

Macintosh™
Revealed

Volume One: Unlocking the Toolbox

HAYDEN BOOKS

/'/---~~~~

The Macintosh Library provides the most
current, hands-on information for optimal use

of the Macintosh computer. With each new
title we bring you up-to-date information

from outstanding and accomplished
Macintosh Authors.

Macintosh Revealed
Volumes One and Two

Second Edition
Stephen Chernicoff

Nos. 048400, 048401, $24.95 each

Advanced Macintosh Pascal™
Paul Goodman

No. 046570, $19.95

How to Write Macintosh™
Software

Scott Knaster
No. 046564, $27 .95

MacAccess: Information in
Motion

Gengle and Smith
No. 046567, $21.95

Macintosh™ Multiplan®
Lasselle and Ramsay
No. 046555, $16.95

Personal Publishing with the
Macintosh TM (Featuring
PageMaker Version 2.0)

Second Edition
Terry M. Ulick

No. 048406, $19.95

Basic Microsoft® BASIC for the
Macintosh™
Coan and Coan

No. 046558, $19.95

MPW and Assembly Language
Programming

Scott Kronick
No. 048409, $24.95

Introduction to Macintosh™
Pascal

Jonathon Simonoff
No. 046562, $19.95

The Macintosh Advisor™
Harriman and Calica
No. 046569, $18.95

Object-Oriented Programming
for the Macintosh™

Kurt J. Schmucker
No. 046565, $34.95

Programming the 68000
Rosenzweig and Harrison

No. 046310, $24.95

The Excel Advanced User's
Guide

Richard Loggins
No. 046626, $19.95

dBASE Mac Programmer's
Reference Guide

Edward C. Jones
No. 048416, $19.95

For the retailer nearest you, or to order directly from the publisher,
cal/ 800-428-SAMS. In Indiana, Alaska, and Hawaii cal/ 317-298-5699.

Macintosh TM

Revealed

Volume One: Unlocking the Toolbox

Second Edition

Stephen Chernicoff

#f
HAYDEN BOOKS

A Division of Howard W. Sams & Company

4300 West 62nd Street

Indlanapolls. Indiana 46268 USA

For

Ann,
who likes the one with the mouse.

© 1985 and 1987 by Hayden Books
A Division of Howard W. Sams and Co.

SECOND EDmON
THIRD PRINTING-1988

All rights reserved. No part of this book shall be reproduced,
stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otheJWise,
without written permission from the publisher. No patent
liability is assumed with respect to the use of the infonnation
contained herein. While every precaution has been taken in the
preparation of this book. the author and publisher assume no
responsibility for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the infonnation
contained herein.

International Standard Book Number: 0-672-48400-5
Llbraiy of Congress Catalog Card Number: 85-8611

Acquisitions Editor: Michael McGrath
Macintosh Library Cover Design: Jim Bernard
Cover Art: Celeste Design
Index: Ted Laux
Composition: McFarland Graphics & Design, Inc.

Printed in the United States of America

Trademark Acknowledgments

All tenns mentioned in this book that are known to be trademarks
or service marks are listed below. In addition, tenns suspected
of being trademarks or service marks have been appropriately
capitalized. Hayden Books cannot attest to the accuracy of this
information. Use of a tenn in this book should not be regarded as
affecting the validity of any trademark or service mark.

AppleTalk. LaselWriter, and Llsa are registered trademarks of Apple
Computer Inc.

ImageWriter, ImageWriter II, Macintosh, MacPaint, MacWrite, and
MacWorks are trademarks of Apple Computer Inc.

Turbo Pascal is a registered trademark of Borland International.

Llghtspeed Pascal is a trademark of THINK Technology.

Preface

If you're reading this book, you probably don't need to be told that
Apple Computer's Macintosh is an extraordinaiy personal com
puter. It does things you may never have seen a computer do before,
in ways you'd never even imagined. If you've wondered what goes
on behind the scenes to make the magic happen, this book is for
you. By the time you've finished it, the inner workings of the
Macintosh will stand revealed before your eyes, and you'll be able to
use its built-in User Interface Toolbox to perform the same magic in
your own programs.

One thing must be said, however, right at the outset: the Tool
box is for experienced programmers, not beginners. To get the most
out of this book, you should have some previous experience (the
more the better) in at least one high-level programming language.
The programming examples given here are written in Pascal, but the
general principles they embody are applicable in other languages as
well. If Pascal isn't your native programming tongue, you should at
least be able to pick up enough of it to follow the logic of the
programming examples and apply them in your own prefe:rred lan
guage. The book will offer a few hints to help you over the rough
spots, but in general it's assumed that you're already acquainted
with the syntax and semantics of standard Pascal. (For hard-core bit
bangers, there's also information on how to use the Toolbox in
assembly language.)

The only other assumption is that you want to know how the
Macintosh user interface works from the inside. Whether you're a
professional software developer, a college student, a midnight
hacker, or just the kind of person who likes to take watches apart
and see what makes them tick, read on and behold the Macintosh
revealed.

STEPHEN CHERNICOFF

Berkeley, California

v

Acknowledgments

No book is ever the product of one person working alone
especially a book of the size and complexity of this one. These are
some of the people who helped me bring the book to completion,
and to whom I owe a special debt of gratitude and appreciation:

First and forever, to my wife, Helen, whose love and under
standing through the ordeal of living with an author have brought
new meaning to the word "patience"; and to my parents, Murray
and Annette Chernicoff, for their unwavering encouragement and
support.

To Chris Espinosa and Mike Murray, who, as my managers at
Apple, graciously afforded me the freedom to pursue this project as
an independent agent.

To Mike McGrath, Ronnie Groff, Mary Picldum, and Nancy
Ragle of Hayden Book Company, professionals all in the noblest
sense of the word, whose contributions were manifold and invalu
able.

To Don Herrington, Jennifer Ackley, and Wendy Ford of
Howard W. Sams & Co., for their aid in preparing the second edition.

To David Casseres of Apple Computer, for his indispensable
assistance with the programming examples and his wise and
thoughtful counsel throughout.

To Scott Knaster of Apple Computer, for his thorough techni
cal review of the manuscript and his inexhaustible patience with my
questions, intelligent and otheIWise.

To Steven Smith of CommuniTree Group, who executed the
illustrations with imagination and panache.

And finally, to the men and women of Apple Computer's
Macintosh Division, as talented and creative a group of people as I
have ever been privileged to work with; and to Steven Jobs, erst
while chairman of the board of Apple Computer and general man
ager of the Macintosh Division, who provided the vision and inspira
tion for these remarkable people to bring Macintosh to reality.

vi

Contents

Chapter 1 All the Tools You Need 1

How This Book Is Organized 3
How to Use This Book 4
What's in the Reference Sections 5
Some Terms and Conventions 8

Chapter 2 Putting the Tools to Work 11

The Language Problem 11
The Trap Mechanism 13
The Stack 17
The Pascal Interface 18
Stack-Based and Register-Based Routines 19
The Assembly-Language Interface 20
Extended Features of Pascal 23
General-Purpose Udlities 27

Strings 28
Bit-Level Operations 29
Arithmetic Operations 31
Date and Time 33

Reference 34
2.1 Blementary Data Structures 34

2.1.1 Strings and Procedures 34
2.1.2 String Operations 36

2.2 Bit-Lewi Operations 38
2.2.1 Single Bit Access 38
2.2.2 Logical Operations 39
2.2.3 Word Access 40
2.2.4 Direct Storage 41

2.3 Arithmetic Operations 42
2.3.1 Fixed-Point Numbers 42
2.3.2 Fixed-Point Arithmetic 44 ..

Vil

Chapter 3

viii Contents

2.3.3 Fractions
2.3.4 Fraction Arithmetic
2.3.5 Long Multiplication
2.3.6 Trigonometric Functions
2.3.7 Bimuy /Decimal Conversion
2.3.8 Random Numbers

2.4 Date and Time
2.4.1 Date and Time in Seconds
2.4.2 Date and Time Records
2.4.3 Date and Time Conversion
2.4.4 Date and Time Strings

Thanks for the Memory

Memory Organbation
The Application Global Space
The Stack and the Heap
Handles and Master Pointers
Relocatable and Nonrelocatable Blocks
Elementary Data Types
Error Reporting
Locking Blocks
Copying and Combining Blocks
Purging Blocks
Reference
3.1 Memory Basics

3.1.1 Elementary Data 'fypes
3.1.2 Error Reporting
3.1.3 Machine Configuration

3.2 Heap Allocation
3.2.1 Allocating Blocks
3.2.2 Releasing Blocks
3.2.3 Size of Blocks
3.2.4 Properties of Blocks
3.2.5 Block Location
3.2.6 Copying Blocks
3.2.7 Combining Blocks

3.3 Heap Management
3.3.1 Available Space
3.3.2 Reclaiming Free Space
3.3.3 Purging Blocks
3.3.4 Heap Expansion

45
46
47
48
49
50
51
51
53
54
55

59

59
62
65
67
70
73
74
76
80
84
87
87
87
88
89
91
91
93
94
96
99

101
103
104
104
106
107
109

Chapter4

ix Contents

Any Port in a Storm

Initializing QuickDraw
Bits, Pixels, and Images
Coordinates, Points, and Rectangles
Calculations with Points and Rectangles
Polygons and Regions
Bit Maps
Graphics Ports
Local and Global Coordinates
Reference
4.1 Mathematical Foundations

4.1.1 Points
4.1.2 Rectangles
4.1.3 Polygons
4.1.4 Defining Polygons
4.1.5 Regions
4.1.6 Defining Regions
4.1.7 Setting Regions

4.2 Graphical Foundations
4.2.1 Bit Maps
4.2.2 Graphics Ports
4.2.3 Pixel Access

4.3 Operations on Graphics Ports
4.3.1 Initializing QuickDraw
4.3.2 Creating and Destroying Ports
4.3.3 CuITent Port
4.3.4 Bit Map and Coordinate System
4.3.5 Port Rectangle
4.3.6 Clipping Region

4.4 Calculations on Graphical Entities
4.4.1 Calculations on Points
4.4.2 Coordinate Conversion
4.4.3 Testing for Inclusion
4.4.4 Calculations on One Rectangle
4.4.5 Calculations on Two Rectangles
4.4.6 Calculations on Polygons
4.4.7 Calculations on One Region
4.4.8 Calculations on Two Regions
4.4.9 Scaling and Mapping

111

112
114
117
121
125
131
134
140
147
147
147
149
151
152
153
155
156
158
158
160

163
164
164
165
167
168
169
170
172
172
173
174
176
177
178
179
181
183

x Contents

Chapter 5 Quick on the Draw 185

Line Drawing 186
Pen Size 191
Hiding the Pen 192
Patterns and 1hlnsfer Modes 193

Direct Bit Transfer 197
Icons 204
Drawing Shapes 205

Rectangles 206
Ovals 212
Rounded Rectangles 213
Arcs and Wedges 216
Polygons 218
Regions 219

Pictures 227
Nuts and Bolts 228
Reference 232
5.1 Drawing Fwtdamentals 232

5.1.1 Patterns 232
5.1.2 Standard Patterns 234
5.1.3 1hlnsfer Modes 237
5.1.4 Low-Level Bit Transfer 242
5.1.5 Scrolling in a Bit Map 244
5.1.6 Special Operations 245

5.2 Line Drawing 247
5.2.1 Pen Characteristics 247
5.2.2 Setting Pen Characteristics 250
5.2.3 Hiding and Showing the Pen 251
5.2.4 Drawing Lines 252

5.3 Drawing Shapes 254
5.3.1 Basic Drawing Operations 254
5.3.2 Drawing Rectangles 255
5.3.3 Drawing Rounded Rectangles 256
5.3.4 Drawing Ovals 258
5.3.5 Drawing Arcs and Wedges 260
5.3.6 Drawing Polygons 263
5.3.7 Drawing Regions 264

5.4 Pictures and Icons 265
5.4.1 Picture Records 265
5.4.2 Defining Pictures 266
5.4.3 Drawing Pictures 267
5.4.4 Icons 268

Chapter 6

xi Contents

5.5 QuickDraw-Related Resources
5.5.1 Resource Type 'PAT'

5.5.2 Resource Type 'PAT#'
5.5.3 Resource Type 'ICON'

5.5.4 Resource Type 'ICN#'

5.5.5 Resource Type 'PICT'

Summoning Your Resources

Identifying Resources
Resource Files
Access to Resources
Resource Attributes
Modifying Resources
Error Reporting
Nuts and Bolts
Reference
6.1 Resource Types

6.1.1 Resource Types
6.2 Resource Files

6.2.1 Opening and Closing Resource Files
6.2.2 CUITent Resource File

6.3 Access to Resources
6.3.1 Getting Resources
6.3.2 Disposing of Resources
6.3.3 Generating All Resources
6.3.4 Loading Resources

6.4 Properties of Resources
6.4.1 Identifying Infonnation
6.4.2 Resource Attributes
6.4.3 Other Properties

6.5 Modifying Resources
6.5.1 Creating Resource Files
6.5.2 Marking Changed Resources
6.5.3 Adding and Removing Resources
6.5.4 Updating Resource Files
6.5.5 Purge Checking

6.6 Nuts and Bolts
6.6.1 Error Reporting
6.6.2 Resource File Attributes
6.6.3 ROM-Based Resources

269
269
270
271
272
273

275

277
279
282
290
292
294
295
298
298
298
301
301
302
304
304
305
307
309
310
310
312
314
315
315
316
317
318
320
321
321
323
325

..
XII Contents

Chapter 7 Getting Loaded 327

Code Segments 327
The Jump Table 329
Packages 333
Signatures and File Types 335
Finder Startup Information 337
Finder Resources 339
Drivers and Desk Accessories 343
The Desk Scrap 344
Nuts and Bolts 347
Reference 349
7.1 Starting and Ending a Program 349

7.1.1 Starting a Program 349
7.1.2 Loading and Unloading Segments 351
7.1.3 Ending a Program 352

7 • .2 Packages 354
7.2.1 Standard Packages 354
7.2.2 Initializing Packages 357

7.3 Finder Information 358
7.3.1 Signatures and File 'fypes 358
7.3.2 Finder Information Records 359
7.3.3 Accessing Finder Properties 361
7.3.4 Startup Information 363

7.4 Desk Scrap 366
7.4.1 Scrap Format 366
7.4.2 Scrap Information 367
7.4.3 Reading and Writing the Scrap 369
7.4.4 Loading and Unloading the Scrap 370

7.5 Resource Formats 371
7.5.1 Resource 'fype 'CODE' 371
7.5.2 Resource T)'pe 'PACK' 373
7.5.3 Resource 'fype 'FREF' 373
7.5.4 Resource 'fype 'BNDL' 375
7.5.5 Resource fype 'DRVR' 377

Chapter 8 Upstanding Characters 379

The Macintosh Character Set 379
Keyboard Configurations 381
Graphical Representation of Text 382
Fonts and Font Numbers 384
Structure of a Font 386

xiii Contents

QuickDraw Text Characteristics
Drawing and Measuring Text
Nuts and Bolts

"Dead" Characters
Details of Keyboard Configurations

Reference
8.1 Keys and Characters

8.1.1 Character Set
8.1.2 Character Strings
8.1.3 Key Codes
8.1.4 Standard Keyboard Layout

8..2 Fonts
8.2.1 Standard Font Numbers
8.2.2 Font Records
8.2.3 The Font Image
8.2.4 Initializing the Toolbox for Fonts
8.2.5 Access to Fonts
8.2.6 Requesting Font Information
8.2.7 Locking a Font
8.2.8 Nuts and Bolts

8.3 Text and QuickDraw
8.3.1 QuickDraw Text Characteristics
8.3.2 Setting Text Characteristics
8.3.3 Drawing Text
8.3.4 Measuring Text

8.4 Text-Related Resources
8.4.1 Resource fype 'TEXT'
8.4.2 Resource fype 'STA'
8.4.3 Resource fype 'STR#'

8.4.4 Resource fype 'INIT'
8.4.5 Resource fype 'FONT'
8.4.6 Resource fype 'FWID'
8.4.7 Resource fype 'FRSV'

Appendix A Volume One Toolbox Summary
Appendix B Resource Formats
Appendix C Memory Layouts
Appendix D Key Codes and Character Codes
Appendix E Error Codes
Appendix F Summary of Trap Macros and Trap Words
Appendix G Summary of Assembly Language Variables

Glossary
Index

393
395
401
401
402
403
403
403
407
408
411

415
415
418
421
424
425
426
428
428
431
431
434
435
438
438
438
439
440
441
443
445
448

447
489
505
511
519
526
539

543
587

CHAPTER - ~,'~~~,~~"~~~~
-P P1 = 1)
- I~ -lit!!i'!J~IDl!rD.11 .. .

All the Tools You Need

What sets the Macintosh apart from other personal computers
is its revolutionaiy user interface. In plain English, an interface is a
junction or boundaiy where two things meet. In computerese, it
refers to the set of rules and conventions by which one part of an
organized system (like the Macintosh) communicates with another.
Wherever two components of the system come together, they
exchange information by way of an interface.

The Macintosh system consists partly of hardware (physical
components such as chips, circuits, and other electronic and
mechanical devices) and partly of software (programs). The most
important component of all is the human being "out there,"
peering at the screen and fiddling with the mouse and keyboard.
This flesh-and-blood component of the system is known, in tech
nical parlance, as the user. So the user interface is the set of
conventions that allow the human user to communicate with the
rest of the system.

In the past, user interfaces were typically based on a screen
full of text characters (usually displayed in garish green) and a
keyboard for typing them. To tell the computer what to do, you
had to memorize a complex command language, so you could
press exactly the right keys in exactly the right order. If your
actions didn't conform to what the computer expected of you, it
would tell you so in terms ranging from curt to unintelligible. On

1

2 All the Tools You Need

the whole, it was sometimes hard to tell that the human was the
boss and the computer the seivant, instead of the other way
around.

Macintosh changes all that. In place of the time-honored
character screen and keyboard, it uses a high-resolution, "bit
mapped" display and a hand-held pointing device, called a mouse.
The result is a whole new way of communicating between people
and computers. The bit-mapped screen can present information
in vivid visual form, using pictorial "icons," elaborate graphical
effects, and varied patterns and textures. Text can be depicted
exactly as it will appear on the printed page-in black characters
on a white background, with a variety of typefaces, sizes, and
styles. The mouse provides a direct, natural way of giving com
mands, by pointing and manipulating images directly on the
screen instead of typing arcane command sequences from the
keyboard.

The programmers at Apple have put a great deal of thought
and effort into how best to take advantage of these features to
produce a user interface that feels natural and comfortable. The
result of their efforts is the User Interface Toolbox, a body of tightly
engineered, lovingly hand-crafted machine-language code that's
built into every Macintosh in read-only memory (ROMJ. With it, you
can write programs that use overlapping windows, pulldown
menus, scroll bars, dialog boxes, and all the other wonders you
see on the Macintosh screen. This book will teach you how.

Strictly· speaking, the contents of t:l;te Macintosh ROM are divided
into three parts: the Macinto.sh Opera,ting System, which handles

.low-level tasks such as memoiy :management, disk input/output,
and serial communicatio:tls;. the QuickDraw graphics routines,
wbich ~ responsible fur ev~iything, displayed on the screen; -~d
the- User Interface Toolbo~. which implements the higher-level ¢on
structs of the ... user interface, such as windows and menus. As ·a. $}e,
we'll be using the term Toolbo((to refer loosely to the entire bpdy
of built-in code that's available to a running program; only ' oc
casionally will we use. it m tile narrower sense of the user-interface
code alone, as .distihct·trom the.OperatingSystem and QuickDraw.

3 How This Book Is Organized

How This Book Is Organized

The book is divided into two volumes. Volume One, Unlocking the
Toolbox (which you now have in your hands), presents the under
lying foundations on which the Toolbox is built:

• Chapter 2, "Putting the Tools to Work," introduces the basic conven
tions for calling the Toolbox from an application program and dis
cusses a number of general-purpose Toolbox facilities that you'll find
useful in your programs.

• Chapter 3, "Thanks for the Memory/' tells how the Macintosh's
memory is laid out and how to allocate memory space for your
program's needs.

• Chapter 4, "Any Port in a Storm," presents the fundamental concepts
behind the QuickDraw graphics routines.

• Chapter 5, "Quick on the Draw," shows how to use QuickDraw to draw
on the screen.

• Chapter 6, "Sununoning Your Resources," introduces the important
subject of resources, one of the cornerstones of the Macintosh software
design.

• Chapter 7, "Getting Loaded," covers the way programs are started up
and how code is loaded into memory for execution.

• Chapter 8, "Upstanding Characters," tells how character text is
represented inside the computer and displayed on the screen.

Once you've mastered these fundamentals, you'll be ready for
Volume Two, Programming with the Toolbo'}(. There you'll learn
about the various parts of the Macintosh user interlace and how they
work: events (the mechanism for monitoring the user's actions
with the mouse and keyboard), windows, menus, cut-and-paste
text editing, controls (including scroll bars), alert and dialog boxes,
and disk input/ output.

4 All the Tools You Need

Because the Toolbox includes such a broad range of facilities and
features, it's impossible to cover them all in this book. We've tried
to include those features that most programmers will need for most
applications, but unavoidably, some topics had to be left out
because oftime and space limitations. Some of these missing topics,
such as printing, sound, and desk accessories, will be covered in our
forthcoming Volume Three, and the most recent additions to the
Macintosh family, the Macintosh SE and Macintosh II, in Volume
Four. The ultimate, comprehensive source of information on the
Toolbox.is Apple's own jnside Macintosh manual.

A central feature of Volume Two is a fully worked example
program, a simple interactive text editor named MiniEdit, which
serves two purposes. First, it illustrates concretely how to use the
various parts of the Toolbox. Second, once you understand how it
works, you can use it as a "shell" within which to develop your
own application programs. The example program already includes
all the Toolbox calls needed to implement the standard features
of the user interface-for instance, to display pulldown menus
when the user presses the mouse in the menu bar, or move
windows around on the screen when the user drags them by their
title bars-so it can save you from having to "reinvent the wheel"
every time you write a program of your own. By returning the
mail-order form provided in Volume Two, you can order a software
disk containing the source code of the MiniEdit program. Then
instead of writing your own programs from scratch, you can just
modify the existing program for whatever application you choose.

How to Use This Book

With the exception of Chapter 1, each chapter in this book
consists of two complementary parts: the basic text of the chapter
and the subsequent reference sections. They are designed to be
used in parallel. The text chapters are intended to be read more
or less sequentially, from beginning to end. Their purpose is to
give you an overall conceptual understanding of the Toolbox and
how to use it, without attempting to cover all the minute details.
Cross-references enclosed in square brackets, such as (2.1.1], will
lead you to the relevant reference sections, where you'll find

5 What's in the Reference Sections

detailed descriptions of individual Toolbox procedures, functions,
constants, variables, and data types. When you encounter one of
these for the first time, follow the cross-reference to the reference
section for the details. Together, the text and reference sections
will teach you step by step what you need to know to use the
Toolbox in your own programs.

After you've learned the basic concepts, you'll find the
reference sections useful on their own for refreshing your memory
or looking up specific facts and details. The reference sections are
organized for quick reference rather than sequential reading. Al
though their structure generally parallels that of the text chapters,
they don't always treat topics in eXa.ctly the same order or build
logically on what's gone before. Thus you may find some of the
material in the reference sections hard to follow at first, because it
refers to topics you haven't yet learned. Try not to let this bother
you-just skip the parts that don't make sense and come back to
them later when you're better prepared to understand them. You'll
also find some subjects covered in the reference sections that
aren't discussed at all in the text chapters; once you've acquired a
working knowledge of the Toolbox, you can come back and pick
up these extra topics by browsing the reference sections on your
own.

What's in the Reference Sections

Each reference section is headed by a set of Pascal declarations
defining the Toolbox entities-procedures, functions, constants,
variables, and data types-discussed in that section. The declara
tions give the names of the entities being defined, along with
additional information you need in order to use them, such as the
number, order, and types of a procedure's parameters, the type of
value a function returns, or the names and types of a record's
fields. Following the declarations are a series of notes explaining
the meaning and use of the Toolbox entities being discussed.
Finally, most reference sections end with a box containing further
information of interest to assembly-language programmers only.

For the benefit of readers unfamiliar with Pascal, let's look at
a few examples of the reference declarations and how to read
them. Program 1-1 shows a typical Pascal type declaration of the
kind you'll find in the reference sections. (This one, in fact, is taken
from section (5.2.1].) The declaration says that PenState is the name

6 All the Tools You Need

!!I!!
PenStite = [!~ord

pnloc : Point;
pnSize : Point;
pnftode : INTE&ER;
pnPat : Pattern

end· __ ,

<Current loc1tion of graphics pen in local coordinates>
<Midth and height of pen in pixels}
<Transfer 1ode for line dr1wing and are1 fill}
<Pen pattern for line drawing>

Program 1-1 A type declaration

of a record type with four components, or fields. The first field is
named pnloc and holds a value of type Point; the second, pnSize,
also holds a Point; the third is named pnMode and is of type INTEGER;
and the fourth, pnPat, is of type Pattern. To the right of each field
definition is a comment (enclosed in the Pascal comment brackets
{ and }) describing the meaning of that field: for instance, field
pnloc represents the current location of the graphics pen in local
coordinates. (We'll be learning about the graphics pen in Chapter
5 and the meaning of "local coordinates" in Chapter 4.) If
thePenState is the name of a record in your program of type PenState,
the expression

thePenState.pnloc

denotes a value of type Point giving the pen location in local
coordinates.

RC9~!d!:!r! "oveTo
(horiz : INTE&ER;
vert : INTE&ER>;

<Horizontal coordinite to 1ove to, in pixels}
{Vertical coordinate to 1ove to, in pixels>

Program 1-2 A procedure declaration

Program 1-2 shows an example of a procedure declaration,
taken from reference section [5.2.4]. This declaration defines the
procedure MoveTo, used to reposition the graphics pen to a new
set of coordinates. The procedure accepts two parameters named
horiz and vert, both of type INTEGER; as the explanatmy comments
state, these represent the pen's new horizontal and vertical coor-

7 What's in the Reference Sections

!Hn,t!9D EqualPt
(point! : Point;
point2 1 Point>;

: BOOLEAN;

<First point to be co1p1red}
<Second point to be co1pared}
<Are they equal?}

Program 1-3 A function declaration

dinates, respectively. To move the pen to coordinates hand v, you
would use the statement

MoveTo (h, v)

Program 1-3 shows the declaration for the Toolbox function
EqualPt, taken from reference section [4.4.1]. This function compares
two points and tells whether they're equal. Like the procedure
declaration we just looked at, a function declaration defines the
names and types of the parameters the function expects you to
supply. In addition, it also specifies the type of value the function
returns as a result, following the colon (:) on the last line of the
declaration. In this case the function accepts two parameters
named point1 and point2, both of type Point, and returns a result of
type BOOLEAN. You might call this function with a statement such
as

equalFlag := EqualPt (firstPoint, secondPoint)

where equalFlag is a variable of type BOOLEAN declared in your
program, and firstPoint and secondPoint are of type Point.

8 All the Tools You Need

If you compare the procedure and function declarations shown in
our reference sections with those given in Apple's Inside Macintosh
manual, you'll find that the names of the parameters are often
different. Since you don't actually use the parameter names when
you call a routine in your program, the names given in the declara
tion have no effect on the way the routine is used-so we've taken
the liberty of changing many of the names to suggest more clearly
the meaning or purpose of the parameters.

Names that you do use directly in your own program, such as
those of constants and variables or of the fields in a record, are of
course listed the same way in our reference sections as in the Apple
documentation. Even here, however, you may notice slight varia
tions in capitalization style; these make no difference, since Apple's
Pascal compiler doesn't distinguish between corresponding upper
and lowercase letters.

Some Terms and Conventions

Before we get s tarted, le t 's explain some of the terms and conven
tions we'll be using. The microprocessor used in the Macintosh
(the Motorola MC68000, usually just called the "68000" for short)
works with data items of three different sizes: bytes of 8 bits each,
words of 16 bits (2 bytes), and long words of 32 bits (2 words, or 4
bytes). AJl memory addresses are long words, 32 bits in length, of
which only the last 24 bits are actually significant. Each address
designates a single 8-bit byte in memory. As a rule, word-length
and long-word data items in memory must begin at an even-num
bered byte address, known as a word boundary.

Throughout the book, we use an alternate computer voice type
face as a kind of implicit quotation mark to distinguish actual pro
gram code from ordinary body text. This convention is also used
occasionally for characters typed on the Macintosh keyboard or
displayed on the screen.

In keeping with the convention used in many programming
languages (including Apple's versions of Pascal and assembly lan
guage for the Macintosh), we use a dollar sign ($) to denote hexa
decimal (base-16) constants. For instance, the constant $43 repre
sents the same numerical value as decimal 67 (4 sixteens p lus 3). As
usual, the letters A to F stand for hexadecimal digits with numerical

9 Some Terms and Conventions

values from 10 to 15-so the hexadecimal constant $80 stands for
11 sixteens plus 13, or deCimal 189.

We've already mentioned that section numbers enclosed in
square brackets, such as [2.1.1), denote cross-references to the
designated reference section. References to Volume Two are
prefixed with a roman numeral II and a colon: for instance,
[11:2.1.1) refers to Volume Two, section 2.1.1.

Throughout the_text-~pt~, you'll see shaded boxes like this one.
These "by~th8-.way' ·boires enclose side comments, helpful hints,
exceptional cases, arid -C>ther material subordinate to the main
discussion.

Several chapters end with a section titled "Nuts and Bolts."
This section is for miscellaneous topics that don't fit anywhere
else in the chapter-the little unclassified odds and ends rattling
around in the bottom of the Toolbox. In general these are minor
points of only limited interest, or things that are useful only in
unusual or highly specialized circumstances.

In _this_ -new :lWacllif PSll;· _~~Ii editipn, you'll often see Toolbox
routirtes or '.fila.~8 idei\tified.-in the reference sections as "available
only on· Maclrtto~h _J;>l\;ls.'' This d.esigilation is understood to apply
also to the-Macintosh·:Si.ZK Enhanced, Macintosh SE, Macintosh U,
-or tp.any~~tl)ei\·Mac~osh that includes the newer 1Z8K or any later

:ROM. _:_

That about does it for the preliminaries-it's time to get down
to the business .at hand. If you're ready to see the Macintosh
revealed, read on and let's get started!

CHAPTER

~-------------------
Putting the Tools
to Work

Like a genie in a bottle, the Toolbox waits patiently inside every
Macintosh, ready to perform its wonders for any program that
cares to summon it. But before it will serve you, you need to know
how to call it forth and command it to do your bidding. In this
chapter, we'll start learning the spells needed to make the Toolbox
work its magic. We'll learn about the underlying trap mechanism
that's used at the machine-language level to call the Toolbox
routines in the Macintosh ROM, as well as the higher-level calling
conventions used in Pascal and assembly language. Then we'll talk
about some nonstandard features of Apple's version of Pascal that
are particularly useful for programming with the Toolbox. Finally
we'll discuss some of the general-purpose utility routines that are
included in the Toolbox for things like working with character
strings, low-level bit manipulation, arithmetic operations, and
reading or setting the date and time on the Macintosh's built-in
clock chip.

The Language Problem

Exactly how you go about using the Toolbox depends on the
language you're programming in. The Toolbox doesn't care what
language you use, as long as you follow the proper rules and

11

12 Putting the Tools to Work

conventions to communicate with it. At the underlying machine
level, these rules are always the same; but in a higher-level
language, like Pascal or Basic or C, you normally don't have to deal
with them clirettly. Instead, each language has its own way of
representing Toolbox calls and its own set of conventions that you,
as a programmer, have to follow.

When Apple first began developing the software for the Macin
tosh, there wasn't any Macintosh to develop it on. Fortunately,
Mac's big sister Lisa (now known as the Macintosh XL) was around
to lend a hand. The Lisa already had a complete software develop
ment system based on the same microprocessor used in the
Macintosh, the Motorola MC68000. This Lisa programming en
vironment, with its Pascal compiler and 68000 assembler, became
the de facto standard for programming the Macintosh. All of
Apple's own Mac software-including the Toolbox itself-was writ
ten in Lisa Pascal or assembly language, compiled or assembled
on a Lisa, and "ported" to the Macintosh to run. So was all the
application software produced by independent developers under
special pre-release licenses from Apple. In those early days, if you
wanted to program the Macintosh, you had to have a Lisa to do
your programming on.

Since Macintosh was released, that situation has changed
rapidly. A growing number of languages are now available for
programming directly on the Macintosh, including Pascal, Basic,
Fortran, Cobol, C, Lisp, Logo, and Forth. Most of these systems
include some sort of facility for calling the Toolbox routines in the
Macintosh ROM from within a running application program. Apple
itself has introduced the Macintosh Programmer's Workshop, a
complete development environment that includes both Pascal and
C compilers and a 68000 assembler, along with an interactive
program editor, linker, symbolic debugger, and full Toolb9x sup
port.

Because the Toolbox has its historical roots in the Lisa
development system, its internal data formats and calling conven
tions are based on those of Lisa Pascal. In a sense, Pascal is the
Toolbox's "native language." We'll be using it for all our program
ming examples in this book, and our descriptions of Toolbox
routines and data structures will be given in Pascal form (along
with additional information on how to use them in assembly
language). If you're writing in another language, you'll have to

13 The Trap Mechanism

consult your documentation to find out how to convert the
information given here into the form you need.

At. the time this book was written}' no Macintosh .. based Pascal
compiler was yet ava.Uable. The example program MiniEdit that forms
the core.ofVolw;neTwQ Wl8 acti.tally COIJlj>il~d _on a Lisa and portecl
to the Macintosh for· execution. In themy, compilers sµch as TML's
MacLanguage.Series Pascal, Borland Intemational's Turbo Pascal for
the ·Mac, Think 'i'ecllnologies' Lightspeed PascaL and Apple's own
Macintosh Programmer's Workshop (MPW) Pascal are supposed to
be completely compatl.1>le with the original Lisa Pascaj at the lan
guage level. In practice; however, there may ·be . slight differences.
Please forgive any confusion, that may arise because of such minor
language incompatibilitie$... (As any programmer knows, there's no
clliference between tbeory and practice in the01y, but often a great
deal of difference between theoiy and practice jn practice!)

The Trap Mechanism

At the machine level, all calls to Toolbox routines have to be
translated into subroutine jumps to the appropriate addresses in
the Macintosh ROM. The way this is done is rather ingenious. It's
based on a feature of the 68000 processor called the emulator trap,
which is used to add new operations to the processor's instruction
set. These new operations look like ordinary machine instructions,
but the processor doesn't actually execute them directly: their
effects are "emulated" in software instead of hardware. The Macin
tosh uses such emulated instructions to represent all Toolbox
operations built into the ROM.

A trap (also called an e}(.ception) occurs when the processor
detects an error or abnormal condition in the course of executing
a program. This causes it to suspend normal execution and save
the address of the next instruction to be executed, along with
some additional information about the processor's internal state.
It then executes a trap handler routine to deal with the abnormal
condition. On completion, the handler routine restores the inter
nal state of the processor, using the state information and return
address saved earlier, and resumes normal execution from the
point of suspension.

14 Putting the Tools to Work

Traps can occur for a variety of reasons, such as an attempt
to divide by zero, a reference to an illegal address, or an interrupt
signal from an input/output device. Each type of trap has its own
trap handler. The addresses of the various trap handlers are called
trap vectors, and are kept in a vector table in the first kilobyte of
memory. When a trap occurs, the processor fetches the vector for
that type of trap from the vector table and uses it to locate the
proper handler routine to execute.

In particular, an emulator trap occurs when the processor, in
the course of program execution, encounters an instruction word
that it doesn't recognize as a valid machine-language instruction.
On the Macintosh, the trap vector for such unimplemented in
structions is set up to point to a handler routine called the Trap
Dispatcher. The Trap Dispatcher locates the offending instruction,
examines its bit pattern to determine what Toolbox operation it
represents, and jumps to the corresponding Toolbox routine in
ROM. On completion, the Toolbox routine will return control to
the program instruction following the trap.

The unimplemented instruction used to represent a Toolbox
operation is called a trap word (see Figure 2-1). As the name
implies, a trap word is always one word (16 bits) long. Its first 4
bits are always 1010 (hexadecimal $A), the pattern that the 68000
processor recognizes as an unimplemented instruction. This is
followed by a bit that classifies it as either a Toolbo"}(trap dealing
with the higher-level elements of the Macintosh user interface
(windows, menus, and so forth) or an Operating System (or OS)
trap representing some lower-level operation such as memory
management or input/output. The particular operation is iden
tified by a trap number in the last 8 bits of the word (for OS traps)
or the last 9 bits (for Toolbox traps). The remaining bits are flags
giving additional information to the Trap Dispatcher about how to
carry out the operation; the details needn't concern us here.

15 The Trap Mechanism

a. Toolbox Trap Word Format

15 14 13 12 11 10 9

Unimplemented
instruction code

Flags

Specifies
"Toolbox" format

b. Operating System Trap Word Format

15 14 13 12 11 10 9

Unimplemented Flags
instruction code

Specifies
"Operating System"
format

8

8

7 6

7 6

Figure .2-1 Format of a trap word

5 4 3 2 1 0

Trap number

5 4 3 2 1 0

Trap number

The Trap Dispatcher locates the ROM routine for a given
Toolbox operation by looking it up in a table in memory called
the dispatch table. The 8- or 9-bit trap number taken from the trap
word is actually an _index to an entry in the dispatch table, which
in tum gives the address of the coITesponding routine in ROM.
The ROM itself contains a compressed version of its own dispatch
table, which is used to reconstruct the actual table in RAM
whenever the system is started up. This makes it easy to upgrade
the machine as newer versions of the ROM appear: all that's
needed is to substitute the new ROM chips for the older ones,
and everything will work just as before, even though all the
Toolbox routines may be at different locations in the new ROM.

16 Putting the Tools to Work

The Macintosh Plus has two separate dispatch tables: one for
Toolbox traps, with room for up to 51.Z entries, and an9ther for OS
traps, with a capacity of 256. Each entiy in either ta.b~e hol4s the
actual memory address bf a. Tuolbox or Operaijrig· System I'Qµtine.
On older Macintosh models~· Toolbox and OS traps sh~ the.: .same
dispatch table, limiting ihe number of .. traps tb s12: for tli~ two
categories combined. To save spaee, entries in this combined· table
are encoded into a more compact fonn than just a raw address,
and have to be decoded to find the actual location of the routine.
Again, the details aren'tilnportant here: all that matters is that each
entry in the dispatch tal,lle somehow leads the Trap Dispatcher to
the co~t address of.the corresponding routine in mem01y.

A further wrinkle in the dispatch mechanism is that· some
Toolbox and Operating Sys.tem·routines may actually J.'eside hJ RAM
rather tban ROM-for ins~ajlce, to fix bugs discavered ajl:er th~ ROM
code was- alre~dy "frozen:,. In. this. case the corrected version, pf the
.routine is loaded.into ~ from the disk when the· system:is s~arted
up, and the relevant enny in the dispatch table. is '(patched" tp lead
to the proper HAM a.tl,'Qtess. This ~angement is qompletely
transparent to the ~· application program, which ·n~edn't
know or care whether ·a .given routine ·happens to reside irt,.ROM
or RAM.

The Macintosh Plus takes advantage of the extra capacity afforded
by its 128K ROM and dital·_dispatch table to add a whole ra!lge of
new features and facilities to the Toolbox that weren't available on
earlier models. These new features must be used with C4Ution,

· however. Any program that relies on them is limited to the ¥acin~
tosh Plus (or the Macinfosh. 512K Enhanced, MaCintosh SE; :~acin
tosh II, or any other Maqintosh that includes the 128K or late~'. ROM);
they will crash the system if you· attempt to use them with tJie old
64K ROM. All sucb features are identified as "available only .on the
Macintosh Plus" in the reference notes at the end of each .chapter of
this book. (This designation.is understood to apply to any machine
equipped with ROM version $75 or greater.)

If you want your program to run on all models of Macintosh,
you have to take suitabie'.pn;,cautions. Of course, you could. just play
safe and avoid the neW features altogether-but then what's the
point of having them in the.first place? Another approach is to use
the Toolbox routine Environs [3.1..3] to check the· version number of
the ·ROM in the machine you're running on, and 'use· the new
features only if you know they're available. Don't threaten: your
users with The Bomb!

The Stack

17 The Stack

Routines written in Pascal receive their parameters and return
their results on a pushdown stack in memory. To understand how
the stack works, picture a stack of trays in a self-service cafeteria.
Trays are always added or removed at the top of the stack, never
at the bottom; the base of the stack remains fixed on the counter
top. The next tray to be removed is always the last one added, so
the stack grows and shrinks in "LIFO" order (last in, first out).

A program's subroutines (procedures and functions) also
behave in LIFO fashion: the last routine called is always the first
to return to its caller. This means that their parameters and private
storage can be kept in a contiguous area of memory that grows
and shrinks at one end, just like the stack of trays on the lunch
counter (see Figure 2-2). One end of this area (the base of the stack)
remains fixed in memory, while items are added or removed at
the other end (the topl. One of the processor's registers, address
register A7, is reserved for use as the stack pointer: this register
always holds the address of the top of the stack.

When you call a routine in Pascal (or any other language that
follows the same calling conventions), the compiler generates
machine instructions to "push" the parameter values you supply
onto the top of the stack, along with the routine's return link (the
instruction address where execution will continue when the
routine is finished). If the routine is a function, space is also
reserved on the stack for the result value that it will return. The

Register A 7 Register A7 Register A7

Base of
stack

Register A7 always
points to top of stack.

New item causes
stack to grow.

Figure 2-2 The stack

Item is removed ;
stack returns to
original length.

18 Putting the Tools to Work

routine can then allocate additional stack space for its own local
variables, if any.

If this routine in tum calls any others, the space for their
parameters and local variables will be added to the top of the stack
above those of the calling routine. Before returning control to the
point of call, each routine "pops" its parameters, local variables,
and return link from the stack, leaving it in the same state it was
in before the routine was called. (In the case of a function, it leaves
its result on the top of the stack for the calling routine to do with
as it pleases.)

The Pascal Interface

All of the Toolbox routines and data structures that we'll be
discussing in this book are defined in a set of Pascal interface
units. A unit is a collection of precompiled constant, type,
procedure, and function declarations that can be incorporated
wholesale into any Pascal program. The units that mak~ up the
Toolbox interface are provided as part of most Pascal-based soft
ware development systems. They include the following units:

• MemTypes defines a set of basic, general-purpose data types that are
used by all the other units.

• OSlntf contains the interface to the Macintosh Operating System.

• OuickDraw contains the interface to the QuickDraw graphics routines.

• Toollntf contains the interface to the User Interface Toolbox proper.

• Packlntf contains the interface to the disk-based subroutine packages
that supplement the Toolbox; these are discussed further in Chapter 7.

There are also a few other units for specialized uses not
covered in this book, such as printing, floating-point arithmetic,
transcendental functions, the AppleTalk network, and three-dimen
sional graphics; see Volume Three and Inside Macintosh for infor
mation.

Each unit consists of two files: a text interface file containing
the declarations that make up the unit in Pascal source form, and
an object module containing the corresponding compiled code.
To use the Toolbox in Pascal, you name the interface units in a
uses declaration:

uses MemTypes, OSlntf, QuickDraw, Toollntf, Packlntf;

HOWARD W. SAMS &._COMPANY

DEAR VALUED CUSTOMER:
Howard W. Sams & Company is dedicated to bringing you timely and authoritative
books for your personal and professional library. Our goal is to provide you with
excellent technical books written by the most qualified authors. You can assist us in
this endeavor by checking the box next to your particular areas of interest.
We appreciate your comments and will use the information to provide you with a
more comprehensive selection of titles.
Thank you,

Vice President, Book Publishing
Howard W. Sams & Company

COMPUTER TITLES:
Hardware
o Apple 140 o Macintosh 101
O Commodore 110
o IBM & Compatibles 114

Business Applications
O Word Processing Jo1
o Data Base J04
D Spreadsheets Jo2

Operating Systems
0 MS-DOS KOS DOS/2 KIO
0 CP /M KOi 0 UNIX K03

ELECTRONICS TITLES:
D Amateur Radio 101
D Audio103
D Basic Electronics 120
o Basic Electricity 121
o Electronics Design r12
D Electronics Projects T04
D Satellites T09

Programming Languages
O C Lo3 D Pascal Los
D Prolog L12 D Assembly Lo1
o BASIC L02 O HyperTalk Ll4

Troubleshooting & Repair
o Computers sos
o Peripherals s10

Other
D Communications/Networking M03
D Al/Expert Systems TIS

D Instrumentation ros
D Digital Electronics Tl 1

Troubleshooting & Repair
o Audio s11 O Television so4
D VCR soi O Compact Disc so2
O Automotive sos
o Microwave Oven S03

Other interests or comments:----------------

Name ______________________ __

Title-----------------------
Company
Address---------------------
City
State/Zip
Daytime Telephone No.

A Division of Macmillan. Inc.
4300 West 62nd Street

lndlanapolls. Indiana 46268 48400

Book Mark

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 1076 INDIANAPOUS. IND.

POSTAGE WILL BE PAID BY ADDRESSEE

HOWARD W. SAMS & CO.
ATIN: Public Relations Department
P.O. BOX 7092
Indianapolis, IN 46206

~ HOWARD W SAMS

&_COMPANY

111111 NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

19 Stack-Based and Register-Based Routines

This makes all the constant, variable, type, and routine names
declared in the units available to your program at compilation
time, just as if they were Pascal standard identifiers like INTEGER or
SQRT. (Of course, you only need to include those units that you
actually use in your program: if you don't use any of the routines
in the disk-based packages, for instance, you can omit the Packlntf
unit from your uses declaration.) After compiling your program, you
link it with the corresponding object modules to incorporate the
compiled code of the units; for further information on this process,
see the documentation provided with whatever sofhvare develop
ment system you're using.

Instead -of a uses d~ell:rratioh, some Pascal systems use a $i ("in
clude") directive or -soD:ie hther method for including precompiled
u:nits -in your-program. 'S¢e~~our Pascal documentation for details.

Stack.;.Based and Register-Based Routines

Most of the Toolbox routines are stack-based: they accept their
parameters and return their results on the stack, as described in
the preceding section. This allows the Pascal compiler to generate
the same machine instructions to set up the parameters for these
predefined routines that it would use for an ordinary Pascal rou
tine defined in your program. Remember, though, that routines in
ROM have to be called through the trap mechanism we discussed
earlier, rather than by jumping directly to a memory address in the
normal way. The Toolbox interlace units use a special "inline
declaration" for all stack-based ROM routines, telling the compiler
to place an appropriate trap word in-line-that is, directly into the
compiled object code-instead of the usual JSR (Jump to Sub
routine) instruction.

Not all the ROM routines are stack-based, however; some of
them are register-based instead. In general these are Operating
System routines that perform relatively low-level operations such
as memory management and file input/output, and were originally
intended to be called only from assembly language rather than

20 Putting the Tools to Work

Pascal. So instead of using the stack like a Pascal routine, they
pass their parameters and results directly in the processor's regis
ters.

Later it was decided that some of these register-based routines
would be useful in Pascal as well as assembly language, so they
were added to the Pascal interlace. Because of the difference in
calling conventions, however, an extra level of indirection had to
be introduced. When you call a register-based routine in Pascal,
what you're actually calling is a special interface routine that
mediates between the stack- and register-based calling conven
tions. The interlace routine moves the parameters from the stack,
where the Pascal calling program leaves them, to the registers
where the ROM routine expects to find them; then it traps to the
ROM routine. On return from the trap, it moves the results, if any,
back from the registers to the stack for the Pascal program's
benefit. The interface routine seives as a kind of "glue" between
your Pascal program and the register-based routine in ROM, and
is sometimes refeITed to as a "glue routine."

When you use the Pascal irtterra~- units, you don't. have to wony
about th~ distinction bet\.ve~ll stack- and register-baf*?d routines.
You simply use the normal Pas.cal syntax for all your routine calls,
and the fu.terface units see· to 1t that everything gets fixed up to
work the wayyou expect. The difference between stack- and register
basedroutinesis really 'important only if you're using the Toolbox in
assembly language, as cli$cussed>in the next secti,on~

The Assembly-Language Interface

To call a Toolbox routine in assembly language, you use a trap
macro that expands into the proper trap word for that routine.
For example, to call the routine HidePen [5.2.3), which hides the
"graphics pen" that the Toolbox uses to draw lines on the screen,
you would use the instruction

_HidePen

When assembled, this macro produces the trap word $A896, which
causes a trap to the HidePen routine in ROM.

21 The Assembly-Language Interlace

The trap macros are defined in a set of assembly-language
files that you incorporate into your program with an .INCLUDE
directive:

• SysTraps, containing the macros for calling Operating System routines

• OuickTraps for the QuickDraw graphics routines

• ToolTraps for the User Interface Toolbox

• PackMacs for the disk-based packages

There's also a set of definition files that use .EOU directives to
define assembly-language constants and addresses of global vari
ables for use with the Toolbox:

• SysEqu for constants and variables relating to the Operating System

• QuickEqu for those relating to QuickDraw

• ToolEqu for those relating to the Toolbox proper

• SysErr for Operating System error codes

The assembly-language macro and definition files are included
with both the Consulair Macintosh Development System (MOS)
and Apple's own Macintosh Programmer's Workshop (MPW).

You'll find the names of all the trap macros (along with the
corresponding trap words) listed in summary boxes at the ends
of the reference sections following each chapter. Trap macro
names always begin with an underscore character (._), followed by
the name of the routine. The routine name is generally spelled
the same way as in Pascal, but there are occasional exceptions;
these are noted where appropriate in the reference sections. The
reference sections also list useful Toolbox constants, addresses of
global variables, field offsets within Toolbox data structures, and
so forth, taken from the definition files.

Be warned U1at .th-=! 'Vi!l11es of CODStfllltS, and espe~ally the ad
dresseif :of, gJol>ai · vcWia.bies, may be subject to cllange in Ainire
vel'Sions: of th.e · ToplboJc. To Sta.Y on the safe side, ~ys refer to
them by mune, tather -than .telymg on the values ancl addresses
shown in otirremren~ seetions~

22 Putting the Tools to Work

Before calling a Toolbox routine with a trap macro, you have
to set up its parameters the way it expects to find them. For
stack-based routines, this means pushing the parameters onto the
stack in the order they're listed in the routine's Pascal definition.
All parameter values must be in the same data fonnats used by
the Pascal compiler:

• Integers are 2 bytes long, long integers 4 bytes, both in two's
complement form.

• All pointers (including handles, discussed in Chapter 3) are 4 bytes
long.

• Booleans occupy 2 bytes on the stack, with the actual value in bit 8,
the low-order bit of the first byte: 1 for TRUE, 0 for FALSE. The other 15
bits are ignored.

• Single characters (type CHAR) occupy 2 bytes, with the ASCII character
code in the second byte. The first byte is ignored.

• Character strings are represented on the stack by a 4-byte pointer to
the actual string in memory. The format of the string itself is described
later in this chapter and in reference section [2.1.1].

• Data structures such as records and arrays are usually represented by
a 4-byte pointer to the structure in memory. However, if the contents
of the structure are no more than 4 bytes long, they're stored directly
on the stack in place of the pointer.

• All variable parameters, regardless of type, are represented by a 4-byte
pointer giving the address of the variable in memory.

The routine will remove its parameters from the stack before
returning, so there's no need for you to do this yourself. If the
routine is a function, you must reseive stack space for its result
by decrementing the stack pointer the appropriate number of
bytes before pushing the parameters; on return from the trap,
you'll find the result on top of the stack.

For register-based routines, of course, you have to set up the
parameters in the appropriate registers rather than on the stack.
Register usage conventions for all such routines are given in the
reference sections; if no register infonnation appears, you can
assume the routine is stack-based.

23 Extended Features of Pascal

A few of the routines listed in the reference sections don't reside
in ROM, but belong to the Pascal interface itself: These routines are
inaccessible via the trap mechanism and so are unavailable in
assembly language .. In general, they exist only to provide a way of
doing something in Pascal that can be done more directly and
easily at the assembly-language level, such as by reading or setting
a global variable. Routines in this categocy are identified wherever
applicable in the reference sections.

Extended Features of Pascal

The version of the Pascal language supported by Apple's MPW and
compatible systems has a few nonstandard features that we'll be
using in our programming examples. One of these is the data type
LONGINT ("long integer"), representing integers of twice the normal
length: 32 bits including sign, instead of only 16. This provides a
range of ±2147483647, compared with ±32767 for ordinary integers.
You can apply all the standard arithmetic operators to long-integer
operands as well as to ordinary integers. An ordinary integer will
automatically be converted to the equivalent long integer if you
combine it with a long integer in an arithmetic expression, or
assign it to a long-integer variable, or pass it to a routine that
expects a long integer as a parameter.

Many of the Toolbox routines accept long-integer parameters
or return long-integer results. Since memoiy addresses in the
68000 processor are 32 bits long, this type is particularly useful for
working with addresses and related quantities, such as the lengths
of memoiy blocks. For the same reason, all pointers on the
Macintosh (including handles, which we'll learn about in the next
chapter) are 32 bits long.

The built-in function ORD is a standard Pascal function for
converting any scalar value to a corresponding integer: for in
stance, a character to its equivalent integer character code. On the
Macintosh, ORD will also accept a pointer and return the equivalent
long-integer address. For converting in the other direction, there's
a built-in function named POINTER that accepts a long integer
representing a memoiy address and converts it into a pointer to
that address. The result is a "blind pointer" similar to the standard

24 Putting the Tools to Work

Pascal constant NIL: it can be assigned to a variable of any pointer
type, regardless of the underlying base type the variable is
declared to point to.

The ORD and POINTER functions can be used in combination to
convert from one pointer type to another. For instance, if you've
declared

var
this : ThisPtr;
that : ThatPtr;

where ThisPtr and ThatPtr are two different pointer types, you can
convert one into the other by writing

this := POINTER(ORD(that))

or

that := POINTER(ORD(this))

ORD converts the original pointer to a long-integer address, then
POINTER takes it back into a blind pointer that you can assign to a
variable of the other type.

However, Apple's Pascal compiler provides a more direct way
to convert data values (including pointers) from one type to
another. Just use the name of the target type as a function, giving
it as a parameter the value to be converted to that type. In the
example above, for instance, you could convert the pointers
directly with the statements

this := ThisPtr(that)

or

that := ThatPtr(this)

This technique is known as typecasting. It doesn't change the
underlying data representation (in this case, the memory address
that the pointers point to)-only the high-level data type that it's
considered to represent. We'll see many examples of this tech
nique later on, particularly when we begin to develop our example
program MiniEdit in Volume Two.

25 Extended Features of Pascal

Another useful feature is the @ operator, which produces a
pointer to whatever variable or routine you give it as an operand.
Once again, the result is a blind "pointer to anything." For in
stance, if you declare

var
aThing : Thing;
aThingPtr : "Thing;

then the statement

aThingPtr := @aThing

sets aThingPtr to point to the address of variable aThing. After you've
executed this assignment, the expression

aThingPtr

(which denotes whatever aThingPtr points to) is equivalent to the
variable aThing itself. You can use this expression on either side of
an assignment statement, or anywhere else that variable aThing
could be used: for instance, if something is another variable of type
Thing, the statement

something := aThingPtr

is equivalent to

something := aThing

and

aThingPtr" := something

is equivalent to

aThing := something

The @ operator can be applied to routines (that is, procedures
or functions) as well as to variables. Some of the Toolbox routines
and data structures have parameters or fields of type ProcPtr [2.1.1],
representing a pointer to a program routine. You can use the @

26 Putting the Tools to Work

operator to create such routine pointers: for example, if Twiddle is
the name of a routine in your program, then the expression

@Twiddle

denotes a pointer to it. You can assign this routine p9inter to a
variable of type ProcPtr, embed it in a data structure, or pass it to
any Toolbox routine that expects a ProcPtr as a parameter.

Technically, though, a ProcPtr is just defined as a pointer to a byte
in memmy-presumably the address of the first instruction ih the
routine. This means that there's no way in Pascal to "open up" the
ProcPtr ~d execute the underlying routine it points to. That can
only be done at the macbine:- or assembly-language level, either by
the Toolbox or by an assembly..:language routine of your own, using
a.JSR (Jump to Subroutine) instruction.

One thing to watch out for is that the'@ operator doesn't work
properly on "nested" routines (those whose definitions are embed
ded within another routine). Make sure you use it only on routines
that are defined at the top level of your program.

Another built-in function that's sometimes handy is SIZEOF,
which accepts a variable of any type as a parameter and returns
the number of bytes that variable occupies in memory. If the
parameter is the name of a type, SIZEOF gives the number of bytes
occupied by a value of that type. For instance, if x is an integer
variable, then the expressions SIZEOF(x) and SIZEOF(INTEGER) both
have the value 2 (since an integer is 2 bytes long).

27 General-Purpose Utilities

In some versions of Pascal,_the SIZEOF function won't accept a type
name· as a parameter. To find the size of a giVen type, you have to
use a dummy variable. of that type instead of the f3'pe itself For
example, instead' of writing

SIZEOF(Thing)

you might declare a variable

var
something : Thing;

and then write

SIZEOF(something)

One last feature worth mentioning is EXIT, which allows you to
take an immediate return from the middle of a procedure or func
tion. The remainder of the routine is skipped, and control returns
immediately to the point of call This feature is useful, for instance,
for escaping from a routine on detecting an error condition of
some sort; we'll be using it for this purpose in our MiniEdit program
in Volume Two.

The fXIT feature isn'.t:".vailable"in some versions of -Pascal. You can
achieve the same effect by using an (ugh!) goto to jump to an (ugh!)
label at the veiy end of the routine you're exiting from.

General-Purpose Utilities

In the rest of this chapter, we'll be talking about some of the
general-purpose utility routines that are included in the Toolbox.
Generally, these are simple, straightforward operations dealing
with such things as character strings, bit-level manipulation, and
arithmetic. These topics aren't essential to your overall under
standing of the Toolbox: if you're in a huny, you might just want
to skim this section for a general idea of the utilities available, then
refer back later when you need more detailed information.

28 Putting the Tools to Work

Strings

For working with strings of character text, the Toolbox uses the
same data format as Apple's Pascal compiler. A string is stored
internally as a variable-length data structure consisting of 1 byte
giving the length of the string in characters, followed by the
characters themselves (Figure 2-3). Since the character count is 1
byte long, it can accommodate strings of up to 255 characters. The
actual character codes used to stand for the various characters
will be given in Chapter 8.

Strings of this form are normally represented in the Toolbox
interlace by the data type Str255 (2.1.1], used for things like the titles
of windows and the names of menu items. Declared variables of
this type always take up 256 bytes of memmy, regardless of the
actual length of the string. Those that are allocated dynamically
or embedded in Toolbox data structures take up only as many
bytes as are needed to hold the actual characters (along with the
length byte, of course). For instance, the string 'Snark' would be 6

Length byte-not
ASCII character "6"

B
0 ! ~

............................... ~·-········ r·-······-................. ~ -.................... ..

····----···········--·~·····-· r·-····-····-;··~~~~;-~:~--................ ..

Figure ~3 Internal string format

String format must be a
whole number of words so
an extra byte of "padding"
is needed here

29 General-Purpose Utilities

bytes long: 1 byte for the character count and 5 more for the
characters of the string. However, the string must always occupy
a whole number of words-that is, an even number of bytes. If the
number of bytes actually needed is odd, an extra, unused byte is
added at the end for "padding." So the string 'Boojum' would take
up 8 bytes altogether: 1 for the character count, 6 for the charac
ters, and 1 more to keep the overall length even. The empty string
takes up 2 bytes of memory: a character count of 0 and a byte of
padding.

The Toolbox function EqualString (2.1.2] compares two strings
and returns a Boolean result telling whether they're equivalent.
You can specify whether you want corresponding upper- and
lowercase letters to be considered the same or different. A similar
function, RelString (available only on the Macintosh Plus), also tells
whether one string alphabetically precedes or follows another. The
UprString routine [2.1.2] converts all letters in a string to uppercase
while leaving all other characters unchanged.

The Macintosh character',set··inelµdes. a variety of accented' letters
and ·diacritical marks 'for' use· in foreign languages. The Eql!alString,
RelString, and UprString- routines- all accept Boolean parameters !elling
them whether to .. take such foreign characters into accburit or.
whether to ignore- them -or remove them from the string. There's
also an IntematiollJl). UtlijtieB--Package for adapting a prognlm to the
needs of foreign languages and countries. This package- includes a
more sophisticated sfJ:'ing comparison routine named IUEqualString nu

. for "International UtiJiji.esr') that can be. customized to tht;? spelling
convention$ used in, ~ particular language. (For instanc~, in G~
it can. J)e set up to,. ·ireat ".the umlauted vowels a, o, and .U as
equivalent to the qonibinati9ns ae, oe; and ue.) See tlie inside Macin-:
tosh manual for infonnation on the Intemational Utilities Package~

Bit-Level Operations

For testing or changing single bits in memory, the Toolbox in
cludes routines named BitSet to set a bit to 1, BitClr to clear it to 0,
and BitTst to test its current value (2.2.1]. These routines all accept
two parameters: a pointer to a base address and a bit number
relative to that address. Bits are numbered consecutively
throughout memory, beginning with 0 for the leftmost (high-order)

30 Putting the Tools to Work

Base address points here ---.
0 1 .2 3 4

16 17 18 19 .20

3.2 33 ...

5 6 7 8 9 10

.21 .2.2 23 .24 .25 .26

Numbers represent bit
offset position from base
address.

Figure 2-4 Bit numbering for single-bit operations

11 1.2 13 14 15

27 .28 .29 30 31

bit at the designated base address (Figure 2-4). Thus bit numbers
0 to 7 refer to the byte at the base address itself, 8 to 15 refer to
the following byte, and so on through consecutive bytes of
memory. You can designate a bit at any distance forward from the
given base address by making the bit number as big as you like,
but negative bit numbers are not allowed.

Notice that this bit-numbering convention is the reverse of the one
usually used on the 68000 processor, where bits are numberedl from
right to left within a byte or word.

The utility routines BitAnd, BitOr, BitXOr, and BitNot [2.2.2] perform
the standard bitwise logical operations on 32-bit operands. BitShift
[2.2.2] shifts its operand a specified number of bit positions in
either direction. The shift is a logical one, in which bits shifted
out at one end of the operand are lost and Os are shifted in at the
other end. HiWord and LoWord [2.2.3] extract the high-order and
low-order 16 bits, respectively, of a 32-bit operand.

The StuffHex procedure [2.2.4] "stuffs" consecutive bytes of
memory, beginning at a specified destination address, with the

31 General-Purpose Utilities

contents defined by a string of hexadecimal digits. The string
should contain no characters other than 0 to 9 and A to F. In
particular, it should not begin with the leading dollar sign ($)

usually used to denote hexadecimal constants.

StuffHex is a dangerous operation that can easily get you in trouble
if you use it carelessly. lt does no range or validity checking, just
blindly stores into the specified locations in memocy. If you give it
the wrong destination pointer, the consequences can be catastrophic.
Be careful what you stu:tf and where you stuff it!

Arithmetic Operations

The Toolbox includes facilities for working with 32-bit fixed-point
numbers. Type Fixed (2.3.1] is defined as equivalent to the built-in
Pascal type LONGINT, but is interpreted in a different way. Instead of
a full 32-bit integer, a fixed-point number is considered to have a
"binary point" in the middle, splitting it into a 16-bit integer part
and a 16-bit fraction. A pair of conversion functions, Long2Fix and
Fix2Long (2.3.1], convert numerical values between the two types.
The FixRatio routine (2.3.2] divides two 16-bit integers and produces
a 32-bit Fixed result. You can add and subtract fixed-point numbers
in the usual way, with the standard arithmetic operators + and -,
but for multiplication and division you have to use the special
Toolbox functions FixMul and FixDiv (2.3.2].

The FixRound function [2.3.1] converts a positive fixed-point
number to the nearest 16-bit integer. There's also a routine named
LongMul (2.3.5] that multiplies two 32-bit long integers and produces
a 64-bit integer result. The conversion routines NumToString and
StringToNum [2.3.7] convert between long integers and their equi
valent representations as strings of decimal digits.

The Macintosh Plus Toolbox includes ·a new numerical type, Fract
[2.3.3), .representing 32-bit· fixed-point numbers with 2 integer and
30 fractional bits. Values of this type thus range between -2 and +2
at inteivals of z.so. ·There are routines for converting between the
new&actions and the older fixed-point numbers [2.3.3), for multiply
ing, dividing, and finding square roots of fractions [2.3.4), and for
finding fractional sines and cosines of fixed-point quantities [2.3.4].

32 Putting the Tools to Work

!Yn,tien Randoaize (range : INTEGER>
: INTEGER;

<Desired range of rando1 nulbers}
<Rando1 nu1ber between 0 and (range - 11}

C Generate rando1 nu1bers over a specified range. }

H!:
rawResult : LONSINT; C1 Raw1 rando1 nu1ber received fro1 Toolbox>

~!Din CRando1ize}

rawResult := ABS(Rando1>; C&et randDI nu1ber bet11een 0 and 32767 C2.3.5l}
CScalt to specified range> R1ndo1ize := <ra1Result l range> ~i~ 32768

!n~; CRando1ize>

Program ~1 Generate random numbers

Finally, there's a Random function (2.3.8] that returns a different
integer result each time you call it. The results are distributed
uniformly over the entire range of integer values, from -32768 to
+32767. Program 2-1 shows how to scale the result to the range you
need: to generate an integer between 0 and (range - 1), convert the
"raw" result you receive from the Random function to a positive
value, multiply by range, and divide by the original range of 32768.
Notice the use of a LONGINT variable for the intermediate result.

The method used to generate random numbers is based on a
"seed" value kept in a global variable named RandSeed [2.3.8], which
is changed each time you call the Random function. The sequence of
numbers is really only "pseudo-random," since you can reproduce
the same sequence again by starting out with the same seed value.
The seed is ordinarily initialized to a standard value of 1 at the
beginning of your program; if you want to produce a different
sequence of random numbers each time the program is run, you
have to change this setting to start with a different seed each time.
The easiest way to do this is to initialize the seed to the cu1rent
setting of the clock chip (see next section) at the time the program
is started.

33 General-Purpose Utilities

Date and Time

The Macintosh has a built-in clock chip that continuously keeps
track of the current date and time. The clock chip is powered
independently by a batteiy, and continues to keep time even when
the machine's main power is switched off. The date and time are
expressed internally as a total number of seconds since the beginning
of time, which according to Apple's painstaking research occurred at
midnight, Januaiy 1, 1904. You can read the clock in this "raw"
form with the Toolbox routine GetDateTime or set it with SetDateTime
[2.4.1].

Often, however, it's more convenient to work with a date and
time record [2.4.2], which has separate fields for the year, month,
day of the month, day of the week, hour, minute, and second. To
read or set the clock in this form, use GetTime or SetTime [2.4.2]
instead of GetDateTime or SetDateTime. There's also a pair of utility'
routines named Secs2Date and Date2Secs [2.4.3] for converting be
tween raw seconds on the one hand and date and time records
on the other.

To convert the date and time into a readable character string
for human consumption, use IUDateString and IUTimeString [2.4.4].
These routines accept the clock reading in raw seconds and
return a string representing the date or time of day, respectively.
You can ask for the date in any of three formats: short

12/18/84

long

Tuesday, December 18, 1984

or abbreviated

Tue, Dec 18, 1984

and the time with seconds included

1:47:22 PM

or without

1:47 PM

REFERENCE

.2.1 Elementary Data Structures

.2.1.1 Strings and Procedures

type
Str255 = STRING[255];

ProcPtr = Ptr;

{Any text string, maximum 255 characters}

{Pointer to a procedure or function [3.1.1]}

~~ii3R~t---------N_o_te_s __________________________________ __
1. Str255 stands for a string of text with a maximum length of 255

characters.

2. The first byte (element 0) gives the length of the string in characters;
the remaining 1 to 255 bytes contain the characters themselves.

3. Declared variables of type Str255 always take up 256 bytes of memmy.
Those allocated dynamically (for instance, with NewPtr or NewHandle
[3.2.1] or with NewString, GetString, or SetString (8.1.2]), or embedded in

34

35 [2.1.2) String Operations

Toolbox data structures, include just enough bytes to hold the length
count and the actual characters of the string.

4. The string must always physically occupy a whole number of 16-bit
memory words. If necessary, an unused byte of "padding" is added
at the end to fill out the physical length to an even number of bytes.

5. ProcPtr is a pointer to a procedure or function.

6. To denote a ProcPtr to a given routine, prefix the name of the routine
with the pointer operator @.

2.1.2 String Operations

function EqualString

function

(string1 : Str255:
string2 : Str255;
caseCounts : BOOLEAN;
marksCount : BOOLEAN)
: BOOLEAN;

RelString
(string1
string2
case Counts
marksCount
: INTEGER;

: Str255;
: Str255;
: BOOLEAN;
: BOOLEAN)

procedure UprString

{First string to be compared}
{Second string to be compared}
{Distinguish upper- and lowercase?}
{Include diacritical marks?}
{Are the two strings equivalent?}

(First string to be compared}
(Second string to be compared}
{Distinguish upper- and lowercase?}
{Include diacritical marks?}
{Which string comes first?}

(var theString : Str255; {String to be converted}
stripMarks : BOOLEAN); {Eliminate diacritical marks?.}

canst
SortsBefore = -1;
SortsEqual = O;
SortsAfter = +1;

{First string precedes second}
{Strings are equivalent}
{First string follows second}

36 General Utilities

~~iiii~::=jt--------N-o_t_e_s __________________________________ __

1. EqualString compares two strings for equality and returns a Boolean
result; RelString tells which of two strings precedes the other al
phabetically.

2. RelString returns the value SortsBefore if the first string precedes the
second, SortsEqual if the two strings are equivalent, SortsAfter if the first
follows the second.

3. If caseCounts is FALSE, corresponding upper- and lowercase letters are
considered identical for purposes of comparison; if TRUE, they're
considered different.

4. If marksCount is TRUE, foreign-language accents and diacritical marks
are taken into account in the comparison; if FALSE, they're dis
regarded.

G. A more sophisticated form of string comparison, allowing for special
ized spelling conventions used in foreign languages, is available
through the IUEqualString routine of the International Utilities Package.
See Inside Macintosh for details.

6. RelString is available only on the Macintosh Plus.

7. UprString converts a string to full capitals, replacing any lowercase
letters with their uppercase equivalents.

8. Characters other than letters of the alphabet are left unchanged.

9. If stripMarks is TRUE, foreign-language accents and diacritical marks are
removed from the converted string.

10. The trap macro for EqualString is named _CmpString ("compare
string").

11. When called from assembly language, these routines are register
based: see register usage information below.

12. In assembly language, the Boolean parameters are represented by
flag bits in the trap word: 1 for TRUE, 0 for FALSE. caseCounts and
marksCount correspond to bits 10 and 9, respectively, of the _CmpString
and _RelString traps, and stripMarks to bit 9 of the _UprString trap. The
trap macros accept optional parameters named CASE and MARKS for
setting these flag bits to 1: for example,

_UprString
_CmpString
_RelString

,MARKS
,CASE
,MARKS.CASE

37 (2.1.2) String Operations

lc=JI Assembly Language Information
--11Llt---------

Trap macros:

(Pascall
Routine name

EqualString
RelString
UprString

Register usage:

Routine

EqualString

RelString

UprString

Register

AO.L (in)
AU (in)
00.L (in)

00.L (out)

AO.L (in)
AU (in)
00.L (in)

00.L (out)

AO.L (in)
00.B (in)
AO.L (out)

(Assembly)
Trap macro Trap word

_CmpString
_RelString
_UprString

Contents

pointer to string1
pointer to string2

$A03C
$A050
$A854

high word: length of string1
low word: length of string2
= 0 if strings equal
-7': 0 if unequal

pointer to string1·
pointer to string2

' high word: length of string1
low word: length of string2
= -1 if string1 precedes string2
= 0 if strings are equivalent
= +1 if string1 follows string2

pointer to theString
length of theString
pointer to theString

Assembly-language constants (Macintosh Plus only):

Name

Sorts Before
SortsEqual
SortsAfter

Value

0
-1

Meaning

First string precedes second
Strings are equivalent
First string follows second

38 General Utilities

2.2 Bit-Level Operations

2 • .2.1 Single Bit Access

~111111~-------o-e_iini __ ·n-·o_n_s ____________________________ __

procedure BitSet
(bitsPtr : Ptr;
bitNumber : LONGINT);

procedure BitClr
(bitsPtr : Ptr;
bitNumber : LONGINT);

function BitTst
(bitsPtr : Ptr;
bitNumber : LONGINT)
: BOOLEAN;

(Pointer to bits [3.1.1]}
(Number of bit to be set to 1}

{Pointer to bits [3.1.1]}
{Number of bit to be cleared to 0}

{Pointer to bits [3.1.1]}
{Number of bit to be tested}
{Is bit set to 1?}

~~iiig==1---------N-o-te_s ____________________________________ __

1. These routines operate on single bits in memory.

2. BitSet sets a bit to 1; BitClr clears it to 0; BitTst tests it and returns a
Boolean result representing its value.

3. bitsPtr is a pointer to a base address in memory (the elementary data
type Ptr is defined in [3.1.1]). bitNumber identifies a single bit relative to
the base address.

4. Bits are numbered from left to right within each byte; notice that this
is the reverse of the usual 68000 convention.

5. bitNumber can have any nonnegative value, and can designate a bit at
any distance in memory from the base address. Bit numbers 0 to 7
refer to the byte designated by the base address, 8 to 15 refer to the
byte following it, and so on through consecutive bytes of memory.

6. Negative bit numbers are not allowed.

7. BitTst returns TRUE for a 1 bit, FALSE for a 0 bit.

39 [2.2.2) Logical Operations

IOI Assembly Language Information ---lllLI.....,_ _____ _
Trap macros:

(Pascal)
Routine .name

(Assembly)
Trap macro Trap word

BitSet
BitClr
BitTst

_BitSet
_BitClr
_BitTst

2.2.2 Logical Operations

$A85E
$A85F
$A85D

~1111 ______ n_e_fini __ ·n_o_n_s ____________________________ __

function BitAnd
(bits1 : LQNGINT;
bits2 : LON.GINT)
: LONGINT;

function BitOr
(bit_s1 : LONGINT;
bits2 : LONGINT)
: LONGINT;

function BitXOr
(bits1 : LONGINT:
bits2 : LONGINT)
: LONGINT;

function BitNot
(bits : LONGINT)

: LONGINT;

function BitShift
(bits : LONGINT;
shiftCount : INTEGER)
: LONGINT;

{First operand}
{Second operand}
{Bitwise "and"}

{first operand}
{Second operand}
(Bitwise "or"}

{first operand}
{Second operand l
{Bitwise "exclusive or"l

{Bits to be complemented}
{Bitwise complement}

{Bits to be shifted}
{Number of places to shift}
{Result of shift}

40 General Utilities

~~iiiiiii~::::j..,_ ______ N_o_t_es--------------------------------------

1. These routines perform bitwise logical operations on 32-bit (long
word) operands .

.2. For BitAnd, BitOr, and BitXOr, each bit of the result is obtained by
applying the given logical operation to the bits found at the cor
responding position in the two operands.

3. For BitNot, each bit of the result is the logical complement of the
corresponding bit in the operand. That is, each 1 bit in the operand
is transformed into a 0 bit in the result, and vice versa.

4. The result returned by BitShift is obtained by shifting the operand bits
by the number of bit positions specified by shiftCount.

S. shiftCount is interpreted modulo 32.

6. Positive shift counts shift to the left, negative to the right.

7. BitShift performs a logical shift. Bits shifted out at one end of the
operand are lost; positions vacated at the other end are filled with Os.

~ii'.:1~1-------~-· .. _se~m_ .•.. _h_IY_'~•-·n_.~_--_··~'~e"-)Dfo~,·--·-r-••-•a_d_o_n_· ----------...... -----

1i'ap macros:

(Pascal)
Routine name

BltAnd
BltOr
BitXOr
BitNot
BitShift

2.2.3 Word Access

·1 DefQiid.on~

(ASs,embly)
·'frap macro

;.J!itAnd.
-8it0r
-8itXOr
-QitNot
·-8itShift

Trap word

$A858
$Aa5B
$A859
$A85A
$ABsC

-,~-------~~-~
function HiWtird

(JongWorcf :; LONG_IN.r)
: INTEG~R;:

function LoWord
(longWotd : LONGfNT)

: INTEGER;

f32-bil opera:nd}
{Hig~-order· 16 ~its}

{32-bit oper~nd}
{Low-order 16 bits}

41 (2.2.4) Direct Storage

~~iii~·::=Jti--------N-o_i_e_s __________________________________ ___

1. These routines extract and return the high- and low-order 16-bit
words of a 32-bit long word .

.2. HiWord and LoWord can be used to extract the integer and fractional
parts, respectively, of a fixed-point number [2.3.1].

~~1 ... ----As-_ se_ID_ll_ly~~ ·•P -·n~··~ ,; ... _ -.... ' .. fj,lllllliilJm ... · ___ .o '-... r ... 11•_a_,n.o ... n _______,.. __

TraP. m~cro1:1t
(Pasoall
RtnltihEMia~i;? -

HiWord
Lo Word

2 • .2.4 Direct Storage

. (Assalll\)Iy'
_,Trap.ma~

· JliWord
_Lo Word

Trap word

$A86A
$A868

~~iiiiiiiiiii,_ ____ n_··_e_Dni __ ._d_o_.~~6-·------~·~'·' __________,......_ ______ ~-----
p·roc.edure Stutf.Hex.

(d;estPtr ·. : .. Ptt;. {P:o.1ntei to, ·dat.a ·$tructu;re: to be stuUed l
hexstring' (Str255}; £String repr;esentlng data;Jn hex-adeC;im~ll

~~iiii===..,_ ______ N_o_t_e_s __________________________________ __

1. StuffHex stores "raw" bits into any designated data structure in
memory .

.2. destPtr is a pointer to the beginning of the destination data structure.
The specified data will be "stuffed" into consecutive locations begin
ning at this address.

3. hexString is a string representing the data to be stuffed, in hexadecimal
form.

4. hexString should contain no characters other than the hexadecimal
digits 0-9 and A-F. It should not begin with a dollar sign($).

42 General Utilities

5. Nominally, the maximum length of hexString is 255 hexadecimal digits.
However, since data structures generally must consist of a whole
number of 16-bit words, the effective maximum is actually 252 digits,
or63words.

6. BEWARE: No range checking of any kind is perfonned.

lDI Assembly Language Information --11!:1...,__ _____ ______
Trap macro:

(Pascal)
Routine name

Stuff Hex

2.3 Arithmetic Operations

(Assembly)
Trap macro

_stuff Hex

Trap word

$A866

2.3.1 Fixed-Point Numbers

~1111~-------o-e_iini_·_n_on_s __________________________ ..._~
type

Fixed = LONGINT;

function Long2Fix
(theNumber : LONGINT)

: Fixed;

function Fix2Long
(theNumber : Fixed)

: LONGINT;

function FixRound
(theNum.ber ; Fixed)

: INTEGER~

{fixed-point number}

{Long integer to be converted}
ffixed-point equivalent}

{Fixed-point number to be conv~rted}
{Long-integer equivalent}

ffixed-point number to be roun~ed}
{Number rounded to an integer}

43 [2.3.1] Fixed-Point Numbers

~~iiil~:::::::11--------N-o_t_e_s __________________________________ ___

1. fype Fixed represents a 32-bit fixed-point number, with 16 bits before
the binaiy point and 16 bits after it.

2. The value of a fixed-point number is equivalent to that of the cor
responding lo~g integer divided by 65536 (2 16).

3. Use HiWord and LoWord (2.2.3] to extract the integer and fractional parts
of a fixed-point number, respectively.

4. Long2Fix and Fix2Long convert between fixed-point numbers and long
integers.

5. FixRound rounds a fixed-point number to the nearest integer.

6. On earlier Macintosh models, FixRound doesn't. work properly for
negative values: to round a negative fixed-point number, multiply it
by -1, round with FixRound, then multiply the result back by -1. This
problem has been corrected on the Macintosh Plus.

IOI Assembly Lagguage lrllonna:tion
--1~-----------

Trap macros:

(Pascal)
Routine name

FlxRound
Long2Fix
Fix2Long

{Assembly)
Trap macro

_fix Round
:-Lc;mg2Fix
_fix2Long

Trap word

. $A86C
$A83F
$A840

44 General Utilities

2.3.2 Fixed-Point Arithmetic

~loiiiiiiii--~l~----...-.--n_e_&_n __ in-·o_n_s _______ ______________________ ___

function -FixMul : . . _1·

. (num~~r1 :. F.ixe.di ·
m~m.ber2 : f'ixe:d)
: Fixed;

function Fix.Div
• (:Clividend :. Fiketfi
'dtvi$or : ri>.tWl

=· Fixed;

function· FixRatiD

{first fixed-: point operand l
_{Second fixed-p.oint ope~andl
{Fixed-point product)

[Fixed-point dividend}
lFixed-point divisor)
{Fixed-point quotient}

lnumerato.r; ... ··:.·INTEGER;
:~~nornlnafor ,:: H~~EGER)

·, :: Fbe,~d;

Unteger numerator}
{Integer denomi_natorl

1

ffixed~point quotient}

~~iiii~·==!1--------N-o_t_e_s ____________________________________ __

1. FixMul and FixDiv multiply and divide two fixed-point numbers and
produce a fixed-point result.

2. FixDiv is available only on the Macintosh Plus.

3. FixRatio divides two integers and produces a fixed-point result.

4. To add and subtract fixed-point numbers, just use the standard
operators.+ end -.

IOI Assembly Langaijlge·1n1ormatitln
~n-----........___.............____..__........__

Trap. macrosi
(Pascal}
Routine name

FixMul .
Fix Div
FixRatio

(AS~ly)
Trap macro

_Fix Mui
~Fix Div
_Fix Ratio

Trap word

$A868
$~840
$M69

45 [2.3.3] Fractions

2.3.3 Fractions

~~iiiiiiii--..1---------·p_~·-e_&_n_1~_·o_ns ___ . ____ ~--------------------......,------
typa.

:Frae:t = tO'NGJ NT;

.funct101t Flx2Frac . .·
· cth.eN:umbe:r · :· Ftke.d)

: Fract; · · ·

function Frac2Fix . .
(theNumber : Fra~t)

: Fixed; · ·

{Fixed .. pofllt number to be:·c.on\/ertedl
{Fraction equivalent}

{fraction to be converted}
{Fixed .. point equivalent}

~~iiiiR~..,_ ______ N_o_t_e_s __________________________________ ___

1. 1)'pe Fract represents a 32-bit fixed-point number, with 2 bits before
the binary point and 30 bits after it.

2. The value of a fraction is equivalent to that of the corresponding long
integer divided by 1073741824 (V0).

3. Fix2Frac and Frac2Fix convert between fractions and fixed-point num
bers (2.3.1].

4. 'fype Fract and the routines that operate on it are available only on
the Macintosh Plus.

IOI ~sembly ~~I?' 'Information
---t~--------....___--___ _

Trap macros:
(Pascal)
Routine name

F{x2Frac
Frac2Fix

(Assembly)
Trap macro

.,...Flx2Frac
-Frac2Fix

Trap word

$A841
$A842

46 General Utilities

2.3.4 Fraction Arithmenc

---liml---------o_e_fini_·_n_o_n_s ____________________________ __

function FracMul
(fraction1 : fract;
fraction2 : Fract)
: Fract;

function FracDiv
(dividend : Fract;
divisor : Fract)
: Fract;

function FracSq rt
(theNumber : Fract)

: Fract;

{First fractional operand}
{Second fractional operand}
{Fractional product}

{Fractional dividend}
{Fractional divisor}
{Fractional quotient}

{Fractional operand l
{Fractional square root

---l~~iiil====1--------N-o_t_e_s ____________________________________ __

1. FracMul and FracDiv multiply and divide two fractions and produce a
fractional result.

2. To add and subtract fractions, just use the standard operators +
and-.

3. FracSqrt finds the square root of a fractional quantity.

4. FracSqrt interprets its parameter as an unsigned quantity: that is,
negative fractions between -2 and 0 are treated as positive values
between +2 and +4.

5. These routines are available only on the Macintosh Plus.

IOI Assembly Language Informanon
--1lrl---------

Trap macros:
{Pascal)
Routine name

FracMul
FracDiv
FracSqrt

{Assembly)
Trap macro

_FracMul
_FracDiv
_FracSqrt

Trap:word

$A84A
$A84B
$A849

4 7 (2.3.5] Long Multiplication

.2.3.5 Long Multiplication

I J Deiininons
-1~..--t ------

type
lnt64Bit = record

hi long.: LONGINT;
lolong : LONGINT

end;

procedure LongMul
(number1 : LONGINT;
number2 : LONGINT;
var prodµct : lnt64Bit);

{High-order 32 bits}
{low-order 32 bits}

{First 32-bit operand}
{Second 32-bit operand}
{Returns 64-bit product}

~~iii~===t1--------N-o_t_e_s __________________________________ __

1. Long Mui multiplies two 32-bit long integers and produces a 64-bit result.

IOI Assembly Language Information
---1rn:D...,___-----

Trap macro:
(Pascal)
Routine name

Long Mui

(Assembly)
Trap macro

_LongMul

Trap word

$A867

48 General Utilities

2.3.6 Trigonometric Functions

Definitions

function FracSin
(theAngle : Fixed)

: Fract;

function FracCos
(theAng le : Fixed)

: Fract;

function FixATan2
(denominator : LONGINT;
numerator : LONGINT)

: Fixed;

{Fixed-point angle in radians}
{Fractional sine)

{Fixed-point angle in radians}
{Fractional cosine}

{Denominator of tangent}
{Numerator of tangent}
{Fixed-point arc tangent in radians}

1. FracSin and FracCos find the fractional sine and cosine of a given angle.

2 . FixATan2 finds the arc tangent of a given ratio (that is, the angle whose
tangent is equal to that ratio).

3. The ratio is specified by giving a long-integer numera tor and
denominator. Notice that the denominator is given first (unlike FixDiv
[Z.3.2) and FracDiv (2.3.4), which take the numerator first).

4. All angles are expressed in fixed-point form, in radians (not degrees}.

5. These routines are available only on the Macintosh Plus.

lc=JI Assembly Language Information ----llLI.....,__ _____ _
Trap macros:

(Pascall
Routine name

FracSin
FracCos
FixATan2

(Assembly)
Trap macro

_fracSin
_fracCos
_flxATan2

Trap word

$A848
$A847
$A818

49 [2.3.7] Binary/Decimal Conversion

2.3. 7 Binary /Decimal Conversion

~11!1~1-------n-e_&n_J_~_ons_---~~~ll!'lli-----------------------
ptoJ:e~ura. N.µmTq:Stri:n!t_.-_ - __ . _____ -

(t_heNum.11.gt>: ·:;- ~Ol't~_INT~
var th:~sn1n·g~: istr255}; -

procedure StringToNum
(th,e.Strhtg ___________ :· 1StrZ5~i
-var ttteNu(mh_er : wo:NGlNJJ;

{Number to be converted}
{Returns equivalent string}

{String to be converted:}
{Returns equ[valent number}

~~iiiiB:::::31--------N-o_t_e_s __________________________________ ___

1. These routines convert a number between its internal binmy represen
tation and its external representation as a decimal character string.

2. The string consists entirely of decimal digits (0-9), except possibly for
a leading sign (+ or-).

3. NumToString doesn't produce a + sign for positive numbers, but
StringToNum will accept one.

4. NumToString suppresses leading zeros except in the case of the numeri
cal value 0, which produces the one-character string 'O'.

5. The magnitude of the string provided to StringToNum should not exceed
231 - 1 (2147483647).

6. The binmy/decimal conversion routines are not actually part of the
Toolbox proper; they're contained in a package, the Binmy /Decimal
Conversion Package, that resides in the system resource file (or in
ROM on a Macintosh Plus) and is automatically loaded into memory
when needed. Package routines are defined in the interface file Packlntf.
See Chapter 7 for further information on the package mechanism.

7. The trap macros for these routines expand to call _Pack? (7.2.1] with
the routine selectors given below.

50 General Utilities

IOI Assembly Language Information -fllLll..,...._ _________ _
Trap macros and routine selectors:
(Pascal) (Assembly)
Routine name Trap macro Trap word

NumToString _NumToString .$A9EE
StrlngToNum _StringToNum $A9EE

Register usage:

Routine Register

NumToString 00.L (in)
AO.L (out)

StringToNum AO.L (in)
00.L (out)

2.3.8 Random Numbers

Routine selector

0

Contents

theNumber
pointer to theStrlng

pointer to theString
theNumber

~111~1-------n-e_ftni __ ·n-·o_ns ______________________________ __

function Random
: INTEGER; (Random number}

var
RandSeed : LONGINT; {"Seed" for random number generation}

~~iiiiii~==1--------N-o_t_e_s ____________________________________ __

1. Random re~rns a different integer each time it's called, distributed
uniformly over the interval from -32768 to +32767.

2. The sequence of numbers 'generated is "pseudo-random": the same
sequence can be duplicated by starting with the same "seed" value
in the global variable RandSeed.

3. RandSeed is initialized to 1 by the QuickDraw initialization procedure
lnitGraf (4.3.11.

4. RandSeed is actually a QuickDraw global variable [4.3.1]. To access it in
assembly language, find the pointer to QuickDraw's globals at the

51 (2.4.1) Date and Time in Seconds

address contained in register AS, then locate the variable relative to
that pointer using the offset constant RandSeed (below). See Chapter 3
and [4.3.1, note 4) for further discussion.

I C]I Assembly Language Information -tlrl...,.._ ______ ,
Trap macro:

(Pascall
Routine name

Random

(Assembly)
Trap macro

_Random

Trap word

$A861

QuickDraw global variable:

Name

Rand Seed

2.4 Date and Time

Offset in bytes

- 126

Meaning

"Seed" for random
number generation

2.4.1 Date and Time in Seconds

procedure GetDateTime
(var seconds : LONGINT); {Returns current date and time in "raw" seconds}

function SetDateTi me
(seconds : LONGINT)

: OSErr;

con st

I

ClkRdErr = - 85;
ClkWrErr = - 86;

{New date and time in "raw" seconds}
{Result code (3.1.2]}

{Unable to read clock}
{Clock not written correctly}

52 General Utilities

~~iiis==:31--------N-o_t_e_s __________________________________ ~
1. These routines read and set the current date and time in the Macin

tosh's built-in clock chip.

2. The user can set the date and time with the Alarm Clock or Control
Panel desk accessory.

3. The date and time are expressed as a total number of "raw" seconds
since midnight, January 1, 1904. This value can be converted to a date
and time record with Secs2Date [2.4.3], or to an equivalent character
string with IUDateString and IUTimeString [2.4.4].

4. The function result returned by SetDateTime is an Operating System
result code [3.1.2].

5. When called from assembly language, SetDateTime is register-based; see
register usage information below.

6. GetDateTime is not available in assembly language via the trap
mechanism. Instead, the current reading of the clock chip is directly
accessible in the global variable Time.

IOI Assembly Language Information
---llLl..,.._----~-

Trap macro:
(Pascal)
Routine name

SetDatetime

Register usage:

Routine

SetDateTlme

(Assembly)
Trap macro

_setDateTime

Register

DO.L (in)
00.W (out)

Assembly-language global variable:

Name Address

Time

Meaning

Trap word

$A031\

Conteiits

seconds
resultpode

Cwrent date and time in
"raw" seconds

53 [2.4.2) Date and Time Records

2.4.2 Date and Time Records

•vpe
· DateTimeRec = record

year : INT~~g:R;
month ; INTE.QJ;R;·
day : INTEGER;
hour : INTEGER;
minute : INTEGER;
second : INTEGER;
dayOfWeek: INTEG.ER

end;

procedure GetTime

{Year}
{Month: 1 (January) to 12 (Dec:ember);l
{Day of month: 1 to 31 l
{Hour: 0 to 231
{Minute: Oto 59}
{Second: o to 59l
{Day of week: 1 (Sunday) to 7 (Saturday)}

(var dateAndTime : DateTimeRec); {Returns current date and timeJ

procedure SetTime
(dateAndTime : D_ateTimeRec)~ {Current da!e: and time}

~~iii~·=::ti--------N-o_t_e_s __________________________________ ___

1. GetTime and SetTime read and set the cuITent date and time in the
Macintosh's built-in clock chip .

.2. The user can set the date and time with the Alarm Clock or Control
Panel desk accessory.

3. The date and time are represented in the form of a record of type
DateTimeRec.

4. These routines are not available in assembly language via the trap
mechanism. Instead, you can read the clock chip directly via the
global variable Time or set it with SetDateTime [2.4.1] and convert between
"raw" seconds and date and time records with Secs2Date and Date2Secs
[2.4.3].

54 General Utilities

IOI Assembly Langµage Informanon
--11!:11-------------

procedure Secs2Date

Field offsets in a date and time record:

(Pascal) (Assembly)
Field name Offset name

year
month
day
hour
minute
second·
dayOfWeek

dtYear
dtMonth
dtDay
dtHour
dtMinute
dtSec.ond
dtDayOfWeek

2.4.3 Date and Time Conversion

Offset in l!>ytes

0
2
4
6
8

10
12

(seconds : LONGINT; {Date and ti.me in "raw" seconds}
var dateAndTime : DateTimeRe~); {Returns equiv~lent date and time r~cordl

procedure Date2Secs
(dateAndTime : DateTimeRec;
var seconds : LONGINT);

{Date and time record}
{Returns equivalent in "raw" second$}

~~iiii~~ -------N-o_te_s ____________________________________ __

1. These routines convert the date and time between "raw" seconds, as
reported directly by the built-in clock chip [2.4.1], and the more
convenient form of date and time records [2.4.2).

2. When called from assembly language, these routines are register
based: see register usage information below.

55 [2.4.4] Date and Time Strings

IOI Assembly Language Information
---f ll[]l1--------

Trap macros:

(Pascal) (Assembly)
Routine name Trap macro Trap word

Secs2Date _Secs2Date $A9C6
Date2Secs -Date2Secs $A9C7

Register usage:
Routine Register Contents

Secs2Date 00.L (in) seconds
AO.L lout) pointer to dateAndTime

Date2Secs AO.L (in) pointer to dateAndTime
00.L (out) seconds

2.4.4 Date and Time Strings

--1111!1~-------n-e_fini __ n_·o_n_s ____________________________ __

type
DateForm = (ShortDate, LongDate, AbbrevDate);

procedure IUDateString
(seconds : LONGINT; {Date and time in nrawn seconds}
format : DateForm; {Forrnat desired for date}
var theString : Str255); {Returns equivalent character string}

procedure IUTimeString
(seconds : LONGINT; {Date and time in "raw" seconds}
withSeconds : BOOLEAN; {Include seconds in string?}
var theString : Str255); {Returns equivalent character string}

--l~iiil~:::::lti--------N-o_te_s ____________________________________ __

1. These routines convert a date and time in "raw" seconds, as reported
by ReadDateTime (2.4.1], to a character string representing the cor
responding calendar date or time of day.

56 General Utilities

2. These routines are not actually part of the Toolbox proper; they're
contained in a package, the International Utilities Package, that resides
in the system resource file and is automatically loaded into memmy
when needed. Package routines are defined in the interface file Packlntf.
See Chapter 7 for further information on the package mechanism, and
Inside Macintosh for more on the International Utilities Package.

3. The exact formats used for dates and times may vary from one country
to another, under the control of the International Utilities Package. The
formats shown below are the standard ones for American use.

4. The format parameter to IUDateString identifies the format desired for the
date, as in the following examples:

Short: 6/ 8184

Long:

Abbreviated:

10/15/84

Friday, June 8, 1984
Monday, October 15, 1984

Fri, Jun 8, 1984
Mon, Oct 15, 1984

5. Dates in the short format carry leading blanks or zeros if necessary,
so that they're always the same length (8 characters in the standard
American format).

6. The withSeconds parameter to IUTimeString specifies whether to include
a seconds field in the time, as in the following examples:

With seconds: 10:47:13 AM

Without seconds:
3:23:08 PM

10:47 AM
3:23 PM

7. Times, whether with or without seconds, carry leading blanks or zeros
if necessary, so that they're always the same length (8 or 11 characters
in the standard American format).

8. The trap macros for these routines expand to call _Pack6 [7.2.1] with
the routine selectors given below.

57 [2.4.4) Date and Time Strings

f c=JI Assembly Language Information
-1'1LR--------------

Trap macros:

(Pascall
Routine name

IUDateString
IUTime String

(Assembly)
Trap macro

-1UDateString
_IUTimeString

Assembly-language constants:

Name

SllortDate
Long Date
AbbrevDate

Value

0
1
2

Trap word

$A9ED
$A9ED

Meaning

Routine selector

0
2

Short form of date
Long form of date
Abbreviated form of date

CHAPTER
-~[ilB!ill!I\]~ ---- 3
-l!la!Ell1!]11mai!lt

Thanks for
the Memory

This chapter is about memory: how it's organized and how to
manage it. We'll learn what's where in the Macintosh's memory,
how to allocate blocks of memory for a program's use, how to refer
to those blocks from within the program, how to copy and
combine them, and how to release them when they're no longer
needed. These are basic techniques that you'll use in every
program you write for the Macintosh.

Memory Organization

The original Macintosh has 64 kilobytes-that is, 64 times 1024, or
65,536 bytes-of read-only memory (ROM), containing the built-in
code of the Toolbox. The new Macintosh Plus doubles the ROM
size to t28K. ROM addresses begin at hexadecimal $400000 and run
up to $40FFFF or $41FFFF, depending on the model. Since its contents
are permanent and unchangeable, this portion of memory is not
available for general use by a running program.

When we talk about memory allocation, we're really refeITing
only to the remaining read/write memory (commonly known by
the misleading term "random-access memory," or RAM). The
original "Skinny Mac" has 128K of RAM, occupying addresses
$0-$1FFFF; the "Fat Mac" has 512K, from $0-$7FFFF. The Macintosh
Plus has a full megabyte (1024K, or 1,048,576 bytes), running from

59

$00

$100

$400

$800

$800

$4EOO

$1A700

$1FC7F
$1FDOO
$1FFE3
$1FFFF

60 Thanks for the Memory

128K
"Skinny Mac"

Trap Vectors
System Globals
Dispatch Table
System Globals

System Heep

Application Heep ____________ f ____________

___________ _! ____________

Steck
Application

Global Spece

Mein Screen Buffer

Mein Sound Buffer

KEY

~System Use

$00

$100
$400

$800

$800

$C800

$7A700

$7FC7F
$7FOOO
$7FFE3
$7FFFF

512K
"Fat Mac"

Trap Vectors
System Globe ls
Dispatch Table
System Globals

System Heep

Application Heap

------------+------------

____________ ! ____________

Stack

Application
Global Space

Main Screen Buffer

Main Sound Buffer

t Arrows show direction of growth
of stack and application heap.

Figure 3-1 Memory organization

$00

$100

$400

$800

$COO

$1400

$CBOO

$FA700

$FFC7F
$FFDOO

$FFFE3
$FFFFF

1M
Macintosh Plus

Trap Vectors
System Globals

OS Dispatch Table

System Globals

Tool box Dispatch Table

System Heap

Application Heep

_____________ f ___________

____________ f ____________

Stack

App 1 i cetio n
Global Space

Main Screen Buffer

Mein Sound Buffer

$0-$FFFFF, and can be expanded to 2, 2.5, or even 4 megabytes;
future models will have even more memory. The Toolbox is de
signed to adapt automatically to different memory configurations,
so that the same program can run without change on all models of
the machine and will automatically make use of whatever amount
of RAM is available.

Figure 3-1 shows how RAM is laid out. On all models of

Model

Skinny Mac
Fat Mac
Macintosh Plus

61 Memoiy Organization

Macintosh, addresses $0-$FF hold the 68000 processor's trap vec
tors, which we discussed in the last chapter. The Toolbox keeps
its system globals (memory locations reserved for its own private
use) at addresses $100-$3FF and $800-$AFF ($800-$BFF on the Macin
tosh Plus). On older models, the dispatch table, which holds the
ROM addresses of the various Toolbox and Operating System
routines, is at addresses $400-$7FF. On the Macintosh Plus, this area
is reserved for the OS dispatch table only; the Toolbox has a
separate table of its own, running from $C00-$13FF.

All of the addresses_ given in this chapter may differ in future
models of the Macintosh.

At the end of memory are the screen buffer, containing the
bits that define the image to be displayed on the Macintosh
screen, and the sound buffer, which controls the sounds emitted
by the built-in speaker. Table 3-1 shows the addresses of the
screen and sound buffers in the various models. Just before these
buffers in memory is the application global space, which contains
the application program's global variables and other infonnation
about the program as a whole. The space between the end of the
system globals and the beginning of the application globals is
available for dynamic memory allocation.

