
MASTERING T H E

~

-

DAVID B. PEATROY & DATATECH PUBLICATIONS

Mastering
The Macintosh™
Toolbox

David B. Peatroy
and
DATATECH Publications

Osborne McGraw-Hill
Berkeley, California

Disclaimer of Warranties
And Limitation of Liabilities

Mastering

The authors have taken due care in preparing this book and the programs in it, including
research, development, and testing to ascertain their effectiveness. The authors and the
publisher make no expressed or implied warranty of any kind with regard to these pro­
grams or the supplementary documentation in this book. In no event shall the authors or
the publishers be liable for incidental or consequential damages in connection with or
arising out of the furnishing, performance, or use of any of these programs.

COPYRIGHT. This collection of programs and their documentation is copyrighted. You
may not copy or otherwise reproduce any part of any program in this collection or its
documentation, except that you may load the programs into a computer as an essential
step in executing the program on the computer. You may not transfer any part of any
program in this collection electronically from one computer to another over a network.
You may not distribute copies of any program or its documentation to others. Neither any
program nor its documentation may be modified or translated without written permission
from Osborne/McGraw-Hill.

NO WARRANTY OF PERFORMANCE. Osborne/McGraw-Hill does not and cannot war­
rant the performance or results that may be obtained by using any program in this book.
Accordingly, the programs in this collection and their documentation are sold "as is"
without warranty as to their performance, merchantability, or fitness for any particular
purpose. The entire risk as to the results and performance of each program in the collec­
tion is assumed by you. Should any program in this collection prove defective, you (and not
Osborne/McGraw-Hill or its dealer) assume the entire cost of all necessary servicing,
repair, or correction.

LIMITATION OF LIABILITY. Neither Osborne/McGraw-Hill nor anyone else who has
been involved in the creation, production, or delivery of these programs shall be liable for
any direct, incidental, or consequential benefits, such as, but not limited to, Joss of antici­
pated profits or benefits, resulting from the use of any program in this collection or aris­
ing out of any breach of any warranty. Some states do allow the exclusion or limitation of
direct incidental or consequential damages, so the above limitation may not apply to you.

Published by
Osborne McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the U.S.A., please write
to Osborne McGraw-Hill at the above address.

Macintosh, MacWrite, and MacPaint are trademarks of Apple Computer, Inc.
Apple is a registered trademark of Apple Computer, Inc.
IBM is a registered trademark of International Business Machines Corp.

the Macintosh™ Toolbox

Copyright © 1986 by McGraw-Hill, Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the Copyright Act of 1976, no part of this publica­
tion may be reproduced or distributed in any form or by any means, or stored in a data
base or retrieval system, without the prior written permission of the publisher, with the
exception that the program listings may be entered, stored, and executed in a computer
system, but they may not be reproduced for publication.

1234567890 DODO 8998765

ISBN 0-07-881203-8

Jonathan Erickson, Acquisitions Editor
Paul Jensen, Technical Editor
Carol Hamilton, Copy Editor

Deborah Wilson, Composition
Yashi Okita, Cover Design
Jan Benes, Text Design

c 0 N T E N T s

Introduction vii

CHAPTER 1

Getting Started 1

CHAPTER 2

Macintosh Graphics Concepts 25

CHAPTER 3

Of Mice and Cursors 41

CHAPTER 4

The Icon Editor 53

CHAPTER 5

Primitive Window Management 75

CHAPTER 6

Advanced Macintosh Programming 87

APPENDIX A

A Reference Guide 119

APPENDIX B

Mathematical Systems and Concepts 159 ·

APPENDIX C

Macintosh Trap Locations 169

Glossary 1sa
Index 197

A C K N 0 W L E D G M E N T S

The author would like to acknowledge the following people and
companies for their support and assistance in the preparation of this
book:

Mike Burns, Think Technologies, for providing technical informa­
tion about programming in Macintosh Pascal.

Bryan J. Cummings, DATATECH Publications, for providing
technical assistance, hours of manuscript preparation, preliminary
document preparation, and final organization.

Barbara Koalkin, Apple Computer, Inc., for supplying the Macin­
tosh Pascal software disk, documentation, and assistance.

Arnold Kunert, DATATECH Publications, for coordinating the
editing, restructuring, and organization of the text.

Alexis Peatroy, my loving wife, for those times I needed her most.
Lawrence Pollack, DATATECH Publications, for providing numerous

hours of instruction in the finer points of Pascal.

For Mum and Alexis

N T R 0 D u c T 0 N

On January 22nd, 1984, during the broadcast of the eighteenth
Superbowl, a television commercial with a strangely Orwellian
quality was seen by millions of people across the United States. The
commercial was subsequently discussed in network newscasts and
reported upon in major newspapers and magazines. The news?
Apple Computer, Inc., of Cupertino, California, had just unveiled its
Macintosh computer.

The Macintosh is not just another personal computer in an already
overcrowded marketplace. The philosophy behind the Macintosh is
to bring the power of a personal computer to the vast majority of
people who have neither the time nor the inclination to learn what it
takes to operate a conventional computer effectively.

The Macintosh, unlike other popular computers, is intended to be
the first "intuitive" personal computer. Its operation is designed to
be as simple as possible, with the required instructions needed to
run the machine always close at hand. In this respect, the Macintosh
is vastly different from other personal computers.

The Macintosh and its software are designed to inform the person
using it. And as such, Macintosh software neither resembles nor
behaves like software written for a machine like, for example, the
IBM PC. Whereas the IBM requires the person using the computer
to type commands through a keyboard into the computer to perform
a task, the Macintosh uses pictures, called icons, that represent
commonly used functions and items, and pull-down menus, that list
all the commands available at a given time. The chief benefit of
Apple's approach is that a complete novice can, with a little persev­
erance and common sense, put a machine like the Macintosh to use

vii

viii MASTERING THE MACINTOSH TOOLBOX

much more quickly than he or she could an IBM PC.
Of course, the way the Macintosh interacts with its user and per­

forms its tasks is through a combination of software and hardware.
Software allows us to communicate with the computer, letting us tell
it what we want to do, then carrying out our instructions. Hardware
lets us communicate our instructions to the software within the
computer. Perhaps the most unusual feature of the Macintosh's
hardware, next to its dazzling on-screen graphics, is the mouse, a
rolling desktop pointer that allows users to bypass the need to type
commands at the keyboard and lets them carry out operations
simply by selecting commands with the pointer on the screen.

It is beyond the scope of this book to teach you all you need to know
about Macintosh software and how to write it. However, this book
will show you that learning to write software is not difficult and that
learning to program the Macintosh can be an extremely enjoyable
pastime.

This book concentrates on the interaction of the mouse with the
computer and demonstrates how best to utilize the mouse for func­
tions like menu control and graphics. The programming language
chosen for this book is Macintosh Pascal. Mastering the M acintosh
Toolbox assumes that you have at least a rudimentary understanding
of Pascal and are familiar with some version of the language on
either a personal computer or minicomputer.

Pascal has been chosen for two r easons. First, it is one of a few
languages available for the Macintosh that is sophisticated enough to
take full advantage of the Toolbox, the Macintosh's internal well­
spring of programming routines, aids, and other intrinsic hardware
capabilities. Second, Pascal is a terrific language to learn because it
encourages the principles of sound and logical programming.

This book assumes that you are familiar with the Macintosh envi­
ronment of windows, pull-down menus, selections, and the mouse. If
you are unsure of how the Macintosh environment works, you should
familiarize yourself with it by using applications programs like
Mac Write and MacPaint. Aside from being easy and fun to use,
these programs beautifully illustrate the concepts behind the Macin­
tosh.

You will also find a reference section comprised of three appen­
dixes to satisfy your demand for quick answers to syntax and usage
questions about Macintosh Pascal. Of course, the final authority is
the reference guide that comes with Macintosh Pascal.

c H A p T E R

Getting Started
There are many reasons for learning to program a computer. Some
people learn to program because they are considering a career in
computers. Others learn to program because they require a specific
piece of software for which there is no commercially available coun­
terpart. Some want to learn to program so they can customize soft­
ware that is available for another computer, but not their own. In
short, there are probably as many reasons to learn to program a
computer as there are computer users. Learning to program a com­
puter is not that difficult; like eating an elephant, it must be done
one byte at a time.

Just as there are many reasons for learning to program a comput­
er, there are many things that a computer may be programmed to
do. Bookkeeping and accounting are two popular examples. Word
processing, using a computer to write and edit text, is a requirement
for many. Some people like to use their computers for entertain­
ment, and some even write their own games. Parents often use com-

1

·,'.

2 MASTERING THE MACINTOSH TOOLBOX

puters to teach their children educational basics and to familiarize
them with computer use.

The Macintosh is particularly suited to various kinds of programs
because of its inherent ease of use and the relative ease with which a
programmer can create remarkable graphics.

Many of the programs that create the unique look of the Macin­
tosh are available to the programmer working with Macintosh Pas­
cal. These programs are located in what is called the Toolbox; they
make up part of what is known as the Macintosh User Interface. A
user interface is the way the person using the computer, the user,
communicates with the computer. The Toolbox programs help con­
trol the look of the Macintosh windows, allow the use of the desk
accessories, control the mouse, and govern the overall appearance of
the Macintosh desktop. In fact, there are about 500 different Toolbox
programs stored in a special area of the Macintosh's Read-Only
memory (ROM).

Commercial Macintosh programs (also called applications) like
MacWrite and MacPaint are generally developed on an Apple Lisa
computer using a special Pascal development language. Once writ­
ten, the programs are transported to the Macintosh. The Macintosh
Pascal used throughout this book is not a complete development Pas­
cal. It has direct access to some, but not all, of the support programs
contained in the Toolbox. As a result, programs written on the
Macintosh with Macintosh Pascal run more slowly than commer­
cially developed programs and contain limited use of such special
Macintosh features as windows and menus.

Interpreters versus Compilers
Macintosh programs written with the Lisa Pascal development sys­
tem use a compiled version of Pascal. Compiled programs take the
source code written by a programmer and convert it into what is
called native code. Native code is the most fundamental language
with which we can communicate with a computer; it consists
entirely of l's and O's. While native code produces the fastest execut­
able code on a computer, it is too tedious to program entire applica­
tions with. There~ore, languages like Pascal, called high-level

GETTING STARTED 3

languages, were developed to allow programs to be written in an
English-like language and then converted, by the compiler, into the
native code of the computer. Lisa Pascal, like all previous versions of
Pascal, is compiled.

While compiled versions of programs are pref erred for commer­
cial applications like spreadsheets and word processors, compiling
programs can be a tedious technical process, especially for someone
just learning to program. Therefore, interpreters were developed to
make creating and running programs a simple two-step process.
The programmer types in his or her program (the source code) and
then uses a command to run the program. The steps of compiling
are eliminated. The result is a program that can be run instantly.
The penalty paid for using the interpreter is that interpreted pro­
grams run more slowly than their compiled counterparts. In some
cases, they run significantly slower. Thus, interpreted languages are
great teaching aids but are not suited for commercial program
development where speed of execution is crucial.

The most popular interpreted computer language is BASIC.
Nearly every personal computer has a variety of BASIC that runs on
it. Like these versions of BASIC, Macintosh Pascal is interpreted. It
breaks with the tradition of Pascal being a compiled language and
introduces an interpreted version that is ideally suited for learning
to program in Pascal in general and on the Macintosh in particular.
Programs written with Macintosh Pascal may be converted to Lisa
Pascal programs with a minimum of effort. This makes Macintosh
Pascal useful for determining the feasibility of a particular program
on the Macintosh before investment in a complete development
system.

One small drawback of using Macintosh Pascal is its lack of access
to some of the routines contained in the Toolbox. This is because the
interpreter running Macintosh Pascal is itself an applications pro­
gram running under control of the various routines contained in the
Toolbox. Therefore, programs written with Macintosh Pascal could
make use of Toolbox routines that affect the Pascal interpreter. The
result could be erratic program execution or even a complete shut­
down or crash of the computer. But don't let this knowledge make
you timid when you program. The developers of Macintosh Pascal
have taken every precaution to prevent you from inadvertently using
Toolbox routines that would adversely affect the Pascal interpreter.

4 MASTERING THE MACINTOSH TOOLBOX

Inside the Macintosh User
Interface

The programs in the Macintosh User Interface are split up into sev­
eral discrete packages called Managers. Figure 1-1 shows the rela­
tive relationships between these programs.

Reading up from the bottom of Figure 1-1, here is a brief descrip­
tion of what each program does.

The Resource Manager coordinates the use of resources. Resources
are data that may be used by a program when it is running. This
data is kept separate from the program code. Examples of resources
are font definitions, menus, icons, and text strings. The Resource
Manager routines are usually called by the routines from such
higher packages as the Font Manager and the Menu Manager.

The Font Manager supports the use of multiple text fonts. It calls
the Resource Manager when it needs a font not already in memory.
Routines in the Font Manager are used to control the size and style
of the font in use. The Font Manager routines are usually called
from QuickDraw routines.

QuickDraw is the graphics package that is at the heart of both the
Macintosh and the Lisa. The most obvious example of QuickDraw's
capacity is found in MacPaint. Both QuickDraw and MacPaint were
written by Apple's Bill Atkinson.

The Event Manager is a program's connection to the outside
world. The movements of the mouse, keys pressed on the keyboard,
and the use of the mouse button are all reported to a program via
the Event Manager.

The Toolbox Utilities are programs that handle miscellaneous
tasks like working with text (string operations) and fixed point
arithmetic.

The Window Manager controls the appearance of windows. Since
the Macintosh's displays occur in windows, this is a very important
package. The Window Manager takes care of the housekeeping, thus
allowing a program to interact with windows at a very high level.
Housekeeping functions include drawing window borders, moving
windows around and resizing them, and redrawing the various areas
of windows that need to be redrawn when, for example, windows
that overlap are moved around the screen. There are different types
of windows that can be used by the programmer, some of which may
be used by the applications being written and others that may be
used by higher packages like the Menu Manager or the Dialog
Manager.

GETTING STARTED 5

The Control Manager governs the use of software buttons, check
boxes, and dials. These items allow the user to make and confirm
decisions regarding essential operations like printing, saving files,
and exiting applications. Within an applications program, buttons,
boxes, and dials change the value of variables that control the way a
program reacts. For instance, a check box may be used to determine
whether the program prints to the screen or to the printer.

The Menu Manager uses a two-dimensional array to control the
appearance of the menus that you normally see at the top of the
Macintosh screen. The Apple, File, Edit, View, and Special menus
listed at the top of the screen on the Macintosh desktop are an
example of menus governed by the Menu Manager. The Menu Man­
ager allows a program to create a set of menus and display it on the
screen. Once a menu is activated with the mouse, the Menu Manager

Desk Manager

Dialog Manager

Text Edit

Control Manager I I Menu Manager

I Window Manager I
l Toolbox Utilities I

__ o_u_ic_k_d_ra_w __ I I Event Manager

Font Manager

I Resource Manager I

Figure 1-1. Relative relationships of Macintosh User Interface Managers

6 MASTERING THE MACINTOSH TOOLBOX

takes control from the applications program until a selection is
made. Once a selection is made, the Menu Manager reports the
selection to the program.

The Text Edit package performs elementary text entry and edit­
ing. Text Edit is designed so that an applications program may mod­
ify its behavior. A package that is not contained in ROM but is on
the disk is the Core Edit, which is more sophisticated. Core Edit,
which must be loaded into memory first, can handle different fonts,
styles, and sizes.

