlosh Pascal
(046562)$19.95

MacAccess: Information in Motion
(046567)@$21.95

The Macintosh Advisor (046569)@$18.95
Macintosh Multiplan (046555)@$16.95

Macintosh Revealed, Volume One, 2nd Ed.
(048400)23$26.95

Macintosh Revealed, Volume Two, 2nd Ed
(048401)@$26.95

MPW and Assembly Language Programming
(048409)@5$24.95

Dbject-Oriented Programming {0465631@$34.95
Personal Publishing with the Macintosh, 2nd £d.
(048406)@519.95

Programming the 68000 (046310)@$24.95
HyperTalk Programming (048426)@5$24.95
The Excel™ Advanced User's Guide

[BM PC and Macintosh Networking HHEeKINI5 .
(04840542821 55 dBase Mac Programmer's Guide
(048416)@321 95
Name
Address,
City State Zip

8.{,....5;_ s
1B 04

13 1

ot ¥}

- Macintosh Revealed

J Unlocking the Toolbox

Volume One*Second Edition

Master the secrets of your Macintosh with Macintosh Revealed.
This two-volume set explores the Macintosh User Interface Toolbox,
the nearly 500 built-in ROM routines that ensure that all Macintosh
software consistently shares the same easy, intuitive user interface.

Volume One, Unlocking the Toolbax, presents the foundations
on which the Toolbox is built. Leam how to call Toolbox routines
from your application programs, how to manage the Macintosh’s
memory, how to use QuickDraw graphics routines, and how to
display character text. A chapter on resources introduces this
important concept, one of the comerstones of Macintosh software
design. Another chapter describes
how application programs com-
municate with the Macintosh
Finder.

This revised, Macintosh Plus
edition of Unlocking the Toolbox
has been updated and covers
many of the new and enhanced

About the Author
Stephen Chernicoff has been
programming computers since
1962 and writing about them
since 1976. A graduate of Prince-
ton University, with an advanced degree in Computer Science
from the University of California at Berkeley, Steve met his first
mouse in 1977 at the Xerox Palo Alto Research Center (PARC)
and has been mousing around ever since.

HAYDEN BOOKS
A Division of Howard W. Sams & Company
4300 West 62nd Street
Indianapolis, Indiana 46268 USA

$26.95/48400
ISBN: 0-672-48400-5

features included in the expanded 128K ROM. Among the new
topics covered in this revision are: memory and keyboard layouts
for the Macintosh Plus 1-megabyte RAM configuration, character
codes for the expanded Laser Writer character set, font families
and enhanced font access, and QuickDraw graphics enhancements
for specialized drawing tools such as the MacPaint “lasso” and
“paint bucket.” Both Volumes One and Two feature additional
trap numbers and error codes.

Once you've mastered the fundamentals presented here, you'll
be ready for the revised edition of Volume Two, Programming
with the Toolbox. There you'll
learn about the high-level parts
of the Toolbox that implement
the features of the Macintosh
user interface, such as over-
lapping windows, pulldown
menus, scrol. bars, and dialog
boxes.

From 198) to 1984, Steve was
with Apple Computer Inc. where
he served as editor-in-chief of the
publications cepartment, contrib-
uted to the early development of the Lisa computer, and helped
write Apple’s Inside Macintosh documentation. He is also the
author of a college-level Pascal textbook.

-

