
.. •

Macintosh®
Revealed

Volume Three: Mastering the Toolbox

Related Titles
Macintosh® Revealed

Volume One: Unlocking the Toolbox,
Second Edition
Siephen Chemicoff

Volume Two: Programming with the
Toolbox, Second Edition
Stephen Chernicoff

Volume Three: Mastering the Toolbox
Siephen Chemicoff

Volume Four: Programming the
Macintosh® II (fortlxoming)

Siephen Chernicoff and Geri Younggren

How to Write Macintosh® Software,
Second Edition
Scott Kilaster

MPW and Assembly Language Programming
Scott Kronick

IBM® PC and Macintosh® Networking:
Featuring TOPS® and AppleShare®
Steve ~lichel

Macintosh® Hard Disk Management
Charles Rubin and 13cncion j. Calica

Object-Oriented Programming
for the Macintosh®, Second Edition (fortlxo111i11gJ

Kurt j . Schmucker and Carl Nelson

dBASE® Mac Programmer's Reference Guide
Edward Jones

HyperTalk™ Programming (Version 1.2),
Revised Edition
Dan Shafer

HyperTaJkTM Tips and Techniques (for1lxo111i11gJ

Dan Shafer

The Waite Group's HyperTalk™ 2.0 Bible
The Waite Group

The Waite Group's
Tricks of the HyperTalk TM Masters (fortlxo111i11R}

111e Waite Group

Using ORACLE® with HyperCard(!j, (Jortlxo111i11gJ

Dan Shafer

680XO Programming by Example
Stan Kelly-Bootle

For t/Je retailer nearest you, or to order d irectly from tbe p11blisber, call 80(J.428·SAMS.
In Indiana, Alaska, and Hawaii call 3 17·298-5699.

Macintosh®
Revealed
Volume Three: Mastering the Toolbox

Stephen Chemicoff

#f
HAYDEN BOOKS
A Division of Howard W. Sams & Company

4300 West 62nd Street

Indianapolis. Indiana 46268 USA

For

David,

who is mastering his first language.

e 1989 by Stephen Chemtcoff

FIRSTEDmON
FIRST PRINllNG-1989

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otheJWise,
without written permission from the publisher. No patent liability ts assumed with respect to
the use of the Information contained herein. While every precaution has been taken in the
preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Neither is any ltabtltty assumed for damages resulting from the use of the Informa
tion contained herein.

International Standard Book Number: 0-672-48402-1
Libraiy of Congress Catalog Card Number: 85-8611

Acqutstttons Editor: Greg Michael
Development Editor: C. Herbert Feltner

Technical Review: Scott Knaster
Editor: Albright Communl.catlons, Inc.
Cover Design: Celeste Design
Indexer: Ted Laux

Composition: Hartman PubUshlng

Printed tn the Unlled States of America

Trademark Acknowledgmenu

All terms mentioned in this book that arc known to be trademarks or sCIVicc marks arc listed
below. In addttion, terms suspected of being trademarks or sCIVice marks have been appropri
ately capitalized. Howard W. Sams & Company cannot attest to the accuracy of this Informa
tion. Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

Apple, the Apple Logo, AppleTalk, lmageWriter, Macintosh, LaserWriter, and Lisa arc
registered trademarks of Apple Computer Inc.

Hypetralk and MPW are trademarks of Apple Computer Inc.

MacPaint, MacDraw, and MacWrite arc registered trademarks of Claris Corp.

MC68000, MC68020, and MC68881 arc trademarks of Motorola, Inc.

SY6522 ts a trademark of Syncrtek, Inc.

Postscript ts a registered trademark of Adobe Systems, Inc.

Turbo Pascal ts a registered trademark of Borland International.

Ltghtspeed Pascal ts a trademark of1HINK Technology, dtv. of Symantec Corp.

"'The Pause That Refreshes" ts a slogan of The Coca-Cola Company and ls used by permission.

Contents

Preface x

Acknowledgments

Chapter 1 Mastering the Tools 1

Chapter2 Rolling Your Own 5

Customizing QulckDraw 5
Customizing Windows 9
Customizing Controls 41
Customizing Menus 52
Nuts and Bolts 54

Reference 57
2.1 Customizing QulckDraw 57

2.1.1 Bottleneck Record 57
2.1.2 Low-Level Bit Transfer 59
2.1.3 Line Drawing 60
2.1.4 Shape Drawing 62
2.1.5 Text Drawing 64
2.1.6 Picture Processing 66
2.1.7 Picture Comments 68

2.2 Customizing Windows 69
2.2.1 Window Definition Function 69
2.2.2 Creating and Destroying Windows 72
2.2.3 Drawing Windows 73
2.2.4 Resizing Windows 74
2.2.5 Locating Mouse Clicks 75

v

vi Mastering the Toolbox
~~~~~~~~~~~~-

2.3 Customizing Controls 77 
2.3.1 Control Definition Function 77 
2.3.2 Creating and Destroying Controls 79 
2.3.3 Drawing Controls 80 
2.3.4 Locating Mouse Clicks 81 
2.3.5 Tracking and Positioning 82 

2.4 Customizing Menus 84 
2.4.1 Menu Deflnitlon Procedure 84 
2.4.2 Menu Display 86 
2.4.3 Locating Mouse Clicks 87 

2.5 Customizing-Related Resources 88 
2.5.1 Resource Type 'WDEF ' 88 
2.5.2 Resource Type ' CDEF ' 89 
2.5.3 Resource Type 'MDEF ' 90 
2.5.4 Owned Resources 90 

Chapter3 In the Drlver•s Seat 93 

Driver Identification 94 
Working with Drivers 95 
The Device Control Entry 97 
Driver Structure 101 

Reference 105 
3.1 Driver-Related Data Structures 105 

3.1.1 Driver Structure 105 
3.1.2 Driver Flags 108 
3.1.3 Unit Table 110 
3.1.4 Device Control Entry 113 
3.1.5 Driver 1/0 Queue 116 
3.1.6 Operating System Queues 118 
3.1.7 Manipulating Queues 120 

3.2 Driver Operations 122 
3.2.1 Opening and Closing Drivers 122 
3.2.2 Reading and Writing 123 
3.2.3· Device Control 124 

3.3 Driver-Related Resources 126 
3.3.1 Resource Type ' DRVR' 126 



vii Contents 

Chapter 4 Looking Good on Paper 127 

r.t:acintoshPrinters 128 
The Printer Resource File 130 
Imaging and Printing 135 
Print Records 139 
Printing-Related Dialogs 150 
Document Printing 152 
Printing the Spool File 174 
Printing from the Finder 184 
Nuts and Bolts 189 

Reference 197 
4.1 Printing-Related Data Structures 197 

4.1.1 Printing Port 197 
4.1.2 Print Record 198 
4.1.3 Printer Information Subrecord 200 
4.1.4 Style Subrecord 202 
4.1.5 Job Subrecord 205 
4.1.6 Auxiliary Information Subrecord 209 
4.1.7 Printing Status Record 211 

4.2 Preliminary Operations 213 
4.2.1 Initializing the Toolbox for Printing 213 
4.2.2 Initializing Print Records 214 
4.2.3 Printing-Related Dialogs 215 
4.2.4 Error Reporting 216 

4.3 Document Printing 218 
4.3.1 Opening and Closing a Document 218 
4.3.2 Page Imaging 219 
4.3.3 Spool Printing 221 

4.4 Low-Level Printing 223 
4.4.1 Opening and Closing the Printer Driver 223 
4.4.2 Printer Driver Attributes 224 
4.4.3 Low-Level Operations 225 
4.4.4 Bit Map Printing 226 
4.4.5 Text Streaming 227 
4.4.6 Screen Printing 228 
4.4.7 Printer Control 229 
4.4.8 Font Support 231 
4.4.9 Font Characterization Table 234 



vill Mastering the Toolbox 
~~~~~~~~~~~~ 

Chapter 5

Chapter 6

4.5 Nuts and Bolts
4. 5.1 Customizing the Printing Dialogs
4.5.2 Customizing Paper Sizes

4.6 Printing-Related Resources
4. 6.1 Resource Type ' PREC '

4.6.2 Resource Type' PDEF'
4.6.3 Printer Resource Files

Sound and Fury

Fundamental Concepts
The Sound Generator
Defining and Playing Sounds

Reference
5.1 Defining Sounds

5.1.1 Types of Sound
5.1.2 Square-Wave Sound
5.1.3 Four-Tone Sound
5.1.4 Free-Form Sound

5.2 Playing Sounds
5.2.1 Starting and Stopping Sounds
5.2.2 Speaker Volume

Playing with a Full Desk

Life as a Desk Accessory
Desk Accessory Structure
Stopwatch: A Simple Desk Accessory
The Open Routine
The Control Routine
The Close Routine

Reference
6.1 Desk Accessory Structure

6.1.1 Event Mask
6. 1. 2 Control Codes

6.2 Desk Accessory Operations
6. 2.1 Opening and Closing Desk Accessories
6.2.2 Responding to Events
6.2.3 Handling Menu Commands
6.2.4 Performing Periodic Tasks

235
235
238
240
240
241
243

247

2.47
251
254

267
267
267
268
271
274
276
276
278

281

282
284
286
289
302
320

323
323
323
326
328
328
330
332
334

ix Contents

6.3 Keyboard Routines
6.3.1 Resource 'fype 'FKEY'

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H

Glossary
Index

Toolbox Summary
Resource Formats
Reference Figures
Reference Tables
Error Codes
Summary of Trap Macros and Trap Words
Summary of Assembly-Language Variables
Program Listings

335
335

337
361
367
371
377
385
415
421

553
597

Preface

'W:ien I wrote the o:rlglnal Maclniosh Revealed back fn 1984,
perhaps the hardest part of the job was knowing where to stop. There
are so many features in the Macintosh Toolbox, so many ways to use
it, so many options and capabilities it places at your disposal, that
the two volumes and 1100-odd pages of that first edition could easily
have run twice as long and still not exhausted the subject. (If you
don't believe this, just look at Apple's own official handbook. Inside
Macintosh, now in its fifth volume and counting.)

But as always. stubborn realities intervened. Apple had a whole
team of highly talented writers to produce its technical documenta
tion; I had only one keyboard and one badly worn set of fingers.
Besides. I could only stuff so many pages into each volume without
breaking the binding machine, and the publisher was hoping to have
the book in the stores sometime before the turn of the millennium.
Much as I would have liked to cover everything, I had to make some
hard choices about which topics to include and which to leave out.

This book gives me a chance to fill in some of those omissions.
Here you'll learn how to print documents on paper from a Macintosh
program, generate sounds through the built-in speaker, write a
working desk accessory, design your own windows and menus, and
more. Volume One unlocked the Toolbox and Volume Two showed
you how to structure your application programs around it. Volume
Three will take you the next step on the road to mastering its secrets
and subtleties. As a Macintosh philosopher once said, the journey is
the reward.

xi

Acknowledg1nents

L author dreams of the day when true "desktop publishing"
will become a reality: when we can sit down at our computers, strap
on our 256-gigabaud, thought-activated brainwave decoder helmets
and think creative thoughts, and out will pop finished books, bound
and crated and ready to ship. Until that day arrives, we will have to
go on producing books the old-fashioned way, by writing them. Here
are some of the people who helped me write this one:

My tireless wife and partner, Helen~ has remained constant
through all my many moods and meanderings, and has been an
unfailing source of sympathy, encouragement. and back rubs; and
my ubiquitous children, Ann and David, have kept me supplied with
hugs and kisses and giggles and perspective and made sure I didn't
take anything (least of all myself) too seriously. My love and gratitude
to them are more than they can know.

The many-talented Scott Knaster, a man for all seasons, gave
the manuscript his usual thorough and thoughtful review. Scott is
a terrific writer and an all-around good guy, even if he does root for
the wrong baseball team.

David C4sseres and Jay Patel, of Apple's Macintosh Print
Shop, and Scott "ZZ" Zimmerman, of Macintosh Technical Sup
port, were patient and helpful with even my dumbest questions.
Special thanks to the "other" Scottie Zimmerman, who graciously
forgave my mistaking her gender and forwarded my cryptic messages
to their proper destination.

Sam Roberts, Fred Huxham, and Brian Hamlin, all ofFarallon
Computing, Inc., helped me rid my code of six-legged intruders.

Nancy Albright edited the manuscript with sensitivity and tact,
and let me put most of the commas where I wanted them.

Greg Michael, Scott Arant, Wendy Ford, Don Herrington,
and the rest of the team at Howard W. Sams & Company miracu
lously transformed my scribbles and doodles into a real, live book.

Bill Gladstone of Waterside Productions, Inc., took care of
business so I could take care of the writing.

With help and support from friends like these, who needs a
thought-activated brainwave decoder?

xii

CHAPTER

--0---------------
Mastering the Tools

This is the third volume in the Macintosh Revealed series on the
Apple Macintosh computer and its built-in User Interface Toolbox.
Mastering the Toolbox continues the discussion begun in the two
earlier volumes. Unlocking the Toolbox and Programming with the
Toolbox. and assumes you're already acquainted with the material
they contain. Ifyou"ve read those first two volumes, you'll find this
book's overall format and approach familiar: if you haven't read
them, go out and buy them right now! You'll need to understand the
basics of Toolbox programming in order to get the most out of this
book .

.Altho~gb .•. •$1Ji.Ptly speaking, the ·term Toolbox refers to oruy .·f.f
part of the=built ... in.ct>de that the;Macfntosl;t· catties. m,its read.;
only memory. wewilluse ttlooselythtoughout thls"book to ref(ltt'
tQ•the total body,of:standard.supportcode~released by Apple.for
use by-Maefilt0$11 ·aPPllcation programs.; In this broader $et)Se,

I .theToolboxinCludes·not only the Userlnte:rface Toolbox proper.
but also .the Mactµtosh Operatmg System. the QuickD~w _ :

. graphics routmes, and a variety of standard packages, defml~·
. · tton functions,.-and'P~~·plece$· of (!ode ~vailaple ~:tlleJoriIJ. c!)f . ·

.resources,. either .in the:systetn resource· me or elsewhere.

1

2 Mastering the Tools
~~~~~~~~~~~-

This book focuses on a number of topics that had to be left out 
of the first two volumes because of time and space limitations: 

• Chapter 2, .. Rolling Your Own," describes some of the many ways 
in which you can customize the operations of the Toolbox to your 
own special needs. 

• Chapter 3, .. In the Driver's Seat," discusses device drivers, the 
low-level programs through which the Macintosh communi
cates with the outside world. The basic concepts introduced 
here lay the foundation for the livelier topics that follow. 

• Chapter 4, .. Looking Good on Paper," covers the very important 
subject of printing, and how to ensure that ~hat you get is what 
you see." 

•Chapter 5, .. Sound and Fury," is about the Macintosh's sound
generating capabilities. 

• Chapter 6, .. Playing with a Full Desk," explains how desk 
accessories work and how to write them. 

As in Volumes One and Two, each chapter is divided into two 
distinct parts. The text of the chapter itself emphasizes conceptual 
continuity and high-level understanding, and is intended to be read 
sequentially. Section numbers enclosed in square brackets, such as 
[2.1.1), lead to the reference sections following the chapter, where the 
various Toolbox routines a_nd data structures are covered in complete 
detail; these are designed for quick lookup and compact expression. 
(Occasionally, minor or supplementary topics may appear in the 
reference sections only, with no supporting discussion in the main 
text.) Cross-references preceded by a roman numeral and a colon 
refer to other volumes in the series: for example, (Il:2.l. l] refers to 
Volume Two, section 2.1.1. 

Elements of the Toolbox, such as procedures, functions, and 
data types. are defined in the reference sections in the form of Pascal 
declarations. Since you're assumed to have read Volumes One and 
Two. you should find these declarations no mystery; if you need a 
refresher, refer back to the first chapter of either of those volumes for 
further elaboration. The declarations are followed by a series of 
numbered notes giving concise information on the Toolbox entities 
being discussed. Finally, many reference sections end with a box 
containing information of interest to assembly-language program
mers only. 



3 Mastering the Tools 
~~~~~~~~~~~-

Once again, for the sake of clarity. some liberties have been
taken with the nam~s of procedUI"e and function paraID.etersas
they appear in Apple's omctal Inside Macintosh manual. Such
changes.have.no eftect6nthe code you write, smce.you ne\Ter
use the parameter ~apies.whenyou call a Toolbox routine from
your own prognmt~· •·· l'{arpes that ·do appear in the calling
program, such as Toolbox constants and variables or the fields
in a record, are given~cot.rectly, of course (though perhaps With
minor variations in capitaiizatton style).

Most of the topics discussed in the text chapters are illustrated
with detailed Pascal programming examples. Even if you aren't a
Pascal programmer, you're expected to have a good enough working
knowledge of the language (or enough general programming sophis
tication) to follow the logic of the examples and apply them in your
own language of choice. All programs are fully commented in the
body of the code and extensively analyzed in the accompanying text,
but in some cases there hasn't been room for the kind of exhaustive
discussion of every routine that was done for the Mini Edit program
of Volume 1\vo. You will, however, find complete source listings of all
the example programs in Appendix H.

Some of the programs (specifically those dealing with printing in
Chapter 4) consist of extensions or enhancements to the original
MiniEdi t. Others are entirely new and self-contained (the window
and control definition functions of Chapter 2 and the Stopwatch
deskaccessoryofChapter6); likeMiniEdi t itself, these are intended
to setve as a framework or shell, within which to develop your own
definition functions and desk accessories. To save you the trouble of
typing the programs yourself, a software disk containing the com
plete source code is available by mail directly from the author, using
the order form on the last page of the book.

Needless to say, all the exmnple programs come with the usual
spineless disclaimer. Although they have been tried and app~ar
to work as intende~, ~ey have not been subje~ted t9 rigorous
insecticide treatment and camiotbe certifled to complywith all
applicable Federalhe~ltli~:$afety, and pest conqolre~lations.

4 Mastering the Tools

In··the··eyent of bug$, bombs., crashes, or sllnilar unforeseen
mishaps, the author and publisher will disavow all knowledge
of their exiStence. Under no dfcumstances will the author or
publisher be held accountable· for aily damage to life, limb,
person, or property arJslng from the use of these programs or of
software based· upon them, .fncluding but not limited to plague,
pestilence, bankruptcy, gambling losses, crop failure, alien
invasion, or thennonuclear meltdown. Please report any ar
thropod·sightlngs and suggested·eX(:ennination measures to the
.author at the address given on the mail-order form at the back
of the book. or in care of

Howard W. Sams & Company
4300 West 62nd Street
Indianapolis, Indiana 46268

Finally, a few words about typographical conventions. As in the
first two volumes, an alternate computer-voice typeface is used for
the names of Toolbox entitles, fragments of program code, and
characters typed on the keyboard or displayed on the screen. This
seives as a kind of implicit quotation mark to set off such formal,
computer-related material from ordinary body text. All numerals in
the text, whether set in computer voice or in plain type, are under
stood to be decimal unless preceded by a dollar sign ($), which
identifies them as hexadecimal (base-16). In keeping with the usual
convention, the letters A to F denote hexadecimal digits with numeri
cal values from 10 to 15: for example, the hexadecimal constant $BO

stands for 11 sixteens plus 13, or decimal 18 9.

Shaded "by•the~way" boxes like this one enclose side com
ments, helpful hints, exceptional cases, and other material
subordinateto the ntain discussion.

That covers the preliminaries, so let's get on to the good stuff.
The road to Toolbox mastery begins on the next page. The journey
begins with a single step.

CHAPTER

--~[1."·.21.··.~ ~ .. ·.:.~.~1.·.•.============= l_:J _________ _

Rolling Your Own

Le more you learn about the Macintosh Toolbox. the more you
come to appreciate the remarkable degree of flexibility thafs been
designed into it. On the one hand, by giving you a ready-made set of
tools for manipulating windows, menus, and the like, it helps you
write programs that behave in the standard, predictable, "Macintosh
way." On the other hand, if you need to depart from the standard
behavior in some way, you can tailor, or customize, various aspects
of the Toolbox to meet your program's own special needs.

We've already learned about some of these customizing provi
sions in Volume Two, such as dialog filter functions [11:7 .4.5) and
TextEdit's click-loop [11:5.6.1) and word-break [11:5.6.2] routines.
Now we're ready to go into the subject more deeply. In this chapter,
we'll learn how to customize the operations of the QuickDraw
drawing routines and how to define your own nonstandard types of
windows, controls, and menus.

Customizing QuickDraw

Let's begin with QuickDraw. All of QuickDraw's great diversity of
drawing operations [1:5, 1:8.3.3, 1:8.3.4) are based on a small number
of low-level drawing routines. When you call a QuickDraw routine
like LineTo [1:5.2.4) or PaintOval [1:5.3.4) to draw something into a
graphics port, QuickDraw in tum calls one of the low-level routines

5

6 Rolling Your Own

to do the actual drawing. By replacing or modifying these low-level
routines, you can redefine QuickDraw's drawing operations to suit
yourself.

Each graphics port has its own set oflow-level routines, allowing
QuickDraw to vary its behavior from one port to another. A field in
the Graf Port record named grafProcs [1:4.2.2] points to a record of
type QDProcs [2.1.1) (commonly pronounced "cutie-prox"). This
record in turn holds pointers to the low-level drawing routines for
that port. If there is no QDProcs record (that is, if grafProcs =NIL),
the port simply uses the standard QuickDraw definitions for all its
drawing operations.

FillRect PaintArc

QDProcs

PicComment FramePol Draw Text

Figure 2-1 The QuickDraw bottleneck

Because all of Quick.Draw's forty-odd drawing operations must
pass through the narrow confines of the QD Pro cs record (Figure 2-1),
it is often called a bottleneck record and the low-level drawing
routines it points to are called bottleneck routines. There are
bottleneck routines for each of the following operations:

• transferring bit images from one bit map to another [2.1.2]

• drawing lines with the graphics pen (2.1.3)

• drawing each of the standard shapes (rectangles, rounded
rectangles, ovals, arcs and wedges, polygons, and regions)
[2.1.4]

•drawing and measuring text [2.1.5]

• saving and retrieving picture definitions [2.1.6)

• processing picture comments [2.1. 7)

The standard routines for all these operations are built into ROM and
available through the normal trap mechanism. The Toolbox routine

7 Customizing QuickDraw

SetStdProcs [2.1.1) initializes a QDProcs record to point to the
standard bottleneck routines; you can then change any of the
record's pointers to point to your own routines instead. You can
replace the standard routine wholesale with a substitute routine of
your own, but usually you11 just want to modify its operation with
some additional processing before or after calling the standard
routine. You should never call any of the bottleneck routines directly
from the program level. however: always use the high-level Quick
Draw routines instead.

:The new colorv~rS10ii"9fQ1ilckDraw-used on the Macintosh II
defhies.·a·neW;~¢J911~p~~ po~ •. C$~:~~Po~t ("fl<>lorgraphics
poitt"), an~·JUr-~¢il~~'.1li<;>ft1eneck·record,. cpoP roes~ to gowtth
it~ To':eet up mert)·<>.ttl~'[clf$··*1 a cofo~·gfaphic~tpon, _you must

' t1$e the new·frittlalt~t16tnJ>U.tfne SetStdCProc~ instead of the
. old' SetStdCPro.c~·-~a~ribed'"here. :Col6r gw@raw, color

graphlC.S ports •. -~4· RJated. ~~: a.re covered at length in
· · Volµ~e· ·F()uP. ttyo~t~)ronterit to do your drawhlg JD. glorious,

JiVJJJg bl~~d=-wiUt~-, you can still use a plain old--fashioned
' ' ·Gr~fPoit, ev¢ll oJ) .. a1hfl~~hII •. and e\retyUmigyouread here
r '\v.111 remain cO.~~. ':. .. . ' ' ..

In general. redefining bottleneck routines is an unusual thing to
do. About the only common use for this capability is drawing to
graphics devices other than the Macintosh screen. For instance,
hardcopy printing on the Macintosh is done by drawing into a special
graphics port, called a printing port. whose bottleneck routines have
been modified to send their output to the printer instead of the
screen. We'll have more to say on this subject when we talk about
printing in Chapter 4.

Picture Comments
One other thing bottleneck routines are good for is handling picture
comments. Recall from Volume One that a picture [I: 5.4) is like a tape
recording of a sequence of QuickDraw commands. which can be
"played back" to reconstruct the image the commands represent.
The commands are recorded in the picture definition in a compact,
encoded form that's entirely private to Qu~ckDraw itself. The details

8 Rolling Your Own
~~~~~~~~~~~-

of the encoding are of no concern to either the program recording the 
picture or the one playing it back (which may or may not be the same 
program). 

However, the encoding format for pictures also includes a 
special command type called a picture comment (2.1. 7). Application 
programs can use this to embed extra information of their own within 
a picture definition. The body of a picture comment consists of an 
integer comment type identifying the kind of information the com
ment represents, with any additional comment data that a particular 
comment type may require. The structure and meaning of the 
comment data vary from one comment type to another. 

Any program can define its own comment types and write them 
into a picture definition with the QuickDraw routine PicComment 
(2.1. 7). For instance, the MacDraw graphics editor uses them 
(among other things) to group drawing commands into smaller 
subpictures to be treated as distinct units, to break up large bit maps 
and text strings into smaller, more manageable pieces, and to draw 
arrow heads at either or both ends of a line segment. Similarly, the 
LaserWriter printer driver uses picture comments to control various 
special capabilities of the printer, such as curve smoothing and text 
rotation, and to incorporate drawing commands expressed directly in 
the LaserWriter's PostScript command language. 

Because picture comments are meaningful only to the program 
that created them (and possibly other programs specifically designed 
to work with it), QuickDraw itself doesn't know what they mean or 
how to handle them. When it encounters them in the course of a 
picture definition, it simply passes them along to the bottleneck 
routine designated in the commentProc field of the QDProcs record 
(2.1.1). The standard version of this routine, StdComment (2.1. 7), 
just ignores all picture comments, regardless of type. By replacing 
this with a routine of its own, a program can .. listen in" on the stream 
of picture comments as they go by, pick out those it recognizes, and 
deal with them as it pleases. 

Naturally, ff every pro~ can 4eftne its o~.cotnment types 
-atid the mteger'. cooes that denote them, ~e p~ibility of 
~o11fUct arl.se$~ -.APPle~s o~tt@:policy was that, an comt,n~nt -
;eypes: had t<fbe registered for wfiq1leness witli:t1le-'Macmtosh 
Technical Supporfgroup.1nthesaine:waya$creatorstgnatures 
and me types· lltl,~3. lJ. Mote recently, a new c9nventfon has 
-been adopte~ in'-wllicb eac'1·progran1'-earmat~" lts own- com-



9 Customizing Windows 
~~~~~~~~~~~-

iqents by including Its creator sJgn~ti,n-e Within the data of the
comrµents themselves. Thus, as long as the program's signa
ture Is omcially ·regtstered~ Its coll1ment types need not be.
Details on the new identlflcatlon scheme are given In Apple's
Macintosh Techtitc.&;t, fig.t~:'#l.8i~ .

If you ~aUy want.:tb:;.rriaste~ the; Toolbox, by the way, you
$h6\lld. cei-tainly know 'about Macintosh·· Technical Notes.
They~re,publtshed·severaltimes a;year and:provtde a wealth of
progranurilng hints, tips, techniques, and up-to-the-minute
technt~alJnformatlon. You can obtain them either directly from
Apple. or through a variety of other channels, including user
gi:uups, bulletin boards, and the Apple Programmer's and
Developer's .Association (APO.A). Other topics pertaining to the
p~e;nt <11scusslo:a that:youn find ·covered In Tech Notes are
QtiiclcDraw's mtei;nal picture format (Tech Note #21), MacDraw
picture comments (#27), and Las~r'\Vriter picture comments
(#91)~ .

Customizing Windows

In Volume Two. Chapter 3, we learned how to use the Toolbox to
create and manipulate windows. While the Toolbox routines we dis
cussed there define the standard behavior shared by all windows,
they don't determine what the windows actually look like on the
screen. That job Is left to a window deftnitionfunction. separate from
the Toolbox itself, that's associated with each window via a handle in
the windowDefProc field of the window record [11:3.1.1). If you don't
like the normal Macintosh-style document windows, you can change
their appearance by substituting your own definition function in
place of the standard one.

Window definition functions are stored as resources of type
'WDEF ' [2.5.1). When you create a new window, you identify the
definition function by giving a window definition ID. (If you're
building the window "'from scratch" with the Toolbox routine
NewWindow [11:3.2.2), you simply supply the definition ID as an
argument; if you're using the corresponding resource-based routine,
GetNewWindow, to create the window from a template (11:3.7.1], the

10 Rolling Your Own
~~~-~~-~~~-~ 

definition ID is included as part of the template.) The definition ID 
is a 16-bit integer, whose first 12 bits give the resource ID of the 
definition function for drawing this window (see Figure 2-2). 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

: : : : : : : : I : I 
't' 

Variation code 

!.._ ____________ Resource ID of 

definition function 

Figure 2-2 Window definition ID 

The same definition function can implement several related 
types of window. distinguished by means of a variation code in the 
last 4 bits of the definition ID. For example, all the standard 
document windows, dialog boxes, and alert boxes are drawn by a 
single definition function, which is stored in ROM (or in the system 
resource file on older models) as 'WDEF' resource number o. Thus, 
they're all represented by definition IDs between o and 1 s-that is, 
with o in the first 12 bits. The last 4 bits distinguish the various types 
of window: DocumentProc, DBoxProc, PlainDBoxProc, and so on 
[11:3.2.2). The one standard type of window that isn't handled by this 
definition function is the rounded-comer style (RDocProc) used for 
desk accessories like the Calculator and Puzzle. It has a separate 
definition function of its own with a resource ID of l, corresponding 
to window definition IDs from 16 to 31. In this case, the variation 
code In the last 4 bits specifies the radius of the rounded comers (see 
[11:3.2.2, note 14)). 

27 24 23 
. I 

! 

0 

I T J.._ ________ ....,. ________ __, 

Variation 
code 

Handle to 
definition function 

Figure 2-3 FonnatofwindowDefProc field 



11 Customizing Windows 
~~~~~~~~~~~-

When you create a window, the Toolbox takes the definition ID
you specify, splits it into its component parts (the definition func
tion's resource ID and the variation code), and reads the definition
function into memory if it isn't there already. Then it stores a handle
to the definition function in the last 3 bytes of the new window
record'swindowDefProc field [Il:3.1.l], with the variation code in the
first byte (see Figure 2-3). Later, when it needs to perform some type
related action such as drawing the window on the screen, it uses this
handle to locate the definition function and passes it the variation
code as a parameter.

As the Macintosh evolves toward·. full 32 .. bit addresses, the
whole ofthewindowDefProc fieldwilleventuallybe neededjust
to hold the deflni.tion function. handle, and the variation code
will have to be tnoved elsewhere--~Qstlikely to the awFlags
field of the new auxiliary window re~c;t which we'll be learning
about in VolutneFout. The sche1J1ewe'Vejust described applies
orily to, the ofJgtn~. ·:24•bit syst~. No program should ever
assume it knP:ws~~wlt$ttbe: w.tndowDe·f Proc field actually con
tains or where·to ftnd.:fhe ;Window's variation code.

Structure of Window Definition Functions

In some ways, a window definition function is similar to the Quick
Draw bottleneck record. That is, it is a collection of low-level
operations that are .. factored out" of the Toolbox itself and defined
elsewhere so they can be changed easily. Instead of just a collection
of pointers to the relevant routines, however, the definition function
is a piece of executable code [2.2.1) that actually performs the various
operations on demand.

To tell the definition function which specific operation to per
form, the Toolbox passes it an integer message code (2.2.1) as a
parameter. It also receives a pointer to the window it is to operate on,
along with the value of the variation code taken from the first byte of
the window's windowDefProc field, as described above. Finally,
there's an additional long-integer message parameter, whose mean
ing depends on the particular operation requested. For some
operations, the definition function is expected to return a long-

12 Rolling Your Own
~~~~~~~~~~~~ 

integer function result: for others, the function result is meaningless 
and should simply be set to o. 

Figure 2-4 A slde window 

To illustrate how window definition functions work, let's look at 
an example. We'll invent a new type of window, which we'll call a "side 
window." It resembles the standard Macintosh document window, 
but has its title bar running vertically down the left side rather than 
horizontally across the top (Figure 2-4) . To use this type of window 
in a program, we would include its definition function as a ' WDEF ' 
resource (2.5.1) in the program's resource file. using any resource ID 
we choose. Then we would modify all the program's window tem
plates [II:3.7.IJ to use the corresponding definition ID, as shown in 
Figure 2-2. For example, if we give the definition function a resource 
ID of 100, the window templates should specify a definition ID of 
1600. 

Our definition function for side windows will ignore the 
standard variation codes for alert and dialog windows, but will honor 
those that refer to a window's size and zoom boxes. That is, just as 
for standard document windows, we will recognize bits 2 and 3 of the 
variation code (counting the rightmost bit as number O) as the "no
grow" and "zoom" bits, respectively. If the definition function's 



13 Customizing Windows 
~~~~~~~~~~~-

resource ID is 100, a window definition ID of 1600 (16*100 + O) will
denote a side window with a size box but no zoom box; 16 04, one with
neither a size nor a zoom box: 1608, one with both; and 1612, one
with a zoom box but no size box.

Program 2-1 (SideWindow) shows the overall structure of our
definition function for side windows. Subsidiary routines, included
within the main function definition, handle each of the possible
message codes that the function may receive from the Toolbox. (For
example, the message code WDraw [2.2.3] is handled by a subsidiary
routine named DoDraw.) We11 discuss each of these subsidiary
routines in general terms, and a few of them in greater detail; the
complete listing of the definition function is given in Appendix H.

The main body of the definition function is essentially just a
case statement that dispatches on the message code to the appli
cable subsidiary routine. Before doing so, it converts the window
pointer passed in by the Toolbox into an equivalent pointer of type
WindowPeek [11:3.1.1], which it keeps in a global variable where the
subsidiary routines can use it to access the internal fields of the
window record. It also initializes the global variable Result too; the
subsidiary routines can change this to a different value if appropri
ate. On return from the subsidiary routine, the main function
returns the value of this variable as its function result.

These "global" variables, Peek and Result. are not really global
in the usual sense of the word: that is, they don't reside in :the
program's application global space, located via proeessor
register AS. Because a window definition function is ·not pa¢ of
the running application program, it can't alwaysassume,that AS
is properly set up at the time it is called. This means:ttcannot
safely refer to any of the global variables that reside: ill the
"AS world."

In fact, if you look closely at Program 2-1, you'll see that tes
just a function definition, \Yith no main program and no true
global declarations of its own. The variables Peek and Rest.1.1 t

are actually declared locally within the definition funcijon
SideWindow. but are then shared globally by all of the ot]Jer,
subsidiary routines nested within it (DoNew. DoCalcRgns, and
so on). The lifetime of these variables is thus lfmlted to e~ch
single activation of the definition function: they don't retain
their values from one call to the next, the way tru·~ globals.
would.

14 Rolling Your Own
~~~~~~~~~~~~~~~~ 

Program 2-1 Skeleton of a window definition function 

function SideWindow (VarCode : INTEGER: TheWindow 
MsgCode : INTEGER: MsgParam 

: LONGINT: 

WindowPtr: 
LONG INT) 

Skeleton program to illustrate ·the structure of a window definition f\Dlction. 

uses 

MemTypes. QuickDraw, OSintf, Toolintf, Packintf: 

"Global" Declarations 

var 
Peek 
Result 

WindowPeek: 
LONGINT: 

Forward Declarations 

procedure DoNew; forward: 
{ Initialize window. } 

procedure DoCalcRgns: forward: 
{ Calculate window's regions. 

procedure DoDraw: forward: 
{ Draw window on screen. } 

procedure DoDrawGicon: forward: 
( Draw grow icon. } 

procedure DoGrow: forward: 

{ Draw outline for sizing window. 
procedure DoHit: forward: 

{ Locate mouse click. } 

procedure DoDispose: forward: 
{ Prepare to dispose of window. } 

Additional forward declarations for remaining program routines 

procedure DoNew: 

{ Initialize window. 

begin {DoNew} 

end: {DoNew} 

(Pointer for "peeking" into window's fields [Il:3.l.l]) 

{Function result} 



15 Customizing Windows 

Program 2-1 Skeleton of a window definition function (continued) 

procedure DoCalcRgns: 

{ Calculate window's regions. 

begin (DoCalcRgns) 

end: {DoCalcRgns) 

procedure DoDraw: 

{ Draw window on screen. 

begin {DoDraw} 

end: {DoDraw} 

procedure DoDrawGicon: 

( Draw grow icon. ) 

begin {DoDrawGkon) 

end: (DoDrawGicon) 

procedure DoGrow: 

( Draw outline for sizing window. 

begin {DoGrow} 

end: {DoGrow} 

procedure DoHi t: 

{ Find pan of window where mouse was pressed. 

begin {DoHit} 

end: {DoHit) 



16 Rolling Your Own 

Program 2-1 Skeleton of a window definition function (conttnuedJ 

procedure DoDispose: 

{ Prepare to dispose of window. 

begin {DoDispose} 

end: {DoDispose} 

Main routine. } 

begin {SidcWindow} 

Peek 
Result 

WindowPeek(TheWindow): 
0: 

case MsgCode of 

WNew: 

DoNew: 

WCalcRgns: 
DoCalcRgns: 

WDraw: 
DoDraw: 

WDrawGicon: 
DoDrawGicon: 

WGrow: 
DoGrow: 

WHit: 
DoHit: 

WDispose: 
DoDispose 

end: {case MsgCode} 

SideWindow := Result 

end: {SideWindow} 

{Convert to a "peek" pointer [Il:3.1.1]) 

{Initialize function result} 

{Initialize window} 

{Calculate window's regions} 

{Draw window on screen} 

{Draw grow icon} 

{Draw outline for sizing window} 

{Find part of window where mouse was pressed} 

{Prepare to dispose of window} 

{Return function result} 



17 Customizing Windows 
~~~~~~~~~~~~-

In case the definition function needs to maintain additional
information about a window, a 4-byte field is set aside in the window
record (11:3.1.1) for its convenience. Just as the window's refCon
field is reserved for the private use of the application program. the
dataHandle field belongs to the definition function. As the name
implies, this field is typically used to hold a handle to an auxiliary
data record, in which the definition function can keep whatever extra
information it needs to do its job. Our SideWindow function uses
such a record to hold up-to-date positions for the various parts of a
window (its title bar. close box, and so on) as the window is moved
around on the screen. Program 2-2 shows the type definition.

Program 2-2 SideWindow's auxiliaiy data record

type

DRHandle = ADRPtr:
DRPtr = ADataRecord:
DataRecord = record

UserState Rect:
Std State Rect:

TitleBar Rect:
CloseBox Rect:
ZoomBox Rect:
SmallZoom Rect:
SizeBox Rect:

HOffset INTEGER:
VOff set INTEGER:
Ti tleRect Rect

end: {DataRecord}

(Zoomed-in position in global coordinates [11:3.3.2]}

(Zoomed-out position in global coordinates [11:3.3.2)}

{Title bar in global coordinates}

(Cose box in global coordinates)

(Outer worn box in global coordinates}

(Inner zoom box in global coordinates}

(Siu box in global coordinates}

{Horizontal offset to close and wom boxes, in pixels)

(Vertical offset to close and zoom boxes, in pixels}

(Rectangle enclosing title, in global coordinates}

When the window zooming feature was introd,u~q., ijj~ 'me·
Macintosh Plus version of the Toolbox (ROM versiQJl'.$76),, roo-i
had to be found in the window record to keep ~ck ,pf eaell'
window's "momed~tn .. and •zoomed-out" po$itio~. ;an ·the
screen. Since the sbµldard Window deftnition~cm.~~n:~t
using the dataHandle·field for anything. it was•appt:'Qpi:iated':foF

18 Rolling Your Own

this ~··p~ ~t~. ·Th.~ To.oll>Qx: .. i:Qutitie ZooinWindow
(n:a.a~i]n_pw·'~~~tQ.ffDd aliandle• ~-f!¢J<U~ra record of
typ~, w.s.~~te])~ta· (11:3.$.2)~ wbfdl, ii1 ·tum.' liQl~s a pair of

. ~ectQ'i;lgl~.: :u~e·z;.St•t~ &J.ld stcta~.a~e •. I\~P1T~nttng the win-

. ;d.Qw~ .twc) ~om .pOSitlons~
· Co~quentiy.J•tJ.Y<leAnitl()n;fµp.eUcmth.at~t.lPPPrtszc;>omlng 1

8Q4 ~es to·use th~·- da~aHatxdl.e ile1d-·foi'Jt$. oWI1'purpo$e$
~~Jih~11~t·#•fCi.r·~•.h~.d1~,1i<>·~~-~-.~~~:~ecqf4 •. ,1:;h~flrst
iW9·~lg~·:q~tf~ reegt4.m~t.de$1gnat~fll~ .• ~9w~s,ZQonied-m
~d. ~~~P\~d-,p.ut .posJUc)ti$~: tl'$P~~Uv~iy •. as-®;-- ~:ild~wi.ndoV1's
data·t~Q~- (Pro~; ~2). ·These .niay be:·.folldwed :l>y any
furtb~tfields the dellnlt:J.Q4fll'P.ct.lQX1 c~$.tO~a44forftsQwnuse.
·Futth:e.~ore. tt's:up·to the:deflnltf()nfunctio11·1tse1fto.keep the
reet~es·uptodate:wberi the:user;tilave$prr.~iZ¢$th~Window
onthe.~~n.

Creating and Destroying Windows

Each time the Toolbox creates a new window record, it calls the
window's definition function with the message code WNew [2.2.2],
giving the definition function a chance to do any special initialization
of its own that it may require. In particular, if the definition function
uses an auxiliary data record, the WNew message provides an
opportunity to allocate the record, initialize its fields, and store its
handle in the window's dataHandle field. In SideWindow's case
(Program 2-3), we also take this occasion to check the window's
variation code and the version of the ROM we're running under, to see
if the window will need a zoom box. If it does, we set the window's
spareFlag field (11:3.1.1] accordingly and call the SideWindow
routine SetUpZoomRects to initialize the zoom-in and zoom-out
rectangles in the data record.

Program 2-3 Initialize window

{ Global declarations }

con st

ZoomMask = $0008: {Mask for extracting mom bit from variation code}

19 Customizing Windows
~~~~~~~~~~~~~~~ 

Program 2-S Initialize window (continued) 

var 

Peek WindowPeek: {Pointer for "peeking" into window's fields [II:3.1.l]} 

procedure DoNew: 

{ lnitialim window. 

var 
theData 

zoomBit 

machineType 

romVersion 

DRHandle: 

INTEGER: 

INTEGER: 

INTEGER: 

(Handle to definition function's data record} 

{Zoom bit from window variation code} 

{Type of machine we're running on [1:3.1.3)} 

{Version number of machine's ROM [1:3.1.3)} 

begin {DoNcw} 

with Peek"' do 

begin 

dataHandle := NewHandle (SIZEOF (DataRecord)): {Allocate data record [1:3.2.1, 11:3.1.1]} 

MoveHHi (dataHandle): {Move data record to end of heap [1:3.2.5]} 

(Lock data record [1:3.2.4]} HLock (dataHandle): 

theData ·= DRHandle(dataHandle): (Convert to typed handle} 

zoomBi t • = Bi tAnd (VarCode, ZoomMask) : {Extract room bit from variation code [1:2.22)} 

Environs ( romVersion. machineType): (Find out machine configuration [1:3.1.3]} 

spareFlag := (zoomBit <> 0) and (romVersion >= MacPlusROM): {Se1.zoomflag[Il:3.l.1]} 

if spareFlag then 

SetUpZoomRects (theData): 

{Zoom box requested and available? [1:3.1.3]) 

{Initialize zoom rectangles} 

HUnlock (dataHandle) 

end {with Peek"} 

(Unlock data record [1:3.2.4]} 

end: {DoNcw} 

The SetUpZoomRects routine is shown in Program 2-4. 1\vo 
points need to be noted. First, the window's zoomed-in position 
(User State) is taken from its port rectangle [1:4.2.2), which gives its 



20 Rolling Your Own 

current position on the screen. Notice. though. that the port 
rectangle is expressed in the window·s own local coordinate system. 
whereas the Toolbox expects User State to be given in global (screen
relative) coordinates. So our SetUpZoomRects routine must save the 
current graphics port. make the window itself the current port. use 
Local ToGlobal (1:4.4.2] to convert the rectangle"s top-left and 
bottom-right comers, and then restore the current port to its 
previous value. 

Second, the window's zoomed-out position is derived from the 
rectangle representing the entire screen, suitably inset to leave room 
for the menu bar and title bar. as well as the window's frame and the 
drop shadow along its right and bottom edges. Ordinarily. we would 
get the screen rectangle from the bounds rectangle (1:4.2.1] of 
QuickDraw's global screen map, ScreenBi ts (1:4.3.1]. Recall from 
Volumc, One, however, that QuickDraw globals such as ScreenBi ts 
reside in the program's application global space, or .. AS world." As 
we've already seen, the contents of this area are off limits to the 
definition function. So instead of referring directly to the variable 
ScreenBi ts, we have to access the screen map indirectly: first we 
call GetWMgrPort [II:3.6. l] forapointertotheWindowManagerport, 
then we get the screen map from its portBi ts field [1:4.2.2]. 

Notice that our SetUpZoomRects routine assumes a constant 
value of 20 pixels for the height of the menu bar. In today's 
evolving Macintosh environment, this is no longer a valid 
assumption. Not only· do.~ of the new large-screen displays 
maint;ptl a larger menu 'bar, but a new feature of the Toolbox, 
the Script Managet'. may also adjust the height of the menu bar 
to accommodate foreign writing systems such as Japanese or 
Arabic. The latest versions of the system ~oftware (ROM $ 7 6 
and $78 and Sy st em file ,4.1) include a utility routine named 
GetMBarHeight fotftn:dfilgthe current height of the menu bar. 
We11 be covertngthfsroutlne inVolume Four: for now, we1ljust 
assume. a 20-~piXel menu bar for the ·sake qf simplicity. 



21 Customizing Windows 

Program 2-4 Initialize zoom rectangles 

{ Global declarations 

con st 

MenuBarHeight 

ScreenMargin 

TitleBarWidth 

FrameWidth 

ShadowExtra 

20: 

2; 

19: 

1: 

1: 

procedure SetUpZoomRects (theData 

{ Initialize zoom rectangles. 

var 

savePort 

wmPort 

GrafPtr: 

GrafPtr: 

begin {SetUp1.oomRects} 

with theDataAA do 

begin 

DRHandle): 

UserState := TheWindowA.portRect: 

GetPort (savePort): 

SetPort (TheWindow): 

with UserState do 

begin 

LocalToGlobal (topLeft): 

LocalToGlobal (botRight) 

end: {with UserState} 

SetPort (savePort): 

{Height of menu bar in pixels} 

(Margin around zoomed-out windows. in pixels} 

{Width of title bar in pixels} 

{Thickness of window frame in pixels} 

{Extra thickness for window's drop shadow} 

{Pointer to previous current port [1:4.2.2]} 

{Pointer to Window Manager port [Il:3.6.l]} 

(Use current size for zoom-in (1:4.2.2. Il:3.3.2]} 

{Save previous port (1:4.3.3]} 

{Get into the window's port [1:4.3.3)} 

{Convert rectangle to global coordinates [1:4.4.2)} 

{Restore previous port (1:4.3.3]} 

GetWMgrPort ( wmPort) : (Get Window Manager port [11:3.6.1]} 

Std State := wmPortA. portBi ts. bounds: {Use full screen for zoom-out (1:4.2.2. Il:3.3.2]) 

InsetRect (StdState, ScreenMargin + FrameWidth, {Insetbyscreenmarginand 

Sc reenMargin + FrameWidth): { width of window frame [1:4.4.4]} 



22 Rolling Your Own 
~~~~~~~~~~~~~~ 

Program 2-4 Initialize zoom rectangles (conttnuedJ

with StdState do

begin

top

left

:= top

:= left

+ MenuBarHeight: {Leave room for menu bar at top}

+ (TitleBarWidth - 1): {Leaveroomfortitlebaratleft}

bottom := bottom - ShadowExtra:

right := right - ShadowExtra

end (with StdState}

end {with thcDataM}

end: {SetUpZoomRects}

{Leave room for drop shadow}

{ at bottom and right }

Just before destroying a window record, the Toolbox calls the
window's definition function with the message WDispose [2.2.2),
allowing the definition function to do any last-minute housekeeping
that may be needed. Our SideWindow function responds to this
message with a routine named DoDispose (Program 2-5), which
simply disposes of the auxiliary data record that was allocated earlier
by DoNew (Program 2-3).

Program 2-5 Prepare to dispose of window

{ Global declaration

var

Peek WindowPeek: {Pointer for "peeking" into window's fields [Il:3.1.1]}

procedure DoDispose:

{ Prepare to dispose of window.

begin {DoDispose}

with Peek" do

DisposHandle (dataHandle) {Dispose of data record [1:3.2.2]}

end: {DoDispose}

23 Customizing Windows
~~~~~~~~~~~~~ 

Calculating Window Regions 
In creating a new window, the Toolbox also creates a pair of Region 
data structures [1:4.1.5] to hold the window's content and structure 
regions. and stores handles to them in the contRgn and strucRgn 
fields of the new window record [11:3.1.1]. However. the Toolbox itself 
doesn't determine the actual values of these regions. Instead. it asks 
the window's definition function to do the job, by sending It the 
message WCalcRgns [2.2.2]. The definition function is expected to 
set the location and shape of the two regions. using the window's 
portRec t field [1:4.2.2] to tell it where the window is located on the 
screen. 

Program 2-6 Calculate window's regions 

( Global declaration } 

var 
Peek WindowPeek: 

procedure DoCalcRgns: 

{ Calculate window's regions. 

var 
theData : DRHandle: 

begin {DoCalcRgns} 

with Peek" do 
begin 

MoveHHi (dataHandle): 
HLock (dataHandle): 

(Pointer for "peeking" into window's fields [Il:3.1.1]) 

{Handle to def. function's data recotd} 

{Move data record to end of heap [1:3.2.5)} 

{Lock data record (1:3.2.4)} 

theData := DRHandle (dataHandle): {Convert to typed handle} 

CalcContRgn (theData): {Calculate content region} 

CalcStrucRgn: 
CalcBoxes (theData): 

HUnlock (dataHandle) 
end {with Peek/\} 

end : { DoCalcRgns} 

(Calculate structure region} 

{Calculate title bar, close, zoom, and size boxes} 

{Unlock data recotd (1:3.2.4)} 



24 Rolling Your Own 

Thereafter, whenever the size of the window is changed (for 
instance, by the Toolbox routines SizeWindow or ZoomWindow 
[11:3.3.2]), the WCalcRgns message is sent again, asking the defini
tion function to update the content and structure regions to the new 
size. This message is not sent, however, when the window is merely 
moved to a new position on the screen with no change in its 
dimensions. In that case, the Toolbox can adjust the window's 
regions for itself, without any help from the definition function: it 
simply uses OffsetRgn [1:4.4. 7] to move the regions through a 
horizontal and vertical displacement without changing their size or 
shape. 

Our SideWindow function's DoCalcRgns routine (Program 2-6) 
just "'passes the buck" to the more specialized routines CalcContRgn 
and CalcStrucRgn, which do the actual work. These calculations 
are relatively straightforward, and we need not discuss them in detail 
here; see Appendix H for the code. The one point of interest is that. 
besides adjusting the window's content and structure regions, we 
also have to update its zoom-in rectangle so that ZoomWindow 
[11:3.3.2] will use the new size when zooming the window in. (Remem
ber. maintaining the zoom rectangles is the definition function's 
responsibility!) 

We have to be a little bit careful, though. After all, zooming the 
window out to full-screen dimensions is also a size change and 
causes a WCalcRgns call to the definition function. We want to avoid 
disturbing the zoom-in rectangle in that case, or we'll forget where to 
zoom back in to. So SideWindow defines a utility function, named 
ZoomedOut, todecidewhetherthewindowiscurrentlyinltszoomed
out state. It does this by comparing the current port rectangle with 
the zoom-out rectangle, StdState, defined in the auxiliary data 
record (Program 2-2). To allow a little margin of error, the two 
rectangles don't have to match exactly: they're considered to coincide 
if they're within 7 pixels of each other in each coordinate. You'll find 
the code for the Zoomed Out function and its helper, NearPoint, near 
the end of the SideWindow listing in Appendix H. The CalcContRgn 
routine (also in Appendix H) then uses the statement 

if not ZoomedOut then 
UserState := globalRect 

to update the zoom-in rectangle, where globalRect ls the window's 
port rectangle converted to global coordinates. 



25 Customizing Windows 
~~~~~~~~~~~~~~ 

Program 2-7 Calculate size box

(Global declarations

const

NoGrowMask
SizeBoxSize
FrameWidth

$0004:
16:

1:

(Mask for extracting no-grow bit from variation code}

(Sim of si7.e box in pixels}

(Thickness of window frame in pixels}

var

Peek WindowPeek: (Pointer for "peeking" into window's fields [II:3.1.1]}

procedure CalcSizeBox (theData DRHandle):

(Calculate si7.e box.

var

noGrowBit : INTEGER: {No-grow bit from window variation code}

begin (CalcSizeBox}

noGrowBi t := Bi tAnd (VarCode. NoGrowMask): {Extract no-grow bit (1:22.2]}

with PeekA. theDataAA do

with contRgnAA.rgnBBox do

if noGrowBit = 0 then

{Use c:ootent region as basis [II:3.1.1, 1:4.1.S]}

{Is there a sil.e box?}

SetRect (SizeBox. right - (SizeBoxSize - FrameWidth) • {Inset from right [1:4.1.2]}

bottom - (SizeBoxSize - FrameWidth). {Inset from bottom}

right • {Set flush with window at right}

bottom) {Set flush with window at bottom}

else

SetRect (SizeBox. O. o. O. 0) {Set to empty rectangle [1:4.1.2)}

end: (CalcSizeBox}

In addition to updating the content region, structure region, and
zoom-in box when a window is resized, our Sid eWind ow function also
has to update the contents of its own auxiliary data record, where it
keeps track of the window's title bar, close box, and so forth.
DoCalcRgns does this by calling another SideWindow routine,
CalcBoxes, which in tum calls a series of specialized routines

26 Rolling Your Own

named CalcTitleBar, CalcCloseBox, CalcZoomBox, and
CalcSizeBox. Again, thecalculationsarefairlystraightforward and
needn't concern us here. Just byway of example, one of the routines,
CalcSizeBox, is shown in Program 2-7; you can read the rest in
AppendixH.

Drawing the Window

The main business of a window definition function, of course, is
drawing windows on the screen. (Actually, it only draws the window's
frame; what's inside the content region ls the application program's
responsibility.) The message WDraw (2.2.3) is the signal to draw all or
part of a window; the parameter msgParam (2.2.1) tells how much to
draw. The normal value for this parameter is o: this means to draw
the entire window frame, including the title bar, size box, and
anything else that's part of the window's fixed structure, as opposed
to its contents. (There are other possible values for ms gPa ram, which
we11 talk about in a minute.)

Before sending the message WDr aw, the Toolbox sets the current
graphics port to the Window Manager port (11:3.6.1), whose bit map
is the entire screen. It also sets the port's clipping boundaries to
include only those portions of the window that are exposed to view on
the screen. Thus the definition function can simply draw the entire
window in global coordinates; the Toolbox sees to it that only the
parts that should appear on the screen are actually drawn. In
drawing the window. the definition function should take into account
the values of various flags in the window record (11:3.1.1): the
hi li ted flag tells whether the window should be highlighted as the
currently active window, goAwayFlag tellswhetherithasaclose box,
and spareFlag tells whether it has a zoom box. If the visible flag
is FALSE, the window should not be drawn at all.

The definition fiinc:tion must not permanently alter any of the
port's p·en or text characteristics: if it needs to change any of
them for its d'Wn'putposes. it must be careful to restore them to
their original vaiues 'before returning.

27 Customizing Windows
~~~~~~~~~~~~~~~ 

Program 2-8 Draw window on screen 

{ Global declaration 

var 

Peek WindowPeek: 

procedure DoDraw: 

{ Draw window on screen. 

var 

theData : DRHandle: 

begin {DoDraw) 

with Peek" do 

if visible then 

begin 

MoveHHi (dataHandle): 

HLock (dataHandle): 

{Pointer for "peeking" int window's fields [Il:3.1.1]) 

{Handle to definition function's data record) 

{Is window visible? [Il:3.1.1]} 

{Move data record to end of heap [1:3.2.5)} 

{Lock data record [1:3.2.4)) 

t heDa ta : = DRHand le ( d a taHand le) : {Convert to typed handle} 

CalcBoxes (theData): {Recalculate title bar, close, zoom, and size boxes} 

case LoWord(MsgParam) of {Extract low word of message parameter [1:2.2.3)) 

WinGoAway: 

ToggleCloseBox (theData): {Toggle close box} 

WinZoomin. WinZoomOut: 

ToggleZoomBox (theData): {Toggle :zoom box} 

otherwise 

DrawWindow (theData) 

end; {case MsgParam} 

HUnlock (dataHandle) 

end {if visible} 

end: {DoDraw} 

{Draw window) 

{Unlock data record [1:3.2.4)} 



28 Rolling Your Own 

The message WDraw ls also sent by the Toolbox routines 
TrackGoAway and TrackBox (11:3.5.4], while tracking the mouse 
after a press in the window's close or zoom box. In this case, the 
message asks the definition function to reverse the state of the box, 
from unhighlighted to highlighted or vice versa, as the mouse moves 
in and out of it. To identify which of the two boxes to toggle, the 
Toolbox passes a nonzero value for msgParam. The values used are 
the same as the hit codes (2.2.5] that the definition function uses to 
report mouse clicks in the close or zoom boxes: we'll be discussing 
them more fully in a later section. The hit code WinGoAway means to 
toggle the state of the close box; WinZoomin orWinZoomOut means to 
toggle the zoom box. 

Program 2-8 shows SideWindow's drawing routine, DoDraw. 
Before drawing the window, it calls another SideWindow routine, 
CalcBoxes, to recalculate the positions of the window's title bar, 
close, zoom. and size .boxes and store them in the auxiliary data 
record. You can find CalcBoxes and its subsidiary routines listed in 
Appendix H. We've already seen this routine called earlier by our 
DoCalcRgns routine (Program 2-6); we have to call it again here in 
case the window has been moved in the meantime. (Recall that no 
WCalcRgns message is sent when a window is merely moved without 
being resized.) 

Once the boxes have been recalculated, we can go ahead and do 
our drawing. The value of msgParam tells whether to draw the whole 
window or just toggle the close or zoom box. (We have to extract the 
relevant value with LoWord (1:2.2.3] because of an apparent bug in 
the Toolbox that fails to clear the first word of the long-integer 
parameter.) Drawing the whole window, though somewhat compli
cated in detail. involves no conceptual issues we need to discuss 
here; see the code in Appendix H, routines DrawWindow, DrawFrame, 
DrawTitleBar,DrawCloseBox,DrawZoomBox,andDrawTitle. The 
technique used for toggling the close and zoom boxes, however, is 
worth examining in detail. 



29 Customizing Windows 
~~~~~~~~~~~~~~~ 

Program 2-9 Toggle close or zoom box

(Global declaration

const

BoxSize 11:

procedure ToggleBox (theBox

(Toggle close or zoom box.

var

BitMap:

Rect: maskString

theMask

theBits

wmPort

array [l .. BoxSize] of INTEGER:

GrafPtr:

begin (ToggleBox}

with theMask do

begin

StuffHex (@theBits, maskString):

baseAddr := @theBits:

rowBytes := 2:

{Size of close and zoom boxes in pixels}

Str255):

{Bit map for transferring bits [1:4.2.1]}

{Array for holding bit image}

{Pointer to Window Manage port [11:3.6.1]}

{Stuff the bit image [1:2.2.4)}

{Point to the bit image [1:4.2.1]}

{Set row width [1:4.2.1)}

SetRect (bounds, 0, 0, BoxSize. BoxSize): {Set boundary rectangle [1:4.1.2, 1:4.2.1]}

GetWMgrPort (wmPort):

CopyBits (theMask.

'WI!lPortA.portBits,

bounds,

theBox,

SrcXOr,

NIL)

end (with theMask}

end: (TogglcBox}

{Get Window Manager port [11:3.6.1]}

(Copy from mask bit map [1:5.1.4]}

(to the screen [1:4.2.2) }

{From mask's full boundary rectangle [1:4.2.1]}

{ to the close or zoom box }

{Invert pixels wtder the mask [1:5.1.3]}

{No additional clipping region}

30 Rolling Your Own

••••••••••• • •••••••••• • • • • • • • • • • • • • • • • • •• • • • • • • • • • • ••• • • • xor • • • • • • •••• •••• • •• • ••• ••••••• • • • • ••••• ••••••••••• • ••••••••••
Unhighlighted Highlighted Mask

••••••••••• ••••••••••• • • • •• • • • • • • • •• • • • • • • • • • • • •• • • • • • • • • xor • = • • • • • ••• • ••• • ••• • ••• ••••••• • • ••••• ••••••••••• • ••••••••••
Unhighlighted Mask Highlighted

••••••••••• • •••••••••• • • • •• • • • • • • • • • •• • • • • • • • • • • ••• • • • • • XOr • • • • •••• •••• • •• • ••• • • • • • •••••• • •••••• ••••••••••• • ••••••••••
Highlighted Mask Un highlighted

Figure 2-5 Toggling the zoom box

The WDr aw message doesn•t tell the definition function explicitly
whether to highlight or unhighlight the box; it just says to toggle it
from one state to the other. The definition function itself could
presumably keep track of which state the box is in. but there·s a neat
little trick it can use instead. The idea is to construct a mask
representing the "exclusive or" of the box·s highlighted and unhigh
lighted images. That is. the mask has a 1 bit in every position where
the corresponding bits in the two images are different, and a o
wherever they're the same (see Figure 2-5). Such a mask has an
interesting property: combining it with either of the two original
images, again using the "exclusive or" operation, converts it into the
opposite image. Thus it isn•t necessary to remember which state the
box is in: the toggling operation is exactly the same in either case.

Our SideWindowfunction usesasingleroutinenamed Toggle
Box (Program 2-9) to toggle both the window's close and zoom boxes.
This routine accepts two parameters: a rectangle giving the location
of the box in global coordinates, and a string of hexadecimal digits
representing the mask to toggle it with. It constructs a bit map to
hold the mask. sets its contents with StuffHex (1:2.2.4]. and trans
fers it to the screen with CopyBi ts (1:5.1.4], using a transfer mode of
SrcXOr [1:5.1.3]. The specialized routines ToggleCloseBox and
ToggleZoomBox simply set up the appropriate hex string to define
the mask and pass it on for ToggleBox to use. One of these routines.

31 Customizing Windows
~~~~~~~~~~~~-

ToggleZoomBox, is shown in Program 2-10; the other works exactly 
the same way, but with a different mask and box location. 

Program 2-10 Toggle zoom box 

procedure ToggleZoomBox (theData DRHandle): 

( Toggle zoom box. } 

var 

maskString : Str255: {Hexadecimal string defining mask [1:2.1.1)} 

begin (ToggleZoomBox} 

maskString := CONCAT ( 1 0000', 

with theData~~do 

I 0600 I, 
1 2680 I, 

1 1700', 

'0200', 

'73C0'. 

'7E00', 

'1500'. 
1 2480 I, 

I 0400 1 , 

1 0000'): 

ToggleBox (ZoomBox, maskString) 

end: (ToggleZ.oomBox} 

(Set up mask string} 

(Copy lhe bits} 

Grow Icons and Grow Images 

Recall from Volume Two, Chapter 3, that a window's size region. the 
area that the user drags with the mouse to make the window larger 
or smaller, may belong either to the window's frame (the part drawn 
automatically by the Toolbox) or to its content region (the part drawn 
by the application program). In our nilly new side windows, as in the 
standard type of document window, the size region lies within the 
content region. This means that it doesn't get drawn by the WDraw 
message, which draws only the window's frame. Instead, the Toolbox 
provides a separate routine, DrawGrowicon [11:3.3.4), for drawing a 
window's "grow icon," the visible representation of its size region on 
the screen. The application program calls DrawGrowicon as part of 
its task of drawing .the window's .contents; DrawGrowicon in tum 



32 Rolling Your Own 
~~~~~~~~~~~~~~-

calls the window definition function with the message WDrawGicon
(2.2.4).

For windows whose size region is part of the frame, the definition
function should draw it (along with the rest of the frame) in
response to the message WDraw. On receiving the WDrawGicon
message, the definition function should simply return without
doing anything.

Program 2-11 Draw grow icon

{ Global declarations

const

NoGrowMask

SizeBoxSize

FrameWidth

var

$0004;

16;

1;

Peek WindowPeek;

procedure DoDrawGicon:

{ Draw grow icon.

var

noGrowBit

savePort

savePen

boxTop

boxLeft

INTEGER;

GrafPtr;

PenState;

INTEGER ;

INTEGER;

begin {DoDrawGicon}

with TheWindow~. Peek~ do

begin

{Mask for e:ittracting no-grow bit from variation code}

{Size of size bo:it in piJtels}

{Thickness of window frame in pbtels}

{Pointer for "peeking" into window's fields [II:3.1.1]}

{No-grow bit from window variation code}

{Pointer to previous current port (1:4.2.2]}

{Saved state of graphics pen [I:S.2.1 J)

{Top edge of size box in local coordinates}

{Left edge of size box in local coordinates}

noGrowBit := Bi tAnd (VarCode. NoGrowMask); {E:ittract no-grow bit [1:2.2.2]}

if visible and (noGrowBi t = 0) then {Window visible and has a size bo:it? [II:3.l.ll}

Program 2-11 Draw grow icon (conttnuedJ

begin

GetPort (savePort): {Save previous port [1:4.3.3)}

SetPort (TheWindow):

GetPenState (savePen):

PenNormal:

with portRect do

begin

{Get into the window's port (1:4.3.3)}

(Save previous pen state [l:S.2.1]}

(Set standard pen characteristics [l:S.2.2]}

{Find top-left comer in local coordinates)

boxTop :=bottom - (SizeBoxSize - FrameWidth):

boxLeft := right - (SizeBoxSize - FrameWidth)

end: (with portRect}

MoveTo (boxLeft. portRect. top): {Move to top of window [1:5.2.4])

LineTo (boxLeft. portRect. bottom): (Draw line to bottom (1:5.2.4]}

MoveTo (po rt Rec t. left. boxTop) : (Move to left of window [l:S.2.4]}

LineTo (portRect. right. boxTop): {Draw line to right [1:5.2.4)}

DrawSizeBox (boxTop. boxLeft) : (Draw si7.e box}

SetPenState (savePen): (Restore previous pen state [l:S.2.1]}

SetPort (savePort):

end (if}

(Restore previous port (1:4.3.3))

end {with TheWindowA, Peek"}

end: {DoDrawGicon}

Program 2-11 (DoDrawGicon) shows how our SideWindow
function responds to the WD r awG Icon message. The first thing we do
is check the window's variation code to see if it has a size box: if not
(or if the window is invisible). there's nothing to draw. Assuming
there is a size box. we save the current graphics port for later
restoration. make the window the current port. save its pen charac
teristics. and set the pen to its normal. default state. After calculat
ing the top-left coordinates of the size box. we draw the horizontal
and vertical lines at those positions marking the edges of the scroll
bars (see Figure 2-5. earlier in this chapter). Next we call another
SideWindow routine. DrawSizeBox. to draw the grow icon itself.

34 Rolling Your Own

restore the previous pen characteristics and graphics port, and
return.

In DrawSizeBox (Program 2-12), we begin by calculating the
rectangle enclosing the size box and clearing it to white. Then we
check the hilited flag in the window record [II:3.1.1] to see if the
window is currently active or inactive. If it's inactive, there's nothing
more to do. If it's active, we go ahead and draw the familiar pair of
overlapping rectangles that form the grow icon, as in Figure 2-5.

Program 2-12 Draw size box

(Global declarations }

con st

FrameWidth = 1:

GiconSmallOffset 3;

GiconSmallSize 7:

GiconBigOffset 5:

GiconBigSize 9:

var

Peek WindowPeek:

(Thickness of window frame in pixels}

(Off set to origin of small square in grow icon}

(Size of small square in grow icon}

(Off set to origin of large square in grow icon}

(Size of large square in grow icon}

(Pointer for "peeking" into window's fields [11:3.1.1]}

procedure DrawSizeBox (boxTop INTEGER: boxLeft : INTEGER):

(Draw size box. }

var

theBox : Rect:

begin (DrawSizeBox}

with TheWindowA, PeekA, theBox do

begin

SetPt (topLeft, boxLeft, boxTop);

botRight := portRect.botRight;

(Utility rectangle for drawing boxes [1:4.1.2)}

(Set top-left comer (1:4.1.1)}

{Set bottom-right comer [1:4.2.2]}
InsetRect (theBox, FrameWidth, FrameWidth): {Inset by frame width [1:4.4.4]}

EraseRect (theBox) : {Clear interior to white [1:5.3.2]}

35 Customizing Windows
~~~~~~~~~~~~~ 

Program 2-12 Draw size box (conttnuedJ 

if hilited then 
begin 

{Is window highlighted? (11:3.1.1]} 

SetRect (theBox, boxLeft, {Set up bigger box [1:4.1.2]} 

boxTop. 
boxLeft + GiconBigSize, 

boxTop + GiconBigSize): 
Off set Re ct ( theBox, GiconBigOff set, {Move into position [1:4.4.4)} 

GiconBigOffset): 
FrameRec t ( theBox) : {Draw outline [1:5.3.2)) 

SetRect (theBox, boxLeft, {Setupsmallerbox[l:4.1.2]} 

boxTop, 
boxLeft + GiconSmallSize. 
boxTop + GiconSmallSize): 

OffsetRect (theBox, GiconSmallOffset, {Move into position [1:4.4.4)} 

GiconSmallOffset); 
EraseRect (theBox): {Oearinterior [l:S.3.2]} 

FrameRect (theBox) {Draw outline [l:S.3.2)} 

end {if hilited} 

end {with TheWindow", Peek", lheBox} 

end: {DrawSizeBox} 

When the user presses the mouse inside a window's size region, 
the application program is expected to call the Toolbox routine 
GrowWindow [11:3.5.4] to track the mouse for as long as the button 
remains down. As visual feedback for the user. Gr owWind ow displays 
a grow image on the screen, showing how the window's size will 
change when the button is released. The actual appearance of the 
grow image is determined by the window's definition function, which 
draws it in response to the message WGrow [2.2.4). For side 
windows-just as for standard document windows-the grow image 
consists of a dotted outline of the window, including its title bar, 
scroll bars, and size box (Figure 2-6). 



36 Rolling Your Own 
~~~~~~~~~~~~~~~~ 

Program 2-13 Draw outline for sizing window

(Global declarations

con st

FrsmeWidt:h

Tit:leBarWidt:h

SizeBoxSize

1;

19;

16;

procedure DoGrow ;

(Draw outline for sizing window.

type

Rect:Pt:r

var

t:hePt:r

theRect:

linePos

Rect:Pt r ;

Rect:;

INTEGER;

Figure 2-6 Grow image

{Thickness of window frame in pixels)

{Width of title bar in pixels)

{Size of size box in pixels)

(Pointer type for converting message parameter)

{Pointer for converting message parameter)

{Rectangle to be drawn [!;4.1.2))

{Horizontal or vertical position for drawing line}

37 Customizing Windows
~~~~~~~~~~~~~ 

Program 2-13 Draw outline for sizing window (conttnuedJ 

begin {DoGrow} 

thePtr := RectPtr(MsgParam): 

theRect := thePtrA; 

with theRect do 

begin 

{Convert message parameter} 

{Get the rectangle} 

InsetRect (theRect. -FrameWidth. -FrameWidth): {Enlarge by width of window frame [1:4.4.4)) 

linePos : = left: {Save edge for later drawing) 

left := left - (TitleBarWidth - FrameWidth): {Make room for tide bar [1:4.1.2)) 

FrameRect (theRect): 

MoveTo (linePos. top): 

LineTo (linePos. bottom): 

linePos := right - SizeBoxSize: 

MoveTo (linePos, top): 

LineTo (linePos, bottom): 

linePos := bottom - SizeBoxSize: 

MoveTo (left, linePos): 

LineTo (right. linePos) 

end {with theRect} 

end: {DoGrow} 

{Draw window outline [l:S.3.2]} 

{Move to top-right of title bar [l:S.2.4)} 

{Draw to bottom-right of title bar [l:S.2.4]} 

{Find left edge of size box [1:4.1.2] } 

{Move to top of window [l:S.24]} 

{Draw line to bottom [I:S.2.4)) 

{Find top edge of size box [1:4.1.2)) 

{Move to left of window [I:S.2.4]} 

{Draw line to right [l:S.2.4)) 

- - -

Don't co$se the. sfnlil~ t~ grow tcon and grow image. A 
window's grow icon is· f.he graphical· representation of its size 
region on the .sereen; its·:grow wage is the visual fe«tback 
di$pl~y~d whij~:tr;~~ a.. ~oqs~ press in the size region. 

Our SideWindow routine responds to the WGrow message by 
executing the routine DoGrow, shown in Program 2-13. The 
parameter msgParam (2.2.1] is a pointer to a rectangle giving the 
location and dimensions of the grow image to be drawn, in global 
coordinates. DoGrow has to do a bit of pointer prestidigitation to 
outmaneuver Pascal's type restrictions and get its hands on the 



38 Rolling Your Own 

rectangle. Then it simply draws the outlines of the window, title bar, 
scroll bars, and size box. 

Before sending the message WGr ow, the Toolbox sets the current 
graphics port to the Window Manager port (11:3.6.1), so that the grow 
image can be drawn directly in global coordinates. It also sets the 
port's pen pattern to Gray [1:5.1.2), producing dotted lines instead of 
solid ones, and its pen mode to NotPatXOr (1:5.1.3). The latter seives 
two purposes. The "'NotPat" part inverts the gray pattern before 
drawing with it, so it will show up even against the screen's usual 
gray background. The "XOr" causes the pattern to erase itself when 
it's drawn a second time in the same place. Each time the user moves 
the mouse while dragging the window's size region, the Toolbox sends 
two WGrow calls to the definition function: one with the old bounding 
rectangle to erase the previous grow image, then another with the 
new rectangle to draw a fresh llllage. As long as the definition 
function uses the pen pattern and mode provided by the Toolbox, it 
can just draw its grow image in a straightforward way, without 
wonying about the details of erasing and repositioning the image as 
it follows the mouse. 

Locating Mouse Clicks 
The final responsibility of the window definition function is finding 
the part of the window that was "hit" by a mouse click. The Toolbox 
routine FindWindow (11:3.5.1) calls the definition function with the 
message WHi t [2.2.5). It passes the point to be located, in global 
coordinates, as the value of msgParam (2.2.1), with the vertical 
coordinate in the first word of the long-integer parameter and the 
horizontal coordinate in the second word. The definition function 
returns a hit code [2.2.5) as its function result, identifying the part of 
the window that contains the given point. 

Notice that the hit codes used by the definition function don't 
have the same values as the corresponding part codes returned 
by FindWindow itself. For example, the hit code representing 
thewJndow'scontentregiQn, WinContent [2.2.5), hasaninteger 
value of .1, while thevalue of the equivalent FindWindow part 
code; InContent (11:3.5.1), Is 3. 

SideWindow's response to the message WHi t is shown in Pro
gram 2-14 (DoHi t). By the time this routine is called, Side Window's 



39 Customizing Windows 
~~~~~~~~~~~~~ 

main routine will already have initialized the global variable Result
too, corresponding to the hit code WNoHi t [2.2.5]. If the window is
invisible, we simply skip all the hit tests and return that as the final
result. Otherwise, we recalculate the locations of all the window's
parts, In case the window has moved since the last time they were
calculated; then we convert the parameter msgParam to a point and
begin testing the parts one by one to see which one contains that
point. Notice that we carefully avoid returning the codes WinGoAway.
WinZoomin, WinZoomOut, or WinGrow unless the window is in its
active (highlighted) state. If it's inactive, we report the close and zoom
boxes as part of the title bar (WinDrag) and the size box as part of the
content region (WinContent). If the given point isn't in any identifi
able part of the window. we report the result as WNoHit.

Program 2-14 Locate mouse click

{ Global declarations }

var

Peek WindowPeek:

Result LONGINT:
{Pointer for "peeking" into window's fields [II:3.1.l]}

{Ftmction result [Il:3.1.1]}

procedure DoHit:

{ Locate mouse click. }

var

theData DRHandle: {Handle to definition function's data record}

mousePoint Point: {Point where mouse was pressed, in global coordinates}

begin {DoHit}

with Peek" do

if visible then

begin

{Is window visible? [11:3.1.1]}

MoveHHi (dataHandle): {Move data record to end of heap [1:3.2.S]}

HLock (dataHandle): {Lock data record [1:3.2.4))

theData : = DRHandle (dataHandle); (Convert to typed handle}

with theData"" do

begin

CalcBoxes (theData): {Recalculate title bar, cl~se, zoom, and size boxes}

mousePoint : = Point (MsgParam): (Get mouse point from message parameter}

40 Rolling Your Own

Program 2-14 Locate mouse click (conttnuedJ

if hilited then

begin

{Is window active? (11:3.1.1]}

if PtinRect (mousePoint, CloseBox) then [In close box? [1:4.4.3]}

Result : = WinGoAway (Repon close box [111:2.2.5])

else if PtinRect (mousePoint, Zoom Box) then (In zoom box? [1:4.4.3]}

begin

if ZoomedOut then

Result ·= WinZoomin

else

Result

end {if}

WinZoomOut

(Which state is window in?}

(Repon zoom-in box [III:2.2.5]}

{Repon zoom-out box [111:2.25]}

else if PtinRect (mousePoint, SizeBox) then {In size box? [1:4.4.3]}

Result • = WinGrow (Repon si7.e box (111:2.2.5]}

end: {if hilited}

if Result = WNoHit then

begin

{Nothing found yet? [111:2.2.5)}

if Pt InRect (mouse Point, TitleBar) then {In title bar? (1:4.4.3]}

Result : = WinDrag {Repon drag region [III:2.2.S]}

else if PtinRgn (mousePoint, contRgn) then

[In content region? (1:4.4.3)}

Result ·= WinContent {Repon conL region (111:2.2.5]}

(else

Result := WNoHit} (Repon no hit [Ill:2.2.5]}

end {if Result= WNoHit}

end: {with theDataM)

HUnlock (dataHandle)

end (if visible}

{Unlock data record [1:3.24]}

end: (DoHit}

41 Customizing Controls
~~~~~~~~~~~-

Customizing Controls 

Controls (such as pushbuttons, checkboxes, and scroll bars) are 
implemented in much the same way as windows. The Toolbox 
determines the general behavior shared by all controls, but the 
appearance and properties of each particular type are defined by a 
control deflnittonjimctton. The application program calls the Toolbox 
when it needs to perform any operation on a control; the Toolbox in 

tum calls the definition function to draw the control on the screen or 
regulate its interactions with the mouse. 

The resource type for control definition functions is 'CDEF ' 
(2.5.2). Control types, like window types, are identified by an ID code 
(in this case, a control defmitionlD) consisting of a 12-bit resource ID 
for the definition function and a 4-blt variation code (see Figure 2-2). 
Just as for windows, the Toolbox reads the definition function into 
memory and stores its handle into a field of the control record, named 
contrlDefProc (II:6.1.1). (Actually, on systems with 24-bit ad
dresses, the handle only occupies the last 3 bytes of the field; the 
variation code is copied into the first byte, as shown earlier for 
windows in Figure 2-3. On 32-bit systems, the handle takes up the 
whole field and the variation code is moved to a field of the au.xUiary 
control record. which we'll be discussing in Volume Four.) 

There are two standard control definition functions, kept in the 
system resource file on some models of Macintosh and in ROM on 
others. ' CDEF ' resource number o (corresponding to definition IDs 
from o to 15) implements all the standard pushbuttons, checkboxes. 
and radio buttons; 'CDEF' number 1 (definition ID 16) defines the 
standard vertical and horizontal scroll bars. You can define addi
tional control types for a program to use by writing your own 
definition functions and storing them in the program's application 
resource file. 

The parameters passed to a control definition function [2.3.1) 
are exactly analogous to those for a window definition function: the 
variation code from the control definition ID, a handle to the control 
itself, a message code identifying the operation to be performed, and 
an additional long-integer parameter whose meaning depends on the 
operation. The function returns a long-integer result, which is 
meaningful for some operations but not for others; in the latter cases, 
the result is simply set to o. 



42 Rolling Your Own 

D Three-Way CheckboH #1 
181 Three-Way CheckboH #2 
nillJ Three-Way CheckboH #3 
D I nuc:1 h•<~ Ch<~< kboH 

@Three-Way Radio Button # 1 
@Three-Way Radio Button #2 
@Three-Way Radio Button #3 
O lmu:1h•<~ H<uUo Hu11on 

Figure 2-7 Three-way controls 

Now that we've seen how window definition functions work, we 
needn't examine those for controls in such great detail. An example 
control definition function, named Three State, is listed in Appendix 
H, but we won't be dissecting it routine by routine, the way we did 
with SideWindow in the preceding section. It defines a new type of 
checkbox and radio button similar to the standard ones, but with a 
third, neutral state in addition to the usual on and off states. This 
gives the user the choice of turning a particular property or option on, 
turning it off, or leaving it unchanged from its previous setting. The 
neutral state is represented on the screen by filling the box or button 
with a light gray pattern (see Figure 2-7). 

The ThreeState definition function implements the standard 
variation codes CheckboxProc and RadioButProc (11:6.2. l], but not 
PushButProc. (Pushbuttons have no use for a neutral state, since 
they cause an immediate action rather than setting a property or 
option for later use.) The function also recognizes the modifier 
UseWFont (11:6.2.1] to display the control's title in the text font of its 
owning window instead of using the 8ystem font. If the function is 
stored as a 'CDEF ' resource with a resource ID of, say, 1 oo, we might 
define a constant to use in constructing control definition IDs 

const 
ThreeStateProc ~ 1600: 



43 Customizing Controls 
~~~~~~~~~~~~~ 

representing the resource ID shifted left 4 bits. A definition ID of
1601 (ThreeStateProc + CheckboxProc) would then denote a
three-way checkbox, and 1610 (ThreeStateProc + RadioButProc
+ UseWFont) would stand for a three-way radio button with its title
in the window's text font.

One of the definition function's responsibilities is to define the
number and nature of a control's parts and to assign integer part
codes to stand for them. (Scroll bars. for instance. have five parts.
denoted by the part codes InUpButton. InDownB~tton. InPageUp,
InPageDown. and InThumb [11:6.4.1).) In the case of our three-way
checkboxes and radio buttons. as for their standard counterparts,
the entire control consists of a single part. denoted (for both check
boxes and radio buttons) by the standard part code InCheckb ox
(11:6.4.1).

Program 2-15 Mouse-down event in a three-way checkbox

procedure DoThreeWayCheckbox (theControl : ControlHandle: startPoint Point):

{ Handle mouse-down event in a three-way checkbox.

var

thePart

old Value

newValue

INTEGER:
INTEGER:
INTEGER:

begin {DoThreeWayCheckbox}

{Part of control where mouse was released}

{Previous setting of checkbox}

{New setting of checkbox}

thePart: = TrackControl (theControl, start Point, NIL): {Track mouse with no action procedure [II:6.

if thePart = InCheckbox then

begin

oldValue ·= GetCtlValue (theControl):

newValue ·= (oldValue + 1) mod 3:

SetCtlValue (theControl. newValue)

end {then}

{else do nothing)

end: {DoThreeWayCheckbox}

{Was it released in the checkbox? [II:6.4.l]}

{Get previous setting [11:6.24)}

{Cycle to next value}

{Set new value [II:6.24]}

44 Rolling Your Own

We11 allow our three-way controls to take on any of three
settings in the contrlValue field of the control record [11:6.1.1): O
for off. 1 for on. or 2 for neutral. Accordingly. our ThreeState
definition function will initialize the minimum and maximum
settings (contrlMin and contrlMax [11:6.1.1)) to 0 and 2.
respectively. However. it is the application program·s responsibility.
not that of the definition function. to make sure the actual setting is
properly maintained as the user manipulates the control with the
mouse.

Program 2-15 (DoThreeWayCheckbox) shows how the applica
tion might respond to a click in a three-way checkbox. (This program
is analogous to the one in Volume Two. Program 6-3. for standard
two-state checkboxes.) Since each checkbox is a separate entity
independent of all others. all thaf s needed is to find the control's
previous setting and cycle it among the values o. 1. and 2. As we'll
see later. the Toolbox will automatically call the control's definition
function. after changing its setting. to redraw it on the screen in its
new state.

Program 2-16 Mouse-down event in a three-way radio button

{ Global declarations }

con st
NButtons
Of fState

{whatever}:
0:

OnState 1:

NeutralState = 2:

var

{Number of radio buttons in group}

{Setting of buttons in "off' state}

{Setting of buttons in "on" state}

{Setting of buttons in neutral state}

TheButtons : array [1. .NButtons] of ControlHandle: {Groupofrelatedradiobuttons}

procedure DoThreeWayRadioButton (theControl : ControlHandle: startPoint : Point):

{ Handle mouse-down event in a three-way radio button.

var

the Part INTEGER:
whichButton l .. NButtons:
thisButton ControlHandle:
thisValue INTEGER:
otherValue INTEGER:

{Part of control where mouse was released}

{Index into array of radio buttons}

{Handle to a radio button [II:6.1.1]}

{Setting of this button}

(New setting for other buttons in group}

45 Customizing Controls
~~~~~~~~~~~~~~~ 

Program 2-16 Mouse-down event in a three-way radio button (continued) 

begin {DoThreeWayRadioButton} 

thePart:= TrackControl (theControl. startPoint. NIL): 

if thePart = InCheckbox then 

begin 

thisValue := GetCtlValue (theControl): 

case thisValue of 

OffState, NeutralState: 

begin 

thisValue := OnState: 

otherValue := OffState 

end: {OffState, NeutralState} 

OnState: 

begin 

thisValue ·= NeutralState: 

otherValue 

end {OnState} 

end: {case thisValue} 

NeutralState 

{Track mouse wilh no action procedure (11:6.4.2)} 

{Was it released in lhe same button? [I1:6.4.l]) 

{Get previous setting [11:6.24)} 

{What state is button in?} 

{Is it off or neutral?} 

{Tum lhis button on } 

{ and all olhers off) 

{Is it on?) 

(Tum all buttons neutral} 

for whichButton 

begin 

1 to NButtons do {Iterate through array of radio buttons} 

thisButton TheButtons [whichButton]: {Get button from array} 

if thisButton = theControl then (ls lhis lhe button lhat was clicked?) 

SetCtl Value (thisButton, thisValue) {Set clicked button to new state [I1:6.2.4]} 

else 

SetCtl Value (thisButton. otherValue) {Set other buttons to new state [11:6.2.4)) 

end (for whichBuuon} 

end {then} 

(else do nothing} 

end: (DoThreeWayRadioButton) 



46 Rolling Your Own 
~~~~~~~~~~~-

The routine for handling mouse clicks in a three-way radio
button (Program 2-16) is a bit more complicated, since changes in the
state of one button must be reflected to the others in the same group.
We use an array of control handles named TheButtons to represent
a group of related radio buttons. The group as a whole can be in one
of two conditions: either exactly one button is on and all the rest are
off (representing a choice among mutually exclusive options) or all
the buttons are in the neutral state (leaving the previously selected
option still in effect). Clicking a single button when it's off or neutral
turns that button on and all the others off; clicking the button that's
already on turns all of them to neutral. The routine first examines the
current state of the button that was clicked and decides on the new
settings for that button and for all the others. Then it iterates
through the entire array of buttons, setting each one to the appropri
ate value.

Creating and Destroying Controls
The Toolbox calls the definition function with the messages
Ini tCntl and DispCntl [2.3.2]just after creating a new control and
just before destroying an old one. Like the window messages WNew
and WDispose (2.2.2) that we discussed earlier. they give the
definition function a chance to do any needed initialization and
finalization of its own.

Just as the window record has both a refCon and a dataHandle
field, for use by the application program and the definition function,
respectively, the control record (11:6.1.1) has a pair of analogous
fields, contrlRfCon and contrlData. The Ini tCntl message is
typically used to initialize the contents of the contrlData field; for
example, the standard definition function for scroll bars allocates a
new region to hold the location of the control's scroll box and stores
the region handle in this field. The DispCntl message then provides
the opportunity to dispose of this region before the control itself is
destroyed. More generally, a definition function might use the
Ini tCntl and DispCntl messages to create and destroy an auxiliary
data record whose handle is kept in the contrlData field.

Our example definition function ThreeState makes no use of
the contrlData field. Its routine for responding to the InitCntl
message, Doini t, simply initializes the contrlMin and contrlMax
fields to the constants OffState and NeutralState (0 and 2),
respectively. ThreeState takes no special action on receiving the
message DispCntl. Its DoDisp routine does nothing at all, and is

4 7 Customizing Controls
~~~~~~~~~~~-

included purely as a dummy placeholder for use in developing your 
own definition functions. 

Calculating Regions 
When a control is moved or resized within its window. the Toolbox 
first sets the new enclosing rectangle in the contrlRect field of the 
control record (11:6.1.1). Then it sends the message CalcCRgns 
(2.3.2] to the control's definition function, asking it to recalculate the 
exact region the control occupies within that rectangle. The 
parameter msgParam contains a handle to an existing region, which 
the definition function should set to the new size and shape of the 
control, in local (window) coordinates. Our ThreeState function 
just sets the region to the entire enclosing rectangle. using the 
Toolbox routine RectRgn [1:4.1. 7). 

For dial-type controls (those with a moving indicator like the 
scroll box in a window's scroll bar). the CalcCRgns message can also 
be used to ask for just the region occupied by the indicator. The htgh
order bit of msgParam distinguishes between the two types ofrequest: 
o for the whole control, 1 for just the indicator. The definition 
function must, of course, remember to mask off this flag before 
attempting to use the parameter as a region handle. The rest of the 
parameter's first byte is resetved for future use, so to ensure 
compatibility, the entire byte should be masked off, not just the first 
bit. 

Mouse Clicks and Part Codes 
To find out where in a control the mouse was clicked, the Toolbox 
routines FindWindow and TestCntl (11:6.4.1) call the control 
definition function with the message TestCntl (2.3.4). The point to 
be tested, in local coordinates, is passed in the msgParam parameter, 
with the vertical coordinate preceding the horizontal as usual. The 
definition function is expected to return a part code designating the 
part of the control containing the given point. It should return a zero 
result if the point is not in the control at all, if it is not in any 
identifiable part, or if the control is currently inactive. The definition 
function can tell if a control is inactive by examining its 
con tr lHili te field [11:6.1.1] for the special value 25 5 ($FF) (11:6.3.3). 

Unlike the window part codes used by FindWindow (11:3.5.1), 
those for controls have no predefined meanings: they're determined 
entirely by the definition function for a given type of control. The 



48 Rolling Your Own 

Toolbox simply passes them along to the application program, 
assuming that it will understand them and lmow what to do with 
them. The only restriction is that a dial's moving indicator must have 
a part code of 129 (hexadecimal $81) or greater. 

Drawing Controls 
The message DrawCntl [2.3.3) asks the definition function to draw all 
or part of a control. The value of msgParam is a part code specifying 
which part of the control to draw. or o for the whole thing. The 
control's appearance on the screen should take into account the 
values of various fields in the control record [11:6.1.1], such as 
contrlVis, contrlHilite, contrlMin, contrlMax, and 
contrlValue. In particular, if contrlHilite = 255, the control 
should be drawn in some distinctive way to show that it is currently 
inactive. 

In drawing a control. the definition function can safely assume 
that the control's window is the current graphics port, and can 
simply draw the control (or the specified part) directly in the window's 
local coordinate system. The Toolbox will also have set the port's 
clipping boundaries to automatically exclude any portions of the 
control that are obscured from view by other overlapping objects on 
the screen. The definition function should not tamper with these 
clipping boundaries, and should also take care to leave the port's text 
characteristics and pen properties in the same state in which it finds 
them. 

~=e~tt1t~:1Z:~%~!{=-~'.J 
, $.etCt . .1M:fah · or·.S:et,Ct1Mi!x'(n:6~2L4J. ·. The.'.Ql3]~j~J.ti~~tq~~l.f~. · 
1 ·b~rrecb!a~·.t()·refiect the ch~~. ;but th~.1!®1\l.Q~·CJp,~J ~o~·, · 

the'lndicators·.part ~<Kie·(whleh-·cofilct be:a~·,~~'-!t ~;~rtQ .' 
2'5~ 1)._ 'Ibete(are ·Jt 1)$¢$·:a sp~· valu~- 9f~1·~i~j}!bJ~,,~,µ~~':" i 
stood to,· refer· to· the.,eontrol~s indicator. (or· all fil~ilt:C.1:$~ .. 1! . 

::e.:=:=~======:'i 
settiiig and.tang¢ values. · 



49 Customizing Controls 
~~~~~~~~~~~-

Tracking and Positioning
An important special category of controls are dials, which can be
adjusted over a continuous range of settings by dragging a moving
indicator with the mouse. The most familiar example of a dial is a
scroll bar, whose indicator (the scroll box) controls the vertical or
horizontal positioning of infonnatlon within a window. As the user
manipulates a dial with the mouse, the Toolbox calls upon the dial's
definltlon function for help in repositioning the indicator and adjust
ing the dial's numerical setting to match.

When the mouse button is pressed in a control, the application
program normally calls the Toolbox routine TrackControl (11:6.4.2)
to track the mouse and respond as appropriate. If the initial press
was in the indicator of a dial, TrackControl ordinarily drags an
outline of the indicator to follow the mouse's movements until the
button is released, then redraws the indicator at its new position and
updates the setting of the dial accordingly. First, however,
TrackControl calls the definltlon function with the message
DragCntl (2.3.5), offering it the opportunity to substitute a "custom"
tracking method of its own in place of the standard one. (For
instance, a dial representing a navigator"s compass might want to
drag the compass needle to a different angle instead of changing its
location on the screen.) If the definition function chooses to do its
own tracking, it notifies the Toolbox by returning a nonzero result; if
it returns o, the Toolbox will proceed to track the mouse in the
standard way.

The DragChtl t1les$a'.g~t-.fS alsci sent by.the 'T()olbQlJ:routlne,
, Dragdon·t'rol _ 1Il:l>.4J~GJ~ which performs the J.P()J:e. ~:tll.1.§ttal.

operation of dragg~g :m . entire· :coiltroLn1ther ~J~t -it~:
iridlcator. The v&lue ·pa$$ed to the -deftrliti<m ftpl.(?tlo:g. (o.t
msgPS.r.am (2.3.1) tellEfltwhteh operatlonto-perfortn:_ Q;forthe
entlre control, nonzert» for just-Ute fndicato:r_! Th'e ~~tfu.n
function may, of course, Choose to do its;·m.vn qacldng: m c:)pe:
case and.leave the·otherto the Toolb(»c·by·r~ a~o
result.

50 Rolling Your Own

Even when the standard tracking method ls used, the Toolbox
still needs some help from the definition function to do the job. First
of all, it needs to know the size and shape of the outline to display as
the user drags the indicator. It gets this from the definition function
by sending it the message CalcCRgns (2.3.2] with the high-order bit
of msgParam set. As we discussed earlier, this asks for just the region
occupied by the indicator, rather than the whole control.

Second, the Toolbox needs to lmow the limiting rectangles for
dragging the indicator on the screen. There are two such rectangles,
with the same meanings as those supplied as parameters to
DragControl PI:6.4.3]. One confines the movements of the indicator
itself, the other the area within which the mouse will continue to
track. There's also an axis constraint that can be used to limit the
tracking to horizontal or vertical motion only; see (11:6.4.3] for details.

The Toolbox requests all this information from the definition
function by sending it the message ThumbCntl (2.3.5]. msgParam
holds a pointer to a data record of the form

record
lirnitRect Rect:
trackRect Rect:
axis INTEGER

end:

On entry, the first 4 bytes of this structure (corresponding to the field
selector limi tRect. topLeft) give the point where the mouse was
pressed, in window-relative coordinates. The definition function is
expected to fill in the record with the limiting rectangles and axis
constraint for dragging the indicator.

After the mouse button is released, the change in the indicator's
position must be translated into an equivalent adjustment in the
numerical setting of the control. Once again, the Toolbox calls upon
the deflnitlonfunctlonforhelp, this time with the message PosCntl
[2.3.5]. msgParam gives the relative vertical and horizontal offset
from the point where the mouse was pressed to where it was released.
Using this information, the definition function must redraw the dial
with its indicator properly repositioned, calculate the corresponding
change in its numerical setting, and store the new setting in its
contrl Value field (11:6.1.1).

51 Customizing Controls
~~~~~~~~~~~-

Notice that the PosCntl message ts sent only afterthe user has 
dragged a dial'smdl(:atorto a new position with the mouse. This 
message is not used when the dial's setting ts changed directly, 
via the Toolbox routme SetCtlValue (Il:6.2.4], or when its 
range is changed with SetCtlMin or SetCtlMax, even though 
these operations also require the indicator to be visibly reposi
tioned on the screen. Instead, in these cases, the Toolbox sends 
the message DrawCntl with a part code of 129, as described 
earlier under "Drawing Controls ... The deflnitton function must 
be prepared to respond' to both methods of repositioning the 
indicator. 

Finally, the definition function can be used to define an action 
procedure to be called by TrackControl (11:6.4.2) while tracking the 
mouse. Action procedures provide a way of making something 
happen repeatedly or continuously for as long as the mouse button 
is held down inside a control. (In Volume Two, Chapter 6, we saw how 
to use one to implement continuous scrolling when the mouse is 
pressed and held in a window's scroll bar.) There are three ways of 
specifying an action procedure to TrackControl: 

• Pass a pointer to the desired procedure as the actionProc 
parameter to TrackControl [11:6.4.2). 

• Pass the value POINTER( -1) for the actionProc parameter. 
This tells TrackControl to look for the action procedure in the 
contrlAction field of the control record [11:6.1.1) instead. (The 
Toolbox provides a routine named SetCtlAction [11:6.4.2] for 
setting the contents of this field.) 

• Set both the actionProc parameter and the contrlAction 
field to POINTER( -1). TrackControl will then call the defini
tion function with the message AutoTrack [2.3.5], asking it to 
play the role of the action procedure. 

This last method allows a given type of control to define its own 
default action procedure, to be used if the application program 
doesn't provide one explicitly. The definition function should re
spond to the message AutoTrack by simply performing whatever 
action is appropriate for the action procedure. See [11:6.4.2] for more 
information on the form and behavior of action procedures. 



52 Rolllng Your Own 

Customizing Menus 

Menus. too. can be customized. using a menu d.efmition procedure 
[2.4.1] of resource type 'MDEF' [2.5.3]. One such procedure is built 
into the system, either in ROM or in the system resource file, with a 
resource ID of o; it defines the standard type of text menu that we 
learned about in Volume 'l\vo, Chapter 4. Just as for windows and 
controls, you can place additional definition procedures in a pro
gram's application resource file to Jmplement nonstandard menu 
types of your own. 

Menu templates of resource type 'MENU' [11:4.8.1] include the 
resource ID of the menu's definition procedure. The Toolbox routine 
GetMenu (11:4.2.2), which builds a new menu from a template, reads 
the definition procedure into memory (if it isn't already there) and 
stores a handle to it in the menuProc field of the menu record 
(11:4.1.1). The alternate routine NewMenu (11:4.2.2), which creates a 
new menu "'from scratch," always sets up this field with a handle to 
the standard definition procedure for text menus. If you want to use 
a different definition procedure, you have to store its handle explicitly 
in the menu record for yourself, after the menu is created. 

NeY1Meriu also inttp!U.s:tb:e m~nuWid.~h anq menuHeight fields 
(II:4.l . .1] under the assumptlonthat the new menu is of the 
standard texttyp,e. ~~rs.tot;lljg a diff'eI"ent procedure handle in 
the menuProc, field •. always call CalcMenuSize [11:4. 7.1] to 
r~alculate the ·menu'$· ~e~•ons. according to its.· new type. 

Structure of Menu Deflnltion Procedures 
The parameters of a menu definition procedure [2.4.1) differ some
what from those for \_Vindows and controls. For one thing, it's a 
definition proced.W"e, not a definition function. That is, it doesn't 
return a function result: when it has to pass information back to the 
Toolbox, it uses a variable parameter instead. Notice also that it has 
no varCode parameter, as window and control definition functions 
do. There's no such thing as a "'menu definition ID," analogous to 
those for windows and controls. This means that each type of menu 
must be defined independently; a group of related menu types can't 



53 Customizing Menus 
~~~~~~~~~~~~ 

share the same definition procedure the way window or control types
can.

One way in which menu definition procedures do resemble
those for windows and controls is that they accept an integer
message code (msgCode) telling them what operation to perform. (For
ordinary pulldown menus, there are only three such messages:
MDrawMsg, MChooseMsg, and MSizeMsg (2.4.1].) The message code is
followed by a handle to the menu record itself (theMenu), along with
a rectangle (menuFrame) giving its location on the screen in global
coordinates. The remaining parameters, mouse Point and the Item,
are usedonlybythemessage MChooseMsg, which we'll be discussing
in the next section.

You may recall from Volume 1\vo that the fixed fields of the
menu record [II:4.1.1] are followed by an indefinite amount of
.. hidden data" that's not directly accessible to an application program
written in Pascal. The exact content and format of the hidden data
are determined entirely by the definition procedure and may vary
from one type of menu to another. Since the definition procedure can
store any information there that it wishes, there's no need to reserve
a special field in the menu record for its private use, like those in the
window record (dataHandle) and control record (contrlData).

Menu Messages
When the Toolbox creates a new menu, it calls the menu's definition
procedure with the message MSizeMsg [2.4.2), asking it to calculate
the menu's screen dimensions. The same message is also sent when
the application program explicitly calls the Toolbox routine
CalcMenuSize (11:4.7.1), such as after storing a new procedure
handle into the menu's menuP roe field. The definition procedure
should respond by looking in the menu's hidden data for the current
number and contents of its items, calculating its width and height in
pixels, and storing them in its menuWidth and menuHeight fields
(11:4.1.1].

When the user presses the mouse in the menu bar, the applica
tion program calls the Toolbox routine MenuSelect (11:4.5.1] to track
the mouse's movements until the button is released. Each time the
mouse moves into a menu title, MenuSelect asks the menu's
definition procedure to draw the nienu on the screen, by sending it
the message MDrawMsg (2.4.2]. The definition procedure should draw
the menu within the rectangle specified by its menuF r ame parameter
(2.4.2]. It should take into account the current state of the menu's

54 Rolling Your Own

enableFlags field [Il:4.1.1] and •dim" any items that are marked as
disabled. In particular, if the low-order bit of enableFlags is O, the
entire menu is disabled and all its items should be dimmed, regard
less of the state of their individual flags.

TJ:ie d~ttonp@ecl~ ¢an.safely assum:~ .that the Window
Manage,r port Pl;&;~. Ji) 1s the current pQd. and that its text
character!Sttcs ha~ b~en set to the standard system typeface
and size. If'fb.~ ~<f~ftnJtto11 p~ure wishe$ to change these
settings, ttmusfbestireto restore theD1 to their or.lginal value.s
before retuPl!ttgqgn~Ql ~(>.th~, Toolbox.

As the user drags the mouse through a menu's items, MenuSe -
1 e ct repeatedly calls the definition procedure with the message
MChooseMsg [2.4.3), asking it to identify and highlight the item
containing the mouse. The procedure's mousePoint parameter
(2.4.1] gives the location of the mouse in global coordinates: this
information, along with the menuFrame rectangle, allows the defini
tion procedure to determine which item the mouse is currently in.
The parameter the!tem gives the item number of the previously
highlighted item, if any. If the mouse is still in the same item, the
definition procedure should do nothing: otherwise it should unhigh
light the previous item, highlight the new one, and pass back the new
item number in the Item. If the mouse is outside the menu's frame
(or in a disabled item, according to enableFlags), the definition
procedure should simply unhighlight the previous item and set
theitem to 0.

Nuts and Bolts

Like any other program, a definition function or procedure may need
some auxiliary resources of its own (strings, icons, patterns, or
whatever) in order to do its job. Don't forget that the definition
routine itself is also a resource, of type 'WDEF'. 'CDEF' , or 'MDEF' .
The auxiliary resources it uses are said to be owned by the one
containing the routine. When the definition routine is copied from
one resource file to another, its owned resources must tag along for
the ride, since the routine can't function properly without them.

55 Nuts and Bolts

Ownership of one resource by another isn't limited to definition
routines. The owning resource may belong to any of several other
resource types that also contain executable machine code. One that
we've already encountered in Volume One is 'PACK' [1:7.5.2), the
resource type for utility code packages such as the Standard File
Package [11:8.3) and the Disk Initialization Package [11:8.4). Later in
this volume, we'll be learning about two more, 'DRVR' [3.3.1) (device
drivers and desk accessories) and 'PDEF' [4.6.2) (printing code).

For owned resources to accompany their owner automatically
when it's copied to a new resource me, the utility programs that
handle resources have to be able to recognize them. This is made
possible by a special numbering scheme [2.5.4) that marks them as
owned resources and identifies the type and ID number of their
owner. If your definition routine (or driver. desk accessory, or
whatever) has any resources of its own, you have to be sure to
number them in accordance with these conventions.

For every owned resource, the first 2 bits of the 16-bit resource
ID must be 11, yielding an ID number in the range -1 to -16 3 84. The
next 3 bits identify the type of the owning resource, according to the
table in [2.5.4). (For example, for resources owned by a window
definition function, these three bits must be oo l, corresponding to
resource IDs between -14336 and -12289.) Next comes the 6-bit
resource ID of the owning resource, and finally a 5-bit identifying
number for the individual owned resource. Notice that these rules
restrict the owning resource to an ID number from o to 6 3 and limit
it to no more than 32 owned resources of a given type.

Unfortunately. the numbering rules for owned resources con
flict with other numbering conventions that apply to certain
specific resource types. Earlier in this chapter, for instance, we
saw that window and control deflnition functions must have
resourc~ IDs no longer than 12 ·bits, so that they can be
embedded within a properly formed definition ID (see Figure
2-2). This prevents them from following the numbering scheme
described above for owned resources. with the result that they
cannot be owned by another resource. Similarly, the specfal
numbering rules for fonts and related resources (' FONT' ,
• NFNT. • 'FOND. (1:8.4.5), 'FWID. P:8.4.6]) prevent them from
being owned. Life is hard.

REFERENCE

2.1 Customizing QuickDraw

2.1.1 Bottleneck Record

type

Ql)Procs.Ptr AQDProcs:

QDProcs = record
textProc
lineProc
rectProc
rRectPrQc
ovalProc
ar~Proc

polyProc
rgnProc
bitsProc
commentProc
txMeasProc
getPicProc
putPicProc

end:

procedure SetstdPr()cs
(var proc:s QDProcs);

57

Ptr:
Ptr:
Ptr:
Ptr:
Ptr:
Ptr:
Ptr:
Ptr:
Ptr:
Ptr;
Ptr:
Ptr:
Ptr

{Draw le.Xt. [2.1.S])
(Draw lines (2.1.3]}
{Draw tedangles (2.1.4)}
(Draw rounded m:tangles [2.1.4])

(Draw ovals [2.t.4])
(Draw:arcs and wedges [2.1.4)}
(Draw polygons [2.1.41)
{Draw regions (2.1.4]}

{Copy bit images (2.1.2]}
{Process pieture ccmunents [2.1.7)}
{Measure text [2.1.SJ)
{Retrieve picblre definitions [2.1.6]}

{Save picture definitions (2.1.6])

{Bottleneck record to initialize}

58 Customizing

Notes

1. A QDProcs record holds pointers to the low-level .. bottleneck" routines
on which all QulckDraw operations are based.

2. Each graphics port can have its own set of bottleneck routines, identified
via the grafProcs field of the Graf Port record [1:4.2.2].

3. ANIL value for grafProcs designates the standard, built-In bottleneck
routines, described in sections [2.1.2) to [2.1.6).

4. sets t d Pro cs initializes a QD Pr oc s record to the standard bottleneck
routines. You can then selectively change lndlvldual fields to Install
your own routines In place of the standard ones.

5. Custom bottleneck routines must accept the same parameters as the
standard ones, as shown In [2.1.2] to [2.1.6]. They should exhibit the
same general behavior as the standard routines, with whatever
modifications may be needed for a particular purpose.

6. Custom bottleneck routines may (but are not required to) call the
standard routines, modltylng the results as needed with pre- or
postprocesslng. Application programs should never call the bottlenecks
directly.

ID I Assembly Language Information -10.......,_ _____ _

Field offsets in a bottleneck record:
(Pascal) (Assembly)
Fleld·name Offset name

textProc textProc
lineProc lineProc
rectProc rectProc
rRec:tProc rRectProc
ovalProc ovalProc
arcProc arcProc
polyProc polyProc
rgnProc rgnProc
bitsProc bitsProc
commentProc commentProc
txMeasProc txMeasProc
getPicProc getPicProc
putPicProc putPicProc

Offset In bytes

0

4
8

12
16

20

24

28
32
36

40

44

48

type

59 (2.1.2) Low-Level Bit Transfer

Name Valae· Meaning

qdProcsRec 52 Size of bottleneck record in bytes

Trap macro:
(Pascal)
Routine name:

SetStdProcs

(Assembly)
Trap macro

.-.SetStdProcs

2.1.2 Low-Level Bit Transfer

Trap word

$A8EA

QDProcs = record

bitsProc Ptr: {Copy bit images}

end:

procedure StdBits
(var fromBitMap BitMap: (Bitmaptocopyfroln}

fromRect Rect: {Rectangle to~ from}

toRect Re ct: (Rectangle.to copy· to}

mode INTEGER: (Transfer mode)
clipTo RgnHandle): {Regioo:toclipto}

Notes

1. The bi tsProc bottleneck routine transfers pixels from one bit map to
another. StdBi ts ls the standard version of this routine.

2. This bottleneck is called by the high-level QuickDraw routine CopyBi ts
[1:5.1.4].

3. f rornBi tMa p is the source bit map for the transfer; the destination is the
bit map belonging to the current port, found in the po rt Bits field of the
Graf Port record (1:4.2.2].

4. mode specifies the transfer mode, and should be one of the eight source
transfer modes [1:5.1.3].

60 Customizing

5. fromRect tells which pixels of the source bit map to transfer; toRect
tells where In the current port's bit map to transfer them to.

6. Each of the two rectangles ls expressed In the local coordinate system of
the corresponding bit map.

7. If the dimensions of the two rectangles don't match, StdBi ts scales the
contents of the source rectangle to the width and height of the
destination rectangle. (Custom bitsProc routines may wish to follow
some other convention Instead.)

8. The transfer operation must be clipped to the current port's boundary
rectangle, port rectangle, clipping region, and visible region.

9. c 1 i pTo is an additional clipping region to be used for this transfer only,
expressed In the current port's local coordinate system. IfclipTo =NIL,
no addltlonal clipping region ls to be used.

ID I Assembly Language Information
~m.....--------

type

QDProcs ""' record

Trap macro:
(Pascal)
Routine name

St dBi ts

2.1.3 Line Drawing

lineProc Ptr: {Draw lines}

end:

procedure StdLine

(Assembly)
Trap macro

_StdBits

(drawTo Point): {Point to draw to, in local coordinates}

Trap word

$ABEB

61 [2.1.3) Line Drawing
~~~~~~~~~~~~~ 

~~il~=:1..------N-o_te_s ________________________________ __ 

1. The line P roe bottleneck routine draws a straight line from one point to 
another in the current port's bit map. Std Line ts the standard version 
of this routine. 

2. This bottleneck ls called by the high-level QulckDraw routines Line and 
LineTo [1:5.2.4). 

S. The starting point for the line ls the port's current pen location, found 
in the pnLoc field of the Graf Port record [1:4.2.2, 1:5.2.1). The ending 
point ls given by the routine's drawTo parameter. 

4. The starting and ending points refer to the top-left comer of the port's 
graphics pen. 

5. Both points are expressed in the current port's local coordinate system. 

6. The thickness and appearance of the line are determined by the port's 
current pen size, pattern, and mode [1:5.2.1). 

7. The lineProc routine should update the port's pnLoc field to the new 
pen location given by the d r a wTo parameter. 

8. All drawing must be clipped to the intersection of the current port's 
boundary rectangle, port rectangle, clipping region, and visible region. 
The pen can move freely outside these boundaries, but only those 
portions ofllnes that fall within the clipping boundaries should actually 
be drawn. 

9. If the port's pen level (pnVis [1:5.2.3)) ls negative, or if either dimension 
of the pen size (pnS i z e [I: 5.2.1]) is zero or negative, the pen is hidden and 
no drawing should take place. 

ID I Assembly· Language Information ---1m---------------
Trap macro: 
(Pascal) 
Routine name 

StdLine 

(Assembly) 
Trap macro 

_StdLine 

Trap word 

$A890 



62 Customizfng 

2 .1.4 Shape Drawing 

type 

QDProcs r e cord 

rectProc 

rRectProc 
ovalProc 
arcProc 
polyProc 

rgnProc 

end; 

Ptr: 
Pt r : 
Ptr ; 

Ptr: 
Ptr ; 
Ptr ; 

GrafVerb (Frame , 

Paint . 
Er ase . 

Invert, 

Fill): 

pr oc e dure StdRect 

(whichOp 
theRect 

GrafVerb: 
Rect); 

procedure StdRRect 

procedure 

proc edure 

procedure 

procedure 

(whichOp 
theRect 
cornerWidth 
cornerHeight 

StdOval 

GrafVerb ; 
Rect; 
INTEGER: 
INTEGER): 

(whichOp 
inRect 

GrafVerb ; 
Rect ): 

StdArc 
(whichOp 
inRect 
startAngle 
a r cAngle 

StdPoly 
(whichOp 
thePolygon 

StdRgn 
(whichOp 
the Region 

GrafVerb; 
Rect : 
INTEGER; 
INTEGER): 

GrafVer b; 
PolyHandle): 

Gr afVer b: 
RgnHandle); 

(Draw rectangles} 

(Draw rounded rec1angles} 

(Draw ovals} 

(Draw arcs and wedges} 

(Draw polygons} 

(Draw regions} 

(Draw outline} 

(Fill with current pen pattern} 

{Fill with background pattern} 

(Invert pixels} 

(Fill with specified pattern} 

{Drawing operation to perform} 

[Rectangle to be drawn} 

(Drawing operation to perform} 

(Body of rectangle} 

(Width of comer oval} 

(Height of comer oval} 

(Drawing operation to perform} 

(Rectangle defining oval} 

(Drawing operation to perform } 

{Rectangle defining oval} 

[Starting angle} 

(Extent of arc} 

(Drawing operation to perform} 

(Handle to polygon to be drawn} 

(Drawing operation to perform} 

(Handle to region to be drawn } 



63 [2.1.4) Shape Drawing 
~~~~~~~~~~~~-

Notes

1. The bottleneck routines rectProc, rRectProc, ovalProc, arcProc,
polyProc, and rgnProc perform shape-drawing operations in the
current port's bit map. StdRect, StdRRect, StdOval. StdArc,
Std Poly, and StdRgn are the standard versions of these routines.

2. These bottlenecks are called by the high-level QuickDraw shape
drawlng routines [1:5.3.2-1:5.3. 7].

3. Each routine takes a parameter of type Gr a fV er b, telling it which of the
five basic drawing operations to perform. The remaining parameters
define the shape to be drawn: see sections (1:5.3.2) to (1:5.3. 7) for their
meanings.

4. Drawing always takes place in the current graphics port, and all shapes
are defined in that port's local coordinate system.

6. Framing a shape draws its outline, using the port's current pen size,
pattern, and mode [1:5.2.1]. Pixels in the shape's interior are left
unchanged.

6. Painting a shape fills it completely with the port's current pen pattern
(pnPat (1:5.1.1, 1:5.2.1]), using the current pen mode.

7. Filling a shape fills it completely with the port's fill pattern (fillPat
[1:5.1.1)). The transfer mode is always PatCopy (1:5.1.3).

8. The calling program supplies the fill pattern as a parameter to the hlgh
level QuickDraw routines (FillRect, FillOval, and so on). These
routines in tum store the pattern into the port's f i 11 Pat field before
calling the corresponding bottleneck routine.

9. Erasing a shape fills it completely with the port's current background
pattern (bkPat [1:5.1.1)). The transfer mode ls always PatCopy (1:5.1.3).

10. Inverting a shape reverses all pixels it encloses, from white to black and
vice versa.

11. The bottleneck routines should do nothing if the graphics pen is hidden:
that ls, if the port's pen level (pnVis (1:5.2.3)) is negattve, or if either
dimension of the pen size (pnSize (1:5.2.1)) is zero or negattve.

12. Shape-drawing operations should never change the pen location.

13. All drawing operations must be clipped to the intersection of the current
port's boundary rectangle, port rectangle, clipping region, and visible
region. Only those portions of shapes that fall within all these
boundaries should actually be drawn.

14. Drawing operations should never affect pixels outside the boundaries of
the shape being drawn. (Exception: Framing a polygon may draw
outside the polygon's boundary: see (1:5.3.6).)

64 Customizing

15. The arcProc routine should respond to the frame operation by drawing
just the specified arc itself. For all other operations, it should draw the
wedge bounded by the arc and the two radii joining its endpoints to the
center of its oval.

~liilll~~~~~-As~se_ni~b-ly~Lan~_gua~g_e~'"_fi_o_nn~a_t_io_n~~~~~~~
Assembly-language constants:

Name

Frame
Paint
Erase
Invert
Fill

Trap macros:

(Pascal)

Value

0

1

2

3

4

Meaning

Draw outline

Fill with current pen pattern

Fill with background pattern

Invert pixels

Fill with specified pattern

(Assembly)
Routine name Trap macro Trap word

StdRect _StdRect
StdRRect _StdRRect
StdOval _Std Oval
StdArc _StdArc
StdPoly _Std Poly
StdRgn _StdRgn

2.1.5 Text Drawing

type

QDProcs = record

t:extProc

t:xMeasProc

end:

Ptr: {Draw text)

Pt:r; {Measure text)

$A8AO
$A8AF
$A8B6
$A8BD
$A8CS
$A8Dl

65 [2.1.5) Text Drawing
~~~~~~~~~~~~--~ 

procedure StdText 

(charCount INTEGER: (Number of characters to be drawn} 

(Pointer~ text to be drawn} 
(Numeraton of scale factors} 
(Denominaton of scale factors} 

theText Ptr; 
scaleNumer Point: 
scaleDenom Point): 

function StdTxMeas 

(charCount 

the Text 
INTEGER; 

Ptr: 

:Point: 

{Numberofcharacters to be drawn} 

(J>ointer to text to be drawn) 

{Numerators of scale factors} 

lnen~ntb,iat.Ors pf scale facton} 
var scaleNumer 

var. scaleO_eI)Olll 

v11-r fo11t:Props 

: INTEGER~ 

Notes 

Point: 

F.oritrnfo): · -(·~~liicijllonnation about text font} 
·· "tWidUt.oltext in t>btels} 

1. The bottleneck routines textProc and txMeasProc draw and measure 
text. StdText and StdTxMeas are the standard versions of these 
routines. 

2. These bottlenecks are called by the high-level QulckDraw text routines 
DrawChar, Drawstring, DrawText [1:8.3.3), CharWidth, StringWidth, 
and TextWidth (1:8.3.4). 

3. theText points to the first character to be drawn or measured; 
charCount ls the number of characters. 

4. Text drawing takes place in the current graphics port, beginning at the 
port's current pen location (pnLoc (1:5.2.1)). 

5. The textProc routine must clip to the intersection of the port's 
boundary rectangle, port rectangle, clipping region. and visible region. 
Only those portions of characters that fall within all these boundaries 
should actually be drawn. 

6. The textProc routine should leave the pen positioned after the last 
character of the specified text, even if lt lies outside the port's clipping 
boundaries. txMeasProc should leave the original pen location 
unchanged. 

7. Both routines must take into account the current settings of the port's 
text characteristics (txFont, txFace, and txSize (1:8.3.1)), and should 
widen all space characters as specified by spExtra (1:8.3.1). 

8. The parameters scaleNumer and scaleDenom specify scale factors to be 
applied to the text. The scale factor in each dimension (horizontal and 
vertical) ls given by the ratio of scaleNumer to scaleDenom in that 



66 Customizing 

dimension. That is, the width of each character Is multiplied by 

scaleNumer . h I scaleDenom.h 

and the height by 

scaleNumer .v I scaleDenom.v 

9. The txMeasProc routine takes an additional parameter, a font 
Information record (1:8.2.6) In whleh It returns the metric characteristics 
of the port's current font. 

~~It---~--As_s_e_m_b_l_y_La_n_gu_a_g_e_In_fi_o_rm_a_t_io_n ______ _ 

Trap macros: 

(Pascal) 
Routine name 

StdText 
StdTxMeas 

(Assembly) 
Trap macro 

_Std Text 
_StdTxMeas 

2.1.6 Picture Processing 

type 

QDProcs m record 

getPicProc Ptr : {Retrieve picture definitions} 

putPicProc Ptr {Save picture definitions } 

end: 

procedure StdGetPic 

(toAddr Ptr: {Address to read to} 

byteCount INTEGER): {Number of bytes to read} 

procedure StdPutPic 

(fromAddr Ptr: {Address to write from} 

byteCount INTEGER): {Number of bytes to write} 

Trap word 

$A882 

$ABED 



67 (2.1.6) Picture Processing 
~~~~~~~~~~~~--

Notes

1. ThebottleneckroutlnesputPicProc andgetPicProc store and retrieve
information in QuickDraw picture definitions [1:5.4.1]. Std Get Pie and
StdPutPic are the standard versions of these routines.

2. When a picture definition ls open, most high-level QuickDraw routlnes
call the putPicProc bottleneck to record their operations as part of the
picture. getPicProc ls called by the high-level routine DrawPicture
[1:5.4.3] to retrieve the operations and •play back· the picture.

3. Both operations apply to the open picture definition, if any, in the
current graphics port.

4. The port's open picture is located via the picSave field in the Graf Port
record [1:4.2.2]. This field holds a handle to a private QuickDraw data
structure, whose first 4 bytes In tum contain a handle to the picture
record [1:5.4.1). If picSave ls NIL, the bottleneck routines should do
nothing.

5. fromAddr is a pointer to the first byte of information to be recorded in
the picture; toAddr points to the memory location where the first byte
of retrieved Information ls to be stored.

6. byteCount specifies the number of bytes to be transferred.

l DI Assembly ~e i.itorm,.atlon
~qn.,___ __ ___ ______...~

Trap macros:
(Pasoal)
Routine name

StdGetPic
StdPutPic

~mbly)
,~plQaero

- .-StdGetPic
-....:St_dPutP.ic

$A8EE

$A8FO

68 Customizing

2.1.7 Picture Comments

type
QDProcs = .rec~rd

commentProc 'Ptr; (Process picture comments}·

end:

procedure StdComment
(comnientType INTEGER;
dataSize INTEGER;
commentData Handle) :

(Comment type}

(Length of comment data in bytes}
(Handle to comment data}

procedure PicComment -

con st

(commentType INTEGER:
da.taSize INTEGER:
commentD.ata Handle) ;

(Comment type}

(Length of comment data in bytes}
(Handle to comment.data}

PicLParen := O;
PicRParen = 1 ;

(Begin ·command. grouping}
(End command grouping}

Notes

1. The cornrnentProc bottleneck routine processes picture comments read
from a previously recorded picture definition. StdCornrnent ls the
standard version of this routine.

2. This bottleneck ls called by the high-level Quick.Draw routine
DrawPicture [1:5.4.3) when it encounters a comment in the course of
"playing back" a picture.

3. Picture comments can be used to embed extra, applicatlon-speclflc
information within a QulckDraw picture definition.

4. The high-level Quick.Draw routine Pie Comment inserts a comment into
the current port's open picture deftnltlon, if any.

5. The standard bottleneck routine, StdCornrnent, simply ignores all
comments. Application programs can replace it with a routine of their
own to interpret picture comments in whatever way is appropriate.

6. comrnentType is an Integer code identifying the nature of the comment.

7. commentData is a handle to the data constituting the comment itself;
dataSize gives the length of the data In bytes.

69 [2.2.1) Window Definition Function

8. Serious application programs should register their comment types for
uniqueness with Apple's Macintosh Technical Support group. to avoid
conflicts with those used by other applications. Macintosh Technical
Notes #27 and #91 list the comment types reserved for use by MacDraw
and the LaserWriter printer driver, respectively. However, a new
convention described in Tech Note #181 allows applications to define
their own comment types without having to register them officially with
Apple.

9. The special comment types PicLParen and PicRParen can be used as
brackets to group sequences of comments within a picture.

ID I Assembly Language Informatlon
---1~1---------

Trap macros:

(Pascal)
Routine name

Pie Comment
StdComment

(Assembly)
Trap macro

_Pie Comment
_Std Comment

Stand,ard comm:en.t typgs:.
Name

PicLParen~

PicRParen

2.2 Customizing Windows

Valu~

0

1

Meaning

Begin command grouping
End command grouping

2.2.1 Window Definition Function

. function YourWiildowDef

(vardode INTEGER;
theWindow WindowPtr:
msgCode INTEGER:
msgParam LONG INT)

LONGINT:

(Variation, code}
{Pointer to the window)
(Operation to be perfonned}
(Additional data for perfonning operation}

{Result returned by operation)

Trap word

$A8F2
$A8Fl

c6'ftst :
- wn.~a,w "" ·Q;

WH±1t = l :_
WCalcRgns = 2;
WN:ew: = 3:

- Wbispose = 4:

WG:t"1>W = 5;

;WDr13,"f(l.Ic,on, = .6:

70 Customizing

Notes

{Draw wmde>W :mune CW])
(Fmd where,11100¢<was'.Pft:ssed [~2.SJl

(Calc:ulatc·~8D.cl~t, ..ia.s ·[2.2.2])
{InilialUe new window4~il
(Prepare to~-¢if~w [2.2.2))
(Draw feed~--iijl~g~;fot Je#iZing. wiil®w [22.4Jl-

. {~w -~-~sic>P.;,J~4Jl

1. A window definltlon function defines the appearance and behavior of one
or more types of window. The Toolbox calls it whenever it needs to draw
all or part of a window on the screen or determine Its interactions with
the mouse.

2. The function heading shown above ls only a model for defining your own
window definition functions. There ls no Toolbox routine named
YourWindowDef.

3. Window definition functions are stored in resource files under resource
type 'WDEF I (2.5.1).

4. When a window ls created, the resource ID of its definition function is
given by the first 12 bits of the window definition ID (the windowType
parameter to NewWindow (11:3.2.2) or the corresponding field of the
window template (11:3.7.1) supplied to GetNewWindow). The last 4 bits
are a variation code, allowing the same definition function to implement
more than one type of window. Thus the definition ID ls determined by
the formula

defID = 16•rsrcID + varCode

5. The Toolbox reads the definition function into memory from its resource
file, if necessary, and places a handle to it in the window record's
windowDefProc field (11:3.1.1).

6. On original Macintosh systems using 24-bit addresses, the first byte of
the windowDef P roe field holds the variation code. It ls stripped out and
passed as a parameter when the definition function is called, identifying
the particular type of window being manipulated. On 32-bit systems,

71 [2.2.1] Window Deftnitlon Functlon

the handle occupies the entire field and the vartation code is stored in
the awFlags field of the auxiliary window record (see Volume Four).

7. The definition function'smsgCode parameter designates the operation to
be performed, and ls always one of the constants shown above (WDraw
to WDrawGicon). msgParam gives further information for some
operations: see [2.2.3-2.2.5] for details.

8. The function result is meaningful onJy in response to the message WHi t
[2.2.5]. In all other cases, the function should simply return o.

9. The dataHandle field of the window record [11:3.1.1] is reserved for the
private use of the window deflnltlon function, typically to hold a handle
to an auxiliary data record.

10. If the definitlon function supports window zooming (more specifically. if
it can ever respond to the message WHi t [2.2.5] with the hit codes
WinZoomin or WinZoomOut), Its auxiliary data record must begin with a
pair of rectangles defining the window's zoomed-in and zoomed-out
positlons. These rectangles correspond to the users tat e and std state
fields of the Toolbox-defined WStateData record [11:3.3.2]. It ls the
definitlon function's responsibility to maintain these fields correctly.
They may be followed by any additional fields the deftnitlon function
ltseH may choose to define.

11. The definition function cannot assume that processor register A5 is set
up properly at the tlme It ls called, and thus cannot access any of the
information stored ln the application global space. or "A5 world." In
particular, this means It must not refer directly to any of the QuickDraw
global vartables listed In [1:4.3.1].

ID I Assembly ~e InfQrmation --1m------............._ __ _
Window message coges:
Name Vdue

WDrawMsg 0

WHitMsg 1
WCalcRgnMsg. 2·

WinitMsg 3

WOisposeMsg 4
,.WGrowMsg 5.

WGico.nMsg 6'

Meaning

Draw window frame
Fmd where mouse was pressed
Calculate structure and conteniregions
Initiallze new window
Prepare to dispose .of window
Draw ·reedbaekimage for resizfug'window
Draw sizeregion

con st

WCalcRgns = 2:
WNew = 3:

WDispose == 4:

72 Customizing

2.2.2 Creating and Destroying Windows

Notes

{ CalciJlate structUre ·and •cOritent regic>ns}
(Initialize new window}

(Prepare to dispose.of wind~}

1. The message WNew ls sent to the window definition function when a new
window ls created. This allows the definition function to perform any
special initialization It may require, st.tch as allocating an auxiliary data
record and placing its handle in the dataHandle field of the window
record (11:3.1.1).

2. The message WDispose ls sent just before a window record ls destroyed.
The definition function can then perform any final housekeeping chores,
such as disposing of its auxiliary data record, if any.

3. The message WCalcRgns ls sent whenever a window's size ls changed,
asking the definition function to recalculate the window's structure and
content regions.

4. The new dimensions of the window are given by its port rectangle, found
in the portRect field of the window record (1:4.2.2).

5. The Toolbox creates a window's structure and content regions
automatically when the Window Itself ls first created, and stores their
handles in the strucRgn and contRgn fields of the window record
[11:3.1.1). The definition function should simply update the size and
shape of these existing regions.

6. The definition function must not alter the window's visible and clipping
regions (visRgn and c li pRgn [1:4.2.2]). Only the Toolbox and the
application program, respectively, should manipulate these regions.

7. Bear in mind that the port rectangle is expressed In window-relative
(local) coordinates, while the structure and content regions must be
given In screen-relative (global) coordinates. It ls the definition
function's responsibility to do the necessary conversion.