The Dialog Manager controls dialog boxes that appear when the
Macintosh requires more information in order to continue a task. A
common dialog box is the one displayed when you select Open from
the File menu in Mac Write. Another common dialog box is the one
displayed when Save or Save As is selected from the File menu of
MacPaint. Dialog boxes prompt the user to enter the information
required by the program to continue.

The Desk Manager is used by an applications program to access
the desk accessories that usually sit under the Apple menu as part of
the program itself. Desk accessories are actually little programs
that are stored as resources on disk. If a user selects a desk acces­
sory, the applications program passes control to the Desk Manager,
which takes care of loading and starting the selected desk accessory.
Desk accessories may take many forms, such as the calculator,
alarm clock, and the note pad listed in the Apple menu on several
versions of the Finder.

Pascal Basics
Before actually writing our first Macintosh Pascal program, let's
briefly review and define some standard Pascal terminology. Pascal
is a block-oriented language. This means that you divide your pro­
gramming into small, single-purpose units. Each unit or block is
(ideally) designed so that it performs a single or small group of
related tasks, such as adding a series of numbers and computing
their average, or drawing a graphics image on the screen.

The Pascal constructs that allow the writing of program blocks
are the procedure and the function. Essentially, procedures and
functions are programs within the main Pascal program that may
themselves contain other procedures and functions. Procedures pass

GETTING STARTED 7

information like variables and constants back and forth between the
parts of the program calling the procedure. Functions behave in a
similar fashion except that they may be used to compute and return
a single result to the calling part of the program.

The routines in the Toolbox are called from Pascal in the form of
procedures and functions. Unlike procedures and functions that you
create in a Pascal program, the Toolbox routines are predefined
within the ROM of the Macintosh and may be used anywhere in a
program without being first declared. Pascal provides you with
access to these predefined functions and procedures as if you had
written them yourself. In this sense, they behave like other built-in
Pascal procedures, such as Write and Read.

Along with the predefined functions and procedures of the Tool­
box come predefined data types. Like the Toolbox procedures and
functions, these data types may be used directly within Macintosh
Pascal programs and need not be declared.

Starting Macintosh Pascal
Turn on your Macintosh and insert the Macintosh Pascal disk in the
internal disk drive. When the desktop appears, open the disk win­
dow by selecting Open from the File menu. Then select the Macin­
tosh Pascal icon by clicking on it with the mouse pointer. Choose
Open again from the File menu to start Macintosh Pascal. Figure
1-2 shows what you will see when Pascal is ready to use. Use the
mouse to position the insertion point in front of the word "begin" in
the Untitled window. Then type

var
Window:Rect;

Press the RETURN key to end a line and start a new one. Now
place the insertion point in front of the word "end" and type

HideAll;
SetRect (Window, 0, 38, 511, 341);
SetDrawingRect (Window);
Show Drawing;

Note that entering and editing programs in Macintosh Pascal is

8 MASTERING THE MACINTOSH TOOLBOX

~ e5 File Edit Search Run Windows

• =o Untitled TeHt

program Ur1t1tl131j ,
{'.'1:i1u- 1j13 c l::ir ·:'] t ion:)

begin
{".'1_11ir pr 1:i9r ·Jill ;t_:']l8rr1~11t :}

end -------D_r_owing

Figure 1-2. Screen display when Pascal is ready to use

similar to writing with Mac Write. The same rules apply regarding
placement of the insertion point, text selection, and cutting or copy­
ing of text to the Clipboard. If you are unfamiliar with the basics of
text editing on the Macintosh, you should refer to the chapter
entitled "Using Macintosh Pascal" in the Macintosh Pascal User's
Guide.

To run this Macintosh Pascal program, simply go to the Run
menu and select the Go option. Your program should reproduce the
screen shown in Figure 1-3, providing you typed everything into the
computer correctly.

If you made a typing error, a box with a ladybug appears on your
screen. Click inside the box to proceed, check your spelling and
punctuation, and try to run the program again. Macintosh Pascal
requires strict use of correct spelling of keywords and the proper
usage of all punctuation (upper- or lowercase characters do not have

GETTING STARTED 9

,. s File Edit Search Run Windows
.,

D Drawing

Figure 1-3. Screen display after selection of Go option

any significance). If you did have a problem when you tried to run
this program, a pointing finger will lead you to the location of the
problem in your program. This is one of the nicest features of
Macintosh Pascal. It points out your errors so that you can set about
correcting them immediately.

What does this program do? If you shrink the Drawing window
using the size box at the lower right corner of the window and drag
it back to its original position, you will see that the Untitled window
and the Text window have disappeared. Don't panic. They can be
reopened from the Windows menu. Their disappearance was the
result of the first procedure call in the program, HideAll. In execut­
ing this statement, Macintosh Pascal calls a predefined procedure
within the Toolbox that closes all open windows.

The Drawing window is the result of the rest of the first program.
It tells the Macintosh to set the size of a window and to display that

10 MASTERING THE MACINTOSH TOOLBOX

window on the screen using the predefined SetRect procedure.
Let's examine in detail each line of the program that you typed.
The Window:Rect statement declares the variable named Window

to the QuickDraw data type of Rectangle. The Rectangle data type is
defined as follows:

type Rect = record case integer of
0: (top: integer;

left: integer;
bottom: integer;
right: integer);

1: (topLeft: Point;
botRight: Point)

end;

Remember, this declaration is for your reference when using the
Rect data type. It need not be declared by you in a program.

As can be seen above, Rect may be four integers specifying the
coordinates of two points that define the two corners of the rectangle
(coordinates and points will be discussed fully in Chapter 2). The
significance of these four integers is. that they determine both the
size of the rectangle and the position of the rectangle within the
coordinate system of the screen.

The SetRect statement is used to set the window boundaries.
There are 512 pixels (black or white picture elements or dots) across
the Macintosh screen (columns) and 342 pixels down (rows).

SetRect is defined as

Procedure SetRect (var r:Rect; left, top, right, bottom:integer);

In the program the statement SetRect (Window,0,38,511,341)
stores the numbers for left, top, right, and bottom into the record
variable Window. The result is a window with the coordinates on the
screen specified by the four integers.

The specific numbers used in this program set the boundaries of
the window just below the menu bar and use the rest of the screen
for the rectangle. After the size of the window has been determined,
the Macintosh must be told that this is to be the size of the Drawing
window.

The SetDrawingRect (Window) statement sets the Drawing win­
dow equal to the bounds specified by the variable Window. The last
statement, Show Drawing, simply tells the Macintosh to display the

GETTING STARTED 11

Drawing window, which covers almost the entire screen but leaves
the menu bar visible.

The Drawing window in Macintosh Pascal may be any size speci­
fied by the SetRect statement. It may even be larger than the
Macintosh screen. Play around with the program, altering the size
of the window by changing the numbers in the SetRect statement.
By using SetRect (Window,100,200,200,300), the Macintosh will open
a Drawing window in the center of the screen.

A program similar to the first can be used to control the Text
window of Macintosh Pascal. The procedures required to do this are
SetTextRect and ShowText. They operate in exactly the same way as
the SetDrawingRect and ShowDrawing procedures. The program
statements below work in a manner similar to the first program.

HideAll;
SetRect (Window, 0, 38, 511, 341);
SetTextRect (Window);
ShowText;

Type these lines into the main program body of the Untitled win­
dow or make the necessary modifications to your old program. Make
sure to leave the original variable declaration from the first pro­
gram intact. Run the program and you will see a screen similar to
the one created by the first program, but this time the Text window,
not the Drawing window, is on the screen.

In Macintosh Pascal the Text window is used as the standard text
output file. Text-oriented procedures such as Write and Writeln send
their output to the Text window. The Drawing window is a Quick­
Draw grafPort (grafPorts will be defined later). It is the window that
QuickDraw uses for its output. The Drawing window can display
any graphics or text that is originated by QuickDraw procedures.

The DrawBoxes Program
After having experimented with this first program, you may want to
save your modified program for later use. If so, select Save As in the
File menu. Macintosh Pascal will prompt you to name the program.
Once named, you can close the program window and select "New"
from the File menu to open an Untitled program window. Clear any
text in the Untitled window by selecting it and pressing the BACK-

12 MASTERING THE MACINTOSH TOOLBOX

SPACE key. Then type m the following program exactly as it
appears:

program DrawBoxes;
var

Window : Rect;
But 1, But2, But3. But4 : Rect;

procedure lnitWindow;
begin

HideAll;
SetRect(Window, o, 38, 511, 341);
SetDrawingRect(Window);
ShowDraw ing;

end;
procedure SetButtons;
begin

SetRect(But I, 25, 70, 40, 80);
SetRect(But2, 25, 90, 40, I 00);
SetRect(But3, 25, 110, 40, 120);
SetRect<But4, 25, 130, 40, 140);

end;
procedure SetPen;
begin

PenNormal;
encl;
procedure DrawButtons;
begin

FrameRect(but I);
FrameRect(but2);
FrameRect(but3);
FrameRect(but4);

encl;
begin

SetButtons;
lnitWindow;
Set Pen;
DrawButtons;

end.

After you have typed in the above program, verify that spelling
and punctuation are correct. Use the Check option in the Run menu
to have Macintosh Pascal read your program without trying to run
it. Any mistakes will be pointed out and you can fix them before
running the program.

Once you know the program is correct, select Go from the Run
menu to run the program. Figure 1-4 shows a screen display gener­
ated by the Draw Boxes program.

This screen display looks primitive compared to what you're

GETTING STARTED 13

,. Cl File Edit Search Run Windows
.,

~o Oro wing

D
D
D
D

~
QJJ

Figure 1-4. Screen display generated lry DrawBoxes program

accustomed to seeing on the Macintosh, but let's examine how it was
created.

The procedure InitWindow sets the size of the Drawing window
and displays it.

Notice the new variables, Butl, But2, But3, and But4 of type Rect.
These are initialized using the SetRect statement in the procedure
SetB~ttons.

Now look at the procedure SetPen. It has one statement in it­
PenNormal. PenNormal sets the QuickDraw graphics pen to its
normal or default settings. PenNormal does not affect the location of
the graphics pen, however.

QuickDraw uses a conceptual pen to draw images on the Macin­
tosh screen. The pen has a number of features that may be altered

14 MASTERING THE MACINTOSH TOOLBOX

by the programmer. You may visualize the pen as represented in
Figure 1-5.

The pen has the attributes of position, height, width, and pattern.
In addition, the pen may be either visible or invisible-that is, it
may draw on the screen or it may not (writing in "invisible ink").
For now, note the features of position, height, width, and pattern. We
will be using them and showing how they are affected by the Pen­
Normal statement in the program.

PenNormal sets the following graphics pen attributes:

Pen height
Pen width
Pen pattern
Pen mode

= 1 bit
= 1 bit
=black
= PatCopy

The mode PatCopy simply means that the pen will replace
whatever is already on the screen with the pen pattern. In this case,
the pattern is black. The pen pattern serves as the ink in the pen. In
the example above, the pen will draw a thin black line 1 bit wide
and 1 bit high.

The next step in the Draw Boxes program is to tell the pen what to
draw and where to draw it. Looking at the procedure Draw Buttons,

I Height

WWh

Figure 1-5. Conceptual pen used "Uy QuickDraw

GETTING STARTED 15

you see a call to the procedure FrameRect. This statement tells
QuickDraw to draw the outline of a rectangle. The variables Butl,
But2, But3, and But4 of type Rect tell the procedure where to place
the rectangle and its size.

As with the first program, try altering the sizes and positions of
the boxes by changing the numbers in the SetButtons procedure.

The DrawButtons Program
What follows is another program that utilizes some of the basic con­
cepts discussed so far, .but takes them one small step further. Save
the Draw Boxes program so that you may refer to it later. Then type
the following into Macintosh Pascal:

program DrawButtons;
var

Window : Rect;
Button : Rect;

procedure lnitWindow;
begin

SetRect(Window, o, 38, 511, 341);
SetDrawingRect(Window);
ShowDrawing;

end;
procedure SetButton;
begin

SetRect(Button, 240, 40, 270, 60);
end;
procedure SetPen;
begin

PenNormal;
PenSize(2, 2);

end;
procedure DrawButtons;
var
I: Integer;

begin
for I := 1 to 4 do
begin
OffsetRect(Button, o, 30);
FrameRect(Buttonl;

end;
end;
procedure LabelButtons;
begin

TextFont(O);

16 MASTERING THE MACINTOSH TOOLBOX

TextMode(srtOr);
TextSize(O);
MoveTo(252, 85);
DrawChar(' A');
MoveTo(252, 115);
DrawChar('B');
MoveTo(252, 145);
OrawChar('C');
MoveTo(252, 175);
OrawChar('D');

end;
begin
SetButton;
lnitWindow;
SetPen;
DrawButtons;
Labe I Buttons;

end.

After typing in the program, select the Go option from the Run
menu to execute the DrawButtons program. The program produces
the screen shown in Figure 1-6.

The most important difference between this program and the
Draw Boxes program is the use of the OffsetRect procedure. Quick­
Draw provides a number of procedures that perform calculations on
rectangles, and OffsetRect is one of the most useful. The OffsetRect
procedure lets you change the position of a rectangle without affect­
ing its size. The procedure OffsetRect is defined as follows:

procedure OffsetRect (var r:Rect; dh, dv:integer);

where r is any variable of type Rect, dh is the horizontal distance to
move the rectangle, and dv is the vertical distance to move the
rectangle.

OffsetRect uses positive values for dh to indicate movement to the
right and dv to indicate movement downward. Negative values indi­
cate movement to the left and upward.

In examining the SetPen procedure, you will notice the PenSize
statement. PenSize is a predefined procedure that is used to set the
size of the graphics pen. The definition of PenSize is

procedure PenSize (width, height:integer);

Both the width and the height may range from (0,0) to
(32767,32767). It should be noted that if either the width or the

GETTING STARTED 17

,. s File Edit Search Run Windows
.,

D Drawing

Figure 1- 6. Screen display produced fry Draw Buttons program

height is less than l, the pen will not draw on the screen. After the
pen size has been set, the pen will use the new dimensions. In
Draw Buttons, the new pen size affects the FrameRect procedure,
which produces the outline of the buttons.

The last major item to notice in the DrawButtons program is the
procedure LabelButtons. This illustrates the use of single text char­
acters to label the buttons we have already drawn. The graphics pen
is also responsible for drawing text on the screen, although the mode
of use is a little different. MoveTo is a procedure that, when called,
will move the graphics pen to the specified location. It is defined as

procedure MoveTo (h, v:integer);

where his the horizontal coordinate and vis the vertical coordinate.
MoveTo does not draw on the screen.

18 MASTERING THE MACINTOSH TOOLBOX

In Draw Buttons, the position of the pen after the first MoveTo
statement will be slightly to the left of the center of the top button.
This is where the first character will be drawn by the DrawChar
procedure. Each successive MoveTo statement moves the pen to the
next button to be labeled.

Text drawn on the screen has a number of special attributes, some
of which are set by the first two statements of the LabelButtons
procedure. The TextFont(O) statement sets the character font to the
system font (the Chicago font) and TextSize(O) sets the point size to
12. The DrawChar statement will draw text in the 12 point Chicago
font after TextFont(O) and TextSize(O) have been executed.

The DrawChar statement is defined as

procedure DrawChar (ch:char);

This statement draws the character specified by ch at the current
location of the pen. Once DrawChar has been executed, the pen will
be located to the right of the character just drawn.