Table 3-1 Buffer addresses

Memoiy Main Main Alternate Alternate
size screen buffer sound buffer screen buffer sound buffer

128K $1A700-$1FC7F $1FD00-$1FFE3 $12700-$17C7F $1A100-$1A3E3
512K $7 A700-$7FC7F $7FD00-$7FFE3 $72700-$77C7F $7A100-$7 A3E3

1M $FA700-$FFC7F $FFDOO-$FFFE3 $F2700-$F7C7F $FA100-$FA3E3

62 Thanks for the Memoiy

Although most programs will use the main screen and sound
buffers at the addresses just given, there are also alternate buffers
available for unusual needs, at the locations shown in Tabl~ 3-1.
Since the application global space is always located right before the
lowest-addressed screen or sound buffer in use, using either or both
of the alternate buffers lowers the position of the global space in
memory and reduces· the space available for dynamic allo¢ation
accordingly. For the · altemate sound buffer, the reduction is $600
bytes, or 1.5K; for the alternate screen buffer, it's $8000 bytes, or 32K.

The Application Global Space

The application global space holds three kinds of information
pertaining to a program: its global variables, application parameters,
and jump table (see Figure 3-2). The space needed for these varies
from one program to another, and is allocated at the time the
program is started up. (We'll have more to say about how this is
done, and about the contents and purpose of the jump table, in
Chapter 7; we'll be discussing the application parameters in just
a minute.)

At the machine-language level, the processor's address regis
ter A5 always holds a pointer to the beginning of the application
parameters. If you're programming in a higher-level language such
as Pascal, of course, you never have to think about processor
registers; your language software will see to it that AS is properly
maintained. Even so, you should understand how this register is
used at the machine level. The Toolbox initializes A5 when a
program is started, and uses it as a base address from which to
locate everything in the application global space: global variables
at negative offsets from A5, application parameters and the jump
table at positive offsets. (The global variables are allocated in the
reverse of the order they're declared. That is, the first variable
declared is last in memmy, at the smallest negative offset from the
base address in A5.)

63 The Application Global Space

Low me mory addresses

(Stack)

Register AS

(Main Screen Buff er)

High memory addresses

Figure 3-2 Application global space

If you're using assembly language, you have to remember that
register A5 is special and be careful not to disturb its contents. If
you absolutely must "borrow" this register temporarily, be sure to
restore it from the system global CurrentA5 [3.1.3) before calling any
Toolbox routine.

This "A5 world" is a vestige of the Lisa Pascal environment
from which much of the Macintosh software grew. On the Lisa,
the application parameters held important descriptive information
about the program that was used by various parts of the system.

Register AS

64 Thanks for the Memoiy

Most of these parameters are no longer used on the Macintosh, but
a few are still needed by parts of the Toolbox that preseive traces
of their Lisa origins. To keep these archaic parts of the Toolbox
happy, space (normally 32 bytes) is still reseived for the application
parameters when a program is started up, and a pointer to them
is placed in AS.

Only two of the application parameters are actually used on
the Macintosh (Figure 3-3). At address 0(A5) (that is, at an offset of
0 bytes from the base address in register A5) is a pointer that the
QuickDraw graphics routines use to find their global variables;
we'll return to this subject in Chapter 4. At 16(A5) is the startup
handle, used by the Finder to tell the program what files to open
on starting up. (We'll be learning what a handle is later in this
chapter; the Finder startup handle is discussed in Chapter 7.) The
rest of the 32-byte application parameter area is reseived for
possible future use.

(App 11cat1 on Gl oba 1 s)

(Jump Tabl el

Figure 3-3 Application parameters

Unused
space

Unused
space

65 The Stack and the Heap

The Stack and the Heap

As noted earlier, the space available for dynamic memory alloca
tion runs from the end of the system globals to the beginning of
the application globals. This area is shared between two different
forms of allocation, the stack and the heap, which grow toward
each other from opposite ends of the space (see Figure 3-4). The
stack is used mainly for holding parameters, local variables, return
addresses, and other temporary storage associated with a
program's routines (procedures and functions). If you're an
assembly-language programmer, you already know all about the
stack and how to use it. In Pascal and other higher-level languages,
all stack management is handled for you automatically and you
needn't concern yourself with it; all you really need to know is
that every variable you declare by name in one of your program's
routines implicitly resides on the stack. The memory space
needed to hold such a variable is allocated on entry to the routine
that declares it, and released again on exit.

The stack actually,grt$s ba.ckwar<f in niemory, from higher- toward
lowe~n}lmb~red .a,d(lre~ses:·. if you're an experienced programmer,
you should be. u~g· to··1hij; 'sort of thing-you also probably draw
your tJ#s with their roots}il the top and their leaves at the bottom!

Unlike stack space, space in the heap is allocated and released
only by explicit request, never implicitly, even in high-level
languages. These requests can be issued in whatever order the
program requires, and are not tied to the program's subroutine
call structure like the stack. If stack space is allocated in LIFO
order ("last in, first out"), heap allocation might be called LIOF:
"last in, OK, fine." The heap extends forward from the end of the
system globals, and is divided into two parts, the system heap and
the application heap.

As you might expect, the system heap is used by the system
software for its own private memory needs. It begins right after the
end of the system globals, and has a fixed size of $4300 bytes
(16.75K) on a Skinny Mac, $COOO bytes (48K) on a Fat Mac, or $B700
bytes (45.75K) on a Macintosh Plus. Its contents aren't destroyed

66 Thanks for the Memory

Available space

(System Heap)

:::: : ::::::: : :::: ::::::::: : : : ::: : ::::::::: : :::: : : : : : : :::: : : :::: : : : : : : :::::: : : : : : : : :: ::::::::: :::::::::::: : : : : : : : ::::::::::::::: I_

::: '
::: .·.·.·.·.·.·.·.·.·:.·.
~~: ~:~ :~:~:~:~: ~:~:~: ~:~: ~:~: ~ :~:~:~~ ~~~~ ~~~~ ~~~~ ~ ~~~ ~~~~ ~~~~ ~~~~ ~ ~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
·.·.·.·.·.·.·.-:·:·:-:-:·:·:-:-:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:-:-:-:-:·:·:·:·:·:·:·:·:·:·:·:-:-:-:·:·:·:·:·:·:·:·:·:·:· ·.·
:::
~j~j~j~j~j~~:j~j~j~~~j~~~j~~~j:j~j~j~j~j~j~j~j~~~j~~~~~j~j:j~j:j~j~j~j~j~j~j~j~j~j:j~j~j~j~j:j~j~j~j~j~j~~:j~~~~~~:~~~~~~~:~:~~ ::: t

(Appllcation Global Spece)

Figure 3-4 Stack and heap

67 Handles and Master Pointers

when one program ends and another is started; this allows the
system to maintain its private data structures from one program to
the next.

The sizes giv~n for the system heap are correct as of the time of
writing. These sizes may ·vaiy in future releases of the system soft
ware.

The application heap is for your program's use; it contains
the code of the program itself and any data structures that the
Toolbox creates on your behalf, as well as space that you allocate
explicitly for your own data. The application heap follows the
system heap in memory, and is reinitialized every time a new
program is started. This destroys its previous contents and gives
each program a brand-new, empty heap to work with. The initial
size of the application heap is $1800 bytes (6K), but it can grow
bigger as the program runs if more space is needed.

Technically, what we're calling the system heap and application
heap are actually heap zones. The Toolbox can maintain any number
of heap zones: if you want, you can subdivide your original applica
tion heap into two or more separate zones and allocate space from
each of them independently. This is an unusual thing to do, though,
and we won't go into it any further here; see Apple's Inside Macin
tosh manual if you want the details. Unless you explicitly specify
otheIWise, all the memory allocation operations described in this
chapter will automatically apply to the single application heap zone.

Handles and Master Pointers

You can allocate space from the heap in blocks of any size; when
you no longer need a block, you should release it so that the space
can be reused for another purpose. As blocks are allocated and
released, the available free space tends to become fragmented into
lots of little blocks scattered randomly throughout the heap. Such
fragmentation can sometimes make it impossible to allocate a
block of a given size even though the needed amount of free space

KEY

-
D . .

.

68 Thanks for the Memory

Before After

Data block

Free space

..

.

Figure 3-5 Heap compaction

is available, because no single free block is big enough. When this
happens, the Toolbox tries to create a block of the needed size by
moving all the allocated blocks together and coalescing the free
space into one big block. This is known as compacting the heap
(see Figure 3-5).

Pointer

69 Handles and Master Pointers

Before

.
.

.

Pointer

Figure 3-6 Dangling pointer

After

....

...........

For heap compaction to w ork, there must be a w ay to keep
track of the allocated blocks as they 'r e m oved from one location
to another. Suppose you ask the Toolbox to allocate a block; it
gives you back a pointer to the new block, which you save in a
variable or embed in a da ta structure of some kind. Later, the heap
is compacted and the block is moved to a different location (see
Figure 3-6). This leaves your pointer pointing to w here the block
used to be instead of where it is; what's actually there now is
anybody's guess. Trying to follow this "dangling p ointer" is now
a one-way ticket to the Twilight Zone.

The solution to this problem is simple and elegant. Instead
of giving you a pointer when it allocates a block, the Toolbox keeps
its own master pointer to the block and gives you a pointer to the
master pointer, known as a handle to the block (Figu re 3-7). Like
the block itself, the master pointer resides in the heap; but unlike
the block, the m aster pointer is never moved, even w hen the heap
is compacted . Since it remains at a known, fixed location, the
Toolbox can easily update it whenever the block is moved, so that
it always points correctly to the block's cu rren t location . When
you need to refer to the block, you do it by double indirection :
the handle leads you to the master pointer, which in turn leads
you to the block. Since the master pointer n ever moves, you 'll
never lose track of the block, no matter where or how often it's
moved within the heap.

Handle

70 Thanks for the Memory

Before

Master Pointer
• e e • • e I• I I I I I I I I I I I I

I I I I Io I I I I"' I a Io I I I I I
I
I I I I I I I'" I I I I I I I I I I• I

I I I I I I IO I I I I I I I I• I I•

I

I

I I I I I I lo I I I I I I I I I I I I I

Handle After

..............
I I I I I I I I I I I I I I I I• I I I

.
I
e •I• <I e <I <I <I e I e e • e e • • e e
•" e I e e e e e • e I e e e e • • e e

Figure 3-7 Handle and master pointer

Relocatable and Nonrelocatable Blocks

Blocks that are refeITed to by handles are called relocatable blocks,
since they can safely be moved around within the heap. You create
a relocatable block by calling the Toolbox routine NewHandle [3.2.1],
specifying the size of the block in bytes. For instance, suppose
your program defines a data type named Thing. To allocate a new
Thing from the heap, you would use a statement like

thatThing := NewHandle(SIZEOF(Thing))

(Recall that the SIZEOF function, applied to a type name, gives the
number of bytes occupied by a value of that type.) NewHandle will
allocate heap space for a block of the requested size and also for
its master pointer, set the master pointer to point to the block,
and give you back a pointer to the master pointer-that is, a handle
to the block. Thus the expression

thatThing"

denotes the master pointer, and

thatThing""

71 Relocatable and Nonrelocatable Blocks

refers to the underlying Thing itself. If a Thing is a record with a
field named widget, you can access the field with the expression

thatThingAA .widget

Once you allocate a block, its size isn't frozen forever. You can
make it bigger or smaller at any time with the Toolbox routine
SetHandleSize [3.2.3]. (When you make a block bigger, things may
have to be moved around in the heap to make room; but of course
the master pointers will be fixed up properly, so all your handles
will remain correct.) To find out the current size of a block, use
GetHandleSize [3.2.3]. When you're all through with a block, release
it by calling DisposHandle [3.2.2] to make its space available for
reallocation.

You can also create nonrelocatable blocks, which will never
be moved even during heap compaction. To allocate such a block,
use NewPtr [3.2.1] instead of NewHandle:

otherThing := NewPtr(SIZEOF(Thing))

Since the block will never be moved, there's no need for a master
pointer-so NewPtr doesn't create one. Instead of a handle, it just
gives you back a pointer directly to the block itself(Figure 3-8). You
can then use this pointer to refer to your Thing by single rather
than double indirection

otherThingA

and access its fields with expressions like

otherThingA. widget

Like a relocatable block, a nonrelocatable one can be
lengthened or shortened at any time. You can change its size with
SetPtrSize [3.2.3], find out its current size with GetPtrSize [3.2.3], and
release it when the time comes with DisposPtr [3.2.2].

72 Thanks for the Memory

Handle

Pointer

Pointer

Handl e

Handle

Handle

KEY

- Nonrelocatable block

D Relocatable block

EJ Free space

................................

·.· .·.·.·.·.·.·.·.· .. ·.·.·.·.·.·. ·.· .·.·.·.·.·.·.·.·.·.·.·.·.·.·

Figure 3-8 Re locatable and nonrelocatable blocks

73 Elementaiy Data fypes

Elementary Data Types

The Toolbox interface defines general-purpose data types [3.1.1)
for talking about pointers and handles. Type Ptr stands for a
pointer to an arbitrary byte in memory, and Handle for a pointer to
a Ptr. Both are based on the underlying type SignedByte, which
represents a single memory byte as an integer between -128 and
+127. (There's also an alternate type just named Byte, which
represents a byte as an unsigned integer between 0 and 255.) For
specifying the size of a block on the heap, there's the type Size,
equivalent to a long integer (LONGINT).

The heap allocation routines NewPtr and NewHandle return
results of type Ptr and Handle, respectively-that is, a pointer or a
handle to a SignedByte. In order to access a block's contents, you
have to convert these to some other type that more specifically
describes the block's internal structure.

For instance, suppose your program defines the following
types:

type
LinkHandle = · unkPtr;
Li nkPtr = · Link;
Link = record

data : INTEGER;
next : LinkHandle

end;

To allocate a new Link record from the heap and store into its data
field, you can't simply declare a variable

var
thelink : LinkHandle;

and write something like

thelink := NewHandle(SIZOF(link));
thelink ... data := O

The first of these statements is not a valid assignment, because the
types don't match: NewHandle returns a general Handle (a handle to a
SignedByte), whereas the variable thelink expects a LinkHandle (a han-

Error Reporting

7 4 Thanks for the Memory

die to a Link record). Nor can you correct the problem by changing
the declared type of thelink:

var
theLink : Handle;

Now the second statement

theLink"" .data := 0

is invalid, because thelink"" is now a Signed Byte instead of a Link, and
so doesn't have a field named data.

The solution is to use the "typecasting" technique described
in Chapter 2 to convert the general Handle you get from the Toolbox
into a LinkHandle that you can work with:

var
the Handle : Handle;
the Link : LinkHandle;

theHandle := NewHandle(SIZEOF(Link));
theLink := LinkHandle(theHandle);

theLink" ... data := 0

(Actually, of course, you could do it in one step by dispensing with
the intermediate variable theHandle and simply writing

theLink := LinkHandle(NewHandle(SIZEOF(Link)))

We did it in two steps here just to make sure it's clear exactlywhat's
going on.)

Strictly speaking, the memmy management routines are part of
the Macintosh Operating System, rather than the Toolbox proper.
Along with other Operating System routines, most of them post a
result code of type OSErr (3.1.2] to report errors or signal successful
completion. At the machine level, the result code is returned in a

75 Error Reporting

register-the lower half of DO, to be precise. To allow you to access
it from Pascal, the interface unit OSlntf includes a special function
named MemError [3.1.2] that returns the result code posted by the
last memoi:y management operation.

Notice, however; that MemError is part of the 'interface to the memory
management routines;· not one of the routines actually built into
ROM. Other languages ~ay have different mechanisms for accessing
Ope~ting System result codes, or none at all You'll have to consult
your own language documentation for details.

Result codes are always less than or equal to 0. A value of 0
(NoErr) means the routine was able to complete its job successfully;
a negative result code means that it was prevented from doing so
because of an eITOr. The most important error reported by the
memoi:y management routines is MemFullErr, which means that an
allocation operation failed for lack of heap space.

If you're programming in assembly language, you can)ust look in
.~gisJ~r DO for ~he resul~ .pode renirQed by a memory management
(or· other Oper~ting System) routin~~ However, not all such routines
do in fact post a . resti_lt code in this register; the register usage
information in the Reference· Handbook will tell you which ones do
and Which don1t.

Before refummg from any i0perating System trap, the Trap
Dispatcher sets:the processor's condition codes to reflect the result
code (if there is one) by executing the instruction

TST.W DO

You c~ then: i1,1.st braQC}j\: on; the condition codes without. perl'orm
ing a test of yQur: owp..: fo~ example,.

MOVEQ DO,#blockSize
_NewHandle

BMI Error

; Indicate size of block
; Allocate block
; Branch on error

Locking Blocks

76 Thanks for the Memory

Whenever you allocate a block from the heap, you can choose
whether to make it relocatable (with NewHandle) or nonrelocatable
(with NewPtr). In general you should use relocatable blocks
whenever possible, since this allows the Toolbox to make the most
efficient use of the available heap space. However, relocatable
blocks also have their costs, in both space and time: they take up
an extra 4 bytes for the master pointer and require an extra
memory fetch to access, because of the second level of indirection.
Usually this is a negligible price to pay, but sometimes that extra
memory reference can be costly, if it occurs inside a tight inner
loop or some other part of your program where speed is critical.

In such cases, you can save time by converting the block's
handle to a copy of the master pointer

masterPtr := theHand leA

and then refening to the block by single indirection

masterPtr

within the loop. This is known as dereferencing the handle (a
general term meaning to convert any pointer into the thing it
points to). However, keep in mind that all you have is a copy of
the master pointer, not the master pointer itself. If the heap is
compacted and the block is moved, the Toolbox will only update
the actual master pointer; the copy will be left pointing into the
Twilight Zone.

To keep your pointers from dangling, you can lock the block
before dereferencing its handle. This temporarily prevents the
block from being moved, even if the heap is compacted. You can
then safely dereference the handle and refer to the block by single
indirection. When you're through with your critical program sec
tion, you can discard your copy of the master pointer and unlock
the block, so that it can again be moved around to make room in
the heap for other blocks. The Toolbox routines for locking and
unlocking a block are Hlock and HUnlock (3.2.4]; Program 3-1 shows
how to use them in dereferencing a handle. (Notice that only a
relocatable block can be locked; this makes it temporarily unmov
able, while a nonrelocatable block is permanently unmovable.)

77 Locking Blocks

Skeleton code to illustrate use of a dereferenced handle. }

hi!
LinkHandle = ALinkPtr;
LinkPtr = ALink;

Link = rt~r~
dah : INTE6ER;
next : LinkHandle

tn~;

!!!
theffandle : Handle1
thelink : LinkHandle;
1asterPtr : LinkPtr;

theHandle := NewHandle<SIZEDF<Link>>;
thelink := POINTER<DRD<theHandle>>;

.
I I I '

Hlcd <thelink>;

1asterPtr := thelinkA;

!bi!! I I I ~g
~!gin

I

I 0 I '

••• 1asterPtrA ••• ;

end• ___ ,

HUnlock <thelink>;

<Untyped handle for creating the block}
<Typed handle for referring to the block}
<Typed pointer for dereferencing the handle}

<Allocate a relocatable block £3.2.11}
<Convert to typed handle}

<Lock the block [3.2.41}

<Dereference the handle}

<Use single indirection inside loop}

<Unlock the block £3.2.41}

Program 3-1 Dereferencing a handle

78 Thanks for the Memory

Certain Pascal constructs involving handles can also cause Apple• s
compiler to generate dangling pointers. For example, a with $tate
ment based on a relocatable record

with aHandle'"' do
begin

end

will lead to trouble if the underlying record is moved or purged
because of memmy allocation performed inside the body of the
statement. To avoid problems, you always should lock the block
with

Hlock (aHandle)

before executing such a with statement and then unlock it again
afterward.

Similarly,. any call to a routine.that can do heap allocatioQ: may
cause trouble if you pass ·it a field of a relocatable record, as a
variable

ARoutine (aHandle"" .field)

or assign its result to such a field

aHandle"" .field := ARoutine (...)

Instead of locking the block in these cases, you can use a temporaiy
variable:

or

temp := aHandle"" .field;
ARoutine (temp)

temp := ARoutine (...):
aHandle"" .field := temp

Keep in mind that many Toolbox routines allocate heap ;space
behind the scenes, without your being aware of it. To stay dn the
safe side, you should assume that any Toolbox call is "dangerous"
and take suitable precautions.

79 Locking Blocks
~~~~~~~~~~~ 

Handle 

Pointer 

Handle 

Handle 

Handle 

KEY 

- Nonrelocatable block 

- Relocatable block 

r'77l Free space 
~ 

...... .. ............... . ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
:·:·:·: ·:·:·:· :·:·:·:·:·:·:·:·:·:·:·:·:·:·:·: ·: -·.·.·.·.·.·.· . . ·.·.·.·.·.·.·.·.·.·.·.· ............ ·.·.· .... . 
·:·:·:·:·:·:·:·:·:·:·:·::::::::::::::::::::::::::::::. :.:.:.:. : 

.. . ..................... . ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......................... 
·.·.·.·.·.·.·.·.·.·.·.·.·.·. ·.·.·.·.·. ·.·.·. · .·.·.·.· ..... 
·.·.·.·.· .·.·.·.·.·.·.·.·.·. ·.·.· .· .·.·.·.·.·.·.·.·.·.·.·.·.·. · ................. . . . . . . . . . . . . . . -:-:-:-:·:-: -:-:·:·:-:-·.·.·.·.·.·.·.·.·.·.·.·. ·.·.·.·.·.· .. . . . . . . . . . . . . ·.·.·.·.·.·.· .· . ·.·.·.·. ·. ·.·. ·.·.·.·.·. 
·:·:·:·:·:·:·:·:·:·:·:··.·.·.·.·.·.·.·.·.·.·.·.· .·.· .· .·.· ....................... :-:-:-:-:-:-:-:-:-:-:-:-:-:-:-::: : : 

Figure 3-9 Islands in the h eap 

Note that Master Pointers 
are nonrelocatable. 

Island 

Island 



80 Thanks for the Memory 

In general, try not to keep a block locked any longer than you 
have to, and remember to unlock it again as soon as you safely 
can. An unmovable block, whether it's temporarily locked or 
permanently nonrelocatable, forms an 'island" in the heap that 
can interlere with compaction and prevent the available free space 
from being coalesced (Figure 3-9). You can avoid this problem, 
however, by ammging to keep all the unmovable blocks together 
at the beginning of the heap, out of the way of the movable ones. 
For nonrelocatable blocks, the Toolbox does this automatically: it 
allocates them as near as possible to the start of the heap, moving 
other blocks out of the way if necessary to make room. To do the 
same for a relocatable block (if you know it will be locked for long 
periods of time), you can use the Toolbox routine ResrvMem [3.2.5]. 
This routine creates space near the beginning of the heap for a 
block of a specified size, but doesn't actually allocate the block. 
You have to follow it with a call to NewHandle to do the actual 
allocation: 

ResrvMem (blockSize); 
theHandle := NewHandle (blockSize) 

If you're only locking a. block for a short time, you can keep it out 
of the way by moving it to the end of the heap instead of the 
beginning, using the Toolbox routine MoveHHi [3.2.5]: 

MoveHHi (theHandle); 
Hlock (theHandle) 

Notice that MoveHHi operates on a block that already exists, 
whereas ResrvMem just clears the heap space for a block about to 
be created. 

Copying and Combining Blocks 

The Toolbox includes a number of utility routines for copying and 
combining blocks in the heap. HandToHand [3.2.6] creates a new 
relocatable block that's a copy of another. You give it a variable 
containing a handle to the block you want to copy; it returns a 
handle to the copy in this same variable (see Figure 3-10). For 



tbeHandle 

81 Copying and Combining Blocks 

result := HandToHand (theHandle) 
Before 

.................... . . . . . . . . . . . . . . . . . . . . 
0 0 I 0 0 0 o o 0 o 0 o • o O O O I 0 0 .................... 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
e 0 0 0 0 0 I 0 0 0 0 0 o 0 0 0 0 0 0 o .................... 
0 0 0 o o •I 0 0 I 0 0 0 0 0 0 0. o o 

0 0 I I 0 0 0 0 0 0 e Io 0 0 o 0 0 0 0 

IO O O O o IO O O O o o O O O t O 0 0 .................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Relocatable 
copy of 
original block 

Figure 3-10 HandToHand 

After 

. .................. . 
0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . .................. . . . . . . . . . . . . . . . . . . . . . 
Master Pointer .................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 

example, if thisHandle is a handle to the block to be copied, the 
statements 

thatHandle := thisHandle; 
resultCode := HandToHand(thatHandle) 

make thatHandle a handle to the fresh copy. 

Notice that .HandToHand, as well _as the other routines discussed in 
this section, retums its· result code as a function result rather than 
through the MemError:Junction. 

PtrToHand and PtrToXHand [3.2.6] both copy an existing non
relocatable block to a brand-new relocatable one. You can copy an 
entire block or just part of one; both routines accept a byteCount 
parameter that tells how many b.ytes of the original block to copy. 
(However, the portion you copy must always start at the beginning 
of the original block. Notice also that you can make a partial copy 
of a nonrelocatable block only; a relocatable block must be copied 



fromPtr 

82 Thanks for the Me mory 

result := PtrToHand (fromPtr, toHandle, byteCount) 
Before 

. ..... ..... ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... . ..... . .... .... . . .. . ........... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

...... . . . .......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . ............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . . . .......... 

toH<tndl~ 

fromPtr 

I byteCount s tarts 
from beginning 
of original block 

Relocatable copy 
of(byteCount bytes 
ofl original block 

Figure 3-11 PtrToHand 

After 

. ................. . . . . . . . . . . . . . . . . . . . . . . . ................. . . . .. ............. ... . . . . . . . . . . . . . . . . . . . . . . ....... . . . .... . . . . . . .. . ....... . ....... . . .. . .. . ......... ... . . . . . . . . . . . . . . . . . . . . . 

.. .. ........... ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . ' ......... . . 

in its entirety, using HandToHand.) PtrToHand creates a new master 
pointer to the copy and returns a pointer to it (a handle) through 
a variable parameter (Figure 3-11), while PtrToXHand (X for "existing") 
sets an existing master pointer to point to the copy (Figure 3-12). In 
the case of PtrToXHand, the previous contents of the master pointer 
are lost; normally you'll want to give it an empty handle (a pointer 
to a NIL master pointer) to be "stuffed" with the address of the 
newly created copy. 

HandAndHand and PtrAndHand [3.2.7) are used to combine existing 
blocks by appending a copy of one block onto the end of another. 
The block you 're appending to is always relocatable, and is length
ened to include the appended information. You can append a 
copy of either a relocatable block (HandAndHand, Figure 3-13) or all or 
part of a nonrelocatable block (PtrAndHand, Figure 3-14); in either 
case, the original block being copied remains intact. 

The most general copying utility of all is BlockMove (3.2.6), 
which just copies "raw" bytes between memory locations. Watch 
your step-this is a dangerous operation! It doesn 't check for 
errors, just blindly copies the bytes. The source and destination 
pointers you give it aren't restricted to the heap, but can lie 



83 Copying and Combining Blocks 

result:= PtrToXHand (fromPtr, toHandle, byteCount) 
Before . After 

fromPtr fromPtr 

I 
toHandl~ 

'-----tN Exlstl ng Master Pointer (NIL) 

Block to be 
appended to 

after-Handle 

Block to 
be appended 

.................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......... .. 

Relocatable copy 
of(byteCount bytes 
of) original block 

Figure 3-12 PtrToXHand 

..... .................. ~~~~~~ ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

result := HandAndHand (appendHandle, afterHandle) 
Before 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

... ... .... .......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.... .... . . ....... . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Combined block 
(wiJI be relocated 
if it won't fit here) 

after-Handle 

Figure 3-13 HandAndHand 

After 

........ ..... .... . . . . .... . ..... . ... .... . . .................. . . ........... ... .... . . .... .. ............ . . .......... . .. . . ... . . ... . .............. . . .................. . 

. .................. . .................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



84 Thanks for the Memory 

result := PtrAndHand (appendHandle, afterHandle, byteCount) 
Before 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
After 

.................... . . . . . . . . . . . . . . . . . . . . . ..... .. .... . ...... . . ........... . ...... . 
...__ ____ Master Pointer ...__ ____ Master Pointer 

Combined block 
Block to be --wn+m 
appended to 

(will be relocated-w;.;..;.;..;..;.;;.ri 
if it won't fit here) 

.ippendPtr 

Purging Blocks 

.. .. ............... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

..... . .. ... .. ... .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... . . ........... . ......... ... .... . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Copy of (byte
Count bytes of) 
block to be --iirriTriTTI 

d d ......................... "".""·""·""·""·""·""· .. ·"'! .... "'! .... "'!."'!II . 
appen e : . : . : . :·:. :·: ·:.:. :·: . :. :·:. :· :·:.:.:.: . . .............. .. . ' . 
ilppendPtr : ·: · : · : ·: · : · : · : · : · : · : · : · : · : · : · : · : · : · : · : · 

I 
byteCount starts 
from beginning of 
block to be 
appended 

. . .... .. . .......... . 

Figure 3-14 PtrAndHand 

anywhere in memory. Give it the wrong parameters and it will 
cheerfully reduce your program to a pile of rubble. 

If the Toolbox can't find room for a requested block even after 
compacting the entire heap, its next step is to try expanding the 
size of the heap itself. From its initial size of GK bytes, the h eap 
can grow in increments of lK at a time, but only up to a certain 
limit. Recall that the heap and the stack grow toward each other 
from opposite ends of the same area in memory (Figure 3-4l. The 
Toolbox imposes a limit on the heap's expansion to prevent it 
from colliding with the stack. This application heap limit is initially 
set to allow a maximum stack depth of BK bytes, but you can adjust 
it to your program's needs with the Toolbox routine SetAppllimit 
[3.3.4]. GetAppllimit [3.3.4] tells you the current setting of the applica
tion heap limit; StackSpace [3.3.4] tells how much more space is 
available for the stack to grow before colliding with the heap. 



85 Purging Blocks 

.................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
e e e e • e e e e It e e e e et e e e .................... . . . . . . . . . . . . . . . . . . . . 

.. Mester Pointer D .................. . . . . . . . . . . . . . . . . . . . . 
e e e I e e e e e e e e e e e e e # e e .·.·.·.·.· ·.·.· ... ·.·.·.· ·.·.·.·.· .. 

[ purgeHandle] 

.................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................... . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' .. . . . . . . . . . . . . . . . . . . . . 
t 0. t t I e. t t t t t. t It t t t .................... . . . . . . . . . . . . . . . . . . . . .................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................... 

l _____ .. _ Master Po1 nter (NIL) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . . 
t t t"' t • t t t t t t t "'t I e et t .................... 
t t t t 0 It t I I It t. t It. t t .................... . . . . . . . . . . . . .. . . . . . . .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' ......... . . . . . . . . . . . . . . . . . . . . . 

t t t ft t t It If t t t. t t t t t .................... 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

I"' 

f purpHandle j . . . . . . . . . . . . 
l.__ ___ _, .... · ~a~t·e~ ~~1 ~t~~ . . . . . . . . . . t-

. ·. ·. · ... ·.· .. · ... ·.·.·.·.·.·.·.·.· .................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Before 

Block purged 

Block reallocated 
(data must be 
reconstructed) 

Figure 3-15 Purging and reallocating a block 



86 Thanks for the Memoiy 

If the needed space can't be created by expanding the heap, 
the Toolbox will try to make room by purging existing blocks from 
the heap. Only relocatable blocks can be purged; the block is 
simply removed from the heap and its space is made available for 
reallocation. The block's master pointer remains allocated, but is 
set to NIL to show that the block no longer exists in the heap. All 
former handles to the block continue to point to this same master 
pointer, but since the master pointer now points nowhere, the 
handles are considered empty. 

The Toolbox will never purge a block from the heap without 
your permission. A block is always unpurgeable when it's first 
created; you can make it purgeable with the Toolbox routine 
HPurge, and unpurgeable again with HNoPurge (3.2.4]. Before attempt
ing to access a purgeable block, you have to test its handle to 
see if it's been purged. If the handle is empty (that is, ifit points to 
a NIL master pointer), you have to reallocate the block with the 
Toolbox routine ReallocHandle (3.3.3] before you can access it. This 
allocates fresh space for the block and updates the master pointer 
to point to it (see Figure 3-15). However, it does nothing to restore 
the information the block contained before it was purged; you have 
to do that for yourself after reallocating the block. 

Since all relocatable blocks are unpurgeable · at first, you needn't 
wony about checking for an empty handle and reallocating the 
block unless you~Ve:explicitly made the block purgeable. 

The Toolbox. routine· EniptyHandle [3.3.3] unconditionally purges a 
block from the. heap, even if the block is marlced unpurgeable. By 
calling this routine, you. ta:ci~y ''give permission° for the block to 
be Jil:lrg~ci; the Toolbo"~wm:,assume: you know what you'~ doing 
and will obediently purge the block_ whether it's purgeable or not. 
(The block must be unlocked; however.) 



REFERENCE 

3.1 Memory Basics 

3.1.1 Elementary Data Types 

type 
Byte = 0.~·.255; 
SignedByte = -128.J27:. 

Ptr 
Handle 

Size 

= "SignedByte; 
="Ptn 

= LONGfNT; 

{Any byte in memory} 
{Any byte in memory} 

{General pointer} 
{General handle} 

{Size of a heap block in bytes} 

~ijiii1~·==1i--------N-o_•_es--------------------------------------
1. Both Byte and SignedByte designate an arbitrruy byte in memmy, as 

either an unsigned or a signed 8-bit integer. 

2. Ptr represents a general, untyped pointer to any byte in memoiy; Handle 
represents an untyped handle, a pointer to a master pointer. 

3. Size is a long integer representing the size of a heap block in bytes. 

87 



88 Memory 

3.1.2 Error Reporting 

~11111~1 ...... _____ n_e_fi_n_iu-·o_n_s ______ ~--------~--------------
type 

OSErr = INTEGERi 

const 
No Err 
MemFullErr 
NilHandleErr 
MemWZErr 
MemPurErr 
MemlockedErr 

function MemError 
: OSErr; 

= o; 
= -108i 
= -109; 
= -111; 
= -112: 
= -117; 

{Operating System result (error) code} 

{No error; all is well}. 
{No room; heap is full} 
{Illegal operation on empty handle} 
{Illegal operation on free block} 
{Hie.gal operation on loc.ked blo~k} 
{Attempt to move iocked block}· 

{Result.code of last memory operation} 

~~iiiR~ti--------N_o_t_e_s ______________________ __,_, __________ ___ 

1. OSErr represents an integer result code returned by an Operating 
System routine (such as those dealing with memory allocation). 

2. The MemError function returns the result code posted by the last call 
to a memory allocation routine. 

3. A result code of NoErr means that all is well; no eITOr has occmred. 

4. MemFullErr means that not enough heap space is available to satisfy an 
allocation request. 

5. NilHandleErr means that a requested operation can't be performed 
because the specified handle is empty (points to a NIL master pointer). 

6. MemWZErr means that a memory allocation routine that operates on 
already-allocated blocks was given a free block instead. (The WZ in 
MemWZErr stands for WhichZone, a low-level routine that tells which heap 
zone a given block is in. Although WhichZone itself is not covered in 
this book, it's called by many of the routines that are.) 

7. MemPurErr means that an attempt was made to purge a locked block. 

8. MemlockedErr means that an attempt was made to move a locked block 
to a new location within the heap. 



89 [3.1.3] Machine Configuration 

9. The MemError function isn't available in assembly language. On return 
from most memory allocation routines, the result code is in the lower 
16 bits of register DO and the processor's condition codes are set 
accordingly. 

IOI Assembly :Language Information 
-I~..,..._ _____ _ 

Assembly-language con~;tapts: 

Name 

No Err 
MemFullErr 
NilHandleErr 
MemWZErr 
MemPurErr 
MemLockedErr 

Value 

·o· 
-108 
-109 
·-t11 
-112 
-.117 

Meaning 

No error; all is well 
No room; heap is full 
megaloperation on empty handle 
megaf operation on free block 
megaI operation on locked block 
Attempt to move locked block 

3.1.3 Machine Configuration 

~1111~-------o-e_fini __ n_·o~ns-------------------------------
procedure Environs 

(var romVersion 1 INTEGER; 
var mach.ineType :INTEG.ER.l; 

function TopMem 
: Ptr; 

const 
MacXLMachine = O; 
MacMachine = 1; 

{Versi.on number of installed ROM} 
{Type; of machine} 

{Pointer to end of memory} 

{Macintosh XL (Lisa) l 
{Skinny Mac, Fat Mac, or Mac Plus} 

~~iiiiR~.._ _______ N_o_te_s ____________________________________ __ 

1. Environs returns information about the machine on which a program 
is being run. 

2. The variable parameter romVersion returns the version number of the 
ROM code installed in the machine. Unmodified Skinny and Fat 



90 Memory 

Macs have ROM version $69 (decimal 105); the initial Macintosh Plus 
ROM is version $75 (decimal 117). 

3. Features identified in these reference notes as "available only on the 
Macintosh Plus" should be used only on machines with ROM version 
$75 or greater. 

4. The machineType parameter returns an integer code identifying the 
type of machine the program is running on: 0 for a Macintosh XL (a 
Lisa computer running under the MacWorks emulator software) or 1 
for a true Macintosh. 

G. Machine codes and ROM versions for the Macintosh SE and Macin
tosh II are given in Volume Four. 

6. The ROM version returned for a Macintosh XL is that of the ROM 
image installed by the MacWorks emulator at system startup. 

7. T opMem returns a pointer to the first address beyond the end of 
physical RAM memory (not the last address actually existing in 
memory). For example, in a 1-megabyte Macintosh Plus, whose last 
byte of physical memory is at address $FFFFF, TopMem returns a 
pointer to address $100000. 

8. These routines are part of the Pascal Toolbox interface, not part of 
the Toolbox itself. They don't reside in ROM and can't be called from 
assembly language via the trap mechanism. 

9. In assembly language, the global variable MemTop holds the address 
one byte beyond the end of physical RAM. The other system globals 
listed below hold the boundary addresses of various important areas 
in memory. 

10. To find the ROM version and machine type in assembly language, 
look at the memory word beginning eight bytes past the beginning 
of ROM (that is, at an address 8 greater than that contained in the 
system global ROMBase). On a true Macintosh, this word will contain 
the value $00vv, where vv is the version number of the ROM; on a 
Macintosh XL, it will contain $vvFF. See Volume Four for information 
on the Macintosh SE and Macintosh II. 



91 (3.2.1] Allocating Blocks 

IOI Assembly µm~ge Information --;n....-------
Assembly-language;global variables: 

3.2 Heap Allocation 

Name 

SysZone 
ApplZone 
HeapEnd 
CurStackBase 
CurrentA5 
BufPtr 
ScrnBase 
Sound Base 
MemTop 
ROM Base 

Adclress 

$2A6 
$2AA 
$11~ 
$908·, 
$904: 
$10C 
$824 
$266 
·$~08. .. 
sMe: 

Meaning 

Pointer to start of system heap 
Pointer to start of applicatio'(l heap 
.P.ointer to end of application heap 
Pointer to base of stack 
Base pointer for application globals 
Poin~er to :eI'lc:l of application global space 
Pointer to· start of screen·. buffer · 
Pointer to start of sound buJfer 
Pointer to end. of ph,ysical memoi:y 
Pointer to start of ROM · 

3.2.1 Allocating Blocks 

I I Definitions 
-I~.____ ____ ___ 

function NewHandle 
(bh>ckSize: : Size) · {Size of needed block in bytes} 

: Handle; {Handle to new relocatable block} 

function; NewPtr 
(blo.ckSize : Size) {Size of needed block io bytes} 

: Ptr; {Pointer to new nonrelocatabl"e block} 

function Newi:111ptyHandle 
: Handle; 

function Recov.erHalldl.e 
(masterPtr : Ptr) 

: Handle;. 

{New empty handle} 

{Master pointer to relocatable block} 
{Handle to block} 

~~ii3R===11--------N_o_t_e_s __________________________________ ___ 

1. NewHandle allocates a new relocatable block and returns a handle to it; 
NewPtr allocates a new nonrelocatable block and returns a pointer to it. 



92 Memory 

2. blockSize gives the size of the needed block in bytes. 

3. The block allocated by NewHandle is initially unlocked and unpurgeable. 

4. If necessary, both NewHandle and NewPtr may compact the heap, expand 
it, or purge blocks from it. 

5. Both routines post the eITor code MemFullErr [3.1.2] if a block of the 
requested size can't be allocated. 

6. In case of an eITOr, a NIL handle or pointer is returned. 

7. NewEmptyHandle allocates a new master pointer, sets it to NIL, and returns 
a pointer to it (an empty handle). 

8. RecoverHandle reconstructs a relocatable block's handle from a copy of 
its master pointer. 

IOI Assembly .Languag~~ Informanon -llLll..,__ _____ _ 
Trap '1}acros~ 
(Pascall 
Routfue name 

NewHandle 
NewPtr 
NewEmptyHandle 
RecoverHandle 

Register usage: 
Routine 

NewHandle 

NewEmptyHandle 

RecoverHandle 

(Assembly) 
Trap macro 

_NewHandle 
_NewPtr 
_NewEmptyHandle 
-RecoverHandle 

Register 

.00.L (iril 
Ao.L (out) 
00.W (out) 

00.L ,(in) 
AO.L (out) 
DO.W (out) 

AO.L (out) 
00.W (out) 

AO.L.(in) 
AO,L (out) 
DO.L (out) 

Trap word 

$A122 
$A11E 
$A166 
$A128 

Contents 

blockSize 
function result 
result code 

blockSize 
function result 
result code 

function result 
result coda 

masterPtr 
function result 
unchangeq 



93 (3.2.2] Releasing Blocks 

3.2.2 Releasing Blocks 

~1111~-------n-e_fi_n_iti-·o_n_s_· _______________________________ __ 

procedure DisposRaild le · 
(theHandle : Handle); 

pro1;e.d.ure Qisp·<>s.Ptr 
(the.Ptr : Ptr); 

{Handle to relocatable block to be d~allocated} 

{Pointer' to nonrelocatable block to be deallocated} 

~~iiiiR~1i-i------N-o_t_e_s __________________________________ ___ 

1. DisposHandle and DisposPtr deallocate a relocatable or nonrelocatable 
block, respectively. The space occupied by the block becomes avail
able for reuse. 

2. All handles or pointers to the deallocated block become invalid. Don't 
use them after deallocating the block. 

ldl Asse~ly LQpguage lnfonna1ion 
--1~----------

Trap macros:\ 
(Pascal) 
Routm~~e. 

Dispos.Handle 
DisposPtr 

Register usage: 
Routine 

DisposHandle 

DisposPtr 

(Assembly} 
'n'.a.p m~cro. 

_DisposHandle 
;_J)isposPtr 

Register 

AO.L (in) 
AO.L (out) 
DO.W tout) 

AU (in) 

AO.L (out) 
DO.W (out) 

Trap word 

$A023 
$A01F 

Contents 

theHandle 
o. 
result cod~ 

thePtr 
0 
result cod~ 



94 Memory 

3.2.3 Size of Blocks 

~~1._... ______ n_e_fini __ ·n_o_ns __________________________ --!-----

functlon GetHandleSize 
(theHandle : Handle) 

: Size; 

function GetPtrSize 
{thePtr : Ptr) 

: Size; 

procedure SetHandleSize 
(theHandle : Handle; 
newSize : Slze); 

procedure SetPtrSize 
(thePtr : Ptr; 
newSize : Size); 

{Handle to a relocatable block} 
{Size of block in bytes} 

{Pointer to a non relocatable bl.ock} 
{Size of block in bytes} · 

{Handle to a relocatable ·blo.ckl 
{New size of block in bytes}' 

{Pointerto a nonrelocatable block} 
{New size of block in bytes} 

~~it-+--· ~-N-otes ______ _ 

1. GetHandleSize and GetPtrSize return the size of a block in bytes. 

2. SetHandleSize and SetPtrSize change the size of a block to newSize bytes. 
The block may be either lengthened or shortened. 

3. If necessmy to lengthen a block, SetHandleSize and SetPtrSize may com
pact the heap, expand it, or purge blocks from it. 

4. If the room needed to lengthen a block can't be found, SetHandleSize 
and SetPtrSize post the error code MemFullErr (3.1.2]. 

5. GetHandleSize and SetHandleSize post the error code NilHandleErr (3.1.2] if 
the given handle is empty (points to a NIL master pointer). 

6. All four routines post the error code MemWZErr [3.1.2] if the specified 
block is free (not allocated). 

7. In case of an error, GetHandleSize and GetPtrSize return 0 as the block size. 

8. In assembly language, the condition codes on return from the 
_GetHandleSize and _GetPtrSize traps are not valid, since they reflect only 
the lower 16 bits of register DO and these routines return a result in 
the full 32-bit register (see table below). To test the status of DO after 
the trap, use your own TST.L instruction. 



95 (3.2.3) Size of Blocks 

lm=BI Assembly Language Information ---fl!:l....,__ _____ _ 
Trap macros: 

(Pascall 
Routine name 

GetHandleSize 
GetPtrSize 
SetHandleSize 
SetPtrSize 

Register usage: 

Routine 

GetHandleSize 

GetPtrSize 

SetHandleSize 

SetPtrSize 

(Assembly) 
Trap macro 

_GetHandleSize 
_GetPtrSize 
_SetHandleSize 
_SetPtrSize 

Register 

AO.L(in) 
DO.L (out) 

AO.L (in) 

DO.L (out) 

AO.L (in) 
DO.L (in) 
DO.W (out) 

AO.L (in) 
DO.L (in) 

DO.W (out) 

Trap word 

$A025 

$A021 
$A024 

$A020 

Contents 

theHandle 
if 2:: 0, function result 

if < 0, result code 

thePtr 
if 2:: 0, function result 

if< 0, result code 

theHandle 
new Size 
result code 

thePtr 
newSize 
result code 



~ 

96 Memory 

3.2.4 Properties of Blocks 

Definitions 

procedure Hlock 
(theHandle : Handle); {Handle to a relocatable block} 

procedure HUnlock 
(theHandle : Handle); {Handle to a relocatable block} 

procedure HPurge 
(the Handle : Handle); {Handle to a relocatable block} 

procedure HNoPurge 
(the Handle : Handle); [Handle to a relocatable block} 

procedure HSetRBit 
(theHandle : Handle); {Handle to a relocatable block} 

procedure HClrRBit 
(theHandle : Handle); {Handle to a relocatable block} 

function HGetState 
(theHandle : Handle) {Handle to a relocatable block} 

: SignedByte; {Current properties of block} 

procedure HSetState 
(theHandle : Handle; {Handle to a relocatable block} 
properties : SignedByte); {New properties of block} 

1. Hlock locks a relocatable block; HUnlock unlocks it. A locked block can 
neither be moved nor purged from the heat. 

2. HPurge makes a relocatable block purgeable; HNoPurge makes it unpurge
able. An unpurgeable block can 't be purged, but can be moved within 
the heap. 

3. On creation, a relocatable block is unlocked and unpurgeable. 

4. HSetRBit marks a relocatable block for special treatment as a resource; 
HClrRBit clears this property. Resources are discussed in Chapter 6. 

5. The lock, purge, and resource bits are all kept in the high-order byte 
of the block's master pointer. The assembly-language constants Lock, 



97 [3.2.4) Properties of Blocks 

Purge, and Resourc are bit numbers within this byte, for use with the 
BTST, BSET, BCLR, and BCHG instructions. 

6. HGetState returns the current state of a master pointer's flag bits; 
HSetState changes them. 

7. The definitions or locations of these flags may be subject to change 
in future versions of the Toolbox. It's safer to use the Toolbox routines 
described here than to manipulate the flags directly for yourself. 

8. Before using a master pointer in assembly language, the flag bits must 
be masked off. The assembly-language global variable Lo3Bytes holds a 
mask for extracting the actual memory address from the low-order 3 
bytes of the master pointer. 

9. All of these routines will post the error code NilHandleErr [3.1.2] if the 
given handle is empty (points to a NIL master pointer), or MemWZErr if 
the specified block is free (not allocated). 

IOI Assembly-Language Information --lu:ll...,_ __________ _ 
Trap macros: -
(Pascal) 
Routine name 

Hlock 
HUnlock 
HPurge 
HNoPurge 
HSetRPit 
HClrRBit 
HGetState 
HSetState 

(Assembly) 
TraP J;Ililcro 

Ji lock 
--HUnlo~k 

_HPurge 
_HNoPurge 
_HSetRBit 
_HClrRBit 
_HGetState 
JfSetState 

Trap word 

$A029 
$A02A 
$A049 
$A04A 
$A067 
$A068 
$A069 
$A06A 



98 Memoiy 

Register usage: 

Routine Regis ter Contents 

Hlock AO.L (in) theHandle 
00.W (out) result code 

HUnlock AO.L (in) the Handle 
00.W (out) result code 

HPurge AO.L (in) theHandle 
00.W (out) result code 

HNoPurge AO.L (in) theHandle 
00.W (out) result code 

HSetRBit AO.L (in) theHandle 
00.W (out) result code 

HClrRBit AO.L (in) the Handle 
00.W (out) result code 

HGetState AO.L (in) theHandle 
00.B (out) function result 

HSetState AO.L (in) theHandle 
00.B (in) properties 
00.W (out) result code 

Bit numbers in a master pointer's flag byte: 

Name Value 

Lock 7 
Purge 6 
Resourc 5 

Assembly-language global variable: 

Name Address 

Lo3Bytes $31A 

Meaning 

Bit number of lock bit 
Bit number of purge bit 
Bit number of resource bit 

Meaning 

Mask for extracting address 
from a master pointer 



99 (3.2.5) Block Location 

3.2.5 Block Location 

)•I Definitions 
-1 ----------

procedure ResrvMerT1 
(blockSize : Size); {Size of needed block in bytes} 

procedure MoveHHi 
(theHandlec : Handle); {Handle to a relocatable block} 

procedure MoreMasters; . 

~~iii~·===iti--------N-o_i_e_s __________________________________ __ 

1. ResrvMem reserves space for a block of a requested size as near as 
possible to the beginning of the heap, by moving existing blocks 
upward, expanding the heap, or purging blocks if necessary. 

2. ResrvMem doesn't actually allocate a block, just creates space for it 
near the beginning of the heap. The block must then be allocated 
explicitly with NewHandle or NewPtr [3.2.1]. 

3. Call ResrvMem before allocating any relocatable block that will be 
locked for long periods of time, to minimize interference with heap 
compaction. 

4. It isn't necessary to call ResrvMem for nonrelocatable blocks (or for 
resources with the Reslocked attribute [6.4.2]), since they're automati
cally allocated near the beginning of the heap. 

G. MoveHHi moves an existing relocatable block as near as possible to 
the end of the heap, moving other blocks downward if necessary to 
make room. 

6. Call MoveHHi before locking a block, to minimize interference with 
heap compaction. 

7. MoveHHi is available in assembly language, via the trap mechanism, 
only on the Macintosh Plus. On earlier models it isn't built into ROM, 
but is part of the Pascal interface unit OSlntf. 

8. MoreMasters allocates a new block of master pointers. 

9. MoreMasters doesn't allocate any relocatable blocks; just the master 
pointers that will later be used to point to them. The master pointers 
themselves are nonrelocatable. 



100 Memory 

10. Master pointers are nonnally allocated in blocks of 64 at a time; one 
such block is allocated for you automatically at program startup. 

11. To minimize heap fragmentation, it's generally a good idea to call 
MoreMasters at the very beginning of your program, as many times as 
necessary to preallocate all the master pointers you anticipate you'll 
need. This is particularly important in programs that make extensive 
use of code segments (see Chapter 7). It's better to waste a little heap 
space by preallocating too many master pointers than to fragment 
the heap by preallocating too few. 

12. Both ResrvMem and MoreMasters will post the error code MemFullErr [3.1.2] 
if a block of the needed size can't be allocated or reseIVed. 

13. MoveHHi will post the error code NilHandleErr [3.1.2] if the given handle 
is empty (points to a NIL master pointer), or MemlockedErr if the 
specified block is locked. 

IOI Assembly Language Information 
--11LJ..---------------ii--

Trap macros: 
(Pascal) 
Routine .name 

ResrvMem 
MoveHHi 
MoreMasters 

Register usage: 

Routine 

ResrvMem 

MoveHHi 

MoreMasters 

(AssernbM 
Trap macro 

_ResrvMem 
_MoveHHi 
_MoreMasters 

Register 

00.L (in) 

DO.W (out) 

AO,L (in) 

00.W (out) 

DO.W (out) 

Trap word 

$A040 
$AOs4, 
$A036 

Contents 

blockSize 
result code 

theHandle 
result code 

result code 



101 [3.2.6] Copying Blocks 

3.2.6 Copying Blocks 

111·1· Definlti.ons 
--I ,---.· ~---------

function 

fpnctlo.n 

JunctlQn 

HandToHand 
, lv:ar thilHand~le:~'HandT~} · · lHandle to relocatable block to be copied.} 

; OSErr.: · · ·{Re·suU code} 

PttToHand 
· ·(frnrnPtr :· Ptr; 

var to.Handle: Han~le: 
'Q'yteCot:rnt . :-LONGl~t) 
: ,oserr: · 

PtrffoXHand 
(fromPtr· : Ptr; 
. toHandre : l:f~ndle; 
byteCpunt : LONGINT:l 

' - : OSErr; . 

.[PQJnter to nonre~ocatable block to be:cttpied J 
-.f~etu'r:ns handle to relocatable copy"} 
fNum'bet .of bytes to be copied} 
fR"eSIJlt C-Ode} 

O{f>olnt&rfo nonrelocatabre block to be copied} 
Jtiandle to be set to relocatable copyl 

.. .tNumbQr of byte~to> be copied} 
£Result codel , 

pro-cedure Blo.ckMove 
{from p,fr : Ptr; 
:to Ptr : ·Ptr; 
byteC<lunt : SJ~el; 

'£Pnlnter to .data~ to be copied} 
{Pointer.to destination location] 

· lNUqiber of bytes to be copied) 

~~iiiii1~·=::::1t--------N-0_1_e_s __________________________________ ___ 

1. HandToHand, PtrToHand, and PtrToXHand all copy an existing block. The 
result in each case is a relocatable block, newly allocated from the 
heap. 

2. HandToHand copies a relocatable block. On entry, theHandle designates 
the block to be copied; on exit, it returns a handle to the copy. 

3. PtrToHand and PtrToXHand both copy all or part of a nonrelocatable 
block, designated by the parameter fromPtr. 

4. The byteCount parameter tells how many bytes of the block to copy, 
and must not exceed the overall size of the block. The portion to be 
copied always starts at the beginning of the block. 

S. For PtrT a Hand, to Handle is a variable parameter that returns a handle 
to the copy. For PtrToXHand, it's an existing handle (a pointer to an 
existing master pointer), which will be set to point to the copy. 



~~I 

102 Memory 

6. All three routines may compact the heap, expand it, or purge blocks 
from it in order to make room for the copy. 

7. All three routines return the error code MemFullErr [3.1.2] if there isn't 
enough room in the heap for the copy. 

8. The result code is returned as the function result; it is not posted 
in the usual way and is not available through MemError [3.1.2]. 

9. BlockMove copies byteCount bytes of "raw" data between two arbitrruy 
locations in mem01y, designated by the pointers fromPtr and toPtr. 

10. BEWARE: BlockMove does no error checking of any kind. 

Assembly Language Information 

Trap macros: 
(Pascal) (Assembly)· 
Routine name Trap macro Trap word 

HandToHaild _HandToHand $A9E1 I 

PtrToHand _PtrToHand $A9E3 
PtrToXHand _PtrToXHand $A9E2 
Block Move _BlockMove $A02E 1 

Register usage: 

Routine Register Contents 

HandToHand AO.l (in) theHandle 
AO.L (out) theHandl& 
DO.W (out) result code 

PtrToHand AO.L (in) fromPtr 
00.L (in) byteCount 
AO.L (out) toHandle, 
00.W (out) result code 

PtrToXHand AO.L (in) fromPtr 
AU (in) to Handle 
DO.L (in) byteCount 
A1.L (out) toHandle 
00.W (out) result code 

BlockMove AO.L (in) fromPtr 
A1.l (in) toPtr 
DO.L (in) byteCount 
DO.W (out) result code 



103 (3.2.7] Combining Blocks 

3.2. 7 Combining Blocks 

function HandAndHand 
(appendHandle : Handle: 
afterHandle : Handle) 
: OSErr; 

function PtrAndHand 
(appendPtr : Ptr; 
afterHandle : Handle; 
byteCount : LONGINT) 
: OSErr; 

(Han~le to relocatable block to be appended} 
{Handle to relocatable block to append to} 
(Result code} 

{Pointer to non relocatable block to be appended} 
{Handle to relocatable block to append to} 
(Number of bytes to append} 
(Result code} 

~~liiM~t--------N-o_t_e_s ____________________________________ __ 
1. Both of these routines append a copy of one block to the end of 

another. 

2. The block appended to is always an existing relocatable block. 

3. For HandAndHand, the block to be appended is an existing relocatable 
block. For PtrAndHand, it's all or part of an existing nonrelocatable block; 
the byteCount parameter tells how many bytes to append, and must 
not exceed the overall size of the block. The portion to be copied 
always starts at the beginning of the block. 

4. Both routines may compact the heap, expand it, or purge blocks from 
it in order to allocate more space for the destination bl~k. 

5. Both routines return the error code MemfullErr [3.1.2] if there isn't 
enough room in the heap to lengthen the destination block. 

6. The result code is returned as the function result; it is not posted in 
the usual way and is not available through MemError [3.1.2]. 



104 Memory 

IOI Assembly Language Informa:tion ---1li:I..,__ ________ _____ 
Trap macros: 
(Pascal) 

Routine name 

HandAndHand 
PtrAndHand 

Register usage: 

Routine 

HandAndHand 

PtrAndHand 

(A.Ssembly) 
Trap macro 

4:1andAl'ldHand 
_PtrAndHand 

.AO'.L (in) 

A1.L(in) 
AtL (out) 
oo~w (out) 

AO.L (in) 
Atl Cin.) 
DO.L (in) 

AU (Qut) 
DO~W (out); 

Trap word 

$A9,E41 
$A9EF 

Contents 

appendHandle 
afterHandle 
afterHandle 
result code 

append~r 
afterHan~le . 
byteCourit 
afterf1andie 
restµt.~de 

3.3 Heap Management 

3.3.1 Available Space 

function FreeMem 
: LONGINT; {Total .fret.) bytes in the heap} 

function MaxBlock 
: LONGINT; {Largestcontiguous block obtainable by compaction} 

procedure PurgeSpace 
(var totalBytes : LONGINT; {Total free bytes obtainable by purging} 
var contigBytes : LONGINT); {Largest contiguous- block obtainable by purging} 



105 [3.3.1) Available Space 

~~Miii====----------N-o_te_s ____________________________________ __ 

1. FreeMem returns the total number of free bytes in the heap. 

2. Because of heap fragmentation, it may not actually be possible to 
allocate a block this big. 

3. MaxBlock returns the size in bytes of the largest contiguous block that 
could be obtained by compacting the heap, without expanding it or 
purging any blocks. 

4. PurgeSpace returns the total number of free bytes and the size of the 
largest contiguous block that could be obtained by purging and 
compacting the heap. 

5. The values returned for totalBytes and contigBytes include the amount 
of existing free space before purging or compaction. 

6. These operations do not actually purge or compact the heap. 

lDI Assembly LaJ.t~ge .Jnff)rma~.,.n 
---lllLIJ-.-----------

Trap macros: 
(Pascal) 

Routine name 

FreeMem 
MaxBlock 
PurgeSpace 

Register usage: 

Routine 

FreeMem 

MaxBlock 

PurgeSpace 

tAssembly) 
.. Trap ·macro 

...:FreeMem 
_MaxBlock 
. _Put~eSpace 

00,L (out) 

DD.L (out) 

:Ao.L (out) 
- Do.L (out) 

Trap word 

$A01C 
$A061 
$A162 

Contents 

function result 

function result 

contlgBytes 
total Bytes 



106 Memory 

3.3.2 Reclaiming Free Space 

function CompactMem 
(sizeNeeded : Size) 

: Size; 
{Size .of n·eeded block in bytes} 
{Size of largest free block after compaction}' 

procedure PurgeM~m 
(sizeNe.eded : Size); {Size of needed block in bytes} 

function MaxMem 
(var growBytes .: Size) {Returns.maximum bytes.by which heap can expand} 

: Si_ze; {Size. of largest free block in heap} 

~~iiiR.==1ii--------N-o_te_s __________________________________ __ 

1. CompactMem does a complete or partial compaction of the heap; PurgeMem 
purges all blocks that are relocatable, unlocked, and purgeable; MaxMem 
reclaims all available heap space by purging all purgeable blocks and 
compacting the entire heap. 

2. CompactMem and PurgeMem terminate when a free block of at least 
sizeNeeded bytes is found or created, or when the entire heap has been 
compacted or purged. The block is not actually allocated. 

3. CompactMem returns the size in bytes of the largest free block found or 
created during compaction. 

4. MaxMem returns the size in bytes of the largest available free block after 
purging and compacting the entire heap. 

5. The growBytes parameter returns the number of additional bytes by 
which the heap can expand. The heap is not actually expanded. 

6. If a free block of the specified size can't be found, PurgeMem will post 
the eITOr code MemfullErr [3.1.2]. 



107 [3.3.3] Purging Blocks 

IOI Assembly Language, Information 
--t&:ll-----.....__...._..~--

Trap macros: 

(Pascal), 
Routine na,me 

CompactMem 
PurgeMem 
MaxMem 

Register usage: 

Routine 

CompactMem 

PurgeMem 

MaxMem 

3.3.3 Purging Blocks 

(Assembly) 
Trap macro 

.CoinpactMem 
_PurgeMem 
_MaxMem 

R~gister 

00.L (in) 

DO.L (out) 

DO.L (in) 

.. 00.W (out) 

AO.L (out) 
,DO.L (out) 

Trap word 

$A04C 
$A04D 
$A11D 

Contents 

sizeNeeded 
function result 

sizeNeeded 
result cpde 

growBytes 
function result 

~11111~-------D-efiniti __ ·_·o_n_s ____________________________ __ 

procedure EmptyHandle 
(theHandle : Handle); 

procedure ReallocHandle 
(theHandle : Handle; 
sizeNeeded : Size); 

{Handle to relocatable block to be purged} 

{Empty handle to be reallocated} 
{Size of block to be allocated in bytes} 

~~iii~·=:j.,.._ ______ N __ ot_e_s ____________________________________ __ 

1. EmptyHandle purges a relocatable block from the heap. 

2. The purged block's master pointe~ remains allocated, but is set to NIL. 
All existing handles to the block become empty. 



108 Memory 

3. The designated block is purged even if it's marked as unpurgeable; 
however, a locked block will not be purged. 

4. ReallocHandle reallocates space for a purged block; the sizeNeeded 
parameter tells how many bytes to allocate. 

5. The master pointer pointed to by theHandle is updated to point to the 
reallocated block. All existing handles to the block become valid again. 

6. If theHandle already points to an existing block, that block is deallocated 
before updating the handle. 

7. ReallocHandle may compact the heap, expand it, or purge blocks from 
it in order to make room for the reallocated block. If the needed space 
can't be found, it will post the eITOr code MemFullErr [3.1.2). 

8. Both EmptyHandle and ReallocHandle will post the error code MemPurErr or 
MemWZErr [3.1.2] if they're given the handle of a locked block or one 
that's free (unallocated). 

lDI Assembly Language Information 
-11D----------io--

Trap macros: 

(Pascal) 
Routine name 

EmptyHandle 
RealfocHandle 

Register usage: 

Routine 

EmptyHandle 

ReallocHandle 

. (Assembly) 
'Frap II1acro 

-Emptyftandle 
_ReallocHandle 

Register 

AO.L (in) 

DO;W (out) 

AO.L (in) 
DO.L (in) 

AO.L (out) 

DO.W (out) 

Trap word 

$A02B 
$A027 

Contents 

theHandle 
result code 

theHandle 
sizeNeeded 
theHandle, or O if b~<>ck 

not reallocated 
result code 



109 (3.3.4] Heap Expansion 

3.3.4 Heap Expansion 

. ,.. 1· uefinidon.s 
~ ,. ........... _ ............... _..,.. __ ~_'!"',,. ~-.,...~---~----~.-....-----------------

proce~gre s·etAppll:;imit 
Ol~Vf;M:J11iJ :'. 'PttJ;'.· {Pointer to new appHcaJion heap Jimitl 

l11n~t1on · 'GetAri~l'lliimn 
: PtM 

:11rocedure= ·Max~ppJ4P.oer, 

I.unction Stack$p3:c~ 
: tO.N~NT;. 

{Current application heap limit} 

{Amount stack can growl 

~~iiii~==t1--------N-o_i_e_s __________________________________ __ 

1. SetAppllimit sets the application heap limit, which controls how far the 
application heap can be expanded; GetAppllimit returns the cuirent 
heap limit. 

2. newlimit is a limit pointer to an address one byte beyond the maximum 
to which the heap can be expanded. All allocatable space beyond this 
address is reseived for the stack. 

3. Notice that newlimit is a pointer to an address in memory; it is not a 
number of bytes representing the maximum size of the heap. 

4. The application heap limit is initially set to allow BK bytes for the 
stack. 

G. GetAppllimit is part of the Pascal Toolbox interface, not part of the 
Toolbox itself. It doesn't reside in ROM and can't be called from 
assembly language via the trap mechanism. Instead, the application 
heap limit is accessible directly in the assembly-language global vari
able Appllimit. 

6. MaxApplZone expands the application heap to its maximum permissible 
size, as defined by the cuirent application heap limit. 

7. MaxApplZone is available in assembly language, via the trap mechanism, 
only on the Macintosh Plus. On earlier models it isn't built into ROM, 
but is part of the Pascal interlace unit OSlntf. 

8. StackSpace returns the number of additional bytes by which the stack 
can grow before colliding with the application heap limit. 



110 Memory 

Assembly Language Informanon 

Trap macros: 
~~11---------. 

(Pascall (Assembly) 
Routine name Trap macro Trap word 

SetAppllimit _SetAppllimit $A02D 
MaxApplZone _MaxApplZone $A063 
StackSpace _StackSpace $A165 

Register usage: 

Routine Register Contents 

SetAppllimit AO.L (in) newlimit 
00.W (out) result code 

MaxApplZone 00.W (out) result code 

StackSpace 00.L (out) function result 

Assembly-language global variable: 

Name Address Meaning 

Appl Limit $130 Application heap limit 



CHAPTER ..... ~~~~ ..................................... ... --- 4 --~~~~ ....................................... .. 
Any Port in a Storm 

At the heart of the Macintosh user interface lies a remarkably 
fast and versatile set of graphics routines called QuickDraw. 
Everything you see on the Macintosh screen-text, pictures, win
dows, menus-is put there by QuickDraw. When you call a Toolbox 
routine, say, to draw a window at a certain location on the screen, 
the Toolbox in tum calls QuickDraw to do the actual drawing. 
When the Toolbox text-handling routines need to display text in a 
window, they use QuickDraw to draw the characters. The basic 
principles of QuickDraw are fundamental to the way the rest of the 
Toolbox works. 

Your program can also call QuickDraw directly. For instance, 
after the Toolbox has drawn a window's frame for you, you use 
QuickDraw to fill in the window's contents. Although QuickDraw 
is mainly for drawing on the screen, you can also use it for other 
purposes, such as printing on a dot-matrix printer or preparing 
animation frames off-screen and then transfening them to the 
screen all at once. In this chapter we'll discuss the underlying 
principles and concepts behind QuickDraw. In Chapter 5 we'll 
learn how to use it for actual drawing on the screen. 

111 



112 Any Port in a Storm 

Before attempting any QuickDraw operation, you first have to call 
lnitGraf (4.3.1] to initialize QuickDraw's global variables and internal 
data structures. As we mentioned in the last chapter, QuickDraw 
locates its globals by means of a pointer at address O(AS) in the 
application parameters area of the program's "AS world:' When 
you initialize QuickDraw you supply this pointer as a parameter; 
lnitGraf stores it at address O(A5), where the rest of the QuickDraw 
routines expect to find it. 

Figure 4-1 shows how QuickDraw's global variables are ar
ranged in memory. The pointer at O(AS) point's to the first of the 
QuickDraw globals, ThePort (4.3.1]. Recall, though, that global vari
ables are always allocated in the reverse of the order they're 
declared. So this "first" global is physically positioned last in 
memory, with all the other globals located at negative ofl:sets from 
the pointer. In Pascal, the space for the QuickDraw globals is 
automatically reseived in your program's application globals area, 
and all your own references to the variables are directed to the 
corresponding addresses in this area. To make sure everything 
works right, you should always pass a pointer to ThePort as the 
parameter to lnitGraf: 

lnitGraf (@ThePort) 

In assembly language yoµ pan technically place the QuickDraw 
globals anywhere you like in :Qtetno:ry, .provided that you reseive 
enoµgh space. for. ,them. ll'he .nulllber, of pytes you _need is d~fined 
in tb.e assembly-language interface as a constant named GrafSize 
[4.3.tJ~) The nmmal 1pracfice is to handle the QuickDraw globals the 
saipe way fu.ey're ~11te4~ .P~scal: that is, to include them as part, 
of the program's C)Wll ·global v~les and place· them m the 
application global space, lilSih Figtire 4-1. 

In any case, si:nce tpe ·gloQa}s·;are loctlt¢d Wi~ a\ ~imple pointer 
instead of a handle,_ yould. better make sure they're nonrelocatabie .. 
The pointer you pass to lnitGraf must be ·the address of the last 
4 bytesiI1 this, spaq(!:, whichwill hold.the variable ThePort. Tben make 
sure you direct your OWnreferences to the QuickDraw glob8'SiitO the 
proper offsets relative to thU; same_pointer. · 



Register AS 

113 Initializing QuickDraw 

Low memory addresses 

......................... 
• e a a a a • a a a • a a a I • • I I a a a a e a a 

e • a a a a a I a a a a I a • I a a I I I e a a a a a 
I a a a a a a • a • • 9 a • I I a a I I a a a • a a 

a I a a a a a I e a a a • e ••• a • a e a a a • a a 

........................... . . . . . . . . . . . . . . . . . . . . . . . . . . •·.· .·.·.·.· .·.·.·.·.·. ·.· .·.· .·. ·.·. ·.·.·.·.·.· ... ·.·• •·.·.·.·.·.·.·.·.·.·.·. ·.·.·.·.· .·.· ... ·.·. ·. ·.· ... · .·• •·.· ....... · ... ·.· .· .· ... ·.·.·.·. · ... ·. ·.·. ·.·. · ... ·.·• ........................... 
a • e a a a e • • a a e • I a • I a a I a • a a I a •.. ·.·. ·.·.·.· .·.·.·.·. ·.·.·.·.·.·.· ... ·.·.·.·. ·.· .· ... •···· ·.·.· .· .·.·.·.·.·. ·.· .·.· .·. · ... · ... · ....... ·. ·.· . . ·.·.· .·. ·.· ... ·.·.· ..... ·.· .· .· .· ..... ·. · ........... · . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
a I I I a a a e a a a • e • a e e a e e e a a a I e 

a I a e a I e a e e a a e a a a 9 a a e a e e e I a 9 ........................ 
-------l .. Pointer to QuickDraw globals 

........................ . . . . . . . . . . . . . . . . . . . . . . . . . . . 
e e e a a e e e e a 9 ' e I e I e a I e I I a I e I 

e e e a a a a e e a a e I I • a e a • a • • a a a e a 

High memory addresses 

Figure 4-1 QuickDraw globals 

Application 
globals 

Application 
parameters 



114 Any Port in a Storm 

Bits, Pixels, and Images 

QuickDraw manipulates graphical images made up of white and 
black dots called pi;<els (short for "picture elements"). The pixels 
are arranged in a two-dimensional array of rows and columns to 
form the image, as shown in Figure 4-2. When displayed on the 
Macintosh screen, each pixel appears as a square, white or black 
dot approximately 1/72 of an inch on each side. 

Internally, a graphical image is stored in the computer's 
memory as a collection of bits called a bit image. Each bit 
represents one pixel of the image: 0 for a white pixel, 1 for a black 
one. Notice that bits and pixels aren't the same thing. A pixel is 
an element of a graphical image; a bit is its internal representation 
in the computer's memory. In casual reference the distinction is 
often blurred, however, and we speak loosely of drawing bits on 
the screen or setting pixels in memory. 

To work with a bit image in Pascal, you group the bits into 
16-bit memory words. You can then treat each word as an integer 
and define the bit image as an array of integers. For example, the 
bit image in Figure 4-2, which consists of 10 rows of 16 bits each, 

16 bits = Z bytes = 1 word 

10 rows 

Figure 4-2 A graphical image 



115 Bits, Pixels, and Images 

might be declared as 

var 
anlmage : array [1 .. 10] of INTEGER; 

with each element of the array representing one row of the image. 
This image conveniently happens to be exactly 16 pixels wide, 

but of course this won't always be the case. When represented in 
bits, however, each row of an image must consist of some whole 
number of 16-bit words. If the image's width is not a multiple of 
16 pixels, there will be some unused bits at the end of each row. 
These extra bits are just "padding" added to fill out the row to a 
whole number of words. For example, the image shown in Figure 
4-3 is 18 pixels wide by 12 high. To represent it in bits, you have 
to allow two full words (32 bits) for each row 

var 
otherlmage : array (1..12, 1..2) of INTEGER; 

leaving 14 bits unused at the end of the row. 
The number of bytes (not words or bits) in each row is called 

the image's row width. Since each row must be a whole number 
of words and a word is 2 bytes, the row width is always an even 
number. For the image in Figure 4-2, the row width is 2 bytes; in 
Figure 4-3, it's 4 bytes. 

The most important bit image of all is the screen image, which 
defines what the user sees displayed on the Macintosh screen. 
The screen is 512 pixels wide by 342 high, a total of 175,104 pixels. 
Its internal representation, the screen image, is equivalent to an 
array of type 

array [1 .. 342, 1 .. 32] of INTEGER 

-that is, it consists of 342 rows of 32 words (512 bits) each. 
The screen image occupies 175,104 bits (21,888 bytes, or 10,944 

words) at a certain fixed block of locations in the computer's 
memocy. This special area of memocy is the screen buffer, which 
we've already mentioned in our discussion of memocy organiza
tion in Chapter 3. The Macintosh's video display circuitry 
automatically "paints" the contents of the screen buffer onto the 
screen 60 times each second. When you ask QuickDraw to draw 



116 Any Port in a Stonn 

32 bits = 4 bytes = 2 words 

Image is 
18 bits wide 

Figure 4-3 Bit image with unused bits 

14 bits 
unused in 
each row 

12 rows 

something on the screen, it does so by storing the appropriate bits 
into the screen buffer in memory. 

The screen dimensions given above, and used throughout thi~ book, 
apply equally to the 128K Skinny· Mac,. the 512K Fat Mac, arid the 
1-megabyteJorlarger) Macintosh,Plus~ The MacintoshJCL (Lisa').has a 
larger screen: 720 pixels 'by 364, totaling 262,080 bits (32,760 :bytes, 
or 16,380· words). The new large-screen displays have more 'pixels 
yet, and future models will undoubtedly have still different screen 
sizes. 

In principle, you can store bits directly into a bit image by 
writing them as hexadecimal constants and assigning them to 
elements of the array. For instance, to set row 6 of anlmage 
(declared earlier) to alternating black and white pixels, you could 
write 

anlmage[6] := $AAAA 



117 Coordinates, Points, and Rectangles 

(since the hexadecimal digit $A is equivalent to binary 1010). 
However, storing directly into individual words is not the recom
mended way of drawing in a bit image. It's generally safer and 
more convenient to use QuickDraw's specialized drawing 
routines-after all, drawing into bit images is what QuickDraw is 
for! 

If you must store a specific sequence of bits into a bit image, 
the easiest way is to use the utility procedure StuffHex [2.2.4]. For 
example, to set anlmage to the image shown in Figure 4-2, you 
could write 

StuffHex (@anlmage, CONCAT('01EO', 
'0738', 
'1COC', 
'70C6', 
'C1E3', 
'C1E3', 
'70C6', 
'1COC', 
'0738', 
'01EO'}} 

(Here, since a string constant isn't allowed to run across a line 
break, we've split the string into pieces and joined them together 
with the built-in Pascal function CONCAT.) 

Coordinates, Points, and Rectangles 

Since a bit image may have to contain some unused bits at the 
end of each row to fill out a whole number of 16-bit words, you 
have to tell QuickDraw how many bits of each row really "count" 
and how many are just padding. You do this by specifying a 
boundary rectangle for the bit image, as shown in Figure 4-4. The 
width and height of the boundary rectangle define the dimensions 
of the actual image, in pixels. Bits in the bit image that lie beyond 
the right edge of the boundary rectangle are ignored, and it 
doesn't matter what they contain; the same goes for any extra 
rows below the rectangle's bottom edge. 

The boundary rectangle also imposes a system of coordinates 
on the bit image. QuickDraw measures coordinates on a grid of 
horizontal and vertical lines drawn between the pixels (not 



118 Any Port in a Storm 

midpoint 
topleft = 1125, -751 

~~ 
= 1134, -691 

/ 
Bounda.Iy rectangle 

t 
botRight = 1143, -631 

Figure 4-4 Bit image with boundary rectangle 

through them), as in the figure. The top-left comer of the boundaiy 
rectangle is always assumed to be positioned just outside the first 
pixel in the image. This top-left comer is called the origin of the 
boundaiy rectangle, and you can give it any integer coordinates 
you like; in the figure its coordinates are 125 horizontally and -75 
vertically. The coordinates of any other point on the grid are then 
determined relative to that point. 

Here are some important things to remember about coor
dinates in QuickDraw: 

• All coordinates are expressed as 16-bit integers, running from a mini
mum of-32768 to a maximum of+32767. 

• Horizontal coordinates increase from left to right, vertical coordinates 
from top to bottom. This matches the way English is written (whether 
on the Macintosh screen or on a printed page), but runs counter to 
the usual mathematical convention that vertical coordinates increase 
from bottom to top. 

• The coordinates on the grid enclose the pixels in the image, rather 
than coincide with them. In Figure 4-4, for example, the top left pixel 
in the bit image doesn't lie at coordinates 125 and -75, but rather 
between 125 and 126 horizontally and between -75 and -74 vertically. If 
you think of the coordinate grid as a sheet of graph paper, the pixels 
fall in the squares between the lines, not at the intersections. 

For designating positions on the coordinate grid, QuickDraw 
provides a fundamental data type named Point [4.1.1]. It's defined 



119 Coordinates, Points, and Rectangles 

as a Pascal variant record structure, so that you can treat the 
point's horizontal and vertical coordinates either as two separate 
fields of the record or as a single two-element aITay indexed by 
the scalar type VHSelect [4.1.1]. For example, if midpoint is a variable 
of type Point, you can refer to its horizontal coordinate as either 

midpoint.h 

or 

midpoint. vh[H] 

and its vertical coordinate as either 

midpoint.v 

or 

midpoint. vh[V] 

at your convenience. So to set midpoint to the coordinates shown 
for it in Figure 4-4, you can write either 

or 

with midpoint do 
begin 

h := 134; 
v := -69 

end 

with midpoint do 
begin 

vh[H] := 134; 
vh[V] := -69 

end 

or you can use the QuickDraw procedure SetPt [4.1.1]: 

SetPt (midpoint, 134, -69) 

Notice in the figure that midpoint denotes a point on the coordinate 
grid, not a pixel in the image. 



120 Any Port in a Stonn 

Notice carefuJly that •Pt)int "recprds. reverse jthe eustrittuuy" lija;tl).~ I 

m.atical c_o11.ventjon -~d: 'Phi.Ce -the vertieali -coordinate ~ :~, 
horizontal,. m Pascal thi,8 ~ltj~s np· di1feren.~, smce you ~ys
refer to .. the coordinates ·by fiame .(h or .v.)~ Jigt J#yoµ!re·pro~ 
in assembly Ianguag~, _you_ 1)8:v~ ,tp ·be carefµ1 toJme,~ th~~~@~ 
coordinate first. To furiher:'oqµfoupd the:.·p_er,ple~~P,:.0noti.ce.:-~t\Jt'6'e 
argume11ts to SetPt.- (as oppos-ed?to _the ;flelds-ilf:~- .. RcUot) •rj gi,V,en.cln ' 
the convenpo~al onier,. horiZQntal before vertlcalj\ren~t.COBJ,truters 
fun? -

A rectangle on the coordinate grid can be defined in either of 
two ways: as a pair of points specifying the top-left and bottom
right comers of the rectangle, or as four integers giving the top, 
left, bottom, and right coordinates separately. Again, QuickDraw 
uses a variant record structure, Rect (4.1.2], so you can define your 
rectangles in whichever way is convenient. If r is a variable of type 
Rect, all the expressions shown on each line below are equivalent: 

r.top 
r.left 
r.bottom 
r.right 

r.topleft.v 
r.topleft.h 
r.botRight.v 
r.botRight.h 

r. top left. vh[V] 
r.topleft. vh[H] 
r .botRight. vh[V] 
r. botRig ht. vh[H] 

To set r to the boundaiy rectangle shown in Figure 4-4, you can 
write 

with r do 
begin 

top := -75; 
left := 125; 
bottom := -63; 
right 143 

end 

or use the QuickDraw procedure SetRect [4.1.2]: 

SetRect (r, 125, -75, 143, -63) 



121 Calculations with Points and Rectangles 

Or, if origin and corner are points with coordinates (125, -75) and (143, 
-63), respectively, you can use the assignments 

with r do 
begin 

topleft := origin; 
botRight := corner 

end 

or the QuickDrawprocedure Pt2Rect (4.1.2]: 

Pt2Rect (origin, corner, r) 

The points you give to Pt2Rect can be any pair of diagonally 
opposite comers of the rectangle, not necessarily the top-left and 
bottom-right. 

Calculations with Points and Rectangles 

QuickDraw includes a wealth of utility routines for perfonning 
various calculations on graphical entities. In this section we'll see 
how to compare points or rectangles for equality, add or subtract 
their coordinates, and transform or combine them in a variety of 
ways. In the next section we'll talk about similar operations on 
two classes of more complex figures, polygons and regions. 

You can compare two points or two rectangles to find out 
whether they're equal with EqualPt (4.4.1] or EqualRect (4.4.5]. Each 
of these functions takes a pair of arguments (points for EqualPt, 
rectangles for EqualRect), compares them coordinate by coordinate, 
and returns a Boolean result: TRUE if the arguments are equal, 
FALSE if they're unequal. Another useful comparison function is 
PtlnRect (4.4.3], which tests whether a given point lies within a given 
rectangle. 

The procedures AddPt and SubPt (4.4.1] perform simple arith
metic on points. These procedures add or subtract the two points 
you give them, coordinate by coordinate, and set the coordinates 
of the second point to the result. The first point is unaffected. (An 
alternate routine, DeltaPoint [4.4.1], also subtracts one point from 
another, but returns the difference as a function result instead of 
altering the coordinates of the second point.) 

EmptyRect (4.4.4] tests whether a given rectangle is emp'ty. 



T 
+10 

122 Any Port in a Storm 

Remember that the boundaries of a rectangle run between the 
pixels of an image, not through them. If the specified bottom-right 
comer doesn't lie strictly below and to the right of the rectangle's 
origin-that is, if 

r.top ;:::: r.bottom 

or 

r.left ;:::: r.right 

-then the rectangle encloses no pixels and is considered empty. 
In this case, EmptyRect returns a value of TRUE; othe:rwise it returns 
FALSE. 

OffsetRect [4.4.4] adjusts a rectangle's coordinates by a given 
horizontal and vertical offset, as shown in Figure 4-5. This is 

OffsetRect (r, -100, 70) 

Position Before 
-100 

(240,135) 

Rectangle r 

1 Position After 

,...___._ (320,195) 

(140,205) 

(220,265) 

OffsetRect, in this example, moves rectangle r 
100 pixels to the left and 70 pixels down. 

Figure 4-S Offsetting a rectangle 



123 Calculations with Points and Rectangles 

equivalent to moving the rectangle within its coordinate system 
while keeping its width and height fixed. If the horizontal offset 
is positive, the rectangle is moved to the right; if it's negative, the 
rectangle is moved to the left. Similarly, a positive vertical offset 
moves the rectangle down and a negative offset moves it up. 

lnsetRect (4.4.4] adjusts a rectangle's size by a horizontal and 
vertical inset, as shown in Figure 4-6. The left and right edges of 
the rectangle are both moved inward (toward the center) by the 
specified horizontal inset, and the top and bottom by the vertical 
inset. A negative value for either inset adjusts the edges of the 
rectangle outward instead of inward in that dimension. 

:OffsetRect and lnset~~~J>pe~te cm arectan,glJ3 ~s a p~ly-~tbeJnciti:
cal entfzy; AU :t)ley:.:~~t is agjust tt.ie yalues .·of the te~taµgle~s ;coo~ 
<nn.aJ(!s; they mi~ .n()thmg·to do:WitlfitfoVing or'C~ pix~ls ·in. 
a bit image. · · · 

lnsetRect (r, 15, 10) 

New rectangle r 

1240. 1351 

(255, 1451 

.'4 Original rectangle r 

1305. 1851 

lnsetRect, in this example, moves rectangle rs sides in by 
15 pixels at the left and right, 10 pixels at the top and bottom. 

Figure 4-6 Insetting a rectangle 



124 Any Port in a Storm 

UnionRect (rl, r2, union) 

[~ .. :~':.::.: .. : .......................... . 

Rectangle r1 ~ 

UnionRect returns the smallest rectangle, union, that 
contains both rectangles r1 and r2. 

Figure 4-7 Union of two rectangles 

•~---union 

UnionRect and SectRect (4.4.5] fonn the union and intersection 
of a pair of rectangles and return the result as the value of their 
third parameter (resultRect). The union of two rectangles is the 
smallest rectangle that encloses them both (see Figure 4-7); the 
intersection is the largest rectangle that lies entirely within both 
(Figure 4-8). SectRect also returns a Boolean result that's TRUE if the 
two rectangles intersect at all (that is, if their intersection is not 
empty), FALSE if they don't. 



125 Polygons and Regions 

result:= SectRect (rl, r2, intersection) 

! ............................................................... ! 

I I 
1 ..... - ....................... D! 1- Rec~e a 

Rectangle r1 4 : ............................. J 

I !" Intersection 

: ...................•........................................... : 

SectRect returns the largest rectangle, intersection, contained within 
both rectangles r1 and r2. 

Figure ~ Intersection of two rectangles 

'Calculatf9n& ~volvmg ··tw_o ·~or more points or .rectangles are mean
ingfi:d orily if the· ~en~ are expressed 'in the same system of 
coordinates. If they· ,·atefi.'t you have to transform them into. a 
common coordinate·:system before performing th8 calculation. The 
procedlires. Locarro.Global;• and ·GlobalTolocal [4.4 .. .2] are useful for this 
purpose; ·thef'·re' dis~U~~ed .below under ';Local and Global Coo~ 
:dfuatesY · · 

Polygons and Regions 

QuickDraw provides two special types of structure, polygons and 
regions, that you can use to define and manipulate graphical 
figures of any shape. A polygon can be any shape that you can 
describe with a closed series of connected straight lines, such as 
the one in Figure 4-9. ("Connected" means that each line begins 



126 Any Port in a Storm 

(50,70) 

(0,110) 

(30,160) 
(150, 160) 

llllHlllllllllllllll! Area inside polygon 

Figure 4-9 A polygon 

where the previous one ended; "closed" means that the last line 
ends where the first one began, so that the figure's outline con
nects back to where it started.) A region is even more general, and 
can be any shape that can be built up out of simpler shapes such 
as rectangles, ovals, polygons, and even other regions. It can have 
curved as well as straight edges, and can even have holes in it or 
consist of two or more separate pieces (see Figure 4-10). 

Both polygons and regions are represented internally by 
variable-length data structures whose size depends on the figure's 
complexity. Both structures, Polygon (4.1.3] and Region (4.1.5], begin 
with a couple of fixed fields, followed by variable-length data to 
define the figure's shape. The first field (polySize or rgnSize) is an 
integer giving the overall length of the data structure in bytes. The 
second (polyBBox or rgnBBox) is the figure's bounding ba}(, the 
smallest rectangle that completely encloses it on the coordinate 
grid. QuickDraw maintains these fields for you automatically; you 
can access their contents, but normally you shouldn't store into 
them yourself 



127 Polygons and Regions 

Entire shaded area can be 
defined as one region. 

Figure 4-10 A region 

The rest of the data structure consists of the variable-length 
data defining the figure 's shape. This part of the structure can't 
be properly described in a Pascal type definition, so there's no 
way to access it directly from a Pascal program. You can only 
manipulate it indirectly, by calling the appropriate QuickDraw 
routines to do the job for you. You define the shape of a polygon 
or region by actually drawing it with QuickDraw's various drawing 
routines. Since drawing is the subject of the next chapter, we'll 
postpone our discussion of polygon and region definitions until 
then. 

There are QuickDraw routines for performing a full range of 
calculations on regions: 

• EmptyRgn (4.4.7] tests whether a region is empty. 

• EqualRgn (4.4.8] tests whether two regions are identical. 

• PtlnRgn (4.4.3] tests whether a point lies within a given region. 

• RectlnRgn (4.4.3] tests whether a given rectangle and region intersect. 

• OffsetRgn and lnsetRgn (4.4.7] are analogous to the rectangle operations 
OffsetRect and lnsetRect, discussed earlier. (There's also an OffsetPoly 
routine (4.4.6] for polygons.) 



128 Any Port in a Storm 

These two regions are 
combined in various ways 
in the next five figures. 

UnionRgn (rgnl, rgn2, union~, 

Figure 4-11 Union of two regions 

Shaded area shows 
resulting region 
(union). 



129 Polygons and Regions 

SectRgn ~rgn t, rgn2, intersection) 

,, , ........ ,,. ''· 
,' .... ,, ... .............. /, , , , , 

' ' 
' 
' 

" ... ,,, " ....... ,, ········· 

! 

/ ....... . , 
' 

' ' 

' 

} 
, 

, , , , , 
............ 

.. ' ''· . ,,, .... , ... .. . ,,, 

·-.1 

. : , ....................................................................................... : 

Shaded area shows resulting region (intersection); dotted lines 
show boundaries of original regions. 

Figure 4-12 Intersection of two regions 

• UnionRgn (4.4.8) forms the union of two regions, the set of all pixels that 
lie within either of them (Figure 4-11). 

• SectRgn (4.4.8) forms the intersection of two regions, the set of all pixels 
that lie within both of them (Figure 4-12). 

• DiffRgn (4.4.8) forms the difference of two regions, the set of all pixels 
that lie within the first but not the second (Figure 4-13). 

• XOrRgn (4.4 .8) forms the "exclusive or" of two regions, the set of all pixels 
that lie within either one of them but not the other (Figure 4-14). 



130 Any Port in a Storm 

, , , , 

' 
' 

DiffRgn (rgn 1, rgn2, difference) 

/ 

Shaded area shows 
resulting region 
(difference); dotted lines 
show boundaries of original 
regions. 

.. ,,, 
•. ,,, ... 

. / , ....... 

. 

. , .. , , ...... ''··· .••.•.. ,,'. 

1 · 

,, ....................................................................................... : 

DiffRgn (rgn2, rgnl, difference) 

,1'''''"'' 

' r 

! 
/ ,/ ,, .............. , .. " ,/ 

',, ... 

.. ,, ·········'' 

1·· ................. . 

. ................... : 

, , , , 

Figure 4-13 Difference of two regions 

Shaded area shows 
resulting region 
{difference) when 
order of the original regions 
is switched. 



Bit Maps 

131 Bit Maps 

XOrRgn (rgnl, rgn2, exclusiveOr) 

Shaded area shows the 
resulting region, 
exclusiveOr. (Exclusive or = 
union - intersection.) 

Figure 4-14 "Exclusive or" of two regions 

We said earlier that a bit image needs a boundary rectangle to tell 
QuickDraw how many bits of each row really "count" and how 
many are just padding. This combination of a bit image and a 
boundary rectangle is called a bit map. Bit maps are the basic 
medium in which QuickDraw does all of its drawing. The bit image 
provides the bit map's content; the boundary rectangle defines its 
extent and gives it a system of coordinates. 

Different bit maps can share the same bit image: for example, 
every window on the screen has its own bit map, but they all share 
the same screen image in memory. The boundary rectangle limits 
the portion of the bit image that a particular bit map refers to. 
The rest of the image is regarded as padding by this bit map 



132 Any Port in a Stonn 

(though possibly not by others), and is not affected by any opera
tion you perlorm on the bit map. Notice that, since a given bit 
map may use just part of a larger, shared bit image, there can be 
any amount of padding at the end of a row in the image, not 
necessarily just enough to fiil out the row to a multiple of16 bits. 

Conceptually, a bit map could be represented by a record 
containing two fields: one for the bit image and another for the 
boundary rectangle. But because of Pascal's strong typing rules, 
the record definition would have to include the dimensions of the 
aITay containing the bit image: for example, 

type 
BitMap = record 

image : array [1 .. 12, 1 .. 2] of INTEGER; 
bounds : Rect 

end; 

Under this definition, a bit map record could refer only to bit 
images of one particular size-12 rows of 2 words each. To work 
with images of different sizes, there would have to be a different 
type of bit map for each size. So instead of including the bit image 
itself as part of the bit map record, QuickDraw just uses a pointer 
to the first byte of the image (its base address). That way, since 
pointers have no dimensions, a single type of bit map can refer to 
bit images of any size. 

But now some important information has been lost. The 
height and width of the boundary rectangle tell how many rows 
there are and how many bits of each row count as part of the bit 
map. But QuickDraw also needs to know how many bits of 
padding to skip at the end of each row, in order to find the 
beginning of the next row in memoiy. So the bit map record has 
to include another field giving the row width of the bit image-the 
total width of each row in bytes, including padding. Putting all 
this together, the actual type definition for bit maps is as follows 
(4.2.1]: 

type 
BitMap = record 

baseAddr : Ptr; 
rowBytes : INTEGER; 
bounds : Rect 

end; 



133 Bit Maps 

To create a bit map in your program corresponding to the 
one shown earlier in Figure 4-4, you might declare 

var 
thelmage : array [1 .. 12, 1 .. 2] of INTEGER; 
theMap : BitMap; 

and then write something like 

StuffHex (@thelmage, CONCAT('07000000', 
'19000000' t 
'22000000' t 

with theMap do 
begin 

baseAddr := @thelmage; 
rowBytes := 4; 

, 46000000'' 
'C7FF8000', 
'8C004000', 
'97FF8000', 
'E4080000' I 
'87FOOOOO', 
'84100000', 
'C7EOOOOO', 
'7F800000')); 

SetRect (bounds, 125, -75, 143, -63) 
end 

Remember that rowBytes is expressed in bytes, not words, so it has 
to be set to twice ·the number of integers in each row of the bit 
image. 

Like a child with a coloring book, QuickDraw will carefully 
keep all of its drawing in a bit map "inside the lines" defined by 
the boundaiy rectangle. But it has to take your word for where 
the lines are. Make sure the bit map's base address pointer really 
points to a bit image in memoiy, and that the image array is as 
big as the bit map's row width and boundary rectangle say it is! 
If it isn't, QuickDraw will "color outside the lines" and ruin your 



Graphics Ports 

134 Any Port in a Storm 

pretty picture. Specifically, the number of bytes allocated for the 
bit image must not be less than the row width times the height 
of the boundary rectangle: 

SIZEOF(thelmage) ;::: theMap.rowBytes * 
(theMap.bounds.bottom - theMap.bounds.top) 

Similarly, the width of the boundary rectangle must be no 
greater than the actual number of bits in each row: 

(theMap.bounds.right - theMap.bounds.left) 
:::; theMap.rowBytes * 8 

As the screen image is the most important bit image of all, 
the most important bit map is the screen map, which QuickDraw 
keeps in a global variable named ScreenBits [4.2.1]. The screen map's 
base address field points to the beginning of the screen buffer in 
memocy, with a row width of 64 bytes (512 bits). Its boundacy 
rectangle is the same size as the Macintosh screen, 512 pixels wide 
by 342 high; the origin of the rectangle has coordinates (0, 0), plac
ing its bottom-right comer at (512, 342). 

On the Macintosh XL, with its larger screen, ScreenBits has a row 
width of 90 bytes (720 bits) and a boundary· rectangle 720 pixels 
wide by 364 high. Remember, too, that screen dimensions are differ
ent on large-screen displays and may vaiy on future models of 
Macintosh Inst~ad of making dangerous assumptions, always use 
the screen map's boundaiy rectangle (ScreenBits.bounds) to find oµt the 
screen dimensions for ·the machine you're running on. 1 

There's much more to QuickDraw's drawing environment than 
just a bit map to draw into. There are foreground and background 
patterns for filling in areas of an image; a pen size and location 
for line drawing; a typeface, size, and style for displaying text. 
Often a program needs to use more than one drawing environ
ment: for example, the program may have several windows on the 



135 Graphics Ports 

screen, each with its own pen location, fill patterns, text charac
teristics, and so forth. 

Graphics ports enable you to switch quickly and easily from 
one drawing environment to another. A graphics port is a com
plete drawing environment containing all the information needed 
for QuickDraw drawing operations. Each port has its own bit map, 
fill patterns, pen properties, and everything else QuickDraw needs 
to do its job. A program can have as many separate graphics ports 
as it needs; in particular, eveiy window on the screen has its own 
port. 

All the information associated with a graphics port is kept in 
a record of type Graf Port (4.2.2], which normally resides in the heap. 
For obscure reasons shrouded in the mists of antiquity, graphics 
ports are nonrelocatable objects and are referred to by single 
indirection, with simple pointers of type Graf Ptr (4.2.2] rather than 
handles. To create a new graphics port, you first allocate a Graf Port 
record with NewPtr (3.2.1], then open the port for use with OpenPort 
(4.3.2]: 

rawPointer := NewPtr(SIZEOF(Graf Port)); 
new Port := Graf Ptr(rawPointer); 
OpenPort (newPort) 

(where rawPointer is of type Ptr and newPort is of type Graf Ptr). OpenPort 
initializes the port's fields and allocates its internal data struc
tures; always be sure to call this routine after creating a port and 
before attempting to use it in any way. (Another routine, lnitPort 
(4.3.2], reinitializes the fields of an existing port but doesn't reallo
cate its internal structures.) When you're finished with a port, 
remember to release the internal structures with ClosePort (4.3.2] 
before destroying the port itself: 

ClosePort (oldPort); 
rawPointer := Ptr(oldPort); 
DisposPtr (rawPoi nter) 

At any given time, exactly one graphics port is in use, called 
the current port. Many QuickDraw routines operate implicitly on 
the current port, so you have to make sure the port you want is 
current before calling the routine. You can always find out what 
port is current with the QuickDraw procedure GetPort or change 



136 Any Port in a Storm 

the current port with SetPort (4.3.3]. (A pointer to the cuirent port 
is also kept in the global variable ThePort (4.3.3].) If you're working 
with more than one graphics port, it's a good idea to use GetPort 
and SetPort in any procedure or function that changes the current 
port, to save the previous port at the beginning of the routine and 
restore it again at the end. Program 4-1 illustrates the technique. 
Any routine written in this way is "transparent" to the setting of 
the current port: it leaves the same port current on return from 
the routine as when it was called. 

Eveiy graphics port has its own bit map to draw into, kept in 
the portBits field of the Graf Port record. portBits is the port's "canvas": 
QuickDraw operations directed to the port will draw into the bit 
image belonging to this bit map, and the bit map's boundaiy 
rectangle establishes the port's coordinate system. When you open 
or initialize a port, its portBits field is set to a copy of the screen 
map ScreenBits, with the screen image as its bit image, a row width 
of 64 bytes (90 on a Macintosh XL), and a boundaiy rectangle the 
same siZe as the screen with its origin at coordinates (0, 0). If neces
saiy, you can then use the QuickDraw routine SetPortBits (4.3.4] to 

Rt2~~Yt! Dr11InPort <•hichPort: 6rafPtr>1 

C Skeleton procedure sho1ing use of SetPort and SetPort to preserve current port setting. ) 

~![ 
oldPort : 6raf Ptr; . . . . ' 

6etPort (oldPort>; 

SetPort (1hichPort>; 

. . . . ' 
SetPort (oldPort> 

!nd; CDra1lnPort} 

£Pointer to previous current port> 

CS1ve old port on entry [4.3.31> 

<S1itch to specified port C4.3.3J} 

<Dr aw in porU 

<Restore old port on exit C4.3.3J) 

Program 4-1 Saving and restoring the current port 



a. 

137 Graphics Ports 

change the bit map (for example, to one based on a bit image other 
than the screen), or change the port's coordinate system by adjust
ing the bit map's boundary rectangle. Since the port's bit map is 
only a copy of the screen map, any changes you make to its fields 
won't affect the screen map itself. 

The portRect, visRgn, and clipRgn fields of a graphics port all 
define clipping boundaries for drawing into the port. QuickDraw 
will automatically confine its drawing activities within the intersec
tion of all these boundaries, as well as the port's boundary rec
tangle (see Figure 4-15). Any drawing you attempt that lies outside 
any one of the clipping boundaries will be suppressed (clipped) and 
will have no effect on the bit image. 

The port rectangle (portRect) defines the portion of the bit map 
that the port can draw into. For a newly opened or initialized port, 

This window obscures part 
of the window behind it. 

Figure 4-15 Clipping boundaries 



138 Any Port in a Storm 

b. 

Top-left comer of the boundaiy 
rectangle is always the origin (o, o) 
of the global coordinate system. 

(o, o) 

Clipping region 
i 
! 

I 
I : 
I 
i 

! 
i 
I 

{ 
: 
j 
i 

lllt{ 
! :, 
\ 
\ 

... 
' 

"' 

Drawing is confined to 
intersection of the 
boundary rectangle, 
port rectangle, visible 
region, and clipping region. 

1 ........................................... . 

KEY 

• 
• 

Area obscured 
by other 
window 

Visible region 

Area to which drawing is 
confined 

Boundaiy rectangle. When 
the port is a window, the 
boundaiy rectangle is the 
edge of the screen. 

Figure 4-lS (continued) 

(340, 300) 

(512, 342) 



139 Graphics Ports 

the port rectangle is a copy of the screen map's boundary rec
tangle: top-left comer at coordinates (0, 0), bottom-right at (512, 342) 
or (720, 364) or whatever. You can then change the port rectangle to 
whatever coordinates are appropriate. For a port belonging to a 
window on the screen, the port rectangle corresponds to the inte
rior of the window, inside the window's frame. For the window 
shown in Figure 4-15, the port rectangle extends from coordinates 
(160, 80) at the top-left to (340, 300) at the bottom-right. 

The clipping region (clipRgn) is a general-purpose clipping 
boundary that you can use any way you like. Notice that it's a 
region, not a rectangle, which means you can make it any shape 
you need. For example, in an adventure game you might use a 
circular clipping region, as in the figure, to simulate the view 
through a telescope or a ship's porthole. Opening or initializing a 
port sets its clipping region to an arbitrarily large rectangular 
region extending from coordinates (-32768, -32768) to (32767, 32767), 
sometimes called the "wide-open" region. You can then install a 
different clipping region with SetClip or ClipRect, or access the port's 
current clipping region with GetClip [4.3.6]. We'll look at an example 
that uses a port's clipping region in Chapter 5. 

The visible region (visRgn) can also be of any shape, but it's there 
for use by the Toolbox, not by your program. As windows are 
moved around on the screen, the Toolbox uses this field to keep 
track of the portion of each window's port rectangle that's exposed 
to view. Any part of the window that's hidden behind another 
window is excluded from the visible region, so drawing in that part 
of the window is suppressed and won't appear on the screen. 
Figure 4-15 illustrates how a window's visible region is determined 
by its position on the screen in relation to other, overlapping 
windows. 

Most of the remaining fields of the GrafPort record are dis
cussed in Chapter 5 (bkPat, fillPat, pnLoc, pnSize, pnMode, pnPat, pnVis) 
and Chapter 8 (device, txFont, txFace, txMode, txSize, spExtra). The fgColor, 
bkColor, and colrBit fields are reseived for future use with color 
displays or printers; patStretch, picSave, rgnSave, and polySave are for 
QuickDraw's private use. grafProcs is used for "customizing" Quick
Draw operations to your own needs; see Volume Three for further 
information. 



140 Any Port in a Storm 

Local and Global Coordinates 

A port's bit map belongs to just that port and no other. Even ports 
that draw into the same bit image have separate bit maps based on 
that same image. For instance, all ports that draw on the screen 
share the one screen image in the Macintosh's memory, but refer 
to it through different bit maps. Each has its own boundary rec
tangle, whose coordinates can be set independently of all the 
others. 

Since the bit map's boundary rectangle determines the coor
dinate system of the graphics port, it follows that each port has 
its own coordinate system, called the local coordinate system of 
that port. The origin (top-left corner) of the boundary rectangle 
always lies just outside the first pixel in the bit image; everything 
else in the port is measured relative to the coordinates of that 
point. 

Remember, though, that the area of the bit image that a port 
can draw into is defined by the port rectangle, not by the boun
dary rectangle of the port's bit map. Often it's more natural to 
measure your coordinates relative to the port rectangle instead of 
the boundary rectangle. The QuickDraw procedure SetOrigin [4.3.4] 
allows you to set a port's local coordinate system in terms of the 
port rectangle. Like most QuickDraw routines, SetOrigin applies 
implicitly to the cuirent graphics port. It adjusts (the ten-dollar 
word is "translates") the port's coordinate system to give the 
top-left corner of the port rectangle the designated coordinates, 
hOrigin and vOrigin. In so doing, it recalculates the coordinates of 
the boundary rectangle, port rectangle, and visible region to keep 
them all in the same spatial relationships in the new coordinate 
system. You might call it a case of "simultaneous translation." 

For example, Figure 4-16a shows a port belonging to a window 
on the Macintosh screen, which is partially hidden by another, 
overlapping window; this is just a repeat of our earlier Figure 
4-15b. The boundary rectangle of the port's bit map extends from 
coordinates (0, Q) at the top-left to (512, 342) at the bottom-right. The 
port rectangle, representing the interior of the window, extends 
from (160, 80) to (340, 300). Since the window is partially hidden on 
the screen, its visible region is limited to the shaded area shown 
in the figure. 



a. 

(O, 0) 

KEY 

• 
• 

141 

Port 
rectangle 

Local and Global Coordinates 

Boundaiy rectangle 

(160, 80) 

i 

I 
! 

Clipping -+·.!.' ----11~ 
region 

f 
! 
! 
! 
i 

I 
!.-.......................................... . 

Visible region 

Area to which drawing is 
confined 

Figure 4-16 Adjusting coordinates with SetOrigin 

(340, 300) 

(512, 342) 



b. 
[-160, -80) 
(O, 0) 

KEY 

• 
• 

142 Any Port in a Storm 

SetOrigin (-160, -80) 

Port 
rectangle 

I 

1 .......................................... ... 

Visible region 

Area to which 
drawing is confined 

Global coordinates 

Local coordinates 

Figure 4-16 (continued) 

~ Boundary rectangle 

' ' ~ 

Clipping 
region 

, .. , ......... ""••\•'·· 

(340, 300) 
[180, 220) 

(512, 342) 
[352, 262) 



143 Local and Global Coordinates 

If you would prefer to express coordinates in this window 
relative to the window itself instead of the screen, you can write 

SetOrigin (0, 0) 

The result is shown in Figure 4-16b. Notice that the port rectangle 
and the visible region haven't changed their position on the 
screen; only the coordinate system has been changed. The origin 
of the boundary rectangle now has coordinates (-160, -80), placing 
the origin of the port rectangle at (0, Q), as requested. The bottom
right corners of the two rectangles have been recalculated, to keep 
the sizes of the rectangles the same as before. The window's visible 
region has also been transformed to the new coordinate system, 
keeping it in the same relative position on the screen. 

Because each port has its own local coordinate system, coor
dinates expressed in different ports aren't directly comparable. 
Before performing any calculation involving coordinates taken 
from different ports, you have to convert them into a common 
coordinate system. A convenient system to use for such purposes 
is the global coordinate system, in which the point just outside 
the first pixel of a port's bit image always has coordinates (0, 0). 

A port's global coordinate system is independent of the boun
dary rectangle, and so isn't affected by changes in the local 
coordinate system. In Figure 4-16a, for instance, the port's local 
coordinate system coincides with the global system, since the 
origin of the boundary rectangle has coordinates (0, 0). In Figure 
4-16b, the local system has been transformed, but the global 
system remains the same as before. Expressed in global coor
dinates, the port rectangle and visible region still have the same 
coordinates shown for them in Figure 4-16a, even though their 
local coordinates have been changed to those in Figure 4-16b. 

< Progra1 frag1ent to find the intersection of two •inda•s' port 
rectangles by converting both to global coordinates. } 

!!!: 
portA, portB : Sraf Ptr; 
rectA, rectB, inter : Rect; 
nonE1pty : BOOLEAN; . . . . ' 

Program 4-2 Converting to global coordinates 



144 Any Port in a Storm 

~!Ii!! 

. 
I I I ' 

partA := a I e ; 

portB := • • • ; 
rectA := portAA.pcirtRect; 
rectB := portBA.partRect; 

SetPort <partA>; 
!!1b rectA dg 

~Hin 
LocilToSlobal <topleft>; 
LacalTo&lobal CbotRight) 

!n~; 

SetPort (portB>; 
!Ub rectB ~g 

begin 
Loc1lTo&lab1l (topleft>; 
LacalTo&loltil CbotRight) 

19~; 

nonE1pty := SectRect (rectA, rectB, inter>; 
if nonE1pty 

tb!! 
~!Bi!! 

!!tb intersection dg 
~HiD 

&lobalTolocal <topleft>; 
&lobalTolocal (botRight> 

!Rd; 

<Port A is first •indo•'s port> 
<Port B is second 1indo•'s port> 
<First 1indo1's part rectangle C4.2.2l> 
<Second •indo•'s port rectangle C4.2.2J} 

<Set into port A [4.3.31} 

<Convert port rectangle to } 
{ global coordinates C4.4.2l} 

<Switch to port B C4.3.3l} 

<Convert port rectangle to > 
{ global coordinates C4.4.2l} 

<Find intersection C4.4.5l} 

<Intersection is noneapty: } 

{ convert intersection to } 
{ part B's local coordinates C4.4.2l> 

and proceed with ncir1al processing} 

<Intersection is eapty: > 
{ handle exceptional case> 

Program 4-.2 (continued) 



145 Local and Global Coordinates 

Progra1 frag1ent to find the intersection of t10 windows' port 
rectangles by converting one to local coordinates of the other } 

YM 
portA, portB : 6raf Ptr; 
rectA, rectB, inter : Rect; 
nonE1pty : BODLEAI; . . ' 

portA := • ; 
partB := ••• ; . . . . ' 
rectA := portAA.portRect; 
rectB := partBA.portRect; 

SetPort (port A>; 
!Ub rectA ~g 

~HiD 
Loca1To6lobal (topleft); 
Loca1To6lobal <botRight) 

!n~; 

SetPort <portB>; 
!!Ub rectA ~9 

~!gin 
6loba1Tolocal (topleft>; 
6loba1Tolocal (botRightl 

!!!~; 

nonE1pty := SectRect (rectA, rectB, inter>; 
!.! nonE1pty 

!b!n 

<Port A is first 1indow's port> 
<Port B is second winda1's port} 

(first 1indow's port rect1ngle C4.2.2l} 
<Second window's port rectangle C4.2.2J} 

{6et into port A C4.3.3J} 

<Conv1rt port rectangle to } 
< global coordinates [4.4.21} 

CS.itch to port B C4.3.3l} 

<Convert to port B's } 
< local coordinates [4.4.21> 

{find intersection [4.4.51) 

<Intersection is noneapty: } 
< handle nor1al case } 
<Intersection is e1pty: } 
< handle exceptianal case} 

Program 4-3 Converting between coordinate systems 



146 Any Port in a Storm 

Global coordinates provide a handy basis of comparison between 
different ports, provided that the ports are based on the same 
underlying bit image. For instance, for all ports corresponding to 
windows on the screen, the global coordinate system measures ;-
coordinates with respect to the screen instead of the window. 

Suppose you want to find the intersection of two windows on 
the screen. Since each window's port rectangle is expressed in 
that window's own local coordinates, you can't just apply SectRect 
directly to the two rectangles. First you have to convert the 
rectangles into a common coordinate system. Since the two win
dows' graphics ports are based on the same bit image (the screen), 
you can use global coordinates as a common basis of comparison. 

QuickDraw provides a pair of utility procedures, LocalToGlobal 
and GlobalTolocal (4.4.2], for converting between coordinate systems. 
The local coordinate system involved is always implicitly that of 
the current port, so you have to make sure the right port is current 
for each conversion. Program 4-2 shows one way to do the job: 

1. Convert both windows' port rectangles into global coordinates. 

2. Find the intersection of the two port rectangles in global coordinates. 

3. Convert the result back into the local coordinates of one of the two 
windows. 

A slightly more efficient way of doing the same thing is shown 
in Program 4-3: 

1. Convert one window's port rectangle into global coordinates. 

2. Convert this same rectangle from global coordinates into the local 
coordinates of the other window. 

3. Find the intersection directly in the second window's local coor
dinates. 

This method requires only two coordinate conversions instead of 
three. 



REFERENCE 

4.1 Mathematical Foundations 

4.1.1 Points 

type 
VHSelect = (\t H); 

Point = record 
case I NTEQER ot 

0: (v : INTEGER; 
h : INTEGER); 

{Selector for coordinates of a point} 

{Vertical coordinate} 
{Horizontal coordinate} 

1: (vh : array [VHSelect] of INTEG~R) '{Coordl.nates as a_.1\vo .. elementarray} 

and~ 

procedure SetPt 
(var thePoint : Point; 
hCoord : INTEGER; 
vCoord : INTEGER); 

147 

{Point to be set} 
{Horizontal coordinate} 
{Vertical coordinate} 



148 QuickDraw Fundamentals 

~~iila.:::31--------N_o_te_s __________________________________ ___ 

1. A Point is a data structure representing a point on the QuickDraw 
coordinate grid. 

2. The variant record structure allows the point's coordinates to be 
accessed as two separate integers 

thePoint.v 
thePoint.h 

or as a two-element array 

thePoint.vh[V] 
thePoint.vh[H] 

a. The vertical coordinate comes first, contrary to the usual mathemati
cal convention. 

4. SetPt sets thePoint to a point with coordinates hCoord and vCoord. 

5. Notice that the order of the coordinates in a call to SetPt is not the 
same as in the Point record itself. 

ro1 Assembly limguagf3 lilfp"1li.lti(JD --;ILJ-------------........__, 
Field ojfsets in a point record: 

(Pascal) V\ssembly) 
Field ruune OffSet name 

v 
h 

Trap macro: 
(Pascal) 
Routine name 

SetPt 

v 
h 

(Assembly> 
Trap macro 

-8etPt 

Offset in bytes 

0 
2 

Trap word 

$A880 



149 (4.1.2) Rectangles 

4.1 • .2 Rectangles 

Definitions 

type 
Rect = record 

case INTEGER of 

0: (top : INTEGER; 
left : INTEGER; 
bottom : INTEGER; 
right : INTEGER); 

1: (topLeft : Point; 
botRight : Point) 

end; 

procedure SetRect 
(var theRect : Rect; 
left : INTEGER; 
top : INTEGER; 
right : INTEGER; 
bottom : INTEGER); 

procedure Pt2Rect 
{point1 : Point; 
point2 : Point; 
var the Re ct : Re ct); 

{Top coordinate} 
{Left coordinate} 
{Bottom coordinate} 
!Right coordinate} 

{Top-left corner} 
{Bottom-right corner} 

!Rectangle to be set} 
{Left coordinate} 
{Top coordinate} 
!Right coordinate} 
{Bottom coordinate} 

{First corner} 
{Diagonally oppos ite corner} 
{Rectangle to be set} 

1. A Rect is a data structure representing a rectangle on the coordinate 
grid. 

2. The variant record structure allows the rectangle's coordinates to be 
accessed as four separate integers 

theRect.top 
theRect.left 
theRect. bottom 
theRect.right 



150 QuickDraw Fundamentals 

or as a pair of points 

theRect. topleft 
theRect.botRight 

representing the top-left and bottom-right comers. 

3. If right:::; left or bottom :::; top, the rectangle is considered empty. 

4. SetRect sets theRect to a rectangle with coordinates left, top, right, and 
bottom. 

G. Notice that the order of the coordinates in a call to SetRect is not the 
same as in the Rect record itself. 

6. Pt2Rect sets theRect to a rectangle defined by a pair of diagonally 
opposite points point1 and point2. 

7. If point1 and point2 have the same horizontal or vertical coordinate, the 
resulting rectangle will be empty. 

IOI Assembly Language Infurmation 
--1rLl..,.__.-------------...-

Field offsets in a rectangle record: 
(Pascal) ~smnbly) 

Field name Offset name 

top 
left 
bottom 
right 

top left 
botRight 

Trap macros: 
(Pascal) 
Routine name 

SetRect 
Pt2Rect 

top 
leff 
bottom 
right 

top left 
botRight 

(Assembly) 
Trap macro 

-8etRect 
_Pt2Rect 

Offset in bytes 

0 
2 
4 
6 I 

0 
4 

Trap word 

$A8A7 
$A8AC 



151 (4.1.3] Polygons 

4.1.3 Polygons 

~111~1-------o-e_ftni __ ·n-·o_ns ______________________________ __ 

type 
PolyHandle = "PolyPtr; 
PolyPtr = "Polygon; 

Polygon = record 
polySize : INTEGER; 
polyBBox : Rect; 
polyPoints : array [0 ... 0] of Point 

end; 

{Length of this data structure in bytes} 
{Bounding box} 
{Variable-length array of vertices} 

~~iiiR·==l.,._ ______ N_o_t_e_s __________________________________ __ 

1. A Polygon is a variable-length data structure representing an arbitrary 
polygon on the QuickDraw coordinate plane. 

2. The shape of the polygon is defined by a series of connected sides, 
specified with the line-drawing operations Line and LineTo [5.2.4]. Each 
side begins where the previous side ended; their endpoints are the 
polygon's vertices. 

3. If the first and last vertices don't coincide, an extra side is added 
automatically to close the polygon. 

4. The dummy field polyPoints stands for a variable-length array of points 
(not directly accessible in Pascal) representing the polygon's vertices. 
The Toolbox maintains the contents of this array for you-you'll never 
need to access or store into it yourself 

5. polySize is the overall length of this Polygon data structure in bytes, 
including the variable-length polyPoints array. 

6. polyBBox is the polygon's bounding bo"J(, the smallest rectangle that 
completely encloses it. 



152 QuickDraw Fundamentals 

IOI Assembly Language Informadon 
--111a----------------~ 

Field offsets in a polygon record: 
(Pascall (Assembly) 
Field name Qjfset name 

polySlze 
polyBBox 
polyPoints 

polySize 
polyBBo_x 
polyPoints 

4.1.4 Defining Polygons 

Offset bl b,Ytes 

o:, 
2.· 

10.: 

~1!!1!!!11~-------o-e_fini_·_u_o_ns __________________________ ~--
funcllon OpenPoly 

: PolyHandle; {Handle to new polygon} 

procedure ClosePoly; 

procedure KillPoly 
(thePolygon : PolyHandle)~ {Handle. to poly~onto be destroyed} 

~~iii18•===11--------N-o_t_e_s __________________________________ __ 

1. OpenPoly creates a new Polygon record (4.1.3], opens it for definition, 
and returns a handle to it. 

2. Subsequent calls to the line-drawing routines Line and LineTo [5.2.4] 
will be accumulated into. the Polygon record to define the shape of 
the polygon. 

3. The graphics pen is hidden (5.2.3] while a polygon is open; the 
line-drawing operations that define the polygon will not appear on 
the screen. 

4. The polygon's outline is infinitely thin, and is unaffected by pen 
characteristics such as size, pattern, and mode (5.2.1]. 

5. Only one polygon may be open at a time; don't attempt to open 
another without closing the one that's already open. 

6. ClosePoly closes the polygon currently open for definition, if any. 



153 (4.1.5] Regions 

7. The polygon's bounding box (4.1.3] is recomputed to enclose all of 
the points in the polygon. 

8. The graphics pen is reshown [5.2.3]; subsequent line-drawing opera
tions will appear on the screen instead of being accumulated into 
the polygon definition. 

9. KillPoly destroys a Polygon record and deallocates the memoiy space 
it occupies. The polygon is no longer usable after this operation. 

10. The trap macro for ClosePoly is spelled _ClosePgon. 

IOI Assembly Lan~ge. Infon,nad.Qn 
---11[])-----------

Trap macros: 
(Pascal) 
Routine name 

OpenPoly 
ClosePoly 
Kill Poly 

4.1.5 Regions 

f Defininons 

(Assembly) 
Trap wacr.o 
_Open Poly 
_ClosePgon 
_Kill Poly 

Trap word 

$A8CB 
$A8CC 
$A8CD 

-i....___:-----------------~--------
t y p e 

RgnHandle = "RgnPtr; 
RgnPtr = "Region,; 

Region =·record 
rgnSize : INTEGER; {Length o.f this data structure in bytes} 
rgnBBox : Rect; {Bounding box} 
{additional data defining shape of region} 

end; 



154 QuickDraw Fundamentals 

~~iiii~·:::::::::1~------N-o_te_s __________________________________ ___ 

1. A Region is a variable-length data structure representing an arbitraiy 
region on the QuickDraw coordinate plane. 

2. The shape of the region is defined by a series of lines and shapes 
specified with the line-drawing operations Move, MoveTo, Line, and LineTo 
(5.2.4] and the shape-drawing operations FrameRect (5.3.2], FrameRoundRect 
(5.3.3], FrameOval (5.3.4], FramePoly (5.3.6], and FrameRgn (5.3.7]. The 
region's outline is formed by the specified lines and the boundaries 
of the specified shapes. 

3. At the end of the Region record is variable-length data (not directly 
accessible in Pascal) defining the shape of the region in compact, 
encoded form. The Toolbox maintains this data for you-you'll never 
need to access or store into it yourself. 

4. rgnSize is the overall length of this Region data structure in bytes, 
including the variable-length data defining the shape of the region. 

6. rgnBBox is the region's bounding bo'}(, the smallest rectangle that 
completely encloses it. 

6. For a strictly rectangular region, the variable-length data is absent; the 
bounding box completely defines the shape of the region. In this case 
rgnSize = 10 (2 bytes for the size and 8 for the bounding box). 

~~l~-------As_ .. _s_~_Ql_h_ly~,·-1a_n_ ... ~_ .. _·:._·~-·~-·Irm_,._.o_ .. fll18_~.~····-ti-o_n_· _______________ __ 

Field· oft'sets iii a region ~cord: · 
(Pascall (Assembly) 
~eld.~e O~t~llJ1¢e 

rgnSize 
rgnBBox 

ronSi~e 
rgnBBox 
rgnData 

Offset mpytes 

0 
2 

10 



155 (4.1.6] Defining Regions 

4.1.6 Defining Regions 

~.~---_..:1 .............. __ n_·_e_finill_·.~~·~·o~n-s ..... --~--...... -....-._... ..... ________________ ___ 

t~ncllon N.ewitgn 
: Rg_nHandle; {Handle to new.region} 

prqcedqre OpenRgn; 

prpc~d11re ctO$ft0g.n . .. 
OheRegitin ·: · Rq·naan'd:le); tl·f'arid1e:to be;·settodetined reglonl 

procedure DisposeRgn 
(theRegion : Rgnfi~ndle); {Handle to regi.on to ~e destrnyedl 

~~iiiiiiB::::::3..,... ______ N_o_i_es--------------------------------------
1. NewRgn creates a new Region record (4.1.5) and returns a handle to it. 

The new region is initially empty. 

2. OpenRgn begins a new region definition; subsequent calls to the 
line-drawing routines Move, MoveTo, Line, and LineTo [5.2.4] and the 
shape-drawing routines FrameRect [5.3.2], FrameRoundRect [5.3.3), FrameOval 
(5.3.4], FramePoly [5.3.6], and FrameRgn (5.3.7) will be accumulated to 
define the shape of the region. 

3. The graphics pen is hidden (5.2.3] while a region is open; the line
and shape-drawing operations that define the region will not appear 
on the screen. 

4. The region's outline is infinitely thin, and is unaffected by pen 
characteristics such as size, pattern, and mode [5.2.1]. 

5. Only one region may be open at a time; don't attempt to open 
another without closing the one that's already open. 

6. CloseRgn closes the region definition cuITently open and sets an 
existing region to the defined shape. 

7. The region must already have been created previously with NewRgn. 

8. The graphics pen is reshown (5.2.3]; subsequent line- and shape
drawing operations will appear on the screen instead of being 
accumulated into the region definition. 

9. DisposeRgn destroys a Region record and deallocates the memoiy space 
it occupies. The region is no longer usable after this operation. 

to. The trap macro for DisposeRgn is spelled _OisposRgn. 



156 QuickDraw Fundamentals 

IOI Assembly Language Informanon 
-io:J--------~ 

Trap macros: 

(Pascal) 
Routine name 

NewRgn 
OpenRgn 
CloseRgn 
DlsposeRgn 

(Assembly) 
Trap macro 

...;NewRgn 
_OpenRgn 
_CloseRgn 
_DisposRgn 

Trap word 

$A8D8 
$A8DA 
$ABDB 
$A8D9 

4.1. 7 Setting Regions 

procedure SetEmptyRgn 
(theRegion : RgnHandle); 

procedure RectRgn 
(theRegion : RgnHandle; 
theRect : Rect); 

procedur~ SetRectRgn 
(theRegion : RgnHandle; 
left : INTEGER; 
top : I NT EGER; 
right : 1.NTEGER; 
bottom : INTEGE~); 

procedure CopyRgn 
(fromRegion : RgnHandle; 
toRegion : Rgnttan~le); 

{Handl-e to region to be set empty} 

{HaJJdle to region to be set} 
{Rec.tangle to set it to J 

{Handle to region to be set} 
{Left coordinate of rectangle to set it to} 
{Top coordinate of rectangle to set it to} 
{Ri_gh~ coo.rdinate of rectangle to set it to} 
{Bottom coordinate of rectangle to set it to} 

{Regi9n to be copied l 
{Region to copy it to} 



157 [4.1.7) Setting Regions 

~~iiii1R==i1--------N-o_t_e_s __________________________________ __ 

1. SetEmptyRgn sets an existing region to empty, erasing its previous 
structure. 

2. The region remains in existence, but becomes empty (encloses no 
pixels). The Region record itself [4.1.5) is not destroyed. 

3. RectRgn and SetRectRgn both set an existing region to a specified rec
tangle. For RectRgn, the rectangle is given as a Rect record [4.1.2]; for 
SetRectRgn, it's given as four separate coordinates. 

4. If right < left or bottom < top, the region is set to empty. 

5. CopyRgn sets an existing region to the same shape as another. 

6. In each case, the destination region (theRegion or toRegion) must already 
have been created previously with NewRgn [4.1.6]. 

7. The trap macro for SetRectRgn is spelled _SetRecRgn. 

IOI Assembly·Lgg.guage: lnformad.on 

----1a:r:B~----------Tra--.-p-11Ul-..... cro-.-_s-:------------------------------------------
(PascaD 
Routine name 

SetEmptyRgn· 
RectRgn 
SetRectRgn 
CopyRgn 

. <Assembly) 

. TJ:ap ID'1Cl'O 

_setEmptYRgn 
....RectRgn 
-5etRecRgn 
,~copyRgn 

'Irapword 

$A8DD 
$A8DF 
$A8DE 
$A8DC 



158 QuickDraw Fundamentals 

4.2 Graphical Foundations 

4.2.1 Bit Maps 

~~1~-------o_e_iini __ ·n-·o_n_s ________________________ __.. __ ___ 

BitMap = record 

var 

baseAddr ~ Ptr; 
rowBytes ; INTEGER; 
bounds : Rect 

end; 

ScreenBits : BitMap; 

{Pointer to bit image} 
{Row width in bytes} 
{Boundary rectangle} I 

{Bit map for Macintosh screen} 

~~iii~·:::::::i...-------N-o_t_e_s ____________________________________ __ 

1. baseAddr is a pointer to the bit map's bit image. The bits of the bit 
image define the pixels of the bit map. 

2. rowBytes is the bit map's row width, the number of bytes in each row 
of the bit image. 

3. The row width should always be even, representing a whole number 
of 16-bit words. 

4. bounds is the bit map's boundary rectangle, which defines its extent 
and coordinate system. 

5. The first pixel in the bit image lies just inside the top-left comer of 
the boundaiy rectangle. 

6. The width of the boundaiy rectangle must not exceed the row width 
of the bit image in bits (that is, 8 * rowBytes). Its height must not exceed 
the number of rows in the bit image. 

7. Any bits of the bit image that lie beyond the right or bottom edge of 
the boundary rectangle are ignored. 

8. The global variable ScreenBits holds the screen map, a bit map 
representing the Macintosh screen. 

9. The screen map's bit image is the screen buffer in memory; its row 
width is 64 bytes (512 bits); its boundaiy rectangle extends from coor
dinates (0, 0) at the top-left to (512, 342) at the bottom-right. (These 
values may differ on large-screen displays or on future models.) On a 



159 (4.2.1) Bit Maps 

Macintosh XL, its row width is 90 bytes (720 bits) and its boundary 
rectangle extends from (0, 0) to (720, 364). 

10. To access the screen map in assembly language, find the pointer to 
QuickDraw's globals at the address contained in register AS, then 
locate the variable relative to that pointer using the offset constant 
ScreenBits (below). See Chapter 3 and (4.3.1, note 4] for further discus
sion. 

I C]I Assembly Language Information ---11!:1....,__ _____ _ 
Field offsets in a bit map: 

(Pascal) <Assembly) 
Field name Offset name 

baseAddr baseAddr 
row Bytes rowBytes 
bounds bounds 

Assembly-language constant: 

Name Value 

BitMapRec 14 

QuickDraw global variable: 

Name Offset in bytes 

Screen Bits -122 

Meaning 

Offset in bytes 

0 
4 
6 

Size of bit map record in bytes 

Meaning 

Bit map for Macintosh screen 



160 QuickDraw Fundamentals 

4 . .2 • .2 Graphics Ports 

type 
Graf Ptr = "Graf Port; 

Graf Port = record 
device : INTEGER; 
portBits : BitMa.p; 
portRect : Rect; 
visRgn : RgnHandle; 
clipRgn : RgnHandle; 
bkPat : Pattern; 
filf Pat : Pattern; 
pnloc : Point; 
pnSize : Point; 
pnMode : INTEGER; 
pnPat : Pattern; 
pnVis : INTEGER; 
txfont : INTEGER; 
txface : Style; 
txMode· : INTEGER; 
txSize : INTEGER; 
spExtra : Fixed; 
fgColor : LONGtNT; 
bkColor : LONGINT; 
colrBit : INTEGER; 
patStretch: INTEGER; 
picSave : Handle; 
rgnSave : Handle; 
polySave : Handle; 
graf Pro cs : ODProcsPtr 

end; 

{Device code for font selection [8.3.1}} 
{Bit map for this port} 
{Port rectangle} 
(Visible region} 
{Clipping region'} 
{Background pattern [5.1.1] l 
{Fill pattern for shape drawing [5.1.1]} 
{Current pen location in local coordinates [5.2.1]} 
{Dimensions of graphics pen [5.2.1]} 
£Transf~r mode for graphics pen [5.1.3, 5.2.1]} 
{Pen pattern for line drawing [5.1.1, 5.2.1]:} 
{Pen visibility level [5.2.3]} 
{Font ·number for text[8.2.1, 8.3.1]} 
{Type style for text [8.3.1)} 
{Transfer mode .for text [5.1.3, 8.3.1]} 
{Type $ize for text [8.3.1ll 
{Extra space between words [8.3.1]} 
{foreground color} 
{Background color} 
{Color plane} 
{Priv~tel 
{Private} 
{Private] 
{Private} 
{Pointer to bottleneck procedures (note 15.)} 

~~iiii~·=::::i~------N-o_i_es--------------------------------------
1. A graphics port is a complete drawing environment containing all 

the information needed for QuickDraw drawing operations. 

2. Graphics ports are nonrelocatable objects in the heap and are always 
referred to by simple pointers rather than handles. 



161 [4.2.2] Graphics Port 

3. portBits is the bit map that this graphics port draws into. 

4. The port's boundary rectangle is the same as that of its bit map, 
portBits.bounds. 

S. portRect is the port rectangle, the portion of the bit map that the port 
draws into, in local coordinates. 

6. visRgn is the port's visible region, the portion of the port rectangle 
cmrently exposed to view on the screen. It's maintained privately by 
the Toolbox to keep track of overlapping windows; never attempt to 
manipulate this field yourself. 

7. clipRgn is the clipping region, provided for general-purpose use by the 
application. 

8. All drawing in a port is clipped to the intersection of the port's 
boundary rectangle, port rectangle, visible region, and clipping 
region. 

9. bkPat and fillPat are the port's background pattern and fill pattern, 
used in shape drawing; see [5.1.1]. 

10. pnloc, pnSize, pnMode, and pnPat are characteristics of the graphics pen, 
used in line drawing; see [5.2.1]. 

11. pnVis is the pen level, which controls whether the pen is visible on 
the screen; see [5.2.3]. 

12. device, txFont, txFace, txMode, txSize, and spExtra are the port's text charac
teristics, which control the drawing of text characters; see [8.3.1]. 

13. fgColor, bkColor, and colrBit are the port's color characteristics, used to 
control drawing on a color display or printer; see Volume Four for 
further information. 

14. patStretch, picSave, rgnSave, and polySave are used privately by the Tool
box. 

15. grafProcs is a pointer to the port's low-level drawing procedures 
(sometimes called "bottleneck procedures"). These procedures are 
used to "customize" QuickDraw operations; see Volume Three for 
further information. 



162 QuickDraw Fundamentals 

~81 Assembly Language Information 

Field offsets in a graphics port: 

(Pascall (Assembly I 
Field name Offset name Offset in bytes 

device device 0 
portBits portBits 2 
portRect portRect 16 
visRgn visRgn 24 
clipRgn clipRgn 28 
bk Pat bk Pat 32 
fill Pat fill Pat 40 
pnloc pnloc 48 
pnSize pnSize 52 
pnMode pnMode 56 
pnPat pnPat 58 
pnVis pnVis 66 
txFont txFont 68 
txFace txFace 70 
txMode txMode 72 
txSize txSize 74 
spExtra spExtra 76 
fgColor fgColor 80 
bkColor bk Color 84 
colrBit colrBit 88 
patStretch patStretch 90 
picSave picSave 92 
rgnSave rgnSave 96 
polySave polySave 100 
graf Pro cs grafProcs 104 

portBits.bounds portBounds 8 

Assembly-language constant: 

Name Value Meaning 

portRec 108 Size of graphics port record in bytes 



163 (4.2.3] Pixel Access 

4.2.3 Pixel Access 

~~--iiiiiiiiol ..... ________ n_e_fini __ ·_n_o_ns_· ____________________________________ ___ 

(unction GetPixel 
(hCoord : l:NTE~ER; 
· vcoord .; rNTEGER) · 

(Horizontal coordinate ol.Pi.~el} 
{Vertfcal coordinafe of piX&ll 
Us it a black pixel?) :· BOOLEAN;: -

~~iii~:::::1.--------N-o_i_e_s __________________________________ ___ 

1. GetPixel returns the state of a designated pixel in the current graphics 
port. 

2. hCoord and vCoord are expressed in the local coordinate system of the 
current port. The pixel returned will be the one immediately below 
and to the right of these coordinates. 

3. The function result is TRUE for a black pixel, FALSE for a white one. 

4. For a graphics port on the screen (such as a window), the result is 
meaningful only if the given coordinates lie within the port's visible 
region. 

~li:ll~-------As-·· .. _se __ m_h_IY ...... ~_-__ ._._#_.~_,:lid_. _,o_•_~n_•_no_~-·_n ______________ ___ 

Trap macro: 

fPascaD 
·Routine name 

GetPixel 

(Asseml>Iy> 
Trap macro 
_GetPixel 

Trap word 

$A865 



164 QuickDraw Fundamentals 

4.3 Operations on Graphics Ports 

~1111~-------n-e_fini __ n_·o_n_s ____________________________ ___ 

procedure lnitGraf 
(globalVars : Ptr); {Pointer to QuickDraw global variabtes} 

var 
The Port 
White 
Black 

: Graf Ptr; 
: Pattern; 
: Pattern; 
: Pattern; 
: Pattern; 
: Pattern; 
: Cursor; 
: BitMap; 

{Pointer to current port [4.3.3]} 
{Solid white pattern [5.1.2)1 
{Solid black pattern (5.1.2]} 
{Medium gray pattern (5.1.2)1 
{Light gray pattern [5.1.2)1 

Gray 
LtGray 
DkGray 
Arrow 
Screen Bits 
Rand Seed : LQN,GINT; 

mark gray pattern (5.1.2]1 
{Standard arrow cursor [11:2.5.2]} 
{Bit map for Macintosh screen (4.2.1]1 
{Seed for random number generation (2.3.8]1 

~~iiiiR:::::::i1--------N-o_t_es--------------------------------------
1. lnitGraf must be called before any other QuickDraw operation, to initial

ize QuickDraw's global variables and internal data stru~tures. 

2. globalVars is a pointer to an area in memory where QuickDraw can 
store its global variables. 

3. In Pascal, globalVars should always be set to @ThePort. 

4. In assembly language, QuickDraw' s global variables can be placed 
anywhere in memory where enough space is available. The parameter 
passed to lnitGraf must be the address of the last global variable, ThePort, 
in the last 4 bytes of the space reseived for the globals. lnitGraf will 
store this pointer at the address contained in register AS; all the other 
globals can then be found at negative offsets relative to this pointer, 
using the offset constants given in the table below. See Chapter 3 for 
further discussion. 

5. The number of bytes needed for QuickDraw's globals is defined by 
the assembly-language constant GrafSize. 

6. Don't call lnitGraf more than once in the same program. 



165 [4.3.2) Creating and Destroying Ports 

IOI Assembly Language Information --1ILI..,.._ _____ _ 
Trap macro: 

(Pascal) 
Routine name 

lnitGraf 

(Assembly) 
Trap macro 

_lnitGraf 

Trap word 

$A86E 

Assembly-language constant: 

Name Value 

Graf Size 206 

Meaning 

Size in bytes of QuickDraw 
global variables 

QuickDraw public global variables: 

Name Offset in bytes Meaning 

The Port 0 Pointer to cwrent port 
White -8 Solid white pattern 
Black -16 Solid black pattern 
Gray -24 Medium gray pattern 
LtGray -32 Light gray pattern 
DkGray -40 Dark gray pattern 
Arrow -108 Standard aITOW cursor 
Screen Bits ~122 Bit map for Macintosh screen 
RandSeed -126 Seed for random number generation 

4.3.2 Creating and Destroying Ports 

~lioiiiiiiiiiiiiiii~---------1)-e_fln __ i_n_o_ns ______________________________________ __ 

procedure OpenPort 
(which Po.rt .: Graf Ptr); {Pointer to port to open} 

procedure lnitPort 
(whichPort :'Graf Ptr); {Pointer to port to initialize} 

procedure ClosePort 
(which Port : Graf Ptr); {Pointer to port to close} 



166 QuickDraw Fundamentals 

Initial values of Graf Port fields: 

Field 

device 
portBits 
portRect 
visRgn 

clipRgn 

bk Pat 
fill Pat 
pnloc 
pnSize 
pnMode 
pnPat 
pnVis 
txfont 
txface 
txMode 
txSize 
spExtra 

Initial value 

0 (screen) 
Copy of Screen Bits [4.2.1] 

(0, 0) to (512, 342) 

Rectangular region (0, 0) to 
(512, 342) 

Rectangular region (-32768, -32768) 
to (32767, 32767) 

White [5.1.2] 

Black [5.1.2] 

(0, 0) 

(1, 1) 

PatCopy [5.1.3] 

Black [5.1.2] 

0 (visible) (5.2.3) 

0 (system font) [8.2.1] 

Plain (8.3.1] 

SrcOr (5.1.3] 

0 (standard size) [8.3.1] 

0 