8. The WCalcRgns message ls not sent when a window ls merely moved on
the screen, with no change in size. The Toolbox simply offsets the

73 [2.2.3) Drawing Windows
~~~~~~~~~~~~-

const 

structure and content regions to their new locations, with no help from 
the definition function. 

9. The WCalcRgns message ls never sent if the window ls Invisible. 

2.2.3 Drawing Windows 

WDraw = o :: {Draw Window frame} 

WNoHi t = o: (Draw entire window flame} 

WinGoAway = 4: {Toggle close,region only} 

WinZoomln = 5; (Tog~e zooin-regi0n only) 

WinZoomOut = 6: (Toggle.zoom region only} 

Notes 

1. The message WDraw instructs the window definition function to draw a 
window's frame on the screen. 

2. The function's msgParam parameter [2.2.1) tells how much of the 
window to draw. A value of o (corresponding to the hit code WNoHi t 
(2.2.5)) specifies the entire window frame. 

3. For functions that support more than one variant window type, the 
varCode parameter [2.2.1) tells which variant to draw. 

4. The window should be drawn In its active or inactive state, depending on 
thecurrentvalueofthehili ted flag in the window record [11:3.1.1). The 
definition function itself determines how this affects the window's 
appearance. 

5. The window's goAwayFlag field [11:3.1.1) tells whether to draw a close 
region. ·on Macintosh systems that support the zooming feature 
[11:3.3.2), the spareFlag field (11:3.1.1) tells whether to draw a zoom 
region. 

6. If the window's visible field (11:3.1.1) is FALSE, the definition function 
should simply return without drawing anything. 

7. Before sending the WD raw message, the Toolbox will have set the current 
graphics port to the Window Manager port [11:3.6.1). whose port 
rectangle is the entire screen. 



con st 

WGrow = 5; 
WDra'WGicon = 6; 

7 4 Customizing 

8. The port's clipping boundaries will have been set to include only those 
portions of the window's structure region that are exposed to view on the 
screen. The definltlon function should simply draw the entire window 
frame, letting the Toolbox take care of the clipping. 

9. The port's text characteristics (1:8.3.1] are normally set to the standard 
system typeface and size. If the definltlon function wishes to use some 
other text characteristics for the window's title, it must set them for 
Itself, then restore the ortgtnal values before returning. 

10. On recelvlng the value WlnGoAway for msgParam (2.2.l], the deftnltlon 
function should simply toggle the appearance of the window's close 
region, from unhtghllghted to highlighted or vice versa, Instead of 
drawing the entire window frame. Similarly, a msgParam value of 
WlnZoomln or WlnZoomOut means to toggle the window's zoom region. 

11. If the window doesn't have the specified (close or zoom) region, the 
definition function should simply return without doing anything. 

2.2.4 

Notes 

Resizing Windows 

{Draw .f=.IM~imagefouesizing window} 
(Draw s~ regiqn) -· 

1. The message WDr awG Icon ls sent by the Toolbox routine Dr awG row! con 
(11:3.3.4], Instructing the window definitlon function to draw a window's 
size region ("grow icon") on the screen. 

2. The size region should be drawn In its active or inactive state, depending 
on the current value of the hili ted flag In the window record (11:3.1.1). 
The definition function Itself determines how this affects the size region's 
appearance. 

3. If the window's visible field (11:3.1.1) Is FALSE, the definition function 
should simply return without drawing anything. 

4. This message is meaningful only for windows (such as standard 
document windows) whose size region is part of the content region. If the 



75 (2.2.5) Locating Mouse Clicks 
----------~~~~~~~~ 

const 
WHit = l; 

WNoHit = 0; 

WinCoritent = 1: 

WinDt:ag = 2; 

WinGrow = :l: 
WinGoAway =4:. 

WinZoomin = 5; 

WinZoomOut = 6; 

size region Is part of the window's frame, It Is drawn by the WD raw 

message (2.2.3] instead. In this case, the definition function should do 
nothing in response to the message WDrawGicon. 

5. The message WGrow instructs the window definition function to draw a 
window's grow image on the screen, providing visual feedback to the 
user for resizing the window. 

6. This message is sent repeatedly by the Toolbox routine GrowWindow 

[11:3.5.4], while tracking the mouse as the user drags the window's size 
region. 

7. The definition function itself determines the appearance of the window's 
grow image. For example, the grow image for a standard document 
window consists of the window's outline along with the outlines of its 
title bar, scroll bars, and size box. 

8. msgParam (2.2.1] is a pointer to a rectangle in global (screen) 
coordinates, defining the bounding box in which to draw the grow image. 

9. Before sending the WGrow message, the Toolbox will have set the current 
graphics port to the Window Manager port (11:3.6.1), whose port 
rectangle is the entire screen. 

10. The port's pen pattern will have been set to Gray (1:5.1.2) and its pen 
mode to NotPatXOr (1:5.1.3], producing a dotted outline that erases and 
redraws Itself as it follows the mouse's movements. The deftnltlon 
function should not disturb these settings, but should simply use the 
pen characteristics provided by the Toolbox. 

2.2.5 Locating Mouse Clicks 

(Find where mouse was pressed} 

{W'mdow bit eodes: } 

(None of the following} 
{In content:region} 

{In drag/region} 

(In size.regien) 
(In close te&iml 
(ID zaom region of a ":roomed-out" window) 
{In l.oonuegfon ofa "momecl-in" window} 



76 Customizing 

Notes 

1. The message WHi t asks the window definition function to find which 
part of a window, if any, contains a given point (normally the point where 
the mouse button was pressed). 

2. The definition function's msgParam parameter (2.2.1). nominally a long 
integer, is actually a Point record (1:4.1.1), with its vertical coordinate 
in the high-order word and horizontal in the low. 

3. The point is expressed in global (screen} coordinates. 

4. The definition function returns a htt code as its result. identifying which 
part of the window. if any, was "hit" by the mouse. 

5. If the given point lies outside the window. or is part of the window's frame 
but not in any other identifiable region, the definition function should 
return the hit code WNoHi t. 

6. The definltlon function should never return the hit code WinGoAway if 
the goAwayFlag field in the window record [11:3.1.1) is FALSE. 

7. The hit codes WinZoomin and WinZoomOut should never be reported if 
the window's spare Fl a g field [11:3.1. l] is FALSE. or when running on an 
early-model Macintosh that doesn't support the zooming feature (ROM 
version less than $ 7 5 (1:3.1.3)). 

8. If the window is currently inactive (hilited = FALSE in the window 
record [11:3.l.l]), the hit codes WinGrow, WinGoAway. WinZoomin. and 
WinZoomOut should not be reported. In a standard document window. 
for example. the size box ls reported as part of the content region when 
the window is inactive, and the close and zoom boxes are reported as 
part of the drag region (title bar). 

9. Notice that the hit codes reported by the definition function are not the 
same as the corresponding part codes returned by the Toolbox function 
FindWindow (11:3.5.1). 

ID I Assembly Language Information --1n..,.__ _____ _ 
Wm.dow hit codes: 

Name Value 

WNoHit, 0 

WinC,ont~nt 1 

Wlnlfrag 2 
WinGrow 3 

Meaning 

None of the following
In content region 
In drag region 
In size region 



77 [2.3.1) Control Definition Function 

Name 

WinGoAway 
WinZoomin 
WinZo.ornOut 

Value 

4 
5 

6 

·Meaning 

In close region 
lri. mom region of a "zoomed-out" window 
In zoom region of a "zoomed-in" window 

2.3 Customizing Controls 

2.3.1 Control Definition Function 

function YourControlDef 

(varCqde INTEGER: . {Varittion cOde} 
'.{Handle t<>"ilie control J theControl ControlHandle: 

msgCode INTEGER: · foperaticn,fro be perf onned} 
msgPa·ram LONGINT) (Additional data for performing operation} 

(Resultretumed by operation} 

const 
DraWCntl O: 

TestCntl 1: 

CalcCRgns = 2: 
Ini tCntl = 3: 

DispCntl = 4: 
PosCntl = 5: 

ThumbCntl 6: 
DragCntl 7: 

AutoTrack = 8: 

LONGINT: 

Notes 

(Draw all or part of control [23.3]} 

(Fmd wherecmouse was pressed [2.3.4]} 

{Calculate-control's region [2.3.2]} 

(Jnilialize new control (2.3.2]} 
(Prepare to dispose of control [2.3.2]} 

{Rep,osition and update. selling (23.S]} 

(Caleolate parameters for dragging [23.Sl} 
{ Dtag ·c:cnttol ot indicator [2.3~5]} 
·{Execute default action procedure [2,35]} 

1. A control definition function defines the appearance and behavior of one 
or more types of control. The Toolbox calls it whenever it needs to draw 
all or part of a control on the screen or determine its interactions with 
the mouse. 

2. The function heading shown above is only a model for defining your own 
control definition functions. There is no Toolbox routine named 
YourControlDef. 



78 Customizing 

3. Control definition functions are stored In resource files under resource 
type 'CDEF ' [2.5.2). 

4. When a control Is created. the resource ID of Its deftnltlon function is 
given by the first 12 bits of the control definition ID (the control Type 
parameter to NewControl [11:6.2.1] or the corresponding field of the 
control template [11:6.5.1) supplied to GetNewCont ro 1). The last 4 bits 
are a variation code, allowing the same definition function to Implement 
more than one type of control. Thus the definltlon ID ls determined by 
the formula 

defID = 16*rsrcID + varCode 

5. The Toolbox reads the deftnltlon function Into memory from its resource 
file, if necessary. and places a handle to it in the control record·s 
contrlDefProc field [11:6.1.1). 

6. On original Macintosh systems using 24-bit addresses, the first byte of 
the cont r 1 Def Pr oc field holds the variation code. It ts stripped out and 
passed as a parameter when the deftnltlon function ls called, Identifying 
the particular type of control being manipulated. On 32-blt systems, the 
handle occupies the entire field and the variation code ls stored In the 
acFlags field of the auxiliary control record (see Volume Four). 

7. The definltlon function's ms gCo de parameter designates the operation to 
be performed, and ls always one of the constants shown above 
(Dr awCn t 1 to Auto Track). ms gP a ram gives further Information for some 
operations; see [2.3.2-2.3.5) for details. 

8. The function result ls meaningful only In response to the messages 
TestCntl [2.3.4) and DragCntl [2.3.5]. In all other cases, the function 
should simply return o. 

9. The contrlData field of the control record [11:6.1.1] ls reserved for the 
private use of the control definition function, typically to hold a handle 
to an auxiliary data record. 

10. The definition function cannot assume that processor register AS Is set 
up properly at the time It ls called, and thus cannot access any of the 
Information stored in the application global space, or "AS world." In 
particular, this means it must not refer directly to any of the QuickDraw 
global variables listed in [I:4.3. l ). 



79 (2.3.2) Creating and Destroying Controls 
~~~~~~~~~~~~-

~~I ... ----As~s em_. -JJ~ly_·. ;-,,.· 1'_~"!'91•_.1_e_'_n_fo_1_11_1a_t1_o_n_· -----

Control me$s~·.~:

const

CalcCRgns = 2:
Ini tCntl = 3 :

DispCntl =4:

Name v.iue Meaning

DrawCtlMS&· - 0 Draw all orpart of control
HitCtlMsg 1 Fmd wheremouse was pressed
CalcCtlMsg ·2 CalcUlate control's region
NewCtlMs& :3· InitialiZe new control
pispCtlMsg 4 PreparetO dispose of control
PosCtlMsg 5, Reposition and update setting
ThumbCtlMsg . ·6 Calculate parameters for dragging
DragCtl~sg r Drag control or indicator
TrackCtlMsg ·8 Execute default action procedure

2.3.2 Creating and Destroying Controls

Notes

(Catculata~uol's region within its window)
(Initialim hc;w :eontr01 J
cPrepare·io iliSpose of canuol)

1. The message Ini tCntl ls sent to the control definition function when a
new control ls created. This allows the definition function to perform any
special inltlallzatlon It may require, such as allocating an auxiliary data
record and placing Its handle In the contrlData field of the control
record (11:6.1.1].

2. The message DispCntl ls sent just before a control record is destroyed.
The definition function can then perform any final housekeeping chores,
such as disposing of Its auxiliary data record, if any:

3. The message CalcCRgns asks the definition function to recalculate the
region a control (or its Indicator) occupies within its window.

const

DrawCntl = O;

80 Customizing

4. The control's current dimensions are given by Its enclosing rectangle,
found In the contrlRect field of the control record [11:6.1.1).

5. A region handle ls passed In the last 3 bytes of the definition function's
msgParam parameter [2.2.1). This region will already have been created
by the Toolbox: the definition function should simply update Its size and
shape.

6. If the high-order bit of msgParam ls set, the definition function should
calculate the region occupied by the control's moving Indicator (such as
the scroll box or "thumb" of a scroll bar), rather than that of the entire
control. Controls other than dials (that ls, those that have no moving
indicator) should simply Ignore such calls.

7. The remainder of msgParam's first byte is reserved for future use. To
ensure future compatibility, this entire byte (not just the first bit) should
be stripped out before using the handle.

8. The calculated region must be expressed. In window-relative Oocal)
coordinates. This ls the same form In which the enclosing rectangle ls
given In the control record.

2.3.3 Drawing Controls

(Draw all or part of control)

Notes

1. The message DrawCntl Instructs the control definition function to draw
all or part of a control on the screen.

2. The function's msgParam parameter [2.3.1] ls a part code telling how
much of the control to draw. A value of o specifies the entire control.

3. The definition function itself determines the values and meanings of a
control's part codes. Moving indicators, if any, should have part codes
of 12 9 or greater.

4. For functions that support more than one variant control type, the
varCode parameter [2.3.1] tells which variant to draw.

5. The control or part should be drawn in its normal or highlighted state,
depending on the current value ofthe contrlHili te field In the control
record [11:6.1.l]. If contrlHili te = 255, the control should be drawn in

81 [2.3.4) Locating Mouse Clicks
~~~~~~~~~~~~-

const 
TestCntl = 1: 

its inactive state. The definition function itself determines how these 
conditions affect the control's appearance. 

6. The control should be drawn so as to reflect its current setting and 
range, given by its contrlValue, contrlMin, and contrlMax fields 
[11:6. l. l ]. 

7. If the control's contrlVis field [11:6.1.l] is o, the definition function 
should simply return without drawing anything. 

8. Before sending the DrawCntl message, the Toolbox will have set the 
current graphics port to the control's owning window. 

9. The window's clipping boundaries will have been set to include only 
those portions of its structure region that are exposed to view on the 
screen. The definition function should simply draw the entire control or 
the requested part, letting the Toolbox take care of the clipping. 

10. If the definition function wishes to set its own text characteristics for the 
control's title, it should save the window's previous settings. then restore 
them before returning. 

11. The Toolbox routines SetCtlValue, SetCtlMin, and SetCtlMax 
[11:6.2.4] send this message, with a special part code ofl 29, to redraw a 
control after changing its setting or range. This value is understood to 
refer to the control's indicator (or all indicators, if there's more than one), 
regardless of part code. The definition function should respond by 
redrawing the indicator(s) according to the current values of 
contrl Value, contrlMin, and contrlMax [11:6.1.1]. 

2.3.4 Locating Mouse Clicks 

{Fmd pan of control where mouse was pressed} 

Notes 

1. The message Test c n t 1 asks the control definition function to find which 
part of a control, if any, contains a given point (normally the point where 
the mouse button was pressed). 

2. The definition function'smsgParam parameter [2.3.l], nominally a long 
Integer, is actually a Point record [1:4.1.l], with its vertical coordinate 
in the high-order word and horizontal In the low. 



const 
PosCntl ·= 5: 
Th.umb0nt1 ·? .6 : 

DragCntl = 7: 

Auto~~ack = 8: 

82 Customizing 

3. The point Is expressed in the local coordinate system of the control's 
owning window. 

4. The definition function returns a part code as Its result, Identifying 
which part of the control, If any, was •hit" by the mouse. 

5. The definition function itself determines the values and meanings of a 
control's part codes. Moving indicators, If any, should have part codes 
of 12 9 or greater. 

6. If the given point lies outside the control, or ls not in any identifiable part, 
the definition function should return a part code of o. 

7. If the control ls currently Inactive (contrlHili te = 255 in the control 
record (11:6.1. l, 11:6.3.3)), the definition function should return a part 
codeofo. 

2.3.5 

Notes 

Tracking and Positioning 

(Reposilion indicator and update setting} 
(Cal~ pa~~,for .. clragging indicator} 
{Drag control odndicator} 
(Execute default action procedure} 

1. The message ThumbCntl ls sent by the Toolbox routine TrackControl 
[11:6.4.2), asking the control definition function to calculate the 
constraint parameters for dragging a control's indicator with the mouse. 

2. msgParam (2.3.1) Is a pointer to a data record to be filled In by the 
definttlon function, of the form 

record 

limitRect 

trackRect 

axis 

end; 

Rect: 

Rect: 

INTEGER 

(Rectangle limiting movement} 

{Rectangle limiting tracking} 

(Axis constraint} 

The fields of this record have the same meanings as the corresponding 
parametersoftheToolboxroutlneDragControl [11:6.4.3), butapplyjust 
to dragging the control's Indicator rather than the whole control. Notice 



83 (2.3.5) Tracking and Posftlonfng 
~~~~~~~~~~~~~ 

that this is just a hypothetical record structure, and Is not actually
defined as a Toolbox data type.

S. On entry to the definition function, the first 4 bytes of the parameter
record (equivalent to the field selectorlimi tRect. topLeft) contain the
point where the mouse was pressed, corresponding to theDragCont rol
parameter startPoint [11:6.4.3).

4. The values of startPoint, limi tRect, and trackRect are all
expressed In the local coordinate system of the control's owning window.

5. The message DragCntl ls sent by the Toolbox routines DragControl
[11:6.4.3] and TrackControl [11:6.4.2), allowing the control definition
routine to override the standard methods of mouse tracking, if it
chooses, with "custom· methods of its own.

6. The function's msgParam parameter (2.3.1) tells whether to drag the
entire control (msgParam = O) or just its Indicator (msgParam :/! o).

7. If the definition function chooses to do Its own mouse tracking, it should
keep control for as long as the user holds down the mouse button,
reading the mouse's position with GetMouse (11:2.4.1) and providing
visual feedback on the screen In whatever way It wishes.

8. When the button ls released, the definition function should reposition
the control or Its Indicator as needed, by calling either MoveControl
(11:6.3.2), to move the entire control, or Its own PosCntl routine (see
notes 10-13, below), to reposltlon the indicator and adjust the control's
setting to match.

9. After tracking the mouse, the deftnltton function should notify the
Toolbox by returning a nonzero result If It doesn't do Its own mouse
tracking, It should return o to request the standard tracking
methods, as described In (11:6.4.3) for DragControl and (11:6.4.2) for
TrackControl.

10. The message PosCntl is sent by the Toolbox routine TrackControl
(11:6.4.2) when the user releases the mouse button after dragging a
control's indicator. It Instructs the control detlnltlon function to
reposttlon the indicator and adjust the control's setting to match.

11. msgParam (2.3.1) is a point telling how far the mouse was moved while
dragging the indicator, from the point where the button was pressed to
the point where It was released. The high-order word gives the vertical
offset, the low-order the horizontal.

12. The definition function should reposition and redraw the control's
Indicator according to the given offset, calculate the corresponding
change In the control's setting, and store the new setting Into the
contrlValue field of the control record (11:6.1.1).

13. This message ts not used to redraw a control on the screen when its
setting or range are changed with the Toolbox routines SetCtl Value,
SetCtlMin, or SetCtlMax (11:6.2.4). This ls done with the DrawCntl

84 Customizing

message Instead, using a special part code of 129 for rnsgParam (see
(2.3.3, note 11]).

14. The message AutoTrack ls sent by the Toolbox routine TrackControl
(11:6.4.2), Instructing the control deftnltlon function to execute its
default action procedure for tracking the mouse in a control.

15. See (11:6.4.2) for the form and behavior of the action procedure.

16. This message Is used only when both the actionProc parameter to
T rackControl (11:6.4.2] and the contrlAction field in the control
record (11:6.1.l) are set to the value ProcPtr (-1). Any other value In
either place overrides the default action procedure supplied by the
deftnltlon function.

2.4 Customizing Menus

2.4.1

procedure YourMenuDef

con st

(msgCode
theMenu
·Var menuFrame
mousePoint
var theitem

MDrawMsg = O;
MChooseMs g ""' l :
MSizeMsg = 2:

Notes

Menu Definition Procedure

INTEGER:

MenuHandle ;.
Rect:
Point:
INTEGER)·:

(Operation to beperfonned)

(Handle to the menu)

{Menu frame).

{Mouse pOsition in global (screen) coordinates}
{Number of menu item chosen}

{Draw m~u (2.4.2])

(Futd and highlight menu item. [2.4;3)}

{Calculate dimensions of menu [2.4.2]}

1. A menu definition procedure defines the appearance and behavior of a
particular type of menu. The Toolbox calls It whenever it needs to draw
a menu on the screen or determine Its Interactions with the mouse.

85 (2.4.1) Menu Definition Procedure

2. The procedure heading shown above ls only a model for defining your
own menu definition procedures. There is no Toolbox routine named
YourMenuDef.

3. Menu definition procedures are stored In resource ftles under resource
type 'MDEF ' (2.5.3).

4. When a menu is created from a predefined template, using the Toolbox
routine GetMenu (11:4.2.2), the template resource [11:4.8.1) Includes the
resource ID of the menu definition procedure. The Toolbox reads the
definition procedure Into memoiy from its resource file, if necessaiy, and
places a handle to It In the menu record's menuProc field (11:4.1.1).

5. When a menu ls created from scratch, using the Toolbox routine
NewMenu [11:4.2.2), lt ls automatically set up as a standard text menu. To
use a different type of menu. the application program must explicitly
store a handle to the desired definition procedure In the menu's
menuProc field.

6. After installing a nonstandard definition procedure, the application
program must call CalcMenuSize (11:4.7.1) to recalculate the menu's
dimensions.

7. The definition procedure'smsgCode parameter designates the operation
to be performed, and is always one of the constants shown above
(MDrawMsg to MSizeMsg). The use of the remaining parameters depends
on the operation: see [2.4.2, 2.4.3) for details.

8. The definition procedure may define the structure of the .. hidden data"
in the menu record's menuData field (11:4.1.1) in anyway it chooses.

9. The definition procedure cannot assume that processor register A 5 ls set
up properly at the time It ls called, and thus cannot access any of the
information stored In the application global space, or .. AS world." In
particular, this means It must not refer directly to any of the QulckDraw
global variables listed In [1:4.3.1).

ID I Assembly Language Information
----IDt--------------

Menu message codes:

Name Value

MDrawMsg 0
MChooseMsg 1
MSizeMsg 2

Meaning

Draw menu
Find and highlight menu item
Calculate dimensions of Jll.enu

const

MDrawMsg = O;
MSizeMsg = 2:

86 Customizing

2.4.2 Menu Display

(Draw menu}
(Catcwate dimensions of menu}

~~i~~-Not_es ______ _
1. The message MSizeMsg asks the menu definition procedure to calculate

a menu's width and height In screen pixels. according to the current
contents of the menu's items.

2. The definltlon procedure should store the calculated dimensions in the
menuWidth and menuHeight fields of the menu record UI:4.1.l).

3. This message is sent by the Toolbox routine CalcMenuSize (11:4. 7.1),
which is called automatically whenever a new menu is created. The
application program should also call CalcMenuSize explicitly after
installing a nonstandard definition procedure In a menu's menuProc
field (11:4.1.1).

4. The message MD r awMs g Instructs the menu definition procedure to draw
a menu on the screen.

5. The function's menuFrame parameter (2.4.1) gives the rectangle within
which the menu ls to be drawn, In global (screen) coordinates.

6. Any Items that are marked as disabled in the menu record's
enableFlags field (11:4.1.1) should be "dimmed" In some way. The
standard way of doing this ls to paint over them with a gray pattern,
using the PatBic transfer mode (1:5.1.3). Note, however. that the
pattern must be built "by hand," since the standard pattern Gray
(1:5.1.2) ls a QulckDraw global variable residing In the application global
space, and thus ls Inaccessible from within the definitlon procedure (see
(2.4.1, note 9)).

7. If the low-order bit of enableFlags (11:4.1.1) ls o. the entire menu is
disabled and should be dimmed.

8. Before sending the message MDrawMsg, the Toolbox will have set the
current graphics port to the Window Manager port (11:3.6.1). whose port
rectangle Is the entire screen.

87 (2.4.3) Locating Mouse Clicks
~~~~~~~~~~~~~ 

const 

MChooseMsg c:: I: 

9. The port°s text charactertstlcs [1:8.3.1] are normally set to the standard 
system typeface and size. If the definition procedure wishes to use some 
other text characterlstlcs for the menu's items, it must set them for itself. 
then restore the original values before returning. 

2.4.3 Locating Mouse Clicks 

{Find and highlight menu item) 

Notes 

1. The message MChooseMsg asks the menu definition procedure to find 
and highlight the menu item, if any. that contains a given point 
(normally the current mouse position). 

2. The definition procedure's mousePoint parameter (2.4.1) gives the 
mouse positlon: rnenuFrame gives the rectangle enclosing the menu. 

3. Both the mouse point and the menu frame are expressed in global 
(screen) coordinates. 

4. The parameter the It em gives the number of the item that was previously 
highlighted. or o if none. 

5. The definitlon procedure should unhighlight the previous item. find and 
highlight the item containing the given mouse point, and return its item 
number via the variable parameter the It em. 

6. If the item containing the mouse point is the same one designated by 
the I tern. the defmitlon procedure should do nothing. 

7. If the mouse point is outside the menu's frame or in a disabled item, or 
if the entire menu is disabled. the definition procedure should simply 
unhighlight the previous item, if any, without highlighting a new one. It 
should then return O in the!tem. 



88 Customizing 

2.5 Customizing-Related Resources 

2.5.1 Resource Type 'WDEF ' 

Code of 
definition function • • • • 

I

•-·- (indefinite length) ..... _,_,_

1

. 
·-··-··---·-····--1-····-.. -· ..... _., ....... -.. .. 

Structure of a 'WDEF' resource 

Notes 

1. A resource of type 'WDEF' contains a window definition function [2.2.1). 

2. The resource data ts simply the machine-language code of the definition 
function. 

3. The function's entry point must be at the beginning. 

4. The resource ID of the 'WDEF' resource is the same as the first 12 bits 
of the window deflnltlon ID. as specified by the windowType parameter 
to NewWindow [11:3.2.2] or by the corresponding field of the window 
template [11:3.7.1] supplied to GetNewWindow. 

5. Two standard 'WDEF ' resources are kept in the system resource file, or 
in ROM on some Macintosh models. Number o draws standard 
document windows and dialog and alert boxes (window definition IDs o 
to 15 (11:3.2.2), depending on variation code); number 1 draws rounded
comer desk accessory- windows (definition ID 16; variation code gives 
radius of comers (11:3.2.2, note 14]). 



89 (2.5.2) Resource 1}'pe 'CDEF' 
~~~~~~~~~~~~-

2.5.2 Resource Type • CDEF •

l
T

Code of
definition function • • • •

I
• (indefinite length) •

·-·--- ... ·---·-1 ----t-·-··-.... --
Structure of a • CDEF • resource

Notes

1. A resource of type 'CDEF' contains a control definition function (2.3. l].

2. The resource data is simply the machine-language code of the definition
function.

3. The function's entcy point must be at the beginning.

4. The resource ID of the ' CDEF ' resource ls the same as the first 12 bits
of the control definition ID, as specified by the contro 1 Type parameter
to NewControl (11:6.2.l], or by the corresponding field of the control
template [11:6.5.l] supplied to GetNewControl.

5. Two standard ' CDEF ' resources are kept in the system resource file, or
in ROM on some Macintosh models. Number o draws standard
pushbuttons, checkboxes, and radio buttons (control definition IDs o to
15 [11:6.2. l], depending on variation code); number 1 draws standard
scroll bars (definition ID 16, variation codes ignored).

90 Customizing

2.5.3 Resource Type • MDEF'

Code of
• definition procedure •
• •

1-~fin;lq~) -~

Structure of an 'MDEF' resource

~~lill-'.i=~-No_tes ______ _

1. A resource of type 'MDEF' contains a menu definition procedure [2.4. l].

2. The resource data ts simply the machine-language code of the defmitlon
procedure.

3. The procedure's entry point must be at the very beginning.

4. One standard 'MDEF' resource ts kept in the system resource file (or in
ROM on some Macintosh models). It has a resource ID ofo, and draws
the standard type of text menu.

2.5.4 Owned Resources

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I · > I : : I : : : : : I : : I

Resource ID of an owned resource

Number of this resource

Resource ID of
owning resource

Type code of
owning resource

91 (2.5.4) Owned Resources

Type codes for owning resources:

Type Code Resource Type

0 'DRVR'
1 'WDEF'
2 'MDEF'
3 'CDEF'
4 'PDEF'
5 'PACK'
6 Reserved
7 Reserved

Notes:

See Section

[3.3.1]
[2.5.1]
[2.5.3]

[2.5.2]
[4.6.2]

[1:7.5.2]

I. Resources that are ·owned" by another resource must be numbered in
a special way so that they can be recognized and properly handled by
resource-handling software.

2. The first 2 bits (bits 15 and 14) must both be 1 to mark this as an owned
resource.

3. Bits 13-11 identify the type of the owning resource, as shown in the
table.

4. Bits l 0-5 give the resource ID of the owning resource within the specified
type. Notice that this llm1ts owning resources to IDs in the range o to 6 3.

5. Bits 4-0 identify' this individual owned resource. Thus a single owning
resource can't own more than 32 other resources of a given type.

6. 'WDEF' (2.5.1] and 'CDEF' (2.5.2) resources cannot be owned by other
resources, because their resource IDs must be no longer than 12 bits in
order to form part of a window or control definition ID (2.5.l, note 4;
2.5.2, note 4). Thus they cannot conform to the conventions just
described.

7. Font-related resources such as ' FONT' (11:8.4.5), 'NFNT ' (11:8.4.5), and
'FWID' (11:8.4.6) also cannot be owned, because they are subject to
numbering conventions that conflict with those given above.

CHAPTER
-- Ir . ~-c].,1:

-- fl~=~ =:=:=:=:=:=:=:=:.=:.=:.=-.= •• = •• = •• = •• = •• = •• = •• =._=.

In the Driver's Seat

Deep In the subterranean recesses of the Macintosh lurk the
device drivers. These fugitive creatures are seldom seen outside their
shadowy haunts in the depths of the Operating System; and there
most Macintosh programmers are content to let them remain. their
very existence rarely acknowledged save for the indispensable work
they do. Chances are, you'll never have to write a device driver of your
own-but a basic acquaintance with their anatomy and habits will
help you understand some of the other. livelier topics we'll be
discussing in later chapters: printing, sound, and desk accessories.
So summon your courage while we drag these elusive beasts into the
light for closer examination.

A driver's purpose in life is to control an input/ output device,
such as a disk drive, printer, or modem. The trouble with devices is
that there are so many different kinds, and new ones being invented
all the tim~each with its own unique properties and idiosyncrasies.
The diversity is more than the Macintosh Toolbox can cope with all
by itself. So to help it out, each device has its own driver, with the
specialized expertise needed to deal with that particular device. The
driver shields the device's peculiarities from the rest of the system by
hiding them behind a standard, uniform programming interlace.

One good reason for learning about drivers is that they form the
basis of the desk accessories that all Macintosh users know and

93

94 In the Driver's Seat

adore. A desk accessory is really a .. mini-application" pretending to
be a peripheral device. By masquerading behind the standard driver
interface, it can share the screen amicably with whatever other
program happens to be running. In this chapter, we'll consider the
general properties shared by all drivers: in Chapter 6, we'll come back
and focus on those that are specific to desk accessories alone.

Driver Identification

Macintosh devices fall into two categories: those that are built right
into the Mac itself and those that are peripheral and connected to the
machine with plug-in cables. The drivers for built-in devices are
stored permanently in ROM, where they're always available when
needed. These include the disk driver for the standard Sony disk
drive, the sound driver for the built-in audio speaker, and the serial
driver for communicating through the serial ports on the back of the
machine. (Recent models also have a pair of AppleTal.k drivers in
ROM for communicating with other computers and remote devices
over the AppleTalk network.)

Drivers for peripheral devices are stored in disk files as re
sources of resource type 'DRVR' (3.3.1) and loaded into RAM when
needed. They're typically "built on top of' the standard serial driver
and use it to communicate with the device through the serial port. In
Chapter 4, we11 look at one important example of such a driver, the
printer driver.

The Macintosh Pitts and .other recent models include a SCSI
(Small Computer Standard Interfa~e)parallel port in addition to '
the serial ports~ Special provlslon8 have been added to the
Toolbox to allow'SCSI deviees to cany their own driver$, which
are loaded directly into memory via the SCSI port, rather than
from a· disk-based resource tue .. The details of Ws process
needn't concern us here; :if y()u're c1lrlous, see the' .. SCSI
Manager" chapter of Inside Macintosh, Volume IV •.

Every driver has a name and a untt number. The unit number is
simply its index in the unit table [3.1.3], a master list of all drivers
currently installed in the system. For each driver, the table holds a
handle to a device control entry (3.1.4), which in tum contains all the

95 Working with Drivers
~~~~~~~~~~~~ 

pertinent information about that driver. (We'll examine the structure 
of the device control entry later in this chapter.) On the original 
Skinny and Fat Macs, the unit table has room for 32 installed drivers, 
with unit numbers from o to 31. On the Macintosh Plus, it has been 
expanded to accommodate up to 48 drivers, numbered from o to 4 7: 
the latest models have a 64-element unit table, indexed from o to 6 3. 

Each driver also has a driver reference number, which is simply 
the bitwise binary complement of its unit number. In two's
complement arithmetic, this means that the unit and reference 
numbers are related arithmetically by the formula 

refNum = -(unitNum + 1) 

For example, the printer driver has a unit number of 2 and a reference 
number of - 3. The driver reference number always lies between - 1 
and -32 (or -48 or -64, depending on the model). Its negative sign 
serves to distinguish it from a file reference number [1:8.2.2], which 
is always positive. The names and numbers of the standard drivers 
and desk accessories are summarized in [3.1.3). 

For drivers residing in resource files, the driver name and unit 
number are the same as the resource name and ID [1:6.4.1]. By 
convention, the names of true device drivers always begin with a 
period (.). while those of desk accessories may begin with any 
character except a period. As we learned in Volume Two, this allows 
you to build a menu of available desk accessories by calling the 
Toolbox routines AddResMenu or InsertResMenu [11:4.3.3] With a 
resource type of 'DRVR' . You may recall that these routines auto
matically suppress any resource name that begins with a period. 
Thus driver names like . Print and . Sound will be omitted, leaving 
only the desk accessories to appear on the menu. 

Working with Drivers 

Just as for files [11:8]. the Toolbox includes two separate sets of 
routines for working with drivers. The low-level routines give you 
complete control over the details of each operation: the high-level 
routines are simpler and easier to use, but give up some of that fine 
control. As we did when we learned about files in Volume Two, we'll 
confine ourselves here to the high-level routines, which are perfectly 
adequate for most straightforward purposes. If you're a glutton for 
detail, Apple's Inside Macintosh manual will tell you more about the 
low-level system than you probably want to know. 



96 In the Driver's Seat 

Because the low-level routines are designed to be called from 
assembly language. they're register- rather than stack-based. All of 
them accept a pointer in register AO to a parameter block. a long, 
complicated variant record structure containing all the pertinent 
information about the operation to be performed. For this reason. 
most low-level routines have names beginning with the letters PB, for 
"parameter block." 

Only the low-level routines actually reside :in ROM: the high
level routines ate merely part of the Pascal Interface "glue ... Ail 
they do fs set up an appropriate, parameter block, place Its 
a<idress, in .register· AO, and ·can the corresponding·low~level 
toutme:to dothewortt~:rn-assemblyl~gt,1.age, ontythel()w-level, 
register-based ·routines are available. 

Before attempting to use any driver. you have to open it for 
operation with the Toolbox routine OpenDriver (3.2.1]. You identify 
the driver by name and get back a driver reference number, which 
you then use in all further operations. If the requested driver Is not 
yet installed in the unit table. OpenDri ver reads it into memory from 
its resource file. creates a device control entry (commonly called a 
DCE). stores a handle to the DCE in the appropriate slot In the unit 
table, and returns a reference number based on its unit number (that 
is, its position in the table). Subsequent calls to OpenDri ver will 
simply use this existing DCE and unit number. 

Once the driver is open, you can use it to transfer data to and 
from the device with the Toolbox routines FSRead· and FSWri te 
(3.2.2]. If these names have a familiar ring, It's because they're the 
same routines we used in Volume Two (11:8.2.3) for reading and 
writing files: the letters F s stand for "file system." These same 
routines can operate on either drivers or files, depending on the sign 
of the reference number you supply as a parameter. 

Two more routines. Control and Status (3.2.3], are used to 
control the operation of a device, select option settings, and so forth, 
and to request information about the current state of the device. The 
exact nature of the control operation or status information is speci
fied by a control code or status code that you supply as a parameter. 
Each driver and device has its own set of control and status 
operations, and its own codes to denote them. (We'll see some 



97 The Device Control Entry 
~~~~~~~~~~~-

examples when we talk about the printer driver in Chapter 4.) Both
the Control and Status routines also accept a pointer to a parame
ter area in memory, which is used to supply further data to a control
operation or to return the requested information from a status call.
Again, the exact contents of the parameter area depend on the driver
and the particular operation you specify.

The Toolbox routine Ki 11 IO (3.2.3) immediately terminates any
input/ output operation in progress on a given device and cancels any
further operations that may be pending. This is actually a special
Control call, designated by a control code of 1. That is, the statement

result := KillIO (anyDriver)

ls equivalent to

result :=Control (anyDriver. 1. NIL)

When you're through using a driver. CloseDri ver (3.2.1)
completes any pending input/ output operations and frees the
memory space the driver occupies. The driver's device control entry
remains. however, so it can be used again if the driver is later
reopened for further use.

The Device Control Entry

The device control entry, or DCE [3.1.4], is the basic data structure
in which the Toolbox keeps all of its information about a driver. The
DCE is created the first time the driver ls opened for operation, and
remains allocated continuously thereafter-even when one applica
tion program ends and another ls started. Even if you close the driver
itself, its DCE remains installed in the system unit table, and will be
used again the next time the driver is reopened. The Toolbox routine
DCtlEntry (3.1.4] returns a handle to it.

In assembly language, you .can get a . driver's DCE handle .
directly from the unit table. You11 find the address of the unit
table In the assembly-"language global variable UTableBase: the ·
driver's unit number (notits reference number!) gives the offset
of its DCE handle Jn longwords from the beginning of the table.

98 In the Driver's Seat

The first field of the DCE, dCtlDriver, holds a handle to the
driver itself in memory. (For drivers that reside in ROM, it"s a simple
pointer instead of a handle.) This is followed by a word of flags
(dCtlFlags) describing the driver's properties and current status.
Other fields hold the driver's reference number (dCtlRefNum) and its
current byte position for reading and writing (dCtlPosi tion).

If a driver needs memory space for its own private use, it can
allocate a block from the heap and keep a handle to it in the
dCtlStorage field of the DCE. Each driver is also allowed to place
one window on the screen and one menu in the menu bar; the
dCtlWindow and dCtlMenu fields hold the window pointer and the
menu ID, respectively. These capabilities are normally used only by
desk accessories, so we11 postpone discussing them (as well as the
event mask, dCtlEMask) until Chapter 6.

Driver Flags
Let's take a closer look at the driver's flag word, dCtlFlags [3.1.2].
The first byte of the flag word defines general properties of the driver,
and is copied from the header of the driver itself [3.1.1] when it is
first opened. Four of the flags in this byte tell which of the standard
driver operations-Read, Write, Control, and Status-the driver is
able to perform. (All drivers are required to respond to Open and
Close operations.) You can test or manipulate these flags with
the assembly-language constants dReadEnable, dWri tEnable,
dCtlEnable, and dStatEnable, respectively; no corresponding
constants are defined at the Pascal level.

Whenever the Toolbox invokes any driver operation, it first locks
the driver and its DCE in place, so they can't float around the heap
while the operation Is in progress. It unlocks them again on comple
tion, allowing them to be moved between calls, if necessary, to make
room for other objects. However, if the dNeedLock flag is set, the
driver and DCE will remain locked even between operations, for as
long as the driver remains open for business.

Drivers that reside in the application heap also run the risk of
being obliterated when the heap is reinitialized (for instance, when a
new program is started up). By setting the dNeedGoodBye flag, the
driver can ask to be notified when this is about to happen. The "'good
bye kiss" takes the form of a special Control call with a control code
of -1 (defined as an assembly-language constant named GoodBye).
The driver can respond by saving critical data, relocating itself to the

99 The Device Control Enby
~~~~~~~~~~~-

system heap. or whatever else it needs to swvive the coming 
cataclysm (or at least to expire gracefully). The Note Pad desk 
accessory. for instance. uses this opportunity to save the contents of 
its current page to the disk before its host program terminates. 

The last remaining flag in the first byte of the flag word, 
dNeed Time, is discussed later in this chapter under "Periodic Tasks." 
The second byte is used by the system to maintain information on the 
driver's current status: the dRAMBased flag tells whether it resides in 
ROM orRAM. dOpened tellswhetheritiscurrentlyopenforbusiness, 
and drvrActive tells whether it is actively engaged in an input/ 
output operation. 

The Driver 1/0 Queue 

Many drivers perform their input/ output operations asynchro
nously. Instead of immediately carrying out all 1/0 requests as it 
receives them from the running program, the driver simply places 
them in a driver I/ 0 queue for later execution. Each time an operation 
is completed. the device sends an interrupt signal to the Macintosh 
processor, causing it to suspend whatever it's doing and execute an 
interrupt handler routine. The interrupt handler fetches the next 
request from the queue. begins the requested operation, and then 
resumes the interrupted program from the point of suspension. 
When the operation is complete, it will generate another interrupt, 
the interrupt handler will start the next operation in the queue, and 
soon. 

Each driver has its own 1/0 queue [3.1.5, 3.1.6]. The head of the 
queue is kept in the dCtlQHdr field of the device control entry; its 
elements are parameter blocks representing pending driver requests 
waiting to be carried out. Like all queue elements, the parameter 
block begins with a qLink field pointing to the next element in the 
queue (or NIL for the last element). This is followed by a field named 
qType that identifies the type of queue. Queue types are nominally 
denoted by constants of the enumerated type QTypes [3.1.6): for a 
driver 1/0 queue. the type is IOQType. However, the parameter 
block's qType field is formally defined to be of type INTEGER rather 
than QTypes, so it actually contains the integervalue ORD ( IOQType). 
or 2. 

The next two fields of the parameter block identify the particular 
driver operation that was requested. ioTrap contains a copy of the 
machine-language trap word that initiated the request; by examining 



100 In the Driver's Seat 

this word, the driver can tell whether it was a Read, Write, Control, 
or Status call. The next field. ioCmdAddr, holds the memory address 
of the Toolbox routine corresponding to that trap. In the case of 
Control and Status calls, there are also a csCode field, holding the 
specific control or status code, and a field named csParam, corre
sponding to the params parameter of the Toolbox Control and 
Status routines. The rest of the parameter block is of no concern to 
us here; if you care, you'll find it covered in prodigious detail in Inside 
Macintosh. 

The calling program may specify that a given driver operation is 
to be performed synthronously rather than asynchronously. A 
synchronous requesUs queued in the usual way. but when the 
tlm.e comes to carry it out, the driver executes it in its entirety, 
instead of just starting it and waiting for a later interrupt to 
signal completion. The two types ofrequest are distinguished by 
a flag in bit 10 of the trap word: o for synchronous, 1 for 
asynchronous. The assembly-language trap macros for driver 
operations accept an optional parameter named ASYNC for 
setting this flag: for example, 

_Read ,ASYNC 

The driver decides whether to perform the operation synchro
nously or asynchronously by examining the relevant bit of the 
trap word, which it finds· fn the ioTrap field of the parameter 
block [3.1.5] .. A bit number for testing or manipulating this 
flag is defined as an assembly-language constant named 
AsyncTrpBit. 

Periodic Tasks 
Some drivers have a periodic task that must be performed at regular 
intervals to keep the driver working properly. For example, the.Alarm 
Clock desk accessory has to update the time displayed on the screen 
once each second, or a network or modem driver might need to poll 
periodically for incoming data. The Toolbox routine SystemTask 



101 Driver Structure 

(6.2.4] keeps track of all the drivers• periodic tasks and executes them 
when needed. The i:unntng application program ls expected to call 
this routine frequently enough for all periodic tasks to be carried out 
on schedule. 

The dNeedTime flag in the DCE's flag word informs the Toolbox 
that the driver has a periodic task; the dCtlDelay field tells how often 
the task must be performed. The periodic task itself is actually a 
Control call with a control code of 6 s. identified by the assembly
language constant AccRun. (The Ace stands for "accessory": this is 
one of the special control codes for communicating with desk 
accessories, which we11 be learning about in Chapter 6 (6.1.2].) 

The length of the delay between executions of the periodic task 
is expressed in ticks (sixtieths of a second), the basic unit of time on 
the Macintosh system clock. A value of o tells the SystemTask 
routine to run the periodic task at every opportunity, without 
reference to the system clock. OtheIWise, SystemTask uses the 
dCtlCurTicks field of the DCE as a counter to count the ticks 
between executions of the periodic task, and runs it again when the 
required number of ticks has elapsed. 

Driver Structure 

The heart of a driver is the set of machine-language routines that 
actually do the work. In a full-functioned driver, there are five such 
routines: 

• The Open routine prepares the driver for operation. 

• The Prime routine performs all input/ output (reading and 
writing) operations. 

• The Control routine handles control requests. 

• The Status routine handles status requests. 
• The Close routine prepares the driver to terminate operation. 

Some of these routines may be omitted if the driver doesn't perform 
certain operations: for instance, a driver that does no input/ output 
can dispense with the Prime routine, or one that doesn't provide 
status information can do without the Status routine. At a minimum, 
the Open and Close routines must always be present. 

The actual code of the driver is preceded by a short driver header 
(3.1.1] giving the location of each routine, afong with other informa-



102 In the Driver's Seat 

tion about the driver as a whole. The first four words of the header are 
used to initialize various fields of the device control entry [3.1.4] when 
the driver is opened: the flag word, the periodic delay (for drivers with 
a periodic task), the event mask (for desk accessories), and the menu 
ID (if any). These are followed by the locations of the five driver 
routines, expressed as offsets in bytes from the beginning of the 
header. Next comes the name of the driver (in Pascal string form, 
preceded by a 1-byte character count) and then the code of the driver 
itself. 

The driver routines are intended to be written in assembly 
language, and use processor registers (rather than the stack) to 
receive their parameters and return their results. They all receive a 
pointer to a parameter block representing the requested operation in 
register AO and a pointer to the driver's device control entry in Al. All 
except the Open routine return a result code in register DO; for 
reasons too obscure to explain, the Open routine must place its 
result code in the ioResul t field of the parameter block [3.1.5] 
instead. 

Most Macintosh software· development systems. provld~ some 
sort of special "glue" to convert the register.;:fu.ased cruitng 
conventions just deserl.:Qed .. into equivalent $tack ... based c~ls. 
allowing you to write chiver ·routine$ in a high-level language 
instead of assembly language .. Details vary, so consult your own 
language documentation. In general, such special arrange
ments are intended for writing desk· accessories; true device 
drivers are still written in:assemblylanguage. 

Driver routines that can be called via an interrupt are subjectto 
special restrictions on register usage. memoiy usage, and 
return of control You ~eedn't worry about such things unless 
you're writing an interrupt-driven device driver-in which case, 
you don't have to be told. to see In8ide Macintosh for more 
information. 



103 Driver Structure 

The driver's Open routine does whatever is necessary to prepare 
the driver for operation. In particular. it must initialize the fields of 
the device control entry [3.1.4). As noted above, some of these fields 
(dCtlFlags, dCtlDelay, dCtlEMask. dCtlMenu) are automatically 
initialized from the corresponding fields of the driver header; if any 
of these values need to be overridden for any reason, the Open 
routine can store new values directly into the fields of the DCE. It 
might also want to 

• allocate space in the heap for the driver's private storage and 
store a handle to it in the DCE's dCtlStorage field 

• open a window on the screen (normally only desk accessories do 
this) and store a pointer to it in the dCtl Window field 

• load its own interrupt handlers into memory and set the appro
priate system interrupt vectors to point to them 

• perform any other special initialization that a particular driver 
might require 

The Prime routine performs all input/ output (reading and 
writing) operations. It can tell them apart by examining the trap word 
in the ioTrap field of the parameter block (3.1.5], whose low-order 
byte will. be 2 for a Read request, 3 for a Write. Other fields of the 
parameter block, such as ioBuff er and ioReqCount, give further 
information about the requested operation. 

The Control routine handles all control requests sent to the 
driver. The csCode field of the parameter block (3.1.5] identifies the 
specific control operation requested, and the csParam field contains 
any additional parameter data supplied by the caller. In general, the 
meanings of these two fields are determined by the Control routine 
itself. However. certain control codes have special, system-defined 
meanings that the Control routine must be prepared to handle: 

• A control code of 1 (Kill Code) designates a KillIO operation. The 
Control routine must immediately terminate any data transfer 
currently in progress and cancel any others that may be pending 
in the I/ 0 queue. 

• A control code of -1 (GoodBye) identifies a "good-bye kiss," 
signaling that the application heap is about to be reinitialized. 
For drivers with the dNeedGoodBye flag set in the DCE, the 
Control routine must respond with whatever action is necessary 
to deal with thiS situation. 

• A control code of 65 (AccRun) instructs the Control routine to 
execute the driver's periodic task, if any. 



104 In the Driver's Seat 

In addition, for desk accessories, there are several other standard 
control codes [6.1.2] that the Control routine must be prepared to 
handle. We will discuss these in detail in Chapter 6. 

The Status routine responds to requests for status information 
about the driver. The csCode field of the parameter block [3.1.5) 
holds a status code identifying the specific information requested; 
the information is returned in the csParam field. Again, the meaning 
of the various status codes and the format of the corresponding 
status information is determined by the Status routine itself, and 
varies from driver to driver. 

Finally, the Close routine must reverse the effects of the Open 
routine and prepare the driver to close up shop. This might include 
releasing the driver's private storage from the heap, closing its 
window on the screen, restoring interrupt vectors to their original 
state, and generally undoing whatever the Open routine may have 
done. 

This concludes our study of device drivers and their inscrutable 
ways. We will now allow these bizarre creatures to slither back into 
their accustomed obscurity. The coast is clear; you can come out 
from under your desk. 



REFERENCE 

3.1 Driver-Related Data Structures 

3.1.1 Driver Structure 

Driver flags (2 bytes) 

Frequency of periodic task (2 bytes) 

105 

Ever4 mask (2 bytes) 

Menu ID (2 bytes) 

......i1- Offset to Open routine (2 bytes) 

r-+-11- Offset to Prime routine (2 bytes) 

rH Ht- Offset to Control routine (2 bytes) 

Offset to Status routine (2 bytes) 

Offset to Close routine (2 bytes) 

Length of name J 
I -----· 

~ -----· 
I 

4r---·· 
L>lm••• 

-----· l······ 
~r-----· -----· 
~ L .... 

[-----· 

Driver name 
Qndefln!te length) 

I 

Code of Open routine 
(Indefinite length) 

I 

Code of Prime routine 
(Indefinite length) 

I 

Code of Cor4rol routine 
(Indefinite length) 

I 

Code of Status routine 
(Indefinite length) 

I 

Code of Close routine 
(indefinite length) 

-----------] 
______ , 
...... i 
------! 
m•••1 

. ---·--
------I ------
. .. ...1 

i ------, 



106 Drivers 

Notes 

1. The contents of the driver flag word are detailed in [3.1.2). 

2. For drivers with a periodic task. the second word of the driver tells how 
often the task must be performed, In ticks (sixtieths of a second). 

3. A value of o for the task frequency specifies that the task should be 
performed at evezy opportunity (that is. at evezy call to the Toolbox 
routine SystemTask [6.2.4)). 

4. The event mask is used only by desk accessories; see [6.1.1) for its 
structure. 

5. The menu ID ls also used only by desk accessories. It should have an 
appropriate value for an owned resource [2.5.4). based on the unit 
number (resource ID) of the 'DRVR' resource itself. See [3.1.4, note 12) 
for further Information. 

6. The driver name is given in Pascal string form, preceded by a I -byte 
character count. 

7. For true input/ output device drivers, the driver name should begin with 
a period (. ). to prevent the driver from being listed as a desk accessozy 
on the Apple menu. Names of desk accessories may begin with any 
character other than a period. 

8. The locations of the driver's routines (Open, Prime, Control, Status, 
Close) are given as offsets in bytes from the beginning of the driver. 

9. All driver routines must begin at a word boundary: that is, the routine 
offset must be an even number. 

10. All driver routines are register-based; see register usage information 
below. Most Macintosh software development systems include special 
provisions for writing drivers (including desk accessories) in a higher
level language, converting the low-level register-based calls into 
appropriate stack-based equivalents. See your own language 
documentation for details. 

11. The Open routine prepares the driver for operation. 

12. In particular, the Open routine is responsible for properly initializing the 
fields of the device control entry [3.1.4). 

13. ·When written in assembly language. the Open routine must return its 
result code in the i o Res u 1 t field of the parameter block, rather than in 
register DO. 

14. The Prime routine handles all input/output operations initiated via the 
ToolboxroutlnesFSRead and FSWri te [3.2.2] (or the correspondlnglow
level routines, PBRead and PBWri te). 



107 [3.1.1) Driver Structure 

15. Read and Write calls can be distinguished by comparing the low-order 
byte of the trap word, found in the ioTrap field of the parameter block 
[3.1.5), with the assembly-language constants ARdCmd and AWtCmd 
(below). 

16. The Control and Status routines handle driver control and status 
requests initiated via the Toolbox routines Control and Status [3.2.3) 
(or their low-level counterparts, PBControl and PBStatus). 

17. The speciftc Control or Status operation requested is identified by a code 
in the csCode field of the parameter block [3.1.5). 

18. The Control routine must also handle KillIO requests initiated via 
Kill IO [3.2.3) (or PBKillIO). A control code of 1 (assembly-language 
constant KillCode) designates a KillIO operation. 

19. The Close routine prepares to terminate the driver's operations by 
reversing the effects of the Open routine. 

20. For true input/output drivers, the Prime, Control, and Status routines 
should be interrupt-driven. See Inside Macintosh for further 
information. 

21. In assembly language, synchronous portions of driver routines may use 
all registers freely: asynchronous portions must preserve all registers 
except AO-A3 and 00-03; routines that can be called via an interrupt 
must preserve all registers except AO-Al and 00-02. See Inside 
Macintosh for further restrictions on interrupt-driven driver routines. 

ID I Asselllbly Lanpage Informat,lon ~~.,___ _____ _ 
Field offsets in a drfver:.header: 
(Assembly) Offset 
Offset name lnb~ Meaning 

drvrFlags 0 Driver flags 
drvrOelay 2 Frequency of periodic task, in. ticks 
drvrEMask 4 Event mask 
drvrMenu 6 Menu ID 
drvrOpen 8 Offset to Open routine 
drvrPrime 10 Offset to Prime routine 
drvrCtl 12 Offset to Control routine 
drvrStatus 14 Offset to Status routine 
drvrClose 16 Offset to Close routine 
drvrName 18 Driver name 



108 Drivers 

Assembly-language. constnnts: 

Name 

ARdCmd 

AWtCm9 

KillCode 

Register usage: 

Routine 

All driver routines 

Value 

2 

3 

1 

Register 

AO .L (in) 
Al .L (in) 

DO .w (out) 

Meaning 

Low-order byte of trap word for a Read 
operation 

Low-order byte of trap word for a Write 
operation 

Conttol code for a KillIO operation 

Contents 

Pointer to parameter block 
Pointer to device. control entry 

Result code 

3.1.2 Driver Flags 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I I I I I 

1111 

I '-I ______ Driver open 
Resides in RAM 

'---------- Driver active 
Can respond to Read calls 
Can respond to Write calls 

..... ------------ Can respond to Control calls 
,___ _____________ Can respond to Status calls 

...._ ______________ Needs •good-bye kiss· 
...._ _______________ Has periodic task 

'------------------- Must be locked in heap 

Driver flags 

Notes 

1. The figure shows the contents of the driver ~ag word in the first 2 bytes 
of a driver header [3.1.1 ]. 



109 [3.1.2) Driver Flags 
~~~~~~~~~~~~~ 

2. The flags in the first byte give descriptive information about the driver
for use by the system; those in the second byte are reseIVed for the
system itself to maintain information on the current state of the driver.

3. A value of 1 in bit 5 (dOpened) means that the driver ls currently open:
o means it ls closed.

4. A 1 in bit 6 (dRAMBased) means that the driver resides in RAM; o means
it resides in ROM.

5. Bit 7 (d rvrActi ve) ts set to 1 during the execution of any of the driver's
routines, o at other times.

6. Bits 8 to 11 (dReadEnable, dWritEnable, dCtlEnable, dStatEnable)
tell which specific driver calls the driver can handle. A value of 1 means
it can respond to the given call. o means it cannot. All drivers must be
prepared to respond to Open and Close calls.

7. A 1 in bit 12 (dNeedGoodBye) means that the driver needs to be notified
with a "good-bye kiss· whenever the application heap is about to be
reinitialized (for instance, when a new application program is started
up). This allows the driver to attend to any special housekeeping it may
require before being erased from memory.

8. The "good-bye kiss· is given by a special Control call with a control code
of -1 in the csCode field of the parameter block (3.1.5). An assembly
language constant, GoodBye, is defined for this value.

9. A 1 in bit 13 (dNeedTime) means that the driver has a periodic task that
must be performed regularly. The second word of the driver header
(3.1.1] tells how often the task must be performed. in ticks (sixtieths of
a second).

10. The driver is notlfted to perform its periodic task by a Control call [3.2.3]
with a control code of $41 (assembly-language constant Ace Run).

11. A 1 in bit 14 (dNeedLock) means that the driver and its device control
entry (3.1.4) must be locked in memory continuously for as long as the
driver is open for operation. Ao means they must be locked only during
actual execution of driver routines. and may be unlocked between calls.
For drivers that reside in ROM, this flag ls always set.

12. The assembly-language constants dOpened, dReadEnable, and so on
(below) are bit numbers for use with the BTST, BSET, BCLR, and BCHG
instructions.

13. Notice that dReadEnable, dWri tEnable, and so on. are defined as bit
numbers within the high-order byte of the flag word, not within the word
as a whole.

110 Drivers

~lfrll~--------As-·_•_e_m_h_l_Y_:La-·:_o_tP_··~~•--J-·.~_-1_~_,'o_ .. 1_~•_1•_t_1_on_ .. ______ ~-----
Bft numbers fn the drfJJer flag word:
Name Value Meaning

dOpened 5))river·~

dRAMBased 6 Resides in RAM
drvrActive 7 Driver .m;tive

dReadEnable 0 Can .respond to Read calls

dWritEnable 1 Can respond toWrlt.e-~
dCtlEnable 2 Can respond to Control calls
dStatEnable 3 Can respond to Stan1$_ calls

dNeedGoodBye 4 Needs ~~good .. bye kiss''

dNeedTime 5 Has peribdic task
dNeedLock 6 Must be locked in heap

Assembly-Zanguage·consf4n.ts:
Name Value: Meaning

· GoodBye
AccRun

-1

65

3.1.3 Unit Table

Control code for "good.-bye kiss0
·

Control code for periQ<lic taslc

Bytes

0-3 -· Reserved J4 ~es_l --
4-7 -· Reservedj4 ~es_l --

8-11 -· Handle to .Print DCE (4 bytes) --
12-15 -· Handle to .Sound DCE]4 tMes1 --
16-19 -· Handle to .So~ OCE J4 ~es_l --
20-23 -· Handle to .Aln DCE (4 bytes) --
24-27 .. Handle to .AOUt DCE (4 ~es} ..
28-31 .. Handle to .Bin DCE J4 tme~ ..
32-35 -· Handle to .Bout DCE (4 bytes) --
36-39 -· Handle to .MPP DCEJ4tMes} ..
40-43 .. Handle to .ATP DCE J4 tm~l --
44-47 .. Reserved (4 bytes) --
48-51 • • Handle to Calculator DCE j4 bytes) --
52-55 - ·Handle to Alarm Clock DCE j4 ~es_l - -
56-59 •• Handle to Key caps DCE (4 bytes) --
6().63 .. Handle to Puzzle DCEJ4 ~es} --
64-67 •· Handle to Note Pad DCEJ4 tM_es_l --
68-71 -· Handle to Scrapbook DCE (4 bytes) --
72-75 ·-Handle to Control Panel DCE J4 ~e~--
76-79 .. Handle lo Chooser DCE (4 bytes) --
80-83 -· Unused (4 bytes) --

l .. .
188-191 1-· Unused (4 bytes)

.

111 (3.1.3) Unit Table

Standard driver numbers:

Unit Reference Driver
Number Number Name Description

2 -3 .Print Printer driver
3 -4 .Sound Sound driver
4 -5 .Sony Sony disk driver
5 -6 .Ain Serial driver, port A (modem port) in
6 -7 .AOut Serial driver, port A (modem port) out
7 -s .Bin Serial driver, port B (printer port) in
8 -9 .Bout Serial driver, port B (printer port) out
9 -10 .MPP Network driver (Macintosh Packet

Protocol)
10 -11 .ATP Network driver (AppleTalk Transaction

Protocol)

12 -13 Calculator Calculator desk accessory
13 -14 Alarm Clock Alann Clock desk accessory
14 -15 Key Caps Key Caps desk accessory
15 -16 Puzzle Puzzle desk accessory
16 -17 Note Pad Note Pad desk accessory
17 -18 Scrapbook Scrapbook desk accessory
18 -19 Control Panel Control Panel desk accessory
19 -20 Chooser Chooser desk accessory

---l~iiii~~1------N_o_t_e_s ________________________________ ___

1. The unit table holds handles to the device control entries [3.1.4] for all
drivers currently installed ln the system.

2. The unit table resides in a nonrelocatable block ln the system heap.

3. The assembly-language global variable UTableBase (below) holds the
address of the first entry ln the table.

4. The unit table has a maximum capacity of 32 entries on early Macintosh
models, 48 or 64 on later models. In assembly language, the number of
entries currently ln the table can be found ln the global variable
Uni tNtryCnt.

5. Each driver's position within the table ls called its unit number,
expressed in long words relative to the start of the table. Thus the unit
number is always between o and 4 7 (0 and 31 on early models).

112 Drivers

8. The unit number is the same as the driver's resource ID (under resource
type 'DRVR' [3.3. l]). normally in the system resource file.

7. The driver reference nwnber is the bitwise complement of the unit
number. The two numbers are thus related arithmetically by the
formula

refNum - -(unitNum + 1)

For example, the printer driver has a unit number of 2 and a reference
numberof-3.

8. The table lists the standard device drivers and desk accessories, with
their standard unit and reference numbers.

9. The sound. disk. and serial drivers (as well as the network drivers on the
Macintosh Plus) are permanently resident in ROM. The printer driver
and desk accessories are resources, normally included in the system
resource file.

10. The unit and reference numbers shown in the table may differ in some
versions of the System file.

11. Recent versions of the disk driver use unit number 1 (reference number
- 2) to refer to the hard disk. if any. Unit number 4 (reference number - 5)
continues to refer to the internal and external 3 1/ 2-inch disk drives.
The name of the disk drtver ls still . Sony.

12. Unit numbers from 2 7 to 31 are reserved for desk accessortes found in
the application resource file rather than in the System file.

13. On the Macintosh Plus, unit numbers 3 2 to 3 9 are reserved for drtvers
loaded from peripheral devices via the SCSI (Small Computer Standard
Interface) port. See Inside Macintosh, Volume IV, for further Information.

ID I Assembly Language Information
-l~t---------------

~embly-language global variables:

UTableBase
UnitNtryCrit

$11C

$1D2

Meaning

"Pointer to start of unit table

NUllll# of entri~ in w:tlt table

113 (3. 1.4) Device Control Entry
~~~~~~~~~~~~~~-

type 
DCtlHandle 
DCtlPtr 

DCtlEnt ry 

3.1.4 Device Control Entry 

Definitions 

ADCtlPtr : 
= ADCtlEntry 

r ecord 
dCtlDriver 
dCtlFlags 
dCtlQHdr 
dCtlPosition 
dCtlStorage 
dCtlRefNum 
dCtlCurTicks 
dCtlWindow 
dCt lDelay 
dCt l EMask 
dCtlMenu 

end: 

Ptr: 
INTEGER: 
QHdr: 
LONGINT: 
Handle: 
INTEGER: 
LONGINT: 
Pt r : 
INTEGER: 
INTEGER: 
INTEGER 

{Handle or pointer to driver in memory} 

{Copy of driver flags (3.1.2)} 

{Header of driver 1/0 queue (3.1 .5, 3.1 .6)} 

(Current read or write position} 

{Handle to private data} 

{Driver reference number) 

{Tick counter for periodic task} 

(Pointer to driver's window} 

{Frequency of periodic task, in ticks ) 

{Event mask} 

{Menu ID} 

function GetDCtlEntry 

(dRefNum : INTEGER) 
: DCtlHandle: 

{Driver reference number} 

(Handle to device control entry} 

~~it-±=--t-N-otes _____ _ 

1. The device control entry (DCE) is created when the driver is first opened 
and remains in existence continuously until the system is restarted. 

2. The DCE resides in the system heap and Is located via a handle In the 
unit table (3.1.3). 

3. The DCE (as well as the driver itsel1) is locked in place during execution 
of any driver routine. If the dNeedLock Oag [3. 1.2) is set In the 
dCtlFlags field, they will remain locked continuously (even between 
calls) for as long as the driver remains open for operation. 

4. Most fields are set automatically by the system. Only dCtlStorage a nd 
dCtlWindow (and sometimes dCtlMenu ) must be initialized by the 
driver's own Open routine (see notes 10-13, below). 



114 Drivers 

5. The fields dCtlFlags, dCtlDelay, dCtlEMask, and dCtlMenu are 
copied from the header of the driver itself [3.1.1] when the driver is 
opened. The driver's Open routine may change these values if, for some 
reason, lt needs to override the values given ln the driver header. 

6. For RAM-based drivers, dCtlDri ver holds a handle to the driver in 
memocy; for drivers that reside ln ROM, lt holds a simple pointer. 

7. dCtlQHdr is the actual header of the driver 1/0 queue (not just a 
pointer), embedded within the device control entry. See [3.1.6) for the 
structure of a queue header and (3.1.5) for further Information on the 
driver 1/0 queue. 

8. The low-order byte of the queue header's qFlags field [3.1.6) holds the 
version number of the driver to which the queue belongs. 

9. dCtlRefNum ls the driver's reference number, which ls the bitwise 
complement ofits unit number (resource ID). The two numbers are thus 
related arithmetically by the formula 

refNum = -(unitNum + 1) 

For example, the printer driver has a resource ID of 2 and a reference 
number of -3. 

10. dCtlWindow holds a pointer to the driver's window record, lf any. The 
driver's Open routine creates the window and stores Its pointer here. 
This field is normally used only by desk accessories. 

11. Inside Mactntosh gives the type of dCtlWindow as WindowPtr, but in 
fact, Apple's Toolbox Interface files declare lt as an untyped Pt r. To 
access the driver's window, you must explicitly typecast It to a 
WindowPtr. 

12. d Ct lMenu holds the resource ID of the driver's menu, also normally used 
only by desk accessories. As stated above (note 5), this field is 
automatically initialized from the driver header (3.1.1] when the desk 
accessory is opened. However, since the menu ls an owned resource 
(2.5.4), its resource ID may have been changed by the Font/DA Mover 
when the desk accessory was installed In the System file. The value of 
the menu ID In the driver header is not automatically adjusted to match. 
To make sure the DCE ls set properly, the desk accessory's own Open 
routine should calculate the correct menu ID (based on the reference 
number found in the dCtlRefNum field) and explicitly store the resulting 
value into dCtlMenu. 

13. dCtlStorage holds a handle to an optional private data record. The 
driver's Open routine allocates the record and stores Its handle in this 
field. 



115 (3.1.4) Device Control Entry 
~~~~~~~~~~~~-

14. dCtlPosi ti on maybe used by the driver's Prune routine to maintain its
current byte position during Read and Write operations.

15. dCtlCurTicks is used by the system to time the interval between
executions of the driver·s periodic task. The frequency with which the
task ls to be performed is given by dCtlDelay.

16. The function GetDCtlEntry returns the device control entry for a given
driver. identlfted by Its reference number.

17. GetDCtlEntry ls part of the Pascal Toolbox Interface, not part of the
Toolbox Itself. It doesn't reside In ROM and can't be called from assembly
language via the trap mechanism. Instead, the driver's device control
entry ts accessible directly from the unit table (3.1.3).

~ ~1 ... ____ As_-_. s_e_m_h_l_y_L ;,,a_n_.11 ·=_11 _e_e_-r_n_fo_rm_. _•_tl __ on ___ -------~""!'ii.ll!im_ ~
Field offsets tn. a. ~v_f£'e con(Tol entry:

(Pascal) . (Assembly)
J'leldname ·Offset name
dCtlDriver
dCtlFlags
dCtlQHdr
dCtlQHdr.qHead
dCtlQHdr.qTail
dCtlPosition
dCtlStorage
dCtlRefNum
dCtlCurTicks
dCtlW~ndow

dCtlDelay
dCtlEMask
dCtlMenu

dCtlDriver
qCtlFlags
dCtlQ_ueue

·dC:tlQHead
dCtlQTail
dCtlPosition
dCtlStorage
dCtlRefNum
dCtlCurTicks
dCUW;l.ndow
dCtlDelt:i.y
dCtlEMask
dCtlMenu

Assembly-language constant:

Meaning

0

4-
6

8

12
16
20

24

2~

30
34
36

~8

DCtlEntrySize 40 Size of device eonfrol entry; in.bytes

116 Drivers

3.1.5 Driver 1/0 Queue

Definitions

type

ParamBlkType - (IOParam. {Input/output operation}

{File operation}

ParmBlkPt:r

ParamBlockRec

FileParam.

VolumeParam .

CntrlParam):

~ParamBlockRec :

record

qLink QElemPtr:

qType INTEGER:

ioTrap

ioCmdAddr

ioComplet:ion
ioResult:

ioNamePt:r

ioVRefNum

INTEGER:

Ptr:

ProcPtr:
OSErr :

St:ringPtr;

INTEGER :

case ParamBlkType of

IOParam :

(ioRefNum

ioVersNum
ioPermssn

ioMisc

ioBuf fer

ioReqCount:

ioActCount

ioPosMode

ioPosOffset:

FileParam :

(. . .) :

VolumePa r am :

(...) :

INTEGER:
Sign ed Byte:

SignedByt:e:

Pt:r :

Ptr :

LONGINT:

LONGINT:

INTEGER:

LONGINT):

(Volume operation}

(Control or status operation}

(Pointer to next queue element}

(Queue type}

(Copy of trap word)

(Pointer to Toolbox routine}

(Pointer to completion routine)
(Result code)

(Driver name}

(Volume or drive reference number)

(Driver reference number}

(Version number (unused)}

(Read/write pennission)
(Unused}

(Address to transfer to/from)

(Number of bytes requested}

(Actual number of bytes transferred}

(Positioning mode}

(Positioning offset)

CntrlParam :

(ioCRefNum
cs Code
csParam

INTEGER: (Driver reference number}

INTEGER : (Control or status code}
array (0 .. 10] of INTEGER)

(Parameters for operation)
end:

117 [3.1.5) Driver I/O Queue
~~~~~~~~~~~~-

Notes 

1. Each device driver has its own 1/0 queue, which holds pending requests 
for operations by that driver. 

2. The driver 1/0 queue ls a standard Operating System queue [3.1.6], 
whose header is embedded in the driver's device control entry [3.1.4]. 

3. Each element of the queue is a parameter block record representing a 
pending driver operation. 

4. Like all queue elements (3.1.6), the parameter block is preceded by 4 
bytes of flags (inaccessible from Pascal), followed by a 4-byte pointer 
(qLink) to the next element In the queue and a 2-byte Integer (qType) 
designating the type of queue. 

5. For a driver 1/0 queue, qType always equals 2, the value of 
ORD ( IOQType) [3.1.6). 

6. ioTrap holds a copy of the trap word for the Toolbox call that invoked 
this driver operation; i o CmdAd d r holds the address of the corresponding 
Toolbox routine In memory (usually In ROM). 

7. Bit 10 of the trap word specifies whether the operation Is asynchronous 
(1) or synchronous (0). The assembly-language trap macros for Input/ 
output operations accept an optional parameter named ASYNC for 
setting this flag. For example, the instruction might read 

_Read .ASYNC 

8. The assembly-language constantAsyncTrpBi t (below) ls a bit number 
for testing or manipulating the ASYNC flag with the BTST' BSET' BCLR, and 
BCHG instructions. 

9. For Control and Status calls, csCode holds an integer code designating 
the specific operation requested. Values and meanings vaiy from driver 
to driver; see [4.4.3) for control codes used by the printer driver and 
[6.1.2) for those used by desk accessories. 

10. For Control calls, csParam contains up to 11 words (22 bytes) of 
additional parameter data; for Status calls, the requested status 
Information is returned in this field. Exact contents and format differ for 
each specific driver and operation: see [4.4.3) and [6.1.2) for those 
pertaining to the printer driver and to desk accessories. 

11. The remaining fields of the parameter block are needed only if you are 
making low-level Input/output calls at the file, volume, or device level, 
or writing a true device driver (as distinct from a desk accessory). In 
those cases. see Inside Macintosh for complete Information. 



118 Drivers 

I cm I Assembly Language Information 
--fQ[!]11----------------: 

Field offsets in a parameter block: 

(Pascal) (Assembly) 
Field name Offset name 

qLink ioLink 
qType ioType 
ioTrap ioTrap 
ioCmdAddr ioCmdAddr 

ioCRefNum ioRefNum 
cs Code cs Code 
cs Par am csParam 

Assembly-language constant: 

Name Value Meaning 

Offset in bytes 

0 

4 
6 

8 

24 

26 

28 

AsyncTrpBit 10 Bit number for ASYNC flag 

3.1 .6 Operating System Queues 

type 
QHdrPtr = AQHdr : 
QHdr = record 

qFlags INTEGER; {Flags) 

qHead QElemPtr: (First enuy in queue) 
qTail QElemPtr {Last entry in queue) 

end; 
QElemPt:r AQElem 
QElem - record 

case QTypes of 
VType (vblQElem VBLTask): 
IOQType (ioQElem ParamBlockRec); 
DrvQType (drvQElem DrvQEl); 
EvType (evQElem EvQEl): 
FSQType (vcbQElem VCB) 

end; 



119 (3.1.6) Operating System Queues 
~~~~~~~~~~~~~ 

QTypes (DummyType,
VType.
IOQType.
DrvQType.
EvType.
FSQType);

Notes

{Unused)
{Vertical retrace queue)
{Driver or file IJO queue)
{Disk drive queue)
{Event queue}
{File system (volmnc) queue)

1. QHdr and QElem represent general-purpose queue headers and queue
elements. They are used for a variety of purposes in the Macintosh
Operating System, as enumerated In the definition ofQTypes.

2. Driver 1/0 queues are discussed In (3.1.4). See Inside Macintosh for
Information on other types of queue.

3. The contents of qFlags are specific to each type of queue, and vary from
one queue type to another.

4. The structure of indlvidual queue elements also differs for each type of
queue: to accommodate the various possibllitles, QElern ls defined as a
variant record structure. See (3.1.4) for details on the elements of a
driver 1/0 queue, and Inside Macintosh for the others.

5. Queue elements are nonrelocatable objects, referred to by pointers
rather than handles. They are normally created and destroyed by the
system, not by the application program, and reside either in fixed
memory locations or in the system heap.

6. All queue elements, regardless of type, begin with 4 bytes of flags,
followed by a 4-byte pointer (qLink) to the next element and a 2-byte
integer (qType) designating the type of queue. (Compare the definition
of a parameter block in (3.1.4).)

7. The integer type code in a queue element's qType field corresponds to a
value of the enumerated typeQTypes. For the vertical retrace queue, for
example, it will equal 1, the value of ORD (VType) .

8. The Pascal pointer type QElemPtr points directly to the qLink field of the
next element. It thus bypasses the element's flags, making them
inaccessible from Pascal. The flags are used entirely by the system, and
are of no Interest to the application program.

120 Drivers

~~I ... ____ As_s_e_m_h_1,._L-__ "_P_•_g_e_'_"_'_o.a_~m_at1_o_n _____ _

procedure Enqueue

Field offsets in a queue header:

~ (Assembly)
Field .. name Offset name Offset ln bytes

qFlags
qHead
qTail

qFlags
qHead
qTail

Assembly~language constant:

Name Value Meaning

QHeadSize 10 Si7.e of queue header in bytes

Field offsets.from a queue element pointer:

(Pascal) (Assembly)

0

2
6

. Field n8Dle Offset name Offset in bytes

q~ink

qType

Queue types:

Name

VType
IOQType
DrvQType
EvType
FSQType

Value

1

2

3

4
5

qLink 0
qType 4

Vertical retrace queue
Driver or file IJO queue
Disk drive queue
Event queue
File system (volume) queue

3.1.7 Manipulating Queues

(newElement QElemPtr: (mement to be inserted}

(Queue to insert it in} theQueue QHdrPtr);

121 (3. 1. 7) Manipulating Queues
~~~~~~~~~~~~~~ 

function Dequeue 

(oldElement 

theQueue 

QElemPtr: 

QHdrPtr) 

{ mcment to be removed} 

{Queue IO remove it from} 

{Result code} 

const 

QErr - 1: 

: OSErr: 

{IDcment not found in queue) 

1. These routines insert and remove elements in Operating System queues. 
See [3.1.6) for the structure of such queues. 

2 . Elements added with Enqueue are placed at the end of the queue. 

3. Dequeue doesn't deallocate the dequeued element from memory. 

4. If the specified element is not found in the queue, Dequeue returns the 
error code QEr r. 

5. A quick way to remove all elements from a queue ls simply to set the 
qHead and qTail fields in its queue header to NIL. 

6. Both operations temporarily disable intenupts while the queue is being 
manipulated. 

7 . When called from assembly language, these routines are register-based: 
see register usage information below. 

8. All queue manipulation is normally done by the Operating System: you 
will rarely need to call these routines for yourself. 

I E1 I Assembly Language Information 
---IUlrl1---------. 

Trap macros: 

(Pascal) (Auembly) 
Routine name Trap macro Trap word 

Enqueue _Enqueue $A96F 

Dequeue _Dequeue $A96E 



122 Drivers 

Register usage: 

Routine Register Contents 

Enqueue AO.L (in) new Element 
Al.L (m) theQueue 

Dequeue AO.L (in) oldBlement 
Al .L (in) theQueue 

DO.W (out) result code 

3.2 Driver Operations 

3.2.1 Opening and Closing Drivers 

function OpenDriver 
(driverName 
var dRefNum 

: OSErr: 
function CloseDriver 

Str255: 
INTEGER) 

(dRefNum : INTEGER) 
: OSErr: 

Notes 

{Driver name} 
{Rewms driver reference number} 
{Result code} 

{Driver reference number} 
(Result code} 

1. OpenDri ver opens a driver for operation; CloseDri ver closes it. 

2. The driver is identified to OpenDri ver by name; the corresponding 
driver reference number ls returned via the variable parameter d Ref Num. 

You then use this number to Identify the driver for all further operations. 

3. If the driver ls not already In memory, it ls read in from a resource file 
(normally the Sy stem file). A device control entry [3.1.4) is created and 
initialized, and its handle ls Installed In the unit table [3.1.3). 



123 (3.2.2) Reading and Writing 
~~~~~~~~~~~~-

4. If the driver ls a true device driver. Its Open routine [3.1.1) Is executed
only when It ls read Into memory for the first time. For desk accessories.
the Open routine ls executed at every call to OpenDriver.

5. Closing a driver removes it from memory and releases the space it
occupies. The driver ls unavailable for further operations until it is
reopened.

6. Any pending input/output operations are completed and the driver's
Close routine Is executed.

7. The drlver·s device control entry (3.1.4) remains allocated, but is marked
as closed via a Oag bit In Its dCtlFlags field [3.1.2).

8. These routines are part of the high-level input/output system and are
not directly available from assembly language. The trap macros call the
low-level routines PBOpen and PBClose: see Inside Macintosh for details.

ID I As.se1nbly -~e Information
-I~--------------------------

Trap macros:

(Pascal)
"°utlne name
PB Open

P.BClose

(Assembly)
.Trepmac~

_Open

_Close

3.2.2 Reading and Writing

function FSRead

(dRefNum INTEGER:

var byteCount LONGINT·:

toAddr Ptr)

! QSE.r.r;
· functi~Jl. FSWdte

(clRJafNW,11 .INXEGER;

var ·byteCount · : LON~INT:

f romACldr· Ptr)

OSErr;

{Driver reference number}
{Numl>erofbytes to readl
{Address to read to}

(Result~e}

(Driv~r •erence numbc;r} "
cNuni~r'of'bytes to write}

(Address to write from J
(Result cOde}

Trap word

$AOOO

$A001

124 Drivers

Notes

1. These routines transfer lnfonnatlon to or from a driver via the driver's
Prime routine [3.1.1).

2. The numberofbytes specified bybyteCount are read toorwrttten from
consecutive locations In memory, beginning at the address designated
by the pointer toAddr or fromAddr.

3. On a positionable device such as a disk. the transfer begins at the
driver's current byte position, as Indicated In the dCtlPosi ti on field of
the device control entry [3.1.4). This byte position advances as bytes are
transferred to or from the device.

4. On completion of either a read or a write, the byteCount parameter
returns the number of bytes actually transferred.

5. These are the same routines used to read from or write to a file [11:8.2.3).
The value of the reference number supplied determines whether the call
applies to a file or a driver.

6. These routines are part of the high-level input/output system and are
not directly available from assembly language. The trap macros call the
low-level routines PB Re ad and PBW rite; see Inside Macintosh for details.

ID I Assembly Language Information
--1m ------

Trap macros:
(Pascal)
Routine name

PBRead
PBWrite

(Assembly)
Trap macro

_Read
_Write

3.2.3 Device Control

function Control

(dRefNum INTEGER:
controlCode INTEGER:
par ams Ptr)

: OSErr:

{Driver reference number}

{ Ccntrol code}

{Pointer. to parameters}

(Result code}

Trap word

$A002

$A003

125 [3.2.3) Device Control

function Status
(dRefNum INTEGER: {Ori.Ver reference number}
statusCode INTEGER; {Status code}
pa rams Ptr) {Pointer to parameters)

: OSErr; (Result code}
function KillIO

(dRefNum INTEGER) {Driver reference number}
: OSErr: {Resuh code)

~~i~~-Not_es ____________ _
1. Control instructs a driver to perform some special action, typically to

control the operation of a device; status requests information about the
current status of the device or its driver.

2. controlCode identifies the specific control operation to be performed;
par ams points to a data structure of up to 11 words (22 bytes) of
parameter data for the operation. Control copies these values to the
csCode and csParamfteldsofthe parameter block (3.1.5), then calls the
driver's Control routine to cany out the operation.

3. statusCode identifies the nature of the status information desired.
Status copies this value to the csCode field of the parameter block
(3.1.5) and calls the drivers Status routine, which will return the
requested information ln the parameter block's csParam field. The
information ls then copied to the location designated by params.

4. The values and meanings of the control and status codes vary from
driver to driver, and in tum determine the exact nature of the
information passed via pa rams. See (4.4.3) for control codes used by the
printer driver and (6.1.2] for those used by desk accessories.

5. Ki 11 Io immediately halts any input/ output activity ln progress on the
specified driver and cancels any pending operations.

6. The Ki 11 Io operation ls actually performed by the driver's Control
routine in response to a control code of 1. Calling Kill IO is equivalent
to calling Control with this value for control Code.

7. These routines are part of the high-level input/output system and are
not directly available from assembly language. The trap macros call the
low-level routines PBControl. PBStatus, and PBKillIO; see Inside
Macintosh for details.

126 Drivers

ID I . _Assembly Lanpge Information
---1m-------------------

. Trap -rru:u:ros:

(Pascal)
Routine _name

PBCont·rol
PB Status
PBKillIO

(Asae.Uly)
Trap macro

_Control
_Status
_Kill IO

Assembly-l41l!Jqqge constq.nt:

Name Value Meaning

Trap word_

$Aoo'4

$A005
$A006

Kill Code 1 Control code for a KifilO operation

3.3 Driver-Related Resources

3.3.1 Resource Type 'DRVR'

Notes

1. A resource of type 'DRVR' contains the code of an input/output device
driver or a desk accessoiy.

2. See (3.1.1] for the internal structure of the resource.

3. The resource ID ls the same as the driver's unit number [3.1.3), and
must be between o and 4 7 (0 and 31 on early models of Macintosh).

4. Eveiy driver resource must have a resource name as well as a resource
ID. For true device drivers, the name begins with a period (.); for desk
accessories, It must not.

5. The sound, disk. and serial drivers (as well as the network drivers on the
Macintosh Plus) are ROM-based resources [1:6.6.3). All other drivers and
desk accessories reside In resource files, normally the System file.

CHAPTER
-- I I' '"" =""'<·! -------------------

•-· !l I,·------------------!' I;

-·,1:1 4 11---------------
1 !1 .. -

-- L'.;z:: __ : ___ =::=d ------------------

Looking Good on
Paper

Er some years now, pundits and prognosticators have been
touting the arrival of the .. paperless society." The combination of
advanced computers and high-speed data communications, so the
argument goes, will eliminate the need for old-fashioned printed
material entirely. With the advent of sophisticated hardware and
software technologies like CD-ROM, electronic mail, and hypertext,
we will all soon be plugged into a universal, worldwide information
network and will never have to look at a sheet of paper again.

While all this may sound good in theory, the reality has been
slower in arriving. Most of us aren't yet ready to bring our computers
to the breakfast table just to read the sports page over our morning
coffee. As pretty as a document may look on the screen, we still prefer
the comfort and familiarity of a physical, printed copy that we can
stick in a briefcase, take on an airplane, or curl up with in bed at two
in the morning. Our appetite for paper is undiminished, and will
probably always be with us.

Recognizing this reality, the Macintosh Toolbox gives you all the
tools you need to print hardcopy documents from an application
program. In this chapter, we11 leam about these facilities and use
them to add a printing capability to our example program, MiniEdi t.
By applying the same techniques in your own programs, you can
make your documents look as good on paper as they do on the screen.

127

128 Looking Good on Paper
~~~~~~~~~~~-

Macintosh Printers 

In the beginning was the ImageWriter. Right from the start, it was 
clear that the Macintosh (and its precursor, the Lisa) would need a 
dot-oriented printer that could faithfully reproduce what users saw 
on the screen. For a computer that boasted ~at You See Is What 
You Get." the printer had to keep its end of the bargain: what you get 
is what you see. After an extensive suivey of the available candidates, 
Apple settled on a compact but versatile dot-matrix impact printer 
from C. Itoh & Company. An "Apple-ized" version, suitably modified 
for the Macintosh and marketed under Apple's own label, became the 
original ImageWriter. When the Macintosh was first released in 
January 1984, this was the standard printer that went with it. 

A year later, Apple announced the LaserWriter, a "personal" 
xerographic printer based on the same laser-beam technology as 
units literally a hundred times its price. With a resolution of 300 dots 
per inch, the LaserWriter produces output of near-typeset quality
so close that it takes a magnifying glass to tell the difference. The 
printer is actually a powerful computer in its own right, featuring a 
Motorola 68000 microprocessor (the same one used in the Macintosh 
itsell), half a megabyte of ROM holding a useful selection of 
professional-grade typographic fonts, and 1.5 megabytes ofRAM into 
which additional fonts can be loaded as needed. Also in ROM is an 
interpreter for PostScript. a page description language developed by 
Adobe Systems Incorporated. This is a full-featured programming 
language, complete with variables, assignments, conditionals, loops, 
procedures, and everything else you would expect, as well as a full 
range of powerful graphics capabilities. Documents to be printed are 
transmitted to the LaserWriter in the form of Postscript programs for 
the interpreter to execute. 

T.P.e PostScript language lnclu~~s a nµlllber ofspecial features, 
like text rotation and continuous gray scale, that arenl avail
able through the norma.I Toolbox printing methods we11- be 
learning in this chapter. To take full advantage of these capabffi:.. 
ties. 1t•s possible to ,byp~-the TOQlbox printing r<>utlrtes a~d 
program the La$er'\Vl1ter.dfrectly in PostScript Via the Quj.Ck• 

_ Draw. picture comment m~aµtsm [2.1.7). This technique, is 
device-dependent, bowe\Ter.and Will workontyon a LaserWnter 
or other Postscript-based printer: on non-PostScrtJ)t 1>$t¢.~_ 



129 Macintosh Printers 

Un particular, the ImageWrtter), such PostScript .pictq¢.ccom'
ments will simply be Ignored. 

Unfortunately, a complete discussion of.PostScript 8yntaX 
and semantics is beyond the scope of this book. Ifyou'rehungry 
for details, y()u can find them Jn Adobe's f!XCell~t J?o:;tScrtpt -
Language Reference Manual and Post.Script Language Tatorlal 
and Cookbook,.both from.Addison-WesleyPubliSbittg~company, 
Inc. The technique of embedding PostScript .cornman~· in -·. 
picture comment$ Js covered~ Macintosh TechnlcalNote #91, 
and is discussed at some length tn Scott Knaster's book, 
Macintosh Progranuntng Secrets. also published by Addison;.. 
Wesley. 

These two devices-the dot-matrix ImageWriter and the xero
graphic LaserWriter-remain the standard printers for use with the 
Macintosh. though both have been replaced overtime with newer and 
better models. The ImageWriter II. introduced in 1985, featured 
faster operation (up to 250 characters per second, compared to 120 
for the original ImageWriter). finer and more precise dot placement 
for better print quality. improved paper handling (including an 
optional automatic sheet feeder for non-continuous, separately cut 
sheets). a limited color capability using a special four-color ribbon, 
and an optional AppleTalk network connection for sharing the 
printer among two or more users. More recently, Apple introduced 
the ImageWrtter LQ (for •1etter quality"), with 50016 higher dot resolu
tion (216 dots per inch. up from 144) and even nicer paper handling 
capabilities. 

The LaserWriter. too, has undergone significant enhancement 
since the original model. First came the LaserWrtter Plus. with more 
ROM capacity and a wider selection of built-in fonts. 35 instead of the 
ortginal 11. Then, in 1988, the LaserWriter II line was announced, 
with three different models in a range of prices and performance 
characteristics. The second of the three, the LaserWriter Il-NT, is 
roughly comparable to the earlier LaserWriter Plus, but with an 
updated, faster version of the PostScript interpreter and an expanded 
RAM capacity of 2 megabytes (increased from 1.5) for page imaging 
and font storage. At the high end of the line is the LaserWriter 11-NTX, 
with a speedier 68020 processor (along with a separate 68881 math 
coprocessor for floating-point computations), an expandable RAM 



130 Looking Good on Paper 

capacity of up to 12 megabytes. and an optional hard-disk connec
tion for even more font storage. Finally. at the bottom of the line, there 
is the LaserWriter II-SC, a hybrid machine that offers the same 
xerographic laser technology but without a PostScript interpreter. 
This makes the SC more like a high-resolution, high-quality 
ImageWriter than a low-end LaserWriter, without PostScript's font 
scaling and other powerful features. 

Lately a number of competing laser printers have begun coming 
on the market from other manufacturers. Since they all use Post
Script as their page description language, everything we say in this 
chapter about the LaserWriter applies to these other models as well. 
In general, we will use the name LaserWriter throughout the chapter 
to refer generically to all PostScript-based printers, and ImageWriter 
to refer to those that don't use PostScript (including the low-end 
LaserWriter II-SC). 

The Printer Resource File 

The Toolbox printing facilities are cleverly designed to shield your 
program from the details of any particular printer. You can be 
running a $500 ImageWriter, a $5000 LaserWriter, or a $50,000 
phototypesetter. It can be a vintage original, one of the newer models, 
or any other type of printer that may come along in the future, either 
from Apple or from another supplier. It may accept page images 
expressed in control characters and escape sequences that no other 
device understands, or in a device-independent page-description 
language like PostScript, or in some other form yet to be invented. It 
can be plugged directly into the Macintosh or connected remotely 
over a network. The user can even change printers "behind your 
back," in the middle of your program, with the Chooser desk 
accessory. None of these factors make any difference from your 
program's point of view. You always perform your printing operations 
in exactly the same standard way, letting the Toolbox make the 
necessary adjustments for whatever printer you happen to be talking 
to. 

How does the Toolbox manage this remarkable feat of versatil
ity? You can probably guess the answer by now: by factoring out the 
specialized code for each printer and storing it separately as a 
resource. The secret truth about the Toolbox printing routines is that 
there aren't any: there's no "there" there. The code for all the standard 
printing operations is kept in a printer resource file, different for each 



131 The Printer Resource Flle 

printer, that resides in the system folder on the user's startup disk. 
The Toolbox printing routines that you call from your program are 
just empty shells that load and execute the actual code from the 
current printer resource file (see Figure 4-1). 

Application program 

Toolbox printing routines 

'PDEF' code 
(Printer resource file) 

Printer driver 

Printer 

Figure 4-1 Printing code hierarchy 

The printer resource file [4.6.3) normally has the same name as 
the type of printer it supports, such as ImageWri ter or Laser
Wri ter or AppleTalk ImageWriter. Its file type [1:7.3.1) is either 
'PRES' ( .. printer resource"), for printers connected directly to the 
Macintosh, or' PRER' ( .. printer resource, remote"), for those that are 
accessed over a network. To distinguish among resource files belong
ing to different types of printer. each one carries a unique creator 



132 Looking Good on Paper 

signature [1:7.3. l], such as 'IWRT' for lmageWriter or 'LWRT' for 
LaserWriter. 

A printer resource file typically includes the following resources: 

• a low-level device driver for communicating with this printer 
(resource type 'DRVR' [3.3.1]) 

•the executable code for the high-level printing routines, con
tained in a series of 'PDEF' ("printer definition") resources 
[4.6.2) 

• a print record (resource type 'PREC' [4.6.1)) giving the standard 
settings and characteristics for this type of printer-we'll be 
learning about print records later in this chapter 

• another print record containing the specific settings used in the 
last printing operation 

• dialog templates (' DLOG' [11:7.6.2)) and their associated item 
lists (' DITL' [11:7.6.3)) for use with the Page Setup ... and 
Print ... commands 

• a string resource (' STR ' [1:8.4.2)) giving the name of the 
temporary spoolfile in which output is to be saved before being 
sent to the printer-again, we'll learn more about spool files later 

• any additional resources (dialogs, alerts, strings, icons, and so 
forth) that the printing routines need in order to operate 

There's also usually a set of Finder resources (autograph, bundle, file 
references, icon lists) just like those we learned about for executable 
application files in Volume One, Chapter 7. The Finder uses these to 
install the printer resource file in its disk's desktop file and to display 
it with a distinctive icon on the screen. 

Before attempting any printing-related operation, you must 
open the print"!r resource file by calling the initialization routine 
PrOpen [4.2.1). (This also reads in the printer driver from the file and 
opens it for use.) The call to PrOpen must be preceded by the usual 
litany of other initialization calls: Ini tGraf [1:4.3.1), Ini tFonts 
[1:8.2.4), Ini tWindows [11:3.2.1], Ini tMenus [11:4.2.1], TEini t 
[II:5.2.1], and Ini tDialogs [II:7.2.1], in precisely that order. When 
you're all through printing, PrClose [4.2.1] closes the printer re
source file and releases its resource map from memory. 

Installing a Printer 

The user configures the system for a particular printer by selecting 
its resource file with the Chooser desk accessory. The Chooser looks 



133 The Printer Resource File 

in the system folder for all files of type ' PRE s ' or ' PRER' and displays 
their icons on the screen, allowing the user to select one with the 
mouse. Then it stores the name of the selected file into the system file 
as an 'STR ' resource (see Figure 4-2) with an ID number of $EOOO, 
or decimal -8192. (Under the conventions we learned earlier [2.5.4), 
this identifies it as an owned resource belonging to ' PDEF' number 
O.) Thereafter, when any of the standard printing routines is called, 
the Toolbox will locate the ' PDEF ' resource containing that routine 
in the printer resource me, load it in from the disk, and jump to the 
routine via ajump table at the beginning of the resource body. If the 
user later changes printers with the Chooser, a different printer 
resource file will be installed and that printer's ' PDEF ' code will be 
executed instead. 

System resource file 

._______--ti~~ ~resource file name _J I 
Printer driver (shell) 

Printer resource file 

Printer driver (actual) 

Code of printing routines 

Default print record 

Last print record 

Page Setup ... and 
Print... dialogs 

Default spool file name 

Finder resources 

Additional resources as needed 

Figure 4-2 Printer resource file 

All the Toolbox itself provides is the .. glue" code to intercept your 
printing calls and direct them to the appropriate ' PDEF' resources 
in the printer resource me. In early versions of the Toolbox, this 
printing glue was supplied as a separate interface unit, PrLink, 
which had to be linked into your program after compilation. In more 
recent systems,· the task is handled instead by a new Toolbox trap 



134 Looking Good on Paper 
~~~~~~~~~~~-

named _PrGlue, which either resides directly in ROM (version $7 6
or higher) or is loaded from the System file (version 4.1 or higher) at
startup time. The routine definitions in the Pascal Toolbox interface
(or the corresponding macros in the assembly-language interface)

. now generate in-line instructions to push a 4-byte routine selector
onto the stack, then execute the _PrGlue trap. You'll find the
selectors for the various printing routines listed in the .. Assembly
Language Information" boxes in the reference section; for informa
tion on their internal format, see the .. Nuts and Bolts" section at the
end of this chapter.

References in this chapter to the "Toolbox printing routines!"
generally refer to the speci8"zed code taken from the ' P-i>EV
re$Ource$ in the printer resource file9 -rather than tQ the lt)t$"""'.
media~e -glue routines t11at load and execute them. ·

The Printer Driver

In addition to the high-level printing routines. the printer resource
file also includes a low-level driver for communicating directly with
the printer. This specialized driver is normally named . XPrint and
has resource ID $EOOO (decimal -8192). The main . Print driver in
the system resource file (resource ID 2, reference number - 3) is only
a shell: it simply passes all requests through to the current . XP r int
driver. which does the actual work. Changing printers with the
Chooser replaces the real driver (. XP r int), while the "pass-along"
driver (.Print) remains unaffected.

The Toolbox routines PrDrvrOpen and PrDrvrClose [4.4.1]
open and close the printer driver, respectively. The main printing
initialization routine, PrOpen [4.2.1), opens the driver for you auto
matically, so you needn't ordinarily call PrDrvrOpen yourself. How
ever, the finalization routine PrClose [4.2.1] doesn't automatically
close the driver: it remains open until your program terminates,
ready to use again if needed. If for some reason you need to close the
driver while your program ls still running. you must do it yourself
with an explicit call to PrDrvrClose.

Once the driver is open, you can communicate with it directly via
the standard driver operations we learned about in the last chapter
[3.2). The Toolbox printing intetface also includes a set of low-level

routines [4. 4) for working specifically with the printer driver. These
include a variety of specialized operations implemented via driver
Control calls, such as bit-map printing [4.4.4), direct streaming of
"raw .. text characters (4.4.5), and screen-dump printing, either of
single windows or of the entire display screen (4.4.6]. However, not
all of these operations are available on all printers, and in general
they're no longer necessary or useful. Apple still supports the low
level printing routines for compatibility, but now officially discour
ages their continued use: newly developed application programs are
advised to stick to the high-level printing interface, which we'll be
discussing in the rest of this chapter. Since the 'PDEF' resources
containing the high-level printing code get changed at the same time
a new driver is installed, programs that use only the high-level
interface need never even be aware of what driver they're talking to.

Imaging and Printing

In principle, putting marks on paper is no different from putting them
on the screen. You simply draw whatever you want printed, using the
old familiar Quick.Draw graphics routines that we learned about in
Volume One. This is called imaging your document. The difference
between drawing a document on the screen and Imaging it for
printing lies in the graphics port that you do your drawing in.

Printing Ports

When you open a document for printing. the Toolbox gives you back
a special-purpose graphics port called a printing port (4.1.1 J. In place
of the standard bottleneck routines for screen drawing. the printing
port has a set of customized bottlenecks that convert your Quick
Draw calls into the equivalent operations on the printer. The same
drawing operations produce the same results on the screen or on
paper. depending on which type of port is current at the time. What
you draw is what you get.

You obtain a printing port to work with by calling the Toolbox
routine PrOpenDoc [4.3.1). Just as when you ope~ a window with
OpenWindow [11:3.2.2], you have the option of supplying your own
storage for the new port (from the stack. for example) via the routine's
printPort parameter. If you pass NIL for this parameter, the
Toolbox will allocate the storage for you automatically from the heap.
(Like all other data structures based on graphics ports. the printing
port is a nonrelocatable object and is referenced by a simple pointer

136 Looking Good on Paper
~~~~~~~~~~~-

instead of a handle.) Similarly, you can supply your own 522-byte 
output buffer or have the Toolbox allocate it automatically. 

You11 notice in the reference sections that the names the 
Toolbox uses for prin~related objects have a characteristic 
flavor all their own: for instance, the record type representing a 
printing port (4.1.1] is named TPrPort, and a pointer to it is a 
TPP-rPort. The Apple programmerwho first designed the print
ing code. was a devotee of a particular naming style, sometimes 
called "Hungarian notation" for the nationality of the software 
engtneer who popularized.it. 

This system uses standard prefixes to indicate the nature of 
theobjectbelngnamed. InthenameTPPrPort,forexample, the 
T standsfor"type,"the P for•polnter," and the Prfor"printlng." 
(The names of most of the Toolbox printing routines begin with 
this same Pr prefix.) Other such prefixes that you11.encounter 
in the printing def'1nltlons include B for "byte," w for-Word," I for 
"integer," Lfor11longfnteger," Hfor 11handle," Ffor•flag" (denoting 
a Boolean value), and R for 11rectangle." (Und~rthe capitalization 
conventions we•re using in this book, these will sometimes 
appear in lower- rather than uppercase.) Although the Hungar
ian names may look a bit peculiar at. first, you'll find they do 
make sense once you get .the hang of them. 

The printing port's bottleneck routines can be customized for 
either of two different printing methods: 

• In draft printing, imaging and printing take place at the same 
time. The results of your drawing operations are sent directly to 
the printer and printed immediately. 

• In spool printing, imaging and printing are two distinct stages. 
The page images you draw are saved in a temporary, intermedi
ate form and later sent to the printer in a separate operation. 

Not all printers offer both options. Where both are available, the user 
generally chooses between them by clicking a checkbox or radio 
button in a dialog box. A well-written application program should be 
prepared to handle either method. 



137 Imaging and Printing 
~~~~~~~~~~~ 

To accommodate tbe ${)eCSalneeds.or properties.of:a particular· ·
type of printer. the]:'ooIQ~ pl'Qvtdes for two eXtra •. prlilt~:r
dependent printtng :p_iethOds tn addition to the standanf-draft· · ·
ap.d $pool. The~t:ode ~e,e().ed..to implement such devlce-spedfic
methods resides iD..tliepI'JJ:lterresource file fn ' PDBF·t resources
number 2 and 3, r,~~-ee~Iy. No exJSttng · prlnter uses this
capability at pre8en~., l;')µt. the -~«on is. there in case ·tes- .ever~
needed.

Draft Printing
As the name suggests, draft printing was originally intended for
producing quick, rough copies of text documents, without much
concern for detailed formatting or accurate visual representation. On
the ImageWriter, it simply transmits a stream of "raw" text and
control characters. The results are fast (up to 250 characters per
minute on some models). but not terribly elegant. The ImageWriter
printing routines attempt to render the document as faithfully as
possible. using the printers own built-in character fonts and format
ting capabilities; but the result is still only a crude approximation to
what the user sees on the screen.

At onetime. draftprmtm.g·cmthe ImageWriterwas:limi~dtotext •.
I only: if you wante~-tO'.lPcllide·blt'!'map graphics. you na~ tq:~~e

the spoolprinttng, metJ1od,fn.Stead. More recently. a. ~p~ility
has been addedforp$.~bitll18.ps in draft mode~ ltuses.-.J:J.tV/'
printing· toutme: -~~::~r:Generai.- \Vhtcll covers-a vatte~:of ·
miscellaneous,_ ac;tv~c_~4 .·prfttting oper~tions~ If :yoµ~t~--~t~r-i
ested in using this tef;bni~ue •. you can find tbe .. det$.dJ1 IfilSµJe ... :
Macint.osh, Volwne V~ _Of lfn.·Macttltosh Technjcal.Notei:#;Ji2-~.:'~~ · ·
any case, because draft p:f.lntlng is done "on the f!Y," fn::8'.~$ti;igl~::
pass down.the page.-~Obaekingup orreverse p~p.¢t'.1']Qtloh.J.$..
allowed. That 1s,.the.eJemeJl.ts of the page tmage mustbe;a~ . ,
strictly 1n order •. ~om'1¢f'fto. nght and from top to ·botfmn•

138 Looking Good on Paper
~~~~~~~~~~~-

On the LaserWriter, all printing takes place in draft mode; 
there's no such thing as spooling. The bottleneck routines in the 
LaserWriter's printing port convert your drawing operations into the 
equivalent PostScript commands and send them directly to the 
printer. This means there are no restrictions on mixing text and 
graphics freely within the same page. However, certain QuickDraw 
operations are not available on the LaserWriter. These include all 
shape-drawing operations that invert pixels (InvertRect [1:5.3.2), 
InvertOval [1:5.3.4], and so forth): the inverting transfer modes 
SrcXOr, NotSrcXOr, PatXOr, and NotPatXOr [1:5.1.3); and all draw
ing operations involving regions [1:5.3.7). All clipping regions are 
restricted to rectangles only. On the other hand, the LaserWriter 
offers a number of extra features beyond those ordinarily available in 
QuickDraw, such as rotated text, dashed lines, and curve smoothing. 
See Tech Notes #72 and #91 for more information on LaserWriter 
limitations and techniques. 

Spool Printing 

The spool method of printing takes place in two stages. In the spooling 
phase, you image your document with QuickDraw operations, just as 
in draft printing. But instead of being printed immediately, the 
results are simply stored away (spooled) in some tempormy, encoded 
form. Later, in the spool printing phase, this intermediate represen
tation is read back in and sent to the printer. 

Notice that the term spooling refers specifically to the first stage, 
in which the document is imaged and saved for later printing. 
Spool printing, however, Is used both in a broad sense, to refer 
to the entire two-stage process, and also more narrowly, to refer 
to the second stage only. Any confusion you may experience as 
a result of this dual tenninology ts perfectly natural, and no 
cause for undue alarm. 

Typically a document's intermediate representation is saved in 
a spool ftl.e on the disk, although it could conceivably be held in 
memory instead. On the ImageWriter, the spool file simply contains 
a QuickDraw picture [1:5.4.1) for each page of the document. (As we 
mentioned in the preceding section, spool printing is not defined on 
the LaserWriter.) During the imaging phase, the printing port's 



Print Records 

139 Print Records 

bottleneck routines capture your QuickDraw calls and record them 
in the picture. In the printing phase, the picture is "'played back" and 
the results are sent to the printer: then the spool file is deleted from 
the disk. 

The spool file's file type ts ' PF IL ' ("'printing file") and its creator 
is 'PSYS' ("'printing system"). Although other printers may choose to 
implement spooling in some other way, the idea of a spool file 
containing a picture ts so central to the Toolbox printing model that 
the routine for performing the second stage of spool printing is named 
PrPicFile [4.3.3). Afteryou finish Imaging a document, you should 
check to see what printing method is in use and call this routine, if 
necessary, to complete the spool printing process. Later on, we'll see 
how our MiniEd it program handles this chore. 

In the standard Image Writer printing dialog (Figure 4-6), both 
the Best and Faster options specify spool printing. The difference 
between the two lies in the choice of resolutions and fonts for printing 
text. The Faster option uses the ImageWriter in its low-resolution 
mode, 72 dots per inch. Since this just matches the screen's own 
resolution, the same fonts in which text is displayed on the screen 
can be used on the printer as well. 

The Best option, on the other hand, makes full use of the 
printer's highest available resolution. On the Image Writer I and II, 
this means 144 dots per inch, or double the screen resolution; so the 
Toolbox looks for a font with twice the point size of the text being 
printed (18 points for 9-point text, 24 for 12-point text, and so on). 
Using such a font at double resolution effectively scales it back down 
to the required size, but yields a higher print quality, with less 
noticeable "jaggies." The ImageWriter LQ, with its 216-dot-per-inch 
resolution, uses the same technique with a font triple the nominal 
text size; and the non-PostScript LaserWriter II-SC, at 300 dots per 
inch, looks for a quadruple-size font. In any case, if the needed 
multiple-size font is not available, the ordinary screen font is simply 
scaled up to two, three, or four times its normal size; this produces 
the same results as printing at low resolution with the Faster option. 

Most of the Toolbox printing routines accept a print record as a 
parameter. This is the basic data structure that summarizes all the 
characteristics of a particular printingjob. It includes such things as 
the type of printer being used, its horizontal and vertical resolution 
in dots per inch, the dimensions of the paper, the printing method 



140 Looking Good on Paper 
~~~~~~~~~~~-

chosen, the name of the spool file (if any). the range of pages and
number of copies to be printed, and much more. As a rule, all of this
information is filled in for you, either by the Toolbox itself or by the
user via on-screen dialogs: with few exceptions, you don't normally
store into the fields of the print record yourself.

A print record is a relocatable object of type TPrint (4.1.2),
referred to by a handle of type THPrint. It has a standard size of 120
bytes, although at present only 82 of those are actually used; the
remaining 38 bytes are reserved for future expansion. To keep the
record's type definition down to readable proportions, its contents
are broken up into a series of separately defined subrecords
(4.1.3-4.1.6). This is purely a notational convenience, however, since
the subrecords are directly embedded within the main print record
rather than referenced indirectly with pointers or handles. At the
underlying machine level, it's just a single, 120-byte object.

The Printer Information Subrecord

The printer information subrecord (4.1.3) holds information on the
characteristics of the printer itself. There are actually two subrecords
of this same type in each print record. The public one, pr Info, is the
one you should use to find the properties of the currently installed
printer. The other, prinfoPT, is a private print-time information
subrecord, used internally by the Toolbox itself.

The first field of the subrecord, iDev, is a QuickDraw device
code (1:8.3.1) that the Toolbox uses in selecting fonts for printing text.
Officially, the first byte of the device code is supposed to give the
driver reference number (normally $FD, or -3, for the standard
. Print driver), while the second byte contains modifying informa
tion whose meaning varies from one printer to another. In reality,
however, some printers play sneaky tricks with this field, such as
setting it to O to make QuickDraw think they're really the screen
instead of a peripheral device. Such shenanigans are strictly between
the printer and the Toolbox; never assume you know what the
contents of iDev really mean.

The dimensions of the page you're printing on are defined by a
pair of related rectangles. the paper rectangle and the page rectangle
(Figure 4-3). Both are expressed in device-dependent printer dots:
the fields i VRes and iHRes give the number of dots per inch in the
vertical and horizontal directions, respectively. The paper rectangle
represents the overall, physical sheet of paper, while the page
rectangle defines the printable area only, excluding any margin

141 Print Records

around the edges that the print head can't reach because of physical
or mechanical limitations. Just to keep things entertaining, the page
rectangle (rPage) is included in the printer information subrecord,
while the paper rectangle (rPaper) is a separate field of the top-level
print record [4.1.2]. Presumably there is a reason for this.

(-36, -36)

Paper rectangle
(rPaper)

~-------------------

(0, 0)

Page rectangle
~prinfo.rPage)

(540, 720)

------------------~
iVRes = iHRes = 72 dots per inch

Figure 4-3 Paper and page rectangles

(576, 756)

When you open a printing port, the page rectangle taken from
the print record also becomes the port's port rectangle and clipping
region. The top-left corner of this rectangle always has coordinates (O.
0), and establishes a coordinate system for the printed page. The
paper rectangle is also expressed in this same coordinate system, but
since it includes the unreachable areas around the edges of the
paper, it is normally larger than the page rectangle in all dimensions.
In particular, its top-left corner ordinarily has negative coordinates.
The coordinates shown in the figure represent the paper and page
rectangles for a standard sheet of 8 1/2-by-l l-inch letter paper, with
a 1/2-inch margin at all four edges, on a printer with a resolution of
72 dots per inch both horizontally and vertically. (Note that these are

142 Looking Good on Paper

just fictitious measurements, and don't correspond to those actually
used on the ImageWriter, LaserWriter, or any other known printer.)

The paper rectangle is intended only as a general guide to the
approximate position of the printed page relative to the physical
sheet of paper. On most printers, the physical alignment of the
paper is inexact and can vary to some extent.

The Style Subrecord

The stylesubrecord[4.1.4] describes the way the printer is to be used
for a particular printingjob, as distinct from its inherent character
istics. The contents of this subrecord are normally set by the Toolbox
as a result of dialogs with the user. In general, they're intended for the
private use of the Toolbox itself, and are of no interest to the
application program.

The main exception is the wDev field, which identifies the type
of printer you 're working with. The first byte of this field is an integer
code denoting the specific printer type: the second byte holds device
dependent modifiers and flags. The contents of this second byte are
shown in [4.1.4] for the Image Writer I and II only. (For all other Apple
printers, they are a closely guarded industrial secret and are not
disclosed to the Rest Of Us.) There are bits to select the Image Writer's
dot resolution (72 or 144 dots per inch), the page orientation (tall,
also known as portrait orientation, or wide, also called landscape),
and the magnification factor (normal or reduced 50%).

The remaining flag bit controls the shape of the dots making up
the printed image. In normal operation. the ImageWriter spaces the
dots closer together horizontally than vertically: 80 or 160 per inch
instead of 72 or 144. This produces rectangular dots. taller than they
are wide, instead of square ones like those on the Macintosh screen.
As a result, everything you print comes out looking taller and
skinnier on paper than on the screen. (The effect is especially
noticeable with graphics, but text characters are also affected in the
same way.) Bit2 of the ImageWriter'swDev field alters the speed of the
print head so that the dot resolution is the same horizontally and
vertically. yielding square dots that more closely match what appears
on the screen. Some programs-particularly graphics editors like

143 Print Records

MacPaint-set this flag automatlcally; others give the user a choice
via the Tall Adjusted optlon in the Page Setup ... dialog box (see
Figure 4-5).

Don•t confuse the wDev field of the style subrecord with the iDev
field of the printer information subrecord, described in the
preceding section. iDev is a QuickDraw device code, used in
font selection: wDev fs a more general code identifying the type
of printer and the way it9s being used. If you need to lmow what
kind of printer you're talking to, the high-order byte of wDev Is
the place to look.

The fields iPageV and iPageH give the height and width of the
paper you're printing on, in fixed units of 1/120 of an inch. (Notice that
these are the dimensions of the physical paper rectangle, not just the
printable page rectangle; they really should be named iPaperV and
iPaperH instead of iPageV and iPageH.) These measurements are
the same as in the print record's rPaper field, but expressed in
device-independent units that don't vary with the printer's resolu
tion. The number of units per inch (120) is defined in the Pascal
interface as a constant named IPrPgFract.

The remaining fields of the style subrecord are claimed by the
Toolbox as private property-trespassers not welcome. These fields
are not officially documented or supported, and Apple reseives the
right to change them without notice. The information given in our
reference section (4.1.4) is strictly unofficial and extracurricular, and
you should never ever write code that relies on it. You have been
warned.

The Job Subrecord
The job subrecord (4.1.5) contains information that applies to this
particular printing job only. It includes the printing method to be
used (draft or spool), the range of pages to be printed, the number of
copies, and the name of the spool file, if any. Most of this information
is supplied by the user via a dialog box.

The printing method is specified by a 1-byte code in the
bJDocLoop field. A value of O (BDraftLoop) stands for draft printing,
1 (BSpoolLoop) for spool printing. (Two additional codes.

144 Looking Good on Paper
~~~~~~~~~~~-

BUserlLoop and BUser2Loop, are reserved forthe optional, printer
specific printing methods.) Your program can examine this field to 
find out which method the user has chosen and respond accordingly. 

The fields iFstPage and iLstPage designate the first and last 
pages to be printed. As you image your document, the Toolbox counts 
the pages and doesn't actually begin printing until it reaches the 
number specified by iFstPage; after it finishes iLstPage, it stops 
printing and suppresses the rest. The first page you image is always 
considered to be number 1. regardless of any other numbering 
scheme your program itself may be using. For instance, suppose 
you 're printing a file representing a chapter of a book, and the 
chapter begins on page 137. Even though the first page of the chapter 
may carry a visible page number (a folio, as typographers call it) of 
137, the Toolbox will still count it as page 1 of your document. If the 
user asks to print pages 142 through 151. you'll have to adjust those 
values to 6 through 15 for the Toolbox's benefit. 

Notice also that for the pages to be counted correctly, you must 
go through the motions of imaging every page in the document, 
letting the Toolbox decide which ones to print and which to suppress. 
If you know where to find your own page breaks. you can save some 
time by imaging only the pages the user has actually requested. For 
example, if the user specifies pages 4 to 9, you can skip straight to 
the top of page 4 and not bother imaging the first three pages. 
Remember, though. that the Toolbox counts only those pages that 
you actually image. In this case, the first page you image (which is 
really the fourth page of your document) will look to the Toolbox like 
page 1. So to make sure the right pages get printed, you'll have to 
adjust the page range in the print record to run from 1 to 6 instead 
of 4 to 9. 

Similar considerations apply to the iCopies field, which tells 
how many copies to print. In spool printing, you simply image your 
document once, no matter how many copies the user may have asked 
for. When you later send the resulting spool file to the printer, the 
Toolbox looks in the print record's iCopies field and automatically 
prints the requested number of hard copies. In draft mode, however, 
the situation is different. Since imaging and printing are inseparable, 
it's up to you to check the value of iCopies and explicitly image your 
document that many times. Thus your imaging code might look 
something like this: 



145 Print Records 

with ThePrintRec.prJob do 

if bJDocLoop = BDraftLoop then 

numCopies := iCopies 

else 

numCopies := 1; 

for copyCount := 1 to numCopies do 

{Image the document} 

The foregojl:lg r~&:rks •don'~ apply to the La~erWritet or :ptfl~t 
PostScript-based prft1ters~. E\Ten though. s~ch printers alw~ys 
operate in dr~.tn.Q~e. YP~. 01µy need to image .YQtll,'; <iqc~eP.t 
once. You.rdrawing op~~tions will be (?Onvertedinto egutvalent 
PostScrlpt com,manqs . ~a. sent.: to, ~<:t. ·ppnter:~ 'alQ~g ·with 
additional instructions tenihg. it how·•many ... copies• ~ .. ptfilE. 
Multiple imagm.g. µ1 d¢t ni<>Pe ~ necessary only :on ,'1:10,:i~ 
PostScrlptprJnters like. the. ~ageWrJ.ter. 

If bJDocLoop specifies spool printing, the fields iFileVol and 
pFileName give the spool file's volume (or directory) reference 
number and its file name. Ordinarily these fields are set to o and NIL. 
respectively, designating the current volume or folder and the 
standard file name, Print File. There's also a field named 
bFileVers for the spool file's version number, but this is no longer 
used and should always be o. 

One last important field in the job subrecord is pidleProc, 
which holds a pointer to an optional background procedure. If a 
background procedure is present, the Toolbox will call it repeatedly 
to fill the idle time while waiting for the printer to complete a printing 
operation. Background procedures are useful for a variety of pur
poses, such as displaying progress reports on the screen or allowing 
the user to continue working while concurrently printing a docu
ment. We'll be talking about them in more detail later in this chapter 
under "Printing the Spool File." 



146 Looking Good on Paper 
~~~~~~~~~~~-

The Auxiliary Information Subrecord

The auxlliary infonnatwn subrecord [4.1. 6) is used entirely by the
Toolbox for its own private purposes. Once again, its exact contents
and use may vary from one printer to another, and are subject to
change without notice. The information given here is purely for your
background understanding, and applies to non-PostScript printers
only. It is not guaranteed to remain correct in the future; it may even
be wrong by the time you read it!

To save space when printing a spool file, the Toolbox divides the
page up into bands of a more manageable size. Then it repeatedly
redraws the entire page, using the printing port's clipping region to
confine the actual drawing to one band at a time. (Without this
technique, a single 8 1/2-by- l l-inch page image at the ImageWriter's
maximum resolution would take up more than a quarter of a
megabyte, or twice the total memory capacity of the original Skinny
Mac. The ImageWriter LQ, with its 216-dot resolution, would need
more than twice again as much space, or over half a megabyte; and
at the 300-dot resolution of a LaserWriter II-SC, the page image
would weigh in at more than a megabyte!)

The auxiliary information subrecord has fields [4.1.6) giving the
number of bands per page, the height and width of each band in dots,
the number of bytes of memory needed to hold the band image, and
the row width ofits bit map [1:4.2.1). Other fields contain information
needed for specific text and graphical operations, such as underlin
ing and pattern scaling. Finally, there's a field that specifies the scan
direction for breaking the page up into bands.

There are four possible scan directions, depending on which
way the page image is oriented relative to the physical sheet of paper
(see Figure 4-4). In portrait orientation, the image is positioned
upright, with the long dimension of the paper running vertically. It's
normally scanned from top to bottom, so that it comes out of the
printer right-side-up, but it can also be done from bottom to top and
come out upside-down. In landscape orientation, the long dimension
of the paper runs horizontally; the image can be scanned from left to
right or from right to left.

14 7 Print Records

Portrait, top to bottom Portrait, bottom to top

l l

Landscape, left to right Landscape, right to left

Figure 4-4 Page orientations and scan directions

Initializing Print Records
Surprisingly. there isn't any Toolbox routine for creating a new print
record. You simply call NewHandle (1:3.2.1] to allocate a block of the
appropriate size. then pass it to the printing routine PrintDefaul t
(4.2.2] to be initialized:

rawHandle := NewHandle (SIZEOF(TPrint)):

printHandle := THPrint(rawHandle):

PrintDefault (printHandle)

148 Looking Good on Paper
~~~~~~~~~~~-

PrintDefaul t fills in the fields of the print record with the standard 
values for the current printer, which it gets from a template resource 
(' PREC' number o (4.6.1)) in the printer resource file.· 

In our Mini Edit program, we1lmaintain a separate print record 
for each window on the screen. We'll have to add a new field, 
pr in tRec, to the window data record (Program 11:5-1) where we keep 
our auxiliary data for each window. Wheneverwe open a new window, 
our DoNew routine (Program 11:5-2) will create and initialize a new 
print record, using statements similar to those shown above, and 
store its handle into this field. (You can find the updated version of 
Do New in the complete MiniEdi t listing in Appendix H.) We also have 
to add a couple of lines to our CloseAppWindow routine (Program 
11:7-2) to dispose of the print record when we close a window. 

To hold a handle to the active window's print record, we'll define 
a new global variable, The Pr in tRe c; this is analogous to the existing 
variables TheWindow, TheScrollBar, and TheText, which keep 
track of the active window record, scroll bar, and edit record. Our 
one-time Initialize routine (Program 11:2-6) will set ThePrintRec 
to NIL. (We also have to remember to call PrOpen [4.2.1] at initiali
zation time and PrClose at the very end, before returning to the 
Finder.) Then, each tlme the active window changes, we'll add an 
appropriate statement to update ThePrintRec along with the other 
global pointers and handles. You11 find such statements in Appendix 
H in the routines DoNew, ActWindow, and DeactWindow. 

Saving Print Records 
Whenever a program writes out a document file to the disk, it's 
recommended practice to include a print record in the document's 
resource fork. This allows the settings the user specified in the last 
printing dialog to "stick to the document," so that the same settings 
can be used again the next time the document is read in and printed. 
Problems can arise, however, if a different printer is current when the 
document is read back in, or if the printer resource file has been 
updated to a newer version in the meantime. The contents of the old 
print record may no longer be valid in the new printing environment. 

To avoid this problem, the Toolbox function PrValidate [4.2.2] 
checks a print record for compatibility with the currently installed 
printer and its resource file. Every print record begins with a field 
named iPrVersion [4.1.2), which identifies the version number of 
the printing software that initialized the record. (In each release of the 



149 Print Records 

Toolbox printing interface, the constant IPrRelease [4.1.2] givestbe 
current version number: at the time of writing, its value is 3 .) 
PrValidate examines this version number, as well as the printer 
type code in field wDev of the style subrecord [4.1.4]. If they don't 
match the current printer and software, P rVa 1 ida t e reinitializes the 
print record and notlftes you by returning a Boolean result of TRUE; 
if the record is already valid, PrValidate just leaves it alone and 
returns FALSE. (PrValidate may also make minor adjustments in 
the record's contents for internal self-consistency, but it doesn't 
bother to inform you of these.) 

Since MiniEdi t operates entirely on plain text files and doesn't 
create any document files of its own, it doesn't save a copy of a 
document's print record when writing the document out to a file. 
Ordinarily, though, we would want to include something like the 
following in our Wri teFile routine (Program 11:8-3) to save the print 
record in the file's resource fork: 

GetWTitle (TheWindow. docName): 

rsrcHandle := Handle(ThePrintRec): 

saveRsrcFile := CurResFile: 

docRsrcFile := OpenResFile (docName): 

AddResource (rsrcHandle. 1 PREC 1
• 100, ••): 

CloseResFile (docRsrcFile): 

UseResFile (saveRsrcFile) 

Then in DoRevert (Program 11:8-4), the routine that reads a file back 
in from the disk, we could retrieve the saved print record with 
something like 

saveRsrcFile := CurResFile: 

docRsrcFile := OpenResFile (docName): 

rsrcHandle := GetlResource ('PREC', 100): 

CloseResFile (docRsrcFile): 

UseResFile (saveRsrcFile): 

printRec := THPrint(rsrcHandle): 

ThePrintRec := printRec: 

PrValidate (ThePrintRec) 



150 Looking Good on Paper 
~~~~~~~~~~~-

Printing-Related Dialogs

The Macintosh User Interface Guidelines call for two standard
printing-related commands to be included on a program's File
menu. The Page Setup ... command presents the user with a dialog
box in which to specify various characteristics of the document to be
printed, such as the paper size and orientation. The Print ...
command actually initiates the printing process, after requesting
information via a dialog about what printing method to use, which
pages to print, how many copies, and so forth.

Originally, the dialogs presented by these two commands were
intended to gather information for the print record's style (4.1.4) and
job (4.1.5] subrecords, respectively. In practice the correspondence
is not quite so neat, but the two dialogs are still referred to as the style
dialog and the job dialog. Their exact content and appearance vary
from one printer to another, and are defined by template resources
in the printer resource file. Figures 4-5 and 4-6 show the standard
dialogs for the ImageWrlter, and Figures 4-7 and 4-8 for the Laser
Writer.

lmageWriter

Paper: ® US Letter
O us Legal
O Computer Paper

v2.6

0 R4 Letter
O International Fanfold

Orientation Special Effects: D Tall Adjusted
D 50 3 Reduction

·~ D No Gaps Between Pages

Figure 4-5 lmageWriter style dialog

lmageWriter v2.6

Quality: @Best O Faster O Draft

Page Range: ®Rll O From: D To: D
CoplH: D
Poper Feed: ®Automatic QHand Feed

Figure 4-6 lmageWriter job dialog

((OK D

(Cancel)

((OK ~
{Cancel)

151 Printing-Related Dialogs
~~~~~~~~~~~~ 

=L=as=e=r=W=r=lt=er=P=a=g=e=S=e=t=up========================v=sn==ll OK ) 
Paper: ® US Letter O A4 Letter Reduce or r;;;;i 

0 US Legal Q 85 Letter Enlarge: ~ 3 ( Cancel J 
Orientation Printer Effects: 

181 Font Substitution? 
181 Smoothing? 
181 Faster Bitmap Printing? 

Figure 4-7 LaserWrlter style dialog 

(Options) 

( Help ) 

LaserWriter "ShadowfaH" v5.0 ll OK D 
Coples:EJ Pages:® All 0 From: CJ To: CJ ( Cancel ) 

Couer Page: ®No 0 First Page 0 Last Page ( Help ) 

Paper Source:® Paper Cassette O Manual Feed 

Figure 4-8 LaserWrlter job dialog 

If you don't like the standard style and job dialogs~ you can 
customize them to suit yourself. The techniques for domg. thJs 
are discussecl at the end <;>fthe chapter, in our "Nuts and Bolts" 
section. -

The routines PrStlDialog and PrJobDialog (4.2.3] display 
the current printer's standard dialogs on the screen and handle all 
interactions with the user. If the user confirms the dialog-by 
clicking the OK button-pressing Return or Enter, or some similar 
action, both routines update the contents of the print record and 
return TRUE as their function result. (They also automatically call 
PrValidate (4.2.2] to check the record for validity with the current 
printer and printing software.) If the user cancels the dialog. they 
leave the print record unchanged and return FALSE. 

To add the Page Setup ... and Print ... commands to 
MiniEdi t, we begin by modifying our File menu (using a resource 
editor such as Re sEdi t) to include the new commands. After defining 
a pair of new global constants. Setupitem and Printitem, to 



152 Looking Good on Paper 

represent their item numbers on the menu, we add the appropriate 
branches to the case statement in our DoFileChoice routine 
(Program 11:4-8), dispatching on these item numbers to a pair of new 
command-handling routines, DoSetup and DoPrint. The Do Setup 
routine is straightforward, and is shown in Program 4-1; DoPrint, 
which does the actual printing, is discussed in the next section. 

Program 4-1 Handle Page Setup ... command 

{ Global variable ) 

var 
ThePrintRec THPrint: {Handle to active window's print record [4.1.2)} 

procedure DoSetup: 

{ Handle Page Setup ... command. } 

var 
confirmed BOOLEAN: {Did user click OK bunon?} 

begin {DoSewp) 

InitCursor: 
confirmed := PrStlDialog (ThePrintRec) 

{Set arrow cursor (Il:2.5.2]} 

{Present style dialog [4.2.3)} 

end: {DoSewp} 

There really isn't much for our DoSetup routine to do. After 
making sure the cursor is set to the standard arrow shape, we simply 
call the Toolbox printing routine PrStlDialog [4.2.3] to conduct a 
style dialog with the user and update the active window's print record 
as needed. It makes no difference whether the user confirms or 
cancels the dialog, since P rStlDialog will do the right thing in either 
case: so we just ignore the Boolean result it returns. 

Document Printing 

When the user chooses the Pr int ... menu command, your program 
should call PrJobDialog [4.2.3] to present the standard job dialog 
on the screen. If the dialog ls confirmed (that ls, if PrJobDialog 



153 Document Printing 
~~~~~~~~~~~~-

returns TRUE), you should then proceed to print the document
displayed in the currently active window. Document printing con
sists of the following steps:

1. Open the document with PrOpenDoc [4.3.1). obtaining a print
ing port (4.1.1) to draw in. The new printing port automatically
becomes the current port. and will receive all further drawing
operations.

2. For each page of the document
a. Open the page with PrOpenPage (4.3.2).

b. Draw the contents of the page with QuickDraw operations.
c. Close the page with PrClosePage [4.3.2).

3. Close the document with PrCloseDoc [4.3.1).

4. If the chosen printing method is spool printing, call PrPicFile
[4.3.3] to read back the spooled document and send it to the
printer.