The ActiveButtons Program
As can be seen from the screen produced by running Draw Buttons,
there are four centrally located buttons labeled A, B, C, and D. Now
that you've walked through the steps required to create buttons, the
next logical step is to demonstrate the effect of using the mouse
within a program. Type Active Buttons into Macintosh Pascal after
having saved the previous program for your reference and later use.

program ActiveButtons;
var
R: Rect;
But I, But2, Butl, But4 : Rect;
MousePos : Point;

procedure lnitWindow;
begin

SetRect(R, 0, 38, SI I, 341);
SetDrawingRect(R);
ShowDrawing;

end;
procedure SetButtons;

begin
SetRect(But 1, 240, 70, 270, 90);
SetRect(But2, 240, 100, 270, 120);
SetRect(But3, 240, 130, 270, 150);
SetRect(But4, 240, 160, 270, 180);

end;
procedure SetPen;
begin

PenNormal;
Pen5ize(2, 2);

end;
procedure DrawButtons;
begin

FrameRect(but I);
FrameRect(but2);
FrameRect(but3);
FrameRect(but4);

end;
procedure LabelButtons;
begin

TextFont(O);
TextMode(srcOr);
TextSize(O);
MoveTo(252, 85);
DrawChar(' A');
MoveTo(252, I 15);
DrawChar('B');
MoveTo(252, 145);
DrawChar('C');
MoveTo(252, 175);
DrawChar('D');

end;
begin

SetButtons;
lnitWindow;
Set Pen;
DrawButtons;
Labe I But tons;
repeat
unti I Button;
GetMouse(MousePos.h, MousePos.v);
if PtlnRect(MousePos, But I) then
begin

lnvertRect(But 1);
SysBeep(10);
lnvertRect(But I);
MoveTo(180, 220);
Textfont(1);
DrawString('Button A has been pressed');

end;
if PtlnRect(MousePos, But2) then
begin

I nvertRect(But2);

GETTING STARTED 19

20 MASTERING THE MACINTOSH TOOLBOX

SysBeep(10);
I nvertRect(But2);
MoveTo(180, 220);
Textfont(1 l;
DrawString('Button B has been pressed');

end;
if PtlnRect(MousePos, But3l then
begin

lnvertRect<But3);
SysBeep(10);
lnvertRect(But3);
MoveTo(180, 220);
Textfont(1 l;
DrawString('Button Chas been pressed');

end;
if PtlnRect(MousePos, But4l then
begin

lnvertRect(But4);
SysBeep(10);
lnvertRect(But4);
MoveTo(180, 220);
Textfont(1);
DrawString('Button D has been pressed');

end;
end.

When run, this program displays the screen shown in Figure 1-7
and waits until the mouse button is pressed. If the cursor is located
within one of the four buttons when the mouse button is pressed, the
button will flash, the Macintosh will beep, and you will be informed
at the bottom of the screen which button was selected by the mouse.
If the cursor is not located inside a button when the mouse button is
pressed, nothing will happen. The program ends after the mouse
button has been pressed once.

After the LabelButtons procedure has been executed, the initial­
ization of the screen is complete and the program will continuously
loop until Button becomes True. Button is a Boolean function that
will return True if the mouse button is currently down and False if
it isn't. The program effectively waits until the mouse button is
pressed. Once the mouse button has been pressed, the first statement
to be executed is the GetMouse statement. This procedure returns
the position of the mouse. It is defined as

procedure GetMouse (h,v:integer);

where h contains the returned horizontal coordinate and v contains
the returned vertical coordinate. Our program uses the .h and .v

GETTING STARTED 21

,. s File Edit Seorch Run Windows
.,

lD Drawing

m
ITl
[f]

m

l2:l

Figure 1- 7. Screen display produced lYy ActiveButtons program

definition of a point, so that the point MousePos represents the posi­
tion of the mouse when the mouse button was pressed. (See the defi­
nition of the Point data type in the Macintosh Pascal Reference
Manual.) The remainder of the program consists of four If state­
ments. Each If statement tests the position of the mouse to deter­
mine whether or not the mouse pointer is within a button on the
screen when the button is pressed. The function that makes this test
is PtlnRect. It is defined as

function PtlnRect (pt:Point; r:Rect):boolean;

PtlnRect is a Boolean function that returns True if the point spec­
ified by pt is located within the rectangle specified by r. This proce­
dure is used within ActiveButtons to test whether or not the mouse is
within one of the screen buttons when the mouse button is pressed.
The statements within the block following each If statement deter-

22 MASTERING THE MACINTOSH TOOLBOX

mine the action of the program after the button has been identified.
Procedure SysBeep is a Pascal procedure that "rings" the Macin­

tosh speaker. It is defined as

procedure SysBeep (d:integer);

where d is the duration of the sound. The duration is measured in
increments of approximately 0.022 seconds. Therefore, if d is set
equal to 10, then the sound will continue for approximately 2/lOths
of a second.

The flash of each button is caused by using the InvertRect proce­
dure, which will invert each pixel within a given rectangle. Inver­
sion simply converts every white pixel into a black pixel and every
black pixel into a white one. The procedure is defined as

procedure InvertRect (r:Rect);

where r is the rectangle that will be inverted. In ActiveButtons,
because you want the button to flash, there are two InvertRect
statements (to repeat the inversion twice). Notice that InvertRect
retains the contents of the rectangle so that any label character is
unaffected, even though it flashes with the rest of the rectangle.
InvertRect does not affect the graphics pen in any way.

The last section of the If statement branch tells us which button
on the screen was pressed by writing the information on the screen.
It uses a procedure similar to the one used to label the buttons. The
Drawstring procedure, defined as

procedure DrawString (s:Str255);

draws the string specified by s at the current location of the graph­
ics pen. After the procedure has been executed, the pen is positioned
to the right of the string drawn. As with the DrawChar procedure
used to label the buttons, you must use the MoveTo procedure to
position the pen prior to the next call of the Drawstring procedure.

Notice the TextFont(l) statement that is executed prior to the
DrawString procedure. This procedure changes the font the string
is drawn in. The Macintosh allows text to be displayed on the screen
in any number of different fonts stored iFl the System file. TextFont
allows us to control which font is currently in use. The font number
is used by the Toolbox routines to determine which font should be
used. The following table equates font numbers to the font names

GETTING STARTED 23

with which you are probably more familiar:

Font Number Font Name

0 Chicago (System Font)
1 ApplFont (Application Font)
2 New York
3 Geneva
4 Monaco
5 Venice
6 London
7 Athens
8 San Francisco
9 Toronto

Font numbers 0 and 1 have special implications in that they are
used slightly differently by Macintosh. Font number 1 is not actu­
ally a font, but rather a pointer, or reference, to another font used by
applications. This pointer varies with different releases of the
Macintosh Finder, but it will point to either the New York or Gen­
eva fonts. Font number 0 is used as the system font, which is the font
used for the menu bar and menu commands. This font also has some
special characters that are used by the system, such as the apple
used to identify the Apple menu.

The ActiveButtons program is a basic example of the use of the
mouse to control a program that has many options. With slight mod­
ifications, ActiveButtons could be incorporated into any program
that requires the user to make selections which affect the direction
the program takes.

Summary
This chapter has examined the essential aspects of controlling the
Pascal Drawing window to set up the screen. It has also introduced
some fundamental QuickDraw procedures from the Macintosh
Toolbox to draw the input screen and use the mouse to control a
program.

It can be seen from the previous examples that programming for
the mouse requires as much programming of the screen as it does of
the mouse. The programmer, therefore, must ensure that what is
required of the user is clearly described on the screen.

c H A p T E R

Macintosh
Graphics Concepts

Chapter 1 stated that graphics and mouse programming are inti­
mately linked. Successful programming utilizing the mouse requires
the programmer to be familiar with the ways in which the Macin­
tosh handles and displays graphics. This chapter examines the
drawing environment of the Macintosh in greater detail. In later
chapters we will use this knowledge in some rather sophisticated
programs. In order to understand Macintosh graphics concepts, you
must be familiar with both the Boolean logical operations and the
various numbering systems used by the Macintosh. To this end we
have included Appendix B, which briefly explains and illustrates the
tools required of all programmers who wish to delve inside the
Macintosh.

25

26 MASTERING THE MACINTOSH TOOLBOX

Essential Macintosh Graphics
Concepts

The basis for all graphics operations on the Macintosh are the rou­
tines grouped together under the collective name of QuickDraw.
This chapter examines the concepts embodied in QuickDraw and
discusses those features of the QuickDraw drawing environment
that may be used by the programmer to control the Macintosh
screen.

The Drawing Plane
The QuickDraw drawing plane may be thought of as a piece of
paper with imaginary grid lines on it. As illustrated in Figure 2-1,
the coordinate plane used by QuickDraw consists of a horizontal axis
and a vertical axis. The two axes define a plane upon which there
are 4,294,967,296 unique points. Each point appears at the intersec­
tion of a horizontal and vertical grid line. Because the grid lines are
imaginary, they can be considered immeasurably thin. With respect

- 32767 0 32767
- 3276 7-t-... ..,....,...,..-rt--3276 7

32767-.... .. 32767

- 32767 0 32767
Graf port coordi nete plane

Figure 2-1. QuwkDraw coordinate plane

MACINTOSH GRAPHICS CONCEPTS 27

to the Macintosh screen, they occur between the pixels. Thus, the
grid lines are one pixel apart from one another. The horizontal and
vertical coordinates range from -32767 to +32767. Coordinate values
increase on the plane from left to right and from top to bottom. The
origin (0,0) of the drawing plane is located in the middle of the grid.

All information passed to QuickDraw about the location, place­
ment, or movement of the mouse pointer is in terms of coordinate
points on the QuickDraw plane. The upper left corner of the Macin­
tosh screen is associated with the coordinate (0,0). The screen dis­
plays the vertical grid lines 0 through 512 (the width of the screen)
and the horizontal grid lines 0 through 342 (the height of the
screen). Thus, the lower right corner of the Macintosh screen has the
coordinates ·512 and 342.

Points
Any point on the plane may be referenced in terms of its horizontal
and vertical coordinates. Points can be stored in a Pascal variable of
type Point, which is defined as

type VHSelect = (V,H);
Point = record case integer of

0: (v: integer;
h: integer);

1: (vh: array [VHSelect] of integer)
end;

The point may be referenced as either a horizontal and vertical
coordinate or as two elements in an array with the vertical coordi­
nate followed by the horizontal coordinate. The pixel associated with
the coordinate point hangs below and to the right of that point
because the grid lines are immeasurably thin and, conceptually, lie
in between the pixels.

Rectangles
A rectangle may be defined as any two points on the coordinate plane
associated with the upper left and lower right corners of the rect­
angle.

28 MASTERING THE MACINTOSH TOOLBOX

Rectangles are used by QuickDraw to define active areas of the
screen, map coordinate systems for graphics entities, and specify
locations and sizes for QuickDraw drawing commands. QuickDraw
provides routines to perform calculations on rectangles. These rect­
angles can be moved around the screen and the sizes changed. (The
definition for the Rect data type was given in Chapter 1.)

Regions
On a larger scale, QuickDraw has the ability to gather an arbitrary
set of points into a structure called a region. A region consists of the
area contained within the set of points. For example, a rectangle is a
special type of region having a predefined shape. A circle, triangle,
or any other enclosed shape can be considered a region. Once the
region has been defined, it is possible to perform many different
calculations and graphics operations upon that region. The concept
of regions is fundamental to QuickDraw and to the Macintosh user
interface. Special QuickDraw routines are available to translate a
set of points into the region structure. The region is a highly com­
plex concept and will not be discussed further in this book.

Bit Images
While coordinate planes, points, rectangles, and regions are all good
mathematical models, they do not have a physical appearance.
Graphics entities that do have a physical appearance are those such
as the bit image, bit map, pattern, and cursor.

A bit image is a rectangular collection of bits. Consider a row of
bytes of any length. Now imagine several of these rows stacked one
on top of another. You now have a matrix or rectangular array of bits
that is a bit image. The number of bytes in a row is called the row
width of that image. Bit images may be stored as any static or
dynamic variable with any size of row width.

The Macintosh screen is bit mapped. Bit mapped screens use a
special area of the computer's memory that contains a pixel-by-pixel
representation of the screen. The bits comprising this area of
memory are used by Macintosh to construct a screen image. Bits set

MACINTOSH GRAPHICS CONCEPTS 29

to 0 in the screen memory produce a white pixel, while bits set to 1
produce a black pixel on the screen.

As you read earlier, the Macintosh screen contains 175,104 pixels.
Each pixel corresponds to a single bit within the bit image repre­
senting the Macintosh screen. Since the screen is 342 pixels tall and
512 pixels wide, this results in a row width of 64 bytes in the bit
image representing the screen.

Bit Maps
When the physical entity (a black or white dot) of a bit image is
combined with the conceptual entities of the coordinate plane and
the rectangle, the result is a bit map. Bit maps consist of three parts:
a pointer to the bit image, the row width of that bit image, and a
boundary rectangle that places a coordinate system on the bit image.
It should be emphasized that a bit map does not actually contain the
bits themselves, but only a pointer to them. Because of this, it is
possible for several bit maps to point to the same bit image, each
imposing a different coordinate system on it. The data structure of a
bit map is defined in the Macintosh Toolbox as follows:

type BitMap = record
baseAddr:
row Bytes:
bounds:

end;

QDPtr;
integer;
Re ct;

The baseAddr field locates the bit image in memory. In essence,
this is the beginning of a set of bytes that defines the bit image. The
row Bytes field contains the number of bytes in each row of the bit
image. Because the Macintosh's microprocessor requires that mem­
ory be referenced by words (a word is equal to two bytes on the
Macintosh) instead of individual bytes, both the baseAddr field and
the row Bytes field should be even numbers.

The bounds field of the BitMap data type specifies a rectangle of
active bits within the bit image. It is possible that some bits of a bit
image may not be included in the bit map because they lie outside
the rectangle that specifies the boundary of the bit map.

The boundary rectangle is used primarily to impose a coordinate
system on the bit image. Here again, as on the Macintosh screen as a

30 MASTERING THE MACINTOSH TOOLBOX

whole, the pixels in the image fall between points on the coordinate
plane, so that the pixel associated with a point lies below and to the
right of that point. In other words, if a bit is to be displayed at the
coordinate (4, 7), it will appear as a square bounded by the points
(4, 7) in the upper left corner and (5,8) in the lower right corner.

Bit images are convenient tools for generating and manipulating
graphics entities through a single label (the pointer). QuickDraw
utilizes the bit image to define several important graphics entities
that make up part of the Macintosh's visual user interface. Among
the most common and recognizable of these are patterns, cursors,
and icons.

Patterns
Patterns are 64-bit images organized as 8-by-8 bit squares. They are
used to define repeating images like tones or designs. The patterns
in MacPaint are the most obvious example of QuickDraw patterns.
They may be used to draw lines and shapes, or to fill areas of the
screen. Patterns, when drawn, are aligned so that adjacent areas of
the same pattern will blend into a continuous, coordinated pattern.
QuickDraw provides several predefined patterns, including white,
black, gray, light gray, and dark gray. Any 64-bit variable may also
be used as a pattern. The data type for a pattern is the following:

type Pattern = packed array [O .. 7] of 0 .. 255;

The row width of a pattern is 1 byte because it is an 8-by-8 bit
square.

Cursors
By now you have probably become familiar with the cursor, the
small picture that moves with the mouse. Movements of the cursor
are related to the movements of the mouse. The cursor itself is not
actually a part of the screen image. It has its own special software
that is used to place the cursor on the screen and connect it to the
mouse. As far as QuickDraw is concerned, a cursor is defined as a

MACINTOSH GRAPHICS CONCEPTS 31

256-bit image-a 16-by-16 bit square with the row Bytes field of the
BitMap set to 2. Cursors are discussed in detail in Chapter 3.