~~~iiiii~---------N_o_t_e_s __________________________________ __ 
t. OpenPort initializes a graphics port and opens it for use; lnitPort reini

tializes a port that's already been opened.

2. Both routines set the fields" of the Graf Port record to their standard
initial values, as shown in the table.

3. In both cases, the designated port becomes the current port.

4. The bottom-right coordinates of portRect and visRgn reflect the actual
width and height of the screen. These values may vary from those
shown, depending on the model of Macintosh and the display device
being used.

5. OpenPort allocates space for the port's internal data structures (the
visible region and clipping region); lnitPort does not.

6. The Graf Port record representing the port must already have been
allocated previously with NewPtr [3.2.1].

7. ClosePort destroys a port's internal data structures (visible region and
clipping region), but not the Graf Port record itself.

167 (4.3.3] Current Port

8. Call this routine to deallocate the space occupied by the visible and
clipping regions before deallocating the port itself with DisposPtr [3.2.2].

IOI Assembly Language Information
-1ILl.,..._.._------

Trap macros:
(Pascal)
Routine name

OpenPort
lnitPort
ClosePort

4.3.3 Current Port

(Assembly)
Trap macro

_Open Port
_lnitPort
_ClosePort

Trap word

$A86F
$A860
$A87D

I I Definitions
---1~..,.._ _____ _

procedure SetPort
(newPort : Graf Ptr); {Pointer to port to be made current}

procedure GetPort
(var curPort : Graf Ptr); {Returns pointer to current port}

var
The Port : Graf Ptr; {Pointer to current port}

~~iiiR~..,_ ______ N_o_t_e_s ____________________________________ __

1. SetPort makes a designated graphics port the current port; GetPort
returns the current port.

2. Most QuickDraw operations apply implicitly to the current port.

3. A port must be opened with OpenPort [4.3.2] before it can be made
current with SetPort.

4. The global variable ThePort always contains a pointer to the current
port.

5. To access variable ThePort in assembly language, find the pointer to
QuickDraw's globals at the address contained in register AS; this
pointer leads directly to ThePort. See Chapter 3 and [4.3.1, note 4] for
further discussion.

168 QuickDraw Fundamentals

IOI Assembly Languag~ Information ---1&:11..,___ _____ ----..-
'Irap macros:
(Pascal)
Routine name

SetPort
GetPort

'lAs8embly)
Trap macro

.... SetPort
-:GetPort

QuickDraw global variable:

Name otfset in bytes Meaning

~pword

$A873
·$A8:74

ThePort 0 Pointer to ~ntport

4.3.4 Bit Map and Coordinate System

~1111111~-------D-e_nn_i_do_.n_s ________________________ _....._,.__ ___
procedure SetPortBits

(theBits : BitMap); {New bit map for current p·ortl

pronedure SefOrigin
(hOrigin : INTEGER; {New hQ"rizontal coQrdioateof port rectangle}
vOrigin : INTEGER); {New vertical coordinate of port recta:ngle}

~~iii1M·~1i--------N-o_i_e_s ____________________________________ __

1. SetPortBits assigns a new bit map to the current port.

2. The bit map theBits is stored into the port's portBits field (4.2.2].

3. The rectangle theBits.bounds becomes the port's boundaiy rectangle and
establishes a new local coordinate system for the port.

4. SetOrigin changes the local coordinate system of the current port so as
to give the top-left comer of its port rectangle (not its boundary
rectangle!) the local coordinates hOrigin and vOrigin.

5. The bottom-right comer of the port rectangle, as well as the boundary
rectangle and the visible region, are adjusted to keep the same spatial
relationships relative to the port rectangle's new origin.

169 (4.3.5] Port Rectangle

6. The port's clipping region and pen location are not adjusted. Their
coordinates remain unchanged, but are now interpreted relative to
the new coordinate system; this changes their spatial positions rela
tive to the port rectangle.

7. SetOrigin has no visible effect on the screen.

8. A port's initial bit map (after OpenPort or lnitPort [4.3.2)) is a copy of the
screen map ScreenBits (4.2.1). Its initial boundary rectangle, port rec
tangle, and visible region all extend from coordinates (0, 0) at the top
left to the dimensions of the screen at the bottom right.

9. The trap macro for SetPortBits is spelled _SetPBits.

f DI Assembly Lan~e.hlformation --1&:1..,..___ _____ _
Trap macros:

(Pascal)
Routine name

SetPortBits
SetOrigin

,(Assembly)
Trap macro

_.SetPBits
· _SetOrigin

Trap word

$A875
$A878

4.3.5 Port Rectangle

I Definitions

---1 --:----------------------------------
p r o c e du re MovePortTo

(leftGlobal : INTEGER;
topGlobal : INTEGER);

procedure Po rtSize
(portWidth : INTEGER;
portHeight : INTEGER);

{New left edge of port rectangle in global coordinates}
{New top edge of port rectangle in global coordinates}

{New wldth, o.f port rectangle}
{New height of port rectangle}

~~liiiiR:::::::i1--------N-o_t_es--------------------------------------
1. MovePortTo moves the current port's port rectangle to a new position

within its bit map.

2. leftGlobal and topGlobal are the new global coordinates of the port
rectangle's top-left comer, and will be converted to the port's local
coordinate system.

170 QuickDraw Fundamentals

a. The bottom-right comer of the port rectangle is adjusted so that its
width and height remain the same.

4. Unlike SetOrigin (4.3.4], MovePortTo does not affect the port's coordinate
system; it simply moves the port rectangle to a new location within
the existing coordinate system.

5. PortSize adjusts the size of the cuirent port's port rectangle.

6. The coordinates of the port rectangle's bottom-right comer are ad
justed to give it the new dimensions portWidth and portHeight. The top-left
comer of the rectangle is unchanged.

7. These routines are used by the Toolbox to move and size windows
on the screen; application programs normally have no need for them.

8. Neither routine has any immediate visible effect on the screen.

9. A port's initial port rectangle (after OpenPort or lnitPort (4.3.2]) extends
from coordinates (0, 0) at the top left to the dimensions of the screen at
the bottom right.

IOI Assembly Language Information --1ILll...,_ ____________ _
Trap macros:
(Pascal)
Routine name

MovePortTo
PortSlze

4.3.6 Clipping Region

(Assembly)
Trap macro

-MovePortTo
_PortSlze

Trap word

$ABn
$AQ7a.

~~--... .--------·-n_e_&nid __ · __ o_n_s _______ ________________________ ~-----
p r o c e du re SetClip

(newCUp : RgnHandle}; {Handle to new clipping region}

procedure ClipRect
(newClip : Rect): {~ectangle defining new clippt11gr~UJiQn}

procedure GetClip
(curClip : RgnHandle}; {Handle to current clipping region}

171 [4.3.6] Clipping Region

~~iiiilR~1--------N __ o_te_s ____________________________________ __

1. SetClip sets the current port's clipping region to a specified region,
which can be of any shape; ClipRect sets it equivalent to a given
rectangle.

2. The handle in the port's clipRgn field is unchanged, but its master
pointer is set to point to the new clipping region.

3. SetClip copies the region designated by newClip, rather than using the
region itself

4. The new clipping region or rectangle is expressed in the port's local
coordinate system.

5. GetClip returns the current port's clipping region in the handle curClip.

8. The handle itself is unchanged, but its master pointer is set to point
to a copy of the port's clipping region.

7. A port's initial clipping region (after OpenPort or lnitPort (4.3.2]) extends
from coordinates (-32768, -32768) at the top left to (32767, 32767) at the
bottom right.

~~l~-------'As_•_se_m __ b-ly_·~----·~·~··~~·~e-'~Info--.1-~•_"_afio_·_n_. ______________ __

TraP mapros:
(Pascal)
Routine nal1le

SetCllp
CtlpRect
GetClip

.(Assembly)
Trap macro

_setCHp
.-ClipRect
-.GetClip

~pword

iAB79.
:SAa7B.; .
$A87A

172 QuickDraw Fundamentals

4.4 Calculations on Graphical Entities

4.4.1 Calculations on Points

I Definitions

--1----------------------------
p r o c e du re AddPt

(addPoint : Point;
var toP,oint : Point);

procedure SubPt
(subPoint : Point;
var tromPoint : Point);

function DeltaPoint
(fromPoint : Point:
subPoint : Point)
: LONGINT;

function Equal Pt
(point1 : ·Point;
point2 : Point)
: BOOLEAN;

{Pointto be added}
{Pointto add it to}

{Point to be subtracted}
(Point to subtract it fr~m}

(Point to subtract from,}
{Point to be subtracted}
{Difference between points}

(First point to be compared}
(Second point to be compared}
(Are they equal?} ·

~~lii~==t--------N-o_t_e_s ____________________________________ _

1. AddPt adds one point to another; SubPt subtracts one point from
another.

2. The horizontal and vertical coordinates of the two points are added
or subtracted independently.

3. The coordinates of the second point are set to the calculated results;
the first point is unaffected.

4. DeltaPoint also subtracts one point from another, but returns the dif
ference as a function result rather than through a variable parameter.

S. Although nominally a long integer, the result is actually a Point record
[4.1.1], with the vertical difference in the high-order word and the
horizontal difference in the low.

8. Equal Pt compares two points for equality and returns a Boolean result.

7. DeltaPoint and EqualPt leave both points unchanged.

173 (4.4.2) Coordinate Conversion

IOI Assembly Lan~ge Information
-llI:lr--------------------

Trap ~macros:
(~
Bo~fine:name

Add Pt
Sub_Pt
DeltaPoint
EqualPt

(Assembly)
Tra,pmacro

~ddPt
..... sub Pt
_neltaPoint
--Equal Pt

4.4.2 Coordinate Conversion

Thapword

$AS7E
$A87F
$A94F
$A881

~~iiiiiiiiiiii~-----------o_e_finiti __ ._ .. ~_o_n_s ____________________________________ ___

pro~edute L:ocalTO.Glob:al 1

(vat th&PoJnt ·~ Point); {Point to be '<mnverted}

proced11re GlobalToLocal
(v,ar th:Q·PoJot : :8oint); {Point to be converted}

~~Aiii~ti--------N-o_t_e_s __________________________________ ___
1. These two routines convert a point between local and global coor

dinates.

2. The local coordinate system involved is always that of the current
port.

3. In the local coordinate system, the top-left comer of the port's bit
image has the coordinates given by the top-left comer of the boundaiy
rectangle.

4. In the global coordinate system, the top-left comer of the bit image
has coordinates (0, 0), independent of the boundaiy rectangle. This
provides a convenient basis of comparison between different ports
sharing the same bit image, such as the screen.

5. To convert a point from one port's coordinate system to that of
another, make the first port current with SetPort [4.3.3], convert the
point from local to global coordinates, make the second port current,
and convert from global to local coordinates.

17 4 QuickDraw Fundamentals

6. To convert a rectangle, polygon, or region from one coordinate system
to another, use OffsetRect [4.4.4), OffsetPoly [4.4.6), or OffsetRgn [4.4.7).

IOI Assembly Language Information
--1ILl--------------

Trap macros:
(Pascal)
Routine name

LocalToGlobal
GlobalTolocal

(Assembly)
Trap macro

_LocalT oGlobal
_GlobalTolocal

Trap word

$A870
$AQ71

4.4.3 Testing for Inclusion

function PtlnRect
(thePoint : Point;
theRect : Rect)
: BOOLEAN;

function PtlnRgn
(thePoint : Point;
theRegion : RgnHandle)
: BOOLEAN;

function RectlnRgn
(theRect : Rect;
theRegion : RgnHandle)
: BOOLEAN;

function Pin Re ct
(thePoint : Point;
theRect : Rect)
: LONGINT;

{Point to be tested}
{Rectangle to test it against}
fls the point in the rectangle?}

{Point to be tested}
{Handle to region to test it against}
{Is the point in the region?}

{Rectangle to be tested}
{Handle to region to test it against}
{Does the rectangle intersect the region?}

{Rectangle to pin to}
{Point to be pinned}
{Point pinned to rectangle}

175 (4.4.3] Testing for Inclusion

~~liil~=::l1--------N-o_t_e_s __________________________________ ___

1. PtlnRect and PtlnRgn test whether a given point lies inside a given rectan
gle or region.

2. The test actually applies not to the point itself, but to the pi~el just
below and to the right of it. For example, PtlnRect will return TRUE if the
given point lies on the top or left edge of the rectangle, but FALSE if it's
on the right or bottom edge (since the corresponding pixel is then
outside the rectangle).

3. RectlnRgn tests whether a given rectangle and region intersect. It returns
TRUE if there is at least one pixel that lies inside both the rectangle and
the region, FALSE if they have no pixels in common.

4. PinRect "pins" a point to a designated rectangle: that is, if the point lies
outside the ~ctangle, PinRect converts it to the nearest point along the
rectangle's boundaiy.

5. If the point is already inside the rectangle, it's returned unchanged.

6. The resulting point is returned as a long integer, with its vertical coor
dinate in the high-order word and its horizontal coordinate in the low
order word. Use HiWord and LoWord [2.2.3] to extract the coordinates, or
typecasting (Chapter 2) to convert the long integer to a Point.

IOI Assembly Langwtge Information
1u:1----------

Trap macros:

(Pascall
Routine name

PtlnRect
PtlnRgn
RectlnRgn
PinRect

(Assembly)
Trap macro

_PtlnRect
_PtlnRgn
_RectlnRgn
_PinRect

Trap word

$ABAD
$A8E8
$A8E9
$A94E

176 QuickDraw Fundamentals

4.4.4 Calculations on One Rectangle

~11111..._ ______ n_e_fini __ ·n-·o_n_s __________________________ ~----

procedure OffsetRect
(var theRect : Rect;
hOffset : INTEGER;
vOffset : INTEGE.R);

procedure lnsetRect
(var theRect : Rect;
hlnset : INTEGER;
vlnset : INTEGER);

function EmptyRect
(theRect : Rect)

: BOOLEAN;

{Rectangle to be off~et}
{Horizontal offset in pixels}
{Vertical offset in pi~els}

{Rectangle to be inset}
{Horizontal inset in pixels}
{Vertical inset in pixels}

{Rectangle to be tested}
{Is the rectangle empty?}

~~iiiR=3t--i------N-o_t_e_s __________________________________ __

1. OffsetRect moves a rectangle to a new position within its coordinate
system without affecting its width and height.

2. The given horizontal and vertical offsets are added to both the
rectangle's top-left and bottom-right comers.

3. A positive horizontal offset moves the rectangle to the right, negative
to the left; a positive vertical offset moves the rectangle downward,
a negative one moves it upward.

4. This operation is useful for transforming a rectangle from one coor
dinate system to another.

5. lnsetRect shrinks or expands a rectangle while leaving it centered at
the same position.

6. The given horizontal and vertical insets are added to the rectangle's
top-left comer and subtracted from its bottom-right comer.

7. A positive inset in either dimension shrinks the rectangle in that
dimension; a negative inset expands it.

8. If the rectangle becomes empty (right ::::;; left or bottom ::::;; top), all four
of its coordinates are set to 0.

9. EmptyRect tests whether a rectangle is empty.

10. None of these operations has any visible effect on the screen.

177 [4.4.5) Calculations on Two Rectangles

IOI Assembly Language ·information
---lm:lt---------

Trap macros:
(Pascal)
Routine name

OffsetRect
lnsetRect
EmptyRect

(Assembly)
'Irap macro

.;OffsetRect
JnsetRect
_EmptyRect

4.4.5 Calculations on Two Rectangles

'Irapword

$A8A8
$A8A9
$A8AE

~1111~-------n_e_iini __ ·o_·o_n_s ____________________________ ___

prQcedure UnionRect

function

function

(rect1 : Rect;
rect2 : Rect;
var resultRect: Rect); ..

SectRect
(rect1 : Rect;
rect2 : Rect;
var resultRect ;: Rec.t)
: BOOLEAN;

EqualRect
(rect1 : Rect;
rect2 : Rect)
: BOOLEAN;

{First rectangle}
{Second rectangle}
{Returns union of two rectangles}

·{First rectangle}
{Second rectangle}
lReturns intersection of two rectangles}
{Do the rectangles intersect?}

{First rectangle}
{Second rectangle}
{Are the rectangles equal?}

~~Riiii==..,_ _______ N_o_te_s ______________________________________ _

1. UnionRect forms the union of two rectangles, the smallest rectangle that
completely encloses both of them.

2. SectRect forms the intersection of two rectangles, the largest rectangle
completely enclosed within both of them.

3. SectRect returns a Boolean result telling whether the intersection of the
two rectangles is nonempty (encloses at least one pix.el).

178 QuickDraw Fundamentals

4. If the intersection is empty, all four coordinates of resultRect will be set
to 0.

5. EqualRect tests whether two rectangles are equal (agree in all four
coordinates).

6. For any of these routines to produce meaningful results, both rect
angles must be expressed in the same coordinate system.

7. None of these operations has any visible effect on the screen.

IOI Assenibly Language lntormation
-1llLll......_------...-

Trap iµacros:
(Pascal)
Routine name

UnionRett
SectRect
EqualRect

(Assembly)
Trap macro

~UnlonRect

-8ectRect
._EqualRect

4.4.6 Calculations on Polygons

I Definitions

Trap word

SA8AB
$A8AA
$~8A6

-1 __:--------------------------~-
p r o c e du re OffsetPoly

(thePolygo,n : PolyHandle; {Polygon: to be offset}
·hOffset : INTEGER; (Horizontal offset irn pixels}
vOff~et ; INTEGER); (Vertical offset in pixels}

~~iiiiiiiR==1--------N_o_t_e_s __________________________________ __

1. OffsetPoly moves a polygon to a new position within its coordinate
system without affecting its shape and size.

2. A positive horizontal offset moves the polygon to the right, negative
to the left; a positive vertical offset moves the polygon downward, a
negative one moves it upward.

3. This operation is useful for transforming a polygon from one coor
dinate system to another.

4. The operation has no visible effect on the screen.

179 (4.4.7] Calculations on One Region

lDI Assembly Language Infol!,lDation
-llLJ------------

Trap macro:
(Pascal)
Routine •naDle~

(A.fisembly)
Tr«lP ll1acro c ·Trap word

OlfsetPoly _OffsetPoly $A8CE

4.4. 7 Calculations on One Region

procedure OffsetRg n
. (theRegio.n : .. RghMandJe;

'hO.ffset : INTEGER;
vOffset : JNTEGER);

procedur~ I n.seJRgn ·
(theRegion :·RgnHandl:e;
hlnset : INTEGER;
vlnset : INTEGER);

function EmptyRgn
(theRegion : RgnHandle)

: BOOLEAN;

:tHaodle. to region to be offset}
{Horizontal offset in ,pixels}
Wertical offset in. pixels}

·{Handle to region to be inset}
tHo.rizontal inset in pixels}
{Vertical inset in pixels}

{Handle to region to be:tested}
{Is the region empty?}

~~iii~~----------N-o-te_s ____________________________________ __

1. OffsetRgn moves a region to a new position within its coordinate system
without affecting its shape and size.

2. A positive horizontal offset moves the region to the right, negative to
the left; a positive vertical offset moves the region downward, a
negative one moves it upward.

180 QuickDraw Fundamentals

3. This operation is useful for transforming a region from one coordinate
system to another.

4. lnsetRgn shrinks or expands a region while leaving it centered at the
same position.

5. All coordinates in the region's definition are moved inward (toward
the center) by the given horizontal and vertical insets.

6. A positive inset in either dimension shrinks the region in that dimen-
sion; a negative inset expands it.

7. EmptyRgn tests whether a region is empty.

8. None of these operations has any visible effect on the screen.

9. The trap macro for OffsetRgn is spelled _OfsetRgn.

IOI Assembly Language Information
--ilLl-----------.--

Trap macros:
(Pascall
Routine name

OttsetRgn
lnsetRgn
EmptyRgn

(Assembly)
Trap.macro

~OtsetRgn

_lnsetRgn
_EmptyRgn

Trapword

MaEo
$A~E1

$/WE2

procedure

procedure

procedure

function
•

181 (4.4.8) Calculations on Two Regions

4.4.8 Calculations on Two Regions

UnionRgn
(region1 : RgnHandle;-
region2 : RgnHandle;
resultRegion : RgnHandle);

SectRgn
(region1 : R.gnHandle;
region2 : RgnHandl.e;
resultRegion : RgnHandle);

DiftRgn
(region1 : RgnHandle;
region2 : RgnHandle;
resultRegion : RgnHandl.e};

XOrRgn
(region1 : RgnHandle;
region2 : RgnHandle;
resultRegion : RgnHandte);

EqualRgn
(region1 : RgnHandle;
region2 : RgnHandle)
: BOOLEAN;

{Handle to first region}
{Handle to se'cond region}
{Handle- to be set to union of two regions'}

{Handle, ;to first region}
{Han~le to second region}
{Hand-le to be_ set to intersection of two regiof)s}

{Handle to region to be subtracted from}
{Handle to region to $Ubtract from it}
{Handle to be> set to diff.erence of two re~ionsJ

{Handle to first region}
{Handle to Second rngjon}
{Handle to be set to 0 exclusive or" of two regions}