Program 4-2 (DoPrint) shows a simplified version of
MiniEdi t's routine for responding to the Print ... command. The
actual code is a bit more complicated. but in principle it's no different
from the version shown here. The main reason for the added
complexity is that we also want to display a dialog box on the screen
while printing. to report on the status of the printing operation and
give the user a chance to suspend or cancel it in progress. So we11
come back to the final version of DoPrint later. in our section on
"Displaying a Status Dialog."

Program 4-2 Handle Pr int ... command

{ Global variables }

var

TheWindow WindowPtr:

ThePrintRec THPrint:

ThePrintPort TPPrPort:

procedure DoPrint:

{ Handle PrinL •• command.)

var

confirmed

numCopies

copyCount

BOOLEAN:
INTEGER:
INTEGER:

{Pointer to currently active window [Il:3.l.1]}

{Handle to active window's print record (4.1.2]}

(Pointer to printing port (4.1.1]}

{Did user click OK button?}

(Number of times to image document}

(Counter for imaging document}

154 Looking Oood on Paper
~~~~~~~~~~~~~~~ 

Program 4-2 Handle Print ..• command (contbwedJ 

begin {DoPrint) 

confirmed := PrJobDialog (ThePrintRec): 

if not confirmed then EXIT (DoPrint): 

with ThePrintRecAA.prJob do 

if bJDocLoop = BDraftLoop then 

numCopies ·= iCopies 

else 

numCopies · = 1: 

for copyCount := 1 to numCopies do 

if PrError = NoErr then 

begin 

(Present job dialog (4.2.3)) 

(Hnot confinned, just exit to main event loop) 

{Look in job subrecord (4.1.2]) 

{Draft printing requested? [4.1.5)) 

(Image each copy separately [4.1.5]) 

{Image just once) 

{Loop on number of copies} 

{Check for enors [4.2.4]} 

ThePrintPort := PrOpenDoc (ThePrintRec, NIL, NIL): {Openprintingport[4.3.1)} 

for (each page of the document} do {Loop on pages} 

if PrError = NoErr then {Check for enors [4.2.4]} 

begin 

PrOpenPage (ThePrintPort, NIL): {Open the page [4.3.2]} 

if PrError = NoErr then 

{Draw the page} : 

PrClosePage (ThePrintPort) 

end: {if PrError = NoErr} 

PrCloseDoc (ThePrintPort) 

{Check for errors [4.2.4]} 

{Close the page (4.3.2]} 

{Close printing port [4.3.1]} 

end: {if PrError = NoErr} 

SetPort (TheWindow): {Restore window as current port [1:4.3.3]} 

with ThePrintRecAA. prJob do {Look in job subrecord [4.1.2]} 

if (bJDocLoop = BSpoolLoop) and {Spool printing? [4.1.5]} 

(PrError = NoErr) then {Check for errors [4.2.4]} 

PrPicFile (ThePrintRec. NIL, NIL. NIL, NIL): {Printspoolfile[4.3.3]} 

IOCheck (PrError): 

PrSetError (NoErr) 

end: (DoPrint} 

(Post error alert, if any [4.2.4, Prog. II:S-1]} 

(Clear error for next time [4.2.4]} 



155 Document Printing 
~~~~~~~~~~~-

We begin by presenting the job dialog on the screen with
PrJobDialog (4.2.3). If the user dismisses the dialog by canceling
rather than confirming it, there's nothing more to do; so we simply
skip the rest of the routine and exit back to our main event loop.
Assuming the dialog was confirmed, we next look in the print record
for the printing method and copy count, to see how many times we
have to image the document (as discussed above under 'The Job
Subrecord"). Then we use a for loop to do the imaging the required
number of times. After the loop terminates, we must remember to set
QuickDraw's current port back to the active window. Finally, if the
printing method was spool printing, we call Pr Pi c File (4.3.3) to ship
the spool file off to the printer.

One very important point to notice in Program 4-2 is the error
handling. After each step of our imaging loop, we carefully check for
errors with the Toolbox routine PrError (4.2.4]. If all is well, we can
proceed normally to the next step; but if we do detect an error, we
can't just drop everything and scramble out of the loop. First we have
to make sure all of our calls to PrOpenDoc and PrOpenPage are
balanced by the corresponding PrCloseDoc and PrClosePage calls.
Once we've tied up those loose ends, we can safely exit from the
imaging loop and pass the error code to our IOCheck routine
(Program 11:8-1), which will post an appropriate message on the
screen. Finally, wecleartheerrorwith PrSetError [4.2.4) so it won't
interfere with the next printing operation.

Just to complicate matters further, some error signals are
raised by the printing routines as internal signals among
themselves. and are cleared automatically when you close the
page or document. So you can't assume, just because an error
was there a millisecond ago, that it will still be present by the
tlme you get ~ound to dealing with it. Instead of just saving the
error code for later processing, you must explicitly call P rEr ror
again after exiting from your imaging loop, in case the error has
evaporated in the meantJme.

Imaging the Document
For the sake of readability, MiniEdi t's imaging code is divided into
two separate routines: Image Prep, which handles the preliminaries,

156 Looking Good on Paper

and ImageDoc, which does the actual imaging. Instead of calling
QuickDraw directly to draw the contents of each page. our strategy
is to do it indirectly. via the Toolbox's built-in TextEdit routines. This
frees us from all sorts of messy details. such as measuring out text
to find the line breaks and repositioning the graphics pen at the start
of each new line: TextEdit has already invented all those wheels. All
we need to do is create an edit record (11:5.1.1) based on our
document's printing port. and TextEdit will draw the text into the
printing port for us exactly as if it were being displayed in a window
on the screen.

The main responsibility of our Image Prep routine (Program 4-3)
is to initialize the printing port and set up the edit record we'll be
using to draw text into it. We begin by getting the name of the
document we're printing (which is also the title of the active window)
and saving it in a global variable. Doc Name; we11 need it later to merge
into the text of our status dialog on the screen. Next we copy the
window's text characteristics into the printing port. so that the
printed document will match the way it appears on the user's screen.
(Recall that the QuickDraw routines TextFont, TextSize, and
TextFace [1:8.3.2) all implicitly operate on the current port; the
printing port became current when our DoPrint routine called
PrOpenDoc [4.3.1).)

Program 4-3 Prepare document for imaging

{ Global constants and variables }

const

PrintMargin = 0.5:

var

TheWindow WindowPtr:
ThePrintRec THPrint:
TheText TEHandle:
TEPrint TEHandle:
DocName Str255:
PageHeight INTEGER:
LinesPerPage INTEGER:
ThisPage INTEGER:
NextLine INTEGER:
Watch CursHandle:

(Margin around printed page, in inches}

{Pointer to currently active window [11:3.1.1])

(Handle to active window's print record [4.1.2)}

{Handle to active window's edit record [11:5.1.1]}

{Handle to edit record for printing [11:5.1.1))

{Name of document being printed (1:8.1.2]}

{Height of printed page)

{Number of text lines per printed page}

(Page number of page being printed)

{Line number of next line to be printed}

(Handle to wristwatch cursor [11:2.5.1]}

157 Document Printing
~~~~~~~~~~~~~~~ 

Program 4-3 Prepare document for imaging (continued) 

procedure ImagePrep: 

{ Prepare document for imaging. 

var 
hMargin 
vMargin 
textRect 

INTEGER: 
INTEGER: 
Rect: 

{Horizontal page margin in printer dots} 

(Vertical page margin in printer dots} 
{Boundary of printed page [1:4.1.2]} 

begin {ImagePrep} 

GetWTitle (TheWindow, DocName): 
with TheWindowA do 

begin 

TextFont (txFont): 
TextSize (txSize): 
TextFace (txFace) 

end : {with The Window"} 

with ThePrintRecAA.prlnfo do 
begin 

{Get document name from active window [II:3.2.4]} 

{Copy window's text characteristics to } 

{ current (printing) port [1:8.3.1, 1:8.3.2)} 

{Use info subrecord [4.1.2]} 

hMargin ·= ROUND(PrintMargin • iHRes) :{Scalepagemarginbyprinter'shorizontal} 

vMargin ·= ROUND(PrintMargin • iVRes):{ andverticalresolution[4.1.3] } 

textRect rPage: (Start with printer's page rectangle [4.1.3)} 

InsetRect ( textRect, hMargin, vMargin) {Inset by page margins [1:4.4.4]) 

end: {with ThePrintRecM.prlnfo} 

TEPrint := TENew (textRect, textRect): 

with TEPrintAA, viewRect do 

begin 

(Open an edit record [II:S.2.2, 4.1.3]} 

{Use view rectangle [II:S.1.1]} 

PageHeight 
LinesPerPage 
PageHeight 
bottom 

bottom - top: {Find height of text page (1:4.1.2)) 

·= PageHeight div lineHeight: {Find lines per page [II:S.1.1]} 

· = Lines PerPage • lineHeight: {Tnmcate to whole number of lines [II:5.1.1)} 

top + PageHeight: {Get rid of partial line [1:4.1.2)} 

destRect := viewRect: 

DisposHandle (hText): 
hText ·= TheTextAA.hText: 
teLength := TheTextAA.teLength 

end; {with TEPrintM, viewRect} 

{Adjust destination reclangle (11:5.1.1]} 

{Dispose of empty text handle (1:3.2.2]} 

{Install text from main edit record [II:5.1.1]} 

{Set text length [11:5.1.1]} 



158 Looking Good on Paper 
~~~~~~~~~~~~ 

Program 4-3 Prepare document for Imaging (conttnuedJ

SetCursor (WatchAA): {Indicate delay (Il:2.S.2])

TECalText (TEPrint): {Wrap text to page (Il:S.3.1]}

{Restore normal cursor (Il:2.S.2]} InitCursor:

ThisPage := O:
NextLine := 1

end: (ImagePrep}

{Initializ.e page number}

{Initializ.e line count)

Before creating our edit record for printing, we have to calculate
the boundary rectangle it will use for wrapping text. We start with the
print record's page rectangle and inset it by a small extra margin,
which we've arbitrarily set at half an inch in from each edge. (We
define this margin as a global program constant, PrintMargin, so
that it can be changed easily.) Since the margin is expressed in
inches, we have to scale it by the printer's horizontal and vertical
resolution to convert it to device-dependent printer dots. Once we've
calculated the text rectangle, we can create the edit record with
TENew [11:5.2.2) and store it in the global variable TEPrint. Again,
since the printing port is current at this point, the new edit record will
automatically be set up to draw into it rather than on the screen.

Next we calculate the height of the page, both in dots and in text
lines, and shorten the edit record's clipping (view) rectangle to avoid
printing an ugly partial line at the bottom of the page. Then we copy
the text handle and text length from the active window's main edit
record, TheText, into the new one, TEPrint, that we'll be using for
our printing. (Notice that the new edit record will have been given an
empty text block to work with at the time it was created. We carefully
dispose of this empty block before installing the real one, to avoid
cluttering our heap with unrecoverable objects.)

Now we can call the TextEdit routine TECalText [11:5.3.1) to
wrap the text to the destination rectangle and calculate the line
breaks. Since this can take a while for long documents, we signal the
delay by displaying the wristwatch cursor during the operation, then
restore the standard arrow shape when it's finished. Finally, we
initialize a couple of global variables, This Page and NextLine, that
we'll be using later in our imaging routine.

The heart ofMiniEdi t's imaging code is the Image Page routine
(Program 4-4), which images one page of a document. As we'll see
later, this routine actually gets called in rather a roundabout way by
the code that runs our status dialog. (Figures 4-9 and 4-10 show

159 Document Printing
~~~~~~~~~~~~~~ 

what the dialog box looks like for draft and spool printing, respec
tively.) For now we can ignore the details: all we need to know is that 
ImagePage returns a Boolean result telling whether to dismiss the 
dialog (TRUE) or leave It visible on the screen (FALSE). If the result is 
TRUE, Image Page also returns an Item numbervta a variable parame
ter, which will be reported back by the Toolbox as the reason for 
dismissing the dialog. 

Program 4-4 Image one page 

( Global constants and variables 

conat 
FinishPrint 3: 

var 
Print Suspended BOOLEAN: 
ThePrintPort TPPrPort: 
TE Print TEHandle: 
TheDialog DialogPtr: 
Doc Name Str255: 
This Copy INTEGER: 
ThisPage INTEGER: 
Next Line INTEGER: 
LinesPerPage INTEGER: 
PageHeight INTEGER: 

function ImagePage (var itemNumber 

( Image one page. 

var 

copyString Str255: 
pageString Str255: 
editHandle Handle: 

begin {ImagePage} 

if PrintSuspended then 
begin 

ImagePage := FALSE: 
EXIT (ImagePage) 

end: (if PrintSuspended} 

INTEGER) 

{Item number for document completion} 

(Printing temporarily suspended?} 

(Pointer to printing port [4.1.1]} 

{Handle to edit record for printing [11:5.1.1] } 

(Pointer to printing status dialog [11:7.1.1]} 

(Name of document being printed [1:8.1.2]} 

(Number of copy being printed} 

(Page number of page being printed} 

(line nmnber of next line to be printed} 

(Number of text lines per printed page} 

(Height of printed page} 

BOOLEAN: 

(Copy number in string form [1:2.1.1]} 

{Page number in string form [1:2.1.l]} 

(Untyped handle for locking edit record [1:3.1.1]} 

(Imaging temporarily suspended?} 

{Just continue dialog} 

{Skip page imaging} 



160 Looking Good on Paper 
~~~~~~~~~~~~~~~ 

Program 4-4 Image one page (conttnuedJ

ThisPage := ThisPage + 1;
NumToString (ThisPage. pageString);
NumToString (ThisCopy. copyString):

{Advance page number}

{Coovert numbers to }

{ string fonn [1:2.3.7)}

ParamText (copy String. pageString. DocName. '') : {Substitute into dialog text (11:7.4.6]}
DrawDialog (TheDialog) : {Update iext on screen [11:7.4.1]}

editHandle := Handle(TEPrint);
MoveHHi (editHandle):
HLock (editHandle);

with TEPrintAA do

begin

PrOpenPage (ThePrintPort, NIL):

if PrError = NoErr then
begin

{Coovert to untyped handle (1:3.1.1)}

{Move edit record to top of heap [1:3.2.S]}
{Lode edit record [1:3.2.4)}

{Open the page [4.3.2]}

{Check for errors [4.2.4]}

TEUpdate (viewRect. TEPrint): {Draw text [ll:S.3.2]}

OffsetRect (destRect, O. -PageHeight): (Scroll to next page [1:4.4.4)}
(Advance line cowtt} NextLine := NextLine + LinesPerPage

end: {if PrError = NoErr}

PrClosePage (ThePrintPort):

if PrError <> NoErr then
begin

itemNumber :"" O:

lmagePage ·= TRUE
end {if PrError <> NoErr}

else if NextLine > nLines then
begin

itemNumber := FinishPrint:
lmagePage := TRUE

end (ifNextLine>nLines}

else
lmagePage ·= FALSE

end; (with TEPrintM}

HUnlock (editHandle)

end: fhnagePage}

(Close the page [4.3.2]}

{Any errors? [4.2.4]}

(Use dummy item number}

{Force exit from dialog}

{Last line printed? [Il:S.1.1] }

{Signal completion}

{Force exit from dialog}

{Continue dialog}

(Unlock edit record (1:3.2.4])

161 Document Printing
~~~~~~~~~~~-

ImagePage begins by checking the value of a global flag named 
PrintSuspended, to see if the user has temporarily suspended 
printing operations. This flag is initially set to FALSE. but becomes 
TRUE when the user clicks the mouse in the dialog's Pause button. In 
this case, Image Page simply exits without doing anything, returning 
a FALSE result to leave the dialog up on the screen. Thus no page 
imaging can take place while the PrintSuspended flag is TRUE. When 
the user clicks the button again (its title will have been changed to 
Resume), the flag will be set back to FALSE and page imaging will 
proceed normally. 

Assuming that printing is not suspended, we must next update 
the contents of the status dialog on the screen to show the number 
of the page we're about to image. By the time Image Page gets called, 
the dialog will already have been opened on the screen and the global 
variable TheDialog will contain a pointer to it. After advancing the 
page number, we convert both the copy and page numbers to string 
form. merge them (along with the document name) into the text of the 
dialog with ParamText (Il:7.4.6], and redraw the dialog box on the 
screen with DrawDialog (II:7.4.1]. 

Now we're ready to draw the contents of the page, sandwiched 
between calls to PrOpenPage and PrClosePage [4.3.2). Instead of 
drawing the text directly with QuickDraw calls. we use the TextEdit 
routine TEUpdate (11:5.3.2], which in tum will call QuickDraw for us. 
Ordinarily TEUpdate is used to redraw (update) the contents of a 
window on the screen; but in this case, since our edit record TEP r int 
is based on the printing port instead of a window, the text will be sent 
to the printer instead of the screen. 

After drawing the page, we have to scroll the next page into view 
within the edit record's view rectangle, to prepare for the next 
ImagePage call. To reposition the document relative to the view 
rectangle, we offset the destination (wrapping) rectangle upward by 
the page height, which we calculated earlier in our ImagePrep 
routine (Program 4-3). We also advance the line number, NextLine, 
by the number of lines on each page. This variable always contains 
the number of the first line on the next page about to be printed; it's 
initia~d to 1 by ImagePrep and advanced by each call to 
ImagePage. 

When NextLine exceeds the total number of lines in the 
document (given by the nLines field of the edit record TEPrint), 
Image Page returns TRUE to dismiss the dialog from the screen, along 
with the item number FinishPrint to signal that the imaging of the 
document is complete. {This is just a dummy value that we use for 



162 Looking Good on Paper 

internal communication within our program: it doesn't correspond to 
any actual item in the dialog box.) Othetwise, assuming no printing 
errors have been detected, we just exit with a FALSE result, telling the 
Toolbox to leave the dialog Visible on the screen. 

Displaying a Status Dialog 

Since printing is a time-consuming operation, it's a good idea to keep 
your user informed by displaying a running progress report in a 
dialog box on the screen. MiniEdi t actually uses three different 
status dialogs, depending on the method and stage of printing. 
Figure 4-9 shows the one for draft printing, Figures 4-10 and 4-11 
those for the imaging and printing phases of spool printing, respec
tively. (As usual, we've used a resource editor to define the dialogs 
separately from the program itself and store them into its resource 
fork as template resources (II:7.6.2].) 

Printing copy 1, page 2 of file 
"Flapdoodle" 

( Pause ) ( Cancel ) 

Figure 4-9 MiniEdi t Draft Printing dialog 

Spooling page 2 of file 
"Flapdoodle" to disk 

( Pause ) ( Cancel ) 

Figure 4-10 MiniEdi t Spooling dialog 



163 Document Printing 
~~~~~~~~~~~-

Printing copy 3 of file
"Flapdoodle"

Now printing page 2
Job ends at page 5

(Pause) (Cancel)

Figure 4-11 MiniEdi t Spool Printing dialog

MiniEdi t's actual DoPrint routine (Program 4-5) differs from
the simplified version we looked at earlier (Program 4-2) in several
respects. First of all, the imaging and printing code has been
separated out into a series of subsidiary routines for the sake of
readability. (We've already discussed ImagePrep, and we11 be com
ing to ImageDoc in just a minute and SpoolPrint later in the
chapter.) Second, we've added a few extra lines to support the status
dialogs: after looking up the printing method in the print record, we
set the global variable DialogID to the resource ID of the correspond
ing status dialog: and as we iterate through our imaging loop, we save
the running copy count in another global, ThisCopy, so we can
display it later in the dialog box. Finally, we're a little more meticu
lous about cursor management, taking care to display the normal
arrow cursor while the job dialog is on the screen and the wristwatch
while we're busy opening the printing port (which usually entails a
perceptible delay).

Program 4-5 Handle Print ... command

{ Global constants and variables }

const

DraftID = 2000:

SpoolID = 2001:

{Resource ID for Draft Printing dialog}

{Resource ID for Spooling dialog}

164 Looking Good on Paper

Program 4-5 Handle Print ... command {conttnuedJ

var

TheWindow

ThePrintRec
ThePrintPort

DialogID
This Copy

Watch

WindowPtr:

THPrint:

TPPrPort:

INTEGER:

INTEGER:

CursHandle:

procedure DoPrint:

{ Handle Print ... command.

var

confirmed

numCopies

copyCount

BOOLEAN:

INTEGER:

INTEGER:

begin {DoPrint}

InitCursor:

confirmed := PrJobDialog (ThePrintRec):
if not confirmed then EXIT (DoPrint):

with ThePrintRec~~.prJob do

if bJDocLoop = BDraf tLoop then

begin

numCopies ·= iCopies:
DialogID DraftID

end {then}

else
begin

numCopies ·= 1:

Dialog ID Spool ID
end: {else}

(Pointer to currently active window [II:3.1.1]}

(Handle to active window's print record [4.1.2)}

(Pointer to printing port (4.1.1]}

(Resource ID of printing status dialog}

(Sequential nmnber of copy being printed}

(Handle to wristwatch cursor [II:2.5.1]}

{Did user click OK button?)

{Number of times to image document}

{Counter for imaging document)

{Set arrow cursor [II:2.5.2]}

(Present job dialog [4.2.3]}

{If not confirmed, just exit to main event loop}

{Look in job subrecord (4.1.2])

(Draft printing requested? [4.1.5])

{Image each copy separately [4.1.5)}

(Use Draft Printing dialog}

{Image just once}

(Use Spooling dialog)

Program 4-5 Handle Print ... command (continued)

for copyCount := 1 to numCopies do
if PrError = NoErr then

begin

ThisCopy := copyCount:

{Loop on number of copies}

(Clteck for errors [4.2.4]}

(Save in a global for filter function}

SetCursor (Watch""): (Indicate delay (11:2.5.2]}

ThePrintPort ·= PrOpenDoc (ThePrintRec, NIL, NIL): {Open printing port (4.3.1)}

Ini tCursor: {Restore nonnal cursor (11:2.5.2]}

if PrError = NoErr then
begin

ImagePrep:
ImageDoc

end: {if PrError = NoErr}

(Clteck for errors [4.2.4))

(Prepare for imaging}

(Image the dOaJmenl}

PrCloseDoc (ThePrintPort) {Close printing port (4.3.1]}

end: {if PrError = NoErr}

SetPort (TheWindow): {Restore window as cunent port [1:4.3.3]}

if PrError = NoErr then
SpoolPrint:

{Clteck for errors (4.2.4])

{Print spool file, if any}

IOCheck (PrError);
PrSetError (NoErr)

{Post error alert, if any (4.2.4, Prog. Il:8-1]}

{Clear error for next time [4.2.4]}

end: {DoPrinl}

When it comes to actually imaging our document, the status
dialogs introduce an extra level of complexity. Instead of doing the
imaging itself. our ImageDoc routine (Program 4-6) merely displays
and runs the status dialog on the screen. The actual imaging is
performed indirectly, via the filter function mechanism that we
learned about in Volume Two [II:7.4.5]. Recall that the Toolbox
routine ModalDialog [Il:7.4.2) allows us the option of supplying
such a function as a parameter: all events occurring while the dialog
is on the screen will then be passed to the filter function for
preprocessing before being acted upon by ModalDialog itself.

166 Looking Good on Paper

Program 4-6 Image document

{ Global constants and variables

con st
PausePrint

CancelPrint
FinishPrint

var

TEPrint

DialogID
TheDialog
PrintSuspended

1:

2:

3:

procedure ImageDoc:

{ Image document

var

dlgStorage
the Item

printFinished

begin {ImageDoc}

TEHandle:
INTEGER:
DialogPtr:
BOOLEAN:

DialogRecord:
INTEGER:
BOOLEAN:

PrintSuspended ·= FALSE:
printFinished ·= FALSE:

ParamText (• •. • •, • •. • •):

{Item number for Pause/ Resume button}

{Item number for Cancel button}

{Item number for document completion}

{Handle to edit record for printing [4.1.1]}

{Resource ID of printing status dialog}

{Pointerto printing status dialog [11:7.1.l]}

{Printing temporarily suspended?}

{Storage for dialog [11:7.1.1]}

{Item number returned by dialog}

{Imaging complete?}

{Clear pause flag}

{Clear completion flag}

{Clear previous dialog text, if any [11:7.4.6]}
TheDialog GetNewDialog (DialogID. @dlgStorage, WindowPtr(-1)):

while (not printFinished) and
(PrError = NoErr) do

begin

{Make dialog from template [11:7.2.2]}

{Stop on completion }

{ or on enor [4.2.4)}

ModalDialog (@ImageFil ter. theitem): {Run the dialog [11:7.4.3]}

case theitem of
PausePrint:

DoPause:
CancelPrint:

PrSetError (IPrAbort):

{Toggle Pause/Resume button}

{Cancel funher printing [4.2.4]}

167 Document Printing
~~~~~~~~~~~~ 

Program 4-6 Image document (continued) 

FinishPrint: 

printFinished := TRUE 
end {case theltem} 

{Tenninate loop} 

end: {while} 

CloseDialog (TheDialog): (Close dialog (11:7.2.3)) 
TEPrintAA.hText :=NIL: (A void deallocating text [Il:S.1.1]} 

(Dispose of edit record [II:S.2.2)} TEDispose (TEPrint) 

end: (ImageDoc} 

In the present case, we pass a pointer to a function named 
ImageFil ter. which we'll be examining in detail a little later (Pro
gram 4-8). As we'll see, this function simply passes the user's mouse 
clicks through unchanged, for the Toolbox to handle in the normal 
way: but on receiving a null event (meaning that nothing else of 
significance is going on), the filter function takes the opportunity to 
image one page of the document. Thus the imaging takes place 
almost incidentally, as a side effect of running the status dialog. 

The first thing Image Doc does is initialize a pair of Boolean flags, 
Print Suspended and printFinished, which will be used to control 
our imaging loop. Both flags are initially set to FALSE. PrintSus
pended becomes TRUE when the user clicks the Pause button in the 
dialog box; we've already seen how this causes our ImagePage 
routine (Program 4-4) to skip all further imaging until the flag 
becomes FALSE again. The other flag, printFinished, will be set to 
TRUE when we finish imaging our entire document, causing 
ImageDoc to close its dialog box and exit. 

Earlier, our DoPrint routine (Program 4-5) set the global 
variable DialogID to the resource ID of the status dialog we'll be 
using, depending on the printing method the user has chosen. Now 
we pass this value to the Toolbox routine GetNewDialog [11:7.2.2) to 
read in the template resource and create the dialog. Just for variety, 
this time we supply our own stack space (dlgStorage) for the dialog 
record instead of having the Toolbox allocate it for us from the heap. 
Also, before displaying the dialog on the screen, we call ParamText 
[II: 7 .4.6) to clear out the four variable substitution strings, removing 
any leftover text that may be lurking there from previous dialogs. 

Now we're ready to run the status dialog, using a while loop that 
repeatedly calls ModalDialog [11:7.4.3). As we learned in Volume 



168 Looking Good on Paper 

1\vo. this Toolbox routine processes all events directed to a dialog 
box. keeping control until the mouse is clicked in an item that's been 
designated as enabled; then it returns the corresponding item 
number via a variable parameter. (This is, in fact, the very definition 
of an enabled dialog item: one that causes ModalDialog to return. 
giving the calling program a chance to respond to the mouse click.) 

MiniEdi t's printing status dialogs each contain two enabled 
items. the Pause and Cancel buttons; their item numbers are 
declared as program constants named PausePrint and 
CancelPrint. Also, as we saw earlier, our ImagePage routine 
(Program 4-4) uses the dummy item number FinishPrint to signal 
completion after imaging the last page of a document. Each of these 
item numbers will be passed back via our filter function to 
ModalDialog, which in tum will report it as the value of the variable 
parameter theitem. ImageDoc then uses a case statement to 
examine the item number and decide how to respond. In particular. 
on receiving the item number FinishPrint, it sets the 
printFinished flag to TRUE, causing the while loop running the 
dialog to terminate. Then all that's left is to close the dialog box, 
dispose of the edit record TEPrint, and exit. 

Notice that before. disposing of the edit record, we're careful to 
clear its text handle. to NIL. Otherwise, TED is pose (11:5.2.2] 
would automatically deallocate the. text along with the record 
itself. Since .the identical ·copy of the, text is also shared by the 
active window's maui_ edit record. TheText, we have to make 
sure it isn't destroyed while the window still needs it. 

Instead of waiting for printFinished to become TRUE, our 
while loop may be terminated prematurely by a printing-related 
error. In fact, this is the mechanism we use to cancel further imaging 
when the user clicks the dialog's Cancel button. On receiving the 
item number CancelPrint from ModalDialog. we call the Toolbox 
routine PrSetError (4.2.4] to post a special error code, IPrAbort. 
(This is normally the only time an application program will ever need 
to post a printing error of its own.) The Toolbox printing routines 
recognize this code as a signal to cancel all printing operations 
immediately. We will then detect the error with PrError. exit from 
our while loop. and close the dialog box, just as if Imaging had 
completed normally. 



169 Document Printing 
~~~~~~~~~~~~~~ 

When the user clicks the dialog's Pause button, ImageDoc
responds by calling the MiniEdi t routine Do Pause, shown in Pro
gram 4-7. This simple routine toggles the state of the Print Sus -
pended flag, fetches a handle to the Pause button, and changes the
button's title from Pause to Resume or back again, according to the
new state of the flag. As we know, our ImagePage routine (Program
4-4) will refuse to do any page imaging while this flag is TRUE.

Program 4-7 Toggle Pause/Resume button

(Global constants and variables

const

var

PausePrint 1:

TheDialog
PrintSuspended

DialogPtr:
BOOLEAN:

procedure DoPause:

{ Toggle Pause/Resume button.

var
itemType
itemRect
itemHandle
theButton

INTEGER:
Rect:
Handle:
ControlHandle:

begin (DoPause}

PrintSuspended := not PrintSuspended:

GetDitem (TheDialog, PausePrint,
itemType, itemHandle, itemRect):

theButton := ControlHandle(itemHandle):

if PrintSuspended then
SetCTitle (theButton, 'Resume')

else
SetCTitle (theButton, 'Pause')

end: (DoPause}

(Item number for Pause/ Resume button}

{Pointer to printing status dialog [Il:7.1.l]}

{Printing temporarily suspended?}

{Item type for Pause/Resume buuon)

(Display rectangle for Pause/Resume button}

{Item handle for Pause/Resume buuon}

{Control handle to Pause/Resume button [Il:6.l.l]}

{Toggle pause flag)

{Get item handle [Il:7.3.1]}

{Convert to typed handle (11:6.1.1]}

{Printing now suspended?}

{Change button to Resume [Il:6.2.3])

(Change back to Pause [Il:6.2.3]}

170 Looking Good on Paper

Program 4-8 (Image Filter) shows the filterfmwtlon we use for
handling events in our status dialog. Our ImageDo c routine (Program
4-6) passes a pointer to this function when it calls the Toolbox
routine ModalDialog [II:7.4.3]. As long as the dialog remains on the
screen, ModalDialog will pass each event it receives to the filter
function for preprocessing. As we learned in Volume Two (11:7.4.5],
the filter function can handle the event in any of the following ways:

• respond to the event itself

• convert it to the equivalent of a mouse click in a specified dialog
item

• modify the contents of the event record and pass it on to the
Toolbox for processing

• leave it unchanged for the Toolbox to handle in the normal way

A function result of FALSE tells ModalDialog to handle the event in
its own standard way, as described in (11:7.4.3]. A TRUE result
instructs it to return immediately with the item number given by the
variable parameter i temNumber; this makes the event appear to the
calling program (in this case, ImageDoc) as a mouse click in the
corresponding dialog item.

Program 4-8 Process event while imaging document

{ Global variables }

var

TheEvent EventRecord:

function ImageFilter (thisDialog DialogPtr:

var thisEvent EventRecord:

var itemNumber INTEGER)

: BOOLEAN:

{ Process event while imaging document.

var

dummyDialog DialogPtr:

dummyitem INTEGER:

{Current event [ll:2.1.1])

{Dialog pointer from DialogSelect [11:7.4.4))

{Item number from DialogSelect [11:7.4.4]}

171 Document Printing
~~~~~~~~~~~~~~ 

Program 4-8 Process event while imaging document (continued} 

begin {ImageFilter} 

SystemTask: {Do system idle processing [Il:2.7.2]) 

case thisEvent.what of {Dispatch on event type [Il:2.1.l]} 

Nul!Event: 
ImageFilter ·= ImagePage (itemNumber): {Image one page) 

KeyDown: 
ImageFilter FilterKey (thisEvent. itemNumber): {Process keystroke} 

Upda.teEvt: 
if SystemEvent (thisEvent) then 

ImageFilter := FALSE 
{System window? (6.22]} 

{System Event does the updating} 

else if IsDialogEvent (thisEvent) then {Dialog window? [II:7.4.4]} 

ImageFilter DialogSelect (thisEvent, dummyDialog, dummy!tem) 

else 
begin 

{Update dialog window (11:7.4.41) 

TheEvent ·= thisEvent: (Copy to global variable for Do Update} 

(Update application window [Prog. 11:5-31) 

(Continue dialog} 

DoUpdate: 
ImageFilter 

end: {else} 

FALSE 

otherwise 
ImageFilter := FALSE {Handle as nonnal event} 

end {case thisEvent.what} 

end: (ImageFilter} 

The first thing our filter function does is call the Toolbox routine 
SystemTask [11:2. 7 .2). If there are any desk accessories active on the 
screen, this gives them a chance to perform their periodic tasks so 
that they can continue to operate properly during the imaging 
process. Then we examine the what field of the event record [11:2.1.1) 
to see what type of event it is, and use a case statement to decide 
what to do in response. 

As we explained earlier, the most important case the filter 
function needs to handle is that of a null event. As long as nothing 



172 Looking Good on Paper 

else of interest is happening, we can take the opportunity to call 
Image Page (Program 4-4) to image the next page of the document. 
Usually ImagePage will return the value FALSE, which the filter 
function will in tum pass back as its own result; this tells the Toolbox 
to process the null event in the normal way (that is, to do nothing) and 
continue the dialog. However, after Imaging the last page of the 
document, Image Page will return TRUE along with the dummy item 
number FinishPrint. On receiving these values back from the filter 
function, ModalDialog will dutifully return the item number to its 
calling program, ImageDoc (Program 4-6), which will respond by 
setting the printFinished flag, exiting from its while loop, and 
dismissing the dialog from the screen. 

One common use for filter functions is to convert certain 
keystrokes typed by the user into equivalent commands and dialog 
items. Our Image Fi 1 ter routine passes all key-down events along to 
another MiniEdi t routine, Fil terKey, which recognizes such key
board equivalents and responds to them as needed. We'll come back 
and examine this routine more closely in a minute (Program 4-9). 

Another detail the filter function has to take care of is the proper 
handling of update events. In the course of their normal operations, 
the Toolbox printing routines sometimes post alert or dialog boxes of 
their own on the screen. As these dialog windows appear and 
disappear, they generate update events both for themselves and for 
other windows already on the screen. Because of the special way in 
which update events are detected, they must be handled immediately 
and then cleared via the Toolbox calls BeginUpdate and EndUpdate 
[11:3.4.1]. Otheiwise, the Toolbox will keep reporting the same event 
over and over again, preventing any null events from getting through. 
Without the null events. we will never image the next page of our 
document and our imaging loop will "hang" forever. 

How we handle the update event depends on the type of window. 
First we call the Toolbox routine SystemEvent [6.2.2) to see if it's a 
system window (containing a desk accessory). If so, SystemEvent 
will automatically relay the event to the accessory for processing 
before returning; thus by the time we receive a TRUE result, the 
window will already have been updated and the event cleared. If the 
result from SystemEvent is FALSE, we next call IsDialogEvent 
[11:7.4.4] to see if the event pertains to a dialog window; if so, we pass 
it on to DialogSelect [11:7.4.4] to handle. Finally, if the window to 
be updated is neither a system window nor a dialog window, then it 
must be one of our own document windows, so we call our own 
Do Update routine (Program 11:5-3) to do the updating. (Notice that we 



173 Document Printing 
~~~~~~~~~~~~~ 

must first copy the event record into our program's global variable
TheEvent, where DoUpdate expects to find it.) In any case, we return
a function result of FALSE, telling the filter function's calling
program, ModalDialog [11:7.4.3], not to return immediately but to
continue processing events within the status dialog.

Program 4-9 (Fil terKey) shows the MiniEdi t routine that
checks for keyboard aliases in the printing status dialog. The dialog
filter function ImageFil ter (Program 4-8) calls this routine when
ever it receives a key-down event. After extracting from the event
record the character code and the modifier bit representing the
Command key, we check for the specific keystrokes Command
period and Command-comma, which we will recognize as equivalent
to the dialog's Cancel and Pause buttons, respectively. On receiving
either of these keystrokes, we return TRUE for our function result,
along with the corresponding item number (CancelPrint or
Pause Print) in the variable parameter i temNumber. The filter func
tion will pass these values back to ModalDialog [11:7.4.3], which in
tum will return the given item number to our ImageDoc routine
(Program 4-6) to respond to as appropriate. On any other keystroke,
we return FALSE. telling ModalDialog to leave the dialog up on the
screen and continue with its normal event processing.

Program 4-9 Process keystroke in printing dialog

{ Global constants }

const
PausePrint 1:

CancelPrint 2:

function FilterKey (var thisEvent : EventRecord:
var itemNumber : INTEGER)

: BOOLEAN:

{ Process keystroke in printing dialog. }

var
chCode INTEGER:
ch CHAR:
cmdDown BOOLEAN:

{Item number for Pause/Resume buuon}

{Item number for Cancel button}

{Character code from keyboard event}

{Character that was typed}

{Command key down?}

17 4 Looking Good on Paper

Program 4-9 Process keystroke in printing dialog (contfnuedJ

begin (FilterKey}

with thisEvent do
begin

cmdDown (BitAnd (modifiers, CmdKey) <> O):
(Test Command key [1:222, 11:2.1.1, 11:2.1.S]}

chCode ·= BitAnd (message, CharCodeMask):

ch ·= CHR(chCode)
end: {with thisEvent}

FilterKey ·= FALSE:
itemNumber O:

if cmdDown then
begin

FilterKey ·= TRUE:

case ch of

•.•: itemNumber ·= CancelPrint:

•,•: itemNumber ·= PausePrint:

otherwise
FilterKey

end (casech}

end (then}

end: { FilterKey}

FALSE

Printing the Spool File

(Get character code [1:2.2.2, 11:2.1.1, 11:2.1.4))

(Convert to a character}

{ Ass\Ulle normal event processing}

{Initiallie to no item}

(Command key down?}

(Masquerade as a pushbutton}

{Command-period means Cancel}

(Command-comma means Pause/Resume}

{Report as normal event}

In the draft method of printing, everything you draw into the printing
port goes directly to the printer. By the time you finish imaging your
document, it's already on paper and there's nothing more to do. In
spool printing, on the other hand, the results of your drawing
operations are not printed immediately. but merely saved in some
intermediate form-typically in a spool file on the disk. You must

175 Printing the Spool File
~~~~~~~~~~~-

then explicitly read back this intermediate representation from the 
spool file and send it to the printer to be converted into inkware. 

The Toolbox routine that handles this chore for you is 
PrPicFile [4.3.3]. The first parameter you give it is a print record 
defining the characteristics of the printingjob. PrPicFile gets the 
spool file's name and volume (or directory) number from the job 
subrecord [4.1.5], reads back the page Jmages stored in that file, and 
ships them off to the printer. Then it automatically deletes the spool 
file from the disk. 

PrPicFile uses a printing port to do its job. but not the same 
one you used earlier for imaging the document. Instead of recording 
your drawing operations in a spool file. this time the port's bottleneck 
routines are set up to convert them into the printer's native control 
codes (orwhatever other.magical incantations it understands). Since 
the printing port is a nonrelocatable object. you are given the usual 
option of providing your own storage for it to avoid fragmenting the 
heap. You do this by passing as the printPort parameter a pointer 
to a memory block of length SIZEOF (TPrPort) bytes. which may 
reside in either the heap or the stack. (If it's a relocatable heap block. 
don't forget to lock it first and then unlock it again afterwards.) A NIL 
value for this parameter asks the Toolbox to do the allocation for you. 

Recall that PrOpenDoc (4.3.1) gave you the same optlonfor the 
port you did youroriginalimaging in. If you chose to supplyyour 
own storage the first time, there's nothing to stop .you b'om. 
reusing the same 'block now (provided it's still allocated, of 
course). But if you earlier let PrOpenDoc allocateaportforyou, 
don't make the mistake of passing that same port to PrPicFile 
to be used again. The port Will have been destroyed by 
PrCloseDoc (4.3.1) at the end of the imaging phase, leaving you 
with a nice pointer to nothing at all. (See the signpost up ahead? 
Nextstop ... theTwilightZonel) Soinstead oftryingt~reusethe· 
old pointer, be sure to set the printPort parameter to NIL, 
asking the Toolbox to allocate a fresh port for you from the heap. 

Pr Pi c Fi 1 e also uses a pair of buffers (storage areas) in memory. 
a spool buff er to hold input from the spool file and a print buff er for 
output on its way to the printer. Once again, you can either supply 
your own storage for the buffers or let the Toolbox allocate them for 
you. The spool buffer is always 522 bytes long, while the size required 



176 Looking Good on Paper 
~~~~~~~~~~~~~ 

for the print buffer Is given by field prXInfo. iDevBytes of the print
record. PrPicFile's last parameter, printStatus, Is an optional
printing status record, which we11 be discussing shortly.

MiniEdi t's routine for the second stage of a spool printing
operation is SpoolPrint, shown in Program 4-10. As long as no
printing errors have occurred during the imaging stage. our main
DoPrint routine (Program 4-5) always calls this routine next, no
matter what printing method is in effect. The first thing Sp o o 1 Print
does is check the printing method in the print record and exit
immediately if it's anything other than spool printing.

Program 4-10 Print spooled document

{ Global constants and variables

con st

var

SpoolPrintID 2002:

ThePrintRec
Print Status
TheDialog
This Copy
This Page

THPrint:
TPrStatus:
DialogPtr:
INTEGER:
INTEGER:

procedure SpoolPrint:

{ Print spooled docwnenL

var

dlgStorage DialogRecord:
theitem INTEGER:

begin (SpoolPrint}

with ThePrintRechh.prJob do
if (bJDocLoop <> BSpoolLoop) then

EXIT (SpoolPrint)
else

pidleProc := @SpoolBackground:

{Resource ID for Spool Printing dialog}

{Handle to active window's print record (4.1.2]}

{Status record for spool printing (4.1.7]}

(Pointer to printing status dialog [11:7.1.1]}

{Nwnber of copy being printed}

{Page number of page being printed}

{Storage for dialog (11:7.1.1]}
{Item number returned by dialog}

{Look in job subrecord [4.1.2]}

{Is there a spool file? [4.1.5]}

{Hnot. just exit}

{Install background procedure [4.1.5, Prog. 4-11]}

177 Printing the Spool File
~~~~~~~~~~~~ 

Program 4-10 Print spooled document (continued) 

ThisCopy := O: (Initialize copy and} 
ThisPage := O: ( page ccunts } 

TheDialog := GetNewDialog (SpoolPrintID, @dlgStorage, WindowPtr(-1)): {Open dialog [11:7.2.2)} 

PrPicFile (ThePrintRec, NIL. NIL. NIL, PrintStatus): (Print spool file (4.3.3]} 

CloseDialog (TheDialog) {Cose dialog [Il:7.2.3]} 

end: {SpoolPrint} 

Assuming the print record calls for spool printing, we'll need to 
call PrPicFile to do the job. First, though, there are a few prelimi
naries to take care of. As we'll see in the next section, we'll be using 
a background procedure to handle some needed chores while spool 
printing is in progress. Before calling PrPicFile, we have to install 
a pointer to the background procedure in the appropriate field of the 
print record; we also need to initialize a couple of global variables that 
the background procedure will be using. Then, while the document 
is being printed, we11 be maintaining a status dialog on the screen 
(Figure 4-11), similar to the ones we displayed earlier during the 
imaging phase (Figures 4-9, 4-10). So we call GetNewDialog 
[11:7.2.2] before PrPicFile, to open the dialog on the screen, and 
CloseDialog [11:7.2.3] to close it again afterward. 

Background Procedures 
Just as you can supply a filter function for ModalDialog to execute 
while running a dialog, you can also provide a background procedure 
to PrPicFile. Unlike the dialogfilterfunction, however, this printing 
background procedure is not event-driven, accepts no parameters, 
and returns no result. PrPicFile simply calls the procedure repeat
edly whenever it has nothing else to do, such as while waiting for a 
completion signal from the printer after beginning a printing opera
tion. 

Background procedures give you a general mechanism for 
gaining control during the spool printing process, and can be used for 
a variety of purposes. We'll see in a minute how MiniEdi t uses one 



178 Looking Oood on Paper 

to run its status dialog on the screen. Another idea is to have the 
background procedure run one cycle of the program's main event 
loop (in MiniEdi t's case, by calling the MainLoop routine, Program 
11:2-2). This allows the user to continue running the program 
normally, with the illusion of printing the document concurrently .. in 
the background." (The reality. of course, is just the reverse: the 
printing takes place in the foreground, with the program running 
behind it.) 

If you want to iinplement this kind of concurrent printing, there 
are some unexpected pitfalls you should be aware of. For one 
thJng. the Toolbox will get hopelessly confused if you try to start 
a second prlnting _ operatlot1 while· the first. is still in progress. 
The cleane.st w~yto avoid thi$fs to disable allmenu commands 
pertaining to printing (such as Page Setup .•. and Print ... ) 
when executing Y<>ur ~in loop from with.In the background 
proceqilre. Also, it's crucially important for the background 
pJ."ocedure riot to a.lter any; p_roperties Qfthe .global environment 
that tlie prin~g routines lI1ay be depending on; such as the 
current port ortbe·current resource file. If you must change any 
of thes~ global s~tttngs, be sure to save their previous values and 
restore them before '.e,xitlng from the background procedure. 

You specify a background procedure by storing a procedure 
pointer in the print record you supply to PrPicFile, in the 
pidleProc field of the job subrecord (4.1.5]. If this field is NIL, the 
Toolbox will use its own built-in background procedure. which 
simply polls the keyboard and cancels the printing operation if the 
user types Command-period. As a courtesy to the user. it's a nice idea 
to announce the availability of this option with an alert box contain
ing a message such as 

Printing document: type Command- period to cancel. 



179 Printing the Spool Flle 
~~~~~~~~~~~~~ 

Program 4-11 Back.ground procedure for spool printing

procedure SpoolBackground:

{ Background procedure for spool printing.

begin {SpoolBackground}

ShowSpoolStatus;
DoSpoolEvent

(Display status on screen}

(Handle mouse and keyboard}

end: {SpoolBackground}

If you provide your own background procedure, be sure to check
for Command-period cancellation requests in addition to any other
special processing you may be doing. MiniEdi t's background
procedure, SpoolBackground (Program 4-11), in tum calls two
subsidiary routines. The first, ShowSpoolStatus, updates the con
tents of the dialog box on the screen to reflect the current state of the
printing operation. Not surprisingly, it gets this information from a
printing status record-so we'll save it until we discuss such records
in the next section. The second subsidiary routine, DoSpoolEvent,
handles events involving the status dialog and is shown in Program
4-12.

Program 4-12 Process event during spool printing

(Global constants and variables

con st

var

PausePrint l;

CancelPrint 2:

TheEvent
TheDialog
PrintSuspended

EventRecord:
DialogPtr:
BOOLEAN:

{Item number for Pause/Resume button}

{Item number for Cancel button}

{Current event [II:2.1.1]}

(Pointer to printing status dialog [Il:7.l.1]}

(Printing temporarily suspended?}

180 Looking Good on Paper

Program 4-12 Process event during spool printing (conttrw.edJ

procedure DoSpoolEvent:

(Process event during spool printing.

var
click

the Item
BOOLEAN:
INTEGER:

{Mouse clicked in a pushbutton?}

(hem number of pushbutton}

begin (DoSpoolEvent}

repeat

SystemTask: {Do system idle processing [Il:2 7.2]}

click := FALSE:
if GetNextEvent (EveryEvent, TheEvent) then

case TheEvent.what of

MouseDown:

{Assume no reportable event}

{Any events? [II:2.2.l, 2.1.3]}

(Dispatch on event type (11:2.1.1]}

click ·= DialogSelect (TheEvent, TheDialog, theitem):
(Relay mouse click to dialog [11:7.4.4)}

KeyDown:
click ·= Fil terKey (TheEvent, theitem): (Convert keystroke to pushbutton}

UpdateEvt:
if not Sy stemEvent (TheEvent) then (One of our windows? (6.2.2]}

begin

if IsDialogEvent (TheEvent) then (Dialog window? (11:7.4.4]}

click DialogSelect (TheEvent, TheDialog, theitem)
{Update dialog window (11:7.4.4]}

else
DoUpdate

end {if not SystemEvent (TheEvent)}

end: {case TheEvent.what}

if click then
case theitem of

PausePrint: DoPause:
CancelPrint: PrSetError (IPrAbort)

end {case lheltem}

(Update document window}

{Pushbutton clicked?}

(Dispatch on item number}

(Toggle Pause/Resume button}

(Cancel further printing (4.2.4)}

181 Printing the Spool File
~~~~~~~~~~~~ 

Program 4-12 Process event during spool printing {oonttnuedJ 

until (not PrintSuspended) 
or (PrError <> NoErr) 

{Keep control if suspended } 

( or until canceled (4.2.4)} 

end: {Do.SpoolEvent} 

Since spool printing is a time-consuming operation that will 
keep us away from our main event loop for long periods, we start out 
by calling SystemTask (11:2.7.2) to give any open desk accessories the 
time they need for their periodic tasks. Then we initialize the Boolean 
variable click to FALSE, meaning that nothing significant has 
happened involving any of the dialog's pushbuttons. If it turns out 
that the user has clicked the mouse in one of them or typed its 
keyboard equivalent, we will change this flag to TRUE. 

Now we call GetNextEvent [Il:2.2.1) to retrieve the next event 
from the Toolbox event queue, and use a case statement to dispatch 
on the event type and respond to it as appropriate. If it's a mouse
down event, we pass it along to the Toolbox routine DialogSelect 
[II: 7 .4.4], which will track the mouse for as long as the user holds 
down the button, then return a Boolean result telling whether it was 
pressed and released inside an enabled dialog item. For a key-down 
event, we call our own Fil terKey routine (Program 4-9) to convert 
it into the equivalent pushbutton click, if any. 

On receiving an update event, we have to process it the same 
way we did earlier in our ImageFil ter routine (Program 4-8); 
otherwise, the event will never be cleared and will hang up our 
printing loop forever. First we call SystemEvent (6.2.2) to see if the 
window to be updated is a system (desk accessory) window; if so, the 
Toolbox will automatically update it for us before returning TRUE. If 
it isn't a system window, we try IsDialogEvent (11:7.4.4) next, to see 
if it's a dialog window: in that case, we call DialogSelect (11:7.4.4] 
to do the updating. Ifboth SystemEvent and IsDialogEvent return 
FALSE, it must be one of our own document windows that needs 
updating-so our Do Update routine (Program 11:5-3) will do the job. 

Once we've handled the event itself, we go back and check the 
click flag to see if it was a pushbutton click (or its keyboard 
equivalent). If so, we dispatch on the item number to decide how to 
respond. For the Pause button, we call the same DoPause routine 
(Program 4-7) that we used earlier in the imaging phase. For the 



182 Looking Good on Paper 

Cancel button, we post the prmtlng error IPrAbort (4.2.4}, just as 
before. 

Finally, notice that the entire body of our Do SpoolEvent routine 
is enclosed within a great big repeat loop. Ordinarily, the global flag 
PrintSuspended will be FALSE, causing the loop (and the routine 
itseltl to terminate after just one pass; but if the user clicks the 
dialog's Pause button (or types the equivalent keystroke, Command
comma), ourDoPause routine will set PrintSuspended to TRUE. The 
repeat loop will then retaJn control, effectively suspending printing 
operations, for as long as this flag remains TRUE. When the user 
clicks the button (now labeled Resume) again, DoPause will set the 
flag back to FALSE, the loop will terminate, DoSpoolEvent will 
return, and printing will proceed normally. (Notice that the loop is 
also terminated by any printing error, including the IPrAbort error 
that we post in response to the Cancel button; so Cancel will 
override Pause and cause an immediate exit, killing the printing 
operation in progress.) 

The Printing Status Record 
As we've already mentioned, PrPicFile accepts a printing status 
record [4.1.7] as a parameter. The fields of this record hold informa
tion on the progress of the spool printing operation, such as the total 
number of copies and pages to be printed. the current copy and page 
number. and so forth. The Toolbox keeps this information continu
ally updated as it prints the document; your printing background 
procedure can then use it to track what's going on and keep the user 
informed with status messages on the screen. The status record also 
includes a handle to the print record for the current printingjob and 
a pointer to the printing port, in case the background procedure has 
no other way of getting its hands on these vital data structures. 

Program 4-13 (ShowSpoolStatus) shows how MiniEdi t uses 
the printing status record. Our background procedure (Program 
4-11) calls this routine to update the contents of the status dialog. 
ShowSpoolStatus begins with a couple of preliminary tests to avoid 
annoying visual glitches on the screen. The first time the Toolbox 
calls the background procedure, the fields of the status record are not 
yet initialized. To avoid displaying spurious copy and page numbers 
in the dialog box, we first check to make sure both numbers are 
within the proper range, and simply exit from the routine immedi
ately if they aren't. Secondly. in actual operation, the background 
procedure gets called far more often than the copy and page numbers 



183 Printing the Spool File 
~~~~~~~~~~~~~~ 

change: redisplaying the same numbers over and over again in the
dialog box causes a flickering effect that's annoying and distracting
to the user. So we save the copy and page numbers from one call to
the next in a pair of global variables, ThisCopy and ThisPage, and
exit without doing anything if these values haven't changed since last
time.

Program 4-13 Display status during spool printing

{ Global variables

var

ThePrintRec

PrintStatus

TheDialog

DocName

ThisCopy

This Page

THPrint:

TPrStatus:

DialogPtr:

Str255:

INTEGER:

INTEGER:

{Handle to active window's print record [4.1.2)}

{Status record for spool printing [4.1. 7] }

{Pointer to printing status dialog [11:7 .1.1] }

{Name of document being printed [1:8.1.2)}

{Number of copy being printed}

{Page number of page being printed}

procedure ShowSpoolStatus:

{ Display status during spool printing.

var

cur Page

last Page

copy String

page String

lastString

INTEGER:

INTEGER:

Str255;

Str255:

Str255:

{ Cunent page number}

{Last page to be printed}

{ Cunent copy number in string form (1:2.1.1]}

{Cunent page number in string form (1:2.1.1]}

{Last page number in string fonn (1:2.1.l]}

begin {ShowSpoolStatus}

with PrintStatus, ThePrintRecAA.prJob do

begin

if not (iCurCopy in [l .. iTotCopies]) or

not (iCurPage in [l .. iTotPages]) then

EXIT (ShowSpoolStatus):

if (iCurCopy = ThisCopy) and

(iCurPage = ThisPage) then

EXIT (ShowSpoolStatus):

{Copy or page count}

{out of range? [4.1.7]}

{Suppress spurious numbers}

{Copy and page counts unchanged}

{since last time? [4.1.7]}

{A void screen fliclcer}

184 Looking Good on Paper
~~~~~~~~~~~~-

Program 4-13 Display status during spool printing (conttnuedJ 

curPage ·= (iFstPage - 1) + iCurPage: (Convert to docwnent-relative} 

lastPage ·= (iFstPage - 1) + iTotPages: {page numbers [4.1.S, 4.1.7)} 

NumToString (iCurCopy, copyString): (Convert numbers} 
NumToString (curPage, pageString): {to string fonn} 

NumToString (lastPage, lastString): ([1:2.3.7, 4.1.7]} 

ParamText (copyString, DocName, pageString, lastString): 
(Substitute into dialog text [I1:7.4.6]} 

ShowWindow (TheDialog) : (Display dialog window [Il:3.3.1)} 
DrawDialog (TheDialog): (Update text on screen [Il:7.4.l]} 

ThisCopy ·c iCurCopy: 

This Page iCurPage 

end (with PrintStatus, ThePrintRecM.prJob} 

end: {ShowSpoolStatus} 

(Save "raw" copy and page counts} 

(for comparison next time} 

Assuming the copy and page numbers are valid and need to be 
updated. we must next convert the current and final page numbers 
to document-relative form. The page numbers reported in the print
ing status record include only those pages that are included in the 
document's spool file. If the spool file doesn't begin with the first page 
of the document. these numbers won't match the numbering of pages 
within the document as a whole. So we have to adjust them by the 
number of the first page actually spooled. which we obtain from the 
iFstPage field in the print record's job subrecord [4.1.5). 

Once we've adjusted the page numbers. we can convert them to 
stringformwith theutilityprocedureNumToString [1:2.3.7]. Then we 
merge the resulting strings (as well as the name of the document) into 
the text of the status dialog with ParamText [11:7.4.6] and redisplay 
the dialog's contents on the screen. Finally. before returning. we have 
to remember to save the copy and page numbers so they'll be 
available for comparison the next time this routine is called. 

Printing from the Finder 

Instead of using a program's own Print ... command. the user can 
also print from the Finder level. by selecting one or more of the 
program's document files and choosing the Pr int command from the 



185 Printing from the Finder 
~~~~~~~~~~~~ 

Finder's File menu. The creator signature [1:7.3.1] associated with
each file tells the Finder what program it belongs to. The Finder
automatically starts up the program, identifying the selected file(s) by
means of the Finder startup handle that we learned about in Volume
One [1:7.3.4). An integer startup message in the first field of the
startup information notifies the program that the files are to be
printed (AppPrint) ratherthansimplyopenedforwork(AppOpen). To
support Finder printing, each application program must check for
this message at startup time and respond to it by printing the
requested files.

A program can retrieve and manipulate the startup information
provided by the Finder by using the Toolbox routines
CountAppFiles, GetAppFiles, and ClrAppFiles [1:7.3.4]. In the
case of printing, it's often possible to skip or shorten some of the
program's standard initialization sequence: for instance, there's
generally no need to open a window for displaying each file's contents
on the screen. On the other hand, it is necessmy to present the usual
style and job dialogs before printing each document, allowing the
user to specify the characteristics and options to be used for this
printingjob. After printing all the requested files, the program should
simply close up shop and exit back to the Finder.

MiniEdi t's routine for processing the Finder startup informa
tion is shown in Program 4-14. This is an expanded version of the
routine DoStartup, which we originally examined in Volume Two
(Program 11:8-7). At that time, if the user attempted to print a file from
the Finder, all we could do was post an alert on the screen reading

Sorry, MiniEdit can't print a file.

Now that we've added a printing capability to our program, we're
prepared to deal with Finder printing in a more meaningful way.

Program 4-14 Process Finder startup information

{ Global constants and variables }

conat

FndrPrintID = 1003:

WrongTypeID = 1004:

var
FinderPrint BOOLEAN:

ErrorFlag BOOLEAN:

(Resource ID for Finder Print alert [Il:7.6.1]}

{Resource ID for Wrong Type alert [Il:7 .6.1]}

(Printing from Finder?}

(JJO error flag)

186 Looking Good on Paper

Program 4-14 Process Finder startup information (caatlnuedJ

procedure DoStartup:

{ Process Finder startup infonnation [Prog. Il:S-7].

var

theMessage

nDocs

this Doc

doc Info

ignore

INTEGER:

INTEGER:

INTEGER:

AppFile:

INTEGER:

(Open orprinl? [1:7.3.4]}

(Nmnber of documents selected in Finder}

{Index number of document}

{Startup infonnation for one document (1:7.3.4]}

{Item code returned by alert}

begin {DoStartup}

CountAppFiles (theMessage, nDocs):

FinderPrint := (theMessage = AppPrint):

if nDocs = 0 then

DoNew

else

for thisDoc ·= 1 to nDocs do

begin

GetAppFiles (thisDoc. docinfo):

with docinfo do

if fType = 'TEXT' then

begin

ErrorFlag := FALSE:

OpenFile (fName, vRefNum):

{Get no. of docs and startup message [1:7.3.4)}

(Printing requested? [1:7.3.4)}

{If no documents selected, }

{just open an empty window}

{Otherwise loop through docwnents}

{Get startup infonnation [1:7.3.4)}

{Is it a text file? [1:7.3.4]}

{Clear J/O error flag}

{Read file into a window}

if FinderPrint and not ErrorFlag then

begin

{Printing requested?}

ParamText (fName,

InitCursor:
' ') : {Merge in file name [Il:7.4.6]}

{Set arrow cursor [Il:2.S.2]}

ignore : = NoteAlert (Fnd rPrintID, NIL) : {Post alert [Il:7.4.2]}

DoSetup: {Get page setup infonnation}

Do Print: {Print the file}

CloseAppWindow {Dispose of data structures}

end: {if FinderPrint and not ErrorFlag}

187 Printing from the Finder
~~~~~~~~~~~~-

Program 4-14 Process Finder startup Information lconttnuedJ 

if not ErrorFlag then 
ClrAppFiles (thisDoc) 

end {then} 

else 
begin 

ParamText (fName. • •. •'. • •); 
InitCursor: 
ignore StopAlert (WrongTypeID, NIL) 

end {else) 

{No errors detected?} 

{Mark file as processed [1:7.3.4)) 

{Merge in file name [11:7.4.6)} 

{Set arrow cursor [11:2.5.2)) 

{Post alert [11:7.4.2)) 

end: {for thisDoc} 

if FinderPrint then 
begin 

{Printing from Finder?} 

Finalize: (Close up shop} 
ExitToShell {Return to Finder [1:7.1.3)) 

end {if FinderPrint) 

end: {DoStartup) 

As before, we begin by calling CountAppFiles [1:7.3.4] to find 
out how many files the user selected in the Finder and what operation 
(Open or Print) was applied to them. We set a global flag named 
FinderPrint to show which operation was chosen; we11 be using 
this flag (both here and in other routines as well) to control the course 
of the program's startup sequence. If the number of files reported by 
CountAppFiles is zero, then we simply call our DoNew routine 
(Program 11:5-2) to start us offwith an empty window on the screen. 
Otherwise we loop through the designated files with GetAppFiles 
[1:7.3.4]. checking each one's file type [1:7.3.1] and posting an error 
alert if it isn't a plain ASCII text file. 

Assuming the file is of the right type, we next call the MiniEdi t 
routine OpenFile (Program 11:8-6) to read it into memory. OpenFile 
in tum calls D oN ew (Program 11:5-2) to create a window for the file and 
Do Revert (Program II:~)to read its contents in from the disk. If you 
compare the versions of these routines in Appendix H with the 
originals from Volume Two, you'll find that we've added a few extra 
lines to skip certain steps when the FinderPrint flag is TRUE. For 
example. if we're only printing a file, DoNewdoesn't need to display the 
file's window on the screen or create a scroll bar for it, and Do Revert 



188 Looking Good on Paper 

needn't calculate the line breaks in the file's text or initialize the 
location of its insertion point. (Even though the window is invisible, 
however, we can't dispense with it entirely: some of our printing 
routines rely on information taken from the window record, such as 
its title and text characteristics.) 

IfFinderPrint is TRUE, we can proceed tocallourDoSetup and 
Do Print routines (Programs 4-1and4-5) to conduct the style and 
job dialogs and print the file; then we call CloseAppWindow (Program 
11:7-6) to dispose of the window record and its associated data 
structures. (If FinderPrint is FALSE, we simply skip all these steps 
and leave the file displayed in a window on the screen for the user to 
edit.) One small problem that arises is that if the user has selected 
more than one file for printing from the Finder. the printing dialogs 
will be displayed separately for each, with no indication as to which 
occurrence of the dialogs applies to which file. So before calling 
DoSetup and DoPrint, we first display an alert box (Figure 4-12) 
with the name of the file about to be printed. 

Ready to print file 
"Flap doodle" 

OK 

Figure 4-12 MiniEdi t Finder Print alert 

After we've finished processing all of the files selected from the 
Finder, we check the FinderPrint flag one last time. If it's TRUE, we 
call our Finalize routine to take care of any last-minute housekeep
ing chores. then exit back to the Finder with Exi tToShell [1:7.1.3]. 
(The Finalize routine is a new addition in this version ofMiniEdi t; 
see Appendix H for details. In the original MiniEdi tin Volume Two. 
the one-time finalization consisted of a single call to the routine 
Wri teDeskScrap, and was performed directly by the main program 
proper.) IfFinderPrint is FALSE, we simply return from Do Startup 
to the point of call and continue with the normal operation of the 
program. 



189 Nuts and Bolts 

Nuts and Bolts 

Now that we've learned how to use the Toolbox for straightforward 
printing operations, let's look at some of its more exotic features and 
capabilities. Chances are you'll never use most of these techniques, 
but who knows? Some day, one of them may be just what you need 
to handle an unusual programming problem. 

Format of Routine Selectors 
As we mentioned earlier, recent versions of the Toolbox include a 
machine-level trap named _PrGlue, which resides either in ROM or 
in the system resource file. This single trap implements all of the 
standard printing routines that we've discussed in this chapter. 
Before executing the trap, your program pushes a 4-byte routine 
selector onto the stack to identify the specific printing operation to be 
performed. (Needless to say, the machine instructions to handle this 
chore are generated automatically by the Toolbox interface files, so 
you never have to think about it at the source-language level.) 

The exact values of the selectors for the various printing 
routines are listed in the .. Assembly Language Information" boxes in 
the reference sections following this chapter. At first glance, they look 
rather puzzling. Why, for instance, is the routine PrValidate [4.2.2) 
represented by the selector $ s 2 o 40 4 9 8? What in the world could that 
mean? As you might suspect, this bizarre-looking number actually 
contains several different items of information packed together 
sardine-style. 

The internal format of these selectors is not documented in 
Inside Macintosh. Macintosh Technical Notes, or any other Apple 
publication known to man or sardine. Nevertheless, your intrepid 
author has managed, by means too devious to reveal and at severe 
peril to life and limb, to learn the details of the encoding. They are 
publicly disclosed for the first time in Figure 4--13. (Now you know 
why this book is called Macintosh Revealed.) Beware, however: this 
information is not officially supported by Apple, and is subject to 
abrupt, unannounced. and cataclysmic change. It is presented here 
solely for the edification and amusement of the reading public, and 
carries no warranties, express or implied, as to its accuracy, mer
chantability. or fitness for any purpose but wrapping sardines. 
Persons attempting to write working code based upon it will receive 
no sympathy when their programs collapse in a heap of smoldering 
debris. Have a nice day. 



190 Looking Good on Paper 

3130 2726 2423 1615 8 7 6 0 

~ Jump table offset 

~~'1_.I _____ 1 . ._1 ----· c=I I 
Unlock on 
completion? 

,___ _______ Length of parameters 
in bytes 

......__ ___________ ID number of 'PDEF' 

resource 
Length of function .....__ _______________ result in bytes 

Serial number of ..__ _________________ printing routine 

.....__------------------- ~:::~:~t~s~~JO) 

Figure 4-13 Printing routine selector format 

The first 5 bits of the selector are simply a serial code number 
identifying the desired printing routine: O for PrOpenDoc, 1 for 
PrCloseDoc, and so on. Numbers from Oto 15 (thatis, those with o 
in the high-order bit) designate routines contained in a ' PDEF' 
resource loaded from the printer resource file. Those from 16 to 31 
(high-order bit equal to 1) are performed directly by the Toolbox itself, 
without recourse to any ' PDEF ' . 

The next 3 bits give the length in bytes of the function result, if 
any, returned on the stack. If this value is o, the routine is a simple 
procedure that returns no result. Similarly, the third byte of the 
selector gives the number of bytes of parameters that the routine 
expects to find on the stack on entry. 

For routines that reside in the printer resource file, the second 
byte of the selector holds the resource ID of the relevant ' PDEF ' 
resource. You'll find these' PDEF' numbersforthestandardprinting 
routines summarized in a table in section [4.6.2]. Notice that the 
document printing routines PrOpenDoc, PrCloseDoc, PrOpenPage, 
and PrClosePage are listed under four different 'PDEF' resources, 
numbers o to 3. This is because the printer resource file can contain 
different versions of these routines corresponding to different print-



191 Nuts and Bolts 

ing methods that the user can select. The selectors for these routines 
all specify a ' PDEF' number of o; the actual resource number (from 
Oto 3) is taken from the bJDocLoop field of the print record (4.1.5). 

To locate the various routines within the body of the resource, 
each 'PDEF' begins with a jump table consisting of executable jump 
(JMP) instructions to the entry points of the routines. The last 7 bits 
of the routine selector give the offset of the routine's jump table entry 
in bytes relative to the beginning of the resource. The Toolbox uses 
this offset to find and execute the jump instruction in the table, which 
in tum directs control to the beginning of the routine itself. 

The remaining (high-order) bit in the last byte of the routine 
selector is a flag, telling the Toolbox whether to unlock the ' PDEF ' 
resource in the heap after completing the printing operation. This bit 
is set to 1 for one-time, stand-alone operations like PrintDefaul t 
(4.2.2], PrStlDialog (4.2.3], or PrValidate (4.2.2], and to 0 for 
those that are just part of a continuing sequence of calls, like the 
document printing operations PrOpenDoc (4.3. l], PrOpenPage, and 
PrClosePage (4.3.2). This tells the Toolbox to leave the 'PDEF' 
containing the routine's code locked in place in the heap, where it will 
still be available for the next operation in the sequence. Only when 
you finally terminate the document printing sequence, by calling 
PrClosePage (4.3.2], is the unlock bit set to 1; this allows the 'PDEF' 
to be unlocked and eventually purged from the heap to make room 
for something else. 

Customizing the Printing Dialogs 
If the standard style and job dialogs provided by the Toolbox don't 
meet your needs, you can customize them to suit yourself-either by 
appending additional dialog items of your own or by modifying the 
appearance or arrangement of the standard items. The technique for 
doing all this is a bit tricky. It depends on a little-known, low-level 
Toolbox routine, undocumented in Inside Macintosh. called 
PrDlgMain (4.5.1). Ordinarily, you call the standard routines 
PrStlDialog and PrJobDialog (4.2.3] to present the printing 
dialogs, and they in tum call PrDlgMain for you. To customize the 
dialogs, you bypass the standard routines and call PrDlgMain 
directly. 



192 Looking Good on Paper 
~~~~~~~~~~~-

Although you can alter the visual layout ofthe standard d1alogs
on the screen, it•s important not to delete any of the standard
items or change their logical positions in the item list (such as
by inserting items of your own in the middle of the list). The only
safewaytomodifythe item list ts by appending items at the end.
Also, bear ill mind that even though you can't delete or reorder
the standard items. Apple. itself may do so at any tlllle: never
write code that depends· on any item having a -specific item

·number.
Apple·also.reseives the ·rtght in the future to expand the

standard printing dialogs up to half the physical height of th~
screen., leaving your own items 11mited to the other half. If this
isn't a big enough playpen for you, you should probably move
your toys to a separate dialog box, activated by its own distinct
menu-command (perhaps named Print Options .•• or some
thing similar).

PrDlgMain accepts two parameters: a handle to a print record
and a pointer to a dialog initialization routine. The job of the initiali
zation routine is to create and initialize a printing dialog record of type
TPrDlg [4.5.1). This is an extended form of dialog record [11:7.1.1]
with several additional fields tacked onto the end. The most impor
tant of these are a pair of procedure pointers, to a jilter function
[II:7 .4.5) for processing events in the dialog and a response procedure
for responding to mouse clicks in its items. We've already discussed
filter functions earlier in this chapter and looked at an example of
their use. The response procedure takes two parameters, a dialog
pointer and an item number, and defines the action to be taken when
the mouse is clicked in the specified item. Another field holds a
handle to the print record the dialog is to fill in; there are also a
number of private fields for the Toolbox's own use.

PrDlgMain begins by calling the initialization routine desig
nated by its ini tProc parameter. The initialization routine returns
a pointer to a printing dialog record. which includes both the dialog
definition itself and the filter function and response procedure that
determine its behavior. PrDlgMain then displays the dialog on the
screen and calls ModalDialog [11:7.4.3] to handle its interactions
with the user. passing the filter function pointer from the printing

193 Nuts and Bolts

dialog recor~. Each time ModalDialog returns an item number,
PrDlgMain relays it to the record's response procedure for action.
When the user clicks the OK button, PrDl gMa in dismisses the dialog
from the screen, updates and validates the print record, and returns
TRUE; ff the Cancel button is clicked instead, it leaves the print
record unchanged and returns FALSE.

To use the standard style and job dialogs, you simply call the
Toolbox routines PrStlDialog and PrJobDialog [4.2.3), as we
learned earlier. These in tum call the general-purpose routine
PrDlgMain, passing it a pointer to one of the built-in initialization
routines PrStlini t and PrJobini t [4.5.1]. To customize one of the
dialogs, you call PrDlgMain directly, passing a pointer to an initiali
zation routine of your own instead of the standard one.

Program 4-15 illustrates in schematic form the technique for
customizing the style dialog. (The equivalent method would of course
apply to the job dialog as well.) Our custom initialization routine,
Ini tStyleDialog, begins by calling the corresponding built-in
routine, PrStlini t; this returns a pointer to a TPrDlg record
describing the standard style dialog. We then use this record to find
the dialog's item list and append our own extra items at the end.

Program 4-15 Customizing a printing dialog

{ Global variables }

var
StdStlFilter ProcPtr:
StdStlResponse ProcPtr:

Forward declarations }

function StyleFilter (thisDialog : DialogPtr:
var thisEvent : EventRecord:

{Filter fmtction for standard style dialog}

{Response procedure for standard style dialog}

var itemNumber : INTEGER) : BOOLEAN: forward:
{ Filter function for customiz.ed style dialog. }

function StyleResponse (thisDialog: DialogPtr: itemNumber INTEGER): forward:
{ Response procedure for customized style dialog. }

194 Looking Good on Paper

Program 4-15 Customizing a printing dialog (conttnuedJ

function InitStyleDialog (printRec THPrint) TPPrDlg:

{ Initialize customized style dialog.

var
stdStlDlg : TPPrDlg:

begin {lnitStyleDialog}

stdStlDlg := PrStlinit (printRec):
with stdStlDlgA do

begin

{Append extra items to end of dlg's item list}

StdStlFilter
pFltrProc

·= pFltrProc:
@StyleFil ter:

StdStlResponse ·= pitemProc:
pitemProc ·= @StyleResponse

end : {with stdStlDlg"}

InitStyleDialog stdStlDlg

end: {InitStyleDialog}

function StyleFilter {(thisDialog DialogPtr:

{Reamt defining standard style dialog [4.S.1]}

{Get standard style dialog [4.S.1]}

{Save standard ftlte function [4.S.1]}

(Install custom filter function [4.S.1]}

{Save standard response procedure [4.S.1]}

{Install custom response procedure [4.S.1])

{Return pointer to record (4.5.1)}

{ var thisEvent
{ var itemNumber

EventRecord:
INTEGER) : BOOLEAN):

Filter function for customized style dialog.

var

begin {StyleFihcr}

{Do customized event filtering, calling StdStlFilter if necessary)

end: {StyleFilter}

195 Nuts and Bolts

Program 4-15 Customizing~ printing dialog (conttnuedl

function StyleResponse {(thisDialog : DialogPtr: itemNumber INTEGER)}:

{ Response procedure for customized style dialog. }

var

begin {StyleResponse}

if {itemNumber is one of our items) then

{Take appropriate action to respond to this item}

else

{Call StdStlResponse for standard processing of thisDialog and itemNumber}

end: {StyleResponse}

The printing dialog record also includes pointers to the Tool
box's standard filter function and response procedure for the style
dialog. After saving these pointers in a pair of global variables,
StdStlFil ter and StdStlResponse, we replace them in the record
with pointers to our own substitute routines, StyleFil ter and
StyleResponse. These routines can use the globals to locate and call
the original routines when needed; in particular, the custom re
sponse procedure must call the original one to respond to any mouse
clicks it receives for the standard items of the original dialog.

For a .more ~.deyelopeg:Clqmlple of customizing the printing
dialogs. see Mact.ntosliTeChntcal Note #95.

Customizing Paper Sizes
It's also possible to customize the list of paper sizes offered to the user
in the style dialog (see Figure 4-5). The contents of this list are defmed
by a paper size table [4.5.2], which gives the names to be displayed
in the dialogbox(US Letter, International Fanfold, and so forth)
along with the corresponding paper dimensions in 120ths of an inch.
' PREC ' resource number 3 in the printer resource file contains a
table of standard paper sizes for this printer. If you wish, you can

196 Looking Good on Paper
~~~~~~~~~~~-

override this table with one of your own. stored in your application 
resource file as ' PREC ' number 4. If no such resource is present. the 
Toolbox will use the list in the printer resource file instead. 

Notice that the paper size table must always Include exactly six 
pairs of paper dimensions and six title strings, even if there 
aren't that many actual paper sizes to define. The first word of 
the table tells how many of the entries are stgntflcant. Also 
notice that the title strings are packed together as closely as 
possible. without any padding bytes-even If this means that 
some of them don't begin on even word boundaries. Use one
character dummy strings for any unused titles at the end of the 
list. 

Advanced Operations 
Recent versions of the Toolbox printing code (beginning with version 
2.5 of the ImageWri ter resource file and LaserWri ter 4.0) include 
a generic routine named PrGeneral. which provides a variety of 
advanced printing operations for specialized needs. We've already 
mentioned this feature earlier in connection with draft printing of bit 
maps on the Image Writer. Other capabilities include determining the 
range of dot resolutions available on a given printer and finding the 
page orientation (portrait or landscape) currently in effect; more may 
be added in the future. The desired operation and its parameters are 
specified in a complex data block. whose exact form and contents 
vary from one operation to another. For information on the available 
operations and on the PrGeneral mechanism itself, see Inside 
Macintosh. Volume V, or Macintosh Technical Note # 128. 



REFERENCE 

4.1 Printing-Related Data Structures 

4.1.1 Printing Port 

type 

TPPrPort c ATPrPort; 

TPrPort = record 
gPort GrafPort: 

gProcs QDProcs: 

lGParaml LONGINT: 
1GParam2 LONGINT; 

1GParam3 LONGINT: 

1GParam4 LONGINT; 
fOurPtr BOOLEAN: 

fOUrBits BOOLEAN 
end: 

{Graphics,port for printing} 

(Customized bottleneck record} 

{Private} 
[Private} 
{Priva~} 

{Private} 

{Private} 
{Private} 

~~liiil~~1------N_o_t_e_s ________________________________ ___ 
1. A printing port is a special QuickDraw graphics port (1:4.2.2), extended 

and customized for hardcopy printing instead of drawing on the screen. 

197 



198 Printing 

2. Printing ports are created and destroyed by the Toolbox routines 
PrOpenDoc and PrCloseDoc [4.3.1). 

3. gPort is a complete graphics port record [1:4.2.2) (not just a pointer) 
embedded within the printing port record. 

4. gProcs is a bottleneck record [2.1.1) containing customized drawing 
routines for hardcopy printing. The port's bottleneck pointer 
(gPort. grafProcs) is set to point to this record. 

5. The remaining fields of the printing port are reserved for the private use 
of the Toolbox. and are of no concern to the application program. 

ID I Assembny Language Information 
~~----------

type 

THPrint 
TPPrint 

TPrint 

Field offsets in a printing port: 

(Pascal) (Assembly) 
Field name Offset name 

gPort 

gProcs 

gPort 

gProcs 

Assembly-language.constant: 

Name Value Meaning 

Offset ln bytes 

0 

108 

IPrPortSize 178 Size of printing port record in bytes 

4.1.2 Print Record 

l\TPPrint: 
l\TPrint: 

= record 
iPrVersion 
prinf o 
rPaper 
prStl 
prinfoPT 
prXInf o 
prJob 

INTEGER: 
TPrinfo: 
Rect; 
TPrStl; 
TPrin.fo; 
TPrXInfo: 
TPrJob: 

{Version stamp} 

{Printer information subreconl [4.1.3]} 

{Paper rectangle} 

{Style subreconl [4.1.4]} 

{Print-time information subrecord [4.1.3]} 

{Auxiliary information subrecord (4.1.6]} 

{Job subrecord (4.1.5]} 



199 (4.1.2) Print Record 

printX array (1 •• 19] of INTEGER 

end; 

con st 
IPrRelease_ = 3 : 

{Padding to fill to 120 bytes} 

(Cunent venion nmnber of printing routines} 

Notes 

1. A print record summarizes all the information needed to cany out a 
single printing job. 

2. The contents of the print record are set automatically by the Toolbox 
routines PrintDefault (4.2.2), PrStlDialog (4.2.3), and 
PrJobDialog (4.2.3). In general, your program should just leave them 
alone; exceptions are noted where applicable in later sections. 

3. It ls recommended practice to save a copy of the print record in a 
document's resource fork when wrttlng the document out to a disk file. 
The document will thus ·remember" its own printing settings from one 
session to the next. 

4. iPrVersion Identifies the version of the Toolbox printing routines that 
inltlallzed this print record. The constant IPrRelease gives the current 
version number (version 3 at the time this book went to print). 

5. rPaper ls the paper rectangle, which defines the overall dimensions of 
the physical sheet of paper. Don't confuse this with the page rectangle 
(4.1.3), which represents the printable area only. 

6. The paper rectangle's coordinate system ls defined by the page rectangle. 
That ls, the top-left comer of the printable page (the page rectangle) has 
coordinates (0, O); that of the physical sheet (the paper rectangle) 
typically has negative coordinates relative to that point. 

7. The coordinates of the paper rectangle are expressed in printer dots. The 
number of dots per inch ls given by the i VRes and iHRes fields of the 
printer Information subrecord (4.1.3). 

8. The coordinates of the paper rectangle are only approximate, since the 
physical alignment of paper in some printers is Inexact and ls not 
subject to program testing or control. 

9. The remaining fields of the print record are specialized subrecords, and 
are discussed in sections (4.1.3) to (4.1.6). Notice that the subrecords 
are not referred to by pointers or handles, but are embedded directly 
within the print record itself. 



200 Printing 

10. p rintX is a dummy array, included to fill out the print record to a 
standard size of 120 bytes. However, the Toolbox reseIVes the tight to 
use this space for its own private purposes, now or in the future. Never 
store anything into it yourself. 

~~ 1o-l-----As-se_m_h_I:v_L_an_guag __ e_1n_ri_o_rm_a_t1_o_n ______ _ 

Field offsets in a print record: 

(Pascal) (Assembly) 
Field name Offset name Offset in bytes 

iPrVersion iPrVersion 
pr Info prinf o 
rPaper rPaper 
prStl prStl 
prinfoPT prlnf oPT 
prXInfo prXInfo 
prJob prJob 

Assembly4anguage constants: 

Name Value Meaning 

IPrintSize 120 Size of print record in bytes 

0 

2 

16 

24 

32 

46 
62 

IPrRelease 3 Current version number of printing routines 

4.1.3 Printer Information Subrecord 

type 

TPPrinfo = ATPrinfo: 

TPrinf o = record 
iDev INTEGER: 
iVRes INTEGER: 
iHRes INTEGER: 
rPage Rect 

end: 

{Printer's device code} 

{Vertical resolution in dots per inch} 

(Horizontal resolution in dots per inch} 
_{Page rectangle} 



201 [4.1.3) Printer Information Subrecord 

Notes 

1. The printer Information subrecord ls the part of the print record (4.1.2) 
that summarizes the characteristics of a particular printer. 

2. The print record actually contains two subrecords of this type, pr Info 
and pr Info PT. The second Is used privately by the Toolbox and ts of no 
interest to the application program. (PT stands for "print time.'") 

3. iDe v ts the printer's device code (1:8.3. l ), used by the Toolbox for 
selecting appropriate text fonts. 

4. The first byte of iDev ts the reference number of the printer driver, 
normally - 3 ($FD): the contents of the second byte are private to the 
Toolbox. 

5. Some printers use iDev in unusual and devious ways, such as setting 
it to o to fool QuickDraw into thinking they are really the Macintosh 
screen. Your program should never assume it knows what this field 
actually means. 

6. i VRes and iHRes are the vertical and horizontal resolution of the 
printer, in dots per inch. 

7. r Page ts the page rectangle, which defines the printable area of the page. 
Don't confuse this with the paper rectangle (4.1.2), which represents the 
overall dimensions of the physical sheet of paper. 

8. The top-left comer of the page rectangle always has coordinates (0, O); Its 
bottom-right corner defines the extent (height and width) of the printable 
page. 

9. The coordinates of the page rectangle are expressed in printer dots, at 
the resolution given by i VRes and iHRes. 

Field offsets in a printer fnfonnatton subrecotd: 
(Pascal) [Assembly) 
Field name Offset name ~:t, 'in bytes· 

iDev iDev 0 

iVRes iVRes 2 

iHRes iHRes 4 
rPage rPage 6 



202 Printing 

Assembly-language constant: 

Name Value Meaning 

IPrinfoSize 14 SiZe of a printer ·information 
subrecord, in bytes 

4.1.4 Style Subrecord 

type 
TPPrStl = ATPrStl: 

TPrStl = record 
wDev INTEGER: 
iPageV INTEGER: 
iPageH INTEGER: 
bPort SignedByte: 

feed TFeed 
end; 

TFeed = (FeedCut, 

FeedFanfold. 
FeedMechCut, 
FeedOther) : 

const 

IPrPgFract = 120: 

BDevCitoh = l: 
BDevLaser = 3: 

IDevCitoh = $0100; 
IDevLaser :::i $0300: 

Device type codes: 

Value 

0 
1 
3 

4 
5 

(Type of printer or ether device) 

(Paper height in device-independent units) 

{Paper width in. device-independent units} 

{Port to which printer is connected} 

{Type ofpaperfeed} 

{H~d-fed cut sheets} 

(Continuous fan-fold paper} 
(Mechanically fed cut sheets} 
{Other types of paper feed} 

(Nmnber of page si7.c units per inch 1 

{Original ImageWriter) 

{PoslScript".based LaserWriter} 

(Original ImageWriter} 
(PoslScript-based LaserWriter) 

Meaning 

Macintosh screen 
Original ImageWriter 
PostScript-based LaserWriter 
LaserWriter Il-SC 
Image Writer LQ 



203 [4.1.4) Style Subrecord -------------

Notes 

7 654 3 21 0 

I I I I I I I 
{ 

1 = high resolution 
o = low resolution 

{ 
1 = portrait orientation 
o = landscape orientation 

.._ ___ { 1 = square dots 
o =rectangular dots 

------ { 1 = 50% reduction 
o = normal size 

ImageWriter style flags 

1. The style subrecord ls the part of the print record (4.1.2) that specifies 
the way the printer ls to be used for a particular job (as distinct from the 
printer's inherent characteristics). 

2. This subrecord was originally Intended to hold the Information obtained 
via the style dialog (4.2.3), while the job subrecord (4.1.5) would 
correspond to the job dialog (4.2.3). In practice the correspondence has 
become somewhat blurred. and the style subrecord actually includes 
information from both dialogs. 

3. All fields except the first byte of wDev are considered private to the 
Toolbox. and their contents and usage are subject to change without 
notice. The Information given here ls for your background 
understanding only: your program should never assume it knows what 
these fields actually mean. 

4. The first byte of wDev Identifies the type of printer or other device to 
which output is directed (see table). The second byte contains modifying 
information on the way the printer is. currently being used: Its exact 
contents and format vary from one printer to another and should never 
be altered except by the Toolbox Itself. 

5. For the original ImageWrtter (including the ImageWrtter II). the 
modifying information has the format shown in the figure. Apple does 



204 Printing 

not guarantee the continued accuracy of this information, and it ls liable 
to change ln future versions of the printing software; never write code 
that relies on It. For all other printers (including later-model 
Image Writers such as the LQ), the contents of this byte are not revealed 
to mere mortals. 

6. The constants BDevCitoh and BDevLaser represent the "raw" type 
codes for the original ImageWriter and PostScrlpt-based LaserWrlter, 
respectively. IDevC I toh and IDevLase rare corresponding word-length 
constants with the type code correctly positioned ln the high-order byte. 
Apple's official interface files do not yet include named constants for the 
more recent ImageWriter LQ and LaserWrlter II-SC. 

7. iPageV and iPageH give the dimensions of the physical sheet of paper, 
according to the paper size chosen by the user In the style dialog (US 
Letter, International Fanfold. and so forth). Notice that this corresponds 
to the paper rectangle [4.1.2), not the page rectangle [4.1.3); the names 
should really be iPaperV and iPaperH. 

8. i Page V and i Page H are expressed in device-Independent units of '/120 of 
an Inch. (The constant IPrPageFract gives the number of units per 
Inch.) This differs from the print record's rPaper field [4.1.2), which is 
measured In dots at printer-dependent resolution. 

9. b Po rt identifies the serial or SCSI port to which the printer is connected: 
1 for the normal printer port (port B), o for the modem port (port A). The 
user designates one port or the other with the Chooser desk accessory 
at the time the printer ls Installed. 

10. feed identifies the method of paper feed being used, as a value of the 
enumerated type TFeed: 

• FeedCut stands for hand-fed, individually cut sheets: when this 
method is used. printing will pause at the end of each page and the 
user will be prompted with an alert to Insert the next sheet. 

• FeedFar:fold stands for continuous-feed "accordion" paper. 
• FeedMechCut stands for mechanically fed cut sheets (for example, 

on an ImageWrlter II with the optional sheet feeder). 
• FeedOther stands for any other method of paper feed. 



205 (4.1.5) Job Subrecord 

ID I Assembly Language Information 
-tin.....--------

Field offsets in a style subrecord: 

(Pascal) (Assembly) 
Field name Offset name Offset in bytes 

wDev 
iPageV 
iPageH 
bPort 
feed 

wDev 
iPageV 
iPageH 
bPort 
feed 

0 

2 

4 
6 

7 

Assembly-language constants: 

Name 

lPrStlSize 
IPrPgFract 

Value 

8 

120 

Meaning 

Size of a style subrecord in bytes 

Number of page size units per inch 

4.1.5 Job Subrecord 

type 

TPPrJob ATPrJob; 

TPrJob = record 
iFstPage 
iLstPage 
iCopies 
bJDocLoop 
fFromUsr 
pidleProc 
pFileName 
iFileVol 
bFileVers 
bJobX 

end; 

INTEGER: 
INTEGER: 
INTEGER: 
SignedByte: 
BOOLEAN: 
ProcPtr: 
StringPtr: 
INTEGER: 
SignedByte: 
SignedByte 

{Fust page to be printed} 

{Last page to be printed} 

{Number of copies to be printed} 

(Printing method (draft or spool)} 

{Private} 

{Pointer to background procedure} 

{Name of spool file} 

{Reference number of spool file's volume} 

{Version number of spool file} 

{Padding} 



con st 

IPrPgFst = 1; 

IPrPgMax = 9999.: 
BDraftLoop = O: 

BSpoolLoop = 1: 
BUi:;erILoop = 2: 
BUser2Loop = 3; 

206 Printing 

Notes 

{Minimmn page nmnber to be printed} 
(Maximum page number to be printed} 
(Draft printing} 
(Spooling) 
(Printer-specific method number 1} 
{Printer.;specific method number 2} 

1. The job subrecord ls the part of the print record (4.1.2) that specifies how 
a document is to be printed on a particular occasion. 

2. This subrecord was originally intended to hold the information obtained 
via the job dialog (4.2.3). while the style subrecord (4.1.4) would 
correspond to the style dialog [4.2.3). In practice the correspondence has 
become somewhat blurred, and the job dialog actually contributes to the 
contents of both subrecords. 

3. iFstPage and iLstPage specify the range of pages to be printed. The 
minimum and maximum values allowed for these fields are given by the 
constants IPrPgFst and IPrPgMax. 

4. The page range ls defined with reference to the printing routine 
PrOpenPage (4.3.2). The first call to PrOpenPage is always considered 
to begin page l, independent of any other numbering scheme the 
application program Itself may use. 

5. To print the range of pages requested by the user, you should either 

• image the entire document, leaving it to the Toolbox to suppress 
those pages that fall outside the requested range. or 

• setiFstPage to 1 and iLstPage to the number of pages in the range, 
then image only the pages actually requested 

6. iCopies is the number of copies to be printed. In draft printing, the 
application program must look at this field and explicitly image the 
document the specified number of times. In spooling, the program need 
only image the document once; when the spool file is later printed, the 
Toolbox will automatically print the requested number of copies. 

7. bJDocLoop specifies the printing method to be used, and should 
normally be one of the constants BDraftLoop or BSpoolLoop. (The 
other two values, BUser !Loop and BUser2Loop, denote alternative, 
device-specific printing methods; they have no meaning on any 
currently supported printer.) 

8. pidleProc is a pointer to a background procedure to be run repeatedly 
while awaiting completion of output operations on the printer. 



207 [4.1.5) Job Subrecord 
~~~~~~~~~~~~~ 

9. The background procedure takes no parameters and returns no result.

10. Background procedures must not attempt to do any printing of their
own, and must be careful not to change the current port or other
properties of the global environment that the prlntlng routines may rely
on.

11. A NIL value for pid leProc designates the standard background
procedure. which simply checks for the keystroke Command-period and
responds to it by canceling the prlntlng operation.

12. If you use the standard background procedure, you should display an
alert box with a suitable message, such as Printing document: type
Command -period to cancel.

13. The prlntlng routines PrOpenDoc (4.3.l], PrintDefaul t (4.2.2),
PrValidate (4.2.2), PrStlDialog [4.2.3), and PrJobDialog (4.2.3) all
reset p Id 1 e P roe to NIL. You must wait until after completing all of these
operations before installing your own background procedure in place of
the standard one.

14. To achieve the effect of concunent printing, use a background procedure
that performs one pass of your program's main event loop. Such a
procedure should disable the menu Items Page Set up and Print, as well
as any other operations related to printing. (Alternatively, you might
wish to change the Print command to something like Cancel
Printing.)

15. The background procedure can use a printing status record (4.1. 7) to
monitor the progress of the printing operation and post a running status
message on the screen.

16. To cancel printing from within a background procedure, issue the call
PrSetError(IPrAbort) [4.2.4).

17. pFileName, iFileVol, and bFileVers give the name, volume (or
directory) reference number, and version number ofthe spool file. These
fields are meaningful only for spooling operations: in draft printing, they
are Ignored.

18. pFileName Is Initialized to NIL, representing the standard spool ftle
name taken from the printer resource file [4.6.3) for the current printer;
The name normally used Is Print File.

19. iFileVol ls inltlallzed to O, denoting the current volume or directory
(11:8.1.2).

20. File version numbers are handled inconsistently by different parts of the
Toolbox. To avoid problems, bFileVers should always be left at Its
inltlal value of o.

21. bJobX ls an extra byte of padding, Included to fill out the job subrecord
to an even number of bytes. However, the Toolbox reseJVes the rlght to
use this field for Its own private purposes, now or in the future. Never
store anything into It yourself.

208 Printing

ID I Assembly J.,anguage Information -1qn.,___ _____ _

Field offsets tn ajob subrecord:

(Pascal) (Assembly)
Field name Offset name Offset in bytes

iFstPage
iLstPage
iCopies
bJDocLoop
fFromUsr
pidleProc
pFileName
iFileVol
bFileVers
bJobX

iFstPage
iLstPage
iCopies
bJDocLoop
fFromApp
pidleProc
pFileName
iFileVol
bFileVers
bJobX

0

2

4
6

7

8

12

16

18

19

, Assembly-language constant:

Name V&lue

IPrJobSize 20

Page range limits:

Name

IPrPgFst
IPrPgMax

Value

1

9999

Printing methods:

Name Value

BDraftLoop 0
BSpoolLoop 1
BUserlLoop 2
BUser2Loop 3

Meaning

Size of a job subrecord in bytes

Meaning

Minimum page number to be printed

Maximum page number to be printed

Meaning

Draft printing

Spooling
Printer-specific method number 1
Printer-specific method number 2

209 (4.1.6) Auxiliary Infonnation Subrecord
~~~~~~~~~~~~~~ 

4.1.6 Auxiliary Information Subrecord 

type 

TPPrXInfo = ATPrXInfo: 

TPrXInf o 

TScan = 

= record 
iRowBytes 
iBandV 
iBandH 
iDevBytes 
iBands 
bPatScale 
bULThick 
bULOf f set 
bULShadow 
scan 

bXInf oX 
end: 

(ScanTB. 
ScanBT. 
ScanLR. 
ScanRL); 

Notes 

INTEGER; 
INTEGER; 
INTEGER: 
INTEGER: 
INTEGER: 
Signed Byte; 
SignedByte; 
SignedByte: 
SignedBy:te; 
TScan: 
Signed Byte 

{Row width of each band in bytes} 

(Height of each band in dots} 

{Width of each band in dots} 

(Siu of band image in bytes} 

{Number of bands per page} 

{Used in scaling patterns} 

{Thickness of underline, in dots} 

{Offset below baseline, in dots} 

{Width of break around descenders, in dots} 

{Scan direction} 

(Padding} 

(Scan from top to bouom} 

{Scan from bottom to top} 

{Scan from left to right} 

(Scan from right to left} 

1. The auxiliaiy information subrecord is a part of the print record (4.1.2) 
containing private information on how to match the page image to the 
characteristics of a particular printer. 

2. All fields except iDevBytes are considered private to the Toolbox, and 
their contents and usage are subject to change without notice. The 
information given below is for your background understanding only; 
your program should never assume it knows what these fields actually 
mean. 

3. iBands ls the number of bands into which the page ls to be broken for 
output to the printer. 

4. iBand V and iBandH are the height and width of each band in dots, at the 
resolution given by the i VRe sand iHRe s fields of the printer information 
subrecord (4.1.3). 



210 Printing 

5. iRowBytes is the row width of the bit map (1:4.2.1) representing each 
band. 

6. iDevBytes is the number of bytes needed to hold the bit image for each 
band. If you supply your own buffer storage for the de fBu f parameter to 
PrPicFile (4.3.3), this ls the size of the buffer you should allocate. 

7. bPatScale ls used by QulckDraw when scaling patterns to the 
resolution of the printer. 

8. bULThick, bULOff set, and bULShadow are the characteristics for 
underlined text at the printer's resolution. b UL Thick gives the thickness 
of the underline, bULOffset Its offset below the baseline, and 
b UL Shad ow the width of the break around descenders, all In printer dots. 

9. scan specifies the scan direction for breaking the page into bands, as a 
value of the enumerated type TScan. 

10. bXInfoX ls an extra byte of padding, Included to fill out the subrecord 
to an even number of bytes. However, the Toolbox reseives the right to 
use this field for Its own private purposes, now or in the future. Never 
store anything into it yourself. 

ID I Assembly Language Informatl()ll ----1n....,__ ___________ _ 
Field offsets in an auxiliary information subrecord: 

(Pas.cal) ~embty) 
Field name Offset name Offset ·in; bytes 

iRowBytes iRowBytes 0 

iBandV iBandV 2 

iBandH iB~ndH 4 

iDevBytes iDevBytes 6 

iBands iBands 8 

bPatScale bPatScale 10 
bULThick bULThick 11 

bULOffset. bULOff set 12 
bULShadow bULShadow 13 
scan scan 14 
bXInf oX bXInf oX 15 

Assembly-language constant: 

Name Value 

IPrXInf oSize 16 

Meaning 

Size of an auxiliary information 

subrecord, in bytes 



211 [4.1. 7) Printing Status Record 
~~~~~~~~~~~~~~ 

type

TPPrStatus

TPrStatus

~~i

Scan directions:

Name

ScanTB
ScanBT
ScanLR
ScanRL

4.1.7

Value

o·
1
2

3

Meaning

Scan top to bottom

Scan bottom to top

Scan left to right

Scan right to left

Printing Status Record

ATPrStatus:

record

end:

iTotPages INTEGER: [Number of pages in file}

iCurPage INTEGER: (Page currently in progress}
iTotCopies INTEGER: (Number of copies requested}
iCurCopy INTEGER; (Copy ciJnently in progress}

iTotBands INTEGER; (Number of bands per page}
iCurBand INTEGER: (Band currently in progress}

f PgDirty BOOLEAN: (Has page started printing?}

fimaging BOOLEAN: (Imaging or printing?}
hPrint THPrint: {Handle to print record}

pPrPort TPPrPort; (Pointer to printing. port}

hPic PicHandle (Handle to page picture}

Notes

1. A printing status record reports on the status of a spool printing
operation.

2. The application program supplies a record of this type to the printing
routine PrPicFile [4.3.3).Abackgroundprocedure [4.1.5) can then use
this record to monitor the progress of the printing operation and post a
running status message on the screen.

3. iTotCopies, iTotPages, and iTotBands give the total number of
copies to be printed (as requested by the user), the number of pages in
the spool file, and the number of bands making up each page. The

212 Printing

corresponding fields iCurCopy, iCurPage, and iCurBand report which
copy, page, and band are currently being printed.

4. f PgDirty tells whether anything has yet been printed on the page
designated by iCurPage.

5. f Imaging ls TRUE whlle a band ls being Imaged. FALSE while the image
ls being sent to the printer.

8. hPrint and pPrPort hold, respectively, a handle to the print record and
a pointer to the printing port for this operation.

7. For printers that spool their pages ln the form of QulckDraw pictures
(1:5.4. l], hPic ls a handle to the picture for the current page.

8. The fields i TotBands, iCurBand, fimaging, and hPic are considered
private to the Toolbox. and their contents and usage are subject to
change without notice. The information given above ls for your
background understanding only; your program should never assume It
knows what these fields actually mean.

ID I Assembly Language Information -llllrllt---------
Field offsets in a printing status record:

(Pascal) (Assembly)
Field name Offset name

iTotPages iTotPages
iCurPage iCurPage
iTotCopies iTotCopies
iCurCopy iCurCopy
iTotBands iTotBands
iCurBand iCurBand
fPgDirty fPgDirty
fimaging f!maging
hPrint hPrint
pPrPort pPrPort
hPic hPic

Assembly-language constant:

Name Value Meaning

Offset In bytes

0

2

4
6

8

10
12

13

14
18

22

IPrStatSize 26 Size of a printing status record in bytes

213 (4.2.1) Initializing the Toolbox for Printing
~~~~~~~~~~~~-

4.2 Preliminary Operations 

procedure PrOpen: 

procedure PrClose: 

4.2.1 Inltlallzlng the Toolbox for Printing 

~~iii~==tt------N-o_t_es ________________________________ ___ 

1. P rOp en prepares for printing by opening the printer resource file and the 
printer driver. 

2. Before calling PrOpen,youmustfirstcall Ini tGraf [1:4.3.1), Ini tFonts 
(1:8.2.4), Ini tWindows (11:3.2.l], Ini tMenus [11:4.2.1), TEini t [11:5.2.1), 
and Ini tDialogs (11:7.2.1). 

3. PrClose closes the printer resource file and releases the memory 
occupied by its resource map. 

4. PrClose does not close the printer driver. The driver normally remains 
open continuously for as long as your program runs, but lf necessary 
you can close it explicitly with PrDrvrClose (4.4.1). 

5. The trap macros for these routines expand to call the universal printing 
trap _PrGlue with the routine selectors given below. 

ID I Assembly Language Information 
--I~----------

Trap macros and routine selectors: 

(Pascal) (Assembly) 
Routine name Trap macro Trap word Routine ~ector 

PrOpen _PrOpen $A8FD $C8000000 
PrClose _PrClose $A8FD $00000000 



214 Printing 

4.2.2 llnltlallzlng Print Records 

procedure PrintDefault 

(printRec THPrint): {Print record to inilializ} 

function PrValidate 

(printRec THPrint) 

: BOOLEAN: 
(Print record to validate} 

(Was record altered?} 

Notes 

1. PrintDefaul t initializes a print record to the standard default values 
for the current printer. 

2. The default values are taken from' PREC' resource number o [4.6.1) in 
the current printer resource file [4.6.3). 

3. PrValidate verifies the validity of a print record for the currently 
installed printer and printing routines. 

4. If the print record is not valid for the current printer, or if its i Pr Version 
field [4.1.2) refers to an obsolete version of the printing routines, it is 
reinitialized to the current standard values. 

5. A function result of TRUE means that the print record was invalid and 
had to be reinltlalized; FALSE means that it was valid as it was. 

6. If necessary, the contents of the print record may also be adjusted for 
internal self-consistency. Such changes are not reflected in the function 
result. 

7. The trap macros for these routines expand to call the universal printing 
trap _PrGlue with the routine selectors given below. 

~~ 1 ... ____ As_s_e_m_b_1_.,._Lan __ guag __ e_1_n_ro_rm_a_t_1o_n ______ _ 

Trap macros and routine se1.ectors: 

(Pascal) (Assembly) 
Routine name Trap macro Trap word Routine selector 

PrintDefault _PrintDefault $A8FD $20040480 
PrValidate _PrValidate $A8FD $52040498 



215 (4.2.3) Printing-Related Dialogs 
~~~~~~~~~~~~~ 

4.2.3 Printing-Related Dialogs

~ Definitions

function PrStlDialog
(printRec : THPrint)

: BOOLEAN;

function PrJobDialog
(printRec : THPrint)

: BOOLEAN:

procedure PrJobMerge
(sourceRec
destRec

THPrint:
THPrint):

(Hancile toprinl record}
(Was dialog confirmed?}

(Handle to print record}

(Was dialog confumed?}

(Print record to copy from}

{Print record to copy to}

~~i~==t~----N_o_te_s ________________________________ __
1. PrStlDialog conducts a style dialog with the user; PrJobDialog

conducts a job dialog.

2. The style dialog is meant to be presented in response to the Page Setup
menu command. It defines a document's overall printing-related
properties, such as the paper size and orientation.

3. The job dialog is meant to be presented in response to the Print menu
command. It includes information pertaining to a single printing job,
such as the print quality, page range, and number of copies.

4. Both dialogs are taken fr~m the current printer resource file (4.6.3).

S. Both routines return a function result of TRUE if the user confirmed the
dialog (by clicking the OK button or its equivalent), FALSE ifthe dialog was
canceled.

6. If the dialog was confirmed, both routines update the print record
accordingly. then validate its contents with PrValidate (4.2.2). If the
dialog was canceled, the print record is left unchanged.

7. After updating the print record, PrJobDialog copies it Into the printer
resource file to be used again next time. This makes the results of the job
dialog .. stick to the printer."

8. If PrStlDialog returns TRUE, the application program should save the
updated print record in the document's resource file, allowing the
results of the style dialog to ·suck to the document."

216 Printing

9. On recelvtnga TRUE resultfrom PrJobDialog, the application program
should proceed with the requested printing operation.

10. PrJobMerge copies the results of a job dialog from one print record
(sourceRec) to another (destRec).

11. Both records are valldated for consistency with PrValidate [4.2.2).

12. This routine ls useful for applying the results of one job dialog to several
documents, such as when printing from the Finder.

13. The trap macros for these routines expand to call the universal printing
trap _PrGlue with the routine selectors given below.

ID I Assembly Language Information -1m1--------
Trap macros and routine selectors:

(Pascal) (Assembly)
Routine name Trap macro Trap word Routine selector

PrStlDialog _PrStlDialog
PrJobDialog _PrJobDialog

PrJobMerge _PrJobMerge

4.2.4 Error Reporting

~ Definitions

function PrError

$A8FD $2A040484
$A8FD
$A8FD

$32040488
$5804089C

: INTEGER: {Result code from last printing operation}

procedure PrSetError
(errCode : INTEGER):

con at
NoErr O:
IPrSavPFil = -1:
IIOAbort -27;

IPrAbort = 128:

(Result code to post}

(No error; all is well}

(Enor saving print file}
(JJO error}

(Cancel printing}

217 (4.2.4) Error Reporting
~~~~~~~~~~~~-

Notes 

1. PrError returns the result code from the last printing operation. 

2. The result code returned In the normal case ls o (NoErr). Any nonzero 
result code denotes an error. 

3. Error codes listed here are only those directly related to printing. Errors 
from other parts of the Toolbox can also occur in the course of printing 
operations, and will be reported by Pr Error. See Appendix E for a 
complete list of Toolbox error codes. 

4. In assembly language, the result code ls also available in the global 
variable PrintErr. 

5. PrSetError posts a printing-related result code by storing it into the 
global variable PrintErr. 

6. The main use for this routine by an application program ls to cancel a 
printing operation in progress by posting the code !Pr Abort. 

7. Don't store into PrintErr-either directly or via PrSetError-if it 
already contains a nonzero value. 

8. The trap macros for these routines expand to call the universal printing 
trap _PrGlue with the routine selectors given below. 

ID I Assembly Language Information --tm---------------
Trap macros and routine selectors: 

(Pascal) (Assembly) 
Routine name Trap macro Trap word 

PrError 
PrSetError 

_PrError 
_PrSetError 

$A8FD 
$A8FD 

Assembly-language global variable: 

Name Address Meaning 

Routine selector 

$BAOOOOOO 

$C0000200 

PrintErr $944 Result code from last printing operation 

Assembly-language constant: 

Name Value Meaning 

IPrAbort 128 Cancel printing 



218 Printing 

4.3 Document Printing 

4.3.1 Opening and Closing a Document 

function PrOpenDoc 
(printRec 
printPort 
printBuf 

THPrint: 
TPPrPort: 
Ptr) 

: TPPrPort: 

procedure PrCloseDoc 
(printPort : TPPrPort): 

Notes 

{Print record for this job} 

{Storage for printing port} 

(Storage for output buffer} 

(Pointer to printing port} 

(Pointer to printing port} 

1. P rOpenDoc initializes a printing port for printing a document: 
PrCloseDoc closes and destroys an existing printing port. 

2. printRec ls a handle to a print record defining the properties and 
parameters of the printing job. Always validate the record with 
PrValidate [4.2.2) before using it to open a printing port. 

3. The new printing port is automatically made the current port. You can 
then proceed to draw directly into it with QulckDraw operations. 

4. The port is customized for spooling or draft printing, as specified in the 
print record (field prJob. bJDocLoop [4.1.5)). 

5. The port rectangle, boundary rectangle, and clipping region are all set 
equal to the page rectangle (pr Info. rPage [4.1.3)) taken from the print 
record. 

6. The optional parameters print Port and printBuf allow you to supply 
your own storage for the new printing port and Its output buffer. 

7. If these parameters are NIL (the usual case), PrOpenDoc will allocate the 
port for you from the heap, and will direct its output to the volume buffer 
for the spool file's volume (field prJob. iFi le Vol of the print record 
[4.1.5)). 

8. If you choose to provide your own storage for the printing port, the size 
of the required block ls given by the Pascal expression 
SIZEOF(TPrPort), or In assembly language by the constant 



219 [4.3.2) Page Imaging 
~~~~~~~~~~~~~ 

IPrPortSize (4.1.1). The size needed for the output buffer is 522 bytes.
Notice that both are nonrelocatable objects and are identified by
pointers rather than handles.

9. Every call to PrOpenDoc must be balanced by a corresponding call to
PrCloseDoc on completion of the Job.

10. PrCloseDoc closes the printing port and (lf it was allocated
automatically from the heap) releases the space it occupies.

11. In spool printing, PrCloseDoc must be followed by PrPicFi le [4.3.3) to
print the contents of the spool file.

12. The trap macros for these routines expand to call the universal printing
trap _PrGlue with the routine selectors given below.

13. The trap macro for PrCloseDoc ls spelled _PrClosDoc.

ID I Assembly Language Information --1qn...,___ _____ _

Trap macros and routine selectors:

(Pascal) (Assembly)
Routine name Trap macro

PrOpenDoc

PrCloseDoc

_PrOpenDoc

_PrClosDoc

Trap word Routine selector

$A8FD $04000COO
$A8FD $08000484

4.3.2 Page Imaging

procedure PrOpenPage
(print Port
pageFrame

procedure PrClosePage
(print Port

type
TPRect "'Rect:

const
IPFMaxPgs = 128;

TPPrPort;
TPRect):

TPPrPort);

(Pointer to the printing port}

(Frame rettangle for scaling)

{Pointer to the printing port}

(Pointer to a rectangle}

(Maximmn nmnber of pages in a spool file}

220 Printing

Notes

1. PrOpenPage begins printing a page of a document: PrClosePage
finishes it.

2. While a page is open, you can proceed to draw into it with QuickDraw
operations.

3. print Port Is the printing port in which the document is being printed.

4. Every call to PrOpenPage reinitializes the printing port. If you are using
nonstandard text characteristics (1:8.3.1] or pen characteristics
[1:5.2. l], you must expllcitly reset them at the beginning of every page.

5. Pages are suppressed if they fall outside the range defined by iFstPage
and iLstPage In thejobsubrecord (4.1.5). For this purpose, the first call
to PrOpenPage within a document is always considered to begin page l,
independent of any other numbering scheme the application program
itself may use.

6. To print the range of pages requested by the user, you should either
• image the entire document, leaving it to the Toolbox to suppress

those pages that fall outside the requested range, or
• set iFstPage to 1 and iLstPage to the number of pages in the range.

then image only the pages actually requested

7. QuickDraw pictures (1:5.4.1) are commonly used to spool page images
for later printing. NevercallOpenPicture (1:5.4.2] yourself while a page
is open.

8. The pageFrame parameter specifies a rectangle in page-relative
coordinates. which will be recorded as the picture frame (1:5.4.1) and
later scaled to the page rectangle when the spool file is printed. In draft
printing, this parameter is ignored.

9. pageFrame is normally set to NIL, causing the page to be printed without
scaling.

10. Every call to PrOpenPage must be balanced by a corresponding call to
PrClosePage.

11. PrClosePage takes whatever actions are appropriate at the end of a
page, such as (In draft printing) ejecting the paper and prompting the
user, if necessary. to insert another sheet, or (In spooling) closing the
picture representing the page and updating the spool file's page
directory.

12. The maximum number of pages that can be spooled to a single file is
I PFMaxPgs. To print more than this number. you must break the
document into pieces and spool and print each piece separately.

221 [4.3.3) Spool Printing
~~~~~~~~~~~~~ 

13. The trap macros for these routines expand to call the universal printing 
trap _PrGlue with the routine selectors given below. 

14. The trap macro for PrClosePage is spelled _PrClosPage. 

ID I Assembly Language Information 
-ID---------

Trap macr<>s and routine selec'fors: 

(Pascal) (Assembly) 
Routine name Trap macro Trap word Routine selec:tor 

PrOpenPage _PrOpenPage $A8FD $i0000808 

PrClosePage _PrClosPage $A8E'D $1800040C 

4.3.3 Spool Printing 

procedure PrPicFile 
(printRec 
printPort 
spoolBuf 
pr.in'tBuf 

THPrint: 
TPPrPort: 
Ptr: 
Ptr:. 
TPrStatus): 

(Print record for this job} 

{Storage for printing port} 

{Input buffer for reading spool file} 
(Output buffer for writing to printer} 
(Record for reporting status} var pr;tntStatus 

Notes 

1. P rPic Fi le prints a spool file containing a previously spooled document. 

2. This routine constitutes the second phase of the spool printing process. 
It is normally called immediately after PrCloseDoc [4.3.l], which 
completes the first (spooling) phase. In draft printing, PrPicFile is not 
used. 

3. printRec is a handle to a print record defining the properties and 
parameters of the printing job. 

4. The spool file's name and volume are given by the pFileName and 
iFileVol fields of the print record's job subrecord (4.1.5). 

5. The spool file is deleted from the disk on successful completion. 



222 Printing 

6. If the pidleProc field of the job subrecord [4.1.5) contains a pointer to 
a background procedure. the procedure will be called repeatedly at every 
opportunity during the spool printing process (such as while waiting for 
a completion signal from the printer after beginning a printing 
operation). 

7. A NIL value for p Id 1 e Pro c designates the standard background 
procedure, which simply checks for the keystroke Command-period and 
responds to it by canceling the printing operation. 

8. printStatus is a status record [4.1.7) in which to report on the 
progress of the printing operation. 

9. The optional parameters printPort, spoolBuf, and printBuf allow 
you to supply your own storage for the printing port and input/output 
buffers. 

10. If these parameters are NIL (the usual case), PrPicFile will allocate the 
port and print buffer for you from the heap, and will use the spool file's 
volume buffer for reading the file. 

11. If you choose to provide your own storage for the printing port. the size 
of the required block is given by the Pascal expression 
SIZEOF(TPrPort), or in assembly language by the constant 
IP rPo rt Size [4.1.1). The size needed for the spool buffer is 522 bytes; 
for the print buffer, it is given by the iDevBytes field of the auxiliary 
information subrecord [4.1.6). Notice that these are all nonrelocatable 
objects, and are identified by pointers rather than handles. 

12. P rPicFi le uses a brand-new printing port ofits own, notthe same port 
that was used earlier in the spooling phase. Unless you originally 
allocated your own port for spooling and passed it to P rOpenDoc [4.3.1), 
the spooling port will have been closed and destroyed by PrCloseDoc 
[4.3.1) and can't be used again for the printing phase. 

13. The trap macro for this routine expands to call the universal printing 
trap _PrGlue with the routine selector given below. 

I ID I Assembly Language Information 
-l~ti---------

Trap macro and routine select.or: 

(Pascal) (Assembly) 
Routine name Trap macro Trap word Routine selector 

PrPicFile _PrPicFile $A8FD $60051480 



223 [4.4.1) Opening and Closing the Printer Driver 
~~~~~~~~~~~~-

4.4 Low-Level Printing

4.4.1 Opening and Closing the Printer Driver

procedure PrDrvrOpen:

procedure PrDrvrClose:

Notes

1. These two routines open and close the printer driver, respectively.

2. If the printer driver ls not already ln memory. PrDrvrOpen reads lt into
the heap from the system resource file.

3. The initialization routine P rOpen [4.2.1) automatically opens the printer
driver for you, but Pr Close doesn't close it. If you wish to close the
driver. you must do it explicitly with PrDrvrClose.

4. The trap macros for these routines expand to call the universal printing
trap _PrGlue with the routine selectors given below.

ID I Assembly Language Information -I'=°...,__ _____ _
'Itap macros and. routine selectors:

(Pascal) [Assembly)
Routine name Trap ~cro Trap word Routine selecte»r

PrDrvrOpen _PrDrvrOpen $A8FD $80000000
PrDrvrClose _PrDrvrClose $A8FD $88000000

224 Printing

4.4.2 Printer Driver Attributes

function PrDrvrVers
: INTEGER: (Version number of printer driver}

function PrDrvrDCE
: Handle: (Handle to driver's device control entty}

procedure PrPurge:
procedure PrNoPurge:

Notes

1. PrDrvrVers returns the version number of the currently installed
printer driver: PrDrvrDCE returns a handle to its device control entry
[3.1.4).

2. The printer driver's name is . Print. Its unit number is 2, and its driver
reference number is therefore - 3.

3. If the printer driver is up-to-date. its version number should match that
of the printing routines themselves, as given by the constant
I PrReleasE~ [4.1.2).

4. PrNoPurge marks the printer driver unpurgeable. so that it cannot be
removed from the heap: PrPurge makes it purgeable again.

5. The trap macros for these routines expand to call the universal printing
trap _PrGlue with the routine selectors given below.

ID I Assembly Language Information
-1~..-------

Trap macros and routine selectors:

(Pascal) (Assembly)
Routine name Trap macro

PrDrvrVers
PrDrvrDCE
PrPurge
PrNoPurge

_PrDrvrVers
_PrDrvrDCE
_PrPurge
_PrNoPurge

Trap word Routine selector

$A8FD $9AOOOOOO
$A8FD
$A8FD
$A8FD

$94000000
$A8000000
$BOOOOOOO

225 (4.4.3) Low-Level Operations
~~~~~~~~~~~~~ 

procedure PrCtlCall 

Assembly-language. canst.ants: 

Name Value 

IPrDrvrID 2 
IPrDrvrRef -3 

IPrDrvrDev $FDOO 

Meaning 

Unit number (resource ID) of printer driver 
Reference number of printer driver 
Device code [1:8.3.1] of printer driver 

4.4.3 Low-Level Operations 

(controlCode INTEGER: (Control code for desired operation} 

(First opemtion-dependent parameter} 

{Second operation-dependent parameter} 

{Third operation-dependent parameter} 

ctlParaml LONGINT: 

ct1Param2 LONGINT: 

ct1Param3 LONGINT); 
const 

IPrBitsCtl = 4: 

IPrIOCtl = 5: 

IPrEvtCtl = 6; 

IPrDevCtl 7: 

IFMgrCtl = 8 : 

Notes 

(Bit map printing[4.4.4]} 

(Text streaming [4.4.S]} 

(Screen printing (4.4.6]} 

{Printer control (4.4.7)} 

(Font~ [4A8]} 

1. PrCtlCall issues a low-level Control call (3.2.3) directly to the printer 
driver. 

2. controlCode identifies the control operation to be performed. 

3. Depending on the operation, It may require as many as three additional 
parameters (ctlParaml, ct1Param2, ct1Param3). The values supplied 
for these parameters will be copied into the first 6 words (12 bytes) of the 
parameter block's csParam field (3.1.5). 

4. See [4.4.4] to (4.4.8) for details on specific control operations and their 
parameters. 

5. The trap macro for this routine expands to call the universal printing 
trap _PrGl ue with the routine selector given below. 



226 Printing 

6. There is currently no advantage to using the low-level drtver operations 
in place of the high-level ones covered in [4.2] and [4.3]. Apple continues 
to support the low-level interface for backward compatibility, but 
recommends that all new programs use the high-level interface instead. 

I ID I Assembly Language Information ---1m...,__.. _____ _ 
'ITap macro and routine selector: 

(Pascal) (Assembly) 
Routine name Trap macro Trap word Routine sele~tor 

PrCtlCall _PrCtlCall $A8FD $AOOOOEOO 

Printer driver control codes: 

Name Value Meaning 

IPrBitsCtl 4 Bit map printing 
IPrIOCtl 5 Text streaming 
IPrEvtCtl 6 Screen printing 

IPrDevCtl 7 Printer control 
IFMgrCtl 8 Font support 

4.4.4 Bi~ Map Printing 

const 

IPrBitsCtl = 4: 

LScreenBits = $00000000: 

{Control code for bit map printing} 

{Rec:tangular dots} 
LPaintBits = $00000001: {Square dots} 

Notes 

1. Thecontrolcode IPrBi tsCtlisusedwith PrCtlCall (4.4.3] to transmit 
bit maps directly to the printer. 

2. ctlParaml [4.4.3] is a pointer to a standard QuickDraw bit map 
11:4.2.1). 



227 [4.4.5) Text Streaming 
~~~~~~~~~~~~~ 

3. ct1Param2 [4.4.3) Is a pointer to a rectangle defining the portion of the
bit map to be printed.

4. The rectangle is expressed In the local coordinate system defined by the
bit map's boundary rectangle.

&. ct1Param3 [4.4.3) must be one of the constants LSc reenBi ts or
LPaintBi ts. This parameter controls the horizontal resolution at which
the bit map is to be printed, which determines the shape of the resulting
dots.

6. On the ImageWrlter printer, LScreenBits specifies the printer's
standard horizontal resolution of 80 dots per inch. Since the vertical
resolution ls only 72 dots per Inch, the resulting images appear
"squashed," with rectangular dots narrower than they are high.

7. LPaintBi ts slows down the ImageWrlter's print head to a horizontal
resolution of72 dots per Inch, producing true square dots like those on
the Macintosh screen. Printing ls slower, but more faithfully reproduces
the image as it appears on the screen.

8. LPaintBits corresponds to the Tall Adjusted option in the
ImageWrlter style dialog [4.2.3).

9. Only the Image Writer driver honors the parameter LS c re en Bits: on the
LaserWrlter, always use LPaintBi ts.

~~I ... _____ As_se_m_h_ly_1.an __ guag __ e_'"_,._0_1_11_1a_tl_o_n ______ _

Control parameters for bit map printing:

Name Value Meaning

LSc reenBi ts $00000000 Rectangular dots
LPaintBi ts $00000001 Squme dots

4.4.5 Text Streaming

const
IPrIOCtl = 5: {Control code for text streaming}

const

IPrEvtCtl "" 6:

228 Printing

Notes

1. The control code IPrIOCtl is used with PrCtlCall [4.4.3) to transmit
text directly to the printer.

2. The text will be printed in the printer's own native character font.
bypassing the usual Toolbox font selection and formatting capabilities.
This type of printing is considerably faster than imaging with
QulckDraw. but the results will not match what the user sees on the
screen.

3. ctlParaml [4.4.3) ls a pointer to the first text character to be
transmitted.

4. ct1Param2 [4.4.3) gives the length of the text in bytes, which must not
exceed 32767.

5. ct1Param3 [4.4.3) must be O.

6. Streamed text can include embedded control characters or escape
sequences understood directly by the printer itself; see your printer
manual for further information. It's generally best to avoid relying on
such features. however. since they make your program printer
dependent.

4.4.6 Screen Printing

LPrEvtAll = $0002FFFD:

{Control code for screen printing}

{Print whole screen}
LPrBvtTop = $0001FFFD: {Print frontmost window only}

Notes

1. The control code IPrEvtCtl is used with PrCtlCall [4.4.3) to dump all
or part of the screen directly to the printer.

2. ctlParaml [4.4.3) must be one of the constants LPrEvtAll or
LPrEvtTop. This parameter controls whether the entire screen is to be
printed or just the frontmost window.

229 [4.4. 7) Printer Control

S. ct1Param2 and ct1Param3 (4.4.3) are meaningless and should be set
too.

4. This control call is used by the standard 'FKEY' number 4 (11:2.9.2) to
dump the the frontmost window to the printer (or the whole screen, if the
Caps Lock key is down) when the user types Command-Shift-4.

5. The constants LPrEvtAll and LPrEvtTop are defined incorrectly in
some versions of the Pascal interface files. The values shown above are
the correct ones.

6. Screen printing is implemented only on the ImageWriter printer.

ID I Assembly Language Information -1m..,...._ _____ _
Control parameters for screen printing:

Name Value Meaning

LPrEvtAll $0002FFFD
LPrEvtTop $0001FFFD

Print whole screen
Print frontmost window only

const

IPrDevCtl

LPrReset
LPrDocOpen
LPrDocClose

LPrPageOpen

4.4.7

7:

= $00010000:
$00010600:

... $00050000:

$00040000:
LPrPageClose = $00020000;
LPrPageEnd = $00020000:

LPrLineFeed = $00030000;
LPrLFStd = $0003FFFF;
LPrLFSixth = $0003FFFF;
LPrLFEighth = $0003FFFE:

Printer Control

(Control code for printer: control}

(Begin new document}

{Begin new dOcument}

{Bnd docwnent}

{Begin new page}
(Bnd page}
(End page}

(Start new line}

(Start new line with standard paper advance}

(Start new line with 1/6-inch paper advance}

{Start new line with 1/8-inch paper advance}

230 Printing

Notes

1. The control code IPrDevCtl Is used with PrCtlCall (4.4.3) to perform
various printer control operations In a device-Independent way.

2. Always Include these calls to structure your prlntingjob when using low
level operations such as bit map printing (4.4.4), text streaming (4.4.5],
and screen printing (4.4.6). Do not attempt to mix such operations with
high-level printing routines such as PrOpenDoc, PrCloseDoc (4.3.1),
PrOpenPage, and PrClosePage (4.3.2).

3. ctlParaml (4.4.3) must be one of the constants shown; ct1Param2 and
ct 1 Par am3 are meaningless and should be set to o.

4. LPrDocOpen and LPrDocClose perform whatever control operations a
particular printer may require at the beginning and end of a document,
such as opening and closing a network connection, resetting the
printer's internal state, and allocating and releasing input/output
buffers.

5. On some printers, the low-order byte of the LPrDocOpen parameter tells
how many copies of the document to print.

6. LPrPageOpen and LPrPageClose perform the appropriate control
operations for starting and ending a page, such as ejecting the paper or
advancing past the fold.

7. LPrReset and LPrPageEnd are older names for the parameters
LPrDocOpen and LPrPageClose, and are still supported for backward
compatibility.

8. LPrLineFeed returns to the left edge of the page rectangle to begin a new
line of printing. The low-order word of the parameter tells how far to
advance the paper for the new line.

9. The paper advance ls specified In printer dots, at the resolution given by
the i VRes field in the printer information subrecord (4.1.3). For
example, a parameter value of LP r Li neF eed + 12 advances the paper 12
dots; LPrLineFeed alone simply returns to the left margin without
advancing the paper.

10. The constants LPrLFSixth and LPrLFEighth are device-independent
parameters that advance the paper one sixth and one eighth of an Inch,
respectively, regardless of the printer's dot resolution. LPrLFStd is a
synonym for LP rLF Sixth, representing a standard paper advance ofone
sixth of an inch.

11. Notice that the assembly-language constants (below) have different
values than their Pascal counterparts. IPrReset, IPrPageEnd, and
IPrLineFeed represent only the high-order word of the parameter;
I PrLFStd, IPrLFSixth, and IPrLFEighth represent only the low-order
word.

231 [4.4.8] Font Support
~~~~~~~~~~~~~~ 

12. At the time this book went to press, constant definitions for the new 
parameters IPrDocOpen, IPrDocClose, IPrPageOpen, and 
IPrPageClose had not yet been added to the assembly-language 
interface files. By the time you read this, the oversight may have been 
corrected. 

ID I Assembly Language Information ---llfi:I...,.._ _____ _ 

~ I 

Control parameters for printer control: 
Name Value 

IPrReset 1 

IPrPageEnd 2 

IPrLineFeed 3 

LPrLFStd -1 

LPrLFSixth -1 

LPrLFEighth -2 

4.4.8 Font Support 

Definitions 

Meaning 

Begin new document 
Bndpage 

Start new line 

Advance paper standard amount 

Advance paper 1/6 inch 

Advance paper 1/8 inch 

const 
IFMgrCtl 8; 

type 

FMOutPtr = AFMOutput; 
FMOutput = packed record 

errNum 
f ontHandle 
bold 
italic 
ulOff set 
ulShadow 
ulThick 
shadow 
extra 
ascent 
descent 
widMax 
leading 

INTEGER; 
Handle; 
Byte: 
Byte: 
Byte: 
Byte: 
Byte: 

(Control/status code for font support} 

{Reserved} 

{Handle to font record (1:8.2.2]} 

{Extra thickness for boldface} 

{Skew factor for italic} 

{Offset from baseline to underline) 

(Widlh of break around descenders} 

{Thickness of underline} 

Byte: {Thickness of .shadow} 

SignedByte: {Ex~ width per character} 

Byte: {Ascent above baseline} 

Byte: (Descent below baseline} 

Byte: {Maximwn character width} 

SignedByte: {Leading between lines} 



232 Printing 

unused 
numer 
denom 

Byte: 
Point: 
Point 

{Reserved} 

{Nmnerators of s.cal~ factors) 

{Denominators ofs<;:ale factors} 

end: 

Notes 

1. The constant IFMgrCtl is used both as a status code and as a control 
code [3.2.3). The Toolbox uses it to request help from the printer driver 
in selecting fonts for a particular printer; application programs should 
never use this code themselves. 

2. After reading a font into memory from a resource file. the Toolbox issues 
a Status call [3.2.3) to the printer driver with a status code ofIFMgrCt 1. 
This requests a font characterization table describing how to modify the 
basic font for style variations such as bold. italic, and underline. 

3. In the parameter block for the Status call, the first 2 words of cs Par am 
[3.1.5) hold the address in memory at which the font characterization 
table is to be stored. The third word (cs Par am [ 2] ) contains the printer's 
device code [1:8.3.1. 4.1.3). 

4. See [4.4.9) for the format of the font characterization table. 

5. The Toolbox uses the font characterization table to construct a font 
output record summarizing the metric characteristics of the font. It then 
passes this record to the printer driver in a Control call [3.2.3) with a 
control code of IFMgrCtl, allowing the driver to make any last-minute 
adjustments it wishes to the record's contents before the record is used 
for formatting text. 

6. In the parameter block for the Control call, the first 2 words of cs Par am 
[3.1.5) hold a pointer to the font output record. The third word 
(csParam[2]) contains the printer's device code [1:8.3.1, 4.1.3). 

7. The fontHandle field of the font output record holds a handle to the font 
itself. 

8. For boldface text, the bold field gives the number of dots by which each 
character is to be thickened horizontally. 

9. For italic text, the italic field gives the number of dots by which 
character images are to be skewed horizontally. 

10. For underlined text, u 1 Thick gives the thickness of the underline, 
ulOff set its offset below the baseline, and ulShadow the Width of the 
break around descenders, all in dots. 



233 [4.4.8] Font Support 
~~~~~~~~~~~~---

11. For shadowed text, the shadow field gives the thickness ofthe shadow in
dots.

12. For any given combination of style variations, the extra field gives the
total number of dots by which each character's width ls Increased.