Icons
Icons are 1024-bit images organized as a 32-by-32 bit square. The
row Bytes field of an icon bit map is set to 4. QuickDraw contains
several procedures for defining and manipulating icons. Icons are
used on the desktop to represent things like files, folders, and
applications.

Transfer Modes
The process of drawing lines, shapes, text, or any other type of

image consists mainly of transferring one bit image to another.
QuickDraw allows you to overlay a source image onto a destination
image with varying effects, based upon the transfer rrwde in use.
There are two kinds of transfer modes, depending upon what you are
transferring:

1. The pattern trans! er rrwde is used for drawing lines or shapes
with a pattern.

2. The source transfer rrwde is used for drawing text or transfer­
ring any bit image between two bit maps.

You would use a pattern transfer to give an image a specific tex­
ture or color. On occasion you may want to change the pattern of a
specific image, such as when a menu item becomes gray to signify
that it is disabled. In this instance you would use the pattern
tr an sf er mode to specify how you want the new pattern to affect the
pattern being displayed. In changing a menu item to gray, you
would overlay a gray pattern using a pattern transfer that only
affects the black pixels.

Now assume that you have a pie chart that you want to label. To
write text on a shaded area, you would specify a source transfer
mode to achieve a desired effect. In this instance you would want the
characters to be on a solid background so that they could be read

32 MASTERING THE MACINTOSH TOOLBOX

easily. This requires a source transfer mode that overwrites its des­
tination (the characters being designed to have a solid background).

To achieve various overlaying effects, there are four basic transfer
modes: Copy, OR, XOR, and Bic. The Copy mode simply replaces the
pixels in the destination location with those in the source location,
achieving a painting effect. The contents of the destination bit image
have no effect on the final result.

The OR operation does not change the pixels under the white part
of the source pattern. It changes only the pixels under the black
parts of the source pattern. This effectively overlays the destination
bit map with the source pattern. This is equivalent to performing
the inclusive OR operation between the corresponding bits of the two
images.

The XOR operation has no effect on the pixels under the white
pixels of the source pattern, but it inverts the pixels under the black
bits of the source pattern. This is equivalent to performing the exclu­
sive OR operation between the corresponding bits of the two images.

The Bic operation has no effect on pixels under the white part of
the source pattern. It forces the pixels under the black bits to
become white.

Each of the basic transfer mode operations also has a variant,
NOT, in which the source pattern is inverted before the operation is
performed. Including NOT, there are eight transfer operations in all.

Figure 2-2 illustrates the different transfer mode operations.
Table 2-1 shows the constants that may be used in Macintosh Pascal
to refer to each operation.

Transfer mode names (such as patCopy, srcCopy, and patOr) are
predefined constants under Macintosh Pascal. You would use the
constants containing the characters "pat" to invoke a pattern
transfer mode or the constants containing the characters "src" to
invoke a source transfer mode.

GrafPort;s
A graf Port is a complete drawing environment that defines how and
where graphics operations will take place. It contains complete
information about one particular environment and is kept separate
from all other environments. All drawing, whatever its nature, takes
place in a grafPort. Under normal circumstances, there is at least

• pat tern or source

pat Copy
srcCopy

pa tor
srcOr

MACINTOSH GRAPHICS CONCEPTS 33

desl1nal1on

patXor
srcXor

palBic
srcBic

•••• NotpatCopy
NotsrcCopy

Not pat Or
NotsrcOr

NotpatXor
NotsrcXor

NotpatBic
NotsrcBic

Figure 2-2. Transfer mode operations

Table 2-1. Transfer Modes

Pattern
Transfer

Mode

patCopy
patOr
patXor
patBic

notpatCopy
notpatOr
notpatXor
notpatBic

Source
Transfer

Mode

srcCopy
srcOr
srcXor
srcBic

notsrcCopy
notsrcOr
notsrcXor
notsrcBic

Action on Each Pixel in Destination:

Black Pixel in
Pattern or Source

Force black
Force black
Invert
Force white

Force white
Leave alone
Leave alone
Leave alone

White Pixel in
Pattern or Source

Force white
Leave alone
Leave alone
Leave alone

Force black
Force black
Invert
Force White

34 MASTERING THE MACINTOSH TOOLBOX

one grafPort associated with every visible window on the Macintosh
screen. Through this graf Port, characters and graphics are drawn
in the window. More than one grafPort may be associated with a
window that can give the impression of a split screen. GrafPorts can
be quite complex and will not be used in any of the examples in this
book. However, a grafPort does provide some very important con­
cepts that need to be understood before the topic of windows is
covered.

One of the most important concepts is the imposition of a coordi­
nate plane upon the drawing surface. The Macintosh screen has a
special grafPort associated with it that places a global coordinate
system on the screen in general. These coordinates have already been
discussed-the upper left corner is point (0,0) and the lower right
corner is (342,512).

Because each window must have at least one grafPort associated
with it, each window may have a coordinate system that applies to
that window only. This coordinate system is called the local coordi­
nate system, and it is measured relative to the upper left corner of
the window, not the upper left corner of the screen. For example,
suppose there is a window with its upper left corner placed at global
coordinate (50,50). If you were to draw a point at local coordinate
(15,15), then that same point could also be drawn at global coordi­
nate (65,65). Routines are available within QuickDraw that convert
from other local grafPort coordinate systems into the global coordi­
nate system.

Although each window with its own grafPort also has its own local
coordinate system, all windows on the screen share the same global
coordinate system. Coordinate systems and windows are discussed in
greater depth iri Chapter 5.

A grafPort is defined by a dynamic data structure that has the
following format:

graf Port a record

device:
portBits:
portRect:
visRgn:
clipRgn:
bk Pat
fill Pat:
pnloc:
pnSize:
pnMode:

integer;
BitMap;
Rect;
RgnHandle;
RgnHandle;
Pattern;
Pattern;
Point;
Point;
integer;

pnPat:
pnVis:
txFont:
txFace:
txMode:
txSize:
spExtra:
fgColor:
bkColor:
colrBit:
patStretch:
picSave:
rgnSave:
polySave:
grafProcs:

Pattern;
integer;
integer;
Style;
integer;
integer;
integer;
long Int;
longlnt;
integer;
integer;
OOHandle;
OOHandle;
OOHandle;
ODProcsPtr;

MACINTOSH GRAPHICS CONCEPTS 35

It is beyond the scope of this book to describe the operation and
use of all fields that make up the grafPort. Many of the fields are
used by Macintosh's system software to maintain the screen itself.
However, those fields that are important to drawing graphics on the
screen will be explained in detail.

The first five fields of the grafPort record are used by the system
to control the appearance of windows on the Macintosh screen. The
next two fields, bkPat and fillPat, are patterns employed when
QuickDraw is used either to fill an area of the screen with a pattern
or to erase an area of the screen. Specifically, bkPat is used by the
QuickDraw erase commands to replace whatever is being erased.
FillPat is used by QuickDraw's fill commands to fill an area of the
screen with a specific pattern.

The next five fields determine the characteristics of the graphics
pen, and the following five fields determine the characteristics of
any text that may be drawn. The graphics pen and text drawing will
be discussed in later sections.

The fgColor, bkColor, and colorBit fields all contain information
related to drawing in color. It is not yet possible to draw in color on
the Macintosh, but the inclusion of these fields is a promising indi­
cation of things to come.

The patStretch field is used during printer output operations. Its
value should not under any circumstances be changed by an applica­
tions program.

The picSave, rgnSave, and polySave fields contain handles to pic­
tures, regions, or polygons that may be under construction at any
time. Under normal circumstances, they are not accessed directly by
an applications program.

36 MASTERING THE MACINTOSH TOOLBOX

The final field in the graf Port record is used by advanced pro­
grammers for customizing QuickDraw operations and in other
advanced and highly specialized ways. An applications program
should not change the value of this field.

The Graphics Pen
Each grafPort contains one pen capable of drawing only within the
confines of that grafPort. Each pen has five basic characteristics:
location, size, drawing mode, drawing pattern, and visibility. These
characteristics relate to the grafPort fields pnLoc, pnSize, pnMode,
pnPat, and pn Vis, respectively.

The pen location is the point at which the pen will begin to draw
when it is next activated. It must be remembered that the pen loca­
tion is a point on the drawing plane and not a pixel in the bit image.
Therefore, the pen has greater mobility than can be demonstrated
on a bit-by-bit basis. There are no restrictions on movement or
placement of the pen.

The pen size defines the height and width of the pen. The default
size is a 1-by-1 bit square. Width and height of the pen may range
from (O,O) to (32767,32767). However, if either the pen height or
width is less than l, the pen will not draw on the screen.

The pen pattern is the pattern the pen uses to draw when acti­
vated. It may be thought of as the ink in the pen. The pattern will be
aligned with the grafPort's coordinate system (the upper left corner
of the pattern is aligned with the upper left corner of the grafPort).

The pen mode determines how the pen pattern is transferred to
the grafPort and how it will affect what already exists in that par­
ticular position in the grafPort. This is essentially a Boolean opera­
tion and was described in detail earlier.

The pen visibility determines whether the pen is visible (in other
words, whether or not it draws on the screen).

Text Characteristics
Each grafPort contains all of the characteristics that are necessary
for the drawing of text within that grafPort. These characteristics
are the text font, text face, text mode, size of the text, and amount of

MACINTOSH GRAPHICS CONCEPTS 37

space between characters. These characteristics relate to the txFont,
txFace, txMode, txSize, and spExtra fields of the grafPort record.

Individual character attributes must be introduced before the
general text characteristics are discussed. Figure 2-3 shows the var­
ious attributes associated with the design of a single character and
introduces some of the terminology related to character construc­
tion. These terms, although not widely used, are self-explanatory.

In the text characteristics, the text font field is the font number
that identifies the character font to be used when drawing text. The
following table lists the available fonts and their font numbers, along
with predefined constants that may be used in Macintosh Pascal:

Font Number Font Constant Name

0 System Font system Font
1 Applications Font applFont
2 New York new York
3 Geneva geneva
4 Monaco monaco
5 Venice venice
6 London Ion don
7 Athens athens
8 San Francisco sanFran
9 Toronto toronto

The system font is so designated because it is the font used by the
Macintosh operating system for drawing menu titles, for example,
and menu commands. It is usually the Chicago font.

ascent

descent I ~bpy
character

'w'idth

ascent line

base Ii ne
descent h ne

Figure 2-3. Attributes in the design of a single character

38 MASTERING THE MACINTOSH TOOLBOX

The applications font is really just a pointer to either New York or
Geneva. This "font" is provided so that all applications programs
that run on the Macintosh have a standard appearance. Characters
in these fonts are proportionally spaced. This means that the letter
"i," for example, does not require as much space as the letter "m."

A font is actually a collection of bit images. Each bit image con­
tains a single character of the font. The font may consist of 256 dis­
tinct characters. Not all of these characters, however, may be
defined. Each font contains a missing character symbol that is dis­
played if the character requested is not available within that font.
This symbol usually takes the shape of a small square.

The text face determines the appearance of a font. All of the fol­
lowing effects are controlled by the txFace field of the grafPort:
normal, bold, italic, underline, outline, shadow, condensed, and
extended. These text faces may be applied alone or in combination.
For example, a text face may be both boldface and italicized. The
txFace field is of data type Style, which is defined as

type Styleltem = (bold, italic, underline, outline,
shadow, condense, extend);

Style = set of Styleltem;

A summary of the effect of each of the Styleltem elements on text
follows:

• If txFace is set to bold, each character is repeatedly drawn 1
bit to the right to add thickness. The number of repetitions used
to boldface a character will vary, depending upon several of the
other characteristics.

• If txFace is set to italic, character bits above the baseline are
skewed to the right and bits below the baseline are skewed to
the left.

• If txFace is set to underline, a line is drawn below the baseline
of the characters. If a character has a descender like "p'', the
underline is not' drawn through the pixel on either side of the
descender.

• If txFace is set to outline, then the character is displayed as a
hollow outline rather than as a solid figure.

• If txFace is set to shadow, not only is the character hollow and
outlined, but the outline is thickened below and to the right of
the character, thus achieving a shadow effect.

MACINTOSH GRAPHICS CONCEPTS 39

• If txFace is set to condense, the horizontal spacing between
the characters is reduced.

• If txFace is set to extend, the horizontal spacing between the
characters is increased.

The text mode determines how the characters of a font are trans­
ferred to the screen. It functions in much the same way as pen mode
and was described in the section on transfer modes earlier in this
book.

Text size determines the type size for the font in points. In Quick­
Draw, a point equals 1/72nd of an inch (the size of one pixel) and any
size may be specified. However, if the font is not available in that
size, QuickDraw will rescale the available size. If this field is set to
0, the Font Manager will choose the size that is closest to the system
font size (12 points).

The spExtra field is used to increase the horizontal distance
between characters. It is usually used when a line of text needs to be
fully justified (evenly spaced out across a given line width). The
spExtra field contains the number of pixels that should be added to
each character within the line.

Using New Fonts with
QuickDraw

Unfortunately, although more fonts are becoming available to
Macintosh owners by way of third party developers, it is not easy for
programmers to use these fonts. When you become proficient at
working with the outer levels of the Toolbox, you will be able to delve
deeper into the Macintosh to access the font resource file.

Summary
This chapter has discussed the underlying concepts of drawing
graphics on the Macintosh. The concepts of coordinate planes,
points, and rectangles are an integral part of the operation of the
functions used by QuickDraw. The graphics entities, bit images, and
bit maps lead to the introduction of patterns, cursors, and icons.
Boolean operations were shown to be essential to the tr an sf er of

40 MASTERING THE MACINTOSH TOOLBOX

graphics images between bit maps. These are important structures
and concepts that will be used in upcoming programming examples.

The grafPort was introduced as the drawing environment. Many
grafPort components were described, including the graphics pen
and text drawing. The graphics pen determines where and how
shapes and lines are drawn; it is also used in the positioning of text
on the screen. QuickDraw gives a programmer great flexibility in
the drawing of text in many different fonts, styles, and sizes.

The QuickDraw concepts and routines make it possible for the
programmer to create visually appealing as well as informative
program screens and displays.

c H A p T E R

Of Mice and
Cursors

The cursor plays an important role in programming for the Macin­
tosh. On the Macintosh desktop the cursor appears on the screen as
an arrow, but in some applications programs, such as Mac Write and
MacPaint, the cursor appears as a cross hair, a small hand, an 1-
beam, or a tiny wristwatch. The cursor is controlled by the mouse
and lets the person using the Macintosh make selections based on
the information presented on the screen. The Macintosh reads the posi­
tion of the cursor on the screen and initiates actions when the user
presses the mouse button. This chapter examines how cursors may
be used in programs and how QuickDraw routines can be used to
implement these methods.

41

42 MASTERING THE MACINTOSH TOOLBOX

Cursors, Cursors, Everywhere
The cursor itself is not actually a part of the screen image, although
it is visible on the screen. It is a separate image placed on the screen
by some of the routines in the Toolbox. It may be likened to a piece
of cellophane placed over a piece of paper. The cellophane may have
a picture on it that appears as part of the picture on the paper
below, but the cellophane may be moved independently of the paper.