{Handle to first region}
{Handle to second region}
{Are the regions equal?}

~~~iii=::1~------N_o_t_e_s __________________________________ ___ 

1. UnionRgn forms the union of two regions, the smallest region that 
completely encloses both of them. 

2. SectRgn forms the intersection of two regions, the largest region 
completely enclosed within both of them. 

3. DiffRgn forms the difference of two regions, the portion of the first 
region that doesn't lie within the second. 

4. XOrRgn forms the "exclusive or" of two regions, the difference between 
their union and intersection. 

5. In each case, the destination region resultRegion must already have 
been previously created with NewRgn [4.1.6]. 



182 QuickDraw Fundamentals 

6. In each case, if the result of the calculation is the empty region, 
resultRegion will be set to a rectangular region with all four coordinates 
equal to 0. 

7. EqualRgn tests whether two regions are equal (have the same shape, 
size, and location). 

8. Any two empty regions are considered equal. 

9. For any of these routines to produce meaningful results, both regions 
must be expressed in the same coordinate system. 

10. None of these operations has any visible effect on the screen. 

ln=BI Assembly Language Information 
-it!:l....--------

Trap macros: 

(Pascall 
Routine name 

UnionRgn 
SectRgn 
DiffRgn 
XOrRgn 
EqualRgn 

(Assembly) 
Trap macro 

_UnionRgn 
_sectRgn 
_DiffRgn 
_xorRgn 
_EqualRgn 

Trap word 

$A8E5 
$A8E4 
$A8E6 
$A8E7 
$A8E3 



183 [4.4.9) Scaling and Mapping 

4.4.9 Scaling and Mapping 

l Deiioinons 
---1.....__....----------

. proc11dura S~~lePt 
.{;y,ar the.P()i'nt ~ 'RC>.iot; 
tromRect · :·Rict; 
toRect : Rect); 

procedure MapPt 
{var thePoJnt :· ·Point; 
fr.om Beet : ;ij_ect: 
toRect : 1Rec,t).; 

procedure MapRect 
(v~r the.Rect : RrQC1l 
fromRect · : Rect; 
to_Rect : R~ct)~ 

procedure MapPoly 
(thePolygon : PoJyHandle; 
fromRect : Re.~t; 
toRect : Rect); 

procedure MapRgn 
(theRegion : Rg.nHandle; 
fromRect : Rect; , 
toRect : Rect); 

(Point to be scaled} 
{Rectangle to scale it from} 
[Rectangle to scale it to} 

{Point to be mapped} 
{Rectangle to map it from} 
{Rectangle to map it to} 

{Rectangle to be mapped} 
{Rectangle to map it from} 
{Rectangle to map it to} 

{Polygon to be mapped} 
{Rectangle to map it from} 
{Rectangle to map it to} 

{Region to be mapped} 
{Rectangle to map it from} 
{Rectangle to map it to} 

~~iiiiiiR·==w.._ ______ N_o_i_e_s __________________________________ __ 

1. ScalePt scales a point by the ratio of the dimensions of two rectangles. 

2. Each coordinate of thePoint is scaled by the ratio of toRect to fromRect in 
the corresponding dimension. That is, the horizontal coordinate of 
the point is multiplied by the ratio of the rectangles' widths, and the 
vertical coordinate by the ratio of their heights. 

3. MapPt maps a point in one rectangle to the corresponding point in 
another. 

4. The mapping takes into account both the ratio of the rectangles' 
dimensions and the offset between their top-left comers. The effect is 
as if rectangle fromRect were moved and stretched or shrunk to coin
cide with toRect. 



184 QuickDraw Fundamentals 

5. MapRect, MapPoly, and MapRgn map an entire figure from one rectangle 
to another by mapping each point of the figure as in MapPt. 

6. In each case, the figure should be entirely contained within the 
rectangle fromRect. 

I C]I Assembly Language Information ---ilrl...,_ _____ _ 
Trap macros: 

(Pascal) !Assembly) 
Routine name Trap macro Trap word 

Scale Pt _ScalePt $A8F8 
MapPt _Map Pt $A8F9 
MapRect _MapRect $A8FA 
MapPoly _MapPoly $A8FC 
MapRgn _MapRgn $A8FB 



CHAPTER 
§0'~5~,; _________ __ -· :' -'····'·'·'.,.., .. , ...... , .... ,,.'-'·'''-''':'' 
Quick on the Draw 

OrickDraw places a wide variety of drawing facilities at your 
disposal. You can draw 

• Lines, using a "pen" of any size and pattern (Figure 5-la), with a variety 
of graphical effects. 

• Shapes, including rectangles with square or rounded comers, circles, 
ovals, arcs, wedges, and polygons of any shape. All of these can be 
outlined with any pen or filled with any pattern (Figure 5-lb). 

• Regions made up of any combination of lines and shapes forming a 
closed area. A region can have any shape whatever-even one with two 
or more pieces or with holes in it. For instance, the shaded area in 
Figure 5-lc could be defined as a single region. 

• Te)(t characters in a variety of typefaces, sizes, and styles (Figure 5-ld). 

In addition, you can take any of these graphical elements and 
stretch or condense it to any desired proportions, horizontally, 
vertically, or both ways independently. You can "clip" one element 
to the boundaries of another-for instance, to make one object 
appear to be hidden behind another. (This is how the Toolbox 
makes the windows overlap on your screen.) And you can define 
pictures consisting of any combination of these elements and 
operations, which you can then treat as a unit and redraw in a 
single operation. 

185 



Line Drawing 

186 Quick on the Draw 

a. Lines 

-~~ 

lilili!ilili!ilililililililili!ilililililill . 

c. Regions 

Figure 5-1 QuickDraw graphical elements 

b. Shapes 

Here's 

text 
in a 

vai-te.ty of 
fonts, 

sizes and 
~i~n~~~ 

d . Text 

All line drawing in a graphics port is done with the graphics pen. 
Every port has its own pen; you draw lines in the port's bit map 
by moving the pen from point to point on the coordinate grid. 



187 Line Drawing 

The pen's cuirent location is kept in the pnloc field of the graphics 
port (4.2.2]; you can read it out at any time with the QuickDraw 
procedure GetPen (5.2.4]. 

The routines for drawing lines with the pen are Move, MoveTo, 
Line, and LineTo [5.2.4]. MoveTo simply moves the pen to a designated 
pair of coordinates, without drawing anything; it's like picking the 
pen up off the paper (that is, the bit map) before moving it. LineTo 
puts the pen down on the paper and then moves it from its 
current location to a new set of coordinates, drawing as it goes. 
The result is a straight line directly from one point to another. 
The pen is then left at the new location, ready to begin the next 
line. For example, the statements 

MoveTo ( 50, 50); 

LineTo (150, 50); 
LineTo (150, 150); 
LineTo ( 50, 150); 
LineTo ( 50, 50) 

draw a square 100 pixels on a side, with its top-left comer at 
coordinates (50, 50). 

Evelything ·the;pentdtaWS>is-Olipped to the intersection of the port's 
boun~ · rectangle~, pc>It '!'eCtangle, clipping region, and. visible: 
region· [4~2.2kThe:peJ). cwillyg9.anyWl)ere.you tell it on·the coordinate: 
,gi:id, even o.u~de m~sei bou~dafie~, but only those lines (or parts· 
of Ji~e.sl fha.t .. ~. itj~jde. th~ .. clippi~ boundaries will actually be 
~wn~ M~g ~a'(VO:. cmtside ·the clipping boundaries :is lost: 
even ·if you @ter enlarge th~ boundaries, the clipped parts of the 
dra~ wan'f reap~. · 

The procedures Move and Line are similar to MoveTo and LineTo, 
but interpret the coordinates you give as a motion relative to the 
cuITent pen location, rather than as an absolute location on the 
coordinate grid. A positive value for the horizontal coordinate 
moves the pen to the right, negative to the left; a positive vertical 
coordinate moves the pen downward, a negative one moves it 



188 Quick on the Draw 

upward. For example, the statements 

Move To 50, 50); {Move to starting poi ntl 

Line 100, 0); {Draw 100 pixels to the right, l 
Line o. 100); { 100 down, } 

Line (-100, 0); { 100 to the left, } 

Line 0, -100) { and 100 up } 

draw the same square as in the previous example. 

When you shift the origin of the coordinate system with SetOrlgin 
[4.3.4], the pen goes along for the ride. The coordinates of the pen 
remain unchanged, but those coordinates now lie at a new position 
within the port's bit map. The pen is said to "stick to" the coor
dinate system. Anything you've already drawn in the port, hawever, 
sticks to the image: the existing pixels, in the bit image rem$ the 
same, but the coordinates of each pixel change because of the 
change of origin. 

Program 5-1 shows a simple example of line drawing. 
Procedure StopSign draws the stop sign shown in Figure 5-2 into 
the current graphics port, at any specified location and to any 
specified scale. The parameters figureTop and figureleft locate the 
figure within the port's local coordinate system; scale gives the size 
of the scale units in which the figure is drawn. 

To simplify our drawing operations, we will temporarily 
transform the coordinate system to give the origin (that is, the 
top-left comer) of the figure the coordinates (0, Q). First we call 
GetPort (4.3.3] to get a pointer to the current port, which we use to 
find the origin of the port rectangle, 

currentPort" .portRect.topleft 

Before transforming the coordinates of this point, we first save it in 
the variable oldOrigin so that we can later restore the coordinate 
system to its original state. Then we use SetOrigin (4.3.4] to subtract 
the coordinates of the figure's origin, figureleft and figureTop, from 
those of the port rectangle's origin. This has the effect of subtract
ing these same two values from the coordinates of every other 



189 Line Drawing 

point in the port as well: in particular, it transforms the point 
(figureleft, figure Top), which will be the origin of the figure, to (0, 0) as 
we want. 

Now we're ready to draw the figure: first the octagonal outline 
of the stop sign, then the two horizontal lines, then each of the 
letters in tum. All our drawing operations are defined in terms of 
the specified scale unit; overall, the figure is 18 units wide by 18 
high. Finally, we restore the port's original coordinate system with 
SetOrigin and exit. 

arocgd.J![! StopSign CflgureTop : llTE&ER 
figurlleft : INTEGER; 
scalt : INTE&ER> ; 

< Eluple of si1ple line dra1ing. > 

!![ 
currentPort : &r1f Ptr; 
oldOrigin : Point; 

begig <StopSign> 

&etPort CcurrentPortJ; 
oldDrigin :m currentPortA.portRect.topleft; 
!i!b oldDrigin d! 

SetDrigin Ch - figureleft, v - figureTop>; 

lklvelo C 5 t scale, 0 J; 
line ( a • stilt, 0 >; 
Line C 5 t scale, 5 t sc1le>; 
line ( 0 , 8 a sc1le>; 
Line c-s a sc1le, 5 a scale>; 
Line C-8 a scale, 0 >; 
Line C-5 t 1c1le, -5 a scale>; 
Line c o , -a a scale>; 
Line ( 5 t scale, -5 a scale>; 

<Top edge of figure in lac1l coordinates> 
<Left edge of figure in local coordinates> 
<Size of scale unit in pixels> 

<Pointer to current part C4.2.2l} 
<Origin of port rectangle on entry C4.l.ll} 

<&et pointer to current port C4.3.3J) 
<Save old origin of port rectangle C4.2.2, 4.l.21> 

<Offset to origin of figure C4.3.4l> 

<Dr11 the octagon [5.2.41> 

Program 5-1 Line drawing 



190 Quick on the Draw 

"oveTo ( O , 5 a sc1le>; 
line <18 a scilt, 0 >; 
Ravelo ( 0 , 13 a scale>; 
line Cl8 a !Cale, 0 >; 

"oveTo ( 4 t scale, 7 a scale>; 
line (-2 a scale, 0 >; 
line ( 0 

' 
2 a scale>; 

line ( 2 a scale, 0 ) . 
' line ( 0 

' 
2 a scale>; 

line (-2 t scale, 0 ) ; 

"aveTa ( 7 a scale, 7 a scale>; 
line ( 0 , 4 a scale>; 
Rove (-1 a scale, -4 a scale>; 
line ( 2 a scale, 0 >; 

"aveTo (10 a scale, 7 l scale>; 
Line < 2 I scale, 0 ) ; 
line ( 0 

' 
4 l scale>; 

line (-2 a scale, 0 ) ; 
Line ( 0 , -4 I scale>; 

ftoveTo <14 a scale, 7 I scale>; 
line < 0 , 4 I scale>; 
"ove ( 0 , -4 I scale>; 
line < 2 I scale, 0 I; 
line ( O , 2 a scale>; 
line (-2 a scale, 0 >; 

!i1b aldOrigin d9 
SetUrigin <h, v> 

@nd; CStopSign> 

CDra1 the horizontal lines [5.2.41> 

CDra• the •s• £5.2.41> 

CDra• the •y• C5.2.4l} 

CDra• the •o• £5.2.41> 

<Draw the •p• C5.2.4J} 

{Restore old origin C4.3.4l} 

Program 5-1 (continued) 



191 Llne Drawing 

(5, o) (13, 0) 

(5, 18) (13, 18) 

All coordinates are 
expressed in scale units. 

Figure 5-.2 Output of procedure StopSign 

Pen Size 

The "pen point" that you draw with is always rectangular in 
shape, but it can be any size you like. When you open or reinitial
ize a graphics port, its pen is set to the finest possible point, 1 
pixel wide by 1 pixel high. You can then change its dimensions 
with the QuickDraw procedure PenSize [5.2.2]. For example, to make 
the pen 3 pixels wide by 7 high, you would write 

PenSize (3, 7) 

, '. :'·: . 

If you make;_ eithe~··~'µsiop of the pen zero or negative,. the pen 
vanishes colllplf3tely,·anrJ ~:g't:~w,anything at all. 

A port's pen location always refers to the top-left comer of 
the pen; the rest of the pen "hangs" below and to the right of 
those coordinates. It's important to keep this in mind when you 
use pen sizes bigger than (1, 1). Lines drawn with Line or LineTo 
don't necessarily end at the coordinates you specify: they extend 
to include the width and height of the pen as well. For example, 
in Figure 5-3, a line drawn from coordinates (65, 140) to (80, 145), 
using a pen 3 pixels wide by 7 high, will extend to coordinates (83, 
152), the bottom-right comer of the pen. 



192 Quick on the Draw 

3 pixels 

Figure 5-3 Pen size 

Hiding the Pen 

The pen draws into a port's bit image only when it's visible. It can 
also be hidden, in which case none of your drawing operations 
have any effect on the image. You can hide the pen with HidePen 
and later make it visible again with ShowPen (5.2.3]. These routines 
control the pen's visibility by manipulating the pnVis field of the 
current graphics port. 

You might think that pnVis would be a simple Boolean field: 
TRUE if the pen is visible, FALSE if it's hidden. Actually, it's an integer 
called the pen level: the pen is hidden if the pen level is negative, 
visible if it's zero or positive. The pen level is set to 0 when you 
open a new port, making the pen initially visible. HidePen decre
ments the level by 1, which hides the pen by making the pen level 
negative; ShowPen increments the level by 1, undoing the effect of 
the last HidePen. Notice that this doesn't necessarily cause the pen 
to become visible again: it just restores the pen level to whatever 
value it had before the pen was last hidden. In effect, the pen level 
counts how many times the pen has been hidden and not yet 
reshown. This allows calls to HidePen and ShowPen to be "nested" 
to any depth; only when every HidePen has been balanced by a 
corresponding ShowPen will the pen become visible again. 



193 Line Drawing 

This arrangement is useful for writing routines that leave the 
pen in the same state of visibility as when they found it. If a 
routine needs to hide the pen, it can restore the previous pen level 
by calling ShowPen before returning. If the pen was visible (PnVis = 
0) on entry to the routine, this will make it visible again; if it was 
already hidden (pnVis < 0), the routine will leave it hidden at the 
same depth of nesting as before. 

Notice that if the pen level ever becomes greater than 0, decrement
ing it with HidePen won't make it negative and so won' t hide the pen. 
To keep this from happening, don't ever call ShowPen except to 
balance a previous call to HidePen. This will keep the pen level from 
going above 0, so the pen will always hide when you tell it to. 

Patterns and Transfer Modes 

You can achieve a variety of interesting graphical effects by varying 
two more of the pen's characteristics, its pattern and transfer mode. 
A pattern [5.1.1) is a special bit image, always 8 pixels wide by 8 high, 
that can be repeated indefinitely to fill an area in a bit map, like 
identical floor tiles laid end to end (see Figure 5-4). You can use 
the graphics pen to paint any pattern by setting the pen pattern 
kept in the port's pnPat field (4.2.2). A port's pen pattern is initially 
set to solid black, but you can change it to some other pattern 

... . .. . - -

. ... .. .... . 

....... .. .. 

Figure 54 Patterns 

f.:71 
~ 

. ...: '"'..., 

.:: 

"' ... 

). 

~ 
) 

....... .. .. .. . . .. .. .. . . .. .. . . ......... . . .. .. . . .. . 
. . ........ . . .. .. . . . . . .. 
. . ..... . . .. . . . . . . . . . . . . . . . .. .. .. . -..... . .. .. .. .. . -... -.. . 

. .. .. .. .. . ' ... . .. .. .. . . . .. . . .. . . . . . . . .. . . . . . . . . .. .. .. .. . . . 
. - .-... 



D 
White 

194 Quick on the Draw 

LtGray Gray DkGray Black 

Figure 5-5 Standard fill tones 

with PenPat [5.2.2]. The pen will then paint in that pattern, just like 
the paintbrush tool in MacPaint. 

When you paint with a pattern, QuickDraw automatically aligns 
each "tile" so that its top-left comer falls at an even multiple of 8 
pixels from the origin of the port rectangle. This ensures that 
adjacent areas of the same pattern will blend into one another 
without creating visible "seams" along the boundaries. 

The Toolbox provides five standard patterns representing a 
range of tones from solid white to solid black (Figure 5-5). These 
standard fill tones are available in the global variables White, LtGray, 
Gray, DkGray, and Black [5.1.2], which are initialized when you call 
lnitGraf (4.3.1]. You can also define your own patterns by storing the 
desired bits into them with StuffHex (2.2.4]. For example, if myPattern 
is a variable of type Pattern, the statement 

Stuff Hex (@myPattern , '3C66C39999C3663C') 

will set it to the third pattern shown in Figure 5-4. 



195 Line Drawing 

2 3 4 5 6 7 8 9 10 

II II II lill 
.......... 

R '!:.'!:.!:.'!~ 
(:.'!:.!:.~~ 
!~~~ 

11 12 13 14 

- ·gm g --~~~~ ......... ~~~ mmu / /0 

15 16 

~~ 

Figure 5-6 Standard pattern list 

20 

D 

For a more varied selection than just the five standard fill tones, a 
pattern list is available in the system resource file containing the 
same 38 patterns that MacPaint offers on its pattern palette (see 
Figure 5-6). We'll be learning about resources in the next chapter; 
you can access individual patterns in the list with the Toolbox 
routine GetlndPattern (5.1.1). 

Besides a pen pattern, every graphics port also has a back
ground pattern (bkPat) and a fill pattern (fillPat). The background 
pattern is used for erasing things. It's normally solid white, but 
you can set it to some other pattern with BackPat (5.1.1). The fill 
pattern is used privately by QuickDraw for certain shape-drawing 
operations; you'll never need to set it yourself. 

A port's pen mode (5.1.3) controls the way the pen paints its 
pattern into the bit map. There are four basic pen modes, and 
four more that are variants of the basic ones (see Figure 5-7). The 
most straightforward is PatCopy, which simply copies the pixels of 



SrcCopy, 
Pat Copy 

NotSrcCopy, 
Not Pat Copy 

196 Quick on the Draw 

the pattern directly to the bit map, replacing whatever was there 
before. The existing pixels of the bit map are simply "painted over" 
by those of the pattern, both black and white. This is the mode 
the pen is set to when you open a brand-new graphics port; to 
switch to one of the other modes instead, use PenMode [S.2.2). 

Overlay 
pattern 

SrcOr, 
Pat Or 

NotSrcOr. 
NotPatOr 

Existing 
pattern 

SrcXOr, 
PatXOr 

NotSrcXOr, 
NotPatXOr 

Figure 5-7 Transfer modes 

SrcBic, 
PatBlc 

NotSrcBic, 

NotPatBlc 



197 Direct Bit Transfer 

The other three basic pen modes each perform a particular 
operation on the existing pixels of the bit map. They all use the 
pattern as a "mask" to select which pixels of the bit map the 
operation will affect. Wherever the pattern has a black pixel (that 
is, a 1 bit), the corresponding pixel of the bit map will be affected; 
a white pixel (0 bit) in the pattern leaves the existing pixel in the 
bit map unchanged. The pen mode PatOr sets the selected bits in 
the bit map to black, PatBic ("bit clear") clears them to white, and 
PatXOr ("exclusive or") inverts them from one color to the other. 

The four variant pen modes work the same as the four basic 
ones, but reverse the roles of the white and black pixels in the 
pattern. So NotPatCopy paints the inverse of the pattern: white pixels 
where the pattern has black, and vice versa. NotPatOr, NotPatXOr, and 
NotPatBic perform the same operations as their counterparts just 
described, but they affect those pixels in the bit map correspond
ing to white in the pattern, while leaving those corresponding to 
black unchanged. (The bits of the pattern itself aren't inverted, 
they're just interpreted the opposite way.) 

Together, the pen's location, size, pattern, and mode make up 
the port's pen state. If you have to change any of the pen's 
characteristics for any reason, you can save the old state with 
GetPenState and restore it later with SetPenState [5.2.1]. The routine 
PenNormal [5.2.2] resets the pen to its initial state: 1 pixel wide by 
1 high, with a solid black pattern and a pen mode of PatCopy. 

Direct Bit Transfer 

QuickDraw' s fundamental drawing operation, on which all the 
others are based, is CopyBits [5.1.4]. It copies pixels directly from 
any rectangle in one bit map (the source) to any rectangle in 
another {the destination), in any of the eight transfer modes and 
with optional scaling and clipping. You can use CopyBits to "stamp" 
a copy of a small bit image into a designated location in another. 
For example, to stamp the pointing hand of Figure 4-3, which we 
defined in the last chapter as a bit map named theMap, into a larger 
bit map named theCanvas at coordinates (85, 60), you could write 

SetRect (atRect, 85, 60, 103, 72); 
CopyBits (theMap, theCanvas, 

theMap.bounds, atRect, 
SrcCopy, NIL) 



198 Quick on the Draw 

(In this example the rectangle you're copying from is theMap.bounds, 
the entire boundary rectangle of the source bit map; you could 
also specify a smaller source rectangle to transfer just a part of the 
bit map instead of the whole thing.) 

Notice that the transfer mode in the example is specified as 
SrcCopy, not PatCopy as in the preceding section. CopyBits has its own 
set of eight source transfer modes (5.1.3], analogous to the pattern 
transfer modes used with the graphics pen. It's important to keep 
the two kinds of transfer mode straight, and to use the right kind 
in a given situation. The pattern modes are for painting patterns 
with the pen; the source modes are for transferring bits from one 
bit map to another. As we'll see when we talk about character text 
in Chapter 8, the characters in a font are also represented in the 
form of a bit map, so source transfer modes are used for "painting" 
text characters as well. 

Another thing to notice in the example above is that the 
destination rectangle atRect has the same dimensions as the source 
rectangle theMap.bounds, 18 pixels wide by 12 high. This means the 
source map will be copied directly, pixel for pixel, to the destina
tion. The two rectangles aren't required to be the same size, 
however. If they aren't, the source pixels will be stretched or 
condensed to fit the destination rectangle. For instance, if you 
used a destination rectangle twice as wide and three times as 
high, 36 pixels by 36, 

SetRect (atRect, 85, 60, 121, 96) 

the source image would be scaled accordingly and would come 
out looking as in Figure 5-8. 

Scaling an image to a different-size rectangle works best if both 
dimensions of the destination rectangle are exact multiples or 
divisors of the source dimensions. Otherwise the image teq.ds to 
come out looking distorted and ugly, like text scaled to an unavail
able point size in MacPaint or MacWrite. 



199 Direct Bit Transfer 

Scaled image 

.. 1 

ill~tt~ 
::r 

Original image 

Figure 5-8 Scaling an image 



(60, 60) 

(90, 135) 

200 Quick on the Draw 

·, ' ···~ . -. : 

QuickDraw has utility r0utiiles 1or.i118ppmg stcu1~ 'figtl:reS· suph 
as points, ,rectangles! polygons,. and regions Jro#t'.QIJe ~~e ta 
another (4.4.9]. ~~e;mu~es tranSfonn each·p(Jil}t !~:tht(O~· 1 

figure, . refaiiW tc); ~~. origin· of the source rec~, .to ·the· co~ 
respOlldiQg :poo~te$' ~~~ to ·the. origin of '.the deslihatio.n , 
rectangle, $Caler.l. 1'1'· th~1 :;~Jiq ·'°Qf1Jie. t\VQ · rec~ggl~si · wi.lJtJ:ls:, . atu1; 
heights (see· FigqrB. 5;.9)~ .·,or- polygons ~d tejiQns, ·the: so~: 
rectangl~ is, no1NmOJy -thed~(iuJ8's -llo~~: boi. :f~olyPBox ,~4.1;.S]. or 
mo.fl~~~· (:tf.!~l~'th~~1J.,~0<~~~J~a•leP1:routine:_[4.4.91\1tfutt :sc8le$:·1t :point: 
by :the· ptQp(wQQiJ,·, ~t.W'e8~· ·tw() ~tangles' dhnensions>· without 
tef~$1ce;:tQ:·thejr:q~,(~r.~-1Q}. 

The last parameter to CopyBits is an arbitraiy clipping region, 
expressed in the coordinate system of the destination bit map. 

MapPoly (thePolygon, fromRect, toRect) 

fromRect 

\ (150, 100) 

(150, 85) 

(210, 135) 

(240, 160) 

(170, 250) 

Figure S-9 Mapping a figure 

toRect 

(210, 150) 

thePolygon 
/(after) 

(250, 250) 

(270, 300) 



201 Direct Bit Transfer 

a. Source rectangle and 
point before mapping 
or scaling 

MapPt (thePoint, fromRect, toRect) 

b. The new position of 
thePoint (210, 150) is 
mapped with reference 
to the origin of the 
destination rectangle 
(150, 100). 

ScalePt (thePoint, fromRect, toRect) 

c. The new position of 
thePoint (100, 170) is 
scaled without reference 
to the origin of the 
destination rectangle. 

(0, 0) 

(0, 0) 

(0, 0) 

(60, 60) 
(150, 85) 

• 

Boundmy rectangle 

ti thePoint t-- fromRect (source 
"- (before) rectangle) 

(240, 160) 

(150, 100) 

thePoint 

~:r) 

(210, 150) 

(150, 100) 

t- toRect (destination 
rectangle) 

(270, 300) 

thePoint 

~e~) 
(100, 170) 

- toRect (destination 
rectangle) 

(270, 300) 

Figure 5-10 Scaling and mapping a point 



202 Quick on the Draw 

You can use this to confine the bit transfer within any desired 
boundary of any shape-only those bits that lie inside the given 
boundary will actually be transferred. If you don't want to specify 
a clipping region, you can set this parameter to NIL, as in our 
example above. However, CopyBits will always clip automatically to 
the boundary rectangle of the destination bit map, and in the 
common case where the destination is the bit map belonging to 
the cuirent graphics port (ThePort.portBits), it will also clip to the 
port's port rectangle, visible region, and clipping region. 

The Macintosh Plus also has an alternate bit-transfer routine named 
CopyMask (5.1.4]. Instead of us!ng a clipping region to confir!).e the 
transfer operation, CopyMask accepts a rectarigulm"portion of a third 
bit map to' be. used as a mask. Pixels are copied from the sou,rce 
bit map to the destinaµon onJ.y in those positionswher,e th~ mask 
has a. black pixel; Wh:ere the- mask pixel is wliifei the destitlation 
pixel· is left unchanged. Unlike the original CopyBits~ CopyM@sk doesn't 
accept a mode parameter, butjtist doeEra straight copj (equivalent 
to transfer mode SrcCopy). Also, it won't scale·. one· rectangle to 
another of a different siZe: the source, mask, and destination rec
tangles must .all have the same climensio11s for the transfer to woik 
properly.: 

A specialized form of bit transfer is ScrollRect [5.1.5], which 
shifts the contents of a rectangle within the current port by a given 
horizontal and vertical distance. As the name suggests, this opera
tion is useful mainly for scrolling the contents of a window on the 
screen. The results are clipped to the specified rectangle, as well 
as to the usual clipping boundaries (boundary rectangle, port 
rectangle, clipping region, and visible region). Pixels scrolled out 
of the rectangle at one end are lost forever; the empty space 
vacated at the other end is "erased" by filling it with the port's 
background pattern, normally solid white (see Figure 5-11). 

It's then your responsibility to fill in this cleared area with 
whatever new information may have been scrolled into the win
dow. As we'll see in the chapter on windows in Volume Two, this 
involves adding the area to the window's update region. ScrollRect 
supports this chore by returning a handle to the affected region 
through its updateRgn parameter; you can then add the region to 



203 

Scroll 
direction 

Direct Bit Transfer 

I Rest of image fallen 
off the edge and 
lost forever 

Figure 5-11 Scrolling a rectangle 



Icons 

204 Quick on the Draw 

the window's update region with the window-management routine 
lnvalRgn [11:3.4.2]. 

One particularly important category of bit images used extensively 
in the Macintosh user interface are icons. These are images of a 
standard size, 32 pixels by 32, used (among other things) to 
represent objects on the Macintosh desktop that the user can 
manipulate directly with the mouse (see Figure 5-12). There isn't 
any special data type representing an icon; it's just a block of 1024 

I 
Trash 

•••••••••••••••••••••••••••• • ••••••••••••••••• • • ••••••••••• ••• • • •••••••••• •• • • •••••••••• •• • •••••••••• •• • •••••••••• •• • •••••••••• •• • ••••••••••• ••• • ••••••••••••••••• • ••••••••••••••• • • • • • • • • •••••••••••••••••••••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •••••••••••••••••••••••••••••• 
•••••• • • •••••••••••••••••••• • • •••••••••••••••••••••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

= 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •••••••••••••••••• 

Figure 5-12 Icons 



Drawing Shapes 

205 Drawing Shapes 

bits (128 bytes, or 64 words) that resides in the heap and is referred 
to by a handle. 

Icons are commonly stored in resource files (Chapter 6) and 
read in with the Toolbox routine Getlcon (5.4.4), but you can also 
create one for yourself as an 

array (1 .. 32] of LONGINT 

and fill in its bits with StuffHex (.2 . .2.4). You can then draw the icon 
anywhere in the cuITent port with Plotlcon (5.4.4]. (The new Macin
tosh Plus routine CopyMask (5.1.4] is also useful for drawing icons.) 

In addition to simple line drawing and bit transfers, QuickDraw 
can also perform a range of drawing operations on a wide variety 
of standard shapes: 

• Rectangles and squares, with both square and rounded comers 

• Ovals and circles 

• Arcs and wedges 

• Polygons 

• Regions of any shape 

Shape-drawing operations are always perlormed in the current 
graphics port, and the shapes to be drawn must be specified in the 
coordinate system of that port. There are five standard drawing 
operations (5.3.1]: 

• Framing the shape (drawing its outline) 

• Painting the shape with the port's cWTent pen pattern 

• Filling the shape with any other designated pattern 

• Erasing the shape (filling it with the port's background pattern) 

• Inverting the shape (changing white pixels to black and vice versa) 

Even though some of these operations (framing and painting) 
use the cuITent pen characteristics, they're independent of the 
pen location and don't change it in any way. However, these 
operations are affected by the pen level, and have no effect on the 
bit map if the pen is hidden. As usual, all drawing operations are 
clipped to the port's boundacy rectangle, port rectangle, clipping 
region, and visible region. 



206 Quick on the Draw 

Rectangles 

The simplest of all QuickDraw shapes is the rectangle, which we 
discussed in Chapter 4. To illustrate how the various shape
drawing operations work, let's look at how they apply to rectangles 
(5.3.2]. The equivalent operations on other shapes work in the 
same general way. 

The FrameRect routine (Figure 5-13) draws the outline of a 
rectangle without affecting its interior. The outline is hollow: 
whatever was inside the rectangle before the operation will still 
show through afteiward. The outline is drawn with the port's 
graphics pen, so its appearance depends on the current pen size, 
pattern, and mode. The pen is then returned to wherever it was 
before, so the operation has no overall effect on its location. 

In framing a shape, QuickDraw automatically adjusts for the cwrent 
pen size to keep its drawing confined "within the lines." The outline 
that's drawn won't extend beyond the shape's boundacy at the right 
and bottom, regardless of ·the pen's size. In general, QuickDraw 
drawing operations never affect any pixels outside the boundary of 
the shape being drawn. (The one exception to this rule, as we'll see 
later, occurs when you frame a polygon.) 

FrameRect (r) 

Figure 5-13 Framing a rectangle 



207 Drawing Shapes 

PaintRect (r) 

Figure 5-14 Painting a rectangle 

PaintRect, FillRect, and EraseRect all fill a rectangle with a pat
tern-both its outline and its interior. PaintRect (Figure 5-14) uses the 
port's current pen pattern and pen mode; FillRect (Figure 5-15) uses 
a pattern you supply as an argument, with a transfer mode of 
PatCopy; EraseRect (Figure 5-16) uses the port's background pattern 
and the PatCopy mode. 

Finally, lnvertRect (Figure 5-17) inverts all existing pixels within 
the rectangle, changing white to black and black to white. The 
entire rectangle is affected, both outline and interior. 

Program 5-2 illustrates the use of these rectangle-drawing 
operations to produce a dynamically changing work of "abstract 
art." The results (Figure 5-18) are reminiscent of the rectilinear style 
of the Dutch painter Piet Mondrian. To keep things simple, we 
adjust the origin of the current port's port rectangle (presumably a 
window on the screen) to coordinates (0, 0), after first saving the 
previous coordinates in variable oldOrigin for later restoration. Then 
we begin generating random rectangles based on the width and 
height of the port rectangle, using our earlier Randomize function 
(Program 2-1). Notice how we use Pt2Rect (4.1.2) to form the rectangle, 
so that we don't have to worry about the relative positions of the 
two points that define it: they can be any two diagonally opposite 



208 Quick on the Draw 

FillRect (r, Gray) 

Figure 5-15 Filling a rectangle 

EraseRect (r) 

Figure 5-16 Erasing a rectangle 



209 Drawing Shapes 

lnvertRect (r) 

Figure 5-17 Inverting a rectangle 

corners of the rectangle, not necessarily the top-left and bottom
right. 

The most interesting graphical effects are produced by using 
the lnvertRect operation to paint the rectangle on the screen. If we 
inverted all our rectangles, however, the image would soon become 
fragmented into tiny slivers of black and white with no discernible 
shape or pattern. The effect is more pleasing if we throw in a 
PaintRect or EraseRect every so often to restore part of the image to 
solid black or solid white (assuming those are the port's cmrent fill 
and background patterns). To decide which drawing operation to 
use, we call Randomize again with a range determined by the con
stant opRange. On the average, out of every opRange rectangles we 
generate, we'll paint one black, erase one to white, and invert the 
rest. The specific value we choose for opRange controls the degree of 
visual fragmentation we're willing to tolerate: the higher the value, 
the more fragmentation. 

To slow things down to mere human speed, we pause to 



210 Quick on the Draw 

Q~!d!!r! lklndri1n; 

< E1a1ple of si1ple shape dr11ing using rectangles. l 

~!!!! 
opR1nge = 10; 
del1ylnterval = 500; 

!!! 
currentPort : &raf Plr; 
oldOrigin : Point; 
1indo1Midth : IITE&ER; 
1indowffeight : INTE&ER; 
earner! : Point; 
corner2 : Point; 
nndolRect : Rect; 
operation : INTE&ER; 
delayCount : llTE&ER; 

~ggin <"cndrian> 

&etPorl (currtntPort>; 
!itb currentPortA.portRect d! 

~!liD 
oldDrigin :z topleft; 
1ind111Midth := right - left; 
1indDldfeight := bottoa - top 

n~; 
SetDrigin (0, O>; 

<Constant controlling degree of visual frag1entation} 
<Length of delay between rectangles} 

<Pointer to current part C4.2.2l> 
<Origin of port rtctangle on entry £4.1.ll} 
<Width of port rectangle> 
<Height of pert rectangle} 
<First corner of rectangle to be drawn £4.1.ll} 
<Second corner of rectangle to be drain C4.l.1l} 
<Rectangle to be drain £4.1.21} 
<Drawing operation to use} 
<Counter for delay betllel!n rectangles> 

<Bet pointer to current port £4.3.31} 

<Save old origin of part rectangle C4.1.2l> 
<Find di11nsicms of port rectangle C4.2.21> 

<Use origin of <O, O> for convenience C4.3.4J} 

Program 5-2 Drawing rectangles 



211 Drawing Shapes 

!ilb cornerl y 
m!n 

h :• Randoaize Cwindo•lidtb>; 
v := Randa1ize Cwinda.Height> 

end• _, 
!llb carner2 ~! 

begin 
h := R111da1ize Cwindllllllidth>; 
v := Rand01ize CwindCMIHeight> 

end• __ , 
Pt2Rect Ccarnerl, corner2, nndDIRect>; 

operation := Randa1ize (apR1nge>; 
'!!! operation gf 

0: 
PaintRect Crando1Rect>; 

l: 
EraseRect (randDIRect>; 

!!tb!!:!i!i! 
lnvertRect Crandn1Rect) 

!!!~; <~!~!) 

Cllnerate randoa coordinates } 
C for first corner CProg. 2-11} 

<&enerate randa1 coordinates 
< for second corner CProg. 2-11} 

<Colbine to fora rtctangle C4.l.2l} 

<Generate rando1 drawing operation CProg. 2-11> 

<Fill with pen pattern Cnar1ally ~lack) C5.3.2l> 

<Fill with background pattern Cnor1ally white> CS.3.21> 

<Invert colors CS.3.21) 

fgr delayCount :~ 1 tg delaylnterval d! CMait a Mhile • • '• } 
<nothing} 

Y!!U! Button; 

!ith oldDrigin d9 
SetOrigin th, v> 

@n~; Cllondrian> 

<Stop llhen aouse button is pr11sed Cil:2.4.2l> 

<Restore old origin C4.3.4l} 

Program S-2 (continued) 



212 Quick on the Draw 

Figure 5-18 Output of procedure Mondrian 

count up to a constant delaylnterval after drawing each rectangle; we 
can, of course, vary the length of the delay by changing the value of 
this constant. (A better way to control a program delay is with the 
Toolbox routines Delay or TickCount, which we'll be learning about in 
Volume Two.) 

Then we go back to generate and draw another rectangle, and 
continue to repeat the cycle until the user presses the mouse 
button. (The Toolbox function Button, also covered in Volume Two, 
returns a Boolean value of TRUE if the mouse button is down at the 
time of call, FALSE if it isn't.) When the button is finally pressed, the 
last order of business before leaving procedure Mondrian is to 
restore the origin of the port rectangle to its previous coordinates, 
leaving the port's coordinate system set the way we found it. 

Ovals 

The oval-drawing routines [5.3.4] all accept a rectangle as a 
parameter. Instead of drawing the rectangle, however, they draw 
an oval inscribed within the rectangle (see Figure 5-19). The rect
angle determines the oval's width and height (in proper mathe-



213 Drawing Shapes 

r·-·······---........ .. 

Figure S-19 Specifying an oval 

If the rectangle 
is a 

/square ... . ....................... 1 
.f- ... the resulting I oval is a cin:le. 

matical terms, its major and minor axes); if the rectangle is a 
perfect square, the resulting oval will be a perfect circle. 

Program 5-3 (BigBrother) uses ovals to draw the unblinking eye 
of Figure 5-20. Just as we did with our stop sign in Program 5-1, 
we transform the top-left comer of the figure to coordinates (0, 0) 

and draw the figure in terms of a scale unit whose size is specified 
as a parameter. We draw the eye by first filling the outermost oval 
with black, then the next one with white, and finally the innermost 
with black again. The second oval, representing the inner edge of 
the eyelids, is derived from the outer one by insetting by one scale 
unit at the top and bottom; we also inset by 1 pixel at the left and 
right to leave a thin black outline visible. The innermost oval 
(actually a circle), representing the pupil of the eye, is inset again 
from there: two scale units at the left and right, 1 pixel to leave a 
little white space at the top and bottom. As usual, we carefully 
restore the port's coordinate system with SetOrigin before exiting. 

Rounded Rectangles 

In addition to ordinaiy rectangles, you can draw rounded rect
angles (5.3.3] with cmved comers instead of square ones. To 
specify a rounded rectangle, you supply the rectangle itself, along 



214 Quick on the Draw 

l~!tHt! BigBrother (figureTap : INTE6ER 
f igureleft : llTE&ER; 
scale : INTE&ER>; 

< Ex11ple af si1ple shape dra1ing using ovals. } 

ur 
currentPart : &rafPir; 
oldOrigin : Point; 
ovalRect : Rect; 

~!9in <BigBratherl 

SetPart <currentPat"tl; 
oldDrigin := currentPortA.partRtct.tapleft; 
!i!b aldDrigin ~g 

SetDrigin lh - figureleft, v - figureTop); 

SetRect (ovalRect, o, O, 8 a scale, 6 t scale>; 
FillOval lovalR1ct, Black>; 

lnsetRect (ovalRect, 1, scale>; 
FillOval (ovalRect, Mhite>; 

InsetRect (ovalRect, 2 t scale, 1>; 
FillOVll (avalRect, Bhct>; 

!i!b oldOrigin d9 
SetDrigin <h, v> 

!Dd; <BigBrotherl 

<Tap edge of figure in local ccardin1tesl 
Cleft edge of figure in local caardinatesl 
<Size of scale unit in pixels> 

<Pointtr to current part [4.2.21) 
COrigin of port rectangle on entry C4.1.1l> 
<Rectangle for defining ovals C4.1.2l> 

<&et pointer to c1rrent part C4.3.3l} 
<Save old origin of part rectangle C4.2.2, 4.1.21> 

<Offset to origin of figure £4.3.41} 

<Set rectangle defining the outer oval C4.1.2l) 
<Fill outer oval 1ith solid black [5.3.4, 5.1.211 

<Inset l pixel horizontally, 1 scale unit vertically} 
<Fill inner oval 1ith solid 1hite £5.3.4, 5.1.21} 

<Inset 2 scale units hat"izontally, 1 pixel vertically> 
<Fill pupil 1ith solid bl1ck [5.3.4, 5.1.21> 

<Restore old origin [4.l.41> 

Program 5-3 Drawing with ovals 

with the width and height of the ovals forming the comers 
(sometimes called the "diameters of cmvature"). Each comer will 
be a quarter of an oval with the given dimensions (see Figure 5-21). 
QuickDraw won't allow the comer width or height to exceed those 
of the rectangle itself, even if you tiy to make them bigger. 



215 Drawing Shapes 

F1gure 5-20 Output of procedure BigBrother 

Arcs and Wedges 

There's also a set of routines for drawing arcs or wedges of an 
oval [5.3.5]. You supply a rectangle defining the oval, along with a 
pair of angles that tell where the arc begins and how far it extends. 
The angles can be any whole number of degrees, measured 
clockwise from the oval's center, with 0 degrees at the top, 90 at 
the right, 180 at the bottom, and 270 at the left. Negative angles are 
measured counterclockwise, with -90 degrees at the left and -270 
at the right. The arc in Figure 5-22, for instance, could be specified 
with either a starting angle of 135 degrees and an arc angle of 90, 
or a starting angle of 225 (or -135) and an arc angle of-90. 

cornerWidth 

I• •I 
cornerHeighI 

same oval 

Figure 5-21 Specitying a rounded rectangle 



216 Quick on the Draw 

FrameArc (r, 135, 90) 

Rectangle r 

arcAngle (90°) 

Figure S-22 Framing an arc 

FrameArc just draws the specified arc of the oval, as in Figure 
5-22. All the remaining drawing operations, though they're called 
PaintArc and so on, actually draw a wedge (Figure 5-23) bounded by 
the arc itself and a pair of lines running from its endpoints to the 
center of the oval. (Sort of a slice of pi.) 

A related utility routine is PtToAngle (5.3.5], which measures the 
angle of a given point from the center of a rectangle in the same 
kind of rectangle-relative degrees described above. In Figure 5-24, 
for example, the value of PtToAngle(thePoint) would be 135. 



217 Drawing Shapes 

PaintArc (r. 135, 90) 

startAngle (135°) 

Figure 5-23 Painting a wedge 

PtToAngle (r, p, angle) 

angle= 135° 

Figure 5-24 Point to angle 

arcAngle 
(90°) 

Rectangle r 

(wedgel 

._ Rectangle r 



218 Quick on the Draw 

Polygons 
As we mentioned in Chapter 4, you define the shape of a polygon 
by drawing its outline with the line-drawing operations Line and 
Linero (5.2.4]. First you have to open the polygon definition by 
calling OpenPoly (4.1.4]. This allocates a new Polygon data structure 
(4.1.3) from the heap and returns a handle you can use to refer to 
it. While the polygon is open, all your line-drawing operations will 
be accumulated into the polygon definition. (OpenPoly automatically 
hides the graphics pen, so that the lines defining the polygon 
won't be drawn into the cuirent port.) 

When you're finished defining the polygon, you close it with 
ClosePoly (4.1.4], which reshows the pen, calculates the polygon's 
bounding box, and stores it into the polyBBox field of the Polygon 
record (4.1.3). For example, you can define the polygon shown in 
Figure 5-25 with the folloWing statements: 

thePolygon := OpenPoly; 

MoveTo ( 150, 50); 
Line (-100, O); 
Line ( 0, 100); 
Line ( 100, 0); 
Line ( -50, -50); 
Line ( 50, -50); 

ClosePoly 

(50, 50) 

(50, 150) 

Figure 5-25 Defining a polygon 

(150, 50) 

(150, 150) 



219 Drawing Shapes 

Once a polygon is defined, you can draw it into the current port 
with FramePoly, PaintPoly, and so on [5.3.6]. When you're completely 
through with the polygon, use KillPoly [4.1.4] to destroy it. 

In trannng a polygon;. QtiiCkDraw. makes no ~adjustmenl.·'for 'the 
current pen sizedt sinlply:traces the outline ofthe polygon, from 
vertex to vertex, with· the fop-left comer of the graphics pe~ This 
means .that. the outline that gets drawn will extend l>eyqµd the 
poiyg9~·:~ • edg~sdJt Pl,e ngµ:r and bott~m by th~. pe'.Q~s,·~@l ·and. 
height /\s .ni~ntiQped earlier, this is the ·one excepti,on . to; .the nile 
that sha.pe..mawing ·operations never go outside 0the.boundaries .of 
the shape being·drawn. 

Program 5-4 (StopPoly) shows a version of our earlier stop sign 
procedure that illustrates how to define and use a polygon. 
Instead of just drawing the octagonal outline of the stop sign 
directly, we define it as a polygon by enclosing our line-drawing 
operations between calls to OpenPoly and ClosePoly. This prevents 
the lines from being drawn immediately, and accumulates them 
into the polygon definition instead. 

Since we're now treating the octagon as a shape instead of a 
simple line drawing, we can use a fill pattern to produce the 
fancier version of the stop sign shown in Figure 5-26. First we use 
FillPoly to fill the entire octagon with gray; then we draw in its 
border with FramePoly. Next, to create the white background area 
around the letters, we define a rectangle representing the area, fill 
it with solid white, and frame it. Finally we use line-drawing opera
tions to draw the letters, just as before. 

Regions 

Defining a region is similar to defining a polygon, but differs in a 
few details. Unlike OpenPoly, the analogous routine OpenRgn [4.1.6] 
doesn't create the Region data structure for you; you have to do 
that for yourself first with NewRgn [4.1.6]. OpenRgn simply begins a 
new, anonymous region definition in the current port and starts 
collecting your drawing operations into it. In addition to line
drawing operations, a region definition can also include shape
framing operations such as FrameRect, FrameOval, and so on; these 
operations add the boundaiy of the framed shape to the boundaiy 



220 Quick on the Draw 

lr!~!~Yr! StopPoly (figurelop : INTE&ER 
f igureleft : JNTE6ER; 
scale : INTE&ER>; 

<Top edge of figure in local coordinates} 
Cleft edge of figure in local coordin1tes> 
<Size of scale unit in pixels) 

C Exa1ple showing definitian and use of a polygan. > 

nr 
currentPort : &raf Ptr; 
oldOrigin : Point; 
theOctagon : PolyHandle; 
theRect : Rect; 

~!gin CStapPoly> 

6etPort (currentPort>; 
oldOrigin := currentPortA.portRect.topleft; 
!itb oldOrigin ~g 

SetOrigin (h - figureleft, v - figurelop>; 

theOctagon := OpenPoly; 
"oveTo ( 5 t scale, 0 >; 
line ( 8 t scale, 0 >; 
Line ( 5 t scale, 5 t scale); 
Line < 0 , 8 t scale>; 
Line (-5 t scale, 5 t scale>; 
Line <-B t scale, 0 >; 
Line (-5 t scale, -5 t sc1le>; 
Line C 0 , -8 t scale>; 
Line ( 5 t scale, -5 t scale>; 

ClosePoly; 

FillPoly CtheOctagan, Bray>; 
FratePoly <theOctagon>; 
KillPoly (theOct1gon>; 

CPointer to current port C4.2.2l) 
<Origin of port rectangle on entry C4.l.ll> 
CHandle to polygon defining outline of sign [4.1.31) 
(Rectangle surrounding letters [4.1.21> 

C&et pointer to current port C4.3.3l> 
<Save old origin of port rectangle C4.2.2, 4.1.21> 

(Offset to origin of figure C4.3.4l> 

COpen polygon definition C4.l.4l> 
<Draw the octagon C,.2.41) 

<Close polygon definition C4.t.4J> 

CFill polygon with gray C5.3.6J) 
<Outline the polygon [5.3.61} 
<Dispose of polygon record C4.l.4J) 

SetRect <theRect, O, 5 I scale, 18 I scale, 13 I scale>; 

FillRect <theRect, Mhite>; 
FraaeRect <theRect>; 

<Define rectangle surrounding letttrs C4.l.2J> 
CClear rectangle to lhite [5.3.21) 
<Outline the rectangle C5.3.2J} 

Program 5-4 Defining and drawing a polygon 



221 Drawing Shapes 

ltaveTa C 4 a scale, 7 a seal•>; 
line C-2 a scale, o >; 
line c o , 2 a scale>; 
Line C 2 a 1c1le, 0 >; 
Line ( 0 ' 2 a scale>; 
line (-2 a scale, 0 >; 

Ravelo c 7 a scale, 7 a scale>; 
Line ( 0 , 4 I ICale>; 
"ave (-1 a scale, -4 a scale>; 
Line C 2 a scale, O >; 

ltaveTo <IO a scale, 7 a scale>; 
Lint c 2 a scale, o >; 
Line c o , 4 a scale>; 
Line C-2 a scale, O >; 
Line C O , -4 a scale>; 

lloveTo Cl4 a scale, 7 a scale>; 
Line C 0 , 4 a sc1le>1 
ltove c O , -4 a scale>; 
Line C 2 t scale, O >; 
Line C 0 , 2 t scale>; 
Lint t-2 I scale, O >; 

!i!b oldOrigin f! 
S.tOrigin th, v> 

!ft.JI CStapPoly> 

<Bra• the •s• C5.2.4Jl 

<Dra• the •y• C5.2.4ll 

<Dr1• tht •o• C5.2.4ll 

CDr1• the •p• C5.2.4Jl 

<Restore old origin C4.l.4J> 

Program 5-4 (continued) 



222 Quick on the Draw 

(O, 5) 

(o, 13) 

(5, o) (13, O) 

(5, 18) (13, 18) 

All coordinates are 
expressed in scale units. 

Figure 5-26 Output of procedure StopPoly 

(18, 5) 

(18, 13) 

of the region. When you close the region definition with CloseRgn 
(4.1.6], you supply the region handle you received from NewRgn and 
QuickDraw sets it to the shape you've specified. The region shown 
in Figure 5-27 might be defined with the statements 

theRegion := NewRgn; 

OpenRgn; 

SetRect 
FrameOval 
SetRect 
FrameOval 

(theRect, 25, 50, 125, 150); 
(theRect); 
(theRect, 75, 50, 175, 150); 
(theRect) ; 

Cl oseRg n (the Reg ion) 

and then drawn with FrameRgn, PaintRgn, and so on (5.3.7]. 

A given port can have only one polygon or region definition open 
at a time. Always be sure to close one definition (with ClosePoly or 
CloseRgn) before opening another. 



223 Drawing Shapes 

Shaded area is the region. 

Figure 5-27 Defining a region 

There are special routines, RectRgn and SetRectRgn (4.1.7], for the 
common case of creating rectangular regions; one accepts a rec
tangle as an argument, the other accepts four separate integer 
coordinates. You can also copy one region to another with CopyRgn 
(4.1.7] or set a region to empty (erasing its existing structure, if any) 
with SetEmptyRgn (4.1.7]. All these routines merely set the shape of 
an existing region; you always have to create the region for yourself 
first with NewRgn. To destroy a region when you're finished with 
it, use DisposeRgn (4.1.6). 

Program 5-5 uses a region to define and draw Big Brother's 
watchful eye, shown earlier in Figure 5-20. The logic is essentially 
the same as in Program 5-3, except that the drawing operations 
that define the eye are enclosed within a region definition 
delimited by calls to OpenRgn and CloseRgn. Notice that we must 
draw the ovals with FrameOval instead of FillOval as in the earlier 
program, since framing is the only operation that accumulates a 
shape into the open region definition. After the definition is 
complete, a single drawing operation (in this case FillRgn) draws 
the entire region at once, even if it has holes and separate pieces 
like this one. 

One use for region definitions is for setting a port's clipping 
region, one of the clipping boundaries we discussed in Chapter 4. 



224 Quick on the Draw 

Q(9Sedurt BigBrother HigureTop : INTE&ER 
figureleft : INTEGER; 
scale : IITE&ERJ; 

C Exa1ple shoMing definition and use of a region. } 

nr 
currentPort : &raf Ptr; 
oldOrigin : Paint; 
ovalRect : Rect; 
theEye : RgnHandle; 

~!gin <BigBrother} 

6etPort (currentPort>; 
oldQrigin := currentPortA.portRect.topleft; 
!i!b aldOrigin ~g 

SetOrigin (h - figureleft, v - figureTop>; 

theEye := NewRgn; 
OpenRgn; 

<Top edge af f igurt in local caardin1tes> 
<Left edt• of figure in local cocrdinates> 
CSize of 1cale unit in pi1el1> 

<Pointer to current port C4.2.2J) 
<Origin of port rectangle on tntry C4.t.IJ) 
<Rectangle for d1finin1 ovals C4.1.2J> 
<Handle to region defining th1 figure C4.l.5J> 

<&1t pointtr to current port C4.3.3J> 
CSave old origin of part rectangle C4.2.2, 4.1.21> 

<Offset ta origin of figure C4.3.4J} 

<Create a ne• region C4.l.6J> 
<Open region definition C4.1.6J> 

SetRect (ovalRect, O, O, 8 I scale, 6 a scale>; CSet rectangle defining the outer oval C4.l.2J> 
Fra12Dval (ovalRect>; <Dra• outer oval C5.3.4J> 

InsetRect (ovalRect, I, scale>; 
Fra1eOval (ovalRect>; 

InsetRect (ovalRect, 2 I scale, 1>; 
Fra1eOval (ovalRect>; 

CloseRgn CtheEye>; 

FillRgn (theEye, Black>; 
DisposeRgn (theEye>; 

!i!b oldOrigin ~ 
SetOrigin lh, v> 

!nd; CBigBrother> 

<Inset 1 pixel horizontally, I scale unit vertically> 
<Dra• inner oval C5.3.4l} 

<Inset 2 scale units harizantally, I pixel vertically> 
<Dra• pupil CS.3.41} 

<Close region definition C4.l.6J} 

<Fill region •ith solid black C5.3.7J> 
<Dispose of region record C4.1.6J) 

CR1store old origin C4.3.4l) 

Program S-G Defining and drawing a region 



2.25 Drawing Shapes 

Recall that the clipping region is a general-purpose clipping boun
dacy thaf s available for you to use in any way you need. As an 
example, Program 5-6 uses the clipping region to draw the globe 
shown in Figure 5-28. Since the routine will change the current 
port's coordinate origin, pen width, and clipping region, we begin 
by saving the old values so we can restore them again later. Then 
we define a region globeRgn consisting of the globe's circular 
outline and install it as the port's clipping region with SetClip [4.3.6]. 

&t9~~Y[! &lobe (figureTop 1 llTEIER 
figurel.tft a INTE6£R; 
diueter : llT£6ER; 
tdgellidth : INTEGER; 
gridlidth : INTEGER; 

<Top edge of figure in local coordinates> 
<Left edge of figure in local coordinates> 
<Di11eter of figure in pi1elsl 
<Pen width for drawing figure outline> 
<Pen 1idth far dra1ing grid lines> 
<Nulb1r of divisions in grid} nSttps a INTE&ER>; 

Exa.ple sha1ing use of a port's clipping region. 

!!! 
currentPurt : &raf Ptr; 
oldOrigin 
oldStite 
oldClip 
glabeRgn 
oval Red 
ndius 
stepNuaber 
stepSize 
off set 

: Point; 
: PenState; 
: Rgnllindl e; 
: RgnHandle; 
: Red; 
I llTE&ER; 
: INTE&ER; 
: JITE&ER; 
: INTE&ER; 

~!Ii!! C&lobt} 

SetPort CcurrentPart>; 
oldDrigin := currentPartA.portRect.topleft; 
!!!b oldOrigin d! 

SttOrigin (h - figureltft, v - figureTop>; 

61tPenStat1 (aldStatel; 
61tClip ColdClipl; 

<Pointer to current port C4.2.2l> 
<Origin of port rectangle on entry C4.1.1l) 
<State of graphics pen on entry C5.2.1l> 
<Handle to old clipping region C4.1.5J) 
<Handle to region defining figure outline (4.1.51} 
<Rectangle for defining ovals C4.t.2l> 
<Radius of figure in pixels> 
<Counter for dra1ing grid} 
<Size of grid unit in pi1els) 
<Offset fro1 center for drawing grid lines> 

<Get pointer to current part C4.3.3]) 
CSave old origin of port rectangle C4.2.2, 4.1.2Jl 

(Offset to origin of figure C4.3.4J} 

<Savt old pen state [5.2.11) 
<Save old clipping region C4.2.2l} 

Program s-6 Using the clipping region 



226 Quick on the Draw 

glabeRgn := NllRgn; 
O,enR1n; 

SttRect fovalRect, O, o, dia1eter, di11eter>; 
Fr11eOval fov1lR1ct>; 

ClaseRgn CglobeRgn>; 
SetClip fgloblRgn>; 

PtnSize fedgeMidth, edg1Midth>; 
Fra.eRgn lglobeRgn>; 

radius := di11eter ~i! 2; 
stepSize := dia1eter II!! nSteps; 
PenSize lgridMidth, gridMidth>; 

f!t stepllutber := 0 tg (nSteps div 2> ~!! 

l.eg!.n 
offset := stepNulber t 1tepSize; 

"oveTo ( 0 , radius - offset>; 
line Cdia1eter, 0 >; 

"oveTo ( 0 , radius +offset>; 
line (dia1eter, 0 ) 

!!!~; 

fgr stepNulber := CnSteps ~i~ 2) ~9!ntg O ~R 
~Hi!! 

offset := stepMu1ber t stepSize; 
SetRect lovalRect, 

radius - offset, 
o, 
radius + offset, 
diueter>; 

Fra1eOval lovalRect> 
!m~; 

"oveTo (radius, 0 >; 
line ( 0 , dia1eter>; 

SetClip <oldClip>; 
SetPenState ColdState>; 
!ith oldOrigin ~ 

SetOrigin <h, v>; 

DisposeRgn (globeRgn) 

!~; <&label 

<Create a ne• region C4.1.6ll 
<Open region definition [4.1.6]} 
<Sit rectangle defining the 111ter oval C4.1.2l} 
<Dra1 outline of figure C5.3.4J} 
<Close region definition C4.1.6J} 
<Set port's clipping region C4.3.6J} 

<Set pen size for figure outline C5.2.2J) 
<Dra1 outline of figure CS.3.71} 

<Find radiU1} 
(find sizt of grid unit> 
<Set pen size far grid C5.2.2J) 

<Dra• parallels of latitude} 

(find offset fro1 center> 

<Dr11 parallel north of equator C5.2.4J) 

<Dra• parallel south of equ1tor [5.2.4)) 

<Dr11 1eridians of longitude} 

{find offset fro1 center} 
<Set rectangle defining oval C4.1.2l: ) 
< fro1 1est of pri11 1eridi1n ) 
< at north pole } 
< to east of priae 1eridian ) 
< at south pale ) 
<Dra• the 1eridi1n1 C5.3.4J} 

<Dra• priae 11ridian frDI north> 
( to south pole C5.2.4J } 

<Restore old clipping region C4.3.6l} 
CRestare old ptn state C5.2.ll> 

<Restore old origin C4.3.4J} 

<Dispose of region record C4.1.6J) 

Program 5-6 (continued) 



Pictures 

227 Pictures 

4-- Outline of globe 
.. ...,._ ... ....,.....,.~.,_....,._..,__.. is used as the 

Figure 5-28 Output of procedure Globe 

clipping region 
for drawing 
grid lines 

After drawing the outline on the screen with FrameRgn (5.3.7], 
we proceed to draw in the parallels of latitude. This is where the 
circular clipping region comes in handy. Instead of calculating the 
endpoints where each parallel meets the circumference of the 
globe, we simply draw a series of horizontal lines straight across 
the full width of the figure, letting QuickDraw clip them to the 
right lengths for us. For the meridians of longitude, we use a series 
of ovals of decreasing widths running from north pole to south. A 
final straight line drawn vertically between the poles marks the 
prime meridian; then all that remains is to restore the port's 
original clipping region, pen size, and coordinate origin and dis
pose of the region globeRgn. 

Pictures are a very powerful, general mechanism for defining and 
using graphical images of arbitrary complexity. A picture is like a 
tape recording of a sequence of QuickDraw calls. Once you've 
defined it, you can "play back" the recording at any time, duplicat
ing the original sequence of calls and redrawing the picture. 

Like a polygon or a region, a picture is represented by a 
variable-length data structure (in this case, a record of type Picture 
(5.4.1]). It consists of a picSize field giving the overall length of the 
structure in bytes, a picFrame rectangle analogous to the polygon's 
or region's bounding box, and an indefinite amount of additional 



Nuts and Bolts 

228 Quick on the Draw 

data defining the picture's contents. A picture differs conceptually 
from a polygon or region, however, in that it represents a dynamic 
sequence of QuickDraw operations, not just a static shape on the 
coordinate grid. 

Defining a picture is similar to defining a polygon. You open 
the definition by calling OpenPicture [5.4.2], supplying a rectangle for 
the picture frame and getting back a handle to the new picture 
record. You can then proceed to draw the picture, using any 
QuickDraw operations you need. All of your calls will be recorded 
for posterity in the picture definition. When you're finished draw
ing the picture, call ClosePicture (5.4.2] to close the definition. To 
"play back" the calls later, use DrawPicture [5.4.3], specifying a 
rectangle in the current port where you want the picture drawn; 
it will be stretched or shrunk, if necessaiy, to make its frame 
coincide with the given rectangle. 

One of the handiest things about pictures is that they allow 
graphical images to be passed around from one program to 
another by way of resource files (Chapter 6) or the desk scrap 
(Chapter 7). The program drawing the picture doesn't have to 
know anything about its contents, where it came from, or what it 
represents; all that's necessaiy is to pass it to DrawPicture and the 
picture will "draw itself." This is what enables you to copy Mac
Paint pictures to the Scrapbook or paste them into a MacWrite 
document. 

The Macintosh Plus version of the Toolbox includes a pair of new 
QuickDraw routines. CalcMask and SeedFill [5.1.6], for performing 
specialized MacPaint-style drawing operations. Both routines 
operate on an existing bit image and use it to calculate a mask for 
the new bit-transfer routine CopyMask [5.1.4]. The image to be 
operated on is defined by a rectangular portion of an existing bit 
map; the mask is generated in a rectangle of the same size in 
another bit map. 

CalcMask works like the MacPaint "lasso," finding the largest 
closed boundary that lies entirely within the given rectangle. It 
produces a mask with black pixels (1 bits) corresponding to the 
boundaiy and its interior; you can use this mask to copy the 
"lassoed" image with CopyMask (see Figure 5-29). SeedFill finds the 
smallest closed boundaiy suITounding a specified "seed" point in 



229 Nuts and Bolts 

Source bit map 

t--rectWidth (words)-.t 
sourceBits------+----r----------,T 

~ rectHeight 

~ (pixels) 

l 

... I•------- sourceRow (bytes)------... • I 

Mask bitmap 

t-rectWldth (words)---1 
maskBlts-----+---·~--------...,T 

II rectHeight 

(pixels) 

l 

t+----------maskRow (bytes)---------..... 

Figure S-29 Operation of CalcMask 



230 Quick on the Draw 

Source bit map 

1-rectWldth (words)----1 
sourceBits------+----11-----------,-1-

(seedHoriz, seedVert)-----1----+--..... -mi---. 
rectHeight 
(pixels) 

1 

J.,. ·-------sourceRow (bytes)-------·~I 

Mask bit map 

mask Bits 
f- rectWidth (words)-f 

T 
e rectHelght 

(pixels) 

1 

maskRow (bytes) 

Figure S-30 Operation of SeedFill 

J 
I 



231 Nuts and Bolts 

the bit image, representing the area to be filled by clicking at that 
point with MacPaint's "paint bucket" tool (Figure 5-30). To imple
ment the paint bucket, you can then use CopyMask to fill this area 
with a pattern. (Since CopyMask doesn't take a pattern parameter, 
you 'II first have to set up a dummy bit map to copy from, filled 
with the desired pattern.) 

The calling conventions for CalcMask and Seed Fill have been .. cleverly 
devised for your mystification and entertainment Here are some 
things to watch out for: 

• The pointers you pass for the sourceBits and maskBits parameters 
point directly to the first byte of data within the rectangle to be 
operated on-notto the begiriningt of the bit map in Which the 
rectangle is embedded 

• The coordinates of the startjng point for Seed Fill are given .as.offsets 
relatiye to the origin of !the. source rectangle itse1£ ·not in'•tl;te1oca1 
coordinate system of its enclosing bitmap. 

• The dimensions of the source and mask bit maps and the.relrwant 
rectangles within them~ specified·in three·~rent units: the 
bit mapJs rowWidth in byt~s, the Width .of the rectanglelrt.words, 
and the heightofthe rectanglein bits (pixels). 

• All of these conventions .differ tram those for the re~te4 routine 
CopyMask, which takes each of its three operands (sour¢~,. mask, 
and destination) as a normal bit map togetherwith a rectangle 
expressed in pixels, in loqal coordina.tes! 

The programmer who thought all this up has been·nominated for an 
Apple Hero medal for imagilla,:tive software design. 



REFERENCE 

5.1 Drawing Fundamentals 

5.1.1 Patterns 

Definid.ons 

type 
P~tHandle: = "PatPt_r; . 
PatPtr = "Pattern; 

Pattern = packed artay [O .. 7J J•f ;9 .. 2-55; 

Graf Port = record 

bkPat :. Pattern; 
fillPat : Pattern; 

pnPat : Pattern; 

and; 

procedure BackPat 
(newPattern : Pattern); 

function GetPattern 
(patternlD : INTEGER) 

: PatHandle; 

procedure GetlndPattern 
(var thePattern : Pattero; 
patlistlD : INTEGER; 
patlndex : INTEGER); 

232 

{8 rows. of.a bits Q~~h} 

{Background pattern} 
·{fill pa:ft~rn for s~~p~ dr.a~i.{rgJ 

· {Pen pattern tor line drawing [5.2.1]1 

{New background paftern} 

{Resource. ID of desite;d pattern} 
{Handle to pattern in niemoryl 

{Returns d"'sired pattern} 
{Resource· ID. of pattern list} .. 
£Index of pattern within list} 



233 [5.1.1) Patterns 

~~iiiii~·::=1.....-------N-o_t_es--------------------------------------
1. A pattern is an 8-by-8-bit "tile" that can be repeated indefinitely to 

draw lines or fill areas in a graphical image. 

2. When drawn in a graphics port, a pattern is aligned with the 
coordinates of the port rectangle, so that adjacent patterned areas 
will blend continuously without creating "seams." 

3. Use StuffHex (2.2.4] to fill in the bits defining a pattern, or read it from 
a resource file with GetPattern or GetlndPattern (notes 9-13, below). 

4. Three patterns are associated with each graphics port (4.2.2]: 

• A pen pattern (pnPat) for drawing lines and shapes 

• A fill pattern (fill Pat) for filling areas 

• A background pattern (bkPat) for erasing areas 

5. The pen and fill patterns are initially solid black, the background 
pattern solid white. 

6. BackPat sets the current port's background pattern. 

7. To set a port's pen pattern, use PenPat [5.2.2]. 

8. The fill pattern is used privately by QuickDraw for shape-filling 
operations (5.3.1]. Don't store into a port's fill Pat field yourself. 

9. GetPattern gets a pattern from a resource file (Chapter 6), reads it into 
memory if necessary, and returns a handle to it. 

10. patternlD is the resource ID of the desired pattern; its resource type 
is 'PAT' (5.5.1]. 

11. GetlndPattern gets a pattern from a pattern list in a resource file 
(Chapter 6). 

12. patlistlD is the resource ID of the pattern list (resource type 'PAT#' 
(5.5.2]); patlndex is the index of the desired pattern within the list. 

13. The pattern itself (not a handle) is returned via the variable parameter 
thePattern. 

14. GetlndPattern is part of the Pascal Toolbox interface, not part of the 
Toolbox itself. It doesn't reside in ROM and can't be called from 
assembly language via the trap mechanism. 

15. A set of standard patterns are available in the system resource file 
and as QuickDraw global variables: see (5.1.2]. 



234 Drawing 

~ldl Assembly Language Information 

Field offsets in a graphics port: 

(Pascal) (Assembly) I 

Field name Offset name Offset in bytes 

bkPat bk Pat 32 
fill Pat fill Pat 40 
pnPat pnPat 58 

Trap macros: 

(Pascall (Assembly) 
Routine name Trap macro Trap word 

Back Pat _BackPat $A87C 
GetPattern _GetPattern $A988 

5.1.2 Standard Patterns 

2 3 4 5 6 7 8 9 10 

11111111 Im -
11 12 13 14 15 16 17 18 19 20 

11110 m~ g D 
21 22 23 24 25 26 27 28 29 30 

D 111111iim~~11HI~ 
31 32 33 

~-
Standard pattern list 



235 [5.1.2) Standard Patterns 

var 
White 
LtGray 
Gray 
DkGray 
Black 

const 

: Pattern; 
: Pattern; 
: Pattern; 
: Pattern: 
: Pattern; 

SysPatlist = O; 
DeskPatlD = 16; 

[Solid white} 
[Light gray} 
[Medium gray} 
{Dark gray) 
{Solid black} 

{Resource ID of standard pattern list} 
{Resource ID of screen background pattern} 

1. The Toolbox provides five standard patterns for fill tones ranging from 
solid white to solid black. 

2. The standard fill tones are available in the QuickDraw global variables 
White, LtGray, Gray, DkGray, and Black. 

3 . SysPatlistlD is the resource ID of the standard pattern list (see figure) 
in the system resource file; its recourse type is 'PAT#' (5.5.2). Use 
GetlndPattern (5.1.1) to access individual patterns in this list. 

4. DeskPatlD is the resource ID of the screen background pattern (resource 
type 'PAT ' (5.5.1]1. The pattern itself is held in the assembly-language 
global variable DeskPattern. 

5. To access the variables containing the standard fill tones in assembly 
language, find the pointer to QuickDraw's globals at the address 
contained in register A5, then locate the desired variable relative to 
that pointer using the offset constants given below. See Chapter 3 and 
(4.3.1, note 4) for further discussion. 



.236 Drawing 

ICJI Assembly Language Information --1'1:1.___ _____ _ 
Assembly-language constant: 

Name Value 

DeskPatlD 16 

Assembly-language global variable: 

Name Address 

DeskPattern $A3C 

QuickDraw global variables: 

Name Offset in bytes 

White -8 
Black -16 

Gray - 24 
LtGray - 32 
DkGray - 40 

Meaning 

Resource ID of screen 
background pattern 

Meaning 

Screen background pattern 

Meaning 

Solid white pattern 
Solid black pattern 
Medium gray pattern 
Light gray pattern 
Dark gray pattern 



SrcCopy, 
PatCopy 

NotSrcCopy, 
NotPatCopy 

237 [5.1.3] Thansfer Modes 

5.1.3 Transfer Modes 

Overlay 
pattern 

SrcOr, 
PatOr 

NotSrcOr, 
NotPatOr 

Existing 
pattern 

SrcXOr, 
PatXOr 

NotSrcXOr, 
NotPatXOr 

SrcBic, 
PatBic 

NotSrcBic, 
NotPatBic 



238 Drawing 

Graf Port = record 

const 
SrcCopy 
SrcOr 
SrcXOr 
SrcBic 
NotSrcCopy 
NotSrcOr 
NotSrcXOr 
NotSrcBic 

PatC.opy 
PatOr 
PatXOr 
PatBic 
NotPatCopy 
NotPatOr 
NotPatXOr 
NotPatBic 

pnMode : INTEGER; {Transfer mode for graphics pen [5.2.1]} 
... ' 
txMode : INTEGER: {Transfer rn-ode for text [8.3.1] l 

end: 

::::: O; 
::::: 1; 
::::: 2i 
::::: 3; 
::::: 4; 
=· s· 

' 
= 6; 
= 7; 

= 8; 
= 9; 
= 10; 
= 11; 
= 12; 
= 13; 
= 14; 
= 15; 

{Copy source to destination} 
{Set selected bits to black} 
{Invert selected bits} 
{Clear selected bits to white} 
{Copy inverted source to destination} 
{Leave selected bits alone, set others to black} 
{Leave se·1ected bits alone, invert others} 
{leave selected bits alone, clear others tQ white} 

(Copy pattern to destination} 
{Set selected bits to black} 
{Invert selected bits} 
{Clear selected bits to white} 
{Copy inverted pattern to destination} 
{Leave selected bits alone, set others to black} 
{Leave selected bits alone, in\lerf others.} 
{Leave selected bits alone, clear others to white} 

~~iiii8·~i--------N-o_te_s __________________________________ __ 

1. Transfer modes control the transfer of pixels between bit maps, or 
between a pattern and a bit map. 

2. The source transfer modes (SrcCopy to NotSrcBic) are used for transfers 
from one bit map to another with CopyBits (5.1.4] and for drawing text 
characters into a bit map (8.3.3]. 

3. The pattern transfer modes (PatCopy to NotPatBic) are used for drawing 
lines and shapes and filling areas with a pattern (5.1.1]. 



239 [5.1.3] Transfer Modes 

4. Each transfer mode denotes a way of combining pixels from the 
source (bit map, character, or pattem) with the corresponding pixels 
from the destination bit map. The resulting pixels are then stored 
back into the destination. 

5. SrcCopy and PatCopy copy pixels directly from the source to the 
destination, replacing whatever was there before. Black pixels in the 
source are set to black in the destination, white pixels to white: 

Source Destination Result 
pixel pixel pixel 

black black black 
black white black 
white black white 
white white white 

6. SrcOr and PatOr set selected pixels of the destination to black. Black 
pixels in the source select the destination pixels to be set; white 
source pixels leave the corresponding destination pixels unchanged: 

Source Destination Result 
pixel pixel pixel 

black black black 
black white black 
white black black 
white white white 

7. SrcXOr and PatXOr invert selected pixels of the destination, from white 
to black and vice versa. Black pixels in the source select the destina
tion pixels to be inverted; white source pixels leave the correspond
ing destination pixels unchanged: 

Source Destination Result 
pixel pixel pixel 

black black white 
black white black 
white black black 
white white white 



240 Drawing 

8. SrcBic and PatBic ("bit clear") clear selected pixels of the destination 
to white. Black pixels in the source select the destination pixels to 
be cleared; white source pixels leave the corresponding destination 
pixels unchanged: 

Source Destination Result 
pixel pixel pixel 

black black white 
black white white 
white black black 
white white white 

9. The NotSrc and NotPat series of modes reverse the roles of black and 
white source pixels in the tables above. 

10. Two transfer modes are associated with each graphics port (4.2.2]: 

• A pen mode (pnMode) for drawing lines and shapes (5.2.1] 

• A te}d mode (txMode) for drawing text characters [8.3.1] 

11. The pen mode should be one of the pattem transfer modes, the text 
mode one of the source transfer modes. 

12. To set a port's pen mode, use PenMode [5.2.2]; to set the text mode, 
use TextMode [8.3.2]. 



241 (5.1.3) Transfer Modes 

IC11 Assembly Language Information 
--ilLlt--------

Field offsets in a graphics port: 

(Pascall 
Field name 

pnMode 
txMode 

(Assembly) 
Offset name 

pnMode 
txMode 

Assembly-language constants: 

Name Value 

SrcCopy 0 
SrcOr 
SrcXOr 2 
SrcBic 3 

NotSrcCopy 4 

NotSrcOr 5 

NotSrcXOr 6 

NotSrcBic 7 

PatCopy 8 
PatOr 9 
PatXOr 10 
PatBic 11 
NotPatCopy 12 

NotPatOr 13 

NotPatXOr 14 

NotPatBic 15 

Offset in bytes 

56 
72 

Meaning 

Copy source to destination 
Set selected bits to black 
Invert selected bits 
Clear selected bits to white 
Copy inverted source to 

destination 
Leave selected bits alone, 

set others to black 
Leave selected bits alone, 

invert others 
Leave selected bits alone, 

clear others to white 
Copy pattern to destination 
Set selected bits to black 
Invert selected bits 
Clear selected bits to white 
Copy inverted pattern to 

destination 
Leave selected bits alone, 

set others to black 
Leave selected bits alone, 

invert others 
Leave selected bits alone, 

clear others to white 



242 Drawing 

5.1.4 Low-~vel Bit Transfer 

~11!11~-------n-e_n_n_itt_o_n_s ________________________ .................. 
procedure CopyBits 

(fromBltMap. ~·- 81.tM;ip; 
toBltMap· . :;. BTtMaip; 
fromRect : ·Fleet; 
toRect : ,ffect; 
mode :: INTEGER;, 
cHpTo · ; RgnHandle); 

procedure· CopyMask 
(s9urceMap : BitMap; 
maskMap : BitMap; 
destMap ; .BJtM:a·p;:. 
sourceRect : .Rect; 
maskRect . : ·Rect; 
destRect : Rect);_ 

{Bit. map to copy from}' 
{Bit.map· fo copy tol 
{Rectangle to copy from l 
{Rectangle to copy to} 
{Transfer model 
fRe.gion to clip to} 

{Bit map to copy from l 
{Bit map containing mask} 
C~iJ ·map to copy· to] 
{Rectangle to copy from} 
{Rtfctangle containing mask} 
{Rect~ngle to copy to} 

~~iiii~·===-~------N_o_te_s __________________________________ __ 
1. CopyBits transfers pixels from one bit map to another, in any transfer 

mode and with any specified scaling and clipping. 

2. fromBitMap is the source bit map for the transfer, toBitMap the destina
tion. 

3. mode specifies the transfer mode, and should be one of the eight 
source transfer modes (5.1.3]. 

4. fromRect tells which pixels of the source bit map to transfer; toRect tells 
where in the destination bit map to transfer them to. 

G. Each of the two rectangles is expressed in the local coordinate 
system of the corresponding bit map. 

6. If the dimensions of the two rectangles don't match, the contents of 
the source rectangle are scaled to the width and height of the 
destination rectangle. 

7. The transfer operation is clipped to the destination bit map's boun
dary rectangle. If the destination is the bit map belonging to the 
current port, the transfer is clipped to the port rectangle and the 
port's visible and clipping regions as well. 



243 (5.1.4) Low-Level Bit Transfer 

8. clip To is an additional clipping region to be used for this transfer only, 
expressed in the destination bit map's coordinate system. If clip To= 
NIL, no additional clipping region will be used. 

9. CopyMask is an alternate transfer routine that transfers pixels from 
one bit map to another under the control of a mask. 

10. The source, mask, and destination are each specified by a bit map 
and a rectangle within it. 

11. Each rectangle is expressed in the local coordinates of its own bit 
map. 

12. No scaling is performed: all three rectangles must have the same 
dimensions. 

13. The source and destination bit maps may be the same, but the 
rectangles must not overlap. There is no eITOr checking for this 
condition; the transfer simply will not work correctly. 

14. The transfer mode is always SrcCopy (5.1.3]. 

15. Like CopyBits, CopyMask clips to the boundary rectangle of the destina
tion bit map and, if it's the bit map belonging to the current port, 
to the port's port rectangle, visible region, and clipping region. 

16. Calls to CopyMask are not recorded in picture definitions [5.4.2]. 

17. CopyMask is useful for drawing icons, particularly those that are stored 
with their masks in resources of type 'ICN#' (5.5.4, 7.5.3]. It can also 
be used in conjunction with CalcMask and SeedFill (5.1.6] to implement 
the MacPaint "lasso" and "paint bucket" tools. 

18. CopyMask is available only on the Macintosh Plus. 

~~1 ...... -----· _·!\S_.:_.se_m_ .. _~_~y-_J_,
1

a __ µ_--~~-;-~·~_~.e~.)~'JJD_::· __ q_·~~U1--~-:do __ ,'_ri ______________ __ 

'J'rap. Ipa.C1'9~: 
<Pascall· 
Roufuiencqrl~ 

CopyBits 
·capyMask 

_ : . . lA;ssem'blJ1 
__ )i!t~p ma~ 

..:CopyBits 
_copyMask 

Trap:word 

$A8EC 
$A817 



244 Drawing 

6.1.o Scrolling in a Bit Map 

~11111~-------D-efiniti_~_·_·o_ns __ . ____ ~~~ ......... -------------~--
procadura ScrollRect 

(theRect : Rect; 
hScroU : lNTEGER; 
vScroll : lNTEQE~; 
updateRg~ : :RgnHao~,l~h. · 

{Rectangle= to be scrolled} 
JHor.izontahsc.rolVdlstance in. pixels} 
.{Vertical. s(!roll distance. in pi)[elsl· 
{Re.giQn strolled i1nto rectang1·e1 

~~iiiiM~t--------N-o_t_e_s ____________________________________ __ 
1. ScrollRect shifts pixels horizontally and vertically within the bit map of 

the cuITent port. 

2. theRect is a rectangle in the local coordinate system of the cuITent port. 
The pixels affected will be those within the intersection of this 
rectangle with the port's boundary rectangle, port rectangle, visible 
region, and clipping region. 

3. Pixels scrolled out of this region are lost iITetrievably; the new space 
scrolled in at the other end is filled with the port's background 
pattern (bkPat [5.1.1]). 

4. hScroll and vScroll give the horizontal and vertical scrolling distance, in 
pixels. 

5. Positive values of hScroll scroll to the right, negative to the left; positive 
vScroll values scroll downward, negative values scroll upward. 

6. Scrolling doesn't affect the port's coordinate system; it simply shifts 
the scrolled pixels to new coordinates within the port. To restore the 
pixels to their previous coordinates, follow ScrollRect with SetOrigin [4.3.4] 
to adjust the port's coordinate system. 

7. The coordinates of the port's graphics pen [5.2.1] aren't affected by 
scrolling, so it remains at the same position in the port while the 
image scrolls away from it. Adjusting the coordinate system with 
SetOrigin will bring the pen back to its previous position relative to the 
image. 

8. The region handle updateRgn is set to the area cleared to the back
ground pattern as a result of scrolling. If the port is a window on the 
screen, this region can be added to the window's update region with 
lnvalRgn [11:3.4.2], forcing the contents of the scrolled-in area to be 
drawn on the screen. 



245 (5.1.6] Special Operations 

~~I ... ____ As_se_· m_"· ... b ... ly-· ·· ... '-... "-~_ .. _. -._e_~Info_ .•. "_._rma_· _no_· _n_---------

Trap ·matrQs:. 

(Pascal) 
Routine.name 

ScroURect 

(Assembly) 
, Trap macro- 1i'ap.word 

_scrollRect $A8EF 

5.1.6 Special Operations 

procedure .Calc.Ma$k 
(.soarceBits : ·pu; 
maskBits : Ptr; 
sourceRow : INt~GER; 
~skRo.w. : INTEGER;, 
rectHeight :· INTEGER; 
rectWidth : INTEGER); 

procedure SeedFil I 
(smm:eBits :_ Ptr: 
maskBits : Ptr; 
sourceRow : INTEGER; 
maskRow : INTEGER;. 
tectHeight : INTEGER; 
rectWidth : :INTEGER; 
~·eedHoriz : INTEGER: 
seedVert : INTEGER); 

{Pointerto source i.mage} 
{Pointer to result mask} 
lRow-wl~Jh of source bit map in bytes} 
fR.o.w:.width of mask bit map in bytes} 
{HeighlCJf source.and.mask rectangles in pixels} 
{Width-:-of source and mask rectangles in words} .. ;: . ' '~ .. ~ .. ' 

{PoiO.te.r to $Ource image} 
{Point.er to result mask} 
{'Row . .Width of source bit map in bytes} · 
£.Ro;~;_ w.idth of mask bit map in bytes} 
tHelgJilof source an9 mask rectangle~ in pixels} 
{Widlh of source and mask rectangles in words} 
tHo_ri.-zontal coordinate of starting pQintJ 
fVedi:«:al coordinate of starting point} 

~~~iiii~1--------N-o_t_e_s ____________________________________ __ 

1. These routines help implement specialized MacPaint-style drawing
operations.

2. Both routines operate on an existing bit image and produce a mask
to be passed to the bit-transfer routine CopyMask (5.1.4]. The source
image and the resulting mask are each contained within a specified
rectangle embedded in an enclosing bit map.

246 Drawing

3. CalcMask finds the largest closed boundaiy lying entirely within the
given rectangle (like the MacPaint "lasso") and produces a mask
representing the area inside this boundaiy; SeedFill does the same for
the smallest closed boundaiy suITOunding a given starting point, like
the MacPaint "paint bucket."

4. For both routines, sourceBits is a pointer directly to the first byte of
data in the source rectangle-not to the beginning of the bit map in
which the rectangle is embedded. Similarly, maskBits points directly
to the beginning of the rectangle in which the mask is to be stored,
not to the enclosing bit map.

G. sourceRow and maskRow are the row widths, in bytes, of the bit maps
in which the source and mask are embedded.

6. The source and mask rectangles are both the same size. The rectWidth
parameter gives their width in words, rectHeight their height in pixels.

7. seedHoriz and seedVert give the coordinates of the starting point for
SeedFill. The coordinates are expressed relative to the origin of the
source rectangle-not in the local coordinate system of its enclosing
bit map.

8. The source and mask may be embedded in the same bit map, but
the coITesponding rectangles must not overlap. There is no eITOr
checking for this condition; the operation simply will not work
COITeCtly.

9. No clipping is performed to either bit map's boundaiy rectangle or
to the cuITent port's port rectangle, visible region, or clipping region.

10. Calls to these routines are not recorded in picture definitions [5.4.2].

11. These routines are available only on the Macintosh Plus.

~~1~-------As __ se __ m __ -._-h_IY_.-_'•~n-_p_~--··•_s_~_Ird_-· __ o_~•-~o_ta_.fio_· __ n_· ______________ __

Trap macros:
(Pascal)
Routine name

Cale Mask
SeedFUI

(As~gibly)
Trap-m~c:ro

_CalcMask
~ee~~ri"

Trap word

$A838

$"839

247 [5.2.1) Pen Characteristics

5.2 Line Drawing

5.2.1 Pen Characteristics

•• ·ft

pnl'oc
pnSize
pnMode
pnPat
pnVis
...

end;

PenState = record
pnloc
pnSize
pnMode
pnPat

end;

procedure GetPenState

: Point;
: Point:
: INTEGER;
: Pattern;
: INTEGER;

: Point;
: Point:·
: INTEGER;.
: Pattern

{Curren(lpcatiqn of graphics pen in local coordinates}
{Dimensions of graphics pen}
{Transfer mode for graphics pen [5.1.3]}
{Pen pattern for line drawing [5.1.1]}
(Pen I eye I [5.2.3]}

{Location of' pen in bit map·}
{Width ·and height of pen· in pixels}
{:Tra1nsfer :m_ode for line drawing and area Jill}
{Pen pattern}

(var curState : PenState); (Returns current pen characteristics}

procedure SetPenState·
(newState : PenState); (New pen characteristics}

~~iii~·:::::::11---------N-o_te_s ____________________________________ __

1. Each port has its own graphics pen, used for drawing lines and text
characters.

2. The pen has a location, size, transfer mode, drawing pattern, and
visibility level, kept in the pnloc, pnSize, pnMode, pnPat, and pnVis fields
of the graphics port [4.2.2].

3. pnloc is the pen's location, a point on the coordinate grid expressed
in the port's local coordinate system. The pen is a rectangle with its
top-left comer at this point.

248 Drawing

4. pnSize is a point whose horizontal and vertical coordinates define the
width and height of the pen in pixels. If either coordinate is zero or
negative, the pen shrinks to nothing and will not draw.

S. pnMode is the pen's transfer mode, which should be one of the eight
pattern transfer modes [5.1.3].

6. pnPat is the pen pattern [5.1.1], used for drawing lines and outlining
shapes.

7. pnVis is the pen's visibility level, which controls whether the pen is
visible or hidden; see [5.2.3] for further infonnation.

8. The pen is initially 1 pixel wide by 1 high, located at coordinates
jO, 0), with transfer mode PatCopy and a solid black pen pattern, and
is initially visible (visibility level = 0).

9. A pen state record summarizes the pen's characteristics. It's used
solely for manipulating the state of the pen with GetPenState and
SetPenState.

10. GetPenState returns a pen state record describing the current pen
characteristics of the current port.

11. SetPenState sets the current port's text characteristics as specified by
a pen state record.

12. These routines are useful for saving and restoring the pen's charac
teristics to make a routine "transparent" to the state of the pen.

249 (5.2.1] Pen Characteristics

ICJI Assembly Language Information
----ila1---------

Field offsets in a graphics port:

(Pascall (Assembly)
Field name Offset name

pnloc pnloc
pnSize pnSize
pnMode pnMode
pnPat pnPat
pnVis pnVis

Field offsets in a pen state record:

(Pascall (Assembly)
Field name Offset name

pnloc psloc
pnSize psSize
pnMode psMode
pnPat psPat

Assembly-language constant:

Name Value

PS Rec 18

Trap macros:

(Pascall (Assembly)
Routine name Trap macro

GetPenState _GetPenState

SetPenState _setPenState

Meaning

Offset in bytes

48

52
56
58
66

Offset in bytes

0
4

8
10

Size of pen state recor<.l
in bytes

Trap word

$A898
$A899

.250 Drawing

S.2.2 Setting Pen Characterisdcs

Definidons-

_procedure PenSize
(newWid.th : INTEGER;
newH~igbt : JNTEGEB:):

procedure PenPat
(newPat :: Pattern)-;

procedure P~nMode

{New pen width}
{New pen h~lght}

{New pen pattern}

(newM:ode : INTEGER): {New pen transfer mode}

procedur.a PeoNQrrllal;

~~Rliiii:::::::::::i1o-------N-o_i_e_s ____________________________________ __

1. These routines set the pen characteristics of the current port.

2. PenSize, PenPat, and PenMode control individual pen characteristics.

3. The current pen size, pattern, and mode can be read from the pnSize,
pnPat, and pnMode fields of the graphics port record [4.2.2].

4. If either newWidth or newHeight is zero or negative, both the pen's width
and height are set to O; the pen will not draw in this state.

5. newMode should be one of the eight pattern transfer modes [5.1.3).

6. PenNormal resets the pen to its initial state: 1 pixel wide by 1 high, with
a solid black pattern and transfer mode PatCopy [5.1.3].

7. None of these routines affects the pen's location.

I DI Assern)Jly blQ.gw;tg~ JnforQJil.tion --i'lLJ....----....__.......__..
Trap macros:
(Pascal)
Routine name

PenSize
Pen Pat
Pen Mode
PenNormal

(Assembly)
'!rap macro

_PenSize
_Pen Pat
_Pen Mode
_PenNormal

Trap word

$A89B
$A89D
$A89C
$A89E

251 (5.2.3) Hiding and Showing the Pen

5.2.3 Hiding and Showing the Pen

'•I Definitions ----1 .----·· -------~
type

GrafPort = record·

pnVis ~ INTEGER;. {Pen visibility level}

end;

procedurQ HidePen;

procedurQ ShowPent

~~iii~::::::tt--------N-o_i_e_s __________________________________ __

1. These routines control the visibility of the current port's graphics pen
by manipulating the pen level, an integer kept in the port's pnVis field
(4.2.2].

2. The pen is visible if the pen level is zero or positive, hidden if it's
negative.

3. Drawing operations have no effect when the pen is hidden.

4. The pen level is initialized to 0 (visible) by OpenPort or lnitPort (4.3.2].

G. HidePen makes the pen invisible and decrements the pen level by 1.

6. ShowPen undoes the effects of HidePen and restores the pen's visibility
to its previous state. It increments the pen level by 1; if the result is
0, the pen becomes visible again.

7. Calls to HidePen and ShowPen may be nested to any depth. Eveiy call to
HidePen should be balanced by a corresponding call to ShowPen.

8. The QuickDraw routines OpenPoly (4.1.4], OpenRgn [4.1.6], and OpenPicture
[5.4.2] call HidePen to prevent the drawing operations used to define a
polygon, region, or picture from affecting the screen. When the defini
tion is complete, ClosePoly [4.1.4], CloseRgn [4.1.6], and ClosePicture [5.4.2]
restore the pen's previous visibility with ShowPen.

252 Drawing

lDI Assembly Language ·Information -llLB......_ _____,..._
Field offsets in a graphics port:
(Pascal) (Assembly)
Field name Offset name Offset in bytes

pnVis

Trap tnacros:
(Pascal)
Routine name

HidePen
ShowPen

pnVis

(Assembly)
~pmacro

_HidePen
_ShowPen

66

Trap word

$A896
$A897

5.2.4 Drawing Lines

procedure GetPen
(var penloc : Point); {Returns current pen location}

procedure Move
(horiz ·: INTEGER;
vert : INTEGER);

procedure MoveTo
(horiz : INTEGER;
vert : INTEGER):

procedure Line
(horiz : INTEGER;
vert : INTEGER);

procedure LineTo
(horiz : INTEGER;
vert : INTEGER);

{Horizontal distance to move. in pixels}
{Vertical distance to move. in pixels}

(Horizontal coordinate to move to. in pixels}
{Vertical coordinate to move to, in pixels}

{Horizontal distance to draw. in pix:els}
{Vertical distance to draw. in pixels}

{Horizontal coordinate to draw to. in pixels}
{Vertical coordinate to. draw to, in pixels}

253 [5.2.4] Drawing Lines

~~91ii3~.,._ ______ N_o_t_e_s ____________________________________ __

1. GetPen returns the current port's pen location, a point expressed in
the port's local coordinate system.

2. The current pen location is kept in the pnVis field of the graphics
port [4.2.2, 5.2.1].

3. Move and MoveTo move the current port's pen to a new location
without drawing anything.

4. Line and Linero move the pen and draw a straight line from the old
pen location to the new one.

5. The thickness and appearance of the line are determined by the
port's current pen size, pattern, and mode.

6. All drawing in a port is clipped to the intersection of its boundaiy
rectangle, port rectangle, clipping region, and visible region. The pen
can move freely outside these boundaries, but only those portions
of lines that fall within the clipping boundaries will actually be
drawn.

7. Drawing operations have no effect when the pen is hidden.

8. MoveTo and LineTo move the pen to a given absolute location, ex
pressed in the local coordinate system of the current port.

9. Move and Line move the pen a given horizontal and vertical distance
from its current location.

10. Positive values of horiz move the pen to the right, negative to the left;
positive vert values move it downward, negative values move it up
ward.

~~1 ... --------As-· _se __ m_b_·1y_· ·_•_"'-~-~ ... "·.: """!'e ... '.'Im -_· · _o_r•_."i_a_oo_n ---------

Trap tn:aeros: .

(Pascal)
Routine ·name
Get Pen
Move
Move To
Line
Line To

·(As6'i!mbly)
Trap macro

. ..:GetPen
~Move
~Movel'o
. .;.Line
· .J.ineTo

Trap word

$A89A
$A~
$A893
$A892
$A891

254 Drawing

5.3 Drawing Shapes

5.3.1 Basic Drawing Operations

~11111~------n-e_finiti __ ·_·o_ns ____________________________ _

type
GrafVerb = (Frame,

P'aint,
Erase,
Invert,
Fill);

{Draw outline}
· {fill with current pen pattern}

{Fill with background pattern}
{Invert pixels}
{Fill with specified pattern}

~~iiii~·::::::1i--------N-o_te_s __________________________________ __

1. The enumerated type GrafVerb represents the five basic shape-drawing
operations. Its only actual use in a program is for customizing
QuickDraw operations: see Volume Three for details.

2. Any of the five operations can be applied to rectangles [5.3.2], rounded
rectangles [5.3.3], ovals [5.3.4], arcs and wedges [5.3.5], polygons [5.3.6],
or regions [5.3.7).

3. Drawing always takes place in the current graphics port, and all
shapes are defined in that port's local coordinate system.

4. Framing a shape draws its outline, using the port's current pen size,
pattern, and mode [5.2.1). Pixels in the shape's interior are left
unchanged.

G. If a region definition [4.1.6) is open, framing any shape adds the
shape's outline to the boundruy of the region. (E')(ception: Arcs [5.3.5]
aren't added to the region definition when framed.)

6. Painting a shape fills it completely with the current port's pen
pattern, using the current pen mode.

7. Filling a shape fills it completely with a specified pattern; the transfer
mode is always PatCopy [5.1.3]. The current port's pen pattern and
mode are unaffected.

8. Erasing a shape fills it completely with the current port's background
pattern. The transfer mode is always PatCopy [5.1.3).

9. Inverting a shape reverses all pixels it encloses, from white to black
and vice versa.

255 (5.3.2] Drawing Rectangles

10. The location of the graphics pen is not changed by any shape-draw
ing operation; however, drawing operations have no effect if the pen
is hidden.

11. All drawing operations are clipped to the intersection of the current
port's boundary rectangle, port rectangle, clipping region, and visible
region. Only those portions of shapes that fall within all of these
boundaries will actually be drawn.

12. Drawing operations never affect pixels outside the boundaries of the
shape being drawn. (E}C.ception: Framing a polygon will draw outside
the polygon's boundary; see [5.3.6].)

~~~l-------As··-&e_p)b_~~-1y-··._1_•_n~~·~··-·•-e-·lllfo_.--_. _r_·~_•a~#o-.n-.·---------------
Assembiy~l~age .~!lst~t~~ 
Name 

Frame 
Paint 
Erase 
Invert 
All 

Value 

. 0. 
1 
2 
3~. 

4. 

5.3.2 Drawing Rectangles 

Definidons 

procedure· FrameRect 
(theRect : Rect); 

procedure PaintRect 
(theRect :.J~ect); 

proce,dure FiURect 
ttheRect : Recti' 
fillPat :c.Pattern); 

procedure EraseRect 
(theRect :: Rect).t 

procedure lnvertRect 
(theRect : Rect); 

Meaning 

Draw··outline 
· .Fill:with.cuirent pen. pattem 

Fill with background pattem 
Invert pixels 
Fill with specifi.ed,pattem 

{Rectangle to be framed} 

{.Rectangle to be painted} 

{Rectangle to be filled} 
{Pattern to fill it with} 

{Rectangle to be erased} 

{Rectangle to be inverted} 



256 Drawing 

~~1ii8·::::::3~------N-o_t_es--------------------------------------
1. These routines perform the five basic drawing operations (5.3.1] on 

rectangles. 

2. The trap macro for lnvertRect is spelled _lnverRect. 

~li::l~l-------·-As_s_e_01_b_1_y_L_a_n_~ __ ·~-~-e-'.ini_•·_o_cr_m_a_··~-·o_n_. ____________ ~---
Trap macros: 
(Pascal) 
Routine name 

FrameReet · 
PaintRect 
FlllRect 
EraseRect 
lnvertRecf .. 

JJ,\EiseID.l;lly) 
1'rapmacro 

lFrameRect 
~P@intRect 
.... fill Reef 
,.:.er:aseRect 
~l_nverRect 

5.3.3 Drawing Rounded Rectangles 

........ . , ., 
• '1 
' ' •,. •' .. , ···' ........................ •·' 

cornerWidth 

cornerHeight 

..... ,, 

' ' j 
' / 

..... , .................. ,,,,' 

inRect _.... 

,,,, ................ ,,,' 
/ ' 

,,,,, 
' , 

/ 

Rounded rectangle 

/ , 
: 

' 

Trap word 

;$A8An 
$A8A2 
$ABA5 
$A8A8 
$A8A4 

,,,, . 

' ..... ,, ···············'''' 
/ 

,,, .................. ,, 
/' ,, 
, 

\ .. ,,,, 



w 

~~ii 

257 [5 .3.3) Drawing Rounded Rectangles 

Definitions 

procedure FrameRoundRect 
(theRect : Rect; {Body of rectangle} 
cornerWidth : INTEGER; {Width of corner oval } 
cornerHeight : INTEGER) ; · {Height of corner oval} 

procedure PaintRoundRect 
(theRect : Rect; {Body of rectangle} 
cornerWidth : INTEGER; [Width of corner oval } 
cornerHeight : INTEGER); {Height of corner oval} 

procedure FillRoundRect 
(theRect : Rect; {Body of rectangle} 
cornerWidth : INTEGER; {Width of corner oval} 
cornerHeight : INTEGER; {Height of corner oval } 
fill Pat : Pattern) ; {Pattern to fill with} 

procedure EraseRoundRect 
(theRect : Rect; {Body of rectangle } 
cornerWidth : INTEGER; {Width of corner oval} 
cornerHeight : INTEGER); {Height of corner oval } 

procedure lnvertRoundRect 
(theRect : Rect; {Body of rectangle} 
cornerWidth : INTEGER; {Width of corner ova l} 
cornerHeight : INTEGER) ; {Height of corner oval} 

Notes 

1. These routines perlorm the five basic drawing operations (5.3.1) on 
rounded rectangles. 

2. cornerWidth and cornerHeight give the diameters of curvature, the horizon
tal and vertical axes of the oval to be u sed for the rounded corners. 
Each corner will be a quarter of this oval (see figure). 

3. cornerWidth and cornerHeight can never exceed the width and height of 
the body rectangle theRect, even if the values supplied are larger. 

4 . The trap macro for lnvertRoundRect is spelled _lnverRoundRect. 



258 Drawing 

ICJI Assembly Language Information 
----tlLJla---------

Trap macros: 

(Pascall (Assembly) 
Routine name Trap macro Trap word 

FrameRoundRect _FrameRoundRect $A8BO 
PaintRoundRect _PaintRoundRect $A8B1 
FillRoundRect _FillRoundRect $A8B4 
EraseRoundRect _EraseRoundRect $A8B2 
lnvertRoundRect _lnverRoundRect $A8B3 

5.3.4 Drawing Ovals 

...................................................... "" ... ,_...-__ -'-"'"'.''""''"""'"" "'""'""'"'"""""""""""""""""""""" 

1· inRect 

............................................... :::: ... ,,, ... -----"'··~···~···=··· ···· ···· ····· ····· ·· ···· ···· ········· ·····' 

Oval 



H 

~~ii 

259 (5.3.4] Drawing Ovals 

Definitions 

procedure FrameOval 
(inRect : Rect); (Rectangle defining oval} 

procedure PaintOval 
(inRect : Rect); (Rectangle defining oval} 

procedure Fi ll Oval 
(inRect : Rect; (Rectangle defining oval} 
fillPat : Pattern); {Pattern to fill with} 

procedure EraseOval 
(inRect : Rect) ; {Rectangle defining oval} 

procedure lnvertOval 
(inRect : Rect); {Rectangle defining oval} 

Notes 

1. These routines perform the five basic drawing operations (5.3.1] on 
ovals. 

2. The oval is inscribed in rectangle inRect. 

3. If the specified rectangle is a square, the resulting oval will be a circle. 

lm=il Assembly Language Information 
--ilr]lt--------------

Trap macros: 

(Pascall 
Routine name 

FrameOval 
PaintOval 
Fill Oval 
EraseOval 
lnvertOval 

(Assembly) 
Trap macro 

_FrameOval 
_PaintOval 
_Fill Oval 
_EraseOval 
-1nvert0val 

Trap word 

$A8B7 
$A8B8 
$A8BB 

$A8B9 
$ABBA 



260 Drawing 

5.3.5 Drawing Arcs and Wedges 

:······················;~·;.,,,··· ''-N<:..·~~······················: : ,, ,, : 

I / / ', I 
i , ' i 
: ,, ' : 
i : \ i :1 \i 

f AJ~35• \j 
i ,, - i 
i / ' l ~ ~ 

startAngle 

i\ "'-, Ji : .. / ~ ,: : .. ~ : 

i \ / so0 

' / ! 

arcAngle Arc 
I / ,)- lnReci 

!.......................... arcA:~;~--·--... \l 
Arc 



261 [5.3.5) Drawing Arcs and Wedges 

i I Definitions 

--t ..... .....t------------~--------------~ 
procedure FrameArc 

(inRect : Rect; 
startAngle : INTEGER; 
arcAngle : INTEGER); 

procedure PaintArc 
(inRect : Rect; 
startAngle : INTEGER; 
arcAngle : INTEGER); 

procedure FillArc 
(inRect : Rect; 
startAngle : INTEGER; 
arcAngle : INTEGER; 
fillPat : Pattern); 

procedure EraseArc 
(inRect : Rect; 
startAngle : INTEGER; 
arcAngle : INTEGER): 

procedure lnvertArc 
(inRect : Rect; 
startAngle : INTEGER; 
arcAngle : INTEGER); 

procedure PtToAngle 
(inRect : Rect; 
thePoint : Point; 
var theAngle : INTEGER); 

{Rectangle defining oval} 
(Starting angle} 
(Extent of arc l 

{Rectangle defining oval} 
(Starting angle} 
(Extent of arc l 

{Rectangle defining oval} 
(Starting angle} 
{Extent of arc} 
(Pattern to fill with} 

{Rectangle defining oval} 
{Starting angle} 
{Extent of arc} 

{Rectangle defining oval} 
{Starting angle} 
{Extent of arc l 

{Rectangle to measure in} 
{Point to be measured} 
{Returns angle of point , in degrees} 

1. These routines perform the five basic drawing operations (.5.3.1) on 
arcs and wedges. 

2. The arc is a portion of the oval inscribed in rectangle inRect. 

3. startAngle gives the angle at which the arc begins; arcAngle is the arc's 
angular extent (see figure). 

4. All angles are expressed in degrees, modulo 360. 



262 Drawing 

5. Angles are measured from the center of the oval, with 0 degrees at 
the top. 

6. Positive angles are measured clockwise, negative ones counterclock
wise. 

7. All angles are measured relative to the given rectangle: for instance, 
45 degrees designates the rectangle's top-right comer. Unless the 
rectangle is square, the angles will not be in true circular degrees. 

8. FrameArc just draws the specified arc, using the current pen size, 
pattern, and mode. All other drawing operations draw a wedge 
bounded by the arc itself and the radii joining its two endpoints to 
the center of the oval. 

9. Unlike other framing operations, FrameArc doesn't add what it draws 
to any open region definition. 

10. PtToAngle calculates the angle cmresponding to a given point with 
respect to a given rectangle, according to the same conventions just 
given for specifying arcs. 

11. The resulting angle is always between 0 and 359, measured clockwise 
from 0 at the top. 

~lii:ll~----_,,,-AS8e __ .·~_m __ bl_y_1_-_n_g1JA~--ge_··.···~im-·_9i~~·~•·_ati.0_·_n_· ____ ......, ____ ..., __ __ 

Trap macros: 

(Pascal) 
Routine ti~e 

FrameArc 
PaintArc 
Fill Arc 
EraseArc 
lnvertArc. 
PtToAngle 

(As~bly) 
Trap macro 

_FrameArc 
::..~aintArc 

_flllArc 
-EraseArc 
_JnveOArc 
.:PtToAngle 

Trap~rd 

SAQBE 
$A8,BF 
$ABC2 
SA&CO 
$ASC1 
$A$.C3 



263 [5.3.6) Drawing Polygons 

5.3.6 Drawing Polygons 

~11111~-------n-e_fini __ ·n-·o_n_s ...................... __________ ..._.......,.....,.. ........... ._. .... 

procedure FramePoly 
(thePolygon ; PolyHandle); {Handle to polygo,ri to· b.e framedl 

p~ocedure PaintPoly 
(thePolygon : PolyHandle); {Handle to polygon to be paintedl 

procedure FiUPoly 
(thePolygon : PolyH~ndle; {Handle to polygon to, be fill.,dJ 
fillPat : Pattern);. {PaMetn to fill it 1Wl1tttJ'· , 

procedure ErasePoly 
{thePolygon : PolyHandf'e).; tHandJe to polyg~n· to. he .erasedJ 

procedure lnvertPoly 
(thePolygon ; PolyHandle); {Handle to polygon to .~e inv.ertedl 

~~iii~==-~------N_o_te_s __________________________________ __ 

1. These routines perfonn the five basic drawing operations (5.3.1] on 
polygons. 

2. FramePoly uses the standard line-drawing operations (5 . .2.4] to draw the 
polygon's outline. This causes it to draw outside the actual outline at 
the right and bottom by the width and height of the graphics pen. 
This is the only shape-drawing operation that ever draws outside the 
boundaiy of a shape. 

IOI Assembly Language lnfonnadon 
--1aa....----------~ 

Trap macros: 
(Pasca]) lAssemblyl · 
Routine name Trap macro . TraP wCJrCI 

FramePoly _FramePoly $ABC6 
PaintPoly _Paintf>oly $A8G7 
Fill Poly _Fill Poly .ABCA 
ErasePoly _ErasePoly ·$A8C8 
lnvertPoly _tnvertPoly $A8C9 

' . 



264 Drawing 

5.3. 7 Drawing Regions 

~1111~-------n_e_tini_·_no __ ns--~-------.~----------...,_~~-
procedure- FrameRgn' 

(theRegi,on : RgnH,and:le).;- {Handle to regJon,to,be f'raJnedl 

procedure PaintRgn 
(theRegfon : RgnHandl:e),-~: lHandleto regi()n to ,b,epaintedl 

procedure FillRgn 
(theRegion : SgnHandl'e,;· 
fillPat : Pattern); 

{Handle to regJon to be fWtedl 
{f?attern to fili it With} 

procedure EraseRgn 
(theRegi.on : RgnHandle):; {Handle to regJon to ·be eroctsedl 

procedure lnvertRgn 
(theRegio.n : ~gnHa,idle); fffa.ndle t9 reg.ion to bQ inv¢rtedl 

~~iii~·~...._ ______ N_o_t_e_s __________________________________ __ 

1. These routines perform the five basic drawing operations (5.3.1] on 
regions. 

2. A region should always be drawn in the same graphics port in which 
it was defined. 

3. The trap macro for lnvertRgn is spelled _lnverRgn. 

IOI Assembly Language.Information 
--11&:1---------~ 

Trap macros± 
(Pascal) 
Routine name 

FrameRgn 
PaintRgn 
FillRgn 
EraseRgn 
lnvertRgn 

(As~mbJyl 
Trap macro 

_FrameRgn 
..PaintRgn 
_FilfRgn 
_EraseRgn 
_inverRgn 

TrilpW.oro 

$A8D2 
$ASD3 
$A$D6 
SAID4 
$A8D5 



265 (5.4.1] Picture Records 

5.4 Pictures and Icons 

5.4.1 Picture Records 

~~iiiiiiiiiiii ........ _______ n __ e_fini __ ·u-·o_.,n_s_. __________________________________ __ 

type 
PicHandle = "PicPtr; 
PicPtr = "Picture; 

Picture = record 
picSize : INTEGER; {Length of this data structure in bytes} 
picframe : Rect; {Smallest rectangle enclosing the picture} 
{additional data defining contents of picture} 

end; 

~~liii~==:::t....,. ______ N_o_i_es--------------------------------------

1. A Picture is a variable-length data structure representing an arbitrmy 
sequence of QuickDraw operations for drawing an image. 

2. At the end of the Picture record is variable-length data (not directly 
accessible in Pascal) describing in compact, encoded form the opera
tions needed to draw the picture. The Toolbox maintains this data for 
you-you'll never need to access or store into it yourself. 

3. picSize is the overall length of this Picture data structure in bytes, 
including the variable-length data describing the drawing operations. 

4. The Macintosh Plus can accommodate pictures up to 4 gigabytes (V2 

bytes) long, with sizes expressed as long integers instead of plain 
integers. To get the true size of a picture, use GetHandleSize (3.2.3] 
instead of looking in the picSize field of the picture record. picSize holds 
the low-order 16 bits of the true size, so it's still correct for pictures 
of up to 32, 767 bytes. 

5. picFrame is the picture frame, the rectangle within which the picture is 
drawn. 



266 Drawing 

lDI Assembly Language Information -tan..__ _____ _ 
Field offsets in a picture record:· 
(Pascal) (Assembly) 
Field name Otfset name 

picSize 
picFrame 

picSize 
·pfoFrame 
picData 

S.4.2 Defining Pictures 

OflSet in bytes 

0 
2 

10 

---l~----..1~--------D-·-efini __ ._·n-·o_n_.s ________________ ....,. ________________ __ 

function OpenPicture 

' . 

(picFrame : Beet) 
: PicHandle; 

procedure ClosePicture; 

function GetPicture 
(pictureto : INTEGER) 

: PicHandle; 

procedure KillPicture 

{Frame for new picture} 
{Handt'e· to new pictureJ. 

{Resource ID of desired picture} 
[Handle to picture in memory} 

(thePieture : PlcHaodle); {Handle to ~icture tQ be destroyed} 

~~liiilR~..,_ ______ N_o_i_es--------------------------------------
1. OpenPicture creates a new Picture record [5.4.1), opens it for definition, 

and returns a handle to it. 

2. picFrame is the frame for the new picture. 

3. Subsequent drawing operations will be accumulated into the picture 
definition. 

4. The graphics pen [5.2.1) is hidden while a picture is open; the 
drawing operations that define the picture will not appear on the 
screen. 



267 (5.4.3] Drawing Pictures 

G. Only one picture may be open for definition at a time; don't attempt 
to open another without closing the one that's already open. 

6. ClosePicture closes the picture cu1rently open for definition, if any. 

7. The graphics pen is.redisplayed on the screen; subsequent drawing 
operations will appear on the screen instead of being accumulated 
into the picture definition. 

8. GetPicture gets a picture from a resource file (Chapter 6), reads it into 
memory if necessary, and returns a handle to it. 

9. picturelD is the resource ID of the desired picture; its resource type is 
'PICT' [5.5.5). 

10. KillPicture destroys a Picture record and deallocates the memory space 
it occupies. The picture is no longer usable after this operation. 

11. To dispose of a picture that has been read in as a resource [5.5.5], 
use ReleaseResource (6.3.2] instead of KillPicture. 

~~1~--------As_se_·._m_"_bl_y_•_a_n_~_· ... _._·.~~·~_IJD_._u_.rma_ .. _ ... _--n-~o_n ________________ __ 

°n1lP .tµacro~; ~ . 
(Pascal) 
Routine~ nam:e: 

OpenPlcture 
ClosePlcture 
GetPicture 
Kill Picture 

5.4.3 Drawing Pictures 

- (AsSefubJy) 
'l'raP'JIUlCro 

.JlpenPicture 

..2ClosePicture 
_GetPicture 
._KillPfoture. 

$A8F3 
$A8F4 
$A9BC 
$ABF5 

~llllf~-------D_e_fini_·_u_o_n_s __ ....... ________________________ .,._ 

pro~edure DrawPictUrre ·· 
(.thePicture : PicHandle; 
inRect -: Rect); 

{Picture to be drawn} 
lRectC1ngle to draw it in} 



.268 Drawing 

~~lii~~~------N_o_te_s __________________________________ _ 

1. DrawPicture draws a specified picture in the cwrent graphics port. 

2. The picture will be scaled so that its picture frame coincides with the 
given rectangle inRect. 

ldl Assembly Language lnfo~tion 
--1rLJIL------~-

Trap macro: 
(Pascal) 
Routine name 

(Assembly) 
'Irap macro 'Irapword 

DrawPicture _orawPicture $A8F6 

5.4.4 Icons 

~111~1-------n-e_&ni_._·n-·o_ns __________________________ ~----
functlon Getlcon 

(iconlD : INTEGER) -
: Handle; 

procedure Plotlcon 
(inRect : Rect; 
iconHandle : Handle); 

{Resource ID of desired icon} 
{Handle to icon in memory} 

{Rectangle to plot in} 
{Handle to icon} 

~~~liii::::::::i1--------N_o_i_e_s ____________________________________ __ 

1. An icon is a 32-by-32 bit image, commonly (but not necessarily) used
to represent an object on the screen.

2. Icons reside in the heap and are referred to by handles.

3. There is no defined data type representing an icon. If you have to
create one in your program, you can use an

array [1 .. 32] of LONGINT

4. Icons are usually stored in resource files and read in as resources
(Chapter 6).

269 [5.5.1) Resource 'fype 'PAT

5. Getlcon gets an icon from a resource file (Chapter 6), reads it into
memory if necessary, and returns a handle to it.

6. lconlD is the resource ID of the desired icon; its resource type is 'ICON'
(5.5.3].

7. Plotlcon draws an icon in the current graphics port, scaled to a
specified rectangle.

8. The rectangle inRect is expressed in the local coordinate system of the
current port.

~~1 ... ____ As_.~ _s_e_JD_h""""~Y-· ... ·_• • ... "-~_ ... ·, ··· 1~ ~ :1_ni_. _u._rm_a_tio_n_ .. _______ _

~p:macrQs:

(Pascal)
Routine name

Getlcon
Plotlcon

5.5 QuickDraw-Related Resources

(Assembly)
Trap macro

~Getlcon

_p1otlcon

5.5.1 Resource Type 'PAT'

Row o Row 1

Row 2 Row 3

Row 4 Row 5

Row 6 Row 7

Trap word

$A988
$A948

8 bytes

270 Drawing

~~iii~·~i--------N-o_te_s __________________ _... ______________ __
1. A resource of type 'PAT' contains a QuickDraw pattern.

2. The space in 'PAT ' is required.

3. The resource data consists of the bits (pixels) of the pattern, B rows
of 8 bits (1 byte) each.

4. Use GetPattern [5.1.1] to load a resource of this type.

5.5.2 Resource Type 'PAT#'

• • •

• • •

Number of patterns

Pattern
(8 bytes)

•
•
•

Pattern
(8 bytes)

• • • Any number

• ofpattems

• •

271 [5.5.3] Resource 'fype 'ICON'

~~iii~==l------N-o_t_e_s ____________________________________ __

1. A resource of type 'PAT#' contains a list of QuickDraw patterns.

2. The resource data consists of a 2-byte integer giving the number of
patterns in the list, followed by the patterns themselves (8 bytes each,
as described under 'PAT' (5.5.1)).

3. Use GetlndPattern (5.1.1] to access individual patterns in a pattern list.

4. The system resource file includes a standard pattern list (5.1.2] con
taining the 38 patterns in MacPaint's standard pattern palette. The
resource ID for this standard pattern list is 0.

5.5.3 Resource Type 'ICON'

Row 1
(4 bytes)

Row 2
(4 bytes)

128 bytes

• • • • • • •
•

• • • • • • •

Row 32
(4 bytes)

~~a1i3:::::::11------N_o_te_s __________________________________ ___

1. A resource of type 'ICON' contains an icon to be displayed on the
screen.

272 Drawing

2. The resource data consists of the bits (pixels) of the icon, 32 rows of
32 bits (4 bytes) each.

3. Use Getlcon [5.4.4] to load a resource of this type.

5.5.4 Resource Type 'ICN#'

Icon
(128 bytes)

Icon
(128 bytes)

Any number
of icons

• • • • • • •
•

• • • • • • •

Icon
(128 bytes)

~~liil~~-----N_o_te_s ____________________________________ ___

1. A resource of type 'ICN#' contains a list of icons.

2. The resource data consists of any number of icons, 128 bytes each (32
rows of 4 bytes, as described under 'ICON' [5.5.3]).

3. Resources of this type are commonly used to hold a file icon and its
mask for use by the Finder [7.5.3).

~~iii

273 [5.5.5] Resource T)'pe 'PICT

5.5.5 Resource Type 'PICT'

• • •
• • •

I
Notes

Length n bytes

Frame
ca bytes)

Data defining picture

Ci ndefi ni te 1 ength)

1. A resource of type 'PICT' contains a QuickDraw picture.

...........

• • •
• • •

I

2. The resource data consists of a QuickDraw picture record [5.4.1], with
a 2-byte picSize field and an 8-byte picFrame rectangle, followed by any
number of bytes of the picture definition.

3. Use GetPicture (5.4.2] to load a resource of this type.

4. When you're finished with the picture, use ReleaseResource [6.3.2] (not
Kill Picture [5.4.2]) to dispose of it.

CHAPTER
.... llii!im~IE.lm- 6
.... llbBl~E!i!~

Summoning Your
Resources

One of the brightest of the bright ideas in the Macintosh
Toolbox is the concept of resources. A program's resources can
include all the little odds and ends it needs to do its job: the
menus it offers in the menu bar, the icons and character fonts it
uses to display information on the screen, the layout and contents
of its dialog and alert boxes. Even the code of the program itself
consists of one or more code segments, each of which is a
resource. Looked at in a certain way, a Macintosh program is
nothing but a bundle of resources.

Resources were originally invented to help convert (the in
word is "localize") Macintosh software for use in foreign countries.
From the start, Apple designed the Macintosh to be an interna
tional product. The idea behind resources was to isolate those
aspects of a program's behavior that could vary from one countiy
to another. That way you could translate all the menus and error
messages into Dutch, or reconfigure the keyboard to the standard
French layout, or display text in a Japanese Katakana font, without
having to change the underlying program itself. By making proper
use of resources, you could write programs that would work just
as well in Brussels or Buenos Aires as they would in Boston or
Boise.

Resources were soon recognized, though, as a powerlul and
general mechanism that could be useful for much more than just

275

276 Summoning Your Resources

foreign localization. Separating the text of menus and dialogs from
the rest of the program makes it easy to co~ct misspellings or
change terminology. By making the code that draws \ivindows on
the screen a resource, you can experiment with ·windows of
different shapes and styles without affecting either the code of a
particular program or the general window-management code built
into the Macintosh ROM. Not only application programs, but the
individual data files they work on can have resources of their own,
so that a text document, for instance, can cany its own font
information and illustrations with it even when it's copied from
one disk to another.

Resources have another important advantage as well: they
allow descriptive information about a program's behavior to be
separated into bite-sized "chunks" rather than embedded in the
code of the program itself. Because they're identified as separate enti
ties, not all the "chunks" have to be kept in memory at once. They
can be read in from the disk on demand and then purged from
memory when no longer needed. This allows great flexibility in
managing the program's memoiy space. In particular, it provides a
natural mechanism for breaking up the code itself into segments
that can be loaded into memory as needed and "swapped out"
when they're not actually being executed. We'll be coming back to
this subject in the next chapter.

In fact, resources are so useful that they've become a peivasive
part of the whole Macintosh software design. Just about every part
of the Toolbox uses them in one way or another, and they'll be
coming up again and again in the course of our discussions. Any
program you write will make extensive use of resources through
the Toolbox, even if you never explicitly refer to them yourself.

277 Identifying Resources

.Althoµ~b .. thjs chapter tells. how to use resources in a program,
there's ,still the -problem bf creating the resources in the first place.
His.t()tjcally, . -~ has. b~e.n clone with ·a utility program ~amed
RMaker,. a 0 resource c<;>pipU~r'' fJiat reads a coded text file describing
th~ . ~es~d '.re~o~S,. ~cl. pl'oduc~s an equivalent resource file.

· RMaker is m9luded .. with tµany 'of the most popular software develop
ment systero&1 su~h":fiJ 'rML's MacLanguage Series Pascal, Borland~s
Turbo Pascal ·ror the. Mac!· and Consulair's Macintosh Development
System (MDS).

RMaker's main cfu;tWback ·is that its text format for describing a
progt;µn's res9µrc~so,,amounts to yet another language for you to
Ieam. Anoth$' utilizy, a ... resource editor" named ResEdit, takes a
more. ·cop.venien,t approach. InsteaCI. ·of· compiling ·your resources
fi'om a co.ded ·.text ··~scnption, ResEdit allows you to define and
:modify them dlreotty···o1("your··Macintosh screen with the mouse
and keybO{ll'd. (Thl_s>·in fa.Qt, is how the resources were created for
our example. progratjf MinlEdit inVolUme Two.)
· .. ResEdit. is inpluq~d .as part of Apple's Macintosh Programmer's
Workshop (MPW), and 'is also Widely available in the public domain
through Macintosh clubs, user groups, and ''bulletin boards." MPW
also includes its own resource compiler and decompiler; named Rez
and D~Rez.Jn ag!PtiqJJ,.,1be~'s a growing aITay of specialized tools for
handling ~PEM:ific types-'C>fresources, such as font editors, menu edi-

_tol'$, ~nd. Apple'~. :~.Font/DA Mover. for copying existing fonts and
desk accessories from one· resource file 'to another. For special needs
that aren't:covered by any;of these existil)g tools, you'll have to write
your own ad· hoc programs· to create the resources you need, using
the Toolbox fct:cilities>d~sct;.bed. in this chapter, the information on
resotirce· formats given fu the rest of the· book, and your own
ingenuity.

Identifying Resources

Evecy resource has a resource type and a resource ID. The
resource type is a four-character string denoting the kind of
information the resource represents, such as 'ICON' or 'MENU'. The
resource ID is an identifying number to distinguish one resource
from another of the same type. Together, the resource type and
resource ID make up a resource specification that uniquely iden
tifies a particular resource.

278 Summoning Your Resources

A resource's type determines what kind of information it
contains (the resource data) and how that information is struc
tured internally. The name of a resource type can be any four
characters at all. The contents and structure of resources of that
type can follow any conventions agreed on between the program
that creates them and the one that uses them (which may or may
not be the same program). Certain standard resource types are
built into the Toolbox (6.1.l]; you can also invent your own
resource types, provided that their four-character names don't
conflict with any of the standard ones.

The name; t1fa resoUtQ:~'tm~~m'Qst;~ways b~ exactly four :ch~cters
long~ If lt1s shorter, it :muS,t in.el,qd~ ~ng spaces to fill it qut to
four c~cters, as: in ·:s;rR • or ··eA"r '~ Upper-: and· lowercase l~tters
are ~stingl,dshedr $0 :!pLoe~, 'Blcibt,_ ·and 'blo.b' would be c:onsidered
three: dUfe~:i;it. ~a,p~e. ty,pe~;; ·Notipe,.~sp··that tbe Pascal string
quotes (.') enclo$1Qg" .~ .~: name are: merely delimiters, not part
of the n~e.·it~~lf~

A resource ID can be any 16-bit signed integer, as long as it
doesn't conflict with another resource of the same type. (It's OK
for resources of different types to have the same ID number. In
fact, this can be a convenient way of indicating that the resources
are related in some way-such as a font resource of type 'FONT'
(8.4.5] and the corresponding character-width table of type 'FWID'
[8.4.6].) However, all negative ID numbers and positive ones up to
127 are reseived for system use. Resources that you create for
yourself must have positive IDs between 128 and 32767.

In addition to a type and an ID number, a resource may also
have a resource name, which can be any string up to 255 charac
ters long. Resource names are optional, and are generally used
only for resources that will be listed on a menu, such as fonts or
desk accessories. A named resource can be identified by type and
name instead of type and ID number. To make sure the identifica
tion is unique, resources of the same type must always have
different names. (Again, it's OK-although not necessarily ad
visable-to have two distinct resources with the same name, as long
as they're of different types.)

Resource Files

279 Resource Files

Resources reside in resource files on the disk A single resource
file can contain any number of resources of any types. The file's
contents are summarized in a table called the resource map,
stored as part of the file itself. Each entry in the resource map
holds all the pertinent information about one resource in the file:
its type, ID number, name (if any), attributes, and the location of
its data within the resource file (see Figure 6-1). The resource map
is read into memory from the disk when you open the file, and
remains in memory for as long as the file remains open.

Resource File

--

Resources reside in resource files on the disk.

Figure 6-1 Resource map

--

Any
number
of
resources

Resource
Map

280 Summoning Your Resources

Strictly, speaking, there's really no such thing as a resource file
as such. Or, to look at it another way, every file on the disk is (at
least potentially) a resource file. Each file has two parts, or "forks" :
a data fork and a resource fork. It's almost as if there were two
distinct files with the same name, which are inseparably linked
and always travel together as a unit (for instance, when copied
from one disk to another with the Finder). To read or write a file's
data fork, you use the ordinary input/ output operations that we'll
be discussing in Volume Two, Chapter 8; to read or write the
resource fork, you use the resource operations described in this
chapter. The term "resource file" is just a convenient fiction: when
we speak of a resource file named, say, Rumpelstiltskin, what we're
really referring to is the resource fork of the file by that name.

For a file containing a document of some sort, the document's
contents are kept in the data fork, while the resource fork can
hold document-specific resources such as fonts and icons. For a
file containing an application program, the data fork is usually
empty. (Remember, the code of the program is just another
resource like anything else.) Of course, a program can store into its
own data fork if it wants to-this can be a convenient place, for
instance, to stash global information that needs to be remembered
from one run of the program to the next.

The most important resource file of all is the system resource
file, which contains shared resources available to all programs.
These include such things as the standard fonts, icons, cursors,
and gray patterns; the standard keyboard layout; d efini tion rou
tines for the standard window, control, and menu types; and the
code of desk accessories such as the Calculator, Alarm Clock, and
Scrapbook. The system resource file is actually the resource fork of
the file named System, which must be present on every startup disk.
(This file's data fork contains RAM-based system and Toolbox rou
tines to be loaded into memory when the system is started up
typically to correct errors in the ROM versions of the :routines.) The
file is opened automatically when the system is started up, and
normally just remains open continuously.

On the Macintosh Plus, some of the most commonly used system
resources actually reside in ROM, rather than in the System file on
the disk. See [6.6.3) for more information.

281 Resource Files

Another important resource file is the application resource
file, which is the resource fork of the file containing the applica
tion program itself. This is where a program normally keeps its
own private resources (including the actual code of the program).
The application resource file is opened automatically when a pro
gram is started up, so there's no need for the program to open it
explicitly.

In addition to the system and application resource files, you
can open any other resource files you need by calling OpenResFile
[6.2.1]. You designate the file to be opened by name; OpenResFile
gives you back a file reference number, which you use from then
on whenever you need to identify the file. (We'll learn more about
file reference numbers when we talk about files in Volume Two.)

All resource-related Toolbox .~out;ines that deal with file reference
numbers interpret a reference number of 0 to denote the system
resource file. This is; :r;1;1.erely .a_ convention, however; the file actually
has a true reference number different from 0.

All the open resource files are kept in a list, linked together
through a field of their resource maps in memory. When a new
file is opened, it's linked to the front of this list. So the files are
listed in reverse order chronologically, with the most recently
opened resource file first in the list, and the system resource file
last.

When you ask for a resource, the Toolbox searches each file
in the list until it finds a resource with the specified type and ID
(or type and name). The search always begins with the current
resource file and proceeds from there to the end of the list (see
Figure 6-2). Opening a new resource file makes it current, so
normally the current file is the first one in the list. If necessary,
you can change this by calling UseResFile or find out which file is
current with CurResFile [6.2.2]. Changing the current resource file
just causes some files at the beginning of the list to be bypassed;
you can't change the order of the list itself.

Closing a resource file removes it from the list and deallocates
the space occupied by its resource map. It also deallocates any of
the file's resources that may have been read into memory. All open
resource files (except the system file) are closed automatically

282 Summoning Your Resources

r{ CuITent Resource File]

Most recently
opened Application System
resource file Resource file resource file resource file

~

Unk r---+1 Link I-+ Link r--4 Link

Resource Resource Resource Re-source
Map Map Map Map

When a resource file is opened, the map is read into memory, but the resource data remains on the disk.
The open resource files are linked through a field of their resource maps.

Figure 6-2 Current resource file

when a program terminates, but if you're pressed for space you
may want to close a file explicitly while your program is still
running. You can do this by calling CloseResFile (6.2.1], giving the
reference number of the file you want to close.

Closing the system. resource file. automatically closes.:all other~open
resource file~ as well. This isn't something you'd normally want to
do, since ot}ie:r parts of the system depend on the system resource
file. · ·

Access to Resources

To use a resource, you first have to read it into memory from its
resource file. The usual way of doing this is with GetResource [6.3.1],
identifying the resource by its type and ID number. For resources
with names, you can use GetNamedResource, giving a type and name
instead of a type and ID. Both routines search the list of resource
files beginning with the current file, as described in the preceding

283 Access to Resources

section. When they find the resource you asked for, they allocate
space in the heap for the resource's data, read the data in from
the file, and return a handle to it. You can then use this handle
to do whatever you need to do with the data. A copy of the handle
is also saved in the file's resource map in memory. If the resource
is still in memory the next time you ask for it, you'll just get back
this same handle; the resource won't have to be read in again from
the disk.

One. of the new featutes of the Macintosh. Plus Toolbox is a collec
tion of "o~e-deep" resource routines that apply only to the current
reso~e file, instead of the entire list. of open resotµ'Ce files. The
new routides Get1Resource and Get1NamedResource (6.3.1) are analogous

. to GetRe.source and GetNamedResource, but look for. a reqµ~steq. resource .
hi· the current resource file only. If they don't find it fllere, they
simply .abandon the search and report an eiror instead of going on
to the next file iri the list. These routines can make som:e of your
reso~e operations .more efficient-but bear in mind that they
aren't available ifyou~re running_ on an oldel'-model Macintosh.

Like any other relocatable block, a resource in the heap can
be locked or unlocked, purgeable or unpurgeable. The resource's
attributes (discussed in the next section) determine the initial
settings of these properties when the resource is first read in from
the disk. After that, you can change them as needed with HLock
and HUnlock, HPurge and HNoPurge [3.2.4].

If you make a resource purgeable, of course, then each time
you use it you have to check first to make sure it's still in memory.
The best way to do this is to call LoadResource [6.3.4] before each
use of the resource's handle. If the handle is empty (the resource
has been purged), LoadResource will reload the resource from the
disk; if it isn't empty (the resource is still in memory), LoadResource
does nothing. You might then want to make the resource tem
porarily unpurgeable while it's in use (see Program 6-1).

284 Summoning Your Resources

< Skeleton code 1hoaeing the use of a purgeable resource. }

!!!
theH1ndle : Handle;
thePointer : Ptr;

. . '
LaldResource CtheHandle); {ltake sure resource is in 1e1ory [6.3.41}

Hlock lthtffandle>;
thePainter :• theH1ndleA;
••• thePointerA ••• ;

HUnloct CtheHandle>;

<Lad before dereferencing C3.2.4]}
<Dereference handle}
<Use siaple pointer}
(Unlock 1hen through C3.2.4·l>

Program 6-1 Using a purgeable resource

Whether to make a given resource purgeable or unpurgeable
depends on a num~r of mctors, including the size of the resource,
how often you'll be. refening. to it, and how desperate you are for
heap space. In general, you~n probably want to make larger
resoul'Ces (suc;h as fonts) purgeable and smaller ones (sqch as
patterns) unpu.rgeab.le.

When you're all through with a resource, you can free the
memoiy space it occupies with ReleaseResource [6.3.2]. As usual, this
makes all handles to the resource invalid; it also sets the resource's
handle in the resource map to NIL, so that the resource will be
reloaded from the disk the next time you ask for it. All the
resources in a resource file are released automatically when you
close the file.

Sometimes, though, you may want to hold onto a resource
even after the file it came from is closed. For instance, suppose

285 Access to Resources

you need a single resource from a particular resource file. Once
you have the resource, there's no need to keep the file open, with
its resource map taking up space in memory. To keep the resource
from being deallocated when you close the file, you can detach it
first with DetachResource (6.3.Z]. This clears the resource's handle in
the resource map but doesn't deallocate the resource itself. The
resource isn't removed from the file; your copy of it in memory is
just decoupled from the file's resource map, so that it won't go
away when you close the file (see Figure 6-3). Even after the file is

rsrcHandle--

To detach a resource, first create your own copy of
the handle (rsrcHandle).

a

Master Pointer
Master Poi nte r
Master Pointer

Figure 6-3 Detaching a resource

286 Summoning Your Resources

rsrcHBndle--

Note this
handle

Procedure DetachResource sets the original
handle to NIL.

DetachResource {rsrcHandle)

b

Figure 6-3 (continued)

.287 Access to Resources

rsrcHandl e _ __,

The resource file has been closed; its map and all
resources it contained have been deallocated. The
detached resource remains.

c

Master Poi nte r

Figure 6-3 (continued)

288 Summoning Your Resources

closed, your own copy of the resource's handle remains valid and
you can continue to use it to refer to the resource data, as in
Program 6-2.

You may sometimes want to perfonn some operation on all
available resources of a given type, or of eveiy type. Program 6-3
shows how. The function CountTypes [6.3.3] returns the total num
ber of distinct resource types contained in all open resource files.
You can then call GetlndType (6.3.3] once for each value of its index
parameter from 1 up to the number of types. Each time it will return
a different resource type. For each of these types, CountResources
[6.3.3] will return the total number of available resources of that
type in all open files; you can get each of the resourc:es in tum
by calling GetlndResource (6.3.3] once for each value from 1 to the
number of resources. We'll see a further example of this technique
in Chapter 8.

{ Skeleton code to get one single resource fro1 a resource file. }

'9~!

Y!!:

blablD = 128;

thefile : INTEGER;
theBlob : Handle;

thefile := DpenResFile ('Ru1pelstiltskin'>;
theBlob := 6etResource ('BLOB', bloblDJ;
DetachResource <theBlob>;
CloseResFile <thefile>;

••• theBlob ••• ;

<Resource JD of desired 'BLDB' resource}

<Reference nu1ber of the re1ource file}
<Handle to the resource>

<Open the file [6.2.ll}
C&et the resource C6.3.1J>
<Detach the resource C6.3.2]}
CClose the file [6.2.ll}

{Use the resource}

Program 6-2 Detaching a resource

289 Access to Resources

< Steleton code ta g111er1te all 1vailable resources.

m:
typelnde1 : INTE&ER;
rsrclndex : llTEIER;
thelype : ResTyp1;
rsrclllndle : Hindle;

.
I O O '

<Index of resource type}
<Index af individual reSGUrce>
CResaurce type>
CHandle to resaurc1}

f![typelnde1 := ! !g CauntType1 d! <Laap over all resource types C6.3.3l>
Ull!!

&ttlndType Cthelypt, typelndext; C&et next type C6.3.3l}
!gr rsrclndel :s 1 ta CauntResaurcts CtheTypeJ ~! <Loop over 111 resaurtes of this type C6.3.3l}

Ugig

end· _,

rsrclllndle :~ &etlndResaurce Cthelype, rsrclndexJ; <Set handle to next resource C6.3.3J}

m
••• rsrclllndle... <Use the h1ndle}

Program 6-3 Generating all resources

Noticl:)'thaHhese~u~~s· ~ys operat~ onaU open resource files,
;no Im1tterWhi¢n·on-e·~11aPipe:tj~.itQ.:be::clirre)).t .On the Macintosh Plus,

r you·.·~ funit yow; .Qpef{ltiol)tfto .jµst onecparttcular resource file by
.tn~g that- fil~ '~~~t·~~' :U~eResfile rs~2.21, then using the new
on&deep I'Qµtine$.'C~._nt1T~pes~ Get~lndType, Count1Resources, and Get11nd
·.a~soutce (s.a:a~ ,toi3eP.~~tiJ the· ft3~ouroes. On older machines~ where
the ·one-deep routitl~s:: 'fjren>,f available, you can achieve· the same
effect by ,generating an~~vailabl~ resouro,eswitµ the old routine~. and
'testing:each one;M4tb'lilbmeResfile [6.4.3] to seeifit belongs to the file
of int~st.~-'J1lis. 'IiietJ:iq~;l !lSl lllU.Ch. ~l()Wer .· tha:n using the one-deep
:roµ@~s, howevm-::

290 Summoning Your Resources

Resource Attributes

Besides its resource data, eve:ry resource has some additional
items of information associated with it. These additional items are
kept in the resource's ent:ty in its file's resource map. They fall into
two categories: identifying information and resource attributes.

The identifyi.ng information for a resource consists of its
resource type, ID number, and (optional) name. Given a handle to
the resource, you can find out its identifying infonnation with
GetReslnfo or change it with SetReslnfo (6.4.1]. (You can't change a
resource's type, just its ID and name.) To find out the size of a
resource's data, in bytes, use SizeResource (6.4.3].

If speed is more important tllan .ab~lute accuracy1 you can· save
some time (on the Maoirtto'sh Plus orilyr by ushlg ·the nEtW routine
MaxSizeRsrc [6.4.3) rather than SizeResource-. Instead· of examining the
resou~~itself(which may have to be read from the 'disk if,it,.isn't
already in memory), MaxSizeRsrc ju&t looks in the resourcu map and
finds the number ofbytesbetweell the beginning ·Of this resource's
data and that of the next resoUrce .. folloWing it._in the tllE1. Th&· is a
quick operation, since the resource map is always immediately
available;in memocy-but :the result may not accurately reflect the
true size of the resource. If the resource has been shortened while
in mempi:y; there inay be some ex.tra, unused space following it that
won't be closed up until the· file is Written back out to thei disk.
Thus the· resource can never :be larger. than the value mported by
MaxSizeRsrc~ but. it may be smaller. If you: really need the exact size,
use SizeResource instead.