13. ascent and descent give the font's overall ascent and descent relative
to the baseline, widMax the width of the widest character in the font. and
leading the recommended vertical spacing between lines.

14. The ascent, descent. widMax, and leading fields correspond to the
slmilarly-named fields of the Fontinfo and FMetricRec records
[1:8.2.6). Notice, however, that they are single. packed bytes rather than
2-byte Integers or 4-byte fixed-point values.

15. The fields numer and denom specify scale factors for scaling characters
to the printer's resolution. The scale factor in each dimension (horizontal
orvertlcal) ls given by the ratio ofnume r to den om in that dimension. That
is. the width of each character ls multiplied by

numer.h I denom.h

and the height by

numer.v I denom.v

ID I Assembly Language Information
-ID~-----

Field offsets in a font output. record:

(Pascal) (Assembly)
Field name Offset name

errNum fmOutError
fontHandle fmOutf ontH
bold fmOutBold
italic fmOutitalic
ulOff set fmOutULOffset
ulShadow fmOutULShadow
ulThick fmOutULThick
shadow fmOutShadow
extra fmOutExtra
ascent fmOutAscent
descent fmOutDescent
widMax fmOutWidMax
leading fmOutLeading
numer fmOutNumer
denom fmOutDenom

Offset in bytes

0

2
6

7

8

9

10

11

12

13

14
15
16

18

22

234 Printing

4.4.9 Font Characterization Table

Vert. resolut(on (2 bytes)

Horiz. resolu~ion (2 bytes)

Bold ~aracteristics (3 bytes)
: :

Italic characteristics (3 bytes)

Unused (3 bytes)

Outlin~ characteristics (3 ~ytes)

Shado~ characteristics (3.bytes)

Condensed characteristics (3 bytes) . .
Extend~ characteristics(~ bytes)

. .
Underline characteristics (3 bytes) . .

Structure of a font characterization table

~~li~~-Not_es ____________ _
1. A font characterization table contains information needed to apply style

variations to fonts for use on a particular printer.

2. The printer driver returns a characterization table in response to the
Status call IFMgrCtl (4.4.8).

3. The first two words of the table give the vertical and horizontal resolution
of the printer, in dots per inch. This information is used for scaling fonts
from one printer (or other graphic device) to another.

4. Each of the remaining fields except the last is a 3-byte triple describing
the characteristics of a particular style variation.

5. In each triple, the first byte identifies the field of the font output record
[4.4.8) to which this style variation applies. The field is designated by a
byte offset relative to the record's bold field: thus an offset of o refers to
theboldfielditself, 1 refers to the i ta lie field, 5 to the shadow field, and
so on.

6. The second byte of each triple gives the value to be stored into the
designated field.

235 (4.5.1) Customizing the Printing Dialogs
~~~~~~~~~~~~~ 

7. The third byte of each triple gives the amount to be added to the output 
record's extra field. This represents the number of dots by which each 
character ls widened as a result of this style variation. 

8. The last field of the characterization table is a triple defining the font's 
underline characteristics. The 3 bytes of this triple give the values to be 
stored into the ulOff set, ulShadow, and ul Thick fields of the font 
output record [4.4.8). 

ID I Assembly Language Information 
-I~----------

Field offsets in afont characterizatiDn table: 

Name Value Meaning 

dpiVert 0 Vertical resolution in dots per inch 

dpiHoriz 2 Horizontal resolution in dots per inch 

boldChr 4 Boldface characteristics 

italChr 7 Italic characteristics 

outlineChr 13 Outline characteristics 

shadowChr 16 Shadow characteristics 

condChr 19 Condensed characteristics 

extendChr 22 Extended characteristics 

underChr 25 Underline characteristics 

4.5 Nuts and Bolts 

4.5.1 Customizing the Printing Dialogs 

type 
TPPrDlg = ATPrDlg: 
TPrDlg = record 

dlg DialogRecord: {Dialog record [11:7.1.1]} 

pFltrProc 
pitemProc 
hPrintUsr 
fDoit 
fDone 

ProcPtr: 
ProcPtr: 
THPrint: 
BOOLEAN: 
BOOLEAN: 

{Pointer to filter function [Il:7.4.S]} 

{Pointer to response procedure} 

{Handle to print record [4.t.2]} 

{Private} 

{Private} 



236 Printing 

lUserl LONGINT: (Private} 

1User2 LONGINT: (Pmrate} 

1User3 LONGINT: (Private} 

1User4 LONGINT: (Private} 

iNumFst INTEGER: {Private} 

iNumLst INTEGER: {Private} 

(Additional fields as needed by the customi7.ed dialog} 

end: 

function PrDlgMain 
(printRec : THPrint: 
initProc : ProcPtr) 

: BOOLEAN: 

{Handle to print record} 

{Pointer to initiali7.ation routine} 

{Was dialog confinned?} 

function PrStlinit 
( printRec : THPrint) 

: TPPrDlg: 
{Handle to print record} 

{Pointer to style dialog} 

function PrJobinit 
(printRec : THPrint) 

: TPPrDlg: 
{Handle to print record} 
{Pointer to job dialog} 

Notes 

1. PrDlgMain conducts a printing-related dialog with the user. 

2. This routine is called for you automatically by the standard routines 
PrStlDialog and PrJobDialog [4.2.3). You'll need to call it yourself 
only if you're using a nonstandard version of one of the printing dialogs. 

3. p rintRec is a handle to a print record [4.1.2) for the printing operation 
to which this dialog pertains. 

4. ini tProc is a pointer to an initialization routine, which constructs and 
returns a printing dialog record of type TPrDlg. This record contains all 
the information needed to conduct the requested dialog. 

5. After the user dismisses the dialog from the screen, PrDlgMain returns 
a function result of TRUE if the dialog was confirmed (by clicking the OK 
button or its equivalent), FALSE if it was canceled. 

6. If the dialog was confirmed, PrDlgMain updates the print record 
accordingly, then validates its contents with PrValidate [4.2.2). If the 
dialog was canceled, the print record is left unchanged. 



237 (4.5.1) Customizing the Prlntlng Dialogs 
~~~~~~~~~~~~~ 

7. dlg is a complete dialog record (11:7.1.1) (not just a pointer) embedded
within the printing dialog record. The TPrDlg record is thus ultimately
based on a graphics port (1:4.2.2); this makes it a nonrelocatable object,
which must be referred to with a pointer rather than a handle.

8. pFl trProc isapointertoafilterfunction (11:7.4.5) for processing events
while the dialog is on the screen.

9. pitemProc is a pointer to a response procedure of the form

procedure Response (theDialog : DialogPtr:
itemNumber : INTEGER):

which defines the action to be taken when the mouse is clicked in a given
dialog item.

10. hPrintUsr is a handle to the print record for this printing operation.

·11. The remaining fields of the printing dialog record are reserved for the
private use of the Toolbox printing routines.

12. PrStlinit and PrJobinit are the lnltlall7.ation routines passed to
PrDlgMain by PrStlDialog and PrJobDialog (4.2.3), to construct the
standard style and job dialogs, respectively.

13. To customize the style or job dialog, call P rD 1 gMa in directly (rather than
indirectly Via PrStlDialog or PrJobDialog), substituting an
lnltlalization routine of your own In place of the standard ones. Your
initialization routine can In tum call PrStl Ini tor PrJobini t to obtain
the standard dialog, then modify it (or Its filter function and response
procedure) before passing it back for use by PrDlgMain. See Technical
Note #95 for more information and a fully developed example.

14. The trap macros for these routines expand to call the universal printing
trap _PrGlue with the routine selectors given below.

15. The assembly-language constants (below) representing the field offsets
and overall size of a printing dialog record are not Included in current
versions of the Interface file. If you need them, you must define them
explicitly for yourself.

ID I Assembly Language Information
-ID----------

Field offsets in a printing port:
(Pascal) (Assembly)
Field name Offset name Offset in bytes

dlg dlg 0
pFltrProc pFltrProc 170

pitemProc pitemProc 174

hPrintUsr hPrintUsr 178

238 Printing

Assembly-language constant:
Name Value Meaning

IPrDlgSz 204 Size of printing dialog record in bytes,

excluding custom fields

'lTap macros and routine selectors:

(Pascal) (Assembly)
Routine name Trap macro Trap word Routine selector

PrDlgMain _PrDlgMain $A8FD $4A040894
PrStl Ini t _PrStl Ini t $A8FD $3C04040C
PrJobinit _PrJobinit $A8FD

4.5.2 Customizing Paper Sizes

= •

Number of paper sizes defined (2 bytes)

Height of paper size 1 (2 bytes)

Width of paper size 1 (2 bytes)

Height of paper size 6 (2 bytes)

Width of paper size 6 (2 bytes)

Length of title J
Title of button 1

(indefinite length)

Length of title

Title of button 6
(indefinite length)

Structure of a paper size table

$44040410

= .

239 (4.5.2) Customlztng Paper Sizes
~~~~~~~~~~~~~ 

Notes 

1. A paper size table defines the selection of paper sizes to be offered to the 
user in the printing style dialog [4.2.3). 

2. The printer resource file [4.6.3) normally contains a paper size table 
stored as a resource of type 'PREC' [4.6.1) with ID number 3. This 
defines the names and dimensions of the standard paper sizes for use 
with the given printer. 

3. A program can override the standard paper sizes by including a ' PREC' 
resource with an ID number of 4 In its own application resource ftle. If 
no such resource ls present, the dialog will use the standard paper sizes 
defined in the printer resource file. 

4. As many as six paper sizes may be defined. The table must always 
include exactly six definitions, even if not all are actually meaningful. 
The first word of the table tells how many of the definitions really count. 
This value should never be greater than 6; if it is less, some of the 
definitions at the end of the list will be ignored. 

5. All paper dimensions are expressed in device-independent units of 
120ths of an inch. (1be constant IPrPageFract [4.1.4) gives the 
number of units per inch.) 

6. The paper dimensions are followed by six strings giving the titles of the 
corresponding radio buttons to be displayed in the style dialog. Each 
string is given in standard Pascal format, preceded by a length byte. 

7. Use one-character dummy titles for unused buttons. 

8. WARNING: The strings representing the button titles must be tightly 
packed, even if this means they don't begin on even word boundaries. Do 
not add an extra byte at the end of a string to pad it to an even number 
of bytes. 

9. Some standard paper sizes are as follows: 

Inches 120ths 

Name Height Width Height Width 

us Letter 11 81/2 1320 1020 

us Legal 14 81/2 1680 1020 
A4 Letter 112/3 81/4 1400 990 
International Fanfold 12 81/4 1440 990 
Computer Paper 11 14 1320 1680 
Standard Envelope 4 1/s 91/4 495 1140 



240 Printing 

4.6 Printing-Related Resources 

4.6.1 Resource Type 'PREC ' 

Version stamp (2 bytes) 

Printer Information 
subrec:ord [4.1.3) (14 bytes) 

Paper rectangle (8 bytes) 

Style subrecord [4.1.4) (8 bytes) 

Print-time information 
subrec:ord [4.1.3) (14 bytes) 

Auxiliary information 
subrec:ord [4.1.6) (16 bytes) 

Job subrecord [4.1.5] (20 bytes) 

Padding 
(38 bytes) 

Structure of a ' PREC' resource 

Notes 

1. A resource of type ' PREC' nominally contains a print record (4.1.2). 

2. Two print records are normally included in the prtnter resource file 
[4.6.3). Number o contains the standard, default settings and 
characteristics for this printer: number 1 contains those from the last 
prtnting operation actually performed, allowing the previous settings to 
"stick to the prtnter." 

3. A given prtnter resource file may include any number of additional 
' PREC ' resources, with arbitraiy resource IDs. These are not limited to 
actual prtnt records: their contents and internal format are determined 
entirely by the file's own prtnting routines. 



241 [4.6.2) Resource 1)'pe • PDEF. 
~~~~~~~~~~~~-

4. In particular, 'PREC' number 3 ls used for a paper size table [4.5.2)
defining the standard paper sizes to be offered to the user In the style
dialog (4.2.3). An application program can override these with an
alternate table of its own, stored as 'PREC 1 number 4 in the program's
application resource file.

~ lal ... _____ As_s_e_m_h_l_y_La_n_g...,._1a_g_e_r_n_fo_1_m_a_t1_on ______ _

Assembly-klfiguage constants:

Name Value Meaning

LPrintType $50524543
IPrintDef 0
IPrintLst 1

Resource type for print records (' PREC ')

Resource ID of default print record
Resource ID of last-used print record

4.6.2 Resource Type 'PDEF •

• • •

Jump table (indefinite length)

!
!
! ·-·-·-----·--·---·-·-···-·-· ... 1 .. llll•lll•IN•l-HllNll•11l•1le11e1t1•1H-llllHt ... l .. ll

Code of
printing routines

(indefinite length)

!
·-·-·-·······-.. -·-·--·-·· .. ---·-···--··--··r·-·---··-· ... ···

i
I

Structure of a ' PDEF' resource

• • •

242 Printing

Notes

1. Each printer resource file has Its own set of 'PDEF' resources,
containing the executable code of the printing routines for one particular
type of printer.

2. Each 'PDEF' resource begins with a small jump table giving the
locations of the various routines within the body of the resource. For
each routine, the table contains an executable jump (JMP) instruction
leading to the routine's entry point

3. ' PDEF ' resources o to 7 contain the standard printing routines:

Resource
ID Description

0

1

2

3

4

5

7

Draft printing

Spooling

Printer-specific method #1

Printer-specific method #2

Dialogs/print records

Spool printing

Miscellaneous

Routines

PrOpenDoc [4.3.1]
PrCloseDoc [4.3.1]
PrOpenPage [4.3.2]
PrClosePage [4.3.2)

P rOpenDoc (4.3.1]
PrCloseDoc [4.3.1)
P rOpenPage [4.3.2]
PrClosePage [4.3.2]

PrOpenDoc [4.3.1)
PrCloseDoc [4.3.1]
PrOpenPage [4.3.2]
P rClosePage [4.3.2]

P rOpenDoc (4.3.1]
P rCloseDoc [4.3.1]
P rOpenPage [4.3.2]
P rClosePage [4.3.2]

PrintDefaul t [4.2.2]
PrStlDialog [4.2.3]
PrJobDialog [4.2.3]
P rSt 1I nit [4.5.1]
PrJobini t [4.5.1)
PrDlgMain (4.5.1)
PrValidate [4.2.2)
PrJobMerge [4.2.3)

PrPicFile [4.3.3]

PrGeneral [TN #128]

243 [4.6.3) Printer Resource Files

4. Resources o to 3 contain different versions of the four standard
document printing routines (PrOpenDoc, PrCloseDoc, PrOpenPage,
PrClosePage), specialized for different printing methods. The resource
ID in each case corresponds to the value of the bJDocLoop field In the
print record's job subrecord (4.1.5): o and 1 for draft printing and
spooling, 2 and 3 for optional, printer-specific printing methods.

5. Resource number 7 contains a single routine, PrGeneral, which
provides a variety of advanced operations for specialized needs. At
present these include determining the range of dot resolutions available
on a given printer, printing bit maps on the ImageWriter in draft mode,
and finding the page orientation (portrait or landscape) currently In
effect. For information on these operations and on the P rGene r a 1
mechanism itself, see Macintosh Technical Note #128.

6. A given printer resource file may include any number of additional
'PDEF' resources containing supplementary code needed by the main
printing routines. Such extra resources may have any ID numbers other
than those shown in the table.

4.6.3 Printer Resource Files

Contents of a printer resource file:

Resource
Type

[Signature]

'BNDL'

'FREF'

'ICN/1 1

'DRVR'

'PDEF'

'PREC'

Resource
ID Description

0 Autograph [1:7.5.4, note 6]

128 Finder bundle [1:7 5.4]

128 File reference (' PRES ' or ' PRER') [1:7 .5.3]

128 Icon for printer resource file [1:5.5.4]

$EOOO Printer driver [3.3.l]

0 Draft printing [4.6.2]

1 Spooling [4.6.2]

2 Printer-specific method #1 [4.6.2]

3 Printer-specific method #2 [4.6.2]

4 Dialogs/print records [4.6.2]

5 Spool printing [4.6.2]
7 Miscellaneous [4.6.2]

0 Default print record [4.6.1]

1 Last-used print record [4.6.1]
3 Default paper sizes [4.5.2]

244 Printing

Resource Resource
1)'pe ID Description

'STR ' $E001 Default spool file name [1:8.4.2]

'DLOG' $EOOO Style dialog [Il:7 .6.2]
$E001 Job dialog [Il:7 .6.2]

'DITL' $EOOO Item list for style dialog (11:7 .6.3]
$E001 Item list for job dialog [11:7.6.3)

Notes

1. Printer resource files have a file type [1:7.3.1) of 'PRES' ("printer
resource") or ' PRER' ("printer resource, remote"). The file's creator
signature identifies the specific printer to which this resource file
belongs (for example, ' IWRT ' for ImageWriter or 'LWRT ' for
LaserWriter).

2. The file always includes a printer driver (3.1.1. 3.3.1) and a series of
' PDEF' resources (4.6.2) containing the code of the standard printing
routines for this particular printer.

3. Two print records [4.1.2) are normally included in the file as resources
of type 'PREC' [4.6.1). Number o contains the standard, default settings
and characteristics for this printer: number 1 contains those from the
last printing operation actually performed, allowing the previous
settings to '"stick to the printer."

4. ' PREC' number 3 contains a paper size table [4.5.2) defining the
standard paper sizes to be offered to the user in the style dialog (4.2.3).
A program can override these with an alternate table of its own, stored
as ' PREC ' number 4 in the program's application resource file.

5. ' s TR ' resource number $ E o o 1 (- 81 91) gives the default file name for
spooling printed output temporarily to the disk.

6. 'DLOG' resources $EOOO and EOO 1 (-819 2 and - 8191), along with their
respective item lists, define the printer's standard style and job dialogs,
respectively.

7. The file also includes a set of Finder resources for installing it in the
desktop file and displaying its icon on the Finder screen. These include

• an autograph (or "version data") resource [1:7.5.4, note 6) whose
resource type ls the same as the file's creator signature

• a file reference resource (' FREF' (1:7.5.3)) for the file's file type
('PRES' or' PRER ')

245 [4.6.3) Printer Resource Ftles

• an icon list resource(' ICN/I' [1:5.5.4)) containing the icon and mask
for displaying the file on the screen

• a bundle resource (' BNDL' [1:7.5.4)) to tie the other Finder resources
together

8. Besides the resources shown In the table, the printer resource file may
contain any number of additional resources of any types, as needed by
the printing code for this specific printer. In particular, lt may Include
any number of additional 'PDEF • [4.6.2) and • PREC' [4.6.1] resources,
holding supplementary code and data, respectively, for use by the file's
printing routines.

CHAPTER
-- ~F:...::.,~~::.:==~11 ·------------------• --115u-------------------~~ ~----------
-- L.:=~_:·::.:...··,-.Jj ------------------·

Sound and Fury

One aspect of the Macintosh that's often overlooked Is its sound
generating capability. Used judiciously, sound can be a valuable
addition to a program's user interface, offering a variety of useful
cues and signals to supplement what the user sees on the screen.
With the help of the Toolbox, you can use the Mac's built-in speaker
to produce a wide range of sounds, from beeps to jingles to speech to
four-part harmony. In this chapter we'll learn how.

The sound facilities covered here are those of the "classic"
Macintosh architecture, and are available on all models. The
Macintosh Il features more powerful, more flexible sound capa
bilities, based on a custom-designed stereo sound chip with
extended Toolbox support; our discussion of these features will
have to wait untilVolume Four.

Fundamental Concepts

Before we can discuss how the Macintosh produces sound, let's begin
with some basic terms and concepts about sound in general. Figure

247

248 Sound and Fuiy

5-1 shows a graph of a simple sound wave. The horizontal axis
represents the passage of time, while the vertical axis measures some
continuously varying physical quantity' such as air pressure or
voltage. The value of this physical quantity at any given instant (that
is, the vertical height of the curve at any point along the horizontal
axis) is called the magnitude of the sound.

Magnitude

~Phase~ I- Period (1 cycle) -I

i----- Frequency {cycles per second)

Figure 5-1 Anatomy of a sound wave

} Amplitude

Time (seconds)

The typical sound wave shown in the figure varies in a cyclically
recurring way, lmown as a sine wave because it's the graph of the
sine function we all remember lovingly from high-school trigonome
try. The maximum magnitude that the cuive reaches at the peak of
each wave is called its amplitude, and determines the volume or
loudness of the sound. Each repetition of the sine wave, including
one complete peak and valley and returning to the original magni
tude level, is called a cycle; the time needed to complete one cycle,
measured along the horizontal (time) axis, is the period of the wave.

The spatial distance the wave travels in the course of one cycle
is its wavelength:

wavelength = period x speed

Notice that the wavelength depends not only on the period of the
wave, but also on the speed of sound, which in tum varies with
temperature, pressure, and the physical medium through which it is
propagating. In air, at sea level, at 0° C. (32° F.), this comes to
approximately 331 meters (1087 feet) per second, or about 7 41 miles

249 Fundamental Concepts
~~~~~~~~~~~-

per hour. Thus a wave with a period of 1 millisecond (one thousandth 
of a second) would have a wavelength of about 331 millimeters, or a 
bit more than a foot. 

The reciprocal of the period is called the.frequency, and tells the 
number of times the wave cycle repeats each second: 

frequency = 1 I period 

This determines the pitch of the sound as perceived by the ear. Since 
the period is measured in seconds per cycle, the frequency is 
expressed in cycles per second, nowadays usually called hertz after 
the nineteenth-century German physicist Heinrich Hertz. The wave 
in our previous example, with a period of 1 millisecond, would thus 
have a frequency of 1000 cycles per second, or 1 kilohertz (kHz); a 
period of 1 microsecond (one millionth of a second) would correspond 
to a frequency of 1,000,000 cycles per second, or 1 megahertz (MHz). 
The wave in Figure 5-1 has a frequency o~ only 3 hertz, which is really 
more of a rumble than a sound: for those not born on the planet 
Krypton, the normal range of audible frequencies runs from abo~t 20 
Hz to 20 kHz, or about 20 to 20,000 cycles per second. 

One last property of the wave shown in Figure 5-1 is its phase, 
which measures bow far its cycle is shifted along the axis relative to 
some fixed reference point. The reference point in the figure is the 
vertical axis, which represents an arbitrarily chosen "zero point" in 
time. More commonly, the phase is measured relative to the begin
ning of some other wave (often one with a different frequency), and 
expresses the relationship in time between the peaks ~d valleys of 
the two waves. Phase is normally stated as an angle representing a 
fraction of a complete cycle, either in degrees (one cycle equals 360°) 
or in radians (one cycle equals 21t radians). In the figure, the vertical 
axis falls five-eighths of the way through one cycle, or three-eighths 
in advance of the next; thus the phase would be expressed as 225° 
or 51t/4 radianS (or equivalently, as -135° or-31t/4 radians). 

Not all sound waves are pure sine cuives. The overall shape of 
the wave, called the wavef onn, determines the nature or character of 
the sound as it presents itself to the ear. This subjective quality is 
called timbre (a French word that rhymes more or less with "amber," 
not "limber"), and is what distinguishes the sound of, say, a clarinet 
from that of a kazoo. A sine wave corresponds to a pure, undifferen
tiated musical tone; other waveforms produce other kinds of sound. 



250 Sound and Fury 

In general, the more regular or symmetrical the cmve, the more 
pleasing it will be to the ear. 

Figure 5-2 shows examples of some typical types of waveform. 
The first, a square wave, oscillates directly from its maximum 
positive to its maximum negative amplitude, with no gradual 
transition in between. This produces a flat. synthetic-sounding 
timbre like the Macintosh SysBeep (11:2.8.1]. The second, a sine wave 
like the ones we've been discussing. yields a more rounded, musical
sounding tone. Finally, most of the sounds we actually encounter in 
real life have irregular, complex waveforms like the third one shown 
in the figure, which might represent a human voice, a doorbell, or a 
freight train. As we'll see, you can program the Macintosh Toolbox to 
produce any of these types of sound, as the occasion demands. 

0000000000 
LJLJLJLJLJLJLJLJLJO 

Square wave 

/\ /\ /\ /\ /\ /\ /\ /\ /\ /\ 
VVlJVVVVVVV 

Sine wave 

r...fV.f\ A 6 • (If\ M fl. . . A 

Complex wave 

Figure 5-2 Typical waveforms 



251 The Sound Generator 

The Sound Generator 

Sound production is controlled by a chip called the Synertek SY6522 
Versatile Interface Adapter, or VIA, which also handles a variety of 
other devices such as the mouse, keyboard, disk motor, and real
time clock. On the "classic" Macintosh, the VIA iS assisted in its 
sound-related activities by a more specialized Sony sound chip that 
actually drives the speaker. (The Macintosh II has its own custom 
Apple sound chip instead.) A flag bit in one of the VIA's data registers 
controls whether the speaker is enabled or disabled; turning this flag 
off suppresses all sound generation. Although it's possible to com
municate directly with the VIA at the assembly-language level, the 
Toolbox normally handles all such interactions for you, so you 
needn't concern yourself with the details. 

Sound generation by the VIA is synchronized to the video 
display circuitry, so before we can talk about it we'll have to learn a 
little about video timing. To create the image you see on the screen, 
a moving electron beam scans continuously from left to right and top 
to bottom, "painting" pixels as it goes. On the standard Macintosh 
display, each horizontal scan line contains 512 pixels. On reaching 
the right edge of the screen, the beam shuts off and returns to the left 
edge one place farther down, ready to begin the next line. ThiS pause 
to reposition the electron beam is called the horizontal retrace (or 
horizontal blanking) interval, and takes as long as painting another 
192 pixels on the screen (see Figure 5-3). Thus the total elapsed time 
from the beginning of one scan line to the beginning of the next is 
equivalent to 704 pixels altogether. 

The standard diSplay iS 342 lines high from top to bottom, and 
is repainted, or re.freshed, 60 times per second. Like the horizontal 
retrace at the end of each scan line, there's also a vertical retrace or 
vertical blanking interval when the· beam reaches the bottom-right 
comer of the screen and returns to the top-left to start again. (Think 
of it as "the pause that refreshes.") The vertical retrace takes the 
equivalent of an extra 28 scan lines, for a total of 370. The time 
needed to paint one complete screen image, or frame, and come back 
to the beginning is thus equivalent to 370 lines of 704 pixels each, or 
260,480 pixels in all. If the refresh rate were exactly 60 Hz (that is, 
60 frames per second), then the overall diSplay rate would come to 
15,628,SOOpixelspersecond, or 15.6288 MHz. Infact, however, this 
figure is not quite accurate: the actual pixel rate is 15.6672 MHz, 
yielding a true screen refresh rate of approximately 60.15 Hz. 



p 
Horizontal retrace 

(=192 pixels) 

~ 

252 Sound and Fuiy 

512 pixels 

--"' 
jllC. •"' 

._:- ... ~ - - - ..... 

._ 

._ 

._ 

·" 
- _ .. ~ -

--"' 
"' 

Vertical retrace ... 342 
·------~ (= 28 scan lines) scan 

lines 

_.J 
.::... ~ 

_.J 

'"i .... 
.... _.., 

"': 

Figure 5-3 Horizontal and vertical retrace 

If the sound-enable bit in the VIA's data register is set. a single 
8-bit sound magnitude (you might call it a "sound byte") is sent to the 
built-in speaker at the end of each scan line. when the video circuitry 
pauses for its horizontal retrace. At 60.15 frames per second and 370 
sound samples per frame (counting the extra 28 that occur during 
the vertical retrace intetval). this gives an effective sampling rate of 
22,257 samples per second (22.257 kHz), or one approximately every 
44.93 microseconds. The magnitude levels for one complete frame 
are kept in a sound buffer in memory and read out one at a time, at 
the horizontal retrace interval; the buffer is refilled with another 370 
values during the vertical retrace interrupt at the end of the frame. 
You can control the sounds to be emitted by the speaker by storing 
your own values directly into the buffer, but it's generally more 
convenient to let the Toolbox do it for you, using the techniques 
discussed later in this chapter. 

The exact location of the sound buffer in memory depends on the 
model and memory configuration of the Maciri.tosh you're run
ning on, and is kept in the assembly-language global variable 



253 The Sound Generator 

SoundBase [5.1. l]. The same memory buffer is actually shared 
by both the sound generator and the circuitry that controls the 
floppy disk drive. The buffer is 370 words long instead of 370 
bytes: the first (even-addressed) byte of each word holds a sound 
level, while the second is used to control the speed of the disk 
motor. Never ever ever (ever!) store into any odd-numbered byte 
in this buffer. 

Magnitude values taken from the sound buffer drive the speaker 
by a technique known as pulse-width encoding. This is the kind of 
fancy-sounding term that engineers love to toss around to mystify 
and impress people, but all it really means is that an electrical pulse 
is sent down a wire to the sound chip, and that the duration (width) 
of the pulse depends on the specified sound magnitude, from o to 
255. The sound chip converts the pulse width into a voltage, which 
is further modified (attenuated. the engineers would say) by a 3-bit 
global volume setting, to arrive at the actual voltage level to be applied 
to the speaker. As this voltage varies, the speaker converts it into a 
series of fluctuating pressure waves. which propagate through the air 
until they are detected by a pair of analog acoustic receivers built into 
the sides of your head. These, in turn, relay the signal to an ingenious 
integrated neural decoding device (implemented entirely in meat
ware). at which point . . . but I digress. 

The user normally sets the speakervolumevia the Control Panel 
desk accessory; the setting is kept in battery-powered .. parame
ter RAM" on the clock chip.and copied Into main RAM each time 
the system is started up. The Toolbox provides a pair of routines, 
GetSoundVol and SetSoundVol [5.2.2], for reading and chang
ing the volume setting, but ordinarily you should just leave it 
alone. If you do have some special reason to set the speaker 
volume yourself, be sure to save the user's previous setting and 
change it back again when you're through. 



254 Sound and Fury 

Defining and Playing Sounds 

All sound-related operations are handled by the sound driver, which 
resides in ROM and is opened automatically whenever the system is 
started up. The sound driver is named . Sound and has a driver 
reference number of -4. As mentioned earlier, you can ask it to 
generate any of three different kinds of sound, according to your 
needs: 

• Square-wave sound consists of a sequence of tones forming a 
single melodic line. Each tone has a square waveform, produc
ing a flat, synthetic-sounding timbre. 

• Four-tone sound consists of as many as four separate tones, or 
"voices," combined harmonically. Each voice is specified inde
pendently, with any desired pitch and timbre, and in any phase 
relationship to the other voices. 

• Free-jonn sound consists of a single waveform of arbitrary length 
and complexity, representing any desired sound (such as 

· speech, electronically sampled music, or sound effects). 

Each type of sound has its own synthesizer, which is not a piece of 
fancy electronic hardware, but just a part of the sound driver 
software itself. You define the sound you want to play by supplying 
a synthesizer record that specifies the desired pitch, timbre, dura
tion, and so forth. There are three types of synthesizer record, one for 
each type of sound; they're described in detail in the sections that 
follow. All three begin with an integer-valued type code identifying the 
type of record and the kind of sound it represents: SWMode, FTMode, 
or FFMode, for square-wave, four-tone, or free-form sound, respec
tively [5.1.1]. 

At the driver level, sound operations are initiated by a Write call 
[3.2.2] to the sound driver. The i oRe fNum field in the parameter block 
[3.1. 5) must contain - 4, the reference number of the sound driver. 
The ioBuffer field points to a synthesizer record defining the sound 
to be played; ioReqCount gives the size of this record in bytes. In 
assembly language you have to issue the driver call directly, but in 
Pascal you usually call the Toolbox routine Starts ound [5.2.1) to do 
it for you. 

On receiving a Write request. the sound driver looks at the type 
code in the first word of the synthesizer record to see which kind of 
sound to play, and passes control to the corresponding synthesizer. 
The synthesizer examines the rest of the record for the specific 
characteristics of the sound, calculates the first frame's worth of 



255 Defining and Playing Sounds 
~~~~~~~~~~~~ 

magnitude samples, and stores them into the sound buffer in
memory. Then it installs a task in the system's vertical retrace queue,
which will automatically be called at each vertical retrace interrupt
to refill the buffer with the next set of values. Finally. it turns on the
sound-enable bit in the VIA data register, causing the sound genera
tor to begin reading values out of the buffer and sending them to the
speaker.

Like all input/ output operations, sound requests can be issued
either synclu"onously or asynclu"onously. Synchronous requests are
carried out immediately, with control returning to the calling pro
gram only after the operation has been completed. Asynchronous
requests, on the other hand, are simply entered in a system queue for
eventual execution: control returns immediately to the calling pro
gram. which can go about its business while the sound is being
played. On asynchronous requests. the program may optionally
supply a pointer to a completion routine, either in the ioCompletion
field of the parameter block [3.1.5) or as a parameter to the Toolbox
StartSound routine [5.2.1). If such a routine is present, the Toolbox
will call it after it finishes playing the requested sound. This can be
useful, for instance, for chaining sounds together by having each
sound's completion routine issue the request for the next; another
approach is for the completion routine to post an application-defined
event [11:2.1.2, 11:2.3.2], which will trigger the next sound request
when it's detected by the program's main event loop.

Completion routines must be written in assembly language, and
must presexve the contents of all processor registers except
AO-Al and DO-D2. On entry to the routine, AO will point to the
parameter block for the operation just completed and DO will
contain a result code indicating success or failure. Also, since
these routines are executed at the interrupt level, they must not
attempt to allocate any new storage from the heap or call any
Toolbox routines that may do so.

A NIL value for StartSound's compRoutine parameter de
notes an asynchronous operation with no completion routine: a
value of PO INTER (-1) calls for synchronous execution. In
assembly language, the ioCompletion field should be set to
NIL in both cases; bit 10 of the trap word issuing the driver
request distinguishes between synchronous (0) and asynchro
nous (1) operations.

256 Sound and Fuiy

Once you've started an asynchronous sound operation, you can
cancel it by calling the Toolbox routine StopSound [5.2.1] or by
issuing a Kill IO call [3.2.3] directly to the sound driver. (There's no
way to cancel a synchronous operation. since by definition your
program doesn't get control back until after the operation is finished.)
Both StopSound and KillIO immediately halt the operation cur
rently in progress and cancel any others that may be pending in the
1/0 queue. The two differ slightly in their handling of completion
routines. however: Stop Sound executes only the completion routine
of the operation in progress. while Kill IO executes those of the
pending operations as well.

The Toolbox routine SoundDone [5.2.1] tests whether all previ
ously issued sound requests have been completed. It returns TRUE if
there are no current or pending sound operations. FALSE if there are
any. To obtain this information in assembly language, you can check
the value of the ioResul t field [3.1.5] in each operation's parameter
block: this field is set to 1 when a request is entered in the queue, then
replaced with a result code when the operation is completed.

Square-Wave Sound

The synthesizer record defining a square-wave sound [5.1.2] consists
of a mode field containing the constant SWMode [5.1.1]. followed by an
array of single tones to be strung together into a melodic line. Each
tone's pitch, amplitude. and duration are defined by a record of type
Tone. The array nominally contains 5001 tones. but in fact you can
make it any length you need up to this maximum; the end of the array
is marked by a dummy Tone record with all its fields set to O.

The amplitude of each tone is measured on a scale from o to 2 5 5,
and its duration is given in ticks, or sixtieths of a second. (We now
know that there are really about 60.15 ticks per second, but never
mind.) The pitch is specified by an integer count, which gives the
period of the square wave-that is, the length of time it takes to
oscillate through one full cycle, as we saw earlier in Figure 5-1. This
period is expressed in a peculiar unit, equal to the time needed for the
video circuitry to paint 20 pixels on the screen. (Why 20? Who knows?
Maybe the programmer ran out of toes.) At the standard pixel rate of
15.6672 MHz, there are 783,360 such count units each second
(15,667,200 divided by 20). Since the frequency of the wave is the
reciprocal of the period, we get the following relationship between the
frequency and the count, as given in the synthesizer record:

257 Defining and Playing Sounds
~~~~~~~~~~~-

count = 783360 I frequency 

For example, the standard reference frequency used by piano tuners, 
440 Hz for the A above middle C, would be represented by a count 
value of 178 o (783,360 divided by 440, rounded to the nearest 
integer). 

The figure in section [5.1.2] shows the proper count values for 
the single octave beginning with middle C. If necessary, you can 
transpose these values to a different register by halving the count 
(equivalent to doubling the frequency) for each octave upward, or 
doubling the count (halving the frequency) for each octave down
ward. For example, to play an E-flat two octaves above middle C, you 
would start with the count value shown for E-flat (decimal 2518, or 
hexadecimal $ o 90 6) and divide by 4 (2 to the second power, for a two
octave transposition), yielding a count of 6 3 o, or $ o 2 7 6. 

Musical purists will note that these values are. fol"· mi eqQ.al
tempered scale such asa piano keyboard, in which n-.sharp and 
E.;.flat, for instance, are the same note. Violin1$ts and qther 
misfits accustomed to just-tempered tuntnglmowthatthese are 
really two distinct notes-but to those of us without canine 
blood, the difference is not readily discernible. If you'reasticlder 
for precision, you can find a table of just-tempered coµntvalues 
inVolume Il of Apple's Insftle Macintosh manual; if youvenever 
heard of the "comma of Didymus," just use the values sP.awn in 
[5.1.2) and don't give it a second thought. 

Program 5-1 (Enterprise) shows how to use square-wave 
sound to play a simple, probably familiar melody. First we define a 
series of constants representing the count values for the notes of the 
scale, taken from section [5.1.2]. (We've included a full set of these 
constants for general use, even though this particular program 
doesn't actually use all of them.) The duration valuesforwhole-notes, 
half-notes, dotted quarters, and so on are defined in relative terms, 
in beats rather than seconds or ticks; we can then scale them to any 
desired tempo, fast or slow. The tempo itself is expressed as a 
metronome setting in beats per minute, and can easily be adjusted 
by changing a single constant definition. 



258 Sound and Fury 

Program 5-1 Define and play a square-wave sound 

procedure Enterprise: 

{ Define and play a square-wave sound. 

const 

CNatural 2994: 

CSharp 2826: 

DFlat 2826: 

DNatural 2668; 

DSharp 2518; 

EFlat 2518; 

ENatural 2377: 

FNatural 2243: 

FSharp 2117: 

GFlat 2117: 

GNatural 1998: 

GSharp 1886; 

AFlat 1886: 

ANatural 1780: 

AS harp 1680: 

BFlat 1680; 

BNatural 1586; 

WholeNote 4: 

DottedHalf 3: 

HalfNote 2: 

DottedQuarter 1. 5: 

QuarterNote 1: 

DottedEighth 0. 75: 

EighthNote 0.5: 

Full Volume 255: 

TicksPerMinute 3600: 

nTones 8: 

metronome 120; 

var 

the Sound SWSynthPtr: 

rawPtr Ptr: 

soundSize INTEGER: 

tempo REAL: 

{Count value for C-natural [5.1.2)} 

(Count value for C-sharp [5.1.2) } 

(Count value for D-flat [5.1.2]} 

{Count value for D-natural [5.1.2]} 

{Count value for D-sharp [5.1.2]} 

{Count value for E-flat [5.1.2]} 

(Count value for E-natural [5.1.2]} 

{Count value for F-natural [5.1.2]} 

(Count value for F-sharp [5.1.2]} 

{Count value for G-flat [5.1.2]} 

(Count value for G-natural [5.1.2]} 

(Count value for G-sharp [5.1.2]} 

(Count value for A-flat [5.1.2]} 

(Count value for A-natural [5.1.2]} 

(Count value for A-sharp [5.1.2]} 

(Count value for B-flat (5.1.2)} 

(Count value for B-natural [5.1.2)} 

{Duration of whole-note in beats} 

(Duration of d<>1.ted half-note in beats} 

{Duration of half-note in beats} 

(Duration of dOlted quarter-note in beats} 

(Duration of quarter-note in beats} 

{Duration of d<>1.ted eighth-note in beats} 

{Duration of eighth-note in beats} 

(Amplitude setting for full volume} 

(Number of system clock ticks per minute} 

(Number of tones in melody} 

(Metronome setting (beats per minute)} 

{Pointerto synthesiur record [5.1.2]} 

{Untyped pointer for creating record [1:3.1.1]} 

(Size of synthesizer record in bytes} 

(Number of clock ticks per beat} 



259 Defining and Playing Sounds 
~~~~~~~~~~~~~~~ 

Program 5-1 Define and play a square-wave sound (conttnuedJ

begin {Enterprise}

soundSize ·= (nTones+l)*SIZEOF(Tone) + SIZEOF(INTEGER): {Calculatesizeofrecord[5.1.2]}

rawPt r NewPtr (sound Size) : {Allocate block from heap (1:3.2.1)}

the Sound SWSynthPtr(rawPt r) : {Convert to a typed pointer [5.1.2)}

with theSoundA do

begin

mode := SWMode:

tempo := TicksPerMinute I metronome:

with triplets[O] do

begin

count ·= CNatural:

amplitude ·= FullVolume:

duration ·= ROUND(DottedQuarter• tempo)

end: {with triplets[O]}

with triplets[l] do

begin

count FNatural:

amplitude Full Volume:

duration ROUND(EighthNote * tempo)

end: {with triplets[l]}

with triplets[l] do

begin

count BFlat:

amplitude FullVolume:

duration ROUND(DottedHalf * tempo)

end: {with triplets[2]}

with triplets[3] do

begin

count ·= ANatural:

amplitude Full Volume:

duration ROUND(QuarterNote * tempo)

end: {with triplets[3]}

{Specify square-wave sound (5.1.2, 5.1.l]}

{Find number of ticks per beat}

{Define first tone (5.1.2))

{Set pitch [5.1.2)}

{Set volume (5.1.2]}

{Set duration in ticks [5.1.2]}

{Define next tone [5.1.2)}

{Set pitch (5.1.2]}

{Set volume (5.1.2)}

{Set duration in ticks (5.1.2]}

{Define next tone (5.1.2)}

{Set pitch (5.1.2]}

{Set volume (5.1.2)}

{Set duration in ticks [5.1.2]}

{Define next tone [5.1.2)}

{Set pitch [5.1.2)}

{Set volume [5.1.2]}

{Set duration in ticks [5.1.2]}

260 Sound and Fury

Program 5-1 Define and play a square-wave sound (conttnuedJ

with triplets[4] do

begin

count ·= FNatural:

amplitude Full Volume;

{Define next tone (5.1.2)}

{Set pitch (5.1.2]}

(Set volume (5.1.2]}

duration ROUND((HalfNote/3) • tempo) {Set duration in ticks [5.1.2)}

end: {with triplets[4]}

with triplets[S] do

begin

DNatural:

{Define next tone (5.1.2)}

{Set pitch (5.1.2]} count

amplitude

duration

Full Volume: {Set volume [5.1.2]}

ROUND ((HalfNote/3) • tempo) {Set duration in ticks (5.1.2]}

end: {with triplets[5]}

with triplets[6] do {Define next tone (5.1.2)}

begin

count GNatural: {Set pitch (5.1.2]}

amplitude Full Volume: {Set volume [5.1.2]}

duration ROUND ((HalfNote/3) • tempo) {Set duration in ticks (5.1.2]}

end: {with triplets[6]}

with triplets[7] do

begin

count CNatural div 2:

amplitude FullVolume:

duration ·= ROUND(WholeNote • tempo)

end: {with triplets[7]}

with triplets[B] do

begin

count

amplitude

O:

0:

duration 0

end {with triplets[SJ}

end : {with theSound"}

StartSound (rawPtr, soundSize. NIL):

DisposPtr (rawPtr)

end: {Enterprise}

{Define next tone [S.1.2]}

{Set pitch (5.1.2]}

{Set volume (5.1.2)}

{Set duration in ticks [5.1.2]}

{Dummy tone to mark end of sequence [5.1.2)}

{Set pitch (5.1.2)}

{Set volume (5.1.2]}

{Set duration in ticks (5.1.2]}

{Play the sound (5.2.1]}

{Dispose of synthesizer record [1:3.2.2]}

261 Defining and Playing Sounds
~~~~~~~~~~~-

The first thing our sound procedure does is calculate the size of 
the synthesizer record and allocate a block for it from the heap. The 
record must be big enough to hold a Tone record [5.1.2] for each note 
in the melody, plus one more for the dummy zero entry at the end and 
an extra 2 bytes for the mode field. Since we11 just be playing the 
sound once and then discarding it, we can afford to allocate it as a 
nonrelocatable block. The Toolbox allocation routine NewPtr (1:3.2.2] 
returns an untyped pointer to the block, which we immediately 
convert to type SWSynthPtr [5.1.2] so we can access the record's 
internal fields. (If the record were going to remain allocated for a 
longer period of time, we would probably want to make it a relocatable 
block instead, to avoid fragmenting the heap. We would then have to 
lock the block and dereference its handle each time we played the 
sound, and of course remember to unlock it again afterward
perhaps by using a completion routine.) 

Now that we have a pointer to the synthesizer record, we can 
proceed to fill in its fields. First we set the mode field to indicate 
square-wave sound, and calculate the scale factor for the specified 
tempo, in ticks per beat. Then we step through the array of Tone 
records, setting each note's pitch (count), volume (amplitude), and 
duration. Notice how in note 7 we start with the nominal count 
constant for C-natural and divide it by 2, to transpose it to the octave 
above middle C. After setting the last tone to all zeros to mark the end 
of the sequence, we call Start Sound [5.2.1] to play the sound and 
then DisposPtr [1:3.2.2] to deallocate the synthesizer record. 

Four-Tone Sound 

Whereas the synthesizer record for square-wave sound can represent 
a whole series of tones to be played in sequence, a four-tone 
synthesizer record [5.1.3] just denotes a single, unchanging sound. 
The sound may consist of as many as four distinct tones, or "voices," 
combined harmonically to form a chord; their pitches, timbres, and 
phase relationships are given by a separate sound record [5.1.3]. 
located via a pointer in the sndRec field of the main synthesizer 
record. Although the four voices are defined independently, any 
change in any one of them requires a whole new sound record and a 
separate call to StartSound [5.2.1]. 

The sound record begins with a duration field that tells how 
long the sound lasts. in ticks. This is followed by the fields that define 
the individual characteristics of the four voices. The timbre of each 



262 Sound and Fury 

voice is given by a Wave array (5.1.3), which holds 256 byte-length 
magnitude samples representing one or more complete cycles of the 
voice's waveform. Negative values are not allowed in the Wave array, 
so the magnitude samples must be normalized: that is, offset upward 
by the same fixed amount, so that they all come out positive (see 
Figure 5-4). The number of samples corresponding to one cycle of the 
wave is called the wavelength. Typically the entire Wave array 
represents a single cycle, so the wavelength is 256; but other values 
are also possible. For instance, if the waveform were repeated four 
tunes in the space of a 256-byte array, the wavelength would be 64. 

Recall that the sound generator sends one magnitude value to 
the speaker each tune the video circuitry performs a horizontal 
retrace, or approximately 22,257 tunes per second. In the case of 
four-tone sound, the effective sound magnitude is found by adding 
together the individual magnitudes for the four independent voices, 
taken from their respective Wave arrays. The sound record gives a 
phase offset for each voice, which is the index within the array from 
which the first sample is to be taken. This determines where in the 
waveform the sound begins playing. and thus controls the phase 
relationship between this voice and the others. 

Magnitude 

Time 

Figure 6-4 Normalized waveform 

Each voice also has a sampling rate, a fixed-point number that 
tells how many elements of the Wave array to skip between one sound 
sample and the next: for example, if the sampling rate is 20, every 
twentieth element of the arraywill be sampled. Sampling rates ofless 
than 1 cause the same array element to be used several tunes in 
succession: a rate of o . 2 5. for example, repeats each element for four 
consecutive sound samples. On reaching the end of the array, the 



263 Defining and Playing Sounds 
~~~~~~~~~~~~-

sound driver simply cycles back to the beginning and repeats the
waveform again, as many times as necessary to make the sound last
for the specified duration.

Since the sampling rate controls how long it takes to complete
one pass through the Wave array. it effectively determines the pitch
of the sound. At 22.257 sound samples per second (each
representing rate bytes of the array) and wavelength bytes perwave
cycle, the resulting frequency is given by the formula

frequency = 22257 * (rate/wavelength)

or

rate = (frequency*wavelength) I 22257

For example. at a wavelength of 256 bytes per cycle. the reference
frequency of 440 Hz (A above middle C) corresponds to a sampling
rate of approximately s. 0609. Sampling rates for the octave begin
ning with middle C are shown in the figure in section [5.1.3]. (Once
again, the values given are for equal-tempered rather than just
tempered tuning.) To transpose these values to different registers.
double the given rate for each octave upward, or halve it for each
octave down.

Program 5-2 (PlayChord) uses four-tone sound to play a single
four-note chord. a C-major dominant seventh. Once again, we begin
by defining pitch constants for the notes of the scale. this time using
the sampling rates given in section [5.1.3] instead of the count values
from [5.1.2]. We specify these constants in hexadecimal rather than
decimal form. to make it easier to typecast them later to type Fixed.
as required for the four-tone sound record.

Program 5-2 Define and play a four-tone sound

procedure PlayChord:

{ Define and play a four-tone sound. }

con st

CNatural = $00030250:

CSharp $0003302C:

DFlat $0003302C:

DNatural $000360B5:

{Sampling rate for C-natural [5.1.3]}

{Sampling rate for C-sharp (5.1.3))

{Sampling rate for D-flat [5.1.3)}

{Sampling rate for D-natural [5.1.3]}

264 Sound and Fury

Program 6-2 Define and play a four-tone sound (continued)

var

DSharp
EFlat

ENatural

FNatural
FSharp
GFlat

GNatural

GS harp
AFlat

ANatural
AS harp

BFlat
BNatural

$00039420:
$00039420:

$0003CA99:

$00040450:

$00044176:
$00044176:

$0004823E:

$0004C6El:
$0004C6El:

$00050F98:
$00055CA2:

$00055CA2:
$0005AE41:

chordLength
TicksPerSecond

1. O:

60:

theSynth

the Sound

theWave
wave Index

rawMagnitude

FTSynthRec:

FTSoundRec:
Wave:
0 .. 255:

REAL:

{Sampling rate for D-shatp [S.1.3))

{Sampling rate for E-flat (5.1.3))

{Sampling rate for E-natural [5.1.3))

{Sampling rate for F-natural [5.1.3]}

{Sampling rate for F-shatp (5.1.3))

{Sampling rate for G-flat (5.1.3))

{Sampling rate for G-nawral (5.1.3]}

{Sampling rate for G-shatp (5.1.3))

{Sampling rate for A-flat (5.1.3))

{Sampling rate for A-nablral (5.1.3]}

{Sampling rate for A-shatp (5.1.3))

{Sampling rate for B-flat (5.1.3))

{Sampling rate for B-nablral (5.1.3]}

{Duration of chord in seconds}

{Number of system clock ticks per second}

{Synthesizer record [5.1.3))

{SoWld record (5.1.3))

{Wavefonn array (5.1.3]}

{Index into wave array}

{ Unnonnalized, unscaled sound magnitude}

begin {PlayChord}

for wave!ndex := 0 to 255 do
begin

{Index through wave array}

rawMagnitude

theWave[wave!ndex]
end: {for wavelndex}

:= SIN (2 *Pi) • (wave!ndex/256)) : {Find raw magniwde}

·= ROUND ((rawMagni tude + 1. O) • 127) {Nonnalize and scale}

with the Sound do {Fill in sound record}

begin

duration ROUND (chordLength • TicksPerSecond): {Set sound duration (5.1.3))

soundlRate Fixed(CNatural):
soundlPhase O:

soundlWave ·= @theWave:

(Set pitch [5.1.3, 1:2.3.1))

{Set phase [S.1.3))

(Set wavefonn [S.1.3))

265 Defining and Playing Sounds
~~~~~~~~~~~~-

Program 6-2 Define and play a four-tone sound (conttnued) 

sound2Rate := Fixed(ENatural): {Set pitch [S.1.3, 1:23.1]} 

sound2Phase := O: {Set phase (5.1.3]} 

sound2Wave := @theWave: {Set waveform (5.1.3]} 

sound3Rate := Fixed(GNatural): {Set pitch [S.1.3, 1:23.1]} 

sound3Phase := O: {Set phase (5.1.3]} 

sound3Wave := @theWave: {Set waveform (5.1.3]} 

sound4Rate := Fixed(BFlat): 
sound4Phase := O: 

{Set pitch (5.1.3, 1:2.3.l]} 

{Set phase [5.1.3]} 

sound4Wave := @theWave {Set waveform [5.1.3]} 

end: {with theSound} 

with theSynth do 
begin 

{Fill in synthesiur record} 

mode := FTMode: 
sndRec := @theSound 

end: {with theSynth} 

{Set mode to four-tone [5.1.3, 5.1.l]} 

{Point to sound record [S.1.3]} . 

StartSound (@theSynth, SIZEOF (the Syn th) , POINTER ( · 1) ) {Play the sound [5.1.2] 

end: {PlayChord} 

Although each of the four voices in our chord could theoretically 
have its own waveform, we will in fact use the same waveform for all 
of them, a pure sine wave like the ones shown earlier in Figures 5-1 
and 5-2. The first thing we have to do is fill in the magnitude values 
in the Wave array. Since Pascal's SIN function expects its argument 
to be expressed in radians, we convert each of the 256 array indices 
into an equivalent fraction of a complete cycle (21t radians) and find 
its sine. Then we normalize it by adding 1 . o. to make all the negative 
values positive, and scale it to the range of values that can be 
represented in a single byte. 

Next it's time to initialize the contents of the sound record. Since 
this record has a known, fixed size, we can simply declare it on the 
stack as a local variable instead of allocating it dynamically from the 
heap. (Notice, however, that this only works because we're playing 
our sound synchronously. If the sound request were asynchronous, 
it would still be pending when we exit from the routine and deallocate 
the local variables, leaving a bomb ticking where our pretty music is 



266 Sound and Fury 

supposed to be. If you're using asynchronous sound, make sure all 
your data structures live in the heap and not on the stack.) After the 
sound record is filled in, we initialize the synthesizer record to point 
to it. set the synthesizer's mode field to FTMode [5.1.1). call 
StartSound [5.2.1) to play the sound synchronously, and we're 
done. There's no need to deallocate the data structures as we did in 
our earlier square-wave routine, since they reside on the stack and 
will be deallocated automatically on exit from the routine. 

Free-Form Sound 
A free-form synthesizer record [5.1.4) can represent any kind of 
sound your application requires, such as electronically sampled 
music, synthesized speech, or exotic sound effects. Like the voices in 
a four-tone sound record. a free-form sound is defined by an array of 
magnitude samples-in this case, of type FreeWave [5.1.4). Instead 
of being located via a pointer, the array is embedded directly within 
the free-form synthesizer record. It's nominally declared with 30,001 
byte-length elements but in fact, you can make it any size you need: 
the recordSize parameter you supply to StartSound [5.2.1) will tell 
the sound driver how big the array really is. Where you get the values 
to load into the array is up to your own ingenuity. 

The contents of a free-form wave array are not repeated cycli
cally to fill an allotted length of time. like a four-tone wave, but are 
simply played once through from beginning to end. The synthesizer 
record's count field contains a sampling rate like those used in four
tone sound. This controls the spacing between magnitude samples 
sent to the speaker and thus the duration and pitch of the resulting 
sound. Since the sampling inteival is approximately 44. 93 microsec
onds (corresponding to a frequency of22.257 kHz), the length of the 
sound is given by the formula 

duration = 0.00004493 * (arrayLength/count) 

If the waveform contains a pattern that repeats periodically every 
wavelength bytes. it will produce a tone with a frequency of 

frequency = 22257 * (count/wavelength) 



REFERENCE 

5.1 Defining Sounds 

const 

SWMode = -1: 

FFMode = 0: 

FTMode = +1: 

5.1.1 

Notes 

Types of Sound 

{Square-wave sound [S.1.2)) 
(Free.form sound [S.1.4)} 

{Four-tone sound [S.1.3]} 

1. These constants are used in the mode field of a synthesizer record, to 
identify the type of record and the kind of sound it represents. 

2. Square-wave sound [5.1.2) consists of a sequence of tones forming a 
single melodic line. Each tone has a square waveform, producing a flat, 
synthetic-sounding timbre. 

3. Four-tone sound [5.1.3] consists of as many as four separate tones, or 
"voices," combined harmonically. Each voice is specified independently, 
with any desired pitch and timbre, and in any phase relationship to the 
other voices. 

267 



268 Sound 

4. Free-form sound (5.1.4] consists of a single waveform of arbitrary length 
and complexity, representing any desired sound (such as speech, 
electronically sampled music, or sound effects). 

5. In assembly language, the global variable SoundBase holds the base 
address of the hardware sound buffer in RAM; SoundDCE points to the 
sound driver's device control enby (3.1.4]: SdEnable and SoundActi ve 
are 1-byte flags telling whether the sound generator is currently enabled 
and whether it ls currently producing sound. 

ID I Assembly Language Information 
-I~-------

Assembly-language global variables: 

Name Address Meaning 

SoundBase $266 Pointer to start of S01Dld buffer 

SoundDCE $27A Pointer to sound driver's device control 

entry [3.1.4] 

SdEnable $261 Sound generator currently enabled? (1 byte) 

SoundActive $27E Sound generator currently active? (1 byte) 

5.1.2 Square-Wave Sound 

type 

SWSynthPtr = ASWSynthRec: 
SWSynthRec record 

mode 
triplets 

end: 

INTEGER: (Type of sound: must be SWMode [5.1.1]} 
Tones {Tones to be played} 

Tones = array [O •• sooo] of Tone: {Any nmnber of tones} 

Tone = record 
count INTEGER: {Detennines pitch of tone} 
amplitude INTEGER: {Volmne of tone, ~255} 
duration INTEGER (Duration of tone in ticks} 

end: 



269 (5.1.2) Square-Wave Sound 
~~~~~~~~~~~~~ 

2518
($0906)

2826
($0BOA)

2994
($0BB2)

2377
($0949)

1886
($075E)

2117
($0845)

1998
($07CE)

1680
($0690)

1586
($0632)

2668
($0A6C)

2243
{$08C3)

1780
($06F4)

Count values for musical tones

--J~i~· ~-Not_es ____________ _

1. SWSynthRec is a square-wave synthesizer record, representing a
sequence of tones forming a single melodic line.

2. The mode field must contain the constantvalueSWMode [5.1.l], denoting
square-wave sound.

3. triplets is an array of type Tones giving the pitch, amplitude, and
duration of each tone in the sequence. All tones will have a square
waveform, producing a flat, synthetic-sounding timbre.

4. The Tones array nominally contains 5001 entries, but may actually be
of any length up to this maximum. Notice that the array itself is
embedded within the synthesizer record, not just a pointer or handle.

5. The last meaningful Tone entry is followed by one with all fields equal to
o, to mark the end of the array.

270 Sound

8. Use NewHandle or NewPtr (1:3.2.1] to allocate a block of exactly the
needed size for your synthesizer record, then typecast the resulting
pointer to an SWSynthPtr. The size required is 6 bytes for each tone,
plus an extra 6 bytes for the final zero entcy and 2 more for the mode field.

7. A tone's count field gives the period of its square wave, which determines
its pitch. The unit in which the period is expressed is the time required
for the Macintosh video circuitry to paint 20 pixels on the screen, at its
standard pixel rate of 15.6672 MHz. Thus the count is related to the
frequency by the formula

coun~ = (15667200/20) I frequency

= 783360 I frequency

For example, a frequency of 440 Hz (A above middle C) corresponds to
a count of 17 80.

8. Count values for the octave above middle C are shown in the figure. To
produce the same notes in a different register, double the count (or shift
left one bit) for each octave lower, halve (or shift right one bit) for each
octave higher.

9. The values in the figure are based on an equal-tempered scale such as
a piano keyboard. Slightly different count values are needed for just
tempered tuning, as on a violin or other continuously tuned
instruments; see Inside Macintosh for further details.

10. In assembly language, the global variable CurPitch holds the count
value for the tone currently being generated. The contents of this
variable are meaningful only for square-wave sound.

11. The ampli.tude field gives the volume of the tone, on a scale from o
(silence) to 2 5 5 (maximum volume). When played, this value will be
scaled to the maximum speaker volume (5.2.2] selected by the user via
the Control Panel desk accessocy.

12. The duration field gives the duration of the tone in ticks (sixtieths of a
second).

ID I Assembly Language Information --1m----------
Assembly-language global variable:

Name Address Meaning

CurPitch $280 Count value for current square-wave tone

type

FTSynthPtr

FTSynthRec

271 [5. 1.3] Four-Tone Sound

5.1.3 Four-Tone Sound

"FTSynthRec;

r ecord

mode

sndRec

end;

INTEGER ;

FTS ndRec Pt r

{Type of sound: must be FrMode (5.1.1]}

{Sound lO be played)

FTSndRecPt r "FTSoundRec;

FTSoundRec

WavePtr

Wave

record

duration INTEGER; {Duration of sound, in ticks)

soundlRate Fixed; {Sampling rate for voice I)

soundlPhase LONGINT : {Phase offs el for voice I)

sound2Rate Fixed ; {Sampling rate for voice 2)

sound2Phase LONGINT: {Phase offset for voice 2)

sound3Rate Fixed ; {Sampling rate for voice 3)

sound3Phase LONGINT : {Phase offset for voice 3)

sound4Rat:e Fixed: {Sampling rate for voice 4)

sound4Phase LONGINT : {Phase offset for voice 4)

soundlWave WavePtr: {Waveform for voice I)

sound2Wave WavePtr: {Waveform for voice 2)

sound3Wave WavePtr : {Waveform for voice 3)

sound4Wave WavePtr {Waveform for voice 4)

end ;

"Wave ;

packed array [0 .. 25 5) of Byte; {256 magnitude samples)

272 Sound

3.57861 4.77687
($00039420) ($0004C6El)

3.18817 4.25571 5.36185
($0003302C) ($00044176) ($00055CA2)

3.00923 3.79140 4.50876 5.68068
{$00030250) ($0003CA99) ($0004823E) ($0005AE41)

3.37776 4.01685 5.06091
($000360B5) ($00040450) ($00050F98)

Sampling rates for musical tones

Notes

1. FTSynthRec is a four-t~ne synthesizer record, representing as many as
four separate tones, or "voices," combined harmonically.

2. Unlike a square-wave synthesizer record [5.i.2], a four-tone record
denotes a single, unchanging sound and not a sequence of changing
tones or harmonies. Any change in any of the four voices requires a new
record and a separate call to StartSound [5.2.1).

3. The mode field must contain the constant value FT Mode [5.1.1], denoting
four-tone sound.

4. sndRec is a pointer to a sound record of type FTSoundRec, giving the
pitch, timbre, and phase of each of the four combined voices.

5. The duration field of the sound record gives the duration of the sound
in ticks (sixtieths of a second).

273 [5.1.3) Four-Tone Sound

6. Each voice's timbre is defined by a Wave array of 256 byte-length
magnitudes, representing one or more cycles of the desired waveform.
The number of bytes in each cycle ls called the wavelength.

7. Magnitudes in the Wave array are normalized by adding the amplitude
of the wave to each value, so that all true magnitudes, both positive and
negative, are represented by positive values in the array.

8. The pitch for each voice ls given by a sampling rate, which determines
how frequently the corresponding waveform is to be repeated. One
magnitude value (sample) ls taken from the Wave array each time the
Macintosh video circuitry performs a horizontal retrace. The sampling
rate tells how many elements of the array to advance between samples:
for example, a rate of 2 o causes every twentieth element to be sampled,
while a rate of o . 2 5 repeats each element for four consecutive samples.

9. The sampling interval is the video circuitry's standard horizontal retrace
interval, approximately 44.93 microseconds or 22,257 samples per
second. Since each sample represents (rate/wavelength) cycles, the
sampling rate ls related to the frequency by the formula

frequency = 22257 * (rate/wavelength)

or

rate - (frequency*wavelength) I 22257

For example, if the wavelength is 256 bytes (that is, if the entire Wave
array represents a single cycle of the sound wave), a frequency of 440 Hz
(A above middle C) corresponds to a sampling rate of approximately
5. 0609.

10. Sampling rates for the octave above middle C are shown in the figure. To
produce the same notes in a different register, double the sampling rate
for each octave higher, halve for each octave lower.

11. The values in the figure are based on an equal-tempered scale such as
a piano keyboard. Slightly different sampling rates are needed for just
tempered tuning, as on a violin or other continuously tuned
instruments; see Inside Macintosh for further details.

12. The phase value for each voice gives the index in the Wave array from
which the first sample is to be taken. This determines the relative offset,
or phase relationship, between this voice's waveform and those of the
other three voices.

13. When played. the combined amplitude of the four voices will be scaled
to the maximum speaker volume [5.2.2) selected by the user via the
Control Panel desk accessory.

14. In assembly language, the global variable SoundPtr holds a pointer to
the sound record for the sound currently being generated. The contents
of this variable are meaningful only for four-tone sound.

274 Sound

~Jdl ... _____ As_s_em_b_1,._La __ n_11_11_a_g_e_1_n_fo_r_m_a_t1_o_n ______ _

Assembly-language global variable:

Name Address Meaning

SoundPtr $262 Pointer to CUJl'ent four-tone sound record

5.1.4 Free-Form Sound

type

FFSynthPtr AFFSynthRec:

FFSynthRec record

mode
count

INTEGER: {Type of sound: must be FFMode [S.1.1]}

Fixed: {Sampling rate}

waveBytes FreeWave {Waveform}

end:

FreeWave =packed array [0 .. 30000) of Byte:

~~Iii Notes

1. FFSynthRE!C is a free-form synthesizer record, defining a single
waveform of arbitrary length and complexity. It may represent any
desired sound, such as speech, electronically sampled music, or sound
effects.

2. When played with StartSound [5.2.l], the free-form wave is not
repeated cyclically like a four-tone wave [5.1.3], but is simply played
through once from beginning to end.

3. The mode field must contain theconstantvalueFFMode [5.1.l], denoting
free-form sound.

4. waveBytes is an array of type FreeWave, containing a series ofbyte
length magnitudes that define the desired waveform.

275 (5.1.4) Free-Form Sound
~~~~~~~~~~~~~ 

5. Magnitudes in the array are normalized by adding the amplitude of the 
wave to each value, so that all true magnitudes, both positive and 
negative, are represented by positive values in the array. 

6. When played, the amplitude of the wave will be scaled to the maximum 
speaker volume (5.2.2] selected by the user via the Control Panel desk 
accessory. 

7. The waveBytes array nominally contains 30,001 entries, but may 
actually be of any length up to this maximum. Notice that the array itself 
is embedded within the synthesizer record, not just a pointer or handle. 

8. Use NewHandle or NewPtr (1:3.2.1] to allocate a block of exactly the 
needed size for your synthesizer record, then typecast the resulting 
pointer to an FFSynthPtr. The size required is equal to the length of the 
waveBytes array plus an extra 6 bytes for the mode and count fields. 

9. count gives the sampling rate, which determines the duration and pitch 
of the sound produced. One magnitude value (sample) is taken from the 
waveBytes array each time the Macintosh video circuitiy performs a 
horizontal retrace. The sampling rate tells how many elements of the 
array to advance between samples: for example, a rate of 2 o causes evezy 
twentieth element to be sampled, whereas a rate of o . 2 5 repeats each 
element for four consecutive samples. 

10. The first sample is always taken from byte o of the array. 

11. The sampling interval is the video circuitry's standard horizontal retrace 
interval, approximately 44.93 microseconds or 22,257 samples per 
second. Thus the overall duration of the sound in seconds is given by the 
formula 

duration = 0.00004493 * (arrayLength/count) 

For example, an array 3000 bytes long, sampled at a rate of o . 1, will 
produce a sound lasting approximately 1.35 seconds. 

12. For waveforms that repeat periodically, such as musical tones, the 
number of bytes In each cycle is called the wavelength. Since each 
sample represents (count/wavelength) cycles, the sampling rate is 
related to the frequency by the formula 

frequency = 22257 * (count/wavelength) 

or 

count = (frequency*wavelength) I 22257 

For example. if the wavelength is 100 bytes, a frequency of 440 Hz (A 
above middle C) corresponds to a sampling rate of approximately 
1. 9769. 



276 Sound 

5.2 Playing Sounds 

5.2.1 

procedure Start Sound 
(synthRec 
record Size 
compRoutine 

procedure StopSound: 

£unction SoundDone 
: BOOLEAN: 

Starting and Stopping Sounds 

Ptr: 
LONGINT: 
ProcPtr): 

(Pointer to synthesizer record} 

(Size of synthesizer record in bytes} 

{Optional completion routine} 

{Is SO\Dld completed?} 

~~i1::1::=· .__Note_s ------

1. StartSound issues a specified sound from the Macintosh speaker. 

2. synthRec is a pointer to a synthesizer record defining the sound to be 
produced; recordSize gives the size of the record in bytes. 

3. The synthesizer record may be of 1ype SWSynthRec [5.1.2) for square
wave sound, FTSynthRec [5.1.3) forfour-tone, orFFSynthRec [5.1.4) for 
free-form. The specific type is identified by the record's mode field, which 
must contain one of the constants SWMode, FTMode, or FFMode [5.1.1). 

4. Sound requests are normally issued asynchronously: the request is 
simply queued for later execution by the sound driver. Control then 
returns immediately to the calling program, which can continue to run 
while the sound is being produced. 

5. cornpRoutine is a pointer to an optional completion routine, to be 
executed on completion of the sound request. 

6. The completion routine, if any. must be written in assembly language. 
On entry, register AO will point to the parameter block [3.1.5) for the 
completed operation and DO will contain its result code. The completion 
routine must preserve the contents of all registers except AO-Al and 
D 0-D 2. and must not attempt to allocate any new storage from the heap. 

7. If cornpRoutine = NIL, the sound request will be executed 
asynchronously with no completion routine. 



277 [5.2.1) Starting and Stopping Sounds 
~~~~~~~~~~~~-

8. If compRoutine = ProcPtr(-1), the sound request will be performed
synchronously: control will not return to the calling program until after
the request has been completed.

9. StopSound hnmediately cancels all current and pending sound
operations.

10. The current operation's completion routine is executed, if any.

11. SoundDone tests whether all previously issued sound requests have
been completed. It returns FALSE if there are any current or pending
sound operations, TRUE if none.

12. These routines are part of the Pascal interface to the Toolbox, not part
of the Toolbox itself. They don't reside in ROM and can't be called from
assembly language via the trap mechanism. You can perform the same
operations from assembly language by issuing the equivalent low-level
device calls directly to the sound driver.

13. In all sound driver calls, the ioRefNum field of the parameter block
[3.1.5) must be set to -4, the driver reference number for the sound
driver. See Inside Macintosh for more information on low-level driver
calls.

14. To play a sound from assembly language, issue a_Wri te call (3.2.2] to
the sound driver. The parameter block's ioBuff er field (3.1.5] must
point to the synthesizer record defining the sound, with ioReqCount
giving the size of the record in bytes. To specify a completion routine, set
the ioCompletion field to point to it.

15. To cancelsoundfromassemblylanguage, issuea_KillIO call[3.2.3] to
the sound driver. Unlike the high-level StopSound routine, this will
execute the completion routines of all pending sound requests in
addition to the one currently being played. If you're using square-wave
sound, you must also set the global variable Cur Pitch [5.1.2] to o.

16. To check for completion of a sound request from assembly language,
look in the parameter block's ioResul t field [3.1.5). A value of 1 in this
field means that the request is still pending; any other value is a result
code posted on completion of the request.

ID I Assembly Language Information
-I~--------

Trap macros:

(Pascal)
Routine name

PBWrite

PBKillIO

· (Assembly)
Trap macro

_Write

_Kill IO

Trap word

$A003

$A006

278 Sound

Assembly-language global variable:

Name :Address Meaning

CurPitch $280 Collllt value for current square-wave tone

5.2.2 Speaker Volume

procedure GetSoundVol
(var newLevel : INTEGER); {New volwne setting}

procedure SetSoundVol
(curLevel : INTEGER): (Cunent volume setting}

Notes

1. GetSoundVol returns the current speaker volume setting;
SetSoundVol changes it

2. The speaker volume ranges from o (silence) to 7 Uoudest). All sounds
issued through the speaker are scaled to this maximum volume.

3. The user normally sets the desired speaker volume via the Control Panel
desk accessory. This setting is kept in "parameter RAM" on the battery
powered clock chip, and ls used to initialize the actual speaker volume
each time the Macintosh ls started up.

4. SetSoundVol sets the current speaker volume, but not the user
selected value in parameter RAM. Thus the new setting will remain in
effect only until the next time the system ls restarted.

5. Don't change the speaker volume permanently. Before calling
SetSoundVol, obtain the previous value with GetSoundVol and restore
it again before exiting from your program.

6. These routines are part of the Pascal interface to the Toolbox, not part
of the Toolbox itself. They don't reside in ROM and can't be called from
assembly language via the trap mechanism. In assembly language, the
current volume setting is kept in the last three bits of the global variable
SdVolume (see below).

279 (5.2.2) Speaker Volume
~~~~~~~~~~~ 

ID I Assembly Language Information 
~~---------

Assembly-language global variable: 

Name Address Meaning 

SdVolume $260 Current speaker volwne (1 byte) 



CHAPTER 

--1161---------
--L ..... ~~i------------· 
Playing with a Full 
Desk 

Everyone loves desk accessories-those handy little gadgets that 
live on your Apple menu and can spring to life at a click of the mouse, 
alongside whatever else you happen to be doing. In the beginning 
there were only seven desk accessories, provided by Apple with the 
first release of the Macintosh system software: the Alarm Clock, 
Calculator, Control Panel, Key Caps, Note Pad, Puzzle, and Scrap
book. Today, Macintosh users can choose among hundreds of desk 
accessories, and more keep appearing all the time, both commer
cially and in the public domain. Some have capabilities rivaling those 
of full-fledged application programs: there are text-editor desk acces
sories, graphics-painting desk accessories, terminal-program desk 
accessories, and spreadsheet desk accessories. The range of possi
bilities seems endless. 

In this chapter, we'll learn all about desk accessories, how they 
work internally, and how they communicate with the Toolbox and the 
running program. As usual, we'll approach the subject by studying 
an example, a simple desk accessory named Stopwatch. Once you 
understand how it works, you can use it as a starting point for 
developing your own desk accessories. You 11 find a complete source 
listing in Appendix H. 

281 



282 Playing with a Full Desk 

Life as a Desk Accessory 

The overriding fact of life for a desk accessory is that it doesn't control 
its own destiny. An accessory is only a guest on another program's 
screen, and is completely dependent on the hospitality of that 
program (called, appropriately enough, the lwst program) for all the 
necessities of its existence. The accessory can display a window on 
the screen, but when the user presses the mouse in the window's title 
bar, it's the host program that receives the event; the host program, 
not the accessory, must then call the Toolbox to track the mouse and 
drag the window to its new location. The accessory can place a menu 
in the menu bar, but when the user chooses an item from the menu, 
it's the host program that receives the choice; it then passes the 
menu and item number to the Toolbox, which in tum relays them to 
the desk accessory for action. The accessory can schedule a periodic 
task to be executed at regular inteivals, but it won't get the chance 
unless the host program voluntarily surrenders control often enough 
to give it the time it needs. If the host program doesn't cooperate, the 
desk accessory can't function. 

Not that there aren't compensating advantages. As a mere 
dependent, the desk accessory is also blissfully free of care and 
responsibility. It needn't bother with an event loop, since the host 
program will handle all interactions with the user and spoon-feed the 
accessory only those events that require its attention. This means the 
accessory can dispense with all the elaborate machinery we learned 
about in Volume Two for moving and sizing windows, tracking menu 
choices, and so forth. Instead, it can just concentrate on the things 
it cares about, such as responding to its own menu items and to 
mouse clicks in its content region. As long as the host program lives 
up to its responsibilities, the desk accessory can lead a simple and 
happy life. 

All this is made possible by a cunning deception. To gain entry 
to the host program's world, the desk accessory craftily disguises 
itself as a device driver. This allows it to make itself at home in the 
heap without interfering with the host's normal actMties. It receives 
all its instructions via the standard driver calls Open, Control, and 
Close, which we learned about in Chapter 3. All an accessory has to 
do to earn its keep is respond appropriately to these three driver calls. 



283 Life as a Desk Accessory 
~~~~~~~~~~~-

Theoretically, a desk accessory could also choose to implement
the other two standard driver routines, Prime and Status. In
ord:inaiy circumstances, these routines will never be called,
since the Toolbox communicates with the accessory entirely
through Open, Control~ and Close calls. Stlll, the capability is
there ff you ever think of anything useful to do with it. Desk
accessories work a little bit differently under Apple's new
multitasking environment, MultlFinder. The user can now keep
two or more application programs active in memory at the same
time, switching freely from one to another with a click of the
mouse. Each program has its own independent stack and heap
and has the illusion of having the entire system to itself, though
with only a portion of the total available memory.

Instead of residing in any particular program's heap, all desk
accessories are now hosted by a special piece of system software
called DA Handler, which runs under MultiFinder as a separate
application program, side by side with the others. (This has the
surprising consequence that clicking the mouse in any acces
sory's window causes all open accessories to come to the front
together, as a complete "layer" of windows!) The user can stlll
choose to avoid the DA Handler and run an accessory the old
way, from within the active program's heap, by holding down the
Option key while opening the accessory from the Apple menu.
From the desk accessory's point of view it makes no difference
whether it's being hosted by DA Handler or by an ordinary
application program, and everything we say in this chapter
applies equally well in both environments.

Like all drivers, each desk accessory has a device control entry,
or DCE (3.1.4], holding all the information the Toolbox needs to run
the accessory. The Toolbox creates the DCE the first time the
accessory is opened, and installs a handle to it in the system unit
table (3.1.3]. From then on, the DCE remains in existence until the
crack of doom or until the system is shut down, whichever occurs
first. Even if the user closes the accessory. terminates the host

284 Playing with a Full Desk
~~~~~~~~~~~-

program, and starts up another program in its place, the DCE lingers 
in the heap like the Cheshire Cat's grin, ready to be used again the 
next time the accessory is reopened. 

When they're not in use, desk accessories reside in resource files 
(normally the System file) under resource type 'DRVR' (3.3.1], 
waiting to be read into memory when needed. An accessory's re
source ID is called its unit number, and determines its position in the 
unit table (3.1.3]. Usually, though, the accessory is identified by its 
driver reference number, which is the bitwise binary complement of 
the unit number and is related to it arithmetically by the now-familiar 
formula 

refNum = -(unitNum + 1) 

Each accessory also has a resource name by which it can be 
listed on a menu. We learned in Volume Two, Chapter 4, how the host 
program uses the Toolbox routine AddResMenu or InsertResMenu 
[II:4.3.3] to build an "Apple menu" of available 'DRVR' resources. As 
we've also learned, both these routines suppress all resource names 
that begin with a period (. ). Names of this form are resetved for true 
input/output drivers like . Print and . Sound, to keep them from 
appearing on the Apple menu; desk accessory names may begin with 
any character other than a period. 

Desk Accessory Structwre 

Structurally, a desk accessory has the same form as any other device 
driver [3.1.1]. Its executable code is preceded by a driver head.er 
containing flags and other global information. The header also 
includes offsets that locate the various driver routines within the 
body of the accessory. At the machine-language level, all driver 
routines receive a pointer to the accessory's DCE in register Al, along 
with a pointer in AO to a parameter block (3.1.5] describing the 
requested operation. The Control and Close routines (as well as 
Prime and Status, if present) are expected to return a result code in 
register DO; the Open routine returns it in the ioResul t field of the 
parameter block, instead of the register. 



285 Desk Accessory Structure 
~~~~~~~~~~~-

Notice that the parameters passed in the A registers are simple
pointers, not handles. Before issuing any driver call, the Toolbox
locks both the driver (in this case, the accessory) and its DCE
into place in the heap~ The dereferenced DCE pointer in Al can
thus be relied on to remain valid for the duration of the call. The
parameter block is a nonrelocatable object, so the pointer in AO
is reliable too. On completion, the Toolbox unlocks the acces
sory and DCE again (unless the dNeedLock flag (3.1.2] is set in
the DCE's dCtlFlags field [3.1.4], in which case they remain
locked continuously, even between driver calls).

When you write a desk accessory in Pascal (or any other high
level language), special provisions are needed to structure the
resulting object code as a desk accessory instead of a stand-alone
application program. There are as many different ways of doing this
as there are software development systems to do it on. One way or
another, though, all of them must deal with the same basic issues.
We can discuss the possibilities in general terms here, but you'll have
to consult your own language documentation for specifics.

First, you need some way of incorporating a driver header at the
beginning of your accessory's code. Some systems treat the header as
a special resource type that you define and include with a resource
compiler like RMake r or Rez; others provide a utility file containing a
dummy header, which you link into your code with a linker. Some
times you tell the compiler to add a desk accessory header by
embedding a compile-time directive in your source code; sometimes
you use a special menu command like Build Desk Accessory in
place of the usual Compile command.

Second, you have to identify which parts of your program are the
driver routines, so the offsets in the header can be set to point to
them. Again. different development systems have different conven
tions for doing this. Some only expect you to supply the three "real"
desk accessory routines, Open, Control, and Close: others insist that
you provide Prime and Status routines as well, even if they're just
dummy routines that return immediately without doing anything. In
some systems, you have to give your driver routines standard names
like Open, Ctl, and Close, or DrvrOpen, DrvrControl, and
DrvrClose; some systems don't care what you call them, but insist

286 Playing with a Full Desk

that they be the first three routines declared in your program. Still
other systems direct all incoming driver calls to a central dispatch
routine (supplied by you), which in turn calls the appropriate
program routine depend1ng on an integer selector code that it
receives as an extra parameter.

Finally, no matter what development system you use, the
register-based driver calls received from the Toolbox must somehow
be converted to stack-based Pascal form. All development systems
generate .. glue" code to do the conversion, but as usual, conventions
vary wildly. The DCE and parameter block pointers that the Toolbox
passes in the registers may simply be copied to the stack as a
DCtlPtr [3.1.4] and a ParmBlkPtr [3.1.5], or they maybe converted
at the Pascal level to the underlying records themselves (DCtlEntry
and ParamBlockRec). The DCE maybe passed as the first parameter
and the parameter block as the second, or the other way around. The
parameter block may be omitted from Open and Close calls and
included only for Control; or the control code and parameter (fields
csCode and csParam) may be extracted from the parameter block
and passed as parameters in their own right. The driver routines may
be treated as functions and expected to return a result code, or they
may be procedures, with the system-generated .. glue" automatically
supplying a result code of NoErr.

What's an author to do? In the face of all this diversity, which
system's conventions should we follow in our example desk acces
sory? Well, since we can't please everybody, we may as well please
nobody. Instead of playing favorites, we'll present our example in a
generic form that doesn't quite match that of any development
system known to human science. No matter what system you're
using, you'll have to make a few minor changes in the example
program before it will compile and run successfully; consult your
own language documentation for specifics.

Stopwatch: A Simple Desk Accessory

The example desk accessory is named Stopwatch. It isn't intended
to do anything particularly useful, just touch all the bases: maintain
a window on the screen (Figure 6-1), place a menu in the menu bar
(Figure 6-2), respond to the mouse and keyboard, support the
standard cut-and-paste editing operations, and perform a periodic
task. Like the MiniEdi t program of Volume 1\vo, you can use it as
a framework on which to build your own, presumably more inspiring
programs.

287 Stop Watch: A Simple Desk Accessory
~~~~~~~~~~~~ 

Figure 6-1 Stopwatch window 

Stoplllatc:h 
About Stopwatch ... 

Start 
Pause 
Reset 

88S 
88, 
3€. 

lt"'lgure 6-2 Stopwatch menu 

When the user chooses StopWa tch from the Apple menu, it 
comes up on the screen initially displaying the number o in its 
window. Choosing the Start menu command (ortypingCommand-s 
on the keyboard) will start the clock running, counting upward by 
tenths of a second. The Pause command (or Command-comma) 
temporarily suspends the clock and changes the command name on 
the menu from Pause to Resume. In this paused state, Resume or 
Command-comma starts the clock running again from the point of 
suspension. Reset (or Command-period) stops the clock and sets its 
value back too, ready to start over again. For convenience, Stop
Wa t ch accepts the Return and Enter keys as synonyms for start, the 
space bar for Pause/Resume, and the Clear key (on the numeric 
keypad) for Reset. 

Instead of starting the clock from o. the user may type in a 
different number of seconds from the keyboard. Only the digits o - 9 
are accepted as keyboard input; all other characters are rejected with 
a beep. Stopwatch also supports mouse-based text selection and 
cut-and-paste editing, allowing numerical values to be pasted in 
from the host program or from other desk accessories such as the 
Calculator, Key Caps, or Note Pad. Starting the clock with a value 
other than o causes it to count down instead of up; again it can be 
suspended and restarted with the Pause/Resume command, the 
space bar, or Command-comma. When the clock counts down to o it 
sounds the alarm, beeping and flashing the menu bar once per 
second until it is reset. 



288 Playing with a Full Desk 
~~~~~~~~~~~~~~ 

Program 6-1 shows Stopwatch's top-level structure. The three
main driver routines, which we're calling DoOpen, DoControl, and
DoClose, do all the work; the main program does nothing, and is
included strictly forfonn. (In fact, some development systems require
you to define your desk accessory as a Pascal unit instead of a full
fledged program, with no main program block at all.) The driver
routines are declared forward at the beginning of the program, to
meet the requirement of some systems that they be the first three
routines declared. This arrangement also allows them to refer to one
another if necessary.

Program 6-1 Skeleton of a desk accessory

program StopWatch:

{ Skeleton program to illustrate desk accessory structure.

uses

MemTypes, QuickDraw. OSintf. Toolintf, Pack!ntf:

Global Declarations }

Forward Declarations

procedure DoOpen (pbPtr : ParamBlkPtr: dcePtr : DCtlPtr): forward:
procedure DoControl (pbPtr : ParamBlkPtr: dcePtr : DCtlPtr): forward:
procedure DoClose (pbPtr : ParamBlkP~r: dcePtr : DCtlPtr): forward:

{ Additional forward declarations for remaining program routines }

procedure DoOpen {(pbPtr : ParamBlkPtr: dcePtr DCtlPtr)J:

{ Handle driver Open call [Prog. 6-2].

begin {DoOpen}

end: { DoOpen I

289 The Open Routine
~~~~~~~~~~~~-

Program 6-1 Skeleton of a desk accessory (conttnuedJ 

procedure DoControl {(pbPtr : ParamBlkPtr: dcePtr DCtlPtr)}: 

{ Handle driver Control call [Prog. 6-8). 

begin {DoControl} 

end: {DoControl} 

procedure DoClose {(pbPtr : ParamBlkPtr: dcePtr DCtlPtr)}: 

( Handle driver Close call [Prog. 6-17). } 

begin {DoClose} 

end: {DoClose} 

{ Main program. } 

begin {StopWatch} 

{Do nothing} 

end. {Stopwatch} 

In the rest of this chapter we'll examine the code of the 
StopWatch program more closely, one routine at a time. Unfortu
nately, we haven't room to study every line of the program in 
exhaustive detail, so we11 just focus on those routines that demon
strate important points about desk accessories and how they work. 
For a complete listing of the program. see Appendix H. 

The Open Routine 

When the user chooses an item from the Apple menu. the host 
program first calls the Toolbox routine Getitem [11:4.6.1] to get the 
name of the chosen desk accessory. Then it passes the name to 
OpenDeskAcc [6.2.1], which reads the accessory into memory from 
its resource file and prepares it for operation. If this is the first time 



290 Playing with a Full Desk 

the accessory has been opened since system startup, OpenDeskAcc 
also creates a device control entry for it and installs the DCE's handle 
in the unit table. Then (whether this is the first time or not), it calls 
the accessory's Open routine to create its data structures and 
initialize the fields of its DCE. 

Program 6-2 (DoOpen) is Stopwatch's Open routine. For pur
poses of illustration, we're assuming that this and the other top-level 
driver routines receive a parameter block pointer and a DCE pointer 
as parameters, taken straight from registers AO and Al where the 
Toolbox left them. On systems with different parameter conventions 
for these routines, the code of the routine will have to be revised 
accordingly. 

The first thing the Open routine does is dereference the DCE 
pointer to get the DCE record itself. From this point on, we will pass 
the record around directly, instead of the pointer, to simplify life for 
the subsidiary routines. (We can do this safely because we know the 
DCE is locked for the duration of any driver call.) Next we test 
whether Stopwatch is already open, by checking the DCE's 
dCtlWindow field [3.1.4) to see if it already contains a window 
pointer. If so, we just call SelectWindow [II:3.5.2] to bring the 
existing window to the front of the screen. (Here and elsewhere in the 
program, we first have to typecast dCtlWindow to a window pointer, 
since the Toolbox interface defines it as a simple Ptr .) If dCtl Window 
is NIL, the accessory isn't already open, so we call the Stopwatch 
routines SetUpDCE and· SetUpData to initialize the device control 
entry and set up our internal data structures for operation. 

Program 6-2 Handle driver Open call 

procedure DoOpen (pbPtr : ParamBlkPtr: dcePtr DCtlPtr): 

{ Handle driver Open call. } 

var 

oldWindow WindowPtr: {Pointer to existing StopWatch window [Il:3.1.1]} 

begin {DoOpen} 

with dcePtr" do 



291 The Open Routine 
~~~~~~~~~~~~-

Program 6-2 Handle driver Open call (conttnuedJ

if dCtlWindow = NIL then

begin

SetUpDCE (dcePtr"):
SetUpData (dcePtr")

end {then}

else

begin

{Is there a window open already? [3.1.4)}

{If not, initiali7.e DCE}

{ and data record }

old Window · = WindowPtr(dCtlWindow) : {Otherwise convert to typed pointer (3.1.4)}

SelectWindow (oldWindow) {Just activate existing window [II:3.S.2]}

end {else}

end: {DoOpen}

Initializing the Device Control Entry

You may recall that the Toolbox automatically initializes some of the
DCE's fields (dCtlFlags. dCtlDelay. dCtlEMask. and dCtlMenu
(3.1.4)) from the driver header (3.1.1) when the DCE is first created.
Most development systems preset these fields of the header to
standard default values, which you can change or override if neces
sary with resource utilities like Re sEd it, RMake r, or Re z. To be on the
safe side, though, it's probably best for the accessory to reinitialize
these fields directly in the DCE, to make sure they have the right
values for proper operation. In our Stopwatch program, this task is

handled by the routine SetUpDCE (Program 6-3).

Program~ Initialize device control entiy

{ Global constants }

const

dReadEnable $0100;

dWritEnable $0200;

dCtlEnable $0400;

dStatEnable $0800;

dNeedGoodBye $1000;

dNeedTime $2000;

dNeedLock $4000;

{Bit masks for DCE flags: }

{Can respond to Read calls [3.1.2]}

{Can respond to Write calls (3.1.2]}

{Can respond to Control calls (3.1.2)}

{Can respond to Status calls (3.1.2)}

{Needs "good-bye kiss" [3.1.2]}

{Has periodic task (3.1.2]}

{Must be locked in heap [3.1.2)}

292 Playing with a Full Desk

Program 6-3 Initialize device control enby (continuedJ

procedure SetUpDCE (var dee : DCtlEntry):

{ Initialize device control entry. }

var
flagBits : INTEGER: {Flag bits for DCE flag word [3.1.2, 3.1.4]}

begin {SetUpDCE}

with dee do
begin

flagBits
dCtlFlags
dCtlFlags

dCtlEnable + dNeedTime:
BitAnd (dCtlFlags, $FF):
BitOr (dCtlFlags. flagBits):

{Set up flags [3.1.2))

{Extract low byte [1:2.2.2]}

{Merge in high byte [1:2.2.2]}

dCtlDelay 6: {Execute task ten times per second [3.1.4]}

dCtlEMask := MDownMask + KeyDownMask + AutoKeyMask + UpdateMask + AetivMask:
{Initialize event mask [3.1.4, 6.1.l]}

dCtlStorage : = NewHandle (SIZEOF (DataReeord)) {Allocate private data record [1:3.2.l]}

end {with dee}

end: {SetUpDCE}

The first DCE field to be initialized is dCtlFlags [3.1.2].
Unfortunately, the Pascal-level Toolbox interface doesn't define mask
constants for manipulating these flag bits. (They are included as bit
number constants at the assembly level.) So the program has to
declare these constants explicitly for itself. For convenience, our
st op Watch program includes a full set of these mask constants, even
though it actually uses only two of them.

The two flags we need to set are d Ct lEna b 1 e, signifying that this
desk accessory can respond to driver Control calls, and dNeedTime,
to schedule a periodic task for execution. The remaining flag bits
(dReadEnable, dWritEnable, dStatEnable, dNeedGoodBye,
dNeedLock) are allcleared to O. In setting the flags, it's important not
to disturb the low-order byte of the flag word, where the Toolbox
keeps its own private flag bits. So SetUpDCE carefully extracts the
existing value from the low byte with Bi tAnd [1:2.2.2], then merges
the new settings into the high byte with Bi tOr.

293 The Open Routine
~~~~~~~~~~~-

Next the dCtlDelay field must be set to tell the Toolbox how 
often to run our periodic task. Since we'll be updating the clock on the 
screen ten times a second, we set the task frequency to 6 ticks, or one 
tenth of a second. Then we initialize dCtlEMask, a standard Toolbox 
event mask [6.1.1, 11:2.1.3] telling which types of event this accessory 
is prepared to handle. A typical desk accessory will accept activate/ 
deactivate and update events for its own window, along with mouse
down. key-down, and auto-key events when the window is active. 
Other event types are of no interest, and must be handled by the 
Toolbox or the host program instead. 

Appl~'s Inside Mactnt.osh manual warns pointedly that a desk 
accessC>xy must not accept mouse-up events, but doesn't deign 
to say why, or what.~ consequences will befall those foolish 
enough to disobey. The reasons of the gods must remain forever 
beyond the ken of mere mortals .. 

Global Storage 
Because it isn't a full-fledged application program. a desk accessory 
has no access to the application global space. or "AS world" 
(discussed in Volume One, Chapter 3). Among other things, this is 
where programs normally keep their global variables-so an 
accessory isn't allowed to have any. Instead, it has to keep its global 
data in a relocatable block in the heap, located via a handle in the 
dCtlStorage field of its device control entry [3.1.4]. This block must 
be allocated when the desk accessory is opened and deallocated 
again when it is closed. 

The lack of an AS world also means that an accessoIY can't refer 
to any of QuickDraw's global variables, such as ThePort, 
Sc ree~Bi ts, or the standard fill patterns Black, White, Gray., 
and so on [1:4~3. l]. You can, of course, still use Get Port (1:4.3.3] 
to get a pointer to the current graphics port: the fill patterns are 
available from the standard system pattern list (1:5.1.2], or you 



294 Playing with a Full Desk 

can build your own copies with StuffHex (1:2.2.4). If you're 
really desperate, you can pryyourway into the AS world by doing 
pointer arithmetic from the system global CurrentAS [1:3.1.3). 
located at hexadecimal address $904. Be aware, however, that 
this sort of breaking and entering is tricky, hazardous, and 
illegal in many states. Neither Apple nor the author or publisher 
of this book will pay your bail. 

Program 6-4 shows the type definition for the data record in 
which Stop Watch keeps its global data. Bearin mind that this is not 
a Toolbox data structure, but a private record type defined by 
Stopwatch for its own internal use, analogous to the window data 
record used by MiniEdi t (Program 11:5-1). The last line of our 
SetUpDCE procedure (Program 6-3) allocates a data record from the 
heap and stores its handle into the dCtlStorage field of the DCE. 
This handle will be passed to all other Stopwatch routines that need 
access to the global data. Next, the Stopwatch routine SetUpData 
(Appendix H) is called to initialize the contents of the data record. It 
in tum calls a series ofsubsidiaiyroutines named SetUpResources, 
SetUpMenu, SetUpWindow, SetUpText, and Ini tFlags, all of which 
we'll be looking at in a minute. 

Program 6-4 Sto pWa t ch data record 

type 

DRHandle = ~nRPtr: 
DRPtr = ~nataRecord: 
DataRecord record 

RefNum 
Rs re Base 
I Beam 

TheMenu 
TheWindow 
TheText 

TargetTime 
PauseTime 

INTEGER: 
INTEGER: 
CursHandle: 

MenuHandle: 
WindowPtr: 
TEHandle: 

LONGINT: 

LONGINT: 

{Driver reference number} 

{Base ID for owned resources} 

{Handle to I-beam cursor (11:2.5.1)} 

{Handle to StopWatch menu [11:4.1.l]} 

{Pointer to StopWatch window (11:3.1.1)} 

{Handle to edit record [11:5.1.1]} 

{Starting or stopping time on system clock (11:2.7.1]} 

{Time of pause on systemclock} 



295 The Open Routine 
~~~~~~~~~~~~ 

Program 6-4 Stop Watch data record (continued)

CountDown BOOLEAN:

ClockRunning BOOLEAN:

ClockPaused BOOLEAN:

ClockBeeping BOOLEAN

end: {DataRecord}

Owned Resources

{Counting down (toward zero)?}

{Is stopwatch running?}

[Is stopwatch paused?}

{Is stopwatch beeping?}

Before a desk accessory can be used, it must be installed as a 'DRVR'
resource in the system resource file. The usual way of doing this is
with Apple's Font/DA Mover utility program. Most development
systems, when compiling or building a desk accessory, will stamp the
resulting object file with the Mover's creator signature (1:7.3.1],
' DMOV ' . Opening the file from the Finder will then automatically
cause the Mover to be started up. The file type for such files is 'DF IL ' ;
they appear in the Finder as a little suitcase icon marked with a
rectangular grid resembling the familiar Calculator desk accessory
(Figure 6-3).

Stop Watch

Figure 6-3 Desk accessory file icon

When an accessory is installed in the system file, any resources
it uses (other than the ' DRVR' resource itself) must be copied along
with it. For the Font/DA Mover to recognize the resources as
belonging to the desk accessory, they must be numbered according
to the standard rules for owned resources [2.5.4], as shown in Figure
6-4. That is, bits 15 and 14, the two high-order bits of the resource
ID, must both be 1; bits 13-11 must be ooo, denoting an owning
resource of type 'DRVR': and bits 10-5 must correspond to the
accessory's unit number (the resource ID of its 'DRVR' resource).
Bits 4-0 may contain any value at all, and are used to identify each
individual owned resource within its resource type. (Notice that this
limits the accessory to no more than 32 resources of any given type.)

296 Playing with a Full Desk

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

T

~--
Number of this
resource

Resource ID
-----------(unit number)

of desk accessory
Type code of

L----------------owning resource
(000:::: 'DRVR')

Figure 6-4 Resource ID of desk accessoiy resources

Expressed arithmetically. the ID of an owned resource belong
ing to a desk accessory has the form

$COOO + (32 • unitNum) + rsrcNum

where uni tNum is the unit number of the accessory and rsrcNum is
the individual ID number of this particular resource, from o to 31.
The Font/DA Mover will recognize this pattern as designating an
owned resource, and will automatically copy the resource into the
System file along with the desk accessory itself. If the System file
already contains an accessory with the same unit number (resource
ID) as the one being installed, the Moverwill lookfor an unused unit
number and use that one instead. To maintain the connection
between the accessory and its owned resources, the Mover will
automatically adjust all their ID numbers by changing bits 10-5 to
match the new unit number.

One consequence of this arrangement is that you can't know in
advance, when you write a desk accessory, what its unit number will
be when it is finally installed in the System file. And since the unit
number determines the resource IDs of the accessory's owned
resources. they aren't known in advance either. So you have to
arrange for the accessory to calculate the IDs for itself at run time,
using the reference number it finds in the dCtlRefNum field of its
DCE [3.1.4]. (The resources themselves must of course be created
separately, with something like ResEdi t or RMaker or Rez, and
placed in the accessory's resource file for the Mover to copy into the
System file at Installation time.)

297 The Open Routine
~~~~~~~~~~~~~~ 

Program 6-5 (SetUpResourc es) shows the routine that handles 
this chore for our Stopwatch desk accessory. First it gets the 
accessory's reference number from the DCE and saves it in the global 
data record for convenience. Then it complements the reference 
number with Bi tNot (1:2.2.2), to convert it into a unit number, and 
uses the result to calculate the base value for all owned resource IDs. 
This base value is also stored away in the data record under the name 
RsrcBase. Finally the routine reads in the standard I-beam cursor 
[11:2.5.2) from the system resource file and saves it in the data record 
for later use. 

Program 6-5 Initialize stop Watch resources 

procedure SetUpResourees (dee DCtlEntry: dataHandle DRHandle): 

{ Initiali7.e StopWatch resources. 

con st 

flagBits $COOO; 

var 

unitNum : INTEGER: 

begin {SetUpResources} 

with dee, dataHandleAA do 

begin 

RefNum := dCtlRefNum: 

unitNum := BitNot (RefNum): 
unitNum := BitShift (unitNum. S): 
RsreBase := BitOr (flagBits. unitNum); 

!Beam ·= GetCursor (IBeamCursor) 

end {with} 

end: {SetUpResources} 

{Flag bits for owned resources [2.5.4)} 

{StopWatch's unit nwnber [3.1.3)} 

{Save reference number in data record [3.1.4)} 

{Convert to unit number [1:2.2.2]} 

{Shift into position [!:2.2.2]} 

{Merge in flag bits [1:2.2.2)} 

{Get cursor from system file [Il:2.S.2]} 



298 Playing with a Full Desk 

The Movers automatic renutnber:ing· of resources can cause 
problems when one resource·refersto another by ID number. If 
resource A contan:is the ID of resource B and the unit number 
of their owning desk accessory is changed on Installation. the 
Mover will change the IDs of both resottrees, but will not adjust 
A's copy ore·s IDtomatcll;Jfyour accessory's resources contain 
any such embedded ms, it's up to you to update them to the 
correct values at.run time~ 

One special case that the Mover is smart enough to handle is 
the resource ID of a dialog's item list (resource type 'D ITL ' 
[Il:7.6.3)), embedded wtthip. the corresponding alert or dialog 
template (' ALRT t [Il:7.6.1] or 'DLOG t [Il:7.6.2]). It will also 
correctlyadjustthe IDs of any• ICON' [1:5.5.3], •PICT' [1:5.5.5), 
and • CNTL' [Il:6.5. l) resources included in the item list. So you 
needn't wony aboutfbdngthese specJfic cases yourself: all other 
embedded resource Il?s are your responsibility. 

Desk Accessory Menu 

Each open desk accessocy is entitled to place one menu in the menu 
bar. The menu ID (which for resource-based menus is the same as 
the resource ID) must be negative. This allows the Toolbox to 
distinguish menus belonging to desk accessories from those belong
ing to the host program, which will always have positive IDs. The 
menu ID should also follow the conventions stated above for owned 
resources, to make sure it doesn't conflict with those of any other 
accessories that may happen to be open at the same time. 

Program 6-6 Initialize St o pWa tc h menu 

procedure SetUpMenu (var dee : DCtlEntry: dataHandle DRHandle): 

{ Initiali7.e StopWatch menu. } 

begin {SetUpMenu} 

with dee. dataHandleAA do 



299 The Open Routine 
~~~~~~~~~~~~-

Program 6-6 Initialize Stopwatch menu (conttnuedJ

begin

dCtlMenu := RsrcBase: {Store menu ID in DCE [3.1.4)}

TheMenu := GetMenu (dCtlMenu): {Get menu from resource file [I1:4.2.2)}

TheMenuAA.menuID := dCtlMenu: {Set conect menu ID in menu record [I1:4.1.l]}

InsertMenu (TheMenu, O): {Install at end of menu bar [Il:4.4. l]}

{Show menu title on screen [11:4.4.3)} DrawMenuBar

end {with}

end: {SetUpMenu}

Although the device control entry (3.1.4) includes a field for the
menu ID, dCtlMenu, the Toolbox offers no help in automatically
creating the menu. The accessory's Open routine must build the
menu for itself (or read it in from a resource file) and explicitly insert
it in the menu bar. Program 6-6 (SetUpMenu) shows how Stopwatch
handles this task.

Since there's only one menu, we can just use the value we
calculated earlier for RsrcBase (Program 6-5) as its menu ID. Notice
that we explicitly store the menu ID into the field reseived for it in the
DCE, instead of relying on the value already copied there by the
Toolbox from the header of our 'DRVR' resource. This way we can be
sure we're using the correct ID, even if the Font/DA Mover may have
changed it from its original value when installing it in the system
resource file. Similarly, we have to store the same value into the
menuID field of the menu record [II:4.1.l], to make sure the menu
knows its own ID. (This is one of those cases where the Mover doesn't
update an embedded resource ID for us. Someday there may be a
version of the Mover smart enough to handle this case correctly. but
for now we have to take care of it ourselves.)

Besides storing the menu ID into the appropriate fields of the
DCE and the menu record, we also save a handle to the menu record
itself in our global data record under the name TheMenu, to make it
available to other parts of the Stopwatch program. Then we insert
the menu at the end of the menu bar and redraw the menu bar,
making the menu's title visible to the user on the screen.

300 Playing with a Full Desk

For desk accessories that need more than just a single menu, it's
possible to take over the entire menu bar and put up as many
menus as you wish. The Toolbox global variable MBarEnable, at
low-memory address $A20, is normally set too, signifying that
the menu bar ts under the controi of the host program. A
negative value in this location means that the menu bar belongs
to a desk accessoxy instead; the value must be the same as the
menu ID found in the dCtlMenu field of the accessory's DCE.

An accessory wishing to make use of this feature must, of
course, take over the menu bar only when tes actually active on
the screen, and. give it back to the host program on becoming
inactive. On receiving an activate event, the accessory should do
the following:

1. Copy its nomtnal menu ID from its DCE into MBarEnable.

2. Call GetMenuBar [II:4.4.4) to save the existing menu bar for
later restoration.

3. Empty the menu bar with ClearMenuBar (11:4.4.1].

4. lnsertwhatevermenusitneedswith InsertMenu (11:4.4.1],
or substitute a preconstructed menu bar of its own with
SetMenuBar [11:4.4.4].

5. Display the newmenu bar on the screen with Dr awMenuBar
[11:4.4.3].

(Instead ofbuildtng a new menu bar from scratch, the accessory
might choose instead to read it in as a resource with Get -
NewMBar (11:4.4.2].) On receiving a deactivate event, the acces
sory should

1. Restore·the previous menu barwith SetMenuBar [II:4.4.4].
2. Redisplay the menu bar with DrawMenuBar (11:4.4.3].

3. Clear the value ofMBarEnable too, to restore control of the
menu bar to the host program.

Notice that there ts no middle.ground: you either get one single
menu (the normal case) ~r the whole menu bar.

301 The Open Routine
~~~~~~~~~~~~-

Desk Accessory Window 

If a desk accessory wishes to maintain a window on the screen, its 
Open routine must create the window record and place a pointer to 
it in the dCtl Window field of the DCE [3.1.4]. Program 6-7 (Setup -
Window) shows how our StopWatch program does it. After receiving 
the window pointer from the Toolbox, we have to typecast it to an 
untyped Ptr, since that's the way it's declared in the DCE. For 
convenience, we also save it in our global data record as The Window. 

Program 6-7 Initialize Stopwatch window 

procedure SetUpWindow (var dee: DCtlEntry: dataHandle DRHandle): 

{ Initialize StopWatch window. 

var 

peek : WindowPeek: {Pointer for "peeking" into window's fields [II:3.1.1]} 

begin {SetUpWindow} 

with dee, dataHandleAA do 

begin 

TheWindow := GetNewWindow (RsreBase, NIL, WindowPtr(-1)): 

{Make new window from template [II:3.2.2)} 

dCtlWindow := Ptr (TheWindow): {Store window pointer in DCE [3.1.4]} 

peek := WindowPeek(TheWindow): 

peekA.windowKind := dCtlRefNum 

{Convert to a "peek" pointer [Il:3.1.1]} 

{Set window class to ref. number [Il:3.1.1]} 

end {with dee, dataHandle""} 

end: {SetUpWindow} 

Notice that there's no need for the accessory to display the 
window on the screen: the Toolbox will do that automatically if it finds 
a window pointer in the DCE on return from the accessory's Open 
routine. One important bit of housekeeping that must be taken care 
of, however, is to store the accessory's reference number (not its unit 
number!) into the windowKind field of the window record [11:3.1.1]. 
This is essential to allow the Toolbox to tell which accessory the 



302 Playing with a Full Desk 

window belongs to, so it can relay events affecting the window to the 
proper destination. Why the Toolbox doesn't set this field for you is 
another of those unanswered mysteries that make Macintosh pro
gramming so endlessly entertaining and delightful. 

Since Stopwatch displays text in its window, its Open routine 
must also create a TextEdit record [II:5.1.l] and initlalize its text 
characteristics. The routine that does this, Setup Text, really doesn't 
contribute anything new to our understanding of desk accessory 
programming, so we won't examine it in too much detail here: see 
Appendix H for the code. There are just a couple of points worth 
mentioning. 

One is that SetUpText calls another Stopwatch routine, Read -
DeskScrap (also listed inAppendix H), to copy the global desk scrap 
[1:7.4] into the internal TextEdit scrap. This allows the user to cut or 
copy text from the host program (or another desk accessory) and 
paste it into the Stopwatch window. Notice, though, that the host 
program must do its part by writing the text to the desk scrap before 
transferring control to the accessory. Without the host's cooperation, 
the accessory is powerless. 

The other important point is that before making the Stopwatch 
window the current port (in order to initialize its text characteristics), 
we must be careful to save the previous port and restore it again 
before returning control. A desk accessory must always remember 
that it is a guest in someone else's home, and conduct itself 
accordingly. This means preserving the host program's current port, 
current resource file, and all other properties of the global environ
ment exactly the way it finds them, as befits a well-bred houseguest. 

The Control Routine 

A desk accessory's Control routine is where the action is. Once the 
accessory is open for business, it receives a stream of Control calls 
from the Toolbox notifying it of events and circumstances it needs to 
respond to. These include keystrokes typed when the accessory is 
active, mouse clicks in its window, items chosen by the user from its 
menu, standard cut-and-paste editing operations, and executions of 
its periodic task. All these different types of Control call are identified 
by standard control codes [6.1.2] passed in the csCode field of the 
parameter block [3.1.5). Responding to Control calls is what desk 
accessories do for a living. · 

Program ~8 (DoControl) shows our Stopwatch accessory's 
Control routine. It's really just a glorified case statement, which 



303 The Control Routine 

dispatches on the control code to the specialized subsidiary routines 
that do the actual work. Unfortunately, the constant definitions for 
the desk accessory control codes are not included in the standard 
Pascal interface files, so stop Watch must declare them for itself. 

Program 6-8 Handle driver Control call 

{ Global constants } 

const 
Kill Code 
GoodBye 

AccEvent 
Ace Run 
AccCursor 
AccMenu 
Ace Undo 
Ace Cut 
Ace Copy 
Ace Paste 
Ace Clear 

1; 

-1; 

= 64: 

= 65: 

66; 

67; 

68; 

70; 

71; 

72: 

73; 

procedure DoControl (pbPtr 

{ Handle driver Control call. 

var 

dataHandle DRHandle: 
paramPtr ALONGINT: 

begin {DoControl} 

with pbPtrA. dcePtrA do 
begin 

ParamBlkPtr: dcePtr 

MoveHHi (dCtlStorage): 

HLock (dCtlStorage) : 

dataHandle 
paramPtr 

DRHandle(dCtlStorage): 
@csParam: 

{Standard control codes: } 

DCtlPtr): 

( KillIO operation (3.2.3]} 

("Good-bye kiss" (3.1.2]} 

{User event (6.1.3]} 

(Periodic task (6.1.3]} 

{Adjust cursor (6.1.3]} 

(Menu item [6.1.3]} 

{Undo command (6.1.3)} 

(Cut command [6.1.3)} 

{Copy command [6.1.3]} 

(Paste command [6.1.3]} 

{Clear command [6.1.3]} 

{Handle to StopWatch data record} 

{Pointer for converting parameter field} 

{Move data record to end of heap [1:3.2.S]} 

{Lock data record [!:3.2.4]} 

{Convert to typed handle [3.1.4]} 

{Convert to long integer [3. l.S]} 



304 Playing with a Full Desk 

Program 6-8 Handle driver Control call (continued) 

case csCode of 

AccEvent: 
DoEvent (dataHandle, paramPtrA): {Handle user event} 

Ace Run: 
PeriodicTask (dataHandle): (Perform periodic task} 

AccCursor: 
FixCursor (dataHandle): {Adjust cursor for region of screen} 

AccMenu: 
DoMenuChoice (dataHandle, paramPtrA): {Handle user's menu choice} 

AccUndo: 
DoUndo (dataHandle): {Handle Undo command} 

AccCut: 
DoCut (dataHandle): (Handle Cut command} 

AccCopy: 
DoCopy (dataHandle): (Handle Copy command} 

AccPaste: 
DoPaste (dataHandle): {Handle Paste command} 

AccClear: 
DoClear (dataHandle): (Handle Clear command} 

GoodBye: 
DoGoodBye (pbPtr. dcePtr): (Handle "good-bye kiss"} 

KillCode: 
DoKillIO (dataHandle) (Perform KillIO operation} 

end : (case ctlCode} 

HUnlock (dCtlStorage) (Unlock data record [1:3.2.4]} 

end (with pbPtr'\ dceJ>ttA} 

end: (DoControl} 



305 The Control Routine 

Once again, as in the Open routine, the Toolbox locks the 
accessoxy and its device control entxy in place before issuing a 
Control call, and the parameter block is a nonrelocatable object in the 
first place-so we can safely dereference the DCE and parameter 
block pointers that we receive as arguments. The first thing our 
DoControl routine does is lock the Stopwatch data record (via the 
dCtlStorage handle in the DCE), so all the subsidiary routines can 
safely access the accessoxy's global data as well. 

Some of the Control calls accept additional data in the first 4 
bytes of the parameter block's csParam field [6.1.2, 3.1.5). DoCon -
trol uses a utility variable, paramPtr, to convert these 4 bytes to a 
long integer that it can pass to the appropriate subsidiary routines 
as a parameter. On return from the subsidiary routines, DoControl 
unlocks the data record again before exiting back to the Toolbox and 
the host program. 

Two of the control codes shown here, KillCode and GoodBye, 
are included for completeness even though s topWatch should 
never actually receive either of them. Since it has no need for a 
special "good-bye kiss/' its Open routine disables them by 
clearing the dNeedGoodBye flag in the DCE (see Program 6-3, 
SetUpDCE, above). As for the standard driver operation KillIO 
(3.2.3), the Toolbox will never issue such a call to a desk 
accessory. Theoretically. the host program might issue it di
rectly, but that would assume a degree of specialized lmowledge 
of a particular accessory's properties that the host program or
dinarily doesn't have. (The host program typically doesn't even 
know in advance what accessories will be available in the 
system at run time!) 

Nevertheless, if a desk accessory .did choose to respond to 
good-bye kisses or KillIO calls, it would receive them in the form 
of special control codes and handle them as shown here. For 
lack of anything more meaningful to do with them, StopWa tch 
treats a good-bye kiss as equivalent to a driver Close call, and 
KillIO as equivalent to its menu command Reset. 



306 Playing with a Full Desk 

Event Processing 
Like any other Macintosh program, a desk accessory is event-driven. 
That is to say, its actions are determined by the sequence of events 
reported to it by the Toolbox. Unlike a full-fledged application 
program, however, an accessory doesn't have an event loop of its 
own. Instead, it has to hitch a ride on the event loop of its host 
program. 

The host program requests events by repeatedly calling the 
Toolbox routine GetNextEvent [11:2.2.1]. Before reporting an event 
to the host program, GetNextEvent first passes it to another Toolbox 
routine, SystemEvent [6.2.2], to see whether it pertains to a desk 
accessory. If so, SystemEvent intercepts the event and relays it to the 
accessory in the form of a Control call, with a control code of 
Ac cEvent [6.1.2] and a pointer to the event record [11:2.1.1] in the 
first 4 bytes of the parameter block's csParam field [3.1.5]. 
SystemEvent then returns a Boolean result telling whether the event 
was intercepted and relayed to an accessory, or whether it must be 
processed by the host program instead. Notice that SystemEvent is 
always called internally by the Toolbox itself: it is not intended for 
public use by any application program or desk accessory. 

The events relayed to a desk accessory ordinarily include all 
window events (activate, deactivate, update) affecting the accessory's 
window, as well as all keyboard events (key-down, key-up, auto-key) 
when the accessory is active. However, the accessory can refuse any 
of these event types, if it chooses, by excluding them from its event 
mask [6.1.1]. Instead of relaying such events to the accessory, 
SystemEvent will leave them for the host program to handle in its 
own way. 

Besides window and keyboard events, SystemEvent will also 
relay mouse-up events to an active accessory if permitted by the 
accessoxys eventmask. Recall, however, that desk accessories 
are not supposed to accept mouse-up events, for unexplained 
but presumably weighty reasons. Whom the gods would de
stroy, they first confuse. 

Mouse-down events are singled out for special treatment. In 
order to intercept such events, SystemEvent would first have to call 
FindWindow [11:3.5.1] to determine whether the mouse was pressed 



307 The Control Routine 

in a desk accessory's window. Then, depending on the answer, it 
could either relay the event to the accessory or leave it alone for the 
host program to handle. But in the latter case, the host program 
would immediately have to call FindWindow again, to find out which 
of its own windows the event occurred in, so it could respond 
accordingly. 

To avoid this duplication of effort, SystemEvent makes no 
attempt to intercept mouse-down events, but just passes them 
through to the host program untouched. On learning from Find Win -
dow that the mouse press occurred in a system window (one belong
ing to a desk accessory), the host program is expected to call yet 
another Toolbox routine, SystemClick [6.2.2], to handle it. Sys -
temClick will then determine where in the window the mouse was 
pressed and respond accordingly: 

• If the click was in the window's title bar, it calls DragWindow 
[II:3. 5.4] to follow the mouse with an outline of the window until 
the button is released, then move the window to the new 
location. 

• If the click was in the window's close box, it calls TrackGoAway 
[11:3.5.4] to track the mouse until the button is released. If it's 
released inside the close box, SystemClick then calls 
CloseDeskAcc [6.2.1] to close the accessory. 

• If the click was in the window's content region, it relays the 
mouse-down event as an AccEvent Control call for the acces
sory to deal with in whatever way is appropriate. 

An unusual wrinkle arises when the mouse is clicked in a 
modeless dialog box belonging to a desk accessory. The Toolbox 
routine IsDialogEvent [11:7.4.4) identifies dialog windows by 
checking their windowKind field [11:3.1. l] for the value Dia -
logKind; but in order for the window to be recognized as a 
system window in the first place. its wind owKind field must hold 
the accessoI"Ys (negative) reference number instead. So the 
accessory must explicitly set the windowKind field to Dia -
logKind before calling IsDialogEvent. then set it back to the 
window's own reference number afterward, so that the window 
will again be recognized as a system window on the next call to 
SystemEvent. 



308 Playing with a Full Desk 

Program 6-9 Handle user event 

procedure DoEvent (dataHandle 

{ Handle user evenL 

type 
EventPtr 

var 

evtPtr 
theEvent 
activate 

begin {DoEvent} 

"Event Record: 

EventPtr: 
EventRecord: 
BOOLEAN: 

DRHandle: ctlParam 

evtPtr · = EventPtr (ctlParam): 
theEvent ·= evtPtr": 
with theEvent do 

case what of 

MouseDown: 
DoMouseDown (theEvent, dataHandle): 

KeyDown. AutoKey: 
DoKeystroke (theEvent, dataHandle): 

UpdateEvt: 
DoUpdate (dataHandle): 

ActivateEvt: 
DoActivate (theEvent, dataHandle) 

end {case what} 

end: {DoEvent) 

LONGINT): 

{Pointer to an event record [Il:2.1.1] ) 

{Typed pointer for converting control parameter) 

{Event record for this event [I1:2.1.1]} 

{Activate or deactivate window?) 

{Convert control parameter to typed pointer} 

{Get event record} 

{Dispatch on event type [Il:2.1.l, II:2.1.2]} 

{Handle mouse-down event} 

{Handle keyboard event) 

{Handle update event} 

{Handle activate (or deactivate) event} 

Program6-9 (DoEvent) shows StopWatch'sroutlneforrespond
ing to relayed events. All it does is retrieve the event record and 
dispatch on the event type to some other Stopwatch routine that 
handles that type of event. These other routines (DoMouseDown, 



309 The Control Routine 

DoKeystroke, Do Update, and DoActi vate) are all pretty straightfor
ward, and we needn't bother with them here: see Appendix H for the 
code. One point worth noting is that Do Activate must remember to 
enable the accessory's menu in the menu bar when its window 
becomes active. and disable it again when the window becomes 
inactive. It also performs the needed transfers between the TextEdit 
scrap and the external desk scrap. allowing text to be cut and pasted 
between the accessory and the outside world. 

Menu Choices 

When the user presses the mouse in the menu bar, the host program 
is expected to call the Toolbox routine MenuSelect [11:4.5.1] to track 
the mouse and determine which menu item is chosen. If the menu 
containing the chosen item has a negative menu ID, MenuSelect 
lmows that the menu belongs to a desk accessory. It then calls 
another Toolbox routine. SystemMenu [6.2.3]. to relay the menu 
choice to the desk accessory for action. 

Like SystemEvent, which we discussed earlier. SystemMenu is 
intended strictly for the private use of the Toolbox itself. It examines 
the device control entries of all lmown accessories until it finds one 
whose dCtlMenu field matches the chosen menu ID. Then it relays 
the choice to the accessory as a Control call with a control code of 
Ac cMe nu [6.1.2]. The specific item chosen is identified by passing its 
menu ID and item number in the first 2 words (4 bytes) of the 
parameter block's csParam field [3.1.5). After the accessory has 
processed the item. MenuSelect reports a menu ID of Oto the host 
program, to tell it there's nothing for it to do. 

Program 6-10 (DoMenuCho ice) shows how St o pWa t ch responds 
to choices from its menu. It extracts the menu ID and item number. 
verifies that the menu ID matches its own. and dispatches on the 
item number to the routine that handles the indicated menu com
mand. These routines (DoAbout. DoStart. DoPause. DoReset) con
tain much of the programming logic that makes Stopwatch behave 
like a stopwatch. But they have nothing to teach us about how desk 
accessories work in general. so we won't go into them here; if you're 
curious. you can read the code for yourself in Appendix H. After one 
of these routines has executed the chosen menu command, 
DoMenuChoice must call HiliteMenu(O) [II:4.5.4] to unhighlight 
the menu title, which will have been left highlighted byMenuSelect. 



310 Playing with a Full Desk 

Program 6-10 Handle user's menu choice 

{ Global constants 

con st 

About Item 

Start Item 
Pause Item 
Reset Item 

1: 

3: 

4: 

5: 

procedure DoMenuChoice (dataHandle 

{ Handle user's menu choice. 

var 

whichMenu 

whichitem 

INTEGER; 

INTEGER: 

begin {DoMenuChoice} 

DRHandle: menuChoice 

whichMenu 
whichitem 

HiWord(menuChoice): 
LoWord(menuChoice): 

if whichMenu <> dataHandleAA.RsrcBase then 
SysBeep (1) 

else 

begin 
case whichitem of 

About Item: 

DoAbout (dataHandle): 

Start Item: 
DoStart (dataHandle): 

Pauseitem: 

DoPause (dataHandle): 

Resetitem: 

DoReset (dataHandle) 

end: {case whichitem} 

HiliteMenu (0) 

end {else} 

end: {DoMenuChoicc} 

(Item numbers for menu commands: } 

{About StopWatch ... command} 

{Start command} 

{Pause command} 

{Reset command} 

LONGINT): 

{Menu ID of selected menu} 

{Item munber of selected item} 

{Get menu ID [1:2.2.3]} 

{Get item number [1:223]} 

{Is it the StopWatch menu? [3.1.4]} 

{Complain if not [II:2.8. l]} 

{Handle About StopWatch ... command} 

{Handle Start command} 

{Handle Pause command} 

{Handle Reset command} 

{Unhighlight menu title [II:4.5.4]} 



311 The Control Routine 

Cut-and-Paste Editing 

Stopwatch also responds to the standard editing commands Undo, 
Cut, Copy, Paste, and Clear. These have to be handled differently, 
however, because the menu they're on (usually titled Edit) belongs 
to the host program, rather than to Stopwatch itself. It's the host 
program's responsibility to make sure these commands are available 
and enabled whenever a desk accessory is active on the screen. 
Because the Edit menu belongs to the host program (and thus has 
a positive menu ID), MenuSel ect will not intercept the user's choices 
from this menu and pass them directly to the active desk accessory. 
Instead, it will simply report them back to the host program like any 
other item chosen from one of its menus. 

But the cut-and-paste editing commands are notjust like any 
other menu item. On learning from MenuSelect that the user has 
chosen one of them, the host program must call the Toolbox routine 
SystemEdi t [6.2.3] to see if the command is directed to a desk 
accessory instead of itself. SystemEdi t checks whether the active 
window on the screen belongs to a desk accessory. If so, it relays the 
specified editing command to the accessory and returns TRUE, 
meaning that the command was intercepted; otherwise it simply 
returns FALSE, telling the host program to handle the command 
itself. 

As usual, the command is relayed to the accessory in the form 
of a Control call. But instead of AccMenu, the control code used for 
choices from the accessory's own menu. each of the standard editing 
commands has its own special control code: AccUndo, AccCut, 
AccCopy, AccPaste, and AccClear [6.1.2]. Stopwatch's Control 
routine (DoContr ol, Program 6-8) refers each of these cases to the 
appropriate Stopwatch routine for that command (DoUndo, DoCut, 
DoCopy, DoPaste, DoClear). These very simple routines, shown in 
Appendix H, just call the corresponding TextEdit routines (TECut, 
TECopy. TEPaste [11:5.5.2], TEDelete [11:5.5.3]) to perform the re
quested editing operations. 

Keyboard Aliases 
The fact that the Edit menu belongs to the host program rather than 
the desk accessory makes it difficult for accessories to handle 
Command-key combinations in the usual way. Ordinarily, when the 
user types such a combination on the keyboard, the host program 
calls the Toolbox routine MenuKey [11:4.5.1] to convert the combina
tion into the equivalent menu ID and item number. This isn't possible 



312 Playing with a Full Desk 

for a desk accessory, however, because it doesn't know the item 
numbers for the editing commands on the host program's Edit 
menu. So if the accessory wishes to use the standard Command-key 
aliases for these commands, it has to recognize them for itself, 
without help from the Toolbox. 

Program 6-11 Handle keyboard event 

procedure DoKeystroke (theEvent : EventRecord: dataHandle DRHandle): 

{ Handle keyboard evenL } 

var 
chCode INTEGER: 
ch CHAR: 

{Character code from event message [8.1.1)} 

{Character that was typed} 

begin {DoKeystroke} 

with theEvent do 

begin 

chCode := BitAnd (message. CharCodeMask): {Extract character code [1:2.2.2, 11:2.1.4)} 

ch := CHR(chCode): · {Convert to a character} 

if (BitAnd (modifiers. CmdKey) <> 0) 
and (what <> AutoKey) then 

DoAlias (dataHandle. ch) 

{Command key down? [1:2.2.2, 11:2.1.5]} 

{Ignore repeats (11:2.1.1, 11:2.1.2]} 

{Handle as command alias} 

else 

DoTyping (dataHandle, ch) {Handle as ordinary keystroke} 

end {with theEvent} 

end ; { DoKeystroke} 

Program 6-11 (DoKeystroke) is Stopwatch's routine for han
dling keyboard input, called by DoEvent (Program 6-9) when it 
receives a key-down or auto-key event. After extracting the character 
code from the message field of the event record [II:2.1.4], DoKey
stroke examines the modifiers field [II:2.1.5] to see if the Com
mand key was down when the character was typed. If so, it calls the 
Stopwatch routine DoAlias to process the keystroke as a command 
alias; otherwise, it calls DoTyping to process it as an ordinary 
keystroke. 



313 The Control Routine 

DoAlias (Program 6-12) interprets the character typed on the 
keyboard as a menu equivalent (Command-z for Undo. Command-x 
for Cut. and so on) and calls the corresponding Stopwatch routine 
to handle the command. In addition to the standard editing com
mands. we also recognize keyboard aliases for the commands on 
StopWatch"s own menu: Command-s for Start. Command-comma 
for Pause/Resume. and Command-period for Reset. Notice that for 
the latter commands. we highlight the title of the Stopwatch menu. 
but we can't do the same for the editing commands because we don't 
know the menu ID of the host program's Edit menu. 

Program 6-12 Handle keyboard command alias 

procedure DoAlias (dataHandle : DRHandle; ch CHAR): 

{ Handle keyboard command alias. 

var 

menuChoice LONGINT: 

begin {DoAlias) 

if ch in [' S' • 's' • ' • ', ' . '] then 

HiliteMenu (dataHandleAA.RsrcBase): 

case ch of 

'Z'. 'z': 
Do Undo (dataHandle): 

'X'. 'x': 
DoCut (dataHandle): 

'C' • 'c': 

DoCopy (dataHandle): 

'V' • 'v': 
Do Paste (dataHandle) : 

'B' • 'b': 

DoClear (dataHandle): 

'S' • IS I: 

DoStart (dataHandle): 

{Menu ID and item number) 

{Is it a StopWatch menu command?} 

{Highlight menu title [II:4.S.4]} 

{ Command-Z means Undo} 

{Command-X means Cut} 

{ Command-C means Copy} 

{ Command-V means Paste} 

{Command-B means Clear} 

{Command-S means Start} 



314 Playing with a Full Desk 

Program 6-12 Handle keyboard command alias (conttnuedJ 

'. ': 
DoPause (dataHandle): {Command-comma means Pause or Resume} 

' ': 
DoReset (dataHandle): {Command-period means Reset} 

otherwise 
Sys Beep (1) 

end: {case ch} 

HiliteMenu (0) 

end : { DoAlias} 

{Unknown command code [II:2.8.1]} 

{Unhighlight menu title [11:4.5.4]} 

DoTyping (Program 6-13) handles ordinary keystrokes. typed 
without the Command key. The only printable characters it accepts 
are the digits o to 9, which it passes to the Toolbox routine TEKey 
(11:5.5.1] to insert in the StopWa t ch window. It does the same with the 
backspace character, to delete the current selection or the character 
immediately preceding the insertion point. In addition. it recognizes 
those keyboard equivalents that don't require the Command key: 
Return or Enter for the Start command, the space bar for Pause or 
Resume. and the keypad Clear key for Res et. For all other characters. 
it just beeps and does nothing. 

Program 6-13 Handle character typed from keyboard 

{ Global constants } 

con st 

Enter $03; 
BS $08; 
CR $OD; 
Clear $1B: 
Space = $20; 

DigitO $30; 
Digit9 $39; 

{Character codes [1:8.1.1]: } 

{Enter character} 

{Backspace character} 

{Carriage return} 

{ aear character} 

{Space character} 

{Digit 'O'} 

(Digit '9'} 



315 The Control Routine 

Program 6-13 Handle character typed from keyboard (continued) 

procedure DoTyping (dataHandle : DRHandle: ch 

{ Handle character typed from keyboard. 

var 

chCode 

menuChoice 

begin (DoTyping} 

INTEGER: 

LONGINT: 

chCode := ORD(ch): 

CHAR): 

{Character code [1:8.1.1)} 

{Menu ID and item number} 

{Convert to character code} 

if chCode in [CR, Enter, Space, Clear) then{IsitaStopWatchmenucommand?} 

Hili teMenu (dataHandle"". RsrcBase): {Highlight menu title [II:4.5.4)} 

with dataHandle"" do 

case chCode of 

Digit0 .. Digit9, BS: 

if ClockRunning then 

SysBeep (1) 

else 

TEKey (ch. TheText): 

CR. Enter: 

DoStart (dataHandle): 

Space: 

DoPause (dataHandle): 

Clear: 

DoReset (dataHandle): 

otherwise 

SysBeep (1) 

end: {case chCode} 

HiliteMenu (0) 

end: {DoTyping} 

{Dispatch on character code} 

{Stopwatch already in use?} 

{No typing allowed [II:2.8.1)} 

{Insert digit or backspace in window (11:5.5.1]} 

{Return or Enter means Start} 

{Space means Pause or Resmne} 

{ Qear means Reset} 

{Invalid character [Il:2. 8.1] } 

{Unhighlight menu title [Il:4.5.4]} 



316 Playing with a Full Desk 
~~~~~~~~~~~~-

Periodic Task
At least once per tick (sixtieth of a second)-typically on each pass of
its main event loop-the host program is expected to call the Toolbox
routine SystemTask [6.2.4]. This gives the Toolbox a chance to
perform certain routine chores associated with the care and feeding
of drivers and desk accessories. The most :Important of these chores
is running their periodic tasks whenever necessary.