A cursor consists of two blocks of 32 bytes of memory. Each block
is arranged as a 16-by-16 bit image with a point known as the hot­
spot. The Macintosh Pascal definition of a cursor is

type Gµrsor = record

end;

data: array [0 .. 15] of integer;
mask: array [0 .. 15] of integer;
hotspot: Point;

As can be seen, one 16-by-16 bit image is known as the data and
the other as the mask. Figure 3-1 shows how the data portion of the
north-northwest arrow cursor is organized. By equating filled

0

o _I_... ~~

Column 1 Column 2

Column 1 Column 2

10000000 00000000 = H8000
11000000 00000000 = HCOOO
11100000 00000000 = HEOOO
11110000 00000000 = HFOOO
11111000 00000000 = HF800
11111100 00000000 = HFCOO
11111110 00000000 = HFEOO
11111111 00000000 = HFFOO
11111111 10000000 = HFF80
11111100 00000000 = HFCOO
11001100 00000000 = HCCOO
10001100 00000000 = H8COO
00000110 00000000 = H0600
00000110 00000000 = H0600
00000011 00000000 = H0300
00000011 00000000 = H0300

Figure 8-1. Organiza.tion of the do.ta portion of an arrow eursor pointing
north-northwest

OF MICE AND CURSORS 43

squares with l's, and empty squares with O's, one can see how the
image could be resolved into a stream of binary digits. This stream
may be reduced even further by translating the bits into a hexadec­
imal number. Look at the arrow cursor in Figure 3-1. Column 1
represents the first byte of one line in the cursor and column 2
represents the second byte. Since each byte requires two hexadeci­
mal digits, the resulting hexadecimal number is 4 digits long. This
number is derived directly from converting the bits listed in the
columns into a hexadecimal number.

The mask of a cursor determines how the cursor will appear on
the screen. Each pixel (bit) in the screen, in the data block, and in
the mask block is compared. The result of the comparison from the
following table becomes the pixel on the screen.

Pixel in
Mask

1
1
0
0

Pixel in
Cursor

0
1
0
1

White
Black

Resulting pixel
On the screen

Same as pixel under the cursor
Inverse of pixel under the cursor

The cursor may then be totally transparent or totally opaque,
depending upon how the mask is set up. Figure 3-2 demonstrates
the data image for a pointing finger and the mask that shows which

16

I 0000 0000
0000 0000
0000 0000
0000 0000
0700 0700
1900 1FOO
2200 3EOO
4200 7EOO

-9 C7FE FFFE
8C01 FFFF
97FE FFFE
E410 FFFO
87FO FFFO
8420 FFEO
C7EO FFEO
7F80 7F80

Figure 3-2. Dai,a image for a pointing finger and mask showing which parts of
the cursor will be opaque and which parts transparent

44 MASTERING THE MACINTOSH TOOLBOX

parts of the cursor will be opaque and which transparent.
The hotspot determines where the mouse is located on the screen

according to the computer. Different cursors have their hotspots in
different positions. The arrow has its hotspot at position (0,0), while
the hotspot for the finger is position (16,9). The hotspot is used to
align the cursor with the position of the mouse. When the position of
the mouse is accessed in Macintosh Pascal, the point returned is the
point at which the hotspot is located.

The Cursors Program
The following program demonstrates defining, moving, and using
the cursor. Although the program is lengthy, its length is mostly due
to overhead required by Pascal to define the image of the cursor
using hexadecimal numbers.

Type the Cursors program into Macintosh Pascal. Save any pre­
vious program you might have on the screen and enter Cursors into
the Untitled window. Because of the program's length, use the Save
option frequently to save the program on disk. This lessens the
chance of losing the entire program.

program Cursors;
var
Urect, SRect, XRect, TRect, FRect : Rect;
SqCursor : Cursor;
XCursor : Cursor;
TextCursor: Cursor;
FingCursor: Cursor;

procedure SquareCurs;
var
Hot: Point;
I: integer;

begin
SqCursor.Data{OJ := $0000;
SqCursor.Data[l] := $7FFE;
for I := 2 to 13 do
SqCursor.Data[I] :" $4002;

SQCursor.Data[14) := $7FFE;
SQCursor.Data[15) := $0000;
SQCursor.Mask[OJ := O;
for I:= I to 14do
SqCursor.Mask[I) := $7FFE;

SqCursor.Mask[15] := O;
Hot.h := I;
Hot.v := 1;

SqCursor.HotSpot := Hot;
end;
procedure CrossCurs;
var

Hot: Point;
I: integer;

begin
for I:= 0 to 15 do
xcursor.Data[IJ := $0080;

XCursor.Data[8] := SFFFF;
for I :=Oto 15 do
XCursor.Mask(I] := $0000;

Hoth:= 8;
Hotv := 8;
XCursor.HotSpot := Hot;

end;

procedure T extCurs;
var

Hot: Point;
I: integer;

begin
TextCursor.Data[O] := $0000;
TextCursor.Data[l] := $0630;
TextCursor.Data(2] := $0140;
for I:= 3 to 12 do
TextCursor.Data[I] := $0080;

TextCursor.Data[13] := SO 140;
TextCursor.Data(14] := $0630;
TextCursor.Data[15] := $0000;

for I:= Oto 15 do
TextCursor.Mask(I] := O;

Hoth:= 12;
Hotv := 8;
TextCursor.HotSpot := Hot;

end;
procedure FingerCurs;
var

Hot: Point;
I: integer;

begin
for I := o to 3 do
FingCursor.Data[I] := SOOOO;

FingCursor.Data[4] := $0700;
F ingCursor.Data[5] := S 1900;
FingCursor.Data(6] := $2200;
FingCursor.Oata[7] := $4200;
FingCursor.Data(8] := SC7FE;
FingCursor.Data(9] := $8COI;
FingCursor.Data[I OJ:= S97FE;
FingCursor.Data(11] := SE410;
FingCursor.Data[12] := S87FO;

OF MICE AND CURSORS 45

46 MASTERING THE MACINTOSH TOOLBOX

FlngCursor.Data(13) := $8420;
FingCursor.Data[l4] := $C7EO;
FlngCursor.Datal15] := $7F80;

for I : .. o to 3 do
FlngCursor.Mask[I] := O;

FingCursor.Mask[4] := $0700;
F ingCursor.Mask(5] := SI FOO;
FingCursor.Mask(6] := S3EOO;
FingCursor.Mask(7] := S7EOO;
FingCursor.Mask(8] := SFFFE;
FingCursor.Mask[9] := SFFFF;
FingCursor.Mask[IO] := SFFFE;
FingCursor.Mask[11) := SFFFO;
FingCursor.Mask[l2] := SFFFO;
F ingCursor .Mask[13) := SFFEO;
FlngCursor.Mask[l4] : .. SFFEO;
FlngCursor.Mask(15) := S7F80;
Hot.h := 16;
Hot.v := 9;
FingCursor.HotSpot :=Hot;

end;
procedure CursorControl;
var
MousePos : Point;

begin
GetMouse(MousePos.h, MousePos.v);
if PtlnRect(MousePos, XRect) then
SetCursor(XCursor)

else If PtlnRect(MousePos, TRect) then
SetCursor(TextCursor)

else If PtlnRect(MousePos, SRectl then
SetCursor(SqCursor)

else if PtlnRect(MousePos, FRect) then
SetCursor(FingCursor)

else
lnitCursor;

end;
procedure lnitWindow;
var

Window : Rect;
begin

HideAll;
SetRect(Wlndow. 0, 38, 51 I, 341 l;
SetDrawingRect(Wlndow l;
ShowDrawing;

end;
procedure TextlnRect (Text: string;

var r: Rect);
begin

MoveTo((r.right - r.left - StrmgWidth(1ext)) div 2 • r.left. (r.bottom - r.top) div 2 +
r.top);

DrawString(Textl;
end;
procedure Setup;
begin

lnitWindow;
SetRect(Urect, 0, 0, 200, 120);
PenNormal;
PenSize(2, 2);
OffsetRect(URect, 20, 15);
FrameRect(URectl;
TRect := URect;
TextlnRect('Text Cursor Here', TRectl;
OffsetRect(URect, 256, Ol;
F rameRect(URect);
SRect := URect;
TextlnRect('Square Cursor Here·, SRectl;
OffsetRect(URect, 0, 150);
FrameRect(URectl;
XRect := URect;
TextlnRect('Cross Cursor Here·, URectl;
OffsetRect(URect, -256, Ol;
FrameRect(URectl;
FRect := URect;
TextlnRect('Finger Cursor Here', FRect);
CrossCurs;
SquareCurs;
TextCurs;
FingerCurs;

end;
begin

Setup;
while not Button do

CursorContro I;
end.

OF MICE AND CURSORS 4 7

The Cursors program demonstrates the use of several cursors and
the technique of changing the cursor, depending upon the cursor
location on the screen. The program shows how to initialize four
cursors -the finger cursor already mentioned, a text cursor, a cross
cursor, and a square cursor.

Designing a Cursor
Before you attempt to program a cursor, get some graph paper and
draw out the shape of the desired cursor. Figure 3-3 demonstrates
how to draw the cross cursor. Using an area of the graph paper that

48 MASTERING THE MACINTOSH TOOLBOX

a-

T

8
I

T

Column 1 Column 2

Column 1 Column 2

00000000 10000000 = HOOSO
00000000 10000000 = HOOSO
00000000 10000000 = HOOSO
00000000 10000000 = HOOSO
00000000 10000000 = HOOSO
00000000 10000000 = HOOSO
00000000 10000000 = HOOSO
00000000 10000000 = HOOSO
I I 11111 I 111 I I 1 I 1 = HFFFF
00000000 10000000 = HOOSO
00000000 10000000 = HOOSO
00000000 10000000 = HOOSO
00000000 10000000 = HOOSO
00000000 10000000 = HOOSO
00000000 10000000 = HOOSO
00000000 10000000 = HOOSO

Figure 3-3. Technique for designing a cross cursor

is 16 squares wide by 16 squares high, fill in the squares that will be
used to form the cross of the cursor. Once this is done, the image of
the cursor must be converted into binary form. This is done by tak­
ing each square in succession, from left to right and top to bottom,
and encoding it as a binary digit. If the square is blank, it becomes
0. If the square has been filled in, it becomes 1. Figure 3-3 shows
the encoded binary digits to the right of the graphed representation
of the cursor.

We now have a string of 256 bits that represents our cursor. To
simplify the use of this data in a program, you should convert the
binary digits to hexadecimal. For your convenience, Table 3-1 gives
the conversions from binary to hexadecimal as well as from binary
to decimal.

To use Table 3-1, divide your binary data into groups of four bits.
Next write down the corresponding hexadecimal digit. When you
reach the end of one row of bits, start a new hexadecimal number.

After the binary digits have been encoded into hexadecimal, it is
possible to program the cursor as the Cursors program demon­
strates. Figures 3-4 and 3-5 show the graphics and hexadecimal
representations of the text cursor and the square cursor, respectively.

Masks are set up in exactly same way, resulting in a similar string
of 64 hexadecimal digits.

Table 3-1. Conversion Table

Binary

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

12 -

Hexadecimal

0
1
2
3
4
5
6
7
8
9
A
B
c
D
E
F

8

I
IIII

•• _l_l ---
• ~

OF MICE AND CURSORS 49

Decimal

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0000
0630
0140
0080
0080
0080
0080
0080
0080
0080
0080
0080
0080
0140
0630
0000

Figure 3-4. Graphics and hexadecimal representation of the
text cursor

50 MASTERING THE MACINTOSH TOOLBOX

Ei _l _l _l _l _l _l J_ _l J_ _J_ _l J_ _l

.......
t-
t-
.......
t-
f--
t-
t-
f--
t-
f--
t-
f-- :ru

0000
7fFE
4002
4002
4002
4002
4002
4002
4002
4002
4002
4002
4002
4002
7f"FE
0000

Figure 3-5. Graphics and hexadecimal representation of the
square cursor

How the Cursors Program
Works

Moving the mouse around causes the cursor to change as it enters
the various rectangles on the screen. Each rectangle is labeled to
show which cursor will appear in that rectangle. Here's how it
works:

Initialization of the program consists of setting up the screen and
initializing the cursors to be used. The procedures SquareCurs,
CrossCurs, TextCurs, and FingerCurs use the hexadecimal strings
that were constructed to define the cursor data and the cursor mask.
This data is assigned to a variable of type cursor whose structure
was discussed previously. Loops are used in some cases where the
strings may repeat themselves.

The already familiar procedure InitWindow is used to initialize
the Macintosh Pascal Drawing window. The four rectangles are
drawn on the screen using the OffsetRect and FrameRect proce­
dures. The TextlnRect procedure centers any text string in any

OF MICE AND CURSORS 51

rectangle. TextinRect uses the QuickDraw function StringWidth to
determine the length of the string that will be drawn on the screen.
StringWidth is defined as

function StringWidth (s:Str255):integer;

wheres is the string whose width will be measured by the function.
The StringWidth function returns the width of the string in pixels.

The TextinRect procedure uses this information to calculate the
string's horizontal starting position or indentation with respect to
the left edge of the rectangle. The algebraic formula for the calcula­
tion is

Indentation = (Width of rectangle - Width of string)/2

The width of the rectangle is determined by subtracting the left
coordinate from the right coordinate. The string width comes from
the StringWidth function. The vertical center of the rectangle is
similarly calculated, except that the string height is ignored. The
MoveTo procedure is used to start the string at the indentation point
from the left edge and at the center of the rectangle.

Once the initialization is complete, the program repeatedly passes
control to the CursorControl procedure until the mouse button is
pressed. Pressing the mouse button ends the program.

Each pass of the CursorControl procedure causes the program to
retrieve the current position of the mouse using the GetMouse
procedure. The current mouse position is evaluated to determine
whether or not the cursor is located within one of the four rectan­
gles. If the cursor is not located in any of the rectangles, the cursor
will be set to the north-northwest arrow by the InitCursor statement.

If the cursor is moved into any one of the rectangles, the appropri­
ate cursor is set through the use of the SetCursor procedure. The
SetCursor procedure is defined as

procedure SetCursor (crsr:Cursor);

The variable crsr contains the cursor data, mask, and hotspot,
information initialized by the appropriate procedure. The SetCursor
procedure changes the current cursor to the cursor defined in crsr.
If the cursor is visible on the screen, the change takes place
immediately.

52 MASTERING THE MACINTOSH TOOLBOX

As you move the mouse around while running the program, visual­
ize the statements that are executing the program, or try "stepping"
through the program to understand just what is happening on the
screen and in the program. This kind of cursor behavior is found in
all Macintosh applications. Pay special attention to the parts of the
screen that cause the cursor to change shape. In the Cursors pro­
gram, it is the rectangles. In a program like MacPaint, it is the
movement of the cursor in and out of the tool palette.

Summary
This chapter introduced the concept of cursor control and showed its
application and use. It also demonstrated the design and coding of
different cursor shapes, introduced the hotspot and described its
application as the position of the mouse, and explained how the cur­
sor indicates the effect of moving the mouse.

Cursors play an important role in the interaction between user
and computer. Different cursors are used to inform the user of the
current operation or state of a program. The hotspot of the cursor is
the target that the Macintosh uses to determine cursor position, both
during the drawing of the cursor, to align it, and during a mouse
event that returns the position of the cursor to the program.

c H A p T E R

The Icon Editor
You probably recognize some or all of the symbols in Figure 4-1. They
are called icons and are used by the Macintosh to represent different
types of files on the Macintosh desktop. An icon is a set of black and
white pixels that forms a picture that lets the user visually identify
a document file, applications program, or another desktop item on
the Macintosh. Some icons represent specialized functions; one such
icon is the trash can, which is used for removing unwanted files from
a disk. Icons are central to the Macintosh because they represent the
way a user communicates with the computer. For example, Mac Write
uses an icon that looks like a page with lines of text on it. The idea is
to identify the file with word processing and written documents.
Because icons are central to the Macintosh, Macintosh Pascal and
QuickDraw have special procedures to create and use icons. This
chapter illustrates how to take full advantage of these procedures.