A resource's attributes are a set of 1-bit flags describing
various properties of the resource. They're collected in a single
"attribute byte" of the resource map enny, with the format shown
in Figure 6-4. The Toolbox provides the routines GetResAttrs and
SetResAttrs (6.4.2] for reading and changing a resource's attributes,
as well as constants for referring to each of the individual attribute
bits. In eve:ry case, the constant's name tells the meaning of the
corresponding attribute bit when set to 1; a bit value of 0 has the
opposite meaning. (For instance, a resource is protected if its
ResProtected bit is set to 1, unprotected if it's 0.)

291 Resource Attributes

Low-order byte (high-order
byte not used)

5 4 3 2 1

.i

0

------ ResPre!oad

---------- Reslocked

------------ ResPurgeable

--------------- ResSysHeap

Figure 6-4 Resource attributes

You can use these attribute constants along with the bit
manipulation routines BitAnd, BitOr, BitXOr, and BitNot [2.2.2] to oper
ate on the individual attribute bits of a resource. For example,
if theResource is a handle to a resource, you might tum on its
ResProtected attribute as follows:

attrs := GetResAttrs (theResource);
attrs := BitOr (attrs, ResProtected);
SetResAttrs (theResource, attrs)

The ResSysHeap attribute tells whether the space for a resource's
data is allocated from the system heap or the application heap.
Resloc.ked and ResPurgeable control whether the resource is initially
locked and made purgeable when it's loaded from the disk. Chang
ing these attributes does not immediately lock or unlock the
resource or change its purgeability-you still have to do that in the
usual way, with Hlock and HUnlock, HPurge and HNoPurge [3.2.4].
Changing the Reslocked and ResPurgeable attributes only affects what
will happen the next time the resource is read in from the disk.

The ResProtected attribute prevents you from removing a re
source from its resource file or changing its name or ID. (You can

292 Summoning Your Resources

still change the resource's attributes, however-if you couldn't,
there would be no way to tum off the ResProtected attribute itself!)
ResPreload causes the resource to be read into memoiy immediately
when its resource file is opened, instead of waiting for you to get or
load it explicitly. Finally, ResChanged means that the resource has
been changed since the last time it was read in from the disk, and
must be written back out before the file is closed. (We'll have more
to say about this process in the next section.) The first and last bits
of the attribute byte are reseived for private use by the Toolbox.

Not only individual resources, but whole resource files have
attributes of their own, which you can access and change with
GetResFileAttrs and SetResFileAttrs [6.6.2]. You'll rarely have to deal with
resource file attributes, but there are a few cases when they're
useful. Some examples are given in the "Nuts and Bolts" section at
the end of this chapter.

Modifying Resources

So far, we've assumed that all you want to do is read and use exist
ing resources from existing resource files. In most applications
that's all you'll need, but occasionally you may want to add new
resources to a resource file, remove old ones, change existing ones,
or even create whole new resource files.

When you change a resource, you have to take special
measures if you want the change to be incorporated permanently
on the disk. Simply changing the resource in memoiy isn't
enough-you also have to mark it as changed by setting its
ResChanged attribute. When the file is later updated, all resources
that have been marked as changed will be written out 1to the disk. A
resource file is automatically updated when it's closed (and recall
that all except the system resource file are closed automatically
when your program terminates). If for some reason you want to
update a resource file without closing it, use UpdateResFile (6.5.4).

You can add resources to the current resource file with
AddResource and remove them with RmveResource (6 .. 5.3]. Both of
these routines make the appropriate changes in the resource map
of the current file; AddResource also marks the new resource as
changed, so it will automatically be written out to the disk when·
the file is updated. When you add a resource, you can use UniquelD
(6.5.3] to make sure the ID number you give it doesn't conflict with

293 Modifying Resources

another resource of the same type. To create a brand-new
resource file, use CreateResFile [6.5.1] and then add whatever
resources the new file is to contain.

When you make any change in the data of an existing
resource in memo:ry (or change its resource map information with
SetReslnfo or SetResAttrs [6.4.2]), you can choose whether to make the
change permanently on the disk, or just temporarily for as long
as the resource remains in memoiy. To make the change per
manent, you have to call ChangedResource [6.5.2] to mark the
resource as changed. This ensures that it'll be written out when
the resource file is updated. (Always use ChangedResource for this
purpose; never directly manipulate a resource's ResChanged attribute
yourself!)

If any singl~ resotµ"Ce :in Jl file is marked as changed, the entire
resource map will .always .be. written out when the file is updated.
~~ .. m~an~. that chang~s in. som.e other resource's identifying
information or attributes may be written back to the disk even
thollgh you ~haven't Jllarked that specific resource as changed If
you want such a cha11ge to be temporary, it's up to you to undo
the change· before the; fi.1£t i$·updated.

The situation is especially tricky when the resource you're
modifying is purgeable. First of all, you have to make sure the
resource isn't purged from the heap while you're in the middle of
changing it. To prevent this, always use HNoPurge to make the
resource temporarily unpurgeable while you're modifying it, then
HPurge to make it purgeable again when you're through. But even
if you take this precaution, there's still the danger that the
resource may be purged after you've changed it and before its
resource file is updated. In that case your changes will be lost,
and empty (zero-length) data will be written to the file for that
resource.

One way to make sure your changes aren't accidentally lost
is to write the resource out explicitly with WriteResource [6.5.4] as
soon as you finish changing it, and before you make it purgeable
again. Another way to do it is with SetResPurge [6.5.5]. The call

SetRes Pu rg e(TRU E)

Error Reporting

294 Summoning Your Resources

tells the Toolbox to check evecy time it purges a block from the
heap, to see if the block is a changed resource. If it is, the Toolbox
will write it out to its resource file before purging it. This
guarantees that all your changes will be saved eventually, although
you have no control over exactly when.

SetResPurge(FALSE)

turns off this feature, so that blocks are again purged from the heap
without any checking. Automatic purge checking is initially off, so
you have to tum it on explicitly with SetResPurge if you want it.

The routines dealing with resources use an error-reporting
mechanism similar to the one used in memocy management,
which we discussed in Chapter 3. The function ResError (6.6.1] is
analogous to MemError (3.1.3]: after a call to any resource-related
routine, this function returns an integer result code. A code of 0
(NoErr) means that all is well; a nonzero code reports an error of
some kind. If the routine reporting the error is a function, it gener
ally returns some special value, such as NIL or -1, to alert you that
an error has occurred; if it's a procedure, it typically just posts the
error and returns without doing anything.

In assembly language, you ·can find the result code from th;e last
resourc~related ~p~tion in tlie global variable ResErr.

The list given in (6.6.1] includes only those error codes that
deal specifically with resources. It's also possible for ResError to
return error codes related to other parts of the Toolbox. For
instance, you may get a code of MemFullErr (3.1.2] if you tcy to load
a resource from the disk when there isn't enough room for it in
the heap. See Appendix E for a complete list of possible error
codes.

Nuts and Bolts

295 Nuts and Bolts

Since a resource's identifying information and attributes reside in
the resource map, it isn't necessruy to load the resource into
memoiy to work with them. A routine called SetResload [6.3.4]
allows you to get a handle to a resource without loading its data
from the resource file. The call

SetResload(FALSE)

turns off the automatic loading of resources by GetResource [6.3.1],
GetNamedResource [6.3.1], and GetlndResource [6.3.3] (and their one-deep
counterparts). If the resource you ask for is already in memoiy,
these routines will still return a handle to it, as usual; but if it isn't,
they'll give you back an empty handle instead of loading the
resource from the file. This empty handle identifies the resource
well enough for those routines that operate on its resource map
entiy (GetReslnfo and SetReslnfo [6.4.1), GetResAttrs and SetResAttrs (6.4.2),
HomeResFile and MaxSizeRsrc (6.4.3)). If you later need to refer to the
resource's data, you can read it in explicitly with LoadResource
[6.3.41.

Be careful, though! Turning off automatic resource loading is
tricky, and can lead to a number of subtle problems if you don't
watch your step. For one thing, some parts of the Toolbox rely on
automatic loading and won't work properly without it. So if you
do turn it off, be sure to turn it back on again as soon as possible
with

SetResload(TRUE)

It's especially crucial to tum automatic loading back on before
tenninating your program and exiting back to the Finder. Don't
forget that the code of the. ·Finder, like that of aw other program
(including your own), is stored on the disk as a resource. If you
leave automatic loading. turned. oft; the Toolbox will be unable to
load the Finder into memoiy for execution, and will crash the
system instead.

.296 Summoning Your Resources

For another thing, recall that if any one resource in a resource
file is marked as changed, the entire resource map will be written
out when the file is updated. Changes you make to a resource's
identifying information or attributes in the resource map (even if
you intend them to be temporary) may accidentally be incor
porated into the permanent disk copy of the file because of
changes made to other resources. If you've made any other
changes, you have to be careful to undo the temporary ones and
restore the resource's map entiy to its original state before the file
is updated.

Yet another trap awaits you if you do want your changes to
be permanent. SetReslnfo and SetResAttrs don't automatically mark
the affected resource as changed; to make sure your changes are
written out when the file is updated, you have to mark the
resource explicitly with ChangedResource [6.5.2]. But if you've turned
off automatic resource loading with SetResload, to get a handle to
a resource without loading its data from the disk, the resource
map will now contain an empty handle for that resource. When
the file is updated, the empty handle will cause the existing
resource data to be replaced with empty (zero-length) data.

One way to prevent this from happening is to tum on the
resource file's MapChanged attribute with SetResFileAttrs [6.B.2] instead
of marking the resource itself with ChangedResource. This will cause
the resource map to be written out when the file is updated
(making your changes permanent), but since the resource itself
isn't marked as changed, the empty handle in the resource map
won't replace the existing resource data in the file with empty
data.

Another occasional use for SetResFileAttrs has to do with the
file's MapCompact attribute. Certain changes that you make in a
resource file create "holes" in the file: areas of the file's contents
that are no longer in use and can be closed up by compaction
when the file is written back to the disk. The MapCompact attribute
tells the Toolbox to compact the file's contents the ne~xt time it's
updated.

Some operations that create holes in the filu, such as
RmveResource [6.5.3], cause this attribute to be set automatically.
Similarly, if you increase the length of a resource's data, the new
data has to be written at the end when the file is updated, since
it will no longer fit at its original location within the file. This
leaves a hole where the resource used to be. So again, the file's

297 Nuts and Bolts

MapCompact attribute is set automatically whenever you lengthen
the data of any resource. For some reason, however, MapCompact is
not set automatically when you shorten a resource, even though
this also creates a hole that could be closed up by compaction.
So in this case you can use SetResFileAttrs to tum on the MapCompact
attribute yourself and force a compaction when the file is updated.

This problem has been cmrected on the Macintosh Plus: any
operation that creates a hole in the resource file correctly sets the
file's MapCompact attribute.

One final use for SetResFileAttrs is to "protect" a resource file
by turning on its MapReadOnly attribute. This prevents the file from
being updated at all, ensuring that any and all changes you make
will be temporary and will never be written out to the disk.

REFERENCE

6.1 Resource Types

6.1.1 Resource Types

~-: .._...._ ___ n_efiDiti~·-···_·_on_.s_·· ----------------------------

type
ResJype =· pa_cktd artay [t.4~· ·of CHAR;_ lRH.ource type}

298

299 [6.1.1] Resource 'fypes

Resource See
type Description section

'PAT' QuickDraw pattern (5.5.1]

'PAT#' Pattern list (5.5.2]

'ICON' Icon (5.5.3]

'ICN#' Icon list (5.5.4]

'PICT' QuickDraw picture (5.5.5]

'CODE' Code segment (7.5.1]

'PACK' Package (7.5.2]

'FREF' Finder file reference (7.5.3]

'BNDL' Finder bundle (7.5.4]

'DRVR' 1/0 driver (including desk accessories) [7.5.5]

'TEXT' Any text (8.4.1]

'STR' Pascal-format string (8.4.2]

'STR#' String list (8.4.3]

'INIT' Initialization resource (including
keyboard configurations) (8.4.4]

'FONT' Font (8.4.5]

'NFNT' Non-menu font (8.4.5]

'FWID' Font width table [8.4.6)

'FRSV' Reseived font list (8.4.7]

'CURS' Cursor (11:2.9.1]

'FKEY' Low-level keyboard routine (11:2.9.2]

'WIND' Window template [11:3.7.1]

'MENU' Menu (11:4.8.1]

'MBAR' Menu bar [11:4.8.2]

'CNTL' Control template (11:6.6.1]

'ALRT' Alert template (11:7.6.1]

'DLOG' Dialog template (11:7.6.2]

'DITL' Dialog or alert item list [11:7.6.3]

'MACS' Macintosh system autograph

'FOND' Font family definition

'WDEF' Window definition function
'MDEF' Menu definition procedure
'CDEF' Control definition function
'LDEF' List definition procedure

300

'PDEF'
'PREC'
'SERO'

'INTL'
'OSAT'

'CACH'
'FMTR'
'PTCH'
'ROvr'
'ROv#'

'APPL'
'FDIR'
'FOBJ'
'FCMT'
'LAYO'

'MINI'
'FBTN'

'NBPC'
'PAPA'

'RDEV'
'PRER'
'PRES'

'SIZE'

'TMPL'

Resources

Printing code
Print record
Serial driver

International localization resource
"Dire straits" alert table

RAM cache code
Disk formatting code
System patch code
ROM ovenide code
ROM ovenide list

Finder application table
Finder directoiy
Finder object
Finder comment
Finder folder layout

MiniFinder resource
File button (MiniFinder)

Name-Binding Protocol code (AppleTalk)
Printer Access Protocol address (AppleTalk)

Remote device (Chooser)
Printer remote (Chooser)
Printer serial (Chooser)

Partition size (Switcher)

Resource type template (ResEdit)

~~~ii3==1--------N_o_te_s __________________________________ ___ 
1. Names of resource types are always exactly four characters long. 

2. Type names may include any characters without restriction, including 
letters, digits, spaces, and special characters. Notice that the space is 
significant (and required) in names such as 'STR' and 'PAT'. 

3. Upper- and lowercase letters are considered distinct: for example, 
'BLOB', 'Blob', and 'blob' are three different resource types. 

4. Resource types listed in the table above have reser1ed meanings 
assigned to them by the Toolbox; those that you inven1 for your own 



301 (6.2.1] Opening and Closing 

use must not conflict with them. In addition, all type names consist
ing entirely of lowercase letters (such as 'blob') are reseIVed by Apple 
for the private use of the Toolbox. 

5. Resource types for which no section number is given in the table are 
not covered in this book; see Volume Three or Apple's Inside Macin
tosh manual for information. (However, some of these are private to the 
Toolbox and are not documented even in Inside Macintosh.) 

6.2 Resource Files 

6.2.1 Opening and Closing Resource Files 

fu,11~t1Q•l .OpenResfHe 
· (fileNaine : Sfr~55) 

: INTEGER~; . 

pr41cadura ·c1ose_ResFile 

·ttfamtH>f resource file to be opened} 
JR~-ference number of fileJ 

(refNum : INTEGER); _ {Rel&rence number ofresource file to be closed} 

~~iiiiR==i...,_ ______ N_o_•_e_s __________________________________ ___ 

1. OpenResfile opens a resource file; CloseResfile closes it. 

2. OpenResfile accepts the name of the resource file to be opened and 
returns the file's reference number. Thereafter, the reference number 
is used whenever you want to refer to the file. 

3. The file's resource map is read into memory and remains there for 
as long as the file remains open. 

4. The designated file becomes the current resource file. 

5. If the designated resource file is already open, OpenResfile just returns 
its reference number. 

8. In case of an etTOr opening the file, OpenResFile returns -1. 

7. The system resource file is opened automatically at system startup 
and the application resource file when the application is started. 
These files need not be explicitly opened within the program itself. 

8. CloseResfile releases the space occupied by the file's resource map 
and all its resources. 



30.2 Resources 

9. If the file or any of its resources have been changed, the file is 
updated on the disk before closing. 

10. A reference number of 0 denotes the system resource file. 

11. Closing the system resource file causes all other open resource files 
to be closed as well. 

12. All open resource files except the system resource file are closed 
automatically when a program terminates. 

IOI Assembly Language Information 
--11a1-------1--!i-

Trap macros: 

(PascaD 
Routine name 

Open Res File 
Close Res File 

(Assembly) 
Trap mac.ro 

_Open Res File 
_etoseResFI le 

6.2.2 Current Resource File 

Trap ward 

$A997 
I 

$A99A 

~111~-------o_e_fi_n_itt-·o_n_s ________________________ ~----

function CurResFile 
: INTEGER; {Reference number of current resource file} 

procedure UseResFile 
{refNum : INTEGER); {Reference number of resource file to be made current} 

~~iiiiiR~1---------N-o_te_s ____________________________________ __ 
1. CurResFile returns the reference number of the current resource file; 

UseResFile makes a designated file the current resource file. 

2. The search for a requested resource begins with the current resource 
file and proceeds backward chronologically through all resource files 
opened earlier. 

3. A reference number of 0 denotes the system resource file. 



303 [6.2.2) Current Resource File 

4. The reference number of the current resource file is available in 
assembly language in the global variable CurMap. 

5. On the Macintosh Plus, ROM-based resources are searched before the 
current resource file; see (6.6.3) for details. 

I C]I Assembly Language Information 
-1&:1----------

Trap macros: 

(Pascall 
Routine name 

CurResFile 
UseResFile 

(Assembly) 
Trap macro 

_curResFile 
_UseResFile 

Trap word 

SA994 
$A998 

Assembly-language global variables: 

Name Address Meaning 

CurMap SA5A Reference number of current 
resource file 

CurApRefNum $900 Reference number of applica-
tion resource file 

Sys Map $A58 True reference number (not OJ of 
system resource file 

SysResName $AD8 Name of system resource file 
(string, maximum 19 characters) 

SysMapHndl $A54 Handle to resource map of system 
resource file 

TopMapHndl $A50 Handle to resource map of most 
recently opened (not necessarily 
current) resource file 



304 Resources 

6.3 Access to Resources 

6.3.1 Getting Resources 

~~iiiiiiiiiiii-...._ _______ n __ e_&ni __ ·n-·o_n_s ______ ....,._...~----~--~---~--:~~-----
functlon GetResoarce 

(rsrcType : ResType; 
rsrclD : .INTEGER) 

~ Handle; 

function GetNamedReso,urce 
(rsrcType. : ResType;. 
rsrcNa:me : Str25$·) 
: Handle; 

function Get1 Resource· 
(rs re Type : ·Res type; 
rsrclD : INTEGER) 
: Handle; 

function Get1 Named Resource 
(rsrcType : ·ResJ.ype; 
rsrcName. : Str25_5J 
: Handle; 

{Resource: type} 
£Resource I~} 
{Handle fo resource} 

{Resource type} 
{Resource n·ame} 
lH~ndle to r~source:} 

{Resource type} 
(Resource ID1 
{Handle to resource} 

{Resource .. typ·eJ 
{Resource name} 
{Handle to resource} 

~~Riiiiii~.,._ ______ N_o_i_e_s ____________________________ , ______ ___ 

1. These routines search the list of open resource files for a designated 
resource, read it into memmy if necessmy, and return a handle to it. 

2. The resource is identified by type and ID number (GetResource, 
Get1Resource) or type and name (GetNamedResource, Get1NamedResource). 

3. GetResource and GetNamedResource begin with the current resource file 
(6.2.2] and search backward chronologically through all resource files 
opened earlier. The "one-deep" operations Get1ResourcEi and Get1Named
Resource search the current resource file only. 

4. The resource's handle is saved in the file's resource map in memory 
for future use. 

5. If the resource is already in memory, its existing handle is returned. 

6. In case of an eITOr, the handle returned is NIL. 



305 (6.3 . .2) Disposing of Resources 

7. Automatic loading of resources into memory can be suppressed with 
SetResload (6.3.4). In this case, an empty handle is returned if the 
requested resource isn't already in memory. This empty handle is suf
ficient to identity the resource for routines that operate only on the 
resource map, such as GetReslnfo and SetReslnfo (6.4.t), GetResAttrs and 
SetResAttrs [6.4.2), HomeResFile and MaxSizeRsrc [6.4.3). It can also be used 
to load the resource into memory later with LoadResource [6.3.4]. 

8. If ROMMaplnsert [6.6.3] is set, GetResource and GetNamedResource search 
ROM-based resources before the current resource file; Get1 Resource and 
Get1NamedResource search ROM-based resources only. 

9. Get1Resource and Get1NamedResource are available only on the Macintosh 
Plus. 

IOI ·Assembly Languaage lllfortnadon 

---11a---------
Trap macros: · · · 

(Pascal) 
Routine name 

GetRe$ource. 
GetNamedResourc9,tf 
Get1Resource 
Get1 NarpedR~SOl.!((:8 

(ASsembly) 
Trap macro 

:..GE!tResource 
..-GetNamedResource 
_Get1 Resource 
_Get1 Named Resource 

6.3.2 Disposing of Resources 

Trap word 

$A9AO 
$A9A1 
$A81F 
$A820 

---11111~-------n-e_fini_·_n_o_n_s ____________________________ __ 

procedure ReleaseResource 
(theResource : Handle); 

procedure DetachResource 
(theResource : Handle); 

{Resource to be released} 

{Resource to be detached} 



306 Resources 

~~iiiiR.==iti--------N-o_t_e_s __________________________________ __ 

1. ReleaseResource deallocates the space occupied by a msource and 
removes its handle from its file's resource map in memory. All existing 
handles to the resource become invalid. 

2. DetachResource removes the resource's handle from the l"E!source map, 
but doesn't deallocate the resource itself Existing handles remain 
valid, but are no longer recognized as refening to a resource. 

3. In both cases, later attempts to get the resource with GetResource [6.3.1], 
GetNamedResource [6.3.1], or GetlndResource (6.3.3] (or the corresponding 
"one-deep routines" Get1Resource [6.3.1], Get1NamedResource (6.3.1], or 
Get11ndResource (6.3.3]) will cause it to be reread into mernrny from its 
resource file and a new handle allocated. 

4. Detaching a resource prevents it from being deallocated when its 
resource file is closed. 

5. A resource may not be detached if its ResChanged attribut1~ (6.4.2] is set. 
Attempting to do so results in the error ResErrAttr (6.6.1]. 

~~1.-------As-. _se_m~'-h_ly_.···~·•-"-~~·~._·._g_e_.·hd~·~o~·~-... _•a_n_~_n_. ________ 
1 

______ __ 

Trap macros: 

JJ>as~al)· 
Routine~e 

ReleaseResource 
DetachReso"u.rce 

!(~~Illy) 
Trap macro 

-~eleaseResource 
· _J).etach6esource 

$A~A~ 
$A992 



307 [6.3.3) Generating All Resources 

6.3.3 Generating All Resources 

function CountTypes 
:INTEGER; , : .{Total number. of resource types} 

procedure GetlndType 
(var rsrcTyp~e : ~estype; {Returns next resource type} 
index " : lNMGER): · {Index of desired resource type} 

functil1n . CountResources 
(t-srcType : AesTyp·e)' 

: INTEGER; 

function GetlQdResource 
(rsrcTyp:e : ResType; 
.index : INTEGER) 
: Handle; 

function Count1Types· ·, · 
: .INTE.aER;-

procedpre Get1lndType 

{Resource type} 
(Total number of resources of this type} 

'fRes·ource type} 
{Index (not ID) of desired resource} 
{Handle to resource} 

ffotal number of r:esource types} 

(var rucType -.: ResTyp:e·; _[Returns next resource type} 
Index ~ INTE(.!EH); - {Index of desired resource type} 

function Count1 Resource:s 
(rsrcType ::·Rl~·sryp,el 

: INTEGER; . ..- . 

function Get11ndResource 
(rsrcType : ResType;: 
index : INTEG~·R) 

:. Handle; 

.{Resource type} 
{Total number of resources of this type} 

{Resourc:e · typ.el 
Hndex (not ID) of desired resource} 
{Han°dle to resource} 

~~iiiiR·~t--------N-o_t_e_s ____________________________________ __ 

1. These routines are used to iterate through all available resources of 
a given type or of all types. 

2. CountTypes returns the total number of distinct resource types con
tained in all open resource files. For each value of index from 1 up to 
this count, GetlndType returns a different resource type in the variable 
parameter rsrcType. 



308 Resources 

a. CountResources returns the total number of resources of a given type 
contained in all open resource files. For each value of ind~x from 1 up 
to this count, GetlndResource returns a different resource of the desig
nated type. 

4. In case of an error, GetlndResource returns NIL. 

5. These routines always operate on all open resource files, regardless 
of which one is current. 

6. If ROMMaplnsert (6.6.3] is set, these routines include ROM-based 
resources as well as those that reside in open resource files. 

7. Count1Types, Get11ndType, Count1Resources, and Get11ndResource work the same 
way as the first four routines, but apply to the current resource file 
only (or only to ROM-based resources if ROMMaplnsert is set). 

8. Count1Types, Get11ndType, Count1Resources, and Get11ndResource are available 
only on the Macintosh Plus. 

9. The trap macros for Get1lndType and Get11ndResource are spell.ed _Get11xType 
and _Get1 lxResource. 

IOI Asse:pibly.Languag~ b:lfonw.tion 
---1&:1-------·---

Trap macros: 
(Pascal) 
Routine name 

CountTypes 
GetlndType 
CountResources 
Getlndflesource 
Count1Typ_es 
Get1 lndTyp_e 
Count1 Resources 
Get1 lndResource 

(A1:1semblyl 
Trap macro 

_CQtmtTypes 
_GetlndTYpe 
_co"untResources 

, _GetlndRes.ource 
_count1Types 
_Get1 Ix Type 
_Count1 Resources 
_Get11xResource 

Trap word 

$A99E 
$A99F 
$A99C 
$A99D 
$A81C 
$A80F 
$ABoD 
$A$0E 



309 [6.3.4] Loading Resources 

6.3.4 Loading Resources 

~-~--~~lllmll'!l------D--efi_..n_i~_·o_n_s_. __________________________________ __ 

procedure -SetResload 
(ono r·an : 8.bofEANl;; 

proc1tdure LoadResource 
(theResourc.e : ~.an.dJ~); 

{Turn automatic loading on or off?} 

{Resource to be loaded} 

~~iii~==tt--------N-o_i_e_s __________________________________ ___ 

1. SetResload controls whether resources are automatically loaded into 
memory from their resource files by GetResource [6.3.1], GetNamedResource 
[6.3.1], and GetlndResource [6.3.3] (or the corresponding "one-deep" 
routines Get1Resource [6.3.1], Get1NamedResource [6.3.1], and Get11ndResource 
[6.3.3]). 

2. When automatic loading of resources is on, the "get" routines 
automatically load any requested resource into memory if it isn't 
already there. When automatic loading is off, they just return an 
empty handle if the requested resource isn't already in memory. 

3. Automatic loading is initially off. 

4. Automatic loading ovenides the ResPreload attribute of an individual 
resource [6.4.2]; it forces all resources to be preloaded when their 
resource file is opened, regardless of whether this attribute is on or 
off. 

5. The flag that controls automatic loading is accessible in machine 
language as the global variable Resload. Set this flag to $FF to tum 
automatic loading on, $00 to tum it off. 

6. Don't tum off automatic loading for any longer than is absolutely 
necessary, since some parts of the Toolbox depend on it. In particular, 
make sure you tum it back on before your program terminates, or the 
Toolbox will be unable to load the code of the program you're exiting 
to (nonnally the Finder). 

7. LoadResource accepts an empty handle to a resource and loads the 
resource into memory from its resource file. If the handle isn't empty, 
LoadResource does nothing. 

8. The empty handle may have been returned by GetResource, Get
NamedResource, or GetlndResource (or Get1Resource, Get1NamedResource, or 



310 Resources 

Get11ndResource) when automatic loading was off, or it may have become 
empty because the resource it refers to was purged from memory. 

9. Call LoadResource before using any handle to a purgeable resource, to 
make sure the resource is in memory. 

~li:ll~-------Ass---e-Dl_h_IY_._1..a_n_ .. ~_ ... _ .. _--~~·•Jnlo_:~._.-_-nna_._. _PD_·_n_. _______________ ___ 

Trap macros: 
(PascaD 
Routine name 

(Assembly) 
Trap macro TrapW<>rd 

SetResload 
LoadResoµrce 

_setResload 
_Load Resource 

$A99B 
$A9A2-

Assembly·language globalvariable: 

Name Address Meaning 

ResL.oad $A5E · Loadresources automati~ally? 

6.4 Properties of Resources 

6.4.1 Idendfying Information 

~~iiiiiii ___ .... ________ n_e_finiti __ ·_·_o_ns ______________________________ 
1 

__ ..... ____ __ 

procedUtfl GetReslnf o. 
(theResaurce ; H_andle; _ {Handle to resourqe} 
·var -rsrclD' · : 'INTEGER; , '{Returns resource :ID} 

var rsrcType : ResType; {Returns resourc~ ,type} 
var :rsrcNa:me : Str255); (Returns resource name} 

procedure SetReslnfo 
(theResour.c,e .: Handle; {Handle to resource} 
rsrclD : INTEGER; {New resource ID} 
rsrcName : Str255); {New resource name} 



311 [6.4.1] Identifying Information · 

~~iiie~1--------N-o_i_e_s __________________________________ __ 
1. GetReslnfo returns the identifying information of a resource (resource 

type, ID number, and name) via its var parameters. 

2. SetReslnfo sets a resource's ID and name; the resource type can't be 
changed. 

3. The identifying information of a protected resource can't be changed. 

4. An empty string as the rsrcName parameter to SetReslnfo removes the 
resource's name, if any; a NIL value leaves the existing name un
changed. 

S. Changing the name or ID number of a resource in the system 
resource file is dangerous, since the Toolbox or other programs may 
depend on them. 

~~1~-----'··-J\s~:f!ie_: ... ·'T-~b-Jy_L_t•~~r~:~~-~:~?g~-'~))Dfo~···:~;~"~E·J-~'-:~-jdo-:.~~----------.-..------
T.tiq> ip~res:· '.'.·:·. . . , 
(:Pascai) 
-~utine name 
_.G.eJRe_$Jnf P; 
~~~tRe~~tifo. 

-.<~~iJtJlly,)
'·Trap ma~

·,.J~etRe.stnf O'

~etReslnfo

·'$~A8•

.$A9A9

312 Resources

6.4.2 Resource Attributes

--tllll~l~----D-e_n_n_itto_.··_n_s.._~_...----------------·--~---
functlon GetResAttrs

(th~Hes~i_urc.;e : . .Han~le:)·· .
. : l1NTEG,ER; .

. JHapdle to. r.~$Qlffce.J
·· tCurrent rnource attributes}

proced_ure s·etResAttts .
(theResource·: H.andl~; lHamU«tto resource}
ne.wAttr.s : INJEGER).; _ {N.ew res9ur.ce attributes}

:con st
ResSy.sHeap = $0040;; .
ResPurgeable· = $0020;
Reslocked = $0010!,
Re~Protec.te~ = $OOO&i
ResPreload · _·= $'000~~
Re:sChanged -:: ·$.0002;:~ -

.fResi:de.sHn system heap} :
f Purgeable from ·beapl
{Locked during heap .. compa;ction}
.IPr<>tected ·from change}
lPt~load when· file op•enedl:

: fHas :be11n changed· in tn~~OfY.l

--t~ii3R::::::::::iti--------N-o_t_e_s ___________________________________ ___

1. GetResAttrs returns the attributes of a resource; SetResAttrs sets them.

2. The constants for the individual attribute bits can be combined with
BitAnd, BitOr, BitXOr, and BitNot (2.2.2] to form any combination of at
tributes you need.

3. The ResSysHeap attribute tells whether the resource data resides in
the system (1) or application (0) heap.

4. The ResPurgeable and Reslocked attributes define the initial settings of
these properties when the resource is loaded from the disk-not their
current settings. To change these properties for a resource already in
memmy, you must use HLock and HUnlock, HPurge and Hl~oPurge (3.2.4].

G. A protected resource (ResProtected = 1) can't be removed from its
resource file or have its identifying information changed. Unlike other
attributes, changes in the ResProtected attribute take effect immediately.

6. The ResPreload attribute causes a resource to be loaded into memory
immediately when its resource file is opened, instead of waiting to
be loaded explicitly with GetResource (6.3.1], GetNamedResource (6.3.1],
GetlndResource (6.3.3], or LoadResource (6.3.4] (or the "one-deep" routines
Get1Resource (6.3.1], Get1NamedResource (6.3.1], or Get11ndResource (6.3.3]).

313 [6.4.2] Resource Attributes

7. The ResPreload attribute is ovenidden by SetResload (6.3.4]. Resources
are always preloaded when automatic loading is on, regardless of
the setting of this attribute.

8. The ResChanged attribute tells whether a resource has been changed
in memory and so must be written out to the disk when its resource
file is updated.

9. The assembly-language constants ResSysHeap, ResPurgeable, etc. (below)
are bit numbers for use with the BTST, BSET, BCLR, and BCHG instruc
tions.

10. Always use ChangedResource [6.5.2] to mark a resource as changed,
never SetResAttrs. Make sure all calls to SetResAttrs preserve the existing
value of the ResChanged attribute. In assembly language, the constant
RCBMask is a mask to be used for this purpose.

lDI Assembly Language Information
--tWD----------

Trap macros:

(Pascal)
Routine name

GetResAttrs
SetResAttrs

(Assembly)
Trap macro

_GetResAttrs
_setResAttrs

Trap word

$A9A6
$A9A7

Bit numbers of resource ~ttributes:

Name Value

ResSysHeap 6
ResPurgeable 5
Res Locked 4
Res Protected 3
ResPreload 2
ResChanged

Assembly-language constant:

Name Value

RCBMask $FD

Meaning

Resides in system heap
Purgeable from heap
Locked during compaction
Protected from change
Preload when file opened
Has been changed in memory

Meaning

Mask for ResChanged bit

314 Resources

6.4.3 Other Properties

~loiiiiiiiiiiiiiiiiiiii_:----------0-e_n_n_i_n_o_ns ______________________________ , ______ __

function SizeResource
(theResource : Handle) {.Handle to resource}

: LONGINT; {Size of resource data, in bytes}

function MaxSizeRsrc
(theResource : Handle) {Handle to resource}

: LONGINT; {Approximate size of resource data, in bytes}

function HomeResFile
(theResource : Handle) {Handle to resource}

: INTEGER; {Reference number of home resource file}

~~iiiii~==lt---------N-o_te_s ______________________________ ~------
1. SizeResource returns the size of a resource's data, in bytes.

2. The resource need not be in memoiy; its size will be read from the
resource file if necessary.

3. The trap macro for SizeResource is spelled _SizeRsrc.

4. MaxSizeRsrc quickly finds the approximate size of a resource's data.

5. The value returned is the number of bytes between the beginning of
this resource's data and the beginning of the next resource fol
lowing it in the resource file. Since the needed information is found
in the file's resource map (which is always immediately available in
memoiy}, MaxSizeRsrc is often faster than SizeResource (which may have
to read in the resource itself from the disk).

6. The true size of the resource may be smaller than the value returned
by MaxSizeRsrc, but can never be bigger. If absolute accuracy is essen
tial, use SizeResource instead.

7. MaxSizeRsrc is available only on the Macintosh Plus.

8. HomeResFile returns the reference number of the resource file that
contains a given resource.

9. A reference number of 0 denotes the system resource file; 1 denotes
a ROM-based resource [6.6.3].

10. In case of an eITOr, all three functions return -1.

315 [6.5.1) Creating Resource Files

IOI Assembly LpngQage Information.

--1~..------------
Trap macros:
(Pascal) (Assembly)
Routine name Trap macro Trap word

SizeResource _SizeRsrc $A9A5
MaxSizeRsrc _MaxSizeRsrc $A821
HomeResFile JiomeResFile $A9A4

6.5 Modifying Resources

6.5.1 Creating Resource Files

~1!!11~-------o_e_iini __ n_·o_n_s ____________________________ ___

procedure CreateResFile
(fileName :'Str255); {Name ofresoutce file to be.created]

~~Rliii~..,_ ______ N_o_t_e_s __________________________________ __

1. CreateResFile creates a new, empty resource file with the given name.

2. The new file is not opened and no reference number is returned; call
OpenResFile [6.2.1) to get a reference number for the file.

3. If no file of the specified name exists, a new one is created with both
its data and resource forks empty.

4. If there's already a file of this name with no resource fork, it is given
one.

5. If there's already a file of this name with a nonempty resource fork,
an eITOr is posted.

316 Resources

(di Assembly Language Informa1ion
-t~...__-----~

Trap macro:

(Pascall
Routine name

CreateResflle

(Assembly)
Trap macro

_createResFile

Trap word

$A~B1

6.5.2 Marking Changed Resources

I Definitions

--1 :-------------------------~-
p r o c e du re ChangedResource

(theResource: Handle); {Resource to be marked as changed}

~~~iiii====1--------N_o_i_e_s ____________________________________ __ 

1. ChangedResource marks a resource as changed, so that it will be written 
out to its resource file the next time the file is updated. 

2. Always use ChangedResource to mark a resource as changed; never 
change the ResChanged attribute yourself with SetResAttrs [6.4.2]. 

3. ChangedResource checks to see whether there's enough disk space to 
write out the new version of the resource to its file. If not, it will post 
the eITOr code DskfulErr [6.6.1] and will not set the resoul'ce's ResChanged 
attribute. Consequently, when the resource file is later updated, the 
resource will not be written out; no eITOr will be reported at that time. 
To detect this problem, you must check for an eITOr at the time you 
mark the resource as changed, by following ChangedResoJrce with a call 
to ResError (6.6.1]. 



317 [6.5.3) Adding and Removing 

I C]I Assembly Language Information 

---11Llt----------
Trap macro: 

(Pascal) 
Routine name 

ChangedResource 

(Assembly) 
Trap macro 

_ChangedResource 

Trap word 

$A9AA 

6.5.3 Adding and Removing Resources 

procedure AddResource 
(rsrcData : Handle; 
rsrcType : ResType; 
rsrclD : INTEGER; 
rsrcName : Str255); 

procedure RmveResource 
(theResource : Handle); 

function UniquelD 
(rsrcType : ResType) 

: INTEGER; 

function Unique11D 
(rsrcType : ResType) 

: INTEGER; 

{Handle to data of new resource } 
{Type of new resource } 
{ID number of new resource } 
[Name of new resource} 

{Resource to be removed } 

{Resource type } 
{Unique ID number for th is type} 

{Resource type] 
{Unique ID for this type in current resource file} 

~~iii~'""=.,._ _______ N_o_te_s ____________________________________ __ 

1. AddResource adds a n ew resource to the current resource fi le; 
RmveResource removes an existing resource. 

2. The resource affected is automatically marked as changed, so that the 
change will be incorporated p ermanently on the disk the next time 
the resource file is up dated. 

3. RmveResource doesn't deallocate the resource's data from the heap; do 
it yourself with DisposHandle (3.2.2). 



318 Resources 

4. AddResource adds a new resource to the cUITent resource file, with the 
resource data given by rsrcData and the identifying information given 
by rsrcType, rsrclD, and rsrcName. It's an eITOr if rsrcData is already a 
handle to an existing resource. 

5. RmveResource removes an existing resource from the cur.rent resource 
file. It's an eITOr iftheResource doesn't belong to the current file. 

6. Removing a resource from the system resource file is dangerous, since 
other programs and parts of the Toolbox may depend on it. 

7. UniquelD returns a positive ID number for a new resource that doesn't 
conflict with that of any existing resource of the given type in any 
open resource file. Unique11D returns an ID number that's unique with 
respect to the current resource file (6.2.2] only. 

8. Unique11D is available only on the Macintosh Plus. 

ILJI Assembly Language Information 
-lar:l1------·_. 

Trap macros: 

(Pascal) 
Routine name 

AddResource 
RmveResource 
UniquelD 
Unique11D 

(Assembly) 
Trap macro 

-Add Resource 
_RmveResource 
_UniquelD 
_Unique11D 

Trap word 

$A9AB 
$A9AD 
$A9C1 
$A810 

6.5.4 Updating Resource Files 

procedure UpdateResFile 
(refNum : INTEGER); 

procedure WriteResou rce 
(theResource : Handle); 

{Reference number of resource file to IJe updated} 

{Resource to be written out} 



319 [6.5.4) Updating Resource Files 

~~iiiR·~---------N_o_i_e_s __________________________________ ___ 
1. UpdateResFile writes out a new version of the designated resource file 

on the dis~ incorporating all changes since the file was last opened 
or updated . 

.2. All resources marked as changed (ResChanged = 1) are written out. 

3. If at least one resource is marked as changed, the file's entire 
resource map is written out. 

4. The updated version of the file is compacted to remove any empty 
space resulting from changes in the file. 

5. If the file's MapReadOnly attribute (6.6.2] is set, UpdateResFile will post the 
eITOr code MapReadErr [6.6.1]. 

6. A reference number of 0 designates the system resource file. 

7. Closing a resource file updates it automatically. 

8. WriteResource writes out a single resource to the disk if the resource 
has been changed. 

9. If the resource's ResChanged attribute (6.4.2] is 1, the resource data is 
written to its file and ResChanged is cleared to 0; if ResChanged is already 
0, WriteResource does nothing. 

10. Protected resources are never written out to the disk by either 
UpdateResFile or WriteResource. 

11. If a resource to be written out by either UpdateResFile or WriteResource 
has been purged, the resource data written to the file will be empty 
(zero-length). 

lDI Assembly Langua.gJe Informanon ----1&:1-----_....._..........._.._ __ _ 
Trap macros: 
(Pascal) 
Routine name 

UpdateResFile 
Write Resource 

(Assembly) 
Trap:macro 

;...UpdateResFile 
_WriteResource 

Trap word 

$A999 
$A9BO 



320 Resources 

6.5.5 Purge Checking 

---'~iiiiiiiiiiiii ___ ..., _______ o __ e_fini __ ·n_·_o_ns_· -------------------------------------

procedure SetResPu rge ·' 
(onOrOff: BOOLEAN); {Turn purge checking on or off? l 

~~iiii~~1--------N_o_te_s __________________________________ ___ 
1. SetResPurge is used to tum purge checking on or off. 

2. When purge checking is on, any block about to be purged from the 
heap is checked to see if it's a changed resource; if so, it's written out 
to its resource file before being purged. 

3. When purge checking is off, no special checking is performed when 
a block is purged. 

4. Purge checking is initially off. 

IOI Assembly Language .information 
---iWLIJ..--------,--.

n-ap D)acro: 
(Pascal) 
Routine name 

SetResPurge 

(Assembly} 
Trap macro 

_setResPurg~ 

Trap word 



321 [6.6.1] Error Reporting 

6.6 Nuts and Bolts 

6.6.1 Error Reporting 

~1111~-------n-e_fini __ ·u-·o_ns_._· ................... __ ....... _._ ________________ __ 
function ResError 

: INTEGER; 

con st 
No Err = O; 
ResNotF.ound = -192; 
ResFNotFound = -193; 
AddResF~ll.ed = -"194.; 
RmvResFailed = -196; 
R.esErrAttr = -198; 
MapReadErr :::; ---199;. 
DskFulErr = :-.34·; 

{ResU.lt code from last resource-related operation} 

{No .error; all is welll 
lRes,ource. not found l 
:tRes'ourc& file not found} 
·JAd'dRes.ource faHedJ 
'{Rm\teResource failed} 
fOperati,Qn prohlbited by resource attribute} 
IErr.or reading res.ourc-e map} 
{Dlsk ·1u11,i , 

~~iiiiil~==t-------N-o_i_e_s ____________________________________ __ 

1. ResError returns the result code from the last resource-related proce
dure or function call. 

2. The result code returned in the normal case is 0 (NoErr). Any nonzero 
result code denotes an eITOr. 

3. Error codes listed here are only those directly related to resources. 
Errors from other parts of the Toolbox can also occur in the course 
of resource-related operations, and will be reported by ResError. 

4. In assembly language, the result code is also available in the global 
variable Res Err. 



322 Resources 

ln==JI Assembly Language Information 
--fl!'.]1----------

Trap macro: 

(Pascal) 
Routine name 

ResError 

Result codes: 

Name 

No Err 
ResNotFound 
ResFNotFound 
AddResFailed 
RmvResFailed 
ResErrAttr 

MapReadErr 
DskFulErr 

Value 

0 
- 192 
- 193 
- 194 
- 196 
- 198 

- 199 
- 34 

(Assemblyl 
Trap macro Trap word 

_Res Error $A9AF 

Meaning 

No error; all is well 
Resource not found 
Resource file not found 
AddResource failed 
RmveResource failed 
Operation prohibited by 

resource attribute 
Error reading resource map 
Disk full 

Assembly-language global variable: 

Name Address 

ResErr SA60 

Meaning 

Result code from last 
resource-related call 



323 [6.6.2] Resource File Attributes 

6.6.2 Resource File Attributes 

~111!11~-------D-e_fini __ ·_no_n_s _______________________________ __ 

function GetResFUeAttrs 
(refNum·: f.NJEGEfl) 

: INTEGER.; 

procedure s·etRes Fi foAttrs 

{Reference number of resource file} 
{Cufrent resource file attributes} 

(refNum : INTt.GER; · {'Reference number of resource, file} 
newAttrs : 'INTEGER); {New resource file attributes} 

con st 
MapReadOnly = lZ8;, 
Mapc·ompact - 64: 
MapChanged = 32; 

{No chang.es. allowed} 
(C<tmpact file whe~ updated] 
{Write resource map when updated} 

~~iiiii~·::::::1~------N-o_t_es-------------------------------------
I. GetResFileAttrs returns the current attributes of a resource file; SetRes

FileAttrs changes them. 

2. The MapReadOnly attribute prevents the file from being updated. No 
changes made to the file or its resources in memo:ry will be written 
out to the disk. 

3. MapCompact tells the Toolbox to compact the file when it's updated, in 
order to squeeze out unused space. 



324 Resources 

4. The MapCompact attribute is set automatically when a resource is 
removed from the file or when the data of a resource is lengthened, 
but not when it's shortened. 

5. MapChanged tells the Toolbox to write out the file's resource map when 
the file is updated. 

6. The MapChanged attribute is set automatically when a resource is added 
to or removed from the file or when any resource is marked as 
changed. 

7. The assembly-language constants MapReadOnly, MapCompact, and Map
Changed (below) are bit numbers for use with the BTST, BSET, BCLR, and 
BCHG instructions. 

IOI Assembly language hllormanon --11Ll......,_ _________ _ 
Trap macros: 
(Pascal) 
Routine name 

GetResFileAttrs 
SetResFileAttrs 

(Assembly) 
Trap macro 

_GetResFileAttrs 
~SetResFileAttrs 

Trap word 

$A9F6 
$A9F7 

Bit numbers of resource file attributes: 

Name 

MapReadOnly 
MapCompact 
MapChanged 

Value 

7 
6 
5 

Meaning 

No changes allowed 
Compact file when updated 
Write resource map when 

updated 



325 (6.6.3] ROM-Based Resources 

6.6.3 ROM-Based Resources 

Resource Resource 
l)'pe ID Description 

'CURS' I-beam cursor [11:2.5.2, 11:2.9.1] 
2 Cross cursor [11:2.5.2, 11:2.9.1] 
3 Plus-sign cursor [11:2.5.2, 11:2.9.1] 
4 Wristwatch cursor [11:2.5.2, 11:2.9.1] 

'FONT 0 Name of system font [8.2.1, 8.4.5] 
12 System font [8.2.1, 8.4.5] 

'WDEF' 0 Standard window definition function 

'MDEF' 0 Standard menu definition procedure 

'PACK' 4 Floating-Point Arithmetic Package [7.2.1, 
7.5.2] 

5 Transcendental Functions Package [7 .2.1, 
7.5.2] 

7 Bimuy/Decimal Conversion Package (7.2.1, 
7.5.2] 

'DRVR' 2 Printer driver shell (.Print) [7.5.5] 
3 Sound driver (.Sound) [7.5.5] 
4 Disk driver (.Sony) [7.5.5] 
9 AppleTalk driver, Macintosh 

Packet Protocol (.MPP) [7.5.5] 
10 AppleTalk driver, AppleTalk 

Transaction Protocol (.ATP) [7.5.5] 

'SERO' 0 Serial drivers (.Aln, .AOut, .Bin, .BOut) [7 .5.5] 

~~~iii1=:1..-------N-o_t_e_s __________________________________ ___ 

1. On a Macintosh Plus, the standard system resources listed in the
table reside in ROM, rather than in the disk-based system resource
file.

2. The assembly-language global flag ROMMaplnsert controls whether the
ROM-based resources are to be included in the next resource-related
operation. If this flag is TRUE ($FF), the operation applies first to the
ROM-based resources, then to the list of open resource files, begin-

326 Resources

ning with the current resource file [6.2.2]. If the flag is FALSE ($00), the
ROM-based resources are skipped and the operation begi~ns with the
cuITent resource file.

a. One-deep routines (Get1Resource, Get1NamedResource [6.3.1], Count1Types,
Get11ndType, Count1Resources, Get11ndResource [6.3.3], and Unique11D [6.5.3])
apply only to the ROM-based resources if ROMMaplnsert is TRUE. If the
flag is FALSE, these routines skip the ROM-based resources and apply
to the current resource file instead.

4. When ROMMaplnsert is TRUE, the assembly-language flag TmpResLoad
controls automatic resource loading for the next operation only,
oveniding the global ResLoad flag [6.3.4]. The previous ResLoad setting
is restored after the operation.

5. If ROMMaplnsert is FALSE, TmpResLoad is ignored.

6. Both ROMMaplnsert and TmpResLoad are "one-shot" flags: they're
automatically cleared to FALSE ($00) after each resource operation, and
must be explicitly set again before the next operation if they are to
remain in effect.

7. Both flags are one byte in length.

8. The Toolbox always sets ROMMaplnsert and TmpResLoad to TRUE before
performing any resource operation on its own behalf; on operations
requested by your program, both flags are normally FALSE. In as
sembly language, you can set the flags for yourself if you wish before
the operation. (There Is no straightfmward way to set these flags in
Pascal.)

9. The foregoing notes apply to the Macintosh Plus only. On earlier
models, all system resources reside in the system resource file on
the disk; there are no ROM-based resources and no ROMMaplnsert and
TmpResLoad flags. Attempting to store into these locations on an
earlier-model Macintosh will destroy information in the system heap,
with unpredictable but predictably catastrophic results.

IOI Assembly Language Informadon
-1n..-------·----

Assembly-Ianguage global variables (Macintosh Plus onlyl:

Name

ROM Map Insert

TmpResLoad

Address

$B9E

$89F

Meaning

Include ROM-based resources in
search? (1 byte)

Load resources automatically
just this once? (1 byte)

Code Segments

CHAPTER
.... ~~Zl:mz:?1 7 ~~~~
Getting Loaded

Now that we know something about resources, we're ready to
discuss the way programs are started up and how code is loaded
into memory for execution. Most of the information in this chapter
is offered strictly for purposes of "curriculum enrichment"; you
don't really need to know it in order to write small, straightfmward
application programs. You'll find it useful, however, if you want to
produce 11 stand-alone" programs that can be started directly from
the Finder, or define your own icons to stand for your program
and its files on the Finder desktop, or support cut-and-paste
editing between your program and other programs or desk acces
sories. If you're in a hurry and want to skip most of this chapter,
you should at least read the section on packages, since you'll need
it to understand certain other topics discussed elsewhere in the
book, such as the Standard File Package (Volume Two, Chapter 8).

We mentioned in the last chapter that the code of an application
program is stored in the application's own resource file. The
resources containing it are called code segments, and have
resource type 'CODE' [7.5.1]. Their resource data consists mainly of
executable machine-language code, ready to be loaded into
memory and run. (There's also a short segment header that we'll

327

328 Getting Loaded

be discussing later.) The entire program can be contained in a
single code segment, or it can be divided into as many separate
segments as you like.

Gode ,segments are meaningful o~y foi: programs tllat ,are as
set11bled or·compilecl-diiieetly'into-execut~le tnajjhipe Iai'lg1.u1ge. If

· yoµ·~- dpigg.yoqr ptQ~ in an inferprete~based sy8teiril the
program: fias no ·ma.chill~: -Cia.de, as. sue~, :Sp there aren~t 1any ~ode
segments.

The main advantage of code segments is that they allow you
to divide a program into separate pieces that don't all have to be
in memo:ry at once. Like any resource, a code segment can be read
into memo:ry from the disk when needed and then purged when
you're finished with it, freeing the space for another use. This
means you can isolate seldom-used portions of your program in
segments of their own, so that they won't take up precious
memo:ry space when they're not actually in use. It also means you
can write programs bigger than the Macintosh's available memo:ry,
by breaking them into segments that can be "swapped" in and
out as needed.

Exactly how you go about breaking your program into seg
ments depends on the language you're writing in; you'll have to
consult your language documentation for details. 'fypically you
give each segment a name, and switch from one segment to
another with a compilation-time directive of some sort. Code will
then be compiled (or assembled) into the segment you name until
you switch to another. Such segment names are meaningful only
at compilation time, however; the Toolbox just identifies each
segment by its resource ID, known as a segment number. The
compiler will assign a number to correspond to each segment
name, then place the segment's code in a 'CODE' resource with
that number as its resource ID. (If you never mention segments at
all, the whole program will be placed in a single segment by
default.)

The Jump Table

329 The Jump Table

Calls from one code segment to another are made through a jump
table in RAM. The jump table is part of your program's application
global space, or "AS world," which we discussed in Chapter 3. The
contents and organization of the application global space are
repeated for reference in Figure 7-1.

The information needed to set up the application global space
is stored in a special 'CODE' resource with ID number 0, created
automatically by the language software when the program is
compiled or assembled. Every stand-alone program must have a

Low memory addresses

(Stack)

Register A5

(Ma1 n Screen Buff er)

High memory addresses

Figure 7-1 Application global space

33 0 Getting Loaded

"Above AS" size
(4 bytes)

"Below AS" size
(4 bytes)

.

Length of jump table
(4 bytes)

Offset from AS to jump table
(4 bytes)

• • • Contents of jump table • • •
• • • (i ndefi ni te length) • • •
I I

Figure 7-2 Contents of segment 0

segment 0 in addition to the one or more segments holding the
actual code. Figure 7-2 shows the fonnat of this special segment,
which includes the following infonnation:

• The "above AS" size: the total number of bytes to be reserved between
the beginning of the screen buffer (or the alternate sound buffer) and
the base address in register AS, including both the application
parameters and the jump table

• The "below AS" size: the number of bytes to be reseived for application
globals between the A5 address and the base of the stack

• The length of the jump table in bytes

• The length of the application parameters (normally 32 bytes), which is
also the offset from the AS address to the beginning of the :iump table

• The contents of the jump table

331 The Jump Table

When a program is started up, the Toolbox reads in this informa
tion from segment 0 and uses it to reseIVe the memory needed for
the application global space, set up the jump table, initialize
register A5, and position the base of the stack.

The jump table handles routine calls from one segment to
another. It contains one 8-byte entry for every routine in the
program that can be called from a segment other than the one it's
in; routines that are called only from within the same segment are
not included. The first entry in the table corresponds to the
program's main entry point, where execution begins when the
program is first started up. Initially only the segment containing
this main entry point (the main segment) is loaded into memory;
other segments will be read in only when they're actually needed.

When a segment is not in memory, the jump table entry for
each of its routines has the form shown in Figure 7-3a. The first
2 bytes give the relative location of the routine's entry point within
the segment, as an offset from the beginning of the segment's

........

a. Unloaded state

Offset from beginning of segment
(2 bytes)

Machine instruction to push
segment number onto stack

(4 bytes)

LoadSeg trap
(2 bytes)

b. Loaded state

Segment number
(2 bytes)

Machine instruction to jump
to routine in memory

(6 bytes)

Figure 7-3 Jump table entry

.

332 Getting Loaded

code. This is followed by 6 bytes of actual machine instructions
that push the segment number onto the stack as a parameter and
then trap to the Toolbox routine LoadSeg [7.1.2]. Each "external
reference" to this routine from another segment will be represented
in machine code by a subroutine jump to these instructions in
the jump table entry. They in tum call LoadSeg, which reads in the
code segment containing the routine from the application resource
file and locks it into the heap. Then it uses the offset in the first
2 bytes of the table entry to locate the routine within the segment
and jump to it.

Once the segment has been loaded into memory, there's no
need to load it again the next time. So before jumping to the
routine, LoadSeg "patches" the jump table entries for all routines
in the segment into the form shown in Figure 7-3b. Here the first
2 bytes of the entry hold the segment number and the last 6
contain a direct jump instruction to the beginning of the routine
in memory. Subsequent calls to any routine in the segment will
thus be directed straight to the proper memory address, bypassing
the LoadSeg call.

The information about which entries in the jump table belong
to a given segment (and so must be patched when the segment is
loaded) is found in a 4-byte segment header at the beginning of
the segment itself (see Figure 7-4). The first 2 bytes of the header
give the offset in bytes from the start of the jump table to the first
entry for this segment; the last 2 bytes give the number of entries
belonging to the segment.

Jump table offset of first routine in segment
(2 bytes)

Number of jump table entries for segment
(2 bytes)

Figure 7-4 Segment header

Packages

333 Packages

When a segment is no longer needed in memmy, you release
it by calling UnloadSeg [7.1.2]. You identify the segment by passing
a pointer to any of its routines; UnloadSeg marks the segment
purgeable to free the heap space it occupies, and patches its jump
table entries back to the original "unloaded" state of Figure· 7-3a.
The next time you call one of the segment's routines, LoadSeg will
again be called to load it back into memory from the resource file.

! I • '

; -'Notice· that·you_IU\ye -to:caJl UnlQadSeg for yourselt whereas LoadSeg
is always Palled in)pl.iciJ}~,.., by way of the_ instructions in a jump
·tabltHmtcy, ~hel.:l. y~_u: ~\to: q~ a routine in an unfoaded segment.
In fitct; Load&eo. wa~~t-w.QJt prQp~rly unless jt's called through the
Jump:lable~ YCJ~·~sh.a_ul~:- ll~'{erA:f.Y to ·cAll ~t. explicitly &om within
your,own.pmgram~ _ :· -

Another kind of code-containing resource, similar in some ways
to a code segment, is a package. Like a code segment, a package
is a collection of routines grouped together as a unit, which reside
in a resource file and are loaded into memory only when needed.
It differs from a code segment, however, in that it isn't a part of
any particular program: it's a set of general-purpose routines that
are available for any program to use, and normally resides in the
system resource file (or in ROM on a Macintosh Plus) rather than
in a program's own application resource file.

The Toolbox can accommodate as many as eight separate
packages, referred to by package numbers from 0 to 7. (The Macin
tosh Plus Toolbox can handle up to sixteen packages, numbered
0 to 15.) The package number is simply the resource ID of the
package in the system resource file; its resource type is 'PACK'
[7.5.2]. The standard System file found on Macintosh software disks
includes the following standard packages:

• The List Manager Package (package number 0) displays scrollable lists
of items &om which the user can choose with the mouse (like the one
used in selecting files to be read from the disk).

• The Disk Initialization Package (package number 2) takes corrective
action when an unreadable disk is inserted into the disk drive, usually
by initializing the disk.

334 Getting Loaded

• The Standard File Package (package number 3) provides a convenient,
standard way for the user to supply file names for input/output
operations.

•The Floating-Point Arithmetic Package (package number 4) performs
arithmetic on floating-point numbers in accordance with the "IEEE
standard" published by the Institute of Electrical and Electronic En
gineers, using the Standard Apple Numeric Environment (SANE).

• The Transcendental Functions Package (package number 5) calculates
various transcendental functions on floating-point numbers, such as
logarithms, exponentials, trigonometric functions, compound interest,
and discounted value.

• The International Utilities Package (package number 6) helps a program
conform to the prevailing conventions of different coun1ries in such
matters as formatting of numbers, dates, times, and currency; use of
metric units; and alphabetization of foreign-language accents, diacriti
cals, and ligatures.

•The Binary/Decimal Conversion Package (package number 7) converts
numbers between their internal binary format and their external
representation as strings of decimal digits.

Only the Disk Initialization [11:8.4], Standard File [11:8.3], and
Binaiy/Decimal Conversion [2.3.7] packages are covered in Volumes
One and Two of this book For information on the List Manager
Package, see Volume Three; for the others, see Apple's Inside
Macintosh manual Package numbers 1 and 8-15 are reseived for
future expansion.

The Llst Manager Package (number 0) was introduced at the same
time as the Macintosh Plus, and is. available onlyin versions 3.0 or
greater of the System file. Also, on the Plus, the Floating+Point
Arithmetic, Transcendental Functions, and Binmy/Decimal C~nve~

· sion pacbges (n~bers 4, 51 and 7) reside in ROM instead of the
System file. ,

At the machine-language level, packages are called via the
Toolbox "package traps," _PackO to _Pack15 [7.2.1]. To call a routine
that belongs to a package, you push the routine's parameters onto
the stack, then push an integer routine selector to identity the
particular routine you want within the package, and finally ex
ecute the trap corresponding to the package the routine belongs

335 Signatures and File fypes

to (for instance, _Pack7 for the Binary /Decimal Conversion Package).
If the package isn•t already in memory, the Toolbox reads it in
from the resource file and locks it into the heap. Then it jumps
to the routine, using the routine selector to look up its address
within the package in a small table at the beginning of the package
itself.

Ordinarily, though, you needn 1t wony about routine selectors
and package traps. The Pascal interface to the Toolbox includes a
unit named Packlntf for calling the routines in the standard
packages. This unit contains "glue routines•' to convert your Pascal
calls into the proper low-level trap sequences, as described above.
By including Packlntf in your program with a uses declaration (or
a $i directive, or whatever method your particular Pascal System
requires), you can call all the package routines in the normal way,
as if they were part of the Toolbox proper. Thus you needn't ever
think about whether a given routine resides in ROM or in a
package on the disk. Similarly in assembly language, the interface
file PackMacs defines macros for calling all the standard package
routines. You simply push the routine's parameters onto the stack
and execute the macro for that routine; the macro pushes the
routine selector and executes the package trap for you.

Signatures and File Types

The normal way for a user to start up an application program is to
open a file in the Finder, either by selecting the file's icon with the
mouse and choosing the Open command from the Finder's File
menu, or by the equivalent shortcut of double-clicking the icon. At
this point one of three things may happen:

• If the selected file contains an application program, the Finder starts
up the program.

• If the file contains a document belonging to some application program,
the Finder starts up that program.

• If the file isn't identified as belonging to a particular application
program, or if the program it belongs to isn't available on the disk, the
Finder displays an alert message: An application can't be found for this
document.

The Finder decides what to do by looking at two special pieces of
information that are associated with every file on the disk, the file
type and creator signature (7.3.l]. Both of these are four-character

336 Getting Loaded

strings, just like a resource type. Whenever a program creates a
new file, it must supply a file type and creator signature.

The Finder keeps track of each file's type and creator (along
with other items such as the location of the file's icon on the
screen) in a special desktop file for each disk. The desktop file is
invisible to the user: the Finder never displays an icon for it on
the screen, so there's no danger of the user's destroying or
damaging it. The Toolbox routine GetFlnfo (7.3.3] returns all the
Finder information associated with a given file, summarized in a
Finder information record (7.3.2]. SetFlnfo [7.3.3] accepts a Finder
information record as a parameter and sets the fi.le's Finder
information accordingly.

The creator signature attached to a file tells the Pinder what
program the file belongs to, so it can start up that program when
the user opens the file. Eveiy application program ·has its own
four-character signature: for example, the signature of the Mac
Paint graphics editor is 'MPNT'. If you were writing an interactive
music editor named Allegro, you might give it the signature 'BRIO'.

A progrcµn ·or.dinarily:puts it$ QWll signafure on any file it creates,
bu.tin some cases yoo may wantto us~ ane>ther program's signature
instead; FQr ip.stance, ·a progr8Jll that creat~s. a Mit,p~ai11t ~~
sh<>uld p:tJt· :tvtacP~f~ ·signatQJ;'e· gn _it, so that the: finder wnt· s~
up MacPainhvhen tl.it user opens the file~ A file that iE1 not to be
opened at an· fro!1-i t.h~· Find~'.· should cany the creator signature
'?'l'l?'. '

The data files that a program works on are called document
files, or simply documents. Most programs just deal with one
particular type of document, although it's possible to support
several distinct document types in the same program, containing
different kinds of information to be used for different purposes.
Each kind of document is identified by its own four-character file
type. For instance, MacPaint documents have file type 'PNTG' (for
"painting"); a document produced by our hypothetical music
editor Allegro, representing a musical score, might have file type
'SCOR'. In Volume Two, we'll learn how to use the Standard File
Package to offer the user a scrollable list of files from which to
select with the mouse. In doing this, you can designate one or

337 Finder Startup Information

more specific file types to be listed. Thus you can use different file
types to restrict the user's choice to only those files that are
appropriate in a given situation.

To avoid conflicts, all ·"serious" Macintosh applications are sup
posed to be registered with Apple's Macintosh Technical Support
group so . they can be assigned unique signatures and file types.
UnlE~ss you're a professioqal ·software developer, you probably won't
want.to go to this extreme-but you should still take care not to use
a signature or file type that's already used by another program or
that conflicts with an existing resource type.

There are two standard file types of particular interest. A file
containing a stand-alone program to be started from the Finder
should be of type 'APPL' (for "application") and carry the program's
own signature as its creator. File type 'TEXT' identifies a te~t file
consisting of a stream of "raw" text characters, without any addi
tional formatting or other information. This type of file is useful
for exchanging pure text between different programs: for instance,
MacWrite writes a text file when it's asked to save a document
with the Text Only option, and will accept text files written by
another program.

Finder Startup Information

When the user selects and opens one or more document files, the
Finder examines their creator signatures to find out what applica
tion program they belong to. If the signatures aren't all the same,
it just puts up an alert message (Please open only documents of the same
kind); otheIWise it starts up the designated application, passing it
a handle to a table of startup information [7 .3.4] identifying which
documents were selected. Recall from Chapter 3 that this startup
handle is one of the program's application parameters, located at
address 16(A5) in the application global space (that is, at an offset
of 16 bytes from the base address kept in register AS). The program
can then use the startup handle to find out which document files
to open on first starting up.

338 Getting Loaded

One way to access the startup information is with the Toolbox
routine GetAppParms [7 .3.4]. This returns a copy of the startup
handle, along with the name and file reference number of your
program's application resource file. However, you're then faced
with the problem of deciphering the startup information to find
out which documents to open-an awkward task in Pascal, since
the startup information is a variable-length data structure that
can't be properly described in a Pascal type declaration.

It's generally more convenient to use CountAppFiles and GetApp
Files, letting the Toolbox parse the startup information for you.
CountAppFiles (7.3.4] tells you the number of document files to be
opened. It also returns an integer "message" telling whether the
user chose the Finder's Open command after selecting the docu
ments (in which case you should open them for work in the usual
way) or whether they were opened with the Finder's Print com
mand .(in which case you should just print each of the selected
documents and then exit back to the Finder). Thu subject of
printing is covered in Volume Three.

Once you know how many documents there a.re, you use
GetAppFiles [7.3.4] to find out their names. GetAppFiles accepts an
index number as a parameter, ranging from 1 up to the number
of documents reported by CountAppFiles. For each index value, it
returns an information record of type AppFile [7.3.4] giving the
document's file name, file type, and other identifying information.
After opening (or printing) each file, you should call ClrAppFiles
(7.3.4] to notify the Finder that the file has been duly processed.
Putting all this together, your startup code should run something
like this:

CountAppFiles (openOrPrint, nFiles);
for index := 1 to nFiles do

begin
GetAppFiles (index, infoRecord);
If openOrPrint = AppOpen then

with infoRecord do
{Open document for work}

else
with infoRecord do

{Open and print document};
ClrAppFiles (index)

end;
if openOrPrint = AppPri nt then

ExitToShell

Finder Resources

339 Finder Resources

(ExitToShell (7.1.3] terminates the program and starts up the Finder
in its place. This routine is needed only for taking an immediate
exit from somewhere in the middle of the program, as in this
example; there's no need to call it when the program terminates
in the normal way, by "falling out the bottom" of its main program
body.)

A program can provide its own icons to stand for its files on the
Finder desktop. There can be a separate icon for each distinct file
type the program works with, as well as one for the application
file (file type 'APPL') containing the program itself. The icons and
their association with the various file types are defined by a set of
Finder resources in the program's application resource file. If a
program doesn't provide its own file icons, the Finder will use the
standard ones shown in Figure 7-5 for the application file and its
documents.

Eve:ry stand-alone program, whether it defines its own file
icons or not, must have a special resource called an autograph in
its resource file. The resource type of the autograph is always the
same as the program's own signature; by convention, its resource
ID should be 0. Whenever the program is copied from one disk to

• • • • • • • • • • •

• ••••••••••••••••• • •• • • • • • • • • • • • • • • • • •••••• • • • • • • • • • • • • • • • •••••• • • • • • • • • • • • •• • • • ••• • • •
.. ···= ·==····· ·=== • • ••• • • ••• • •• • •• • •••••••• • •• • • ••••• • • ••• • • • • • • App licatfon •.•

• • • • • • • •

D
Document ••••••••••••••••••••••••

Figure 7-5 Standard file icons

340 Getting Loaded

another, the Finder will copy its autograph resource into the
desktop file on the new disk. The sole purpose of the autograph
is to seive as the program's representative in the desktop file.

The Finder never looks at the autograph's resource data, so
you can use it for any purpose you like. Typically it's used to hold
a string identifying the version of the program, such as

Allegro version 2.0, 8 November 1984

(For this reason, the autograph is sometimes referred to as the
program's "version data" resource.) Notice that an autograph
resource is required for evecy stand-alone application file; the rest
of the Finder resources discussed in this section are optional.

Evecy file icon that a program defines is represented in the
application resource file by an icon list resource of type 'ICN#'
(5.5.4]. The icon list must contain exactly two icons of 32 by 32
bits each. The first is the file icon itself and the second is a mask
telling the Finder how to draw the icon against the existing
background on the screen. A white (0) bit in the mask means to
leave the background pixel unchanged at that position; a black (1)

bit means to replace it with the corresponding pixel of the file
icon. The mask usually just consists of the icon's outline, filled in
with solid black: for example, Figure 7-6 shows a possible applica
tion and document icon and their masks for our music editor.

The connection between a file type and its icon is established
by a file reference resource of type 'FREF' [7 .5.3]. The resource data
consists of the four-character file type and the resource ID of the
corresponding icon list. (For the icon representing the application
file itself, the file type would of course be 'APPL').

Actually, the ID number of the icon list as given in a file
reference isn't necessarily the same as its true resource ID in the
application resource file. The translation from this "local ID" to
the actual resource ID is given by yet another Finder resource
called a bundle (resource type 'BNDL' [7.5.4]). Any program that
defines its own file icons must include a bundle resource to tie
all of its other Finder resources together. The bundle gives the
program's signature and the ID number of its autograph resource,
then goes on to define a series of correspondences between local
and actual resource IDs for any number of resource types. The
other Finder resources can then refer to each other by their local
IDs; the bundle tells the Finder the actual IDs under which to look
for them in the application file.

• • • • •

341

• • • • • • • • • • •• ••• • • • •

Finder Resources

• ••• • • • • • • •• • • • • • • •• • • • • • • •• •• •••••• • • • • • •• • • • • • • •• • • • • • • • • •• • • • • •• ••• • • • • • • ••• ••••••• • ••• • • •• •• • •• • • • • • •• • • •• • •• • • • •• • •• • • •••••••• • •• • • •• • •••• • • ••• • • • • • • • • •

Application icon

••••••••••••••••••• • • •• • • • • • • • •• • • • • • • • • • • • •••••• • • • • ••••••••••••••••••••••••• • • • • • •• • • •• • ••••••••••••••••••••••••• • • • • • • • • • • • • ••••••••••••••••••••••••• • • ••••• • • • • • • • • • • • • • ••••••••••••••••••••••••• • • • • • • • • • • • • •••••• • ••••••••••••••••••••••••• • • • • • • • • • • • ••• • • • • • •••••••••••••••••••••••••

Document icon

• • •• ••••• ••••••• ••••••••• • ••••••••••
·=============· ••••••••••••••••• • •••••••••••••••••• ••••••••••••••••••••• • •••••••••••••••••••••• 1··· ••••••••••••••••••••• • ••• ••••••••••••••••••••• • •••• ······················11 •..... ••••••••••••••••••••• • •••••• •••••••••••••••••••• • ••••• •••••••••••••••••••• • •••• •••••••••••••••••••••••••••• • •••••••••••••••••••••••••• • ••••••••••••••••••••••••• • •••••••••••••••••••••••• • ••••••••••••••••••••••• • •••••••••••••••••••••• ••••••••••••• • •••• ••••••••••• • ••

•
• •••••••• ••••••• ••••• ••• •

Application mask

• •••••••••••••••••• • ••••••••••••••••••• • •••••••••••••••••••• • ••••••••••••••••••••• • •••••••••••••••••••••• • ••••••••••••••••••••••• • •••••••••••••••••••••••• ••••••••••••••••••••••••• • •••••••••••••••••••••••• ••••••••••••••••••••••••• ••••••••••••••••••••••••• ••••••••••••••••••••••••• • •••••••••••••••••••••••• ••••••••••••••••••••••••• ••••••••••••••••••••••••• ••••••••••••••••••••••••• • •••••••••••••••••••••••• ••••••••••••••••••••••••• ••••••••••••••••••••••••• ••••••••••••••••••••••••• • •••••••••••••••••••••••• ••••••••••••••••••••••••• ••••••••••••••••••••••••• ••••••••••••••••••••••••• • •••••••••••••••••••••••• ••••••••••••••••••••••••• • •••••••••••••••••••••••• ••••••••••••••••••••••••• ••••••••••••••••••••••••• ••••••••••••••••••••••••• ••••••••••••••••••••••••• •••••••••••••••••••••••••

Document mask:

Figure 7-6 File icons and masks

342 Getting Loaded

When a program is copied from one disk to another, its Fiader
related resources have to travel along with it. The program's bundle
bit tells the Finderwhether there are any such resources that need
to be copied (other than the autograph, which must always be
present). The bundle bit is one of the bits in the fdFlags· field of the
Finder information record [7.3.2]. If it's set, the Finder will copy the
progrmt1s bundle resource to the desktop file on the new '.disk,
along with any other Finder resources that are identified in the
bundle. If the bundle bit isn't set, none of the program's Finder
resources will be installed in. the new disk's desktop file.

Using local IDs allows the Finder to resolve ("arbitrate") con
flicts among different programs. If two programs use the same IDs
for their file icons or other Finder resources, the Finder can avoid
a conflict by changing the actual IDs for one of the programs when
it copies the resources to a disk's desktop file. It can then adjust
the actual IDs given in the bundle resource to reflect the change,
without affecting the local IDs that the resources use to refer to
one another.

The format of a bundle resource is general enough to define: local
IDs fo,r any number of resource,types~.At present, bundles are useful
only for file references ('FREF1 and icon lists ('ICN#'), but the ;same
mechanism may eventually be used for other purposes as well.

As an example, recall that our music editor Allegro has the
signature 'BRIO' and that it works with document files of type
'SCOR'. The program might then have the following Finder
resources in its application resource file:

• An autograph resource (resource type 'BRIO', ID 0) containing a string
identifying the program version and date

• Two file references (resource type 'FREF', IDs 1000 and 1001) associating
file types 'APPL' and 'SCOR' with icon lists 0 and 1, respectively

• Two icon lists (resource type 'ICN#', IDs 1000 and 1001) containing the
icons and associated masks for the two file types

• A bundle (resource type 'BNDL', ID 0) giving the type and ID of the
autograph resource ('BRIO', 0) and associating the local icon-list IDs 0 and
1 with actual IDs 1000 and 1001

343 Drivers and Desk Accessories

Drivers and Desk Accessories

The Macintosh can communicate with a variety of input/ output
devices, some of them built in (screen, speaker, disk drive), others
peripheral and connected via cables (printer, modem, hard disk).
Since each device has its own characteristics and peculiarities, a
certain amount of specialized knowledge is needed to communi
cate with it. This "expertise" about a particular device is isolated
in a piece of low-level software called a device driver. Each
different kind of 1/0 device has its own driver; the rest of the
system communicates with the device through the driver.

The drivers for ·devices that are built into the Macintosh are
stored permanently in ROM, where they're always available. These
include the sound driver, the disk driver for the standard Sony
disk drive, and the serial driver for communicating through the
serial ports on the back of the machine. Other drivers are stored
in resource files under resource type 'DRVR' [7 .5.5], and are loaded
into RAM only when needed; one important example of such a
RAM-based driver is the printer driver.

Th~ .Ma9intos~· Plti~;,}ll$~.~Ifl.•s d#ivets in Rf)M for .the Appl~alk
netwoPk, -a~ weJI as:a~l;Juut4,tt"'shell'~ fbHhe printer driver. (The. shell
intlim Clil)s tk~'aeW!~-pri.P:ter·.dfivertwhichJs stilll()ad~d from the

' disk·Jas:1hefore~ ~~s~-~b,~v.tfiit,,:fo, 'be ,olUmged ·~asily- to qonfigure the
syatem· fup, clifteren~, _ty,pes' ,of 1P$ter,, 1such as the JmageWriter or
~~e~W.iiter.) · .. · · ·, , · · -·

Every driver, whether ROM- or RAM-based, has a name, which
conventionally begins with a period (.), and a unit number from 0
to 31. For drivers that reside in resource files, the driver name and
unit riumber are also the resource name and resource ID. When
a cLniver is opened for use, it is also given a driver reference
number by which it is always refeITed to. The driver reference
number is always a negative number from -1 to -32, and is derived
from the unit number by the formula

refNum = -(unitNum + 1)

The Desk Scrap

344 Getting Loaded

For example, the sound driver has a unit number of 3 and a
reference number of -4. The names and numbers of the standard
device drivers are summarized in (7.5.5].

A veiy important special class of drivers are desk accessories
like the Calculator, Scrapbook, and Control Panel. These behave
like device drivers from the Toolbox's point of view, but they're
actually "mini-applications" that can coexist on the screen with
an ordinruy application program (and with each other). Desk
accessories are stored under resource type 'DRVR', just like bona
fide device drivers, and are supposed to have unit numbers
(resource IDs) of12 and above.

Unfike th~ J;J@l~~ :qf'~~r11.if~n:Jrive~, those of de8k,ace,~t;sories11r1qn .. t
begfn ·'With a period. ,·W~;U :S~"'in 'VQlqiit~JT:Wb·thlitl tlml;alfow1tithem;
to' }le nstedc by. :nagie· .9D' .:-.:.menµ~ :~~ '~ver.s :b~flhl:· '\Vith a

' perioclJl$~iseiy:so:'tlult;itll1ey-wUl 1be''~~ppress~=nW~m th.~, 1ne1u~t

The Toolbox includes all the facilities you need to give the
user access to desk accessories while running your program. The
program itself doesn't need to know what accessories are available,
what they do, or how they work. In Volume Two we'll learn how
to offer a menu of available desk accessories for the user to choose
from, how to open, close, and manipulate the system windows
they appear in, and how to pass them the user's mouse and
keyboard actions for processing. See Volume Three if you're inter
ested in writing desk accessories of your own.

The desk scrap is what allows the user to cut and paste between
application programs, between a program and a desk accessoiy,
or between accessories. It corresponds to what Macintosh user
manuals call the Clipboard: the place to which the standard
editing commands Cut and Copy transfer information, and from
which Paste retrieves it. When you cut or copy a picture from
MacPaint and paste it into a MacWrite document, or transfer text
from MacWrite to MacPaint, the information travels by way of the
desk scrap. Similarly pictures can be moved to or from the Scrap
book desk accessm:y, and text to or from the Scrapbook, Note Pad,

345 The Desk Scrap

Key Caps, or even the Calculator. In each case the desk scrap
seIVes as the intermediary vehicle for transferring the information
from one program or accessory to another.

In a program that performs any sort of cut-and-paste editing, it's
up to you to make sure the contents of the desk scrap are properly
maintained. Normally. this just means copying infonnation directly
to the scrap whenever the user issues a Cut or Copy command, and
back from the scrap on a Paste command As we'll see in Volume
Two, however, the Toolbox text editing routines maintain an inter
nal text scrap oftheir own, separate from the desk scrap. If you're
using these routines· and want to be able to exchange information
with other programs, you have to aITange to transfer the informa
tion between this Toolbox internal scrap and the desk scrap at the
appropriate times: on entiy and exit, and whenever control passes
to or from a desk accessory. We'll see how to do this when we take
up text editing in Volume Two, Chapter 5.

Conceptually, the scrap always holds a single item, the last to
be cut or copied. In reality, it may contain several different items
representing the same underlying information in different forms
[7.4.1]. This allows the contents of the scrap to be handled in
different ways depending on what program they're passed to.
Each separate representation is stored as a resource of some kind;
if there are more than one, they should all be of different resource
types.

Two resource types in particular are considered standard:
'TEXT' [8.4.1], consisting of straight ASCII text characters, and 'PICT'
[5.5.5], containing a QuickDraw picture definition. These standard
types seIVe as a "lingua franca" for exchanging text and graphics
among programs. Every application or desk accessory that uses
the desk scrap is expected to deliver at least one of the standard
types as output, and to accept at least one, and preferably both,
as input. In addition, a program may use the desk scrap for any
other type of data it likes. For instance, our music editor might
write the same musical fragment to the scrap both in its own
private data format and also as a QuickDraw picture for displaying
the notes graphically on the screen or printing them in a hard
copy.

346 Getting Loaded

The contents of the desk scrap normally reside in 1the applica
tion heap, and are located through a handle kept in a system
global named ScrapHandle. You can get a copy of this handle by
calling the Toolbox function lnfoScrap (7.4.2]. This returns a scrap
information record that includes the scrap handle, the current size
of the scrap in bytes, and other descriptive information.

Usually, though, you'll want to use GetScrap (7.4.3] to access
the scrap's contents. You specify the particular resource type
you're interested in, and supply a handle (normally empty) to be
filled with an item from the scrap. Like most of the Toolbox
routines dealing with the scrap, GetScrap is a function that returns
an Operating System result code, similar to those we discussed in
Chapters 3 and 6 on memory management and resources. If the
scrap contains an item of the requested type, GetScrap will make a
copy of the item's resource data and set the handle you supply to
point to the copy; if there's no such item, GetScrap will return the
result code NoTypeErr.

To transfer an item to the desk scrap, use PutScrap (7.4.3]. You
supply a pointer (not a handle) to the item's resource data, along
with its resource type and length in bytes. PutScrap simply adds
the new item to the existing contents of the scrap; it doesn't delete
any other items already there. It's up to you to make sure the
scrap doesn't already contain an item of the same resource type.
To completely replace the contents of the scrap, clear the old
contents with ZeroScrap [7.4.3] before storing the new contents with
PutScrap.

Any call to ZeroScrap also changes the value of the scrap count.
This is an integer maintained by the Toolbox, whose value is
always available as one of the fields in the information record
returned by lnfoScrap (7.4.2]. The numerical value of the scrap count
has no intrinsic meaning; its sole purpose is to tell you when the
scrap's contents have been changed. When the user activates a
system window (one that contains a desk accessmy), you can save
the old value of the scrap count before passing control to the
accessmy, then compare it with the new value when control
returns to your program. If the scrap count has changed, then the
accessory must have called ZeroScrap, and has presumably replaced
the previous contents of the scrap. You can then copy the desk
scrap to the internal Toolbox scrap, or take whatever other action
is appropriate. If the scrap count is the same on return from the
accessory as it was before, then the scrap hasn't changed and no

Nuts and Bolts

347 Nuts and Bolts

special action is needed. Again, we'll see an example of how this
works in the chapter on text editing in Volume Two.

The contents of the desk scrap normally reside, in the applica
tion heap. However, if heap space is scarce or the scrap is large,
you may want to keep it in a disk file instead. The Toolbox
routines LoadScrap and UnloadScrap [7.4.4] transfer the scrap between
a file and the heap. The usual name of the scrap file, if there is one,
is Clipboard File. The Toolbox keeps a pointer to this file name in
the system global ScrapName; in assembly language, you can change
the name of the scrap file by storing a new string pointer into this
global. There's no way to change the scrap file name in Pascal,
but you can find out the current name via the ScrapName field of
the information record returned by lnfoScrap [7.4.2].

The Toolbox routine that the Finder uses to start up an applica
tion program is called Launch [7.1.1]. This routine reinitializes the
application heap, the application global space, and the stack for
the new program, destroying their previous contents. (However, it
leaves the system heap intact from one application to the next.) It
opens the new program's application resource file and reads in
the contents of segment 0, which it then uses to allocate the
application global space, set up the program's jump table, and
initialize register A5. Finally, it starts up the program by transfer
ring control to its main entcy point through the first entcy in the
jump table.

The only thing in the old application heap that gets preserved
across the launch of a new program is, of course, the desk scrap.
The Launch routine locates the scrap by means of the system scrap
handle in low memocy and copies it temporarily into the stack.
Then, after reinitializing the application heap, it retrieves the scrap
from the stack, reinstalls it in the new heap, and fixes the system
scrap handle to point to it at its new location. Thus the scrap is
preserved even though evecything else in the heap is lost.

Ordinarily the Finder is the only program that should ever
call the Launch routine; however, there's a related routine named
Chain (7.1.1] that you may sometimes find useful Like Launch, Chain

348 Getting Loaded

terminates the program that called it and starts up another in its
place. The difference is that Chain doesn't reinitialize the applica
tion heap; it leaves it intact, so that the first program can leave
information there for the second program to use. Neither Launch
nor Chain can be called through the Pascal interface to the Toolbox;
they're available only from assembly language via the trap
mechanism. See (7.1.1] for details.

REFERENCE

7.1 Starting and Ending a Program

7.1.1 Starting a Program

:]
1

:. - ·: -IJilftn•diths_-_·_ .. -··: · : -, .. -- ;-..-
~-~......_· ~-----~~--.....-~

_ prope~~t~: ~a.y:nch .. £A$sen1:bJy; languflige ;onl.yJ·

procedure Chain {Assembly langtu~g~ -only}

~~iiiiiR~ti--------N-o_t_e_s ____________________________________ __

1. Both of these routines start up a new application program.

2. The previous program's application resource file is closed and the
new one's is opened.

3. The information given in segment 0 in the application resource file is
used to allocate the program's application global space, set up its
segment jump table, initialize register AS, and position the base of the
stack.

4. Launch reinitializes the application heap, destroying its previous con
tents, before starting the new program.

349

350 Program Startup

5. The contents of the desk scrap [7.4) are preseived by copying them
temporarily to the stack. After initialization, the scrap is retrieved
from the stack and reinstalled in the new heap, and the global scrap
handle is updated to point to it.

8. Launch is normally used only by the Finder, not by a running program.

7. Chain leaves the entire application heap intact, and can be used to
pass infonnation from one application program to the next.

8. Both routines can be called from assembly language only, via the trap
macros _Launch and _Chain.

9. On entry to either routine, register AO contains the address of a 4-byte
pointer, which in tum points to a string giving the name of the file
containing the application program to be started.

10. Following the file name pointer in memory is a 2-byte integer telling
which screen and sound buffers the program will use:

Value Screen buffer Sound buffer

Zero Main Main
Positive Main Alternate
Negative Alternate Alternate

The value passed for this integer is kept in the assembly-language
global CurPageOption.

351 [7 .1.2) Loading and Unloading Segments

IOI Assembly Langua.ge ·1mormanon
--lfli:11-----------

Trap ·macros:

Register usage:

Routine

Launch

Chain

Register

AO.l (in)·
O(AO)
4(AOJ

AO.L (in)

O(AO)
4(A0)

(Assembly)
Trap macro Trap word

_Launch
_Chain

Contents

Pointer to parameter block:

$A9F2
$A9F3

Pointer to name of application file
Coded integer speci~ng screen and

sound buffers (see note 10)

Pointer· to parameter block:
·Pointer to name of application file
Coded integer speci(ying· sereen and

sound buffers (see note 10)

Assembly-lallguage global variable:

Name Address

CurPageOption $936 ·
Meaning

Integer specifying screen and sound
buffers

7.1.2 Loading and Unloading Segments

~11111~-------o-e_fi_n_iti-·o_ns __ ·-------------------------------
procedure LoadSeg {Asse.mbly language only}

procedure UnloadSeg
(anyRouline : Ptr); {Pointer to any routine in the segment}

352 Program Startup

~~sfiii:::::::l.._ ______ N_o_t_e_s __________________________________ __

1. LoadSeg loads a code segment from the application resource file on
the disk and locks it into the application heap.

2. The segment isn't reloaded if it's already in memoiy.

3. The segment to be loaded is identified by a segment number passed
on the stack.

4. After the segment is loaded, all of its jump table entries are patched
to jump directly to the cmresponding routines in memory.

5. LoadSeg can be called only at the machine-language level, and only
from within a jump table entiy. It will not work properly :if called from
within the body of a program.

6. UnloadSeg unloads a segment from memoiy, freeing its space for some
other purpose.

7. The parameter anyRoutine is a pointer to any routine in the segment.
The segment number is obtained from the jump table entiy for this
routine.

8. The unloaded segment is made purgeable, but is not immediately
purged from the heap.

9. All jump entries for the segment are restored to the "unloaded" state,
so that they will reload the segment the next time it's needed.

~~1~-------As __ s_e_.IJl_h_l_Y_.•_•_"_·~-·~·-e~\Info~~-~--·.·--J'l_"_a_u_on_ .. ____________ ~---
Trap macros:

(Pascal)

R9utiµe, ~~~

UnloadSeg

7.1.3 Ending a Program

(Assembly)
Trap Jl1aCl'O

_LoadSeg
_UnloadSeg

Trap~ord

$A9FO
$A9F1

~11111~-------n-e_Dni __ ·n_o_ns _______________________________ __

procedure E~itToShell;

procedure Restart;

353 (7.1.3] Ending a Program

~~ii18·~.._ ______ N_o_t_e_s ____________________________________ __

1. ExitToShell terminates a program and immediately returns control to
the Finder.

2. The application heap is reinitialized, destroying its previous contents.

3. The contents of the desk scrap (7.4] are preseIVed. After initialization,
the scrap is reinstalled in the new heap and the global scrap handle
is updated to point to it.

4. A Pascal program need not call ExitToShell when it terminates in the
normal way, by "falling out" of its main program body.

5. Restart restarts the entire system, just as if the power had been turned
off and back on.

6. Restart is part of the Pascal Toolbox interface, not part of the Toolbox
itself. It doesn't reside in ROM and can't be called from assembly
language via the trap mechanism.

7. To restart the system in assembly language, jump to the memoiy
address ten bytes past the beginning of ROM (that is, to the address
$0A greater than that contained in the system global ROMBase [3.1.3]).

8. BEWARE: Restarting the system unexpectedly or without proper pre
cautions can cause the user to lose valuable information.

ldl Assembly Language Information -IUQ..,..._ _____ _
Trap macro:
(Pascal)
Routine. name

ExitToShell

(Assembly)
Trap macro

-ExitToShell

Trap word

$A9F4

Assembly-language .global variable:

Name Address

FinderName $2EO

Meaning

Name of program to exit to
(maximum 15 characters)

354 Program Startup

7 .2 Packages

7.2.1 Standard Packages

~1111~-------D---efiniti ·-·o_n_s _________________________ __ __
const

ListMgr = O;
Osklnit = 2;
Stdfile = 3;
FIPoint ·= 4;
TrFunc = 5;
lntUtil = 6;
.aoconv == 7:;

{list Manager Package}
tnJskdnitializatlon Package}
{Standard File Package}
fflQ:ating~Point Arit~metic Paclcage}
lTntnscendehtal Functions Package):
{lnternaUonal Utilities Package}
JBin~TylDe;cimal Conversion Package}

~~~iii::::l...-------N-o_i_e_s ______________________________ , ______ __ 

1. Code packages are stored as resources of type 'PACK' [7.5.2,]. 

2. The resource ID is the same as the package number, which must be 
between 0 and 7. The Toolbox can accommodate no more than eight 
packages at a time, including the standard ones. (The Macintosh Plus 
Toolbox can handle up to sixteen packages, numbered 0 to 15.) 

3. The standard packages are included in the system resource file 
provided on Macintosh software disks. (On the Macintosh Plus, the 
Floating-Point Arithmetic, Transcendental Functions, and Binmy/ 
Decimal Conversion packages, numbers 4, 5, and 7, reside in ROM 
instead (6.6.3].) 

4. Package numbers 1 and 8-15 are reserved for future expansion. 

5. The List Manager Package displays scrollable lists of items from 
which the user can choose with the mouse (like the one used in 
selecting files to be read from the disk). This package was introduced 
at the same time as the Macintosh Plus, and is available only in 
versions of the System file numbered 3.0 or higher. See Volume Three 
for details. 

6. The Disk Initialization Package [11:8.4) takes corrective action when 
an unreadable disk is inserted into the disk drive, usualJy by initializ
ing the disk. 

7. The Standard File Package (11:8.3] provides a convenient, standard 
way for the user to supply file names for input/output operations. 



355 [7.2.1] Standard Packages 

8. The Floating-Point Arithmetic Package performs arithmetic on 
floating-point numbers in accordance with the "IEEE standard" 
published by the Institute of Electrical and Electronic Engineers, 
using the Standard Apple Numeric Environment (SANE). See Inside 
Macintosh for details. 

9. The Transcendental Functions Package calculates various transcen
dental functions on floating-point numbers, such as logarithms, 
exponentials, trigonometric functions, compound interest, and dis
counted value. See Inside Macintosh for details. 

10. The International Utilities Package helps a program conform to the 
prevailing conventions of different countries in such matters as 
formatting of numbers, dates, times, and currency; use of metric 
units; and alphabetization of foreign-language accents, diacriticals, 
and ligatures. See [2.4.4] and Inside Macintosh for more information. 

11. The Binary/Decimal Conversion Package (2.3.7] converts numbers 
between their internal binary format and their external representa
tion as strings of decimal digits. 

12. Each routine within a package is identified by an integer routine 
selector; see the sections on individual routines for specific values. 
To call such a routine in assembly language, push the selector onto 
the stack and execute the appropriate trap LPackO to _Pack15) for the 
package it belongs to. The Pascal interface routines in unit Packlntf 
and the assembly-language macros in file PackMacs do this automati
cally for all routines in the standard packages. 



356 Program Startup 

~~It----------Assembly Language Information 

Trap macros: 

(Assembly} 
TI<ip macro Trap word 

_PackO $1\9E7 
_Packl $1\9E8 
_Pack2 $1\9E9 
_Pack3 $1\9EA 
_Pack4 $1\9EB 
_Pack5 $1\9EC 
_Pack6 $1\9EO 
_Pack7 $i\9EE 
_Pack8 $1\816 
_Pack9 $/\828 
_Pack10 $1\82C 
_Pack11 $1\820 
_Pack12 $1\82E 
_Pack13 $i\82F 
_Pack14 Si\830 
_Pack15 Sr\831 

Standard package numbers: 

Name Number Meaning 

ListMgr 0 List Manager Package (Syst13m file 
3.0 or later) 

Osklnit 2 Disk Initialization Package 
Std File 3 Standard File Package 
Fl Point 4 Floating-Point Arithmetic Package 
TrFunc 5 Transcendental Functions Package 
lntUtil 6 International Utilities Package 
BDConv 7 Binary/ Decimal Conversion Package 



357 (7.2.2) Initializing Packages 

7 .2.2 Initializing Packages 

I I I Definitions 
H~......-------

procedure lnitPack 
(packNumber : INTEGER); {Package number} 

procedure lnitAllPacks; 

1. These routines initialize the standard packages, making them available 
for use in a program. 

2. lnitPack initializes a single package; lnitAllPacks initializes all of the 
standard packages at once. 

3. lnitAllPacks is called automatically at program startup; there's normally 
no need to call either of these routines from within a running 
program. 

ICJI Assembly Language Information 

--tan---------------
Trap macros: 

(Pascall 
Routine name 

lnitPack 
lnitAllPacks 

(Assembly) 
Trap macro 

_lnitPack 
_lnitAllPacks 

Trap word 

$A9E5 
$A9E6 



358 Program Startup 

7.3 Finder Information 

7.3.1 Signatures and File Types 

~11111~-------D-e_iini_._·n_·o_n_s ______________________ ~------
type 

OSType =packed array [1 .. 4] of CHAR; {Creator signature or file type} 

~~iiiii~=::lti--------N-o_t_e_s __________________________________ __ 

1. Evei:y file has a file type and a creator signature, assigned when the 
file is first created [11:8.2.1] . 

.2. The creator signature identifies the application program to be started 
up when the file is opened from the Finder. 

3. The signature '????' denotes a file that is not to be opened from the 
Finder. 

4. The file type determines the icon the Finder uses to represent the file 
on the screen, and controls the user's access to the file via the 
Standard File Package (11:8.3.2]. 

5. File type 'APPL' identifies a file containing an application program to 
be run from the Finder. Such a file should cany the program's own 
signature as its creator. 

6. File type 'TEXT' denotes a file consisting of pure text characters, with 
no additional formatting or other information. 

7. Serious commercial applications should have their si.gnatures and 
associated file types registered for uniqueness with Apple's Macintosh 
Technical Support. 



359 [7.3.2) Finder Information Records 

7.3.2 Finder Information Records 

type 
Fl nf o = record 

con st 

fdType : OSType; 
fdCreator : OSType; 
fdF lags : INTEGER; 
fd location : Point ; 
fdFldr : INTEGER 

end; 

FHasBundle = $2000; 
Flnvisible = $4000; 

FDisk = O; 
FDesktop = -2; 
FTrash = - 3; 

15 14 13 12 11 10 

I I I I I I 
9 

{File type} 
(Creator signature} 
{Finder flag s} 
{Top-left corner of file's icon in local (window) coordinates } 
{Folder or window containing icon} 

{Application has Finder resources} 
(Fi le not visible on desktop} 

{Icon is in main disk window} 
{Icon is on desktop} 
{Icon is in trash window} 

8 7 6 5 4 3 2 0 

I I I I I I I I 
I 

'-------- Private 

'--------------- lnlted 

I '----------------- Changed 

L------------------ Busy 

Bozo 

'---------------------- s~~ 
Bundle 

'------------------------- Invisible 

'--------------------------- Locked 



380 Program Startup 

---l~iiii8·:::31--------N-o_t_e_s __________________________________ __ 

1. A Finder information record summarizes a file's Finder-related 
properties. 

2. fdType and fdCreator are the file type and creator signature [7.3.1], 
respectively. 

3. fdFlags is a word of flags representing Finder-related attributes of the 
file. 

4. Bit 15 (the high-order bit) of the flag word is the lock bit. A 1 in this 
bit prevents the file from being deleted, renamed, or replaced. 

S. Bit 14 of the flag word is the invisible bit. A 1 in this bit means that 
the file's icon is not to be displayed on the screen by the Finder. 
The constant Flnvisible is a mask for manipulating this bit. 

8. Bit 13 of the flag word is the bundle bit. A 1 in this bit means that 
the file has a "bundle" of Finder-related resources [7.5.4] to be in
stalled in the Finder's desktop file. The constant FHasBundle is a mask 
for manipulating this bit. 

7. Bit 12 of the flag word is the system bit. A 1 in this bit means that 
the file is needed by the system for proper operation. 

8. Bit 11 of the flag word is the bozo bit (named for the Apple program
mer who invented it). A 1 in this bit prevents the file from being 
copied: a protection scheme so feeble that only a bozo would think 
of it. Recent versions of the Finder (version 5.0 or greater) don't even 
pay any attention to this bit. 

9. Bit 10 of the flag word is the busy bit. A 1 in this bit means that the 
file is currently in use-that is, it has been opened and not yet 
closed. 

10. Bit 9 of the flag word is the change bit. A 1 in this bit mt~ans that the 
file's contents have been changed and must be updated on the disk. 

11. Bit 8 of the flag word is the init bit. A 1 in this bit me!ans that the 
file's Finder-related resources [7.5.4] have been installed in the 
desktop file. 

12. The low-order byte of the flag word (bits 7-0) is reseived for private 
use by the Finder. 

13. fdFldr specifies the location of the file's icon on the Finder screen. 
Common locations are the main window for the disk the file resides 
on (FDisk), out on the desktop (FDesktop), or in the trash window 
(FTrash). Any positive, nonzero value is a folder number assigned by 
the Finder to designate a subsidiary folder on the disk. 



361 [7.3.3] Accessing Finder Properties 

14. fdlocation gives the position of the top-left comer of the file's icon, in 
the local coordinate system of the window designated by fdFldr. 

15. If the icon is on the desktop (fdFldr = FDesktop), fdlocation.is in global 
(screen) coordinates. 

16. The fdfldr field is unused under the new Hierarchical File System (see 
Volume Two, Chapter 8). 

IOI Assembly·Lan~ge Iniorniation ---1rr1..,._ _________________ _ 
Field offsets in a Firi.der lrifortnation recoi't'.l: 
(Pascal) (Assmnbly) 
Field name oifset name 

fdType 
fdCreator 
fdFlags 
fdlocation 
fdFldr 

fdType 
fdCreator 
fdFlags 

fdl.;ocation 
I fdFi(fr 

Offset in bytes 

0 
4 
8 

10 
14 

Asse01bly-4mguage:constants: 

Name· 

FHasBundle 
Flnvisjble 

Value. 

'$20()0 

$4000 

Meaning 

Mask for bundle bit 
Mask for invisible bit 

7.3.3 Accessing Finder Properties 

~~1~-------o_e_fini __ ·n~~o_ns ______________________________ __ 

function GetFlnfo 
(fName : Str255; 
vRefNum : INTEGER;. 
var finderlnfo : Flnfo) 
: OSErr; . 

function SetFlnfo 
(fName : Str255; 
vRefNum : INTEGER; 
finderlnfo : Flnfo) 
: OSErr; 

{File name} 
{Volume or directory} 
{Returns current Finder information [7.3.2]} 
(Result code} 

{File name} 
{VQlume or directory} 
UJew .Finder information [7.3.2]} 
{Result code} 



362 Program Startup 

---l~Riii~.._ ______ N_o_t_es------------------------------·--------
1. These routines return or change a file's Finder-related properties 

(7.3.2]. 

2. The file is identified by its name and the reference number of the 
volume or directmy it resides in. Volumes, directories, and their 
reference numbers are discussed in Volume Two, Chapter 8. 

3. A file needn't be open in order to get or set its Finder information. 

4. These routines are part of the high-level file system and are not 
directly available from assembly language. The trap macros cor
respond to the low-level file routines PBGetFlnfo and PBSetFlnfo. (See 
Volume Two, Chapter 8 for the distinction between high- and low-level 
file systems, and Inside Macintosh for details on PBGetFlrfo and PBSet
Flnfo.) 

5. The trap macros are spelled _GetFilelnfo and _SetFilelnfo. 

IOI Assembly Language .Information 
~u:J...,__....._ ____________ ,~ 

Trap macros: 

(Pascal) 
Routine name 

PBGetFlnfo 
PBSetFlnfo 

(ASsembly) 
·nap macro 

. ..;.6etFilelnfo 
_setFilelnfo 

Trap word 

$AOOC 
$AOOD 



363 [7.3.4) Startup Information 

7 .3.4 Startup Information 

o =Open file 
1 =:Print file 

l 
f 

• • • 

I 
• • • 

• • • 

• • • 
I 

Message :c2 bytes) 

Number of f(les (2 bytes) 

First volume refere~ce number (2 bytes) 
: 

File type ........ 
(4 bytes) 

: 

Version number ( 1 byte) Not used 

Length of file name ( 1 byte) 

Fil e name 
(indefinite length) 

....... 

Last volume referen:ce number (2 bytes) 
: 

File type ........ 
(4 bytes) 

: 

Version number ( 1 byte) Not used 

Length of file name ( 1 byte) 

Fi le name 
(indefinite length) 

....... 

• • • 

I 
• • • 

• • • 

• • • 

I 

Any 
number 
of files 



364 Program Startup 

procedure CountAppFiles 
(var me·ssage : INTEGER; {Open or print?} 
var count :. INTEGER); .{Returns number of files selected} 

procedure GetAppFiles 
(index : INTEGER; {Index number of desired file} 
var theFile : AppFile); {Returns identifying information about file} 

procedure ClrAppfiles 
(index : INTEGER); Undex number of file to be cleared l 

procedure GetAppParms 

const 

(var appName : St~:255; {Returns name of application file} 
var appResFile : INTEGER; lReturns reference number of application resource file} 
var startHandle : Handle); f6eturns handle to startup information} 

AppOpen = O; 
AppPrint = 1; 

{Open document file} 
{Print document file} 

type 
Appfile = record 

vRefNum : INTEGER; {Volume or directory} 
{File type} fType. : OSTyp~; 
{Version number} 
{Name of file} 

versNum : INTEGER;· 
fName : Str255 

end; 

~~liii~~.,._ ______ N_o_t_es--------------------------------------
1. These routines are used for accessing a program's Finder startup 

information, which identifies the document files the user selected in 
the Finder when starting up the program. 

2. CountAppFiles returns the number of documents selected by the user. 

3. The value returned in the message parameter tells whether the docu
ments are to be opened for work (AppOpen) or for printing IAppPrint). 
See Volume Three for information on printing. 

4. GetAppFiles returns identHying information for one of the documents 
selected by the user. 



365 [7.3.4] Startup Information 

5. The index parameter is an integer ranging from 1 to the count value 
returned by CountAppFiles. 

6. The identifying information is returned as a record of type AppFile, 
giving the volume or directory reference number, file name, file type 
[7.3.1], and version number. Volume and directory reference numbers 
and version numbers are discussed in Volume Two, Chapter 8. 

7. After opening or printing a document identified by GetAppFiles, call 
ClrAppFiles to notify the Finder that the document has been processed. 

8. These routines are not available in assembly language via the trap 
mechanism. Instead, you can access the Finder startup information 
directly via the startup handle at address 16(A5) in the application 
global space; a copy of the startup handle is also kept in the system 
global variable AppParmHandle. The internal structure of the startup 
information is shown in the figure. 

9. GetAppParms returns the name of the program's application file, the 
reference number of its application resource file, and a handle to its 
"raw" startup information. 

10. In assembly language, the same information is available directly in 
the system globals CurApName, CurApRefNum, and AppParmHandle. 

~~1~-------48-·_se_m_h_ly_:_J_~_n~·~~,~---e~.Info~·-··_rma_· ...... :tto~·-n ______________ ___ 

Trap macro: 

(~~) 
··J\oytjµ~;J!~~: 

GetAppParms. 

:curApN~me 

CurApRefNum 

(AsSf!inbly) 
-.,,.~p~pro Trap, word 

··•~10· 

· -mr 

.... GetAppParms $A9F5 

·Meaning 

Nameof.curreritapplication 
(maximlim 31 characters) 

Reference :number of 
applicatiQll.resource file 

Handle to Finder startup 
infonnation · 



366 Program Startup 

7.4 Desk Scrap 

7.4.1 Scrap Format 

......... Resource type 
(4 bytes) 

Length of data 
(4 bytes) 

• Item data • • (i ndefi ni te 1 ength) • 

I I 
• • • • • • • 

Any number 
• of items 

• • • • • • • 

Resource type 
(4 bytes) 

Length of data 
(4 bytes) 

• Item data • • (indefinite 1 ength) • 

I I 
Format of desk scrap 



367 [7.4.2] Scrap Information 

~~~iiiil~...,_ ______ N_o_t_e_s ____________________________________ __ 

type

1. The desk scrap may contain any number of separate items, each of
which is a single resource of any type. They should all represent the
same underlying information in different forms.