An accessory (or other driver) signals that it has a periodic task
by setting the dNeedTime flag [3.1.2] in the dCtlFlags field of its
device control entry [3.1.4]. The dCtlDelay field tells how often, in
ticks, the task is to be performed. Each time SystemTask is called,
it scans the unit table (3.1.3] for drivers or accessories whose tasks
are due to be run, using the dCtlCurTicks field of the DCE as a
counter to time the inteival since the last execution. When the
required inteival has elapsed, SystemTask issues a Control call with
the control code AccRun [6.1.2], instructing the accessory to run its
periodic task again.

Program 6-14 Perform periodic task

procedure PeriodicTask (dataHandle DRHandle):

{ Perfonn periodic task. }

begin {PeriodicTask}

with dataHandleAA do

if ClockBeeping then (Is the clock beeping?}

DoBeep {Beep it again}

else if ClockRunning and not ClockPaused then {Is the clock ticking?}

AdvanceClock (dataHandle) {Advance time on clock}

else if not ClockPaused then {Is the clock idle?}

TE Idle (TheText) {Blink insertion point [Il:S.4.3]}

end: {PeriodicTask}

Program 6-14 (PeriodicTask) is the routine that performs
Stopwatch's periodic task. You might say this is the routine that
makes stopwatch tick. (Then again. you might not. ...) What it does
depends on what state StopWatch is currently in. as indicated by the

317 The Control Routine

Boolean flags ClockRunning, ClockPaused, and ClockBeeping in
the global data record. (These flags are set to reflect the current state
of the accessory by the command routines Do Start, Do Pause, and
DoReset.)

• If the clock has run down to zero and is sounding its alarm, the
periodic task calls the Stop Watch routine DoBeep (Appendix H)
to sound it again. This routine simply beeps once and flashes the
menu bar.

• If the clock is running, the periodic task calls the Stopwatch
routine AdvanceClock to update the time displayed in the
Stopwatch window. Thisistheinterestingcase, which we'll get
to in a minute.

• If the clock is neither running nor beeping, the periodic task
calls the Toolbox routine TE Idle (11:5.4.3] to blink the insertion
point on the screen. This indicates to the user that Stopwatch
is ready to accept keyboard input or editing commands.

• If the clock is running but has been suspended with the Pause
command, the periodic task does nothing.

The AdvanceClock routine (Program 6-15) is the real heart of
Stopwatch's periodic task. The most straightforward approach
would be just to find the time currently displayed in the Stopwatch
window and add or subtract one tenth of a second, depending on
whether the clock is counting upward or downward. Unfortunately,
we can't always rely on the host program to call SystemTask as often
as it should, particularly during time-consuming operations such as
mouse tracking, printing, or disk input/ output. The elapsed time
between executions of our periodic task may sometimes be consid
erably more than a tenth of a second.

Program 6-15 Advance time on clock

procedure AdvanceClock (dataHandle : DRHandle):

{ Advance time on clock. }

var

timeNow LONGINT:

clockTime LONGINT:

timeString Str255:

{Current time on system clock}

{Number of seconds showing on stopwatch}

{String representation of clock time (1:2.1.1] }

318 Playing with a Full Desk

Program 6-15 Advance time on clock (continued)

begin {AdvanceClock}

with dataHandleAA do
begin

timeNow := TickCount:

if CountDown then
clockTime TargetTime - timeNow

else
clockTime ·= timeNow · TargetTime:

clockTime := (clockTime + 3) div 6:

if CountDown and (clockT:ime <= 0) then
begin

timeString := '0.0':
StartBeep (dataHandle)

end {then}

else
begin

NumToString (clockTime. timeString):

{Get current time [Il:2.7.1]}

{Counting up or down?}

{Ticks till stopping time}

{Ticks since starting time}

{Round to nearest tenth of a second}

{Has time ron out?}

{Avoid negative value}

{Start beep sequence}

INSERT ('.'. timeString, LENGTH{timeString))
{Convert to string [1:2.3. 7]}

{Insert decimal point}

end: {else}

TESetText (@timeString [l] . LENGTH (timeString) • TheText) : {Set window's text [Il:S.2.3]}

TEUpdate (TheText A A . viewRect, TheText) {Redisplay text on screen [Il:S.3.2]}

end {with dataHandleM}

end: {AdvanceClock}

So, to keep the clock running smoothly and accurately, we
maintain a field named TargetTime in our global data record
(Program 6-4). Whenever the user starts the clock, our DoStart
routine records in this field eitherthe system time when the clock was
started (if it's counting up from zero) or the time when it is due to run
out (if it's counting down from some positive number of seconds).
Then, when 1he periodic task is run, the AdvanceClock routine
compares the current time on the system clock with the target time.
rounds the difference to the nearest tenth of a second, and displays
the result in the Stopwatch window. This ensures that the time

319 The Control Routine

shown in the window is correct, even if more than a tenth of a second
has gone by since we last executed our periodic task.

Program 6-16 Start beep sequence

procedure StartBeep (dataHandle DRHandle):

{ Start beep sequence.

var
dceHandle DCtlHandle: (Handle to DCE (3.1.4)}

begin {StartBeep}

with dataHandleAA do
begin

DoBeep: (Sound first beep}

dceHandle := GetDCtlEntry (RefNum):
dceHandleAA.dCtlDelay ·= 60:

{Get DCE handle (3.1.4])

{Change task intetval to once persecond [3.1.4))

ClockBeeping := TRUE {Start periodic beeping}

end {with dataHandleM}

end : { StartBeep}

When the clock counts down to zero, AdvanceClock calls a
routine named StartBeep (Program 6-16) to begin sounding the
alarm. After sounding the first beep in the sequence, StartBeep
changes the task intetval in the device control entry from 6 ticks to
60, causing our periodic task to be run once per second instead of ten
times a second. Then it sets the ClockBeeping flag in the global data
record. telling the periodic task routine (Program 6-14) to sound
another beep each time it's called. When the user turns off the alarm
with the Reset command, our Do Res et routine (see Appendix H) will
call the initialization routine Ini tFlags (also inAppendix H), which
will set the task intetval back to 6 ticks.

320 Playing with a Full Desk
~~~~~~~~~~~~ 

The Close Routine 

When a desk accessory's services are no longer required, the Toolbox 
notifies it to close up shop by sending it a driver Close call. This call 
is issued by the Toolbox routine CloseDeskAcc [6.2.1). which in turn 
may be called in any of several ways: 

• The user clicks the mouse in the accessory window's close box. 
As we saw earlier, the host program is expected to pass all mouse 
clicks in the accessory's window to the Toolbox routine Sys
temClick [6.2.2) for processing. On learning that the click was 
in the window's close box, SystemClick will respond by calling 
CloseDeskAcc. This takes place automatically, with no further 
action required on the part of the host program. 

•The user chooses the menu command Close and the desk 
accessory's window is frontmost on the screen. In this situation, 
the host program must explicitly call CloseDeskAcc to dismiss 
the accessory. 

• The host program terminates. As part of the termination 
sequence. theToolboxwill automatically call CloseDeskAcc for 
all open desk accessories. 

On receiving a Close call, the accessory is expected to dispose of 
its internal data structures, remove its window and menu from the 
screen. and generally tidy up after itself. The goal is to leave the host 
program's environment exactly as we found it. Like a hiker on a 
wilderness trail, a desk accessory should "take nothing but pictures. 
leave nothing but footprints." 

Program 6-17 Handle driver Close call 

procedure DoClose (pbPtr : ParamBlkPtr: dcePtr DCtlPtr): 

{ Handle driver Close call } 

var 

theData DRHandle: {Handle to StopWatch data record} 

rsrcHandle Handle: {Untyped handle for disposing of menu [1:3.1.1]} 



321 The Close Routine 

Program 6-17 Handle driver Close call (continued) 

begin {DoClose} 

with dcePtr" do 
begin 

MoveHHi (dCtlStorage): 
HLock (dCtlStorage): 

theData := DRHandle(dCtlStorage): 
with theData1111 do 

begin 

DeleteMenu (dCtlMenu): 
DrawMenuBar: 
rsrcHandle := Handle(TheMenu): 
ReleaseResource (rsrcHandle): 

DisposeWindow (TheWindow): 
dCtlWindow := NIL: 

TEDispose (TheText) 

end: {with theDataAA} 

HUnlock (dCtlStorage): 

DisposHandle (dCtlStorage): 
dCtlStorage ·= NIL 

end {with dcePtrA} 

end: {DoClose} 

{Move data record to end of heap [1:3.2.S)} 

{Lock dala handle [1:3.2.4]} 

{Convert to typed handle [3.1.4]} 

{Remove menu from menu bar [11:4.4.1]} 

{Redraw menu bar [11:4.4.3]} 

{Convert to untyped handle [1:3.1.1]} 

{Dispose of menu [1:6.3.2]} 

{Dispose of window [11:3.2.3)} 

{ Cear window pointer from DCE (3.1.4)} 

{Dispose of edit record [II:S.2.2)} 

{Unlock data handle (1:3.2.4)} 

{Dispose of data record [1:3.2.2]} 

{Cear storage handle from DCE (3.1.4]} 

Program 6-17 (DoClose) is Stopwatch's Close routine. Notice 
that it isn't enough just to dispose of structures like the window 
record and global data record. An accessoiy's DCE, remember, 
remains behind even after the accessoiy itself has been purged from 
the heap, ready to be used again if the accessory is ever reopened. So 
besides destroying the accessoiy's data structures, it's also impor
tant to clear the fields in the DCE that refer to them (dCtlWindow, 



322 Playing with a Full Desk 
~~~~~~~~~~~-

dCtlStorage),just to make sure no one (the Toolbox or anyone else)
is ever tempted to follow these defunct pointers off into the ozone.

The same isn't necessary with dCtlMenu. since it's only a
resource ID instead of a pointer or handle, and remains valid even
after the menu itself is gone. We do have to remember. though. to
delete the menu from the menu bar before disposing of it, and then
redraw the menu bar without it. If we neglect this bit of housekeeping
and the user ever tries to pull down the departed menu, it will
instantly demolish the.system. That's one way to get rid of the or
DCEI

REFERENCE

6.1 Desk Accessory Structure

6.1.1

conot

MDownMask = $0002:
MUpMask = $0004:
KeyDownMask = $0008:
KeyUpMask = $ 001 O :
AutoKeyMask = $0020:
UpdateMask = $0040:
DiskMask = $0080;
ActivMask = $0100;
NetworkMask = $0400:
DriverMask = $0800:
ApplMask = $1000:
App2Mask = $2000:
App3Mask = $4000:
App4Mask ... $8000:

EveryEvent = $F~FF:

323

Event Mask

{Mouse-down event}

(Mouse-up event}

{Key-down event}

(Key.;µp event}

(Auto-key event}

{Update event}
(Disk-fuserted event}

{Activate/deactivate event}
{Netwmk event}

{I/O dri.verevent}

{Application-defined event}
{Application-defined event}

(Applicalion-defined event}

{Application-defined event (also used by MultiFinder}

(Any event}

324 Desk Accessories

*Multi Finder Event types marked with •
•Application-defined are never relayed to desk accessories

*VO driver

*Network
(Reserved)

Activate/deactivate
*Disk-inserted

Update

Auto-key

Key-up

Key-down

I
Mouse-up
j

1
Mouse-down

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 = can respond to this event type
o = cannot respond to this event type

Desk accessory event mask

Notes

Unuse~null events can
never be masked out

1. The dCtlEMask field of the device control enhy [3.1.4] defines which
types of event a desk accessoiy can respond to.

2. The event mask in the device control entiy is automatically initialized
from the d r v r EMa s k field of the driver header [3.1.1] when the accessoiy
is opened for operation. The accessoiy•s Open routine may then change
the mask in the DCE if for some reason it needs to override the value
taken from the driver header. The mask in the DCE ls the one that
actually controls which events the desk accessoiy will receive.

3. The Toolbox routines SystemEvent and SystemClick [6.2.2] intercept
the specified events pertaining to the desk accessoiy and relay them to
the accessory for action.

4. The event mask has a separate bit for each possible event type [11:2.1.2].
A 1 bit in any posltlon means that the desk accessoiy ls prepared to
respond to that type of event; a o bit means it is not.

325 [6.1.1) Event Mask

5. The mask constants shown can be combined with Bi tAnd, Bi tor,
Bi tXO r, and Bi tNot [1:2.2.2) to form any combination of event types you
need.

6. A typical event mask for a desk accessory would be $016A, to accept
activate/deactivate, update, mouse-down, key-down, and auto-key
events.

7. In general, desk accessories should respond to key-down and auto-key
events in some way, even if only with a beep to acknowledge receipt of
the keystroke.

8. Desk accessories must not accept mouse-up events.

9. Disk-inserted events are never relayed to a desk accessory, regardless of
the setting of the event mask's DiskMask.

10. The mask EveryEvent includes all possible event types. Desk
accessories should never use this value directly (see note 8, above), but
may use it as a basis for constructing other event masks, such as

BitXOr (EveryEvent, MUpMask}

11. Theassembly-languageconstantsMButDwnEvt, MButUpEvt, etc. (below)
are bit numbers for use with the BTST, BSET, BCLR, and BCHG
instructions.

ID I Assembly Language Information
~m---------

Event types:

Name Value Meaning

MButDwnEvt 1 Mo\lse-down event
MButUpEvt 2 Mouse-up event
KeyDwnEvt 3 Key-down event
KeyUpEvt 4 Key-up event
AutoKeyEvt 5 Auto-key event
UpdatEvt 6 Update event
DiskinsertEvt 7 Disk-inserted event
ActivateEvt 8 Actlvate/deactivateevent
NetworkEvt 10 Network event

IODrvrEvt 11 l/O driver event
ApplEvt 12 AJiplication-defined event
App2Evt 13 Application-defmed event
App3Evt 14 Application-defined event
App4Evt i5 Application-defined event (also used by

MultiFinder)

326 Desk Accessories

6.1.2 Control Codes

Desk accessoiy control codes:

Name Value Meaning

KillCode 1 Handle KillIO call [3.2.3)
GoodBye -1 Handle "good-bye kiss" [3.1.2]

AccEvent 64 Respond to user event

AccRun 65 Perform periodic task
AccCursor 66 Adjust cursor
AccMenu 67 Respond to user's menu choice
Ace Undo 68 Execute Undo command
Ace Cut 70 Execute Cut command
Ace Copy 71 Execute Copy command
AccPaste 72 Execute Paste command
Ace Clear 73 Execute Clear command

---J~iii~·==:1~----N-o_te_s ________________________________ ___

1. When a Control call [3.2.3) is issued to a desk accessoiy, a control code
in the cs Code fieldoftheparameterblock[3.l.5] Identifies the particular
Control operation to be performed.

2. The csParam field of the parameter block [3.1.5) may contain further
parameters, depending on the specific Control operation.

3. Some software development systems provide "glue" routines to retrieve
the values of csCode and csParam from the parameter block and pass
them directly as parameters to the desk accessory's Control routine.
Consult your own language documentation for details.

4. The names shown for the control codes in the table are defined as
assembly-language constants, but are not included in the standard
Pascal interface to the Toolbox. To use them at the Pascal level, you must
declare them for yourself.

5. KillCode designates a KillIO call [3.2.3). Since most desk accessories
don't do any input/output, they normally need not respond to KillIO.

6. GoodBye identifies a "good-bye kiss." notifying the desk accessory that
the application heap is about to be reinitialized (typically because the
host program has been terminated and a new one is about to start up).

7. The desk accessory will always receive an ordinary Close call when the
host program is terminated. The good-bye kiss is needed only if some

327 [6.1.2] Control Codes

other, special action is needed to allow the accessory to maintain its
state through a heap reinitialization. Most accessories can simply
dispense with it by clearing the dNeedGoodBye flag in the dCtlFlags
field of the device control entry (3.1.2, 3.1.4).

8. AccEvent marks a Toolbox event to which the desk accessory must
respond. The first 2 words of csParam hold a pointer (not a handle!) to
an event record (11:2.1.1) describing the event.

9. Most events are relayed to the desk accessoiy by the Toolbox routine
SystemEvent (6.2.2), which is called indirectly when the host program
calls GetNextEvent [Il:2.2.l].

10. Mouse-down events are relayed instead by the Toolbox routine
SystemClick (6.2.2). lThe host program is expected to call
SystemClick when FindWindow [Il:3.5.l] reports that the mouse was
clicked in a window belonging to a desk accessory.)

11. AccRun instructs the desk accessory to perform its periodic task. This
call is sent only if the dNeedTime flag is set in the dCtlFlags field of the
device control entry (3.1.2, 3.1.4), when the required number of ticks
(dCtlDelay) has elapsed since the periodic task was last performed.

12. AccCursor tells the desk accessory to adjust the appearance of the ·
cursor on the screen in whatever way it wishes, depending on the
cursor's position and the current state of the accessory.

13. This call is sent by the Toolbox routine Sys t emT ask (6.2.4) whenever an
accessory's window is active (frontmost on the screen). The host program
is expected to call SystemTask on evecy pass through its main event
loop, or at least once per tick.

14. AccMenu reports that the user has chosen an item from the desk
accessory's menu. cs Par am [O] contains the menu ID and cs Par am [1]
gives the item number within the menu.

15. This call is sent by the Toolbox routine SystemMenu (6.2.3), which is
called indirectly when the host program calls MenuSelect or MenuKey
(11:4.5.1]. These routines recognize a desk accessory menu by its
negative menu ID and call SystemMenu to relay the choice to the desk
accessory for action.

16. Ace Undo, AccCut, AccCopy, AccPaste, and AccClear report that the
user has invoked one of the standard editing commands while the desk
accessory was active.

17. These calls are sent by the Toolbox routine SystemEdi t (6.2.3)
whenever an accessory's window is active (frontmost) on the screen. The
host program is expected to call Sy st emEd it whenever the user chooses
any of the standard editing commands, to see whether a desk accessoiy
is active and relay the command to the accessory if appropriate.

328 Desk Accessories

I ID I Assembly Language Information -tm...,__ _____ _
Assembly-language constants:

Name Value Meaning

Kill Code 1 Handle KilIIO call [3.2.3)
Goo dB ye -1 Handle "good-bye kiss" [3.1.2)
Ace Event 64 Respond to user event
AccRun 65 Pe.rfonn periodic task
AccCursor ,66 Adjust cursor
Ace Menu 67 Respond to user's menu choice
Ace Undo '68 Execute Undo command
Ace Cut 70 Execute Cut command
Ace Copy 71 Execute Copy command

Ace Paste 72 Execute Paste command
Ace Clear 73 Execute Clear command

6.2 Desk Accessory Operations

6.2.1

£unction OpenDeskAcc
(accName : Str255)

: .INTEGER:

procE!dure CloseDeskAcc

Opening and Closing Desk Accessories

{Name of desk accessoiy_~ ~}
{Reference nwnber of desk accessor)'}

(dRefNum : INTEGER) : {Reference number of desk accessoiy to close)

Notes

1. OpenDeskAcc opens a desk accessory and displays it on the screen.

2. The desk accessory is identified by name; OpenDeskAcc returns its
reference number to be used for further identification.

3. The host program is expected to call OpenDeskAcc when the user
chooses a desk accessory from the Apple menu.

329 [6.2.1) Opening and Closing Desk Accessories
~~~~~~~~~~~~~ 

4. If the designated desk accessory is not already in memory, it is read in 
from its resource file. The accessory's resource type is 'DRVR' [3.3. l ]; its 
resource name is given by the accNarne parameter. 

5. The first time a desk accessory is opened, OpenDeskAcc creates a device 
control entry [3.1.4) and places a handle to it in the system unit table 
(3.1.3). The accessory's resource ID (its unit number) determines its 
position within the unit table. 

6. OpenDeskAcc calls the desk accessory's Open routine, to initialize its 
data structures and prepare for operation. 

7. On return from the Open routine, if the desk accessory's device control 
entry (3.1.4) contains a window pointer in its dCtlWindow field, 
OpenDe skAc c automatically displays and selects the window, malting it 
the active window. The Open routine should create the window in an 
invisible state and store its pointer in the DCE, allowingOpenDeskAcc 
to display it on the screen. 

8. OpenDeskAcc automatically stores the desk accessory's reference 
number into the the dCtlRefNurn field of the DCE [3.1.4), butnotintothe 
window's windowKind field (11:3.1.1). The accessory's Open routine 
must explicitly copy the reference number from the DCE to the window 
record. 

9. The desk accessory's Open routine must create the accessory's menu, 
if any, insert it in the menu bar, and redraw the menu bar to display the 
new menu's title on the screen. OpenDeskAcc does not provide these 
services automatically. 

10. c loseDe skAc c closes a desk accessory and removes it from the screen. 

11. The desk accessory is identified by reference number. 

12. The host program is expected to call SysternClick (6.2.2) when 
FindWindow (11:3.5.1) reports that the mouse was clicked in a desk 
accessory's window. If the click was in the window's close box, 
SysternClick will then automatically call CloseDeskAcc to close the 
desk accessory. CloseDeskAcc is also called automatically for all open 
desk accessories when the host program terminates. 

13. The host program should call CloseDeskAcc explicitly when the user 
chooses the Close command while a desk accessory is active. 

14. CloseDeskAcc calls the desk accessory's Close routine, to dispose ofits 
data structures and prepare to terminate operation. 

15. If the desk accessory has a window, its Close routine should dispose of 
the window and clear the window pointer in the dCtlWindow field of the 
device control entry [3.1.4) to NIL. If lt has a menu, the Close routine 
should delete the menu from the menu bar, dispose of it, and redraw the 
menu bar to remove the menu's title from the screen. CloseDeskAcc 
does not provide any of these services automatically. 



330 Desk Accessories 

16. CloseDeskAcc does not destroy the desk accessoiy's device control 
entry. The DCE remains in existence and will be reused the next time the 
accessoiy is opened. 

ID I Assembily Language Information --1qn......._ _____ _ 

'ITap macros: 
(Pascal) 
Routine. name 

OpenDeskAcc 
CloseDeskAcc 

(Assembly) 
Trap macro 

_OpenDeskAcc 
_CloseDeskAcc 

Trap word 

$A9B6 
$A9B7 

6.2.2 Responding to Events 

function Sys~emEvent 

(theEvent : EventRecord) 

: BOOLEAN: 

procedure SystemClick 

(theEvent EventRecord) 

theWindow WindowPtr): 

Notes 

{Event to be processed} 

{Was it intercepted as a system event?} 

{Event to be processed} 

(System window where mouse was pressed} 

1. SystemEvent determines whether a given event pertains to a desk 
accessoiy and, if so, relays lt to the accessoiy for action. 

2. This routine is called only by the Toolbox routine GetNextEvent 
(11:2.2.l], to intercept events directed to desk accessories. It should 
never be called directly by the host program. 

3. The function result tells whether the event was intercepted and relayed 
to a desk accessoiy (TRUE) or must be handled by the host program itself 
(FALSE). 

4. Events are relayed to the desk accessory by calling its Control routine 
with the control code AccEvent [6.1.2). A pointer to the event record is 
placed in the first 2 words of the parameter block's cs Par am field (3.1.5). 



331 (6.2.2) Responding to Events 
~~~~~~~~~~~~~ 

5. Events relayed to the desk accessory include all window events (activate,
deactivate, update) affecting the accessory's window, as well as all
mouse-up and keyboard (key-down, key-up, auto-key) events when the
accessory is active.

6. For mouse-down events, SystemEvent does not attempt to determine
whether the event occurred in a system window or to relay it to a desk
accessory. Instead, the host program is expected to call FindWindow
[3 .5.1] to determine the window affected, and if it is a system window, to
pass the event to SystemClick (see below) to be processed.

7. For disk-inserted events, SystemEvent mounts the new volume and
returns FALSE, allowing the host program to take further action if
appropriate. Such events are never relayed to a desk accessory.

8. Network, I/O driver, and application events are never relayed.

9. Relaying of each event type is further subject to the setting of the
corresponding bit in the accessory's event mask [6.1.l], found in the
dCtlEMask field of its device control entry [3.1.4).

10. SystemClick processes a mouse-down event in a system window. The
host program is expected to call it when FindWindow [3.5.1) returns a
part code of InSysWindow.

11. SystemClick does all the necessary processing to respond to the event,
such as activating the window if it's inactive, tracking the mouse in its
drag or close region, and moving or closing it if appropriate.

12. If the window belongs to an active desk accessory, mouse clicks in its
content region are relayed to the accessory for processing.

13. In assembly language, the interception and relaying of system events is
controlled by the I-byte global flag SEvtEnb (see below). This flag is
nonnallysetto TRUE ($FF): settingitto FALSE($ oo) disables the relaying
of events. SystemEvent will then always return FALSE, instructing the
host program to handle all events for itself.

~ lal ... _____ As_se_m_b_Iy_Lan __ guag __ e_'"_,._o_rm_a_ti_o_n ______ _

Trap macros:

(Pascal)
Routine name

SystemEvent

SystemClick

(Assembly)
Trap macro

_SystemEvent

_SystemClick

Trap word

$A9B2
$A9B3

332 Desk Accessories

Assembly·language global variable:

Name Address Meaning

SEvtEnb $15C Intercept system events? (1 byte)

6.2.3 Handling Menu Commands

procedure SystemMenu
(menuChoice : LONGINT): {Menu ID and item number)

function SystemEdit

const
UndoCmd
CutCmd
CopyCmd
PasteCmd
ClearCmd

(editCmd : INTEGER):
: BOOLEAN:

{Command relayed from application program}

(Handled by desk accessory?)

= O:

= 2:

= 3:
4;

= 5:

Notes

{Edit code for Undo command}

{Edit code for Cut command)

(Edit code for Copy command)

{Edit code for Paste command}
{Edit code for Clear command)

Menu ID (16 bits) Item number (16 bits)

Format of menuChoice parameter

1. SystemMenu accepts a choice by the user from a deskaccessoiy's menu
and relays it to the desk accessoiy for action.

333 (6.2.3] Handling Menu Commands
~~~~~~~~~~~~~ 

2. This routine is called only by the Toolbox routines MenuSelect and 
MenuKey [11:4.5. l], when an item is chosen from a desk accessory's 
menu. It should never be called directly by the host program. 

3. The Toolbox recognizes desk accessory menus by their negative menu 
IDs. Each accessory's menu ID is kept in the dCt lMenu field ofits device 
control entry [3.1.4]. 

4. The menuChoice parameter is a long integer in the same form as the 
resultretumedbyMenuSelect andMenuKey [11:4.5.1), with the menu ID 
in the high-order word and the item number in the low-order word. 

5. Menu choices are relayed to the desk accessory by calling its Control 
routine with the control code AccMenu [6.1.2]. The menu ID and item 
number are placed in the first 2 words of the parameter block's cs Par am 
field [3.1.5]. 

6. SystemEdi t determines whether a desk accessory is currently active 
(that is, frontmost on the screen), and if so. relays a specified editing 
command to the accessory for action. 

7. The host program is expected to call this routine whenever the user 
chooses any of the five standard editing commands. It is also the host 
program's responsibility to make sure these commands are available 
and enabled whenever a desk accessory is active. 

8. The parameter editCrnd must be one of the constants shown. 

9. These constants have inexplicably been removed from Apple's official 
Toolbox interface. To use them, the host program must now either define 
them for itself as program constants or arrange its Edit menu so that 
the standard commands have item numbers one greater than the 
corresponding constant values as shown above. (Notice the gap between 
the values ofUndoCmd and CutCrnd. representing a dividing line on the 
menu between the Undo and Cut commands.) Ifit uses this method, the 
host program must remember to subtract 1 back from the chosen item 
number before passing it on to SysternEdi t. 

10. Editing commands are relayed to the desk accessory by calling its 
Control routine with one of the control codes AccUndo, AccCut, 
AccCopy, AccPaste, or AccClear [6.1.2]. 

11. TheBooleanresultretumedbysystemEdi t isTRUEifthecommandwas 
successfully relayed to a desk accessory, FALSE if it must be handled by 
the host program (for instance. if the active window doesn't contain a 
desk accessory). 

12. The trap macro for SystemEdi tis spelled _SysEdi t. 



334 Desk Accessories 

ID I Assembly Language Information --1m.______,_ ____ _ 
Trap macro: 
(Pascal) 
Routine name 

SystemMenu 
SystemEdit 

[Assembly) 
Trap macro 

_SystemMenu 
_SysEdit 

6.2.4 Performing Periodic Tasks 

procedure SystemTask; 

Notes 

Trap word 

$A9B5 
$A9C2 

1. SystemTask performs any periodic tasks associated with open desk 
accessories (or other drivers), under the control of the system clock. 

2. The host program is expected to call SystemTask at least once per tick 
(60 times per second) to ensure that all desk accessories and drivers 
receive the processor time they need. This is normally done by calling it 
once on every pass of the program's main event loop: it may have to be 
called more often during time-consuming operations. 

3. An accessory's or driver's periodic task is executed only if the d Need Time 
flag is setin the dCtlFlags field ofitsdevice control entry (3.1.2, 3.1.4], 
and only if the required number of ticks (dCtlDelay) has elapsed since 
the periodic task was last performed. 

4. The dCtlCurTicks field of the DCE [3.1.4) is used as a counter to time 
the interval between executions of the periodic task. 

5. The desk accessory or driver is instructed to perform its periodic task by 
a Control call with the control code AccRun [6.1.2). 

6. If a desk accessory is active (frontmost on the screen), sys t emT ask also 
sends it the control code Ace Cursor [6.1.2]. This allows it to adjust the 
appearance of the cursor according to the cursor's position on the screen 
and the accessory's own current state. 



335 [6.3.1] Resource 'fype • FKEY • 
~~~~~~~~~~~~-

ID I Assembly Language Information -1m........-------
~apmacro:

(Pascal)
Routine name

SystemTask

6.3 Keyboard Routines

(Assembly)
Trap macro

_SystemTask

6.3.1 Resource Type ' FKEY'

I

Trap word

$A9B4

····---·---------------·-4---·--·······--·-······-··-··-···-·

Notes

• • •

Code of
keyboard routine

(indefinite length) • • •

1·--·--·- -1 -----------------t--------·-

Structure of an 'FKEY' resource

1. A resource of type 'FKEY' contains a low-level keyboard routine.

2. Keyboard routines are executed automatically when the user types a
numeric key (0-9) while holding down both the Command and Shift
keys. These keystrokes are intercepted by the low-level keyboard driver
and are not reported to the running program via the event mechanism.

336 Desk Accessories

3. The resource ID of the 'FKEY' resource designates the key that invokes
the routine, and must be between o and 9.

4. The resource data is simply the machine-language code of the keyboard
routine.

6. The routine's ent:Iy point must be at the very beginning.

6. The routine must leave all processor registers unchanged.

7. The User Interface Guidelines define the following standard Command
Shift keystrokes, which should not be overridden by ' FKEY' resources
of your own:

Keystroke

Command-Shift-1
Command-Shift-2
Command-Shift-3
Command-Shift-4

Meaning

Eject disk in internal drive
Eject disk in external drive
Dump screen to a MacPaint file
Dump screen to printer

(' FKEY' resources 3 and 4 are included in the standard system resource
file. There are no actual resources numbered 1 and 2; these operations
are implemented internally by the keyboard driver.)

8. The keyboard driver intercepts Command-Shift keystrokes only if the 1-
byte global flag ScrDmpEnb is TRUE ($FF). If this flag is FALSE ($00),
they're just reported as ordinary keyboard events.

ID I Assembly Language Information ----1m.--------
Assembly-language global variable:

Name Address

ScrDmpEnb $2F8

Meaning

Intercept Command-Shift keystrokes?

(1 byte)

APPENDIX
-- rtc:--·:= ... ::;c:·:~'=Tl ------------------
-- lj ii------------------11 A i! ---------------·
--· IJ ... -~~-Jl -----------------------
Toolbox Summary

Chapter 2 Customizing

2.1 Customizing QuickDraw

2.1.1 Bottleneck Record

type
QDProcsPtr "QDProcs:

QDProcs record

textProc Ptr:
lineProc Ptr:
rectProc Ptr:
rRectProc Ptr;
oval Pree Ptr:
arcProc Ptr:
poly Pree Ptr:

rgnProc Ptr:
bitsProc Ptr:
commentProc Ptr:
txMeasProc Ptr:
get Pie Pree Ptr:
putPicProc Ptr

end;

procedure SetStdProcs
(var procs QDProcs):

337

{Draw text (2.1.5]}
{Draw lines [2.1.3]}

{Draw rectangles [2.1.4)}

{Draw rounded rectangles (2.1.4]}

{Draw ovals [2.1.4)}

{Draw arcs and wedges [2.1.4]}

{Draw polygons [2.1.4]}

{Draw regions [2.1.4]}

{Copy bit images [2.1.2]}

{Process picture comments (2.1.7]}

{Measure text (2.1.5)}

{Retrieve picture definitions (2.1.6]}

{Save picture definitions [2.1.6)}

{Bottleneck record to initialize}

338 Appendix A

2.1.2 Low-Level Bit Transfer

type

QDProcs record

bitsProc

end:

Ptr:

procedure StdBits

(var fromBitMap

fromRect

toRect

mode

clipTo

2.1.3 Line Drawing

type

QDProcs record

lineProc

end:

Ptr:

{Copy bit images}

Bi tMap: {Bit map to copy from}
Rect: {Rectangle to copy from}

Rect: {Rectangle to copy to}

INTEGER: {Transfer mode}
RgnHand le) : {Region to clip to}

{Draw lines}

procedure StdLine

(drawTo Point): {Point to draw to, in local coordinates}

2.1.4 Shape Drawing

type

QDProcs record

rec1:Proc

rRectProc

ovalProc

arcProc

polyProc

rgnProc

end:

Ptr:

Ptr:

Ptr:

Ptr:

Ptr:

Ptr:

{Draw rectangles}

{Draw rounded rectangles}

{Draw ovals}

{Draw arcs and wedges)

{Draw polygons)

{Draw regions}

GrafVerb (Frame.
Paint,
Erase,
Invert,

Fill):

procedure StdRect

(whichOp
theRect

GrafVerb:
Rect):

procedure StdRRect

procedure

(whichOp

theRect
cornerWidth
cornerHeight

Std Oval

GrafVerb:

Rect:
INTEGER:
INTEGER):

(whichOp GrafVerb:
inRect Rect):

procedure StdArc

(whichOp
inRect

startAngle

arc Angle

procedure StdPoly
(whichOp

thePolygon

procedure StdRgn

(whichOp

theRegion

2.1.5 Text Drawing

type
QDProcs record

textProc

txMeasProc

end:

procedure StdText
(charCount
theText
scaleNumer
scaleDenom

GrafVerb:
Rect:

INTEGER:
INTEGER):

GrafVerb:
PolyHandle):

GrafVerb:

RgnHandle):

Ptr:

Ptr:

INTEGER:
Ptr:
Point:
Point):

{Draw outline}

{Fill with current pen pattern}

{Fill with background pattern}

{Invert pixels}

{Fill with specified pattern}

{Drawing operation to perfonn}

{Rectangle to be drawn}

{Drawing operation to perfonn}

{Body of rectangle}

{Width of comer oval}

{Height of comer oval}

{Drawing operation to perfonn}

{Rectangle defining oval}

{Drawing operation to perfonn}

{Rectangle defining oval}

{Starting angle}

{Extent of arc}

{Drawing operation to perfonn}

{Handle to polygon to be drawn}

{Drawing operation to perfonn}

{Handle to region to be drawn}

{Draw text}

{Measure text}

{Number of characters to be drawn}

{Pointer to text to be drawn}

{Numerators of scale factors}

{Denominators of scale factors}

340 Appendix A

function StdTxMeas

(charCount
the Text
var scaleNumer
var scaleDenom
var f ontProps

: INTEGER:

INTEGER:
Ptr:
Point:
Point:
Font Info)

2.1.6 Picture Processing

type

QDProcs

procedure

procedure

record

getPicProc
putPicProc

end:

StdGetPic
(toAddr
byteCount

StdPutPic

(fromAddr
byteCount

Ptr:
Ptr

Ptr:
INTEGER):

Ptr:
INTEGER):

2.1.7 Picture Comments

type
QDProcs record

commentProc

end:

procedure Std Comment
(commentType
dataSize

comment Data

procedure Pie Comment
(comment Type
dataSize
commentData

con st

PicLParen 0:

PicRParen 1:

Ptr:

INTEGER:
INTEGER:
Handle):

INTEGER:
INTEGER:
Handle):

{Number of characters to be drawn}

{Pointer to text to be drawn}

{Numerators of scale factors}

{Denominators of scale factors}

{Metric infonnation about text font}

{Width of text in pixels}

{Retrieve picture definitions}

{Save picture definitions}

{Address to read to}

{Number of bytes to read}

{Address to write from}

{Number of bytes to write}

{Process picture comments}

{Comment type}

{Length of comment data in bytes}

{Handle to comment data}

{Comment type}

{Length of comment data in bytes}

{Handle to comment data}

{Begin command grouping}

{End command grouping)

2.2 Customizing Windows

2.2.1 Window Definition Function

function YourWindowDef

(varCode INTEGER:

theWindow WindowPtr:

msgCode INTEGER:

msgParam LONGINT)

: LONGINT:

const

WDraw = O:

WHit = 1:

WCalcRgns = 2:

WNew = 3:

WDispose 4:
WGrow 5:

WDrawGicon 6:

{Variation code}

{Pointer to the window}

{Operation to be perf onned}

{Additional data for perfonning operation}

{Result returned by operation}

{Draw window frame [223)}

{Find where mouse was pressed [2.2.5]}

{Calculate structure and content regions (2.2.2]}

{Initiali:ze new window [2.2.2]}

{Prepare to dispose of window [2.22]}

{Draw feedback image for resizing window [2.2.4]}

{Draw size region [2.2.4]}

2.2.2 Creating and Destroying Windows

const

WCalcRgns = 2:

WNew 3:

WDispose = 4:

2.2.3 Drawing Windows

const

WDraw 0:

WNoHit O:

WinGoAway 4:
WinZoomin 5:

WinZoomOut 6:

{Calculate structure and conten regions}

{Initiali:ze new window}

{Prepare to dispose of window}

{Draw window frame}

{Draw entire window frame}

{Toggle close region only}

{Toggle zoom region only}

{Toggle zoom region only}

342 Appendix A

2.2.4 Resizing Windows

const

WGrow

WDrawGicon
5:

6:

2.2.5 Locating Mouse Clicks

con st
WHit 1:

WNoHit O:

WinContent 1:

WinDrag 2:

WinGrow 3:

WinGoAway 4:
WinZoomin 5:

WinZoomOut 6:

2.3 Customizing Controls

2.3.1 Control Definition Function

function YourControlDef

con st
DrawCntl

TestCntl

CalcCRgns
InitCntl

DispCntl
PosCntl

ThumbCntl
DragCntl
AutoTrack

(varCode INTEGER:
theControl ControlHandle:

msgCode

msgParam
: LONGINT:

O:

1:

2:

3:

4:
5:

6:

7:

8:

INTEGER:

LONGINT)

{Draw feedback image for resizing window}

{Draw si7.e region}

{Find where mouse was pressed}

{Window hit codes: }

{None of the following}

{In content region}

{In drag region}

{In size region}

{In close region}

{In zoom region of a "zoomed-out" window}

{In zoom region of a "zoomed-in" window}

{Variation code}

{Handle to the control}

{Operation to be perf onned}

{Additional data for perf onning operation}

{Result returned by operation}

{Draw all or part of control (2.3.3)}

{Find where mouse was pressed [2.3.4]}

{Calculate control's region [2.3.2)}

{Initialize new control [2.3.2)}

{Prepare to dispose of control [2.3.2)}

{Reposition and update setting [2.3.5]}

{Calculate parameters for dragging [2.3.5)}

{Drag control or indicator [2.3.5]}

{Execute default action procedure (2.3.5)}

2.3.2 Creating and Destroying Controls

const

CalcCRgns

InitCntl

DispCntl

2:

3:

4:

2.3.3 Drawing Controls

const

DrawCntl = 0:

2.3.4 Locating Mouse Clicks

const

TestCntl = 1:

2.3.5 Tracking and Positioning

const

PosCntl 5:

ThumbCntl 6:

DragCntl 7:

AutoTrack 8:

2.4 Customizing Menus

2.4.1 Menu Definition Procedure

procedure YourMenuDef

{msgCode INTEGER:

theMenu MenuHandle:

var menuFrame Rect:

mousePoint Point:

var theitem INTEGER):

const

MDrawMsg O:

MChooseMsg 1:

MSizeMsg 2:

{Calculate control's region within its window}

{Initialize new control}

{Prepare to dispose of control}

{Draw all or pan of control}

{Find pan of control where mouse was pressed}

{Reposition indicator and update setting}

{Calculate parameters for dragging indicator}

{Drag control or indicator}

{Execute default action procedure}

{Operation to be performed}

{Handle to the menu}

{Menu frame}

{Mouse position in global (screen) coordinates}

{Number of menu item chosen}

{Draw menu [2.4.2]}

{Find and highlight menu item [2.4.3]}

{Calculate dimensions of menu [2.4.2)}

344 Appendix A

2.4.2 Menu Display

con st
MDrawMsg
MSizeMsg

0:

2:

2.4.3 Locating Mouse Clicks

const
MChooseMsg 1:

{Draw menu}

(Calculate dimensions of menu}

{Find and highlight menu item}

Chapter 3 Drivers

3.1 Driver-Related Data Structures

3.1.4 Device Control Entry

type
DCtlHandle
DCtlPtr

DCtlEntry

"DCtlPtr:
"DCtlEntry

record

dCtlDriver
dCtlFlags
dCtlQHdr
dCtlPosition
dCtlStorage
dCtlRefNum
dCtlCurTicks
dCtlWindow
dCtlDelay
dCtlEMask
dCtlMenu

end:

function GetDCtlEntry
(dRefNum : INTEGER)

: DCtlHandle:

Ptr:
INTEGER:
QHdr;
LONGINT:
Handle:
INTEGER:
LONGINT:
Ptr:
INTEGER:
INTEGER:
INTEGER

{Handle or pointer to driver in memory}

(Copy of driver flags [3.1.2]}

{Header of driver J/O queue (3.1.5, 3.1.6]}

{Current read or write position}

{Handle to private data}

{Driver reference number}

{Tick counter for periodic task}

{Pointer to driver's window}

(Frequency of periodic task, in ticks}

{Event mask}

{Menu ID}

{Driver reference number}

{Handle to device control entry}

3.1.5 Driver 1/0 Queue

type

ParamBlkType

ParmBlkPtr

ParamBlockRec

(IOParam,

FileParam,

VolumeParam,

CntrlParam):

"ParamBlockRec:

record

qLink QElemPtr:

qType INTEGER:

ioTrap

ioCmdAddr

ioCompletion

ioResult

ioNamePtr

ioVRefNum

INTEGER:

Ptr:

ProcPtr:

OSErr:

StringPtr:

INTEGER:

case ParamBlkType of

IOParam :

(ioRefNum

ioVersNum

ioPermssn

ioMisc

ioBuff er

ioReqCount

ioActCount

ioPosMode

ioPosOff set

FileParam :

(. . .) :
VolumeParam :

(. . .) :

INTEGER:

SignedByte:

SignedByte:

Ptr:

Ptr:

LONGINT:

LONGINT:

INTEGER:

LONGINT):

{Input/output operation}

{File operation}

{Volume operation}

{Control or status operation}

{Pointer to next queue element}

{Queue type}

{Copy of trap word}

{Pointer to Toolbox routine}

{Pointer to completion routine}

{Result code}

{Driver name}

{Volume or drive reference number}

{Driver reference number}

{Version number (wiused)}

{Read/write pennission}

{Unused}

{Address to transfer to/from}

{Number of bytes requested}

{ Acwal number of bytes transferred}

{Positioning mode}

{Positioning off set}

CntrlParam :

(ioCRefNum

cs Code

csParam

INTEGER: {Driver reference number}

INTEGER: {Control or status code}

array [0 .. 10] of INTEGER)

{Parameters for operation}

end:

346 Appendix A .

3.1.6 Operating System Queues

type
QHdrPtr
QHdr

QElemPtr
QElem

"QHdr:
record

qFlags
qHead
qTail

end:

"QElem
record

INTEGER:
QElemPtr:
QElemPtr

case QTypes of
VType (vblQElem
IOQType (ioQElem
DrvQType (drvQElem
EvType (evQElem
FSQType {vcbQElem

QTypes

end:

(DummyType,

VType.
IOQType,
DrvQType,
EvType,
FSQType):

3.1.7 Manipulating Queues

procedure Enqueue

(newElement
theQueue

function Dequeue
(oldElement
theQueue

const
QErr - 1:

: OSErr:

QElemPtr:
QHdrPtr):

QElemPtr:
QHdrPtr)

{Flags}

{First entl)' in queue}

{Last enlly in queue}

VBLTask) :
ParamBlockRec) :
DrvQEl):
EvQEl):
VCB)

(Unused}

{Vertical retrace queue}

(Driver or file UO queue}

{Disk drive queue}

{Event queue}

{File system (volume) queue}

{Element to be inserted}

{Queue to insert it in}

{Element to be removed}

{Queue to remove it from}

{Result code}

{Element not found in queue}

3.2 Driver Operations

3.2.1 Opening and Closing Drivers

function OpenDriver
(driverName

var dRefNum
: OSErr:

function CloseDriver

Str255:
INTEGER)

(dRefNum : INTEGER)
: OSErr:

3.2.2 Reading and Writing

function FSRead
(dRefNum

var byteCount
toAddr

OSErr:

function FSWrite
(dRefNum
var byteCount
fromAddr

: OSErr:

3.2.3 Device Control

function Control
(dRefNum
controlCode
pa rams

: OSErr:

function Status
(dRefNum
statusCode
pa rams

: OSErr;

function Kill IO

(dRefNum
: OSErr:

INTEGER;

LONGINT:
Ptr)

INTEGER:
LONGINT:
Ptr)

INTEGER:
INTEGER:
Ptr)

INTEGER:
INTEGER:
Ptr)

INTEGER)

{Driver name}

{Returns driver reference nmnber}

(Result code}

{Driver reference number}

{Result code}

{Driver reference number}

{Number of bytes to read}

{Address to read to}

{Result code}

{Driver reference number}

{Number of bytes to write}

(Address to write from}

{Result code}

{Driver reference number}

{Control code}

{Pointer to parameters}

(Result code}

{Driver reference number}

{Status code}

{Pointer to parameters}

{Result code}

{Driver reference number}

{Result code}

348 Appendix A

Chapter 4 Printing

4.1 Printing-Related Data Structures

4.1.1 Printing Port

type
TPPrPort ATPrPort:

TPrPort record
gPort
gProcs
lGParaml
1GParam2
1GParam3
lGParam4
fOurPtr
fOurBits

end:

GrafPort:
QDProcs:
LONGINT:
LONGINT:
LONGINT:
LONGINT:
BOOLEAN:
BOOLEAN

{Graphics port for printing}

{Customized bottleneck record}
{Private}

{Private}

{Private}

{Private}

{Private}

{Private}

4.1.2 Print Record

type
THPrint
TPPrint

TPrint

const

!Pr Release

l\TPPrint:
ATPrint:

record

iPrVersion INTEGER: {Version stamp}
prinfo TPrinfo: {Printer inf onnation subrecord [4.1.3] }

{Paper rectangle} rPaper Rect:
prStl TPrStl: {Style subrecord (4.1.4]}
prinfoPT
prXInf o
prJob
printX

end:

3:

TPr Info: {Print-time infonnation subrecord (4.1.3]}

TPrXInfo: {Auxiliary infonnation subrecord (4.1.6]}

TPrJob: {Job subrecord [4.1.S]}

array [1 .. 19] of INTEGER
{Padding to fill to 120 bytes}

{Current version number of printing routines}

4.1.3 Printer Information Subrecord

type
TPPrinfo

TPrlnfo

"TPrinfo:

record
iDev
iVRes
iHRes
rPage

end:

INTEGER:
INTEGER:
INTEGER:
Rect

4.1.4 Style Subrecord

type
TPPrStl "TPrStl:

TPrStl record
wDev
iPageV
iPageH
bPort
feed

end:

TFeed (FeedCut,
FeedFanfold.
FeedMechCut,
FeedOther):

const
IPrPgFract = 120:

BDevCitoh
BDevLaser

IDevCitoh
IDevLaser

1:

3:

$0100:
$0300:

INTEGER:
INTEGER:
INTEGER:
SignedByte:
TFeed

{Printer's device code}

{Vertical resolution in dots per inch}

{Horizontal resolution in dots per inch}

{Page rectangle}

{Type of printer or other device}

(Paper height in device-independent units}

{Paper width in device-independent units}

{Port to which printer is connected}

{Type of paper feed}

{Hand-fed cut sheets}

{Continuous fan-fold paper}

{Medtanically fed cut sheets}

{Other types of paper feed}

(Number of page size units per inch}

{Original ImageWriter}

{PostScript-based LaserWriter}

{Original Image Writer}

{PostScript-based LaserWriter}

350 Appendix A

4.1.5 Job Subrecord
type

TPPrJob "TPrJob:

TPrJob record
iFstPage INTEGER:
iLstPage INTEGER:
iCopies INTEGER:
bJDocLoop SignedByte:
fFromUsr BOOLEAN:
pidleProc ProcPtr:
pFileName StringPtr:
iFileVol INTEGER:
bFileVers SignedByte:
bJobX Signed Byte

end:

con st
IPrPgFst 1:

IPrPgMax 9999:

BDraftLoop 0:

BSpoolLoop 1:

BUserlLoop 2:
BUser2Loop 3:

(First page to be printed}

(Last page to be printed}

(Nmnber of copies to be printed}

{Printing method (draft or spool}}

(Private}

{Pointer to background procedure}
{Name of spool file}

{Reference number of spool file's volume}

{Version number of spool file}

{Padding}

{ Minimmn page nwnber to be printed}

(Maximum page number to be printed}

{Draft printing}

{Spooling}

{Printer-specific method number 1}

{Printer-specific method number 2}

4.1.6 Auxiliary Information Subrecord

type

TPPrXInfo

TPrXInf o

"TPrXInfo:

record
iRowBytes
iBandV
iBandH
iDevBytes
iBands
bPatScale
bULThick
bULOff set
bULShadow
scan
bXInfoX

end;

TScan (ScanTB.
ScanBT.
ScanLR.
ScanRL):

INTEGER: {Row width of each band in bytes}

INTEGER: {Height of each band in dots}

INTEGER: (Width of each band in dots}

INTEGER: (Size of band image in bytes}

INTEGER: {Nmnber of bands per page}

SignedByte: {Used in scaling patterns}

SignedByte; {Thickness of tmderline, in dots}

SignedByte: {Offset below baseline, in dots}

SignedByte: {Width of break around descenders, in dots}

TScan: {Scan direction}

SignedByte {Padding}

{Scan from top to bottom}

(Scan from bottom to top}

{Scan from left to right)

{Scan from right to left}

4.1.7 Printing Status Record

type
TPPrStatus "TPrStatus:

TPrStatus record
iTotPages INTEGER: {Number of pages in file}
iCurPage INTEGER: {Page currently in progress}
iTotCopies INTEGER: {Number of copies requested}
iCurCopy INTEGER: {Copy currently in progress}
iTotBands INTEGER: {Number of bands per page}
iCurBand INTEGER: {Band currently in progress}
f PgDirty BOOLEAN: {Has page started printing?}
f Imaging BOOLEAN: {Imaging or printing?}
hPrint THPrint: {Handle to print record}
pPrPort TPPrPort: {Pointer to printing port}

hPic PicHandle {Handle to page picture}
end:

4.2 Preliminary Operations

4.2.1 Initializing the Toolbox for Printing

procedure PrOpen:

procedure PrClose:

4.2.2 Initializing Print Records

procedure PrintDefault
(printRec THPrint):

function PrValidate
(printRec : THPrint)

: BOOLEAN:

{Print record to initialize}

(Print record to validate}
(Was record altered?}

352 Appendix A

4.2.3 Printing-Related Dialogs

function PrStlDialog
(printRec : THPrint)

: BOOLEAN:

function PrJobDialog
(printRec : THPrint)

: BOOLEAN:

procedure PrJobMerge
(sourceRec
destRec

THPrint:
THPrint);

4.2.4 Error Reporting

function PrError
: INTEGER:

procedure PrSetError

con st

NoErr
IPrSavPFil
IIOAbort

IPrAbort

(errCode : INTEGER):

0;

-1;

-27:

128:

4.3 Document Printing

{Handle to print record}

{Was dialog confinned?}

{Handle to print record}

{Was dialog confinned?}

{Print record to copy from}

{Print record to copy to}

{Result code from last printing operation}

{Result code to post}

{No enor; all is well}

{ Enor saving print file}

{1/0 error}

(Cancel printing}

4.3.1 Opening and Closing a Document

function PrOpenDoc
(printRec
print Port
printBuf

THPrint;
TPPrPort;
Ptr)

: TPPrPort:

procedure PrCloseDoc
(printPort : TPPrPort):

(Print record for this job}

(Storage for printing port}

(Storage for output buffer}

(Pointer to printing port}

(Pointer to printing port}

4.3.2 Page Imaging

procedure PrOpenPage
(printPort
pageFrame

procedure PrClosePage

(printPort

type
TPRect = l'IRect:

con st

IPFMaxPgs 128:

4.3.3 Spool Printing

procedure PrPicFile
(printRec

printPort
spoolBuf
printBuf

TPPrPort:
TPRect):

TPPrPort):

THPrint:
TPPrPort:
Ptr:
Ptr;

(Pointer to the printing port}
(Frame rectangle for scaling}

(Pointer to the printing port}

(Pointer to a rectangle}

(Maximmn nmnber of pages in a spool file}

(Print record for this job}
{Storage for printing port}
{Input buffer for reading spool file}
{Output buff er for writing to printer}

var printStatus TPrStatus): (Record for reporting status}

4.4 Low-Level Printing

4.4.1 Opening and Closing the Printer Driver

procedure PrDrvrOpen:

procedure PrDrvrClose:

4.4.2 Printer Driver Attributes

function PrDrvrVers

: INTEGER: (Version number of printer driver}

function PrDrvrDCE
: Handle: (Handle to driver's device control enuy}

procedure PrPurge:

procedure PrNoPurge:

354 Appendix A

4.4.3 Low-Level Operations

procedure PrCtlCall
(control Code INTEGER:
ctlParaml LONGINT:
ct1Param2 LONGINT:
ct1Param3 LONGINT):

const

IPrBitsCtl 4:
IPrIOCtl 5:

IPrEvtCtl 6:

IPrDevCtl 7:

IFMgrCtl 8:

4.4.4 Bit Map Printing

con st

IPrBitsCtl = 4:

LScreenBits
LPaintBits

$00000000:
= $00000001;

4.4.5 Text Streaming

con st

IPrIOCtl = 5;

4.4.6 Screen Printing

const

IPrEvtCtl 6;

LPrEvtAll $0002FFFD:
LPrEvtTop $0001FFFD:

(Control code for desired operation}

(First operation-dependent parameter}

(Second operation-dependent parameter}

(Third operation-dependent parameter}

(Bil map printing [4.4.4))

(Text streaming [4.4.5]}

(Screen printing [4.4.6] }

(Printer control [4.4. 7))

(Font support [4.4.8]}

(Control code for bit map printing}

(Rectangular dots}

(Square dots}

{Control code for text streaming}

{Control code for screen printing}

{Print whole screen}

{Print fronbnost window only}

4.4. 7 Printer Control

const

IPrDevCtl 7:

LPrReset $00010000:
LPrDocOpen $00010000:
LPrDocClose $00050000:

LPrPageOpen $00040000:
LPrPageClose $00020000:
LPrPageEnd $00020000:

LPrLineFeed $00030000:
LPrLFStd $0003FFFF:
LPrLFSixth $0003FFFF:
LPrLFEighth $0003FFFE:

4.4.8 Font Support

conat
IFMgrCtl 8:

type

FMOutPtr "FMOutput:
FMOutput packed record

errNum

fontHandle
bold
italic
ulOffset
ulShadow

ulThick
shadow
extra
ascent
descent
widMax
leading
unused
numer
denom

end:

INTEGER:

Handle:
Byte:
Byte:

Byte:
Byte:
Byte:
Byte:
SignedByte:

Byte:

Byte:
Byte:
SignedByte:

Byte:
Point:
Point

{Control code for printer control}

{Begin new document}

{Begin new document}

{End document}

{Begin new page}

{End page}

{End page]

{Start new line}

{Start new line with standard paper advance}

{Start new line with 1/6-inch paper advance}

{Start new line with 1/8-inch paper advance]

{Control/status code for font support}

{Reserved)

{Handle to font record [1:82.2)}

{Extra thickness for boldface}

{Skew factor for italic}

{Offset from baseline to underline}

{Width of break around descenders}

{Thickness of underline}

{Thickness of shadow}

{Extra width per character}

{Ascent above baseline}

{Descent below baseline}

{Maximum character width}

{Leading between lines}

{Reserved}

{Numerators of scale factors}

{Denominators of scale factors}

356 Appendix A

4.5 Nuts and Bolts

4.5.1 Customizing the Printing Dialogs

type
TPPrDlg "'TPrDlg:

TPrDlg record
dlg
pFltrProc
pitemProc
hPrintUsr
fDoit
fDone
lUserl
1User2
1User3
1User4
iNumFst
iNumLst

DialogRecord:
ProcPtr:
ProcPtr:
THPrint:
BOOLEAN:
BOOLEAN:
LONGINT:
LONGINT:
LONGINT:
LONGINT:
INTEGER:
INTEGER:

(Dialog record [II:7 .1.1]}

(Pointer to filter function [Il:7.4.S]}

(Pointer to response procedure}

(Handle to print record [4.1.2))

(Private}

(Private}

(Private}

(Private}

(Private}

(Private}

(Private)

(Private)

{Additional fields as needed by the customiud dialog}

end:

function PrDlgMain

(printRec : THPrint:
initProc : ProcPtr)

BOOLEAN:

function PrStlinit

(printRec : THPrint)
: TPPrDlg:

function PrJobinit
(printRec : THPrint)

: TPPrDlg:

{Handle to print record}

{Pointer to initialization routine}

{Was dialog confinned?}

(Handle to print record}

{Pointer to style dialog}

(Handle to print record}

{Pointer to job dialog}

Chapter 5 Sound

5.1 Defining Sounds

5.1.1 Types of Sound

const
SWMode = -1:
FFMode O:
FTMode = +1:

5.1.2 Square-Wave Sound

type
SWSynthPtr

SWSynthRec

,..SWSynthRec:

record
mode INTEGER:
triplets Tones

end:

Tones array [O .. 5000) of Tone:

Tone record
count INTEGER:
amplitude INTEGER:
duration INTEGER

end:

5.1.3 Four-Tone Sound

type
FTSynthPtr
FTSynthRec

,..FTSynthRec:
record

mode INTEGER:
sndRec FTSndRecPtr

end:

(Square-wave sound [S.1.2)}

{Free-fonn sound [S.1.4]}

(Four-tone sound [5.1.3]}

{Type of sound: must be SWMode [S.1.1]}

(Tones to be played}

{Any number of tones}

(Detennines pitch of tone}

{Volume of tone, 0-255)
(Duration of tone in ticks}

{Type of sound: must be FfMode (5.1.1)}

{Sound to be played}

358 Appendix A

FTSndRecPtr l\FTSoundRec:

FTSoundRec record

duration INTEGER: {Duration of sound, in ticks}

soundlRate Fixed: {Sampling rate for voice 1}

sound I Phase LONGINT: {Phase off set for voice 1 }

sound2Rate Fixed: (Sampling rate for voice 2}

sound2Phase LONGINT: (Phase off set for voice 2}

sound3Rate Fixed: {Sampling rate for voice 3}

sound3Phase LONGINT: {Phase offset for voice 3}

sound4Rate Fixed: {Sampling rate for voice 4}

sound4Phase LONGINT: {Phase offset for voice 4}

sound I Wave WavePtr: {Waveform for voice 1}
sound2Wave WavePtr: {Waveform for voice 2}

sound3Wave WavePtr: {Waveform for voice 3}

sound4Wave WavePtr {Waveform for voice 4}

end:

"Wave: WavePtr
Wave packed array [O .. 255) of Byte: {256magnitudesamples}

5.1.4 Free-Form Sound

type

FFSynthPtr

FFSynthRec

"FFSynthRec:

record

mode

count
waveBytes

end:

INTEGER:

Fixed:
FreeWave

{Type of sound: must be FFMode [5.1.1]}

{Sampling rate}
{Wavefonn}

FreeWave packed array [O .. 30000) of Byte:

5.2 Playing Sounds

5.2.1 Starting and Stopping Sounds

procedure StartSound
(synthRec
recordSize
compRoutine

procedure StopSound:

function Sound Done
: BOOLEAN:

Ptr:
LONGINT:
ProcPtr):

{Pointer to synthesizer record)

{Size of synthesizer record in bytes}
{Optional completion routine}

{Is sound completed?}

5.2.2 Speaker Volume

procedure GetSoundVol
(var newLevel : INTEGER) ; (New volume setting)

procedure SetSoundVol

(curLevel : INTEGER): {Current volmne setting)

Chapter 6 Desk Accessories

6.1 Desk Accessory Structure

6.1.1 Event Mask

const
MDownMask $0002:
MUpMask $0004:
KeyDownMask $0008:
KeyUpMask $0010:
AutoKeyMask $0020:
UpdateMask $0040:
DiskMask $0080:
ActivMask $0100:
NetworkMask $0400:
DriverMask $0800:
ApplMask $1000:
App2Mask $2000:
App3Mask $4000:
App4Mask $8000:
EveryEvent $FFFF:

(Mouse-down event}

(Mouse-up event}

(Key-down event}

{Key-up event}

(Auto-key event}

{Update event}

{Disk-inserted event}

{Activate/deactivate event}

(Network event}

{I/O driver event}

{Application-defined event}

{Application-defined event}

{Application-defined event}

{Application-defined event (also used by Multi.Finder)}

(Any event}

6.2 Desk Accessory Operations

6.2.1 Opening and Closing Desk Accessories

function OpenDeskAcc
(accName : Str255)

: INTEGER:

procedure CloseDeskAcc
(dRefNum : INTEGER) :

{Name of desk accessory to open}

{Reference number of desk accessory}

{Reference number of desk accessory to close}

360 Appendix A

6.2.2 Responding to Events

function SystemEvent
(theEvent : EventRecord)

: BOOLEAN:

procedure SystemClick
(theEvent EventRecord)
theWindow WindowPtr):

6.2.3 Handling Menu Commands

procedure SystemMenu
(menuChoice

function SystemEdit

LONGINT):

(editCmd : INTEGER):
: BOOLEAN:

con st
UndoCmd O:
CutCmd 2:

CopyCmd 3:

PasteCmd 4:
ClearCmd 5:

6.2.4 Performing Periodic Tasks

procedure SystemTask:

{Event to be processed}

{Was it intercepted as a system event?}

{Event to be processed}

{System window where mouse was pressed}

{Menu ID and item number}

{Command relayed from application program}

{Handled by desk accessory?}

{Edit code for Undo command}

{Edit code for Cut command}

(Edit code for Copy command}

(Edit code for Paste command}

(Edit code for Clear command}

APPENDIX

--r 81--------------L~~~ ----------------
Resource Formats

Resource Type 'CDEF' [2.s.21

I .. ·-···-····-·········-.. ···-· ;-·········-·--···-·······---····· .. -···· .. -·····

Code of
definition function • • • •

l=:=--····--~~:~~~=:-~1

361

362 Appendix B

Resource Type 'DRVR' [3.3.1, 3.i.11

Driver flags (2 bytes)

Frequency of periodic task (2 bytes)

Event mask (2 bytes)

Menu ID (2 bytes)

r--it- Offset to Open routine (2 bytes)

r-+--it- Offset to Prime routine (2 bytes)

r-+--1--11- Offset to Control routine (2 bytes)

Offset to Status routine (2 bytes)

Offset to Close routine (2 bytes)

Length of name J
[-----

L>l-----
41-----
~1-----

~1-----
-----I t-··--

~r

l-----t-----

Resource Type 'FKEY' [6.3.lJ

Driwr name
(Indefinite length)

I

Code of Open routine
(Indefinite length)

I

Code of Prime routlne
(indefinite length)

I

Code of Control routine
(indefinite length)

I

Code of Status routine
(Indefinite length)

I

Code of Close routine
(indefinite length)

i
i

------.
-----j
-----~
-----j
-----j

---··j
----- : -----
------1
------i

...................... -................ --·-·---··---·r····-··-···--··-···-···-·-

Code of
keyboard routine

: (indefinite length) :
• •

1

------- -I ----··---··--· .. ----... ---t--.. -.. ----.. -j

363 Resource Formats

Resource Type 'MDEF' r2.s.s1

···-.. ·--·-·-·--.... --···-... 1-··-··-····---·--·-·

Code of
• definition procedure •
• •

~~-·~·=~=)-·-.... ~
Resource Type • PDEF • [4.s.21

• • •

Jump table (indefinite length)

I
i
!

···-··-·-··-·······-······-····-··-··--··-··-····!"··--····-···--··-·-·····-··-·--··-·····-·-··

Code of
printing routines

(indefinite length)

•••••••••••-••-•••••••••••••·-·-·--·-·---··-··-·i··-•-ooMoooo-•••••••-••••••••-·-··-•-••••-••-••

i
!
:

• • •

364 Appendix B

Resource Type 'PREC' [4.a.11

Version stamp (2 bytes)

Printer information
subrecord (4.1.3] (14 bytes)

Paper rectangle (8 bytes)

Style subrecord (4.1.4] (8 bytes)

Print-time information
subrecord (4.1.3] (14 bytes)

Auxiliary information
subrecord (4.1.6] (16 bytes)

Job subrecord (4.1.5] (20 bytes)

Padding
(38 bytes)

Paper Size Table (Resource Type 'PREC') [4.s.21

= •

Number of paper sizes defined (2 bytes)

Height of paper size 1 (2 bytes)

Width of paper size 1 (2 bytes)

I
I

....L

Height of paper size 6 (2 bytes)

Width of paper size 6 (2 bytes)

Length of title J
Title of button 1

(indefinite length)

Length of title

Title of button 6
(indefinite length)

= .

365 Resource Formats

Resource Type 'WDEF' [2.s.11

I --····--········--·-···--····-1-····--·-··-.. -·-·-·-·····

Code of
definition function • • • •

F-·-=~~=---·=1

APPENDIX

--@]------------
Reference Figures

Resource ID of an Owned Resource r2.s.4J

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T

Driver Flags (3.1.21

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I
I

1111

I Driver open
......_ ______ Resides in RAM

......_ ________ Driver active

Can respond to Read calls
Can respond to Write calls

L.... ----------- Can respond to Control calls
,___ ____________ Can respond to Status calls

L...-------------- Needs "good-bye kissn
.....__ ______________ Has periodic task

L...---------------- Must be locked in heap

367

Unit Table [3.L3J

368 Appendix C

Bytes

0-3

4-7 -
8-11

12-15
16-19

20-23
24-27

28-31

32-35

36-39

40-43

44-47
48-51

52-55

56-59
60-63

64-67

68-71

.,_ ____, ~--------1

72-75 ·Handle 10 Control Panel DCE 4 es •
76-79 • Handle to Chooser DCE (4 by1es) •

80-83 Unused (4 by1es)

188-191 .. j. ____ u_n_use_d..,C4_b..,yt_e .. s) ___ ..,.:]

ImageWriter Style Flags [4.L4J

7 65 4 3 2 0

{
1 = high resolution
o = low resolution

{
1 = portrait orientation
o = landscape orientation

{
1 = square dots

---- o = rectangular dots

------ { 1 = 50% reduction
o = normal size

369 Reference Figures
~~~~~~~~~~~~-

Font Characterization Table [4.4.9J 

I 

Vert resolutipn (2 bytes) . 
Horiz. resolu~on (2 bytes) 

Bold characteristics (3 bytes) 
_L • 

Italic ~haracteristics (3 bytes) . 
Unused (3 bytes) 

Outlin~ charaderistics (3 bytes) 
--'-. . 

Shadoi._v characteristics (3. bytes) . 
Conden~ed characteristics (3 bytes) 

--.-
Extended characteristics (3 bytes) 

--'- ...I.. 

Underli~e characteristics (3 bytes) 

Count Values for Musical Tones [s.i.21 

2518 
($0906) 

1886 
($075E) 

2826 
($0BOA) 

2117 
($0845) 

1680 
($0690) 

2994 
($0BB2) 

2377 
($0949) 

1998 
($07CE) 

1586 
($0632) 

2668 
($0A6C) 

2243 
($08C3) 

1780 
($06F4) 



370 Appendix C 

Sampling Rates for Musical Tones 1s.i.s1 

3.57861 4.77687 
($00039420) ($0004C6El) 

3.18817 4.25571 5.36185 
($0003302C) ($00044176) ($00055CA2) 

3.00923 3.79140 4.50876 5.68068 
($0003025D) ($0003CA99) ($0004823E) ($0005AE41) 

3.37776 4.01685 5.06091 
($00036085) ($00040450) {$00050F98) 

Desk Accessory Event Mask 1s.i.11 

·Multi Finder Event types marked with • 
•Application-defined are never relayed to desk accessories 

•110 driver 

*Network 
(Reserved) 

Activate/deactivate 
*Disk-inserted 

Update 

Auto-key 

Key-up 

Key-down 

I 
Mouse-up I 

1
Mouse-down 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 = can respond to this event type 
o = cannot respond to this event type Unused-null events can 

never be masked out 



APPENDIX 

--[~J----------
Reference Tables 

Type Codes for Owning Resources 12.s.41 

Type Code Resource Type See Section 

0 'DRVR' [3.3.1] 

1 'WDEF' [2.5.1] 

2 'MDEF' [2.5.3] 

3 'CDEF' [2.5.2] 

4 'PDEF' [4.6.2] 

5 'PACK' [1:7.5.2] 

6 Reserved 
7 Reserved 

371 



372 Appendix D 

Standard Driver Numbers [3.1.3J 

Unit Reference 
Number Number 

2 -3 

3 -4 

4 -5 

5 -6 

6 -7 

7 -8 

8 -9 

9 -10 

10 -11 

12 -13 

13 -14 
14 -15 

15 -16 
16 -17 
17 -18 

18 -19 

19 -20 

Driver 
Name 

.Print 

.Sound 

.Sony 

.A!n 

.AOut 

.B!n 

.Bout 

.MPP 

.ATP 

Calculator 
Alarm Clock 
Key Caps 
Puzzle 
Note Pad 
Scrapbook 
Control Panel 
Chooser 

Description 

Printer driver 

Sound driver 
Sony disk driver 

Serial driver, port A (modem 

port) in 

Serial driver, port A (modem 
port) out 

Serial driver, port B (printer 
port) in 

Serial driver, port B (printer 
port) out 

Network driver (Macintosh 

Packet Protocol) 

Network driver (AppleTalk 

Transaction Protocol) 
Calculator desk accessory 

Alarm Clock desk accessory 

Key Caps desk accessory 

Puzzle desk accessory 

Note Pad desk accessory 
Scrapbook desk accessory 

Control Panel desk accessory 

Chooser desk accessory 

Device Type Codes for Standard Printers [4.I.41 

Value 

0 

1 

3 

4 
5 

Meaning 

Macintosh screen 
Original ImageWriter 

PostScript-based LaserWriter 
LaserWriter II-SC 

ImageWriter LQ 



373 Reference Tables 

Standard Paper Sizes [4.s.21 

Name 

US Letter 
US Legal 
A4 Letter 
International Fanfold 
Computer Paper 
1680 
Standard Envelope 

Contents of 'PDEF' Resources [4.a.21 

Resource 
ID Description 

O Draft printing 

1 Spooling 

2 Printer-specific 
method #1 

3 Printer-specific 
method #2 

Inches 120ths 
Height Width Height Width 

11 81/2 1320 1020 
14 81/2 1680 1020 
112/s 8 1/4 1400 990 
12 81/4 1440 990 
11 14 1320 

41/a 9 1/2 495 1140 

Routines 

4 Dialogs/print records 

PrOpenDoc (4.3.1] 
PrCloseDoc (4.3.1] 
PrOpenPage [4.3.2] 
PrClosePage (4.3.2] 
PrOpenDoc [4.3.1] 
PrCloseDoc [4.3.1] 
PrOpenPage (4.3.2] 
PrelosePage [4.3.2] 
PrOpenDoc [4.3.1] 
PreloseDoc [4.3.1] 
PrOpenPage (4.3.2] 
PrelosePage (4.3.2] 
PrOpenDoc [4.3.1] 
Pre loseDoc (4.3.1] 
PrOpenPage (4.3.2) 
Pre losePage (4.3.2] 
PrintDef aul t (4.2.2] 
PrStlDialog (4.2.3] 
PrJobDialog [4.2.3] 
PrStlini t (4.5.1] 
PrJobini t (4.5.1) 
PrDlgMain [4.5.1] 
PrValidate (4.2.2] 
PrJobMerge (4.2.3] 
PrPicFi le (4.3.3] 
PrGeneral [TN #128] 

5 Spool printing 
7 Miscellaneous 



37 4 Appendix D 

Contents of a Printer Resource File (4.6.31 

Resource Resource 

Type ID Description 

[Signature] 0 Autograph (1:7.5.4, note 6] 

'BNDL' 128 Finder bundle £1:7.5.4] 

'FREF' 128 File reference (' PRES ' or ' PRER' ) [1:7.5.3] 

'ICN#' 128 Icon for printer resource file [1:5.5.4] 

'DRVR' $EOOO Printer driver [3.3.1] 

'PDEF' 0 Draft printing [ 4.6.2] 

1 Spooling [4.6.2] 

2 Printer-specific method #1 [4.6.2] 

3 Printer-specific method #2 [4.6.2] 

4 Dialogs/print records [4.6.2] 

5 Spool printing [ 4.6.2] 

7 Miscellaneous [4.6.2] 

'PREC' 0 Default print record [4.6.1] 

1 Last-used print record [4.6.1] 

3 Default paper sizes [4.5.2] 
'STR I $E001 Default spool file name [1:8.4.2] 

'DLOG' $EOOO Style dialog [11:7.6.2] 

$E001 Job dialog [11:7 .6.2] 

'DITL' $EOOO Item list for style dialog [11:7.6.3] 

$E001 Item list for job dialog [11:7 .6.3] 

Desk Accessory Control Codes [6.i.21 

Name Value Meaning 

Kill Code Handle KilllO call [3.2.3] 
GoodBye -1 Handle "good-bye kiss" [3.1.2] 

AccEvent 64 Respond to user event 
Ace Run 65 Perform periodic task 
AccCursor 66 Adjust cursor 

AccMenu 67 Respond to user's menu choice 

Ace Undo 68 Execute Undo command 

Ace Cut 70 Execute Cut command 

Ace Copy 71 Execute Copy command 

AccPaste 72 Execute Paste command 

AccClear 73 Execute Clear command 



375 Reference Tables 

Standard 'FKEY' Operations [s.3.lJ 

Keystroke 

Command-Shift-I 
Command-Shift-2 
Command-Shift-3 
Command-Shift-4 

Meaning 

Eject disk in internal drive 
Eject disk in external drive 
Dump screen to a MacPaint file 
Dump screen to printer 



APPENDIX 
•.::::: H ··11 

!1 ii --q E fl 

---l~_ .... _J 
Error Codes 

Operating System Errors 

The following is a complete list of Operating System error codes. Not 
all are covered in these books, and some of the meanings may be 
obscure. (I don't know what a bit-slip nybble is either.) For the errors 
you're most likely to encounter, see reference sections [1:3.1.2, 
1:6.6.1, 11:8.2.8, III:4.2.4]. 

Number Name Meaning 

0 No Err No error; all is well 

-1 IPrSavPFil Error saving print file 

- 1 QErr Queue element not found during deletion 

-2 VTypErr Invalid queue element 

-3 CorErr Trap ("core routine") number out of range 

-4 UnimpErr Unimplemented trap 

-8 SENoDB No debugger installed 

-17 ControlErr Driver error during Control operation 

-18 StatusErr Driver error during Status operation 

377 



378 Appendix E 

Number Name Meaning 

-19 ReadErr Driver error during Read operation 

-20 WritErr Driver error during Write operation 

-21 BadUnitErr Bad unit number 

-22 UnitEmptyErr No such entry in unit table 

-23 OpenErr Driver error during Open operation 

-24 CloseErr Driver error during Close operation 

-25 DRemovErr Attempt to remove an open driver 

-26 DinstErr Attempt to install nonexistent driver 

-27 AbortErr Driver operation canceled 

-28 NotOpenErr Driver not open 

-33 DirFulErr Directory full 

-34 DskFulErr Disk full 

-35 NSVErr No such volume 

-36 IO Err Disk 1/0 error 

-37 BdNamErr Bad name 

-38 FNOpenErr File not open 

-39 EOFErr Attempt to read past end-of-file 

-40 PosErr Attempt to position before start of file 

-41 MFulErr Memory (system heap) full 

-42 TMFOErr Too many files open (more than 12) 

-43 FNFErr File not found 

-44 WPrErr Disk is write-protected 

-45 FLckdErr File locked 

-46 VLckdErr Volume locked 

-47 FBsyErr File busy 

-48 DupFNErr Duplicate file name 

-49 OpWrErr File already open for writing 

-50 ParamErr Invalid parameter list 

- 51 RfNumErr Invalid reference number 
-52 GFPErr Error during GetFPos 
-53 VolOffLinErr Volume off-line 

-54 PermErr Permission violation 

-55 VolOnLinErr Volume already on-line 

-56 NSDrvErr No such drive 

-57 NoMacDskErr Non-Macintosh disk 

-58 ExtFSErr External file system 

-59 FSRnErr Unable to rename file 
-60 BadMDBErr Bad master directory block 
-61 WrPermErr No write permission 



379 Error Codes 

Nwnber Name Meaning 

-64 NoDriveErr No such drive 
-65 OffLinErr Drive off-line 
-66 NoNybErr Can't find 5 nybbles 

-67 NoAdrMkErr No address mark 
-68 DataVerErr Data read doesn't verify 

-69 BadCksmErr Bad checksum (address mark) 

-70 BadBtSlpErr Bad bit-slip nybbles (address mark) 

-71 NoDtaMkErr No data mark 
-72 BadDCksum Bad checksum (data mark) 

-73 BadDBtSlp Bad bit-slip nybbles (data mark) 
-7 4 WrUnderrun Write underrun 
-75 CantStepErr Can't step disk drive 

-7 6 TkOBadErr TrackObad 

-77 InitIWMErr Can't initialize disk chip ("Integrated 

Womiak Machine") 

-78 TwoSideErr Two-sided operation on one-sided drive 

-79 SpdAdjErr Can't adjust disk speed 

-80 SeekErr Seek to wrong track 

-81 SectNFErr Sector not found 

-85 ClkRdErr Error reading clock 

-86 ClkWrErr Error writing clock 

-87 PRWrErr Error writing parameter RAM 

-88 PRinitErr Parameter RAM uninitialized 

-89 RcvrErr Receiver error (serial communications) 

-90 BreakRecd Break received (serial communications) 

-91 DDPSktErr Socket error (AppleTalk, Datagram Delivery 

Protocol) 

-92 DDPLenErr Packet too long (AppleTalk, Datagram Delivery 

Protocol) 

-93 NoBridgeErr No bridge found (AppleTalk) 

-94 LAPProtErr Protocol error (AppleTalk, Link Access 

Protocol) 

-95 ExcessCollsns Excessive collisions (AppleTalk) 

-97 PortinUse Port already in use (AppleTalk) 

-98 PortNotCf Port not configured for this connection 

(AppleTalk) 

-99 MemROZError Error in read-only zone 



380 Appendix E 

Number Name Meaning 

-100 NoScrapErr No desk scrap 

-102 NoTypeErr No item in scrap of requested type 

-108 MemFullErr No room; heap is full 

-109 NilHandleErr Illegal operation on empty handle 

-110 MernAdrErr Bad memory address 

-111 MernWZErr Illegal operation on free block 

-112 MernPurErr Illegal operation on locked block 

-113 MemAZErr Address not in heap zone 

-114 MemPCErr Pointer check failed 

-115 MenBCErr Block check failed 

-116 MernSCErr Size check failed 

-117 MemLockedErr Attempt to move a locked block 

-120 DirNFErr Directory not found 

-121 TMWDOErr Too many working directories open 

-122 BadMovErr Invalid move operation 

-123 WrgVolTypErr Wrong volume type (not HFS) 

-127 FSDSintErr Internal file system error 

-192 ResNotFound Resource not found 

-193 ResFNotFound Resource file not found 

-194 AddResFailed AddResource failed 

-196 RrnvResFailed RmveResource failed 

-198 ResErrAttr Operation prohibited by resource attribute 

-199 MapReadErr Error reading resource map 

-1024 NBPBuffOvr Buffer overflow (AppleTalk, Name Binding 

Protocol) 

-1025 NBPNoConfirrn Name not confinned (AppleTalk, Name Binding 

Protocol) 

-1026 NBPConfDiff Name confinned for different socket (AppleTalk, 

Name Binding Protocol) 

-1027 NBPDuplicate Name already exists (AppleTalk, Name Binding 

Protocol) 

-1028 NBPNotFound Name not found (AppleTalk, Name Binding 

Protocol) 

-1029 NBPNISErr Names infonnation socket error (AppleTalk, 

Name Binding Protocol) 

-1066 ASPBadVersNum Unsupported version (ApplcTalk Session 

Protocol) 



381 Error Codes 

Nwnber Name Meaning 

-1067 ASPBufTooSmall Buffer too small (AppleTalk Session Protocol) 

-1068 ASPNoMoreSess No more sessions on server (AppleTalk Session 

Protocol) 

-1069 ASPNoServers No servers at this address (AppleTalk Session 

Protocol) 

-1070 ASPParamErr Parameter error (AppleTalk Session Protocol) 

-1071 ASPServerBusy Server busy (AppleTalk Session Protocol) 

-1072 ASPSessClosed Session closed (AppleTalk Session Protocol) 

-1073 ASPSizeErr Command block too big (AppleTalk Session 

Protocol) 

-1074 ASPTooMany Too many clients (AppleTalk Session Protocol) 

-1075 ASPNoAck No acknowledgment on attention request 

(AppleTalk Session Protocol) 

-1096 ReqFailed Request failed (AppleTalk) 

-1097 TooManyReqs Too many concurrent requests (AppleTalk) 

-1098 TooManySkts Too many responding sockets (AppleTalk) 

-1099 BadATPSkt Bad responding socket (AppleTalk Transaction 

Protocol) 

-1100 BadBuf fNum Bad buffer nwnber (AppleTalk) 

-1101 NoRelErr No release received (AppleTalk) 

-1102 CBNotFound Control block not found (AppleTalk) 

-1103 NoSendResp AddResponse before SendResponse 
(Apple Talk) 

-1104 NoDataArea Too many outstanding calls (AppleTalk) 

-1105 ReqAborted Request canceled (AppleTalk) 

-3101 Buf 2Sma11Err Buffer too small (AppleTalk) 

-3102 NoMPPError Driver not installed (AppleTalk, Macintosh 

Packet Protocol) 

-3103 CkSumErr Bad checksum (AppleTalk) 

-3104 ExtractErr No tuple in buffer (AppleTalk) 

-3105 ReadQErr Invalid socket or protocol type (AppleTalk) 

-3106 ATPLenErr Packet too long (AppleTalk Transaction 

Protocol) 

-3107 ATPBadRsp Bad response (AppleTalk Transaction Protocol) 

-3108 RecNotFnd No AppleBus record (AppleTalk) 

-3109 SktClosedErr Socket closed (AppleTalk) 

-4096 No free Connect Control Blocks available 

(Laser Writer) 

-4097 Bad connection reference nwnber (LaserWriter) 

-4098 Request already active (LaserWriter) 



382 Appendix E 

Number Name 

-4099 
-4100 
-4101 

128 IPrAbort 

"Dire Straits" Errors 

Meaning 

Write request too big (LaserWriter) 

Connection just closed (LaserWriter) 

Printer closed or not found (LaserWriter) 

Printing canceled in progress 

The following errors are reported directly to the user-not to the 
running program-by the "Dire Straits" Manager (officially called the 
System Error Handler). Errors in this category are considered so 
serious that recovery is impossible: the Toolbox simply displays a 
"dire straits" alert box (the one with the bomb icon) on the screen, 
forcing the user to restart the system. Some people insist that D s 
really stands for "deep spaghetti," but most Macintosh programmers 
prefer a more colorful term. 

Number Name Meaning 

1 DSBusErr Bus error 

2 DSAddressErr Address error 

3 DSillinstErr Illegal instruction 

4 DSZeroDivErr Attempt to divide by zero 

5 DSChkErr Check trap 

6 DSOvflowErr Overflow trap 

7 DSPrivErr Privilege violation 

8 DSTraceErr Trace trap 

9 DSLineAErr "A emulator" trap 

10 DSLineFErr "F emulator" trap 

11 DSMiscErr Miscellaneous hardware exception 

12 DSCoreErr Unimplemented core routine 

13 DSIRQErr Uninstalled interrupt 

14 DSIOCoreErr 1/0 core error 

15 DSI.oadErr Segment Loader error 

16 DSFPErr Floating-point error 

17 DSNoPackErr Package 0 not present 

18 DSNoPkl Package 1 not present 

19 DSNoPk2 Package 2 not present 

20 DSNoPk3 Package 3 not present 



383 Error Codes 

Number Name Meaning 

21 DSNoPk4 Package 4 not present 

22 DSNoPkS Package 5 not present 

23 DSNoPk6 Package 6 not present 

24 DSNoPk7 Package 7 not present 

25 DSMemFullErr Out of memory 

26 DSBadLaunch Can't launch program 

27 DSFSErr File system error 

28 DSStkNHeap Stack/heap collision 

30 DSReinsert Ask user to reinsert disk 

31 DSNotTheOne Wrong disk inserted 

33 NegZCBFreeErr Negative number of free bytes in heap zone 

84 MenuPrgErr Menu purged from heap 



Trap Macros 

APPENDIX 

-- rr~··'·' n -------------------.. _. H F' ~ .......................................... . 
-- l~~~,.~~J:i -------------------
Summary of Trap 
Macros and 
Trap Words 

The following is an alphabetical list of assembly-language trap 
macros covered in the three volumes of this book, with their corre
sponding trap words. For routines belonging to the standard 
packages, the trap word shown is one of the eight package traps 
LPackO to _Pack7) and is followed by a routine selector in parenthe
ses; similarly, printing routines list the trap word for the universal 
printing trap _PrGlue along with a specific routine selector. Rou
tines marked with an asterisk ( *) are not included in the original 64K 
ROM. 

Trap Trap Reference 

Macro N8l1le Word Section 

_Add Pt $A87E [1:4.4.1] 

_AddResMenu $A94D [11:4.3.3] 

_AddResource $A9AB [1:6.5.3] 

- Alert $A985 [11:7.4.2] 

_Allocate $A010 [11:8.2.5] 

_AppendMenu $A933 [11:4.3.1] 

_BackPat $A87C [1:5.1.1] 

_BeginUpdate $A922 [11:3.4.1) 

_BitAnd $A858 [1:2.2.2] 

385 



386 Appendix F 

Trap Trap Reference 
Macro Name Word Section 

_BitClr $A85F [1:2.2.1) 
_BitNot $A85A [1:2.2.2) 
_BitOr $A85B [1:2.2.2) 
_BitSet $A85E [1:2.2.1) 
_BitShift $A85C [1:2.2.2] 

- BitTst $A85D [1:2.2.1] 
_BitXOr $A859 (1:2.2.2) 
_BlockMove $A02E [1:3.2.5) 
_BringToFront $A920 [11:3.3.3) 
_Button $A974 [11:2.4.2) 

*_CalcMask $A838 (1:5.1.6) 
_CalcMenuSize $A948 [11:4.7.1) 
_CautionAlert $A988 [11:7.4.2] 
_Chain $A9F3 [1:7.1.1) 
_ChangedResource $A9AA [1:6.5.2) 
_CharWidth $A88D [1:8.3.4] 

- Check Item $A945 [11:4.6.4) 
_ClearMenuBar $A934 [11:4.4.1) 
_ClipRect $A87B [1:4.3.6] 
_Close $A001 [11:8.2.2, III:3.2.1] 
_CloseDeskAcc $A9B7 [11:4.5.2, IIl:6.2.1] 
_CloseDialog $A982 [11:7.2.3] 
_ClosePgon $A8CC [1:4.1.4] 
_ClosePicture $A8F4 [1:5.4.2] 
_ClosePort $A87D [1:4.3.2] 
_CloseResFile $A99A [1:6.2.1) 
_CloseRgn $A8DB [1:4.1.6) 

- CloseWindow $A92D [11:3.2.3] 
_CmpString $A03C [1:2.1.2] 
_CompactMem $A04C [1:3.3.2] 

- Control $A004 [ill:3.2.3] 
_CopyBits $A8EC [1:5.1.2] 

*_CopyMask $A817 [1:5.1.4] 
_CopyRgn $A8DC [1:4.1.7] 
_CouldAlert $A989 [11:7.5.3] 
_CouldDialog $A979 [11:7.5.3] 
_CountMitems $A950 [11:4.3.4] 

- CountResources $A99C [1:6.3.3] 
_CountTypes $A99E [1:6.3.3] 

*_CountlResources $A80D [1:6.3.3] 



387 Summary of Trap Macros and Trap Words 
~~~~~~~~~~~~-

Trap Trap Reference
Macro Name Word Section

*_CountlTypes $A81C (1:6.3.3)
_Create $A008 [11:8.2.1)
_CreateResFile $A9Bl (1:6.5.1)
_CurResFile $A994. (1:6.2.2)

_Date2Secs $A9C7 (1:2.4.3)
_Delay $A03B (11:2.7.1)
_Delete $A009 (11:8.2.7)
_DeleteMenu $A936 (11:4.4.1)

*_DelMenuitem $A952 (11:4.3.4]
_DeltaPoint $A94F (1:4.4.1)
_Dequeue $A96E [IIl:3.1.7]

_DetachResource $A992 [1:6.3.2)
_DialogSelect $A980 (11:7.4.4)
_DIBadMount $A9E9 (0) (11:8.4.1)
_Dif fRgn $A8E6 (1:4.4.8]

_DIFormat $A9E9 (6) [11:8.4.2)
_DI Load $A9E9 (2) [11:8.4.3]

_Disable Item $A93A [11:4.6.2)

_DisposControl $A955 [11:6.2.2)

_DisposDialog $A983 [11:7.2.3)

_DisposHandle $A023 [1:3.2.2)

_DisposMenu $A932 (11:4.2.3)

_DisposPtr $A01F (1:3.2.2)

_DisposRgn $A8D9 (1:4.1.6)

_DisposWindow $A914 [11:3.2.3)

_DI Unload $A9E9 (4) [11:8.4.3)

_DIVerify $A9E9 (8) (11:8.4.2)

_DI Zero $A9E9 (10) [11:8.4.2)

_DragControl $A967 [11:6.4.3]

_DragWindow $A925 [11:3.5.4]

- DrawChar $A883 (1:8.3.3)

- DrawControls $A969 [11:6.3.1)

_DrawDialog $A981 [11:7.4.1)

_DrawGrowicon $A904 [11:3.3.4]

_DrawMenuBar $A937 (11:4.4.3]

_DrawPicture $A8F6 (1:5.4.3]

_Drawstring $A884 (1:8.3.3]

- DrawText $A885 (1:8.3.3]

_Eject $A017 [11:8.1.3]

388 Appendix F

Trap Trap Reference

Macro Name Word Section

_EmptyHandle $A02B [!:3.3.3)

_EmptyRect $A8AE (1:4.4.4)

_EmptyRgn $A8E2 (1:4.4.7)

_Enable Item $A939 [11:4.6.2)

_End Update $A923 (11:3.4.1)

_Enqueue $A96F [III:3.1. 7]

_Equal Pt $A881 [1:4.4.1]

_EqualRect $A8A6 [1:4.4.5]

_EqualRgn $A8E3 [1:4.4.8]

_EraseArc $A8CO [1:5.3.5]

_EraseOval $A8B9 [1:5.3.4)

_ErasePcly $A8C8 [!:5.3.6]

_EraseRect $A8A3 [!:5.3.2]

_EraseRgn $A8D4 [1:5.3.7]

_EraseRoundRect $A8B2 [!:5.3.3]

_ErrorSound $A98C [11:7.5.1]

_EventAvail $A971 (11:2.2.1)

_ExitToShell $A9F4 [1:7.1.3]

_FillArc $A8C2 [1:5.3.5]

_FillOval $A8BB [!:5.3.4]
_FillPoly $A8CA [1:5.3.6]
_FillRect $A8A5 [1:5.3.2)
_FillRgn $A8D6 [1:5.3.7]
_FillRoundRect $A8B4 [1:5.3.3]

_Find Control $A96C (11:6.4.1]

*_FindDitem $A984 [11:7.3.4]

_FindWindow $A92C (11:3.5.1)
*_FixATan2 $A818 [1:2.3.6)
*_FixDiv $A84D (1:2.3.2)
_FixMul $A868 [1:2.3.2)

_FixRatio $A869 [1:2.3.2]
_FixRound $A86C (1:2.3.1]

*_Fix2Frac $A841 [1:2.3.3)
*_Fix2Long $A840 [1:2.3.1)

_FlashMenuBar $A94C (11:4.7.2]
_FlushEvents $A032 [11:2.3.1]
_FlushVol $A013 [11:8.1.3)

*_FontMetrics $A835 [!:8.2.6]
* FracCos $A847 [1:2.3.6] -
*_FracDiv $A84B (1:2.3.4)

389 Summacy of Trap Macros and Trap Words
~~~~~~~~~~~~-

Trap Trap Reference 
Macro Name Word Section 

*_FracMul $A84A [1:2.3.4] 
* _FracSin $A848 [1:2.3.6] 
* _FracSqrt $A849 [1:2.3.4] 
*_Frac2Fix $A842 [1:2.3.3] 
_FrameArc $ABBE [1:5.3.5] 
_FrameOval $A8B7 [1:5.3.4] 
_FramePoly $A8C6 [1:5.3.6] 
_FrameRect $A8Al [1:5.3.2] 
_FrameRgn $A8D2 [1:5.3.7] 
_FrameRoundRect $A8BO [1:5.3.3] 
_FreeAlert $A98A [11:7.5.3] 
_FreeDialog $A97A [11:7.5.3] 
_FreeMem $A01C [1:3.3.1] 
_FrontWindow $A924 [11:3.3.3] 

_GetAppParms $A9F5 [1:7.3.4] 
_Get Clip $A87A [1:4.3.6] 
_GetCRefCon $A95A [11:6.2.3] 
_GetCTitle $A95E [11:6.2.3] 

_GetCtlAction $A96A [11:6.4.2] 
_GetCtlValue $A960 [11:6.2.4] 
_GetCursor $A9B9 [11:2.5.2] 
_GetDitem $A98D [11:7.3.1] 
_GetEOF $A011 [11:8.2.5] 

_GetFileinfo $AOOC [1:7.3.3] 

_GetFName $A8FF [1:8.2.5] 

_GetFNum $A900 [1:8.2.5] 

- GetFontinfo $A88B [1:8.2.6] 
_GetFPos $A018 [11:8.2.4] 
_GetHandleSize $A025 [1:3.2.3] 

_GetindResource $A99D [1:6.3.3] 

_GetindType $A99F [1:6.3.3] 

_Get Item $A946 [11:4.6.1] 

_GetIText $A990 [11:7.3.2] 

_Getitrnicon $A93F [11:4.6.5] 

_GetitmMark $A943 [11:4.6.4] 

_Get ItmStyle $A941 [11:4.6.3] 

_Get Keys $A976 [11:2.6.1] 

_GetMaxCtl $A962 [11:6.2.4] 
_GetMenuBar $A93B [11:4.4.4] 



390 Appendix F 

Trap Trap Reference 

Macro Name Word Section 

_GetMHandle $A949 (11:4.4.5] 

_GetMinCtl $A961 (11:6.2.4] 

_GetMouse $A972 (11:2.4.1] 

_GetNamedResource $A9Al (1:63.1] 

_GetNewControl $A9BE (11:6.2.1] 

_GetNewDialog $A97C (11:7.2.2] 

_GetNewMBar $A9CO (11:4.4.2] 

_GetNewWindow $A9BD [11:3.2.2] 

_GetNextEvent $A970 (11:2.2.1] 

_GetPattern $A9B8 [I:5.1.1] 
_Get Pen $A89A (1:5.2.4] 

_GetPenState $A898 (1:5.2.1] 
_Get Picture $A9BC [1:5.4.2) 
_GetPixel $A865 [1:4.2.3] 
_Get Port $A874 (1:4.3.3] 
_GetPtrSize $A021 (1:3.2.3] 
_GetResAttrs $A9A6 (1:6.4.2] 

_GetResFileAttrs $A9F6 [1:6.6.2] 
_GetRes!nfo $A9A8 (1:6.4.1] 
_GetResource $A9AO [1:6.3.1] 
_GetRMenu $A9BF [11:4.2.2] 
_Get Scrap $A9FD (1:7.4.3] 
_Get String $A9BA (1:8.1.2] 
_Get Vol $A014 (11:8.1.2] 

_GetVolinfo $A007 (11:8.1.1] 
_GetWindowPic $A92F [11:3.4.3] 
_GetWMgrPort $A910 [11:3.6.1] 
_GetWRefCon $A917 [11:3.2.4] 
_GetWTitle $A919 [11:3.2.4] 

*_GetlixResource $A80E (1:6.3.3] 
*_GetlixType $A80F [1:6.3.3] 
*_Get lNarnedResource $A82 0 [1:6.3.1] 
*_GetlResource $A81F (1:6.3.1] 
_GlobalToLocal $A871 [1:4.4.2] 
_GrafDevice $A872 (1:8.3.2] 
_GrowWindow $A92B [11:3.5.4] 

_HandAndHand $A9E4 [1:3.2.6] 
_Hand To Hand $A9El (1:3.2.5] 

* _HClrRBit $A068 (1:3.2.4] 
* _HGetState $A069 [1:3.2.4] 



391 Summary of Trap Macros and Trap Words 
~~~~~~~~~~~~-

Trap Trap Reference
Macro Name Word Section

_HideControl $A958 [Il:6.3.1]

_HideCursor $A852 [Il:2.5.3]

*_HideDitem $A827 [Il:7.3.3]

_Hide Pen $A896 [1:5.2.3)

_HideWindow $A916 [Il:3.3.l]

_HiliteControl $A95D [Il:6.3.3]

_HiliteMenu $A938 [Il:4.5.4]

_HiliteWindow $A91C [Il:3.3.4]

_Hi Word $A86A [1:2.2.3)

_HLock $A029 [1:3.2.4)

_HNoPurge $A04A [1:3.2.4]

_HomeResFile $A9A4 [1:6.4.3)

_HPurge $A049 [1:3.2.4]

*_HSetRBit $A067 [1:3.2.4]

*_HSetState $A06A [1:3.2.4)

_HUnlock $A02A [1:3.2.4)

_InfoScrap $A9F9 [1:7.4.2]

_Ini tAllPacks $A9E6 [1:7.2.2)

_InitCursor $A850 [Il:2.5.2]

_lnitDialogs $A97B [Il:7.2.1]

_InitFonts $A8FE [1:8.2.4]

_InitGraf $A86E [1:4.3.1]

_InitMenus $A930 [Il:4.2.1]

_InitPack $A9E5 [1:7.2.2)

_InitPort $A86D [1:4.3.2)

_InitWindows $A912 [Il:3.2.1]

_InsertMenu $A935 [Il:4.4.1]

_InsertResMenu $A951 [Il:4.3.3]

_InsetRect $A8A9 [1:4.4.4]

_InsetRgn $A8El [1:4.4.7]

*_InsMenuitem $A826 [Il:4.3.1]

_InvalRect $A928 [Il:3.4.2]

_InvalRgn $A927 [Il:3.4.2]

_InverRect $A8A4 [1:5.3.2]

_InverRgn $A8D5 [1:53.7]

_InverRoundRect $A8B3 [1:5.3.3]

InvertArc $A8Cl [1:5.3.5]

_InvertOval $ABBA [1:5.3.4]

_Invert Poly $A8C9 [1:5.3.6)

_IsDialogEvent $A97F [Il:7.4.4]

392 Appendix F

Trap Trap Reference
Macro Name Word Section

_IUDateString $A9ED (0) [1:2.4.4]

_IUTimeString $A9ED (2) [1:2.4.4]

_KillControls $A956 [11:6.2.2]

_Kill IO $A006 [ill:3.2.3]

_KillPicture $A8F5 [1:5.4.2]

_KillPoly $A8CD [1:4.1.4]

_Launch $A9F2 [1:7.1.1]

_Line $A892 [1:5.2.4]
_LineTo $A891 [1:5.2.4]

_LoadSeg $A9FO [1:7.1.2]

_LocalToGlobal $A870 [1:4.4.2]

_LodeScrap $A9FB [1:7.4.4]

_LongMul $A867 [1:2.3.3]
*_Long2Fix $A83F [1:2.3.1]
_Lo Word $A86B [1:2.2.3]

_MapPoly $A8FC [1:4.4.9]
_Map Pt $A8F9 [1:4.4.9]
_MapRect $A8FA [1:4.4.9]
_MapRgn $A8FB [1:4.4.9]

*_MaxApplZone $A063 [1:3.3.4]
*_MaxBlock $A061 [1:3.3.1]
_MaxMem $Al1D [1:3.3.1]

*_MaxSizeRsrc $A821 [1:6.4.3]
*_MeasureTex-::: $A837 [1:8.3.4]
_MenuKey $A93E [11:4.5.1]
_MenuSelect $A93D [11:4.5.1]
_ModalDialog $A991 [11:7.4.3]
_MoreMasters $A036 [1:3.2.5]
_MountVol $AOOF [11:8.13]
_Move $A894 [1:5.2.4]
_MoveControl $A959 [11:6.3.2]

*_MoveHHi $A064 [1:3.2.5]
_MovePortTo $A877 [1:4.3.5]
_MoveTo $A893 [1:5.2.4]
_MoveWindow $A91B [11:3.3.2]
_Munger $A9EO [11:5.5.6]

_NewControl $A954 [11:6.2.1]
_NewDialog $A97D [11:7.2.2]

*_NewEmptyHandle $A166 [1:3.2.1]

393 Summary of Trap Macros and Trap Words
~~~~~~~~~~~~-

Trap Trap Reference 
Macro Name Word Section 

_New Handle $Al22 (1:3.2.1) 
_NewMenu $A931 (11:4.2.2) 
_NewPtr $A11E (1:3.2.1) 
_NewRgn $A8D8 [1:4.1.6) 
_NewString $A906 (1:8.1.2) 
_NewWindow $A913 (11:3.2.2) 
_NoteAlert $A987 [11:7.4.2) 
_NumToString $A9EE (0) (1:2.3.4] 

_ObscureCursor $A856 (11:2.5.4) 
_Off Line $A035 (11:8.1.3] 
_Off set Poly $A8CE [1:4.4.6) 

_Off setRect $A8A8 [1:4.4.4) 
_Of setRgn $A8EO [1:4.4.7] 
_Open $AOOO [11:8.2.2. ill:3.2.1] 
_OpenDeskAcc $A9B6 (11:4.5.2. ill:6.2.1] 
_OpenPicture $A8F3 (1:5.4.2) 

_OpenPoly $A8CB (1:4.1.4) 
_OpenPort $A86F [1:4.3.2) 

_OpenResFile $A997 [1:6.2.1] 
_OpenRF $AOOA (11:8.2.2) 

_OpenRgn $A8DA [1:4.1.6) 

_PackO $A9E7 [1:7.2.1] 

_Packl $A9E8 [1:7.2.1] 
_Pack2 $A9E9 [1:7.2.1) 

_Pack3 $A9EA [1:7.2.1] 

- Pack4 $A9EB [1:7.2.1] 

- Pack5 $A9EC [1:7.2.1) 
_Pack6 $A9ED [1:7.2.1) 

Pack7 $A9EE [1:7.2.1) 
* Packs $A816 [1:7.2.1) -
*_Pack9 $A82B [1:7.2.1] 

*_PacklO $A82C [1:7.2.1] 

*_Packll $A82D [1:7.2.1] 

*_Pack12 $A82E [1:7.2.1) 

*_Pack13 $A82F [1:7.2.1) 
* Pack14 $A830 [1:7.2.1] -
* PacklS $A831 [1:7.2.1] -
_PaintArc $A8BF [1:5.3.5] 

- PaintOval $A8B8 [1:5.3.4] 



394 Appendix F 

Trap Trap Reference 

Macro Name Word Section 

_PaintPoly $A8C7 [1:53.6] 

_PaintRect $A8A2 [1:5.3.2] 

_PaintRgn $A8D3 [1:5.3.7] 

_PaintRoundRect $A8Bl [1:5.3.3] 

_ParamText $A98B [Il:7.4.6] 

_PenMode $A89C [1:5.2.2] 

_PenNormal $A89E [1:5.2.2] 

_PenPat $A89D [1:5.2.2] 

_PenSize $A89B [1:5.2.2] 

_Pie Comment $A8F2 [IlI:2.1.7] 

_PinRect $A94E [1:4.4.3] 

_PortSize $A876 [1:4.3.5] 

_PostEvent $A02F [Il:2.3.2] 

*_PrClosDoc $A8FD ($08000484) [ill:4.3.l] 

*_PrClose $A8FD ($00000000) [ill:4.2.l] 

*_PrClosPage $A8FD ($1800040C) [ill:4.3.2] 

* _PrCtlCall $A8FD ($AOOOOEOO) [ill:4.4.3] 

*_PrDlgMain $A8FD ($4A040894) [IlI:4.5.1] 

*_PrDrvrClose $A8FD ($88000000) [ill:4.4.1] 

*_PrDrvrDCE $A8FD ($94000000) [ill:4.4.2] 

*_PrDrvrOpen $A8FD ($80000000) [ill:4.4.1] 

*_PrDrvrVers $A8FD ($9AOOOOOO) [ill:4.4.2] 

*_PrError $A8FD ($BAOOOOOO) [ill:4.2.4] 

*_PrGlue $A8FD [ill:4.2-4.5] 

*_PrintDefault $A8FD ($20040480) [ill:4.22] 

*_PrJobDialog $A8FD ($32040488) [ill:4.2.3] 

*_PrJobinit $A8FD ($44040410) [ill:4.5.1] 

*_PrJobMerge $A8FD ($5804089C) [ill:4.2.3] 
*_PrNoPurge $A8FD ($BOOOOOOO) [ill:4.4.2] 

*_PrOpen $A8FD ($C8000000) [IlI:4.2.l] 

*_PrOpenDoc $ASFD ($04000COO) [ill:4.3.1] 

*_PrOpenPage $A8FD ($10000808) [ill:4.3.2] 

*_PrPicFile $A8FD ($60051480) [IlI:4.3.3] 

*_PrPurge $A8FD ($A8000000) [ill:4.4.2] 

*_PrSetError $A8FD ($C0000200) [ill:4.2.4] 

*_PrStlDialog $A8FD ($2A040484) [ill:4.2.3] 

*_PrStl!nit $A8FD ($3C04040C) [ill:4.5.1] 
*_PrValidate $A8FD ( $52040498) [ill:4.2.2] 

_Pt2Rect $A8AC [1:4.1.2] 

_Pt!nRect . $ABAD [1:4.4.3) 



395 Summary of Trap Macros and Trap Words 
~~~~~~~~~~~~-

Trap Trap Reference
Macro Name Word Section

_PtinRgn $A8E8 [1:4.4.3]
_PtrAndHand $A9EF [1:3.2.6]
_PtrToHand $A9E3 [1:3.2.5]
_PtrToXHand $A9E2 [1:3.2.5]
_PtToAngle $A8C3 [1:5.3.5]
_PurgeMem $A04D [1:3.3.3]

* _PurgeSpace $A162 [1:3.3.1]
_PutScrap $A9FE [1:7.4.3]

_Random $A861 [1:2.3.5]
_Read $A002 [11:8.2.3, ill:3.2.2]
_RealFont $A902 [1:8.2.5]
_ReallocHandle $A027 [1:3.3.3]
_RecoverHandle $A128 [1:3.2.1]
_RectinRgn $A8E9 [1:4.4.3]
_RectRgn $A8DF [1:4.1.7]
_ReleaseResource $A9A3 [1:6.3.2]

*_RelString $A050 [1:2.1.2]
_Rename $AOOB [11:8.2.7]

_ResError $A9AF [1:6.6.1]
_ResrvMem $A040 [!:3.2.1]
_RmveResource $A9AD [!:6.5.3]
_RstFilLock $A042 [11:8.2.6]

_ScalePt $A8F8 [1:4.4.9]
_ScrollRect $A8EF [1:5.1.5]

_Secs2Date $A9C6 [!:2.4.3]
_SectRect $A8AA [1:4.4.5]
_SectRgn $A8E4 [!:4.4.8]

*_SeedFill $A839 [!:5.1.6]
_SelectWindow $A91F [11:3.5.2]
_SelIText $A97E [11:7.3.2]

_SendBehind $A921 [11:3.3.3]

_SetApplLimit $A02D [!:3.3.4]

_Set Clip $A879 [!:4.3.6]

_SetCRefCon $A95B [11:6.2.3]
_SetCTitle $A95F [11:6.2.3]
_SetCtlAction $A96B [11:6.4.2]
_SetCtlValue $A963 [11:6.2.4]
_SetCursor $A851 [11:2.5.2]

_SetDateTime $A03A [!:2.4.1]

396 Appendix F

Trap Trap Reference

Macro Name Word Section

_SetDitem $A98E [11:7.3.1]

_SetEmptyRgn $A8DD [1:4.1.7]

_SetEOF $A012 [11:8.2.5]

- SetFileinfo $AOOD [1:7.3.3]

_SetFilLock $A041 [11:8.2.6]

- SetFontLock $A903 [1:8.2.7]

- SetFPos $A044 [11:8.2.4]

* SetFScaleDisable $A834 [1:8.2.8] -
_SetHandleSize $A024 [1:3.2.3]

- Set Item $A947 [11:4.6.1]

_SetIText $A98F [11:7.3.2]

- Setitmicon $A940 [11:4.6.5]

- SetitmMark $A944 [11:4.6.4]

_SetitmStyle $A942 [11:4.6.3]

_SetMaxCtl $A965 [11:6.2.4]

_SetMenuBar $A93C [11:4.4.4]

_SetMFlash $A94A [11:4.7.2]

- SetMinCtl $A964 [11:6.2.4]
_SetOrigin $A878 [1:4.3.4)

SetPBits $A875 [1:4.3.4]

SetPenState $A899 [1:5.2.1]
_Set Port $A873 [1:4.3.3]
_Set Pt $A880 [1:4.1.1)

_SetPtrSize $A020 (1:3.2.3]

_SetRecRgn $A8DE (1:4.1.7]

- SetRect $A8A7 (1:4.1.2]

_SetResAttrs $A9A7 (1:6.4.2]

_SetResFileAttrs $A9F7 (1:6.6.2]

- SetResinfo $A9A9 [1:6.4.1]
_SetResPurge $A993 [1:6.5.5]

- SetStdProcs $A8EA [111:2.1.1]
_Set String $A907 [1:8.1.2]

- SetVol $A015 [11:8.1.2]
SetWindowPic $A92E [11:3.4.3]

- SetWRefCon $A918 [11:3.2.4]

- SetWTitle $A91A [11:3.2.4]

- SFGetFile $A9EA (2) [11:8.3.2]
_SFPutFile $A9EA (1) [11:8.3.3]
_ShieldCursor $A855 [11:2.5.4]
_ShowControl $A957 [11:6.3.1]

397 Summary of Trap Macros and Trap Words
~~~~~~~~~~~~-

Trap Trap Reference 
Macro Name Word Section 

_ShowCursor $AB53 [Il:2.5.3] 
*_ShowDitem $AB2B [Il:7.3.3] 

_ShowHide $A90B [Il:3.3.1] 

ShowPen $AB97 [1:5.2.3] 

_ShowWindow $A915 [Il:3.3.l] 

_SizeControl $A95C [Il:6.3.2] 

_SizeRsrc $A9A5 [1:6.4.3] 

_SizeWindow $A91D [Il:3.3.2] 

_SpaceExtra $ABBE [1:8.3.2] 

*_StackSpace $A065 [1:3.3.4] 

_Status $A005 [III:3.2.3] 

_StdArc $ABBD [III:2.1.4] 

_StdBits $ABEB [III:2.1.2] 

_Std Comment $ABF1 [III:2.1. 7] 

_StdGetPic $ABEE [III:2.l .6] 

_Std Line $AB90 [III:2.l.3] 

_Std Oval $ABB6 [III:2.l.4] 

_Std Poly $ABC5 [III:2.l.4] 

_Std Put Pie $ABFO [III:2.l.6] 

_StdRect $A8AO [III:2.l.4] 

_StdRgn $ABD1 [III:2.l.4] 

StdRRect $ABAF [III:2.1.4] 

Std Text $ABB2 [III:2.1.5] 

_StdTxMeas $ABED [III:2.1.5] 

_StillDown $A973 [Il:2.4.2] 

_StopAlert $A986 [Il:7.4.2] 

_StringToNum $A9EE (1) [1:2.3.4] 

_StringWidth $ABBC [1:8.3.4] 

_StuffHex $AB66 [1:2.2.4] 

- Sub Pt $AB7F [1:4.4.1] 

_SysBeep $A9CB [Il:2.8.l] 

_SysEdit $A9C2 [II:4.5.3, ID:6.2.3] 

_SystemClick $A9B3 [Il:3.5.3, ill:6.2.2] 

_SystemEvent $A9B2 [ill:6.2.2] 

_SystemMenu $A9B5 [III:6.2.3] 

_SystemTask $A9B4 [Il:2.7.2, ill:6.2.4] 

_TEActivate $A9DB [Il:S.4.3) 

* _TEAutoView $A813 [Il:S.3.3] 

_TECalText $A9DO [Il:5.3.1] 

_TEClick $A9D4 [11:5.4.1] 



398 Appendix F 

Trap Trap Reference 

Macro Name Word Section 

_TECopy $A9DS [11:5.5.2] 

_TECut $A9D6 [11:5.5.2] 

_TEDeactivate $A9D9 [11:5.4.3] 

_TEDelete $A9D7 [11:5.5.3] 
_TEDispose $A9CD [11:5.2.2] 
_TEGetText $A9CB [II:5.2.3] 
_TEidle $A9DA [II:5.4.3] 
_TEinit $A9CC [II:5.2.1] 
_TE Insert $A9DE [II:5.5.3] 
_TEKey $A9DC [II:5.5.1] 
_TENew $A9D2 [Il:5.2.2] 
_TEPaste $A9DB [II:5.5.2] 

* _TEPinSc ro 11 $AB12 [11:5.3.3] 
_TEScroll $A9DD [II:5.3.3] 

*_TESelView $ABll [Il:5.3.3] 
_TESetJust $A9DF [II:5.3.1] 
_TE Set Select $A9Dl [II:5.4.2] 
_TESetText $A9CF [Il:5.2.3] 
_TestControl $A966 [Il:6.4.1] 
_TEUpdate $A9D3 [Il:5.3.2] 
_Text Box $A9CE [II:5.3.2] 
_TextFace $ABBB [1:8.3.2] 
_TextFont $ABB7 (1:8.3.2] 
_TextMode $A889 [1:8.3.2] 
_Text Size $ABBA [1:8.3.2] 
_TextWidth $ABB6 [1:8.3.4] 
_TickCount $A975 [II:2.7.1] 

*_TrackBox $AB3B [11:3.5.4] 
_TrackControl $A96B [II:6.4.2] 
_TrackGoAway $A91E [II:3.5.4] 

_UnionRect $A8AB [1:4.4.5] 
_UnionRgn $ABE5 (1:4.4.8] 
_UniqueID $A9Cl [1:6.5.3] 

*_UniquelID $A810 [1:6.5.3] 
_UnloadSeg $A9Fl [1:7.1.2) 
_UnlodeScrap $A9FA [1:7.4.4] 

- Unmount Vol $AOOE [II:8.1.3] 
_UpdateResFile $A999 [1:6.5.4] 

*_UpdtControls $A953 [II:6.3.1] 



399 Summary of Trap Macros and Trap Words 
~~~~~~~~~~~~-

Trap Words

Trap Trap Reference
Macro Name Word Section

*_UpdtDialog $A978 [II:7.4.1]
_UprString $A854 [1:2.1.2]
_UseResFile $A998 [1:6.2.2]

_ValidRect $A92A [II:3.4.2]
_ValidRgn $A929 [II:3.4.2]

_WaitMouseUp $A977 [II:2.4.2]
_Write $A003 [II:8.2.3, ill:3.2.2]
_WriteResource $A9BO [1:6.5.4]

_XOrRgn $A8E7 [1:4.4.8]

_ZeroScrap $A9FC [1:7.4.3]
*_ZoomWindow $A83A [II:3.3.2]

Here is the same list sorted numerically by trap word. Again, routine
selectors are given 1n parentheses following the trap word for printing
routines and those belonging to the standard packages. and routines
marked with an asterisk (*) are not included in the original 64K ROM.