53

54 MASTERING THE MACINTOSH TOOLBOX

~~ m ~
Di

Figure 4-1. Sample Macintosh icons

Icons
Technically, an icon is a block of memory 128 bytes long. It is manip­
ulated in much the same way as the cursor, in that the binary
numbers contained in the memory block represent pixels on the
screen. Figures 4-2 and 4- 3 show two common icons. Icons and cur­
sors have a lot in common, and it is frequently useful to think of the
two as representing similar programming tasks. As you can see
from Figures 4-2 and 4-3, there are more squares on the side of an
icon than there are on the cursor. There are 32 squares on each side
of the icon grid (whereas cursors are 16 pi-xels square). On the right
side of each grid you will see two columns of hexadecimal numbers.
These numbers make up the encoded bit patterns defining the icon.
They comprise the code that would be set up in an array.

The IconEditor Program
Here is the complete listing of a program called the IconEditor.
Although the program is rather long, it contains elements that will
be used in later applications. Because the IconEditor program does
not lend itself well to separation into distinct parts, we will discuss

Figure 4-2. Folder icon

Figure 4-3. MacPaint document icon

THE ICON EDITOR 55

.!Qf.
00000000
00000000
00000000
00000000
00000000

~~~~~~~~ 
20040000 
7FFFFFFE 
80000001 
80000001 
80000001 
80000001 
80000001 

80000001 
80000001 
80000001 
80000001 
80000001 
80000001 
80000001 
80000001 
80000001 
80000001 
80000001 
80000001 
80000001 
80000001 
FFFFFFFF 
00000000 

TOP 
OFFFFEOO 
09000300 
09000280 
09000240 
09000220 
09000210 
090003F8 
09000008 
09000008 
09000008 
09000008 
09000008 
09F00009 
09100008 
09100008 
09100008 

Bottom 

09100008 
09100009 
08E00008 
09F00008 
09F00009 
09F80008 
09F80009 
09E85FE9 
09F80BE8 
08003FE8 
08FOFFE8 
08703FE8 
0819FFE9 
08000009 
09000009 
OFFFFFF8 

BOTTOM 



56 MASTERING THE MACINTOSH TOOLBOX 

its construction and purpose after the program listing. 
Enter this program into Macintosh Pascal. Pay special attention 

to detail. Because this is a long program, it's a good idea to save the 
program every ten or fifteen minutes using the Save option of the 
File menu. 

program lconEditor; 
const 

SquareSize = 8; 
LeftBorder = 28; 
TopBorder = 46; 
PixelslnRect = 7; 

type 
lconBits = array(0 .. 127) of char; 

var 
I, J: integer; 
Penci I : Cursor; 
EditArea, QuitButton, lconRect : Rect; 
MousePos : Point; 
WorklconBlts: lconBits; 
WorklconPtr: ODPtr; 
Worklcon: ODHandle; 
Mask : array( 1..8) of integer; 

procedure lnitWlndow; 
var 

window : Rect; 
begin 
HideAll; 
SetRect(Wlndow, 0, 0, 540, 370); 
SetDrawlngRect(Wlndow ); 
ShowDrawlng; 

end; 
procedure lnitPencllCursor; 
begin 

Pencil.data[OJ := SOOOE; 
Pencil.data( I):= S0009; 
Pencll.data(2) := SOO 11; 
Penci l.data(3) := SOO 18; 
Pencil.data(4] := S0026; 
Pencil.data[SJ := S0024; 
Pencll.data[6) := S0044; 
Pencil.data(7) := S0048; 
Pencll.data(8] := S0088; 
Pencil.data(9) := S0090; 
Pencil.data( I OJ := SO 11 O; 
Pencil.data[ I I):= SOl20; 
Pencl I.data( 12) := SO I CO; 
Penci I.data( 13) :" SO 180; 
Pencil.data[l4) := SOl80; 
Pencl I.data( 15) := SO I 00; 



Pencil.mask[O] := SOOOE; 
Pencil.mask[ I]:= SOOOF; 
Pencll.mask[2] := $00 IF; 
Penci l.mask[3] := $00 IE; 
Pencil.mask(4] := $003E; 
Pencil.mask(5] := $003C; 
Pencll.mask[6] := $007C; 
Pencil.mask(7] := $0078; 
Pencil.mask[8] := $00F8; 
Pencll.mask(9]·:= SOOFO; 
Pencil.mask[ IOI:= $01FO; 
Pencil.mask[ I I]:= SOIEO; 
Pencil.mask[l2] := SOICO; 
Penci I.mask[ 13] := $0180; 
Penci I.mask( 14) := $0180; 
Pencil.mask( IS):= $0100; 

PenciJ:hotSpot.h := 7; 
Pencil.hotSpot.v := 16; 

end; 
procedure DrawGrid; 
var 

I, J: integer; 
begin 

for I := O to 8 do 
begin 

MoveTo(20, 45 + I * 32); (Draw Horizontal Lines} 
Line(271, 0); 
MoveTo(27 + I * 32, 38); (Draw Vertical Lines) 
Line(O, 271 ); 
if Io 8 then 
forJ:= l to3do 
begin 
MoveTo(27, 45 + I * 32 + J * 8); 
Line(256, 0); 
MoveTo(27 + I * 32 + J * 8, 45); 
Line(O, 256); 

end; 
end; 

SetRect(EditArea, 28, 46, 285, 303) 
end; 
procedure TextlnRect (Text: string; 

var r: Rect); 
var 

FontRec: Fontinfo; 
Height, Width : integer; 
PenStart : Point; 

begin 
GetFontlnfo(FontRec); 
Height:= FontRec.ascent + FontRec.descent; 
Width:= StringWidth(Textt 
PenStart.h :=Cr.right - r.left - Width) div 2 + r.left; 

THE ICON EDITOR 57 



58 MASTERING THE MACINTOSH TOOLBOX 

PenStart.v := (r.bottom - r.top - Height) div 2 + r.top + FontRec.ascent; 
MoveTo(PenStart.h, PenStart.vl; 
DrawString(T ext); 

end; 
procedure lnitMenu; 
begin 

SetRect(Qui tButton, 350, 210, 420, 250); 
Pensize(2, 2); 
FrameRoundRect(QuitButton, 8, 8); 
TextlnRect('Quit', QuitButtonl; 

end; 
procedure SetUp; 

var 
I: integer; 

begin 
ObscureCursor; 
PenNormal; 
lnitWindow; 
DrawGrid; 
lnitPencilCursor; 
lnitMenu; 
Mask[ 11 := 128; 
for I := 2 to 8 do 
Mcisk[I] :=Mask[ I - I] div 2; 

WorklconPtr := @WorklconBits; 
Worklcon := @WorklconPtr; 
for I := o to 127 do 

WorklconBits[I] := chr(O); 
SetRect(lconRect, 348, 58, 384, 94); 
FrameRect( I conRect); 
lnsetRect(lconRect, 2, 2); 

end; 
procedure ProcessMask (var BitlnArray: Point; 

Color: boolean); 
var 

CurrentMask, BytelnArray, BitlnByte: integer; 
begin 

BytelnArray := (BitlnArray.v * 4) + (BitlnArray.h div 8); 
BitlnByte := CBitlnArray.h - ((BitlnArray.h div 8) * 8)) + I; 
CurrentMask := Ord(WorklconBits[BytelnArray]); 
if color then 
CurrentMask := CurrentMask - Mask[BltlnByteJ 

else 
CurrentMask := CurrentMask + Mask[BitlnByte); 

WorklconBits[BytelnArrayJ := chr(CurrentMask); 
end; 
procedure Edit (EditSquare: Point; 

color : boolean); 
var 

PixelRect: Rect; 
begin 

PixelRect.left := EditSquare.h * SquareSize + LeftBorder; 
PixelRect.top := EditSquare.v * SquareSize + TopBorder; 



PixelRect.right := PixelRect.left + PixelslnRect; 
PixelRect.bottom := PixelRect.top + PixelslnRect; 
If GetPixel(PixelRect.left, PixelRect.top) = Color then 
begin 

lnvertRect(PixelRect); 
ProcessMask(EditSquare, Color); 

end; 
Plotlcon(lconRect, Worklcon); 

end; 
function GetSquare (MousePos: Point): Point; 
var 

SquarePos : Point; 
begin 

SquarePos.v := (MousePos.v - TopBorder) div SquareSize; 
SquarePos.h := (MousePos.h - LeftBorder) div SquareSize; 
GetSquare := SquarePos; 

end; 
function GetColor (StartSquare: Point): boolean; 
begin 

THE ICON EDITOR 59 

GetColor := GetPixel(StartSquare.h * SquareSize + LeftBorder, StartSquare.v * SquareSize 
• TopBorder); 

end; 
procedure TrackMouse; 
var 

Event : EventRecord; 
LastEdit: Point; 
Color, Balance: boolean; 

begin 
repeat 

repeat 
GetMouse(MousePos.h, MousePos.v); 
if PtlnRect(MousePos, EditArea) then 
SetCursor(Penci I) 

else 
lnitCursor; 

unti I GetNextEvent(MDownMask, Event); 

If PtlnRect(Event.where, EditArea) then 
begin 

Color:= GetColor(GetSquare(Event.wherell; 
Edit(GetSquare(Event.where), color); 
LastEdit := GetSquare(Event.wherel; 
repeat 

GetMouse(MousePos.h, MousePos.v ); 
if PtlnRect(MousePos, EditArea) then 
begin 

SetCursor(Penci I); 
if not EqualPt(LastEdit, GetSquare(MousePos)) then 
begin 

Edit(GetSquare(MousePos), Color); 
LastEdit := GetSquare(MousePos); 

end 
end 



60 MASTERING THE MACINTOSH TOOLBOX 

else 
lnitCursor; 

unti I GetNextEvent(MllpMask, Event); 
end 

else 
Balance:= GetNextEvent(MUpMask, Event); 

until PtlnRect(Event.where, OuitButtonl; 
end; 

begin 

Setup; 
TrackMouse; 
hideall; 

end. 

After entering and checking the program using the Check option 
in the Run menu, run the program by selecting Go in the Run menu. 
You will see a screen that looks like Figure 4-4. The grid on the 
right of the screen may be compared to the grids shown in previous 
figures. In fact, the IconEditor program is a computerized version of 
standard graph paper. On the right side of the screen you see two 
rectangles, one of which is labeled Quit, the other of which is blank. 
The rectangle labeled Quit lets you stop the program by moving the 
mouse pointer into the Quit button and then pressing the mouse but­
ton. The blank rectangle is a display area that shows a full-size 
representation of the icon you are creating with the IconEditor pro­
gram. In this respect, the display area is like the small real-size 
viewing area in MacPaint that appears when you are using FatBits. 

In moving the mouse around the screen, you will notice that when 
the mouse is located within the grid area, the cursor becomes a pen­
cil. This grid area is known as the edit area. In order to draw in the 
edit area, move the cursor over the grid square and click (press and 
release) the mouse button. This places a black pixel within the edit 
area. And if you look at the previously blank display area, you see 
that one of the pixels located in the rectangle has also turned black. 
Pixels in the display area correspond directly with the pixels in the 
edit area. 

Now move the mouse to the top line of the edit area, press the 
mouse button, and drag it downward through the grid. Move the 
mouse five or six squares and release the mouse button. This action, 
called dragging, causes all the squares that the mouse passes over to 
turn black, creating a black line through the grid. You should see a 
similar line located in the display area. 

Unlike the IconEditor program, a complete icon editing program 
is able to store and retrieve icons from the disk. With a little work 



THE ICON EDITOR 61 

,. 'it· I' ile [ cli i Sc~dn h - IHin1ioUJs Pause 

D 

Figure 4-4. The IconEditor screen 

this program could be made into a complete editor. The IconEditor 
does demonstrate the tools available for programming with the 
Macintosh mouse. 

Inside the IconEditor 
Though the IconEditor program is rather long, the purpose of its 
several parts is easily seen. However, there are problems in writing 
the lconEditor or a similar program that must be addressed by the 
programmer. 

The first major problem is the difference between the screen 
representation of an icon in the edit area and the way in which an 
icon is actually stored in memory. A second problem is that of the 
program correctly interpreting the actions of the mouse. This ques-



62 MASTERING THE MACINTOSH TOOLBOX 

tion of interpretation is the most important in any program written 
to interact with the mouse. Both the effect of time and previous 
actions must be considered. For example, what will be the effect of 
clicking on a square that is already black? 

Addressing and Events 
The first problem in this case is an addressing problem. Isolating 
the position of the activated square of the grid area relative to an 
origin at the upper left of the grid locates the actual byte in memory. 
To get at the affected bit, a set of masks is used. 

The second problem is circumvented by a device called the Macin­
tosh event queue. A queue is a special type of file in which records 
are always written to the end of the file. Records may be read or 
deleted from anywhere in the file, but a request to read a specific 
type of record will return the first occurrence of that record type in 
the file. Note that this "file" is a data structure held in memory and 
not a file on the disk. When a record is deleted, the next record of 
the same type becomes available for use by a program. 

The event queue is maintained by the Macintosh Toolbox. As dif­
ferent events occur, an event record is added to the end of the event 
queue. An event record has the following structure: 

type EventRecord = record 
what: 
message: 
when: 
where: 
modifiers: 

end; 

integer; {event number} 
longint; 
longint; 
Point; 
integer; 

The "what" field is a code known as the event number. It repre­
sents the kind of event that occurred-for example, the mouse 
button being pressed down. 

The message field contains extra information that may be re­
quired to process the event. For example, the message field of event 
records that result from key presses on the keyboard contains 
information about which key was pressed. 

The "when" field contains the system clock time of the event in 
ticks. A tick is one-sixtieth of a second. The tick field is set to zero 
when the Macintosh is first turned on. 



THE ICON EDITOR 63 

The "where" field contains the mouse position at the time the event 
occurred. 

The "modifiers" field is further divided into two fields. The first 
field indicates whether or not any special keys, such as the SHIFT 
key or OPTION key, were pressed at the time of the event. The second 
field indicates whether the mouse button was up or down. 

Two functions are used to access the event queue-GetNextEvent 
and EventAvail. The two functions are very similar in application. 
The important difference between them is that GetNextEvent 
deletes the event record from the queue and EventAvail does not. 

The two functions are defined as follows: 

function GetNextEvent( eventMask:integer; 
var theEvent:EventRecord):boolean; 

function EventAvail(eventMask:integer; 
var theEvent:EventRecord):boolean; 

The variable eventMask contains a code that specifies which event 
type you want to be returned. The mask can be thought of as a filter 
that selects only those events that you want. 

Both of the functions above yield False if there is no event of the 
requested type. If there is an event of the requested type, both func­
tions return True and theEvent is filled with the requested event 
record. 

Table 4-1 shows the event numbers, the applicable event mask, 
and a description of the event. It is possible to request the first event 
of a number of types by adding the masks together. For example, if 
you want the next mouse event, not caring whether it is a mouse 
button down or a mouse button up event, you could set the mask to 
the total of the masks for the two events. In this example, that value 
is six. 

Table 4-2 shows the possible values of the modifier field of the 
event record. The modifier field assists in determining which event 
has occurred and if any peripheral keystrokes took place during the 
event. For example, the mask would indicate whether the mouse was 
clicked, but the modifier would tell you whether the OPTION key was 
pressed at the same time. 

The modifier field determines the meaning of the modifier keys on 
the keyboard at the time the event is sent to the event queue. The 
codes in Table 4-2 determine which keys were held down at the time 
of the event. By using a mask in a manner similar to the way in 



64 MASTERING THE MACINTOSH TOOLBOX 

Table 4-1. Event Numbers, Masks, and Descriptions 

Event Number 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Event Mask 

1 
2 
4 
8 

16 
32 
64 

128 
256 
512 

1024 
2048 
4096 
8192 

16384 
-32768 

Event Description 

Null Event 
Mouse Button Depressed 
Mouse Button Released 
Key Depressed 
Key Released 
Auto Key 
Update Event 
Disk Inserted 
Activate Deactivate Event 
Abort Event 
Network Event 
I/0 Driver Event 
Applications Event 1 
Applications Event 2 
Applications Event 3 
Applications Event 4 

Table 4-2. Modifier Field Values 

Code 

0 
1 
2 

128 
256 
512 

1024 
2048 

Meaning 

Deactivate 
Activate 
Applications Window 
Mouse Button Depressed 