2. For each item, the scrap contains a four-character resource type and
a long integer giving the length of the resource data in bytes, followed
by the actual resource data.

3. The data must physically consist of an even number of bytes. If the
specified length countis odd, there must be an extra byte of "pad
ding" at the end to keep the--physical length to a whole number of
16-bit words.

4. Two resource types are considered standard for the scrap: 'TEXT'
(8.4.1], consisting of plain, unformatted ASCII text, and 'PICT' (5.5.5],
representing a QuickDraw picture. Any program that uses the scrap
at all should deliver at least one of these types to the scrap, and
should be able to accept at least one and preferably both.

7.4.2 Scrap Information

PScrapStuff = ,. ScrapStuff;

ScrapStuff = record
scrapSlze : LO~GlNT;
scrapHandle : Handle;
scrapCouilt : INlpG~R;
scrapState : t'r\fTEGER;
scrapName : StriligPtr

end;

function lnfoScrap
: PScrapStuff;

{Overall size .of scrap in bytes}
{Handle to scrap in memory}
{Current scrap count}
Us scrap in memory?}
{Pointer to name of scrap file}

{Pointer to current scrap information}

368 Program Startup

~~iii18·:::31--------N-o_t_es ______________________________ , ______ __

1. lnfoScrap returns a scrap information record summarizing the current
contents and properties of the desk scrap.

2. scrapSize is the overall length of the scrap in bytes, including all items.

3. scrapHandle is a handle to the contents of the scrap in memmy. If the
scrap is on the disk, this field is NIL.

4. scrapCount is the current value of the scrap count, which is changed
whenever ZeroScrap [7 .4.3] is called. This number has no intrinsic
meaning; its sole purpose is to enable a program to tell whether the
scrap's contents have been changed on regaining control from a desk
accessory.

5. scrapState is zero if the scrap currently resides on the disk, nonzero if
it's in memory.

6. scrapName is a pointer to the name of the scrap file.

7. The scrap file is nonnally named Clipboard File, and resides on the
startup volume. If the startup volume is hierarchical, the scrap file
resides in the system folder. (Hierarchical volumes are discussed in
Volume Two, Chapter 8.)

8. In assembly language, the contents of the scrap information record
are accessible directJy in the global variables listed below_

~li:ll~-------As-.··_se_·._m_b_.J_y,_1_•_"~~-····_·~-e->hd_._,_u_r•_"_a_u_on __________ , ______ __

Trap macro:
(Pascal)
Roufute name

lnfoScrap·

· ... (Assembly)
Tra1tmacro

.JnfoScrap

Assem~ly-langu~e global-var.fables:

Name Address

ScrapSize
ScriipHandle
ScrapGount
ScrapState
ScrapName

$96(}
$964·

$968
$96A-
$96C

Trap word

$A9F9

Meaning

Current scrap. ,~;ize
Handle to scrap contenis
Cwrent scrap count
Current s.crap state ·
Pointer to scrap file pame

369 [7.4.3) Reading and Writing the Scrap

7 .4.3 Reading and Writing the Scrap

function GetScrap
(theltem : Handle;
itemType : ResType;
var offset : LONGINT)
: LONGINT;

{Handle to be set to requested item}
{Resource type of ·desired item}
{Returns byte oftsetotitem data within scrap contents}
{Length of item data in bytes, or error code}

function PutScrap
(itemlength : LONGINT;
itemType : ResType;
theltem : Ptr)
: LONGINT;

{Length Qf. item data in bytesl
{Resource type of item}
{Pointer to item data}
{Result code}

function ZeroScrap
: LONGINJ; {Result codel

canst
NoScrapErr = -100;
NoTypeErr = -102;

.lDesk scrap not tnitiali~zedl
{No item of requf)sted type}

~li:ll~--------N-o_te_s ____________________________________ __
1. GetScrap reads an item from the desk scrap; PutScrap writes one;

ZeroScrap empties the scrap.

2. The itemType parameter to GetScrap identifies the resource type of the
desired item.

3. If the scrap contains an item of the requested type, a copy of the item
is made and the handle theltem is set to point to the copy. The offset
parameter returns the offset in bytes from the beginning of the scrap
to the beginning of the item's data; the function result gives the
(logical) length of the item's data in bytes.

4. If the scrap doesn't contain an item of the requested type, GetScrap
returns the eITOr code NoTypeErr. theltem and offset are undefined.

5. Pass NIL for theltem to get an item's length and offset, but no handle
to its data. This allows you to check whether an item of a given type
is present, or find out its length, without making a copy of the item
itself.

370 Program Startup

6. PutScrap doesn't replace the existing contents of the scrap; it merely
adds an item. To replace the scrap completely, call ZeroScrap first, to
clear its previous contents.

7. PutScrap doesn't check for an existing item of the samu type you're
adding. It's up to you to avoid placing two items of the same type in
the scrap.

8. Notice that PutScrap accepts a pointer to the data of the new item, not
· a handle.

9. In addition to emptying the scrap, ZeroScrap changes thu value of the
scrap count [7.4.2). This enables you to detect when the scrap's
contents have been changed by a· desk accessoi:y.

~~~l--------As-·_s_e_Dl_u_i_Y_"La~··_n_~_._ .• _ .. ~_:_.1n1 ___ 0_.r_••_•a_d_Q_n_. ---------·---------

Trap macrqs: . 

(Pascal) 
Routine name 

Get~crap 

PutScrap 
ZeroScrap 

. f~sembly) 
Trap macro. 

..... GetScrap 

..:PutScrap 

.2eroScrap 

7.4.4 Loading and Unloading the Scrap 

Trap Word 

$A$FD 
. $A$FE 

$A9FC 

~~iiiiiiiiii--..1~---------o-e_finiti __ ·_·_o_n_s __________ ....,. ________________________ _ 

function LoadScrap 
: LONGINT; 

function UnloadScr.:ap 
: LONGINT; 

{Result code} 

{Result code} 

~~liiiB==~-------N-o-te_s ____________________________________ __ 
t. These routines transfer the desk scrap between memory and the disk. 

LoadScrap reads the scrap into memoi:y from the scrap file; UnloadScrap 
writes the scrap out to the scrap file. 



371 (7.5.1) Resource fype 'CODE' 

2. A pointer to the name of the scrap file is kept in the system global 
ScrapName, and is accessible via the lnfoScrap routine [7.4.2]. 

3. The scrap file is normally named Clipboard File, and resides on the 
startup volume. If the startup volume is hierarchical, the scrap file 
resides in the system folder. (Hierarchical volumes are discussed in 
Volume Two, Chapter 8.) 

4. The trap macros are spelled _LodeScrap and _UnlodeScrap. 

IOI Assembly ~~e lnformadon 
-1~...,..__---~-------------

Trap macn:1s: -
(Pascal) 

RouJ;ine na.¢e 

LoadS~rap 

UnloadScrap .. _ 

tAssellmlyl 
"Ihlp; QlaCJ;'O 

.J.odeScrap 
_Unle>d.eScrap 

7.5 Resource Formats 

• • • 
• • • 
I 

7 .5.1 Resource Type 'CODE' 

Jump table offset of first routine in segment 
(2 bytes) 

Number of jump table entries for segment 
( 2 bytes) 

Code of segment 

(1 ndefi ni te 1 ength) 

• • • 
• • • 
I 

Trap word 

$A9FB 
$A9FA 

Segment header 



~~ii 

372 Program Startup 

"Above AS" s1ze ........ ....... 
(4 bytes) 

"Below AS" s1ze ........ ....... 
(4 bytes) 

Length of jump table ........ ....... 
(4 bytes) 

Offset from AS to jump table ........ 
(4 bytes) 

....... 

• • • Contents of jump table • • • 
• • • (1 ndef1 n1 te 1 ength) • • • 
I I 

Format of segment 0 

Notes 

1. A resource of type 'CODE' contains executable machine-language code. 

2. The resource ID is called the segment number. 

3. The resource data begins with a 4-byte segment header identifying 
which entries in the jump table belong to this segment; this is 
followed by the code of the segment itself. 

4. The first 2 bytes of the segment header give the offset in bytes from the 
beginning of the jump table to the first entry belonging to this seg
ment. The last 2 bytes give the number of jump table entlies belonging 
to this segment. 

5. Every application program has one special segment, resource ID 0, 
containing information needed to initialize the program's application 
global space and jump table. The fonnat of segment 0 is shown in the 
second figure above. 



373 (7 .5.2] Resource fype 'PACK' 

7.5.2 Resource Type 'PACK' 

• • • 
• • • 
I 

Package header 

Code of package 

( 1ndef1 n1 te 1 ength) 

• • • 
• • • 
I 

~~~iiil==t~------N-o_te_s __________________________________ __ 

1. A resource of type 'PACK' contains a package of predefined machine
language routines.

2. The resource data begins with a header used internally by the Toolbox
to find the starting addresses of routines within the package; this is
followed by the code of the routines themselves.

3. Resource IDs of packages, called package numbers, must be between
0 and 15.

4. The standard packages [7 .2.1] are included in the system resource file.
(On the Macintosh Plus, the Floating-Point Arithmetic, Transcendental
Functions, and Binary /Decimal Conversion packages, numbers 4, 5,
and 7, reside in ROM instead [6.6.3].)

7.5.3 Resource Type 'FREF'

F11e type
(4 bytes)

Lo ca 1 ID of 1 con 11 st (2 bytes)

37 4 Program Startup

~~iii8·::::3.,..._ ______ N_o_i_es--------------------------------------
1. A resource of type 'FREF' ("file reference") establishes a correspon

dence between a file type associated with an application :program and
the icon to be used by the Finder to represent files of that type on
the screen.

2. The icon is defined by an icon list of resource type 'ICN'' [5.5.4]. The
list contains two icon definitions: the first representing the actual
icon, the second a mask to be used for drawing it on the screen. The
mask is normally just the outline of the icon, filled in with solid black.

3. The resource data of a file reference consists of the four-character file
type [7 .3.1], followed by the "local ID" of the co:rresponcling icon list.
The translation from this local ID to the true resource ID is defined
by a bundle resource [7.5.4].

375 [7.5.4) Resource Type 'BNDL'

7.5.4 Resource Type 'BNDL'

Any number
of resources

Any number
of resources

I

·-·····
Signature ···-· (4 bytes)

+
Resource ID of autograph

(2 bytes)

Number of resource types mi nus 1
(2 bytes)

i

Resource type

• •

• • •

(4 bytes)
!

Number of resources mi nus 1
(2 b~tes)

Local ID
(2 bytes) ------------------------:----------------------------

Actual resource ID
(2 b~tes)

• • •
Local ID

(2 bytes) --------------------------:-----------------------------

........

Actual resource ID
(2 b_Ites)

• • •
Resource type

(4 bytes)
!

Number of resources mi nus 1
(2 b~tes)

Local ID
(2 bytes)

.......

~-----------------------------:-----------------------------

• •

Actual resource ID
(2 b~tes)

• • •
Local ID

(2 bytes) -------------------------------:------------------------------
Actual resource ID

(2 b~tes)

Format of resource type 'BNDL'

• •

• • •

• •

Any
number
of
resource
types

376 Program Startup

~~iii~:::::1~------N-o_te_s __________________________________ __
1. A resource of type 'BNDL' (''bundle") identifies all of the Finder-related

resources associated with an application program.

2. The resource data begins by defining the program's signature [7.3.1]
and the resource ID of its autograph resource (note 6). This is followed
by bundle entries for any number of resource types.

3. For any given resource type, the bundle may contain any number of
individual resources. Each resource has a local ID by which other
resources in the bundle refer to it. The bundle defines the correspon
dence between these local IDs and the true IDs under which the
resources are actually stored.

4. At present, the only resource types in a bundle that am meaningful
to the Finder are 'FREF' (7.5.3] and 'ICN#' [5.5.4], in addition to the
program's autograph (note 6). In the future, bundles may also be used
for other purposes and may contain other resource types as well.

5. Any program with a bundle should have the bundle bit set in the
fdFlags field of its Finder information record [7.3.2]. This teJls the Finder
to install the resources contained in the bundle into the desktop file
when copying the program to another disk.

6. Any program with a bundle must also have an autograph resource.
The resource type of the autograph is the same as the program's
signature; its resource ID is defined in the program's bundle, and is
conventionally 0.

7. The autograph can have any information at all as its rusource data.
Typically it contains a text string identifying the program and version.

377 [7.5.5) Resource Type 'DRVR'

7.5.5 Resource Type 'DRVR'

Unit Reference Driver
number number name Description

2 -3 .Print Printer driver
3 -4 .Sound Sound driver
4 -5 .Sony Sony disk driver
5 -6 .Aln Serial driver, port A (modem port) in
6 -7 .A Out Serial driver, port A (modem port) out
7 -8 .Bin Serial driver, port B (printer port) in
8 -9 .Bout Serial driver, port B (printer port) out
9 -10 .MPP Network driver (Macintosh Packet

Protocol)
10 -11 .ATP Network driver (AppleTalk Transaction

Protocol)
12 -13 Calculator Calculator desk accessory
13 -14 Alarm Clock Alarm Clock desk accessory
14 -15 Key Caps Key Caps desk accessory
15 -16 Puzzle Puzzle desk accessory
16 -17 Note Pad Note Pad desk accessory
17 -18 Scrapbook Scrapbook desk accessory
18 -19 Control Panel Control Panel desk accessory
19 -20 Chooser Chooser desk accessory

Notes ~~is:s:::::::I-------
1. A resource of type 'DRVR' contains the code of an input/output device

driver or a desk accessory.

2. A driver's resource ID is the same as its unit number, and must be
between 0 and 31.

3. The unit number also determines the driver reference number, by the
formula

refNum = -(unitNum + 1)

378 Program Startup

4. Eveiy driver resource must have a resource name as well as a resource
ID. For true device drivers, the name begins with a period(.); for desk
accessories, it must not.

G. The table lists the standard device drivers and desk accessories. The
sound, disk, and serial drivers (and the network drivers on the
Macintosh Plus) are permanently resident in ROM. The printer driver
and desk accessories are resources included in the system resource
file.

6. The unit and reference numbers shown in the table may differ in
some versions of the System file.

7. See Volume Three for further information on devices and drivers.

CHAPTER
- D'n5:mlliiiill• ---- 8
- lll!i!Bm!iBll~

Upstanding
Characters

The Macintosh can display text on the screen in an almost
endless variety of typefaces, sizes, and styles. In this chapter we'll
learn how text is represented internally and how to display it and
control its appearance on the screen.

The Macintosh Character Set

Every text character is represented by an 8-bit character code
(8.1.1]. The Macintosh character set is based on the 7-bit ASCII
code (American Standard Code for Information Interchange)
widely used throughout the computer industry. Character codes
from 0 to 127 {$7F) correspond to the standard ASCII characters; the
remaining 128 codes are used for additional, non-ASCII characters
available only on the Macintosh.

In the standard ASCII character set, the first 32 character
codes, from 0 to 31 ($1 F), along with 127 {$7F), stand for "control
characters" with no direct visual representation. These were
devised in early medieval times (circa 1940) to control teletype
transmission, and many have outmoded or arcane meanings such
as "end of tape, 11 "negative acknowledge, 11 and "synchronous idle."
The Macintosh has no use for most of them; in fact, there isn't
even any way to type them, since the Macintosh keyboard doesn't
have the Control key found on most other computers. The only

379

380 Upstanding Characters

control characters that have their standard meanings on the
Macintosh are backspace (ASCII code $08), tab ($09), and carriage
return ($00). A few more can be typed from the Macintosh keyboard
or keypad but have nonstandard meanings: the Enter key produces
the ASCII Control-C or "end-of-text" character ($03), and others are
generated by the Clear and arrow keys (8.1.1].

There are also a few control characters that can't be typed
from the keyboard but have special graphical representations on
the Macintosh screen, including the "cloverleaf' command sym
bol, the check mark for marking menu items, and the Apple
symbol used for the title of the menu of desk accessories. The
character codes for these screen-only characters are defined as
Toolbox constants for use in your programs [8.1.1]. For instance,
you can refer to the Apple character as CHR(AppleMark).

Character codes of 128 ($80) and above denote extra characters
added to the Macintosh character set for business and scientific
purposes, as well as accents and other special characters used in
foreign languages. Most of these special characters can be typed
from the keyboard by holding down the Option key in combina
tion with some other character. If you happen to be proficient in
Dutch or Italian, Noiwegian or Portuguese (or Albanian, Basque,
or Rhaeto-Romansch, for that matter), you'll find the Macintosh
provides all the characters you need to type your grocery list in
those languages; if you haven't a clue what some of these charac
ters are good for, don't lose any sleep over it.

As we learned in Chapter 2, the Toolbox uses an internal
format for character strings consisting of a 1-byte character count
followed by a series of bytes containing the character codes
themselves. Strings of this form can be stored in resource files
under resource type 'STR ' (8.4.2] or 'STR#' (8.4.3), and read into
memory with GetString or GetlndString (8.1.2]. (Notice that the space
in 'STR ' is required.) There are also utility routines (8.1.2) for
copying strings within the heap: NewString simply returns a brand
new handle to the copy, while SetString accepts an existing handle
and sets it to point to the copy.

Notice, though, that since the character count for such "Pas
cal-format" strings is limited to 1 byte, they can be no more than
255 characters long. For longer blocks of text there's resource type
'TEXT' [8.4.1), which has no count byte and unlimited length. (You
can find out its length with SizeResource (6.4.3].) It's recommended
that. you use string and text resources for all text your program

381 Keyboard Configurations

displays on the screen, such as window titles and eITOr or prompt
ing messages. This makes it easy to reword messages, change
terminology, correct misspellings, or translate your messages into
alien tongues (such as English) without having to change the
program itself

Keyboard Configurations

Not only is the Macintosh character set designed for international
use, but even the physical arrangement of characters on the
keyboard can be tailored to the needs of different countries. The
Macintosh keyboard is configurable to any desired layout. The
correspondence between physical keys and the characters they
stand for is defined by a keyboard configuration that's read from
the system resource file (under resource type 'INIT' [8.4.4]) each
time the system is started up. On software disks for use in a
foreign counny, the system file will include that country's preferred
keyboard configuration. Starting the machine with such a disk
transforms the keyboard into a German QWERTZ or a French
AZERTY instead of the familiar American QWERTY layout. Fans of
the more efficient Dvorak arrangement can reconfigure their key
boards that way if they prefer. (Of course, they'll have to reaITange
the physical keycaps for themselves!)

When reporting the user's keystrokes to your program, the
Toolbox gives both a key code and a character code. A program
that uses this information properly will work the same way no
matter how the user's keyboard is laid out. The key code [8.1.3]
identifies the physical key that was pressed, and is unaffected by
the keyboard configuration in effect; the character code [8.1.1] tells
what character the key stands for, as determined by the keyboard
configuration. The Shift, Caps Lock, Option, and Command keys
are modifier keys that don't generate any characters of their own,
but may change the meanings of the remaining character keys.
(For instance, the Shift key normally changes lowercase letters to
capitals.) Exactly what effect the modifier keys have on the charac
ters keys is determined by the keyboard configuration; for details
on the standard American configuration, see [8.1.4].

382 Upstanding Characters

You'll probably never: have oc~sion to qefille your oWii key'Qoard
configuration, but·if you do--,or·if you're.just ·curiou~ abo~ttho'fV the
mechanismworks you~ll 1:6nd further·.information in (8.4;.4] aJ;ld in
the ;,Nuts and Bolts" section at tha~nd:of'.this chapter.

Graphical Representation of Text

You can control the appearance of text on the screen by specifying
its typeface, size, and style. The term typeface (or just "face") refers
to the overall fonn or design of the characters, independent of size
or style. Macintosh typefaces are conventionally named after world
cities, such as New York, Geneva, or Athens. The type size is theoreti
cally measured in printer's points; 72 points equal approximately
one inch. (In practice this is more of a fiction than a reality: the
actual type sizes aren't exact enough to satisfy a professional
typographer, but nevertheless they're often called "point sizes.'')
Type style (or "text style" or "character style") refers to variations
in the basic form of the characters such as bold, italic, underline,
outline, or shadow. Together, the typeface, size, and style deter
mine the exact form of a character as it appears on the screen.

What we're calling ~typefaces :are commonly refeITed to as "mnts,"
but that temi.also ,ha_s an.other, more restricted meaning, as,·we'll
see later. This unfortunate dQu.ble· u~e of- 1:he same tenn lead$. to a
certain amoqllt,afeonfU~ion in termmc>logy. To tiy to mi.nimi$ th~
ambiguiJy, We'll.use: typejape ~Ehd~Jillf:ld.here and reservefoitt for
the.second.meatrlng to·.be:introi;iuo~Q:1ate~.

The graphical representation of a character on the screen (or
on a printer or other output device) is an array of pixels called a
character image (Figure 8-1). The image is defined relative to a
reference line called the baseline and a point on the baseline
called the character origin. The character origin marks the posi
tion of the QuickDraw graphics pen when the character is drawn;
the character width tells QuickDraw how far to advance the pen
after drawing the character.

383 Graphical Representation of Text

L1
••••• •• •• •• •• •• •• •• •• •• •• ••••• •• •• •• •• •• •• •• •• •• •• •• •• •• •• __,_........ •••••---- Baseline

Character;;"" •• II '
origins •• •• Next character

•••• origin

Character
widths

Figure 8-1 Character images

The character image isn't confined to these boundaries,
however. The second character in Figure 8-1, for example, extends
to the left of the character origin, causing it to jut slightly below
the preceding character. In printer's lingo this is known as a kem
in this case, a backward kem. A character can also kem foiward,
if its image extends beyond the character width to the right. The
actual width of the character image, in pixels, is called the image
width. The character's ascent and descent measure how far it
extends above and below the baseline.

Notjce. tliat. tl).~ "char-.c,~~~, ~q~h and the ilµage width aren't the
sam.e thing~. The chaOt.et~~· :Wf4th controls the positioning of the
graphic& pep. as text .is ~~,.·.and is always mea$ured from the
origin of one character to that of the next. It includes not only the
width of the. character itselt but also the extra space separating it
from the next character. The bnage width measures the actual
width of the character 'im~ge itself Either of the two may ~ 0: a
space character; for:iJ'js~cc;t; has a zero image width but a nonzero
character Width. A·. zerd cb(ltacter width produces (udead" · charac- ·
ter'that doesti't·advahce:the pen, such as an accentthat combilles
with theletter folloWing·it.

384 Upstanding Characters

Fonts and Font Numbers

The collection of all the character images of a given typeface and
size is called a font. Fonts are kept in resource files and are read
into memory as needed; their resource type, reasonably enough,
is 'FONT' (8.4.5]. You don't normally have to deal with fonts directly:
you just specify the typeface, size, and style you want and let the
Toolbox take care of the details. Before it can do so, though, you
have to initialize it for font handling with lnitFonts [8.2.4]. Always
make sure you call this routine at the beginning of your program,
after calling lnitGraf [4.3.1] and before lnitWindows (11:3.2.1].

You identify a font by giving a font number [8.2.1] and a type
size. The font number should really be called a "face number,"
since it designates a particular typeface independent of size. Legal
font numbers run from 0 to 255, and type sizes can range from 1
to 127 points. The 8-bit font number combines with the 7-bit size
to form a 15-bit resource ID for the corresponding font. This is
equivalent to multiplying the font number by 128 and adding the
size: for example, font number 3 stands for the Geneva typeface, so
the resource ID for the 12-point Geneva font would be 3•128 + 12,
or396.

Font number 0 stands for the system font. (It should really be
the "system face.") This is the typeface the Toolbox uses for all
text it displays on the screen, such as window titles and menu
items. The standard system font for American use is named Chicago,
and the Toolbox always uses it in a standard size of 12 points. A
program can also have its own application font, denoted by font
numb~r 1. There is no actual typeface with this number; it refers to
some other existing face whose true font number is found in the
system global ApFontlD. The application font is initialized to Geneva
each time a new application program is started up, but you can
change it to any other typeface you wish in assembly language,
anyway by storing the desired font number into this variable.
(There's no easy way to change the application font in a high-level
language like Pascal.)

Font numbers from 2to127 are reseived for typefaces provided
by Apple itself. So far there are 15 such faces available in addition
to the Chicago system font, five of which are designed specifically
for use with the new LaserWriter printer. The font numbers for
these standard typefaces are included in the Toolbox interface as

385 Fonts and Font Numbers

predefined constants [8.2.1]. Licensed Macintosh software devel
opers can register their own typefaces with Apple and have them
assigned font numbers from 128 to 255.

The Toolbox routines GetFontName and GetFNum [8.2.5] convert
between a font number and the coITesponding typeface name. The
Toolbox finds the name by looking for a font resource with the
given font number and a point size of 0. The resource name of
this resource gives the name of the typeface: for example, font
resource number 384 (3•128 + 0) has the resource name 'Geneva'.
This "O-point" font has no resource data; it exists solely to cany
the name of the typeface. The real fonts, those with nonzero point
sizes, have no resource names.

> • '1: '; .·.'

The.Macintosh :Plus, version-of the Toolbox uses a more elaborate
scheme of font identification. based on a new data structure, the
family ~cord. 'I'here:s ,Qne. ~y record for each 1)'peface, stored
·on .the. disk .as··a;.~souroe.~o~ type. _~FOND' ("font· definitionn). The
internal structtire .Of the ·family record is too complex to discuss
here; ··it1s described- in detail -in the· Macintosh ,Plus supplement
(Volume M of Apple's Inside Macintosh manual. Among other
things, it includes .~ te1l:>le giving the' :resource ms of the available
font resot:lrces for'vmous siZes·and styles of a typeface.

Under the new scheme; the name and font number (now called
a "family number"~ of each typeface are given by the resource name
and ID· of its· 'FOND~ resourpe; _·However,. the original version of the
Toolboxknowsnotfilng .offarillly:records,·and pays·_no attention to
'FOND; re.sources. Although the new Toolbox can deal with family
(font)' 11umbers from ~"32768 to +32767, the old one only recognizes
those between 0 .a#d 255. ·To· maintain compatibility with older
machines, all fonts 'falling witliin· this range must still follow the old
numbering and running conventions described above.

386 Upstanding Characters

' ~ot evexy point ·size acj:µS]Iy··exists for a given typeface. Jf yoq ask
-to use a fac~t.and ~e ~t can'tbe fuund ~n ilnY·Qpen resource file,
the Toolboxwill :aQtotnati¢ally;cboo~e a suitablln~Xisting fc•ntin',·:that

, typeface and scale it to.-the:requested.size. The results aren't alWays
pleasing to -the eye, howev~as you can see by looking at, say,
12--point Athens in MacWrite or .MacPaint. To find out if a given

- combil)atjon.actually exists, u~e ·th~T9olbox ro-µ@e Real Font [8.2~5].
On. fh~··Macintosli ·rius~ yair aJ.sti -have the option of tul'lliqg -·off

automatic tbnt scaling· with· a new routine nallled SetFScaleD)sable

Structure of a Font

- (8~2.8]. lllStead of scallilg ;ail -existing font -to the reqtiested (no1'exis·
tent) poi~t j;iZe; the TMlboX' will· simply use the neA1 smaller
available::s~:.but: $pap~:~~ cll~(lt~ fant,ber .ap~, as if they were
in the size you asked fQr. l'bfs :Jlle_thod is both faster •md -fu.ore
readable.th~- scaling; ahttgives a truer approximation to the-plfOper
word :placements, line· breaks; and: so· forth. Font scaling is inilially
turned :Qnj··:ij>r·backward·,compatibility With ,exiSting applications,
b'Qt you'll.-'pr(Jl)ab~y-:·W~t' ,to:,~tum~ 'it oft ,if you!re mm1ting pn a
Macintosh eu1s~ '·

The complete definition of a font is contained in a font record
[8.2.2]. This is a complex data structure that includes the character
images themselves, along with additional information about the
font's overall characteristics. The Toolbox normally handles font
records for you, so you don't really need to know their internal
structure. The following discussion is intended purely for your
background understanding, and you can safely skip it if you're in
ahuny.

387 Structure of a Font

Do keep in mind, ttlough, that font records are large objects and
take up a lot of ~pace in mammy or on the disk. It takes a great
many bits to define all those character images, and since the images
are two-dimensional,, they. grow with the square, of the point size.
Besides the actl;lal charaoter.,j1Jlages, there's ~so a sizable fixed
overhead for eY'ecy,·fot!t reoord. J\ typical ·9-pointfont-0ccupiesabout
'.2K ·bytes, an i8'~poiri.t.:font ~out SK, and a 24-pointfont about Si<.
Fonts intended for· use with the LaseiWriter printer can be twice
these sizes or even larger.

A pl'QgranJ that uses many fonts will find that it can't keep
them all in memocy-.at once, particularly on machines with -smaller
mammy capacities. :such a program tends to become "disk-bound,"
spending most. of 'its · time"waifing for fonts to be ·read in from the
disk. To see this effect .for yourself, tiy making up a MacWrite
doeqment· tl,l_at us~~ te~1 ortwelve .different fonts on the same line
of t~xt, .and .listen t(l· the disk spin when you 1Iy to select ~
insertion point-.QP ~~,:J.jne with the mouse.

Figure 8-2 shows some of the font characteristics that are
defined in the font record. If all the individual character images
in the font are superimposed with their character origins coincid
ing, the font rectangle is the smallest rectangle, relative to the
baseline and character origin, that encloses them all. Its width,
fRectWidth, encloses the image widths of all the characters. (Don't
forget that the image width isn't the same as the character width;
the font's maximum character width, from character origin to
character origin, is given by the widMax field.) The maximum ascent
and descent for any individual character determine the overall
ascent and descent of the font, and thus establish its ascent line
and descent line with respect to the baseline. Together, the ascent
and descent give the font height, the overall height of the font
rectangle from ascent line to descent line. Leading (rhymes with
"heading," not "heeding") is the amount of extra vertical space
between lines of text, from the descent line of one to the ascent
line of the next.

The heart of the font record is the font image (8.2.3], which
defines the appearance of every character. This is a rectangular
bit image made up of all the individual character images laid end
to end in one long horizontal row, often called a "strike" of the

388 Upstanding Characters

Font rectangle --------- \ -------------1 · · · · · · · 11~·:········:······· 1········:::·:·~:····· .. ·········1 :···············: ······· ···············1

! • ••••• Ch ! ••••• ! ! •• ! ! • ••• aracter : •• •• ! ! •• !
' • • on'IYin ! •• •• ! i •• i ! • o ·_; •• •• ; ; •• ;
! II. ~ ••••• ! Character ! •• !

rnigin ! ! "' ! ! i • •• !
Charac~ i ! • •r 1 origin --r-· •• "\ j

,_ ---~~~:~haraotec ,_ -··r ~~~:0oharaotec 7-~;i;haraoiec
Ascent line

I
Font ascent

Font height

Baseline
j

Font descent

Descent line +
f

Next ascent line

Leading

i

.. , __ Font rectangle

Character origin

Next character origin of
/widest character

----- Baseline

The font rectangle would enclose all of the individual characters in the font if they were superimposed
with their character origins coinciding. fRectMax, the width of the font rectangle, is the font s
maximum image width; widMax is the maximum character width.

Figure 8 -2 Font characteristics

Missing
characters

I \

389 Structure of a Font

T
················-··-·············-·········-····-·········-······················-·················-·············-·-············-····-··
• •• • •••• ••••• •••• ••••• • •• II. .1111. Ill 1111 1111 1111 •••• •

Font •••• •••••••• 1•• •••• •••• •••• 1111.
hel"ght • ••••• ••• ••• •• ••••••• •• ••••••• • •• • ••• ••• •••••• •••• •• •••• •• • ••
J_•. • ••• •••• •••• •• •• • ••• •• • ••• • •••• •• •••• •• •• • •• ••

..

l!? #S?o01)*+,-.lmB456189;<=>.

=U!iiBdBli_.c!!in~·~~f:ll.«>> •• .llDI.o!--'""~-~ii::f

Figure 8-3 A font image

Missing
characters

font (see Figure 8-3). The height of the font image is simply the
font height; its row width is given by the rowWords field of the font
record. (Notice that. the row width is given in words, not in bytes
as in a QuickDraw bit map (4.2.1].)

The character images are arranged within the strike by as-
/ cending character code. There needn't be an image for every

possible character; characters that aren't included in the strike are
said to be missing from the font. Every font includes a special
missing symbol (typically a hollow square) to be used in place of
all missing characters. The missing symbol is always the last
character image in the strike. The font record's firstChar and lastChar
fields give the character codes of the first and last character
actually defined. Characters outside this range are understood to
be missing, and some of those within the range may be missing
as well

To locate each individual character within the strike, there's
a location table [8.2.3] with an entry for each character from
firstChar to lastChar. The location table entry gives the horizontal

390 Upstanding Characters

offset, in pixels, from the beginning of the strike to the left edge
of the character. The character's image width is found by subtract
ing this offset from that of the next character, taken from the next
entry in the location table. (Notice that for this arrangement to
work properly, the location table entry for a missinig character
must always be the same as that of the next defined character.)
At the end of the location table are two extra entries, one for the
missing symbol and another to mark the end of the strike; this
last entry is simply the total width of the strike in pixels.

Following the location table is the offset/width table [8.2.3],
which controls the positioning of the graphics pen as text is
drawn. Like the location table, the offset/width table is indexed
from firstChar to lastChar + 2. An entry of -1 in this table marks a
character as missing. Otherwise, the second byte of the 2-byte
table entry gives the character width, the distance the pen ad
vances after drawing the character. The first byte positions the
character image with respect to the character origin (which marks
the pen position when the character is drawn). This positioning
is done in a somewhat roundabout way, which we'll discuss in a
minute. After the entry for lastChar is one for the missing symbol,
then a final entry of -1 marking the end of the table.

Because the ·font image, location table, and offset/width table all
vmy in length from one font to another, th~y can't be included in
a valid Pascal decJ.aration for the font record. (Notice that tQey're
shown in comment brackets in [8.2.2].) The Toolbox has no toouble
accessing them, of course, since ifs written in assembly language;
they can even be reached in Pascal if you're willing to do some
(ugh!) pointer arithmetic. The owTLoc field onhe font record seIVes
as a guidepost by giving the distance in words (not bytes!) from'itself
to the beginning of the·offset/width table.

Returning to the font rectangle shown in Figure 8-2, notice
that it extends to the left of the character origin by an amount
equal to the font's maxKern field, the maximum leftward kem of any
character in the font. Because it's measured from right to left,
maxKern always has a negative (or zero) value; in the figure, it would
be -2. Now suppose that a given character kerns by less than the
maximum-say by one pixel instead of two (see Figure 8-4). Then

391 Structure of a Font

Character
rectangle

Character
origin

• - Font rectangle

----..-- Baseline

rirrl
~ Character kem = -1

Character offset = +t ---- maxKern = -2

Figure 8-4 Character offset

the left edge of the character lies one pixel in from the left edge
of the overall font rectangle. This character offset is what's kept
in the high-order byte of an offset/width table entry. Adding the
character offset (+1 in the figure) to the font's maximum kem (-2)

gives the kem for the individual character (-1). For a character
with no kem at all, the character offset is the negative of maxKern
(+2 in the example), so when they're added together they cancel
and produce a character kem of 0.

Kerning is more :ftexible on the Macintosh. Plus: the size of a
character's kem can vary depending on the character preceding-·or
following it. The kerning information for each typeface is given. by
a kerning table in the family record; see Inside Macintosh, Volume
W, for details.

392 Upstanding Characters

To take advantage of high-resolution devices such as the LaserWriter
printer, the Macintosh Plus Toolbox allows the character widths for
a font to be expressed as fixed-point fractions instead cf integers.
The Toolbox will automatically round such fractional character
widths to a whole number of dots at whatever resolution is available
on a given device (for example, 72 dots per inch for the screen, 144
for the IrnageWriter printer, or 300 for the LaserWriter). The use of
this feature is optional, and is controlled by a global flag named
FractEnable. For compatibility with older applications, fractional
widths are disabled by default; all character placements are calcu
lated in whole pixels at screen resolution, as they were under the
original Toolbox. If you wish, you can enable fractional widths with
the Pascal interface routine SetFractEnable [8.2.8], or by storing directly
into the global variable FractEnable in assembly language.

To support fractional character widths, two extra tables are
added at the end of the font record, following the offset/~idth table.
The new tables are not required, and old fonts are still usable
without them; they simply improve the speed and accuracy with
which text is drawn. If present, they're the same le~:th as the
location and offset/width tables: 2 bytes per entry, indexed from
firstChar to lastChar + 2. The fontlype field of the font record [8.2.2) tells
whether they're included.

The character-width table gives the width of each character in
fixed-point form, with an 8-bit integer part and an 8-bit fraction. If
it's omitted, the integer character widths found in the offset/ width
table will be used instead. The only penalty is less accurate charac
ter placement on the LaserWriter or other high-resolution devices.

The image-height table gives the true height of each character
image, relative to the overall font height defined by the font 's ascent
and descent lines. The first byte of each entry tells how many rows
of empty white space to skip from the ascent line to the first pixel
of the character; the second gives the number of nonwhite rows in
the actual character image. If this table is missing, the Toolbox can
construct one for itself when it reads the font in from the disk, using
the information already present in the font image and location
table. Including an image-height table in the font resource just
speeds things up a bit; most fonts don't have one.

393 QuickDraw Text Characters

QuickDraw Text Characteristics

Like anything else you put on the screen, text gets drawn through
the medium of a QuickDraw graphics port. The Graf Port record
includes six fields that control the way text is drawn in that port
[8.3.1]. The QuickDraw routines to set these fields, as well as those
that draw and measure text, operate implicitly on the current
port-so before using them you have to "get into" the right port
with SetPort [4.3.3].

Unfortunately, the names of the port's text-related fields suffer from
the inconsistent tenninology mentioned earlier. The txFont field
doesn't really identifY a font, but a typeface (that is, a "font num
ber"); the field named txFace doesn't refer to the typeface at all, but
to what we're calling ,,the character style, such as bold or italic.
Please make the appropriate mental annotations on your concep
tual map.

A newly created graphics port is initially set up to display text
in the system font (font number 0) at the standard size of 12 points,
with plain character style. You can change the typeface for the
current port with TextFont, the point size with TextSize, the character
style with TextFace, or the transfer mode used for drawing text with
TextMode [8.3.2]. Character styles are expressed as Pascal sets con
taining values of the enumerated type Styleltem [8.3.l]. For instance,
the set [Underline] denotes underlining, [Bold, Underline] denotes bold
and underline in combination, and the empty set [] stands for
plain character style, with none of the fancy variations. You can
do "set arithmetic" to tum individual style variations on or off
without affecting the others: for example, the statement

TextFace (ThePort" .txFace + [Underline])

turns on underlining without affecting the remaining settings, and

TextFace (ThePort" .txFace - [Underline])

turns it off.

394 Upstanding Characters

Quick:Draw ordinarily produces these style variations by apijlying
transfonnations to the character images it gets from thEi font. For
instance, it produces. boldface by thickening the character horlizon
tally a suitable number of pixels, and italic by skewing the pixels
horizontally dependfug on their height above or below the baseline.
In the original Toolbox, such style transfonnations aren't nortnally
reflected in the font itself

On the Macintosh Plus, however, there can be separat~ font
defirrltions for such variations as bold ~d italic, producing b~tter
looking results tha.Jl those obtained by applying mech~cal
transfonnations to the plain~text font. The family reconl for. each
typeface includes the resource IDs of any such variant font~ that
may be available. To keep them from showing up in menus and
font lists, they're stored under resource type 'NFNT' ("non-menu
font''), which has exactly the· same structure as 'FONT' [8.4.5]J The
sole purpose of ~NFNT' :is' to· provide an alternative form of font
resource that won't . be included ·when you ask for a me$u · of
available resources of type 'FONT. 'NFNT' resources are meaniB.gless
to the old Toolbox; it will ignore them and continue to produce its
style variations the old way, by mechanically transforming the
characters of the plain font.

The spExtra field of the graphics port (set with Spac:eExtra (8.3.2]
is useful mainly for justifying text to both a left and a 1ight margin
at the same time. This field holds a fixed-point number (2.3.1] with
a 16-bit integer part and a 16-bit fraction. When drawing text,
QuickDraw uses this information to widen the space characters
so as to make the text come out even at both margins. To find the
proper spExtra value for a line of text, divide the excess line width
(the width between margins minus the measured width of the text)
by the number of spaces in the line, using the utility function
FixRatio (2.3.2] to produce a fixed-point result.

Finally, there's a device field that tells what output device the
port is intended to draw on, such as the screen or a printer. The
Toolbox uses this information to select the appropriate fonts for
that particular device. When you create a port, its device field is
initialized to 0, representing the Macintosh screen, and for most
ordinary purposes you'll just want to leave this setting alone.

39£> Drawing and Measuring Text

Drawing and Measuring Text

To draw text in the current graphics port, you use the QuickDraw
routines DrawChar, Drawstring, and DrawText (8.3.3]. DrawChar is the
basic routine, which just draws a single character; the other two
routines call it repeatedly to draw the text a character at a time.
Drawstring accepts a Pascal string, which is expected to begin with
a 1-byte character count. DrawText accepts a pointer to an arbitrary
data structure, which doesn't start with a character count; the text
to be drawn can be any specified sequence of bytes from within
the structure.

DrawText is useful for displaying the contents of 'TEXT' resources
[8.4.1],. but notice that you have to convert the handle· you get from
GetResource [6.3.1] into a simple pointer to pass to DrawText.. To be safe,
you~d better lock the text into the heap before dereferencing the
handle-and don't forget to unlock it. again when you're through
drawing it!

Text is always drawn in the port's current typeface, size, style,
and text mode. Each character is drawn with its character origin
at the port's current pen position (pnloc (5.2.1]); the pen then
advances to the right by the character width, adjusted for style
variations if necessary. The operation leaves the pen positioned
on the baseline just after the last character drawn. ASCII control
characters such as carriage return, line feed, tab, and backspace
have no special meaning to QuickDraw; if you want to use these
characters for formatting purposes, you have to test for them and
reposition the pen yourself with Move or MoveTo (5.2.4].

Program 8-1 (ShowFonts) shows an example of text drawing.
This routine finds every available font in all open resource files
and displays a sample of each in the current graphics port, as in
Figure 8-5. (Of course, if the current port is a window on the
screen, it may not have room to display this much text all at once.
In that case, some of the text will fall outside the window's port
rectangle and won't be drawn: QuickDraw will suppress it
automatically, as it always does when you try to draw anything
outside a port's clipping boundaries.)

396 Upstanding Characters

C Display sa1ples of all available fonts. >

~Im!!
left"argin = 10;
top"argin = 10;

m:
currentPort : Sraf Ptr;

oldOrigin
oldPenloc

oldfont
oldSize
oldface

baseline

nf onts
thisfont

: Point;
: Point;

: INTEGER;
: IllTE&ER;
: Style;

: IttTE6ER;

: INTE6ER;
: IttTE&ER;

rsrcHandle : Handle;
rsrcID : INTESER;
rsrcType : ResType;
rsrcNa1e : Str255;

f aceNulber : INTEGER;
f aceNa1e : Str255;

pointSize : INTEGER;
pointString : Str255;

the Info : Fontinfo;

~!iin <Sha1Fonts>

&etPort <currentPort);
!i~b currentPortA ~g

~!ti.D
oldOrigin := portRect.topleft;
SetPen (oldPtnloc>;

<ltargin fro1 left edge of •indoM, i11 pixels}
C"argin fro1 top edge of •indow, in pixels}

(Pointer to current port £4.2.21)

<Previous origin of port rectangle £4.1.11}
<Previous position of graphics pen £4.1.11>

<Previous typeface (•font nu1ber•> C8.3.1l}
<Previous point size £8.3.11}
<Previous text style (•face•) CB.3.ll}

CYertical position of baseline in pixels}

CTotal nu1ber of font resources available}
<Index for accessing individual fonts}

<Handle to font resource £3.1.11>
<Resource ID of font}
<Resource type of font £6.1.ll}
<Resource na1e of font £2.1.11}

c•font nu1ber• for typeface}
<Na1e of typeface C2.1.1ll

CType size in points}
CType size as character string £2.1.11}

<Font infor1ation record C8.2.6ll

C&et pointtr to current part C4.3.3J}

{Save old origin of port rectangle £4.2.2, 4.1.21)
<Save old pen position CS.2.41>

Program 8-1 Display available fonts

397 Drawing and Measuring Text

oldFont
oldSize
oldFac1

!n~;

:= txfont;
:= txSize;
:= txface

SetOrigin <-left"argin, -top"argin>;
baseline := O;
TextFace ([l>;

nFonts := CountResources <'FONT'>;
f~[thisFont := 1 t9 nFonts ~2

~Hi!

CSive old typeface ('font nulber'> CS.3.1]}
<Save old point sizt CS.3.lll
CSave old text style ('face') CB.3.tl>

(Offset to origin of text C4.3.4J}
<Start text at top 1ar9in}
<Use plain text style [8.3.21)

C6et total nulber of available fonts C6.3.3l}
<Iterate through av1ilablt fonts}

rsrcHandle := GetlndResource <'FONT', thisfont>; <&et next font [6.3.31}
6etReslnfo CrsrcHandle, rsrcID, rsrcType, rsrcNa1el; C6et resource infor1ation C6.4.1l}

f aceNu1ber := rsrcID ~i! 128;
pointSize := rsrclD !2~ 128;

if pointSize <> 0 !b@!
~!gin

TextFont (faceNu1berl;
TextSize (pointSize>;

<Isolate typeface nu1ber>
C and point size }

<Ignore du11y 'font naae• resources}

<Set port's typeface CB.3.21}
<Set port's type size (8.3.21}

&etfontlnfo lthelnfo>; C6et font 1easure1ent1 CB.2.61}
baseline := baseline + thelnfo.ascent; <Advance baseline by font ascent £8.2.61}
"oveTo <O, baseline>; <Position pen at start of line C,.2.4]}

6etFontNa1e (faceNu1ber, faceNa1e>;
Dra1String (faceNa1el;
Dra•Char (' '>;

C6et na1e of typeface [8.2.51>
CDisplay typeface na1e £8.3.31}
Clnsert space character for separation CB.3.31}

Nu1T0String (pointSize, pointString>; <Convert type size to string C2.l.7l}
Dra•String <pointStrinq>; <Display type size CS.3.31}

!itb thelnfo g~ <Advance to next ascent line CB.2.61}
b1seline := baseline + descent + leading

Program 8-1 (continued)

398 Upstanding Characters

Textfont (oldfont>;
TextSize <oldSize>;
Textface <oldface>;

<Restore previous typeface (•font nu11ber 1
) CS.3.2)}

<Restore previous point size C8.l.2lt
<Restore previous text style (•face•1 C8.3.2l}

!i!b oldOrigin ~g
SetOrigin <h, v>; <Restore previous origin (4.3.4]}

!itb oldPenloc ~9
ltoveTo <h, v>

!~; <Showfonts>

<Restore previous pen position CS.2 •. m

Program 8-1 (continued)

We begin by saving various properties of the cummt port that
we'll be changing within the routine (the coordinate origin, pen
position, typeface, type size, and type style), so we can restore
their previous settings before returning. For convenience, we
transform the coordinate origin to the top-left comer of the area
where the font samples will be displayed, as defined by the pair
of constants leftMargin and topMargin. The baseline for text drawing
is initialized to the veiy top of this area; we'll be advancing it
downward by the appropriate distance as we draw each line of
text.

After setting the port's type style with TextFace [8.3.2] to plain
text (no bold, italic, or other variations), we're ready to start
generating the available font resources, using the Toolbox routines
CountResources and GetlndResource [6.3.3]. As we learned in Chapter 6,
CountResources tells how many resources there are of a given type
(in this case 'FONT') in all open resource files. By calling
GetlndResource with an index number (thisFont) ranging from 1 up to
this total number, we can get a handle to each individual font
resource in tum.

For each font resource, we call GetReslnfo [6.4.1] to find out the
resource ID, which we then break down with the Pascal div and
mod operators into an 8-bit typeface number and a 7-bit point size.
Remember, though, that some of the fonts in a resource file are
"dummy" fonts with a point size of 0, which exist solely to carry
the typeface name; these "0-point" fonts have no character images
to display text with, so we just ignore them. For every font with a
nonzero point size, we set the current port's text characteristics to
the font's typeface and size with TextFont and TextSize [8.3.2], then

399 Drawing and Measuring Text

Chicago 12
Geneva 9
Geneva 10
Geneva 12
Geneva 14

Geneva 18
Geneva 20
Geneva 24
New York 9
NewYork 10
NewYork 12
New York 14
New York 18
New York 20
New York 24
Monaco 9
Monaco 12

Venice 14
hnbon ts
Athens 18

Figure 8-5 Output of procedure ShowFonts

call GetFontlnfo [8.2.6] to get the font's ascent, descent, and leading
measurements.

The ascent value tells us how far to lower our baseline to
position it for the line of text we're about to display. Then we
move the graphics pen to the beginning of the new baseline to get
ready to display the characters. We get the name of the font's
typeface by calling GetFontName [8.2.5] and display it with Drawstring
(8.3.3]. (Notice that we can't simply use the resource name we

400 Upstanding Characters

received earlier from GetReslnfo, since only the dummy "0-point"
fonts have resource names; the resource representing a "real" font
has no name of its own.) Following the typeface name, we insert
a space character with DrawChar [8.3.3] to separate it from the point
size; then we convert the point size from an integer to a character
string with NumToString [2.3.7] and use Drawstring again to display
the result. Finally we advance the baseline by the font's descent
and leading, to prepare for the next line of text, and repeat the
loop.

After all available fonts have been generated, we restore the
port's original typeface, size, style, pen position, and coordinate
origin, then exit from the routine. Notice that at the beginning of
the routine we saved the pen position before adjusting the port's
coordinate origin. When we get to the end of the routine, we have
to be careful to restore the original pen position after the coor
dinate origin, so that it's expressed in the same system of coor
dinates in which it was originally reported.

Sometimes you just want to measure how wide a piece of text
would be if you drew it, but without actually drawing it. (For
instance, you might be calculating how much extra space you
need between words to justify a line of text to the left and right
margins.) For this, you can use CharWidth, StringWidth, and TextWidth
[8.3.4]. These routines measure the width of the specified text in
pixels, using the text characteristics of the current graphics port.
No text is actually drawn and the pen is not moved.

The Macintosh Plµs h~:'a n~r,ou,tiJl.~ named M~asureTe~t (8.3.4] that
measures all sequences_··<>f·oharacters up to .a given m~um
length, beginning at a designated position in a piece of text (That
is, it measures tl\e width ofthe-·first character at.that position, the
first two characters; the :t'ir$t. three, and so on, up to the specified
maximum.) This infonlnltioil' is particularly useful for finding line
breaks: it tells you wmcJ:l'cllaracter .in a line excee,~ tJte ~um
width, so you can depi.de where to break th~ IU:ie and s~ a new
one.

Nuts and Bolts

401 Nuts and Bolts

QuickDraw doesn't need a font's actual character images to measure
text, just the character width$;given in the font's offset/width table.
So to conseive heap space, there's a special, abbreviated form of font
record especially for measuring text, called a font width table. It's·
identified by the constant FontWid in the font's fontType field (8.2.2],
and contains no font image,_ location table, or rowWords field Width
tables. are storedin resource files under resource type 'FWID' (8.4.6];
the ~source Ill is the Sm,ne ¥ {or the co;rresponding font. If such a
resource is availcilile 'for a given font, the Toolbox will use it for
text-measuring· operations. If no 'FWID' ·resource is available, the full
font is used instead. (Font width tables are used only by the original
version of the Toolbox; ·they'i7'ignored on.the Macintosh Plus.)

"Dead" Characters

Some of the accented foreign letters in the Macintosh character
set have no direct keyboard equivalents, even using the Option
key. Instead, they're typed as two-character sequences: first the
accent, followed by the letter it applies to. For instance, to type a
circumflex "e" (e, character code $90), you have to type the circum
flex (") first, then the letter e.

The Macintosh keyboard driver-the part of the system
software that reads characters typed from the keyboard and feeds
them to the running program by way of the Toolbox-automatically
detects such sequences and converts them into the corresponding
accented letters. By the time the program sees them, it receives
the single accented letter instead of the two-character sequence
that was actually typed. In effect, the accents (acute, grave, cir
cumflex, umlaut, and tilde) function as "dead keys": typing them
doesn't advance the insertion point, so the next letter is combined
with the accent instead of following it separately.

Actually, the accents combine with the following letter only if
the resulting combination exists as a distinct single character in
the Macintosh character set. OtheIWise, the accent and the letter
remain two separate characters. For instance, although the cir
cumflex accent combines with a following e to form the character

402 Upstanding Characters

e ($90) as described above, a circumflex followed by an f would
remain two separate characters.

Notice, also, that three of the accents are included in the
standard ASCII character set, with character codes below $7F: grave
(' , code $60), circumflex (", $5E), and tilde ("", $7E). Each of these
characters can be typed in two different ways, on different keys,
one with and one without the Option key. When typed without
Option, the accent always stands alone as a separate character.
With Option, it becomes a "dead" character and will combine with
the following letter if appropriate (for instance, the tilde will
combine with a following n). If you find all this a little hard to
follow, try experimenting for yourself with the Key Caps desk
accessory.

Details of Keyboard Configurations

The job of translating the "raw'' keystrokes typed by the user into
characters to be sent to the program is performed by a pair of
low-level machine language routines, one for the keyboard and
another for the numeric keypad. Pointers to these routines are
kept in the system globals Key1Trans and Key2Trans. The configura
tion routines are loaded from the system resource file each time
the system is started up; they have resource type 'INIT' (8.4.4] and
resource IDs 1 (keyboard) and 2 (keypad). The resource data is
simply the machine-language code of the routine.

The configuration routines receive their arguments and return
their results directly in the processor's registers, so they can only
be written in and called from assembly language. They receive a
key code in register 02 and a word giving the state of the modifier
keys in 01, and return a character code in DO (or 0 for no character).
See [8.4.4] for further details.

REFERENCE

8.1 Keys and Characters

8.1.1 Character Set

~-1----__ De&ni-·no_ns_·. ~-----
const
. Comm~odM.~rk·= ll1;_
:ch,eck~lark · = .;$1'2;

. DiamondMark = $l3;
Ap.pJeMark ; , 7= $l:4;:

403

{Charac_ter ·coge of command mark}
TChatacter code of check mark}
{Character code of diamond mark}

.. JP,h~ril<:ter co.ci,e of Apple mark}

404 Text

First hex digit

$0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $A $8 $C $0 $E $F
,,,,,

0 • .'\lJL D space 0 @ p ' p R e t 00 l - i .,,,,,,,

D x ! 1 A Q 8 q ~A ~
~ ~ e 0 ± i - . 0

,,,,,

2 0 D ~ " 2 B R b r t; i ¢ s. .., " ' '/////

3 D • # 3 c s c s E i £ .? v " 0
"

4 D • $ 4 0 T d t N i § ¥ f ' 3o u
5 D D 3 5 E u e u ti ... • µ ~ ' fi I

6 D D & 6 F u f 0 ii en E -u () b. ":"

Second 7 D D I 7 G w 8 6 n l: fl -g w « <>

hex
digit 8

:· ~:'::"~ E -
D D (8 H H h H 8 0 ® TI » "~"~""~

9 D) 9 I y i 0 0 © y t
..

T.\B y Tr ...
A

11011·

I i D D "' : J z j z a ii TM J hrr.nk
space

B I { ii ii , ~"."' i 0

D D + K k g A rl
' .,,,,,.

c 0 "'''· ':.:'
D D < L \ I I 8 u .. g A < 'i

' '///L. .,,,.,; ,

D

,,,,
".:.'" i CR D - = M] m } c u '4:- Q 0 > .,,,. .,, .. ,,;

,,

E D D > N " n - e u fE m (I fi 0

F D D I ? 0 - 0 e ii B B ce fl 0 D

Characters with shading are typed as two-character combinations

Character codes

405 (8.1.1] Character Set

~~iiiiA===lt--------N-o_i_e_s ____________________________________ __

1. Character codes stand for the characters themselves, not the keys that
produce them. The character produced by a given key depends on
which modifier keys were held down along with it and on the
keyboard configuration in effect.

2. Character codes from $00 to $7F follow the standard ASCII character
set (American Standard Code for Information Interchange).

3. Most ASCII control characters (character codes $00 to $1F, as well as
$7F) can't be generated from the Macintosh keyboard or keypad.
Exceptions are:

Character
code Key

$03 Enter
$08 Backspace
$09 Tab
$00 Return
$18 Clear
$1C Left aITOW

$10 Right aITOW

$1E Up airow

$1F Down airow

The original-model keyboard doesn't include the Clear and airow

keys; these are available only on the optional numeric keypad. The
Macintosh Plus keyboard has the keypad built in.

4. The following ASCII control characters are redefined as special sym
bols for use on the Macintosh screen:

Character
code Symbol Name

$11 x Command mark
$12 ../ Check mark
$13 • Diamond mark
$14 • Apple mark

These characters are intended only for display on the screen, and
can't be typed from the keyboard.

406 Text

5. The command mark is used for displaying Command-key equivalents
of items on a menu; the check mark for marking menu items [11:4.6.4];
the Apple mark for the title of the menu of desk a.ccessories.

6. The diamond mark is a vestige of earlier versions of the Macintosh
user interface and no longer has any specific use.

7. Character codes of $80 and above denote special characters added to
the Macintosh character set fo1' international, business, and scientific
use. Those beginning with $09 are included for use on the LaserWriter
printer, and are generally available only in fonts designed specifically
for the LaserWriter [8.2.1].

8. Characters shaded in the figure aren't generated directly from the
keyboard. Instead they're typed as two-character combinations, a
diacritical (accent) mark followed by the letter it is combined with.
The Toolbox automatically converts such two-character combinations
into the corresponding single accented characters.

~li:'.11~--------As-· _se_m_._h_ly-:La_.·_n_·guage_._. __ ._1_1Uo __ •_,_•1-~tio_·_n_. ________________ _

Assembly language .constants:

Name

Command Mark
CheckMark
Diamond Mark
AppleMark

Value

$11
$12
$13
$14

Meaning

Character code of command mark
Character code of check marl<
Character code of diamond mark
Character code of Applemar~

407 (8.1.2] Character Strings

8.1.2 Character Strings

~111~1-------n-~_mu_ .. _·~-~o_n_s_'·--..... ~-------------------------
type
· StringPtr = ".$.tr25$;
:StrJngf(andt~· = .. -str:tng:p;tr;· ·

f11nct1cm NewStrintl
(Qld-SttrO.g : Str255)

:. String Handle;

function Get~.tri ng· ·
($.tringUl : INTEGER)

·:··.Stri'n.gHand1e; ·

procedure ·GetlndString

{Pointer to a string}
{Handle to a string}

{String to be copied}
{Handle to copy}

{Resource ID of desired string}
{Handle to string in memory}

(var theStrfng : Str255; {Returns requested string}
string~istlD · : INTEGER; {Resource ID of string list}
stringlodex IN.IEGER); {lnde-x of string within list}

prQcedure SetString
{theStrln.g : .StdngHandle; {Handle to be setl
setTo . : Str255); {String to set it to}

~~~iiiiil==:j.---------N-o_te_s ____________________________________ __ 

1. StringPtr and StringHandle are a pointer and a handle to a string, respec
tively . 

.2. NewString allocates heap space for a new, relocatable copy of a given 
string and returns a handle to the copy. 

3. GetString gets a string from a resource file, reads it into memory if 
necessmy, and returns a handle to it. 

4. string ID is the resource ID of the desired string; its resource type is 'STR ' 
[8.4.2). 

S. GetlndString reads a string from a string list stored in a resource file and 
returns a copy of it in the variable parameter theString. 

6. stringlistlD is the resource ID of the string list; its resource type is 'STR#' 
[8.4.31. string Index is the index of the desired string within the list. 

7. If the specified string list doesn't exist or the index is out of range, 
the empty string is returned. 



408 Text 

8. GetlndString is part of the Pascal interface to the Toolbox, not part of 
the Toolbox itself. It doesn't reside in ROM and can't be called from 
assembly language via the trap mechanism. 

9. SetString makes a copy of a given string and sets an existing string 
handle to point to the copy. 

I n=::J I Assembly Language Information 
----iai]lt-------·-·: 

Trap macros: 

(Pascall 
Routine name 

NewString 
GetString 
SetString 

8.1.3 Key Codes 

(Assembly) 
Trap macro 

_NewString 
_GetString 
_setString 

Trap word 

$A906 
$A9BA 
$A907 

~~iii~~1---------N-o-te_s ______________________________ , ______ ___ 

1. Key codes stand for physical keys on the Macintosh keyboard or 
keypad, not the characters the keys represent. They're independent 
of any particular keyboard configuration and are not affected by 
modifier keys . 

.2. The modifier keys (Shift, Caps Lock, Option, Command) have no key 
codes, since they don't generate characters by themselves. 



409 [8.1.3] Key Codes 

Original keyboard 

Original keypad 

Key codes 

$33 



410 Text 

[:][1][1][~] s~s ~Is~ ~I s~s ~I s;A ~I s~c ~I s~g ~~ s~D ~~~ s~ ~ ~~; 
[:i] ~c ~~ s~D ~~ ~E ~~ ~F ~CT] s~o ~~ s~o ~CT] s: ~I s~a ~I '£1][1] 

$39 fSoOllfi011l~f$o3l~fi04llfli26lfFslf$25llf$29l!ls27] $24 

Capsloclc lWJIWJIWJIWJIWJlJ!JHWJIWJlWJIWJLdJ Return 

~ $38 ~~l[Wl~lfSOellfiOil!IFollfm]rmllfSilfml~fi401 
~ Shift ~lW!WlWlWIWIWWJlWlWJILLll~W 

I op':on ~~ ':; ~I S3l ~~ s~ ~~] : 2 ~I $4: ~ 
Macintosh Plus keyboard 

Macintosh Plus keypad 



411 (8.1.4) Standard Keyboard Layout 

8.1.4 Standard Keyboard Layout 

Standard keyboard layout (unshifted) 

Key Caps 

Standard keyboard layout (with Shift) 



412 Text 

~D Key Caps 

:::: o ~ t; v I ,.., .u. < > .:.. :::: 

illl!llll!llll;!;!1!•i•i!i!i!i!l•!•!•i•i•!1i•im:1:mm1!1!1!;!;!;!1i1i•i•i•i1!1i;i•i1!;1~;!;i1i1i~;!1!;i;!:i;!;11m!illlll~~~ 
Standard keyboard layout (with Option) 

Standard keyboard layout (with Option-Shift) 



413 [8.1.4) Standard Keyboard Layout 

Macintosh Plus keyboard layout (unshifted) 

Macintosh Plus keyboard layout (with Shift) 



414 Text 

Macintosh Plus keyboard layout (with Option) 

Key Caps 

Macintosh Plus keyboard layout (with Option-Shift) 



415 (8.2.1) Standard Font Numbers 

~~Hiiil-'=..,_ ______ N_o_t_e_s ____________________________________ __ 

8.2 Fonts 

1. The keyboard layouts shown are for the standard (American) keyboard 
configuration. 

2. Keys left blank in the diagrams have no character assignment for that 
modifier combination. 

3. Th e Caps Lock key has the same effect as Shift, but for letter keys 
only; it has nu effect on other keys. 

8.2.1 Standard Font Numbers 

Definitions 

con st 
System Font O; 
Appl Font = 1; 
NewYork = 2; 
Geneva = 3· 

' 
Monaco = 4; 
Venice = 5; 
London = 6; 
Athens = 7; 
San Fran = 8; 
Toronto = 9; 
Cairo = 11; 
LosAngeles = 12; 

Times = 20; 
Helvetica = 21; 
Courier = 22; 
Symbol = 23; 
Taliesin = 24; 



416 Text 

~~iiiR~..,_ ______ N_o_t_e_s __________________________________ ___ 

1. A font number identifies a typeface, independent of size or style. 

2. Font numbers must not exceed 255. 

3. To get the resource ID of the font for a given typeface and size, 
multiply the font number by 128 and add the type size in points. 

4. Font number 0 refers to the system font, used for menu items, 
window titles, and other text displayed on the screen by the system. 

5. The system font is named Chicago, and is always dii>played in a 
standard size of 12 points. The system font cannot be changed. 

6. The assembly-language global variable ROMFontO holds a handle to the 
font record [8.2.2) for the system font. 

7. Font number 1 refers to the application font, which is always some 
other existing typeface with a (true) font number of itB own. There 
is no actual typeface with this number. 

8. By default, the application font is set to Geneva each time a new 
application program is started up. The font number of this default 
application font is kept in the global variable SPFont. 

9. To change the application font in assembly langua1~e, store the 
desired font number into the global variable ApFontlD. There is no 
straightfmward way to change this setting in Pascal. 

10. The Times, Helvetica, Courier, and Symbol typefaces (font numbers 20-23) 
are designed specifically for use with the LaserWriter piinter. 

11. Font numbers from 2 to 127 are reseived for Apple's own typefaces, 
128 to 255 for those formally registered with Apple by licensed Macin
tosh software developers. 

12. Font numbers on the Macintosh Plus are called family numbers, and 
can range from -32768 to +32767. Fonts belonging to a given typeface 
are identified by means of a family record of resource type 'FOND' 
("font definition"), rather than by the numberinE' convention 
described in note 3, above. However, since the original Toolbox 
recognizes font numbers between 0 and 255 only, all typefaces within 
this range must still follow the old numbering convention for com
patibility. Typefaces outside the original range are unavailable under 
the old Toolbox. 



417 (8.2.1] Standard Font Numbers 

ICJI Assembly Language Information -1&:1..,___ ____ _ 
Standard font numbers: 

Name 

Sys Font 
Appl Font 
NewYork 
Geneva 
Monaco 
Venice 
London 
Athens 
San Fran 
Toronto 
Cairo 
LosAngeles 

Times 
Helvetica 
Courier 
Symbol 
Taliesin 

Assembly-language global variables: 

Name 

ROMFontO 
ApFontlD 

SPFont 

Address 

$980 
$984 

$204 

Value 

0 
1 
2 
3 
4 

5 
6 
7 
8 
9 

11 
12 

20 
21 
22 
23 
24 

Meaning 

Handle to system font 
True font number of current 

application font 
True font number of default 

application font 



418 Text 

8.2.2 Font Records 

~ ....... ~--------o-e_fini __ ·n-·o_n_s ____________________________ • ______ _ 

type 
FontRecord = record 

canst 

fontType : INTEGER; {Font type (proportional or fixed-width)} 
firstChar : INTEGER; {Character code of first defined charact~rl 
lastChar : INTEGER; {Character code of last defined character} 
wldMax : INTEGER; {Maximum character width in pixel:sl 
kernMax : INTEGER; {Maximum backward kern in pixels} 
nDescent : INTEGER; {Negative of descent in pixels} 
fRectWidth : INTEGER; {Width of font rectangle in pixels} 
fRectHeight : INTEGER; {Height of font rectangle in pixels} 
owTLoc : INTEGER; {Offset to o.wlable. in words} 
ascent : INTEGER; {Ascent in pixels] 
descent : INTEGER; {Descent in pixels} 
leading : INTEGER;_ {Leading in pixels} 
rowWords : INTEGE8; {Row width of bitlmage in words} 

{bitlmage : array [1 .. fowWords; LfRectHeight] of INTEGER;} 
{Font image [8.2.3]} 

{locTable : array [firstChar .. lastChar+2] of INTEGER; l 
{Locatjoll table [8.2.3]l 

{owTable : array [firstChar.~lastchar+2] of INTEGER;} 
{Offset/width table [8.2.3]} 

{width Tab : arra.y [firstCha.r .. l~stChar+2l of INTEGER;} 
{Character-width table (optional)} 

{heightTab : arra.y [firstChar . .JastChar+2] of INTEGER} 
{Image-height table {optional)} 

end; 

PropFont · = $9000; 
PrpFntH = $9001; 
PrpFntW = $9002; 
PrpFntHW = $9003; 

{font type for proportional font} 
{ Propo.rtional font with height table [8.2.3]] 
{ Pr.oportional font with width table [8.2.3)} 
{ Proportional font with height and width tables [8.2.3)} 

Fixed Font 
FxdFntH 
FxdFntW 
FxdFntHW 

FontWid 

= $8000; 
= $8001; 
= $8002; 
= $8003; 

= $ACBO; 

{Font type for fixed-width font} 
{ Fixed-width font with height table [8.2.3]} 
{ Fixed-width font with width table [8.2.3)} 
[ Fixed~width font with height and width tables [8.2.3]} 

{Font type for font width table} 



419 [8.2.2] Font Records 

~~iii~==~------N __ o_te_s ____________________________________ __ 

1. A font record defines the character images and other characteristics 
of a single font. 

2. Font records are used internally by the Toolbox; there's normally no 
need for an application program to refer to them directly. 

3. Font records are stored in resource files under resource types 'FONT' 
and 'NFNT' [8.4.5] and read into the heap with GetResource [6.3.1]. 

4. fontType identifies the font as a proportional font (character widths 
vary), a fixed-width font (all characters the same width), or a font 
width table [8.4.6]. 

5. A font width table has no rowWords, bitlmage, and locTable fields. 

8. firstChar and lastChar are the character codes of the first and last 
characters defined in this font. 

7. fRectWidth and fRectHeight give the dimensions of the font rectangle. If 
all the individual character images in the font are superimposed with 
their character origins coinciding, the font rectangle is the smallest 
rectangle enclosing them all. (In older versions of the Toolbox inter
face, the fRectWidth and fRectHeight fields are named fRectMax and 
ch Height.} 

8. widMax is the maximum character width for any single character in 
the font; fRectWidth is the width of the font rectangle, enclosing all the 
individual image widths. 

9. ascent and descent define the font's vertical extent relative to the 
baseline. Their sum gives the overall font height, fRectHeight. 

10. nDescent should always equal the negative of descent. 

11. kernMax is the maximum negative (leftward) kem of any character in 
the font, and should never be greater than 0. This value determines 
the position of the character origin within the font rectangle. 

12. leading is the amount of extra vertical space in pixels between lines 
of text, from the descent line of one to the ascent line of the next. 

13. The leading value given in the font record is merely recommended, 
and is not binding on the application program. Some parts of the 
Toolbox-notably the TextEdit routines for cut-and-paste editing 
(Volume Two, Chapter 5)-will use this value by default, but you can 
ovenide it to produce whatever vertical spacing you like. 

14. The remaining fields (owTloc, rowWords, bitlmage, locTable, owTable, widthTab, 
heightTab) are discussed in (8.2.3]. 

15. Older and more recent versions of the assembly-language Toolbox 
interface define different names for the field offsets within a font 
record. The table below shows both sets of names. 



420 Text 

~ldl...._ -----·----Assembly Language Information 

Field offsets in a font record: 
(Pascal) (Assembly) 
Field name Offset name 

fontType fFontType 
firstChar ffirstChar 
lastChar flastChar 
widMax fWidMax 
kernMax fKernMax 
fl Descent fNDescent 
fRectWidth fFRectWidth 
fRectHeight fFRectHeight 
owTLoc fOWTLoc 
ascent fAscent 
descent f Descent 
leading fleadlng 
rowWords fRowWords 

Assembly-language .constants: 

Name 

Prop Font 
PrpfntH 
PrpFntW 
PrpfntHW 

Fixed Font 
FxdFntH 
FxdFntW 
FxdFntHW 

FontWid 

Va,lue 

$9000 
$9001 
$9002 
$9003 

$8000 
$8001 
$8002 
$8003 

$ACBO 

Old Offset 
offset nam~ in bytes 

fFormat 0 
fMinChar 2 
fMaxChar 4 
fMaxWd 6 

fBBOX ·a 
fBBOY 10 
fBBDX 12 
fBBDY 14 
flength 16 
fAscent 18 
fDescent 20 
fleading 22 
fRaster ?4 

Meaning 

J,4'ont type for proportional font 
PrOportional font With hoighttable 
Proportional font with width table 
Proportional font with height and 

width tables 
Font type for fixed-width font 
Fixed-width font With h•3ight~ble 
Fixed-width font with width table 
Fixed-width font with height and 

width tables 
Font type for font width table 



421 [8.2.3) The Font Image 

8.2.3 The Font Image 

T 
... -........................... ·-·····················-·······-·······-·····-·····-···················· .................................. -........................... -....... . 

11 ·==· 1·=-·1.1.-·1 •• 1••1.11·)····· • • •••••• •• .... .... ••1• I• 
Font •••• •••••••• •• 1111 ••- •• • · 11-
height • •••1• 11• m 1• ••• 0 

..... 11 
i ., iii ·111i flil I i1 I •· •i J_ . ... . -·. .... .. .d •• 

................ ·-·-······--·····-·····--······-··-······-·····-·-······-···················-.. ··-····-·························-·······-··-·-

Missing characters 

!\ 
18&24'#f7o&'()*t-,-IDT234S618!1;<=> 

Row width 

)Miiil'''1.rQrreeru~w~t'.i1.«»..J111£1l!-'""i=i-:;:,,":f 

Font image 

Location table entryi o Location table 
entry for P 

/ • • •••• • •••• •• ••• •••• • ••• ••• •••• • •••• ••• •••• • • ••• ••• • •••••• • •••••• • ••• • ••••• • ••• • •••• • ••• • • •••• •• m 
Image Width 

Image Width 

Missing 
characters 



422 Text 

Character 
rectangle 

Character 
origin 

• -- Font rectangle 

------+--- Baseline 

r.+n I l.'._ Character kem = -1 

Character offset = + 1 -1-maxKern = -2 

Character offset 

---l~~liiil~---------N-o_i_e_s ____________________________ ~-------
1. The font image, location table, and offset/width table for a font are 

the last three required fields of its font record (8.2.2). There are also 
two more optional fields, the character-width and image-height 
tables. These are all variable-length structures and can't be included 
(except as comments) in a valid Pascal type declaration for the font 
record. They're accessible in assembly language, or in Pascal via 
pointer manipulation with POINTER, ORD, and@ (Chapter-'~). 

2. The font image (bitlmage) is a bit image containing all the font's 
character images arranged consecutively in a single horizontal 
"strike." 

3. The row width of the font image (rowWords) is given in words, not in 
bytes as in a QuickDraw bit map (4.2.1]. 

4. Every font has a missing symbol to be used for drawing characters 
that are missing from the font. The missing symbol is always the last 
character in the font image, following the last defined character. 

5. A character is considered missing if its character code is less than 
firstChar or greater than lastChar (8.2.2), or if its enuy in the offset/width 
table is -1. 

6. The ASCII null character (character code $00), horizontal tab ($09), and 
carriage return ($00) must not be missing; they must be defined in 
the font image, even if only with zero image width. The tab character, 
in particular, is commonly defined to be equivalent to an ordinary 
space. 



423 [8.2.3] The Font Image 

7. The location table (locTable) gives the horizontal offset, in pixels, from 
the beginning of the font image to the beginning of each character 
image. 

8. A character's image width is found by subtracting its location table 
entry from that of the next character. The entiy for a missing charac
ter should be the same as that of the next defined character in the 
font. 

9. The next-to-last entry in the location table, locTable[lastChar+1], gives the 
location of the missing symbol within the font image. The last entry, 
locTable[lastChar+2], contains the total width of the font image (strike) in 
pixels. 

10. The offset/width table (owTable) is located within the font record by 
means of the owTLoc field, which gives the offset in words from itself 
to the beginning of the table. 

11. The low-order byte of an offset/width table entry gives the character 
width in pixels. 

12. The high-order byte gives the character offset, the difference between 
this character's leftward kem and maxKern. This detennines the posi
tion of the character rectangle relative to the overall font rectangle, 
and thus locates the character origin (QuickDraw pen position) within 
the character image. 

13. Missing characters have an offset/width table entry of -1. 

14. The next-to-last entry in the offset/width table, owTable[lastChar+1], gives 
the offset and width of the font's missing symbol. The last entry, 
owTable[lastChar+2], is always -1. 

15. The character-width and image-height tables are optional fields used 
only by the Macintosh Plus version of the Toolbox. The fontType field 
of the font record (8.2.2] tells whether either or both of these tables 
are present. 

16. Both tables are indexed from firstChar to lastChar+2, the same as the 
location and offset/width tables. 

17. The character-width table (widthTab) gives the width of each character 
in fixed-point form, for use with the new fractional character width 
feature (8.2.8]. Although nominally declared as an mray of integers, 
this table actually contains fixed-point values with an 8-bit integer 
part and an 8-bit fraction. 

18. For a font with no character-width table, the integer character widths 
given in the offset/width table are used instead. Such a font is still 
usable, but character positioning is less precise, particularly on 
high-resolution devices such as the LaserWriter printer. 



424 Text 

19. The image-height table (heightTab) gives the true height of each charac
ter image in pixels, for faster text drawing. The first byte of each entry 
is the number of empty rows between the font's overall ascent line 
and the first pixel of the character image; the second is the number 
of nonempty rows in the image. 

20. Most fonts don't include an image-height table, since the Toolbox 
can construct one for itself from the information in th•~ font image 
and location table. 

8.2.4 Inidalizing the Toolbox for Fonts 

-1•1~ ___ ne_~~~-·~---------------~---
procadura lnltfo_nts:; 

~~iiiiR·~·~-------N __ o_te_s ______________________________ • ______ __ 

1. lnitFonts must be called before any other operation involving fonts 
directly (such as drawing or measuring text [8.3.3, 8.3.4]) or indirectly 
(such as displaying windows, menus, and so forth). 

2. It initializes the Toolbox's font-related data structures, reads the 
system font into memory if necessary, and initializes the application 
font to its default setting [8.2.1]. 

3. lnitFonts should be called after lnitGraf (4.3.1] and before lnitWindows 
[11:3.2.1]. 

~~~1-------As_se __ mb __ ly_/_••_n_.,.._ .. -·~=~e:~,1Dfu~·---~~"'-•_1iD_n~~--_.. .......... __ ~ 
Trap 11UlCfO.:'
(Pascal)
_Routine name

lnitfonts

&\ssernbM
~P~ ..
JfiitFonts

_ __.!.. ':;,.: •••. - : __ , _ _, ··- ~ _:~:.._ • ...___: ... - • ...: •• ; .•• : .• ~L---.·~---.... :.. ... -~;

$.ASfE · i

1

425 (8.2.5] Access to Fonts

8.2.5 Access to Fonts

~~1~-------n_e_fini __ ·n_o_n_s ____________________________ ___

procedure GetFontName
(fontNumber : INTEGER;
var name : Str255);

procedure GetFNum

(Font number}
{Returns name of typeface}

(name : Str255; {Name of typeface}
var fontNumber : INTEGER); {Returns font number}

function RealFont
(fontNumber : INTEGER:
pointSize : INTEGER)
: BOOLEAN;

(Desired font number}
(Desired point size}
(Does font exist?}

~ijiiiiR·===l.__ ______ N_o_t_e_s __________________________________ ___

1. GetFontName returns the name of the typeface with a given font number;
GetFNum returns the font number of the face with a given name.

2. If no such typeface exists, GetFontName returns the empty string and
GetFNum returns 0.

3. RealFont returns a Boolean result telling whether a 'FONT' resource
exists for a given combination of typeface (font number) and point
size. If this result is FALSE, requests to draw or measure text in that
face and size will be carried out by substituting (and possibly scaling)
a suitable existing font; see (8.2.8] and (8.3.1, note 4].

4. The trap macro for GetFontName is spelled _GetFName.

IOI Assembly Language Information -llLJ---------Trap macros:

(Pascal)
Routine name

GetFontName
GetFNum
Real Font

(Assembly)
Trap macro

_GetFName
_GetFNum
_Real Font

Trap word

$A8FF
$A900
$A902

426 Text

8 • .2.6 Reques1ing Font Information

I Defininons

--1:--------------------------~-
p r o c e du re GetFontlnfo

(y_ar thelnfo : Fontinfo); {Returns metric information about current texti:font}

type
Fontinfo = record

ascent : INTEGER;
descent : INTEGER;
WidMax : INTEGER;
leading : INTEGER

end;

{Ascent in pixels}
{Descent in pixels}
{Maximum c,haracter width in. pixels}
{Leading in pixels}

procedure FontMetrics
(var the Info : FMetricRec); {Returns metric information about current text font}

type
FMetricRec = record

ascent : Fixed; {Ascent in fractional points}
descent : Fixed; {De·sce·nt in fractional points}
leading : Fixed; {leading in fractional points}
widMax : Fixed; {Maximum character width in ·fractional poi1ntsl
wTabHandle : Handle {Handle to global width table}

end;

~~lii~·~---------N_o_i_e_s ____________________________________ __

1. These routines retum information on the metric characteristics of a
font.

2. The information returned is for the font identified by the txfont and
txSize fields (8.3.1] of the current graphics port, and is adjusted for the
character style specified in the txface field.

3. Getfontlnfo returns the metrics in integer form; FontMetrics gives them in
more precise fixed-point form.

4. The metric information returned by FontMetrics is expressed in device
independent printer's points, 72 points to the inch.

5. FontMetrics is available only on the Macintosh Plus.

6. The wTabHandle field of the font metric record is a handle to the font's
global width table, which holds the individual fixed-point character

427 [8.2.6] Requesting Font Information

widths and other low-level data about the font. The global width table
is of interest mainly to the Toolbox itself; if you can't live without
knowing the contents of this enthralling data structure, see the
Macintosh Plus supplement (Volume M of Inside Macintosh.

7. In assembly language, the global variable WidthTabHandle holds a handle
to the global width table for the current font. This variable exists only
on the Macintosh Plus.

8. Notice that Fontinfo and FMetricRec have their widMax and leading fields in
opposite orders, just to see if you're paying attention.

IOI AssemblyLangUage lllformation
-u:IJ-----~---

Trap macros:
(Pascal)
Routine name

GetFontlnfo
FontMetrics

(Assembly)
Trap macro

_GetFontlnf o
_FontMetrics

Field offsets in a font 'imormation record:

(Pascal) (Assembly)
Field ilame Offset name

ascent
descent
widMmc
leading

ascent
descent
widMax ·
leading

Field offsets. in a font metric record:
(Pascal) (Assembly)
Field name OftSet name

ascent
descent
leading
widMax
wTabHandle

fmAscerit
fmQescent
fmLeading
fmWidMax
fmVfrabHandle

Trap word

$A88B
$A835

Offset in bytes

0
2
4
6

Offset in:bytes

o·
4
8

12
16

Assembly-language global variable (Macintosh Plus· only):

Name Address

WidthTabHandle $82A

Meaning

Handle to global width table for
cwrent font

428 Text

8.2. 7 Locking a Font

f Definitions

--1 :---------------------------
p r o c e du re SetFontlock

(lock : BOOLEAN); {lock or unlock?}

~~iii9·::::;::3~---N-o_t_es _________________ , ___ __

1. SetFontlock locks or unlocks a font in the heap.

2. A locked font can't be moved or purged.

3. The font affected is the last one used in any text-drawing opera
tion (8.3.3].

4. Fonts are normally unlocked by default.

IOI Assembly Language Information
-I~---------·-

Trap macro:
(Pascal)
Routine name

SetFontlock

8.2.8 Nuts and Bolts

f Definitions

(Assembly)
Trap macro

_Setfontlock

Trap word

$A903

1 :----------------------------
p r o c e du re SetFractEnable

(useFracts: BOOLEAN); {Use fractional character widths?}

procedure SetFScaleDisable
(noScaling : BOOLEAN); (Turn off font scaling?}

429 (8.2.8) Nuts and Bolts

~~iiil~::::::t1--------N-o_t_es--------------------------------------
1. SetFractEnable controls the use of fractional character widths for draw

ing text.

2. When fractional widths are enabled, all character placements will be
rounded to the nearest integer at the available resolution of the
device they're drawn on. This results in more accurate text position
ing on high-resolution devices such as the LaserWriter printer.

3. If fractional widths are disabled or are unavailable for a particular
font, the integer widths given in the font's offset/width table (8.2.3]
will be used instead.

4. Fractional character widths are available only on the Macintosh Plus;
the original Toolbox always uses integer widths.

G. SetfractEnable is part of the Pascal interface to the Toolbox, not part
of the Toolbox itself. It doesn't reside in ROM and can't be called
from assembly language via the trap mechanism.

8. To control the use of fractional character widths in assembly
language, just set the byte-length global flag FractEnable for yourself:
$FF (TRUE) to enable fractional widths, $00 (FALSE) to disable.

7. BEWARE: The FractEnable flag exists only on the Macintosh Plus.
Attempting to set it on earlier models will destroy other, unrelated
information in the system heap.

8. SetFScaleDisable controls the method of font substitution to be used
when a requested font is unavailable.

9. When font scaling is enabled, an existing font in the requested
typeface will be enlarged or reduced to the specified size. If possible,
an even multiple or submultiple (such as double or half) of the
requested size will be used. If no such multiple is available, some
other size will be used instead, producing ugly or unreadable results.

10. When font scaling is disabled on the Macintosh Plus, the next
smaller available size of the requested typeface will be used, but with
the characters spaced farther apart, according to the character widths
of the size requested. The results are faster and more readable, and
more closely approximate the proper character placements and line
breaks for the requested type size.

11. When font scaling is disabled under the original Toolbox, the sub
stituted font may be either larger or smaller than the size requested.
In either case, the characters will be positioned according to their
own character widths rather than those of the requested size.

12. Font scaling is controlled by the byte-length global flag FScaleDisable:
$00 (FALSE) for scaling, $FF ITRUE) for no scaling.

430 Text

13. Scaling is initially enabled by default.

14. On the Macintosh Plus, always use the Toolbox routine SutFScaleDisable
to tum font scaling on or off; merely setting the global flag is not
sufficient. On earlier models, you can simply set the flag for yourself
in assembly language, but there is no straightfmward way to set it
from Pascal: the SetFScaleDisable routine is available only on the Macin
tosh Plus.

IOI Assembly L;inguage Information
-II[]-----------

Trap macro:
(Pascal)
Routine name

SetFScaleDisable

(Assembly)
Trap macro

_s"etFScaleDisable

Trap word

$A884
I

Assembly-language global variables:

Name

FractEnable

FScaleDisable

Address

$BF4

$A63

Meaning

l,Jse fractional characterwidths?
(1 byte, Macintosh Plus only)

Tum off font scaling? 11 byte)

431 (8.3.1] QuickDraw Text Characteristics

8.3 Text and QuickDraw

8.3.1 QuickDraw Text Characteristics

~-1------D-e~_··~_··-----------
type

Graf Port= record
device : INTEGER; _{Device code (see notes 10-12)}
... '
. txFont : INTEGER';·
txFace : Style;
txMode : INTEGER;
txSize : INT~GE6;
spExtra : Fixed~'

end·;

{Font number of typeface}
{Type style}
{Transfer mode for text}
{Jype,. size 'n points}
[Extra·space between words, in pixels}

Styleltem =.(Bold, ltalic1 Un~~rJi.oe, Outlin~. Shadow,. Condense, Extend);

Style, ::;: ;set of Sty,le1te111,;

~~iiiR~..,_ _______ N_o_te_s ____________________________________ __

1. These fields of the Graf Port record [4.2.2) pertain to the drawing of text
in a given graphics port.

2. txFont is a font number identifying the typeface to be used; 0 desig
nates the system font.

3. txSize is the type size in points; 0 specifies the standard size of 12

points.

4. If no font exists for the requested combination of typeface and size,
another size of the same face will be substituted. If the requested
typeface isn't available in any size, the application font [8.2.1] will be
used; if the application font isn't available in any size, the system
font [8.2.1] will be used. If font scaling [8.2.8] is enabled, the sub
stituted font will be scaled to the size requested.

5. txFace identifies the text style as a Pascal set of type Style. The set can
include any combination of individual style properties of type
Styleltem.

432 Text

8. The assembly-language constants BoldBit, ltalicBit, etc. (below) are bit
numbers within the byte representing a Style set, for use with the
BTST, BSET, BCLR, and BCHG instructions.

7. txMode is the transfer mode for text in this graphics port, and should
be one of the eight source transfer modes (5.1.3].

8. Under the original Toolbox, only the SrcOr, SrcXOr, and SrcBic modes
can be used for text drawing. The Macintosh Plus supports all eight
modes.

9. spExtra is a fixed-point number (2.3.1] consisting of a 16-bit integer
part and a 16-bit fraction. It specifies the amount of extra space, in
pixels, to be added to each space character for text justification.

10. device identifies the output device on which text will be drawn. This
information is used in choosing the appropriate fonts for use on the
device.

11. The high-order byte of the device code is the reference number of
the device driver, which is always negative; the low-order byte is a
device-dependent modifier controlling the way the device is to be
used (for example, the dot resolution on a printer with a choice of
resolutions).

12. A device code of 0 denotes the Macintosh screen.

13. A newly created graphics port is initialized to draw text on the
screen, using the system font at the standard size of 12 points, with
a transfer mode of SrcOr (5.1.3], plain character style, and no extra
width for spaces.

433 [8.3.1) QuickDraw Text Characteristics

-lc:=JI Assembly Language Information
lrl----------

Field offsets in a graphics port:

(Pascall (Assembly)
Field name Offset name

device device
txFont txFont
txFace txFace
txMode txMode
txSize txSize
spExtra spExtra

Bit numbers in a Style byte:

Name Bit Number

BoldBit 0
ltalicBit 1
UlineBit 2
OutlineBit 3

ShadowBit 4
CondenseBit 5
Extend Bit 6

Offset in bytes

0
68
70
72
74
76

Meaning

Bold
Italic
Underline
Outline
Shadow
Condense
Extend

434 Text

8.3.2 Setting Text Characteristics

---111111---------n-e_fi_n_iu-·o~ns--------------------------~---
procedure GrafDevice

(deviceCode : INTEGER);

procedure TextFont
(fontNumber : INJEGER);,

procedure TextSize
(pointSize : INTEGER);

procedure Textf ace,
{typestyle ; Style);

procedure TextMode
{mode.: INTEGER};

procedure SpaceExtra
(extraSpace .: Fixed);

{D~vice code [8.3.1] l

{Font nqmber of-desired typeface [8.2!~ 1]}

,.

Hype size Tn p·o·ints}

'{Type. :style [8.3.1]}

:{Tran"sfer mode for text [5. t.3]}

{Extr~spa_ce betweenwordstin pi;cels [2.3.1)}

---l~iiis===:31--------N-o_t_e_s ____________________________ , ______ ___

1. These routines set the text characteristics of the current graphics port
(8.3.1]. All subsequent text will be drawn with the specified charac
teristics.

2. If the point size specified to TextSize isn't available in the current
typeface, another size will be substituted (and possibly scaled) to
match; see (8.2.8] and (8.3.1, note 4].

3. mode should be one of the eight source transfer modes [5.1.3]. (Under
the orignal Toolbox, it must be one of the three modes SrcOr, SrcXOr, or
SrcBic.)

4. extraSpace is a fixed-point number (2.3.1] consisting of a 16-bit integer
part and a 16-bit fraction, specifying the amount of extra space to be
added between words.

5. To obtain the proper value of extraSpace for a line of justified text, use
FixRatio (2.3.2] to divide the excess line width in pixels by the number
of spaces in the line.

435 [8.3.3] Drawing Text

ICJI Assembly Language Information
-f l[Llt--------

Trap macros:

(Pascal)
Routine name

GrafDevice
TextFont
TextSize
TextFace
TextMode
SpaceExtra

8.3.3 Drawing Text

Definitions

procedure DrawChar
(theChar : CHAR);

procedure DrawStri ng
(theString : Str255);

procedure DrawText
(theText : Ptr;
firstChar : INTEGER;
charCount : INTEG.ER);

(Assembly)
Trap macro

_GrafDevice
_TextFont
_TextSize
_TextFace
_TextMode
_SpaceExtra

Trap word

$A872
$A887
$A88A
$A888

$A889
$A88E

{Character to be drawn}

{String to be drawn}

{Pointer to text to be drawn}
{Index of first character within text}
{Number of characters to be drawn}

1. These routines draw text in the current graphics port, using the port's
current typeface, size, style, and other text characteristics (8.3.1).

2. Each character is drawn with its character origin at the current pen
position; the pen is then advanced to the right by the character width.

3. Characters not defined in the port's current font are replaced with
the font's missing symbol.

4. Space characters include any extra space called for by the port's
spExtra field (8.3.1).

436 Text

5. ASCII control characters such as carnage return, line feed, tab, and
backspace have no special meaning; if these characters are to be used
for formatting, their effects must be simulated by explicitly moving the
pen with Move and MoveTo [5.2.4].

6. The pen is left positioned beyond the last character drawn, ready for
the next drawing operation.

11. 11--------As __ se ___ m_h_JY __ '_.,_"_gua, ___ ~_g_e_-_'n_i_p•pm-· _a_n_o_n ________________ __

Trap macros:
(Pa.Seal):

Routine ·name _

DrawChar
Drawstring
Draw Text

8.3.4 Measuring Text

.. lAs.$011lbM
_Trap macro

.J>rawChar
_Drawstring
..:.orawText

Trap word

$A8tl3
$A884
$ASB5

~~iiiiiiiiiiiii l~--------n-e_· fi-n--in-·o_n_s __________________________________ ___

function CharWidfh
(theChar : CHAR)

: INTEGER;

function. StringWi_dth
(1heStrlng : Str255)

: INT~GER;

function TextWidth
(theText : Ptr;
firstch·ar : INTEGER;
charCou.nl : INTEGER)
: INTEGER;

procedure MeasureText
(charCount : INTEGER;
theText : Ptr;,
widthTable : Ptr);

{Character to be .measu redJ
{\Vtdth of character}

{String to be measured}
{Width of string}

{Pointer to text to be measuredJ
(Index of first character within''te.Xt}
{Number of characters to be measured}
{Wid.th of text} ·

{Number of characters to be mea$ured}
{Pointer to text to be measured}
{Pointer to table of text widths'}

437 (8.3.4) Measuring Text

~~iiii~~.._ ______ N_o_t_e_s __________________________________ __

1. These routines measure the width of the specified text without
drawing it.

2. The result is the distance in pixels that the pen would be advanced
if the text were drawn in the current graphics port, using the port's
current typeface, size, style, and other text characteristics [8.3.1].

3. Characters not defined in the port's cwrent font are considered to
have the same width as the font's missing symbol.

4. Space characters include any extra space called for by the port's
spExtra field [8.3.1).

G. ASCII control characters such as carnage return, line feed, tab, and
backspace have no special meaning, but are just treated as ordinaiy
characters.

6. The port's graphics pen is not moved from its previous position.

7. MeasureText measures the width of the first character in the desig
nated text, the first two characters, the first three, and so on up to
the specified character count. The results are equivalent to calling
TextWidth repeatedly for each text length from 1 to charCount.