Trap Trap Reference
Word Macro Name Section

$AOOO _Open [11:8.2.2, ID:3.2.1]

$A001 _Close [11:8.2.2, ID:3.2.1]

$A002 _Read [11:8.2.3, ID:3.2.2]
$A003 _Write [11:8.2.3, ill:3.2.2]
$A004 _Control [IIl:3.2.3]
$A005 _Status [IIl:3.2.3]

$A006 _Kill IO [IIl:3.2.3]

$A007 _GetVollnfo [11:8.1.1]

$A008 _Create [11:8.2.1]
$A009 _Delete [Il:8.2.7]
$AOOA _OpenRF [Il:8.2.2]
$AOOB _Rename [Il:8.2.7]

$AOOC _GetFileinfo [1:7.3.3]
$AOOD _SetFileinfo [1:7.3.3]

$AOOE _UnmountVol [11:8.1.3]

400 Appendix F

Trap Trap Reference
Word Macro Name Section

$AOOF _MountVol [II:8.1.3)

$A010 _Allocate [II:S.2.5)

$A011 _GetEOF [II:8.2.5]
$A012 - SetEOF [II:S.2.5)

$A013 _FlushVol [II:8.1.3]

$A014 - Get Vol [II:8.1.2]
$A015 _Set Vol [II:8.1.2]
$A017 _Eject [II:8.1.3]

$A018 _GetFPos [II:8.2.4]
$A01C _FreeMem (1:3.3.1]
$A11D _MaxMem (1:3.3.1]

$A11E _NewPtr [1:3.2.1]
$A01F _DisposPtr [1:3.2.2]

$A020 _SetPtrSize [1:3.2.3)
$A021 _GetPtrSize (1:3.2.3)
$A122 _NewHandle [1:3.2.1)
$A023 _DisposHandle [1:3.2.2]
$A024 _SetHandleSize [1:3.2.3]

$A025 _GetHandleSize [1:3.2.3]
$A027 _ReallocHandle [1:3.3.3)
$A128 _RecoverHandle [1:3.2.1]
$A029 _HLock [1:3.2.4]
$A02A - HUnlock [1:3.2.4]

$A02B _ErnptyHandle [1:3.3.3]

$A02D _SetApplLirnit [1:3.3.4]
$A02E _BlockMove [1:3.2.5]
$A02F _PostEvent [II:2.3.2]

$A032 _FlushEvents [II:2.3.1]
$A035 - Off Line [II:S.1.3]

$A036 _MoreMasters (1:3.2.5]
$A03A _SetDateTirne [1:2.4.1]
$A03B _Delay [II:2.7.1]
$A03C _CrnpString [1:2.1.2]

$A040 _ResrvMern [1:3.2.1]
$A041 _SetFilLock [II:S.2.6]
$A042 _RstFilLock [II:8.2.6]

$A044 _SetFPos [II:S.2.4]
$A049 _HPurge [1:3.2.4]

401 Sunuruuy of Trap Macros and Trap Words
~~~~~~~~~~~~-

Trap Trap Reference 
Word Macro Name Section 

$A04A _HNoPurge [1:3.2.4] 
$A04C _CompactMem [1:3.3.2] 
$A04D _PurgeMem [1:3.3.3] 

*$A050 _RelString [1:2.1.2] 

*$A061 _MaxBlock [1:3.3.1] 
*$A162 _PurgeSpace [1:3.3.1] 
*$A063 _MaxApplZone [1:3.3.4] 
*$A064 _MoveHHi [1:3.2.5] 
*$A065 _StackSpace [1:3.3.4] 
*$A166 _NewEmptyHandle [1:3.2.1] 
*$A067 _HSetRBit [1:3.2.4) 
*$A068 _HClrRBit [1:3.2.4] 

*$A069 _HGetState [1:3.2.4] 
*$A06A _HSetState [1:3.2.4] 

* $A80D - CountlResources [1:6.3.3] 

* $A80E _GetllxResource [1:6.3.3] 
*$A80F _GetlixType [1:6.3.3] 

* $A810 _UniquelID [1:6.5.3] 

* $A811 _TESelView [11:5.3.3] 
* $A812 - TEPinScroll [11:5.3.3] 

* $A813 _TEAutoView [11:5.3.3] 

*$A816 - Pack8 [1:7.2.1] 

*$A817 _CopyMask [1:5.1.4] 

*$A818 - FixATan2 [1:2.3.6] 
*$A81C _CountlTypes [1:6.3.3] 

*$A81F _Get I Resource (1:6.3.1] 

*$A820 - GetlNamedResource [1:6.3.1] 
*$A821 - MaxSizeRsrc [1:6.4.3] 

*$A826 InsMenuitem [11:4.3.1] 

*$A827 - HideDitem [11:7.3.3] 

*$A828 ShowDitem [11:7.3.3] 

*$A82B - Pack9 [1:7.2.1] 
*$A82C - PacklO [1:7.2.1] 

*$A82D - Packll [1:7.2.1] 

*$A82E Pack12 [1:7.2.1] 

*$A82F - Pack13 [1:7.2.1] 

*$A830 - Pack14 [1:7.2.1] 



402 Appendix F 

Trap Trap Reference 
Word Macro Name Section 

*$A831 _Pack15 [!:7.2.1] 

*$A834 _SetFScaleDisable [!:8.2.8] 

*$A835 _FontMetrics [1:8.2.6] 

*$A837 _MeasureText [!:83.4] 

*$A838 _CalcMask [!:5.1.6] 

*$A839 _SeedFill [1:5.1.6] 

*$A83A _Zoom Window [11:3.3.2] 

*$A83B _TrackBox [11:3.5.4] 
*$A83F _Long2Fix [1:2.3.1] 

*$A840 _Fix2Long [1:23.1] 

*$A841 _Fix2Frac [1:23.3] 

*$A842 _Frac2Fix [1:2.3.3] 
*$A847 _FracCos [1:2.3.6] 

*$A848 _FracSin [1:2.3.6] 
*$A849 _FracSqrt [1:23.4] 
*$A84A _FracMul [1:23.4] 
*$A84B _FracDiv [!:2.3.4] 
*$A84D _FixDiv (1:23.2] 

$A850 InitCursor [11:2.5.2] 
$A851 _Set Cursor [11:2.5.2] 
$A852 _HideCursor [11:2.5.3] 
$A853 _ShowCursor [11:2.5.3] 
$A854 _UprString (1:2.1.2] 

$A855 _ShieldCursor [11:2.5.4] 

$A856 _ObscureCursor [11:2.5.4] 
$A858 _BitAnd [!:2.2.2] 
$A859 _BitXOr [!:2.2.2] 
$A85A _BitNot [!:2.2.2] 
$A85B _BitOr (1:2.2.2] 
$A85C _Bit Shift (1:2.2.2] 

$A85D _BitTst [1:2.2.1] 
$A85E _BitSet (1:2.2.1] 
$A85F _BitClr (1:2.2.1] 

$A861 _Random [1:23.5] 
$A865 _Get Pixel [1:4.2.3] 
$A866 _StuffHex (1:2.2.4] 
$A867 _LongMul [1:23.3] 
$A868 _FixMul [1:23.2] 
$A869 _FixRatio [1:2.3.2] 



403 Summary of Trap Macros and Trap Words 
~~~~~~~~~~~~-

Trap Trap Reference
Word Macro Name Section

$A86A _Hi Word (1:2.2.3]
$A86B _Lo Word [1:2.2.3]
$A86C _FixRound [1:2.3.1]
$A86D _InitPort [1:4.3.2]
$A86E InitGraf [1:4.3.1]
$A86F _Open Port [1:4.3.2]

$A870 _LocalToGlobal (1:4.4.2]
$A871 _GlobalToLocal [1:4.4.2]
$A872 _GrafDevice [1:8.3.2]
$A873 _Set Port [1:4.3.3]
$A874 _Get Port (1:4.3.3]
$A875 _SetPBits [1:4.3.4]
$A876 _Port Size [1:4.3.5]
$A877 _MovePortTo [1:4.3.5]
$A878 _SetOrigin [1:4.3.4]
$A879 _Set Clip [1:4.3.6]
$A87A _GetClip [1:4.3.6]

$A87B _ClipRect [1:4.3.6]

$A87C - BackPat [1:5.1.1]

$A87D _ClosePort [1:4.3.2]

$A87E - Add Pt (1:4.4.1]
$A87F Sub Pt [1:4.4.1]

SASSO _Set Pt (1:4.1.1]

$A881 _Equal Pt [1:4.4.1]

$A882 - Std Text [ill:2.l.5]

$A883 - DrawChar [1:8.3.3]

$A884 _Drawstring [1:8.3.3]

$A885 _DrawText [1:8.3.3]

$A886 - Text Width [1:8.3.4]

$A887 - Text Font [1:8.3.2]

$A888 - Text Face [1:8.3.2]

$A889 _Text Mode [1:8.3.2]

$A88A - Text Size [1:8.3.2]

$A88B - GetFontinfo [1:8.2.6]

$A88C _StringWidth [1:8.3.4]

$A88D _CharWidth [1:8.3.4]

$ABBE _SpaceExtra [1:8.3.2]

$A890 StdLine [ill:2.1.3]

$A891 - Line To [1:5.2.4]

404 Appendix F

Trap Trap Reference

Word Macro Name Section

$A892 _Line [1:5.2.4]

$A893 _MoveTo [1:5.2.4]

$A894 _Move [1:5.2.4]

$A896 - Hide Pen [1:5.2.3]

$A897 _ShowPen [1:5.2.3]

$A898 _GetPenState [1:5.2.1]

$A899 _SetPenState [1:5.2.1]

$A89A _Get Pen [1:5.2.4]

$A89B _PenSize [1:5.2.2]

$A89C _PenMode [1:5.2.2]

$A89D - Pen Pat [1:5.2.2]

$A89E _PenNormal [1:5.2.2]

$A8AO - StdRect [Il1:2.1.4]

$A8Al _FrameRect [1:5.3.2]

$A8A2 _PaintRect [1:5.3.2]

$A8A3 _EraseRect [1:5.3.2]

$A8A4 _InverRect [1:5.3.2]

$A8A5 _FillRect [1:5.3.2]

$A8A6 _EqualRect [1:4.4.5]

$A8A7 - SetRect [1:4.1.2]
$A8A8 _Off setRect [1:4.4.4]

$A8A9 InsetRect [1:4.4.4]

$A8AA _SectRect [1:4.4.5]
$A8AB _UnionRect [1:4.4.5]

$A8AC _Pt2Rect [1:4.1.2]

$ABAD _PtinRect [1:4.4.3]

$A8AE _EmptyRect [1:4.4.4]

$A8AF _StdRRect [111:2.1.4]

$A8BO _FrameRoundRect [1:5.3.3]

$A8Bl _PaintRoundRect [1:5.3.3]

$A8B2 _EraseRoundRect [1:5.3.3]
$A8B3 InverRoundRect [1:5.3.3]
$A8B4 _FillRoundRect [1:5.3.3]
$A8B6 _Std Oval [ill:2.l.4]
$A8B7 _FrameOval [1:5.3.4]

$A8B8 - PaintOval [1:5.3.4)

$A8B9 _EraseOval [1:5.3.4]
$A8BA InvertOval [1:5.3.4]
$A8BB _FillOval [1:5.3.4]

405 Summary of Trap Macros and Trap Words
~~~~~~~~~~~~-

Trap Trap Reference 
Word Macro Name Section 

$A8BD _StdArc [ill:2.1.4] 
$ABBE _FrameArc (1:5.3.5] 
$A8BF _PaintArc (1:5.3.5] 

$A8CO _EraseArc (1:5.3.5] 
$A8Cl _InvertArc (1:5.3.5] 
$A8C2 _Fill Arc (1:5.3.5] 
$A8C3 _Pt To Angle (1:5.3.5] 
$A8C5 _Std Poly [ill:2.l.4] 
$A8C6 _FramePoly (1:5.3.6] 
$A8C7 _PaintPoly (1:5.3.6] 
$A8C8 _ErasePoly (1:5.3.6] 
$A8C9 _Invert Poly (1:5.3.6] 
$A8CA _Fill Poly (1:5.3.6] 
$A8CB _Open Poly (1:4.1.4] 
$A8CC _ClosePgon (1:4.1.4] 
$A8CD _Kill Poly [1:4.1.4] 
$A8CE _Off setPoly (1:4.4.6] 

$A8Dl _StdRgn [ill:2.l.4] 
$A8D2 _FrameRgn [1:5.3.7] 
$A8D3 _PaintRgn [1:5.3.7) 
$A8D4 _EraseRgn (1:5.3.7) 
$A8D5 _InverRgn [1:5.3.7] 
$A8D6 _FillRgn [1:5.3.7] 
$A8D8 _NewRgn [1:4.1.6] 
$A8D9 _DisposRgn (1:4.1.6] 
$A8DA _OpenRgn (1:4.1.6] 
$A8DB _CloseRgn [1:4.1.6] 
$A8DC _CopyRgn [1:4.1.7) 
$A8DD _SetEmptyRgn (1:4.1.7] 
$A8DE _SetRecRgn [1:4.1.7] 
$A8DF _RectRgn [1:4.1.7] 

$A8EO _Of setRgn [1:4.4.7] 
$A8El _InsetRgn [1:4.4.7] 
$A8E2 _EmptyRgn [1:4.4.7] 
$A8E3 _EqualRgn [1:4.4.8] 
$A8E4 _SectRgn (1:4.4.8] 
$A8E5 _UnionRgn (1:4.4.8] 
$A8E6 _DiffRgn [1:4.4.8] 



406 Appendix ft' 

Trap Trap Reference 

Word Macro Name Section 

$A8E7 _XOrRgn [1:4.4.8] 

$ABEB _PtinRgn [1:4.4.3] 

$A8E9 _RectinRgn [1:4.4.3] 

$A8EA _SetStdProcs [ill:2.1.1] 

$A8EB _StdBits [ill:2.l.2] 

$A8EC _CopyBits [1:5.1.2] 

$ABED _StdTxMeas [111:2.1.5] 

$ABEE _StdGetPic [ill:2.1.6] 

$ABEF - ScrollRect (1:5.1.5] 

$A8FO _StdPutPic [ill:2.1.6] 

$A8Fl _Std Comment [ID:2.1.7] 

$ABF2 - Pie Comment [ID:2.1.7] 

$ABF3 _OpenPicture [1:5.4.2] 

$ABF4 _ClosePicture [1:5.4.2] 

$A8F5 _Kill Picture [I:5.4.2] 

$A8F6 - DrawPicture (1:5.4.3] 

$A8F8 _ScalePt [1:4.4.9] 

$A8F9 _Map Pt (1:4.4.9] 

$A8FA _MapRect [1:4.4.9] 

$A8FB _MapRgn [1:4.4.9] 

$A8FC _Map Poly [1:4.4.9] 

*$A8FD _PrGlue [ill:4.2-4.5] 

*$A8FD ($04000COO) _PrOpenDoc [111:4.3.1] 

*$A8FD ($08000484) - PrClosDoc [ID:4.3.l] 

*$A8FD ($10000808) _PrOpenPage [111:4.3.2] 

*$A8FD ($1B00040C) _PrClosPage [ID:4.3.2] 

*$A8FD ($20040480) - PrintDefault [Ill:4.2.2] 

*$A8FD ($2A0404B4) _PrStlDialog [Ill:4.2.3] 

*$A8FD ($32040488) _PrJobDialog [Ill:4.2.3] 

*$A8FD ($3C04040C) _PrStlini t [Ill:4.5 .1] 

*$A8FD ($44040410) - PrJobinit [Ill:4.5.1] 

*$A8FD ($4A040894) _PrDlgMain [Ill:4.5.1] 

*$A8FD ($52040498) _PrValidate [Ill:4.2.2] 

*$A8FD ($5804089C) _PrJobMerge [Ill:4.2.3] 

*$A8FD ($60051480) _PrPicFile [ill:4.3.3] 

*$A8FD ($80000000) _PrDrvrOpen [ill:4.4.l] 

*$A8FD ($88000000) - PrDrvrClose [ill:4.4.1] 

*$A8FD ($94000000) - PrDrvrDCE [Ill:4.4.2] 

*$A8FD ($9AOOOOOO) _PrDrvrVers [Ill:4.4.2] 

*$A8FD ($AOOOOEOO) - PrCtlCall [IIl:4.4.3] 



407 Sumnuuy of 'Irap Macros and Trap Words 
~~~~~~~~~~~~-

Trap Trap Reference
Word Macro Name Section

*$A8FD ($A8000000) _PrPurge [Ill:4.4.2]
*$A8FD ($BOOOOOOO) _PrNoPurge [Ill:4.4.2]
*$A8FD ($BAOOOOOO) _PrError [Ill:4.2.4]
*$A8FD ($C0000200) _PrSetError [ill:4.2.4]
*$A8FD ($C8000000) _PrOpen [Ill:4.2.1]
*$A8FD ($00000000) _PrClose [Ill:4.2.1]

$A8FE InitFonts [1:8.2.4]
$A8FF _GetFName (1:8.2.5]

$A900 - GetFNum [1:8.2.5]
$A902 - RealFont [1:8.2.5]
$A903 _SetFontLock [1:8.2.7]
$A904 _DrawGrowicon [11:3.3.4]
$A906 _NewString [1:8.1.2]
$A907 _Set String [1:8.1.2]
$A908 - ShowHide [11:3.3.1]

$A910 _GetWMgrPort [11:3.6.1]
$A912 InitWindows [11:3.2.1]
$A913 _NewWindow [11:3.2.2]

$A914 _DisposWindow [11:3.2.3)
$A915 - ShowWindow [11:3.3.1)
$A916 _HideWindow [11:3.3.1)

$A917 _GetWRefCon [11:3.2.4]

$A918 - SetWRef Con [11:3.2.4]

$A919 _GetWTitle [11:3.2.4]

$A91A _SetWTitle [11:3.2.4]
$A91B _MoveWindow [11:3.3.2]
$A91C _HiliteWindow (11:3.3.4]
$A91D - SizeWindow [11:3.3.2]

$A91E _TrackGoAway [11:3.5.4)
$A91F SelectWindow [11:3.5.2)

$A920 _BringToFront [11:3.3.3]

$A921 _SendBehind [11:3.3.3]

$A922 _BeginUpdate [11:3.4.1]
$A923 _End Update [11:3.4.1]
$A924 _FrontWindow [11:3.3.3]

$A925 _DragWindow [11:3.5.4]

$A927 _InvalRgn [11:3.4.2]

$A928 InvalRect [11:3.4.2]

$A929 _ValidRgn [11:3.4.2]

408 Appendix F

Trap Trap Reference

Word Macro Name Section

$A92A _ValidRect [11:3.4.2]

$A92B _GrowWindow [11:3.5.4]

$A92C _Find Window [11:3.5.1]

$A92D _CloseWindow [11:3.23]

$A92E _SetWindowPic [11:3.4.3]

$A92F _GetWindowPic [11:3.43]

$A930 InitMenus [11:4.2.1]

$A931 _New Menu [11:4.2.2]

$A932 _DisposMenu [11:4.2.3]

$A933 _AppendMenu [11:4.3.1]

$A934 _ClearMenuBar [11:4.4.1]

$A935 _InsertMenu [11:4.4.1]

$A936 _DeleteMenu [11:4.4.1]

$A937 _DrawMenuBar [11:4.4.3]

$A938 _Hili teMenu (11:4.5.4]

$A939 _Enable Item [11:4.6.2]

$A93A _Disable Item [11:4.6.2)

$A93B _GetMenuBar [11:4.4.4]

$A93C _SetMenuBar [11:4.4.4]

$A93D _MenuSelect [11:4.5.1]

$A93E _MenuKey [11:4.5.1]

$A93F _Getltmlcon [11:4.6.5]

$A940 _Setitmicon [11:4.6.5]

$A941 _GetltmStyle [11:4.6.3]

$A942 _SetltmStyle [11:4.63]

$A943 _GetltmMark [11:4.6.4]

$A944 _SetltmMark [11:4.6.4]

$A945 _Checkltem [11:4.6.4]
$A946 _Get Item [11:4.6.1)

$A947 - Set Item [11:4.6.1)

$A948 _CalcMenuSize [11:4.7.1)

SA949 _GetMHandle [11:4.4.5)

$A94A _SetMFlash [11:4.7.2)

$A94C _FlashMenuBar [11:4.7.2)
$A94D _AddResMenu [11:4.33]

$A94E - PinRect [1:4.4.3]
$A94F _DeltaPoint [1:4.4.1)

$A950 _CountMitems [11:4.3.4)

$A951 InsertResMenu [11:4.3.3)

409 Summary of Trap Macros and Trap Words
~~~~~~~~~~~~-

Trap Trap Reference 
Word Macro Name Section 

*$A952 _DelMenuitem [11:4.3.4] 
*$A953 _UpdtControls [11:6.3.1) 

$A954 _NewControl [11:6.2.1) 
$A955 _DisposControl [11:6.2.2) 
$A956 _KillControls [11:6.2.2) 
$A957 _ShowControl [11:6.3.1) 
$A958 _HideControl [11:6.3.1) 
$A959 _MoveControl [11:6.3.2) 
$A95A _GetCRefCon [11:6.2.3) 
$A95B _SetCRefCon [11:6.2.3) 
$A95C _SizeControl [11:6.3.2) 
$A95D _HiliteControl [11:6.3.3) 
$A95E _GetCTitle [11:6.2.3) 
$A95F _SetCTitle [11:6.2.3) 

$A960 _GetCtlValue [11:6.2.4) 
$A961 _GetMinCtl [11:6.2.4) 
$A962 _GetMaxCtl [11:6.2.4] 
$A963 _SetCtlValue [11:6.2.4) 
$A964 SetMinCtl [11:6.2.4] 
$A965 _SetMaxCtl [11:6.2.4) 
$A966 _TestControl [11:6.4.1) 

$A967 _DragControl [11:6.4.3) 
$A968 - TrackControl [11:6.4.2] 
$A969 - DrawControls [11:6.3.1] 

$A96A _GetCtlAction [11:6.4.2) 
$A96B _SetCtlAction [11:6.4.2) 

$A96C - FindControl [11:6.4.1) 

$A96E _Dequeue [ID:3.1.7] 
$A96F _Enqueue [ill:3.1.7] 

$A970 _GetNextEvent [11:2.2.1] 
$A971 - EventAvail [11:2.2.1) 
$A972 - GetMouse [11:2.4.1] 
$A973 StillDown [11:2.4.2) 
$A974 - Button [11:2.4.2] 
$A975 - TickCount [11:2.7.1) 

$A976 _GetKeys [11:2.6.1] 

$A977 _WaitMouseUp [11:2.4.2) 

*$A978 _UpdtDialog [11:7.4.1) 
$A979 _CouldDialog [11:7.5.3) 



410 Appendix F 

Trap Trap Reference 
Word Macro Name Section 

$A97A _FreeDialog [11:7.5.3] 

$A97B _InitDialogs [11:7.2.1] 

$A97C _GetNewDialog [Il:7.2.2] 

$A97D _NewDialog [11:7.2.2] 

$A97E _Sel!Text [Il:7.3.2] 

$A97F _IsDialogEvent [11:7.4.4] 

$A980 _DialogSelect [11:7.4.4] 

$A981 _DrawDialog [11:7.4.1] 

$A982 _CloseDialog [11:7.2.3] 

$A983 _DisposDialog [Il:7.2.3] 

* $A984· _FindDitem [Il:7.3.4] 

$A985 _Alert [11:7.4.2] 

$A986 _StopAlert [11:7.4.2] 
$A987 _NoteAlert [11:7.4.2] 
$A988 _CautionAlert [11:7.4.2) 
$A989 _CouldAlert [11:7.5.3) 
$A98A _FreeAlert [11:7.5.3] 
$A98B _ParamText [11:7.4.6) 

$A98C _Error Sound [11:7.5.1) 
$A98D _GetDitem [11:7.3.1] 
$A98E _SetDitem [11:7.3.1] 
$A98F _Set!Text [11:7.3.2) 

$A990 _Get!Text [11:7.3.2] 
$A991 _ModalDialog [11:7.4.3] 

$A992 _DetachResource [1:6.3.2] 
$A993 _SetResPurge [1:6.5.5] 

$A994 _CurResFile (1:6.2.2] 
$A997 _OpenResFile [1:6.2.1] 
$A998 _UseResFile [1:6.2.2] 
$A999 _UpdateResFile [1:6.5.4] 
$A99A _CloseResFile [1:6.2.1] 
$A99C _CountResources [1:6.3.3] 
$A99D _GetindResource [1:6.3.3) 
$A99E _CountTypes [1:6.3.3] 
$A99F _GetindType [1:6.3.3] 

$A9AO _GetResource [1:6.3.1] 

$A9Al _GetNamedResource [1:6.3.1] 
$A9A3 _ReleaseResource [1:6.3.2] 
$A9A4 _HomeResFile [1:6.4.3] 



411 Summary of Trap Macros and Trap Words 
~~~~~~~~~~~~-

Trap Trap Reference
Word Macro Name Section

$A9A5 _SizeRsrc [1:6.4.3]

$A9A6 _GetResAttrs [1:6.4.2]

$A9A7 _SetResAttrs [1:6.4.2]

$A9A8 _GetResinfo [1:6.4.1]

$A9A9 _SetResinfo [1:6.4.1]

$A9AA _ChangedResource [1:6.5.2]

$A9AB _AddResource [1:6.5.3]

$A9AD _RmveResource [1:6.5.3]

$A9AF _ResError [1:6.6.1]

$A9BO _WriteResource [!:6.5.4]

$A9Bl _CreateResFile [1:6.5.1]

$A9B2 _SystemEvent [ID:6.2.2]

$A9B3 _SystemClick [Il:3.5.3, ill:6.2.2]

$A9B4 _SystemTask [Il:2.7.2, ill:6.2.4]

$A9B5 _SystemMenu [ID:6.2.3]

$A9B6 _OpenDeskAcc [Il:4.5.2, ill:6.2.1]

$A9B7 _CloseDeskAcc [II:4.5.2, III:6.2.1]

$A9B8 _GetPattern [1:5.1.1]

$A9B9 _GetCursor [Il:2.5.2]

$A9BA _Get String [1:8.1.2]

$A9BC _GetPicture [1:5.4.2)

$A9BD _GetNewWindow [Il:3.2.2]

$A9BE _GetNewControl [II:6.2.1]

$A9BF _GetRMenu [Il:4.2.2]

$A9CO _GetNewMBar [Il:4.4.2]

$A9Cl _Unique ID [1:6.5.3]

$A9C2 _SysEdit [Il:4.5.3, ill:6.2.3]

$A9C6 Secs2Date [1:2.4.3]

$A9C7 - Date2Secs [1:2.4.3]

$A9C8 _SysBeep [Il:2.8.l]

$A9CB _TEGetText [Il:5.2.3]

$A9CC - TEinit [Il:S.2.1]

$A9CD _TEDispose [Il:5.2.2]

$A9CE _Text Box [II:5.3.2]

$A9CF _TESetText [II:5.2.3]

$A9DO _TECalText [Il:5.3.1]

$A9Dl _TESetSelect [Il:5.4.2]

$A9D2 _TENew [Il:5.2.2]

$A9D3 _TEUpdate [Il:5.3.2]

412 Appendix F

Trap Trap Reference
Word Macro Name Section

$A9D4 _TECH ck [11:5.4.1]

$A9D5 _TECopy [11:5.5.2]

$A9D6 _TECut [11:5.5.2)

$A9D7 _TEDelete [11:5.53)

$A9D8 _TEActivate [11:5.4.3]

$A9D9 _TEDeactivate [11:5.4.3)

$A9DA _TEidle [11:5.4.3)

$A9DB _TEPaste [11:5.5.2)
$A9DC _TEKey [11:5.5.1]
$A9DD _TEScroll [11:5.3.3]
$A9DE - TE Insert [11:5.5.3]

$A9DF _TESetJust [11:5.3.1]

$A9EO _Munger [11:5.5.6]
$A9El _HandToHand [1:3.2.5]
$A9E2 _PtrToXHand [1:3.2.5]
$A9E3 _PtrToHand [1:3.2.5]
$A9E4 _HandAndHand [1:3.2.6]
$A9E5 _InitPack [1:7.2.2]
$A9E6 Ini tAllPacks [1:7.2.2]
$A9E7 _PackO [1:7.2.1]
$A9E8 _Pac kl [1:7.2.1]
$A9E9 _Pack2 [1:7.2.1]
$A9E9 (0) _DIBadMount [Il:8.4.1]
$A9E9 (2) _DI Load [Il:8.4.3]

$A9E9 (4) _DIUnload [Il:8.4.3]
$A9E9 (6) _D!Format [11:8.4.2]
$A9E9 (8) _DIVerify [11:8.4.2]
$A9E9 (10) _DI Zero [11:8.4.2]
$A9EA - Pack3 [1:7.2.1]
$A9EA (1) _SFPutFile [Il:8.3.3]
$A9EA (2) _SFGetFile (11:8.3.2]
$A9EB - Pack4 (1:7.2.1]
$A9EC _Packs [1:7.2.1]
$A9ED _Pack6 [1:7.2.1]
$A9ED (0) _IUDateString [1:2.4.4]
$A9ED (2) _IUTimeString (1:2.4.4]

$A9EE - Pack7 [1:7.2.1]
$A9EE (0) _NumToString [1:2.3.4]
$A9EE (1) _StringToNum (1:23.4]

413 Summary of Trap Macros and Trap Words
~~~~~~~~~~~~-

Trap Trap Reference 
Word Macro Name Section 

$A9EF _PtrAndHand [1:3.2.6] 

$A9FO _LoadSeg [1:7.1.2] 

$A9Fl _UnloadSeg [1:7.1.2] 

$A9F2 _Launch (1:7.1.1] 

$A9F3 _Chain [1:7.1.1] 

$A9F4 _ExitToShell [1:7.1.3] 

$A9F5 _GetAppParms (1:7.3.4] 

$A9F6 _GetResFileAttrs [1:6.6.2] 

$A9F7 _SetResFileAttrs (1:6.6.2] 

$A9F9 _InfoScrap [1:7.4.2] 

$A9FA _UnlodeScrap (1:7.4.4] 

$A9FB _LodeScrap (1:7.4.4] 

$A9FC _Zero Scrap [1:7.43] 

$A9FD _GetScrap [1:7.43] 

$A9FE _PutScrap [1:7.4.3] 



APPENDIX 

--rci·-~----------...... Ll.:z~~~~~~J ............................................ .. 

Summary of 
Assembly-Language 
Variables 

System Globals 

Listed below are all assembly-language global variables covered in 
the three volumes of this book. together with their hexadecimal 
addresses. Warning: The addresses given may be subject to change 
in future versions of the Toolbox; always refer to these variables by 
name instead of using the addresses directly. Variables marked with 
an asterisk ( •) are not available under the original 64K ROM. 

Variable Reference 

Name Address Section Meaning 

ACount $A9A [Il:7.5.2] Stage of last alert minus 1 
ANumber $A98 [Il:7.5.2] Resource ID of last alert 

ApFontID $984 (1:8.2.1] True font nwnber of current 

application font 

ApplLimit $130 (1:3.3.4] Application heap limit 

ApplZone $2AA (1:3.1.3] Pointer to start of application 

heap 

AppParmHandle $AEC (1:7.3.4] Handle to Finder startup 

information 

Buf Ptr $10C (1:3.1.3] Pointer to end of application 

global space 

415 



416 Appendix G 

Variable Reference 

Name Address Section Meaning 

CaretTime $2F4 [11:5.43] Current blink interval in ticks 

CurActivate $A64 [11:3.43] Pointer to window awaiting 

activate event 

CurApName $910 [1:7.3.4] Name of current application 

(maximwn 31 characters) 

CurApRefNum $900 [1:6.2.2, Reference number of 

1:7.3.4] application resource file 

CurDeactivate $A68 [11:3.4.3] Pointer to window awaiting 

deactivate event 

Cur Map $ASA [1:6.2.2] Reference number of current 

resource file 

CurPageOption $936 [1:7.1.1] Integer specifying screen and 

sound buffers 

CurPitch $280 [ill:5.l.2] Count value for current square-

wave tone 

CurrentA5 $904 [1:3.1.3] Base pointer for application 

globals 

CurStackBase $908 [1:3.1.3] Pointer to base of stack 

DABeeper $A9C [11:7.5.1] Pointer to current sound 

procedure 

DAStrings $AAO [11:7.4.6] Handles to four text substitution 

strings 

DeskPattern $A3C [1:5.1.2] Screen background pattern 

DlgFont $AFA [11:7.5.1] Current font number for dialogs 

and alerts 

DoubleTime $2FO [11:5.4.1] Current double-click interval in 

ticks 

FinderName $2EO [1:7.1.3] Name of program to exit to 

(maximum 15 characters) 
*FractEnable $BF4 [1:8.2.8] Use fractional character widths? 

(1 byte) 

FScaleDisable $A63 [1:8.2.8] Tum off font scaling? (1 byte) 
GrayRgn $9EE [11:3.6.1] Handle to region defming gray 

desktop 
Heap End $114 [1:3.1.3] Pointer to end of application heap 
Keyl Trans $29E [1:8.4.4] Pointer to keyboard configuration 

routine 
Key2Trans $2A2 [1:8.4.4] Pointer to keypad configuration 

routine 
Key Map $174 [11:2.6.1] System keyboard map 



417 Summary of Assembly-Language Variables 
~~~~~~~~~~~~~~ 

Variable Reference
Name Address Section Meaning

KeypadMap $17C [11:2.6.1] System keypad map

Lo3Bytes $31A [1:3.2.4] Mask for extracting address from

a master pointer

*MBarHeight $BAA [11:4.4.3] Height of menu bar in pixels

MBState $172 [11:2.4.2] State of mouse button

MemTop $108 [1:3.13] Pointer to end of physical

memory

MenuFlash $A24 [II:4.7.2] Current flash count for menu

items

MenuList $A1C [II:4.4.4] Handle to current menu bar

PrintErr $944 [IIl:4.2.4] Result code from last printing

operation

ResErr $A60 [1:6.6.1] Result code from last resource-

related call

ResLoad $ASE [1:63.4] Load resources automatically?

ResumeProc $ABC [11:7.2.1] Pointer to restart procedure

ROMBase $2AE [1:3.1.3] Pointer to start of ROM

ROMFontO $980 [1:8.2.1] Handle to system font

*ROMMapinsert $B9E [1:6.6.3] Include ROM-based resources in

search? (1 byte)

ScrapCount $968 [1:7.4.2] Current scrap count

ScrapHandle $964 [1:7.4.2] Handle to contents of desk scrap

ScrapName $96C [1:7.4.2] Pointer to scrap file name

ScrapSize $960 [1:7.4.2] Current size of desk scrap

ScrapState $96A [1:7.4.2] Current state of desk scrap

ScrDmpEnb $2F8 [IIl:6.3.l] Intercept Command-Shift

keystrokes? (1 byte)

ScrnBase $824 [1:3.1.3] Pointer to start of screen buffer

SdEnable $261 [IIl:S.1.1] Sound generator currently

enabled? (1 byte)

SdVolume $260 [111:5.2.2] Current speaker volume (1 byte)

SEvtEnb $15C [111:6.2.2] Intercept system events? (1 byte)

SoundActive $27E [Ill:5.1.1] Sound generator currently active?

(1 byte)

SoundBase $266 [1:3.1.3, Pointer to start of sound

III:5.1.1] buffer

SoundDCE $27A [llI:5.1.1] Pointer to sound driver's device

control entry [3.1.4]

SoundPtr $262 [llI:5.l.3] Pointer to current four-tone sound

record

418 Appendix G

Variable Reference
Name Address Section Meaning

SPFont $204 [1:8.2.1] True font number of default

application font

SysEvtMask $144 [11:23.2] System event mask

SysMap $A58 [1:6.2.2] True reference number (not 0) of

system resource file

SysMapHndl $A54 [1:6.2.2] Handle to resource map of system

resource file

SysResName $ADS [1:6.2.2] Name of system resource file

(string. maximum 19

characters)

SysZone $2A6 [1:3.1.3] Pointer to start of system heap

TEScrpHandle $AB4 [11:5.5.4] Handle to text scrap

TEScrpLength $ABO [11:5.5.4] Length of text scrap in characters

TEWdBreak $AF6 [11:5.6.2] Pointer to built-in word-break

routine

TheCrsr $844 [11:2.5.2] Current cursor record

TheMenu $A26 [11:4.5.4] Menu ID of currently highlighted

menu

Ticks $16A [11:2.7.1] System clock

Time $20C [1:2.4.1] Current date and time in "raw ..

seconds

*TmpResLoad $B9F [1:6.6.3] Load resources automatically just

this once'? (1 byte)

TopMapHndl $A50 [1:6.2.2] Handle to resource map of most

recently opened (not necessar-

ily current) resource file

UnitNtryCnt $1D2 [111:3.1.3] Number of entries in unit table

UTableBase $11C [ill:3.1.3] Pointer to start of unit table

*WidthTabHandle$B2A [1:8.2.6] Handle to global width table fo:r
current font

WindowList $9D6 [11:3.1.1] Pointer to first window in window

list

WMgrPort $9DE [11:3.6.1] Pointer to Window Manager port

419 Summary of Assembly-Language Variables
~------~~~~~~~~~-

QuickDraw Globals

The QuickDraw global variables listed below are located at the given
offsets relative to the QuickDraw globals pointer, which in turn is
pointed to by address register AS.

Variable Offset Reference
Name Bytes Section Meaning

The Port 0 (1:4.3.3) Current graphics port

White -8 (1:5.1.2) Standard white pattern

Black -16 (1:5.1.2] Standard black pattern

Gray -24 (1:5.1.2] Standard gray pattern

LtGray -32 [1:5.1.2] Standard light gray pattern

DkGray -40 [1:5.1.2] Standard dark gray pattern

Arrow -108 (11:2.5.2] Standard arrow cursor

ScreenBits -122 (1:4.2.1] Screen bit map

Rand Seed -126 (1:2.3.8) "Seed" for random number

generation

APPENDIX

--~]------------
Example Program
Source Listings

Following are complete listings of the source code for the example
programs developed in this volume. All of the programs listed here
are available on a mail-order disk directly from the author; see the
order form on the last page of this volume.

SideWindow Window Definition Function

SideWindow is a window definition function for a window with its title
bar at the left side instead of the top. See Chapter 2 for a complete
discussion.

function SideWindow (VarCode : INTEGER: TheWindow WindowPtr:

MsgCode : INTEGER: MsgParam LONGINT)

: LONGINT:

{ Window definition function for a window with its title bar at the left side instead of the top [Prog. ill:2-l]. }

uses

MemTypes,

QuickDraw.

OSintf,

Toolintf,

Packintf:

421

{Elementary dala types}

{ QuickDraw graphics routines}

{Macintosh Operating System}

{User Interface Toolbox}

{Standard packages}

422 Appendix H

{---}

Global Declarations

con st

Mac Plus Rom $75:

ZoomMask $0008:

NoGrowMask $0004:

MenuBarHeight 20:

Sc reenMargin 2:

FrameWidth 1:

ShadowExtra 1;

TitleBarWidth 19:

HighlightGap 1:

MinHighlight 6:

Box Size 11:

SmallZoomSize 7:

SizeBoxSize 16:

GiconSmallOff set 3:

GiconSmallSize 7:

GiconBigOffset 5:

GiconBigSize

type

DRHandle
DRPtr
DataRecord

9:

l\DRPtr:
l\DataRecord:
record

UserState
Std State

TitleBar
CloseBox
ZoomBox

Rect:
Rect:

Rect:
Rect:
Rect:

{ROM version nwnber for Macintosh Plus}

{Mask for extracting zoom bit from variation code}

{Mask for extracting no-grow bit from variation code}

{Height of menu bar in pixels}

{Margin around zoomed-out windows, in pixels}

{Thickness of window frame in pixels}

{Extra thickness for window's drop shadow}

{Width of title bar in pixels}

{Width of gap surrounding highlight lines, in pixels}

{Minimwn height of highlight lines, in pixels}

{Size of close and zoom boxes in pixels}

{Size of inner zoom box in pixels}

{Size of size box in pixels}

{Offset to origin of small square in grow icon}

{Size of small square in grow icon}

{Offset to origin of large square in grow icon}

{Size of large square in grow icon}

{Zoomed-in position in global coordinates [II:3.3.2]}

{Zoomed-out position in global coordinates [II:3.3.2]}

{Title bar in global coordinates}

{Cose box in global coordinates}

{Outer zoom box in global coordinates}

423 SideWindow Source Usting
~~~~~~~~~~~~~~~~ 

SmallZoom 
SizeBox 

Rect: 
Rect: 

{Inner zoom box in global coordinates} 

{ Si7.e box in global coordinates} 

HOff set INTEGER: {Horiwntal offset to close and wom boxes, in pixels} 

(Vertical offset to close and zoom boxes, in pixels} 

(Rectangle enclosing title, in global coordinates} 

VOff set INTEGER: 

var 

Peek 
Result 

TitleRect 

end: {DataRecord} 

WindowPeek: 
LONGINT: 

Re ct 

{Pointer for "peeking" into window's fields [Il:3.1.1]} 

(Function resuh} 

{---------------------------------------------------------------------------------------} 

{ Forward Declarations 

procedure DoNew: forward: 
{ Initialize window. } 

procedure SetUpZoomRects (theData 
{ Initialize zoom rectangles. 

procedure DoCalcRgns: forward: 
{ Calculate window's regions. } 

procedure CalcContRgn (theData 
{ Calculate content region. } 

procedure CalcStrucRgn: forward: 
{ Calculate structure region. } 

DRHandle): forward: 

DRHandle): forward: 

procedure CalcBoxes (theData : DRHandle): forward: 
{ Calculate title bar, close, zoom, and si7.e boxes. } 

procedure CalcTitleBar (theData 
{ Calculate title bar. } 

DRHandle): forward: 

procedure CalcCloseBox (theData : DRHandle): forward: 
{ Calculate close box. } 

procedure CalcZoomBox (theData 
{ Calculate zoom box. } 

procedure CalcSizeBox (theData 
{ Calculate size box. } 

procedure DoDraw: forward: 
( Draw window on screen. } 

DRHandle): forward: 

DRHandle): forward: 

procedure DrawWindow (theData 
( Draw window on screen. } 

DRHandle): forward: 



424 Appendix H 

procedure DrawFrame: forward: 
{ Draw window's frame. } 

procedure DrawTitleBar (theData: DRHandle): forward: 
{ Draw title bar. } 

procedure DrawCloseBox (theData: DRHandle): forward: 
{ Draw close box. } 

procedure DrawZoomBox (theData: DRHandle): forward: 
{ Draw zoom box. } 

procedure DrawTitle (theData: DRHandle): forward: 
{ Draw window's title. } 

procedure ToggleCloseBox (theData : DRHandle): forward: 
{ Toggle close box. } 

procedure ToggleZoomBox (theData : DRHandle); forward: 
{ Toggle zoom box. } 

procedure ToggleBox (theBox : Rect: maskString : Str255): forward: 
{ Toggle close or zoom box. } 

procedure DoDrawGicon: forward: 
{ Draw grow icon. } 

procedure DrawSizeBox (boxTop 
{ Draw size box. } 

INTEGER: boxLeft INTEGER): forward; 

procedure DoGrow: forward: 
{ Draw outline for sizing window. 

procedure DoHit; forward; 
{ Locate mouse click. } 

procedure DoDispose: forward: 
{ Prepare to dispose of window. } 

function ZoomedOut : BOOLEAN: forward: 
( Is window in zoomed-out state? } 

function NearPoint (pointl : Point: point2 
{ Are two points "near" each other? } 

Point) BOOLEAN: forward: 

{-----------------------------------·----------------------------------------} 

procedure DoNew: 

{ Initialire window [Prog. ill:2-3]. 

var 
theData 
zoomBit 
machineType 
romVersion 

DRHandle: 
INTEGER: 
INTEGER: 
INTEGER; 

{Handle to definition function's data record} 

{Zoom bit from window variation code} 

{Type of machine we're nmning on [1:3.1.3]} 

{Version number of machine's ROM [1:3.1.3]} 



425 SideWindow Source Listing 
~~~~~~~~~~~~~~~ 

begin {DoNew)

with Peek" do

begin

dataHandle := NewHandle (SIZEOF(DataRecord)):

MoveHHi (dataHandle):

HLock (dataHandle):

theData ·= DRHandle(dataHandle):

zoomBit BitAnd (VarCode, ZoomMask):

{Allocate data record (1:3.2.1, II:3.1.1])

(Move data record to end of heap (1:3.2.S]}

(Lock data record [1:3.2.4]}

{Convert to typed handle)

{Extract zoom bit from variation code (1:2.2.2))

Environs (romVersion. machineType): {Find out machine configuration [1:3.1.3))

spareFlag := (zoomBit <> 0) and (romVersion >= MacPlusROM): {Set zoom flag [11:3.1.1])

if spareFlag then

SetUpZoomRects (theData):

HUnlock (dataHandle)

end {with Peek")

end: {DoNew)

{Z.OOm box requested and available? [1:3.1.3))

{Initialize zoom rectangles)

{Unlock data record (1:3.2.4))

{---}

procedure SetUpZoomRects {(theData : DRHandle)}:

{ Initialize zoom rectangles [Prog. ill:2-4].

var

savePort

wmPort

GrafPtr;

GrafPtr:

begin {SetUpZoomRects}

with theData"" do

begin

UserState := TheWindow".portRect:

GetPort (savePort):

SetPort (TheWindow):

{Pointer to previous current port (1:4.2.2))

{Pointer to Wmdow Manager port [11:3.6.1]}

{Use current size for zoom-in (1:4.2.2, 11:3.3.2)}

{Save previous port (1:4.3.3]}

{Get into the window's port (1:4.3.3)}

426 Appendix H

with UserState do

begin

LocalToGlobal (topLeft):

LocalToGlobal (botRight)

end: {with UserState}

SetPort (savePort) :

{Convert rectangle to global coordinates [1:4.4.2] }

{Restore previous port (1:4.3.3]}

GetWMgrPort (wmPort): {Get Window Manager port [I1:3.6.1]}

StdState : = wmPort". portBi ts. bounds: {Use full screen for zoom-out [1:4.2.2, 11:3.3.2]}

Inset Re ct (StdState, Sc reenMargin + FrameWidth, {Inset by screen margin and }

Sc reenMargin + FrameWidth) : { width of window frame [1:4.4.4]}

with StdState do

begin

top

left

top

left

+ MenuBarHeight: {Leave room for menu bar at top}

+ (TitleBarWidth - 1): {Leave room for title bar at left}

bottom bottom - ShadowExtra:

right right - ShadowExtra

end {with StdState}

end {with theDataM}

end : { SetUpZoomRects}

{Leave room for drop shadow}

{ at bouom and right }

{---}

procedure DoCalcRgns:

{ Calculate window's regions [Prog. ill:2-6].

var

theData : DRHandle:

begin { DoCalcRgns}

with Peek" do

begin

MoveHHi (dataHandle):

HLock (dataHandle):

theData := DRHandle(dataHandle):

CalcContRgn (theData):

CalcStrucRgn:

{Handle to def. function's data record}

{Move data record to end of heap [1:3.2.5]}

{Lock data record [1:3.2.4]}

(Convert to typed handle}

{Calculate content region}

{Calculate structure region}

427 SideWindow Source Listing
~~~~~~~~~~~~~~~ 

CalcBoxes (theData): 

HUnlock (dataHandle) 

end {with Peek"} 

end: {DoCalcRgns} 

{Calculate title bar. close. zoom, and size boxes} 

{Unlock data record [1:3.2.4]} 

{---------------------------------------------------------------------------------------} 

procedure CalcContRgn {(theData : DRHandle)}: 

{ Calculate content region. 

var 

savePort 

globalRect 

GrafPtr: 

Rect: 

begin {CalcContRgn) 

(Pointer to previous current port [1:4.2.2]} 

{Port rectangle in global coordinates [1:4.1.2] } 

with TheWindowA, PeekA, theDataAA, globalRect do 

begin 

globalRect := portRect: 

Get Port (savePort): 

SetPort (TheWindow): 

LocalToGlobal (topLeft): 

LocalToGlobal (botRight): 

SetPort (savePort): 

RectRgn (contRgn, globalRect): 

if not ZoomedOut then 

UserState := globalRect 

end {with TheWindow". Peek'\ theDataM, globalRect} 

end: {CalcContRgn} 

{Start with local port rectangle [1:4.2.2]} 

{Save previous port [1:4.3.31} 

{Get into the window's port [1:4.3.3]} 

{Convert rectangle to global coordinates [1:4.4.2]} 

{Restore previous port [1:4.3.3]} 

{Set content region [1:4.1.7, 11:3.1.1]} 

(Are we in zoomed-out state?} 

{If not. save as zoomed-in state [Il:3.3.2]} 

{---------------------------------------------------------------------------------------} 



428 Appendix H 

procedure CalcStrucRgn: 

{ Calculate structure region. 

var 
1:empRect 
tempRgn 

Rect: 
RgnHandle: 

begin {CalcStrucRgn} 

with PeekA, tempRect do 
begin 

tempRect := contRgnAA.rgnBBox: 

InsetRect (tempRect. -FrameWidth. -FrameWidth): 
left :=left - (TitleBarWidth - FrameWidth): 
RectRgn (strucRgn. tempRect): 

{Utility rectangle for building region [1:4.1.21) 

{Utility region for adding drop shadow [1:4.1.5]) 

{Start with content region [II:3.1.1, !:4.1.5]} 

{Enlarge by width of window frame [1:4.4.4]} 

{Make room for title bar [1:4.1.21) 

{Set structure region [!:4.1.7, II:3.l.1]) 

tempRgn · = NewRgn: {Create utility region [1:4.1.6]} 

OffsetRect (tempRect, ShadowExtra, ShadowExtra): {Add shadow at right and bottom [1:4.4.4]} 

RectRgn (tempRgn. tempRect): {Set it to the rectangle [!:4.1.7]} 

UnionRgn (strucRgn, tempRgn, strucRgn): 
DisposeRgn (tempRgn) 

end {with Peek'\ tempRect} 

end : { CalcStrucRgn} 

{Merge into structure region [1:4.4.8, Il:3.1.1]} 

{Dispose of utility region [1:4.1.61) 

{---·--------------------·---------------------------------------------------------------} 

procedure CalcBoxes {(theData : DRHandle)}: 

{ Calculate title bar, close, zoom, and size boxes. 

begin {CalcBoxes} 

CalcTitleBar (theData): 
CalcCloseBox (theData): 
CalcZoomBox (theData): 
CalcSizeBox (theData) 

end: { CalcBoxes} 

{Calculate title bar} 

{Calculate close box} 

{Calculate zoom box} 

{Calculate size box} 

{----------------------------------------------------------------------------------------} 



429 SideWindow Source Listing 
~~~~~~~~~~~~~~~ 

procedure CalcTitleBar ((theData

var
hinset
vinset

INTEGER:
INTEGER:

Calculate title bar. }

begin {CalcTitleBar}

with PeekA, theDataAA do

begin

with contRgnAA.rgnBBox do

DRHandle)}:

SetRect (TitleBar. left - TitleBarWidth.
top - FrameWidth.

left.
bottom+ FrameWidth):

TitleRect ·= TitleBar:

hinset := FrameWidth + HighlightGap:

vinset := hinset + MinHighlight:
InsetRect (TitleRect, hinset, vinset):

{ Horiwntal inset for title rectangle}

{Vertical inset for title rectangle}

{Use content region as basis [Il:3.1.l, 1:4.1.5]}

{Move left by width of title bar (1:4.1.2]}

{Allow for frame at top}

{Title bar's right= content region's left}

{Allow for frame at bottom}

{Stan with full title bar}

{Leave room for frame and gap}

{Add minimum highlight}

{Inset the rectangle [1:4.4.4]}

HOffset
VOff set

(Ti tleBarWidth - Box Size) div 2: {Center boxes horiwntally in title bar}

FrameWid th + MinHighlight + (2 * HighlightGap) {Leave room at top and bottom}

end {with PeekA, theDataM}

end : { CalcTitleBar}

{--}

procedure CalcCloseBox {(theData : DRHandle)}:

{ Calculate close box. }

begin {CalcCloseBox}

with PeekA, theDataAA do

if goAwayFlag then
begin

with TitleBar do
SetRect (CloseBox. left + HOffset,

top + VOffset.

(Is there a close box? [Il:3.1.1]}

{Inset from left of title bar [!:4.1.2]}

(Inset from top of title bar}

430 Appendix H

with TitleRect do

left+ (HOffset + BoxSize),
top + (VOffset + BoxSize)):

{Add in si7.e of close box}
{Add in si7.e of close box}

top : = top + (BoxSize + MinHighlight + 2 • HighlightGap) {Make room for close box}
end {then}

else
SetRect (CloseBox, 0, 0, 0, 0) {Set to empty rectangle [1:4.1.2]}

end: {CalcCloseBox}

{----------------------------------·---------------------------------·-------------------)

procedure CalcZoomBox {(theData : DRHandle)):

{ Calculate zoom box. }

begin {CalcZoomBox}

if spareFlag then
begin

with TitleBar do
SetRect (ZoomBox, left + HOffset,

with ZoomBox do

bottom - (VOffset + BoxSize),
left + (HOffset + BoxSize),
bottom - VOffset):

SetRect (SmallZoom, left,
top.

with TitleRect do

left + SmallZoomSize,
top + SmallZoomSize):

{Is there a zoom box? [II:3.1.1]}

{Inset from left oftitle bar [1:4.1.2]}

{Allow for size of zoom box}
{Allow for size of zoom box}
{Inset from bottom of title bar}

{Set up inner box [1:4.1.2]}

bottom bottom - (BoxSize + MinHighlight + 2 • HighlightGap)
{Make room for zoom box}

end {then}

else
SetRect (ZoomBox, 0, 0, 0, 0) {Set to empty rectangle [1:4.1.2]}

end; {CalcZoomBox}

{------------------·--)

431 SideWindow Source Usting
~~~~~~~~~~~~~~~ 

procedure CalcSizeBox {(theData DRHandle)}: 

{ Calculate size box [Prog. ill:2-7]. 

var 

noGrowBit : INTEGER: {No-grow bit from window variation code} 

begin {CalcSizeBox} 

noGrowBit := BitAnd (VarCode, NoGrowMask): {Extract no-grow bit [!:2.2.2)} 

with PeekA, theDataAA do 

with contRgnA A. rgnBBox do {Use content region as basis [!1:3.1.1, 1:4.1.5]} 

if noGrowBi t = 0 then (Is there a size box?} 

SetRect (SizeBox, right - ( SizeBoxSize - FrameWidth) , {Inset from right [!:4.1.2]} 

bottom - (SizeBoxSize - FrameWidth), {Inset from bottom} 

right, {Set flush with window at right} 

bottom) {Set flush with window at bottom} 

else 
SetRect (SizeBox, 0, 0, O. 0) {Set to empty rectangle (1:4.1.2]} 

end: {CalcSizeBox} 

{---------------------------------------------------------------------------------------} 

procedure DoDraw: 

{ Draw window on screen [Prog. ill:2-8]. 

var 

theData : DRHandle: 

begin {DoDraw} 

with PeekA do 

if visible then 
begin 

MoveHHi (dataHandle): 
HLock (dataHandle): 

theData := DRHandle(dataHandle): 

{Handle to definition function's data record} 

{Is window visible? [11:3.1.1]} 

{Move data record to end of heap [1:3.2.5)} 

{Lock data record [1:3.2.4)} 

{Convert to typed handle) 



432 Appendix H 

CalcBoxes (theData): 

case LoWord(MsgParam) of 

WinGoAway: 

ToggleCloseBox (theData): 

WinZoomin. WinZoomOut: 
ToggleZoomBox (theData): 

otherwise 

DrawWindow (theData) 

end; {case MsgParam} 

HUnlock (dataHandle) 

end {if visible} 

end; {DoDraw} 

{Recalculate title bar, close, zoom, and siz.e boxes} 

{Extract low word of message parameter [1:2.2.3)} 

{Toggle close box} 

{Toggle zoom box} 

{Draw window} 

{Unlock data record [1:3.2.4)} 

{---------------------------------------------------------------------------------------} 

procedure DrawWindow {(theData : DRHandle)}: 

{ Draw window on screen. 

var 

savePen : PenState: {Saved state of graphics pen [1:5.2.l]} 

begin {DrawWindow} 

GetPenState (savePen): {Save previous pen state [1:5.2.1]} 

PenNormal; {Make sure pen bas standard properties (1:5.2.2]} 

DrawFrame: {Draw window's frame} 

DrawTitleBar (theData); {Draw title bar} 

SetPenState (savePen) {Restore previous pen state [1:5.2.1)} 

end: {DrawWindow} 

{---------------------------------------------------------------------------------------} 



433 SideWindow Source Listing 
~~~~~~~~~~~~~~~ 

procedure DrawFrame:

Draw window's frame.

var

theFrame
the Shadow

Rect:
Rect:

begin {DrawFrame}

with TheWindow". Peek" do
begin

{Rectangle for drawing frame [!:4.1.2)}

{Rectangle for drawing shadow (1:4.1.2]}

theFrame : = contRgn"". rgnBBox: {Get bowtding box of content region [Il:3.1.l, 1:4.1.5)}

InsetRect (theFrame. -FrameWidth, -FrameWidth): {Enlargebywidthofwindowframe[I:4.4.4]}

FrameRect (theFrame): {Draw frame [Il:S.3.2]}

theShadow := strucRgn"". rgnBBox: (Get bowiding box of strucL region [Il:3.l.l, 1:4.1.5]}

Ins et Rec t (the Shadow. Shad owExt ra. ShadowExt ra) : {Inset by shadow thickness (1:4.4.4]}

PenSize (ShadowExtra. ShadowExtra);
with theShadow do

begin

MoveTo (right, top):

LineTo (right. bottom):
LineTo (left, bottom)

end: {with theFrame}

PenNormal

end {with The Window", Peek"}

end: {DrawFrame}

(Set pen to shadow thickness [I:S.2.2]}

(Move to top-right comer [I:S.2.4]}

{Draw to bottom-right comer [I:S.2.4]}

(Draw to bottom-left comer [I:S.2.4)}

{Restore nonnal pen [1:5.2.2]}

{--}

procedure DrawTitleBar { (theData : DRHandle)}:

(Draw title bar.

var

vTop
vBottom
hRight
hPos

INTEGER:
INTEGER:
INTEGER:
INTEGER:

{Top of highlight lines, in pixels}

{Bottom of highlight lines, in pixels}

{Horizontal position of last highlight line, in pixels}

{Horizontal position of highlight line, in pixels}

434 Appendix H

begin {DrawTitleBar}

with TheWindowA. PeekA. theDataAA, TitleBar do
begin

EraseRect (TitleBar):
FrameRect (TitleBar):

if hilited then
begin

{Clear interior to white [I:S.3.2]}

{Draw outline [1:5.3.2]}

{Is window highlighted? [II:3.1.1]}

vTop :=top + (FrameWidth + HighlightGap): {Leave room for frame and gap}
vBottom bottom - (FrameWidth + HighlightGap): { at top and bottom }

vBottom := vBottom - pnSize.v:

hPos left + HOffset:
hRight ·= right - HOffset:

while hPos <= hRight do
begin

MoveTo (hPos, vTop):
LineTo (hPos. vBottom):
hPos := hPos + 2

end: {while}

DrawCloseBox (theData):
DrawZoomBox (theData)

end: {if visible}

DrawTitle (theData)

end {with TheWindow'\ PeekA, theDataM, TitleBar}

end: {DrawTitleBar}

{Draw the lines}

{Adjust for height of pen}

{Start at left edge}
{End at right edge}

{Move to top [!:5.2.4]}

{Draw to bottom [1:5.2.4]}

{Position for next line}

{Draw close box}

{Draw zoom box}

{Draw title}

{----------------------------------··--}

procedure DrawCloseBox {(theData : DRHandle)}:

{ Draw close box.

var
clearRect Rect: {Rectangle for clearing white space around box}

435 SideWindow Source Usting
~~~~~~~~~~~~~~~ 

begin {DrawCloseBox} 

with PeekA, theDataAA do 

if goAwayFlag then 

begin 
{Is there a close box? [Il:3.1.1]) 

clearRect := CloseBox: {Startwithclosebox} 

InsetRect (clearRect. -HighlightGap. -HighlightGap): {Enlarge by size of gap (1:4.4.4)) 

EraseRect ( c learRect) : {Clear to white (1:5.3.2)) 

FrameRect (CloseBox) {Draw outline of box [1:5.3.2]} 

end {if} 

end: {DrawCloseBox} 

{---------------------------------------------------------------------------------------} 

procedure DrawZoomBox {(theData : DRHandle)}: 

{ Draw zoom box. 

var 

clearRect 

smallBox 

Rect: 

Rect: 

begin {DrawZoomBox} 

with PeekA, theDataAA, ZoomBox do 

if spareFlag then 

begin 

{Rectangle for clearing white space arowid box} 

{Smaller box inside zoom icon} 

{Is there a close box? [II:3.1.l]) 

clearRect := ZoomBox: {Startwithzoombox} 

InsetRect (clearRect, -HighlightGap. -HighlightGap): {Enlarge by size of gap (1:4.4.4]} 

EraseRect (clearRect): {Ceartowhite[I:S.3.2)) 

FrameRect (ZoomBox): 

FrameRect (SmallZoom) 

end {if} 

end: {DrawZoomBox} 

{Draw outer box [1:5.3.2)) 

{Draw inner box [1:5.3.2]} 

{---------------------------------------------------------------------------------------} 



procedure DrawTitle 

{ Draw window's title. 

var 
fontProperties 
rectHeight 
rectWidth 
charHeight 
maxChars 
textHeight 
heightAdjust 
chindex 
theChar 
baseLine 
chWidth 
chOff set 
chLeft 

begin {DrawTitle} 

436 Appendix H 

{(theData DRHandle)}: 

Fontinfo: 
INTEGER: 
INTEGER: 
INTEGER: 
INTEGER: 
INTEGER: 
INTEGER: 
INTEGER: 
CHAR: 
INTEGER: 
INTEGER: 
INTEGER: 
INTEGER: 

{Characteristics of system font [1:8.2.6)} 

{Height of title rectangle} 

{Width of title rectangle} 

{Vertical height of each character} 

{Maximum number of characters displayed} 

{Total height of displayed characters} 

{Adjustment for excess title height} 

{Index of character to be drawn} 

{Character to be drawn} 

{Baseline for drawing characters} 

{Width of character in pixels} 

{Off set to left edge of character} 

{Left edge of character} 

with PeekA, theDataAA, TitleRect, fontProperties do 
begin 

GetFontinfo 
charHeight 

rectHeight 
rectWidth 

(fontProperties): 
·= ascent + descent: 

bottom - top: 
right - left: 

{Get font characteristics [1:8.2.6) } 

{Calculate character height [1:8.2.6]} 

{Find height of title rectangle [1:4.1.2]} 

{Find width of title rectangle [1:4.1.2)} 

maxChars ·= rectHeight div charHeight: {Find maximum number ofcharacters (1:4.1.2)} 

if LENGTH(titleHandleAA) < maxChars then {lstitleshorterthanthemaximum? [II:3.l.1]} 

maxChar s : = LENGTH (ti tleHandleA A) : {Reduce to acblal title length [II:3.1.l)} 

textHeight := maxChars • charHeight: {Findheightofcharacters} 

heightAdjust : = ( rectHeight - textHeight) div 2: {Calculate excess height} 

InsetRect (Ti tleRect, 0, heightAdjust): {Adjust height of rectangle [1:4.4.4)} 

EraseRect (Ti tleRect) : {Clear to white [1:5.3.2)) 

baseLine := top + ascent: 
for chindex 1 to maxChars do 

begin 

{Initiali7.e baseline [1:8.2.6)} 

{Loop through characters} 

theChar titleHandleAA [chindex) : {Get next character [II:3.1.1]} 



437 SideWindow Source Listing 
~~~~~~~~~~~~~~~ 

chWidth ·= CharWidth (theChar):

chOffset ·= (rectWid·th - chWidth) div 2:

chLeft ·= left + chOffset:

MoveTo (chLeft, baseLine):
DrawChar (theChar):

base Line baseLine + charHeight

end {for chlndex}

end {with Peek•\ theData"", TitleR.ect, fontProperties}

end: {DrawTitle}

{Get width of character (1:8.3.4]}

{Center character in rectangle)

{Find left edge of character}

{Position the pen [1:5.2.4]}

{Draw the character [I:S.3.3]}

{Advance to next baseline}

{---}

procedure ToggleCloseBox {(theData : DRHandle)}:

{ Toggle close box.

var

maskString : Str255:

begin {ToggleCloseBox}

maskString := CONCAT ('0000'.

with theDataAA do

I 0400 Io

'2480'.

'1500'.
t 0000 I,
I 71CO I.

t 0000 Io

I 1500 I,
t 2480 I,
t 0400 Io

'0000 t):

ToggleBox (CloseBox. maskString)

end: {ToggleCloseBox}

{Hexadecimal string defining mask [1:2.1.l]}

{Set up mask string}

{Copy the bits}

{---}

438 Appendix H

procedure ToggleZoomBox {(theData

{ Toggle zoom box [Prog. ill:2-10].

var
maskString : Str255:

begin {ToggleZoomBox}

maskString := CONCAT ('0000'.
'0600'.

with theData~~ do

t 2680 t.

'1700'.
t 0200 t.

'73CO',
'7EOO',
t 1500 t.
t 2480 t.
t 0400 t •

• 0000 t) :

DRHandle)}:

ToggleBox (ZoomBox. maskString)

end: {ToggleZoomBox}

{Hexadecimal string defining mask [1:2.1.1]}

{Set up mask string}

{Copy the bits}

{---}

procedure ToggleBox {(theBox : Rect: maskString : Str255)};

{ Toggle close or zoom box [Prog. ill:2-9].

var
theMask
theBits
wmPort

BitMap:
array [l .. BoxSize) of INTEGER:
GrafPtr:

begin {ToggleBox}

with theMask do

begin

StuffHex (@theBits. maskString):

baseAddr @theBits:

{Bit map for transferring bits [1:4.2.1)}

{Array for holding bit image}
{Pointer to Window Manager port [II:3.6.l]}

{Stuff the bit image [1:2.2.4]}

{Point to the bit image [1:4.2.1)}

439 SideWindow Source Llstlng
~~~~~~~~~~~~~~~ 

rowBytes : ""' 2 : 
SetRect (bounds. o. O. BoxSize. BoxSize): 

GetWMgrPort (wmPort): 
CopyBits (theMask. 

wmPortA.portBits, 
bounds, 
theBox, 
SrcXOr. 
NIL) 

end {with theMask} 

end: {ToggleBox} 

{Set row width (1:4.2.1]} 

{Set boundary rectangle (1:4.1.2, 1:4.2.1]} 

{Get Window Manager port [II:3.6.1]} 

{Copy from mask bit map (1:5.1.4]} 

{ to the screen (1:4.2.2) } 

{From mask's full boundary rectangle (1:4.2.1]} 

{ to the close or zoom box } 

{Invert pixels lDlder the mask [l:S.1.3]} 

{No additional clipping region) 

{---------------------------------------------------------------------------------------} 

procedure DoDrawGicon: 

( Draw grow icon [Prog. ill:2-11]. 

var 
noGrowBit 
savePort 
savePen 
box Top 
boxLef t 

INTEGER: 
GrafPtr: 
PenState: 
INTEGER: 
INTEGER: 

begin (DoDrawGicon} 

with TheWindowA, PeekA do 
begin 

noGrowBit :""' BitAnd (VarCode, NoGrowMask): 

if visible and (noGrowBit = 0) then 
begin 

GetPort (savePort): 

SetPort (TheWindow) : 
GetPenState (savePen): 

PenNormal: 

with portRect do 

{No-grow bit from window variation code) 

{Pointer to previous current port [1:4.2.2]} 

{Saved state of graphics pen [1:5.2.1]} 

{Top edge of size box in local coordinates} 

{Left edge of size box in local coordinates} 

{Extract no-grow bit [1:2.2.2]} 

{Window visible and has a size box? [Il:3.1.l]} 

{Save previous port (1:4.3.3)} 

{Get into the window's port (1:4.3.3]} 

{Save previous pen state [l:S.2.1]} 

{Set standard pen characteristics [I:S.2.2]} 

{Find top-left comer in local coordinates} 



440 Appendix H 

begin 

boxTop :=bottom - (SizeBoxSize - FrameWidth): 
boxLeft := right - (SizeBoxSize - FrameWidth) 

end: {with portRect} 

MoveTo (boxLeft, portRect.top): 
LineTo (boxLeft, portRect.bottom): 

MoveTo (portRect.left, boxTop): 
LineTo (portRect.right, boxTop): 

DrawSizeBox (boxTop, boxLeft): 

SetPenState (savePen) : 

SetPort (savePort): 
end (if} 

end {with TheWindow'\ PeekA} 

end: (DoDrawGlcon} 

(Move to top of window [I:S.2.4]} 

{Draw line to bottom [I:S.2.4]} 

{Move to left of window [I:S.24)} 

{Draw line to right (1:5.2.4)} 

(Draw size box} 

{Restore previous pen state [I:S.21]} 

{Restore previous port (1:4.3.3]} 

. {---------------------------------------------------------------------------------------} 

procedure DrawSizeBox { (boxTop : INTEGER: boxLeft : INTEGER)}: 

( Draw size box [Prog. ill:2-12]. 

var 

theBox : Rect: 

begin {DrawSizeBox} 

with TheWindowh, Peekh, theBox do 

begin 

{Utility rectangle for drawing boxes [1:4.1.2)} 

SetPt (topLeft. boxLeft, boxTop): (Set top-left comer [1:4.1.1]} 

botRight : = portRect. botRight: (Set bottom-right comer (1:4.2.2]} 

InsetRect (theBox, FrameWidth, FrameWidth): {Inset by frame width [1:4.4.4]} 

EraseRect (theBox): 

if hilited then 
begin 

(Clear interior to white [I:S.3.2)} 

{Is window highlighted? [11:3.1.1)} 



441 SldeWindow Source Usting 
~~~~~~~~~~~~~~~ 

SetRect (theBox. boxLeft,
boxTop.

{Set up bigger box [1:4.1.2]}

boxLeft + GiconBigSize,
boxTop + GiconBigSize):

OffsetRect (theBox, GiconBigOffset. {Move into position [1:4.4.4]}
GiconBigOffset):

FrameRect (theBox): {Draw outline [l:S.3.2]}

SetRect (theBox. boxLeft, {Set up smaller box [1:4.1.2]}

boxTop.
boxLeft + GiconSmallSize,
boxTop + GiconSmallSize):

OffsetRect (theBox, GiconSmallOffset,
GiconSmallOffset):

{Move into position [1:4.4.4]}

EraseRect (theBox):
FrameRect (theBox)

end {if hilited}

end {with TheWindow", Peek", lheBox}

end: {DrawSizeBox}

{Clear interior [l:S.3.2]}

{Draw outline [l:S.3.2]}

{---}

procedure DoGrow:

{ Draw outline for sizing window [Prog. ill:2-13].

type
RectPtr

var
thePtr
theRect
linePos

l\Rect:

RectPtr:
Rect:
INTEGER:

begin {DoGrow}

thePtr
theRect

RectPtr(MsgParam):
thePtrl\:

with theRect do
begin

{Pointer type for converting message parameter}

{Pointer for converting message parameter}

{Rectangle to be drawn [1:4.1.2]}

{Horimntal or vertical position for drawing line}

{ Conven message parameter}

{Get the rectangle}

442 Appendix H

InsetRect (theRect. -FrameWidth. -FrameWidth):

linePos ·= left:

{Enlarge by width ofwindow frame [1:4.4.4]}

{Save edge for later drawing}

left :=left - (TitleBarWidth - FrameWidth): {Make room for title bar (1:4.1.2]}

FrameRect (theRect):

MoveTo (linePos, top):

LineTo (linePos, bottom):

linePos := right - SizeBoxSize:

MoveTo (linePos. top):

LineTo (linePos, bottom):

linePos := bottom - SizeBoxSize:

MoveTo (left, linePos):

LineTo (right. linePos)

end {with theRect}

end: {DoGrow}

{Draw window outline (1:5.3.2]}

{Move to top-right of title bar (1:5.2.4]}

{Draw to bottom-right of title bar (1:5.2.4]}

{Find left edge of si:ze box [!:4.1.2]}

{Move to top of window (1:5.2.4]}

{Draw line to bottom [1:5.2.4]}

{Find top edge of si:ze box [!:4.1.2]}

{Move to left of window [1:5.24]}

{Draw line to right (1:5.2.4]}

{---}

procedure DoHit:

{ Locate mouse click [Prog. ill:2-14].

var

theData

mousePoint

DRHandle:

Point:

begin {DoHit}

with Peek" do

if visible then

begin

MoveHHi (dataHandle):

HLock (dataHandle):

theData := DRHandle(dataHandle):

with theData"" do

begin

{Handle to definition function's data record}

{Point where mouse was pressed, in global coordinates}

{Is window visible? (11:3.1.1]}

{Move data record to end of heap [1:3.2.5]}

{Lock data record [1:3.2.4]}

i Convert to typed handle}

CalcBoxes (theData): {Recalculate ~tle bar, close, zoom, and size boxes}

mousePoint := Point (MsgParam): {Get mouse point from message parameter}

443 SideWindow Source Listing
~~~~~~~~~~~~~~~ 

if hilited then 

begin 
{Is window active? [11:3.1.1]} 

if PtlnRect (mousePoint. CloseBox) then 

Result := WinGoAway 

{In close box? [1:4.4.3)} 

{Report close box [Il1:2.2.5]} 

else if PtinRect (mousePoint. ZoomBox) then {In zoom box? [1:4.4.3]} 

begin 

if ZoomedOut then 

Result 

else 

Result 

end {if} 

WinZoomin 

WinZoomOut 

{Which state is window in?} 

{Report mom-in box [ll:2.2.5]} 

{Report room-out box [ll:2.2.5]} 

else if PtinRect (mousePoint. SizeBox) then {In size box? [1:4.4.3]} 

Result := WinGrow 

end: {if hilited} 

if Result = WNoHit then 

begin 

if PtlnRect (mousePoint. TitleBar) then 

Result := WinDrag 

else if PtinRgn (mousePoint, contRgn) then 

Result WinContent 

{else 

Result := WNoHit} 

end {if Result= WNoHit} 

{Report size box [Il1:2.2.5]} 

{Nothing found yet? [Il1:2.2.5]} 

{In title bar? [1:4.4.3]} 

{Report drag region [Il1:2.2.5] } 

{In content region? [1:4.4.3]} 

{Report cont. region [IlI:2.2.5]} 

{Report no hit [Il1:2.2.5]} 

end: {with theDataM} 

HUnlock (dataHandle) 

end {if visible} 

{Unlock data record [1:3.2.4)} 

end: {DoHit} 

{··---·---------··----------------------------------------------------------------------} 

procedure DoDispose: 

{ Prepare to dispose of window [Prog. ill:2-5]. 



444 Appendix H 

begin {DoDispose} 

with Peek" do 
DisposHandle (dataHandle) {Dispose of data record (1:3.2.2)} 

end: {DoDispose} 

{---------------------------------------------------------------------------------------} 

function ZoomedOut { : BOOLEAN}: 

{ Is window in zoomed-out state? 

var 

Rect: windowRect 
zoomOutRect 
theData 

Rect; 
DRHandle: 

begin {ZoomedOut} 

with Peek" do 
begin 

theData 
windowRect 
zoomOutRect 

DRHandle(dataHandle): 
contRgn"".rgnBBox: 
theData"".StdState: 

{Rectangle representing window's content region} 
{Rectangle representing zoomed-out state} 

{Handle to def. function's data record} 

{Convert to typed handle [II:3.1.1]} 

{Get content rectangle [II:3.1.l, 1:4.1.5]) 

{Get morned-out state [II:3.3.2]} 

if not NearPoint (windowRect.topLeft, 
zoomOutRect.topLeft) then 

{Do top-left comers match?} 

ZoomedOut 
else 

Zoomed Out 

end {with Peek"} 

end; {Z.OOmedOut} 

FALSE {If not, answer no} 

NearPoint (windowRect. botRight, {Else test bottom-right} 
zoomOutRect.botRight) 

{----------------------------------·----------------------------------------------------} 

function NearPoint {(pointl Point: point2 : Point) : BOOLEAN}: 

{ Are two points "near" each other? 



445 SideWindow Source Listing 
~~~~~~~~~~~~~~~~ 

const
nearEnough 7:

var

testRect : Rect:

begin {NearPoint}

Pt2Rect (pointl, pointl, testRect):
InsetRect (testRect, -nearEnough. -nearEnough);
NearPoint PtinRect (point2. testRect)

end: {NearPoint}

{Maximum allowable distance between points}

{Utility rectangle for testing distance (1:4.1.2)}

{Start with empty rectangle at first point [1:4.1.2]}

{Enlarge by allowable distance [1:4.4.4)}

{Does it enclose second point? (1:4.4.3)}

{---}

{ Main routine. }

begin {SideWindow}

Peek ·= WindowPeek(TheWindow):

Result ·= O:

case MsgCode of

WNew:

DoNew:

WCalcRgns:
DoCalcRgns:

WDraw:
DoDraw:

WDrawGicon:
DoDrawGicon:

WGrow:
DoGrow:

WHit:
DoHit:

WDispose:
DoDispose

{Convert to a "peek" pointer [Il:3.1.l]}

{ Initialiu function result}

{Initialiu window}

{Calculate window's regions}

{Draw window on screen}

{Draw grow icon}

(Draw outline for sizing window}

{Locate mouse click}

{Prepare to dispose of window}

446 Appendix H

end: {case MsgCode}

SideWindow := Result {Return function result}

end: {SideWindow}

Three St ate Control Definition Function

Threes ta te is a control definition function for a three-way checkbox
or radio button, with a neutral state in addition to the usual on and
off. See Chapter 2 for a complete discussion.

function ThreeState (VarCode : INTEGER: TheControl

MsgCode : INTEGER: MsgParam
ControlHandle:
LONG INT)

: LONGINT:

Control definition function for a checkbox or radio button with an on, off, and neutral state.

uses
MemTypes.
QuickDraw,
OSintf,
Toolintf,

Pack!ntf:

{Elementary data types}

{ QuickDraw graphics routines}

{Macintosh Operating System}

{User lnterf ace Toolbox}

{Standard packages}

{---}

Global Declarations

con st

MacPlusRom =

ButtonSize
ButtonLeft
TitleGap
Dot Inset
ThickBorder

Of fState
OnState
NeutralState

$75:

12:

2:

4:
3:

2:

O:

1:

2:

{ROM version nwnber for Macintosh Plus}

{Size of check box or radio button, in pixels}

{Horirontal offset from edge of enclosing rectangle}

{Gap from box or button to beginning of title}

{Inset around black dot inside radio buttons}

{Border thickness for highlighting }

{Controlis in "off' state}

{Control is in "on" state}

{Control is in neutral state}

44 7 ThreeState Souree Listing
~~~~~~~~~~~~~~~~ 

InNone 
DrawAll 

O: 
0: 

BlackString 
GrayString 

LtGrayString 

CR $OD: 

var 

'FFFFFFFFFFFFFFFF': 
'AA55AA55AA55AA55': 
'8822882288228822': 

Result : LONGINT: 

{Part code representing no part at all} 

{Message parameter for drawing entire control} 

(Hexadecimal string defining black pattern} 

(Hexadecimal string defining gray pattern} 

{Hexadecimal string defining light gray pattern} 

{Character code for carriage reblrn [1:8.1.1]} 

(Fwiction result} 

{ - - -- -- --- - - -- --- -- --- - - --- - - - -- -- - - ------ -- ----- ----- -- - - - - - - ------- --- -- - -- - -- - - ----- - } 

{ Forward Declarations } 

procedure Doinit: forward: 
{ Initialize control. } 

procedure DoCalc: forward: 
{ Calculate region occupied by control. 

procedure DoDraw: forward: 
{ Draw control on screen. } 

procedure DrawButton: forward: 
{ Draw checkbox or radio button. } 

procedure DrawCheckbox (boxRect : Rect): forward: 

{ Draw checkbox. } 

procedure DrawRadioButton (buttonRect : Rect): forward: 

{ Draw radio button. } 

procedure DrawTitle: forward: 
{ Draw control's title. } 

procedure DrawTitleText: forward: 
{ Draw text of control's title. } 

procedure DimTitle (titleLeft 
( Dim text of control's title. } 

procedure DoTest: forward: 
{ Find part of control where mouse was pressed. 

procedure DoPos: forward: 
{ Reposition indicator and update control's setting. 

procedure DoThumb; forward: 
( Calculate parameters for DragControl. 

procedure DoDrag; forward: 
( Drag control or indicator. } 

procedure DoTrack: forward: 
{ Default action procedure for TrackControl. 

INTEGER): forward: 



448 Appendix H 

procedure DoDisp: forward: 
{ Prepare to dispose of control 

{---------------------------------------------------------------------------------------} 

procedure Dolnit: 

{ Initialize control. } 

begin {Dolnit} 

SetCtlMin (TheControl. OffState): 
SetCtlMax (TheControl, NeutralState) 

end: {Doinit} 

{Set minimum value [II:6.2.4]} 

{Set maximum value [II:6.2.4]} 

{---------------------------------------------------------------------------------------) 

procedure DoCalc: 

{ Calculate region occupied by control. 

const 
AddrMask 

var 
theRegion 

begin {DoCalc} 

$OOFFFFFF: 

RgnHandle: 

MsgParam BitAnd (MsgParam. AddrMask): 
theRegion ·= RgnHandle(MsgParam): 

with TheControlAA do 
RectRgn (theRegion. contrlRect) 

end: {DoCalc} 

{Flag for extracting address from a pointer or handle} 

{Region to be set (1:4.1.5]} 

{Strip off indicator flag (1:22.2]} 

{Convert to a region handle (1:4.1.5]} 

{Set region to enclosing rectangle [1:4.1.7, 11:6.1.1)} 

{---------------------------------------------------------------------------------------} 

procedure DoDraw: 

{ Draw control on screen. 



var 

saveClip 

savePen 

begin (DoDraw} 

RgnHandle: 

PenState: 

with TheControlAA• contrlOwnerA do 

(Previous clipping region (1:4.1.5] } 

(Previous state of graphics pen [I:S.2.1]} 

if (MsgParam in [DrawAll. InCheckbox, InThumb] ) (Is drawing request applicable? [I1:6.4.l]} 

and (Bi tTst (@contrl Vis. 7)) then (Is the control visible? (1:2.2.1, 11:6.1.1]} 

begin 

saveClip := NewRgn: 

GetClip (saveClip): 

(Allocate temporary region (1:4.1.6]} 

(Save previous clipping region [1:4.3.6]} 

ClipRect (contrlRect): (Clip to enclosing rectangle (1:4.3.6, Il:6.1.1]} 

SectRgn (clipRgn, saveClip, clipRgn): {Intersect with previous region (1:4.4.8, 1:4.2.2]} 

GetPenState (savePen); 

DrawButton: 

DrawTitle; 

SetPenState (savePen): 

SetClip (saveClip): 

DisposeRgn (saveClip) 

end {if} 

end; {DoDraw} 

(Save previous pen state [I:S.2.1]} 

{Draw the checkbox or radio button} 

{Draw the title} 

{Restore previous pen state [1:5.2.1]} 

(Restore previous clipping region (1:4.3.6)} 

(Dispose of temporary region [1:4.1.6]} 

{---------------------------------------------------------------------------------------} 

procedure DrawButton: 

{ Draw checkbox or radio button. 

const 

VarMask 

var 

rectHeight 

buttonTop 

buttonRect 

buttonType 

$0007: 

INTEGER: 

INTEGER: 

Rect: 

INTEGER: 

{Mask for extracting button type from variation code} 

{Height of control's enclosing rectangle} 

{Vertical offset from top of enclosing rectangle} 

{Rectangle defining checkbox or radio button (1:4.1.2)} 

{Variety of button requested} 



450 Appendix H 

begin {DrawButton} 

with TheControlAA.contrlRect do 
begin 

rectHeight ·= bottom - top: 
buttonTop ·= (rectHeight - ButtonSize) div 2: 

{Find rectangle height [1:4.1.2]} 

{Find vertical off set} 

SetRect (buttonRect, 0. 0. ButtonSize. ButtonSize) : {Set rectangle size [1:4.1.2]} 

OffsetRect (buttonRect, left+ ButtonLeft, top+ buttonTop): 
{Move into place [1:4.4.4, 1:4.1.2]} 

buttonType : = Bi tAnd (VarCode. VarMask): {Extract button type from variation code [1:22.2]} 

case buttonType of 

CheckboxProc: 
DrawCheckbox (buttonRect): {Draw checkbox} 

RadioButProc: 
DrawRadioButton (buttonRect) {Draw radio button} 

end {case VatCode} 

end {with theControlM.contrJRect} 

end: {DrawButton} 

{ -- --- -- --- -- ----- -- --- -------- -- -- --- -- - -- - -.- -- ----- --- -- ------ - - ------- ---- ---- -- ----- } 

procedure DrawCheckbox {(boxRect : Rect)}: 

{ Draw checkbox. 

var 
thePattern : Pattern: 

begin {DrawCheckbox} 

with TheControlAA, boxRect do 
begin 

EraseRect (boxRect): 

case contrlValue of 

{Pattern for filling neutral checkboxes [1:5.1.1]} 

{Clear to white [1:5.3.2]} 



451 ThreeState Source Listing 
~~~~~~~~~~~~~~~ 

OffState:
{Do nothing} :

OnState:
begin

PenNormal:

MoveTo (left
Line To (right
MoveTo (right
LineTo (left,

end: {OnState}

NeutralState:
begin

+
-
-

1. top + 1):

1. bottom - 1) :

1, top) :

bottom - 1)

{Just leave interior of box white}

{Make sure pen is nonnal thickness (1:5.2.2)}

{Move to top-left [I:S.24)}
{Draw to bottom-right (1:5.2.4]}

{Move to top-right [1:5.2.4)}

{Draw to bottom-left (1:5.2.4)}

StuffHex (@thePattern. LtGrayString): {Define light gray pattern (1:2.2.4]}

{Fill interior with light gray [1:5.3.2)) FillRect (boxRect. thePattern)
end {NeutralState}

end : {case contrlV alue}

if contrlHilite = InCheckbox then
PenSize (ThickBorder. ThickBorder):

FrameRect (boxRect)

end {with theControl"", boxRect}

end; {DrawCheckbox}

{Is checkbox highlighted? [11:6.3.3, 11:6.4.1))

{Use extra pen thickness [1:5.2.2)}

{Outline the checkbox [1:5.3.2)}

{---}

procedure DrawRadioButton {(buttonRect : Rect)}:

{ Draw radio button.

var

thePattern
dotRect

Pattern:
Rect:

begin {DrawRadioButton}

with TheControlAA, buttonRect do
begin

EraseRect (buttonRect):

{Pattern for filling radio buttons [1:5.1.1)}

{Rectangle enclosing inner black dot [1:4.1.2]}

{ Oear to white (1:5.3.2)}

452 Appendix H

case contrlValue of

OffState:
{Do nothing} : {Just leave interior of buuon white}

OnState:
begin

dotRect := buttonRect; (Start from full button}
InsetRect (dotRect, Dot!nset, Dot!nset): {Inset to inner dot (1:4.4.4)}

{Define black pattern (1:2.2.4)}
(Paint the dot [!:5.3.41)

StuffHex (@thePattern, BlackString):
FillOval (dotRect. thePattern)

end: {OnState}

NeutralState:
begin

StuffHex (@thePattern. LtGrayString): {Define light gray pattern [!:2.2.4]}

(Fill interior with light gray [!:5.3.41) FillOval (buttonRect, thePattern)
end {NeutralState}

end: (case contrlValue}

if contrlHilite = InCheckbox then
PenSize (ThickBorder. ThickBorder);

FrameOval (buttonRect)

end {with theControlM, buttonRect}

end: (DrawRadioButton}

{Is button highlighted? [Il:6.3.3, II:6.4.1]}

{Use extra pen thickness (1:5.2.2]}
{Outline the button [1:5.3.4)}

(---}

procedure DrawTitle:

{ Draw control's title.

var
saveFont
saveSize
saveFace
wFontBit

begin {DrawTitle}

INTEGER:
INTEGER:
Style:
INTEGER:

with TheControlAA, contrlOwnerA do
begin

(Previous font number [!:8.2.1]}

{Previous type size in points}
{Previous type style (1:8.3.1] }
{Window font flag from variation code [Il:6.2.1]}

453 ThreeState Source Listing
~~~~~~~~~~~~~~~ 

saveFont txFont: 

saveSize ·= txSize: 

saveFace ·= txFace: 

{Save previous font number [1:8.3.1)} 

{Save previous type sire (1:8.3.1]} 

{Save previous type style [1:8.3.1]} 

wFontBit := BitAnd (VarCode, UseWFont):{Extractwindowfontflag [1:2.2.2,Il:6.2.1]} 

if wFontBi t = 0 then {Window font specified?} 

begin 

TextFont (SystemFont): 

TextSize (0): 

TextFace ( [] ) 

end; {if} 

DrawTitleText: 

TextFont (saveFont): 

TextSize (saveSize): 

TextFace (saveFace) 

end { wilh theControlN\ contrlOwner"} 

end: {DrawTitle} 

{Use system font [1:8.3.2, 1:8.2.1]} 

{Use standard type sire [1:8.3.2)} 

{Use plain text style [1:8.3.2, 1:8.3.1)} 

{Draw the text} 

{Restore previous font number [1:8.3.2]} 

{Restore previous type size [1:8.3.2)} 

{Restore previous type style [1:8.3.2]} 

(---------------------------------------------------------------------------------------} 

procedure DrawTitleText: 

{ Draw text of control's title. 

var 

font Properties Fontinfo: 

lineHeight INTEGER: 

nLines INTEGER: 

textHeight INTEGER; 

rectHeight INTEGER: 

titleOffset INTEGER: 

titleLeft INTEGER: 

baseLine INTEGER: 

firstChar INTEGER: 

chindex INTEGER: 

lineLength INTEGER: 

begin { DrawTitleText} 

{Characteristics of title font [1:8.2.6]} 

{Height per line of text} 

{Number of lines in title} 

{Total height of title in pixels} 

{ Height of control's enclosing rectangle} 

{Offset of title from top of rectangle} 

{Left edge of title in local coordinates} 

{Baseline for drawing characters} 

{Index of first character in line} 

{Character index within title} 

{Number of characters in line} 

with TheControlAA• contrlRect, fontProperties do 

begin 



454 Appendix H 

GetFontlnfo (fontProperties): 

lineHeight := ascent + descent: 

nLines := 1: 

for chlndex := 1 to LENGTH(contrlTitle) do 

if contrlTitle[chindex] = CHAR(CR) then 

nLines := nLines + 1: 

textHeight 

rectHeight 

titleOffset 

nLines • lineHeight: 

bottom - top: 

(rectHeight - textHeight) div 2: 

{Get font characteristics [I:8.2.6]} 

{Calculate line height [1:8.2.6]} 

{ Asswne one line of text} 

{Loop through characters of title [11:6.1.1] } 

{Carriage return? [11:6.1.1, 1:8.1.l]} 

{Increment line count} 

{Find total text height} 

{Find rectangle height (1:4.1.2)} 

{Find title off set} 

baseLine 

titleLeft 

firstChar 

top+ titleOffset +ascent: {Findfrrstbaseline[1:8.2.6]} 

left + ButtonLeft + ButtonSize + TitleGap: (Findleftedgeoftext} 

1 : {Start at beginning of title} 

for ch!ndex := 1 to LENGTH(contrlTitle) do 

if (contrlTitle[chindex] = CHAR(CR)) or 

(chlndex = LENGTH(contrlTitle)) then 

begin 

lineLength := ch!ndex - firstChar: 

if chlndex LENGTH(contrlTitle) then 

lineLength := lineLength + 1: 

{Loop through characters of title [11:6.1.1] } 

{Carriage return? [11:6.1.1, 1:8.1.l]} 

{End of title? [11:6.1.1]} 

{Find length of line} 

{End of title? [11:6.1.l]} 

{Include last character} 

MoveTo (ti tleLeft, baseLine): {Position pen for drawing (1:5.2.4]} 

DrawText (@contrlTi tle. firstChar, lineLength); (Draw the text [I:S.3.3]} 

baseLine baseLine + lineHeight: 

firstChar ·= chlndex + 1 

end: {if} 

if contrlHilite = 255 then 

DimTitle (titleLeft) 

end (with theControJM, contrlRect, fontProperties} 

{Advance to next baseline} 

{Advance to first character of next line} 

{Is control inactive? [11:6.1.1, 11:6.3.3]} 

{Dim the text} 

end: {DrawTitleText} 

{---------------------------------------------------------------------------------------} 

procedure DimTitle {(titleLeft : INTEGER)}: 

( Dim text of control's title. 

var 



455 ThreeState Souree Listing 
~~~~~~~~~~~~~~~ 

titleRect

thePattern

begin {DimTitle}

Rect:

Pattern:

with TheControlAA• titleRect do

begin

titleRect := contrlRect:

left := titleLeft:

StuffHex (@thePattern, GrayString):

PenPat (thePattern):

PenMode (PatBic):

PaintRect (titleRect)

end {with TheControlM, titleRect}

end: {DimTitle}

{Rectangle enclosing title (1:4.1.2] }

{Pattern for dimming teXt [I:S.1.1]}

{Start with control's enclosing rectangle [II:6.1.1]}

(Exclude checlcbox or radio button}

(Define gray pattern [1:224]}

(Set gray pattern [I:S.22]}

(Set "bit clear" mode [I:S.22, I:S.1.3]}

{Dim the text [I:S.3.2)}

(---}

procedure DoTest:

{ Find part of control where mouse was pressed.

const

inactive

var

mousePoint

begin {DoTest}

255:

Point;

with TheControlAA do

begin

/

{Highlighting code for inactive control [11:6.3.3)}

{Point where mouse was pressed, in local coordinates}

mousePoint := Point (MsgParam); {Convert message parameter [1:4.1.1]}

if (contrlHilite <>inactive) and {Iscontrolactive?[ll:6.1.1,II:6.3.3]}

(PtinRect (mousePoint. contrlRect)) {Mouse pressed in control? [1:4.4.3,II:6.1.1]}

then

Result

else

InCheckbox {Report hit in cbeckbox [11:6.4.1]}

456 Appendix H

Result := InNone (Report no hit}

end (with TheControIM}

end: {DoTest}

{---}

procedure DoPos:

(Reposition indicator and update control's setting.

begin (DoPos}

(Insert code here to reposition the indicator and update the setting.}

(In the case of three-state buuons, this operation is not needed. }

end: (DoPos}

{---}

procedure DoThumb:

(Calculate parameters for DragControl.

begin (DoThumb}

{Insert code here to calculate the DragControl parameters. }

{In the case of three-state buttons, this operation is not needed. }

end: {DoThwnb}

{---}

procedure DoDrag:

{ Drag control or indicator.

begin {DoDrag)

{Insert code here to drag the control or its indicator.

{In the case of three-state buttons, this operation is not needed.

end: {DoDrag}

{---}

45 7 ThreeState Source Listing
~~~~~~~~~~~~~~~ 

procedure DoTrack; 

{ Default action procedure for TrackControl. 

begin {DoTrack} 

{Insert code here to implement the control's default action procedure. 

{In the case of three-state buttons, no default action procedure is } 

{needed. } 

end: {DoTrack} 

{---------------------------------------------------------------------------------------} 

procedure DoDisp; 

{ Prepare to dispose of control. 

begin {DoDisp} 

{Insert code here to do any needed cleanup before disposing of the control.} 

{In the case of three-state buttons, no special cleanup is needed. } 

end: {DoDisp} 

{---------------------------------------------------------------------------------------} 

{ Main routine. } 

begin {ThreeState} 

Result := O; {Initialize function result} 

HLock (Handle(TheControl)); {Lock control record [1:3.2.4]) 

case MsgCode of 

InitCntl: 

Do!nit: {Initialize control} 

CalcCRgns: 

DoCalc: {Calculate region occupied by control} 

DrawCntl: 

DoDraw: {Draw control on screen} 



458 Appendix H 

TestCntl: 
DoTest: (Find part of control where mouse was pressed} 

PosCntl: 
DoPos: (Reposition indicator and update control's setting} 

ThumbCntl: 
DoThumb: {Calculate parameters for DragControl} 

DragCntl: 
DoDrag: {Drag control or indicator} 

AutoTrack: 
DoTrack: (Default action procedure for TrackControl} 

DispCntl: 
DoDisp {Prepare to dispose of control} 

end: {case msgCode} 

HUnlock (Handle(TheControl)); (Unlock control record [1:3.2.4]} 

ThreeState := Result (Retum function result} 

end: (ThreeState} 

MiniEdi t with Printing 

program MiniEdit; 

MiniEdi tis the example application program originally developed in 
Volume Two. The version shown here includes the printing capabil
ity added in Chapter 4 of this volume. Compared with the original in 
Volume Two, this version also incorporates several bug fixes and 
some minor restructuring and cleanup for improved readability. A 
complete description of the changes from the earlier version is 
included on the MiniEdi t 2.0 mail-order disk. 

{ Example program to illustrate event-driven structure [Prog. II:2-l]. 



459 Min1Edit Source Listing 
~~~~~~~~~~~~~~~~ 

uses

MemTypes,

QuickDraw,

OSintf,

Too!Intf,
Packintf,

MacPrint:

{Elementary data types}

{ QuickDraw graphics routines}

(Macintosh Operating System}

(User Interface Toolbox}

{Standard packages}

(Printing routines }

{---}

{Global Declarations}

const

MacPlusROM

ChangeFlag

MenuBarHeight

TitleBarSize

ScreenMargin

Min Width

MinHeight

SBarWidth

TextMargin
PrintMargin

$75:

$0002:

80;

80;

16:

4:

20:

18:

10:

0.5:

DlgTop 100:

DlgLeft 85:

AppleID = 1:

About Item 1:

File ID = 2:

New Item 1:

Open Item 2:

Closeitem 3:

Save Item 5:

SaveAsitem 6:

Revert Item 7:

Setup Item 9:

Printitem 10:

Quit Item 12:

(ROM version number for Macintosh Plus}

(Mask for extracting "change bit" from event modifiers}

(Height of menu bar in pixels}

{Size of window title bar in pixels}

(Width of "safety margin" around edge of screen}

{Minimum width of window in pixels}

{Minimum height of window in pixels}

(Width of scroll bars in pixels}

{Inset from window to text rectangle}

{Margin around printed page, in inches}

{Top edge of dialog box for Get and Put dialogs}

{Left edge of dialog box for Get and Put dialogs}

{Menu ID for Apple menu}

{Item number for AbouL .. command}

{Menu ID for File menu}

{Item number for New command}

{Item number for Open ... command}

{Item number for Close command}

{Item number for Save command}

{Item number for Save As ... command}

{Item number for Revert to Saved command}

{Item number for Page Setup ... command}

{Item number for Print ... command}

{Item number for Quit command}

460 Appendix H

Edit ID = 3:

Undo Item 1:

Cut Item 3:

Copy Item 4:

Paste Item 5:

Clear Item 7:

WindowID 1000:

ScrollID 1000:

NoTitleID 1000:

About ID 1000:

SaveID 1001:

Revert ID 1002:

FndrPrintID 1003:

WrongTypeID 1004:

Too Long ID 1005:

PrntCnclID 1006:

OpWrID 1007;

IOErrID 1008:

Draft ID 2000:

SpoolID 2001:

SpoolPrintID 2002:

PausePrint 1:

Cancel Print 2:

FinishPrint 3:

type

WDHandle
WDPtr
WindowData

l\WDPtr:
l\WindowData:
record

editRec
scrollBar
print Rec

dirty
padding

volNumber
f ileNumber

TEHandle:
ControlHandle:
THPrint:

BOOL3AN:
Byte;

INTEGER:
INTEGER

end: {WindowData}

{Menu ID for Edit menu}

{Item number for Undo command}

{Item number for Cut command}

{Item number for Copy command}

{Item number for Paste command}

{Item number for Clear command}

{Resource ID for window template [11:3.7.1]}

{Resource ID for scroll bar template [11:6.S.1]}

{Resource ID of title string for empty window [1:8.4.2]}

{Resource ID for About alert [11:7.6.1]}

{Resource ID for Save alert [11:7.6.1]}

{Resource ID for Revert alert [11:7.6.1]}

{Resource ID for Finder Print alert [11:7.6.1]}

{Resource ID for Wrong Type alert [11:7.6.1]}

{Resource ID for File Too Long alert [11:7.6.1]}

{Resource ID for Printing Canceled alert [11:7.6.1)}

{Resource ID for Already Open alert [11:7.6.1]}

{Resource ID for I/O Error alert [11:7.6.1]}

{Resource ID for Draft Printing dialog [11:7.6.1]}

{Resource ID for Spooling dialog [11:7.6.1]}

{Resource ID for Spool Printing dialog [11:7 .6.1]}

{Item number for Pause/Resume button}

{Item number for Cancel button}

{Item number for document completion}

{Handle to edit record [11:5.1.1)}

{Handle to scroll bar [11:6.1.1] }

{Handle to print record [ill:4. l.2]}

{Document changed since !ast saved?}

{Extra byte for padding [1:3.1.1]}

{Volume reference number}

{File reference number}

461 MintEdil Source Listing
~~~~~~~~~~~~~~~~ 

var 

TheEvent EventRecord: 

TheWindow WindowPtr: 

TheScrollBar 

TheText 

ControlHandlc; 

TEHandle: 

MacPlus : BOOLEAN: 

ScreenWidth 

ScreenHeight 

INTEGER; 

INTEGER: 

OldMask : INTEGER: 

AppleMenu 

FileMenu 

EditMenu 

MenuHandle: 

MenuHandle: 

MenuHandle: 

IBeam 

Watch 

CursHandle: 

CursHandle: 

OpenCount 

CloseCount 

INTEGER: 

INTEGER: 

ScrapCompare INTEGER: 

ScrapDirty BOOLEAN: 

ThePrintRec THPrint: 

ThePrintPort TPPrPort; 

TEPrint TEHandle: 

PrintStatus TPrStatus: 

DocName : Str255; 

DialogID INTEGER: 

TheDialog DialogPtr: 

PageHeight INTEGER: 

LinesPerPagc INTEGER: 

This Copy 

ThisPar,e 

Next Line 

INTEGER: 

INTEGER: 
INTEGER: 

FinderPrinL 

PrintSuspended 

BOOLEAN; 

BOOLEAN: 

{Current event [Il:2. l.l]} 

{Pointer to currently active window [II:3.1.1]} 

{Handle to active window's scroll bar [II:6.1.1]} 

{Handle to active window's edit record [II:S.1.1]} 

{Are we running on a Macintosh Plus?} 

{Width of screen in pixels } 

{Height of screen in pixels} 

{Saved value of system event mask [II:2.l.3, II:2.3.2]} 

{Handle to Apple menu [II:4.1.1]} 

{Handle to File menu [II:4.1.1]} 

{Handle to Edit menu [II:4.1.ll} 

{Handle to I-beam cursor [II:2.S.ll} 

{Handle to wristwatch cursor [Il:2.S.1]} 

{Number of windows opened} 

{Number of windows closed} 

{Previous scrap count for comparison [1:7.4.2]} 

{Has scrap been changed?} 

{Handle to active window's print record [III:4.1.2]} 

{Pointer to printing port [ID:4.l.ll} 

{Handle to edit record for printing [III:4.1.1]} 

{Status record for spool printing [III:4.l.7]} 

{Name of document being printed [1:8.1.2]} 

{Resource ID of printing status dialog} 

{Pointer to printing status dialog (11:7.1.ll} 

{Height of printed page} 

{Number of text lines per printed page} 

{Number of copy being printed} 

{Page number of page being printed} 

{Line number of next line to be printed} 

{Printing from Finder?} 

{Printing temporarily suspended?} 



Quitting 

Finished 

ErrorFlag 

462 Appendix H 

BOOLEAN; 

BOOLEAN; 

BOOLEAN: 

(Closing up shop?} 

{All closed?} 

{I/O error flag} 

{---------------------------------------------------------------------------------------} 

{Forward Declarations} 

procedure Initialize; forward: 

{ One-time-only initialization. } 

procedure SetUpMenus: forward: 
{ Set up menus. } 

procedure SetUpCursors: forward: 

{ Set up cursors. } 

procedure DoStartup: forward: 

{ Process Finder startup infonnation. 

procedure MainLoop: forward: 

{ Execute one pass of main program loop. 

procedure FixCursor: forward: 

{ Adjust cursor for region of screen. 

procedure DoEvent: forward: 

{ Get and process one event. } 

procedure DoMouseDown: forward: 

{ Handle mouse-down event } 

procedure DoMenuClick: forward: 

{ Handle mouse-down event in menu bar. 

procedure DoMenuChoice (menuChoice 

{ Handle user's menu choice. } 

procedure DoAppleChoice (theitem 

{ Handle choice from Apple menu. } 

procedure DoAbout: forward; 

{ Handle About MiniEdit ... command. 

procedure DoFileChoice (theitem 
{ Handle choice from File menu. 

procedure DoNew: forward: 
{ Handle New command. } 

LONGINT); forward: 

INTEGER): forward; 

INTEGER): forward: 

procedure OffsetWindow (whichWindow WindowPtr): forward: 
{ Offset location of new window. 

procedure DoOpen: forward; 

{ Handle Open ... command. } 

procedure OpenFile (fileName 

{ Open document file. } 

procedure DoClose: forward: 
{ Handle Close command. } 

Str255: vNum 

procedure CloseAppWindow: forward: 

{ Close application window. } 

INTEGER): forward: 



463 MiniEdit Source Listing 

procedure CloseSysWindow: forward; 

{ Close system window. } 

procedure DoSave: forward: 

{ Handle Save command. } 

procedure DoSaveAs: forward; 
{ Handle Save As ... command. } 

procedure WriteFile (theFile : INTEGER: volNum 
{ Write window contents to a file. } 

procedure DoRevert: forward: 
{ Handle Revert to Saved canmand. 

procedure DoSetup; forward: 

{ Handle Page Setup ... command. 

procedure DoPrint: forward: 
{ Handle Print ... command. } 

procedure ImagePrep: forward; 
{ Prepare document for imaging. } 

procedure ImageDoc: forward; 

{ Image document. } 

INTEGER): forward: 

function ImageFilter (thisDialog : DialogPtr: 

var thisEvent EventRecord: 

var itemNumber : INTEGER) : BOOLEAN: forward: 

Process event while imaging document. } 

function FilterKey (var thisEvent : EventRecord: 
var itemNumber : INTEGER) : BOOLEAN: forward: 

{ Process keystroke in printing dialog. } 

function ImagePage (var itemNumber : INTEGER) : BOOLEAN: forward: 

{ Image one page. } 

procedure DoPause: forward: 
{ Toggle Pause/Resume button. } 

procedure SpoolPrint: forward; 

{ Print spooled document. } 

procedure SpoolBackground: forward; 
{ Background procedure for spool printing. } 

procedure ShowSpoolStatus: forward: 
{ Display status during spool printing. } 

procedure DoSpoolEvent: forward: 
{ Process event during spool printing. 

procedure DoQuit: forward: 
{ Handle Quit command. } 

procedure DoEditChoice (theitem 

{ Handle choice from Edit menu. } 

procedure DoUndo: forward: 
{ Handle Undo command. } 

procedure DoCut: forward; 
{ Handle Cut command. } 

INTEGER): forward: 



464 Appendix H 

procedure DoCopy: forward: 
{ Handle Copy command. } 

procedure DoPaste: forward: 
{ Handle Paste command. } 

procedure DoClear: forward: 
{ Handle Oear command. } 

procedure DoSysClick (whichWindow : WindowPtr): forward: 
{ Handle mouse-down event in system window. } 

procedure DoContent (whichWindow : WindowPtr): forward: 
( Handle mouse-down event in content region of active window. } 

procedure DoScroll (thePar·t : INTEGER: thePoint : Point): forward: 
{ Handle mouse-down event in scroll bar. } 

procedure ScrollText (theControl: ControlHandle: thePart : INTEGER): forward: 
{ Scroll text within window. } 

procedure AdjustText: forward: 
( Ad just text within window to match scroll bar setting. 

function AutoScroll : BOOLEAN: forward: 
{ Handle automatic scrolling during text selection. } 

procedure DoSelect (thePoint : Point): forward: 
{ Handle mouse-down event in text rectangle. 

procedure FixEditMenu: forward: 
{ Enable/disable editing commands. } 

procedure DoDrag (whichWindow : WindowPtr): forward: 
( Handle mouse-down event in drag region. } 

procedure DoGrow (whichWindow : WindowPtr): forward: 
( Handle mouse-down event in size region. 

procedure FixScrollBar: forward: 
( Resize window's scroll bar. } 

procedure FixText: forward: 
{ Resize window's text rectangle. 

procedure DoGoAway (whichWindow : WindowPtr): forward: 
{ Handle mouse-down event in close region. } 

procedure DoZoom (whichWindow: WindowPtr: inOrOut : INTEGER): forward: 
{ Handle mouse-down event in zoom region. ) 

procedure DoKeystroke: forward: 
{ Handle keystroke. } 

procedure DoTyping (ch : CHAR): forward: 
{ Handle character typed from keyboard. 

procedure DoUpdate: forward: 
{ Handle update event. } 

procedure DoActivate: forward: 
{ Handle activate and deactivate events. 

procedure ActWindow (whichWindow WindowPtr): forward: 

{ Activate window. } 

procedure DeactWindow (whichWindow WindowPtr): forward: 
{ Deactivate window. } 



465 MiniEdit Source Listing 
~~~~~~~~~~~~~~~ 

procedure Finalize: forward:
{ One-time-only finali7.ation. }

procedure WindowDirty (isDirty : BOOLEAN): forward:
{ Mark window dirty or clean. }

procedure AdjustScrollBar: forward:
{ Adjust scroll bar to length of documenL }

procedure ScrollToSelection: forward:
{ Scroll current selection into view. }

procedure ScrollCharacter (theCharacter
{ Scroll character into view. }

INTEGER: toBottom BOOLEAN): forward:

procedure ReadDeskScrap: forward:
{ Copy desk scrap to Toolbox scrap. }

procedure WriteDeskScrap: forward:
{ Copy Toolbox scrap to desk scrap. }

procedure IOCheck (resultCode : OSErr): forward:
{ Check for 1/0 error. }

{---}

procedure Initialize:

{ Do one-time-only initialization [Prog. 11:2-6).

const
sysMaskAddr
masterBlocks

var
masterCount
sysMaskPtr
newMask
machineType
romVersion
scrapinfo

begin {Initialize}

$144:
4:

INTEGER:
"INTEGER:
INTEGER:
INTEGER;
INTEGER:
PScrapStuff:

InitGraf (@ThePort):
InitFonts:
InitWindows:
InitMenus:
TEinit:
InitDialogs (NIL):
PrOpen:

{Address of system event mask [II:2.3.2])

{Number of master pointer blocks to preallocate}

{Counter for allocating master pointer blocks}

{Pointer for finding old event mask}

{New value for system event mask [II:2.l.3]}

{Type of machine we're running on (1:3.1.3)}

{Version number of machine's ROM (1:3.1.3)}

{Pointer to scrap information record [1:7.4.2)}

{Initialize QuickDraw (1:4.3.1)}

{Initialize fonts (1:8.2.4)}

{Initialize windows [II:3.2.1]}

{Initialize menus [II:4.2.1]}

{Initialize text editing [II:S.2.1)}

{Initialize dialogs [II:7 .2.1)}

{Initialize printing [II1:4.2.1]}

466 Appendix H

MaxApplZone: (Expand heap to maximum size [Il:3.3.4]}

for masterCount ·= 1 to masterBlocks do
MoreMasters:

Environs (romVersion. machineType):
MacPlus := (romVersion >= MacPlusROM):
with ScreenBits.bounds do

begin
ScreenWidth := right - left:
ScreenHeight := bottom - top

end: (with ScreenBits.bounds}

TheWindow ·= NIL:
TheScrollBar ·= NIL:
TheText ·= NIL:
ThePrintRec NIL:

sysMaskPtr := POINTER(sysMaskAddr):
OldMask := sysMaskPtrA:

newMask ·= EveryEvent - KeyUpMask - MUpMask:
SetEventMask (newMask):
FlushEvents (EveryEvent, O):

_SetUpMenus:
SetUpCursors:

OpenCount 0:
CloseCount ·= O:

ScrapDirty ·= FALSE;
scrapinfo ·= InfoScrap:
ScrapCompare ·= scrapinfoA.scrapCount + 1:
ReadDeskScrap:

Quitting
Finished
ErrorFlag

Do Startup

end ; {Initialize}

FALSE:
FALSE:
FALSE;

(Preallocate master pointers to }

{ minimi7.e heap fragmentation [1:3.2.5)}

{Find out machine configuration [1:3.1.3]}

{Macintosh Plus or later? [1:3.1.3)}

{Get boundary rectangle for screen [1:4.2.1]}

{Set screen dimensions [1:4.1.2]}

{Clear global pointers/handles}

{Point to system event mask [Il:2.3.2]}

{Save old mask value}

{Disable key-up and mouse-up events [Il:2.1.3]}

{Set the mask [Il:2.3.2]}

{Clear out event queue [Il:2.3.1]}

{Create program's menus}

{Get standanl cursors}

{Initiallie window ccunts}

{Toolbox and desk scraps initially agree}

{Get scrap info [1:7.4.2))

{Force scrap transfer [1:7.4.2]}

(Read desk scrap into Toolbox scrap}

{Initiallie global flags}

{Process Finder startup infonnation}

{---}

467 MiniEdit Source Listing
~~~~~~~~~~~~~~~ 

procedure SetUpMenus: 

{ Set up menus [Prog. II:4-2]. 

begin {SetUpMenus} 

AppleMenu := GetMenu (AppleID): 
AddResMenu (AppleMenu, 'DRVR'): 
InsertMenu (AppleMenu, 0): 

FileMenu := GetMenu (FileID): 
InsertMenu (FileMenu, 0): 

EditMenu := GetMenu (EditID): 
InsertMenu (EditMenu, O): 

DrawMenuBar 

end: {SctUpMenus} 

{Get Apple menu from resource file [11:4.2.2)} 

{Add names of available desk accessories [11:4.3.3]} 

{Install at end of menu bar [II:4.4.1]} 

{Get File menu from resource file [11:4.2.2)} 

{Install at end of menu bar [II:4.4.1] } 

{Get Edit menu from resource file [11:4.2.2)} 

{Install at end of menu bar [II:4.4.1]} 

{Show new menu bar on screen [II:4.4.3]} 

{---------------------------------------------------------------------------------------} 

procedure SetUpCursors: 

{ Set up cursors [Prog. II:2-7]. 

begin {S~UpCursors} 

IBeam ·= GetCursor (IBeamCursor): {Get cursors from system resource file [11:2.5.2]} 

Watch GetCursor (WatchCursor): 

InitCursor { S~ standard arrow cursor [Il:2.5.2]} 

end: {SctUpCursors} 

{---------------------------------------------------------------------------------------} 

procedure DoStartup: 

{ Process Finder startup infonnation [Prog. ill:4-14]. 

var 

theMessage .. INTEGER: 
nDocs INTEGER: 
thisDoc INTEGER: 

(Open or print? [1:7.3.4]} 

{Number of documents selected in Finder} 

{Index number of document} 



doc Info 

ignore 

468 Appendix H 

AppFile: 

INTEGER: 

begin {DoStartup} 

CountAppFiles (theMessage, nDocs): 

[1:7.3.4)} 

FinderPrint := (theMessage = AppPrint): 

if nDocs = 0 then 

DoNew 

else 

for thisDoc 

begin 

1 to nDocs do 

GetAppFiles (thisDoc, docinfo): 

with doclnfo do 

if fType = 'TEXT' then 

begin 

{Startup inf onnation about one document [I:7 .3.4) } 

{Item code returned by alert} 

{Get number of documents and startup message 

{Printing requested? [I:7.3.4]} 

{If no documents selected, } 

{ just open an empty window} 

{Otherwise loop through documents} 

{Get startup information [1:7.3.4]} 

{Is it a text file? [I:7.3.4]} 

ErrorFlag := FALSE: {ClearJ/O error flag} 

OpenFile (fName. vRefNum): {Readfileintoawindow} 

if FinderPrint and not ErrorFlag then {Printing requested?} 

begin 

ParamText (fName, "· ", "): {Merge in file name [II:7.4.6)} 

Ini tCursor: {Set arrow cursor [II:2.5.2)} 

ignore : = NoteAlert (FndrPrintID, NIL): {Post alert [II:7.4.2]} 

DoSetup: 

DoPrint: 

CloseAppWindow 

end: {if FinderPrint and not ErrorFlag} 

if not ErrorFlag then 

ClrAppFiles {this Doc) 

end {then} 

else 

begin 

ParamText (fName, '' I I ) : 

{Get page setup information} 

{Print the file} 

{Dispose of data structures} 

{No errors detected?} 

{Made file as processed [1:7.3.4)} 

{Merge in file name [II:7.4.6]} 



469 MiniEdit Source Listing 
~~~~~~~~~~~~~~~ 

Ini tCursor: {Set arrow cursor [Il:2.5.2]}

ignore · = StopAlert (Wrong Type ID. NIL) {Post alert [Il:7.4.2]}

end {else}

end: {for thisDoc}

if FinderPrint then

begin

Finalize:

ExitToShell

end {if FinderPrint}

end: {DoStartup}

{Printing from Finder?}

{Close up shop}

(Return to Finder [!:7.1.3]}

{---}

procedure MainLoop:

(Execute one pass of main program loop [Prog. 11:2-2).

begin {MainLoop}

if FrontWindow

begin

Disableitem

Disableitem

Disableitem

Disableitem

Disableitem

Disableitem

Disableitem

Disableitem

Disable!tem

Disableitem

Disableitem

NIL then

(EditMenu.

(EditMenu,

(EditMenu.

(EditMenu.

(EditMenu.

(FileMenu.

(FileMenu.

(FileMenu.

(FileMenu.

(FileMenu.

(FileMenu,

end: {if FrontWindow =NIL}

FixCursor:

SystemTask:

if TheText <> NIL then

TEidle (TheText):

Undoitem):

Cut Item):

Copy!tem):

Paste Item) :

Clear Item):

Closeitem):

Saveltem):

SaveAsitem):

Revert!tem):

Setup Item) :

Print!tem)

{Is the desktop empty? [II:3.3.3]}

{Disable inapplicable menu commands [II:4.6.2]}

{Adjust cursor for region of screen}

{Do system idle processing [II:2.7.2]}

{Blink cursor [Il:S.4.3]}

4 70 Appendix H

DoEvent {Get and process one event)

end: {MainLoop}

{---}

procedure FixCursor:

{ Adjust cursor for region of screen [Prog. Il:2-8].

var

mousePoint

textRect

begin {Fix.Cursor}

Point;

Rect;

if Quitting then

EXIT (FixCursor):

if FrontWindow = NIL then

InitCursor

else if FrontWindow

begin

TheWindow then

GetMouse CmousePoint):
textRect TheTextAA.viewRect:

if Pt!nRect (mousePoint, textRect) then

SetCursor (IBeamAA)

else

InitCursor

end {then}

else

{Do nothing}

end: {Fix.Cursor}

{Current mouse position in window coordinates [1:4.1.1)}

{Active window's text rectangle [1:4.1.2)}

{Skip cursor adjustment during quit sequence}

{Screen empty? [Il:3.3.3]}

{Set arrow cursor [Il:2.5.2]}

{Is one of our windows active? [Il:3.3.3]}

{Get mouse position [Il:2.4.l]}

{Get window's text rectangle [Il:S.1.1)}

{Is mouse in text rectangle? [1:4.4.3)}

{Set I-beam cursor [Il:2.5.2]}

{Set arrow cursor [Il:2.5.2]}

{A system window is active: }

{ let desk accessory set cursor}

{---}

procedure DoEvent:

{ Get and process one event [Prog. Il:2-5].

begin {DoEvent}

ErrorFlag := FALSE: { Cear I/0 error flag}

if GetNextEvent (EveryEvent. TheEvent) then {Get next event [Il:22.1]}

case TheEvent.what of

MouseDown:
if not Quitting then

DoMouseDown:

KeyDown. AutoKey:
if not Quitting then

DoKeystroke:

UpdateEvt:
DoUpdate:

ActivateEvt:
DoActivate:

otherwise
{Do nothing}

end {case TheEvenLwhat}

else if Quitting and (TheEvent.what
begin

if FrontWindow <> NIL then
DoClose

else
Finished

end {if Quitting}

end: {DoEvent}

TRUE

{Handle mouse-down event}

(Handle keystroke}

{Handle update event}

{Handle activate/deactivate event}

NullEvent) then {Cosing up shop after a Quit command?}

{Any windows on the screen? [Il:3.3.3]}

{Cose the fronnnost}

{Signal end of program}

(---}

procedure DoMouseDown:

{ Handle mouse-down event [Prog. 11:3-7).

var
whichWindow WindowPtr: {Window where mouse was pressed [Il:3.1.1]}

4 72 Appendix H

thePart : INTEGER: {Part of screen where mouse was pressed (11:3.5.1)}

begin {DoMouseDowh}

thePart := Find Window (TheEvent. where. whichWindow): {Where on the screen was mouse pressed? (11:3.5.1)}

case thePart of

InDesk:

{Do nothing};

InMenuBar:

DoMenuClick: {Handle click in menu bar}

InSysWindow:

DoSysClick (whichWindow): {Handle click in system window)

InContent:

DoContent (whichWindow): {Handle click in content region)

InDrag:

DoDrag (whichWindow): {Handle click in drag region)

InGrow:

DoGrow (whichWindow) : {Handle click in size region)

InGoAway:

DoGoAway (whichWindow): {Handle click in close region)

InZoomin:

DoZoom (whichWindow, InZoomin): {Handle click in :zoom region)

InZoomOut:

DoZoom (whichWindow, InZoomOut) (Handle click in :zoom region}

end {case thePart)

end: {DoMouseDown)

(·--}

procedure DoMenuClick:

{ Handle mouse-down event in menu bar [Prog. Il:4-3].

473 MiniEdit Source Usttng
~~~~~~~~~~~~~~~ 

var 

menuChoice : LONGINT: 

begin {DoMenuClick} 

menuChoice := MenuSelect (TheEvent.where): 
DoMenuChoice (menuChoice) 

end: {DoMenuClick} 

{Menu ID and item number} 

{Track mouse [11:4.5.1]} 

{Handle user's menu choice} 

{---------------------------------------------------------------------------------------} 

procedure DoMenuChoice { (menuChoice : LONGINT)}: 

{ Handle user's menu choice [Prag. Il:4-5]. 

const 
noMenu O: 

var 
theMenu 
the Item 

INTEGER: 
INTEGER: 

begin {DoMenuChoice} 

theMenu HiWord(menuChoice): 
theltem ·= LoWord(menuChoice): 

case theMenu of 

noMenu: 
{Do nothing} : 

AppleID: 
DoAppleChoice (theltem): 

FileID: 
DoFileChoice (theltem): 

Edit ID: 
DoEdi tChoice (theltem) 

end; {case theMenu} 

HiliteMenu(O) 

end; {DoMenuChoice} 

{No menu selected} 

{Menu ID of selected menu} 

{Item number of selected item} 

{Get menu ID [1:2.2.3]} 

{Get item number [1:2.2.3)} 

{No menu selected, nothing to do} 

{Handle choice from Apple menu} 

{Handle choice from File menu} 

{Handle choice from Edit menu} 

{Unhighlight menu title [11:4.5.4)) 



4 7 4 Appendix H 

(---------------------------------------------------------------------------------------} 

procedure DoAppleChoice ((theitem : INTEGER)}: 

{ Handle choice from Apple menu {Prog. II:4-6]. 

var 

accName 
accNumber 

Str255: 

INTEGER: 

begin {DoAppleChoice} 

case theitem of 

Aboutltem: 
DoAbout: 

otherwise 
begin 

if FrontWindow 
begin 

Enableltem 

Enable Item 
Enableltem 
Enable Item 

Enableltem 
Enableitem 

NIL then 

(FileMenu. 

(EditMenu. 
(EditMenu, 

(EditMenu, 

(EditMenu. 

(EditMenu. 

end: {if FrontWindow =NIL} 

Closeltem): 

Undoitem): 

Cutltem): 

Copyltem): 
Pasteitem): 

Clear!tem) 

{Name of desk accessory [1:2.1.1]} 

{Reference number of desk accessory} 

{Handle About MiniEdiL .. command} 

{Is the desktop empty? [11:3.3.3]} 

(Enable Cose command [11:4.6.2]} 

{Enable standard editing commands} 

{ for desk accessory [II:4.6.2]} 

Getltem (AppleMenu. the!tem. accName): {Get accessory name [11:4.6.l]} 

accNumber := OpenDeskAcc (accName) {Open desk accessory [11:4.5.2]} 

end {otherwise} 

end {case theltem} 

end: {DoAppleChoice} 

(---------------------------------------------------------------------------------------} 



4 75 MiniEdit Source Listing 
~~~~~~~~~~~~~~~ 

procedure DoAbout:

{ Handle About MiniEdiL .. command [Prog. 11:7-1].

var

ignore : INTEGER:

begin {DoAbout}

InitCursor:
ignore :; Alert (AboutID, NIL)

end; {DoAbout}

{Item number for About alert}

{Set anow cursor [Il:2.S.2]}

{Post alert [Il:7.4.2]}

(---}

procedure DoFileChoice {(the!tem : INTEGER)}:

{ Handle choice from File menu [Prog. 11:4-8].

begin {DoFileChoice}

case theitem of

Newitem:
DoNew: {Handle New command}

Openitem:

DoOpen: {Handle Open ... command}

Closeitem:
DoClose: {Handle Cose command}

Saveitem:

DoSave: {Handle Save command}

SaveAsitem:

DoSaveAs: {Handle Save As ... command}

Revertitem:
DoRevert: {Handle Revert to Saved command}

Setupitem:

DoSetup: {Handle Page Seblp ... command}

4 76 Appendix H

Print Item:
DoPrint: {Handle PrinL •• command}

Quititem:
DoQuit {Handle Quit command}

end {case theltem}

end: {DoFileChoice}

{---}

procedure DoNew:

{ Handle New command [Prog. Il:S-2).

var

theData
dataHandle
printHandle
destRect
viewRect

begin {DoNew)

WDHandle:
Handle:
Handle:
Rect:
Rect:

{Handle to window's data record}
{Untyped handle for creating data record [1:3.1.1]}

{Untyped handle for creating print record (1:3.1.1]}

{Wrapping rectangle for window's text (1:4.1.2]}

{Clipping rectangle for window's text (1:4.1.2]}

TheWindow := GetNewWindow (WindowID, NIL. WindowPtr(-1)):

if not FinderPrint then
begin

OffsetWindow (TheWindow):
ShowWindow (TheWindow)

end: {if not FinderPrint}

SetPort (TheWindow):
TextFont (Geneva):

with TheWindowA.portRect do
SetRect (viewRect. o.

o.

{Make new windowfrom template [Il:3.2.2]}

{Printing from Finder?}

{Offset from location of previous window}
{Make window visible [Il:3.3.1]}

{Get into the window's port [1:4.3.3]}

{Set text font [1:8.3.2. 1:8.2.1]}

{Use port rectangle as basis (1:4.2.2]}

{Set up clipping rectangle [1:4.1.2)}

right - (SBarWidth - 1),
bottom - (SBarWidth - 1)):

destRect := viewRect:
InsetRect (destRect. TextMargin. O):

{Set up wrapping rectangle}
{Inset by text margin [1:4.4.4]}

4 77 MiniEdit Source Listing
~~~~~~~~~~~~~~~ 

dataHandle := NewHandle (SIZEOF (WindowData)): 

SetWRefCon (TheWindow. LONGINT(dataHandle)): 

MoveHHi (dataHandle): 

HLock (dataHandle): 

theData := WDHandle(dataHandle): 

with theDatahh do 

begin 

{Allocate window data record [1:3.2.1]} 

{Store as reference constant [11:3.2.4]} 

{Move data record to top of heap [1:3.2.5]} 

{Lock data record [1:3.2.4]} 

{Convert to typed handle} 

editRec := TENew (destRect, viewRect): 

{Make edit record [11:5.2.2)} 

if not FinderPrint then (Printing from Fmder?} 

scrollBar := GetNewControl (Sc roll ID, TheWindow): {Make scroll bar [II:6.2.l]} 

print:Handle := NewHandle (SIZEOF (TPrint)): {Allocate print record [1:3.2.1)} 

printRec := THPrint (printHandle): {Convert to typed handle [ill:4.l.2]} 

PrintDef aul t (printRec): {Initialize print record [ill:4.2.2]} 

dirty := FALSE: 

fileNumber ·= O: 
volNumber := O: 

if not FinderPrint then 

SetClikLoop (@AutoScroll. editRec): 

TheScrollBar scrollBar: 

TheText editRec: 

ThePrint:Rec ·= printRec 

end: {with theDataM} 

HUnlock (dataHandle): 

Enableitem (FileMenu. Closeitem) 

end: {DoNew} 

{Document is initially clean} 

{Window has no associated file} 

{ orvolume ) 

{Printing from Fmder?} 

{Install auto-scroll routine [II:S.6.1]} 

{Set global handles} 

{Unlock data record [1:3.2.4]} 

{Enable Cose command on menu [11:4.6.2]} 

{---------------------------------------------------------------------------------------} 

procedure OffsetWindow {(whichWindow : WindowPtr)}: 

{ Offset location of new window [Prog. 11:3-12 ]. 

const 

hOff set 20: { Horimntal offset from previous window. in pixels} 



vOffset 20: 

var 

windowWidth 

windowHeight 

hExtra 

vExtra 

hMax 

vMax 

windowLeft 

windowTop 

begin {OffsetWindow} 

4 78 Appendix H 

INTEGER: 

INTEGER: 

INTEGER: 

INTEGER: 

INTEGER: 

INTEGER: 

INTEGER: 

INTEGER: 

with whichWindowA.portRect do 

begin 

windowWidth 

windowHeight 

right - left: 

bottom - top: 

{Vertical offset from previous window, in pixels} 

{Width of window in pixels} 

{Height of window in pixels} 

{Excess screen widlh in pixels } 

{Excess screen height in pixels} 

{Maximum number of windows horizontally} 

{Maximum number of windows vertically} 

{Left edge of window in global coordinates} 

{Top edge of window in global coordinates} 

{Get window dimensions from } 

port rectangle [1:4.2.2)} 

windowWidth windowWidth + TitleBarSize {Adjust for title bar} 

end: {with whichWmdow".portRect} 

hExtra ·= ScreenWidth - windowWidth: {Find excess screen width} 

vExtra (ScreenHeight - MenuBarHeight) - windowHeight: {Find excess screen height} 

hMax (hExtra div hOffset) + 1: 

vMax ·= (vExtra div vOffset) + 1: 

OpenCount ·= OpenCount + 1: 

windowLeft (OpenCount mod hMax) . hOffset: 

windowTop ·= (OpenCount mod vMax) . vOffset: 

windowLeft windowLeft + TitleBarSize: 

windowTop windowTop + MenuBarHeight: 

{Find maximum number of windows horizontally} 

{Find maximum number of windows vertically} 

{Increment open window count} 

{Calculate horizontal } 

{ and vertical offset} 

{Adjust for title bar} 

{ and menu bar } 

MoveWindow (whichWindow, windowLeft, windowTop. FALSE) {Move window to new location [Il:3.3.2]} 

end: {OffsetWindow} 

{- - --- ------- -------- ---------- ---------- -- --- ----- ----- ------- -------- ------- --- -- -----} 

procedure DoOpen: 

{ Handle Open ... command [Prog. 11:8-5). 

var 

dlgOrigin Point: {Top-left comer of dialog box (1:4.1.1]} 



4 79 MlniEdit Source Usttng 
~~~~~~~~~~~~~~~ 

theTypeList
theReply

begin {DoOpen)

SFTypeList:
SFReply:

SetPt (dlgOrigin, DlgLeft, DlgTop):
theTypeList [O] := 'TEXT':

(List of file types to display [II:83.2]}

(Data rerumed by Get dialog [II:8.3.1]}

(Set up dialog origin [1:4.1.1])

(Display text files only [11:8.3.2])

SFGetFile (dlgOrigin, '', NIL. 1. theTypeList, NIL. theReply): {Get file name from user [Il:8.3.2]}

with theReply do
if good then

OpenFile (fName, vRefNum)

end: {DoOpen)

(Did user confirm file selection? [11:8.3.1])

(Open file and read into window}

{---}

procedure OpenFile ((fileName : Str255: vNum : INTEGER)}:

{ Open document file [Prog. 11:8-6]. }

var
theData
dataHandle
theFile
resultCode

begin {OpenFile}

WDHandle:
Handle:
INTEGER:
OSErr:

{Handle to window's data record}

{Untyped handle for locking data record [1:3.1.1]}

{Reference number of file}

(IJO error code (1:3.1.2)}

resul tCode : = FSOpen (fileName, vNum, theFile) : {Open the file [11:8.2.2])

IOCheck (resul tCode) : {Check for error)

if ErrorFlag then EXIT (OpenFile):

DoNew:

dataHandle := Handle(GetWRefCon(TheWindow)):
MoveHHi (dataHandle):
HLock (dataHandle):

theData := WDHandle(dataHandle):
with theDataAA do

begin
volNumber vNum:
fileNumber ·= theFile:

(On enor, exit to main event loop}

{Open a new window}

{Get window data [II:3.2.4])

{Move data record to top of heap [1:3.25)}

{Lock data record [1:3.24]}

{Convert to typed handle}

(Save volume and file number}

{ in window data record }

480 Appendix H

SetWTitle (TheWindow. fileName)

end: {with theDataM}

HUnlock (dataHandle):

DoRevert:

if ErrorFlag then

CloseAppWindow

end: {OpenFile}

{File name becomes window title [II:3.2.4]}

{Unlock data record [1:3.2.4)}

{Read file into window}

{Error reading file?}

{Close and dispose of the window}

{---}

procedure DoClose:

{ Handle Close command [Prog. 11:3-3].

begin {DoClose}

if FrontWindow = TheWindow then

CloseAppWindow

else

CloseSysWindow

end: {DoClose}

{Is the active window one of ours? [Il:3.3.3]}

{Close application window}

{Close system window}

{---}

procedure CloseAppWindow:

{ Close application window [Prog. 11:7-2].

con st

saveitem

discard Item

cancelltem

var

theData

dataHandle

theTitle

the Item

resultCode

thisWindow

1:

2:

3:

WDHandle:

Handle:

Str255:

INTEGER:

OSErr:

WindowPtr:

{Item number for Save button}

{Item number for Discard button}

{Item number for Cancel button}

{Handle to window's data record}

{Untyped handle for destroying data record [I:3.1.1]}

{Title of window [1:2.1.1]}

{Item number for Save alert}

{I/0 error code [1:3.1.2)}

{Pointer to window being closed (11:3.1.l]}

481 MiniEdit Source Ustlng
~~~~~~~~~~~~~~~ 

thisEditRec 

printHandle 

TEHandle: 

Handle: 

begin {CloseAppWindow} 

dataHandle := Handle(GetWRefCon(TheWindow)): 

MoveHHi (dataHandle): 

HLock (dataHandle): 

theData := WDHandle(dataHandle): 

with theDataAA do 

begin 

if dirty then 

begin 

{Handle to window's edit record [Il:S.1.1]} 

{Untyped handle for destroying print record [1:3.1.1]} 

{Get window data [11:3.2.4]} 

{Move data record to top of heap [1:3.2.5]} 

(Lock data record [1:3.2.4]} 

(Convert to typed handle} 

{Have window contents been changed?} 

GetWTitle (TheWindow, theTitle) : {Get window title [II:3.2.4]} 

ParamText (theTitle, '', '', ''): (Substitute into alert text [11:7.4.6]} 

Ini tCursor: {Set arrow cursor [11:2.5.2]} 

theltem := CautionAlert (SaveID, NIL): {Post alert [11:7.4.2]} 

case theitem of 

saveitem: 

begin 

DoSave: 

if ErrorFlag then 

begin 

{Save window contents to disk} 

{Check for VO error} 

HUnlock (dataHandle): {Unlock data record (1:3.2.4]} 

EXIT (CloseAppWindow) {Exit to main event loop} 

end {if ErrorFlag} 

end (saveitem}; 

discarditem: 

{Do nothing} : 

cancelitem: 

begin 

Quitting := FALSE: 

HUnlock (dataHandle): 

EXIT (CloseAppWindow) 

end {cancelltem} 

end {case theltem} 

end : {if dirty} 

(Cancel Quit command, if any} 

{Unlock data record [1:3.2.4]} 

{Exit to main event loop} 



482 Appendix H 

if f ileNumber <> 0 then 

begin 

{Is window associated with a file?} 

resul tCode : = FSClose ( fileNumber): {Close file (11:8.2.2]} 

IOCheck ( resul tCode) {Post error alert. if any} 

end: {if fileNumber <> 0) 

thisEditRec ·= editRec: 

printHandle ·= Handle(printRec) 

end: {with theDataM) 

HUnlock (dataHandle): 

thisWindow := TheWindow: 

HideWindow (TheWindow): 

if GetNextEvent (ActivMask. TheEvent) then 

DoActivate: 

if GetNextEvent (ActivMask. TheEvent) then 

DoActivate: 

CloseCount := CloseCount + 1: 

if CloseCount 

begin 

OpenCount then 

OpenCount := O: 

CloseCount := 0 

end: {if CloseCount = OpenCount} 

TEDispose ( thisEditRec) : 

DisposHandle (printHandle): 

DisposHandle (dataHandle): 

DisposeWindow (thisWindow) 

end: {CloseAppWindow} 

{Save handles to edit and print records 

{ (DoActivate will unlock the data record)} 

{Unlock data record (1:3.2.4]} 

{Save window pointer (DoActivate will change TheWindow)} 

{Force deactivate event [11:3.3.1]} 

{Get deactivate event I :2.2.l, 11:2.1.2]} 

{ and handle it } 

{Get activate event (11:2.2.1, 11:2.l.2]} 

{ and handle it } 

{Increment closed window count} 

{Closing last application window on screen?} 

{Reset window offset to zero} 

{Dispose of edit record (11:5.2.2)) 

{Dispose of print record [1:3.22)} 

{Dispose of window data record [1:3.2.2]} 

{Dispose of window and scroll bar [11:3.2.3) } 

{----------------------------------~------------------------------------------------------} 

procedure CloseSysWindow: 

{ Close system window [Prog. !1:4-7). 

var 

which Window 

accNumber 
WindowPeek: 

INTEGER: 

{Pointer for access to window's fields [11:3.1.1)} 

{Reference number of desk accessory [1:7.S.S]} 



483 MlniEdit Source Listing 
~~~~~~~~~~~~~~~ 

begin {CloseSysWindow}

whichWindow := WindowPeek(FrontWindow):

accNumber := whichWindowA.windowKind:
CloseDeskAcc (accNumber)

end: {CloseSysWindow}

{Conven to a WindowPeek [II:3.1.l. II:3.3.3]}

{Get reference number of desk accessory [II:3.L 1)}

{Close desk accessory [II:4.S.2]}

{---}

procedure DoSave:

{ Handle Save command [Prog. II:8-2].

var
theData
dataHandle

WDHandle:
Handle:

begin {DoSave}

dataHandle := Handle(GetWRefCon(TheWindow)):
MoveHHi (dataHandle):
HLock (dataHandle):

theData := WDHandle(dataHandle):
with theDataAA do

if fileNumber = 0 then
DoSaveAs

else
WriteFile (fileNumber. volNumber):

HUnlock (dataHandle)

end: {DoSave}

{Handle to window's data record}

{Untyped handle for locking data record [!:3.1.1)}

{Get window data (11:3.2.4)}

(Move data record to top of heap [1:3.2.5)}

{Lock data record (1:3.2.4)}

{Convert to type.d handle}

{Is window associated wilh a file?}

{Get file name from user}

{Write to window's file}

{Unlock data record [1:3.2.4)}

{---}

procedure DoSaveAs:

{ Handle Save As ... command [Prog. II:8-8].

var
dlgOrigin
the Reply

Point:
SFReply:

{Top-left comer of dialog box (1:4.1.1)}

{Data returned by Put dialog [II:8.3.1]}

the Info

theFile

theData

dataHandle

strHandle

untitled

ignore

resultCode

begin {DoSaveAs}

484 Appendix H

Finfo:

INTEGER:

WDHandle:

Handle:

StringHandle:

Str2SS:

INTEGER:

OSErr:

{File's Finder infonnation [1:7.3.2]}

{Reference number of file}

{Handle to window's data record}

{Untyped handle for locking data record [1:3.1.1]}

{Handle to title string for empty window [Il~8.l.2]}

{Title string for empty window [1:2.1.1]}

{Item code returned by alert}

{I/O error code [1:3.1.2)}

SetPt (dlgOrigin, DlgLeft. DlgTop): {Set up dialog origin (1:4.1.1)}

SFPutFile (dlgOrigin, 'Save under what file name?'. ''• NIL. theReply):

{Get file name from user [Il:S.3.3)}
with theReply do

begin

if not good then

begin

Quitting ·= FALSE:

ErrorFlag TRUE:

EXIT (DoSaveAs)

end: {if not good}

{Did user confirm file selection? [Il:8.3.1]}

{Cancel Quit command, if any}

{Force exit to main event loop}

{Skip rest of operation}

resul tCode : = GetFinfo (fName. vRefNum. the Info) : {Get Finder info [1:7.3.3))
case resultCode of

NoErr:

if theinfo.fdType <> 'TEXT' then

begin

{File already exists [I1:8.2.8]}

{Not a text file? (1:7 .3.2)}

ParamText (fName, ' • , ' ' , ' ') : {Substitute file name into text of alert [I1:7.4.6]}

ignore : = StopAlert (wrongTypeID. NIL): {Post alert [I1:7.4.2]}

ErrorFlag := TRUE:

EXIT (DoSaveAs)

end: {if thelnfo.fdType <>'TEXT}

FNFErr:

begin

{Force exit to main event loop}

{Skip rest of operation}

{File not found [I1:8.2.8]}

resul tCode : = Create (fName, vRefNum. 'MEDT' , 'TEXT') : {Create the file [Il:S.2.1]}

IOCheck (resultCode): {Check for error}

if ErrorFlag then EXIT (DoSaveAs) {On error, exit to main event loop}

end : {FNFErr}

otherwise

begin
{Unanticipated error}

IOCheck (resultCode):

EXIT (DoSaveAs)

end {otherwise}

end: {case resultCode}

{Post error alert}

{Exit to main event loop}

dataHandle : :::::: Handle (GetWRefCon (TheWindow)) : {Get window data (11:3.2.4]}

MoveHHi (dataHandle): {Move data record to top of heap [!:3.25]}

HLock (dataHandle): {Lock data record [1:3.2.4]}

theData ::::::: WDHandle(dataHandle):

with theDataAA do

begin

SetCursor (WatchAA):

if fileNumber <> 0 then

begin

{Convert to typed handle}

{Indicate delay [Il:2.5.2]}

{Does window already have a file?}

resultCode := FSClose (fileNumber): {Qose old file [Il:S.2.2))

IOCheck (resul tCode) : {Check for error)

if ErrorFlag then

begin

HUnlock (dataHandle):

EXIT (DoSaveAs)

end {if ErrorFlag}

end: {if fileNumber <> O}

{Error detected during close?)