COMMAND Key 
SHIFT Key 
CAPS LOCK Key 
OPTION Key 

which masks are used for the "what" field, it is possible to determine 
which keys are held down. 

Codes 0, l, and 2 are used for special events connected with the 
Window Manager. They are described in the advanced program­
ming section later in this book. 

The modifier field may be used in connection with a mouse button 
up event, in which case a modifier key alters the effect of a mouse 
action. An example of this occurs in the MacPaint program. When 



THE ICON EDITOR 65 

you use the lasso to move an object around the screen, the OPTION 
key modifies the effect of the mouse by duplicating the object held 
by the lasso. 

The event queue allows programmers to control how different 
events are processed, even though programmers do not have control 
over the events themselves. 

Clicking and Dragging 
In the IconEditor program, we are using two separate mouse 
actions-a click and a drag. While these are two separate actions, 
both commence with the same mouse button down event. When the 
mouse button is depressed, the program must determine whether it 
is the start of a click or the start of a drag. The difference between a 
click and a drag is one of movement. The results of either action are, 
however, the same for the initial pixel square on the grid. At the 
time of the mouse button down event, the square at which the cursor 
is located will be inverted (black turning white and white turning 
black) whether or not the action is a click or continues as a drag. 

Once the initialization of the program is complete, the IconEditor 
program will be in one of two states. It is either waiting for a mouse 
action or processing a mouse action. The action can take the form of 
a mouse button down or mouse button up movement, or any combina­
tion of these events. While waiting for a mouse action, the program 
monitors the position of the cursor and checks that the correct cur­
sor is being displayed to the user on the screen. After an action has 
been initiated by a mouse button down event, if the event occurred 
within the grid edit area, the initial square under the cursor is 
edited. If movement then becomes apparent, successive squares are 
edited as the cursor is dragged across the edit area. A mouse button 
up event terminates the action and the program returns to the wait 
state. 

The Body of the IconEditor 
Program 

The IconEditor program consists of two main procedures-the 
SetUp procedure and the TrackMouse procedure. SetUp initializes 



66 MASTERING THE MACINTOSH TOOLBOX 

the program as it draws the screen, sets the cursors, and sets the 
variables. The TrackMouse procedure is the basis both for maintain­
ing the correct cursor and for performing the actual editing. 

procedure SetUp; 
var 
I: integer; 

begin 
ObscureCursor; 
PenNonnal; 
lnltWlndow; 
DrawGrld; 
lnitPencilCursor; 
lnitMenu; 
Mask[ I] := 128; 
for I := 2 to 8 do 
Mask[I) := Mask[I - I] div 2; 

WorklconPtr := OWorklcon81ts; 
Worklcon := oWorklconPtr; 
rorl :=Oto 127do 

WorklconBlts(I] := chr(O); 
SetRect(lconRect, 348, 58, 384, 94); 
FrameRect(lconRect); 
lnsetRect(lconRect, 2, 2); 

end; 

The Set Up procedure used in the IconEditor program commences 
when you use the built-in Toolbox ObscureCursor procedure to hide 
the cursor while the screen is drawn. The ObscureCursor procedure 
helps hide the cursor when it is not in use. This indicates to the 
program user that the program is not yet ready for processing. An 
example of the use of ObscureCursor is in the MacWrite program. 
MacWrite hides the cursor when a user is typing into the document 
window. When the mouse is moved, the cursor immediately reap­
pears on the screen, allowing the user to edit or select with the 
mouse as usual. ObscureCursor needs no definition in Macintosh 
Pascal and can be thought of as an intrinsic procedure. 

The PenNormal procedure initializes both the pen and the win­
dow. The window is set large enough so that it encompasses the 
entire screen without the boundaries of the window being visible. As 
both of these procedures have been used earlier in this book, you 
should be familiar with them by now. 



THE ICON EDITOR 67 

Creating the IconEditor Grid 
The following listing will create the IconEditor grid: 

procedure DrawGrid; 
var 

I, J: integer; 
begin 
for I := o to 8 do 
begin 
MoveTo(20, 45 + I * 32); (Draw Horizontal Lines} 
Line(271, 0); 
MoveTo(27 + I * 32, 38); (Draw Vertical Lines} 
Line(O, 271); 
if I<> 8 then 
forJ:= 1 to3do 
begin 

MoveTo(27, 45 + I * 32 + J * 8); 
Line(256, 0); 
MoveTo(27 + I * 32 + J * 8, 45); 
Line(O, 256); 

end; 
end; 

SetRect(EditArea, 28, 46, 285, 303) 
end; 

After the pen has been initialized by the Set Up procedure, it is 
possible to draw the editing grid on the screen. The DrawGrid 
procedure draws the grid lines that appear on the left side of the 
screen. There are two loops in this procedure. The main loop draws 
the lines that project outside the edit area, and an inner loop draws 
the lines in between. Both horizontal and vertical lines are drawn 
within the same pass of the loop. The lines are drawn using the 
MoveTo and Line procedures. The MoveTo procedure has the effect 
of moving the graphics pen to whatever position is defined by its 
parameter list. As we have seen, it is defined as 

procedure MoveTo (h, v:integer); 

where h is the horizontal component and v is the vertical component 
of the point on the drawing plane. 



68 MASTERING THE MACINTOSH TOOLBOX 

The procedure Line is defined as 

procedure Line (dh, dv:integer); 

where dh specifies the horizontal distance of the line and dv specifies 
the vertical distance of the line. Thus, the Line procedure will con­
nect the current pen position to a point that is dh pixels left or right 
(depending upon whether a positive or negative value is given) and 
dv pixels up or down. 

In the IconEditor program, each component of the point is calcu­
lated as the loop progresses. The outer loop draws the extended lines 
(the lines that stick out from the grid). There are three standard-size 
lines between each extended line drawn by the inner loop. The loop 
control variables are used to position the lines relative to the top and 
left borders. The extended lines are 32 pixels apart (as indicated by 
the multiplication in the MoveTo parameter list), and the standard 
lines are 8 pixels apart (after being set in relationship to the nearest 
extended line-hence the multiplication by 32 and then by 8). The top 
border for the extended lines is 38 and the top border for the stan­
dard lines is 46. The left border is 20 for the extended lines and 28 for 
the standard lines. When the outer loop is complete, the SetRect 
procedure is used to set the size of the EditArea variable. The 
DrawGrid procedure then returns control to the SetUp procedure. 

The SetUp procedure continues by initializing the pencil cursor 
through InitPencilCursor. This procedure is similar to the cursor 
procedures investigated in Chapter 3. 

procedure InitMenu; 
begin 

SetRect(QuitButton, 350, 210, 420, 250); 
Pensize(2, 2); 
FrameRoundRect(QuitButton, 8, 8); 
TextinRect('Quit', QuitButton); 

end; 

After the cursor initialization, the InitMenu procedure is invoked 
to draw the Quit button.- The Quit button terminates the program 
when clicked on. The InitMenu procedure uses a version of the Text­
InRect procedure slightly different from the one used earlier. The 
major difference between this TextlnRect procedure and the proce­
dure demonstrated earlier in the book is the TextlnRect procedure's 
ability to determine the height of the text itself before centering it 



THE ICON EDITOR 69 

within the rectangle. This is accomplished by using the QuickDraw 
procedure GetFontlnfo, which is defined as 

procedure GetFontinfo (var info:Fontlnfo); 

The GetFontlnfo procedure returns information about the font 
currently in use within the graf Port. It takes into consideration any 
variations of style and size currently in effect. Within the record 
Fontinfo, the following information is returned: the height of the 
character above the baseline, the height of the character below the 
baseline, the maximum width of the character, and the total height 
of the character. These characteristics were described in detail in 
Chapter 2. 

The TextlnRect procedure gets the Fontinfo record to determine 
both the height of the character and the location of the baseline. 
This information is used to correctly center the text within the spec­
ified rectangle. Both the height and width of the text are taken into 
account. 

At this point in the Set Up procedure, the masks for bit manipula­
tion are set. The mask array holds a value corresponding to a par­
ticular bit within the byte. Mask[l] corresponds to the high-order 
bit and therefore has the value of 128. Each succeeding bit has a 
value of one-half that of the preceding bit. Thus, the seven passes of 
the loop generate the necessary values corresponding to each bit in 
the byte. 

The next two statements of SetUp initialize the pointer and the 
handle to the array that contains the icon to be edited. The array is 
then cleared through the use of the loop. 

The remainder of SetUp draws the frame around the location 
where the real-size icon appears on the screen. This is done by using 
the SetRect procedure to delimit the size and position of the frame 
and by using the FrameRect procedure to draw it. The frame is 4 
pixels larger in each direction than the icon itself. Therefore, it is 
necessary to shrink the rectangle that has been specified by 4 pixels 
in order to arrive at a rectangle in which the icon will be displayed. 
The InsetRect procedure performs this function. It is defined as 

procedure InsetRect (var r:Rect; dh, dv:integer); 

The InsetRect procedure is one of QuickDraw's calculation proce­
dures. It shrinks or expands a rectangle by the values contained in 



70 MASTERING THE MACINTOSH TOOLBOX 

the parameters dh and dv. If the values contained by these parame­
ters are positive, the rectangle is shrunk by the amounts specified. 
Otherwise, the rectangle is expanded by these values. 

With the IconEditor program, it is necessary to shrink the rectan­
gle by 4 pixels in each direction. For that reason, a value of 2 is used 
for each parameter. Each edge is moved inward by 2 pixels, giving 
the total of the 4 required pixels. This completes the initialization of 
the program. 

Editing with the lconEditor 
Program 

The second main procedure of the IconEditor program is the 
TrackMouse procedure. 

procedure TrackMouse; 
var 

Event : EventRecord; 
LastEdit: Point; 
Color, Balance: boolean; 

begin 
repeat 

repeat 
GetMouse(MousePos.h, MousePos.vl; 
If PtlnRect(MousePos, EditAreal then 
SetCursor(Pencill 

else 
lnitCursor; 

until GetNextEvent(MDownMask, Event); 

if PtlnRect(Event.where, EditArea) then 
begin 

Color:= GetColor(GetSquare(Event.wherell; 
Edit(GetSquare(Event.wherel, color); 
LastEdit := GetSquare(Event.wherel; 
repeat 

GetMouse(MousePos.h, MousePos.vl; 
If PtlnRect(MousePos, EditAreal then 
begin 

SetCursor(Pencill; 
if not EqualPt<LastEdit, GetSquare(MousePos)) then 
begin 
Edit(GetSquare(MousePos), Color); 
LastEdit := GetSquare(MousePos); 

end 
end 



else 
lnitCursor; 

untl I GetNextEvent(MUpMasl<, Event); 
end 

else 
Balance:= GetNextEvent(MUpMasl<, Event); 

until PtlnRect(Event.where, QuitButton); 
end; 

THE ICON EDITOR 71 

Once the program is initialized, the TrackMouse procedure takes 
control. As with the cursor demonstration program from Chapter 3, 
the first loop of the TrackMouse procedure maintains the correct 
cursor depending upon the position of the mouse. If the mouse is 
within the grid edit area, the pencil cursor is displayed; otherwise 
the arrow cursor is used. This loop repeats until a mouse button 
down event occurs. If the mouse button down event occurs within the 
Quit button, the program terminates. If the mouse button down 
event occurs outside of the edit area and outside of the Quit button, 
the program ignores the event and goes back to maintaining the 
cursor. It is when the mouse button down event occurs inside of the 
edit area that editing (drawing black or white pixels) takes place. 

There are two phases to editing because the mouse button down 
event may signal either the beginning of a click or the beginning of 
a drag. The difference between the two actions is one of movement 
from square to square on the grid. After the mouse button down 
event has occurred, an immediate edit takes place for the square in 
which the event occurred. The procedure then looks for movement to 
another square. If movement does occur, successive edits are 
initiated. The edit on the initial square dictates the edit for all later 
squares. For example, if the initial edit turns the first square from 
black to white, successive movement across other squares will also 
turn them to white. This emulates the FatBits option of MacPaint. 

The first action taken by the program after the mouse button 
down event occurs is to determine the color of the initial square. To 
do this, the GetSquare function is invoked to determine the actual 
square in which the mouse button down event occurred. This func­
tion determines the square of any mouse point by subtracting the 
associated borders of the edit area from the corresponding compo­
nent of the mouse position. The result is then divided by 8 to resolve 
screen pixels into grid edit squares. 

The GetColor function is used to obtain the color of a square. The 
GetColor function determines the location of the pixel in the upper 
left corner of the edit square; it then uses the GetPixel function to 



72 MASTERING THE MACINTOSH TOOLBOX 

determine whether that pixel is black or white. The GetPixel func­
tion is a QuickDraw function that is defined as 

function GetPixel (h, v:integer):boolean; 

This function returns True if the pixel specified by h and v is 
black or False if it is white. 

The Edit Procedure 
When the color of the initial square has been determined, then that 
square is edited to set its color. This is done by passing the edit 
square and the color to the Edit procedure. 

procedure Edit CEditSquare: Point; 
color: boolean); 

var 
PlxelRect: Rect; 

begin 
PlxelRect.left := EdltSquare.h * SquareSize + LeftBorder; 
PixelRect.top := EdltSquare.v * SquareSiie + TopBorder; 
PixelRect.rlght :• PlxelRect.lert + PixelslnRect; 
PlxelRect.bottom :" PlxelRect.top + PixelslnRect; 
If GetPlxel(PlxelRect.left, PixelRect.top) = Color then 
begin 

lnvertRect(PlxelRect); 
ProcessMask(EdltSquare, Color); 

encl; 
Plotlcon(lconRect, Worklcon); 

end; 

The Edit procedure calculates the rectangle that is encompassed 
by the edit square. It then determines whether or not the color of the 
square in question needs to be changed. This determination is made 
by determining the color of the square being edited and comparing 
it with the color of the original square. If the two are equal, then the 

• square is changed by using the lnvertRect procedure. The lnvert-