8. This operation is particularly useful for finding line breaks in a text
passage to be displayed on the screen.

9. The widthTable parameter should point to an aJTay of type

array [O .. charCount] of INTEGER

Each element i of this aJTay will be filled with the width of the first
i characters of theText. (Element 0 will always contain the value 0.)

10. BEWARE: No type or range checking is performed. To avoid destroy
ing other information, make sure widthTable points to an aJTay of at
least charCount + 1 words.

11. MeasureText is available only on the Macintosh Plus.

438 Text

IOI Assembly L;anguag~: lnformadon
-11r1.....--.-------------

Trap macros:
(Pascal) <Assembly)
Routine.name Trap macro Trap word

CharWidth _CharWtdth $A88D
StringW.idth _String Width $A88C
TextWidth _TextWldth $A886
MeasureText _Measure.Text $A~7

8.4 Text-Related Resources

8.4.1 Resource Type 'TEXT'

ooooHooooooooooooHoooooooooHooOooooOooHHOOOOOOOOO•O•O•O••r•OOOOOHO•OOOOOOOOHOOOOO•H••HOOOOOO•••OHOOOOH••••••OOOO

• • •

... 1

Characters of text
(i ndef i ni te 1 ength)

··

A 'TEXT' resource does not begin with a length byte.

• • •

439 (8.4.2] Resource fype 'STR '

~~iiis===tt--------N-o_te_s __________________________________ ___

1. A resource of type 'TEXT' contains any number of characters of "raw''
text.

2. The resource data doesn't include a character count. The length of
the text can be found with SizeResource [6.4.3].

8.4.2 Resource Type 'STR '

• • •

Length of str;ng (0-255)
1

... r .. .

Characters of string
Ci ndefi ni te 1 ength)

·-··--·····-··-·········· r
• • •

The maximum length of a. 'STR 'resource is 255 characters.

~~iiiB=::31--------N-o_i_e_s ____________________________________ _

1. A resource of type 'STR ' contains a character string in internal Pascal
fonnat.

2. The space in 'STR ' is required.

3. The first byte of resource data gives the length of the string, which
cannot exceed 255 characters. The rest of the data consists of the
characters themselves.

440 Text

8.4.3 Resource Type 'STR#'

Number of strings (2 bytes)

Le119th of first string l··-··--··-···-·········-····-·······-···-···-····
1'••••nonnonHonnno•n•n•n••••••••n••n••••••••••n•••1••••••••••nonnonon•••n••••••••••••••••••••••••••••n••••

• • •
Characters of first string

(i ndef i ni te length)

... r .. .
• • •

• • •

Length of last str;ng
----------!••••••••••••n•••nn•••••nn•n•••n•••nn•••"••••••••n••

• • •

... r .. .

Characters of last string
(i ndefi ni te length)

····································-···········-·····-···r························-······················••H•••••••

• • •

• • •

• • •

• • •

Any number
of strings

441 [8.4.4) Resource 'fype 'INIT'

~~iii~·~.,.._ ______ N_o_i_e_s __________________________________ __

1. A resource of type 'STR#' contains a list of character strings.

2. The resource data consists of a 2-byte integer giving the number of
strings in the list, followed by the strings themselves in internal Pascal
format (1-byte character count, O to 255 characters), as described
under 'STA ' (8.4.2].

3. Use GetlndString [8.1.2] to retrieve individual strings from a resource of
this type.

8.4.4 Resource Type 'INIT'

I ···!··

• • •

Code of
initialization routine

(i ndef i ni te 1 ength)

... r
:

15 14 13 12 11 10 9 8 7 6 5 4 3 2

• • •

1 0

I I I I I I I 1111 I I I I 11
Command key I I I Option key _ _______,
Caps Lock key .
Shift key-------------------------'

Register 01 contains the fourth word of the system key map
which includes the state of the four modifier keys.

Modifier bits for configuration routines

442 Text

~~iii~·::::::1i--------N-o_te_s __________________________________ __

1. Resources of type 'INIT' contain system initialization routines.
Whenever the Macintosh system is started up (such as when the
power is turned on), all resources of this type found in the system
resource file are executed.

2. The resource data is simply the machine-language code of the
initialization routine. Its entiy point must be at the beginning.

3. The order in which 'INIT' resources are executed is unpredictable.

4. Versions 3.0 and later of the system resource file (System) contain a
special 'INIT' resource (ID 31) that searches the system folder on the
startup disk for files with a file type [7.3.1] of'INIT'. It then executes any
'INIT' resources that these files in tum contain. This allows a program
to define initialization routines of its own and have them executed at
system startup, without installing them in the system :resource file
itself

5. The 'INIT' resources with IDs 1 and 2 are used to install pointers to the
keyboard configuration routines into the system globals t'ey1Trans and
Key2Trans. These routines are then used by the low-level keyboard
driver to translate the user's keystrokes into corresponding charac
ters to be passed to the running program.

6. 'INIT' resource 1 installs the configuration routine for the keyboard,
resource 2 the one for the numeric keypad. These two routines are
separate even on the Macintosh Plus, which has the keypad physi
cally built into the keyboard unit.

7. The configuration routines must be written in assembly language,
since they accept their arguments and return their results directly
in the processor's registers.

8. On entiy to the configuration routine, register D2 contains the key
code [8.1.3] for the key to be translated. D1 contains the fourth word
of the system key map [11:2.6.1], which includes the state of the four
modifier keys (see figure). The routine can use this modifier informa
tion in any way it wishes.

9. The routine returns the character code corresponding to the given
key and modifiers in the low-order byte of register DO.

10. The routine should preserve the contents of all registers except DO.

443 [8.4.5) Resource Type 'FONT'

lDI Assembly Language Information
-1rn:1---------

Assembly~langu1;1ge global variables:

Name

Key1Trans
Key2Trans

Address

- $29E

~
Pointer to keyb()ard configl.lration routine

- Pointer to keypad configl.lration routine

8.4.5 Resource Type 'FONT'

~~iii~==~------N_o_i_e_s ____________________________________ __

1. A resource of type 'FONT' contains a complete font record [8.2.2],
including the variable-length fields bitlmage, locTable, and owTable [8.2.3].

2. The resource ID for a font consists of an 8-bit font number [8.2.1] iden
tifying the typeface, followed by a 7-bit point size. Thus the resource
ID is equal to the font number times 128, plus the point size.

a. For each typeface, the 'FONT' resource corresponding to a point size
of 0 is a dummy resource with no data, which exists solely to cany
the name of the typeface as its resource name. "Real" fonts with
nonzero point sizes have no resource name.

4. On the Macintosh Plus, fonts belonging to a typeface are identified by
means of a family record stored as a resource of type 'FOND' ("font
definition"). See Inside Macintosh, Volume IV, for the structure of a
family record.

5. For compatibility with older versions of the Toolbox, all typefaces with
font numbers between 0 and 255 must still follow the numbering and
naming conventions described in notes 2 and 3 above.

6. The Macintosh Plus Toolbox also recognizes font resources of type
'NFNT' ("non-menu font"), with the same structure shown here. The
sole purpose of'NFNT' is to provide an alternative form of font resource
that won't be included when you create a menu of available resources
of type 'FONT', using the Toolbox routines AddResMenu or lnsertResMenu
[11:4.3.3].

7. The original Toolbox ignores resources of types 'FOND' and 'NFNT'.

444 Text

. . .

. . .

. . .
I

f ontType (2 bytes)

fi rstChar (2 bytes)

1 astChar (2 bytes)

wi dMax (2 bytes)

kernMax (2 bytes)

nDescent (2 bytes)

fRect Width (2 bytes)

f RectHei ght (2 bytes)

owTl oc (2 bytes)

ascent (2 bytes)

descent (2 bytes)

leading (2 bytes)

rowWords (2 bytes)

bit Image

(indefinite 1 ength)

locTable

(i ndefi ni te 1 ength)

owTable

(1 ndefi nite 1 ength)

. . .

. . .

. . .
J

445 [8.4.6] Resource fype 'FWID'

Font number (9 bi ts) Point size (7 bi ts)
.l

Resource ID of a font

8.4.6 Resource Type 'FWIO'

• • •

I

fontType (2 bytes)

firstChar (2 bytes)

1 astChar (2 bytes)

wi dMax (2 bytes)

kernMax (2 bytes)

nDescent (2 bytes)

fRectWi dth (2 bytes)

fRectHei ght (2 bytes)

owTl oc (2 bytes)

ascent (2 bytes)

descent (2 bytes)

leading (2 bytes)

owTable

(i ndef i ni te 1 ength)

• • •

I

446 Text

---l~Aiii==1i--------N-o_te_s __________________________________ __
1. A resource of type 'FWID' contains a font width table.

2. The resource data consists of an abbreviated font record [8.2.2] with
no rowWords, bitlmage, and locTable fields [8.2.3].

3. The fontType field always contains the constant FontWid [8.2.;~].

4. The owTLoc field is always set to 4.

5. The resource ID for a font width table is the same as for the
corresponding font [8.4.5].

8. Font width tables are not used on the Macintosh Plus; all resources
of type 'FWID' are ignored.

8.4.7 Resource Type 'FRSV'

• • •

Number of fo.nts (2 bytes)

Resource ID of fi~st font (2 bytes)

Resource ID of 1 ~st font (2 bytes)

• • •
Any number
of fonts

---l~iii~~i--------N-o_i_es-------------------------------------
1. A resource of type 'FRSV' identifies one or more reseived fonts that

are needed by the Toolbox for proper operation.

2. The fonts are identified by resource ID, under resource type 'FONT'
[8.4.5].

3. There should be exactly one 'FRSV' resource in the system resource
file, with an ID of 1. Fonts designated by this resource must be present
in the system resource file for the Toolbox to function properly.

4. Apple's Font/DA Mover utility program examines 'FRSV' resource number
1 and will refuse to delete any of the designated fonts from the System
file.

APPENDIX

--[~------------------
Volume One
Toolbox Summary

Chapter .2 General Utilities

2.1 Elementary Data Structures

2.1.1 Strings and Procedures

type
Str255 = STRING[255];

ProcPtr = Ptr;

2.1.2 String Operations

function EqualString
(string1 : Str255;
stri ng2 : Str255;
caseCounts : BOOLEAN;
marksCount : BOOLEAN)
: BOOLEAN;

447

{Any text string, maximum 255 characters}

{Pointer to a procedure or function}

{First string to be compared}
{Second string to be compared}
{Distinguish upper- and lowercase? l
{Include diacritical marks? l
{Are the two strings equivalent? l

448 Appendix A

function Rel String
(string1
string2
caseCounts
marksCount
: INTEGER;

: Str255;
: Str255;
: BOOLEAN;
: BOOLEAN)

procedure UprString
(var theString : Str255;
stripMarks : BOOLEAN);

con st
SortsBefore = -1;
SortsEqual = O;
SortsAfter = +1;

2.2 Bit-Level Operations

2.2.1 Single Bit Access

procedure BitSet
(bitsPtr : Ptr;
bitNumber : LONGINT);

procedure BitClr
(bitsPtr : Ptr;
bitNumber : LONGINT);

function BitTst
(bitsPtr : Ptr;
bitNumber : LONGINT)
: BOOLEAN;

2.2.2 Logical Operations

function BitAnd
(bits1 : LONGINT;
bits2 : LONGINT)
: LONGINT;

function BitOr
(bits1 : LONGINT:
bits2 : LONGINT)
: LONGINT;

{First string to be compared}
{Second string to be compared}
{Distinguish upper- and lowercase?}
{Include diacritical marks?}
{Which string comes first?}

{String to be converted}
{Eliminate diacritical marks?}

{First string precedes second}
{Strings are equivalent}
{First string follows second}

{Pointer to bits}
{Number of bit to be set to 1}

{Pointer to bits}
{Number of bit to be cleared to 0}

{Pointer to bits}
{Number of bit to be tested}
{Is bit set to 1?}

{First operand}
{Second operand}
{Bitwise "and" l

{First operand}
{Second operand}
{Bitwise "or"}

449 Volume One ToolBox Summaiy

function BitXOr
(bits1 : LONGINT;
bits2: LONGINT)
: LONGINT;

function BitNot
(bits : LONGINT)

: LONGINT;

function BitShift
(bits : LONGINT;
shiftCount : INTEGER)
: LONGINT;

2.2.3 Word Access

function HiWord
(longWord : LONGINT)

: INTEGER;

function LoWord
(longword : LONGINT)

: INTEGER;

2.2.4 Direct Storage

procedure StuffHex
(destPtr : Ptr;
hexString : Str255);

2.3 Arithmetic Operations

2.3.1 Fixed-Point Numbers

type
Fixed = LONGI NT;

function Long2Fix
(theNumber : LONGINT)

: Fixed;

function Fix2Long
(theNumber : Fixed)

: LONGINT;

function FixRound
(theNumber: Fixed)

: INTEGER;

{First operand}
{Second operand}
{Bitwise "exclusive or"}

{Bits to be c'omplemented}
{Bitwise complement}

{Bits to be shifted}
{Number of places to shift}
{Result of shift}

{32-bit operand l
{High-order 16 bits}

{32-bit operand}
{Low-order 16 bits}

{Pointer to data structure to be stuffed}
{String representing data in hexadecimal}

{Fixed-point number}

{Long integer to be converted}
{Fixed-point equivalent}

{Fixed-point number to be converted}
{Long-integer equivalent}

{Fixed-point number to be rounded}
{Number rounded to an integer}

450 Appendix A

2~3.2 Fixed-Point Arithmetic

function FixMul
(number1 : Fixed;
number2 : Fixed)
: Fixed;

function FixDiv
(dividend : Fixed;
divisor : Fixed)
: Fixed;

function FixRatio
(numerator : INTEGER;
denominator: INTEGER)
: Fixed;

2.3.3 Fractions

type
Fract = LONGINT;

function Fix2Frac
(theNumber: Fixed)

: Fract;

function Frac2Fix
(theNumber: Fract)

: Fixed;

2.3.4 Fraction Arithmetic

function FracMul
(fraction1 : Fract;
fraction2 : Fract)
: Fract;

function FracDiv
(dividend : Fract;
divisor : Fract)
: Fract;

function FracSqrt
(theNumber : Fract)

: Fract;

{First fixed-point operand}
{Second fixed-point operand}
{Fixed-point product}

{Fixed-point dividend}
{Fixed-point divisor}
{Fixed-point quotient}

{Integer numerator}
{Integer denominator}
{Fixed-point quotient}

{Fixed-point number to be converted}
{Fraction equivalent}

{Fraction to be converted}
{Fixed-point equivalent}

{First fractional operand}
{Second fractional operand}
{Fractional product}

{Fractional dividend}
{Fractional divisor}
{Fractional quotient}

{Fractional operand}
{Fractional square root}

451 Volume One ToolBox Summary

2.3.5 Long Multiplication

type
lnt64Bit = record

hilong : LONGINT;
lolong : LONGINT

end;

procedure LongMul
(number1 : LONGINT;
number2 : LONGINT;
var product : lnt64Bit);

2.3.6 Trigonometric Functions

function FracSin
(theAngle : Fixed)

: Fract;

function FracCos
(theAngle : Fixed)

: Fract;

function FixATan2
(denominator : LONGINT;
numerator : LONGINT)
: Fixed;

{High-order 32 bits}
{Low-order 32 bits}

{First 32-bit operand}
{Second 32-bit operand}
{Returns 64-bit product}

{Fixed-point angle in radians}
{Fractional sine}

{Fixed-point angle in radians}
{Fractional cosine}

{Denominator of tangent}
{Numerator of tangent}
{Fixed-point arc tangent in radians}

2.3. 7 Binary /Decimal Conversion

procedure NumToString
(theNumber : LONGINT;
var theString : Str255);

procedure StringToNum
(theStri ng : Str255;
var theNumber : LONGINT);

2.3.8 Random Numbers

function Random
: INTEGER;

var
RandSeed : LONGINT;

{Number to be converted}
{Returns equivalent string}

{String to be converted}
{Returns equivalent number}

{Random number}

e·seed" for random number generation}

4o2 Appendix A

2.4 Date and Time

2.4.1 Date and Time in Seconds

procedure GetDateTime
(var seconds : LONGINT); {Returns current date and time in "raw" seconds}

function SetDateTime

const

(seconds : LONGINT)
: OSErr;

ClkRdErr = -85;
ClkWrErr = -86;

2.4.2 Date and Time Records

type
DateTimeRec = record

year : INTEGER;
month : INTEGER;
day : INTEGER;
hour : INTEGER;
minute : INTEGER;
second : INTEGER;
dayOfWeek : INTEGER

end;

procedure GetTime
(var dateAndTime : DateTimeRec);

procedure Setlime
(dateAndTime : DateTimeRec);

2.4.3 Date and Time Conversion

procedure Secs2Date
(seconds : LONGINT;
var dateAndTime : DateTimeRec);

procedure Date2Secs
(dateAndTime : DateTimeRec;
var seconds : LONGINT);

{New date and time in "raw" seconds}
{Result code}

{Unable to read clock}
{Clock not written correctly}

{Year}
{Month: 1 (January) to 12 (December)}
{Day of month: 1 to 31 l
{Hour: 0 to 23}
{Minute: O to 59}
{Second: O to 59}
{Day of week: 1 (Sunday) to 7 (Saturday) l

{Returns current date and ti me l

{Current date and time}

{Date and time in "raw" seconds}
{Returns equivalent date and time record}

{Date and time record}
{Returns equivalent in "raw" sec:onds}

453 Volume One Toolbox Summary

2.4.4 Date and Time Strings

type
DateForm = (ShortDate, LongDate, AbbrevDate);

procedure I U DateStri ng
(seconds : LONGINT;
format : DateForm;
var theString : Str255);

procedure IUTimeString
(seconds : LONGINT;
withSeconds : BOOLEAN;
var theString : Str255);

Chapter 3 Memory

3.1 Memory Basics

3.1.1 Elementary Data Types

type
Byte 0 .. 255;
SignedByte = -128 .. 127;

Ptr = "Signed Byte;
Handle = "Ptr;

Size = LONGINT;

3.1.2 Error Reporting

type
OS Err

con st
No Err
MemFullErr
NilHandleErr
MemWZErr
MemPurErr
MemlockedErr

function MemError
: OSErr;

=INTEGER;

= O;
= -108;
= -109;
= -111;
= -112;
= -117;

{Date and time in "raw" seconds}
{Format desired for date}
{Returns equivalent character string}

{Date and time in "raw" seconds}
{Include seconds in string?}
{Returns equivalent character string}

{Any byte in memory}
{Any byte in memory}

{General pointer}
{General handle}

{Size of a heap block in bytes}

{Operating System result (error) code}

{No error; all is well}
{No room; heap is full}
{Illegal operation on empty handle}
{Illegal operation on free block}
{Illegal operation on locked block}
{Attempt to move locked block}

{Result code of last memory operation}

454 Appendix A

3.1.3 Machine Configuration

procedure Environs
(var romVersion : INTEGER; {Version number of installed ROM}
var machineType : INTEGER); {Type of machine}

function TopMem
: Ptr;

const
MacXLMachine = O;
MacMachine = 1;

3.2 Heap Allocation

3.2.1 Allocating Blocks

function NewHand le
(blockSize : Size)

: Handle;

function NewPtr
(blockSize : Size)

: Ptr;

function NewEmptyHandle
: Handle;

function RecoverHandle
(masterPtr : Ptr)

: Handle;

3.2.2 Releasing Blocks

procedure DisposHandle
(theHandle : Handle);

procedure DisposPtr
(thePtr : Ptr);

3.2.3 Size of Blocks

function GetHandleSize
(theHandle : Handle)

: Size;

function GetPtrSize
(thePtr : Ptr)

: Size;

{Pointer to end of memory}

{Macintosh XL (Lisa) l
{Skinny Mac, Fat Mac, or Mac Plus}

{Size of needed block in bytes}
{Handle to new relocatable block}

{Size of needed block in bytes}
{Pointer to new nonrelocatable block}

{New empty handle}

{Master pointer to relocatable block}
{Handle to block}

{Hand le to relocatable block to be dea I located}

{Pointer to nonrelocatable block to be deallocated}

{Handle to a relocatable block}
{Size of block in bytes}

{Pointer to a non relocatable block}
{Size of block in bytes}

455 Volume One Toolbox Summaiy

procedure SetHandleSize
(theHandle : Handle;
newSize : Size);

procedure SetPtrSize
(thePtr : Ptr;
newSize : Size);

3.2.4 Properties of Blocks

procedure Hlock
(theHandle : Handle);

procedure HUnlock
(theHandle : Handle);

procedure HPurge
(theHandle : Handle);

procedure HNoPurge
(theHandle : Handle);

procedure HSetRBit
(theHandle : Handle);

procedure HCI rRBit
(theHandle : Handle);

function HGetState
(theHandle : Handle)

: SignedByte;

procedure HSetState
(theHandle : Handle;
properties : SignedByte);

3.2.5 Block Location

procedure ResrvMem
(blockSize : Size);

procedure MoveHHi
(theHandle : Handle);

procedure MoreMasters;

3.2.6 Copying Blocks

function HandToHand
(var theHand le : Handle)

: OSErr;

{Handle to a relocatable block}
{New size of block in bytes}

{Pointer to a nonrelocatable block}
{New size of block in bytes}

{Handle to a relocatable block}

{Handle to a relocatable block}

{Handle to a relocatable block}

{Handle to a relocatable block}

{Handle to a relocatable block}

{Handle to a relocatable block}

{Handle to a relocatable block}
{Current properties of block}

{Handle to a relocatable block}
{New properties of block}

{Size of needed block in bytes}

{Handle to a relocatable block}

{Handle to relocatable block to be copied}
{Result code}

456 Appendix A

function PtrToHand
(fromPtr : Ptr;
var toHandle : Handle;
byteCount : LONGINT)
: OSErr;

function PtrToXHand
(fromPtr : Ptr;
toHandle : Handle;
byteCount : LONGINT)
: OSErr;

procedure BlockMove
(fromPtr : Ptr:
toPtr : Ptr;
byteCount : Size);

3.2. 7 Combining Blocks

function HandAndHand
(appendHandle : Handle;
afterHandle : Handle)
: OSErr;

function PtrAndHand
{appendPtr : Ptr;
afterHandle : Handle;
byteCount : LONGINT)
: OSErr;

3.3 Heap Management

3.3.1 Available Space

function FreeMem
: LONGINT;

function MaxBlock
: LONGINT;

procedure Pu rgeSpace
(var totalBytes : LONGINT;
var contigBytes : LONGINT);

{Pointer to nonrelocatable block to t113 copied}
{Returns handle to relocatable copy}
{Number of bytes to be copied}
{Result code}

{Pointer to nonrelocatable block to be copied}
{Handle to be set to relocatable copy}
{Number of bytes to be copied}
{Result code}

{Pointer to data to be copied}
{Pointer to destination location}
{Number of bytes to be copied}

{Handle to relocatable block to be appended}
{Handle to relocatable block to append to}
{Result code}

{Pointer to nonrelocatable block to be appended}
{Handle to relocatable block to append to}
{Number of bytes to append l
{Result code}

{Total free bytes in the heap}

{Largest contiguous block obtainable by compaction}

{Total free bytes obtainable by purging}
{Largest contiguous block obtainable by purging}

457 Volume One Toolbox Summary

3.3.2 Reclaiming Free Space

function CompactMem
(sizeNeeded : Size)

: Size;

procedure PurgeMem
(sizeNeeded : Size);

function MaxMem
(var growBytes : Size)

: Size;

3.3.3 Purging Blocks

procedure EmptyHandle
(theHandle : Handle);

procedure ReallocHandle
(theHandle : Handle;
sizeNeeded : Size);

3.3.4 Heap Expansion

procedure SetAppllimit
(newlimit : Ptr);

function GetAppllimit
: Ptr;

procedure MaxApplZone;

function StackSpace
: LONGINT;

{Size of needed block in bytes}
{Size of largest free block after compaction l

{Size of needed block in bytes}

{Returns maximum bytes by which heap can expand}
{Size of largest free block in heap}

{Handle to relocatable block to be purged}

{Empty handle to be reallocated}
{Size of block to be allocated in bytes}

{Pointer to new application heap limit}

{Current application heap limit}

{Amount stack can grow}

458 Appendix A

Chapter 4 QuickDraw Fundamentals

4.1 Mathematical Foundations

4.1.1 Points

type
VHSelect = (V, H);

Point = record
case INTEGER of

0: (v : INTEGER;
h : INTEGER);

1: (vh : array [VHSelect] of INTEGER)

end;

procedure SetPt
(var thePoint : Point;
hCoord : INTEGER;
vCoord : INTEGER);

4.1.2 Rectangles

type
Rect = record

case INTEGER of

0: (top : INTEGER;
left : INTEGER;
bottom : INTEGER;
right : INTEGER);

1: (topleft : Point;
botRight : Point)

end;

procedure SetRect
(var theRect : Rect;
left : INTEGER;
top : INTEGER;
right : INTEGER;
bottom : INTEGER);

{Selector for coordinates of a point}

{Vertical coordinate}
{Horizontal coordinate}

{Coordinates as a two·-element array}

{Point to be set}
{Horizontal coordinate}
{Vertical coordinate}

{Top coordinate}
{Left coordinate}
{Bottom coordinate}
{Right coordinate}

{Top-left corner}
{Bottom-right corner}

{Rectangle to be set}
{Left coordinate}
{Top coordinate}
{Right coordinate}
{Bottom coordinate}

459 Volume One Toolbox Summaiy

procedure Pt2Rect
{point1 : Point;
point2 : Point;
var theRect : Re ct);

4.1.3 Polygons

type
PolyHandle = "PolyPtr;
PolyPtr = "Polygon:

Polygon = record
polySize : INTEGER;
polyBBox : Rect;
polyPoints : array [0 .. 0) of Point

end;

4.1.4 Deiining Polygons

function OpenPoly
: PolyHandle;

procedure ClosePoly;

procedure KillPoly
(thePolygon : PolyHandle);

4.1.5 Regions

type
RgnHand le = .. RgnPtr;
RgnPtr = "Region;

Region = record

{First corner}
{Diagonally opposite corner}
{Rectangle to be set}

{Length of this data structure in bytes}
{Bounding box}
{Variable-length array of vertices}

{Handle to new polygon}

{Handle to polygon to be destroyed}

rgnSize : INTEGER; {Length of this data structure in bytes}
rgnBBox : Rect; {Bounding box}
{additional data defining shape of region}

end;

4.1.6 Deiining Regions

function NewRgn
: RgnHandle;

procedure OpenRgn;

procedure CloseRgn
(theRegion : RgnHandle);

{Handle to new region}

{Handle to be set to defined region}

480 Appendix A

procedure DisposeRgn
(theRegion : RgnHandle);

4.1. 7 Setting Regions

procedure SetEmptyRgn
(theRegion : RgnHandle);

procedure RectRgn
(theRegion : RgnHandle;
theRect : Rect);

procedure SetRectRgn
(theRegion : RgnHandle;
left : INTEGER;
top : INTEGER;
right : INTEGER;
bottom : INTEGER);

procedure CopyRgn
(fromRegion : RgnHandle;
toRegion : RgnHandle);

4.2 Graphical Foundations

4.2.1 Bit Maps

BitMap = record

var

baseAddr : Ptr;
rowBytes : INTEGER;
bounds : Rect

end;

ScreenBits : BitMap;

.{Handle to region to be destroyed}

{Handle to region to be set empty}

{Handle to region to be set}
{Rectangle to set it to}

{Handle to region to be set}
(Left coordinate of rectangle to set it to}
{Top coordinate of rectangle to set it to}
{Right coordinate of rectangle to set it to}
{Bottom coordinate of rectangle to set it to}

(Region to be copied}
{Region to copy it to}

{Pointer to bit image}
{Row width in bytes}
(Boundary rectangle}

{Bit map for Macintosh screen}

461 Volume One Toolbox Sunumuy

4.2.2 Graphics Ports

type
Graf Ptr = "Graf Port;

Graf Port = record
device : INTEGER;
portBits : BitMap;
portRect : Rect;
visRgn : RgnHandle;
clipRgn : RgnHandle;
bkPat : Pattern;
fillPat : Pattern;
pnloc : Point;
pnSize : Point;
pnMode : INTEGER;
pnPat : Pattern;
pnVis : INTEGER;
txFont : INTEGER;
txFace : Style;
txMode : INTEGER;
txSize : INTEGER;
spExtra : Fixed;
fgColor : LONGINT;
bkColor : LONGINT;
colrBit : INTEGER;
patStretch : INTEGER;
picSave : Handle;
rgnSave : Handle;
polySave : Handle;
graf Pro cs : QDProcsPtr

end;

4.2.3 Pixel Access

function GetPixel
(hCoord : INTEGER;
vCoord : INTEGER)
: BOOLEAN;

{Device code for font selection}
{Bit map for this port}
{Port rectangle}
{Visible region}
{Clipping region}
{Background pattern}
{Fill pattern for shape drawing}
{Current pen location in local coordinates}
{Dimensions of graphics pen}
{Transfer mode for graphics pen}
{Pen pattern for line drawing}
{Pen visibility level}
{Font number for text}
{Type style for text}
{Transfer mode for text}
{Type size for text}
{Extra space between words}
{Foreground color}
{Background color}
{Color plane}
{Private}
{Private l
{Private}
{Private}
{Pointer to bottleneck procedures}

{Horizontal coordinate of pixel}
{Vertical coordinate of pixel}
{Is it a black pixel? l

462 Appendix A

4.3 Operations on Graphics Ports

procedure lnitGraf
(globalVars : Ptr);

var
The Port : Graf Ptr;
White : Pattern;
Black : Pattern;
Gray : Pattern;
LtGray : Pattern;
DkGray : Pattern;
Arrow : Cursor;
ScreenBits : BitMap;
RandSeed : LONGINT;

{Pointer to QuickDraw global variables}

{Pointer to current port}
{Solid white pattern l
{Solid black pattern}
{Medium gray pattern}
{Light gray pattern}
{Dark gray pattern}
{Standard arrow cursor}
{Bit map for Macintosh screen}
{Seed for random number generation}

4.3.2 Creating and Destroying Ports

procedure OpenPort
(which Port : Graf Ptr);

procedure lnitPort
(whichPort : Graf Ptr);

procedure ClosePort
(whichPort : Graf Ptr);

4.3.3 Current Port

procedure SetPort

{Pointer to port to open}

{Pointer to port to initialize l

{Pointer to port to close}

(new Port : Graf Ptr); {Pointer to port to be made current}

procedure GetPort
(var curPort : Graf Ptr); {Returns pointer to current port}

var
ThePort : GrafPtr; {Pointer to current port}

4.3.4 Bit Map and Coordinate System

procedure SetPortBits
(theBits : BitMap);

procedure SetOrigin
(hOrigin : INTEGER;
vOrigin : INTEGER);

{New bit map for current port}

{New horizontal coordinate of port rectangle}
{New vertical coordinate of port rectangle}

463 Volume One Toolbox Summary

4.3.5 Port Rectangle

procedure MovePortTo
(leftGlobal : INTEGER;
topGlobal : INTEGER);

procedure PortSize
(portWidth : INTEGER;
portHeight : INTEGER);

4.3.6 Clipping Region

procedure SetCli p
(newClip : RgnHandle);

procedure ClipRect
(newClip : Rect);

procedure GetClip
(curClip : RgnHandle);

{New left edge of port rectangle in global coordinates}
{New top edge of port rectangle in global coordinates}

{New width of port rectangle}
(New height of port rectangle}

(Handle to new clipping region}

(Rectangle defining new clipping region}

(Handle to current clipping region}

4.4 Calculations on Graphical Entities

4.4.1 Calculations on Points

procedure AddPt
(addPoint : Point;
var toPoint : Point);

procedure SubPt
(subPoint : Point;
var fromPoint : Point);

function DeltaPoint
(fromPoint : Point;
subPoint : Point)
: LONGINT;

function EqualPt
(point1 : Point;
point2 : Point)
: BOOLEAN;

4.4 • .2 Coordinate Conversion

procedure LocalToGlobal
(var thePoint : Point);

procedure GlobalTolocal
(var thePoint : Point);

{Point to be added}
{Point to add it to}

{Point to be subtracted}
{Point to subtract it from}

{Point to subtract from}
{Point to be subtracted}
{Difference between points}

{First point to be compared}
{Second point to be compared}
{Are they equal?}

{Point to be converted}

{Point to be converted}

464 Appendix A

4.4.3 Testing for Inclusion

function PtlnRect
(thePoint : Point;
theRect : Rect)
: BOOLEAN;

function PtlnRgn
(thePoint : Point;
theRegion : RgnHandle)
: BOOLEAN;

function RectlnRgn
(theRect : Rect;
theRegion : RgnHandle)
: BOOLEAN;

function PinRect
(theRect : Rect;
thePoint : Point)
: LONGINT;

{Point to be tested}
{Rectangle to test it against}
{Is the point in the rectangle?}

{Point to be tested}
{Handle to region to test it against}
{Is the point in the region?}

{Rectangle to be tested}
{Handle to region to test it against}
{Does the rectangle intersect the region?}

{Rectangle to pin to}
{Point to be pinned}
{Point pinned to rectangle}

4.4.4 Calculations on One Rectangle

procedure OffsetRect
(var theRect: Rect;
hOffset : INTEGER;
vOffset : INTEGER);

procedure lnsetRect
(var theRect: Rect;
hlnset : INTEGER;
vlnset : INTEGER);

function EmptyRect
(theRect : Rect)

: BOOLEAN;

{Rectangle to be offset}
{Horizontal offset in pixels}
{Vertical offset in pixels}

{Rectangle to be inset}
{Horizontal inset in pixels}
{Vertical inset in pixels}

{Rectangle to be tested}
{Is the rectangle empty? l

4.4.5 Calculations on Two Rectangles

procedure UnionRect
(rect1 : Rect;
rect2 : Rect;
var resultRect : Rect);

function SectRect
(rect1 : Rect;
rect2 : Rect;
var resultRect : Rect)
: BOOLEAN;

{First rectangle}
{Second rectangle}
{Returns union of two rectangles}

{First rectangle}
{Second rectangle}
{Returns intersection of two rectangles}
{Do the rectangles intersect?}

466 Volume One Toolbox Summary

function EqualRect
(rect1 : Rect;
rect2 : Rect)
: BOOLEAN;

4.4.6 Calculations on Polygons

procedure OffsetPoly
(thePolygon : PolyHandle;
hOffset : INTEGER;
vOffset : INTEGER);

4.4. 7 Calculations on One Region

procedure OffsetRgn
(theRegion : RgnHandle;
hOffset : INTEGER;
vOffset : INTEGER);

procedure lnsetRgn
(theRegion : RgnHandle;
hlnset : INTEGER;
vlnset : INTEGER);

function EmptyRgn
(theRegion : RgnHandle)

: BOOLEAN;

{First rectangle}
{Second rectangle}
{Are the rectangles equal?}

{Polygon to be offset}
{Horizontal offset in pixels}
{Vertical offset in pixels}

{Handle to region to be offset}
{Horizontal offset in pixels}
{Vertical offset in pixels}

{Handle to region to be inset}
{Horizontal inset in pixels}
{Vertical inset in pixels}

{Handle to region to be tested}
{Is the reg ion empty?}

4.4.8 Calculations on Two Regions

procedure

procedure

procedure

procedure

UnionRgn
(region1
region2
resultRegion

SectRgn
(region1
region2
resultRegion

DiffRgn
(region1
region2
resultRegion

XOrRgn
(reg ion1
region2
resultRegion

: RgnHandle;
: RgnHandle;
: RgnHandle);

: RgnHandle;
: RgnHandle;
: RgnHandle);

: RgnHandle;
: RgnHandle;
: RgnHandle);

: RgnHandle;
: RgnHandle;
: RgnHandle);

{Handle to first region}
{Handle to second region}
{Handle to be set to union of two regions}

{Handle to first region}
{Handle to second region}
{Handle to be set to intersection of two regions}

{Handle to region to be subtracted from}
{Handle to region to subtract from it}
{Handle to be set to difference of two regions}

{Handle to first region}
{Handle to second region}
{Handle to be set to "exclusive or" of two regions}

466 Appendix A

function EqualRgn
(region1 : RgnHandle;
region2 : RgnHandle)
: BOOLEAN;

4.4.9 Scaling and Mapping

procedure ScalePt
(var thePoint: Point;
fromRect : Rect;
toRect : Rect);

procedure MapPt
(var thePoint : Point;
fromRect : Rect;
toRect : Rect);

procedure MapRect
(var theRect : Rect;
fromRect : Rect;
to Re ct : Re ct);

procedure MapPoly
(thePolygon : PolyHandle;
fromRect : Rect;
toRect : Rect);

procedure MapRgn
(theRegion : RgnHandle;
fromRect : Rect;
toRect : Rect);

Chapter 5 Drawing

5.1 Drawing Fundamentals

5.1.1 Patterns

type
PatHandle = "PatPtr;
PatPtr = .. Pattern;

Pattern = packed array [0 .. 7] of 0 .. 255;

{Handle to first region}
{Handle to second region}
{Are the regions equal?}

{Point to be scaled}
{Rectangle to scale it from}
{Rectangle to scale it to}

{Point to be mapped}
{Rectangle to map it from}
{Rectangle to map it to}

{Rectangle to be mapped}
{Rectangle to map it from l
{Rectangle to map it to}

{Polygon to be mapped}
{Rectangle to map it from}
{Rectangle to map it to}

{Region to be mapped}
{Rectangle to map it from}
{Rectangle to map it to}

{8 rows of 8 bits each}

467 Volume One Toolbox Summary

Graf Port = record

bkPat : Pattern;
fillPat : Pattern;

pnPat : Pattern;

end;

procedure BackPat
(newPattern : Pattern);

function GetPattern
(patternlD : INTEGER)

: PatHandle:

procedure Getl ndPattern
(var thePattern : Pattern:
patlistlD : INTEGER;
patlndex : INTEGER);

5.1.2 Standard Patterns

var
White : Pattern;
LtGray : Pattern;
Gray : Pattern;
DkGray : Pattern;
Bia.ck : Pattern;

con st
SysPatlist = O;
DeskPatlD = 16;

5.1.3 Transfer Modes

Graf Port = record

pnMode : INTEGER;

txMode : INTEGER;

end;

{Background pattern}
{Fill pattern for shape drawing}

{Pen pattern for line drawing}

{New background pattern}

{Resource ID of desired pattern}
{Handle to pattern in memory}

{Returns desired pattern}
{Resource ID of pattern I ist}
{Index of pattern within list}

{Solid white}
{Light gray}
{Medium gray}
{Dark gray}
{Solid black}

{Resource ID of standard pattern list}
{Resource ID of screen background pattern}

{Transfer mode for graphics pen}

{Transfer mode for text}

468 Appendix A

const
SrcCopy = O;
SrcOr = 1;
SrcXOr = 2;
SrcBic = 3;
NotSrcCopy = 4;
NotSrcOr = 5;
NotSrcXOr = 6;
NotSrcBic = 7;

PatCopy = 8;
PatOr = 9;
PatXOr = 10;
PatBic = 11;
NotPatCopy = 12;
NotPatOr = 13;
NotPatXOr = 14;
NotPatBic = 15;

5.1.4 Low-Level Bit Transfer

procedure CopyBits
(fromBitMap : BitMap;
toBitMap : BitMap;
fromRect : Rect;
toRect : Rect;
mode : INTEGER;
clipTo : RgnHandle);

procedure CopyMask
(sourceMap : BitMap;
maskMap : BitMap;
destMap : BitMap;
sourceRect : Rect;
maskRect : Rect;
destRect : Rect);

5.1.5 Scrolling in a Bit Map

procedure ScrollRect
(theRect
hScroll
vScroll
updateRgn

: Rect;
: INTEGER;
: INTEGER;
: RgnHandle);

{Copy source to destination}
{Set selected bits to black}
{Invert selected bits}
{Clear selected bits to white}
{Copy inverted source to destination}
{Leave selected bits alone, set others to black}
{Leave selected bits alone, invert others}
{Leave selected bits alone, clear others to white}

{Copy pattern to destination}
{Set selected bits to black l
{Invert selected bits}
{Clear selected bits to white}
{Copy inverted pattern to destination!
{Leave selected bits alone, set others to black}
{Leave selected bits alone, invert others}
{Leave selected bits alone, clear others to white}

{Bit map to copy from l
{Bit map to copy to l
{Rectangle to copy from}
{Rectangle to copy to l
{Transfer mode}
{Region to clip to}

{Bit map to copy from}
{Bit map containing mask}
{Bit map to copy to l
{Rectangle to copy from}
{Rectangle containing mask}
{Rectangle to copy to}

{Rectangle to be scrolled}
{Horizontal scroll distance in pixels}
{Vertical scroll distance in pixels}
{Region scrolled into rectangle}

469 Volume One Toolbox Summary

5.1.6 Special Operations

procedure

procedure

CalcMask
(sourceBits
mas kB its
sourceRow
maskRow
rectHeight
rectWidth

Seed Fill
(sourceBits
maskBits
sourceRow
maskRow
rectHeight
rectWidth
seedHoriz
seed Vert

: Ptr;
: Ptr;
: INTEGER;
: INTEGER;
: INTEGER;
: INTEGER);

: Ptr;
: Ptr;
: INTEGER;
: INTEGER;
: INTEGER;
: INTEGER;
: INTEGER;
: INTEGER);

5.2 Line Drawing

5.2.1 Pen Characteristics

type
Graf Port = record

pnloc : Point;
pnSize : Point;
pnMode : INTEGER;
pnPat : Pattern;
pnVis : INTEGER;

end;

PenState = record
pnloc : Point;
pnSize : Point;
pnMode : INTEGER;
pnPat : Pattern

end;

procedure GetPenState
(var curState : PenState);

procedure SetPenState
(newState : PenState);

{Pointer to source image}
{Pointer to result mask}
{Row width of source bit map in bytes}
{Row width of mask bit map in bytes}
{Height of source and mask rectangles in pixels}
{Width of source and mask rectangles in words}

{Pointer to source image}
{Pointer to result mask}
{Row width of source bit map in bytes}
{Row width of mask bit map in bytes}
{Height of source and mask rectangles in pixels}
{Width of source and mask rectangles in words}
{Horizontal coordinate of starting point}
{Vertical coordinate of starting point}

{Current location of graphics pen in local coordinates}
{Dimensions of graphics pen}
{Transfer mode for graphics pen}
{Pen pattern for line drawing}
{Pen level}

{Location of pen in bit map}
(Width and height of pen in pixels}
(Transfer mode for line drawing and area fill}
{Pen pattern}

{Returns current pen characteristics}

{New pen characteristics}

470 Appendix A

5.2.2 Setting Pen Characteristics

procedure PenSize
(newWidth : INTEGER; {New pen width}
newHeight : INTEGER); {New pen height}

procedure Pen Pat
(newPat : Pattern); {New pen pattern}

procedure Pen Mode
(newMode : INTEGER); {New pen transfer mode}

procedure PenNormal;

5.2.3 Hiding and Showing the Pen

type
Graf Port = record

pnVis : INTEGER;

end;

procedure HidePen:

procedure ShowPen:

5.2.4 Drawing Lines

procedure GetPen
(var penloc : Point);

procedure Move
(horiz : INTEGER;
vert : INTEGER);

procedure MoveTo
(horiz : INTEGER;
vert : INTEGER);

procedure Line
(horiz : INTEGER;
vert : INTEGER);

procedure Linero
(horiz : INTEGER;
vert : INTEGER);

{Pen visibility level}

{Returns current pen location}

{Horizontal distance to move, in pixels l
{Vertical distance to move, in pixels}

{Horizontal coordinate to move to, in pixels}
{Vertical coordinate to move to, in pixels}

{Horizontal distance to draw, in pixels}
{Vertical distance to draw, in pixels}

{Horizontal coordinate to draw to, in pixels}
{Vertical coordinate to draw to, in pixels}

471 Volume One Toolbox Sunuruuy

5.3 Drawing Shapes

5.3.1 Basic Drawing Operations

type
GrafVerb = (Frame,

Paint,
Erase,
Invert,
Fill);

5.3.2 Drawing Rectangles

procedure FrameRect
(theRect : Rect);

procedure PaintRect
(theRect : Rect);

procedure FillRect
(theRect : Rect;
fill Pat : Pattern);

procedure EraseRect
(theRect : Rect);

procedure lnvertRect
(theRect : Rect);

{Draw outline}
{Fill with current pen pattern}
{Fill with background pattern}
{Invert pixels}
{Fill with specified pattern}

{Rectangle to be framed}

{Rectangle to be painted}

{Rectangle to be filled l
{Pattern to fill it with}

{Rectangle to be erased l

{Rectangle to be inverted}

5.3.3 Drawing Rounded Rectangles

procedure FrameRoundRect
(theRect : Rect;
cornerWidth : INTEGER;
cornerHeight : INTEGER);

procedure PaintRoundRect
(theRect
cornerWidth
cornerHeight

procedure FillRoundRect
(theRect
cornerWidth
cornerHeight
f i II Pat

: Rect;
: INTEGER;
: INTEGER);

: Rect;
: INTEGER;
: INTEGER;
: Pattern);

{Body of rectangle}
{Width of corner oval}
(Height of corner oval}

{Body of rectangle}
{Width of corner oval}
{Height of corner oval}

{Body of rectangle}
{Width of corner oval}
{Height of corner oval}
{Pattern to fill with}

472 Appendix A

procedure EraseRoundRect
(theRect : Rect;
cornerWidth : INTEGER;
cornerHeight : INTEGER);

procedure lnvertRoundRect
(theRect : Rect;
cornerWidth : INTEGER;
cornerHeight : INTEGER);

5.3.4 Drawing Ovals

procedure FrameOval
(inRect : Rect);

procedure PaintOval
(inRect : Rect);

procedure FillOval
(inRect : Rect:
fillPat : Pattern);

procedure EraseOval
(inRect : Rect);

procedure lnvertOval
(inRect : Rect);

5.3.5 Drawing Arcs and Wedges

procedure FrameArc
(inRect : Rect;
startAngle : INTEGER;
arcAngle : INTEGER);

procedure PaintArc
(inRect : Rect;
startAngle : INTEGER;
arcAngle : INTEGER);

procedure Fill Arc
(inRect : Rect;
startAng le : INTEGER;
arcAngle : INTEGER;
fill Pat : Pattern);

procedure EraseArc
(inRect : Rect;
startAngle : INTEGER;
arcAngle : INTEGER);

{Body of rectangle}
{Width of corner oval}
{Height of corner oval}

{Body of rectangle}
{Width of corner oval}
{Height of corner oval}

{Rectangle defining oval}

{Rectangle defining oval}

{Rectangle defining oval}
{Pattern to fi II with}

{Rectangle defining oval}

{Rectangle defining oval}

{Rectangle defining oval}
{Starting angle}
{Extent of arc}

{Rectangle defining oval}
{Starting angle}
{Extent of arc}

{Rectangle defining oval}
{Starting angle}
{Extent of arc}
{Pattern to fill with}

{Rectangle defining oval}
{Starting angle}
{Extent of arc}

4 73 Volume One Toolbox Summaiy

procedure lnvertArc
(inRect : Rect;
startAngle : INTEGER;
arcAngle : INTEGER);

procedure PtToAngle
(inRect : Rect;
thePoint : Point;
var theAngle : INTEGER);

5.3.6 Drawing Polygons

procedure FramePoly
(thePolygon : PolyHandle);

procedure PaintPoly
(thePolygon : PolyHandle);

procedure Fill Poly
(thePolygon : PolyHandle;
fill Pat : Pattern);

procedure ErasePoly
(thePolygon : PolyHandle);

procedure lnvertPoly
(thePolygon : PolyHandle);

5.3.7 Drawing Regions

procedure FrameRgn
(theRegion : RgnHandle);

procedure PaintRgn
(theRegion : RgnHandle);

procedure FillRgn
(theRegion : RgnHandle;
fill Pat : Pattern);

procedure EraseRgn
(theReg ion : RgnHandle);

procedure lnvertRgn
(theRegion : RgnHandle);

{Rectangle defining oval}
{Starting angle}
{Extent of arc}

{Rectangle to measure in}
{Point to be measured}
{Returns angle of point, in degrees}

{Hand le to polygon to be framed l

{Handle to polygon to be painted}

{Handle to polygon to be filled}
{Pattern to fill it with}

{Handle to polygon to be erased}

{Handle to polygon to be inverted l

{Handle to region to be framed}

{Handle to region to be painted}

{Handle to region to be filled}
{Pattern to fill it with}

{Handle to region to be erased}

{Handle to region to be inverted}

47 4 Appendix A

5.4 Pictures and Icons

5.4.1 Picture Records

type
PicHandle = A PicPtr;
PicPtr = A Picture;

Picture = record
picSize : INTEGER; {Length of this data structure in bytes}
picFrame : Rect; {Smallest rectangle enclosing the picture}
{additional data defining contents of picture}

end;

5.4.2 Deiining Pictures

function OpenPicture
(picFrame : Rect)

: PicHandle;

procedure ClosePicture;

function GetPicture
(picturelD : INTEGER)

: PicHandle;

procedure KillPicture

{Frame for new picture}
{Handle to new picture}

{Resource ID of desired picture}
{Handle to picture in memory}

(thePicture : PicHandle); {Handle to picture to be destroyed}

5.4.3 Drawing Pictures

procedure DrawPicture
(thePicture : PicHandle;
inRect : Rect);

5.4.4 Icons

function Getlcon
(iconlD : INTEGER)

: Handle;

procedure Plotlcon

{Picture to be drawn}
{Rectangle to draw it in}

{Resource ID of desired icon}
{Handle to icon in memory}

(inRect : Rect; {Rectangle to plot in}
iconHandle : Handle); {Handle to icon}

475 Volume One Toolbox Summaiy

Chapter 6 Resources

6.1 Resource Types

6.1.1 Resource Types

type
ResType = packed array [1 .. 4] of CHAR; {Resource type}

6.2 Resource Fil.es

6.2.1 Opening and Closing Resource Files

function OpenResFile
(fileName : Str255)

: INTEGER;

procedure CloseResFile
(refNum : INTEGER);

6.2.2 Current Resource File

function Cu rResFile
: INTEGER;

procedure UseResFile
(refNum : INTEGER);

6.3 Access to Resources

6.3.1 Getting Resources

function GetResource
(rsrcType : ResType:
rsrclD : INTEGER)
: Handle;

function GetNamedResource
(rsrcType : ResType;
rsrcName : Str255)
: Handle;

function Get1 Resource
(rsrcType : ResType;
rsrclD : INTEGER)
: Handle;

{Name of resource file to be opened}
{Reference number of file}

{Reference number of resource file to be closed}

{Reference number of current resource file}

{Reference number of resource file to be made current}

{Resource type}
{Resource ID}
{Handle to resource}

{Resource type}
{Resource name}
{Handle to resource}

{Resource type}
(Resource ID}
{Handle to resource}

476

function Get1 NamedResource
(rsrcType : ResType;
rsrcName : Str255)
: Handle;

Appendix A

6.3.2 Disposing of Resources

procedure ReleaseResource
(theResource : Handle);

procedure DetachResource
(theResource : Handle);

6.3.3 Generating All Resources

function CountTypes
: INTEGER;

procedure GetlndType
(var rsrcType : ResType;
index : INTEGER);

function CountResources
(rsrcType : ResType)

: INTEGER;

function GetlndResource
(rsrcType : ResType;
index : INTEGER)
: Handle;

function Count1Types
: INTEGER;

procedure Get1 lndType
(var rsrcType : ResType;
index : INTEGER);

function Count1 Resources
(rsrcType : ResType)

: INTEGER;

function Get1 Ind Resource
(rsrcType : ResType;
index : INTEGER)
: Handle;

{Resource type}
{Resource name}
{Handle to resource}

{Resource to be released}

{Resource to be detached}

{Total number of resource types}

{Returns next resource type}
{Index of desired resource type}

{Resource type}
{Total number of resources of this type}

{Resource type}
{Index (not ID) of desired resource}
{Handle to resource}

{Total number of resource types}

{Returns next resource type}
{Index of desired resource type}

{Resource type}
{Total number of resources of this type}

{Resource type}
{Index (not ID) of desired resource}
{Handle to resource}

477 Volume One Toolbox Summaiy

6.3.4 Loading Resources

procedure SetResload
(onOrOff : BOOLEAN);

procedure LoadResource
(theResource : Handle);

6.4 Properties of Resources

6.4.1 Identifying Information

procedure GetReslnfo
(theResource : Handle;
var rsrclD : INTEGER;
var rsrcType : ResType;
var rsrcName : Str255);

procedure SetReslnfo
(theResource : Handle;
rsrclD : INTEGER;
rsrcName : Str255);

6.4.2 Resource Attributes

function GetResAttrs
(theResource : Handle)

: INTEGER;

procedure SetResAttrs
(theResource : Handle;
newAttrs : INTEGER);

con st
ResSysHeap
ResPurgeable
Res locked
Res Protected
ResPreload
ResChanged

= $0040;
= $0020;
= $0010;
= $0008;
= $0004;
= $0002;

6.4.3 Other Properties

function SizeResource
(theResource : Handle)

: LONGINT;

{Turn automatic loading on or off?}

{Resource to be loaded}

{Handle to resource}
{Returns resource ID l
{Returns resource type}
{Returns resource name}

{Handle to resource}
{New resource ID}
{New resource name)

{Handle to resource}
{Current resource attributes}

{Handle to resource}
{New resource attributes}

{Resides in system heap l
{Purgeable from heap l
{Locked during heap compaction}
{Protected from change}
{Pre load when file opened}
{Has been changed in memory}

{Handle to resources}
{Size of resource data, in bytes}

478 Appendix A

function MaxSizeRsrc
(theResource : Handle)

: LONGINT;

function HomeResFile
(theResource : Handle)

: INTEGER;

6.5 Modifying Resources

6.5.1 Creating Resource Files

procedure CreateResFile
(fileName : Str255);

{Handle to resource}
{Approximate size of resource data, in bytes}

{Handle to resource}
{Reference number of home resource file}

{Name of resource file to be created}

6.5.2 Marking Changed Resources

procedure ChangedResource
(theResource : Handle); {Resource to be marked as changed}

6.5.3 Adding and Removing Resources

procedure AddResource
(rsrcData : Handle;
rsrcType : ResType;
rsrclD : INTEGER;
rsrcName : Str255);

procedure RmveResource

{Handle to data of new resource}
{Type of new resource}
{ID number of new resource}
{Name of new resource}

(theResource : Handle); {Resource to be removed}

function UniquelD
(rsrcType : ResType);

: INTEGER

function Unique1 ID
(rsrcType : ResType)

: INTEGER;

6.5.4 Updating Resource Files

procedure UpdateResFile

{Resource type}
{Unique ID number for this type}

{Resource type}
{Unique ID for this type in current resource file}

(refNum : INTEGER); {Reference number of resource file to be updated}

procedure WriteResource
(theResource : Handle); {Resource to be written out}

4 79 Volume One Toolbox Summary

6.5.5 Purge Checking

procedure SetResPurge
(onOrOff : BOOLEAN);

6.6 Nuts and Bolts

6.6.1 Error Reporting

function ResError
: INTEGER;

con st
ResNotFound
ResFNotFound
AddResFailed
RmvResFailed
ResErrAttr
MapReadErr
DskFulErr

= -192;
= -193;
= -194;
= -196;
= -198;
= -199;
= - 34;

6.6.2 Resource File Attributes

function GetResFileAttrs
(refNum : INTEGER)

: INTEGER;

procedure SetResFileAttrs

const

(refNum : INTEGER;
newAttrs : INTEGER);

MapReadOnly = 128;
MapCompact = 64;
MapChanged = 32;

{Turn purge checking on or off?}

{Result code from last resource-related operation}

{Resource not found}
{Resource file not found}
{AddResource failed}
{RmveResource failed}
{Operation prohibited by resource attribute}
{Error reading resource map}
{Disk full}

{Reference number of resource file}
{Current resource file attributes}

{Reference number of resource file}
{New resource file attributes}

{No changes allowed}
{Compact file when updated}
{Write resource map when updated}

Chapter 7 Program Startup

7.1 Starting and Ending a Program

7.1.1 Starting a Program

procedure Launch

procedure Chain

{Assembly language only}

{Assembly language only}

480 Appendix A

7.1.2 Loading and Unloading Segments

procedure LoadSeg

procedure UnloadSeg
(anyRoutine : Ptr);

7.1.3 Ending a Program

procedure ExitToShell;

procedure Restart;

7 .2 Packages

7.2.1 Standard Packages

con st
ListMgr = O;
Dsklnit = 2;
StdFile = 3;
FIPoint = 4;
TrFunc = 5;
lntUtil = 6;
BDConv = 7;

7.2.2 Initialiring Packages

procedure lnitPack
(packNumber : INTEGER);

procedure lnitAllPacks;

7.3 Finder Information

7 .3.1 Signatures and File Types
type

{Assembly language only}

{Pointer to any routine in the segment}

{List Manager Package}
{Disk Initialization Package}
{Standard File Package}
{Floating-Point Arithmetic Package}
{Transcendental Functions Package}
(International Utilities Package}
{Binary/Decimal Conversion Package}

{Package number}

OSType = packed array [1 .. 4] of CHAR; {Creator signature or file type}

481 Volume One Toolbox Summary

7.3.2 Finder Iniormation Records

type
Fl nfo = record

fdType
fdCreator
fdFlags

: OSType;
: OSType;

{File type}

const

fd Location
fdFldr

end;

FHasBundle = $2000;
Flnvisible = $4000;

FDisk = O;
FDesktop = -2;
FTrash = -3;

: INTEGER;
: Point;
: INTEGER

{Creator signature}
{Finder flags}
{Top-left corner of file's icon in local (window) coordinates}
{Folder or window containing icon}

{Application has Finder resources}
{File not visible on desktop}

{Icon is in main disk window}
{Icon is on desktop}
{Icon is in trash window}

7 .3.3 Accessing Finder Properties

function Get Fl nfo
(fName : Str255;
vRefNum : INTEGER;
var finderlnfo : Flnfo)
: OSErr;

function Set Fl nfo
(fName : Str255;
vRefNum : INTEGER;
finderlnfo : Flnfo)
: OSErr;

7 .3.4 Startup Iniormation

procedure CountAppFiles
(var message : INTEGER;
var count : INTEGER);

procedure GetAppFiles
(index : INTEGER;
var theFile : AppFi le);

procedure ClrAppFiles
(index : INTEGER);

procedure GetAppParms
(var appName : Str255;
var appResFile : INTEGER;
var startHandle : Handle);

{File name}
{Volume or directory}
{Returns current Finder information}
{Result code}

{File name}
{Volume or directory}
{New Finder information}
{Result code}

{Open or print?}
{Returns number of files selected}

{Index number of desired file}
{Returns identifying information about file}

{Index number of file to be cleared}

{Returns name of application file}
{Returns reference number of application resource file}
{Returns handle to startup information}

482 Appendix A

con st
AppOpen = O;
AppPrint = 1;

type
AppFile = record

vRefNum : INTEGER;
fType : OSType;
versNum : INTEGER;
fName : Str255

end;

7 .4 Desk Scrap

7.4.2 Scrap Information

type
PScrapStuff = "ScrapStuff;

ScrapStuff = record

{Open document file}
{Print document file}

{Volume or directory}
{File type}
{Version number}
{Name of file}

scrapSize : LONGINT; {Overall size of scrap in bytes}
(Handle to scrap in memory}
{Current scrap count}

scrapHandle : Handle;
scrapCount : INTEGER;
scrapState : INTEGER;
scrapName : StringPtr

{Is scrap in memory?}
{Pointer to name of scrap file}

end;

function lnfoScrap
: PScrapStuff; {Pointer to current scrap information}

7 .4.3 Reading and Writing the Scrap

function GetScrap
(theltem : Handle;
itemType : ResType;
var offset : LONGINT)
: LONGINT;

function PutScrap
(itemlength : LONGINT;
itemType : ResType;
theltem : Ptr)
: LONGINT;

function ZeroScrap
: LONGINT;

{Hand~e to be- set to requested item}
{Resource type of desired item}
{Returns byte offset of item data within scrap contents}
{Length of item data in bytes, or error code}

{length of item data in bytes}
{Resource type of item}
{Pointer to item data}
(Result code}

{Result code}

483 Volume One Toolbox Summary

con st
NoScrapErr = -100;
NoTypeErr = -102;

{Desk scrap not initialized}
{No item of requested type}

7 .4.4 Loading and Unloading the Scrap

function LoadScrap
: LONGINT;

function UnloadScrap
: LONGINT;

Chapter 8 Text

8.1 Keys and Characters

8.1.1 Character Set

con st
Command Mark
CheckMark
Diamond Mark
AppleMark

= $11;
= $12;
= $13;
= $14;

8.1.2 Character Strings

type
StringPtr = "Str255;
StringHandle = "StringPtr;

function NewString
(oldString : Str255}

: StringHandle;

function GetString
{stringlD : INTEGER}

: StringHandle;

procedure GetlndString
{var theString : Str255;
stringlistlD : INTEGER;
stringlndex : INTEGER);

procedure SetString
{theString : StringHandle;
setTo : Str255};

{Result code}

{Resu It code}

{Character code of command mark}
{Character code of check mark}
{Character code of diamond mark}
{Character code of Apple mark}

{Pointer to a string}
{Handle to a string}

{String to be copied l
{Handle to copy}

{Resource ID of desired string}
{Handle to string in memory}

{Returns requested string}
{Resource ID of string list}
{Index of string within list}

{Handle to be set}
{String to set it to}

484 Appendix A

8.2 Fonts

8.2.1 Standard Font Numbers

con st
System Font = o· t
Appl Font = 1;
NewYork = 2·

I

Geneva = 3;
Monaco = 4•

t

Venice = 5;
London = 6;
Athens = 7;
San Fran = 8;
Toronto = 9•

'
Cairo = 11;
LosAngles = 12;

Times = 20;
Helvetica = 21;
Courier = 22;
Symbol = 23;
Taliesin = 24;

8.2.2 Font Records

type
Fo ntRec = record

fontType : INTEGER; {Font type (proportional or fi:iced-width)}
firstChar : INTEGER; {Character code of first defined character}
lastChar : INTEGER; {Character code of last defined character}
widMax : INTEGER; {Maximum character width in pixels}
kernMax : INTEGER; {Maximum backward kern in pixels}
nDescent : INTEGER; {Negative of descent in pixels}
fRectWidth : INTEGER; {Width of font rectangle in pixels}
fRectHeight: INTEGER; {Height of font rectangle in pixels}
owTLoc : INTEGER; {Offset to owTable in words}
ascent : INTEGER; {Ascent in pixels}
descent : INTEGER; {Descent in pixels}
leading : INTEGER; {Leading in pixels}
rowWords : INTEGER; {Row width of bitlmage in words}

{bitlmage : array [1 .. rowWords, 1..chHeight] of INTEGER;}
{Font image}

{locTable : array [firstChar .. lastChar+2] of INTEGER;}
{Location table}

485 Volume One Toolbox Summmy

{owTable : array [firstChar .. lastChar+2] of INTEGER;}
{Offset/width table}

{widthTab : array [firstChar .. lastChar+2] of INTEGER;}
{Character-width table (optional)}

{heightTab : array [firstChar..lastChar+2] of INTEGER}
{Image-height table (optional)}

end;

con st
PropFont = $9000;
PrpFntH = $9001;
PrpFntW = $9002;
PrpFntHW = $9003;

FixedFont = $8000;
Fxd FntH = $8001;
Fxd FntW = $8002;
FxdFntHW = $8003;

FontWid = $ACBO;

procedure lnitFonts;

8.2.5 Access to Fonts

procedure GetFontName
{fontNumber : INTEGER;
var name : Str255);

procedure GetFNum

{Font type for proportional font}
{ Proportional font with height table}
{ Proportional font with width table}
{ Proportion.al font with height and width tables}

{Font type for fixed-width font}
{ Fixed-width font with height table}
{ Fixed-width font with width table}
{ Fixed-width font with height and width tables}

!Font type for font width table}

{Font number}
{Returns name of typeface}

{name : Str255; {Name of typeface}
var fontNumber : INTEGER); {Returns font number}

function RealFont
{fontNumber : INTEGER;
pointSize : INTEGER)
: BOOLEAN;

{Desired font number}
{Desired point size}
{Does font exist?}

8.2.8 Requesting Font Information

procedure GetFontlnfo
{var thelnfo : Fontinfo); {Returns metric information about current text font}

486 Appendix A

type
Fontinfo = record

ascent : INTEGER;
descent : INTEGER;
widMax : INTEGER;
leading : INTEGER

end;

procedure FontMetrics
(var thelnfo : FMetricRec);

type
FMetricRec = record

ascent : Fixed;
descent : Fixed;
leading : Fixed;
widMax : Fixed;
wTabHandle : Handle

end;

8.2.7 Locking a Font

procedure SetFontLock
(lock : BOOLEAN);

8 • .2.8 Nuts and Bolts

procedure SetFractEnable
(useFracts : BOOLEAN);

procedure SetFScaleDisable
(noScaling : BOOLEAN);

{Ascent in pixels}
{Descent in pixels}
{Maximum character width in pixels}
{Leading in pixels}

{Returns metric information about current text font}

{Ascent in fractional points}
{Descent in fractional points}
{Leading in fractional points}
{Maximum character width in fractional points}
{Handle to global width table}

{Lock or unlock? l

{Use fractional character widths?}

{Turn off font scaling? l

487 Volume One Toolbox Summary

8.3 Text and QuickDraw

8.3.1 QuickDraw Text Characteristics

type
Graf Port = record

device : INTEGER; {Device code}

txFont : INTEGER;
txFace : Style;
txMode : INTEGER;
txSize : INTEGER;
spExtra: Fixed;

end;

{Font number of typeface}
{Type style}
{Transfer mode for text}
{Type size in points}
{Extra space between words, in pixels}

Styleltem = (Bold, Italic, Underline, Outline, Shadow, Condense, Extend);

Style = set of Styleltem;

8.3.2 Setting Text Characteristics

procedure GrafDevice
(deviceCode : INTEGER);

procedure TextFont
(fontNumber : INTEGER);

procedure TextSize
(pointSize : INTEGER);

procedure TextFace
(typestyle : Style);

procedure TextMode
(mode : INTEGER);

procedure SpaceExtra
(extraSpace : Fixed);

8.3.3 Drawing Text

procedure DrawChar
(theChar : CHAR);

procedure Drawstring
(theStri ng : Str255);

{Device code}

{Font number of desired typeface}

{Type size in points l

{Type style}

{Transfer mode for text}

{Extra space between words, in pixels}

{Character to be drawn}

{String to be drawn}

488 Appendix A

procedure DrawText
(theText : Ptr;
firstChar : INTEGER;
charCount : INTEGER);

8.3.4 Measuring Text

function CharWidth
(theChar : CHAR)

: INTEGER;

function StringWidth
(theString : Str255)

: INTEGER;

function TextWidth
(theText : Ptr;
firstChar : INTEGER;
charCount : INTEGER)
: INTEGER;

procedure MeasureText
(charCount : INTEGER;
theText : Ptr;
widthTable : Ptr);

{Pointer to text to be drawn}
{Index of first character within text}
{Number of characters to be drawn}

{Character to be measured}
{Width of character}

{String to be measured}
{Width of string}

{Pointer to text to be measured}
{Index of first character within text}
{Number of characters to be measured}
{Width of text}

{Number of characters to be measured}
{Pointer to text to be measured}
{Pointer to table of text widths}

APPENDIX

-~---------
Resource Formats

489

490 Appendix B

Resource Type 'BNDL' (7.5.4]

Any number
of resources

Any number
of resources

i

-·-... Signature
·-··'1

(4 bytes)

Resource ID of autcgraph
(2 bytes)

Number of resource types mi nus 1
(2 b~tes)

!

Resource type
(4 bytes)

Number of resources mi nus 1
(2 b~tes)

Local ID
(2 bytes) ------------------------------:-------------------------------·

Actual resource ID
(2 b~tes)

• • • • • • •
Local ID

(2 bytes) -------------------------------:------------------------------
Actual resource ID

(2 b~tes)

• • • • • •
i

Resource type
(4 bytes)

Number of resources mi nus 1
(2 b~tes)

Local ID
(2 bytes)

~-----------------------------+----------------------------

• •

Actual resource ID
(2 b~tes)

• • •
Local ID

(2 bytes)
~---------------------------:------------------------------

Act ua 1 resource ID
(2 b~tes)

• • •

• •

Any
number
of
resource
types

491 Resource Formats

Resource Type 'CODE' (7.5.1]

• • •
• • •
I

Jump table offset of f1 rst routine in segment
(2 bytes)

Number of jump table entries for segment
(2 bytes)

Code of segment

(i ndefi ni te length)

• • •
• • •
I

Segment
header

492 Appendix B

Resource Type 'FONT' (8.4.5]

. . .

. . .

. . .
I

f ontType (2 bytes)

fi rstChar (2 bytes)

1 astChar (2 bytes)

wi dMax (2 bytes)

kernMax (2 bytes)

nDescent (2 bytes)

fRectWidth (2 bytes)

f RectHei ght (2 bytes)

owTl oc (2 bytes)

ascent (2 bytes)

descent (2 bytes)

1 eadi ng (2 bytes)

rowWords (2 bytes)

bit Image

(indefinite 1 ength)

locTable

(i ndefi ni te 1 ength)

owTable

(indefinite 1 ength)

. . .

. . .

..

493 Resource Formats

Resource Type 'FREF' (7.5.3]

F11e type
(4 bytes)

Local ID of 1con llst (2 bytes)

. Resource Type 'FRSV' (8.4.7]

• • •

Number of f o_nts (2 bytes)

Resource ID of fi :st f ant (2 bytes)

Resource ID of 1 ~st font (2 bytes)

• • •

494 Appendix B

Resource Type 'FWID' (8.4.6]

• • •

I

f ontType (2 bytes)

fi rstChar (2 bytes)

1 astChar (2 bytes)

wi dMax (2 bytes)

kernMax (2 bytes)

nDescent (2 bytes)

fRect Width (2 bytes)

fRectHei ght (2 bytes)

owTloc (2 bytes)

ascent (2 bytes)

descent (2 bytes)

1 ea ding (2 bytes)

owTab1e

(indefinite length)

• • •

I

495 Resource Formats

Resource Type 'ICN#' (5.5.4]

• • •
• • •

Icon
(128 bytes)

Icon
(128 bytes)

•
•
•

Icon
(128 bytes)

• • •
• • •

Any number
of icons

496 Appendix B

Resource Type 'ICON' [5.5.3]

• • •
• • •

Resource Type 'INIT' [8.4.4]

• • •

Row 1
(4 bytes)

Row 2
(4 bytes)

•
•
•

Row 32
(4 bytes)

Code of
initialization routine

(i ndefi ni te 1 ength)

ooooooooouoooooooooooooooooooooooooooooOHOHOOOOOO••ooooooo••r•ooooooOHOOOOOOOOOOOOOOOOooooooooooooooooooooOOOOOOOUOHOOO

• • •

• • •
• • •

· 128 bytes

497 Resource Formats

Resource Type 'NFNT' (8.4.5]

. . .

. . .

. . .
I

f ontType (2 bytes)

firstChar (2 bytes)

1 astChar (2 bytes)

wi dMox (2 bytes)

kernMox (2 bytes)

nDescent (2 bytes)

fRect Width (2 bytes)

fRectHeight (2 bytes)

owTl oc (2 bytes)

ascent (2 bytes)

descent (2 bytes)

leading (2 bytes)

rowWords (2 bytes)

bitlmage

(i ndefl nite 1 ength)

1ocToble

(i ndefi ni te length)

owToble

(i ndefi ni te 1 ength)

. . .

. . .

. . .
I

498 Appendix B

Resource Type 'PACK' (7.5.2]

• • •
• • •
I

Package header

Code of package

(1ndef1 n1 te 1 ength)

Resource Type 'PAT ' (5.5.1]

Row o Row 1

Row 2 Row 3

Row 4 Row 5

Row 6 Row 7

• • •
• • •
I

l
8 bytes

499 Resource Fonnats

Resource Type 'PAT#' (5.5.2]

• • •

• • •

Number o patterns

Pattern
(8 bytes)

•
•
•

Pattern
(8 bytes)

• • •
Any number

• ofpattems

• •

500 Appendix B

Resource Type 'PICT' [5.5.5]

• • •
• • •

I

Length n bytes

Frame
(8 bytes)

Data defl ni ng picture

(i ndef i ni te 1 ength)

.......... ~

...........

• • •
• • •

I

501 Resource Formats

Resource Type 'STR ' (8.4.2]

Length of str;ng (0-255) -------------!· .. .

• • •

... 1

Characters of string
(1 ndef i ni te 1 ength)

• • •

The maximum length of a 'STR 'resource is 255 characters.

502 Appendix B

Resource Type 'STR#' (8.4.3)

Number of strings (2 bytes)

Length of first string J ,

.. r·· .. ·················

• • •

• • •

• • •

• • •

Characters of first string
(i ndef i ni te 1 ength)

... T

Length of last string ,
···1····························

Characters of last string
(i ndefi ni te length)

.. r························

• • •

• • •

• • •

• • •

Any number
of strings

503 Resource Formats

Resource Type 'TEXT' [8.4.1]

• • •
Characters of text
(i ndefi ni te 1 ength)

A 'TEXT' resource does not begin with a length byte.

• • •

128K "Skinny Mac"

KEY

System Use

Arrows show direction of
growth of stack and
application heap.

505

$00
$

$400
$8
$8

100

00
00

S4E 00

$1A7
$1FC
$1FD

00

7F,
N_
'UU-

E3 $1FF
$1FFFF

128K
Macintosh

Trap Vectors
System Globals
Dispatch Table
System Globals

System Heap

Application Heap

:::::::::;:::::::::
Stack

Application
Global Space

Main Screen Buffer

Main Sound Buffer

508 Appendix C

Sl2K "Fat Mac"

$00
$100
$400
$800
$800

$CBOO

512K
Macintosh

Trap Vectors
System Globals
Dispatch Table
System Globals
System Heap

Application Heap

---------~--------

+ -------------------
Stack

Application
Global Space

$7A700
$7FC7F
$7FOOO

·~Main Screen Buffer

$7FFE3
$7FFFF

Main Sound Buffer

507 Memoiy Layouts

lM Macintosh Plus

$00

$100

$400

$800

$COO

$1400

$CBOO

....

$FA700

$FFC7F
$FFDOO ...
$FFFE3
$FFFFF

Trap Vectors
System Globals

OS Dispatch Table

System Globals

Tool box Dispatch Table

System Heap

Application Heap

------------i------------

____________ t ____________
Stack

Application
Global Space

Main Screen Buffer

Main Sound Buffer

508 Appendix C

512K Macintosh XL (Lisa)

512K
Macintosh XL

$00
Trap Vectors

$100
$400

System Globals

$800
Dispatch Table

$800
System Globals

$CBOO
System Heap

Application Heap

'
---------~--------

Stack

Application

$4EF86
Global Space

$78000

Main Screen Buffer

$7FFF8~~~~~~~
$7FFFF_.

509 Memoiy Layouts

lM Macintosh XL (Lisa)

lM
Macintosh XL

soo-------.
Trap Vectors

$100 1--s""""y-s--te __ m_G~l-o~ba~ls--11
$400 saoo ___ Di_s __ pa_tc_h_T_a_bl_e_
seoo System Globals

System Heap
sceoo--------

Application Heap

+ -------------------
Stack

Application
Global Space

SFFFFa:JlZmmmmm~
$FFFFF

APPENDIX ~~~~'~ D ·---------
.... ~~~iillJ

Key Codes and
Character Codes

Key Codes for the Standard Macintosh Keyboard and Keypad

f$3?l~~ff$14DrstSl[St7l~~ SIA ~rste]~~ $1D i[SIBl~ $33
~lLLllWIWWIWW 7 WW o LJ~ f::~;
E;;:] ~c ~~ ~n ~~ s~E ~~ s~F ~~ s~1 ~~ s~o ~I s~o ~I s~2 ~~ s~F ~I s~ ~~ sc1 ~I siE ~~ s\" ~

$39 ~lf$ciil~~ff$o51Jlf$o4llffi261ff$2811~rsz911lli27ll~
Capsloclc lWJIWJIWJlWJIWJWJ[WIWJtWJIWJLJ~

~ $

38

Shift ~~ ~6 ~r;:]~IT]CT]~WLJLJ~ sn~ 538

Shift ~
~~r w:rder~~

$3A Original keyboard $3A

511

~[:]~~
~ $;9 ~~ ~B ~~ ~C ~1$4? ~
~ $~6 ~I ss; ~l~8 ~~~ ~

[TICTJCTJDC
~ $S

2
0 ~~ ~l ~ Enter

Original keypad

512 Appendix D

Key Codes for the Macintosh Plus Keyboard

Macintosh Plus keyboard

Macintosh Plus keypad

513 Key Codes and Character Codes

Standard Keyboard Layouts

§0 Key Caps

Standard keyboard layout (unshifted)

Standard keyboard layout (with Shift!

514 Appendix D

§0 Key Caps

Standard keyboard layout (with Option)

Key Caps

Standard keyboard layout (with Option-Shift)

515 Key Codes and Character Codes

Macintosh Plus keyboard layout (unshifted)

Key Caps

Macintosh Plus keyboard layout (with Shift)

8 9
5 6

1 2 3

0

516 Appendix D

= I
8 9

5 6
!:i: n p ~ v I - JI < 't !:!: 1 2 3 :i:!

!ill.!!!!!i!i!!!i!i!i!!li!!!!li!!lii!!!!l!!!!!!!i!!!!!!!i!i!!!l!!!!!i!!!l!!!i!l!!!!!i!i!!!:i!i!!!!!i!~~!!l!i:!!!!i:!!i!l!!!Jlti!!!i!i!~!i!i!i!!!!!!!;!!!!!i!~!Jii!
Macintosh Plus keyboard layout (with Option)

Key Caps

D D D D D D D 0 D D - ± = I
CE D D D D D D D B Il " 8 9

I:"
J 6

... 1 2 3

... 0 D

Macintosh Plus keyboard layout (with Option-Shift)

517 Key Codes and Character Codes

Character Codes

First hex digit

$0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $A $B $C $0 $E $F
,,,,,,

0 R XIJL D space 0 @ p ' p e ' 00 l - i • .,,,,,,,;

D x ! 1 A Q 0 q ~A-~ e 0 ± i - . 0
~- .'::

2

~,,,,,

ii D ../ II 2 B R b r t; i ¢ i ... "
'////~ '

3 D • # 3 c s c s t i £ ~ v " 0 "
4 D • s 4 D T d t N i § ¥ f ' 3o u
5 D D 3 5 E u e u ti "i • JJ p ' ft I

6 D D & 6 F u f 0 ii qJ " E ...
u 6

Second 7 D D I 7 G w 8 6 JJ I fl -g w « 0

hex
digit 8

~,,,,~

E -D D (8 H H h H 8 0 ® n » .. ~

~,,Y,,~
9 TAB D) 9 I y i y 8 0 @) 11 y t
A

non·
i D D ... : J z j z a ti TH I break I space

B [{ 8 0
, ~,,_,,

i 0

D D + ; K k ~ A Cl .,,,,,,

c 0
,,,,,,, .. ':.:'

D D ' < L \ I I 0 u ! A < I ,
f///,; '////,

D

,,,,
''.t.'"

C:R D - = M] m } c u :;!: n 0 > i .,,,,, .,,,,;

D D > N " n - e ii fE m a: fi {J

D D I 1 0 - 0 e (j B B m fl 0 0

Characters with shading are typed as two-character combinations

Operating System Errors

The following is a complete list of Operating System eJTOr codes. Not
all are covered in this book, and some of the meanings may be
obscure. (I don't know what a bit-slip nybble is either.) For the eITors
you're most likely to encounter, see reference sections (3.1.2, 6.6.1,
11:8.2.8].

Number Name Meaning

0 No Err No eITOr; all is well
-1 QErr Queue element not found during

deletion
-2 VTypErr Invalid queue element
-3 CorErr Trap ("core routine") number out of

range
-4 UnimpErr Unimplemented trap

-8 SENoDB No debugger installed

-17 Control Err Driver enur during Control operation
-18 StatusErr Driver eITOr during Status operation
-19 Read Err Driver eITOr during Read operation
-20 WritErr Driver eITOr during Write operation
-21 BadUnitErr Bad unit number

519

520 Appendix E

Number Name Meaning

-22 UnitEmptyErr No such entiy in unit table
-23 Open Err Driver enur during Open operation
-24 CloseErr Driver enur during Close operation
-25 DRemovErr Attempt to remove an open driver
-26 Din st Err Attempt to install nonexistent driver
-27 AbortErr Driver operation aborted
-28 NotOpenErr Driver not open

-33 DirFulErr Directory full
-34 DskFulErr Disk full
-35 NSVErr No such volume
-36 IOErr Disk I/0 enur
-37 BdNamErr Bad name
-38 FNOpnErr File not open
-39 EOFErr Attempt to read past end of file
-40 PosErr Attempt to position before start of file
-41 MFulErr Memory (system heap) full
-42 TMFOErr Too many files open (more than 12)
-43 FNFErr File not found
-44 WPrErr Disk is write-protected
-45 FlckdErr File locked
-46 VlckdErr Volume locked
-47 FBsyErr File busy
-48 DupFNErr Duplicate file name
-49 OpWrErr File already open for writing
-50 ParamErr Invalid parameter list
-51 RfNumErr Invalid reference number
-52 GFPErr Enur during GetFPos
-53 VolOfflinErr Volume off-line
-54 Perm Err Permission violation
-55 VolOnlinErr Volume already on-line
-56 NSDrvErr No such drive
-57 NoMacDskErr Non-Macintosh disk
-58 ExtFSErr External file system
-59 FSRnErr Unable to rename file
-60 BadMDBErr Bad master directory block
-61 WrPermErr No write permission

-64 No Drive Err No such drive
-65 OfflinErr Drive off-line
-66 NoNybErr Can't find 5 nybbles
-67 NoAdrMkErr No address mark
-68 DataVerErr Data read doesn't verity
-69 BadCksmErr Bad checksum (address markl
-70 BadBtSlpErr Bad bit-slip nybbles (address mark)
-71 NoDtaMkErr No data mark
-72 BadDCksum Bad checksum (data mark)

521 EITOr Codes

Number Name Meaning

-73 BadDBtSlp Bad bit-slip nybbles (data mark)
-74 WrUnderrun Write undeITUn
-75 CantStepErr Can't step disk drive
-76 TkOBadErr Track 0 bad
-n lnitlWMErr Can't initialize disk chip ("Integrated

Wozniak Machine")
-78 TwoSideErr 1\vo-sided operation on one-sided drive
-79 SpdAdjErr Can't adjust disk speed
-80 SeekErr Seek to wrong track
-81 SectNFErr Sector not found

-85 ClkRdErr EITOr reading clock
-86 ClkWrErr EITOr writing clock
-87 PRWrErr EITOr writing parameter RAM
-88 PRlnitErr Parameter RAM uninitialized
-89 RcvrErr Receiver eITOr (serial communications)
-90 Break Recd Break received !serial communications)

-91 DDPSktErr Socket error (AppleTalk, Datagram
Delivery Protocol)

-92 DDPLenErr Packet too long (AppleTalk, Datagram
Delivery Protocol)

-93 NoBridgeErr No bridge found (AppleTalk)
-94 LAPProtErr Protocol eITOr (AppleTalk, Link Access

Protocol)
-95 ExcessCollsns Excessive collisions (AppleTalk)
-97 PortlnUse Port already in use (AppleTalk)
-98 PortNotCf Port not configured for this connection

(AppleTalk)
-99 MemROZError EITOr in read-only zone

-100 NoScrapErr No desk scrap
-102 NoTypeErr No item in scrap of requested type

-108 MemFullErr No room; heap is full
-109 NilHandleErr Illegal operation on empty handle
-110 MemAdrErr Bad memory address
-111 MemWZErr Illegal operation on free block
-112 MemPurErr Illegal operation on locked block
-113 MemAZErr Address not in heap zone
-114 MemPCErr Pointer check failed
-115 MemBCErr Block check failed
-116 MemSCErr Size check failed
-117 MemLockedErr Attempt to move a locked block

-120 DirNFErr Directory not found
-121 TMWDOErr Too many working directories open
-122 BadMovErr Invalid move operation
-123 WrgVolTypErr Wrong volume type (not HFS)

-127 FSDSlntErr Internal file system error

522 Appendix E

Number Name Meaning

-192 ResNotFound Resource not found
-193 ResFNotFound Resource file not found
-194 AddResFailed AddResource failed
-196 RmvResFailed RmveResource failed
-198 ResErrAttr Operation prohibited by resource

attribute
-199 MapReadErr EITor reading resource map

-1024 NBPBuffOvr Buffer overflow (AppleTalk, Name-
Binding Protocol)

-1025 NBPNoConfirm Name not confirmed (AppleTalk, Name-
Binding Protocol)

-1026 NBPConfDiff Name confirmed for different socket
(AppleTalk, Name-Binding Protocol)

-1027 NBPDuplicate Name already exists (AppleTalk, Name-
Binding Protocol)

-1028 NBPNotFound Name not found (AppleTalk, Name-
Binding Protocol)

-1029 NBPNISErr Names information socket error
(Appletalk, Name-Binding Protocol)

-1096 ReqFailed Request failed (AppleTalk)
-1097 TooManyReqs Too many concurrent requests

(AppleTalk)
-1098 TooManySkts Too many responding sockets

(AppleTalk)
-1099 BadATPSkt Bad responding socket (AppleTalk

Transaction Protocol)
-1100 BadBuffNum Bad buffer number (AppleTalk)
-1101 NoRelErr No release received (AppleTalk)
-1102 CBNotFound Control block not found (AppleTalk)
-1103 NoSendResp AddResponse before SendResponse

(AppleTalk)
-1104 NoDataArea Too many outstanding calls (AppleTalk)
-1105 ReqAborted Request aborted (AppleTalk)

-3101 Buf2Sma11Err Buffer too small (AppleTalk)
-3102 NoMPPError Driver not installed (AppleTalk,

Macintosh Packet Protocol)
-3103 CkSumErr Bad checksum (AppleTalk)
-3104 ExtractErr No tuple in buffer (AppleTalk)
-3105 ReadQErr Invalid socket or protocol type

(AppleTalk)
-3106 ATPLenErr Packet too long (AppleTalk Transaction

Protocol)
-3107 ATPBadRsp Bad response (AppleTalk Transaction

Protocol)
-3108 RecNotFnd No AppleBus record (AppleTalk)
-3109 SktClosedErr Socket closed (AppleTalk)

523 EITOr Codes

"Dire Straits" Errors

The following eITOrs are reported directly to the user-not to the
running program-by the "Dire Straits" Manager (officially called
the System Error Handler). Errors in this categocy are considered so
serious that recovery is impossible: the Toolbox simply displays a
"dire straits11 alert box (the one with the bomb icon) on the screen,
forcing the user to restart the system. Some people insist that OS
really stands for "deep spaghetti," but most Macintosh pro
grammers prefer a more colorful term.

Number Name Meaning

1 OS Bus Err Bus error
2 DSAddressErr Address error
3 DSllllnstErr Illegal instruction
4 DSZeroDivErr Attempt to divide by zero
5 DSChkErr Check trap
6 DSOvflowErr Overflow trap
7 DSPrivErr Privilege violation
8 DSTraceErr Trace trap
9 DSLineAErr "A emulator" trap

10 DSLineFErr "F emulator" trap
11 DSMiscErr Miscellaneous hardware exception
12 DSCoreErr Unimplemented core routine
13 DSIRQErr Uninstalled intenupt
14 DSIOCoreErr 1/0 core error
15 OS Load Err Segment Loader error
16 DSFPErr Floating-point error

17 DSNoPackErr Package 0 not present
18 DSNoPk1 Package 1 not present
19 DSNoPk2 Package 2 not present
20 DSNoPk3 Package 3 not present
21 DSNoPk4 Package 4 not present
22 DSNoPk5 Package 5 not present
23 DSNoPk6 Package 6 not present
24 OS No Pk? Package 7 not present

25 DSMemFullErr Out of memory
26 OS Bad Launch Can't launch program

27 DSFSErr File system eITOr
28 DSStkNHeap Stack/heap collision

30 OS Reinsert Ask user to reinsert disk
31 DSNotTheOne Wrong disk inserted

84 MenuPrgErr Menu purged from heap

Trap Macros

APPENDIX

:: 0~,; F, ~ ----------- /---------------------~ ·, ... ,.~----------------------
Summary of Trap Macros
and Trap Words

The following is an alphabetical list of assembly-language trap
macros covered in this volume, with their coITesponding trap
words. For routines belonging to the standard packages, the
trap word shown is one of the eight package traps LPackO to _Pack?)
and is followed by a routine selector in parentheses. Routines
marked with an asterisk(*) are available only on the Macintosh Plus.

Trap Trap Reference
macro name word section

_Add Pt $A87E (4.4.1)
_Add Resource $A9AB (6.5.3)

_BackPat $A87C (5.1.1)
_BitAnd $A858 (2.2.2)
_BitClr $A85F (2.2.1)
_BitNot $ASSA (2.2.2)
_BitOr $A85B (2.2.2)
_BitSet $A85E [2.2.1)
_BitShift $A85C (2.2.2]
_BitTst $A85D (2.2.1)
_BitXOr $A859 (2.2.2]
_BlockMove $A02E (3.2.6]

5.25

526 Appendix F

Trap Trap Re fore nee
macro name word sec1ion

*_CalcMask $A838 [5.1.6]
_chain $A9F3 [7.1.1]
_Changed Resource $A9AA [6.5.2]
_CharWidth $A88D [8.3.4]

. _ClipRect $A87B [4.3.6]
_ClosePgon $A8CC [4.1.4]
_ClosePicture $A8F4 [5.4.2]
_Close Port $A870 [4.3.2]
_CloseResFile $A99A (6.2.1]
_CloseRgn $A808 (4.1.6]
_CmpString $A03C (2.1.2]
_CompactMem $A04C [3.:U]
_CopyBits $A8EC [5.l.2]

*_CopyMask $A817 [5.l.4]
_CopyRgn $A8DC (4.1..7]
_countResources $A99C [6.8.3]
_CountTypes $A99E [6.8.3]

* _count1 Resources $A80D [6.a.3J
* _count1Types $A81C [6.8.3]
_CreateResFile $A981 [6.S.l]
_CurResFile $A994 [6.~~.2]

_Oate2Secs $A9C7 [2.4.3]
_OeltaPoint $A94F (4.4.1]
_oetachResource $A992 [6.a.21
_OiffRgn $A8E6 [4.4.8]
_OisposHandle $A023 [3.;?.2]
_OisposPtr $A01F [3.;?.2]
_OisposRgn $A809 [4.l.6]
_OrawChar $A883 [8.:J.3]
_OrawPicture $A8F6 [5.4.3]
_Drawstring $A884 [8.:3.3]
_orawText $A885 [8.3.3)

_EmptyHandle $A028 [3.3.3]
_EmptyRect $A8AE [4.4.4]
_EmptyRgn $ABE2 [4.4.7]
_Equal Pt $A881 [4.4.1]
_EqualRect $ABA6 (4.4.5]
_EqualRgn $ABE3 [4.4.8]
_EraseArc $A8CO (5.3.5]
_EraseOval $A889 (5.3.4]
_ErasePoly $ABC8 (5.3.6]
_EraseRect $A8A3 [5.3.2]
_EraseRgn $A804 [5.3.7]
_EraseRoundRect $A882 [5.3.3]
_ExitToShell $A9F4 [7.1.3)

527 Summary of Trap Macros and Trap Words

Trap Trap Reference
macro name word section

_fillArc $A8C2 [5.3.5]
_fillOval $A8BB [5.3.4]
_fill Poly $A8CA [5.3.6]
_fillRect $A8A5 [5.3.2]
_fillRgn $A806 [5.3.7]
_fillRoundRect $A8B4 [5.3.3]

*_FixATan2 $A818 [2.3.6]
* _FixDiv $A840 [2.3.2]
_fixMul $A868 [2.3.2]
_fixRatio $A869 [2.3.2]
_fixRound $A86C [2.3.1]

*_Fix2Frac $A841 [2.3.3]
*_Fix2Long $A840 [2.3.1]
* _fontMetrics $A835 [8.2.6]
*_FracCos $A847 [2.3.6]
*_FracDiv $A84B [2.3.4]
*_FracMul $A84A [2.3.4]
*_FracSin $A848 [2.3.6]
* _fracSqrt $A849 [2.3.4]
*_Frac2Fix $A842 [2.3.3]
_frameArc $ABBE [5.3.5]
_FrameOval $A8B7 [5.3.4]
_FramePoly $A8C6 [5.3.6]
_FrameRect $A8A1 [5.3.2]
_FrameRgn $A802 [5.3.7]
_FrameRoundRect $A8BO [5.3.3]
_FreeMem $A01C [3.3.1]

_GetAppParms $A9F5 [7.3.4]
_GetClip $A87A [4.3.6]
_GetFilelnfo $AOOC [7.3.3]
_GetFName $A8FF [8.2.5]
_GetFNum $A900 [8.2.5]
_GetFontlnfo $A88B [8.2.6]
_GetHandleSize $A025 [3.2.3]
_GetlndResource $A99D [6.3.3]
_GetlndType $A99F [6.3.3]
_GetNamedResource $A9A1 [6.3.1]
_GetPattern $A9B8 [5.1.1]
_GetPen $A89A [5.2.4]
_GetPenState $A898 [5.2.1]
_GetPicture $A9BC [5.4.2]
_GetPixel $A865 [4.2.3]
_Get Port $A874 [4.3.3]
_GetPtrSize $A021 [3.2.3]
_GetResAttrs $A9A6 [6.4.2]

5.28 AppendixF

Trap Trap Reforence
macro name word section

_GetResFileAttrs $A9F6 [6.13.2]
_GetReslnfo $A9A8 (6.4.1]
_GetResource $A9AO [6.:U]
_GetScrap $A9FD [7.4.3]
_GetString $A9BA (8.1.2]

* _Get1 Ix Resource $A80E (6.:3.3]
*_Get11xType $A80F [6.3.3]
* _Get1 Named Resource $A820 [6 .. 3.1]
* _Get1 Resource $A81F [6.3.1]
_GlobalTolocal $AB71 [4.4.2]
_Graf Device $A872 [8.3.2]

_HandAndHand $A9E4 [3.2.7]
_HandToHand $A9E1 [3.2.6]

*_HClrRBit $A068 [3.2.4]
* _HGetState $A069 [3.2.4]
_HidePen $A896 (5.2.3]
_HiWord $A86A [2.2.3]
_Hlock $A029 [3.2.4]
_HNoPurge $A04A [3.2.4]
_HomeResFile $A9A4 [6.4.3]
_HPurge $A049 [3.2.4]

*_HSetRBit $A067 [3.2.4]
* _HSetState $A06A [3.2.4]
_Hunlock $A02A [3.2.4)

_lnfoScrap $A9F9 [7.4.2]
_lnitAllPacks $A9E6 [7.2.2]
_lnitfonts $A8FE [8.2.4]
_lnitGraf $A86E [4.3.1]
_lnitPack $A9E5 [7.2.2]
_lnitPort $AB6D [4.3.2]
_lnsetRect $ABA9 [4.4.4]
_lnsetRgn $A8E1 [4..4.7]
_lnverRect $ABA4 [5.3.2]
_lnverRgn $ABD5 [~;.3.7)
_lnverRoundRect $A883 [5.3.3)
_lnvertArc $A8C1 [5.3.5]
_tnvertOval $ABBA [S.3.4)
_lnvertPoly $A8C9 [S.3.6]
_IUDateString $A9ED (0) [2.4.4]
_IUTimeString $A9ED (2) [~~.4.4)

_Kill Picture $A8F5 [S.4.2)
_Kill Poly $A8CD [4.1.4]

529 Summary of Trap Macros and Trap Words

Trap Trap Reference
macro name word section

_Launch $A9F2 [7.1.1]
_Line $A892 [5.2.4]
_Line To $A891 [5.2.4]
_LoadSeg $A9FO [7.1.2]
_LocalToGlobal $A870 [4.4.2]
_LodeScrap $A9FB [7.4.4]
_Long Mui $A867 [2.3.5]

*_Long2Fix $A83F [2.3.1]
_Lo Word $A86B [2.2.3]

_MapPoly $A8FC [4.4.9]
_MapPt $A8F9 [4.4.9]
_MapRect $A8FA [4.4.9]
_MapRgn $A8FB [4.4.9]

* _MaxApplZone $A063 [3.3.4]
*_MaxBlock $A061 [3.3.1]
_MaxMem $A11D [3.3.2]

* _MaxSizeRsrc $A821 [6.4.3]
*_MeasureText $A837 [8.3.4]
_MoreMasters $A036 [3.2.5]
_Move $A894 [5.2.4]

*_MoveHHi $A064 [3.2.5]
_MovePortT o $A877 [4.3.5)
_Move To $A893 [5.2.4]

* _NewEmptyHandle $A166 [3.2.1]
_NewHandle $A122 [3.2.1]
_NewPtr $A11E [3.2.1)
_NewRgn $A8D8 [4.1.6]
_NewString $A906 [8.1.2]
_NumToString $A9EE (0) [2.3.7)

_QffsetPoly $A8CE [4.4.6]
_QffsetRect $A8A8 [4.4.4)
_QfsetRgn $A8EO [4.4.7)
_QpenPicture $A8F3 [5.4.2)
_Open Poly $A8CB [4.1.4]
_OpenPort $A86F [4.3.2]
_OpenResFile $A997 [6.2.1]
_QpenRgn $A8DA [4.1.6]

_PackO $A9E7 [7.2.1)
_Pack1 $A9E8 [7.2.1]
_Pack2 $A9E9 [7.2.1)
_Pack3 $A9EA [7.2.1)
_Pack4 $A9EB [7.2.1]
_Pack5 $A9EC [7.2.1]

530 Appendix F

Trap Trap Reference
macro name word section

_Pack6 $A9ED [7.~~.1]
_Pack? $A9EE [7.2.1]

*_Pack8 $A816 [7.2.1]
*_Pack9 $A82B [7.;~.1]

*_Pack10 $A82C [7.:~.1]

*_Pack11 $A820 [7.:~.1]
*_Pack12 $A82E (7.2.1]
*_Pack13 $A82F [7.:~.1]
*_Pack14 $A830 [7.:~.1]

*_Pack15 $A831 (7.2.1]
_PaintArc $ABBF (5.:3.5]
_PaintOval $ABB8 (5.3.4]
_PaintPoly $ABC7 [5.3.6]
_PaintRect $A8A2 [5.3.2]
_PaintRgn $A8D3 [5.3.7]
_PaintRoundRect $A8B1 (5.3.3]
_Pen Mode $A89C (5.2.2]
_PenNormal $A89E (5.2.2]
_Pen Pat $A890 (5.2.2]
_PenSize $A89B (5.2.2]
_PinRect $A94E (4.4.3]
_PortSize $AB76 (4.3.5]
_Pt2Rect $A8AC [4.1.2]
_PtlnRect $ABAD [4.4.3]
_PtlnRgn $ABEB [4.4.3]
_PtrAndHand $A9EF [3.2.7]
_PtrToHand $A9E3 (3.2.6]
_PtrToXHand $A9E2 [3.2.6]
_PtToAngle $ABC3 (5.3.5]
_PurgeMem $A04D (3.3.2)

*_PurgeSpace $A162 (3.3.l]
_PutScrap $A9FE (7.4.3)

_Random $A861 (2.3.8)
_Real Font $A902 (8.2.5)
_ReallocHandle $A027 [3.3.3)
_RecoverHandle $A12B [3.2.1)
_RectlnRgn $A8E9 [4.4.3)
_RectRgn $A8DF (4.1.7)
_ReleaseResource $A9A3 [6.3.2]

*_RelString $A050 [2:.1.2]
_ResError $A9AF [Ei.6.1]
_ResrvMem $A040 ca.2.5J
_RmveResource $A9AD (6.5.3]

531 Summaiy of Trap Macros and Trap Words

Trap Trap Reference
macro name word section

_scale Pt $ABF8 [4.4.9)
_scrollRect $ABEF [5.1.5)
_secs2Date $A9C6 [2.4.3]
_SectRect $A8AA [4.4.5]
_sectRgn $A8E4 [4.4.8]

*_SeedFill $A839 [5.1.6)
_SetAppllimit $A020 [3.3.4]
_setClip $A879 (4.3.6)
_setDateTime $A03A [2.4.1)
_setEmptyRgn $ABDO [4.1.7]
_SetFilelnfo $AOOD [7.3.3)
_setFontlock $A903 [8.2.7]

* _SetFScaleDisable $A834 [8.2.8]
_setHandleSize $A024 [3.2.3]
_SetOrigin $A878 [4.3.4]
_SetPBits $A875 [4.3.4]
_setPenState $A899 (5.2.1)
_Set Port $A873 [4.3.3]
_setPt $A880 [4.1.1]
_SetPtrSize $A020 [3.2.3]
_setRecRgn $A8DE (4.1.7]
_setRect $ABA7 (4.1.2]
_SetResAttrs $A9A7 [6.4.2]
_setResFileAttrs $A9F7 [6.6.2]
_SetReslnfo $A9A9 [6.4.1]
_setResPurge $A993 [6.5.5]
_setString $A907 [8.1.2]
_$howPen $A897 [5.2.3]
_SizeRsrc $A9A5 [6.4.3)
_SpaceExtra $A88E [8.3.2)

* _StackSpace $A065 (3.3.4]
_stringToNum $A9EE (1) [2.3.7)
_String Width $A88C [8.3.4]
_Stuff Hex $A866 [2.2.4]
_SubPt $A87F [4.4.1]

_ TextFace $A888 (8.3.2]
_TextFont $A887 (8.3.2]
_TextMode $A889 [8.3.2)
_TextSize $A88A [8.3.2]
_TextWidth $A886 [8.3.4)

Trap Words

53.2 Appendix F

Trap Trap Reference
macro name word sectJon

_UnionRect $A8AB [4.4.51
_UnionRgn $A8E5 [4.4.81
_UniquelD $A9C1 [6.5.3)

* _Unique1 ID $A810 [6.5.3)
_untoadSeg $A9F1 [7.1.2)
_UnlodeScrap $A9FA [7.4.4]
_UpdateResFile $A999 [6.5.4]
_UprString $A854 [2.1.2)
_useResFile $A998 [6.2.2]

_ WriteResource $A980 [6.5.4)

_XQrRgn $A8E7 [4.4.8]

_ZeroScrap $A9FC (7.4.E.]