{Unlock data record [!:3.2.4))

{Exit to main event loop)

resultCode ::::::: FSOpen (fName. vRefNum. theFile): {Opennewfile[Il:S.2.2]}

IOCheck (resul tCode): {Check for error}

if ErrorFlag then (Error detected during open?}

begin

volNumber

fileNumber

•:::::: 0:

0:

{Window is left with no file: clear volume)

{ and file numbers in window data }

strHandle Get String (noTi tleID) : {Get string from resource file (1:8.1.2]}

untitled strHandleAA; {Convert from handle}

SetWTitle (TheWindow. untitled)

end {then}

{Set new window title [11:3.2.4]}

else

begin

volNumber : = vRefNum: {Save new volwne and file}

fileNumber := theFile: (numbersinwindowdata}

SetWTi tle (TheWindow, fName) : (File name becomes new window title [Il:3.2.4])

486 Appendix H

Wri teFile (theFile. vRefNum) {Write window's contents to file}

end {else}

end : {with theDataM}

HUnlock (dataHandle) {Unlock data record [1:3.2.4] }

end {with theReply}

end: {Do.SaveAs}

{---}

procedure WriteFile {(theFile : INTEGER: volNum : INTEGER)}:

{ Write window contents to a file [Prog. Il:S-3].

var

textHandle

textLength

resultCode

begin {WriteFile}

Handle:

LONG INT:

OSErr:

SetCursor (Watch""):

with TheText 1111 do

begin

textHandle := hText:

textLength := teLength

end : {with TheTextM}

{Handle to text of file [1:3.1. l] }

{Length of text in bytes}

{110 error code [1:3.1.2)}

{Indicate delay [Il:2.5.2]}

{Get text handle and current length)

{ from edit record [Il:S.1.1])

resul tCode : = SetFPos (theFile, FSFromStart, 0) ; {Reset mark to beginning of file [Il:S.24]}

IOCheck (resul tCode) : {Check for error)

if ErrorFlag then EXIT (WriteFile):

MoveHHi (textHandle):

HLock (textHandle):

{On error, exit to main event loop}

{Move text to top of heap [1:3.2.S]}

{Lock text [1:3.2.4]}

resul tCode : = FSWri te (theFile, textLength, textHandle"') : {Write text to file [II:S.23]}

HUnlock (textHandle): (Unlock text [1:3.2.4]}

IOCheck (resultCode):

if ErrorFlag then EXIT (WriteFile):

resultCode := SetEOF (theFile. textLength):

IOCheck (resultCode):

{Check for error}

{On error, exit to main event loop}

{Set length of file [Il:S.25]}

{Check for error)

487 MiniEdit Source Listing
~~~~~~~~~~~~~~-

if ErrorFlag then EXIT (WriteFile): 

resultCode := FlushVol (NIL. volNum): 
IOCheck (resultCode): 

if ErrorFlag then EXIT (WriteFile): 

WindowDirty (FALSE) 

end: {WriteFtle} 

{On error, exit to main event loop} 

{Flush volume buffer [11:8.1.3)} 

{Check for error} 

{On error, exit to main event loop} 

{Mark window as clean} 

{---------------------------------------------------------------------------------------} 

procedure DoRevert: 

{ Handle Revert to Saved command [Prog. 11:8-4]. 

const 
maxLength 

var 
the Data 
dataHandle 
editHandle 
f ileName 
textLength 
the Item 
resultCode 

begin {DoRevert} 

32767: 

WDHandle: 
Handle: 
Handle: 
Str255: 
LONGINT: 
INTEGER: 
OSErr: 

dataHandle := Handle(GetWRefCon(TheWindow)): 
MoveHHi (dataHandle): 
HLock (dataHandle); 

theData := WDHandle(dataHandle): 
with theDataAA do 

begin 

{Maximum document length in bytes} 

{Handle to window's data record} 

{Untyped handle for locking data record [1:3.1.1]} 

{Untyped handle for locking edit record [1:3.1.1)} 

{Title of window [1:2.1.1]} 

{Length of file in bytes} 

{Item number returned by alert) 

{ J/O error code [1:3 .1.2] ) 

{Get window data [11:3.2.4]} 

{Move data record to top of heap [1:3.2.5]} 

{Lock data record [1:3.2.4]) 

{Convert to typed handle) 

if dirty then {Have window contents been changed?} 

begin 
GetWTi tle (TheWindow. fileName) : {Get file name from window title [Il:3.2.4)} 

ParamText ( fileName. • • . • • , • ') : {Substitute into text of alert [Il:7.4.6]} 

Ini tCursor: {Set anow cursor [Il:2.5.2]} 

theltem : = CautionAlert (Revert ID. NIL): {Post alert [Il:7.4.2]} 



488 Appendix H 

if the!tem = Cancel then 

begin 

HUnlock (dataHandle): 

ErrorFlag := TRUE: 

EXIT (DoRevert) 

end {if theltem =Cancel) 

end: {if dirty) 

SetCursor (WatchAA): 

{Did user cancel? (11:7.1.1)) 

{Unlock data record [1:3.24)} 

{Force exit to main event loop) 

{Skip rest of operation) 

{Indicate delay (11:2.5.2]) 

resultCode := GetEOF (fileNumber, textLength): {Get length of file (11:8.2.5]} 

if textLength > maxLength then {File too long?} 

begin 

GetWTi tle (TheWindow. fileName): {Get file name from window title [II:3.2.4]} 

ParamText (fileName, ''• '', ''): {Substiwteintotextofalert[ll:7.4.6]} 

Ini tCursor: (Set arrow cursor [II:2.5.2]} 

theitem : = StopAlert (TooLongID. NIL) : {Post alert [II:7.4.2]} 

ErrorFlag ·= TRUE 

end {then} 

else 

IOCheck (resultCode): 

if ErrorFlag then 

begin 

HUnlock (dataHandle): 

EXIT (DoRevert) 

end: {if ErrorFlag} 

(Force exit} 

{Check for 1/0 error} 

{Error detected?} 

{Unlock data record [1:3.24]} 

{Exit to main event loop) 

resul tCode : = SetFPos ( f ileNumber, FSFromStart, 0) : {Set mark at beginning of file (11:8.2.4)) 

IOCheck (resul tCode): {Check for error) 

if ErrorFlag then {Error detected?} 

begin 

HUnlock (dataHandle): 

EXIT (DoRevert) 

end: {if ErrorFJag) 

editHandle := Handle(TheText): 

MoveHHi (editHandle): 

HLock (editHandle): 

with TheTextAA do 

begin 

{Unlock data record [1:3.24]} 

{Exit to main event loop) 

{Convert to untyped handle [1:3.1.1]} 

{Move edit record to top of heap [1:3.2.5]} 

{Lock edit record [1:3.2.4]} 

SetHandleSize (hText, textLength): {Adjust text to length of file [1:3.2.3, Il:S.1.1)) 

teLength : = textLength: {Set text length [11:5.1.1]} 



489 MiniEdit Source Listing 
~~~~~~~~~~~~~~~ 

MoveHHi (hText):
HLock (hText):

{Move block to top of heap [!:3.2.5)}

{Lock text handle [!:3.2.4]}

resultCode := FSRead (fileNumber. textLength. hTextA):
{Read text of file into block (11:8.2.3] }

IOCheck (resultCode):
HUnlock (hText)

end: {with theTextM}

HUnlock (editHandle):

if ErrorFlag then
begin

HUnlock (dataHandle):
EXIT (DoRevert)

end {if Error.Flag)

end: {with lheDataM)

HUnlock (dataHandle):

if not FinderPrint then
begin

TECalText (TheText);
AdjustScrollBar:
TESetSelect (0, 0, TheText):

InvalRect (TheWindowA.portRect):
WindowDirty (FALSE)

end {if not FinderPrint}

end: {DoRevert)

{Check for error}

{Unlock text handle [!:3.2.4]}

{Unlock edit record (1:3.2.4]}

{Error detected during read?}

{Unlock data record [1:3.2.4]}

{Exit to main event loop}

{Unlock data record [!:3.2.4)}

{Printing from Finder?}

{Wrap text to window [11:5.3.1)}

{Adjust scroll bar to length of text}

{Set insertion point at beginning (11:5.4.2]}

{Force update to redraw text (11:3.4.2)}

{Marlc window as clean}

(---)

procedure DoSetup;

{ Handle Page Setup ... command [Prog. ill:4-l].

var
confirmed

begin {DoSetup}

InitCursor:

BOOLEAN;

confirmed := PrStlDialog (ThePrintRec)

end: {DoSetup}

{Did user click OK button?}

{Set arrow cursor (11:2.5.2]}

{Present style dialog [IIl:4.2.3]}

490 Appendix: H

{ - - - - - - ---- ------- -------- -- - ------.- -- - - - - - ----- ------------------ -- --- -- --- -- --- -- - ----}

procedure DoPrint:

{ Handle PrinL .. command [Prog. ill:4-S].

var

confirmed
numCopies

copyCount

begin {DoPrint}

InitCursor:

BOOLEAN:
INTEGER:

INTEGER:

confirmed := PrJobDialog (ThePrintRec):
if not confirmed then EXIT (DoPrint):

with ThePrintRecAA.prJob do

if bJDocLoop = BDraftLoop then
begin

numCopies iCopies:
Dialog ID ·= Draft ID

end {then}

else
begin

numCopies 1;

DialogID Spool ID
end: {else}

for copyCount 1 to numCopies do
if PrError = NoErr then

begin

ThisCopy := copyCount:

{Did user click OK button?}

{Number of times to image document}

{Counter for imaging document)

{Set arrow cursor [II:2.S.2)}

{Present job dialog [IIl:4.2.3]}

{If not confirmed, just exit to main event loop}

{Look in job subrecord [Ill:4.1.2]}

{Draft printing requested? [IIl:4.l.5]}

{Image each copy separately [Ill:4.l.5]}

{Use Draft Printing dialog}

{Image just once}

{Use Spooling dialog}

{Loop on munber of copies}

{Check for errors [Ill:4.2.4] }

{Save in a global for filter function}

SetCursor (Watch AA): {Indicate delay [II:2.S.2]}

ThePrintPort PrOpenDoc (ThePrintRec, NIL. NIL): {Openprintingport[Ill:4.3.1]}

InitCursor:

if PrError = NoErr then
begin

ImagePrep:
ImageDoc

end: {if PrError NoErr}

{Restore normal cursor (11:2.5.2]}

{Check for errors [Ill:4.2.4] }

{Prepare for imaging}

{Image the document}

491 MiniEdit Source Listing
~~~~~~~~~~~~~~~ 

PrCloseDoc (ThePrintPort) 

end: {if PrError = NoErr} 

SetPort (TheWindow): 

if PrError = NoErr then 

SpoolPrint: 

IOCheck (PrError): 

PrSetError (NoErr) 

end: {DoPrint} 

{Cose printing port [111:4.3.1]} 

{Restore window as current port [1:4.3.3]} 

{Check for errors [111:4.2.4]} 

{Print spool file, if any} 

{Post error alert, if any [111:4.2.4]} 

{ aear error for next time [111:4.2.4]} 

{---------------------------------------------------------------------------------------} 

procedure ImagePrep: 

{ Prepare document for imaging [Prog. ID:4-3]. 

var 

hMargin 

vMargin 

textRect 

INTEGER: 

INTEGER: 

Rect: 

begin {ImagePrep} 

GetWTitle (TheWindow. DocName): 

with TheWindowA do 

begin 

TextFont (txFont): 

TextSize (txSize): 

TextFace (txFace) 

end: {with TheWindowA} 

with ThePrintRecAA.prinfo do 

begin 

hMargin 

vMargin 

ROUND(PrintMargin * iHRes): 

·= ROUND(PrintMargin * iVRes): 

textRect ·= rPage: 

InsetRect (textRect. hMargin. vMargin) 

end: {with ThePrintRecM.prlnfo} 

TEPrint := TENew (textRect, textRect): 

{Horizontal page margin in printer dots} 

{Vertical page margin in printer dots} 

{Boundary of printed page [1:4.1.2)} 

{Get document name from active window (Il:3.2.4]} 

{Copy window's text characteristics to 

{ current (printing) port [I:S.3.1, 1:8.3.2)} 

{Use info subrecord [111:4.1.2]} 

{Scale page margin by printer's horizontal} 

{ and vertical resolution [111:4.1.3) } 

{Start with printer's page rectangle [111:4.1.3] } 

{Inset by page margins [1:4.4.4]} 

{Open an edit record [II:S.2.2, ill:4.1.3]} 



492 Appendix H 

with TEPrintAA, viewRect do 

begin 

{Use view rectangle [Il:S.1.1]} 

PageHeight 

Lines Per Page 

PageHeight 

bottom 

·= bottom - top: {Find height of text page [1:4.1.2]} 

PageHeight div lineHeight: {Find lines per page [Il:S.1.1]} 

LinesPerPage * lineHeight: {Truncate to whole number of lines [Il:S.1.1]} 

: = top + PageHeight: {Get rid of partial line [1:4.1.2)} 

destRect ·= viewRect: 

DisposHandle (hText): 

hText TheTextAA.hText: 

teLength := TheTextAA.teLength 

end: (with TEPrint'"\ ViewRect} 

SetCursor (WatchAA): 

TECalText (TEPrint): 

InitCursor: 

ThisPage ·= O: 

NextLine 1 

end: {lmagePrep} 

{Adjust destination rectangle [Il:S.1.1]} 

{Dispose of empty text handle [1:3.2.2, II:S.1.1]} 

{Install text from main edit record [Il:S.1.1]} 

{Set text length [Il:S.1.1]} 

{Indicate delay [Il:2.5.2]} 

{Wrap text to page [II:S.3.1]} 

{Restore nonnal cursor [I1:2.5.2]} 

{Initialize page number} 

{Initialize line count} 

{---------------------------------------------------------------------------------------} 

procedure ImageDoc: 

{ Image document [Prog. ill:4-6]. 

var 

dlgStorage 

the Item 

printFinished 

begin {ImageDoc} 

DialogRecord: 

INTEGER: 

BOOLEAN: 

PrintSuspended ·= FALSE: 

printFinished ·= FALSE: 

ParamText (' ', '' , • • , • •): 

{Storage for dialog [Il:7.l.1]} 

{Item number returned by dialog} 

{Imaging complete?} 

{Clear pause flag} 

{Clear completion flag} 

{Clear previous dialog text, if any [Il:7.4.6]} 

TheDialog GetNewDialog (DialogID. @dlgStorage, WindowPtr(-1)): 

{Make dialog from template [I1:7.2.2]} 



while (not printFinished) and 
(PrError = NoErr) do 

begin 

ModalDialog (@ImageFilter. theitem): 

case theitem of 
PausePrint: 

DoPause: 
CancelPrint: 

PrSetError (IPrAbort): 
FinishPrint: 

printFinished ·= TRUE 
end {case theltem} 

end: {while} 

CloseDialog (TheDialog): 
TEPrintAA.hText := NIL: 
TEDispose (TEPrint) 

end: {lmageDoc} 

{Stop on completion 
{ or on error [IIl:4.2.4]} 

{Run the dialog [11:7.4.3)} 

{Toggle Pause/Resume button} 

{Cancel further printing [1Il:4.2.4]} 

{Tenninate loop} 

{Close dialog [II:7.2.3]} 

{Avoid deallocating text [Il:S.1.1]} 

{Dispose of edit record [Il:S.2.2]} 

{-------------------·---------·---------------------------------------------------------} 

function ImageFilter {(thisDialog DialogPtr: 
{ var thisEvent EventRecord: 

var itemNumber INTEGER) : BOOLEAN}: 

Process event while imaging document [Prog. il:4-8]. 

var 
dummyDialog 
dummy Item 

begin {ImageFilter} 

SystemTask: 

DialogPtr: 
INTEGER: 

case thisEvent.what of 

NullEvent: 
ImageFilter ·= ImagePage (itemNumber): 

KeyDown: 

{Dialog pointer from DialogSelect [11:7.4.4)} 

{Item number from DialogSelect [Il:7.4.4]} 

{Do system idle processing (11:2.7.2)} 

{Dispatch on event type [11:2.1.1]} 

{Image one page} 

ImageFilter Fil terKey (thisEvent. i temNumber): {Process keystroke} 



494 Appendix H 

UpdateEvt: 
if SystemEvent (thisEvent) then 

ImageFilter := FALSE 

{System window? [IIl:6.2.2]} 

{SystemEvent does the updating} 

else if IsDialogEvent (thisEvent) then {Dialog window? [11:7.4.4]} 

ImageFilter DialogSelect (thisEvent, dummyDialog, dummyitem) 

else 
begin 

TheEvent ·= thisEvent: 
DoUpdate: 
ImageFilter FALSE 

end; {else} 

otherwise 

ImageFilter := FALSE 

end {case thisEvent.what} 

end; {ImageFilter} 

{Update dialog window [11:7 .4.4]} 

{Copy to global variable for DoUpdate} 

{Update application window) 

{Continue dialog) 

{Handle as nounal event) 

{---------------------------------------------------------------------------------------} 

function FilterKey { var thisEvent EventRecord: 

{ var itemNumber INTEGER) : BOOLEAN}; 

Process keystroke in printing dialog [Prog. ID:4-9]. 

var 
chCode 
ch 

cmdDown 

INTEGER: 
CHAR; 

BOOLEAN: 

begin {FilterKey) 

with thisEvent do 
begin 

{Character code from keyboard event) 

{Character that was typed) 

{Command key down?) 

cmdDown ·= (BitAnd (modifiers. CmdKey) <> O): {TestCommandkey[I:2.2.2,11:2.1.l,Il:2.1.S]} 

chCode Bi tAnd (message, CharCodeMask) : {Get character code (1:2.2.2, Il:2.1.1, Il:2.1.4]) 

ch CHR(chCode) {Convert to a character} 

end: {with thisEvent) 

FilterKey ·= FALSE: 
itemNumber 0; 

{Assume normal event processing} 

{Initialize to no item} 



if cmdDown then 
begin 

FilterKey ·= TRUE: 

case ch of 

'.': itemNumber ·= CancelPrint: 

',': itemNumber PausePrint: 

otherwise 

FilterKey ·= FALSE 

end {case ch} 

end {then} 

end: {FilterKey} 

{Command key down?} 

{Masquerade as a pushbutton} 

{Command-period means Cancel} 

{Command-comma means Pause/Resume} 

{Report as nonnal event} 

{---------------------------------------------------------------------------------------} 

function ImagePage {(var itemNumber : INTEGER) : BOOLEAN}: 

{ hnage one page [Prog. ill:4-4]. 

var 
copyString 
pageString 
editHandle 

begin {ImagePage} 

Str255: 
Str255: 
Handle: 

if PrintSuspended then 
begin 

ImagePage := FALSE: 
EXIT (ImagePage) 

end: {if PrintSuspended} 

ThisPage := ThisPage + 1: 
NumToString (ThisPage, pageString): 
NumToString (ThisCopy. copyString): 

{Copy number in string form (1:2.1.1]} 

{Page number in string form (1:2.1.1]} 

{Untyped handle for locking edit record [1:3.1.1)} 

{Imaging temporarily suspended?} 

·{Just continue dialog} 

{Skip page imaging} 

{Advance page number} 

{Convert numbers to } 

{ string form [1:2.3.7]} 

ParamText (copyString, pageString, DocName. ''): {Substitute into dialog text [II:7.4.6)} 

DrawDialog (TheDialog): {Update text on screen [Il:7.4.1]) 



496 Appendix H 

editHandle := Handle(TEPrint): 
MoveHHi (editHandle): 
HLock (editHandle): 

with TEPrintAA do 

begin 

PrOpenPage (ThePrintPort, NIL): 

{Convert to untyped handle [1:3.1.1)} 

{Move edit record to top of heap [1:3.2.S]} 

{Lock edit record [1:3.2.4]} 

{Open the page [111:4.3.2)} 

if PrError = NoErr then {Check for errors [111:4.2.4]} 

begin 
TEUpdate (viewRect, TEPrint): {Draw text [II:S.3.2]} 

OffsetRect (destRect, 0, -PageHeight): {Scroll to next page [1:4.4.4]} 

NextLine := NextLine + LinesPerPage 
end: {if PrError = NoErr} 

{Advance line count} 

PrClosePage (ThePrintPort) : 

if PrError <> NoErr then 
begin 

itemNumber := O: 

ImagePage := TRUE 
end {if PrError <> NoErr} 

else if NextLine > nLines then 
begin 

itemNumber := FinishPrint: 
ImagePage ·= TRUE 

end {if NextLlne > nLines} 

else 
ImagePage 

end: {with TEPrintM} 

HUnlock (editHandle) 

end: {lmagePage} 

FALSE 

{Close the page [111:4.3.2)} 

{Any errors? [111:4.2.4]} 

{Use dummy item number} 

{Force exit from dialog) 

{Last line printed? [Il:S.1.1]} 

{Signal completion} 

{Force exit from dialog} 

{Continue dialog} 

{Unlock edit record [1:3.2.4)} 

{---------------------------------------------------------------------------------------} 

procedure DoPause; 

{ Toggle Pause/Resume button [Prog. ill:4-7]. 

var 

itemType INTEGER: {Item type for Pause/Resume button} 



497 MiniEdit Source Listing 
~~~~~~~~~~~~~~~ 

itemRect

itemHandle

theButton

begin {DoPause}

Rect:

Handle:

ControlHandle:

PrintSuspended := not PrintSuspended:

GetDitem (TheDialog, PausePrint,

itemType, itemHandle, itemRect):

theButton := ControlHandle(itemHandle):

if PrintSuspended then

SetCTi tle (theButton, 'Resume')

else

SetCTi tle (theButton, 'Pause')

end: {DoPause}

{Display rectangle for Pause/Reswne button}

{Item handle for Pause/Resume button}

{Control handle to Pause/Resume buuon (Il:6.1.1]}

{Toggle pause flag}

{Get item handle (Il:7.3.1]}

{Convert to typed handle [Il:6.1.1]}

{Printing now suspended?}

{Change buuon to Resume (Il:6.2.3]}

{Change back to Pause (Il:6.2.3]}

{---}

procedure SpoolPrint:

{ Print spooled document [Prog. m:4-10].

var

dlgStorage

theitem

DialogRecord:

INTEGER:

begin {SpoolPrint}

with ThePrintRecAA.prJob do

if (bJDocLoop <> BSpoolLoop) then

EXIT (SpoolPrint)

else

pidleProc @SpoolBackground:

ThisCopy ·= 0:

ThisPage ·= O:

{Storage for dialog [Il:7 .1.1] }

{Item number returned by dialog}

{Look in job subrecord [m:4.1.2]}

{Is there a spool file? [m:4.15]}

{ff not, just exit}

{Install background procedure [1Il:4.1.S]}

{ lnitializ.e copy and}

{ page counts }

TheDialog : = GetNewDialog (SpoolPrintID. @dlgStorage. WindowPtr (-1)): {Open dialog [Il:7.2.2]}

PrPicFile (ThePrintRec, NIL. NIL. NIL. PrintStatus): {Print spool file [ID:4.3.3]}

CloseDialog (TheDialog) {Close dialog [Il:7.2.3]}

end: {SpoolPrint}

498 Appendix H

{---}

procedure SpoolBackground:

{ Background procedure for spool printing [Prog. ill:4-11].

begin {SpoolBackground}

ShowSpoolStatus:
DoSpoolEvent

end: {SpooIBackground}

{Display status on screen}
{Handle mouse and keyboard}

{ - - --- - - --- -- --- - --------- --- -- -- --" ----- -- -------- -- - -- -- -- - -- --- - - --- -- --- ----- ----- -- }

procedure ShowSpoolStatus:

{ Display status during spool printing [Prog. ill:4-13].

var
cur Page
last Page
copyString
pageString
lastString

INTEGER:
INTEGER:
Str255:
Str255:
Str255:

begin {ShowSpoolStatus}

with PrintStatus, ThePrintRecAA.prJob do
begin

(Current page number}
{Last page to be printed}
{Current copy number in string form (1:2.1.1]}

{Current page number in string form (1:21.1]}

{Last page number in string form [1:2.1.1]}

if not (iCurCopy in [l. . iTotCopies]) or {Copy or page count)
not (iCurPage in (1 .. iTotPages]) then { out of range? [Ill:4.1.7)}

EXIT (ShowSpoolStatus):
if (iCurCopy = ThisCopy) and

(iCurPage = ThisPage) then
EXIT (ShowSpoolStatus):

cur Page
lastPage

(iFstPage - 1) + iCurPage:
(iFstPage - 1) + iTotPages:

NumToString (iCurCopy. copyString):
NumToString (curPage, pageString):
NumToString (lastPage, lastString):

{Suppress spurious numbers}
{Copy and page counts unchanged }
{ since last time? [III:4.l.7]}

{A void screen flicker}

{Convert to document-relative}
{ page numbers [Ill:4.l.S, ill:4.1.7])

{Convert numbers to string form}
{ [1:2.3.7, ill:4.l.7] }

499 MiniEdit Source Listing
~~~~~~~~~~~~~~~ 

ParamText (copyString, DocName, pageString, last String): {Substitute into dialog text [II:7.4.6]) 

ShowWindow (TheDialog): {Display dialog window [Il:3.3.1]} 

DrawDialog (TheDialog): {Update text on screen [II:7.4.1]} 

This Copy 
ThisPage 

iCurCopy: 
iCurPage 

end {with PrintStatus, ThePrintRecM.prJob} 

{Save "raw" copy and page COWlts} 

{ for comparison next time } 

end : { ShowSpoolStatus} 

{-----------------------------------------------------------------------------------------} 

procedure DoSpoolEvent: 

{ Process event during spool printing [Prag. ID:4-12}. 

var 
click 
the Item 

BOOLEAN: 
INTEGER: 

(Mouse clicked in a pushbutton?} 

{Item number of pushbutton} 

begin {DoSpoolEvent} 

repeat 

SystemTask: {Do system idle processing [II:2.7.2]} 

click := FALSE: {Assume no reportable event} 

if GetNextEvent (EveryEvent. TheEvent) then {Any events? [II:2.2.111:2.1.3]} 

case TheEvent.what of {Dispatch on event type [II:2.1.1]} 

MouseDown: 

click DialogSelect (TheEvent, TheDialog, the!tem): 
{Relay mouse click to dialog [II:7.4.4]} 

KeyDown: 
click Fil terKey (TheEvent, the!tem) : {Convert keystroke to pushbutton} 

UpdateEvt: 
if not SystemEvent (TheEvent) then {One of our windows? [III:6.2.2]} 

begin 
if IsDialogEvent (TheEvent) then {Dialog window? [II:7.4.4]} 

click ·= DialogSelect (TheEvent. TheDialog, the!tem) 
{Update dialog window [II:7.4.4]} 

else 
DoUpdate 

end {if not SystemEvent (TheEvent)} 

{Update document window} 



500 Appendix H 

end: {case TheEvent.what} 

if click then 

case theltem of 

PausePrint: DoPause: 

CancelPrint: PrSetError (IPrAbort) 

end {case theltem} 

until (not PrintSuspended) 

or (PrError <> NoErr) 

end: {DoSpoolEvent} 

{Pushbutton clicked?} 

{Dispatch on item number} 

{Toggle Pause/Resume button} 

(Cancel further printing [III:4.2.4]} 

(Keep control if suspended } 

( or Wltil canceled (111:4.24]} 

{---------------------------------------------------------------------------------------} 

procedure DoQui~; 

{ Handle Quit command [Prog. 11:2-4]. 

begin {DoQuit} 

Quitting := TRUE {Start closing down windows} 

end: {DoQuit} 

{---------------------------------------------------------------------------------------} 

procedure DoEditChoice {(theltem : INTEGER)}: 

{ Handle choice from Edit menu [Prog. 11:4-9). 

con st 

undoCmd O: 
cutCmd 2: 

copyCmd 3: 

pasteCmd 4; 
clearCmd 5: 

begin {DoEditChoice} 

case theltem of 

Undo!tem: 

if not SystemEdit (undoCmd) then 

DoUndo: 

{Constant representing Undo command [11:4.S.3]} 

{Constant representing Cut command (11:4.5.3]} 

{Constant representing Copy command [11:4.5.3)} 

{Constant representing Paste command [11:4.5.3]} 

{Constant representing Oear command (11:4.5.3)} 

{Intercepted by a desk accessory? [11:4.5.3)} 

{Handle Undo command} 



501 Min1Edit Source Listing 
~~~~~~~~~~~~~~~ 

Cut!tem:

if not SystemEdit (cutCmd) then
DoCut:

Copy Item:

if not SystemEdit (copyCmd) then
DoCopy:

Paste!tem:
if not SystemEdit (pasteCmd) then

DoPaste:

Clear!tem:

if not SystemEdit (clearCmd) then

Do Clear

end {case theltem}

end: {DoEditChoice}

{Intercepted by a desk accessory? [Il:4.5.3]}

{Handle Cut command}

{Intercepted by a desk accessory? [Il:4.S.3]}

{Handle Copy command}

{Intercepted by a desk accessory? [Il:4.5.3]}

{Handle Paste command}

{Intercepted by a desk accessory? [Il:4.5.3]}

{Handle Oear command}

{---}

procedure DoUndo:

{ Handle Undo command.

begin {DoUndo}

SysBeep(l) {Undo command not implemented [Il:2.8.1]}

end: {DoUndo}

{---}

procedure DoCut:

{ Handle Cut command [Prog. Il:S-8].

begin {DoCut}

ScrollToSelection: {Make sure selection is visible}

TECut (TheText) : {Cut the selection [Il:S.S.2] }

AdjustScrollBar: {Ad just scroll bar to length of text)

502 Appendix H

AdjustText:
ScrollToSelection:

Disableitem (EditMenu, Cutitem):

Disable!tem (EditMenu, Copyitem):
Disableitem (EditMenu, Clearitem):

Enableitem (EditMenu. Pasteitem):

ScrapDirty := TRUE:
WindowDirty (TRUE)

end: {DoCut}

{Adjust text to match scroll bar}

{Keep insertion point visible}

{Disable menu items that operate on}

{a nonempty selection (11:4.6.2)}

{Enable Paste command [ll:4.6.2]}

{Mark scrap as dirty}

{Mark window as dirty}

{---}

procedure DoCopy:

{ Handle Copy command [Prog. 11:5-9].

begin {DoCopy}

ScrollToSelection: {Make sure selection is visible}

TECopy (TheText): {Copy the selection [11:5.5.2)}

Enableitem (EditMenu, Pasteltem): {Enable Paste command [ll:4.6.2]}

ScrapDirty TRUE {Mark scrap as dirty}

end: {DoCopy}

{---·-------------------}

procedure DoPaste:

{ Handle Paste command [Prog. II:5-10].

begin {DoPaste}

ScrollToSelection: {Make sure selection is visible}

TEPaste (TheText): {Paste the scrap (11:5.5.2]}

AdjustScrollBar: {Adjust scroll bar to length of text}

503 MinfEdit Source Listing
~~~~~~~~~~~~~~~ 

AdjustText: 
ScrollToSelection: 

Disable!tem (EditMenu, Cut!tem): 
Disable!tem (EditMenu, Copy!tem): 
Disable!tem (EditMenu, Clear!tem): 

WindowDirty (TRUE) 

end: {DoPaste} 

{Adjust text to match scroll bar} 

{Keep selection visible} 

{Disable menu items that operate on} 

{ a nonempty selection [Il:4.6.2]} 

{Mark window as dirty} 

{---------------------------------------------------------------------------------------} 

procedure DoClear: 

{ Handle Oear command [Prog. Il:S-11]. 

begin {DoClear} 

ScrollToSelection: 

TEDelete (TheText): 

AdjustScrollBar: 
AdjustText: 
ScrollToSelection: 

Disable!tem (EditMenu. Cut!tem): 
Disable!tem (EditMenu. Copy!tem); 
Disable!tem (EditMenu. Clear!tem): 

WindowDirty (TRUE) 

end: {DoOear} 

{Make sure selection is visible} 

{Delete the selection [Il:S.5.3]} 

{Adjust scroll bar to length of text} 

{Adjust text to match scroll bar} 

{Keep insertion point visible} 

{Disable menu items that operate on} 

{ a nonempty selection [Il:4.6.2]} 

{Mark window as dirty} 

{------------------------------··-------------------------------------------------------} 

procedure DoSysClick {(whichWindow : WindowPtr)}: 

{ Handle mouse-down event in system window. 

begin {DoSysClick} 

SystemClick (TheEvent. whichWindow) {Pass event to Toolbox for handling [Il:3.5.3]} 

end: {DoSysClick} 



504 Appendix H 

{---------------------------------------------------------------------------------------} 

procedure DoContent {(whichWindow : WindowPtr)}: 

{ Handle mouse-down event in content region of active window [Prog. 11:6-1). 

var 
thePoint 
theControl 
thePart 

begin (DoContent} 

Point: 
ControlHandle: 
INTEGER: 

if whichWindow <> FrontWindow then 
SelectWindow (whichWindow) 

else 
begin 

thePoint := TheEvent.where: 
GlobalToLocal (thePoint): 

{Location of click in window coordinates [1:4.1.l]} 

{Handle to control [Il:6.l.l]} 

{Part of control where mouse was pressed [Il:6.4.1]} 

{Is it an inactive window? [11:3.3.3]) 

{If so, just activate it [Il:3.5.2]} 

{Get point in screen coordinates [11:2.1.1]) 

{Convert to window coordinates [1:4.4.2)} 

thePart := FindControl (thePoint. whichWindow, theControl): 

if theControl = TheScrollBar then 
DoScroll (thePart, thePoint) 

else if theControl = NIL then 

{Was mouse pressed in a control? [11:6.4.1]} 

{Was it in the scroll bar?} 
{Go scroll the window} 

{Not in a control?} 

if PtinRect (thePoint, TheText"'"'. viewRect) then {Was it in the text rectangle? [1:4.4.3]} 

DoSelect (thePoint) {Go handle text selection} 

end {else} 

end: {DoContent} 

{---------------------------------------------------------------------------------------} 

procedure DoScroll {(thePart : INTEGER: thePoint : Point)}: 

{ Handle mouse-down event in scroll bar [Prog. 11:6-6]. 

begin {DoScroll} 



505 MiniEdit Source Listing 
~~~~~~~~~~~~~~~~ 

if thePart InThumb then {Dragging the indicator? [II:6.4.1])

begin

thePart ·= TrackControl (TheScrollBar, thePoint. NIL):

AdjustText
end {then}

else

{Track mouse with no action procedure [11:6.4.2)}

{Adjust text to new setting}

thePart TrackControl (TheScrollBar, thePoint, @ScrollText)

{Track mouse with continuous scroll [II:6.4.2]}

end: {DoScroll}

{---}

procedure ScrollText {(theControl: ControlHandle: thePart : INTEGER)}:

{ Scroll text within window [Prog. II:6-8].

var
delta

old Value
INTEGER:

INTEGER:

begin {ScrollText}

case thePart of

inUpButton:

delta := -1:

inDownButton:

delta := +1:

inPageUp:
with TheTextAA, viewRect do

{Amount to scroll by. in lines}

{Previous setting of scroll bar}

{Scroll up one line at a time}

{Scroll down one line at a time}

delta := (top - bottom) div lineHeight + 1: {Scroll up by height of text rectangle [II:S .1.1] }

inPageDown:
with TheTextAA, viewRect do

delta (bottom - top) div lineHeight - 1: {Scroll down by height of text rectangle [11:5.1.1]}

otherwise
(Do nothing}

506 Appendix H

end: {case thePart}

if thePart <> 0 then

begin

(Is mouse still in the original part?}

oldValue GetCtlValue (theControl): {Get old setting [II:6.24]}

SetCtlValue (theControl, oldValue + delta): {Adjust by scroll amowtt [Il:6.2.4]}

Adjust Text

end {if thePart <> O}

end: {ScrollText}

{Scroll text to match new setting}

{---}

procedure AdjustText:

{ Adjust text within window to match scroll bar setting [Prog. Il:6-7].

var

old Scroll

newScroll

begin {AdjustText}

INTEGER:

INTEGEE.:

with TheTextAA do

begin

{Old text offset in pixels}

{New text offset in pixels}

old Sc roll · = viewRect. top - destRect. top: {Get current offset [II:S.1.1)}

newScroll ·= GetCtlValue (TheScrollBar) • lineHeight: {Scroll bar gives new offset [II:6.2.4]}

if oldScroll <> newScroll then {Any difference?}

TE Scroll (0, (oldScroll - newScroll), TheText) {Scroll by difference [II:S.3.3)}

end {with TheTextAA}

end: {AdjustText}

{---}

function AutoScroll { : BOOLEAN}:

{ Handle automatic scrolling during text selection [Prog. Il:6-9].

var

mousePoint Point: {Mouse location in local {window) coordinates [1:4.1.1)}

507 MiniEdit Source Listing
~~~~~~~~~~~~~~~ 

textRect 
saveClip 

begin {AutoScroll} 

Rect: 

RgnHandle: 

saveClip := NewRgn: 

GetClip (saveClip): 

ClipRect (TheWindow". portRect): 

GetMouse (mousePoint): 

textRect := TheText"".viewRect: 

if mousePoint.v < textRect.top then 

ScrollText (TheScrollBar. InUpButton) 

{Active window's text rectangle [I:4.1.2]} 

{Original clipping region on entty (1:4.1.5]} 

{Create temporaty region [1:4.1.6]} 

{Set it to existing clipping region [1:4.3.6]} 

{Clip to entire port rectangle [I:4.3.6. 1:4.2.2]} 

{Find mouse location [11:2.4.1)} 

{Get text rectangle [Il:5.1.1]} 

{Above top of rectangle? [1:4.1.1. 1:4.1.2]} 

{Scroll up one line [Il:6.4.l]} 

else if mousePoint. v > textRect. bottom then {Below bottom of rectangle? (1:4.1.1. 1:4.1.2]} 

Sc roll Text (The Sc rollBar. InDownButton) {Scroll down one line [11:6.4.1]) 

{else do nothing}: 

Set Clip (saveClip) : 
DisposeRgn (saveClip): 

AutoScroll TRUE 

end: {AutoScroll} 

{Restore original clipping region [1:4.3.6]} 

{Dispose of temporary region (I:4.1.6]} 

{Continue tracking mouse [Il:5.6. l]} 

{---------------------------------------------------------------------------------------} 

procedure DoSelect {(thePoint : Point)}: 

{ Handle mouse-down event in text rectangle [Prog. 11:5-4]. 

var 

extend : BOOLEAN: {Extend existing selection (Shift-click)?} 

begin {DoSelect} 

with TheEvent do 
extend : = (BitAnd (modifiers. ShiftKey) <> 0): {Shift key down?[I:2.2.21 11:2.1.5)) 

TEClick (thePoint, extend. TheText): {Do text selection [Il:5.4.l]} 

FixEditMenu (Enable/disable menu items} 

end: {DoSelect} 



508 Appendix H 

{---------------------------------------------------------------------------------------} 

procedure FixEditMenu: 

{ Enable/disable editing commands [Prog. Il:5-5]. 

var 

editHandle : Handle: 

begin {Fi.xEditMenu} 

Disableitem (EditMenu, Undo!tem): 

editHandle := Handle(TheText): 
MoveHHi (editHandle): 
HLock (editHandle): 

with TheTextAA do 

if selStart = selEnd then 

begin 
Disableitem (EditMenu, Cutitem): 
Disableitem (EditMenu, Copyitem): 
Disableitem (EditMenu, Clearitem) 

end {then} 

else 
begin 

Enableitem (EditMenu. Cutitem): 
Enableitem (EditMenu. Copyitem): 
Enableitem (EditMenu, Clearitem) 

end: {else} 

HUnlock (editHandle): 

if TEGetScrapLen = 0 then 
Disableitem (EditMenu. Pasteitem) 

else 

Enableitem (EditMenu, Pasteitem) 

end: {Fix.EditMenu} 

{Untyped handle for locking edit record [1:3.1.1]} 

{Disable Undo command [Il:4.6.2]} 

{Convert to untyped handle [1:3.1.1]} 

{Move edit record to top of heap [1:3.2.5)} 

{Lock edit record [1:3.2.4]} 

{Is selection empty? [Il:5.1.1]} 

{Disable menu items that operate on} 

{ a nonempty selection [Il:4.6.2]} 

{Enable menu items that operate on } 

{ a nonempty selection [II:4.6.2]} 

{Unlock edit record [1:3.2.4)} 

{Is scrap empty? [Il:5.5.4]} 

{Disable Paste command [11:4.6.2)} 

{Enable Paste command [11:4.6.2)} 

{---------------------------------------------------------------------------------------} 

procedure DoDrag {(whichWindow : WindowPtr)}: 

{ Handle mouse-down event in drag region [Prog. Il:3-8]. 

var 

limitRect Rect: {Limit rectangle for dragging [1:4.1.2)} 



509 MiniEdit Source Listing 
~~~~~~~~~~~~~~~ 

begin {DoDrag}

SetRect (limitRect, 0, MenuBarHeight. ScreenWidth, ScreenHeight); {Setlimitrectangle[I:4.1.2]}

InsetRect (limitRect, ScreenMargin. ScreenMargin); {Insetbyscreenmargin[I:4.4.4]}

DragWindow (whichWindow, TheEvent.where. limitRect) {Let user drag thewindow [II:3.5.4]}

end; {DoDrag}

{--}

procedure DoGrow {(whichWindow: WindowPtr)}:

{ Handle mouse-down event in size region [Prog. 11:3-9).

var

sizeRect

newSize

newWidth

newHeight

begin {DoGrow}

Rect:

LONGINT;

INTEGER:

INTEGER:

SetRect (sizeRect,

MinWidth,

MinHeight.

ScreenWidth.

(ScreenHeight - MenuBarHeight)):

{Minimum and maximum dimensions of window [!:4.1.2]}

{Coded representation of new dimensions}

{New width of window}

{New height of window}

{Set size rectangle [!:4.1.2)}

{Maximum width is full screen}

{Maximum height is fullscreen minus menu bar}

newSize GrowWindow (whichWindow, TheEvent. where. sizeRect); {Let user drag size region [II:3.5.4]}

if newSize <> 0 then

begin

EraseRect (whichWindow~.portRect);

newWidth := LoWord(newSize):

newHeight := HiWord(newSize):

{Was size changed?}

{ aear window to white [!:5.3.2)}

{Extract width from low word [!:2.2.3]}

{Extract height from high word [!:2.2.3)}

SizeWindow (whichWindow, newWidth, newHeight, TRUE): {Adjustsizeofwindow[Il:3.3.2)}

InvalRect (whichWindow~.portRect):

FixScrollBar:

FixText

end {if newSize <> OJ

{Force update of window's contents [11:3.4.2)}

{Resize scroll bar}

{Resize text rectangle}

510 Appendix H

end: {DoGrow}

{---}

procedure FixScrollBar;

{ Resize window's scroll bar [Prog. 11:6-10].

begin {FixScrollBar}

HideControl (TheScrollBar):

with TheWindowA.portRect do

begin

MoveControl (TheScrollBar.

right - (SBarWidth - 1),

- 1) :

SizeControl (TheScrollBar.

SBarWidth,

{Hide scroll bar [11:6.3.1]}

(Move top-left comer [11:6.3.2)}

{ Allow for I -pixel overlap at right}

{Overlap window lop by 1 pixel}

{Adjust bottom-right comer [11:6.3.2]}

(bottom+ 1) - (top - 1) - (SBarWidth - 1)) {Allowroomforsizebox}

end: {with TheWindow1\portRect}

ShowControl (TheScrollBar): {Redisplay scroll bar [11:6.3.l]}

ValidRect (TheScrollBarAA_contrlRect) {Avoid updating again [11:3.4.2]}

end: {FixScrollBar}

{---}

procedure FixText:

{ Resire window's text rectangle [Prog. 11:6-11].

var

editHandle

topLine

firstChar

maxTop

begin {FixText}

Handle:

INTEGER;

INTEGER:

INTEGER:

{Untyped handle for locking edit record [!:3.1.1]}

{ First line visible in window}

{Character position of first character in window}

{Maximum value for top line in window}

511 MiniEdit Source Listing
~~~~~~~~~~~~~~~ 

SetCursor (WatchAA); 

editHandle := Handle(TheText): 

MoveHHi (editHandle): 

HLock (editHandle): 

with TheTextAA do 

begin 

{Indicate delay [11:2.5.2)} 

{Convert to untyped handle [1:3.1.1]} 

{Move edit record to top of heap [1:3.2.5]} 

{Lock edit record [1:3.2.4]} 

topLine GetCtl Value (These roll Bar): {Get previous first line [Il:6.2.4]} 

firstChar ·= lineStarts[topLine]: 

viewRect ·= TheWindowA.portRect: 

with viewRect do 

begin 

{Find first character previously visible [11:5.1.1)} 

{Display text in window's port rectangle [II:3.l.1]} 

right ·=right - (SBarWidth - 1): {Excludescrollbar,allowingforl-pixel overlap} 

bottom ·=bottom - (SBarWidth - l); {Leavespaceforscrollbaratbottom} 

bottom (bottom div lineHeight) • lineHeight {Getridofpartialline[Il:S.1.1]} 

end: {with viewRect} 

destRect : = viewRect: {Wrap to same rectangle [I1:5.l.l]} 

InsetRect (destRect. TextMargin. TextMargin): {Inset by text margin [1:4.4.4]} 

TECalText (TheText): 

AdjustScrollBar; 

ScrollCharacter (firstChar, FALSE) 

end : (with TheTextM} 

HUnlock (editHandle) 

end: {Fix.Text} 

{Recalibrate line starts [11:5.3.1]} 

{Adjust scroll bar to new lenglh} 

{Scroll same character to top of window} 

{Unlock edit record [1:3.2.4)} 

{---------------------------------------------------------------------------------------} 

procedure DoGoAway {(whichWindow : WindowPtr)}: 

{ Handle mouse-down event in close region [Prog. 11:3-10]. 

begin {DoGoAway} 

if TrackGoAway (whichWindow, TheEvent.where) then 

Do Close 

end: {DoGoAway} 

{Track mouse in close region [11:3.5.4]} 

{ and close window if necessary} 

{---------------------------------------------------------------------------------------} 



512 Appendix H 

procedure DoZoom ((whichWindow: WindowPtr: inOrOut INTEGER)}: 

{ Handle mouse-down event in zoom region [Prog. Il:3-11]. 

begin {DoZoom} 

with TheEvent do 

if TrackBox (whichWindow, where, inOrOut) then {Track mouse in zoom region [Il:3.5.4]} 

begin 

EraseRect (whichWindowA.portRect): {Clear window to white [1:5.3.2]} 

ZoomWindow (whichWindow, inOrOut, FALSE): {Zoom the window [Il:3.3.2]} 

InvalRect (whichWindowA.portRect): 

FixScrollBar: 

Fix Text 

end {if TrackBox (whichWindow, where, inOrOut)} 

end: {DoZoom} 

{Force update of window's contents [Il:3.4.2]} 

{Resize scroll bar} 

{Resize text rectangle} 

{---------------------------------------------------------------------------------------} 

procedure DoKeystroke: 

{ Handle keystroke [Prog. Il:4-4]. 

var 

ch Code 

ch 

menuChoice 

INTEGER: 

CHAR: 

LONGINT: 

begin {DoKeystroke} 

with TheEvent do 

begin 

{Character code from event message [1:8.1.1]} 

{Character that was typed} 

{Menu ID and item number for keyboard alias} 

chCode := BitAnd (message. CharCodeMask) : {Extract character code [1:2.2.2, Il:2.1.4]} 

ch := CHR(chCode): {Convert to a character} 

if BitAnd (modifiers. CmdKey) <> 0 then {Command key down? [1:2.2.2, Il:2.1.5]} 

begin 

if what <> AutoKey then {Ignore repeats [Il:2.l.1, Il:2.1.2]} 



513 MiniEdit Source Listing 
~~~~~~~~~~~~~~~ 

begin
menuChoice := MenuKey (ch):
DoMenuChoice (menuChoice)

end {if what<> AutoKey}

end {then}

else
DoTyping (ch)

end {with TheEvent}

end: {DoKeystroke}

{Get menu equivalent [Il:4.5.1]}

{Handle as menu choice}

{Handle as nonnal character}

{ -- -. - - - --- -- -- --- ---- -- - - - - - ---- - - - - - - ------ --- -- ----- --- -- - ---- ---- - - - --- -- ------ -- --- -}

procedure DoTyping {(ch : CHAR)}:

{ Handle character typed from keyboard [Prog. II:5-6].

begin {DoTyping}

if TheText = NIL then
begin

SysBeep(l):
EXIT

end: {if TheText =NIL}

ScrollToSelection;

TEKey (ch. TheText):

AdjustScrollBar:
AdjustText:
ScrollToSelection:

Disableitem (EditMenu. Cut!tem}:
Disableitem (EditMenu. Copyitem):
Disableitem (EditMenu. Clearitem):

WindowDirty (TRUE)

end: {DoTyping}

{Is screen empty?}

{Just beep [Il:2.8.l]}

{ and exit }

{Make sure insertion point is visible}

{Process character [Il:5.5.1]}

{Adjust scroll bar to length of text}

{Adjust text to match scroll bar}

{Keep insertion point visible}

{Disable menu items that operate on)

{ a nonempty selection [II:4.6.2] }

{Made window as dirty}

{---}

procedure DoUpdate:

514 Appendix H

{ Handle update event [Prog. Il:S-3).

var

savePort

whichWindow

theData

dataHandle

begin {DoUpdate}

GrafPtr:

WindowPtr:

WDHandle:

Handle:

GetPort (savePort):

{Pointer to previous current port [1:4.2.2)}

{Pointer to window to be updated [Il:3.1.1]}

{Handle to window's data record}

{Untyped handle for locking data record [1:3.1.1]}

{Save previous port [1:4.3.3)}

whichWindow : = WindowPt r(TheEvent. mes sage) : {Convert long integer to pointer [Il:3.1.1]}

Set Port (whichWindow) : {Make window the current port [1:4.3.3]}

BeginUpdate (whichWindow):

EraseRect (whichWindowA.portRect):

DrawGrowicon (whichWindow):

DrawControls (whichWindow):

{Restrict visible region to update region [Il:3.4.1]}

{Clear update region [I:S.3.2)}

{Redraw size box [Il:3.3.4]}

{Redraw scroll bar [Il:6.3.l]}

dataHandle := Handle (GetWRefCon (whichWindow)) : {Get window data [Il:3.2.4]}

MoveHHi (dataHandle): {Move data record to top of heap [1:3.2.S]}

HLock (dataHandle) : {Lock data record [1:3.2.4]}

theData := WDHandle(dataHandle):

with theDataAA do

{Convert to typed handle}

TEUpdate (editRecAA. viewRect. editRec): {Redraw the text [Il:S.3.2]}

HUnlock (dataHandle); {Unlock data record [1:3.2.4]}

EndUpdate (whichWindow): {Restore original visible region [Il:3 .4.1] }

SetPort (savePort) {Restore original port [1:4.3.3)}

end: {DoUpdate}

(---}

procedure DoActivate:

{ Handle activate (or deactivate) event [Prog. Il:S-14).

var

whichWindow WindowPtr: {Pointer to the window [11:3.1.1)}

begin {DoActivate}

with TheEvent do

begin

whichWindow := WindowPtr(message): (Convert long integer to pointer [11:3.1.1))

if BitAnd (modifiers. ActiveFlag) <> 0 then {Test activate/deactivate bit [1:2.2.2, II:2.l.5]}

ActWindow (whichWindow) {Activate window}

else

DeactWindow (whichWindow) {Deactivate window}

end {with TheEvent}

end: {DoActivate}

{---)

procedure ActWindow {(whichWindow : WindowPtr)):

{ Activate window.

const

active

var

O:

theData

dataHandle

begin {ActWindow}

WDHandle:

Handle:

{Highlighting code for active scroll bar [11:6.3.3)}

{Handle to window's data record}

{Untyped handle for locking data record [!:3.1.1)}

dataHandle : = Handle (GetWRefCon (whichWindow)): {Get window data [11:3.2.4]}

MoveHHi (dataHandle): {Move data record to top of heap [1:3.2.5]}

HLock (dataHandle): {Lock data record [1:3.2.4]}

theData := WDHandle(dataHandle):

with theDataA~ do

begin

The Window whichWindow:

TheScrollBar ·= scrollBar:

TheText editRec;

ThePrintRec printRec:

SetPort (whichWindow):

{Convert to typed handle}

{Set global pointers/handles}

{Make window the current port [1:4.3.3]}

516 Appendix H

DrawGrowicon (whichWindow):
HiliteControl (scrollBar, active):
TEActivate (editRec):

{Highlight or unhighlight siz.e box [Il:3.3.4]}

{Activate scroll bar [Il:6.3.3]}

{Highlight selection [Il:S.4.3] }

if BitAnd(TheEvent.modifiers, ChangeFlag) <> 0 then
{Coming from a system window? [1:2.2.2, Il:2.l.5]}

ReadDeskScrap: {Copy desk scrap to Toolbox scrap}

FixEditMenu:

Enableitem (FileMenu, SaveAsitem):
Enableitem (FileMenu, Setupitem):
Enableitem (FileMenu. Printitem):

if dirty then
Enableitem (FileMenu, Saveltem):

if dirty and (fileNumber <> 0) then
Enableitem (FileMenu, Revertltem}

end: {wilh lheDataM}

HUnlock (dataHandle)

end: {ActWindow}

{Enable/disable editing commands}

{Enable Save As ... command [Il:4.6.2]}

{Enable Page Setup ... command [Il:4.6.2])

{Enable PrinL .• command [Il:4.6.2]}

{Is document dirty?}
{Enable Save command [Il:4.6.2]}

{Is lb.ere a file to revert to?}
{Enable Revert command [Il:4.6.2]}

{Unlock data record [1:3.2.4]}

{---}

procedure DeactWindow {(whichWindow : WindowPtr)}:

{ Deactivate window.

con st

inactive

var
theData
dataHandle

255:

WDHandle:
Handle:

begin {DeactWindow}

{Highlighting code for inactive scroll bar [Il:6.3.3]}

{Handle to window's data record}
{Untyped handle for locking data record [1:3.1.l]}

dataHandle := Handle(GetWRefCon(whichWindow}): {Get window data [11:3.2.4]}

MoveHHi (dataHandle}: {Move data record to top of heap [1:3.2.5]}

HLock (dataHandle); {Lock data record [1:3.2.4]}

theData := WDHandle(dataHandle):
with theDataAA do

{Convert to typed handle}

begin

TheWindow := NIL:
TheScrollBar := NIL:
TheText := NIL;
ThePrintRec := NIL;

SetPort (whichWindow):

DrawGrowicon (whichWindow);
HiliteControl (scrollBar. inactive):
TEDeacti vate (edi tRec) :

{ aear global pointers/handles}

{Make window the current port [1:4.3.3]}

{Highlight or unhighlight siz.e box [11:3.3.4)}

{Deactivate scroll bar [11:6.3.3]}

{Unhighlight selection [11:5.4.3]}

if BitAnd(TheEvent.modifiers, changeFlag) <> 0 then

begin
WriteDeskScrap;

Enable!tem (EditMenu,
Enable!tem (EditMenu,
Enable!tem (EditMenu,
Enableltem (EditMenu,

Undo!tem) :
Cut!tem):
Copy!tem):
Pasteitem):

Enableitem (EditMenu. Clearitem)

{Exiting to a system window? [1:2.2.2, Il:2.1.5]}

{Copy Toolbox scrap to desk scrap}

{Enable standard editing commands}

{ for desk accessory [11:4.6.2)}

end: {if BitAnd(TheEve.nt.modifiers, changeFlag) <> O}

Disableitem (FileMenu, Saveitem): {Disable filing commands for desk

Disable Item (FileMenu, SaveAsitem): { accessory or empty desk [11:4.6.2)}

Disableitem (FileMenu, Revertitem):

Disable!tem (FileMenu, Setup!tem) :
Disable!tem (FileMenu, Print Item)

end: {with theDataM}

HUnlock (dataHandle) {Unlock data record [1:3.2.4]}

end: {DeactWindow}

{---}

procedure Finalize:

{ Do one-time-only finalization.

begin {Finalize}

518 Appendix H

WriteDeskScrap:

if PrError = NoErr then

PrClose:

SetEventMask (OldMask)

end: {Finalize}

{Copy Toolbox scrap to desk scrap}

{Printing still enabled? [I11:4.2.4]}

{Tenninate printing [I11:4.2. l]}

{Restore original value of system event mask [11:2.3.2]}

{---}

procedure WindowDirty {(isDirty : BOOLEAN)}:

{ Mark window dirty or clean [Prog. II:S-7).

var

theData

dataHandle

WDHandle:

Handle:

begin {WindowDirty}

dataHandle := Handle(GetWRefCon(TheWindow)}:

MoveHHi (dataHandle):

HLock (dataHandle);

theData := WDHandle(dataHandle):

with theDataAA do

begin

dirty := isDirty:

if isDirty then

begin

(Handle to window's data record}

{Untyped handle for locking data record [1:3.1.1))

(Get window data [II:3.2.4]}

{Move data record to top of heap (1:3.2.5)}

{Lock data record [1:3.2.4]}

{Convert to typed handle}

{Set flag in data record}

{Is window becoming dirty or clean?}

Enableitem (FileMenu, Sa veitem) : {Enable Save command [II:4.6.2]}

if fileNumber <> 0 then {Is window associated with a file?}

Enableitem (FileMenu, Revertitem) {Enable Revert command [II:4.6.2]}

end {then}

else

begin

Disableitem (FileMenu. Saveitem): (Disable menu items [11:4.6.2]}

Disableitem (FileMenu, Revertitem)

end {else}

end : {with theData""}

HUnlock (dataHandle) {Unlock data record [1:3.2.4]}

end: {Window Dirty}

{---}

procedure AdjustScrollBar:

{ Adjust scroll bar to length of document [Prog. II:6-S].

const

active

inactive

var

O:

255:

windowHeight

max Top

INTEGER:

INTEGER:

begin (AdjustScrollBar)

with TheTextAA. viewRect do

begin

{Highlighting code for active scroll bar [11:6.3.3]}

{Highlighting code for inactive scroll bar [11:6.3.3)}

{Height of text rectangle in lines}

{Maximum value for top line in window}

windowHeight := (bottom - top) div lineHeight: {Get window height [Il:S.1.1)}

maxTop : = nLines - windowHei ght {Avoid white space at bottom [Il:S.1.1])

end: {with TheText"'\ viewRect}

if maxTop <= 0 then

begin

maxTop := O:

HiliteControl (TheScrollBar. inactive)

end {then}

else

HiliteControl (TheScrollBar. active):

SetCtlMax (TheScrollBar. maxTop)

end: {AdjustScrollBar}

{Is text smaller than window?)

{Show all of text}

{Disable scroll bar [11:6.3.3)}

{Enable scroll bar [11:6.3.3)}

{Adjust range of scroll bar [11:6.2.4}}

{---}

procedure ScrollToSelection:

{ Scroll current selection into view [Prog. Il:6-13].

var

editHandle Handle: {Untyped handle for locking edit record [1:3.1.1)}

topLine

bottomLine

windowHeight

520 Appendix H

INTEGER:

INTEGER:

INTEGER:

begin {ScrollToSelection}

editHandle := Handle(TheText):

MoveHHi (editHandle):

HLock (editHandle):

with TheTextAA, viewRect do

begin

{First line visible in window}

{First line beyond bottom of window}

(Height of text rectangle in lines}

{Convert to tmtyped handle [!:3.1.1]}

{Move edit record to top of heap [!:3.2.5)}

{Lock edit record [!:3.2.4]}

topLine := GetCtlValue (TheScrollBar): {Getcurrenttopline[II:6.2.4]}

windowHeight ·= (bottom - top) div lineHeight: {Getwindowheight[Il:S.1.1]}

bottomLine : = top Line + windowHeight: (Find line beyond bottom}

if GetCtlMax (TheScrollBar) = 0 then

AdjustText

{Not enough text to fill the window? [Il:6.2.4]}

(Start of text to top of window}

else if selEnd < lineStarts[topLine] then

ScrollCharacter (selStart, FALSE)

(Whole selection above window top? [II:S.1.1]}

(Start of selection to top of window}

else if selStart >= lineStarts[bottomLine] then

ScrollCharacter (selEnd, TRUE)

end: {with TheTextAA, viewRect}

HUnlock (editHandle)

end: {ScrollToSelection}

(Whole selection below window bottom? [Il:S.1.1)}

(End of selection to bottom of window}

(Unlock edit record (1:3.2.4]}

{---}

procedure ScrollCharacter {(theCharacter : INTEGER: toBottom : BOOLEAN)};

{ Scroll character into view [Prog. Il:6-12].

var

editHandle

theLine

windowHeight

Handle:

INTEGER:

INTEGER:

be gin (ScrollCharacter}

editHandle := Handle(TheText):

{Untyped handle for locking edit record [!:3.1.1]}

{Number of line containing character}

{Height of text rectangle in lines}

{Convert to untyped handle [1:3.1.1)}

521 MiniEdit Source Listing
~~~~~~~~~~~~~~~ 

MoveHHi (editHandle): 

HLock (editHandle): 

with TheTextAA do 

begin 

theLine := O: 

{Move edit record to top of heap [1:3.2.5)} 

{Lock edit record [1:3.2.4)} 

{Start search at first line} 

while lineStarts [theLine + l] <= theCharacter do{Fmd line containing character [11:5.1.1)} 

theLine := theLine + 1: 

if toBottom then 

begin 

with viewRect do 

{Scrolling to bottom of window?} 

windowHeight := (bottom - top) div lineHeight: {Get window height} 

theLine : = theLine - (windowHeight - 1) {Offset for window height} 

end: {if toBottom} 

SetCtlValue (TheScrollBar. theLine): 

AdjustText 

end: {with TheTextAA} 

HUnlock (editHandle) 

end: {ScrollCharacter} 

{Adjust setting of scroll bar [11:6.2.4]} 

{Scroll text to match new setting} 

{Unlock edit record [1:3.2.4]} 

{---------------------------------------------------------------------------------------} 

procedure ReadDeskSc rap: 

{ Read desk scrap into Toolbox scrap [Prog. II:S-12]. 

var 

scrapLength 

ignore 

result 

scrapinfo 

LONGINT: 

LONGINT: 

OSErr: 

PScrapStuff: 

begin {ReadDeskScrap} 

{Length of desk text scrap in bytes} 

{Dummy variable for scrap offset} 

{Result code from scrap transfer [1:3.1.2)} 

{Pointer to scrap information record} 

scrapinfo := InfoScrap: {Get scrap info [1:7.4.2)} 

if ScrapCompare <> scrapinfoA. scrapCount then {Has scrap count changed? [1:7.4.2)} 

begin 

scrapLength ·= GetScrap (NIL. 'TEXT'. ignore):{Checkdeskscrapforatextitcm[l:7.4.3]} 

if scrapLength >= 0 then 

begin 

{Is there a text item?} 



522 Appendix H 

result := TEFromScrap: 

if result <> NoErr then 

scrapLength := result 

end: {if scrapLength >= O} 

if scrapLength > 0 then 

Enable!tem (EditMenu, Pasteltem) 

else 

begin 

TESetScrapLen (0): 
Disable!tem (EditMenu, Pasteltem) 

end: {else} 

scrap!nfo ·= InfoScrap: 

ScrapCompare ·= scrapinfoA.scrapCount 

end {if ScrapCompare <> InfoScrap"'.scrapCount} 

end: {ReadDeskScrap} 

{Transfer desk scrap to Toolbox scrap [11:5.5.5]} 

{Was there an enor? (1:3.1.2)} 

{Make sure scrap length is negative} 

{Was scrap nonempty?} 

{Enable Paste command [Il:4.6.2]} 

{Mark Toolbox scrap as empty [11:5.5.4]} 

(Disable Paste command [11:4.6.2)} 

{Get scrap info} 

(Save scrap count for later comparison [1:7 .4.2]} 

{---------------------------------------------------------------------------------------} 

procedure WriteDeskScrap: 

{ Write Toolbox scrap to desk scrap [Prog. 11:5-13). 

var 

scrap!nfo 

scrapResult 

teResult 

PScrapStuff: 

LONGINT: 

OSErr: 

begin {WriteDeskScrap} 

if ScrapDirty then 

begin 

scrapResult 

if scrapResult 

begin 

scrap!nfo 

ZeroScrap: 

NoErr then 

:= InfoScrap: 

(Pointer to scrap infonnation record [1:7 .4.2]} 

(Result code from ZeroScrap (1:7.4.3)} 

{Result code from scrap transfer (1:3.1.2)} 

{Has scrap changed since last read?} 

(Change scrap count [1:7.4.3]} 

(Was there an error? [1:3.1.2)} 

{Get scrap info (1:7.4.2]} 

ScrapCompare : = sc rapinfoA. scrapCount {Save new scrap count for comparison [1:7.4.2]} 

end: (if scrapResult = NoErr} 

teResult := TEToScrap: {Transfer Toolbox scrap to desk scrap [11:5.5.5]} 



ScrapDirty := FALSE {Toolbox and desk scraps now agree} 

end {if ScrapDirty} 

end; {WriteDeskScrap} 

{---------------------------------------------------------------------------------------} 

procedure IOGheck {(resultCode : OSErr)}: 

{ Check for 1/0 error [Prog. 11:8-1]. 

var 

alert ID 

errorString 

ignore 

begin {IOCheck} 

INTEGER; 

Str255: 

INTEGER: 

if resultCode = NoErr then 

EXIT ( IOGheck) : 

case resultCode of 

OpWrErr: 

alert ID 

IPrAbort: 

OpWrID: 

alertID := PrntGnclID: 

{Insert code here to handle any other specific errors} 

otherwise 

begin 

alertID := IOErrID: 

{Resource ID of alert} 

{Error code in string fonn [1:2.1.1]} 

{Item code returned by alert} 

{Just return if no error [1:3.1.2)} 

{File already open? [11:8.2.8]} 

{Use Already Open alert} 

{Printing canceled? [111:4.2.4]} 

{Use Printing Canceled alert} 

{Use general 1/0 Error alert} 

NumToString ( resul tCode, errorString) : {Convert error code to a string [1:2.3.7]} 

ParamText (errorString. '', '', '') {Substitute into text of alert [11:7.4.6]} 

end {otherwise} 

end : {case resultCode} 

InitCursor: 

ignore := StopAlert (alertID. NIL): 

Quitting 

ErrorFlag 

FALSE: 

TRUE 

{Restore nonnal cursor (11:2.5.2]} 
{Post alert [11:7.4.2]} 

{Cancel Quit command, if any} 

{Force exit to main event loop} 



524 Appendix H 

end: {IOCheck} 

{---------------------------------------------------------------------------------------} 

{ Main program [Prog. 11:2-1]. 

begin (MiniEdit} 

Initialize: 

repeat 

MainLoop 

until Finished: 

Finalize 

end. {MiniEdit} 

{Do one-time-only initialization} 

{Execute one pass of main loop} 

{Do one-time-only finalization} 

Stopwatch Desk Accessory 

program StopWatch: 

StopWatch is the example desk accessory developed in Chapter 6. 
When started from zero, the stopwatch counts upward by tenths of 
a second; when started from a value greater than zero, it counts 
downward and beeps when it reaches zero. 

{Example desk accessory for Macintosh Revealed, Volume Three [Prog. ill:6-1].} 

uses 
MemTypes, 
QuickDraw, 
OSintf. 

Toolintf, 

Packintf: 

{Elementary data types} 

{ QuickDraw graphics routines} 

{Macintosh Operating System} 

{User Interface Toolbox} 

{Standard packages} 

{---------------------------------------------------------------------------------------} 

{ Global Declarations } 

con st 

dReadEnable 
dWritEnable 

$0100: 

$0200: 

{Bit masks for DCE flags: } 

{Can respond to Read calls[Ill:3.1.2]} 

{Can respond to Write calls [III:3.1.2]} 



525 Stopwatch Source Listing 
~~~~~~~~~~~~~~~ 

dCtlEnable $0400:
dStatEnable $0800:
dNeedGoodBye $1000:
dNeedTime $2000:
dNeedLock $4000:

Kill Code 1:
GoodBye -1:

Ace Event 64:
Ace Run 65:
AccCursor 66:

AccMenu 67:
Ace Undo 68:

Ace Cut 70:

Ace Copy 71:

Ace Paste 72:

Ace Clear 73:

Enter $03:

BS $08;

CR $00;

Clear $1B:

Space $20:

DigitO $30;

Digit9 $39;

About Item 1:

Start Item 3:
Pauseltem 4:

Reset Item 5:

TextMargin 4:

type
DRHandle
DRPtr

DataRecord

"DRPtr:
"DataRecord:

record

{Can respond to Control calls [Ill:3.1.2]}

{Can respond to Status calls [Ill:3.1.2]}

{Needs "good-bye kiss" [1Il:3.1.2]}

{Has periodic task [I11:3.1.2]}

{Must be locked in heap [IIl:3.l.2]}

{Standard control codes: }

{ KillIO operation [1Il:3.2.3]}

("Good-bye kiss" [Ill:3.l.2]}

{User event [Ill:6.1.3]}

{Periodic task [Ill:6.1.3]}

{Adjust cursor [I11:6.l.3]}

{Menu item [ll:6.1.3]}

{Undo command [Ill:6.l.3]}

{Cut command [1Il:6.1.3]}

{Copy command [Ill:6. l .3]}

{Paste command [III:6.1.3]}

{ aear command [Ill:6.1.3]}

{Character codes [Ill:l:S.1.1]:

{Enter character}

{Backspace character}

{Carriage return}

{Clear character}

{Space character}

{Character 'O'}

{Character '9'}

{Item munbers for menu commands:

{About StopWatch ... command}

(Start command}

{Pause command}

{Reset command}

{Inset from window to edges of text}

526 Appendix H

RefNum INTEGER;
RsrcBase INTEGER:
!Beam CursHandle;

TheMenu MenuHandle:

{Driver reference number}

{Base ID for owned resources}

{Handle to !·beam cursor (11:2.5.1]}

TheWindow WindowPtr;

{Handle to StopWatch menu (II:4.l.1]}

{Pointer to StopWatch window [II:3.1.1]}

{Handle to edit record [II:S.1.1]} TheText TEHandle;

TargetTime

PauseTime
LONGINT:
LONGINT:

{Starting or stopping time on system clock [II:2.7.l]}

{Time of pause on system clock}

Count Down
ClockRunning
ClockPaused
CloekBeeping

BOOLEAN:
BOOLEAN:

{Counting down (toward zero)?}

{Is stopwatch running?}

BOOLEAN: {Is stopwatch paused?}

BOOLEAN {Is stopwatch beeping?}

end: {DataRecord}

{---}

(Forward Declarations

procedure DoOpen (pbPtr : ParamBlkPtr: deePtr : DCtlPtr): forward:
{ Handle driver Open call.

procedure SetUpDCE (var dee : DCtlEntry): forward:
{ Initialire device control entry. }

procedure SetUpData (var dee : DCtlEntry); forward:
{ Initialize StopWatch private data. }

procedure SetUpResources (dee : DCtlEntry: dataHandle : DRHandle): forward:
{ Initialize StopWateh resources. }

procedure SetUpMenu (var dee : DCtlEntry: dataHandle : DRHandle): forward:
{ Initialize StopWatch menu. }

procedure SetUpWindow (var dee : DCtlEntry: dataHandle : DRHandle): forward:
{ Initialize StopWatch window. }

procedure SetUpText (dataHandle : DRHandle): forward:
{ Initialize text editing. }

procedure InitFlags (var dee : DCtlEntry; dataHandle : DRHandle); forward:
{ Initialize global flags.

procedure DoControl (pbPtr : ParamBlkPtr: dcePtr : DCtlPtr): forward:
{ Handle driver Control call. }

procedure DoEvent (dataHandle : DRHandle: ctlParam : LONGINT): forward:
{ Handle user event. }

procedure DoMouseDown (theEvent
{ Handle mouse-Oown evenL }

procedure DoKeystroke (theEvent
Handle keyboard event.

EventReeord; dataHandle

EventRecord: dataHandle

DRHandle): forward:

DRHandle); forward:

procedure DoTyping (dataHandle : DRHandle; ch : CHAR); forward;
{ Handle character typed from keyboard. }

procedure DoAlias (dataHandle : DRHandle: ch : CHAR); forward;
{ Handle keyboard command alias. }

procedure DoUpdate (dataHandle
{ Handle update event. }

DRHandle): forward:

procedure DoActivate (theEvent : EventRecord: dataHandle
{ Handle activate (or deactivate) evenL }

procedure ReadDeskScrap: forward:

{ Read desk scrap into Toolbox scrap. }

procedure WriteDeskScrap; forward:
{ Write Toolbox scrap to desk scrap. }

procedure PeriodicTask (dataHandle : DRHandle); forward:
{ Perf onn periodic task. }

procedure AdvanceClock (dataHandle
{ Advance time on clock. }

procedure StartBeep (dataHandle
{ Start beep sequence. }

procedure DoBeep; forward:

DRHandle): forward:

DRHandle); forward:

{ Signal that clock has expired.

procedure FixCursor (dataHandle
{ Adjust cursor for region of screen. }

DRHandle): forward;

procedure DoMenuChoice (dataHandle : DRHandle: menuChoice
{ Handle user's menu choice. }

procedure DoAbout (dataHandle : DRHandle): forward:
{ Handle About StopWatch ... command. }

procedure DoStart (dataHandle : DRHandle): forward;
{ Handle Start command. }

DRHandle): forward:

LONGINT); forward:

function TextToNum (textHandle : TEHandle) : LONGINT: forward:
{ Convert text to integer. }

procedure DoPause (dataHandle
{ Handle Pause command. }

DRHandle): forward:

procedure DoReset (dataHandle : DRHandle): forward:
{ Handle Reset command. }

procedure DoUndo (dataHandle : DRHandle): forward:
{ Handle Undo command }

procedure DoCut (dataHandle : DRHandle): forward:
{ Handle Cut command. }

procedure DoCopy (dataHandle : DRHandle): forward:
{ Handle Copy command. }

procedure DoPaste (dataHandle
{ Handle Paste command. }

DRHandle): forward:

procedure DoClear (dataHandle : DRHandle); forward:
{ Handle Clear command. }

procedure DoGoodBye (pbPtr : ParamBlkPtr: dcePtr : DCtlPtr): forward:
{ Handle "good-bye kiss." }

528 Appendix H

procedure DoKillIO (dataHandle : DRHandle); forward;

{ Perform KillIO operation.

procedure DoClose (pbPtr : ParamBlkPtr; dcePtr : DCtlPtr): forward:

{ Handle driver Cose call. }

{---}

procedure DoOpen {(pbPtr : ParamBlkPtr; dcePtr : DCtlPtr)};

{ Handle driver Open call [Prog. ill:6-2].

var

oldWindow WindowPtr:

begin {DoOpen}

with dcePtr" do

if dCtlWindow = NIL then
begin

SetUpDCE (dcePtr"):

SetUpData (dcePtr")
end {then}

else

begin

oldWindow ·= WindowPtr(dCtlWindow);

SelectWindow (oldWindow)
end {else}

end: {DoOpen}

{Pointer to existing StopWatch window [11:3.1.l]}

{Is there a window open already? [ill:3.1.4]}

{Hnot. initialize DCE}

{ and data record }

{Otherwise convert to typed pointer [ill:3.1.4])

{Just activate existing window [11:3.5.2))

{---}

procedure SetUpDCE {(var dee : DCtlEntry)}:

{ Initiali:re device control entry [Prog. ill:6-3].

var

flagBits : INTEGER:

begin {SetUpDCE}

with dee do
begin

{Flag bits for DCE flag word [111:3.1.2. ill:3.1.4]}

529 Stopwatch Source Listing
~~~~~~~~~~~~~~~ 

flagBits dCtlEnable + dNeedTime: 
dCtlFlags ·= BitAnd (dCtlFlags, $FF): 
dCtlFlags ·= BitOr (dCtlFlags. flagBits): 

{Set up flags [III:3. l.2]} 
{Extract low byte [1:2.2.2]} 

{Merge in high byte (1:2.2.2)) 

dCtlDelay ·= 6: {Execute task ten times per second [ill:3.1.4]) 
dCtlEMask MDownMask + KeyDownMask + AutoKeyMask + UpdateMask + ActivMask: 

{Initialize event mask [III:3.1.4, Il:2.l.3]} 

dCtlStorage NewHandle ( SIZEOF (DataRecord)) {Allocate private data record [1:3.2.1]} 

end {with dee) 

end: {SetUpDCE) 

{---------------------------------------------------------------------------------------} 

procedure SetUpData {(var dee : DCtlEntry)}: 

{ Initiafu:e StopWatch private data. 

var 
dataHandle : DRHandle: 

begin {SetUpData} 

with dee do 
begin 

MoveHHi (dCtlStorage): 
HLoek (dCtlStorage): 

dataHandle := DRHandle(dCtlStorage): 

SetUpResourees (dee. dataHandle): 
SetUpMenu (dee, dataHandle): 
SetUpWindow (dee. dataHandle): 
SetUpText (dataHandle): 
InitFlags (dee, dataHandle): 

HUnlock (dCtlStorage) 
end {with dee} 

end: {SetUpData) 

{Handle to StopWatch data record} 

{Move data record to end of heap (1:3.2.5)} 
{Lock data record [1:3.2.4]} 

{Convert to typed handle) 

{Initialize Stop Watch resources} 
{Initialize Stop Watch menu) 
(Initialize Stop Watch window} 
{Initialize text editing} 
{Initialize global flags} 

{Unlock data record [1:3.2.4]} 

{---------------------------------------------------------------------------------------} 

procedure SetUpResources {(dee : DCtlEntry: dataHandle : DRHandle)}; 



530 Appendix H 

{ Initialize StopWatch resources [Prog. ill:6-S]. 

con st 

flagBits $COOO; 

var 

unitNum : INTEGER: 

begin {SetUpResources) 

with dee, dataHandleAA do 

begin 

RefNum dCtlRefNum: 

{Flag bits for owned resources [ill:2.S.4]} 

(StopWatch's unit number [Ill:3.l.3]} 

{Save reference number in data record [ill:3.l.4]} 

uni tNum Bi tNot (RefNum) : (Convert to unit number (1:2.2.2]} 

uni tNum BitShift (unitNum. 5): {Shift into position [1:2.2.2]} 

RsreBase ·= BitOr (flagBits, unitNum): {Mergeinflagbits[l:2.2.2]} 

!Beam GetCursor (IBeamCursor) {Get cursor from system file [11:25.2]) 

end {with dee, dataHandle"") 

end: {SetUpResources) 

{---------------------------------------------------------------------------------------} 

procedure SetUpMenu {(var dee : DCtlEntry: dataHandle : DRHandle)}: 

{ Initialize StopWatch menu [Prog. ill:6-6]. 

begin {SetUpMenu} 

with dee, dataHandleAA do 

begin 

dCtlMenu := RsreBase: 

TheMenu := GetMenu (dCtlMenu): 

TheMenuAA.menuID := dCtlMenu: 

InsertMenu (TheMenu, O): 
DrawMenuBar 

end (with dee, dataHandleAA) 

end: {SetUpMenu} 

{Store menu ID in DCE [Ill:3.l.4]} 

{Get menu from resource file [Il:4.2.2]) 

{Set correct menu ID in menu record [II:4.1.1}) 

{Install at end of menu bar [11:4.4.1]} 

{Show menu title on screen [11:4.4.3]} 



531 StopWatch Source Usting 
~~~~~~~~~~~~~~~ 

{---}

procedure SetUpWindow {(var dee : DCtlEntry: dataHandle : DRHandle)}:

{ Initialize Stop Watch window [Prog. ID:6-7).

var

peek : WindowPeek:

begin {SetUpWindow}

with dee, dataHandleAA do

begin

{Pointer for "peeking" into window's fields (11:3.1.1)}

TheWindow ·= GetNewWindow (RsrcBase. NIL. WindowPtr(-1)):

dCtlWindow ·= Ptr(TheWindow):

peek := WindowPeek(TheWindow):
peek~.windowKind := dCtlRefNum

end {with dee, dataHandleM}

end: {SetUpWindow}

{Make new window from template [Il:3.2.2]}

{Store window pointer in DCE [m:3. l.4]}

{Convert to a "peek" pointer [Il:3.1.1]}

{Set window class to ref. number [I1:3.1.1]}

{---}

procedure SetUpText {(dataHandle : DRHandle)}:

{ Initialize text editing.

var

savePort
textRect

serapLength
serapHandle
zeroString

begin {SetUpText}

GrafPtr:

Rect:
LONGINT:
Handle:
Str255;

with dataHandleAA do

begin

GetPort (savePort):
SetPort (TheWindow):

{Pointer to previous graphics port (1:4.2.2)}

{Clipping/wrapping rectangle for text display [1:4.1.2]}

(Length of Toolbox scrap in characters}

{Handle to contents of Toolbox scrap (1:5.1.2)}

{Dummy string for initializing text [1:2.1.1)}

{Save previous port [1:4.3.3)}

{Get into the window's port (1:4.3.3)}

532 Appendix H

TextFont (Monaco):
TextSize (12):
TextFace ([Bold]):

{Set monospace font (1:8.3.2, 1:8.2.1]}

{Set type size [1:8.3.2]}

{Use boldface [1:8.3.2. 1:8.3.1]}

textRect : = TheWindow". portRect: {Set up text rectangle (1:4.2.2]}

InsetRect (textRect. TextMargin, TextMargin): {Inset by text margin [1:4.4.4]}

TheText := TENew (textRect, textRect); {Make edit record [11:5.2.2]}

TESetJust (TEJustRight, TheText) : {Justify to right [11:5.3.1. 11:5.1.1]}

ReadDeskScrap:
scrapLength := TEGetScrapLen:
if scrapLength > 0 then

begin

scrapHandle := TEScrapHandle:
MoveHHi (scrapHandle):
HLock (scrapHandle):

{Read desk scrap into Toolbox scrap)

{Get length of Toolbox scrap [11:5.5.4]}

{Was there a numeric scrap?)

{Get scrap handle [11:5.5.4. 11:5.1.2)}

{Move scrap to end of heap [1:3.2.5)}

{Lock scrap handle [1:3.2.4))

TESetText (scrapHandle", scrapLength, TheText):

{Initialize text from scrap [Il:5.2.3]}

HUnlock (scrapHandle) (Unlock scrap handle (1:3.2.4])

end (then)

else

begin

zeroString : = '0' : {Make zero string)

TESetText (@zeroString [1] , l, TheText) (Initialize text to 'O' [11:5.2.3]}

end: {else}

SetPort (savePort)
end {with dataHandle"")

end: (SetUpText)

{Restore previous port (1:4.3.3])

{---}

procedure InitFlags ((var dee : DCtlEntry: dataHandle : DRHandle)}:

{ Initialize global flags.

begin {InitFlags)

with dataHandle"" do
begin

TargetTime

ClockRunning

0: {Clear start/stop time}

FALSE: {Clear global flags}

533 StopWatch Source Listing
~~~~~~~~~~~~~~~ 

ClockPaused :=FALSE: 
ClockBeeping ·= FALSE: 

dce.dCtlDelay 6 {Reset task interval to 1/10 second [IIl:3.1.4]} 

end · {with dataHandleM} 

end : {InitFJ.ags} 

{---------------------------------------------------------------------------------------} 

procedure DoControl { (pbPtr : ParamBlkPtr: dcePtr : DCtlPtr)}: 

{ Handle driver Control call [Prog. ill:6-8]. 

var 

dataHandle 
paramPtr 

DRHandle: 
"'LONGINT: 

begin {DoControl} 

with pbPtr"'. dcePtr"' do 
begin 

MoveHHi (dCtlStorage): 
HLock (dCtlStorage) : 

dataHandle 
paramPtr 

case csCode of 

AccEvent: 

DRHandle(dCtlStorage): 
@csParam; 

{Handle to StopWatch data record} 

{Pointer for converting parameter field} 

{Move data record to end of heap [1:3.2.5]} 

{Lock data record (1:3.2.4]} 

{Convert to typed handle [ID:3.l.4]} 

{Convert to long integer [ID:3.1.5]} 

DoEvent ( dataHandle, paramPtr"') : {Handle user event} 

AccRun: 
PeriodicTask (dataHandle): { Perf onn periodic task} 

AccCursor: 
FixCursor (dataHandle): {Adjust cursor for region of screen} 

AccMenu: 
DoMenuChoice (dataHandle, paramPtr"'): {Handle user's menu choice} 

AccUndo: 
DoUndo (dataHandle): {Handle Undo command} 



534 Appendix H 

AccCut: 
DoCut (dataHandle): {Handle Cut command} 

AccCopy: 
DoCopy (dataHandle): {Handle Copy command} 

Ace Paste: 
DoPaste (dataHandle): {Handle Paste command} 

AccClear: 
DoClear (dataHandle): {Handle Oear command} 

GoodBye: 
DoGoodBye (pbPtr, dcePtr): {Handle "good-bye kiss"} 

KillCode: 
DoKillIO (dataHandle) {Perfonn KilllO operation} 

end: {case csCode} 

HUnlock (dCtlStorage) {Unlock data record (1:3.2.4)} 

end {with pbPtr\ dcePtr"} 

end: {DoControl} 

{---------------------------------------------------------------------------------------} 

procedure DoEvent {(dataHandle : DRHandle: ctlParam : LONGINT)}: 

{ Handle user event [Prog. ill:6-9). 

type 

EventPtr 

var 

evtPtr 
theEvent 
activate 

begin {DoEvent} 

evtPtr 

"EventRecord: 

EventPtr: 
EventRecord: 
BOOLEAN: 

EventPtr(ctlParam): 
theEvent evtPtr": 
with theEvent do 

{Pointer to an event record [Il:2.1.1) } 

{Typed pointer for converting control parameter} 

{Event record for this event [Il:2.l.1)} 

{Activate or deactivate window?} 

{Convert control parameter to typed pointer} 

{Get event record} 



535 Stopwatch Source Listing 
~~~~~~~~~~~~~~~~ 

case what of (Dispatch on event type [Il:2.1.1. 11:2.1.2]}

MouseDown:

DoMouseDown (theEvent, dataHandle): (Handle mouse-down event}

KeyDown, AutoKey:

DoKeystroke (theEvent, dataHandle): {Handle keyboard event}

UpdateEvt:

DoUpdate (dataHandle): {Handle update event}

ActivateEvt:
DoActivate (theEvent. dataHandle) {Handle activate (or deactivate) event}

end {case what}

end: {DoEvent}

{---}

procedure DoMouseDown {(theEvent : EventRecord: dataHandle : DRHandle)}:

{ Handle mouse-down event. } ·

var
mousePoint
extend

Point:
BOOLEAN:

begin {DoMouseDown}

with theEvent, dataHandleAA do

if ClockRunning then
Sys Beep (1)

else
begin

SetPort (TheWindow):

mousePoint := theEvent.where:
GlobalToLocal (mousePoint):

(Point where mouse was pressed (1:4.1.1]}

(Extend existing selection (Shift-click)?}

{Stopwatch already in use?}
{No text selection allowed [Il:2.8.l]}

{Get into StopWatch window (1:4.3.3]}

{Get mouse point in screen coordinates [II:2. l. l]}

{Convert to window coordinates [1:4.4.2)}

if PtinRect (mousePoint, TheTextAA,viewRect) then
begin

{In text rectangle? [1:4.4.3, Il:S.1.1)}

536 Appendix H

extend := (BitAnd (modifiers. ShiftKey) <> 0): (Shift key down? [!:22.2. 11:2.1.5]}

{Do text selection [II:S.4.1]} TEClick (mousePoint, extend, TheText)

end {if}

end (else}

end: {DoMouseDown}

{--}

procedure DoKeystroke {(theEvent : EventRecord: dataHandle : DRHandle)}:

{ Handle keyboard event [Prog. ID:6-11].

var

ch Code

ch

INTEGER:

CHAR:

begin {DoKeystroke}

with theEvent do

begin

(Character code from event message [!:8.1.1))

{Character that was typed}

chCode

ch

·= BitAnd (message. CharCodeMask): {Extractcharactercode[I:2.2.2,11:2.l.4]}

CHR(chCode): {Convert to a character}

if (BitAnd (modifiers, CmdKey) <> 0)

and (what <> AutoKey) then

DoAlias (dataHandle, ch)

else

DoTyping (dataHandle, ch)

end {with theEvent)

end: {DoKeystroke}

{Command key down? (1:2.22, 11:21.5))

{Ignore repeats [ll:2.1.l, 11:21.2))

{Handle as command alias}

(Handle as ordinary keystroke}

{---}

procedure DoTyping {(dataHandle : DRHandle: ch: CHAR)}:

{ Handle character typed from keyboard [Prog. ID:6-13].

var

ch Code

menuChoice

INTEGER:

LONGINT:

{Character code (1:8.1.1]}

{Menu ID and item number}

537 Stopwatch Source Listing
~~~~~~~~~~~~~~~ 

begin {DoTyping} 

chCode := ORD(ch): 

if chCode in [CR, Enter. Space. Clear] then 

HiliteMenu (dataHandleAA.RsrcBase): 

with dataHandleAA do 

case chCode of 

Digit0 .. Digit9, BS: 

if ClockRunning then 

SysBeep (1) 

else 

TEKey (ch, TheText): 

CR. Enter: 

DoStart (dataHandle): 

Space: 

DoPause (dataHandle): 

Clear: 

DoReset (dataHandle): 

otherwise 
SysBeep (1) 

end: {case chCode} 

HiliteMenu (0) 

end: {DoTyping} 

{ Conven to character code} 

{Is it a StopWatch menu command?} 

{Highlight menu title [Il:4.5.4]} 

{Dispatch on character code} 

{Stopwatch already in use?} 

{No typing allowed [Il:28.l]} 

{Insert digit or backspace in window [Il:S.5.1]} 

{Return or Enter means Start} 

{Space means Pause or Resume} 

{ Oear means Reset} 

{Invalid character [Il:2.8. l] } 

(Unhighligbt menu title [I1:45.4]} 

{---------------------------------------------------------------------------------------} 

procedure DoAlias {(dataHandle : DRHandle: ch : CHAR)}: 

{ Handle keyboard command alias [Prog. ill:6-12]. 

var 
menuChoice 

begin {DoAlias} 

LONGINT: {Menu ID and item nwnber} 



538 Appendix H 

if ch in [ • S • , • s • , ' , ' , • . ') then 

HiliteMenu (dataHandleAA.RsrcBase); 

case ch of 

'Z' • 'z': 
Do Undo (dataHandle) : 

'X' • 'x': 
Do Cut (dataHandle): 

'C' • 'c': 

Do Copy (dataHandle) : 

'V' • 'v': 
Do Paste (dataHandle}: 

'B' • 'b': 

Do Clear (dataHandle): 

IS t, ts t: 

Do Start (dataHandle): 

I t: 

Do Pause (dataHandle): 

t I! 

DoReset (dataHandle}: 

otherwise 

SysBeep(l) 

end: {case ch} 

HiliteMenu (0) 

end: {DoAlias} 

{Is it a StopWatch menu command?} 

{Highlight menu title [Il:4.5.4]} 

{ Command-Z means Undo} 

{Command-X means Cut} 

{ Command-C means Copy} 

{Command-V means Paste} 

{Command-B means Oear} 

{Command-S means Start} 

(Command-comma means Pause or Resume} 

{Command-period means Reset} 

{Unknown command code [Il:2.8.l]} 

{ Unhighlight menu title [Il:4.5.4]} 

{---------------------------------------------------------------------------------------) 

procedure DoUpdate {(dataHandle : DRHandle)): 

{ Handle update event. 

var 

savePort GrafPtr: {Pointer to previous graphics port [1:4.2.2)} 



539 Stopwatch Source Listing 
~~~~~~~~~~~~~~~ 

begin {DoUpdate}

with dataHandleAA do

begin

GetPort (savePort):

SetPort (TheWindow):

BeginUpdate (TheWindow):

{Save previous port (1:4.3.3]}

{Get into the window's port [!:4.3.3]}

{Restrict visible region to update region [II:3.4.1]}

TEUpdate (TheWindowA. portRect. TheText): {Redraw text [Il:S.3.2])

EndUpdate (TheWindow): {Restore original visible region [II:3.4.l]}

SetPort (savePort) {Restore previous port [1:4.3.3]}

end {with dataHandleM}

end: {DoUpdate}

{---}

procedure DoActivate ((theEvent : EventRecord: dataHandle : DRHandle)}:

{ Handle activate (or deactivate) event. }

begin {DoActivate}

with theEvent, dataHandleAA do

begin

SetPort (theWindow): {Make StopWatch window the current port [1:4.3.3)}

if BitAnd (modifiers. ActiveFlag) <> 0 then {Activateordeactivate? [1:2.2.2,II:2.1.5])

begin

TEActivate (TheText):

Enableitem (TheMenu. O):

DrawMenuBar:

ReadDeskScrap

end {then}

else

{Highlight text selection [II:S.4.3]}

{Enable StopWatch menu [II:4.6.2]}

{Make change visible on screen [II:4.4.3]}

{Read desk scrap into Toolbox scrap}

540 Appendix H

begin

TEDeactivate (TheText):

Disable!tem (TheMenu, 0):
DrawMenuBar:

WriteDeskScrap

end {else}

end {with theEvent, dataHandleM}

end: {DoActivate}

{Unhighlight text selection [Il:S.4.3)}

{Disable StopWatch menu [Il:4.6.2)}

{Make change visible on screen [Il:4.4.3]}

{Write Toolbox scrap to desk scrap}

{---}

procedure ReadDeskScrap:

{ Read desk scrap into Toolbox scrap.

var

result

scrapLength

scrapHandle

char Index

scrapOK

OSErr:

LONGINT:

CharsHandle:

LONGINT:

BOOLEAN:

begin {ReadDeskScrap}

result := TEFromScrap:

if result < 0 then

TESetScrapLen (0)

else

begin

{Result code from scrap transfer (1:3 .1.2) }

{Length of Toolbox scrap in characters}

{Handle to contents of Toolbox scrap [1:5.1.2]}

{Character index in Toolbox scrap}

{Does scrap represent a numerical value?}

{Transfer desk scrap to Toolbox scrap [Il:5.5.S]}

{Was there an error? (1:3.1.2)}

{Mark Toolbox scrap as empty {11:5.5.4]}

scrapLength ·= TEGetScrapLen: {Get length of Toolbox scrap (11:5.5.4])

scrapHandle CharsHandle (TEScrapHandle): {Get handle to Toolbox scrap [II:5.5.4, 11:5.1.2)}

char Index : = 0: {Start at first character}

scrapOK := TRUE: {Presume innocent until proven guilty}

while (charlndex < scrapLength) and sc rapOK do {Loop Wllil answeris known}

if scrapHandle"" [charlndex] in ['0' .. '9'] then {Is character a digit?}

charlndex := char!ndex + 1

else

scrapOK := FALSE:

{Advance to next character}

{Look no further}

541 Stopwatch Source Listing
~~~~~~~~~~~~~~~ 

if not scrapOK then 

TESetScrapLen (0) 

end {else} 

end: {ReadDeskScrap} 

{Any non-digits?} 

{Mark scrap as empty (11:5.5.4)} 

{---------------------------------------------------------------------------------------} 

procedure WriteDeskScrap: 

{ Write Toolbox scrap to desk scrap. 

var 

ignore 

result 

LONGINT: 

OSErr: 

begin {WriteDeskScrap} 

ignore ZeroScrap: 

result ·= TEToScrap 

end: {WriteDeskScrap) 

{Result code from resetting desk scrap [1:7.4.3]} 

{Result code from scrap transfer [1:3.1.2]} 

{Change scrap count (1:7.4.3)) 

{Transfer Toolbox scrap to desk scrap (11:5.5.5]} 

{---------------------------------------------------------------------------------------} 

procedure PeriodicTask {(dataHandle : DRHandle)}: 

{ Perform periodic task [Prog. ill:6-14]. 

begin {PeriodicTask} 

with dataHandleAA do 

if ClockBeeping then 

Do Beep 

{Is the clock beeping?} 

(Beep it again} 

else if ClockRunning and not ClockPaused then {Is the clock ticking?} 

AdvanceClock (dataHandle) (Advance time on clock} 

else if not ClockPaused then 

TEidle (TheText) 

end: {PeriodicTask} 

{Is the clock idle?} 

{Blink insertion point (11:5.4.3]} 

{---------------------------------------------------------------------------------------} 



542 Appendix H 

procedure AdvanceClock {(dataHandle 

{ Advance time on clock [Prog. ill:6-15). 

var 

timeNow 

clockTime 

timeString 

LONGINT: 

LONGINT: 

Str255: 

begin {AdvanceClock} 

with dataHandleAA do 

begin 

timeNow := TickCount: 

if CountDown then 

DRHandle)}: 

clockTime 

else 

TargetTime - timeNow 

clockTime := timeNow - TargetTime: 

clockTime := (clockTime + 3) div 6: 

if CountDown and (clockTime <= 0) then 

begin 

timeString := '0.0': 
StartBeep (dataHandle) 

end {then} 

else 

begin 

{Current time on system clock} 

{Number of seconds showing on stopwatch} 

{String representation of clock time (1:2.1.1]} 

{Get current time [Il:2.7.l]} 

{Counting up or down?} 

{Ticks till stopping time} 

{Ticks since starting time} 

{Round to nearest tenth of a second} 

{Has time run out?} 

(A void negative value} 

{Stan beep sequence} 

NumToString (clockTime. timeSt:ring) : {Convert to string [1:2.3.7)} 

INSERT ('. '. timeString. LENGTH (timeString)) {Insert decimal point} 

end: {else} 

TESetText (@timeString[l]. LENGTH(timeString), TheText): {Setwindow'stext[Il:S.2.3)} 

TEUpdate (TheTextA A. viewRect. TheText) {Redisplay text on screen [II:S.3.2]} 

end {with dataHandleM} 

end: {AdvanceQock} 

{---------------------------------------------------------------------------------------} 

procedure StartBeep {(dataHandle : DRHandle)}: 



543 Stopwatch Source Listing 
~~~~~~~~~~~~~~~ 

{ Start beep sequence [Prog. ID:6-16].

var

dceHandle : DCtlHandle:

begin {Start.Beep}

with dataHandleAA do
begin

DoBeep:

dceHandle := GetDCtlEntry (RefNum);
dceHandleAA.dCtlDelay ·= 60:

ClockBeeping := TRUE

end {with dataHandleM}

end: {Start.Beep}

{Handle to DCE [Ill:3.l.4]}

{Sound first beep}

{Get DCE handle [Ill:3.1.4]}

{Change task interval to once per second [Ill:3.l.4]}

{Start periodic beeping}

{---)

procedure DoBeep:

{ Signal that clock has expired.

begin {DoBeep}

FlashMenuBar (0):

SysBeep (1):

FlashMenuBar (0)

end: (DoBeep}

{Invert menu bar (11:4.7 .2]}

{Sound a beep (11:2.8.1]}

{Restore menu bar (11:4.7.2)}

{---)

procedure FixCursor ((dataHandle : DRHandle)):

{ Adjust cursor for region of screen.

var

mousePoint

begin {FixCursor}

Point: {Cunent mouse position in window coordinates [1:4.1.1]}

544 Appendix H

with dataHandleAA, TheWindowA do
begin

SetPort (TheWindow): {Get into StopWatch window (1:4.3.3]}

GetMouse (mo~ePoint): {Get mouse position [I1:2.4.1]}

and not (ClockRunning or ClockBeeping)

{Is it in the window? (1:4.4.3]}

{Can window's contents be edited?}

then
SetCursor (IBeamAA)

else
InitCursor

end {with dataHandle"'\ The Window"}

end: {FixCursor}

{Set I-beam cursor [Il:2.5.2]}

{Set arrow cursor [I1:2.5.2]}

{---}

procedure DoMenuChoice {(dataHandle : DRHandle: menuChoice : LONGINT)}:

{ Handle user's menu choice [Prog. ill:6-10].

var
whichMenu
which!tem

INTEGER:
INTEGER:

begin {DoMenuChoice}

whichMenu ·= HiWord(menuChoice):
whichitem LoWord(menuChoice):

if whichMenu <> dataHandleAA.RsrcBase then
SysBeep(l)

else
begin

case whichitem of

About Item:

DoAbout (dataHandle):

Start Item:
DoStart (dataHandle):

Pauseitem:
DoPause (dataHandle):

{Menu ID of selected menu}

{Item number of selected item}

{Get menu ID (1:2.2.3]}

{Get item number [1:2.2.3]}

{Is it the StopWatch menu? [III:3.1.4]}

{Complain if not [Il:2.8.l]}

{Handle About StopWatch ... command}

{Handle Start command}

{Handle Pause command}

545 Stopwatch Source Listing
~~~~~~~~~~~~~~~ 

Resetitem: 

DoReset (dataHandle) {Handle Reset command} 

end: {case whicbhem} 

HiliteMenu(O) {Unhighlight menu title [Il:4.S.4]} 

end {else} 

end: (DoMenuChoice} 

{---------------------------------------------------------------------------------------} 

procedure DoAbout {(dataHandle : DRHandle)}: 

{ Handle About StopWatch ... command. 

var 

ignore : INTEGER: (Item number for About alen} 

begin {DoAbout} 

with dataHandleAA do 

ignore := Alert (RsrcBase. NIL) {Post alert [Il:7.4.2]} 

end: {DoAbout} 

(---------------------------------------------------------------------------------------} 

procedure DoStart {(dataHandle : DRHandle)}: 

{ Handle Stan command. 

var 
seconds 
timeNow 

LONGINT: 
LONGINT: 

begin {DoStart} 

with dataHandleAA do 

if ClockRunning then 

SysBeep (1) 

else 
begin 

{Number of seconds showing on stopwatch} 

{Current time on system clock} 

{Is stopwatch already running?} 

{H so, just beep [Il:2.8.1]} 



546 Appendix H 

seconds TextToNum (TheText): 

timeNow ·= TickCount: 

if seconds > 0 then 
begin 

{Get number displayed in window} 

{Get current time [I1:2.7.l]} 

{Positive number in window?} 

TargetTime timeNow + 60* seconds: {Set stopping time in ticks from now} 

CountDown ·= TRUE { and countdown } 

end {then} 

else 
begin 

TargetTime timeNow: 
CountDown ·= FALSE 

end: {else} 

TEDeactivate (TheText): 

ClockRunning TRUE 

end {else} 

end: {DoStart} 

{If zero, start from now} 

{ and count up } 

{Hide insertion point [Il:S.4.3]} 

{Start clock nmning} 

{-------------------------------------------------------------------·-------------------} 

function TextToNum { (textHandle : TEHandle) : LONGINT}: 

{ Convert text to integer. 

var 
theChars 
ch Index 
ch 

CharsHandle: 

digit 
result 

INTEGER: 
CHAR: 
INTEGER: 
LONGINT: 

begin {TextToNum} 

result := 0: 

with textHandleAA do 
begin 

theChars := CharsHandle(hText): 
if teLength > 0 then 

for chindex ·= 0 to (teLength - 1) do 
begin 

ch ·~ theCharsAA(chindex]: 

{Handle to characters [Il:5.1.2]} 

{Index to text character} 

{Text character} 

{Digit value of character} 

{Function result} 

{Initialize result} 

{Get the characters [II:5.1.l, II:S.1.2]} 

{Are there any? [II:S.1.1)) 

{Loop through characters [Il:S.1.1)} 

{Get next character} 



54 7 Stop Watch Source Listing 
~~~~~~~~~~~~~~~~ 

digit := ORD(ch) - ORD('O'):

result := 1o•result + digit

end {for chlndex}

end: {with textHandJeM}

TextToNum := result

end: {TextToNum}

{Convert to digit value}

{Shift left and add next digit}

{Return result}

{---}

procedure DoPause {(dataHandle : DRHandle)}:

{ Handle Pause command.

var

timeNow : LONGINT:

begin { DoPause}

with dataHandleAA do

if not ClockRunning then

SysBeep (1)

else if not ClockPaused then

begin

ClockPaused := TRUE:

{Current time on system clock}

{Is the stopwatch idle?}

{Just beep [11:2.8.1]}

{Is it ticking?}

{Set pause flag}

Set It: em (TheMenu. Pause Item. •Resume'): {Change menu item to Reswne [11:4.6.1]}

timeNow := TickCount:

if CountDown then

PauseTime

else

PauseTime

end {then}

else

begin

TargetTime - timeNow

timeNow - TargetTime:

ClockPaused := FALSE:

{Get current time [11:2.7.1]}

{Counting up or down?}

{Save ticks till stopping time}

{Save ticks since starting time}

{Clear pause flag}

Set Item (TheMenu. Pause Item, •Pause'): {Change menu item back to Pause [11:4.6.l]}

timeNow := TickCount:

if CountDown then

TargetTime ·= timeNow + PauseTime

else

{Get current time [11:2. 7 .1]}

(Resuming a countdown?}

(Update stopping time in ticks from now}

548 Appendix H

Target Time

end {else}

end: {DoPause}

timeNow - PauseTime {Update starting time in ticks ago now}

{---}

procedure DoReset {(dataHandle : DRHandle)};

{ Handle Reset command.

var

timeString

dceHandle

begin {DoReset}

Str255:

DCtlHandle;

with dataHandleAA do

begin

{String for resetting window's text [1:2.1.1]}

{Handle to DCE [111:3.1.4]}

dceHandle := GetDCtlEntry (RefNum): {Get DCB handle [111:3.1.4]}

InitFlags (dceHandleAA, dataHandle): {Reinitiafu.e global flags}

timeString := '0'; {Reset time to O}

TESetText (@timeString [l], I. TheText): {Set window's text [II:S.2.3]}

TEUpdate (TheTextAA. viewRect. TheText): {Show text on screen [II:5.3.2]}

TEActi vate (TheText) {Redisplay insertion point [II:5.4.3]}

end {with dataHandleM}

end: {DoReset}

{---}

procedure DoUndo {(dataHandle : DRHandle)}:

{ Handle Undo command.

begin {DoUndo}

SysBeep (1) {Undo command not implemented [II:2.8. l]}

end; {DoUndo}

{---}

549 Stopwatch Source Listing
~~~~~~~~~~~~~~-

procedure DoCut {(dataHandle DRHandle)}: 

{ Handle Cut command. 

begin {DoCut} 

with dataHandleAA, TheTextAA do 

if selStart = selEnd then 
SysBeep (1) 

else 
TECut (TheText) 

end: {DoCut} 

{Is selection empty? [I1:5.l.1]} 

{Nothing to cut-just beep [Il:28.1]} 

{Cut the selection [II:5.5.2]} 

{---------------------------------------------------------------------------------------} 

procedure DoCopy ((dataHandle : DRHandle)}: 

{ Handle Copy command. 

begin {DoCopy} 

with dataHandleAA, TheTextAA do 

if selStart = selEnd then 
SysBeep (1) 

else 
TECopy (TheText) 

end: (DoCopy} 

{Is selection empty? [I1:5.1.1]} 

{Nothing to copy-just beep [I1:2.8.1]} 

{Copy the selection [Il:5.5.2]} 

{------------------------------------------------------~--------------------------------} 

procedure DoPaste ((dataHandle : DRHandle)}: 

{ Handle Paste command. 

begin {DoPaste} 

with dataHandleAA, TheTexthA do 

if TEGetScrapLen = 0 then 
SysBeep (1) 

else 
TEPaste (TheText) 

end: {DoPaste} 

{Is scrap empty? [I1:5.5.4]} 

{Nothing to paste-just beep [11:2.8.1]} 

{Paste the selection [11:5.5.2]} 



550 Appendix H 

{---------------------------------------------------------------------------------------} 

procedure DoClear {(dataHandle : DRHandle)}: 

{ Handle Oear command. 

begin {DoClear} 

with dataHandleAA, TheTextAA do 

if selStart ~ selEnd then 
SysBeep (1) 

else 
TEDelete (TheText) 

end: {DoOear} 

{Is selection empty? [II:S.1.1]} 

{Nothing to delete-just beep [II:2.8. l]} 

{Delete the selection [II:S.5.3)} 

{---------------------------------------------------------------------------------------} 

procedure DoGoodBye {(pbPtr : ParamBlkPtr: dcePtr : DCtlPtr)}: 

{ Handle "good-bye kiss." 

begin {DoGoodBye} 

DoClose (pbPtr, dcePtr) {Treat good-bye as an ordinary Close call} 

end: {DoGoodBye} 

{---------------------------------------------------------------------------------------} 

procedure DoKillIO {(dataHandle : DRHandle)}: 

{ Perf onn KillIO operation. 

begin {DoKillIO} 

DoReset (dataHandle) {Treat Kill10 as a Reset command} 

end: {DoKillIO} 

{---------------------------------------------------------------------------------------} 

procedure DoClose {(pbPtr : ParamBlkPtr: dcePtr : DCtlPtr)}: 

{ Handle driver Cose call [Prog. ill:6- l 7]. } 



551 StopWatch Source Listing 
~~~~~~~~~~~~~~-

var
theDat:a

rsrcHandle
DRHandle:
Handle:

be gin { DoClose}

with dcePtr" do

begin

MoveHHi (dCtlStorage):
HLock (dCtlStorage):

theData := DRHandle(dCtlStorage);
with theDat:a"" do

begin

DeleteMenu (dCtlMenu):
DrawMenuBar;
rsrcHandle := Handle(TheMenu):
ReleaseResource (rsrcHandle):

DisposeWindow (TheWindow):
dCtlWindow := NIL:

TEDispose (TheText)

end; {with theDataM)

HUnlock (dCtlStorage):

DisposHandle (dCtlStorage):
dCtlStorage := NIL

end {with dcePtr"}

end: {DoClose}

{Handle to StopWatch data record}

{Untyped handle for disposing of menu (1:3.1.1]}

{Move data record to end of heap (1:3.2.5)}

{Lock data handle (1:3.2.4]}

{ Conven to typed handle [II1:3.1.4]}

{Remove menu from menu bar [II:4.4.1]}

{Redraw menu bar [II:4.4.3]}

{Conven to untyped handle (1:3.1.1]}

{Dispose of menu [1:6.3.2]}

{Dispose of window [Il:3.2.3]}

{Qear window pointer from DCE [III:3.1.4]}

(Dispose of edit record [Il:S.2.2]}

(Unlock data handle (1:3.2.4]}

{Dispose of data record [!:3.2.2)}

(Clear storage handle from DCE [III:3.l.4]}

{---}

{ Main program. }

begin {StopWatch}

{Do nothing}

end. {StopWatch}

GLOSSARY

The following is a glossary of technical terms used in this volume.
Note: Terms shown in italic are defined elsewhere in this glossary.

A5 world: Another name for a program's appltcatton global space,
located by means of a base address kept in processor register AS.

access path: An independent channel of communication for reading
or writing a.ft.le.
accessory window: A window with rounded comers, used for
displaying a desk accessory on the screen.
action procedure: A routine that is called repeatedly for as long as
the mouse button is held down after being pressed in a controL

activate event: A window event generated by the Toolbox to signal
that a given window has become the active window.
active control: A control that will respond to the mouse in the
normal way; compare inactive controL
active window: The frontmost window on the screen, to which the
user's mouse and keyboard actions are directed.
alert: Short for alert box.

alert box: A form of dialog box that prevents the user from
interacting with any other window for as long as the alert remains on
the screen. and in which the only meaningful action is to dismiss the
alert by clicking a pushbutton; compare modal dialog box. modeless
dialog box.

553

554 Mastering the Toolbox

alert template: A resource containing all the information needed to
create an alert box.
allocate: To set aside a block of memory from the heap for a
particular use.
amplitude: The maximum magnitude attained at the peak of a
sound wave, which determines the volume or loudness of the sound.
and: A bit-level operation in which each bit of the result is a 1 if both
operands have ls at the corresponding bit position, or o if either or
both have Os.
APDA: The Apple Programmers and Developers Association, a
membership organization sponsored by Apple that provides selVices
and publications for professional and advanced amateur program
mers working on Apple equipment.
Apple mark: A special character (character code $14) that appears
on the Macintosh screen as a small Apple symbol; used for the title
of the Apple menu.
Apple menu: A menu listing the available desk accessories, conven
tionally placed first in the menu bar with the Apple mark as its title.
AppleTalk: A network to which the Macintosh can be connected for
communication with other computers.
AppleTalk drivers: The pair of device drivers used for communicat
ing with other computers over the AppleTalk network.
application: A particular use or purpose to which the Macintosh (or
any computer) can be applied, such as word processing, graphics, or
telecommunications.
application event: Any of the four event types that are reserved for
the running application program to use in any way it wishes.
application file: Afileconta.ining the executable code of an applica
tion program, with a ft.le type of 'APPL' and the program's own
signature as its creator signature.
application global space: The area of memory containing a
program's application globals, application parameters, and jump
table: normally situated just before the screen buffer in memory and
located by means of a base address kept in processor register AS.

application globals: Global variables belonging to the running
application program, which reside in the application global space and
are located at negative offsets from the base address in register AS.

application heap: The portion of the heap available for use by the
running application program; compare system heap.

555 Glossaiy

application parameters: Descriptive information about the run
ning program, located in the application global space at positive
offsets from the base address in register AS. The application
parameters are a vestige of the Lisa software environment, and most
are unused on the Macintosh; the only ones still in use are the
QuickDraw globals pointer and the startup handle.
application program: A stand-alone program for the Macintosh
that the user can start up from the Finder by double-clicking the icon
of its applicationjlle.

application resource file: The resource fork of a program's applica
tionftle, containing resources belonging to the program itself.
application window: A window used by the running program itself;
compare system window.

arc: A part of an oval, defined by a given starting angle and arc angle.

arc angle: The angle defining the extent of an arc or wedge.

arrow cursor: The standard, general-purpose cursor, an arrow
pointing upward at an angle of "eleven o'clock."
ascent: (1) For a text character, the height of the character above the
baseline, in dots or pixels. (2) For afont, the maximum ascent of any
character in the font.
ascent line: The line marking a font's maximum ascent above the
baseline.
ASCII: American Standard Code for Information Interchange, the
industry-standard 7-bit character set on which the Macintosh's 8-bit
character codes are based.
asynchronous: Describes an input/ output operation that is queued
for later execution, returning control immediately to the calling
program without waiting for the operation to be carried out. The
calling program may supply an optional completion routine to be
executed on completion of the operation. Compare synchronous.

attenuation: The reduction of the sound volume produced by the
Macintosh speaker according to the global speaker volume setting
chosen by the user.
autograph: A Finder resource whose resource type is the same as a
program's signature, and which seives as the program's representa
tive in the desktop file; also called a version data resource.
auto-key event: An event reporting that the user held down a key
on the keyboard or keypad, causing it to repeat automatically.
auxll1ary data record: A private data structure maintained by a
window or control dejinitionjunction to hold additional information

556 Mastering the Toolbox

about a window or control; located via a handle kept in the
dataHandle field of the windowrecordorthe contrlData field of the
control record.
auxiliary information subrecord: The part of a print record in which
the Toolbox keeps private information on how to match the page
image to the characteristics of a particular printer.
background pattern: The pattern used for erasing shapes in a given
graphics porL

background procedure: A procedure supplied by the application
program, which the Toolbox will call repeatedly during spool printing
whenever it has nothing else to do (such as while waiting for a
completion signal from the printer after beginning a printing opera
tion).
band: One of the smaller sections into which a page image is broken
to economize on memory space during spool printing.

band buffer: The area of memory in which a band image is formed.
band Image: The bit image holding the contents of a single band
during spool printing.

base address: In general, any memory address used as a reference
point from which to locate desired data in memory. Specillcally, (1)
the address of the bit image belonging to a given bit map; (2) the
address of a program's application parameters. kept in processor
register AS and used to locate the contents of the program's applica
tion global space.

base of stack: The end of the stack that remains fixed in memory and
is not affected when items are added and removed; compare top of
stack.

baseline: The reference line used for defining the character images
in afont, and along which the graphics pen travels as text is drawn.
Binary /Decimal Conversion Package: A standard package, pro
vided in the system resource fil.e (or in ROM on some models of
Macintosh) that converts numbers between their internal binary
format and their external representation as strings of decimal digits.
binary point: The binary equivalent of a decimal point, separating
the integer and fractional parts of a.fixed-point numl:;er.
bit Image: An array of bits in memory representing the pixels of a
graphical image.
bit map: The combination of a bit image with a boundary rectangle.
The bit image provides the bit map's content; the boundary rectangle
defines its extent and gives it a system of coordinates.

557 Glossary

bit map printing: A low-level printing operation. implemented by the
Control routine of the printer driver. for transmitting the contents of a
bit map directly to the printer.
bit-mapped display: A video display screen on which each pixel can
be individually controlled.
block: An area of contiguous memory within the heap. either
allocated or free.
bottleneck record: A data structure containing pointers to the
bottleneck routines associated with a given graphics port.

bottleneck routine: A specialized routine for performing a low-level
drawing operation in a given graphics port. used for customizing
QuickDraw operations.
boundary rectangle: (1) For a bitmap. the rectangle that defines the
bit map's extent and determines its system of coordinates. (2) For a
graphics port. the boundmy rectangle of the port's bit map.
bounding box: The smallest rectangle completely enclosing a
polygon or region on the coordinate grid.
bundle: A Find.er resource that identifies all of a program's other
Finder resources. so that they can be installed in the desktop file
when the program's application.file is copied to a new disk.
button: A control with two possible settings, on (1) and off (O);
compare dial.
byte: An independently addressable group of 8 bits in the computer's
memory.
Caps Lock key: A modifier key on the Macintosh keyboard. used to
convert lowercase letters to uppercase while leaving all nonalpha
betic keys unaffected.
CD-ROM: A mass-storage technology in which information is stored
in read-only digital form on the surface of a compact disk.
character code: An 8-bit integer representing a text character;
compare key code.

character image: A bit image that defines the graphical representa
tion of a text character in a given typeface and type size.
character key: A key on the keyboard or keypad that produces a
character when pressed; compare mcxl!fter key.
character position: An integer marking a point between characters
in afil.e or other collection of text. from o (the very beginning of the
text. before the first character) to the length of the text (the very end.
after the last character).
character style: See type style.

558 Mastering the Toolbox
~~~~~~~~~~~-

checkbox: A button that retains an independent on/ off setting to 
control the way some future action will occur; compare pushbutton. 
radio buttons. 
choose: To designate a menu item by pointing with the mouse. 
Chooser: A standard desk accessory with which the user can select 
the printer the Toolbox will use for hardcopy printing. 
classic Macintosh: Any of the early, first-generation models of 
Macintosh. including the Macintosh 128K ("Skinny Mac"). Macintosh 
512K ("Fat Mac"), Macintosh 512K enhanced, and Macintosh Plus. 

clip: To confine a drawing operation within a specified boundary, 
suppressing any drawing that falls outside the boundary. 
Clipboard: The term used in Macintosh user's manuals to refer to 
the scrap. 
clipping boundaries: The boundaries to which all drawing in a given 
graphics port is confined, consisting of the port's boundary rectangle, 
port rectangle, clipping region, and visible region. 

clipping rectangle: See view rectangle. 

clipping region: A general-purpose clipping boundary associated 
with a graphics port, provided for the application program's use. 
clock chip: A component of the Macintosh, powered independently 
by a battery, that keeps track of the current date and time even when 
the machine's main power is turned off. 
close: (1) To destroy a window and remove it from the screen. (2) To 
destroy an access path to a.file. (3) To terminate the operation of a 
device driver. 
close box: The small box near the left end of the title bar, by which 
a document window can be closed with the mouse. 
close region: The area of a window by which it can be closed with 
the mouse; also called the "go-away region." In a document window, 
the close region is the close box. 

Close routine: The driver routine that terminates the operation of a 
device driver by reversing the effects of the Open routine. 

comma of Dldymus: The difference in pitch between four perfect 
fifths and a major third raised two octaves, equivalent to a frequency 
ratio of 81/80. (Aren't you glad you asked?) 
Command key: A modifier key on the Macintosh keyboard, used in 
combination with character keys to type keyboard aliases for menu 
items. 
comment data: The information a picture comment contains. 



559 Glossaiy 

comment type: An integer code that identifies the kind of informa
tion a picture comment contains. 
compaction: The process of moving together all the relocatable 
blocks in the heap, in order to coalesce the available free space. 
complement: A bit-level operation that reverses the bits of its 
operand, changing each o to a 1 and vice versa. 
completion routine: A routine supplied in conjunction with an 
asynchronous input/ output request, to be executed on completion of 
the requested operation. 
complex wave: A waveform of an arbitrary, irregular shape, such as 
those that characterize most naturally occurring sounds. 
content: The information displayed in a window. 

content region: The area of a window in which information is 
displayed, and which a program must draw for itself; compare 
window frame. 
control: An object on the Macintosh screen that the user can 
manipulate with the mouse in order to operate on the contents of a 
window or control the way theyre presented. 
control code: An integer code that identifies the specific control 
operation to be performed by a device driver's Control routine. 

control definition function: A routine, stored as a resource, that 
defines the appearance and behavior of a particular type of control 
control deflnltlon m: A coded integer representing a control type, 
which includes the resource ID of the control deftnitionfunctfDn along 
with a variatfDn code giving additional modifying information. 
control handle: A handle to a control record. 
control list: A linked list of all the controls belonging to a given 
window, beginning in a field of the window record and chained 
together through a field of their control records. 

Control Panel: A standard desk accessory with which the user can 
set optional operating characteristics of the Macintosh system, such 
as the speaker volume and keyboard repeat rate. 
control record: A data structure containing all the information 
associated with a given control 
Control routine: The driver routine that handles requests to control 
the operation of a peripheral device. 
control template: A resource containing all the information needed 
to create a control 
control title: The string of text characters displayed on the screen 
as part of a control. 



560 Mastering the Toolbox 

control type: A categocy of control identified by a control de.ftnitton 
ID, whose appearance and behavior are determined by a control 
de.ftnitiDnfe.nction. 
covered: Describes a window, control, or other object that is 
obscured from view by other overlapping objects. A covered object is 
never displayed on the screen, even if visible; compare exposed. 
creator signature: A four-character string identifying the applica
tion program to which a given ft1e belongs, and which should be 
started up when the user opens the file in the Finder. 
current port: The graphics port in use at any given time, to which 
most QuickDraw operations implicitly apply. 
current printer: The printer whose printer driver and printer 
resource file are currently installed in the system, and to which all 
printing-related operations implicitly apply. 
current resource file: The resource ft.le that will be searched first in 
looking for a requested resource, and to which certain resource
related operations implicitly apply. 
current volume: The volume or directory under consideration at any 
given time, to which many ft1e system operations implicitly apply. 
cursor: A small ( 16-by-16-pixel) bit image whose movements can be 
controlled with the mouse to designate positions on the Macintosh 
screen. 
cursor record: A data structure defining the form and appearance 
of a cursor on the screen. 
customize: To redefine an aspect of the Toolbox's operation to meet 
the specialized needs of a particular program. 
cut and paste: The standard method of editing used on the 
Macintosh, in which text, graphics, or other information is trans
ferred from one place to another by way of an intermediate scrap or 
Clipboard. 
cycle: A single repetition of a regularly recurring waveform. such as 
a sine wave or square wave. 
dangling pointer: An invalid pointer to an object that no longer 
exists at the designated address. 
data fork: The fork of aftle that contains the file's data, such as the 
text of a document: compare resource fork. 
DCE: See device control entry. 

deactivate event: A window event generated by the Toolbox to 
signal that a given window is no longer the active window. 



561 Glossaiy 

deallocate: To free a block of memory that's no longer needed. 
allowing the space to be reused for another purpose. 
default button: The pushbutton displayed with a heavy black double 
border in an alert or dialog box; pressing the Return or Enter key is 
considered equivalent to clicking the default button with the mouse. 
definition me: An assembly-language file containing definitions of 
Toolbox constants and global variables. to be incorporated into an 
assembly-language program with an . INCLUDE directive. 
definition routine: See window deftnitionfunctton. control definition 
junction. menu definition procedure. 

dereference: ( 1) In general. to convert any pointer to the value it 
points to. (2) Specifically. to convert a handle to the corresponding 
master pointer. 

descender: A portion of a text character that extends below the 
baseline, as in the lowercase letters g. j. p. q. and y. 

descent: (1) For a text character, the distance the character extends 
below the baseline, in dots or pixels. (2) For a font, the maximum 
descent of any character in the font. 
descent line: The line marking a font's maximum descent below the 
baseline. 

desk accessory: A type of device driver that operates as a "mini
application," which can coexist on the screen with any other pro
gram. 
desk scrap: The scrap maintained by the Toolbox to hold information 
being cut and pasted from one application program or desk accessory 
to another; compare Toolbox scrap. 

desktop: ( 1) The gray background area of the Macintosh screen, 
outside any window. (2) The arrangement of windows, icons, and 
other objects on the screen, particularly in the Find.er. 
desktop me: A file containing Finder-related information about the 
files on a disk, including their ft1e types, creator signatures, and 
locations on the Finder desktop. 

destination rectangle: The boundary to which text is wrapped in an 
edit record, determining the placement of the line breaks; also called 
the "wrapping rectangle." 
device: See peripheral device. 
device code: An integer identifying the output device a graphics port 
draws on. used in selecting the appropriate fonts for drawing text. 
device control entry: A data structure containing all the informa
tion associated with a given device driver. 



562 Mastering the Toolbox 

device driver: A specialized piece of software that enables the 
Macintosh to control and communicate with a particular peripheral 
device. An important special category of device drtvers are desk 
accessories. 
dial: A control that can take on any of a range of possible settings, 
depending on the position of a moving indicator that can be manipu
lated with the mouse: compare button. 

dialog: Short for dialog box. 
dialog box: A window used for requesting information or instruc
tions from the user. 
dialog initialization routine: A routine for constructing and 
initializing a printing dialog record, used in customizing a prtnting
related dialog. 

dialog item: A single element displayed in an alert or dialog box, 
such as a piece of text, an icon, a control, or a text box. 

dialog pointer: A pointer to a dialog record. 

dialog record: A data structure containing all the information 
associated with a given alert or dialog box. 

dialog template: A resource containing all the information needed 
to create a dialog box. 

dialog window: See dialog box. 
diameters of curvature: The width and height of the ovals forming 
the comers of a rounded rectangle. 

dimmed: Descrtbes an object, such as a menu item or aftle icon, that 
is displayed in gray instead of black to show that it is not currently 
active or available. 
directory: A table containing information about the .ftles on a disk. 
Under the Hierarchical File System, directortes may in tum contain 
other directories, and correspond to folders displayed on the desktop 
by the Finder. 

directory name: Under the Hierarchical Fae System, a string of text 
characters identifying a particular directory. 

directory reference number: An identifying number assigned by 
the Hierarchical File System to stand for a given directory. 

disabled dialog item: A dialog item that doesn't dismiss its alert or 
dialog box when clicked with the mouse or typed into from the 
keyboard. 
disabled menu item: A menu item that cannot currently be chosen 
with the mouse; normally displayed in dimmed form on the screen. 



563 Glossary 

disk driver: The device driver built into ROM for communicating 
with the Macintosh's built-in Sony disk drive. 
disk-inserted event: An event reporting that the user inserted a disk 
into a disk drive. 
dismiss: To remove an alert or dialog box from the screen, typically 
by clicking a pushbutton. 

dispatch table: A table in memory, used by the Trap Dispatcher to 
locate Toolbox routines in ROM. 
document: A coherent unit or collection of information to be 
operated on by a particular application program. 

document file: A file containing a document. 

document window: The standard type of window used by applica
tion programs to display information on the Macintosh screen. 
dot: A single spot forming part of a graphical image when printed on 
paper; compare ptxeL 

double click: 1\vo presses of the mouse button in quick succession, 
considered as a single action by the user. 
down arrow: The arrow at the bottom or right end of a scroll bar, 
which causes it to scroll down or to the right a line at a time when 
clicked with the mouse. 
draft printing: A printing method in which imaging and printing 
take place at the same time: the results of all drawing operations are 
sent directly to the printer and printed immediately. 
drag: ( 1) To roll the mouse while holding down the button. (2) To 
move a window, icon, or other object to a new location on the screen 
by dragging with the mouse. 
drag region: The area of a window by which it can be dragged to a 
new location with the mouse. In a document window, the drag region 
consists of the title bar minus the close box and zoom box, if any. 
driver: See device driver. 

driver flags: A set of Boolean flags specifying various attributes of 
a device driver, stored in the first word of its driver header. 

driver header: A collection of descriptive information stored at the 
beginning of a device driver. 

driver 1/0 queue: The data structure in which asynchronous input/ 
output requests to a device driver are entered for later execution. 
driver name: A string of text characters identifying a particular 
device driver. For drivers that reside in a resource.ftle, the driver name 
is also the resource name. Names of true 1/0 drivers conventionally 



564 Mastering the Toolbox 

begin with a period (. ), to prevent them from appearing among the 
desk accessories on the Apple menu. 
driver reference number: The identifying number of a devtce drl.ver; 
the bitwise complement of the driver's unit number, related to it 
arithmetically by the formula re fNum = - (uni tNum + 1) . Thus the 
reference number is always a negative integer between - 1 and - 48 (or 
-1 and - 3 2 on earlier models). 
drlver routines: The routines that do the work of a device driver; see 
Open routine, Prime routine, Control routine, Status routine, Close 
routine. 

edit record: A complete text editing environment containing all the 
information needed for TextEdit operations. 
electronic mall: A type of computer application that enables users 
to send and receive messages over a network or other communication 
line. 
empty handle: A handle that points to a NIL master pointer, 
indicating that the underlying block has been purged from the heap. 
empty rectangle: A rectangle enclosing no pixels on the coordinate 
grid. 
empty region: A region that encloses no pixels on the coordinate 
grid. 
emulator trap: A form of trap that occurs when the MC68000 (or 
MC68020) processor attempts to execute an unimplemented 
instruction; used to .. emulate" the effects of such an instruction with 
software instead of hardware. 
enabled dialog Item: A dialog item that dismisses its alert or dialog 
box when clicked with the mouse or typed into from the keyboard. 
enabled menu item: A menu item that is currently available and can 
be chosen with the mouse. 
enclosing rectangle: (1) The rectangle within which an oval is 
inscribed. (2) The rectangle that defines the location and extent of a 
control within its owning window. 

end-of-file: The character position following the last byte of meaning
ful information included in aftle (the logical end-of :file) or the last byte 
of physical storage space allocated to it (the physical end-of :ft.le). 

EOF: See end-of :ft.le. 

equal-tempered tuning: The form of musical tuning used in 
instruments of fixed pitch such as a piano keyboard, in which the 
pitches of the indMdual keys are chosen to produce the most useful 
or pleasing combination of tones for the instrument as a whole. 
Compare just-tempered tuning. 



565 Glossary 

erase: To fill a shape with the background pattern of the current port. 
error code: A nonzero result code, reporting an error of some kind 
detected by a Toolbox routine. 
error sound: A sound emitted from the Macintosh speaker by an 
alerL 
event: An occurrence reported by the Toolbox for a program to 
respond to, such as the user's pressing the mouse button or typing 
on the keyboard. 
event-driven: Describes a program that is structured to respond to 
events reported by the Toolbox. 
event loop: See main event loop. 
event mask: A coded integer specifying the event types to which a 
given operation applies. 
event message: A field of the event record containing information 
that varies depending on the event type. 

event queue: The data structure in which events are recorded for 
later processing. 
event record: A data structure containing all the information about 
a given event. 
event type: An integer code that identifies the kind of occurrence 
reported by an event. 
exception: See trap. 
exclusive or: A bit-level operation in which each bit of the result is 
a 1 if the corresponding bits of the two operands are different, or o if 
they are the same. 
EXIT: A nonstandard feature of many Pascal compilers that allows 
an immediate return from the middle of a procedure or function. 
exposed: Describes a window, control, or other object that is not 
obscured from view by other overlapping objects. An exposed object 
is displayed on the screen if visible; compare covered. 

extemal disk drive: A disk drive physically separate from the 
Macintosh itself and connected to it via a connector on the back of the 
machine. 
Fat Mac: See Macintosh 512K. 

field: One of the components of a Pascal record. 
FIFO: First in, first out: the order in which items are added to and 
removed from a queue such as the event queue. Compare UFO, UOF. 

me: A collection of information stored as a named unit on a disk. 
me icon: The icon used by the Finder to represent a.ft.le on the screen. 



566 Mastering the Toolbox 
~~~~~~~~~~~-

file name: A string of text characters identifying a particular ftle.
me reference: A Finder resource that establishes the connection
between a .file type and its ft.le icon.

file reference number: An identifying number assigned by the .file
system to stand for a given fde.

file system: The part of the Toolbox that deals with ftles on a disk
or other mass storage device.
me type: A four-character string that characterizes the kind of
information aftle contains, assigned by program that created file.
fill: To color a shape with a specified pattern.
fill pattem: A pattern associated with a graphics port, used privately
by QuickDraw for ftlling shapes.
filter function: A function supplied by an application program to
process events in an alert or dialog box before they are acted upon by
the Toolbox.
Finder: The Macintosh program with which the user can manipulate
files and start up applications; normally the first program to be run
when the Macintosh is turned on.
Finder information record: A data structure sununarizing the
Finder-related properties of a .file, including its jUe type, creator
signature, and location on the Finder desktop.