Here is the same list sorted numerically by trap word. Again, routine
selectors are given in parentheses following the trap word for
routines belonging to the standard packages, and routines marked
with an asterisk(*) are available only on the Macintosh Plus.

Trap Trap Reference
word macro name section

$AOOC _Getfilelnfo [7.3.3]
$AOOD _Setfilelnfo [7.3.3)

$A01C _freeMem [3.8.1]
$A11D _MaxMem [3.a.2J
$A11E _NewPtr [3."~.1]
$A01F _OisposPtr [3 . .Ct2]

$A020 _SetPtrSize [3.2.3]
$A021 _GetPtrSize [3.;~.3]

$A122 _NewHandle [3.;~.1]

$A023 _OisposHandle [3.;?.2]
$A024 _SetHandleSize [3.;?.3]
$A025 _GetHandleSize (3.2.3)
$A027 _ReallocHandle [3.:3.3)
$A128 _RecoverHandle [3.:~.1]

$A029 _Hlock [3.2.4)
$A02A _Hunlock [3.;?.4]
$A02B _EmptyHandle [3.3.3)
$A02D _SetAppllimit [3.3.4)
$A02E _BlockMove [3.2.6)

533 Summary of Trap Macros and Trap Words

Trap Trap Reference
word macro name section

$A036 _MoreMasters (3.2.5]
$A03A _SetOateTime (2.4.1]
$A03C _CmpString (2.1.2]

$A040 _ResrvMem (3.2.5]
$A049 _HPurge (3.2.4]
$A04A _HNoPurge (3.2.4]
$A04C _CompactMem (3.3.2]
$A04D _PurgeMem (3.3.2]

*SA050 _RelString (2.1.2]

*SA061 _MaxBlock [3.3.1]
*SA162 _PurgeSpace (3.3.1]
*$A063 _MaxApplZone (3.3.4]
*$A064 _MoveHHi (3.2.5]
*$A065 _StackSpace (3.3.4]
*$A166 _NewEmptyHandle [3.2.1]
*$A067 _HSetRBit (3.2.4]
*$A068 _HClrRBit (3.2.4]
*$A069 _HGetState (3.2.4]
*$A06A _HSetState (3.2.4]

*$A80D _count1 Resources (6.3.3]
*$ABOE _Get1 Ix Resource (6.3.3]
*$A80F _Get11xType [6.3.3]

*$A810 _Unique11D (6.5.3]
*$A816 _Pac kB [7.2.1]
*$A817 _CopyMask [5.1.4]
*$A818 _FixATan2 (2.3.6]
*$A81C _count1Types (6.3.3]
*$A81F _ Get1 Resource (6.3.1]

*$A820 _Get1 Named Resource (6.3.1]
*$A821 _MaxSizeRsrc (6.4.3]
*$A82B _Pack9 [7.2.1]
*$A82C _Pack10 (7.2.1]
*$A82D _Pack11 (7.2.1]
*$A82E _Pack12 (7.2.1]
*$A82F _Pack13 [7.2.1]

*$A830 _Pack14 [7.2.1]
*$A831 _Pack15 (7.2.1]
*$A834 _SetFScaleDisable [8.2.8]
*$A835 _FontMetrics [8.2.6]
*$A837 _Measure Text (8.3.4]
*$A838 _CalcMask (5.1.6]
*$A839 _Seed Fill [5.1.6]
*$A83F _Long2Fix [2.3.1]

534 Appendix F

Trap Trap Reforence
word macro name section

*$A840 _fix2Long [2.3.1]
*$A841 _fix2Frac (2.3.3]
*$A842 _frac2Fix (2.3.3]
*$A847 _fracCos (2.3.6]
*$A848 _fracSin [2.3.6]
*$A849 _fracSqrt [2.3.4]
*$A84A _fracMul [2.3.4]
*$A84B _fracDiv (2.3.4]
*$A84D _fixDiv [2.3.2]

$A854 _UprString [2.1.2]
$A858 _BitAnd (2.2.2]
$A859 _BitXOr (2.2.2]
$A85A _BitNot [2.2.2]
SA85B _BitOr (2.2.2]
SA85C _BitShift [2.2.2]
$A85D _BitTst [2.2 .. 1]
$A85E _BitSet [2.2 .. 1]
$A85F _BitClr [2.2.1]

$A861 _Random [2.~i.8]

$A865 _GetPixel [4.2.3]
$A866 _Stuff Hex [2.2:.4]
$A867 _Long Mui (2.8.5]
$A868 _fixMul [2.8.2]
$A869 _fix Ratio [2.~L2]

$A86A _HiWord [2.2.3]
$A86B _Lo Word [2.2.3]
$A86C _fixRound [2.~Ll]

$A86D _lnitPort [4.3.2]
$A86E _lnitGraf [4.~Ll]

$A86F _Open Port [4.a.21

$A870 _LocalToGlobal (4.4.2]
$A871 _GlobalTolocal (4.4.2]
$A872 _GrafDevice [8.a.21
$A873 _SetPort [4.a.31
$A874 _GetPort [4.a.3]
$A875 _SetPBits [4.a.41
$A876 _PortSize [4.:J.5]
$A8n _MovePortTo [4.:J.5]
$A878 _SetOrigin [4.:J.4]
$A879 _SetClip [4.:3.6]
$A87A _GetClip [4.:J.6]
$A87B _ClipRect (4.:3.6]
$A87C _Back Pat [5.l.1]
$A870 _ClosePort [4.:3.2]
$A87E _AddPt [4.4.1]
$A87F _SubPt [4.1.1]

535 Summruy of Trap Macros and Trap Words

Trap Trap Reference
word macro name section

$A880 _SetPt [4.1.1]
$A881 _Equal Pt (4.4.1)
$A883 _DrawChar [8.3.3)
$A884 _Drawstring [8.3.3]
$A885 _DrawText [8.3.3]
$A886 _TextWidth [8.3.4)
$A887 _TextFont [8.3.2)
$A888 _TextFace [8.3.2]
$A889 _TextMode [8.3.2)
$A88A _TextSize [8.3.2]
$A88B _GetFontlnfo [8.2.6]
$A88C _String Width [8.3.4]
$A88D _CharWidth [8.3.4]
$A88E _SpaceExtra [8.3.2)

$A891 _Line To (5.2.4]
$A892 _Line [5.2.4)
$A893 _Move To [5.2.4]
$A894 _Move [5.2.4]
$A896 _HidePen [5.2.3]
$A897 _ShowPen [5.2.3]
$A898 _GetPenState [5.2.1]
$A899 _SetPenState [5.2.1)
$A89A _GetPen [5.2.4)
$A89B _PenSize [5.2.2]
$A89C _PenMode [5.2.2]
$A89D _Pen Pat [5.2.2)
$A89E _Pen Normal [5.2.2]

$A8A1 _FrameRect (5.3.2)
$A8A2 _PaintRect [5.3.2]
$A8A3 _EraseRect [5.3.2]
$A8A4 _lnverRect [5.3.2]
$A8A5 _fillRect [5.3.2]
$A8A6 _EqualRect [4.4.5]
$A8A7 _SetRect (4.1.2]
$A8A8 _QffsetRect [4.4.4]
$A8A9 _lnsetRect [4.4.4]
$A8AA _SectRect [4.4.5]
$A8AB _UnionRect [4.4.5]
$A8AC _Pt2Rect [4.1.2]
$ABAD _PtlnRect [4.4.3]
$A8AE _EmptyRect [4.4.4]

$A8BO _FrameRoundRect [5.3.3]
$A8B1 _PaintRoundRect [5.3.3]
$A8B2 _EraseRoundRect [5.3.3]

536 Appendix F

Trap Trap Refurence
word macro name section

$A883 _lnverRoundRect (5.3.3]
$A884 _FillRoundRect (5.3.3]
$A887 _FrameOval (5.3.4]
$A8B8 _PaintOval (5.3.4]
$A8B9 _EraseOval [5.3.4]
$ABBA _lnvertOval [5.3.4]
$A8BB _Fill Oval [5.3.4]
$ABBE _FrameArc [5.3.5]
$A8BF _PaintArc (5.3.5]

$A8CO _EraseArc [5.3.5]
$A8C1 _lnvertArc (5.3.5]
$A8C2 _Fill Arc (5.3.5]
$ASC3 _PtToAngle (5.3.5]
$A8C6 _FramePoly (5.3.6]
$A8C7 _PaintPoly (5.3.6]
$A8C8 _ErasePoly (5.3.6]
$A8C9 _lnvertPoly (5.3.6]
$A8CA _Fill Poly (5.3.6]
$A8CB _Open Poly [4.1..4]
$A8CC _ClosePgon (4.1..4]
$A8CD _Kill Poly [4.1..4]
$A8CE _QffsetPoly (4.4-.6]

$A802 _FrameRgn [5.a.11
$A8D3 _PaintRgn [5.a.11
$A804 _EraseRgn £5.a.11
$A805 _lnverRgn [5.a.7]
$A8D6 _FillRgn [5.a.11
$A808 _NewRgn [4.:l.6]
$A809 _OisposRgn (4.1.6]
$A8DA _OpenRgn [4.1.6]
$A8DB _CloseRgn (4.1.6]
$A8DC _CopyRgn (4.1.7]
$ABDO _SetEmptyRgn [4.l.7]
$A8DE _SetRecRgn [4.l.7]
$A8DF _RectRgn (4.1.7]

$A8EO _OfsetRgn (4.4.7]
$A8E1 _lnsetRgn [4.4.7]
$A8E2 _EmptyRgn (4.4.7]
$A8E3 _EqualRgn (4.4.8]
$A8E4 _SectRgn (4.4.8]
$A8E5 _UnionRgn (4.4.8]
$A8E6 _OiffRgn (4.4.8]
$A8E7 _XQrRgn (4.4.8]

537 Summary of Trap Macros and Trap Words

Trap Trap Reference
word macro name section

$ABEB _PtlnRgn (4.4.3)
$ABE9 _RectlnRgn [4.4.3)
$ABEC _CopyBits [5.1.2]
$ABEF _scrollRect (5.1.5]

$ABF3 _QpenPicture (5.4.2]
$ABF4 _ClosePicture (5.4.2]
$ABF5 _KillPicture (5.4.2]
$ABF6 _Draw Picture (5.4.3]
$ABFB _ScalePt [4.4.9)
$ABF9 _MapPt (4.4.9]
$A8FA _MapRect (4.4.9]
$ABFB _MapRgn [4.4.9)
$ABFC _MapPoly (4.4.9]
$A8FE _lnitFonts (8.2.4]
$ABFF _GetFName (8.2.5]

$A900 _GetFNum [8.2.5]
$A902 _Real Font (8.2.5]
$A903 _setFontlock (8.2.7]
$A906 _NewString [8.1.2)
$A907 _setString (8.1.2]

$A94E _PinRect (4.4.3]
$A94F _OeltaPoint (4.4.1)

$A992 _OetachResource (6.3.2]
$A993 _SetResPurge (6.5.5)
$A994 _CurResFile (6.2.2]
$A997 _QpenResFile [6.2.1]
$A99B _UseResFile [6.2.2]
$A999 _UpdateResFile [6.5.4]
$A99A _CloseResFile (6.2.1]
$A99C _CountResources (6.3.3]
$A990 _GetlndResource [6.3.3]
$A99E _CountTypes (6.3.3]
$A99F _GetlndType [6.3.3]

$A9AO _GetResource [6.3.1]
$A9A1 _GetNamedResource [6.3.1]
$A9A3 _ReleaseResource [6.3.2]
$A9A4 _HomeResFile (6.4.3]
$A9A5 _SizeRsrc (6.4.3]
$A9A6 _GetResAttrs (6.4.2]
$A9A7 _SetResAttrs [6.4.2)
$A9A8 _GetReslnfo [6.4.1)
$A9A9 _SetReslnfo [6.4.1]

538 Appendix F

Trap Trap Reference
word macro name section

$A9AA _Changed Resource (6.5.2]
$A9AB _Add Resource (6.5.3]
$A9AD _RmveResource (6.5.3]
$A9AF _ResError [6.6.1]

$A9BO _ WriteResource (6.5.4]
$A9B1 _CreateResFile (6.5.1]
$A9B8 _GetPattern (5.1.1]
$A9BA _GetString (8.1.2]
SA9BC _GetPicture (5.4.2]

SA9C1 _UniquelD [6.5.3)
$A9C6 _Secs2Date [2.4.3)
$A9C7 _oate2Secs (2.4.3]

$A9E1 _HandT oHand (3.2.6]
$A9E2 _PtrToXHand [3.2;.6]
$A9E3 _PtrToHand [3.2.6]
$A9E4 _HandAndHand [3.2.7]
$A9E5 _lnitPack [7.2 .. 2]
$A9E6 _lnitAllPacks [7.2 .. 2]
$A9E7 _PackO [7.2.1]
$A9E8 _Pack1 [7.2 .. 1)
$A9E9 _Pack2 [7.2;.1]
$A9EA _Pack3 (7.2.1]
$A9EB _Pack4 (7.2:.1]
$A9EC _Pack5 [7.2:.1]
$A9ED _Pack6 [7 . .2.1]
$A9ED (0) _IUDateString (2.4.4]
$A9ED (2) _IUTimeString (2.4.4]
$A9EE _Pack7 [7.~~.1]
$A9EE (0) _NumToString [2.3.7]
$A9EE (1) _stringToNum [2.a.11
$A9EF _PtrAndHand (3 . .2.7]

$A9FO _LoadSeg [7.1.2]
$A9F1 _UnloadSeg [7.1.2]
$A9F2 _Launch [7.1.1]
$A9F3 _Chain [7.1.1]
$A9F4 _ExitT oShel I [7.1.3]
$A9F5 _GetAppParms [7.a.4]
$A9F6 _GetResFileAttrs [6.B.2]
$A9F7 _setResFileAttrs [6.fi.2]
$A9F9 _lnfoScrap [7.4.2]
$A9FA _UnlodeScrap [7.4.4]
$A9FB _LodeScrap [7.4.4]
$A9FC _zeroScrap (7.4.3]
$A9FD _GetScrap [7.4.3]
$A9FE _PutScrap (7.4.3]

System Globals

APPENDIX

§@]--------------
Summary of Assembly
Language Variables

Listed below are all assembly-language global variables covered in
this volume, with their hexadecimal addresses. Warning: The
addresses given may be subject to change in future versions of the
Toolbox; always refer to these variables by name rather than using
the addresses directly.

Hexa-
Variable decimal Reference
name address section Meaning

ApFontlD $984 (8.2.1] True font number of current
application font

Appl limit $130 [3.3.4] Application heap limit
ApplZone $2AA [3.1.3] Pointer to start of applica-

tion heap
AppParmHandle $AEC (7.3.4] Handle to Finder startup

information
BufPtr $10C [3.1.3] Pointer to end of application

global space
CurApName $910 [7.3.4] Name of current application

(maximum 31 characters)
CurApRefNum $900 [6.2.2, Reference number of

7.3.4] application resource file

539

540 Appendix G

Hexa-
Variable decimal Reference
name address section Meaning

CurMap $A5A (6.2.2] Reference number of current
resource file

CurPageOption $936 (7.1.1] Integer specitying screen
and sound buffers

CurrentA5 $904 (3.1.3] Base pointer for application
globals

CurStackBase $908 [3.1.3] Pointer to base of stack
Desk Pattern $A3C [5.1.2] Screen background pattern
FinderName $2EO [7.1.3] Name of program to exit to

(maximum 15 characters)
*FractEnable $8F4 (8.2.8] Use fractional character

widths? (1 byte)
FScaleDisable $A63 [8.2.8] Tum off font scaling:> (1 byte)
HeapEnd $114 (3.1.3] Pointer to end of application

heap
Key1Trans $29E [8.4.4] Pointer to keyboard con-

figuration routine
Key2Trans $2A2 [8.4.4] Pointer to keypad configura-

tion routine
Lo3Bytes $31A [3.2.4] Mask for extracting address

from a master pointer
MemTop $108 (3.1.3] Pointer to end of ph,Ysical

memoiy
Res Err $A60 [6.6.1] Result code from last

resource-related call
Res load $A5E [6.3.4) Load resources automati-

cally?
ROM Base $2AE [3.1.3] Pointer to start of ROM
ROMFontO $980 (8.2.1] Handle to system font

*ROMMaplnsert $B9E [6.6.3] Include ROM-based
resources in search?
(1 byte)

ScrapCount $968 [7.4.2) Current scrap count
ScrapHandle $964 (7.4.2] Handle to contents of desk

scrap
ScrapName $96C (7.4.2] Pointer to scrap file name
ScrapSize $960 [7.4.2] Current size of desk scrap
ScrapState $96A (7.4.2] Current state of desk scrap
ScrnBase $824 [3.1.3] Pointer to start of screen

buffer
Sound Base $266 (3.1.3] Pointer to start of sound

buffer
SP Font $204 (8.2.1] True font number of default

application font

541 Summaiy of Assembly Language Variables

Hexa-
Variable decimal Reference
name address section Meaning

SysMap $A58 (6.2.2] True reference number (not 0)
of system resource file

SysMapHndl $A54 [6.2.2] Handle to resource map of
system resource file

SysResName $AD8 (6.2.2] Name of system resource
file (string, maximum 19
characters)

SysZone $2A6 (3.1.3] Pointer to start of system
heap

Time $20C [2.4.1] Current date and time in
"raw'' seconds

*TmpResload $89F (6.6.3] Load resources automatically
just this once? (1 byte)

TopMapHndl $A50 [6.2.2] Handle to resource map of
most recently opened (not
necessarily current)
resource file

*WidthTabHandle $82A [8.2.6) Handle to global width table
for current font

QuickDraw Globals

The QuickDraw global variables listed below are located at the given
offsets relative to the QuickDraw globals pointer, which in tum is
pointed to by address register A5.

Variable Offset Reference
name in bytes section Meaning

The Port 0 (4.3.3] Current graphics port
White -8 [5.1.2) Standard white pattern
Black -16 [5.1.2] Standard black pattern
Gray -24 (5.1.2] Standard gray pattern
LtGray -32 [5.1.2] Standard light gray pattern
DkGray -40 (5.1.2] Standard dark gray pattern
Arrow -108 (11:2.5.2] Standard aITOW cursor
Screen Bits -122 [4.2.1] Screen bit map
Rand Seed -126 [2.3.8] "Seed" for random number

generation

GLOSSARY

The following is a glossaiy of technical terms used in this volume.
Note: Terms shown in italic are defined elsewhere in this glossaiy.

A5 world-Another name for a program's application global space, located
by means of a base address kept in processor register AS.

"above A5" size-The number of bytes needed between the base address
in register AS and the end of the application global space, to hold a
program's application para.meters and jump table.

access permission-The form of communication allowed for a particular
file, such as read-only, write-only, or read/write.

allocate-To set aside a block of memory from the heap for a particular
use.

and-A bit-level operation in which each bit of the result is a 1 if both
operands have 1 s at the corresponding bit position, or 0 if either or both
have Os.

Apple mark-A special control chara.cter(character code $14) that appears
on the Macintosh screen as a small Apple symbol; used for the title of
the menu of desk accessories.
AppleTalk-A network to which the Macintosh can be connected for
communication with other computers.

AppleTalk drivers-The pair of device drivers used for communicating
with other computers over the AppleTalk network.

application file-A file containing the executable code of an application
program, with a file type of 'APPL' and the program's own signature as
its creator signature.

application font-The standard typeface used by an application program;
normally Geneva, but can be changed to some other typeface if desired.

543

l>'l'I Glossaiy

application global space-The area of memmy containing a program's
application globals, application parameters, and jump table; normally
situated just before the screen buffer in memory and located by means of
a base address kept in processor register AS.

application globals-Global variables belonging to the running applica
tion program, which reside in the application global space and are
located at negative offsets from the base address in register AS.

application heap-The portion of the heap available for use by the
running application program.

application heap limit-The memory address marking the farthest point
to which the heap can expand, to prevent it from colliding with the stack.

application parameters-Descriptive information about the running
program, located in the application global space at positive offsets from
the base address in register AS. The application parameters are a vestige
of the Lisa software environment, and most are unused on the Macin
tosh; the only ones still iri use are the QuickDraw globals pointer and the
startup handle.

application resource me-The resource fork of a program'~ application
file, containing resources belonging to the program itself.

arc-A part of an oval, defined by a given starting angle and arc angle.

arc angle-The angle defining the extent of an arc or wedge.

ascent-(1) For a text character, the height of the character above the
baseline, in pixels. (2) For a font, the maximum ascent of any character
in the font.

ascent line-The line marking a font's maximum ascent above the
baseline.

ASCII-American Standard Code for Information Interchange, the in
dustry-standard 7-bit character set on which the Macintosh's 8-bit
character codes are based.
@ operator-An operator provided by Apple's Pascal compiler, which
accepts a variable or routine name as an operand and produces a blind
pointer to that variable or routine in memory.

attribute byte-The byte in a resource map entiy that holds the resource
attributes.

autograph-A Finder resource whose resource type is the same as a
program's signature, and which seives as the program's representative
in the desktop file; also called a version data resource.

background pattern-The pattern used for erasing shapes in a given
graphics port.

545 Glossary

base address-In general, any memmy address used as a reference point
from which to locate desired data in memory. Specifically, (1) the address
of the bit image belonging to a given bit map; (2) the address of a
program's application parameters, kept in processor register AS and used
to locate the contents of the program's application global space.

base of stack-The end of the stack that remains fixed in memory and
is not affected when items are added and removed; compare top of stack.

base type-In Pascal, the data type to which a given pointer type is
declared to point: for example, the pointer type "'INTEGER has the base
type INTEGER.

baseline-The reference line used for defining the character images in a
font, and along which the graphics pen travels as text is drawn.

"below AS" size-The number of bytes needed between the beginning of
the application global space and the base address in register AS, to hold
a program's application globals.

Binary /Decimal Conversion Package-A standard package, provided in
the system resource file (or in ROM on the Macintosh Plus), that converts
numbers between their internal binary format and their external
representation as strings of decimal digits.

binary point-The binmy equivalent of a decimal point, separating the
integer and fractional parts of a ji}(ed-point number or a fraction.

bit image-An array of bits in memory representing the pi}(els of a
graphical image.

bit map-The combination of a bit image with a boundary rectangle. The
bit image provides the bit map's content; the boundary rectangle defines
its extent and gives it a system of coordinates.

bit-mapped display-A video display screen on which each pi}(el can be
individually controlled.

blind pointer-A Pascal pointer whose base type is unspecified, and
which can consequently be assigned to a variable of any pointer type.
The standard Pascal constant NIL is a blind pointer; two nonstandard
features of Apple's Pascal compiler, the POINTER function and the @

operator, also produce blind pointers as their results.

block-An area of contiguous memory within the heap, either allocated
or free.

bottleneck procedure-A specialized procedure for perlonning a low
level drawing operation in a given graphics port, used for customizing
QuickDraw operations.

boundary rectangle-(1) For a bit map, the rectangle that defines the bit
map's extent and determines its system of coordinates. (2) For a graphics
port, the boundaiy rectangle of the port's bit map.

l)~fj Glossaiy

bounding box-The smallest rectangle enclosing a polygon or region on
the coordinate grid.

bozo bit-A Finder flag that prevents a file from being copied; named for
the Apple programmer who invented it.

bundle-A Finder resource that identifies all of a program's other Finder
resources, so that they can be installed in the desktop file when the
program's application file is copied to a new disk.

bundle bit-A Finder flag that tells whether an application file has any
Finder resources that must accompany it when it's copied to a new disk.

busy bit-A Finder flag that tells whether a file is currently in use (has
been opened and not yet closed).

byte-An independently addressable group of 8 bits in the computer's
memory.

Caps Lock key-A modifier key on the Macintosh keyboard, used to
convert lowercase letters to uppercase while leaving all nonalphabetic
keys unaffected.

chain-To start up a new program after reinitializing the stack and
application global space, but not the application heap; compan:~ launch.

change bit-A Finder flag that tells whether a file's content:> have been
changed and must be updated on the disk.

character code-An 8-bit integer representing a text character; compare
key code.

character image-A bit image that defines the graphical representation
of a text character in a given typeface and type size.

character key-A key on the keyboard or keypad that :produces a
character when pressed; compare modifier key.

character offset-The horizontal distance, in pixels, from tlhe left edge
of the font rectangle to that of the character image for a given character;
equal to the difference between the character's leftward kem and the
maximum leftward kem in the font.

character origin-The location within a character image marking the
position of the graphics pen when the character is drawn.

character style-See type style.

character width-The distance in pixels by which the graphics pen
advances after drawing a character; compare image width.

character-width table-An optional table in a font record, containing
fractional character widths for the characters in the font. Used only by
the Macintosh Plus Toolbox; ignored on earlier models.

check mark-A special control character (character code S12) that ap
pears on the Macintosh screen as a small check symbol; used for marking
items on a menu.

547 Glossaiy

clip-To confine a drawing operation within a specified boundmy, sup
pressing any drawing that falls outside the boundmy.

Clipboard~The term used in Macintosh user's manuals to refer to the
scrap.

clipping boundaries-The boundaries to which all drawing in a given
graphics port is confined, consisting of the port's boundary rectangle,
port rectangle, clipping region, and visible region.

clipping region-A general-purpose clipping boundary associated with a
graphics port, provided for the application program's use.

clock chip-A component of the Macintosh, powered independently by
a batteiy, that keeps track of the current date and time even when the
machine's main power is tumed off.

code segment-A resource containing all or part of a program's ex
ecutable machine code.

Command key-A modifier key on the Macintosh keyboard, used in
combination with character keys to type keyboard equivalents to menu
items.

command mark-A special control character (character code $11) that
appears on the Macintosh screen as a "cloverleaf' symbol; used for
displaying Command-key equivalents of menu items.

compaction-The process of moving together all of the relocatable blocks
in the heap, in order to coalesce the available free space.

complement-A bit-level operation that reverses the bits of its operand,
changing each 0 to a 1 and vice versa.

control-An object on the Macintosh screen that the user can manipulate
with the mouse, in order to operate on the contents of a window or
control the way they're presented.

control character-An ASCII text character with a character code from
$00 to $1 F (as well as the character $7F). Most control characters have no
special meaning and no visual representation on the Macintosh, but a
few are defined as special-purpose symbols for use on the screen: see
Apple mark, check mark, command mark, diamond mark.

creator signature-A four-character string identifying the application
program to which a given file belongs, and which should be started up
when the user opens the file in the Finder.

current port-The graphics port in use at any given time, to which most
QuickDraw operations implicitly apply.

current resource file-The resource file that will be searched first in
looking for a requested resource, and to which certain resource-related
operations implicitly apply.

cursor-A small (16-by-16-bit) bit image whose movements can be con
trolled with the mouse to designate positions on the Macintosh screen.

l>'1:~ Glossaiy

customize-To redefine an aspect of the Toolbox's operation to meet the
specialized needs of a particular program.

cut and paste-The standard method of editing used on the: Macintosh,
in which text, graphics, or other information is transfeITed from one
place to another by way of an intermediate scrap or Clipboard'.

dangling pointer-An invalid pointer to an object that no longer exists
at the designated address.

data fork-The fork of a file that contains the file's data, such as the text
of a document; compare resource fork.

date and time record-A data structure representing a calendar date and
clock time, with fields for the year, month, day of the month, day of the
week, hour, minute, and second; used for reading or setting the Macin
tosh's built-in clock chip.

dead character-(1) A text character with a zero character width, which
doesn't advance the graphics pen when drawn. (2) A charac:ter (such as
a foreign-language accent) that combines with the character following it
to produce a single result character (such as an accented letter).

definition file-An assembly-language file containing definitions of Tool
box constants and global variables, to be incorporated into an assembly
language program with an .INCLUDE directive.

dereference-(1) In general, to convert any pointer to the value it points
to. (2) Specifically, to convert a handle to the coITesponding master
pointer.

descent-(1) For a text character, the distance the character extends
below the baseline, in pixels. (2) For a font, the maximum descent of any
character in the font.

descent line-The line marking a font's maximum descent below the
baseline.

desk accessory-A type of device driver that operates as a "mini
application" that can coexist on the screen with any other program.

desk scrap-The scrap maintained by the Toolbox to hold information
being cut and pasted from one application program or desk accessory to
another.

desktop-(1) The gray background area of the Macintosh screen, outside
of any window. (2) The arrangement of windows, icons, and other objects
on the screen, particularly in the Finder.

desktop &le-A file containing Finde,,.related information about the files
on a disk, including their file types, creator signatures, and locations on
the Finder desktop.

detach-To decouple a resource from its resource file, so that the
resource will remain in memmy when the file is closed.

549 Glossary

device code-An integer identifying the output device a graphics port
draws on, used in selecting the appropriate fonts for drawing text.

device driver-The low-level software through which the Toolbox com
municates with an input/output device; an important special category of
device drivers are desk accessories.

diameters of curvature-The width and height of the ovals fonning the
comers of a rounded rectangle.

diamond mark-A special control character (character code $13) that
appears on the Macintosh screen as a small diamond symbol. This
symbol is a vestige of earlier versions of the Macintosh user interlace and
no longer has any specific use.

directory-A table containing information about the files on a disk. Under
the Hierarchical File System, directories may in tum contain other
directories, and correspond to folders displayed on the desktop by the
Finder.

disk driver-The device driver built into ROM for communicating with
the Macintosh's built-in Sony disk drive.

Disk Initialization Package-A standard package, provided in the system
resource file, that takes corrective action when an unreadable disk is
inserted into the disk drive, usually by initializing the disk.

dispatch table-A table in memory, used by the Trap Dispatcher to locate
the various Toolbox routines in ROM.

document-A coherent unit or collection of infonnation to be operated
on by a particular application program.

document file-A file containing a document.

driver reference number-An integer between -1 and -32, used to refer
to a particular device driver; derived from the driver's unit number by the
formula refNum = -(unitNum + 1).

empty handle-A handle that points to a NIL master pointer, indicating
that the underlying block has been purged from the heap.

empty rectangle-A rectangle that encloses no pixels on the coordinate
grid.

empty region-A region that encloses no pixels on the coordinate grid.

emulator trap-A form of trap that occurs when the MC68000 processor
attempts to execute an unimplemented instruction; used to "emulate"
the effects of such an instruction with software instead of hardware.

enclosing rectangle-The rectangle within which an oval is inscribed.

erase-To fill a shape with the background pattern of the cuTTent port.

error code-A nonzero result code, reporting an eiror of some kind
detected by an Operating System routine.

550 Glossruy

event-An occuITence reported by the Toolbox for a program to respond
to, such as the user's pressing the mouse button or typing on the
keyboard.

exception-See trap.

exclusive or-A bit-level operation in which each bit of the result is a 1
if the coITesponding bits of the two operands are different, or 0 if they're
the same.

EXIT -A nonstandard feature of Apple's Pascal compiler that allows an
immediate return from the middle of a procedure or function.

external reference-A reference from one code segment to a routine
contained in another segment.

family record-A data structure containing information about a given
typeface; used only by the Macintosh Plus Toolbox.

Fat Mac-A model of Macintosh introduced in Autumn 1.984, with a
memory capacity of 512K and a single-sided disk drive.

field-One of the components of a Pascal record.

file-A collection of infonnation stored as a named unit on a disk.

file icon-The icon used by the Finder to represent afile on the screen.

file reference-A Finder resource that establishes the connection be
tween a file type and its file icon.

file reference number-An identifying number assigned by the file
system to stand for a given file.

file system-The part of the Toolbox that deals with files on a disk or
other mass storage device.

file type-A four-character string that characterizes the kind of infonna
tion a file contains, assigned by the program that created the file.

fill-To color a shape with a specified pattern.

fill pattern-A pattern associated with a graphics port, used privately by
QuickDra.w for filling shapes.

Finder-The Macintosh program with which the user can manipulate
files and start up applications; normally the first program to be run when
the Macintosh is turned on.

Finder Bags-A set of Boolean flags associated with a fil'e, specifying
attributes of interest to the Finder; see bozo bit, bundle bit, busy bit,
change bit, init bit, invisible bit, lock bit, system bit.

Finder information record-A data structure summarizin,g the FindeT'
related properties of a file, including its file type, creator slgnature, and
location on the Finder desktop.

Finder resources-The resources associated with a program that tell the
Finder how to represent the program's files on the screen. Finder
resources include autographs, icon lists, file references, and l>undles.

551 Glossary

Finder startup handle-See startup handle.

Finder startup information-See startup information.

fixed-point number-A binmy number with a fixed number of bits before
and after the binary point; specifically, a value of the Toolbox data type
Fixed, consisting of a 16-bit integer part and a 16-bit fractional part.

Floating-Point Arithmetic Package-A standard package, provided in the
system resource file (or in ROM on the Macintosh Plus), that perfonns
arithmetic on floating-point numbers in accordance with the IEEE stan
dard, using the Standard Apple Numeric Environment (SANE).

Boating-point number-A binary number in which the binary point can
"float" to any required position; the number's internal representation
includes a binmy exponent, or order of magnitude, that determines the
position of the binaiy point.

folder-An object in a disk's desktop file, represented on the screen by
an icon or a window, that can contain files or other folders; used for
organizing the files on the disk. Under the Hierarchical File System,
folders coITespond to directories.

folder number-The integer used by the Finder to identify a particular
folder.

font-(1) A resource containing all of the character images and other
infonnation needed to draw text characters in a given typeface and type
size. (2) Sometimes used loosely (and incoITectly) as a synonym for
typeface, as in the tenns font number and tel(t font.

font height-The overall height of a font's font rectangle, from ascent line
to descent line.

font image-A bit image consisting of all the individual character images
in a given font, aITanged consecutively in a single horizontal row; also
called a strike of the font.

font information record-A data structure containing metric infonna
tion about a font in integer form; compare font metric record.

font metric record-On the Macintosh Plus, a data structure containing
metric information about a font in fixed-point form; compare font infor
mation record.

font number-An integer denoting a particular typeface.

font record-A data structure containing all the infonnation associated
with a given font.

font rectangle-The smallest rectangle, relative to the baseline and
character origin, that would enclose all of the character images in a font
if they were superimposed with their origins coinciding.

font scaling-The enlargement or reduction of an existing font to sub
stitute for an unavailable font of a different size.

lili~ Glossaiy

font width table-A resource containing all of the informa1ion on the
character widths in a given font, but without the character images
themselves; used for measuring the width of text without actually draw
ing it.

fork-One of the two parts ofwhich every file is composed: the datafork
or the resource fork.

fraction-A fi}(.ed-point value of the Toolbox data type Fract, consisting of
a 2-bit integer part and a 30-bit fractional part.

fractional character widths-A new feature, available only on the Macin
tosh Plus, that allows the character widths for a font to be expressed as
fractional, rather than integral, numbers of points. The resulting character
positions are then rounded to the available resolution of whatever device
they're drawn on (such as the screen or a printer).

frame-To draw the outline of a shape, using the pen size, pen pattern,
and pen mode of the cuTTent port.

free block-A contiguous block of space available for allocation within
the heap.

global coordinate system-The coordinate system associated with a
given bit image, in which the top-left comer of the image has coordinates
(0, O); the global coordinate system is independent of the boundary rect
angle of any bit map or graphics port based on the image.

global width table-A table used internally by the Macintosh Plus Tool
box, holding the fractional character widths and other low-level data
about a font.

glue routine-See interface routine.

graphics pen-The imaginary drawing tool used for drawing lines and
text characters in a graphics port.

graphics port-A complete drawing environment containing all the in
formation needed for QuickDraw drawing operations.

handle-A pointer to a master pointer, used to refer to a relocatable
block.

heap-The area of memory in which space is allocated and deallocated
at the explicit request of a running program; compare stack.

heap zone-An independently maintained area of the heap, such as the
application heap or the system heap.

HFS-See Hierarchical File System

Hierarchical File System-The file system built into the Macintosh Plus
Toolbox in ROM, designed for use with double-sided disks, hard disks,
and other large-capacity storage devices; also available for older models
in RAM-based fonn.

553 Glossary

icon-A bit image of a standard size (32 pixels by 32), used on the
Macintosh screen to represent an object such as a disk or file.

icon list-A resource containing any number of icons; commonly used to
hold a file icon ai;id its mask for use by the Finder.

identifying information-The properties of a resource that uniquely
identify it: its resource type, resource ID, and (optional) resource name.

IEEE standard-A set of standards and conventions for floating-point
arithmetic, published by the Institute of Electrical and Electronic En
gineers.

image-height table-An optional table in a font record, containing infor
mation on the heights of the character images in the font. Used only by
the Macintosh Plus Toolbox; ignored on earlier models.

image width-The horizontal extent of a character image; the width in
pixels of a character's graphical representation. Compare character
width.

ImageWriter-A dot-matrix impact printer manufactured and marketed
by Apple Computer.

init bit-A Finder flag that tells whether the Finder resources belonging
to an application file have been installed in the desktop file of the disk
it resides on.

Inside Macintosh-The comprehensive manual on the Macintosh Tool
bo"}(, produced by Apple Computer and published by Addison-Wesley
Publishing Company, Inc.

interface-A set of rules and conventions by which one part of an
organized system communicates with another.

interface file-A text file that contains the declarations belonging to an
interface unit in source-language form, to be incorporated into a Pascal
program with a uses declaration (or a $i directive in some versions of
Pascal).

interface routine-A routine, part of an interface unit, that mediates
between the stack-based parameter-passing conventions of a Pascal call
ing program and those of a register-based Toolbox routine; also called a
"glue routine."

interface unit-A precompiled unit containing declarations for Toolbox
routines and data structures, making them available for use in Pascal
programs.

International Utilities Package-A standard package, provided in the
system resource file, that helps programs conform to the prevailing
conventions of different countries in such matters as formatting of
numbers, dates, times, and currency; use of metric units; and alpha
betization of foreign-language accents, diacriticals, and ligatures.

l>l>.:1 Glossaiy

interrupt-A trap triggered by a signal to the MC68000 processor from a
peripheral device or other outside source.

interrupt handler-The trap handler for responding to an interrupt.

invert-(1) Generally, to reverse the colors of pi((els in a graphical image,
changing white to black and vice versa. (2) Specifically, to reverse the
colors of all pixels inside the boundmy of a given shape.

invisible bit-A Finder flag that marks a file as invisible, so that the Finder
will not display its icon on the screen.

jump table-A table used to direct e((ternal references beitween code
segments to the proper addresses in memory; located in thH application
global space, at positive offsets from the base address kept in register A5.

K-See kilobyte.

kern-The amount by which a character image extends leftward beyond
the character origin or rightward beyond the character width.

kerning table-An optional table in a family record, containing informa
tion on the amount of kern between pairs of characters in a typeface;
used only by the Macintosh Plus Toolbox.

key code-An 8-bit integer representing a physical key on the keyboard
or keypad; compare character code.

key map-An array of bits in memory representing the state of the keys
on the keyboard and keypad.

keyboard configuration-The correspondence between keys on the
Macintosh keyboard or keypad and the characters they pmduce when
pressed.

keyboard driver-The low-level part of the Toolbox that communicates
directly with the keyboard and keypad.

keyboard routine-A routine to be executed directly by the keyboard
driver when the user types a number key while holding down the
Command and Shift keys; stored on the disk as a resource of type 'FKEY'.

keypad-See numeric keypad.

kilobyte-A unit of memory capacity equal to 210 (1,024) bytes.

LaserWriter-A high-resolution laser printer manufactured and mar
keted by Apple Computer.

launch-To start up a new program after reinitializing the stack, applica
tion global space, and application heap; compare chain.

leading-The amount of extra vertical space between lines of text,
measured in pixels from the descent line of one to the ascent line of the
next; rhymes with "heading," not "heeding." Although every font specifies
a recommended leading value, the recommendation need not be fol
lowed when drawing text in a graphics port.

555 Glossary

length byte-The first byte of a Pascal1ormat string, which gives the
number of characters in the string, from 0 to 255.

LIFO-Last in, first out; the order in which items are added to and
removed from the stack. Compare UOF.

ligature-A text character that combines two or more separate characters
into a single symbol, such as ae.
limit pointer-A pointer that marks the end of an area of memory by
pointing to the address following the last byte.

line drawing-Drawing in a graphics port by moving the graphics pen,
using the QuickDraw routines Move, MoveTo, Line, and LineTo.

LIOF-"Last in, OK, fine"; describes the allocation and deallocation of
items in the heap, which can occur in any order at all. Compare LIFO.

Lisa-A personal computer manufactured and marketed by Apple Com
puter; the first reasonably priced personal computer to feature a high
resolution bit-mapped display and a hand-held mouse pointing device.
Now called Macintosh XL.

List Manager Package-A standard package, provided in the system
resource file, that displays scrollable lists of items from which the user
can choose with the mouse (like the one used in selecting files to be
read from the disk). This package was introduced at the same time as
the Macintosh Plus, and is available only in versions 3.0 or later of the
System file.

load-To read an object, such as a resource or the desk scrap, into
memory from a disk file.

local coordinate system-The coordinate system associated with a given
graphics port, determined by the boundary rectangle of the port's bit
map.

local ID-The identifying number by which a Finder resource is refe1red
to by other resources in the same bundle; not necessarily the same as
its true resource ID.

localize-To tailor a program's behavior for use in a particular country.

location table-A table giving the horizontal position of each character
image in a font, measured in pixels from the beginning of the font image.

lock-To temporarily prevent a relocatable block from being purged or
moved within the heap during compaction.

lock bit-(1) A flag in the high-order byte of a master pointer that marks
the associated block as locked. (2) A Finder flag that prevents a file from
being deleted, renamed, or replaced.

logical shift-A bit-level operation that shifts the bits of a given operand
left or right by a specified number of positions, with bits shifted out at
one end being lost and Os shifted in at the other end.

556 Glossary

long integer-A data type provided by Apple's Pascal compiler, consist
ing of double-length integers: 32 bits including sign, covering the range
±2147483647.

long word-A group of 32 bits (2 words, or 4 bytes) beginning at a word
boundary in memory.

Macintosh-A personal computer manufactured and marketed by Apple
Computer, featuring a high-resolution bit-mapped display and a hand
held mouse pointing device.

Macintosh Development System-A 68000 assembler and software
development system produced by Consulair, Inc., and marketed by Apple
Computer.

Macintosh Operating System-The body of machine code built into the
Macintosh ROM to handle low-level tasks such as memory management,
disk input/output, and serial communications.

Macintosh Plus-An upgraded model of Macintosh introduced in January
1986, with a memory capacity of 1 megabyte (expandable to 4 megabytes)
and featuring an updated and expanded version of the Toolbox., a
double-sided disk drive, a redesigned keyboard, and a SCSI parallel port.

Macintosh Programmer's Workshop-A software development system
produced and marketed by Apple Computer, including a Pascal compiler,
C compiler, 68000 assembler, and other development tools.

Macintosh XL-A Lisa computer running Macintosh software under the
MacWorks emulator.

MacWorks-The software "emulator" program that enables a Lisa to run
Macintosh software without modification.

main entry point-The point in a program's code where execution begins
when the program is first started up.

main segment-The code segment containing a program's main entry
point.

master pointer-A pointer to a relocatable block, kept at a known, fixed
location in the heap and updated automatically by the Toolbox whenever
the underlying block is moved during compaction. A pointer to the
master pointer is called a handle to the block.

MC68000-The 32-bit microprocessor used in the Macintosh, manufac
tured by Motorola, Inc.; usually called "68000" for short.

megabyte-A unit of memory capacity equal to 220 (1,048,576) bytes.

menu-A list of choices or options from which the user can choose with
the mouse.

MlnlEdit-The extensive example program developed in Volume Two of this
book.

l>l>~ Glossaiy

missing character-A character for which no character image is defined
in a given font, represented graphically by the font's missing symbol.

missing symbol-The graphical representation used for drawing missing
characters in a given font.

modifier key-A key on the Macintosh keyboard that doesn't generate a
character of its own, but may affect the meaning of any character key
pressed at the same time; see Shift key, Caps Lock key, Option key,
Command key.

mouse-A hand-held pointing device for controlling the movements of
the cursor to designate positions on the Macintosh screen.

nonrelocatable block-A block that can't be moved within the heap
during compaction, referred to by single indirection with a simple
pointer; compare relocatable block.

numeric keypad-A set of keys for typing numbers into the computer.
On the Macintosh Plus, the keypad is physically built into the keyboard
unit; on earlier models, it's an optional separate unit that connects to
the keyboard with a cable.

object module-The file containing the compiled code of a Pascal unit,
to be linked with that of an application program after compilation.

offset/width table-A table giving the character offset and character
width for each character in a given font.

one-deep operation-On the Macintosh Plus, a resource-related opera
tion that applies only to the current resource file, rather than to all open
resource files.

Operating System-See Macintosh Operating System.

Option key-A modifier key on the Macintosh keyboard, used to type
special characters such as foreign letters and accents.

or-A bit-level operation in which each bit of the result is a 1 if either
or both operands have 1 s at the corresponding bit position, or 0 if both
have Os.

ORD-A standard Pascal function for converting any scalar value to a
corresponding integer (for instance, a character to its equivalent integer
character code); on the Macintosh, ORD will also accept a pointer and
return the equivalent long-integer address.

origin-(1) The top-left comer of a rectangle. (2) For a bit map or graphics
port, the top-left comer of the boundary rectangle, whose coordinates
determine the local coordinate system.

oval-A graphical figure, circular or elliptical in shape; defined by an
enclosing rectangle.

lili~ Glossaiy

package-A resource, usually residing in the system resource file (or in
ROM on the Macintosh Plus), containing a collection of general-purpose
routines that can be loaded into memoiy when needed; used to supple
ment the Toolbox with additional facilities.

package number-The resource ID of a package; must be be1ween 0 and
7 (0 and 15 on the Macintosh Plus).

package trap-A Toolbox trap used at the machine-language level to call
a routine belonging to a package. In the original Toolbox there are eight
package traps, named _PackO to _Pack7; on the Macintosh Plus there are
sixteen, named _PackO to _Pack15.

paint-To fill a shape with the pen pattern of the current port.

Pascal-format string-A sequence of text characters represented in the
internal format used by Apple's Pascal compiler, consisting of a length
byte followed by from O to 255 bytes of character codes.

pattern-A small bit image (8 pixels by 8) that can be repeated indefinitely
to fill an area, like identical floor tiles laid end to end.

pattern list-A resource consisting of any number of patterns.

pattern transfer modes-A set of transfer modes used for drawing lines
or shapes or filling areas with a pattern.

pen-See graphics pen.

pen level-An integer associated with a graphics port that determines the
visibility of the port's graphics pen'. The pen is visible if the pen level is
zero or positive, hidden if it's negative.

pen location-The coordinates of the graphics pen in a given graphics
port.

pen mode-The transfer mode with which a graphics port draws lines
and frames or paints shapes; should be one of the part.em transfer
modes.

pen pattern-The pattern in which a graphics port draws lines and
frames or paints shapes.

pen size-The width and height of the graphics pen belonging to a
graphics port.

pen state-The characteristics of the graphics pen belonging to a graphics
port, including its pen location, pen size, pen mode, and pen pattern.

picture-A recorded sequence of Quick.Draw operations that can be
repeated on demand to reproduce a graphical image.

picture frame-The reference rectangle within which a picture is defined,
and which can be mapped to coincide with any other specified rectangle
when the picture is drawn.

pixel-A single dot forming part of a graphical image; shm1 for "picture
element."

559 Glossary

point-(1) A position on the QuickDrawcoordinate grid, specified by a pair
of horizontal and vertical coordinates. (2) A unit used by printers to
measure type sizes, equal to approximately 1/72 of an inch.

point size-See type size.

POINTER-A function provided by Apple's Pascal compiler, which accepts a
long integer representing a memoiy address and returns a blind pointer
to that address.

polygon-A graphical figure defined by any closed series of connected
straight lines.

pop-To remove a data item from the top of a stack.

port-(1) A connector on the back of the Macintosh for communication
with a peripheral device, such as a printer or modem. (2) Short for
graphics port.

port rectangle-The rectangle that defines the portion of a bit map that
a graphics port can draw into.

printer driver-The device driver for communicating with a printer
through one of the Macintosh's built-in ports.

pseudo-random numbers-Numbers that seem to be random but can
be reproduced in exactly the same sequence if desired.

purge-To remove a relocatable block from the heap to make room for
other blocks. The purged block's master pointer remains allocated, but
is set to NIL to show that the block no longer exists in the heap; all
existing handles to the block become empty handles.

purge bit-A flag in the high-order byte of a master pointer that marks
the associated block as purgeable.
purgeable block-A relocatable block that can be purged from the heap
to make room for other blocks.

push-To add a data item to the top of a stack.

pushdown stack-See stack.

QuickDraw-The extensive collection of graphics routines built into the
Macintosh ROM.

QuickDraw globals pointer-A pointer to the global variables used by
QuickDraw, kept at address O(AS) in the application global space and
initialized with the lnitGraf routine.

RAM-See random-access memory.

random-access memory-A common but misleading term for read/write
memory.

l>fi() Glossaiy

read-only memory-Memory that can be read but not writ1en; usually
called ROM. The Skinny Mac and Fat Mac have 64K of ROM containing
the built-in machine code of the Macintosh Operating System, QuickDraw,
and the User Interface Toolbo}<.. The Macintosh Plus has an expanded
128K ROM that also includes some packages, device driver.r;, and other
frequently used resources. Compare read/write memory.

read/write memory-Memory that can be both read and written; com
monly known by the misleading tenn random-access memory, or RAM.
The Skinny Mac has 128K of read/write memory; the Fat Mac has 512K;
the Macintosh Plus has 1 megabyte, expandable to 4 megabytes. Compare
read-only memory.

reallocate-To allocate fresh space for a relocatable block tllat has been
purged, updating the block's master pointer to point to its new location.
Only the space is reallocated; the block's fonner contents are not re
stored.

rectangle-A four-sided graphical figure defined by two points specifying
its top-left and bottom-right comers, or by four integers specifying its top,
left, bottom, and right edges.

region-A graphical figure that can be of any arbitrary shape. It can have
cwved as well as straight edges, and can even have holes in it or consist
of two or more separate pieces.

register-based-Describes a Toolbox routine that accepts its parameters
and retums its results directly in the processor's registE:rs; compare
stack-based.

release-To deallocate a block of memory that's no longer needed,
allowing the space to be reused for another purpose.

relocatable block-A block that can be moved within the heap during
compaction, referred to by double indirection with a handle; compare
nonrelocatable block.

resource-A unit or collection of information kept in a resource file on
a disk (or in ROM on the Macintosh Plus) and loaded into memory when
needed.
resource attributes-A set of flags describing properties of a resource,
kept in the attribute byte of its resource map entry.

resource bit-A flag in the high-order byte of a master pointer that
marks the associated block as a resource.

resource compiler-A utility program that constucts resources accord
ing to a coded definition read from a text file.

resource data-The infonnation a resource contains.

resource editor-A utility program with which resources can be defined
or modified directly on the screen with the mouse and keyboard.

561 Glossary

resource file-A collection of resources stored together as a unit on a
disk; technically not a file as such, but merely the resource fork of a
particular file.

resource file attributes-A set of flags describing properties of a resource
file.

resource fork-The fork of a ft.le that contains the file's resources;
usually called a resource file. Compare datafork.

resource ID-An integer that identifies a particular resource within its
resource type.

resource map-The table that summarizes the contents of a resource
file, stored as part of the file .itself and read into memory when the file
is opened.

resource name-An optional string of text characters that identifies a
particular resource within its resource type, and by which the resource
can be listed on a menu.

resource specification-The combination of a resource type and
resource ID, or a resource o/{1e and resource name, which uniquely
identifies a particular resource.

resource type-A four-character string that identifies the kind of infor
mation a resource contains.

result code-An integer code returned by an Operating System routine
to signal successful completion or report an error.

return link-The address of the instruction following a routine call, to
which control is to return on completion of the routine.

ROM-See read-only memory.

rounded rectangle-A graphical figure consisting of a rectangle with
rounded comers; defined by the rectangle itself and the dimensions of
the ovals forming the comers.

routine selector-An integer used to identify a particular routine within
a package.

row width-The number of bytes in each row of a bit image.

SANE-See Standard Apple Numeric Environment.

scrap-The vehicle by which information is cut and pasted from one
place to another.

scrap count-An integer maintained by the Toolbox that tells when the
contents of the desk scrap have been changed by a desk accessory.

scrap me-A disk file holding the contents of the desk scrap.

scrap handle-A handle to the contents of the desk scrap, kept by the
Toolbox in a system global.

scrap information record-A data structure summarizing the contents
and status of the desk scrap.

56.2 Glossary

screen buffer-The area of memory reserved to hold the scn~en image.

screen image-The bit image that defines what is displayed on the
Macintosh screen.

screen map-The bit map representing the Macintosh screen, kept in the
QuickDraw global variable ScreenBits. Its bit image is the screen image; its
boundary rectangle has the same dimensions as the screen, with the
origin at coordinates (0, 0).

scroll-To move the contents of a window with respect to the window
itselt changing the portion of a document or other infom1ation that's
visible within the window.

scroll bar-A control associated with a window that allows the user to
scroll the window's contents.

SCSI-Small Computer Standard Interface, a parallel interface built into the
Macintosh Plus for communicating with peripheral devices; commonly
pronounced "scuzzy'' (or "sexy," according to personal temperament).

seed-The starting value used in generating a sequence of pseudo-random
numbers.

segment header-Information at the beginning of a code segment iden
tifying which entries in the program's jump table belong to this segment.

segment number-The resource ID of a code segment

segment 0-A special code segment containing the information needed
to initialize a program's application global space.

serial driver-The device driver built into ROM for communicating with
peripheral devices through the Macintosh's built-in serial ports.

serial port-A connector on the back of the Macintosh for communicat
ing with peripheral devices such as a hard disk, printer, or modem.

shape-Any of the figures that can be drawn with QuickDraw shape-draw
ing operations, including rectangles, rounded rectangles, ovals, arcs and
wedges, polygons, and regions.

shape drawing-Drawing shapes in a graphics port, using the operations
frame, paint, fill, erase, and invert.

Shift key-A modifier key on the Macintosh keyboard, used to convert
lowercase letters to uppercase or to produce the upper character on a
nonalphabetic key.

signature-A four-character string that identifies a particular application
program, used as a creator signature on files belonging to the program
and as the resource type of the program's autograph resource.

68000-See MC68000.

SIZEOF-A function provided by the Apple Pascal compiler, v.ruch accepts
a variable or type name as a parameter and returns the number of bytes
of memory occupied by that variable or by values of that type.

563 Glossary

Skinny Mac-The original model of Macintosh, introduced in Janumy
1984, with a memory capacity of 128K and a single-sided disk drive.

sound buffer-The area of memory whose contents determine the
sounds to be emitted by the Macintosh speaker.

sound driver-The device driver built into ROM for controlling the
sounds emitted by the Macintosh speaker.

source transfer modes-A set of transfer modes used for transfening
pixels from one bit map to another or for drawing text characters into a
bit map.

stack-(1) Generally, a data structure in which items can be added
(pushed) and removed (popped) in UFO order: the last item added is
always the first to be removed. (2) Specifically, the area of Macintosh RAM
that holds parameters, local variables, return addresses, and other tem
porary storage associated with a program's procedures and functions;
compare heap. One end of the stack (the base) remains fixed in memory,
while items are added or removed at the other end (the top); the stack
pointer always points to the current top of the stack.

stack-based-Describes a Toolbox routine that accepts its parameters
and returns its results on the stack, according to Pascal conventions;
compare register-based.

stack pointer-The address of the current top of the stack, kept in
processor register A?.

Standard Apple Numeric Environment-A set of routines for perlonning
arithmetic on floating-point numbers in accordance with the IEEE stan
dard; available on the Macintosh through the Floating-Point Arithmetic
Package. Commonly called by the acronym SANE.

Standard File Package-A standard package, provided in the system
resource file, that provides a convenient, standard way for the user to
supply file names for input/output operations.

standard fill tones-A set of five patterns representing a range of
homogeneous tones from solid white to solid black, provided as global
variables by the QuickDraw graphics routines.

standard patterns-The 38 patterns included on the standard MacPaint
pattern palette, available as a pattern list resource in the system resource
file.

starting angle-The angle defining the beginning of an arc or wedge.

startup handle-A handle to a program's startup information, passed to
the program by the Finder as an application parameter.

startup informadon-A list of document files selected by the user to be
opened on starting up an application program.

strike-See font image.

· 564 Glossary

string list-A resource consisting of any number of Pascaljormat strings.

system bit-A Finder flag that marks files needed by the system for proper
operation.

system font-The typeface (Chicago) used by the Toolbox for displaying its
own text on the screen, such as window titles and menu items.

system globals-Fixed memory locations reseived for use by the Tool
box.

system heap-The portion of the heap reseived for the private use of the
Macintosh Operating System and Toolbox.

system resource me-The resource fork of the file System, containing
shared resources that are available to all programs.

text characteristics-The properties of a graphics port that detennine
the way it draws text characters, including its te}Cl face, te}Cl size, te}Cl
style, and te}(t mode.

text face-The typeface in which a graphics port draws text characters.

text me-A file of file type 'TEXT', containing pure text characters with no
additional fonnatting or other information.

text font-A term sometimes used loosely (and incorrectly) as a synonym
for te}(t face.

text mode-The transfer mode with which a graphics port draws text
characters.

text size-The type size in which a graphics port draws text characters.

text style-The type style in which a graphics port draws text characters.
Toolbox-(1) The User Interface Toolbo}(. (2) Loosely, the entire contents
of the Macintosh ROM1 including the Macintosh Operating System and
QuickDraw in addition to the User Interface Toolbo}(proper.

top of stack-The end of the stack at which items are added and
removed; compare base of stack.

Transcendental Functions Package-A standard package, provided in
the system resource file (or in ROM on the Macintosh Plus), that calcu
lates various transcendental functions on floating-point numbers, such as
logarithms, exponentials, trigonometric functions, compound interest,
and discounted value.

transfer mode-A method of combining pi}(els being transferred to a bit
map with those already there.

translate-To move a point or a graphical figure a given distance horizon
tally and vertically.

trap-An eITOr or abnormal condition that causes the MC68000 processor
to suspend normal program execution temporarily and execute a trap
handler routine to respond to the problem; also called an e}(ception.

565 Glossaiy

Trap Dispatcher-The trap handler routine for responding to the
emulator trap, which examines the contents of the trap word and jumps
t~ the coiresponding Toolbox routine in ROM.

trap handler-The routine executed by the MC68000 processor to
respond to a particular type of trap.

trap macro-A macroinstruction used to call a Toolbox routine from an
assembly-language program; when assembled, it produces the ap
propriate trap word for the desired routine. Trap macros are defined in
the assembly-language interface to the Toolbox and always begin with
an underscore character U.

trap number-The last 8 or 9 bits of a trap word, which identify the
particular Toolbox routine to be executed; used as an index into the
dispatch table to find the address of the routine in ROM.

trap vector-The address of the trap handler routine for a particular type
of trap, kept in the vector table in memmy.

trap word-An unimplemented instruction used to stand for a particular
Toolbox operation in a machine-language program. The trap word in
cludes a trap number identifying the Toolbox operation to be performed;
when executed, it causes an emulator trap that will execute the cor
responding Toolbox routine in ROM.

type size-The size in which text characters are drawn, measured in
printer's points and sometimes refeired to as a "point size."

type style-Variations on the basic form in which text characters are
drawn, such as bold, italic, underline, outline, or shadow.

typecasting-A feature of Apple's Pascal compiler that allows data items
to be converted from one data type to another with the same underlying
representation (for example, from one pointer type to another).

typeface-The overall form or design in which text characters are drawn,
independent of size or style. Macintosh typefaces are conventionally
named after world cities, such as New York, Geneva, or Athens.

unimplemented instruction-A machine-language instruction whose ef
fects are not defined by the MC68000 processor. Attempting to execute
such an instruction causes an emulator trap to occur, allowing the effects
of the instruction to be "emulated" with software instead of hardware.

unit-A collection of precompiled declarations that can be incorporated
wholesale into any Pascal program.

unit number-The resource ID of a device driver; an integer between 0
and 31, related to the driver reference number by the formula refNum =
-(unitNum + 1).

unload-To remove an object, such as a code segment or the desk scrap,
from memocy, often (though not necessarily) by writing it out to a disk
file.

566 Glossary

unlock-To undo the effects of locking a relocatable block, again allowing
it to be moved within the heap during compaction.

unpurgeable block-A relocatable block that can't be purged from the
heap to make room for other blocks.

update-(1) To write a new version of a resource file to the disk, incor
porating all changes made in the file's resources in memory. (2) To
redraw all or part of a window that has been exposed to view on the
screen as a result of the user's manipulations with the mouse.

update region-The region defining the portion of a window that must
be redrawn when updating the window.

user-The human operator of a computer.

user interface-The set of rules and conventions by which a human user
communicates with a computer system or program.

User Interface Guidelines-An Apple document (part of the Inside
Macintosh manual) that defines the standard user inteTjace conventions
to be followed by all Macintosh application programs.

User Interface Toolbox-The body of machine code built into the
Macintosh ROM to implement the features of the standard us.er intelface.

uses declaration-A declaration that incorporates the code of a precom
piled unit into a Pascal program.

vector table-A table of trap vectors kept in the first kilobyte of RAM,
used by the MC68000 processor to locate the trap handler routine to
execute when a trap occurs.

version data-Another name for a program's autograph resource, so
called because its resource data typically holds a string identifying the
version and date of the program.

visible region-A clipping boundary that defines, for a graphics port
associated with a window, the portion of the port rectangle that's exposed
to view on the screen.

wedge-A graphical figure bounded by a given arc and the radii joining
its endpoints to the center of its oval.

wide-open region-A rectangular region extending from coordinates
(-32768, -32768) to (+32767, +32767), encompassing the entire QuickDraw
coordinate plane.

window-An area of the Macintosh screen in which infonnation is dis
played, and which can overlap and hide or be hidden by other windows.

word-A group of 16 bits (2 bytes) beginning at a word .boundary in
memory.

word boundary-Any even-numbered memory address. Every word or
long word in memory must begin at a word boundary.

Index

Addition, fixed-point, 31
AddPt, 12.1, 172-173, 463
AddResource, 2.92., 317-318, 478
Address register, 62.·64
Alternate buffers, 61-62
ApFontlD system global, 384, 539
AppFlle record, 364-365, 482
APPL file type, 337
Application font, 384
Application global space, 61-64,

32.9, 331
Application heap, 67, 84
Application parameters, 63-64
Application resource file, 281
Arcs, 215-217, 260-262, 472.-473
Arithmetic operations, 31-32, 42-

51, 449-451
Arrays, as parameters, 22
Ascent line, 387
ASCII codes, 379-381, 403-406,

517
Assembly language

interlace for, 20-23
variables for, 539-541

At sign operator, 25-26
Attributes, resource, 290-292,

312-313, 323-324, 477,
479

567

Autograph resource, 339-340
Automatic resource loading, 295

BackPat, 195, 232-234, 467
Baseline, 382
Binary /Decimal Conversion

Package, 334, 354-356.
See also Conversions

Bit images, 114-117, 131
Bit maps, 131-134, 158-159, 460

and ports, 136-137, 140,
168-169, 462

BitAnd, 30, 39-40, 291, 448
BltClr, 29, 38-39, 448
Bit-level operations, 29-31, 38-42,

448-449
BitMap record, 132, 158, 460
BltNot, 30, 39-40, 291, 449
BitOr, 30, 39-40, 291, 448
Bits, 114-117

numbering of, 29-30, 38
BitSet, 29, 38-39, 448
BitShift, 30, 39-40, 449
BitTst, 29, 38-39, 448
BitXOr, 30, 39-40, 291, 449
Blind pointers, 23-24
BlockMove, 82, 84, 101-102, 456

Blocks
copying and combining of,

80-84, 101-104, 455-456
locking of, 76-80, 96-98, 455
memory allocation of, 67-72,

91-95, 454-455
purging of, 84-86, 107-108,

457
relocation of, 70-72, 76, 81,

99-100, 455
BNDL resource, 340, 375-376, 490
Booleans, as parameters, 22
Boundary rectangle, 117-118,

131
Bounding box, 126
Buffers, 61-62, 115-116, 134
Bundle bit, 342
Bundles, 340
Button, 212
B~etype, 73, 87,453
B~eCount parameter, 81
Bytes, 8

CalcMask, 228, 245-246, 469
Case sensitivity, of resource

names, 278
Chain. 347-351, 479

568

ChangedResource, 293, 296, 316-317,
478

Character codes, 381, 517

Character images, 382-383, 389-
390

Character offset, 391
Character origin, 382
Character set, 379-381, 403-406,

483
Character strings. See Strings
Characters, as parameters, 22

Character-width table, 392
CharWidth, 400, 436-438, 488
Clipboard File, 347
Clipping boundaries, 137-138

and graphics pen, 187
Clipping region, 139, 170-171,

463
with CopyBits, 200, 202
setting, 223, 225

CUpRect, 139, 170-171, 463
Clock chip, 32-33
ClosePicture, 228, 266-267, 474
ClosePoly, 152-153, 218, 459

ClosePort, 135, 165-167, 462
CloseResfile, 282, 301-302, 475
CloseRgn, 155-156, 222, 459
ClrAppfiles, 338, 364-365, 481

CODE, resource type, 371-372, 491
and code segments, 327-329

Code segments, 327-333, 480

and resources, 275-276
Comments, Pascal, 6
CompactMem, 106-107, 457
Compatibility, and computer

models, 16
Control characters, 379-380, 405-

406
Conversions

of coordinate systems, 143·
146, 173-174, 463

of date and time, 33, 54-55,
452

of numbers and strings, 31,
42-43, 45, 49-50, 334,
354-356, 451

Coordinates and coordinate
systems, 168-169

for bit images, 117-121

Index

Coordinates and coordinate
systems-cont.

conversions of, 143-146,
173-174, 463

global, 143-146
local, 140-146

CopyBits, 197-204, 242·243, 468
CopyMask, 202, 205, 228-229, 231,

242-243' 468
CopyRgn, 156-157, 223, 460
Cosines, 31, 48, 451
Count1Resources, 289, 307·308, 476
Count1Types. 289, 307·308, 476
CountAppfiles, 338, 364-365, 481
CountResources, 288, 307-308, 398,

476
CountTypes, 288, 307-308, 476
CreateResFile, 293, 315·316, 478
Creator signatures, 335-337, 358,

480
Current port, 135-136, 167-168,

462
Current resource file, 281-282,

302-303, 475
CurrentA5 system global, 63, 540
CurResFile, 281, 302-303, 475

Dangling pointers, 69, 78
Data fork, 280
Date, 33, 51-57, 452-453
Date2Secs, 33, 54·55, 452
Dateform type, 55, 453
DateTimeRec record, 33, 53-54, 452
Dead characters, 401-402
Declarations, Pascal, 5·6
Definition files, 21
Delay, 212
DeltaPoint, 121, 172-173, 463
Dereferencing, of handles, 76·77
DeRez, resource decompiler, 277
Descent line, 38 7
Desk accessories, 344
Desk scrap, 344·348, 366-371,

482-483
Desktop files, 336, 342
DetachResource, 285, 305·306, 476
Device drivers, 343-344
DiffRgn, 129, 181-182, 465
"Dire straits" errors, 523

Direct bit transfer, 197-204, 242-
243, 468

Disk Initialization Package, 333,
354-356

Dispatch table, 15-16
memory addresses for, 61

DisposeRgn, 155-156, :!23, 460
DisposHandle, 71, 93, 454
DlsposPtr, 71, 93, 454
Division, 31, 44
Document files, 336-33 7
Double indirection, 69
DrawChar, 395, 400, 435-436, 487
DrawPicture, 228, 267-268, 474
Drawstring, 395, 399-400, 435-436,

487
DrawText, 395, 435-436, 488
Driver reference numbers, 343
Drivers, device, 34a-344
DRVR resource type, 343-344, 377-

378

EmptyHandle, 86, 107-108, 457

EmptyRect, 121-122, 176-177, 464
EmptyRgn, 127, 179-180, 465
Emulator traps, 13-14
Environs, 16, 89, 454
.EQU directives, 21
EqualPt, 121, 172-173, 463
EqualRect, 121, 177-1'78, 465
EqualRgn, 127, 181-rn2, 466
EqualString, 29, 35-37. 447
EraseArc, 261-262, 472
EraseOval, 259, 472

ErasePoly, 263, 473
EraseRect, 207, 209, 255-256, 471
EraseRgn, 264, 473
EraseRoundRect, 257-258, 472
Error codes

"dire straits", 523
operating system, 519-522

Error conditions, and EXIT, 27
Error reporting

memory management, 74·
75, 88·89, 453

with resources, 294, 321·
322, 479

Exceptions, 13-16

I_

569

Exclusive or, of regions, 129,
131, 181-182

EXIT, 27
ExitToShell, 338-339, 352-353, 480

Family records, 385, 391

Fat Mac
memory layout of, 506
RAM of, 59-61
system heap size of, 65

Fields, Pascal, 6
File reference numbers, 281
File reference resource, 340
File types, 335-337, 358, 480

Fill pattern, 195
FillArc, 261-262, 472
FillOval, 223, 259, 472
FillPoly, 219, 263, 473
Fi!IRect, 207, 255-256, 471
FillRgn, 223, 264, 473
FillRoundRect, 257-258, 471
Finder, 361-362

and file types, 335-337, 358
information record, 336,

342, 359-361, 480-482
resources, 339-342
and signatures, 335-337, 358
startup information for, 64,

337-339, 363·365
Flnfo record, 359-361, 481
Fix2Frac, 45, 450
Fix2Long, 31, 42-43, 449
FixATan2, 48, 451
FixDlv, 31, 44, 450
Fixed type, 31, 42-44, 449-450
FixMul, 31, 44, 450
FixRatio, 31, 44, 394, 450
FixRound, 31, 42-43, 449
Floating-Point Arithmetic

Package, 334, 354-356
FMetrlcRec record, 426-427, 486
FOND resource type, 385
FONT resource type, 325-326, 384,

443-445, 492
Font/DA Mover, and resource files,

277
Fontinfo record, 426-427, 486
FontMetrics, 426-427, 486

Index

FontRecord record, 386-392, 418·
420, 484-485

Fonts
access to, 425-427, 485-486
height, 387
image, 387, 389-390, 421·

424
initialization for, 384, 424,

485
locking of, 428, 486
numbers, 384-386, 415-418,

484
record, 386-392, 418-420,

484-485
rectangle, 387
scaling of, 386, 428-430, 486
width table, 401

Foreign languages
characters for, 380, 401-402
and International Utilities

Package, 29, 334, 354-356
and resources, 275
and strings, 29

Frac2Fix, 45, 450
FracCos, 48, 451
FracDiv, 46, 450
FracMul, 46, 450
FracSin, 48, 451
FracSqrt, 46, 450
Fract type, 31, 45, 450
FractEnable global flag, 392
Fraction arithmetic, 31, 45-46,

450
FrameArc, 216, 261-262, 472
FrameOval, 223, 259, 472
FramePoly, 219, 263, 473
FrameRect, 206, 255-256, 471
FrameRgn, 227, 264, 473
FrameRoundRect, 257-258, 471
FreeMem, 104-105, 456
FREF resource type, 340, 342,

373-374, 493
FRSV resource type, 446, 493
Functions, Pascal, 7
FWID resource type, 401, 445-446,

493

Get11ndResource, 289, 307-308, 476
Get11ndType, 289, 307-308, 476

Get1NamedResource, 283, 304-305,
476

Get1Resource, 283, 304-305, 475
GetAppFiles, 338, 364-365, 481
GetAppllimit, 84, 109-110, 457
GetAppParms, 338, 364·365, 481
GetClip, 139, 170·171, 463
GetDateTime, 33, 51-52, 452
GetFlnfo, 336, 361-362, 481
GetFNum, 385, 425, 485
GetFontlnfo, 399, 426-427, 485
GetFontName, 385, 399, 425, 485
GetHandleSlze, 71, 94-95, 454
Getlcon, 205, 268-269, 474
GetlndPattern, 195, 232-234, 467
GetlndResource, 288, 295, 307-308,

398, 476
GetlndString, 380, 407·408, 483
GetlndType, 288, 307-308, 476
GetNamedResource, 282-283, 295,

304-305, 475
GetPattern, 232-234, 467
GetPen, 187, 252-253, 470
GetPenState, 197, 247-249, 469
GetPicture, 266-267, 474
GetPixel, 163, 461
GetPort, 135-136, 167-168, 188,

462
GetPtrSize, 71, 94-95, 454
GetResAttrs, 290, 312·313, 477
GetResFileAttrs, 292, 323-324, 479
GetReslnfo, 290, 293, 296, 310-311,

398, 477
GetResource, 282-283, 295, 304-305,

395, 475
GetScrap, 346, 369-370, 482
GetString, 380, 407-408, 483
GetTime, 33, 53, 452
Global coordinate system, 143·

146
Global variables, 61-64

QuickDraw, 112-113, 541
GlobalToLocal, 125, 146, 173-174,

463
Goto, 27
GrafQevice, 434-435, 487
GrafPort record, 135-136, 160-161,

238-241, 461
and graphics pen, 247, 251,

469-470

570

Graf Port record-cont.
and patterns, 232, 467
and Quick.Draw, 393, 431-

433, 487
and transfer modes, 238-

241, 467
GrafPtr type, 135, 160, 461
GrafSlze constant, 112
GrafVerb type, 254-255, 471
Graphics. See Graphics pen;

Graphics ports;
Quick.Draw; Text

Graphics pen, 186-197, 253, 390,
395

characteristics, 247-250,
469-470

hiding and showing, 192-
193, 251-252, 470

level, 192
modes, 195-197, 250
and ports, 186-187
size, 191-193, 219, 250

Graphics ports, 134-139, 160-162,
461-463

and coordinate systems,
140-146

and graphics pen, 186-187,
193-197

operations on, 164-171
See also Graf Port record

HandAndHand, 82-83, 103-104, 456
Handle type, 73, 87, 453
Handles, 67-72, 76-77
HandToHand, 80-82, 101-102, 455
HClrRBlt, 96-98, 455
Heap and heap management, 65-

67, 104-105, 109-110,
454-457

compaction of, 68-69, 79-80,
106-107

See also Blocks
Heap zones, 67
Hexadecimal numbers, 8-9, 29-30
HGetState, 96-98, 455
HidePen, 192-193, 251-252, 470
HiWord, 30, 40-41, 449
Hlock, 76, 96-98, 283, 455
HNoPurge, 86, 96-98, 455

Index

HNoPurge-cont.
and resource files, 283, 293

HomeResFile, 289, 314-315, 478
HPurge, 86, 96-98, 455

and resource files, 283, 293
HSetRBit, 96-98, 455
HSetState, 96-98, 455
HUnlock, 76, 96-98, 283, 455

ICN# resource type, 272, 340,
342, 495

ICON resource type, 271-272, 496
Icons, 204-205, 268-269, 474

and Finder resources, 339-
341

Identification, of resources, 277-
278, 290, 310-311, 477

Image width, 390
Image-height table, 392
Images

bit. See Bit images
screen, 115

INCLUDE directives, 19, 21
lnfoScrap, 346-347, 367-368, 482
INIT resource type, 381, 402, 441-

443, 496
lnitAUPacks, 357, 480
lnitFonts, 384, 424, 485
lnltGraf, 112, 164-165, 384, 462
lnitPack, 357, 480
lnitPort, 135, 165-167, 462
lnitWindows, 384
lnllne declarations, 19
lnsetRect, 123, 176-177, 464
lnsetRgn, 127, 179-180, 465
lnt64Blt record, 47, 451
Integers, as parameters, 22
Interface routines and units, 18-

20
Interfaces

assembly-language, 20-23
Pascal, 18-19
user, 1

International Utilities Package,
29, 334, 354-356. See also
Foreign languages

Intersection
of rectangles, 124-125, 177-

178, 464

Intersection-cont.
of regions, 129, 181-182,

465
lnvertArc, 261-262, 47:3
lnvertOval, 259, 472
lnvertPoly, 263, 473
lnvertRect, 207, 209, 255-256, 471
lnvertRgn, 264, 473
lnvertRoundRect, 257-258, 472
IUDateString, 33, 55-57, 453
IUEqualString, 29
IUTimeString, 33, 55.57·, 453

Jump table, 62-63, 329-333

Kerning, 390-391
Key codes, 381, 408-410

for Macintosh Plus, 512
for standard Macintosh, 511

Key1Trans system global, 402, 540
Key2Trans system global, 402, 540
Keyboard

configurations for, 381-382,
402

driver, 401-402
standard layouts of, 411-

414, 513-516
KillPlcture, 266-267, 4'i'4
KillPoly, 152-153, 219, 459

Languages
foreign. See Foreign

languages
programming, and Toolbox,

11-13
Launch, 347-351, 479
Leading, 387
LIFO, and the stack, 17
Line, 187-188, 191, 218, 252-253,

470
Line drawing, 186-197, 247-253,

469-470
UneTo, 187, 191, 218. 252-253,

470
Lisa, and Macintosh, 12-13, 63-64
List Manager Package, 333, 354-

356

I_

571

LoadResource, 283, 295, 309-310,
477

LoadScrap, 347, 370-371, 483
LoadSeg, 332-333, 351-352, 480
Local coordinate system, 140-146
Local IDs, and resource IDs, 340,

342
LocalToGlobal, 125, 146, 173-174,

463
Location table, 389-390
Logical operations, 30, 39-40,

291, 448-449
Long words, 8
Long2Fix, 31, 42-43, 449
LONGINT data type, 22-23
LongMul, 31, 47, 451
LoWord, 30, 40-41, 449

Macintosh Plus
memory layout of, 507
RAM of, 59-61
system heap size of, 65

Macintosh Technical Support
group, 337

Macintosh XL, memory layout
of, 508-509

Main entry point, 331
Main segment, 331
MapChanged resource attribute,

296, 323-324, 479
MapCompact resource attribute,

296-297, 323-324, 479
Mapping, and scaling, 183-184,

466
MapPoly, 183-184, 466
MapPt, 183-184, 466
MapReadOnly resource attribute,

297, 323-324, 479
MapRect, 183-184, 466
MapRgn, 183-184, 466
Masks

and bit maps, 197, 202
with icons, 340-341

Master pointers, 67-72
MaxApplZone, 109-110, 457
MaxBlock, 104-105, 456
MaxMem, 106-107, 457
MaxSizeRsft, 290, 314-315, 478
MC68000. See Microprocessor

Index

MeasureText, 400, 436-438, 488
MemError, 75, 81, 88-89, 453
MemFullErr error report, 75, 88-89,

294,453
Memory

addressing, 8, 23
allocation of. See Memory

allocation
application global space, 61-

64, 329, 331
handles and master

pointers, 67-70
and heap. See Heap and

heap management
layouts of, 505-509
organization of, 59-62
random-access, 16, 59-62
read-only. See Read-only

memory
and SIZEOF, 26-27
stack and heap, 65-67

Memory allocation
of blocks, 67-72, 76-86, 454-

456
and code segments, 328
and fonts, 387
and resource files, 281-282
and resources, 276, 284-285,

305-306
and variables, 65

MemTypes interface unit, 18
Microprocessor (MC68000), 8-9

register A5, 62-64, 112, 329-
331, 337

register A7, 17
register DO, 75, 402
register D 1, 402
register DZ, 402

MiniEdit text editor, 4
Missing symbols, 389
Modifier keys, 381
MoreMasters, 99-100, 455
Move, 187, 252-253, 470
MoveHHi, 80, 99-100, 455
MovePortTo, 169-170, 463
MoveTo, 187-188, 252-253, 470
Multiplication, 31, 44, 47

NewEmptyHandle, 91-92, 454

NewHandle, 70, 73, 80, 91-92, 454
NewPtr, 71, 73, 91-92, 454

and ports, 135
NewRgn, 155-156, 219, 223, 459
NewString, 380, 407-408, 483
NFNT resource type, 394, 497
Nonrelocatable blocks, 70-72, 76,

81
NotPatBlc transfer mode, 197, 238-

241, 468
NotPatCopy transfer mode, 197,

238-241, 468
NotPatXOr transfer mode, 197, 238-

241, 468
NotSrcBlc transfer mode, 197, 238-

241, 468
NumToString, 31, 49-50, 400, 451

Object modules, 18
Offset/width table, 390
OffsetPoly, 127, 178-179, 465
OffsetRect, 122-123, 127, 176-177,

179-180, 464
OffsetRgn, 127, 179-180, 465
OpenPicture, 228, 266-267, 474
OpenPoly, 152-153, 218, 459
OpenPort, 135, 165-167, 462
OpenResFlle, 281, 301-302, 475
OpenRgn, 155-156, 219, 459
Operating system, traps for, 14,

16
Option key, 402
ORO, and pointers, 23-24
Origin, of boundary rectangle,

118
OSErr type, 74-75, 88, 453
OSlntf interface unit, 18, 75
OSType type, 358, 480
Ovals, 212-213, 258-259, 472

PACK resource type, 325-326, 333,
373, 498

Package numbers, 333, 354-356
Package traps, 334-335
Packages, 333-335, 354-357, 480
Packlntf interface unit, 18, 335
PackMacs trap macros, 21, 335

Padding
with bit images, 115
of strings, 29

PaintArc, 216, 261-262, 472
PaintOval, 259, 472
PaintPoly, 219, 263, 473

572

PaintRect, 207, 209, 255-256, 471
PaintRgn, 264, 473
PaintRoundRect, 257-258, 471

Parameters, trap macro, 22
Pascal, 5-8

extended features of, 23-27
interface for, 18-19

PAT resource type, 269-270, 498
PAT# resource type, 270-271, 499
PatBic transfer mode, 197, 238-

241, 468
PatCopy transfer mode, 195, 197,

238-241, 468
PatHandle type, 232, 466

PatOr transfer mode, 197, 238-

241, 468
PatPtr type, 232, 466
Pattern list, 195
Pattern type, 232, 466

Patterns, 193-196, 232-236, 466·
467

PatXOr transfer mode, 197, 238·
241, 468

Pen. See Graphics pen
PenMode, 195-196, 250, 470
PenNormal, 197, 250, 470
PenPat, 194, 250, 470

PenSize, 191-192, 250, 470
PenState record, 247, 469
PicHandle type, 265, 474
PicPtr type, 265, 4 7 4
PICT resource type, 273, 345, 500
Picture record, 227, 265-266, 474
Pictures, 227-228

defining, 265-267, 474
drawing, 267-268, 474

PlnRect, 174-175, 464
Pixels, 114-117, 163, 461
Plotlcon, 205, 268-269, 474
Point record, 118-120, 147-148, 458
POINTER, 23-24
Pointers, 23-26, 67-73

and bit maps, 132-133
dangling, 69, 78
and desk scrap, 346

Index

Pointers-cont.
and graphic ports, 135
as parameters, 22
and QuickDraw, 112

Points, 147-148, 458
calculations with, 121, 172·

173,463
Polygon record, 126, 151, 459

Polygons, 125-131, 459

calculations on, 178-179, 465
defining, 151-153

drawing, 218-219, 263, 473

PolyHandle type, 151, 459

PolyPtr type, 151, 459
Pop, and the stack, 18
Port rectangles, 137-139, 143,

169-170, 463
Ports, graphics. See Graphics

ports
Portslze, 169-170, 463

Procedures, Pascal, 6-7

ProcPtr type, 25-26, 34, 447
Programming flexibility, and

resources, 276
Programs

BigBrother (ovals), 213-214

coordinate conversion, 143·
145

dereferencing handles, 77
Globe (clipping regions), 223·

225
graphics ports, 136
Mondrian (rectangles,, 210-212

Randomize, 32
resources, 284, 288, 289
ShowFonts, 395-398
startup, 338-339
StopPoly (regions), 220-222
StopSlgn Oines), 189-191

PScrapStuff type, 367-368, 482
Pt2Rect, 121, 149-150, 207, 459
PtlnRect, 121, 174-175, 464
PtlnRgn, 127, 174-175, 464
Ptr type, 73, 87, 453
PtrAndHand, 82, 84, 103-104, 456
PtrToHand, 81-82, 101-102, 456
PtrToXHand, 81-83, 101-102, 456
PtToAngle, 216, 261-.262, 473
PurgeMem, 106-107, 457
PurgeSpace, 104-105, 456
Push, and the stack, 17

PutScrap, 346, 369-370, 482

QuickDraw, 111, 18!i-186, 458-

466
and direct bit transfer, 197-

204
globals, 112-113, 541
and icons, 204-205
initialization of, 112-113,

164-165, 462
interface unit, 18

line drawing with, 186-197

shape drawing with, 205·
227

text characteristics of, 393-
394, 401, 43:1-438, 487-
488

OuickEqu definition file, 21
QulckTraps trap macros, 21

RAM (random-access memory),
16, 59-62

Random and random numbers, 32,

50-51, 451
Random-access memory, 16, 59·

62
RandSeed global variable, 32, 50-

51, 451

Read-only memory
and dispatch table, 15
divisions of, 2

and system resources, 280,
325-326

RealFont, 386, 425, 485
ReallocHandle, 86, 107-108, 457
Records, as parameters, 22
RecoverHandle, 91-92, 454
Rect record, 120, 149-150, 458-459
Rectangles, 169-170, 458-459

calculations with, 121-125,
176-178, 464-465

defining, 120-Ull, 149-150
drawing of, 206-215, 255·

256, 471
rounded, 213, 215, 256-258,

471-472
scrolling of, 20A~·203, 244·

245,468
RectlnRgn, 127, 174-175, 464

1-

573

RectRgn, 156-157, 223, 460
Region record, 126, 153-154, 459
Regions, 125-131

calculations on, 179-182,
465-466

defining, 153-157, 459-460
drawing of, 219-227, 264,

473
Register-based routines, 19-20
Registers. See Microprocessor
ReleaseResource, 284, 305-306, 476
Relocatable blocks, 70-72, 76, 81
RelStrlng, 29, 35-37, 448
ResChanged attribute, 292, 312-313,

477
ResEdit, resource editor, 2 77
ResError, 294, 321-322, 479
Reslocked attribute, 291, 312-313,

477
Resource data, 278
Resource files, 279-282, 301-303,

315-320, 323-324, 478-
479

Resource fork, 280
Resource ID, 277-278
Resource maps, 279, 281, 290
Resource name, 278
Resource specification, 277
Resources, 275-276, 295-297,

314-315, 489-503
access to, 282-289, 304-310,

475-477
attributes of, 290-292, 312-

313, 323-324, 477, 479
error reporting with, 294,

321-323, 479
files. See Resource files
Finder, 339-342
identifying, 277-278, 310-

311, 477
list of, 298-301
modification of, 292-294,

315-320, 478
QuickDraw-related, 269-273
ROM based, 325-326
text-related, 438-446
types, 277-278, 298-301, 475
See also specific resource

types
ResPreload, attribute, 292, 312-313,

477

Index

ResProtected, attribute, 291-292,
312-313, 477

ResPurgeable, attribute, 291, 312-
313, 477

ResrvMem, 80, 99-100, 455
ResSysHeap, attribute, 291, 312-

313, 477
Restart, 352-353, 480
ResType type, 298-301, 475
Result codes, 74-75, 88-89, 453

and HandToHand, 81
Result Rec parameter, 124

Return link, 17
Rez, resource compiler, 2 77
RgnHandle type, 153-154, 459
RgnPtr type, 153-154, 459
RMaker, resource compiler, 277
RmveResource, 292, 296, 317-318,

478
ROM. See Read-only memory
Rounded rectangles, 213, 215,

256-258, 471-472
Row width, 115, 132

ScalePt, 183-184, 200, 466
Scaling

of fonts, 386, 428-430, 486
of images, 198-201
and mapping, 183-184, 466
of random numbers, 32

Scrap count, 346
Scrap information record, 346
ScrapHandle global variable, 346
ScrapName system global, 347
ScrapStuff record, 367-368, 482
Screen buffer, 115-116, 134

memory addresses for, 61
Screen image, 115
Screen map, 134
ScreenBlts global variable, 134,

136, 158-159, 460
ScrollRect, 202, 244-245, 468
Secs2Date, 33, 54-55, 452
SectRect, 124, 177-178, 464
SectRgn, 129, 181-182, 465
Seed, random-number, 32, 51
SeedFlll, 228, 230, 245-246, 469
Segment header, 332
Segment numbers, 328

Segments, code. See Code
segments

SetApplllmlt, 84, 109-110, 457
SetClip, 139, 170-171, 225, 463
SetDateTlme, 33, 51-52, 452
SetEmptyRgn, 156-157, 223, 460
SetFlnfo, 336, 361-362, 481
SetFontLock. 428, 486
SetFractEnable, 392, 428-430, 486
SetFScaleDlsable, 386, 428-430, 486
SetHandleSlze, 71, 94-95, 455
SetOrigln, 140-143, 168-169, 188·

189, 213, 462,
SetPenState, 197, 247-249, 469
SetPort, 135-136, 167-168, 393,

462
SetPortBits, 136-137, 168-169, 462
SetPt, 119-120, 147-148, 458
SetPtrSlze, 71, 94-95, 455
SetRect, 120, 149-150, 458
SetRectRgn, 156-157, 233, 460
SetResAttrs, 290, 293, 296, 312-313,

477
SetResFUeAttrs, 292, 296-297, 323-

324, 479
SetReslnfo, 290, 296, 310-311, 477
SetResLoad, 295-296, 309-310, 477
SetResPurge, 293-294, 320, 479
SetString, 380, 407-408, 483
SetTime, 33, 53, 452
Shapes, drawing. See specific

shapes
Shift operation, 30, 39-40, 449
ShowPen, 192-193, 251-252, 470
Signatures, 335-337, 358, 480
SignedByte type, 73, 87, 453
Sines, 31, 48, 451
Size type, 73, 87, 453
SIZEOF, 26-27
SizeResource, 290, 314-315, 380,

477
Skinny Mac

memory layout of, 505
RAM of, 59-61
system heap size of, 65

Sound buffer, 61
SpaceExtra, 394, 434-435, 487
Square roots, 31, 46
SrcCopy transfer mode, 198, 238-

241, 468

574

Stack, 17-18, 65-67, 84
and trap macro parameters,

22
Stack-based routines, 19-20
StackSpace, 84, 109-110, 457
Standard File Package, 334, 354-

356
Standard packages, 333-335, 354-

357, 480
Standard patterns, 234-236, 467
Startup handle, 64, 337-338
Startup information, 337-339,

349-352, 363-365, 479-
481

STR resource type, 380, 439,
501

STR# resource type, 380, 440-441,
502

Str255 type, 28, 34, 447
Strikes, and fonts, 387, 389-390
StrlngHandle type, 407-408, 483
StringPtr type, 407-408, 483
Strings, 28-29, 34-37, 407-408,

447-448, 483
conversion of, 31, 49-50,

451
date and time, 33, 55-57,

453
formats of, 380-381
as parameters, 22

StringToNum, 31, 49-50, 451
StringWldth, 400, 436-438, 488
StuffHex, 30-31, 41-42, 449

for bit images, 117
for icons, 205
and pattern storing, 194

Styleltem type, 393, 487
SubPt, 121, 172-173, 463
Subtraction, fixed-point, 31
SysEqu definition file, 21
SysErr definition file, 21
System Error Handler, 523
System file, 280, 333-334
System font, 384
System globals

chart of, 539-541
memory addresses for, 61

System heap, 65-67
System resource file, 280

Index

SysTraps trap macros, 21

Tangent, 48, 451
Text

characteristics of, 434-435,
487

drawing of, 395-401, 435-
436, 487-488

measuring of, 436-438, 488
and QuickDraw, 393-394,

431-433, 487
TEXT file type, 337
Text interface file, 18
TEXT resource type, 345, 380,

395, 438-439, 503
TextFace, 393, 398, 434-435, 487
TextFont, 393, 398, 434-435, 487
TextMode, 393, 434-435, 487
TextSlze, 393, 398, 434-435, 487
TextWldth, 400, 436-438, 488
ThePort global variable, 112, 136,

164, 167-168, 462, 541
TlckCount, 212
Time, 33, 51-57, 452-453
Toolbox traps, 14, 16
ToolEqu definition file, 21
Toollntf interface unit, 18
ToolTraps trap macros, 21
TopMem, 89-90, 454
Transcendental Functions

Package, 334, 354-356
Transfer modes, 196-197, 237-

241, 467-468
Trap Dispatcher

and error reporting, 75
handler routine, 14-15

Trap handlers, 13
Trap macros, 20-21, 525-532
Trap numbers, 14
Trap vectors, 14

memory addresses for, 61
Trap words, 14-15, 532-538
Traps, 13-16
Trigonometric functions, 31, 48,

451
Typecasting, 24, 74
Typefaces, 382-384. See also

Fonts

Underscore symbol, for trap
macros, 21

UnlonRect, 124, 177-178, 464
UnlonRgn, 129, 181-18:~. 465
Unlque11D, 317-318, 478
UnlquelD, 292-293, 317'-318, 478
Unit numbers, for drivers, 343
UnloadScrap, 347, 370-a71, 483
UnloadSeg, 333, 351·3~;2, 480
Update region, in windows, 202,

204
UpdateResFile, 292, 318-319, 478
Upgrading, and new ROMs, 15
UprString, 29, 35-37, 448
UseResFile, 281, 302-303, 289, 475
Uses declaration, 18-:L9

Variables
assembly language, 539-541
global. See Global variables
memory allocation for, 65
as parameters, 22

Vector tables, 14
Version data resource, 340
VHSelect record, 119, 147-148, 458
Visible region, 139-147, 160-161,

187

Wedges, 215-217, 2Ei0-262, 472·
473

Windows
and bit maps, 131-132
ports for, 135, 139-143, 146
and resources, 276
update region in, 202, 204

With statements, and dangling
pointers, 78

Word boundaries, 8
Words, 8, 40-41
WrlteResource, 293, 3ta-319, 478

XOrRgn, 129, 181-182, 465

ZeroScrap, 346, 369-370, 482

#f
HAYDEN BOOKS

~""1..-----i· -/11~·~~~~~
The Macintosh Library provides the most

current, hands-on information for optimal use
of the Macintosh computer. With each new
title we bring you up-to-date information

from outstanding and accomplished
Macintosh Authors.

Advanced Macintosh Pascal"'
Paul Goodman

No. 046570, $19.95

How lo Write Macintosh'" Software
Seo/I Knaster

No. 046564, $27.95

MacAcceaa: Information in Motion
Gtngle o~d Smith

No. 046567, $21.95

Macintosh'" Multlpian®
lasselle and Ramsay

No. 046555, $16.95

MPW and Assembly Language
Programming

Seo/I Kronick
No. 048409, $24.95

Personal Publishing with th~
MacintoshTM, Second Edition

Featu.ring PageMaker 2.0
Terry M. Ulick

No. 048406, $19.95

Buie Microsoft® BASIC for
the Macintosh'"

Coan and Coon
No. 046558, $19.95

IBM® PC and Macintosh Networking
Steve Michel

No. 048405, $21.95

Introduction lo Macintosh'" Pascal
Jonathon Simonolf

No. 046562, $ 19.95

The Macintosh Advisor'"
Harriman and Calico

No. 046569, $18.95

Macintosh'" Revealed, Volume One
Second Edition

No. 048400, $26.95

Macintosh'" Revealed, Volume Two
Second Edition
Suphen Chernicolf

No. 048401, $26.95

Object-Oriented Programming for
the Macintosh'"
Kurt 1 Schmudler

No. 046565, $34.95

Programming the 68000
Rosenzweig and Harrison
No. 046310, $24.95

The ExcetTM Advanced User's Gulde
Richard wggins

No. 46626, $19.95

HyperTalk Programming
Don Shaler

No. 048426, $24.95

dBASE® Mac Programmer's
Reference Guide

Edll}(]J'd C Jones
No. 048416, $21.95

r----------~--------------------------OCos
-:/ff HAYDEN BOOKS

Please send the quantities and titles
indicated on the right. (Add $2.50
per book for postage & handling
plus applicable sales tax.) I enclose
$ (check or money order)
or charge my order:
Aro. No.~-------
0 VISA D M.C. D Am. Ex.
Signature _______ _

Exp.

A Division of Howard W. Sams & Company
4300 West 62nd Street, Indianapolis, JN 46268

A<Mnml Mxintosh P..al (016570)0119.95
Basic Microsoft BASIC !04~119.95

Haw to Write Macintosh Softwart
(046564)0127.95
lnUocb!ion ID MKintosh Pual
(046SQ)@ll9.95
MacA<ms: Information in Maion
(CM6567)@121.95
The Macintosh Ad\'i<o< (CM6569)0118.95
Macintosh Muhip~n (040555Jt0116.95

IBM PC and M>eintosh Ndworl.ina
(048405)11121 .95

Macintosh RtvW<d. V~umt One, 2nd Ed.

(Oi8400~126.9S

M>cintosh ~led. V~ume Two. 2nd Ed.
(CM8401)11126.95
MPW and Amm~y unguage Progiamming
(CM8409)11124.95
<ltj«l-Orienltd l'rogrulmin& (046565)0134.9;
Personal Publishing will the Mocintosh. 2nd Ed.
(048406)11119.95
Programming the 6800> (046310)0124.95
H)'1>erTalk Programming (CM8426)11124.95
The Exctllll Advillttd U...r's Guide
(46676)11119.9;

dRm: Mtc Pfosrunm~r"s C.U.dt
(04841611)121.95

Prices and Availability S~bject 10 Name
Change Without Notice. Address _______________________ _

City Slate Zip -----
L-------~-------------------------------1

4 ") 7- Q 11 7

Macintosfi Revealed
J Unlocking the Toolbox

Vo lum e On e • S e cond E dition

Master the secrets of your Macintosh with Maci11tosb Revealed.
This two-volume set explores the Macimo.c;h User Interface Toolbox,
the nearly 500 built·in ROM coutines that ensure that all Macimo.c;h
software consiStently shares the same easf, intuitive user interface.

Volume One, U11locki11g the Toolbvx, presents the foundations
on which the Toolbox is built Learn how to call Toolbox routines
from your application programs, how to manage the Macintosh's
memory, how to use QuickDraw graphics routines, and how to
display character text. A chapter on resources introduces this
imponam concept, one of the cornerstones of Macimo.c;h software
design. Another chapter describes
how application programs com
municate with the Macintosh
Finder.

This revised, Macintosh Plus
edition of Unlocking the Toolbox
has been updated and covers
many of the new and enhanced

About the Author
Stephen. Chernicoff has been
programming computers since
1962 and writing about .them
since 1976. A graduate of Prince·
con University, with an advanced degree in Computer Science
from the University of California at Berkeley, Sceve met his firsc
mouse in 1977 ac che Xerox Palo Aho Research Center (PARC)
and has been mousing around ever since.

features included in the expanded 128K ROM. Among the new
topics covered in this revision are: memory and keyboard layouts
for the Macintosh Plus I ·megabyte RAM configuration, character
codes for the expanded laser Writer character set, font families
and enhanced font access, and QuickDraw graphics enhancements
for specialized drawing tools such as the MacPaint "lasso" and
"paint bucket." Both Volumes One and Two feature additional
trap numbers and error codes.

Once you've mastered the fundamentals pr~sented here, you'll
be ready for the revised edition of Volume Two, Programmi11g

with the Toolbox. There you'll
learn about the high-level partS
of the Toolbox that implement
the features of the Macintosh
user interface, such as over
lapping windows, pulldown
menus, scro[bars, and dialog
boxes.

From 198) to 1984, Sieve was
'111th Apple Computer Inc. where
he served as editor·in-chief of the
publications c.epartment, contrib

uted co che early development of the Lisa computer, and helped
write Apple's /11side Maci11tosb documentation. He is also the
author of a college· level P:!scal textbook.

#f

$26.95/48400
ISBN: 0-672-48400-5

HAYDEN BOOKS
A Division of Howard IV. Sams & Company

4300 West 62nd Street

lndianapolls. Indiana 46268 USA