Finder resources: The resources associated with a program that tell
the Finder how to represent the program'sftl.es on the screen. Finder
resources include autographs, icon lists, file references, and bundles.
Finder startup handle: See startup handle.

Finder startup information: See startup information.
fixed-point number: A binary number with a fixed number of bits
before and after the binary point; specifically, a value of the Toolbox
data type Fixed [I:2.3.1], consisting of a 16-bit integer part and a 16-
bit fractional part.
fiat file system: AfUe system in which all the.ft.I.es on a volume reside
in a single directory, with no subdirectories.
floating-point number: A binary number in which the binary point
can .. float" to any required position; the number's internal represen
tation includes a binary exponent, or order of magnitude, that
determines the position of the binary point.
folder: An object in a disk's desktopftle, represented on the screen
by an icon or window, that can contain files or other folders; used for
organizing the files on a disk. Under the Hierarchical File System,
folders correspond to directories.

567 Glossruy

folio: The printed page number on a page of a book or document.
font: (1) A resource containing all of the character images and other
information needed to draw text characters in a given typeface and
type size. (2) Sometimes used loosely (and incorrectly) as a synonym
for typeface, as in the terms font number and text font
font characterization table: A data structure containing informa
tion needed to apply style variations, such as bold, italic, and
underline, to fonts for use on a particular printer.
font height: The overall height of a font, from ascent line to descent
line.

font information record: A data structure containing metric
information about a font in integer form; compare font metric record.
font metric record: In some versions of the Toolbox, a data
structure containing metric information about a font in fixed-point
form; compare font information record.
font number: An integer denoting a particular typeface.
font output record: A data structure constructed by the Toolbox to
pass information to the printer driver on the metric characteristics of
afontfor use on a particular printer.
font scaling: The enlargement or reduction of an existing font to
substitute for an unavailable font of a different size.
fork: One of the two parts of which every jlle is composed: the data
fork or the resource fork.
four-tone sound: A sound consisting of as many as four separate
tones, or voices, combined harmonically. Each voice is specified
independently, with any desired pitch and timbre, and in any phase
relationship to the other voices.
four-tone synthesizer: The part of the sound driver that produces
four-rone sound.
frame: (1) To draw the outline of a shape, using the pen size, pen
pattern and pen mode of the current port. (2) See window .frame. (3)
A single painting of the Macintosh screen by the display tube's
electron beam, from the top-left corner to the bottom-right.
free block: A contiguous block of space available for allocation within
the heap.
free-form sound: A single waveform of arbitrary length and com
plexity, representing any desired sound (such as speech, electroni
cally sampled music, or sound effects).
free-form synthesizer: The part of the sound driver that produces
.free-form sound.

568 Mastering the Toolbox
~~~~~~~~~~~-

frequency: The speed with which a sound wave is repeated, which 
determines the sound's pitch; measured in hertz (cycles per second). 
global coordinate system: The coordinate system associated with 
a given bit image, in which the top-left comer of the image has 
coordinates ( o, O). The global coordinate system is independent of the 
boundary rectangle of any bit map or graphics port based on the 
image. 
glue routine: See interface routine. 

go-away region: See close region. 

good-bye kiss: A special call to the Control routine of a device d.ri.ver 
or desk accessory, warning it that the application heap is about to be 
reinitialized and allowing it to take any special action it may require. 
graphics pen: The imaginary drawing tool used for drawing lines 
and text characters in a graphics port. 
graphics port: A complete drawing environment containing all the 
information needed for QuickDraw drawing operations. 
grow icon: The visual representation of a window's size region on the 
screen; for a standard document window, a pair of small overlapping 
squares in the bottom-right comer of the window. Compare grow 
image. 

grow image: The visual feedback displayed on the screen while 
tracking a mouse press in a window's size region, to show how the 
window's size will change when the button is released. For a 
standard document window, the grow image consists of a dotted 
outline of the window along with those of its title bar, scroll bars, and 
size box. Compare grow icon. 

grow region: See size region. 

handle: A pointer to a master pointer, used to refer to a relocatable 
block. 
hardcopy: A copy of a document printed physically on paper. 
heap: The area of memory in which space is allocated and deallo
cated at the explicit request of a running program; compare stack. 

hertz: A unit of frequency, equivalent to cycles (or any other regularly 
recurring event) per second; abbreviated Hz. 
HFS: See Hierarchical File System. 
hide: To make a window, control, or other object invisible. 

Hierarchical File System: The .file system built into recent models 
of Macintosh in ROM, designed for use with double-sided disks, hard 
disks, and other large-capacity storage devices; also available for 
older models in RAM-based form. Compare Macintosh File System. 



569 Glossaiy 

high-level me system: A collection of .file system routines that 
sacrifice detailed control over input/ output operations in exchange 
for simplicity and ease of use: compare low-level.file system. 
highlight: To display a window, control. menu item, or other object 
in some distinctive way as a visual signal to the user, often (but not 
necessarily) by inverting white and black pixels. 
hit code: An integer used by a window deftnittonjunctlon to identify 
the part of a window in which the mouse was pressed. Hit codes 
resemble the part codes returned by the Toolbox routine Find Wind ow 
[II:3.5.1], but have different numerical values. 
horizontal blanking Interval: See horizontal retrace interval. 

horizontal retrace Interval: The inteival at which the Macintosh 
display tube's electron beam reaches the right edge of the screen and 
returns to the left edge to begin the next scan line, equal to 1/s10 of a 
tick or approximately 44.93 microseconds. 
host program: The application program with which a desk accessory 
shares the system. 
Hungarian notation: A system of naming conventions used in the 
Toolbox printing routines, in which standard prefixes and letter 
combinations are used to indicate the nature of the object being 
named. So called for the nationality of the brilliant but slightly crazed 
software engineer who popularized it. 
hypertext: A type of computer application, typified by Apple's 
HyperCard, in which text, graphics. and other information are linked 
together into a free-form, interconnected information base that the 
user can traverse in arbitracy order. 
Hz: See hertz. 
I-beam cursor: A standard cursor included in the system resource 
.file (or in ROM on some models of Macintosh) for use in text selection. 
Icon: A bit image of a standard size (32 pixels by 32), used on the 
Macintosh screen to represent an object such as a disk or file. 
icon list: A resource containing any number of I.cons; commonly used 
to hold a file I.con and its mask for use by the Finder. 
Identifying Information: The properties of a resource that uniquely 
identify it: its resource type, resource ID, and (optional) resource 
name. 
Image Writer: A dot-matrix impact printer originally developed by C. 
Itoh & Company and marketed by Apple Computer, with a maximum 
resolution of 144 dots per inch vertically by 160 horizontally and a 
maximum printing speed of 120 characters per second. 



570 Mastering the Toolbox 

ImageWrlter LQ: An upgraded model of the ImageWriter printer, 
with a maximum resolution of 216 dots per inch and improved paper 
handling capabilities. 
ImageWrlter II: An enhanced version of the original ImageWriter 
printer with a maximum printing speed of 250 characters per second, 
finer dot placement for better print quality, improved paper handling 
including an optional automatic sheet feeder for noncontinuous, 
separately cut sheets, a limited color capability using a special four
color ribbon, and an optional AppleTal.k network connection for 
sharing the printer among two or more users. 
imaging: The process of defining the contents of a printed page with 
QuickDraw operations. 
Immediate operation: An input/ output operation that is carried 
out as soon as it is requested, rather than queued for later execution. 
inactive control: A control that will not currently respond to the 
mouse. usually displayed in some distinctive way on the screen. 
indicator: The moving part of a dial that can be manipulated with 
the mouse to control the dial's setting. 
insertion point: An empty selection in a text document, denoted by 
a selection range that begins and ends at the same character position. 

Inside Macintosh: The comprehensive manual on the Macintosh 
Toolbox, produced by Apple Computer, Inc .• and published by 
Addison-Wesley Publishing Company, Inc. 
intercepted event: An event that is handled automatically by the 
Toolbox before being reported to the running program. 
interface: A set of rules and conventions by which one part of an 
organized system communicates with another. 
interface file: A text file that contains the declarations belonging to 
an interface unit in source-language form, to be incorporated into a 
Pascal program with a uses declaration (or a $ i directive in some 
versions of Pascal). 
interface routine: A routine, part of an interface unit, that mediates 
between the stack-based parameter-passing conventions of a Pascal 
call1ng program and those of a register-based Toolbox routine; also 
called a "glue routine." 
interface unit: A precompiled unit containing declarations for 
Toolbox routines and data structures, mald.ng them available for use 
in Pascal programs. 
internal disk drive: The 3 1/2-inch single- or double-sided Sony disk 
drive built into the Macintosh. 



571 Glossary 

Interrupt: A trap triggered by a signal to the Macintosh processor 
from a peripheral device or other outside source. 
Interrupt-driven: Describes a driver routine or other piece of 
software that is designed to be executed in response to an interrupt. 

Interrupt handler: The trap handler for responding to an interrupt. 

Invalid region: An area of a window's content region whose contents 
are not accurately displayed on the screen, and which must therefore 
be updated. 

Invert: ( 1) Generally, to reverse the colors of pixels in a graphical 
image, changing white to black and vice versa. (2) Specifically, to 
reverse the colors of all pixels inside the boundary of a given shape. 

Invisible: Describes a windDw, control. or other object that is 
logically hidden from view. An invisible object is never displayed on 
the screen, even if exposed; compare visible. 

1/0 driver event: A type of event used internally by the Toolbox to 
handle communication with peripheral devices. 

item handle: A handle to a dialog Uem, kept in its dialog's item list. 

item list: A data structure defining all of the dialog items associated 
with an alert or dialog box, located via a handle in the dialog record. 
item number: The sequential position of a menu item within its 
menu, or of a dialog item within its dialog's item list; used as an 
identifying number to refer to the item. 
item type: An integer code denoting a kind of dialog item. 

job dialog: The dialog box in which the user supplies information 
pertaining to a single printing job, presented in response to the 
Print ... menu command and corresponding roughly to the con
tents of the job subrecord of the print record. Compare style dialog. 

job subrecord: The part of a print record that specifies how a 
document is to be printed on a particular occasion. 
jump table: A table used to direct external references between code 
segments to the proper addresses in memory; located in the applica
tion global space, at positive offsets from the base address kept in 
register AS. 

just-tempered tuning: The form of musical tuning used in instru
ments of continuous pitch such as a violin, in which each note is 
tuned to an exact harmonic interval relative to a given tonic, or base 
tone. Compare equal-tempered tuning. 

K: See kilobyte. 
key code: An 8-bit integer representing a physical key on the 
Macintosh keyboard or keypad; compare character code. 



572 Mastering the Toolbox 
~~~~~~~~~~~-

key-down event: An event reporting that the user pressed a key on
the keyboard or keypad.
key-up event: An event reporting that the user released a key on the
keyboard or keypad.
keyboard: A set of keys for typing text characters into the computer.
keyboard alias: A character that can be typed in combination with
the Command key to stand for a particular menu item
keyboard configuration: The correspondence between keys on the
Macintosh keyboard or keypad and the characters they produce
when pressed.
keyboard driver: The low-level part of the Toolbox that communi
cates directly with the keyboard and keypad.
keyboard event: An event reporting an action by the user with the
keyboard or keypad; see key-down event, key-up event, auto-key
event.

keyboard routine: A routine to be executed directly by the keyboard
driver when the user types a number key while holding down the
Command and Shift keys; stored on the disk as a resource of type
'FKEY'.

keypad: See numeric keypad.

kHz: See kUohertz.

KlllIO: An operation performed by the Control routine of a device
driver that immediately halts any input/ output activity in progress
and cancels any pending operations.
kllobyte: A unit ofmemocy capacity equal to 2 10 (1,024) bytes.
kilohertz: A unit of.frequency equal to 1000 hertz; abbreviated kHz.
landscape orientation: The arrangement of material on a printed
page in the "wide" direction, with the longer dimension of the paper
running horizontally; compare portrait orientation.
LaserWrlter: A high-resolution laser printer introduced by Apple
Computer in 1985, with a resolution of 300 dots per inch, an
MC68000 processor, a 512K ROM containing a PostScrtptinterpreter
and 11 built-in fonts, and a RAM capacity of 1. 5 megabytes for page
imaging and additional font storage.
LaserWrlter Plus: An upgraded version of the original LaserWriter
printer with an expanded ROM capacity and 35 built-in fonts.
LaserWrlter II-NT: An upgraded model of the LaserWrtter printer
with a faster version of the PostScrtpt interpreter, 35 built-in fonts,
and an expanded RAM capacity of 2 megabytes.

573 Glossary

LaserWrlter 11-NTX: An upgraded model of the LaserWriter printer
with an MC68020 processor, an MC68881 floating-point coproces
sor, a faster version of the PostScript interpreter, 35 built-in fonts, an
expandable RAM capacity of up to 12 megabytes, and an optional
hard disk connection.
LaserWrlter II-SC: An inexpensive model of the LaserWriterprinter
with no PostScrtpt interpreter or built-in fonts, driven directly with
QuickDraw operations in the same way as an ImageWrtter.

launch: To start up a new program after reinitializing the stack,
application global space. and application heap.

leading: (Rhymes with "heading," not "heeding.") The amount of
extra vertical space between lines of text, measured in dots or pixels
from the descent line of one to the ascent line of the next.
length byte: The first byte of a Pascal:fonnat string, which gives the
number of characters in the string, from o to 2 5 5.

LIFO: Last in, first out; the order in which items are added to and
removed from the stack. Compare FIFO, UOF.

limit rectangle: A rectangle that limits the movement of a window
or control when dragged with the mouse.
line breaks: The character positions marking the beginning of each
new line when text is wrapped to a boundary.
line drawing: Drawing in a graphics port by moving the graphics pen.
using the QuickDraw routines Move, MoveTo, Line, and LineTo.

LIOF: "Last in, OK. fine"; describes the allocation and deallocation
of items in the heap, which can occur in any order at all. Compare
FIFO, UFO.

Lisa: A personal computer manufactured and marketed by Apple
Computer; the first reasonably priced personal computer to feature
a high-resolution bit-mapped display and a hand-held mouse point
ing device. Now called Macintosh XL.

load: To read an object, such as a resource or the desk scrap. into
memory from a disk file.
local coordinate system: The coordinate system associated with a
given graphics port. determined by the boundary rectangle of the
port's bit map.

lock: To temporarily prevent a relocatable block from being purged
or moved within the heap during compaction.

lock bit: A flag in the high-order byte of a master pointer that marks
the associated block as locked.

57 4 Mastering the Toolbox
~~~~~~~~~~~-

logical end-of-file: The character position following the last byte of 
meaningful information included in a.file. 
logical shift: A bit-level operation that shifts the bits of a given 
operand left or right by a specified number of positions, with bits 
shifted out at one end being lost and Os shifted in at the other end. 
long integer: A data type provided by most Pascal compilers, 
consisting of double-length integers: 32 bits including sign, covering 
the range ±2147483647. 

long word: A group of 32 bits (2 words, or 4 bytes) beginning at a 
word boundary in memory. 
low-level file system: A collection of ftle system routines that 
provide the greatest possible control over input/ output operations, 
but are consequently more complex and difilcult to use; compare 
high-level.file system. 
Macintosh: A personal computer manufactured and marketed by 
Apple Computer, Inc., featuring a high-resolution bit-mapped dis
play and a hand-held mouse pointing device. 
Macintosh 128K: The original model of Macintosh, introduced in 
January 1984, withanMC68000processor, aRAMcapacityofl28K, 
a 64K ROM, and a single-sided disk drive; also known as the .. Skinny 
Mac." 
Macintosh 512K: A model of Macintosh introduced in Autumn 
1984, with an MC68000processor, a RAM capacity of 512K, a 64K 
ROM, and a single-sided disk drive: also known as the "Fat Mac." 
Macintosh 512K enhanced: An upgraded version of the Macintosh 
512K, introduced in January 1986, including the 128K Macintosh 
Plus ROM and a double-sided disk drive. 
Macintosh 512Ke: See Macintosh 512K enhanced. 

Macintosh Development System: An MC68000 / 68020 assembler 
and software development system produced by Consulair, Inc.: 
commonly called MOS for short. 
Macintosh File System: The jlatftle system built into the original 
Macintosh Toolbox: superseded in recent models by the Hierarchical 
FYle System. 
Macintosh Operating System: The body of machine code built into 
the Macintosh ROM to handle low-level tasks such as memory 
management, disk input/ output, and serial communications. 
Macintosh Plus: A model of Macintoshintroduced in January 1986, 
with an MC68000processor, a RAM capacity of 1 megabyte (expand
able to 4 megabytes), a 128K ROM containing an updated and 



575 Glossary 

expanded version of the Toolbox, a double-sided disk drive, a rede-
signed keyboard, and a SCSI parallel port. · 
Macintosh Programmer's Workshop: A software development 
system produced and marketed by Apple Computer, including a 
Pascal compiler, C compiler, 68000-series assembler, and other 
development tools: commonly called MPW for short. 
Macintosh SE: A model of Macintosh introduced in March 1987. 
with an MC68000 processor, a RAM capacity of 1 megabyte (expand
able to 4 megabytes), a 256K ROM containing an updated and 
expanded version of the Toolbox. a double-sided disk drive with 
optional second drive or 20-megabyte internal hard disk, a SCSI 
parallel port, one expansion slot, and faster overall performance. 
Macintosh Technical Notes: An ongoing series of documents on 
Macintosh programming, providing useful hints, tips, techniques, 
and up-to-the-minute technical information; published several times 
a year by Apple ar:id widely available through Macintosh user groups, 
bulletin boards, and the Apple Programmers and Developers Associa
tion (APDA). 
Macintosh II: A model of Macintosh introduced in March 1987. with 
an MC68020 processor, an MC68881 floating-point coprocessor, a 
RAM capacity of 1 megabyte (expandable to 8 megabytes) with 
optional paged memory management unit, a 256K ROM containing 
an updated and expanded version of the Toolbox with full color 
support, a double-sided disk drive with optional second drive or 2Ch 
4~. or SO-megabyte internal hard disk. two SCSI parallel ports, six 
expansion slots, and an optional partridge in a pear tree at nominal 
extra cost. 
Macintosh XL: A Lisa computer running Macintosh software under 
the MacWorks emulator. 
MacWorks: The software emulator program that enables a Lisa 
computer to run Macintosh software without modification. 
magnitude: The intensity of a sound at any point in time, measured 
by the height of the cuive defining its waveform. 

main entry point: The point in a program's code where execution 
begins when the program is first started up. 
main event loop: The central control structure of an event-driven 
program, which requests events one at a time from the Toolbox and 
responds to them as appropriate. 
master pointer: A pointer to a relocatable block, kept at a known, 
fixed location in the heap and updated automatically by the Toolbox 



576 Mastering the Toolbox 

whenever the underlying block is moved during compaction. A 
pointer to the master pointer is called a handle to the block. 
MC68000: The 32-bit microprocessor used in the Macintosh, 
manufactured by Motorola, Inc.; usually called "68000" for short. 
MC68020: The 32-bit microprocessor used in the Macintosh II, 
manufactured by Motorola, Inc.; usually called "68020" orjust "020" 
for short. 
MC6888 l: A specialized coprocessor for floating-point arithmetic, 
manufactured by Motorola, Inc.; usually called "68881" orjust "881" 
for short. 
MDS: See Macintosh Development System. 
megabyte: A unit of memory capacity equal to 220 (1,048,576) bytes. 
megahertz: A unit of .frequency equal to 1,000,000 hertz; 
abbreviated MHz. 

menu: A list of choices or options from which the user can choose 
with the mouse. 
menu bar: The horizontal strip across the top of the screen from 
which menus can be "pulled down" with the mouse. 
menu definition procedure: A routine, stored as a resource, that 
defines the appearance and behavior of a particular type of menu. 
menu handle: A handle to a menu record. 

menu ID: An identifying integer designating a particular menu; 
commonly the resource ID under which the menu is stored in a 
resource file. 
menu Item: One of the choices or options listed on a menu. 
menu list: A data structure maintained by the Toolbox, containing 
handles to all currently active menus. 
menu record: A data structure containing all the information 
associated with a given menu. 
menu type: A category of menu whose appearance and behavior are 
determined by a menu definition procedure. 
message code: An integer parameter passed to a definition routine, 
to identify the operation to be performed. 
message parameter: An additional item of information passed to a 
definition routine, along with the message code, for use in performing 
the requested operation. 
MFS: See Macintosh File System. 
MHz: See megahertz. 



577 Glossmy 

MlnlEdlt: The extensive example application program originally 
developed in Volume Two of this book and further expanded in this 
volume. 
modal dlalog box: A form of dialog box that prevents the user from 
interacting with any other window for as long as the dialog remains 
on the screen, but which allows actions beyond merely dismissing the 
dialog by clicking a pushbutton; compare alert box, modeless dialog 
box. 

mode: A state of the system that determines its response to the 
user's actions with the mouse and keyboard. 
modeless dialog box: A form of dialog box that allows the user to 
interact with other windows while the dialog remains on the screen; 
compare alert box, modal dialog box. 
modem port: One of the two serial ports on the back of the 
Macintosh, designated as port A and intended to be used for connect
ing a modem; compare print.er port. 

modifier key: A key on the Macintosh keyboard that doesn't 
generate a character of its own, but may affect the meaning of any 
character key pressed at the same time; see Shift key, caps Lock key, 
Option key, Command key. 
mouse: A hand-held pointing device for controlling the movements 
of the cursor to designate positions on the Macintosh screen. 
mouse-down event: An event reporting that the user pressed the 
mouse button. 
mouse event: An event reporting an action by the user with the 
mouse; see mouse-down event, nwuse-up event. 

mouse-up event: An event reporting that the user released the 
mouse button. 
MPW: See Macintosh Programmer's Workshop. 
MultlFlnder: An enhanced version of the Finder that allows the user 
to switch freely among two or more application programs, all of which 
may be active in memory at the same time. 
network event: A type of event used internally by the Toolbox to 
handle communication with other computers over a network. 
no-grow bit: A bit in the window definition ID of a standard document 
window that specifies whether the window has a size box. 
nonrelocatable block: A block that can't be moved within the heap 
during compaction, referred to by single indirection with a simple 
pointer; compare relocatable block. 



578 Mastering the Toolbox 
~~~~~~~~~~~-

null event: An event generated by the Toolbox when you request an
event and there are none to report.
numeric keypad: A set of keys for typing numbers into the
computer. On recent Macintosh models, the keypad is physically
built into the keyboard unit; on earlier models, it's an optional
separate unit that connects to the keyboard with a cable.
object module: The file containing the compiled code of a Pascal
unit, to be linked with the application program after compilation.
open: (1) To create an access path to aftle. (2) To prepare a device
driver for operation.
Open routine: The driver routine that prepares a device driver for
operation.
Operating System: See Macintosh Operating System.

Option key: A modifier key on the Macintosh keyboard, used to type
special characters such as foreign letters and accents.
or: A bit-level operation in which each bit of the result is a 1 if either
or both operands have ls at the corresponding bit position, or o if
both have Os.
origin: (1) The top-left comer of a rectangle. (2) For a bit map or
graphics port. the top-left comer of the boundary rectangle. whose
coordinates determine the local coordinate system.

oval: A graphical figure, circular or elliptical in shape; defined by an
enclosing rectangle.

owned resource: A resource that is associated with another (owning)
resource, such as a device driver. desk accessory, definition routine,
or package. and whose resource ID must be adjusted when that of the
owning resource is changed in order to maintain the association and
avoid numbering conflicts.
owning window: The window with which a given control is associ
ated.
package: A resource, usually residing in the system resource.file (or
in ROM on some models), containing a collection of general-purpose
routines that can be loaded into memory when needed; used to
supplement the Toolbox with additional facilities.
package number: The resource ID of a package; must be between o
and 15 (or o and 7 on earlier Macintosh models).
package trap: A Toolbox trap used at the machine-language level to
call a routine belonging to a package. In the original Toolbox there
are eight package traps, named _PackO to _Pack7; on more recent
models there are sixteen, named _PackO to _PacklS.

579 Glossary

page-down region: The area of a scroll bar's shaft below or to the
right of the scroll box. which causes it to scroll down or to the right a
windowful (.. page") at a time when clicked with the mouse.
page rectangle: A rectangle, kept in the printer triformatlonsubrecord
of a print record, that defines the printable area of the page, estab
lishes its coordinate system, and sezves as the port rectangle of its
printing port. Compare paper rectangle.

page-up region: The area of a scroll bar's shaft above or to the left
of the scroll box, which causes it to scroll up or to the left a windowful
(.. page") at a tune when clicked with the mouse.
paint: To fill a shape with the penpattem of the current port.

paper rectangle: A rectangle, kept in a field of the print record, that
defines the dimensions of the physical sheet of paper in the coordi
nate system established by the page rectangle.

paper size table: A data structure defining the selection of paper
sizes to be offered to the user in a printer's style dialog, stored as a
resource in the printer resource .ft.le.
parallel port: A connector on the back of the Macintosh for
communicating with peripheral devices via the SCSI parallel inter
face.
parameter block: A complex data structure describing an operation
to be performed by the low-level.file system
parameter RAM: A small amount (256 bytes) of read/write memory
that is stored on the real-tune clock chip and powered independently
by a battery even when the machine's main power is turned off; used
to store operating characteristics of the system that must be retained
from one working session to the next, such as those set by the user
via the Control Panel desk accessory.
part code: An integer denoting the part of the screen. or of a window
or control, in which the mouse was pressed: compare hit code.
Pascal-format string: A sequence of text characters represented in
the internal format typically used by Pascal compilers, consisting of
a length byte followed by from 0 to 255 bytes of character codes.

pass-along driver: The dummy printer driver built into the Macin
tosh ROM, which intercepts all requests for driver operations and
passes them to the actual printer driver, installed from the printer
resource ftle with the Chooser desk accessory.
pattem: A small bit image (8 pixels by 8) that can be repeated
indefinitely to fill an area, llke identical floor tiles laid end to end.
pattem list: A resource consisting of any number of patterns.

580 Mastering the Toolbox

pattem transfer modes: A set of transfer modes used for drawing
lines or shapes or filling areas with a pattern; compare source transfer
modes.
pen: See graphics pen.

pen level: An integer associated with a graphics portthat determines
the visibility of the port's graphics pen. The pen is visible if the pen
level is zero or positive, hidden if it's negative.
pen location: The coordinates of the graphics pen in a given graphics
port.
pen mode: The transfer mode with which a graphics port draws lines
and frames or paints shapes: should be one of the pattern transfer
mod.es.
pen pattem: The pattern in which a graphics port draws lines and
frames or paints shapes.
pen size: The width and height of the graphics pen belonging to a
graphics port.
pen state: The characteristics of the graphics pen belonging to a
graphics port, including its pen location, pen size, pen mode, and pen
pattern.
period: The duration in time of one cycle of a sound wave.
periodic task: An operation that a device driver or desk accessory
must perform at regular intervals in order to function properly.
peripheral device: An article of input/ output or other equipment
that is separate from the Macintosh and connected to it with a cable,
such as a disk drive, printer, or modem.
phase: The relationship in time between two sound waves, or
between a single sound wave and a fixed reference point, commonly
expressed as an angle in degrees or radians representing a fraction
of a complete cycle.
phase offset: The index of the first sound sample to be taken from
a waveform array, denoting the phase of the corresponding sound.
physical end-of-file: The character posittonfollowing the last byte of
physical storage space allocated to a file.
picture: A recorded sequence of QuickDraw operations that can be
repeated on demand to reproduce a graphical image.
picture comment: A special command embedded in a picture to
convey additional information, unused by QuickDraw but meaning
ful to some other application program. The general nature of the
information is identified by an integer comment type; the information
itself constitutes the comment data.

581 Glossary

picture frame: The reference rectangle within which a picture is
defined, and which can be mapped to coincide with any other
specified rectangle when the picture is drawn.
pixel: A single spot forming part of a graphical image when displayed
on the screen; short for "picture element." Compare dot.

pixel display rate: The frequency with which pixels are painted on
the Macintosh screen, equal to 15.6672 megahertz (15,667,200
pixels per second).
plane: A window's front-to-back position relative to other windows
on the screen.
point: (1) A position on the QuickDraw coordinate grid, specified by
a pair of horizontal and vertical coordinates. (2) A unit used by
printers to measure type sizes. equal to approximately 1 /72 of an
inch.
point size: See type size.

polygon: A graphical figure defmed by any closed series of connected
straight lines.
pop: To remove a data item from the top of a stack.

port: (1) A connector on the back of the Macintosh for communica
tion with a peripheral device, such as a printer or modem. (2) Short
for graphics port.

port rectangle: The rectangle that defines the portion of a bit map
that a graphics port can draw into.
portrait orientation: The arrangement of material on a printed page
in the "tall" direction, with the longer dimension of the paper running
vertically; compare landscape orientation.

post: To record an event in the event queue for later processing.
Postscript: A device-independent page description language, devel
oped by Adobe Systems Incorporated and licensed by Apple for use
in the LaserWriter printer.
Prime routine: The driver routine that transfers data to and from a
peripheral device.

print buffer: An area of memory reseived for output to the printer
during the second stage of a spool printing operation; compare spool
buffer.
print record: A data structure containing all the information needed
to cany out a single printingjob.
printer driver: The device driver for communicating with a printer
through one of the Macintosh's built-in ports.

582 Mastering the Toolbox

printer information subrecord: The part of a print record that
summarizes the characteristics of a particular type of printer.
printer port: One of the two serial ports on the back of the
Macintosh, designated as port B and intended to be used for
connecting a printer: not to be confused with a printing port.
printer resource me: A file containing the resources the Toolbox
needs to communicate with a particular type of printer, including a
printer driver and specialized code to implement the standard Tool
box printing routines.
printer type code: An integer code in the style subrecord of a print
record that identifies the type of printer to which the record applies.
printing dialog record: A data structure defining the structure and
behavior of a printing-related dialog.
printing port: A special-purpose graphics port whose bottleneck
routines direct their output to a printer or spool file instead of the
display screen.
printing status record: A data structure maintained by the Toolbox
during spool printing, in which it reports to the calling program on the
status of the printing operation.
print-time information subrecord: A part of a print record. identical
in structure to the printer information subrecord. that is used pri
vately by the Toolbox for its own purposes.
pull down: To display a menu on the screen by pressing the mouse
inside its title in the menu bar.

pulse-width encoding: The engineering technique used to drive the
Macintosh speaker, in which a magnitudevalue taken from the sound
buffer determines the duration of the electrical pulse transmitted to
the sound generator.

purge: To remove a relocatable block from the heap to make room for
other blocks. The purged block's master pointer remains allocated,
but is set to NIL to show that the block no longer exists in the heap:
all existing handles to the block become empty handles.
purge bit: A flag in the high-order byte of a masterpointerthat marks
the associated block as purgeable.
purgeable block: A relocatable block that.can be purged from the
heap to make room for other blocks.
push: To add a data item to the top of a stack.
pushbutton: A button that causes some immediate action to occur,
either instantaneously when clicked with the mouse or continuously
for as long as the mouse button is held down; compare checkbox,
radio buttons.

583 Glossary

pushdown stack: See stack.

queued operation: An input/ output operation that is saved for later
execution. rather than executed immediately when requested.
QulckDraw: The extensive collection of graphics routines built into
the Macintosh ROM.
QulckDraw globals pointer: A pointer to the global variables used
by QutckDraw, kept at address o (AS) in the appltcattonglobal space.

radio buttons: A group of two or more related buttons, exactly one
of which can be on at any given time; turning on any button in the
group turns off all the others. Compare pushbutton, checkbox.

RAM: See random-access memory.

random-access memory: A common but misleading term for read/
write memory.

read-only memory: Memory- that can be read but not written;
usually called ROM. The Macintosh ROM contains the built-in
machine code of the Macintosh Operating System, QutckDraw, and
the User Interface Toolbox: on larger models it also includes some
packages, device drivers, and other frequently used resources.
Compare read/write memory.
read/write memory: Memory- that can be both read and written;
commonly known by the misleading term rand.om-access memory, or
RAM. Compare read-only memory.

reallocate: To allocate fresh space for a relocatable block that has
been purged. updating the block's master pointer to point to its new
location. Only the space is reallocated; the block's former contents
are not restored.
recalibrate: To recalculate the line breaks in an edit record after any
change in its text, text characteristics, or destination rectangle.

rectangle: A four-sided graphical figure defined by two points
specifying its top-left and bottom-right comers, or by four integers
specifying its top, left, bottom, and right edges.
reference constant: A 4-byte field included in every- window record
or control record for the application program to use in any way it
wishes.
reference number: See directory reference number, driver reference
number, .file reference number, volume reference number.

refresh: To redraw the entire contents of the Macintosh screen, from
the top-left comer to the bottom-right.
refresh rate: The frequency with which the Macintosh screen is
refreshed. equal to approximately 60.15 hertz (frames per second).

584 Mastering the Toolbox

region: A graphical figure that can be of any arbitrary shape. It can
have cutved as well as straight edges, and can even have holes or
consist of two or more separate pieces.
register-based: Describes a Toolbox routine that accepts its para
meters and returns its results directly in the processor's registers;
compare stack-based.

release: See deallocate.

relocatable block: A blockthat can be moved within the heap during
compaction. referred to by double indirection with a handle; compare
nonrelocatable block.

resource: A unit or collection of information kept in a resource ft.le
on a disk (or in ROM on some Macintosh models) and loaded into
memory when needed.
resource compiler: A utility program that constructs resources
according to a coded definition read from a text ftle.
resource data: The information a resource contains.
resource editor: A utility program with which resources can be
defined or modified directly on the screen with the mouse and
keyboard.
resource file: A collection of resources stored together as a unit on
a disk; technically not aftl.e as such, but merely the resource fork of
a particular file.
resource fork: The fork of aft.le that contains the file's resources;
usually called a resource ftle. Compare data fork.

resource m: An integer that identifies a particular resource within
its resource type.
resource name: An optional string of text characters that identifies
a particular resource within its resource type, and by which the
resource can be listed on a menu.
resource specification: The combination of a resource type and
resource ID, or a resource type and resource name, which uniquely
identifies a particular resource.
resource type: A four-character string that identifies the kind of
information a resource contains.
response procedure: A procedure that defines the action to be taken
when the mouse is clicked in a dialog item of a printing-related dialog.

result code: An integer code returned by a Toolbox routine to signal
successful completion or report an error.
return link: The address of the instruction following a routine call.
to which control is to return on completion of the routine.

585 Glossary

ROM: See read-only memory.

rounded rectangle: A graphical figure consisting of a rectanglewith
rounded comers; defined by the rectangle itself and the dimensions
of the ovals forming the comers.
routine selector: An integer used at the machine-language level to
identify a specific routine that is called via a more general Toolbox
trap, such as a package trap or the general-purpose printing trap
_PrGlue.

row width: The number of bytes in each row of a bit image.

sampling rate: The number of elements to be skipped between
successive sound samples taken from a waveform array, which
determines the pitch of a voice in four-tone sound, or the pitch and
duration of ajree-jonn sound.
scan direction: The direction in which a page image is broken into
bands for printing.
scan line: One of the horizontal lines painted by the display tube's
electron beam to make up the image on the Macintosh screen. The
standard Macintosh display consists of 342 scan lines of 512 pixels
each.
scrap: The vehicle by which information is cut and pasted from one
place to another.
scrap count: An integer maintained by the Toolbox that tells when
the contents of the desk scrap have been changed by a desk
accessory.

scrap file: A disk file holding the contents of the desk scrap.

scrap handle: A handle to the contents of the desk scrap, kept by the
Toolbox in a system global.
scrap information record: A data structure summarizing the
contents and status of the desk scrap.
screen buffer: The area of memory reseived to hold the screen image.

screen image: The bit image that defines what is displayed on the
Macintosh screen.
screen map: The bit map representing the Macintosh screen, kept in
the QuickDraw global variable ScreenBi ts [I:4.2.1]. Its bit image is
the screen image; its boundary rectangle has the same dimensions as
the screen, with the origin at coordinates (0, 0).

screen printing: A low-level printing operation, implemented by the
Control routine of the printer driver, for transmitting all or part of the
current screen image directly to the printer.

586 Mastering the Toolbox
~~~~~~~~~~~-

scroll: To move the contents of a window with respect to the window 
itself, changing the portion of a document or other information that's 
visible within the window. 
scroll bar: A control associated with a window that allows the user 
to scroll the window's contents. 
scroll box: The indicator of a scroll bar, a small white box that can 
be dragged to any desired position within the scroll bar's shaft; also 
called the "thumb." 
SCSI: Small Computer Standard Interface, a parallel interface built 
into some Macintosh models for communicating with peripheral 
devices; commonly pronounced "scuzzy" (or "'sexy," according to 
personal temperament). 
selection: An object or part of a document designated by the user 
to be acted on by subsequent commands or operations. 
selection range: A pair of character positions defining the beginning 
and end of the selection in an edit record. 
serial driver: The device driver built into ROM for communicating 
with peripheral devices through the Macintosh's built-in serial ports. 
serial port: A connector on the back of the Macintosh for commu
nicating with peripheral devices such as a hard disk, printer, or 
modem. 
setting: An integer specifying the current state or value of a control 
shaft: The vertical or horizontal body of a scroll bar, within which the 
scroll box slides. 
shape: Any of the figures that can be drawn with QuickDraw shape
drawing operations, including rectangles, rounded rectangles, ovals, 
arcs and wedges, polygons, and regions. 

shape drawing: Drawing shapes in a graphics port, using the 
operations frame, paint, .fill, erase, and invert 

Shift key: A modifier key on the Macintosh keyboard, used to 
convert lowercase letters to uppercase or to produce the upper 
character on a nonalphabetic key. 
show: To make a window, control, or other object visible. 

SideWindow: The example window de.ftnitionfunction developed in 
this volume. 
signature: A four-character string that identifies a particular 
application program, used as a creator signature on files belonging to 
the program and as the resource type of the program's autograph 
resource. 



587 Glossary 

sine wave: A waveform whose shape is defined by the tngonometric 
sine function. 
68000: See MC68000. 

68020: See MC68020. 

68881: See MC68881. 

6522: See SY6522. 

size box: The small box at the bottom-right comer of a document 
window, with which it can be resized by dragging with the mouse. 
size region: The area of a window with which it can be resized by 
dragging with the mouse; also called the "grow region." In a document 
wind.ow, the size region is the size box. 

Skinny Mac: See Macintosh 128K. 

sound buffer: The area of memory whose contents determine the 
sounds to be emitted by the Macintosh speaker. 
sound chip: The special-purpose chip that controls the Macintosh 
sound generator. The sound chip in the classic Macintosh and 
Macintosh SE is manufactured by Sony Corporation; the Macintosh II 
uses a custom Apple sound chip. 
sound driver: The device driver built into ROM for controlling the 
sounds emitted by the Macintosh's built-in speaker. 
sound generator: The electronic circuitry that produces sounds 
through the Macintosh's built-in speaker. 
sound number: An integer identifying the error sound to be emitted 
by an alert. 

sound procedure: A procedure that defines the error sounds to be 
emitted by alerts. 
sound record: The data structure that defines the pitch, timbre, and 
phase of the four voices forming a four-tone sound. 

sound sample: A value representing the magnitude of a sound at a 
given point in time. 
sound synthesizer: The part of the sound driver that produces a 
particular type of sound: see square-wave synthesizer, four-tone 
synthesizer, .free-form synthesizer. 

source transfer modes: A set of transf ermodes used for transferring 
pixels from one bit map to another or for drawing text characters into 
a bit map: compare pattern transfer modes. 
speaker volume: A global setting that controls the maximum volume 
produced by the Macintosh speaker, chosen by the user with the 
Control Panel desk accessory and stored in parameter RAM. 



588 Mastering the Toolbox 

spool buffer: An area of memory reseived for input from the spool 
fUe during the second stage of a spool printing operation; compare 
print bu.ff er. 
spool me: A temporary .ftl.e in which page images are saved between 
the imaging and printing stages of a spool printing operation. 
spool printing: ( 1) Broadly, a printing method in which imaging and 
printing are two distinct stages: page images are saved in a 
temporary, intermediate form and later sent to the printer in a 
separate operation. (2) More narrowly, the second stage of this 
process, in which the saved page images are retrieved and sent to the 
printer. 
spooling: The first stage of spool printing, in which the contents of 
each page are imaged and saved in a temporary, intermediate form 
for later printing. 
square wave: A waveform that oscillates directly between a maxi
mum positive and a maximum negative amplitude, with no gradual 
transition in between. 
square-wave sound: A sequence of tones forming a single melodic 
line. Each tone has a square waveform. producing a flat, synthetic
sounding timbre. 
square-wave synthesizer: The part of the sound driver that 
produces square-wave sound. 
stack: (1) Generally, a data structure in which items can be added 
(pushedJ and removed (popped) in UFO order: the last item added is 
always the first to be removed. (2) Specifically, the area of Macintosh 
RAM that holds parameters, local variables, return addresses, and 
other temporary storage associated with a program's procedures and 
functions; compare heap. 
stack-based: Describes a Toolbox routine that accepts its parame
ters and returns its results on the stack. according to Pascal 
conventions; compare register-based. 
stack pointer: The address of the current top of the stack, kept in 
processor register A 7. 

stage list: A data structure that defines the behavior of a staged alert 
at each consecutive occurrence. 
staged alert: An alert that behaves differently at consecutive 
occurrences. 
Standard File Package: A standard package, provided in the system 
resourceftl.e, that provides a convenient, uniform way for the user to 
supply file names for input/ output operations. 



589 Glossaiy 

standard 811 tones: A set of five patterns representing a range of 
homogeneous tones from solid white to solid black, provided as global 
variables by the QuickDraw graphics routines. 
starting angle: The angle defining the beginning of an arc or wedge. 

startup handle: A handle to a program's startup informatton, passed 
to the program by the Finder as an application parameter. 

startup information: A list of documentftles selected by the user to 
be opened or printed on starting up an application program. 
startup message: A field of a program's startup information that tells 
whether the selected documentjUes are to be printed or opened for 
ordinary work. 
status code: An integer code that identifies the specific status 
information to be returned by a device driver's Status routine. 

Status routine: The driver routine that returns information about 
the current status of a peripheral device or its driver. 

Stopwatch: The example desk accessory developed in this volume. 
structure region: The total area occupied by a window, including 
both its window frame and content region. 

style dialog: The dialog baxin which the user supplies a document's 
overall printing-related properties, presented in response to the Page 
Setup ... menu command and corresponding roughly to the con
tents of the style subrecord of the print record. Compare job dialog. 

style subrecord: The part of a print record that specifies the way the 
printer is to be used for a particular job, as distinct from its inherent 
characteristics. 
subdirectory: Under the Hierarchical Flle System, a directory con
tained within another directory. 
SY6522: The Versatile Interface Adapter chip used in the Macintosh, 
manufactured by Synertek Incorporated; usually called "'6522" for 
short. 
synchronous: Describes an input/ output operation that is per
formed to completion, returning control to the calling program only 
after the operation has been carried out in its entirety; compare asyn
chronous. 

synthesizer: See sound synthesizer. 
synthesizer record: The data structure that defines a sound to be 
played by the sound driver. 
system clock: The clock that records the elapsed time in ticks since 
the system was last started up. 



590 Mastering the Toolbox 

system event mask: A global event maskmaintained by the Toolbox 
that controls which types of event can be postedinto the event queue. 
system font: The typeface (normally Chicago) used by the Toolbox 
for displaying its own text on the screen, such as window titles and 
menu items. 
system globals: Fixed memory locations reseIVed for use by the 
Toolbox. 
system heap: The portion of the heap reseIVed for the private use of 
the Macintosh Operating System and Toolbox: compare application 
heap. 
system resource me: The resourceforkofthe file System, contain
ing shared resources that are available to all programs. 
system window: A window in which a desk accessory is displayed 
on the screen; compare application window. 
text box: A dialog item consisting of a box into which the user can 
type text from the keyboard. 
text characteristics: The properties of a graphics port that deter
mine the way it draws text characters, including its textface, text size, 
text style, and text mode. 

text face: The typeface in which a graphics port draws text charac
ters. 
text me: A file of file type 'TEXT ' , containing pure text characters 
with no additional formatting or other information. 
text font: A term sometimes used loosely (and incorrectly) as a 
synonym for textface. 
text handle: A handle to a sequence of text characters in memoiy. 
text menu: The standard menu type used by the Toolbox, consisting 
of a vertical list of item titles. 
text mode: The transfer mode with which a graphics port draws text 
characters. 
text scrap: The private scrap maintained internally by the TextEd.tt 
routines to hold text being cut and pasted from one place to another 
within an application program: compare desk scrap. 
text size: The type size in which a graphics port draws text 
characters. 
text streaming: A low-level printing operation, implemented by the 
Control routine of the printer driver, for transmitting a stream of text 
characters directly to the printer. 
text style: The type style in which a graphics port draws text 
characters. 



591 Glossary 

TextEdlt: The collection of text-editing routines included in the User 
Interface Toolbox. 

ThreeState: The example control de.ftnitionfunctiondeveloped in this 
volume. 
thumb: See scroll box. 

tick: The basic unit of tlme on the system clock; the inteival between 
successive occurrences of the vertical retrace interrupt. equal to 
approximately one-sixtieth of a second. 
timbre: (Rhymes with "amber." not "limber.") The subjective quality 
or character of a sound as perceived by the ear. determined by the 
shape of its waveform. 

title bar: The area at the top of a document window that displays the 
window's title. and by which the window can be dragged to a new 
location on the screen. 
Toolbox: (1) The User Interface Toolbox. (2) Loosely. the entire 
contents of the Macintosh ROM. including the Macintosh Operating 
System. QutckDraw. and the User Interface Toolbox proper. 
Toolbox scrap: See text scrap. 

top of stack: The end of the stack at which items are added and 
removed; compare base of stack. 

track: To follow the movements of the mouse while the user drags it. 
taking some continuous action (such as providing visual feedback on 
the screen) until the button is released. 
tracking rectangle: A rectangle that limits the tracking of the mouse 
when the user drags a control 
transfer mode: A method of combining pixels being transferred to a 
bit map with those already there. 
translate: To move a point or graphical figure a given distance 
horizontally and vertically. 
trap: An error or abnormal condition that causes the MC68000 (or 
MC68020) processor to suspend normal program execution tempo
rarily and execute a trap handler routine to respond to the problem; 
also called an exception. 

Trap Dispatcher: The trap handler routine for responding to the 
emulator trap. which examines the contents of the trap word and 
jumps to the corresponding Toolbox routine in ROM. 
trap handler: The routine executed by the MC68000 or MC68020 
processor to respond to a particular type of trap. 

trap macro: A macroinstructlon used to call a Toolbox routine from 
an assembly-language program; when assembled. it produces the 



592 Mastering the Toolbox 

appropriate trap word for the desired routine. Trap macros are 
defined in the assembly-language interface to the Toolbox and always 
begin with an underscore character(_). 
trap number: The last 8 or 9 bits of a trap word, which identify the 
particular Toolbox routine to be executed; used as an index into the 
dispatch table to find the address of the routine in ROM. 
trap vector: The address of the trap handler routine for a particular 
type of trap, kept in the vector table in memocy. 
trap word: An unimplemented instruction used to stand for a 
particular Toolbox operation in a machine-language program. The 
trap word includes a trap nwnber identifying the Toolbox operation 
to be performed; when executed, it causes an emulator trap that will 
execute the corresponding Toolbox routine in ROM. 
type size: The size in which text characters are drawn, measured in 
printer's points and sometimes referred to as a "point size." 
type style: A variation or set of variations on the basic form in which 
text characters are drawn, such as bold, italic, underline, outline, or 
shadow. 
typecasting: A feature of some Pascal compilers that allows data 
items to be converted from one data type to another with the same 
underlying representation (for example, from one pointer type to 
another). 
typeface: The overall form or design in which text characters are 
drawn, independent of size or style. Macintosh typefaces are conven
tionally named after world cities, such as New York, Geneva, or 
Athens. 

unimplemented instruction: A machine-language instruction 
whose effects are not defined by the MC68000 (or MC68020) proces
sor. Attempting to execute such an instruction causes an emulator 
trap to occur. allowing the effects of the instruction to be "emulated" 
with software instead of hardware. 
unit: A collection of precompiled declarations that can be incorpo
rated wholesale into any Pascal program. 
unit number: The index number of a device driver in the unit table, 
always a positive integer between o and 4 7 (or o and 31 on earlier 
models). For drivers that reside in a resourcejlle, the unit number is 
also the resource ID. 

unit table: The table in memory where the Toolbox keeps handles 
to the device control entries for all device drivers installed in the 
system. 



593 Glossary 

unload: To remove an object, such as a resource or the desk scrap, 
from memory, often (though not necessarily) by writing it out to a disk 
file. 
unlock: To undo the effects of locking a relocatable block, again 
allowing it to be moved within the heap during compaction. 

unpurgeable block: A relocatable blockthat can't be purgedfrom the 
heap to make room for other blocks. 
up arrow: The arrow at the top or left end of a scroll bar, which causes 
it to scroll up or to the left a line at a time when clicked with the 
mouse. 
update: To redraw all or part of a window's content region on the 
screen, usually because it has become exposed as a result of the 
user's manipulations with the mouse. 
update event: A window event generated by the Toolbox to signal 
that all or part of a given window has become exposed and must be 
updated (redrawn). 
update rectangle: The rectangle within which text is to be redrawn 
when an edit record is updated. 

update region: The region defining the portion of a window that 
must be redrawn when updating the window. 
user: The human operator of a computer. 
user event: An event reporting an action by the user; see mouse 
event, keyboard event, disk-inserted event. 

user interface: The set of rules and conventions by which a human 
user communicates with a computer system or program. 
User Inted'ace Guidelines: An Apple document that defines the 
standard user interface conventions to be followed by all Macintosh 
application programs. 
User Interface Toolbox: The body of machine code built into the 
Macintosh ROM to implement the features of the standard user 
inteiface. 
uses declaration: A declaration that incorporates the code of a 
precompiled unit into a Pascal program. 
valid region: An area of a window's content region whose contents 
are already accurately displayed on the screen, and which therefore 
need not be updated. 
variation code: An integer code, part of a window or control 
defutition ID, that carries modifying information or distinguishes 
among different types of window or control implemented by the same 
defutitionfunctton. 



594 Mastering the Toolbox 

VBL Interrupt: Short for ~ertical blanking interrupt": see vertical 
retrace interrupt. 
vector table: A table of trap vectors kept in the first kilobyte of RAM. 
used by the MC68000 or MC68020 processor to locate the trap 
handler routine to execute when a trap occurs. 
Versatile Interface Adapter: A special-purpose controller chip. the 
Synertek SY6522. used in the Macintosh to control a variety of input/ 
output devices such as the mouse. keyboard. disk motor. sound 
generator. and real-time clock. 
version data: Another name for a program's autograph resource. so 
called because its resource data typically holds a string identifying 
the version and date of the program. 
vertical blanking interrupt: See vertical retrace interrupt. 

vertical blanking Interval: See vertical retrace interval. 

vertical retrace Interrupt: An interrupt generated by the Macin
tosh's video display circuitry when the display tube's electron beam 
reaches the bottom of the screen and returns to the top to begin the 
next.frame. This interrupt. recurring regularly at inteivals of one ttck 
(approximately sixty times per second) forms the .. heartbeat" of the 
Macintosh system. 
vertical retrace interval: The inteival between successive occur
rences of the vertical retrace interrupt, equal to one tick or approxi
mately one-sixtieth of a second. 
VIA: See Versatile Interface Adapter. 

view rectangle: The boundary to which text is clipped when 
displayed in an edit record; also called the "clipping rectangle." 
visible: Describes a window, control. or other object that is logically 
in view on the screen. A visible object is actually displayed only if 
exposed; compare invisible. 

visible region: A clipping boundary that defines, for a graphics port 
associated with a window, the portion of the port rectangle thafs 
exposed to view on the screen. 
voice: One of the four independently specified tones that combine 
to form four-tone sound. 

volume: A collection of files grouped together as a logical unit on a 
given storage device. 
volume name: A string of text characters identifying a particular 
volume. 

volume reference number: An identifying number assigned by the 
file system to stand for a given volume. 



595 Glossary 

waveform: A cuive describing the variations in a sound's magnitude 
overtime. 
waveform array: An array of sound samples representing a wave
form. 
wavelength: (1) The spatial distance a sound propagates during one 
complete cycle. (2) The number of sound samples in a wavefonnarray 
corresponding to one complete cycle. 
wedge: A graphical figure bounded by a given arc and the radii 
joining its endpoints to the center of its oval. 
wide-open region: A rectangular region extending from coordinates 
(-32768, -32768) to (+32767, +32767), encompassing the entire 
QuickDraw coordinate plane. 
window: An area of the Macintosh screen in which information is 
displayed, and which can overlap and hide or be hidden by other 
windows. 
window class: An integer code that identifies the origin and general 
purpose of a window, as opposed to its appearance and behavior; 
compare window type. 
window data record: A data structure maintained by an application 
program (not by the Toolbox!) that contains auxiliary information 
about a wind.ow and is accessed via a handle stored as the window's 
reference constant 
window definition function: A routine, stored as a resource, that 
defines the appearance and behavior of a particular type of wind.ow. 
window definition ID: A coded integer representing a wind.ow type. 
which includes the resource ID of the wind.ow deftnitionfunction along 
with a variation code giving additional modifying information. 
window event: An event generated by the Toolbox to coordinate the 
display of windows on the screen; see activate event, deactivate event, 
update event. 
window frame: The part of a wind.ow that is independent of the 
information it displays, and which is drawn automatically by the 
Toolbox; compare content region. 
window list: A linked list of all windows in existence at any given 
time, chained together through a field of their window records. 
Window Manager port: The graphics port in which the Toolbox 
draws all wind.ow frames. 
window pointer: A pointer to a window record. 
window record: A data structure containing all the information 
associated with a given wind.ow. 



596 Mastering the Toolbox 

window template: A resource containing all the information needed 
to create a window. 
window title: The string of text characters displayed m the title bar 
ofa window. 
window type: A catego:ry of window, identified by a window 
defln.Uion ID, whose appearance and behavior are determined by a 
window defmitiDnfunction; compare window class. 
word: A group of 16 bits (2 byt.es) beginning at a word boundary m 
memo:ry. 
word boundary: Any even-numbered memo:ry address. Eve:ry word 
or long word m memo:ry must begm at a word boundary. 
word break: A character position marking the beginning or end of a 
word. 
word-break routine: A function associated with an edit record that 
determines the locations of the word breaks m the record's text. 
word wrap: A method of wrapping text in which an entire word is 
carried forward when beginning a new Ime, so that no word is ever 
broken between Imes. 
wrap: To format text or other information against a boundary by 
beginning a new lme whenever the edge of the bounda:ry is reached. 
wrapping rectangle: See destfnation rectangle. 

wristwatch cursor: A standard cursor included in the system 
resourceftle (or in ROM on some models), used to signal processing 
delays. 
zoom: To alternate a window between a smaller and a larger size by 
clicking with the mouse in its zoom region. 

zoom bit: A bit in the window definition ID of a standard document 
window that specifies whether the window has a zoom box. 

zoom box: The small box near the right end of the ttUe bar, by which 
a document window can be zoomed with the mouse. 
zoom in: To zoom a window from its larger to its smaller size. 
zoom-in rectangle: A rectangle defining the screen location of a 
window when zoomed in to its smaller size. 
zoom out: To zoom a window from its smaller to its larger size. 
zoom-out rectangle: A rectangle defining the screen location of a 
window when zoomed out to its larger size. 
zoom region: The area of a window by which it can be zoomed with 
the mouse. In a document window, the zoom region is the zoom box. 



Index 

AccClear control code, 311, 
327, 333 

AccCopy control code, 311, 327, 
333 

AccCut control code, 311, 327, 
333 

AccEvent control code, 306-307, 
330 

AccPaste control code, 311, 
327, 333 

Ac c Run control code, 10 l, 103, 
109, 316 

AccUndo control code, 311, 327, 
333 

Action procedures, 51 
ActWindow (MiniEdit), 515-516 
AddResMenu. 95, 284 
AdjustScroll (MiniEdit), 519 
AdjustText (MiniEdit), 506 
ADPA (Apple Programmer's and 

Developer's Association), 
9 

AdvanceClock (StopWatch), 
317-320, 542 

Alarm Clock desk accessory, 100 
'ALRT' template, 298 
Amplitude field, 270 
Amplitude of sound, 248, 256, 

270 
Apple Programmer's and 

Developer's Association, 
9 

ArcProc, 63-64 
Assembly language 

for completion routines, 255 
for device drivers, 97-98, 

102 
QuickDraw variables for, 

419 
for sound, 277 
system variables for, 

415-418 
trap macros for, 385-399 
trap words for, 399-413 

Asynchronous drivers, 99 
Asynchronous sound requests, 

255-256 
AsyncTrpBit constant, 100, 117 

597 

Automatic renumbering of 
resources, 298 

AutoSc roll (MfniEdit), 506-507 
AutoTrack message, 51, 84 
Auxiliary control records, 41, 78 
Auxiliary data record, 17-18 
Auxiliary information subrecord, 

146-147, 209-211, 350 
Auxiliary window records, 11, 71 
AwFlags field, 11 

Background procedures with 
printing, 145, 177,207 

Bands for pages, 146, 209 
BeginUpdate. 172 
Best ImageWriter option, 139 
BFileVers field, 145, 207 
Bit-map printing, 135, 137, 

226-227, 354 
Bit transfer, low-level, 59-60, 

338 
BitAnd. 292, 325 
BitNot, 297, 325 
Bi tOr, 292, 325 
BitsProc, 59 
BitXOr. 325 
BJDocLoop field, 143-145, 191, 

206 
'BNDL' resource, 243, 374 
Boldface text, 232, 234 
Bottleneck record and routines, 

6-7, 57-59, 337 
Bounds rectangle, 20 
Buffers 

for printing, 136 
for sound, 252-253 
for spooling, 175-176 

Bug, Toolbox, and window 
drawing, 28 

Built-in drivers, 94 

GalcBoxes (SideWindow), 25-26, 
28, 428 

CalcCloseBox (SideWindow), 26, 
429-430 

CalcContRgn (SideWindow), 24, 
427 

CalcCRgns message, 47, 50, 79 

CalcMenuSize, 52-53, 85-86 
CalcSizeBox (SideWindow), 

25-26, 431 
CalcStrucRgn (SideWindow), 24, 

428 
Cale Ti tleBar (SideWindow), 26, 

429 
CalcZoomBox (SideWindow), 26, 

430 
'CDEF resource, 41, 54, 78, 89, 

361 
type code for, 91, 371 

CGraf Port port, 7 
CharWidth, 65 
Checkboxes 

resource for, 41 
three-state, 42-44 

CheckboxProc. 42 
Chooser desk accessory with 

printers, 132-133 
ClearMenuBar. 300 
Clipping boundaries, setting of, 

26 
Close boxes, 28-30 
CloseAppWindow (MiniEdit), 

148, 188,480-482 
CloseDeskAcc, 307, 320, 

328-330, 359 
CloseDriver, 97, 122-123, 347 
CloseSysWindow (MiniEdit), 

482-483 
Closing 

of desk accessories, 
283-286, 307, 320-322, 
328-330, 359 

of device drivers, 97, 104, 
106, 122-123,347 

of documents, 218-219 
of print drivers, 223, 353 
ofwindows, 148, 188, 

480-483 
ClrAppFiles. 185 
'CNTL' resource, 298 
Command key, program to check 

for, 173-174 
CommentProc, 8, 68-69 
Comments, picture, 7-9, 68 
Completion routines, 255, 276 



598 Index 

Concurrent printing. 178 
ContRgn field. 23 
ContrlAction field. 51. 84 
ContrlData field. 46, 78-79 
ContrlDefProc field. 41, 78 
ContrlHilite field, 47-48, 82 
ContrlMax field, 44, 46, 81 
ContrlMin field, 44, 46. 81 
ContrlRect field, 47. 80 
ContrlRfCon field, 46 
Contrl Value field. 50, 81, 83 
Control, 96-97. 100, 107, 

124-125, 347 
Control Panel desk accessozy 

and volume, 253 
Control routines and codes, 100. 

225. 283-285 
for desk accessories. 

326-328, 374, 302-319 
for device drivers, 96. 

103-104 
Controls,41 

creation and destruction of, 
46-47, 79-80, 343 

definition functions for. 41. 
77-79. 342 

definition ID for, 41, 78 
drawing of, 48, 80-81, 343 
mouse clicks in, 81-82. 343 
records for, 46 
three-way, 42-46, 446-458 
tracking and positioning of. 

49-51, 82-84. 343 
CopyBi ts, 30. 59 
Count field, 266, 270 
CountAppFiles, 185, 187 
Creation 

of controls. 46. 79-80. 343 
of menus, 52 
of windows, 18-22. 72-73, 

341 
Creator signatures 

and desk accessories, 295 
and picture comments, 8-9 
for printer resources, 

131-132 
CsCode field 

in Control and Status 
routines, 100, 103-104, 
107, 109. 117. 125 

with desk accessories, 286. 
302, 326 

CsParam field 
in Control and Status 

routines. 100, 103-104, 
117, 125, 286 

with desk accessories, 286, 
305-306. 309, 326-327, 
330 

and font support, 232 
CurrentA5 system global, 294 

Customization 
of controls, 41-51, 77-84, 

342-343 
of menus, 52-54, 84-85, 

343-344 
of paper sizes, 195-196. 

238-239 
of printing dialogs, 191-195, 

235-238, 356 
of QuickDraw, 5-9, 57-69, 

337-340 
of windows, 9-40. 69-77. 

341-342 
Cut-and-paste editing with 

Stopwatch. 311 
Cycles, sound. 248 

DA Handler, 283 
Data register in VIA. 252 
DataHandle field, 17-18, 71-72 
DCE. See Device control entries 
DCtlCurTicks field, 101, 115, 

316, 334 
DCtlDelay field, 101, 103. 114, 

293, 316 
DCtlDriver field, 98. 114 
DCtlEMask field, 103, 114, 293, 

324, 331 
DCtlEnable constant, 98, 109 
DCtlEntry record, 97, 344 
DCtlFlags field 

with desk accessories, 285. 
292, 316.327,334 

with device drivers, 98, 103, 
113-114. 123 

DCtlHandle type, 344 
DCtlMenu field 

with desk accessories, 299, 
309,322,333 

with device drivers, 98, 103. 
113-114 

DCtlPosition field, 98, 115, 
124 

DCtlPtr type, 286, 344 
DCtlQHdr field, 99, 114 
DCtlRefNum field, 98, 114, 296, 

329 
DCtlStorage field, 98. 113-114, 

293-294, 322 
DCtlWindow field 

with desk accessories, 290, 
301, 321, 329 

with device drivers, 98, 
113-114 

DeactWindow (MiniEdit). 
516-517 

Dequeue, 121, 346 
Desk accessories, 281-283 

close routine for, 283-286, 
307, 320-322. 328-330. 
359 

Desk accessories-cont 
control routine for, 302-319, 

326-328, 374 
and device drivers, 93-94. 

282 
and events, 306-309, 

330-332, 359-360, 370 
and keyboard routines. 

335-336 
menus for, 95, 332-334. 

360 
opening routine for, 

289-302, 328-330, 359 
and periodic tasks, 

334-335, 360 
sample, 286-289 
structure of, 284-286, 

323-328, 359 
Destruction · 

of controls, 46-47, 79-80, 
343 

ofwindows, 22,72-73, 341 
Device control entries, 94-103, 

113-115. 344-345 
for desk accessories. 

283-284, 290 
initialization of. 291-293 
menu ID field in, 299 
routine for, 224 

Device drivers, 93 
desk accessories as, 93-94, 

282 
flags for. 98-99. 108-110, 

367 
headers for, 101-102. 

284-285 
identification of. 94-95 
opening and closing of. 97, 

102-104, 106, 122-123, 
347 

for printer, 134-135 
reading and writing with, 

123-124. 347 
reference numbers for, 95. 

112, 114, 284 
sound, 94, 254 
standard, 372 
structure of, 101-122, 

344-346 
working with, 95-97 
See also Device control 

entries 
'DFIL' type, 295 
Dialogs, printer-related, 

150-152, 203, 215-216, 
352 

customization of, 191-195, 
235-238, 356 

initialization routine for, 192 
records for, 237 
status, 162-174 



599 Index 

DialogSelect. 172, 181 
Dials, 47-48 

tracking and positioning of, 
49-51, 82-83 

Dimensioning of pages, 140-142 
DimTi tle rrhreestate), 454-455 
Dire straits enor codes, 382-383 
Disk driver, 94 
DispCntl message, 46, 79 
'DI'lL' resource, 132, 244, 298, 

374 
'DLOG' resource, 132, 244, 298, 

374 
'DMOV' creator signature, 295 
DNeedGoodBye flag, 98, 109, 305 
DNeedLock field, 98, 109, 113, 

285 
DNeedTime field, 101, 109, 316 
DoAbout (MiniEdit), 475 
DoAbout (StopWatch), 545 
DoActivate (MiniEdit), 514-515 
DoActi vate (StopWatch), 309, 

539-540 
DoAlias (StopWatch), 312-314, 

537-538 
DoAppleChoice (MiniEdit), 474 
DoBeep (StopWatch), 317, 543 
DoCalc flbreeState), 448 
DoCalcRgns (SideWindow), 

23-25, 426-427 
DoClear (MiniEdit), 503 
DoClea r (Stop Watch), 550 
DoClose (MiniEdit), 480 
DoClose (Stopwatch), 320-322, 

550-551 
DoContent {MiniEdit), 504 
DoCont rol (Stopwatch), 

302-305, 311, 533-534 
DoCopy (MiniEdit), 502 
DoCopy (StopWatch), 549 
Documents, printing of, 

152-17 4, 352-353 
DoCut (MiniEclit), 501-502 
DoCut (StopWatch), · 549 
DoDisp flbreeState), 457 
DoDispose (SideWindow), 22, 

443-444 
DoDrag (MiniEdit), 508-509 
DoDrag ObreeState), 456 
DoDraw (SideWindow), 13, 

27-28, 431-432 
DoDraw {ThreeState), 448-449 
DoDrawGicon (SideWindow), 

32-33, 439-440 
DoEditChoice (MiniEdit), 

500-501 
DoEvent (MiniEdit), 470-471 
DoEvent (Stopwatch), 308-309, 

312, 534-535 
DoFileChoice (MiniEdit), 152, 

475-476 

DoGoAway {MiniEdit), 511 
DoGoodBye (StopWatch), 550 
DoGrow (MiniEdit), 509-510 
DoGrow (SideWindow), 36-38, 

441-442 
DoHi t SideWindow). 38-40, 

442-443 
Doini t (IhreeState), 448 
DoKeystroke (MiniEdit), 

512-513 
DoKeystroke (StopWatch), 312, 

536 
DoKillIO (Stopwatch), 550 
Dollar sign ($) for hexadecimal 

notation, 4 
DoMenuChoice (MiniEdit), 473 
DoMenuChoice (Stopwatch), 

309-310, 544-545 
DoMenuClick (MiniEdit), 

472-473 
DoMouseDown (MiniEdit), 

471-472 
DoMouseDraw (StopWatch), 

535-536 
DoNew (MiniEdit), 148, 187, 

476-477 
DoNew (SideWindow), 18-19, 

424-425 
DoOpen (MiniEdit), 478-479 
DoOpen (Stopwatch), 290-291, 

528 
DoPaste (MiniEdit), 502-503 
DoPaste (StopWatch), 549 
DoPause (MiniEdit), 169, 

181-182, 496-497 
DoPause (Stopwatch), 547-548 
DOpened flag, 99, 109 
DoPos rrhreeState), 456 
DoPrint (MiniEdit), 152-154, 

163-165, 167, 176, 188, 
490-491 

DoQui t (MiniEdit), 500 
DoReset (Stopwatch), 319, 548 
DoRevert (MiniEdit), 149, 

187-188, 487-489 
DoSave (MiniEdit), 483 
DoSaveAs (MiniEdit), 483-486 
Do Sc roll (MiniEdit), 504-505 
DoSelect (MiniEdit), 507 
DoSetup (MiniEdit), 152, 188, 

489 
DoSpoolEvent (MiniEdit), 

179-182, 499-500 
DoStart (Stopwatch), 318, 

545-546 
DoStartup (MiniEdit), 185-188, 

467-469 
DoSysClick (MiniEdit), 503 
DoTest (rhreeState), 455-456 
DoThreeWayCheckbox 

rrhreestate), 43-44 

DoThreeWayRadioButton 
(ThreeState), 44-46 

DoThumb frhreeState), 456 
DoTrack {ThreeState), 457 
DoTyping (MiniEdit), 513 
DoTyping (StopWatch), 312, 

314-315, 536-537 
DoUndo (MiniEdit), 501 
DoUndo (StopWatch), 548 
DoUpdate (MiniEdit), 173, 181, 

513-514 
DoUpdate (StopWatch), 538-539 
DoZoom (MiniEdit), 512 
Draft printing, 137-138 

dialog for, 162 
port routines for, 136 

DragCntl message, 49, 78, 
81-83 

DragControl. 49-50, 82-83 
DragWindow. 307 
DRAMBased flag, 99, 109 
DrawButton (ThreeState), 

449-450 
DrawChar. 65 
DrawCheckBox (ThreeState), 

450-451 
DrawCloseBox (SideWindow), 

434-435 
DrawCntl message, 48, 51, 80, 

83-84 
DrawDialog. 161 
DrawFrame (SideWindow), 433 
DrawGrowicon, 31-32 
Drawing 

of controls, 48, S0-81, 343 
oflines,60-61,338 
of shapes, 62-64, 338-339 
of text, 64-66, 339-340 
of windows, 26-31, 73-74, 

341 
DrawMenuBar, 300 
DrawRadioButton rfhreeState), 

451-452 
DrawSizeBox (SideWindow), 

33-35, 44Q-441 
Drawstring. 65 
DrawText, 65 
DrawTi tle (SideWindow), 

436-437 
DrawTi tle flbreeState), 

452-453 
DrawTi tleBar (SideWindow), 

433-434 
DrawTi tleText flhreeState), 

453-454 
DrawWindow (SideWindow), 432 
DrawZoomBox (SideWindow), 435 
DReadEnable constant, 98, 109 
Drivers. See Device drivers 
'DRVR' resources, 55, 94, 126, 

362 



600 Index 

'DRVR' resources-cont 
for desk accessories, 284, 

295,299,329 
in printer resource file, 132, 

243, 374 
type code for, 371 
and unit table, 112 

DrvrActive flag. 99, 109 
DStatEnable constant, 98, 109 
Duration field, 261, 270, 272 
DWri tEnable constant, 98, 109 

Editing with StopWatch, 311 
EnableFlags field, 64, 86 
EndUpdate. 172 
Enqueue, 120-121, 346 
Enterprise program, 257-261 
Equal-tempered music scale, 

257, 270,273 
Erasing of shapes, 63 
Errors and error reporting 

dire straits, 382-383 
operating system, 377-382 
for printing, 155, 168, 

216-217, 352 
Events 

and desk accessories, 
306-309, 330-332, 
359-360, 370 

and filter functions, 
171-172 

mask for, 102, 106, 
323-325, 359, 370 

Exclusive or for toggling, 30 
ExitToShell. 188 

Faster ImageWriter option, 139 
FFMode record, 254 
FFSynthPtr type, 274, 358 
FFSynthRec record, 274, 276, 

358 
File menus, 150 
File reference numbers, 95 
Filling of shapes, 63 
Filter functions for printing, 165, 

167, 170-172, 192 
FilterKey (MiniEdit), 173-174, 

181, 494-495 
Finalize (MiniEdit), 517-518 
Finder 

printing from, 184-188 
resources for, 132, 244-245 
startup handle for, 185 

FindWindow. 38, 47, 306-307, 
329 

FixCursor (MiniEdit), 470 
FixCursor (StopWatch), 

543-544 
FixEdi tWindow (MiniEdit), 508 
FixScrollBar (MiniEdit), 510 
FixText (MiniEdit), 510-511 

'FKEY' resource, 229, 335-336, 
363, 375 

Flags 
for drivers, 98-99, 108-110, 

367 
in record window, 26 

FMOut Pt r type, 355 
FMOutput record, 355 
'FOND' resource, 55 
'FONI"' resource, 55, 91 
Font/DA Mover, 295, 299 
Fonts, printer, 128-130 

characterization table for, 
232,234,369 

numbering rules for, 55 
output record for, 232 
resource for, 55, 91 
supportfo~ 231-234, 355 

Foreign writing systems and 
menu bars, 20 

Four-tone sound, 254, 261-267, 
271-274, 357-358 

Frames 
display, 251 
for shapes, 63 
window, 31-32 

Free-form sound, 254, 266, 268, 
274-275, 358 

FreeWave type, 266, 274, 358 
'FREF resource, 243, 37 4 
Frequency of sound waves, 249, 

256, 266 
FSRead, 96, 106, 123-124, 347 
FSWrite, 96, 106, 123-124, 347 
FTMode record, 254 ' 
FTSndRecPtr type, 271, 358 
FTSoundRec record, 271-272, 

358 
FTSynthPtr type, 271, 357 
FTSynthRec record, 271-272, 

276, 357 
'FWID' resource, 55, 91 

GetAppFiles, 185, 187 
GetDCtlEntry, 115, 344 
Get Item. 289 
GetMBarHeight, 20 
GetMenu, 52, 85 
GetMenuBar, 300 
GetMouse, 83 
GetNewDialog. 167, 177 
GetNewWindow. 9-10, 70 
GetNextEvent, 181, 306, 327, 

330 
GetPicProc, 66-67 
GetPort. 293 
GetSoundVol. 253, 278, 359 
GetWMgrPort, 20 
Global storage for desk 

accessories, 293-295 

Glue 
for driver routines, 102 
for printing calls, 133 
GoAwayFlag flag, 26, 73 

GoodBye control code, 98, 103 
GrafPort record, 6, 58 
GrafProcs field, 6, 58 
GrafVerb type, 62-63, 339 
Graphics ports, 6, 59-60, 338 
Gray pen pattern, 38, 75, 86 
Grow icons, 31-35, 37 
Grow images, 36-38 
GrowWindow. 35 

Height 
of menu bars, 20 
of page, 158 
of paper, 143 

Hertz,249 
Hexadecimal notation, 4 
High-level routines for device 

drivers, 95-96 
Hilited flag, 26, 34, 73-74 
Hili teMenu. 309 
Hit codes, 28, 38, 75-76, 
Horizontal retrace interval, 251 
Host programs, 282 
Hungarian notation, 136 

'ICN#' resource, 243, 374 
'ICON' resource, 298 
!Copies field, 144, 206 
Identification of device drivers, 

94-95 
!Dev field, 140, 143, 201, 209 
IFileVol field, 145, 207 
IFstPage field, 144, 184, 206 
IHRes field, 140, 199, 201, 209 
ILstPage field, 144, 206, 220 
ImageDoc (MiniEdit), 156, 

165-168, 170, 172. 
492-493 

ImageFil ter (MiniEdit), 167, 
170-172. 181, 493-494 

ImagePage (MiniEdit), 158-161, 
167-169, 172,495-496 

ImageP rep (MiniEdit), 155-158, 
161, 491-492 

ImageWriter printers, 128-129 
dialogs for, 150 
draft printing with, 137 
modifiers and flags for, 142 
resource file for, 131-132 
spool printing with, 139 
style flags for, 368 

Imaging and printing, 135-139, 
155-162, 219-221,353 

InContent part code, 38 
Indicators, dial, 48-51, 82-83 
InitCntl message, 46, 79 
Ini tDialogs. 132, 213 



601 Index 

Ini tFlags (StopWatch), 
532-533 

Ini tFonts. 132, 213 
InitGraf, 132, 213 
Initialization 

of DCE, 291-293 
of printing, 132, 147-148, 

213-214. 351 
ofwindows. 18-19 
of zoom rectangles. 18-22. 

71 
Initialize (MiniEdit). 465-466 
Ini tMenus , 213 
InitStyleDialog (ldiniEc:liij. 

193 
Ini tWindows, 132, 213 
Input/output. See Device drivers 
InsertMenu, 300 
InsertResMenu, 95, 284 
Installation of printers. 132-134 
lnteITUpt handlers, 99, 102 
Inverting of shapes. 63, 138 
InvertOval, 138 
InvertRect, 138 
IoBuffer field, 103, 254 
IOCheck (MiniEdit), 155, 

523-524 
IoCmdAddr field. 100 
IoCompletion field. 255 
IOQType type. 99 
IoRefNum field. 254. 277 
IoReqCount field, 103, 254 
IoResul t field. 102. 106, 256. 

277. 284 
IoTrap field, 99-100, 103, 107, 

117 
IPageH field, 143. 204 
IPageV field, 143. 204 
IPrAbort error code. 168, 182, 

207.217 
IPrPgFract constant, 143 
IPrRelease constant, 149 
IPrVersion, 148. 199. 214 
IsDialogEvent. 172, 181, 307 
Italic text, 232, 234 
IVRes field, 140, 199, 201, 209, 

230 
'IWRI" creator signature. 132 

Job dialogs. 150. 203, 215 
Job subrecords, 143-145, 203, 

205-208. 350 
Just-tempered tuning scale. 257, 

270,273 

Keyboard 
aliases for, 173-17 4, 

311-314 
and desk accessories. 

335-336 

Keyboard-cont 
input from. 314-315 

KillCode control code, 103 
Kill Io 

and desk accessories, 305, 
326 

for device drivers, 97, 107. 
125. 347 

and sound routines. 256 
Kilohertz. 249 

Landscape orientation, 142-143. 
146-147 

LaserWriter printers. 128-130 
dialogs for. 150-151 
draft printing with. 138 
imaging with. 145 
and picture comments, 8 
resource file for. 131-132 

Limiting rectangles, 50 
Line, 61 
LineProc, 60-61 
Lines, drawing of. ~1. 338 
LineTo, 61 
LocalToGlobal, 20 
Low-level routines 

for device drivers, 95-96, 
132 

for graphics ports. 6, 59-60, 
338 

for printing, 134-135. 
223-235, 353-355 

LoWord. 28 
'LWRr creator signature. 132 

Macintosh Technical Notes. 9 
Macros, trap, 385-399 
Magnitude of sound waves. 248 
MainLoop (MiniEdit), 469-470 
Margins for printing. 158 
Masks 

event, 102, 106, 323-325, 
359, 370 

for zoom box toggling. 30-31 
MBarEnable global, 300 
MChooseMsg message, 53-54, 87 
'MDEF resource. 52, 54, 85, 90, 

363, 371 
MDrawMsg message. 53, 86 
Megahertz. 249 
Memory allocation for drivers. 98 
'MENU' resouree, 52 
MenuHeight field. 52, 86 
MenuKey. 311, 333 
MenuProc field, 52-53, 85-86 
Menus 

customization of. 52-54, 
84-85, 343-344 

defmition procedure for, 
52-53, 84-85, 343-344 

Menus--cont 
desk accessory. 95. 

332-334, 360 
displaying of, ~7. 344 
and foreign writing systems, 

20 
messages for. 53-541 86-87 
mouse clicks at. 87. 344 

MenuSelect, 53-54, 309, 333 
MenuWidth field. 52, 86 
Messages 

for menus, 53-54. 86-87 
for window definition 

functions, 11-12, 71 
MiniEd it program, 458-465 

ActWindow. 515-516 
AdjustScroll. 519 
AdjustText. 506 
AutoScroll. 506-507 
CloseAppWindow, 148. 188, 

480-482 
CloseSysWindow, 482-483 
DeactWindow, 516-517 
DoAbout, 475 
DoActivate, 514-515 
DoAppleChoice, 474 
DoClear. 503 
DoClose. 480 
DoContent, 504 
DoCopy. 502 
DoCut, 501-502 
DoDrag, 508-509 
DoEditChoice, 500-501 
DoEvent, 470-471 
DoFileChoice, 152. 

475-476 
DoGoAway, 511 
DoGrow, 509-510 
DoKeystroke. 512-513 
DoMenuChoice. 473 
DoMenuClick. 472-473 
DoMouseDown, 471-472 
DoNew. 1481 187,476-477 
DoOpen, 478-479 
DoPaste. 502-503 
Do Pause. 169, 181-182. 

496-497 
DoPrint. 152-154. 

163-165, 167, 176, 188, 
490-491 

DoQuit. 500 
DoRevert, 149, 187-188, 

487-489 
DoSave. 483 
DoSaveAs, 483-486 
DoScroll, 504-505 
DoSelect. 507 
Do Setup. 152. 188, 489 
DoSpoolEvent. 179-182, 

499-500 



602 Index 

MiniEdit prograrn--cont 
DoStartup. 185-188, 

467-469 
DoSysClick. 503 
DoTyping. 513 
DoUndo. 501 
DoUpdate. 173, 181, 

513-514 
DoZoom, 512 
FilterKey. 173-174. 181. 

494-495 
Finalize, 517-518 
FixCursor. 470 
FixEditWindow. 508 
FixScrollBar. 510 
FixText, 510-511 
ImageDoc. 156, 165-168, 

170, 172.492-493 
ImageFil ter, 167, 

170-172. 181, 493-494 
ImagePage, 158-161, 

167-169, 172. 495-496 
ImagePrep. 155-158, 161, 

491-492 
Initialize. 465-466 
InitStyleDialog, 193 
IOCheck. 155, 523-524 
MainLoop. 469-470 
OffsetWindow, 477-478 
OpenFile. 187, 479-480 
Page Setup ... command, 

132, 143, 150-152 
Print ... command, 132, 

150-152, 163-165 
ReadDeskScrap. 521-522 
ScrollCharacter, 

520-521 
Scroll Text. 505-506 
ScrollToSelection. 

519-520 
SetUpCursors, 467 
SetUpMenus. 467 
ShowSpoolStatus. 179, 

182-184, 498-499 
SpoolBackground. 179 
SpoolPrint. 17~177, 497 
StyleFilter. 194-195 
StyleResponse. 195 
WindowDirty, 518-519 
WriteDeskScrap. 522-523 
WriteFile. 149, 486-487 

ModalDialog, 165, 167-168. 
170. 172-173, 192-193 

Mode field, 256, 261, 26~267, 
272. 274 

Modifiers field. 312 
Mouse clicks 

in controls, 81-82, 343 
and desk accessories, 293, 

306 
with menus, 87, 344 

Mouse clicks-cont 
in three-way controls, 43-46 
in windows, 38-40, 75-77, 

342 
MoveControl, 83 
MsgParam. 26, 28, 37-38 
MSizeMsg message, 53, 86 
MultiFinder, desk accessories in, 

283 
Multitasking environment, desk 

accessories in, 283 
Music. See Sound 

NearPoint (SideWindow), 24, 
444-445 

Neutral state, three-way controls 
with, 42-46 

NewControl, 78 
NewHandle, 147, 270, 275 
NewMenu. 52, 85 
NewPtr. 261, 270, 275 
NewWindow, 9, 70 
'NFNI" resource, 55, 91 
Normalization of sound waves, 

262 
Note Pad desk accessory and 

goodbye. 99 
NotPatXOr transfer mode, 38, 

75. 138 
Not Sc rXOr transfer mode, 138 
Null events and filter functions, 

171-172 
Numbering 

of pages, 144 
of resources, 55, 298 

NumToString, 184 

OffsetRgn. 24 
Off setWindow (AitiniEdi~, 

477-478 
OpenDeskAcc. 289-290, 

328-329. 359 
OpenDriver. 96, 122-123. 347 
OpenFile (MiniEdit), 187, 

479-480 
Opening 

of desk accessories, 
283-286, 289-302, 
328-330, 359 

of device drivers, 96, 
102-103, 106, 122-123, 
347 

of documents, 218-219 
of print drivers, 223, 353 

OpenPicture. 220 
Operating system 

and device drivers, 93 
error codes for, 377-382 
queues for, 117-120, 346 

OvalProc. 63 
Owned resources, 90-91, 367 

Owned resources-cont 
and copying of definition 

files, 54-55 
and desk accessories. 

295-298 
type codes for. 371 

'PACK' resource, 55, 371 
Page Setup ... command 

(MiniEdit), 132, 143, 
150-152 

Pages 
dimensioning of, 140-142 
imaging and printing of, 

135-139, 155-162, 
219-221, 353 

rectangle for. 140-141, 201, 
204 

Painting of shapes, 63 
Paper and paper sizes 

customization of, 195-196, 
238-239 

rectangle for, 140-143. 199, 
204 

standard, 373 
table for. 196, 364 

Parallel port drivers, 94 
ParamBlkPtr type, ll6, 345 
ParamBlkType type, 116, 345 
ParamBlockRec record, 

ll~ll7, 345 
Parameter blocks, 96, 284 
ParamText. 161, 167, 184 
ParmBlkPtr, 286 
Part codes for controls, 43, 82 
Pattern lists for fill patterns, 293 
PatXOr transfer code, 138 
'PDEF resource, 55, 241-243 

contents of, 373 
and printer installation, 

132-135, 137 
in printer resource files, 

243-245 
and routine selectors, 

190-191 
type code for, 371 

Peek global variable, 13 
Pen characteristics and 

definition functions, 26 
Periodic tasks 

and desk accessories, 
334-335, 360 

and device drivers, 100-10 l, 
106 

PeriodicTask (Stopwatch), 
31~317, 541 

Periods (.) for device driver 
naJiles,95, 106, 284 

Periods of waves, 248-249 
'PFIL' type, 139 
PFileName field, 145 



603 Index 

Phase of sound waves, 249, 262 
PicComment, 8, 68, 340 
PicLParen type, 69 
PicRParen type, 69 
'PICT resource, 298 
Picture comments, 7-9, 68, 340 
Pictures, processing of, 66-67, 

340 
PidleProc field, 145, 178, 

206-207 
Pitch of sound, 249, 273 
Pixels and sound, 251 
PlayChord program, 263-266 
PolyProc, 63 
PortBi ts field, 20 
Portrait orientation, 142-143, 

146-147 
PortRect field, 23, 72 
Ports 

graphics, 6, 59-60, 338 
printing, 7, 135-137 

PosCntl message, 50-51, 83 
Postscript language, 128-130 
PrClose, 132, 134, 213, 351 
PrCloseDoc 

and document printing, 153, 
198, 218-219, 352 

and 'PDEF resource, 190, 
243 

and PrOpenDoc , 155, 175 
and spool printing, 221-222 

PrClosePage 
and document printing, 153, 

161, 219-220, 353 
and 'PDEF resource, 

190-191, 243 
and PrOpenPage, 155 

PrCtlCall, 225-226, 228, 354 
PrDlgMain, 191-193, 236-237, 

356 
PrDrvrClose, 134, 213, 223, 

353 
PrDrvrDCE, 224, 353 
PrDrvrOpen, 134, 223, 353 
PrDrvrVers, 224, 353 
'PREC' resource, 364 

and paper size, 195-196, 
239 

and print records, 148, 214 
in printer resource file, 132, 

24Q-241, 243-245, 374 
'PRER' resource, 131, 133, 244 
PrError, 155, 168, 216-217, 

352 
'PRES' resource, 131, 133, 244 
PrGeneral. 137, 196, 243 
_PrGlue trap, 133-134, 189, 

213-214, 387 
Prime driver routine, 103, 124, 

283-285 
Prinfo subrecord, 140 

PrinfoPT subrecord, 140 
Print . . . command (MiniEdft), 

132, 150-152, 163-165 
. Print driver, 134 
Print records, 139-149, 198, 348 

initialization of, 147-148, 
351 

saving of, 148-149 
Print-time information 

subrecord, 140 
PrintDefault, 147-148, 191, 

199,207,214,351 
Printer infonnation subrecord, 

140-142, 200-202, 349 
Printers, 128-130 

buffers for, 175-176 
control of, 229-231, 

354-355 
device type codes for, 372 
dialogs for. See Dialogs, 

printer-related 
driver for, 94, 134-135, 

223-225, 353 
font support for, 231-234, 

355 
installation of, 132-134 
resource file for, 13o-135, 

376-377 
PrintFile standard file name, 

145 
Printing, 127 

concurrent, 178 
of documents, 152-174, 

352-353 
draft, 136-138, 162 
error reporting for, 155, 

168, 216-217, 352 
from Finder, 184-188 
imaging of pages for, 

135-139, 155-162, 
219-221, 353 

initialization for, 132, 
147-148, 213-214, 351 

low-level, 134-135, 
223-235, 353-355 

with MiniEdit, 458-524 
opening and closing of 

documents for, 218-219 
ports for, 7, 135-137, 197, 

348 
of screen, 135, 228-229, 

354 
of spool files, 138-139, 

174-184, 221-222, 353 
status file for, 182 
status record for, 211-212, 

351 
PrJobDialog 

and document printing, 
152-153, 155 

and job subrecord, 207 

PrJobDialog--cont 
and print records, 199 
for printer dialogs, 151, 191, 

193,215, 352 
PrJobinit. 236-237, 356 
PrJobMerge, 215-216, 352 
PrNoPurge. 224, 353 
PrOpen, 132, 134, 213, 351 
PrOpenDoc 

for document printing, 153 
and job subrecords, 207 
and 'PDEF resource, 

190-191, 243 
and PrCloseDoc. 155 
for printing ports, 135, 156, 

175, 198, 218-219,352 
and spool printing, 222 

PrOpenPage 
and job subrecord, 206 
and page imaging, 153, 161, 

219-220, 353 
in 'PDEF resources, 

190-191, 243 
and PrClosePage, 155 

PrPicFile 
and buffers, 175-176 
and printing status record, 

182, 211 
and P rOpenDoc • 175 
and spool printing, 139, 

153, 155, 177, 219, 
221-222, 353 

Pr Purge, 224, 353 
PrSetError. 168, 207, 

216-217, 352 
PrStlDialog 

and document printing, 152 
and job subrecord, 207 
and print record, 199 
for printer dialogs, 151, 191, 

193,215, 237,352 
PrStllni t, 193, 236-237, 356 
PrValidate 

and job subrecord, 207 
and print records, 148-149, 

214, 351 
and printer dialogs, 151, 

216, 236 
and selector routines, 189, 

191 
PrXInfo field, 176 
'PSYS' creator, 139 
Pulse-width encoding, 253 
Pushbuttons, resource for, 41 
PutPicProc, 66-67 

QDProcs record, 6-8, 57-69, 
337-340 

QDProcsPtr type, 57, 337 
QElem record, 118-119, 346 
QElemPtr cype, 118, 346 



604 Index 

QHd r record, 118-119, 346 
QHdrPt r type, 118, 346 
QLink field, 99 
QType field, 99 
QTypes type, 99, 119, 346 
Queues, 1/0, 99-100, 116-118, 

345 
manipulation of, 120-122, 

346 
operating system, 117-120, 

346 
vertical retrace, 255 

QuickDraw 
customization of, 5-9, 

57-69, 337-340 
and PostScript, 128 
variables for, 419 

Radio buttons 
resource for, 41 
three-state, 42, 44-46 

RadioButProc, 42 
ReadDeskSc rap (Mini.Edit), 

521-522 
ReadDeskSc rap (StopWatch), 

302, 540-541 
Reading with devices, 123, 347 
Rectangles 

limiting, 50 
paper and page, 140-142, 

199, 201,204 
RectProc, 63 
RectRgn. 47 
RefCon field, 17 
Refreshing of screen display, 251 
Region data structures, 23 
Regions for controls, 47, 80 
Registers, microprocessor, 96, 

102, 107 
Resolution for ImageWriter, 142 
Resources, 361-365 

driver-related, 126 
numbering of. 55, 298 
owned. See Owned 

resources 
printing-related, 130-135, 

240-245 
Response procedure, 192 
Result global variable, 13, 39 
RgnProc, 63 
Rounded-corner windows, 10 
Routine selectors, 134 
format of, 189-191 
RPage field, 141 
RPaper field, 141, 143 
RRectProc, 63 

Sampling rate for sound, 
262-263,273, 275,370 

Saving of print records, 148-149 

Scaling 
of fonts, 234 
of sound, 275 

Scan direction field for printing, 
146 

Scan lines, 251 
Screen printing, 135, 228-229, 

354 
Sc reenBi ts global screen map, 

20 
Scroll bars 

as indicators, 49 
parts of, 43 
resource for, 41 

ScrollCharacter (Mini.Edit), 
520-521 

Scroll Text (MiniEdit), 505-506 
ScrollToSelection (MiniEdit), 

519-520 
ScrXOr transfer mode, 30, 138 
SCSI (Small Computer Standard 

Interface), 94 
SelectWindow, 290 
Serial driver, 94 
SetCtlAction, 51 
SetCtlMax, 48, 51, 81, 83 
SetCtlMin, 48, 51, 81, 83 
SetCtl Value, 48, 51, 81, 83-84 
SetMenuBar, 300 
SetSoundVol, 253, 278, 359 
SetStdCProcs, 7 
SetStdProcs, 7, 57-58 
SetUpCursors (Mini.Edit), 467 
SetUpData (Stopwatch), 290, 

294-296, 529 
SetUpDCE (Stopwatch), 290-294, 

528-529 
SetUpMenu (StopWatch), 

298-300, 530 
SetUpMenus (Mini.Edit), 467 
SetUpResources (Stopwatch). 

297-298, 529-530 
SetUpText (Stopwatch), 302, 

531-532 
SetUpWindow (StopWatch), 

301-302, 531 
SetUpZoomRects (SideWindow). 

18-22, 425-426 
Shadowed text, 233-234 
Shape of printed dots, 142 
Shapes, drawing of, 62-64, 

338-339 
ShowSpoolStatus (Mini.Edit), 

179, 182-184, 498-499 
SideWindow program, 12-13, 

421-424 
auxiliary data record for, 

17-18 
CalcBoxes, 25-26, 28, 428 
CalcCloseBox. 26, 

429-430 

SideWindow prograni--cont 
CalcContRgn, 24, 427 
CalcSizeBox, 25-26, 431 
CalcStrucRgn, 24, 428 
CalcTi tleBar, 26, 429 
CalcZoomBox, 26, 430 
creation and destruction of 

windows in, 18-22 
DoCalcRgns. 23-25, 

426-427 
DoDispose. 22, 443-444 
DoDraw. 13, 27-28, 

431-432 
DoDrawGicon, 32-33, 

439-440 
DoGrow. 36-38, 441-442 
DoHi t • 38-40, 442-443 
DoNew, 18-19, 424-425 
DrawCloseBox. 434-435 
DrawFrame, 433 
DrawSizeBox, 33-35, 

440-441 
DrawTitle. 436-437 
DrawTitleBar, 433-434 
DrawWindow. 432 
DrawZoomBox. 435 
NearPoint. 24, 444-445 
SetUpZoomRects, 18-22, 

425-426 
StdState rectangle for, 18, 

24 
ToggleBox, 29-30, 

438-439 
ToggleCloseBox, 30, 437 
ToggleZoomBox, 30-31, 

438 
window definition function 

for, 13-17 
ZoomedOut. 24, 444 

SIN function (Pascal), 265 
Sine waves, 248 
Size boxes, 12-13, 25-26 
Size regions, 31-32, 74 
SizeWindow, 24 
Small Computer Standard 

Interface, 94 
Sound 

buffers for, 252-253 
concepts of, 247-250 
defining and playing of, 

254-279 
drivers for, 94, 254 
four-tone, 254, 261-267, 

271-274, 357-358 
free-form, 254, 266, 268, 

27 4-275, 358 
generator of. 251-253, 

369-370 
record for, 261, 265 
square-wave, 250, 254, 

256-261. 267-270, 357 



605 Index 

Sound-cont 
volume of, 275, 278-279, 

359 
. Sound driver, 254 
Sound waves, 248-250 
SoundBase global variable, 

252-253, 268 
SoundDone, 256, 276-277, 358 
SpareFlag field, 18, 73 
Speaker. See Sound 
Spool printing, 138-139, 

174-184, 221-222, 353 
dialog for, 162-163 
port routines for, 136, 497 
resource for, 132 

SpoolBackground (MiniEdit), 
179 

SpoolPrint (MiniEdit), 176-177, 
497 

Square-wave sound, 250, 254, 
256-261, 267-270, 357 

StartBeep (StopWatch), 319, 
542-543 

Start Sound, 276, 358 
and asynchronous 

operation, 255 
and four-tone sound, 261, 

272 
and free-form sound, 274 
and sound driver, 254 
and synchronous operation, 

266 
Startup message, 185 
Status, 96-97, 100, 107, 125, 

347 
Status codes and routines, 96, 

100, 104, 106,283-285 
Status dialogs, 162-174 
StdArc , 62-63, 339 
StdBits, 59-60, 338 
Std Comment, 8, 68, 340 
StdGetPic, 66-67, 340 
StdLine, 60-61, 338 
StdOval, 62-63, 339 
Std Poly, 62-63, 339 
StdPutPic, 66-67, 340 
StdRect, 62-63, 339 
StdRgn, 62-63, 339 
StdRRect, 62-63, 339 
StdState rectangle 

(SideWindow), 18, 24 
Std Text, 65, 339 
StdTxMeas, 65, 340 
StopSound, 256, 276-277, 358 
Stopwatch accessory, 286-289, 

524-528 
AdvanceClock, 317-320, 

542 
close routine for, 320-322 
control routine for, 302-319 
cut-and-paste editing with, 

311 

Stopwatch accessory-cont 
DoAbout , 545 
DoActivate, 309, 539-540 
DoAlias, 312-314, 

537-538 
DoBeep. 317, 543 
DoClear, 550 
DoClose, 32Q-322, 

550-551 
DoControl. 302-305, 311, 

533-534 
DoCopy. 549 
DoCut, 549 
DoEvent, 308-309, 312, 

534-535 
DoGoodBye. 550 
DoKeystroke, 312, 536 
DoKillIO, 550 
DoMenuChoice, 309-310, 

544-545 
DoMouseDraw, 535-536 
DoOpen, 290-291, 528 
DoPaste, 549 
DoPause, 547-548 
DoReset, 319, 548 
DoStart, 318, 545-546 
DoTyping, 312, 314-315, 

536-537 
DoUndo, 548 
DoUpdate, 538-539 
editing with, 311 
FixCursor, 543-544 
InitFlags. 532-533 
open routine for, 289-302 
PeriodicTask. 316-317, 

541 
ReadDeskScrap, 302, 

540-541 
SetUpData, 290, 294-296, 

529 
SetUpDCE, 290-294, 

528-529 
SetUpMenu. 298-300, 530 
SetUpResources, 297-298, 

529-530 
SetUpText, 302, 531-532 
SetUpWindow. 301-302, 

531 
StartBeep, 319, 542-543 
TextToNum, 546-547 
WriteDeskScrap. 541 

·sm' resource, 132-133, 244, 
374 

StringWidth, 65 
StrucRgn field, 23, 72 
StuffHex , 30, 294 
Style dialogs, 150, 203, 215 
Style flags, 368 
Style subrecord, 142-143, 349 
StyleFil ter (MiniEdit), 

194-195 
StyleResponse (MiniEdit), 195 

SWMode constant, 254, 256, 269 
SWSynthPtr type, 261, 268, 357 
SWSynthRec record, 268-269, 

276, 357 
SY6522 VIA, 251 
Synchronous drivers, 100 
Synchronous sound requests, 

255-256 
Synthesizers, sound, 254 

record for, 256, 261, 267 
SysBeep. 250 
System global variables, 

415-418 
SystemClick, 307, 320, 324, 

327, 329-331, 360 
SystemEdi t, 311, 327, 

332-333, 360 
SystemEvent 

and desk accessories, 
306-307, 324,327,360 

and update events, 172, 
181, 330-331 

SystemMenu, 309, 327, 
332-333, 360 

SystemTask 
and desk accessories, 171, 

327 
and driver structure, 106 
for periodic tasks, 100-10 l, 

316,334,360 
and spool printing, 181 

Tall Adjusted option, 143, 227 
TECal Text, 158 
TECopy, 311 
TECut. 311 
TEDelete, 311 
TEDispose, 168 
TEidle, 317 
TEini t, 132, 213 
TEKey, 314 
Templates 

menu, 52, 85 
window, 12 

TENew, 158 
TEPaste. 311 
TestCntl message, 47, 78 
TestControl, 47 
TEUpdate, 161 
Text 

definition functions for, 26 
drawing of. 64-66, 339-340 
printing of, 135, 354 
streaming of, 227-228 

TextEdlt and imaging, 156 
TextEd it record, 302 
TextFace, 156 
TextFont, 156 
TextProc, 64-65 
TextSize. 156 
TextToNum (StopWatch), 

546-547 



606 Index 

TextWidth, 65 
Tf eed type, 202, 349 
THPrint type, 198, 348 
ThreeState program, 446-448 

control definition function 
for, 42 

DimTitle, 454-455 
DoCalc, 448 
DoDisp, 457 
DoDrag, 456 
DoDraw. 448-449 
Dolnit, 448 
DoPos, 456 
DoTest, 45~56 
DoThreeWayCheckbox, 

43-44 
DoThreeWayRadioButton, 

44-46 
DoThumb, 456 
DoTrack, 457 
DrawButton, 449-450 
DrawCheckBox, 450-451 
DrawRadioButton, 

451-452 
DrawTitle, 452-453 
DrawTitleText, 453-454 
mouse-down events in, 

43-46 
ThumbCntl message, 50, 82 
Ticks, 101 
Timbre of sound, 249, 261-262, 

273 
ToggleBox (SideWindow), 29-30, 

438-439 
ToggleCloseBox (SideWindow), 

30,437 
ToggleZoomBox (SideWindow), 

30-31, 438 
Tone record, 261, 268-269, 357 
Tones array, 269, 357 
TPPrDlg type, 235-236, 356 
TPPrinfotype,200, 349 
TPPrint type, 198, 348 
TPPrJob type, 205, 350 
TPPrPort record, 136, 197, 348 
TPPrStatus type, 211, 351 
TPPrStl type, 202, 349 
TPPrXInfo type, 209, 350 
TPrDlg record, 192-193, 

235-236, 356 
TPRect eype, 353 
TPrinfo record, 200, 349 
TPrint record, 140, 198, 348 
TPrJob record, 205, 350 
TPrPort record, 136, 197, 348 
TPrStatus record, 211, 351 
TPrStl record, 202, 349 
TPrXInfo record, 209, 350 
TrackBox, 28 
TrackControl, 49, 51, 82-84 
TrackGoAway, 28, 307 

Tracking and positioning of 
controls, 49-51, 82-84, 
343 

Trap macros, 385-399 
Trap words, 399-413 
TScan type, 209, 350 
TxMeasProc, 64-66 

Underlined text, 232, 235 
Unit numbers, 94, 111-112, 284 
Unit tables, 94, 110-112, 122, 

368 
Update events and filter 

functions, 172 
UserState field, 18-19, 71 
UseWFont modifier, 42 
UTableBase global variable, 97, 

111 

Variation codes 
in control definition 

functions, 41, 78 
in window definition ID, 

10-11, 70 
Versatile Interface Adapter, 

251-252, 255 
Version of printing software, 

148-149 
Vertical retrace interval, 251 
Vertical retrace queue, 255 
VIA (Versatile Interface Adapter), 

251-252, 255 
Video timing and sound, 251, 

273 
Visible flag, 26, 73-74 
Voices, sound, 261 
Volume, 275, 278-279, 359 

Wave array, 262, 265, 273, 358 
Wavefonns, 249 
Wavelength, 248, 262, 273, 275 
WavePtr type, 271, 358 
WCalcRgns message, 23-24, 28, 

72-73 
WDEF' resource, 9-10, 12, 54, 

70,88,365 
type code for, 91, 371 

WDev field, 142-143, 149, 203 
WDispose message, 22, 72 
WDraw message, 13, 26, 28, 30, 

73 
WDrawGicon message, 32-33, 

74-75 
WGrow message, 35, 37-38, 75 
What field, 171 
WHi t message, 38, 71, 75-76 
Width of paper, 143 
WinContent hit code, 38, 75 
Window Manager port, 26, 38, 

54 
WindowDefProc field, 9, 11, 70 

WindowDirty ~diU. 
518-519 

WindowKind field, 301, 307, 329 
WindowPeek type, 13 
Windows 

closing of, 148, 188, 
480-483 

creation of, 18-22, 72-73, 
341 

definition functions for, 9, 
11-18, 69-71, 341 

definition ID for, 9-11 
for desk accessories, 

301-302 
destruction of, 22, 72-73, 

341 
drawing of, 26-31, 73-74, 

341 
mouse clicks in, 38-40, 

75-77, 342 
records for, 17 
regions, calculation of, 

23-26 
resizing of, 31-38, 7 4-78, 

342 
WinGoAway hit code, 28, 39, 

74-77 
WinGrow hit code, 39, 75-76 
WinZoomin hit code, 28, 39, 71, 

74-77 
WinZoomOut hit code, 28, 39, 71, 

74-77 
WNew message code, 18, 72 
Words, trap, 399-413 
WNoHi t hit code, 39, 73 
Write calls, 254 
Wri teDeskSc rap (MiniEdit), 

522-523 
Wri teDeskSc rap (StopWatch), 

541 
Wri teFile (MiniEdit), 149, 

486-487 
Writing with devices, 123, 347 
WStateData record, 18, 71 

.XPrint driver, 134 

7.oom boxes, 12-13 
toggling of, 28-31 

7.oom rectangles, initialization of, 
18-22, 71 

ZoomedOut (SideWindow), 24, 
444 

ZoomWindow, 17-18, 24 
periodic tasks, 100-10 l, 

316, 334,360 



The Software Featured in 

Macintosh Revealed 
Available on Disk 

L you want to produce programs with that professional Macintosh look, you'll want a copy of the 
MiniEdi t 2. O source disk, now avallable directly from the author. 

The latest version of the MiniEdi t source disk, version 2.0, contains the complete source code 
of all the example programs developed in this volume. The original MiniEd it program has been 
expanded to include a full-featured printing capability, as well as bug fixes and minor enhancements. 
The disk also includes the Stopwatch desk accessory, SideWindow window definition function, and 
Three St ate control definition function, all just as they appear In Appendix Hof this volume. By using 
them as shells within which to develop your own Macintosh programs, you can avoid "reinventing the 
wheel" for every program you write. 

To order your MiniEdi t 2. o disk, complete the order form below and return it along with $29.95 
in check or money order, payable directly to the author, Stephen Chernicoff. If you already own an 
earlier version of the disk (version 1.0 or 1.1), you can upgrade to version 2.0 by sending $9.95, along 
with your original disk or other acceptable proof of purchase (original disk label, receipt, or warranty 
card). 

Sorry, we are not equipped to accept payment by credit card or company purchase order. Please 
include $3.50 ($5.00 outside continental North America) to cover postage and handling. California 
residents, please add 7% sales tax. Prices subject to change. 

Mall your order to: 
MlniEdlt Disk 
P.O. Box 7537 
Berkeley, Callfomla 94707-0537 

Organizatlon~~~~~~~~~~~~~~~~~~~~~~~~~~-

Address~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

City/State/Zip ---------------------

Please send me: D MiniEdi t 2. o ($29.95 plus postage and handling) 
D Upgrade from earlier version ($9.95 plus postage and handling, 

accompanied by original disk or acceptable proof of purchase) 
D Double-sided (SOOK) disk 
0 Single-sided (400K) disks 

I understand that if I am not completely satisfied, I may return the undamaged disk 
within 10 days for a complete refund. 



HyperTalk™ Programming 
Version 1.2, Revised Edition 

Dan Shafer 

This comprehensive tutorial covers 
every feature or HyperTalk Version 
1.2 from basic theory to practical 
examples. Two complete scripts ror 
applications are provided including 
one which enables "semi-auto
matic" programming. Details on 
how to extend HyperTalk with 
other programming languages are 
included as is an explanation 
outlining how to use graphics, 
sound, and communications. A 
special wall poster provides a quick 
reference to HyperTalk commands 
and rundions. 
Topics covered include: 
• Object-Oriented Programming 

Concepts 
• System Messages 
• Keyboard, Mouse, and File 1/0 
• Control Structures and Logical 

Ops 
• Card and Stack Control Methods 
• Text and Data Management 
• Dialogs 
• Managing Menus and Tools 
• Graphics and Visual Effects 
• Sound and Music Basics 
• Math Operators and Functions 
• Adion·Taking, Property-Related, 

and Communications Commands 
• Script-Related and Miscellaneous 

Commands 
• Tips, Traps, and Techniques 
• Extending HyperCard wilh 

Resources, Icons, and External 
• Tools and Programming Aids 
• HyperQuiz and Semi-Automatic 

Programming Script 
• Appendices: HypcrTalk 

Vocabulary, ASCII Chart, 
HyperCard Resources 

600 Pages, 731. x 9 y, , Softbound 
ISBN: 0-672-48439-0 
No. 48439, $24.95 

IBM® PC and Macintosh® 
Networking 

Sttphf!fl L Michel 

IBM PC and Macintosh owners and 
users who want to combine the 
power of their machines will wel
come this complete resource fo r 
networking the IBM PC and the 
Macintosh using TOPS and Ap
pleShare. 
This book details the specifics of 
using the Macintosh and the IBM 
PC on the same network, including 
transferring fil es, sharing printers, 
transporting data from IBM software 
to Mac and vice versa, and mixing 
word processing and spreadsheet 
programs. 
Full of networking details, this 
thorough coverage of TOPS soft
ware (one of PC Magazine's "The 
Best or 1986" products) details how 
to create useful files and share 
printers and external disk drives. 
Topics covered include: 
• How the Macintosh and PC 

Really Dirrer 
• TOPS 
• AppleShare 
• Coexistence 
• Managing the Network 
• Appendices: Glossary, ASCII 

Character Sets, Using PostScript 
Printers 

328 Pages, 7'14 x 91/• . Softbound 
ISBN: 0-672-48405-6 
No. 48405, $21.95 

Tricks of the HyperTalk™ 
Masters 

&fired by The Waite Group 

Written for HyperTalk "scripters," 
this advanced guide brings together 
tips, tricks, and tools from numer
ous experts. These HyperCard de
\~lopers share their advice and 
show the reader how to do the 
"impossible." Dozens or text field, 
button, and menu-related scripts, 
graphics and sound techniques, tool 
and utility scripts, tips on measur
ing and increasing stack perfor
mance, and handlers for reporting 
the contents or the stack objects 
are discussed in a clear, concise 
style. 
Topics covered include: 
• Techniques for Stack Develop· 

ment 
• ScrollJump 
• Dueling Scroll 
• Quick PopUp Pields 
• Menu Pie Ids 
• PolyButtons 
• Animated Icons. Cursors, and 

Fonts 
• The Art of Visual Effects 
• Synching Sight and Sound 
• Developer's Tools 
• The Quiz Maker and Hyper· 

Animals 
• A Grab Bag of Utilities 
• Chauffeur 
• Benchmarking HyperTalk, 

Large Stacks 
• Extending HyperTalk wilh 

Externals 
616 Pages, 73/i x 91/•, Softbound 
ISBN: 0-672-48431-5 
No. 48431 , $24.95 

Visit your local book retailer or call 
800-428-SAMS. 

HyperTalkTM Tips and 
Techniques 

Dan Shaler 

Written for programmers and de
velopers, this book is a collection 
of more than I 00 helpful pieces of 
information about HyperTalk, the 
programming language built into 
Apple® ·s HyperCardl"M. It offers 
readers with some experience in 
HyperTalk programming a chance 
to learn the ins and outs of 
programming from one or the best
known and widely recognizeci 
HyperTalk scripting experts. 
Solutions to dozens or bugs, defi
ciencies, and pitfalls lying in wait 
for the unsuspecting HyperTalk 
programmer are documented as are 
suggestions for handling some or 
the most often needed HyperTalk 
tasks. The book provides special 
shortcuts, speed-ups, and enhance
ments and a wealth or additional 
information that isn't available 
from any other source. 
Topics covered include: 
• Creating an Invisible Cursor 
• Building an Index of Stack 

Contents Automatically 
• Checking a Field's Content for 

Data Type 
• Multiword and Multifield Signs 
• Protecting a Stack and Script 

from Mis-use 
• How to Construct HyperText 

Applications in HyperCard 
• Dealing with HyperCard's Limits 

and Performance Issues 
300 Pages, 7'14 x 9 V1. Softbound 
ISBN: 0-672-48427-7 
No. 48427, $21.95 



Macintosh® Hard Disk 
Management 

Charles A Rubin and Bencion J. Calica 

This is the ideal companion book 
ror all Macintosh owners who have 
a hard disk or are considering the 
purchase or one. 
Readers will discover how the disk 
works, as well as pick up impor
tant information on how to recover 
files, rebuild the desktop, replace 
files, and install fonts and desk 
accessories. 
Topics covered include: 
• Hardware 
• The System Folder Files 
• The Finder 
• Fonts, DAs. and the Font/DA 

Mover 
• Organizing Hard Disk Files 
• Sharing Files with a Hard Disk 
• Using File or Disk Copying 

Programs 
• Printing from a Hard Disk 
• Backing Up a Hard Disk 
• Disk Optimizing Utilities 
• Font and Disk Accessory 

Extenders 
• Fkeys, !nits, and Chooser 

Resources 
• Finder Alternatives 
• Preventive Measures 
• Troubleshooting and Repairs 
• Appendices: Glossary of Terms, 

List or Products 
300 Pages, 73f4 x 9Y4, Softbound 
ISBN: o.672-48403-X 
No. 48403, $19.95 

Understanding HyperTalk™ 
Dan Shafer 

Understanding HyperTalk brings 
the power and fascination or 
programming in HyperTalk to those 
Macintosh® owners who want to 
customize their environment with 
Apple® 's HyperCard11'. 
Written by the author or the best
selling HyperTalk Programming, 
this book will be most useful to 
people who are deciding whether 
to buy HyperCard and to people 
who want to teach themselves or 
others HyperCard programming and 
stacks. 
Topics covered include: 
• Programming Basics 
• Object-Oriented Programming 

Ideas 
• HyperCard Refresher 
• HyperTalk Building Blocks 
• System Messages 
• Input/Output 
• Loops and Conditional 

Processing 
• Navigational Commands 
• Data Management Commands 
• User Interface Commands 
• Graphics and Visual Effects 
• Sound and Music 
• Math Functions and Operators 
• Action-Taking Commands 
• Property 
• Interface to the Outside World 
• Stack Design Considerations 
300 Pages, 7 x 9, Softbound 
ISBN: 0-672-27283-0 
No. 27283, $17.95 

Using ORACLE® with 
HyperCard® 

Dan Shafer 

Macintosh users will welcome this 
tutorial on ORACLE which shows 
how to use HyperCard to design 
and build front ends to ORACLE 
databases. The book includes sever
al case studies which take the read
er step-by-step through an 
application, showing how to pre>· 
gram in SQL; how to design, build, 
and program HyperCard stacks for 
database access; and how to use 
Hyper•SQL. II includes full source 
code ror three typical interface ex
amples that become templates for 
future applications. 
Topics covered include: 
• ORACLE Database Manage

ment Concepts 
• An Overview of SQL 
• Design Considerations for 

HyperCard 
• Designing HyperCard Stacks 

for Database Use 
• Building a HyperCard Stack 
• HyperTalk Programming 

Basics 
• The HyperTalk Language for 

ORACLE Access 
• Hyper•SQL Language 

Extensions 
• Connectivity Concerns 
• The Basic Tasks in ORACLE 

for H yperCard 
• Advanced Programming and 

Usage 
• Local Database. Single Stack 
• Remote Database, Single Table 
• Complex Example 
• Appendices: SQL Command 

Reference, HyperTalk Language 
Reference, Error Messages and 
Codes 

350 Pages, 7¥4 x 91/4. Softbound 
ISBN: 0-672-48443·9 
No. 48443, $24.95 

Visit your local book retailer or call 
800-428-SAMS. 

680x0 Programming by 
Example 

Slan Kelly-Bootle 

This sequel to the 68000, 68010. 
68020 Primer teaches the finer 
points or M68000 assembly Ian· 
guage with hundreds or practical 
examples. 
For the complete novice there is a 
detailed guide to the M68000 in
struction set and addressing modes, 
as well as an introduction to as
semblers, linkers, and loaders. For 
the advanced programmer there are 
new insights and tips for producing 
fast. tight, bugfree code. Special at
tention is given to the fu ll 32.J>it 
MC68020 and the latest enhanced 
MC68030, Motorola's answer to In
tel's 80386. 
Topics covered include: 
• Assembly Language Pros and 

Cons 
• M68000 Programmer's Models 
• M68000 Addressing Modes 
• M68000 Instruction Sets 
• Assembler Basics, Including 

the Latest Structured 
Assemblers 

• Deja Code- Its Cause and 
Cure 

• String Manipulation 
• Binary Coded Arithmetic 
• Common Errors and Debug

ging 
• Sorting and Searching 
• Complete Source Code for the 

Popular KERMITN File-transfer 
Protocol 

512 Pages, 71/i x 9314, Softbound 
ISBN: 0-672-22544-1 
No. 22544, $17.95 



Macintosh® Revealed, 
Volume One: Unlocking the 

Toolbox, Second Edltlon 
Stephen ChemicoR 

Macintosh Revealed, Volume One 
is the most successfu l Macintosh 
technical programming book com
mercially published. Now, in addi
tion to covering the 128K and 
5 I 2K Macintosh, the second edition 
concentrates on the Macintosh Plus 
and its expanded memory manage
ment, 1/0 routines, graphics and 
text handling, and serial communi
cations. 
This edition has been completely 
updated with all the latest Mac fea
tures including the new keyboard 
layouts, charader codes for expand
ed LaserWriler,™ font families and 
access, ROM rru;ources, and graphic 
resources. Together with Volume 
Two, the nearly 500 ROM routines 
that make up the Macintosh Tool
box are described. 
Topics covered include: 
• All the Tools You Need 
• Pulling the Tools lo Work 
• Thanks for the Memory 
• Any Port in a Storm 
• Quick on the Draw 
• Summoning Your Resources 
• Getting Loaded 
• Upstanding Characters 
• Appendices: Toolhox Summary, 

Resource Formats, Macintosh 
Memory Layouts, Key Codes 
and Charader Codes, Error 
Codes, Summaries of Assembly
Language Variables, and Trap 
Macros and Trap Words. 

590 Pages, 73/4 x 91/4, Softbound 
ISBN: Q.672-48400.5 
No. 48400, $26.95 

Macintosh® Revealed, Volume 
Two: Programming with 

the Toolbox, Secona Edition 
Stephen Chemicoff 

Providing an advanced look al the 
higher-level parts or the Toolbox 
that implemented the revolutionary 
Macintosh user interface, this se
cond edition focuses on the Macin
tosh Plus as well as the I 28K and 
512K Macintosh. 
This new edition of Volume Two 
includes HFS, SOOK double-sided 
disks, the new Standard File and 
Disk Initialization Package, window 
zooming, zoom boxes, scrollable 
menus. function key routines, and 
automatic text scrolling. 
Software featured in the book is 
available on disk from the author. 
Topics covered include: 
• All the Tools You Need 
• Keeping Up with Events 
• Windows on the World 
• What's on the Menu? 
• Scissors and Paste 
• Al the Controls 
• Meaningful Dialogs 
• Files al Your Fingertips 
• Appendices: Toolbox Summary, 

Resource Formals, Memory Lay
outs, Key Codes and Character 
Codes, Error Codes, Assembly
Language Variables, Trap Mac
ros and Trap Words, and 
MiniEdil Source Listing 

696 Pages, 7lf4 x 9Y•, Softbound 
ISBN: 0~72-48401-3 
No. 48401 , $26.95 

Macintosh® Revealed, 
Volume Three: Mastering the 

Toolbox 
Stephen Chemicoff 

A continuation of the "Macintosh 
Revealed" series, this third volume 
focuses on the User Interface Tool
box and how these unique routines 
can enhance programming. 
This Toolbox provides programmers 
with a uniform set or procedures 
for manipulating graphic images, 
text, overlapping windows, pull
down menus, and many other 
Macintosh features. Through fully 
worked program examples, the 
book explores secrets or the Tool
box in great detail and includes 
such topics as printing and sound 
generation, the List Manager, the 
customized Toolbox, desk accesso
ries and Switcher. 
Topics covered include: 
• Unlocking the Secrets 
• Rolling Your Own 
• In the Driver's Seat 
• Looking Good on Paper 
• Sound and Fury 
• Accessories after the Fact 
• Making a Lisi, Checking II 

Twice 
• Odds and Ends 
• Appendices: Toolbox Summary, 

Resource Formals, Error Codes, 
Trap Macros and Trap Words, 
Assembly Language Variables, 
Program Listings 

600 Pages, 7¥• x 9 Y• , Softbound 
ISBN: Q.672-48402-1 
No. 48402, $26.95 

Visit your local book retailer or call 
800-428-SAMS. 

How to Write Macintosh® 
Software, Second Edition 

Seo// Knmler 

Wrillen for professional developers 
and serious hobbyists, this is the 
best source or information on the 
intricacies or the Macintosh operat
ing system, and in particular the 
Memory Manager. 
This new edition explains how ap
plications programs on the Macin
tosh work, how to create and 
debug professional-quality programs, 
and how lo use C to program the 
Macintosh. Many new topics, in
cluding Macintosh II, Macintosh SE, 
MulliFinder, Macintosh Program
mer's Workshop, and the 68020 
and 68030 microprocessors, are in
cluded as well as revised and up
dated information on all its . 
previous topics. Its in-depth discus
sion or high-quality debugging 
makes ii the preferred reference for 
programmers and software applica
tions developers. 
Topics covered include: 
• Gelling Started 
• Adding Features 
• Writing a Program 
• Using C 
• Loops 
• Functions, Subroutines, and 

Subprograms 
• Using Macintosh Features 
600 Pages, 73/4 x 9 v., Softbound 
ISBN: Q.672-48429-3 
No. 48429, $28.95 



MPW and Assembly Language 
Programming for the 

Macintosh® 
Srou Kronick 

This introduction to MPW ror 
programmers is the first to teach 
Macintosh assembly language. 
Macintosh Programmer's Workshop 
(MPW} is the new programming de
velopment system ror the Macin
tosh and one or the most 
sophisticated microcomputer 
programming development systems 
in existence. 
This book is a clear and carerully 
written introduction to MPW, as
sembly language, Pascal, and C. It 
will help beginning and intermed~ 
ate programmers write assembly 
language, Pascal, and C programs 
using the Macintosh Toolbox. 
Topics covered include: 
The Macintosh Programmer's 
Workshop 
• A Sample Program in 

Assembly Language 
• Fundamental File Commands 
• Start Up and Files 
• Command Language 
• Make and Structured Commands 
The Assembly Tutorial 
• Slots 
• First Lines or Assembly Code 
• The ABC's of Blocks of Code 
• QuickDraw Inside the Window 
• Structured Programming with 

Blocks 
• The Keyboard 
• Menus 
The MPW and Assembly 
Dictionaries 
• The MPW Shell Command 

Language 
• The 68000 Instruction Set 

with Directives and Toolbox 
Traps 

352 Pages, 7 3/, x 9 y,, Softbound 
ISBN: 0-672-48409-0 
No. 48409, $24.95 

The Macintosh® Advisor 
Cynlhia Harriman and Bencion Ca6ca 

Newly updated to include MultiFin
derTM, this book provides advice on 
shortcutting some of the Macin· 
tosh's elementary procedures to use 
ii more productively. 
MultiFinder is the first multitasking 
operating system for the Mac which 
allows users to work with multiple 
applications al the same time. 
Learn how to use this system up
grade to its full est extent, while 
gaining a better understanding of 
RAM disks, memory management, 
and other features. The book also 
examines powerful hardware op
tions such as hard disks, RAM up
grades, and the LaserWriter TM and 
includes troubleshooting procedures 
for quickly isolating and solving 
computer problems. 
Topics covered include: 
• The Finder: Macintosh's 

Operating System 
• Speeding Applications 
• Desk Accessories and FKeys 
• Customizing Applications 
• Disk Management Utilities 
• RAM Upgrades and Hard Disk 

Drives 
• Options for Better Input and 

Output 
• IBM to Mac: Transferring Data 
• Troubleshooting 
• Appendices: Shopping Lists, 

Sources, Technical References 
320 Pages, 731. x 91/,, Softbound 
ISBN: 0-8104-6569-8 
No. 46569, $19.95 

Object-Oriented 
Programming for the 

Macintosh® 
Kurt J. Schmucker 

With this book, gain insight into 
the fundamental object-Oriented con
cepts of objects, classes, instances, 
message passing and method calls, 
and into advanced topics like meta
classes and multiple inheritance. 
Learn to customize MacApp and 
avoid programming resizable win
dows, dialog boxes, and scroll bars 
from scratch. Investigate QuadWorld 
and the major Macintosh object
oriented languages. 
Topics covered include: 
• Why Object-Oriented 

Programming? 
• The Basics of Object-Oriented 

Programming 
• Object Pascal 
• Introduction to MacApp 
• Mini-QuadWorld-A Small 

MacApp Application 
• The Most Frequently Asked 

Questions about MacApp 
• The Flow of Events in MacApp 
• QuadWorld-A Full MacApp 

Application 
• Advanced MacApp Features 
• Advanced Concepts in Objecl

Oriented Programming 
• Smalltalk 
• Lisa Clascal and the Lisa 

Toolkit 
• An Overview of Other Object

Oriented Languages on 
Macintosh 

• Appendices: The Macintosh User 
Interface Standard, and Objecl
Oriented Programming Languag
es, Suppliers and User Groups 

624 Pages, 731. x 9 y, , Softbound 
ISBN: 0-8104-6565·5 
No. 46565, $34.95 

Visit your local book retailer or call 
800-42~-SAMS. 

dBASE Mac® Programmer's 
Reference Guide 

Edtcard C. Jones 

This detailed guide for using and 
programming in dBASE for the 
Macintosh® was written especially 
for those who need to take full ad
vantage of the program's available 
power. 
This book highlights program ming 
applications using modular code to 
develop complete applications for 
any purpose. It provides a detailed 
explanation of how lo use the rela
tional powers of the software, as 
well as how to add and edit 
records with full error tracking and 
data verification, system design, 
and file transfer from DOS. 
Current DOS dBASE users will 
learn how lo take advantage of the 
unique Macintosh graphic interface 
when they program or use dBASE 
Mac. 
Topics covered include: 
• Creating and Modifying Files 
• Working with Display Views 
• Managing Data 
• Working with Related Files 
• Building Applications 
• Procedural Flow in a dBASE 

Mac Procedure 
• Adding and Modifying Records 

Under Procedural Control 
• User Input and Output 
• dBASE Mac for dBASE Ill 

Programmers 
• Sample/ Design Applications 
• Appendix: dBASE Mac 

Commands 
300 Pages, 731. x 9 Y1, Softbound 
ISBN: 0-672-48416-1 
No. 48416, $19.95 



~~~~~~~~~~~ ..... ~~~"' ... ";)' 
.Macintosh® Revealed

Mastering the Toolbox
Vo lum e Thr ee • In cl u des Vers i on 4.0

For All Macintosh Computers

Master the secrers of your Macintosh with Macintosh Revealed.
This three-volume set explores the Macintosh User Interface
Toolbox, the nearly 500 built· in ROM routines that ensure
that all Macintosh software consistently shares the same
easy, intuitive user interface.

Volume One, Unlocking the Toolbox, introduced the
underlying foundations on which the Toolbox is built. Volume
Two, Programming with the Toolbox, showed how to use
it to implement the revolutionary Macintosh user interface.
Now Volume Three, Mastering
the Toolbox, guides you on
your next step toward under·
standing its secrets and sub·
tleties. As in Volumes One and
Two, all discussions are sup·
ported with fully comment·
ed Pascal examples that can

About the Author
Stephen Chernicoff has been
programming computers since
1962 and writing about them
since 1976. A graduate of
Princeton University with an advanced degree in computer
science from the University of California at Berkeley, Steve
met his first mouse in 1977 at the Xerox Palo Alto Research
Center (PARC) and has been mousing around ever since.

#f
HAYDEN BOOKS
A [)/vision of Howard W. Sams & Company

4300 West 6211d StrCtJt.

Indianapolis. Indiana 46268 USA

S26.9S US/48402

serve as a framework for building your own programs.
Mastering the Toolbox begins by elaborating and refining

some of the principles introduced in the previous volumes.
Here you'll learn how to customize the operations of the
Toolbox to design your own windows and menus. Next
you'll meet device drivers, those fugitive creatures lurking
in the shadowy haunrs of the operating system.

A lively discussion of printing shows you how to ensure
that "what you get" is "what you see." Next, a unique musical

presentation teaches you how
to generate sounds through
the built-in Macintosh speaker.
Finally, you will learn how to
write working desk accessories,
those popular miniapplications
that can coexist with other
programs on the Macintosh
screen.

In 1980, Steve joined Apple
Computer, Inc., where he
served as editor· in-chief of the
publications department, con·
tributed to the early develop·

ment of the Lisa computer, and helped write Apple's Inside
Macintosh documentation. He now works as a free-lance
author, technical writer, documentation consultant, and
father of two budding Macintosh enthusiasts.

I SBN 0-672- 48402-1

9 0 000

9 780672 484025