Rect procedure performs the color change of the square. The array 
containing the information that is used to plot the icon is now edited 
to alter the bit corresponding to the edited square. This function is 
accomplished by calling the ProcessMask procedure with the edit 



square and color as parameters. 

procedure ProcessMask (var BitlnArray: Point; 
Color: boolean); 

var 
CurrentMask, BytelnArray, BltlnByte: integer; 

begin 
BytelnArray := (BitlnArray.v * 4) + (BltlnArray.h div 8); 
BitlnByte := (BitlnArray.h - ((BitlnArray.h div 8) * 8)) + I; 
CurrentMask := Ord(WorklconBits[BytelnArray]); 
if color then 
CurrentMask := CurrentMask - Mask(BltlnByteJ 

else 
CurrentMask := CurrentMask + Mask(BitlnByteJ; 

WorklconBlts(BytelnArrayJ := chr(CurrentMask); 
end; 

THE ICON EDITOR 73 

The ProcessMask procedure calculates which byte in the array is 
affected by the square in question. It then determines the actual bit 
in the byte that needs to be changed. This byte is extracted from the 
array and the appropriate mask (depending upon the bit) is added to 
or subtracted from the current mask. The mask is then replaced 
into the array as a character using the Macintosh Pascal Chr func­
tion. Control is returned to the Edit procedure, which plots the icon 
using the Plotlcon procedure. The Plotlcon procedure is a Macin­
tosh Pascal procedure defined as 

procedure Plotlcon (theRect:Rect; thelcon:IconHandle); 

This procedure plots the icon pointed to by the/con on the screen at 
the position specified by theRect. 

This completes processing of the edit procedure, and control is 
returned to the TrackMouse procedure. The position of the square 
that has just been edited is saved in the LastEdit variable. The pro­
gram now looks for movement of the mouse. If the mouse moves 
from the original square edited to another square before a mouse 
button up event occurs, then the program assumes that a drag opera­
tion is ip progress. The program continues to call the Edit proce­
dure for each new square entered by the mouse as long as the mouse 
remains in the edit area and until the mouse button is released. 

The program continues to track the mouse, editing when the 
appropriate mouse actions occur. The program terminates after a 
click occurs in the Quit button and control returns to the Macintosh 
Pascal interpreter. 



74 MASTERING THE MACINTOSH TOOLBOX 

Summary 
This chapter showed how the Event Manager is used to track and 
control an application's use of mouse actions. The event queue was 
explained and its use in mouse programming shown. 

The program IconEditor illustrated many of the techniques used 
to initialize and manipulate icons. It demonstrated the problems 
associated with relating a visible representation of internal events on 
the screen and showed how the connection between the two is made. 

This chapter also illustrated the problems of distinguishing 
between different mouse actions that commence with the same 
event. Finally, the techniques used to solve these problems were 
discussed. 



c H A p T E R 

Primitive 
Window 
Management 

Until now this book has used windows without thoroughly explain­
ing them. Windows are the primary means of presenting informa­
tion on the Macintosh and are therefore very important. They can be 
thought of as distinct work areas on the screen that are logically 
separated (within the computer's memory) from one another. 
Windows can be activated so that the task at hand takes place in one 
window. Other windows can be deactivated, made dormant on the 
desktop, while still other windows, including one active window, 
cover them. These dormant windows may then be activated by click­
ing them on with the mouse. Any number of windows may be open 
on the desktop, but there is only one active window at any time. 

75 



76 MASTERING THE MACINTOSH TOOLBOX 

In the programs examined so far, windows and window manipula­
tion have not been discussed in depth. In most of these programs, 
a single window was set so that it covered the entire screen. This 
chapter closely examines and details the techniques for window 
manipulation. 

Macintosh Pascal and Window 
Manipulation 

When you have Macintosh Pascal up and running, you may notice 
that each time you run a program you lose the ability to control the 
Pascal windows by directly using the mouse. While you are typing in 
or editing a program in Macintosh Pascal, the Pascal editor is in 
control of the computer. This editor lets you enter and edit text, 
manipulate windows, or select options from the pull-down menus. 
Once you run a program, however, you leave the Pascal editor, and 
the Macintosh is under control of the Pascal interpreter (which 
resides in memory) and the program being executed. Therefore, if 
you plan to manipulate windows while running a program in Pascal, 
you must write routines in your program that allow window 
manipulation. 

Window Manipulation 
Window manipulation refers to any actions that change the contents 
of a window, its size, or its position. Common window manipulations 
include moving a window by dragging from its title bar, resizing a 
window with the size box, scrolling through the contents of a win­
dow with the scroll bar, or entering and editing text within the 
window. 

From the programmer's point of view, the anatomy of a window is 
important because a program must interpret certain mouse actions 
that affect a window. Figure 5-1 identifies the various parts of a 
window. 

As seen in Figure 5-1, an average window consists of the active 
drawing area, the title bar, two scroll bars (one vertical and the 
other horizontal), and a size box. The active drawing area is the part 



Title bar l:o= Drawing 

Active Dra"'i n9 Area 

Horizontal Scroll bar 

-1 
-19 

-1 
=D=-== Drawing 

" ( 0,0) 

215 

Figure 5-1. Anatomy of a Macintosh window 

PRIMITIVE WINDOW MANAGEMENT 77 

Vertical 'croll bar 

~ Size box 

215 

l2J 
I 

200 

200 

of the window in which drawing occurs. It is the size and position of 
this drawing area that is set by the SetDrawingRect procedure. The 
other components of the window are added by the Macintosh's Tool­
box subsequent to the initialization of the drawing area by the Set­
DrawingRect procedure. 

A secondary coordinate plane takes effect when the drawing win­
dow has been set and is displayed upon the screen. Assume, for 
example, that you have set and displayed the drawing window with 



78 MASTERING THE MACINTOSH TOOLBOX 

the following coordinates: 

Top = 150 
Left = 200 
Bottom = 300 
Right = 350 

The displayed window will be situated in the lower right corner of 
the screen. 

If you draw a rectangle with the following coordinates. 

Top = 10 
Left = 10 
Bottom = 20 
Right = 20 

the rectangle will be displayed in the upper left corner of the win­
dow. A second coordinate plane now exists with its origin at 
(150,200), the upper left corner of the active drawing area of the 
window. This second coordinate plane introduces again the concepts 
of global and local coordinate systems. All drawing operations will 
now work in the local coordinate system (within the active drawing 
area) as if the origin were at (150,200). 

In this example, the new rectangle would be drawn at the location 
(160,210,320,370) in global coordinates. Both drawing operations and 
mouse actions are affected by this second coordinate plane. Calls to 
the GetMouse procedure return coordinates in terms of the local 
origin. Therefore, if the mouse is above and to the left of the window, 
both the x and y coordinates returned will be negative. This relative 
relationship between coordinate planes is useful when dealing with 
graf Ports in different locations on the screen. Drawings within 
grafPorts will always be situated similarly within each grafPort 
regardless of where the grafPort is physically located on the screen. 

It is important to note that the event queue is not affected by a 
window's position on the screen. The coordinates returned in the 
where field of the event record are always given in terms of the 
global coordinate system. To illustrate this, assume a drawing win­
dow has been set and displayed as follows: 

Top = 100 
Left = 100 
Bottom = 200 
Right = 200 



PRIMITIVE WINDOW MANAGEMENT 79 

If the mouse is placed at the upper left of the active drawing area, 
a call to GetMouse returns (0,0) as the horizontal and vertical coor­
dinates of the mouse. However, the "where" field in the event queue 
contains the coordinates (100, 100) as the position of the mouse. This 
can cause a certain amount of confusion in programs that must 
locate both the global and local coordinates of the mouse. 

The solution to this problem is to adjust one or the other of the 
mouse coordinates depending upon their use. If mouse position is 
required in terms of the window, then subtracting the· window's 
origin from the where field of the event record returns the mouse's 
position in terms of the local coordinates. If the mouse's position is 
required in global coordinate terms, adding the window's origin to 
the results of a GetMouse operation results in a mouse position based 
on the global coordinate system. 

The routines that control Window Manager functions of this type 
are only accessible by using the advanced features of the Macintosh 
Pascal interpreter. These features are discussed in Chapter 6. 

The WindowManager Program 
The following program illustrates various features of managing and 
manipulating windows. Carefully enter the program into Macintosh 
Pascal, remembering to save your typing frequently. Also use the 
Check option of the Run menu to check the syntax of your program 
each time you save. Checking longer programs in this way guaran­
tees that each time you save your program you are saving a syntacti­
cally correct version. 

program WindowManager; 
var 

MousePos, DeltaMouse: Point; 
Window, TitleBar, SizeBox, EditArea: Rect; 
MoveCursor, SizeCursor, SqCursor: Cursor; 

procedure SquareCurs; 
var 
I: integer; 

begin 
SqCursor.Data(OJ := $0000; 
SqCursor.Data[ I J := $7FFE; 
forl:=2tol3do 
SqCursor.Data[IJ := $4002; 

SqCursor.Data[ 14) := $7FFE; 



80 MASTERING THE MACINTOSH TOOLBOX 

SqCursor.Data( I SJ:= SOOOO; 
SqCursor.Mask[OJ := O; 
for I:= I to 14do 
SqCursor.Mask(IJ := S7FFE; 

SqCursor.Mask( I SJ := O; 
SqCursor.HotSpot.h := I; 
SqC'Ul'Sor.HotSpot.v := I; 

end; 
procedure MoveCurs; 
begin 
Movecursor.data!OJ := SOOOO; 
MoveCursor.data( I J := SOOOO; 
MoveCursor.data(2J := SO I 00; 
MoveCursor.data(3J := S0380; 
MoveCursor.data[4J := SOS40; 
MoveCursor.data(SJ := SO I 00; 
MoveCursor.data(6J := s I I IO; 
MoveCursor.data!7J := S2 I 08; 
Movecursor.data(8) := S7FFC; 
MoveCursor.data(9] := S2 I 08; 
MoveCursor.data( I OJ := S 111 O; 
Movecursor.data( I I) := SO I 00; 
MoveCursor.data( 12) := SOS40; 
MoveCursor.data! 13) := S0380; 
MoveCursor.data(l4) := SOIOO; 
MoveCursor.data( 15) := SOOOO; 
MoveCursor.mask(O) := SOOOO; 
MoveCursor.mask[I) := SOOOO; 
MoveCursor.mask[2) := SO I 00; 
MoveCursor.mask[3J := S0380; 
MoveCursor.mask[4) := SOS40; 
MoveCursor.mask[5) := SO I 00; 
MoveCursor.mask(6) := S 111 O; 
MoveCursor.mask[7) := S2 I 08; 
MoveCursor.mask[8) := S7FFC; 
MoveCursor.mask[9J := S2 I 08; 
MoveCursor.mask[ I OJ := SI I IO; 
MoveCursor.mask[ 11) :" SO I 00; 
MoveCursor.mask( 12) := SOS40; 
MoveCursor.mask[ I 3J := S0380; 
MoveCursor.mask[ I 4J := SO I 00; 
MoveCursor.mask( I 5J := SOOOO; 
MoveCursor.hotspot.v := 8; 
MoveCursor.hotspot.h := 7; 

end; 
procedure SizeCurs; 
begin 

StzeCursor.data(OJ := SOOOO; 
SizeCursor.data( I J := SOOOO; 
StzeCursor.data!2J := S3800; 
Stzecursor.data[3J := $3000; 
Stzecursor.data[4) := $2800; 
SizeCursor.data(SJ := S0400; 



SizeCursor.data[6] := $0200; 
SlzeCursor.data[7] := $0100; 
SlzeCursor.data[8] := $0080; 
SlzeCursor.data[9J := $0040; 
SizeCursor.data( I OJ := $0028; 
SizeCursor.data[l I]:= $0018; 
SlzeCursor.data( 12] := $0038; 
SizeCursor.data[ 13] := $0000; 
SlzeCursor.data[ 14] := $0000; 
S lzeCursor.data[ 15] := $0000; 

SizeCursor.mask(OJ := $0000; 
SlzeCursor.mask[IJ := $0000; 
SizeCursor.mask(2] := $3800; 
SlzeCursor.mask[3] := $3000; 
SizeCursor.mask(4] := $2800; 
SizeCursor.mask(5J := $0400; 
SizeCursor.mask(6] := $0200; 
SizeCursor.mask(7] := $0100; 
SizeCursor.mask(8] := $0080; 
SizeCursor.mask(9) := $0040; 
SizeCursor.mask(IO] := $0028; 
SizeCursor.mask[l I]:= $0018; 
SizeCursor.mask( 121 :" $0038; 
SizeCursor.mask( 13] := $0000; 
SizeCursor.mask( 14] := $0000; 
SizeCursor.mask( 15) := $0000; 
Sizecursor.hotspot.v := 2; 
SizeCursor.hotspot.h := 2; 

end; 
procedure lnitWindow; 
begin 
HldeAll; 

PRIMITIVE WINDOW MANAGEMENT 81 

SetRectCTitleBar, Window.left - I, Window.top - 19, Window.right, Window.top); 
SetRect(SlzeBox, Window.right - 15, Window.bottom - 15, Window.right, Window.bottom); 
SetRect(EditArea, Window.left, Window.top, Window.right - 15, Window.bottom - 15); 
SetDrawingRect(Wlndow); 
ShowDrawing; 

end; 
procedure Setup; 
begin 
GetorawingRect(Window); 
lnitWindow; 
MoveCurs; 
SizeCurs; 
SquareCurs; 

end; 
procedure MoveWindow; 
begin 
OffsetRect(Window, DeltaMouse.h, DeltaMouse.v); 
lnitWindow; 

end; 
procedure SlzeWlndow; 



82 MASTERING THE MACINTOSH TOOLBOX 

begin 
Window.right:= Window.right + DaltaMouse.h; 
Window.bottom:= Window.bottom+ DeltaMouse.v; 
lnitWindow; 

encl; 
procedure TrackMouse; 
var 
Event : EventRecord; 
MouseDown, MouseUp : Point; 

begin 
repeat 

repeat 
GetMouse(MousePos.h, MousePos.vl; 
MousePos.h := MOusei>os.h + Window.left; 
MousePos.v := MousePos.v + Window.top; 
If PtlnRect(MousePos, TitleBar) then 
SetCursor(MoveCursor) 

else If PtlnRect(MousePos, SizeBox) then 
SetCursor(SizeCursor) 

else If PtlnRect(MousePos, EditArea) then 
SetCursor(SqCursor) 

else 
lnitCursor; 

until GetNextEvent(MDowrt1ask, Event); 
MouseOown :=Event.where; 
repeat 
until GetNextEvent(MUpMask, Event); 
MouseUp :=Event.where; 
DeltaMouse := MouseUp; 
SubPt(MouseDown, DeltaMouse); 
If PtlnRect(MouseDown, TitleBar) then 
Move Window 

else if PtlnRect(MouseDown, SizeBox) then 
SizeWindow; 

until MouseUp.v < 20; 
encl; 

begin 
Setup; 
TrackMouse; 

end. 

Examining the WindowManager 
Program 

The Window Manager program allows the position of the window to 
be changed and the window to be resized. The routines that are dem­
onstrated in the program on the drawing window are just as applica­
ble to the text window. The program is divided into two main rou­
tines, the Setup procedure that performs the initialization required 



PRIMITIVE WINDOW MANAGEMENT 83 

by the program and the TrackMouse procedure that performs the 
moving or resizing of the window. 

As previously discussed, the SetUp procedure calls the InitWin­
dow procedure to initialize the window. In addition, SetUp initial­
izes MoveCursor, SizeCursor, and SquareCursor by the MoveCurs, 
SizeCurs, and SquareCurs procedures. These are standard cursor 
initialization procedures and are very similar to the ones discussed 
in Chapter 3. 

After the program is initialized by the SetUp procedure, the 
TrackMouse procedure assumes control of the program. Track­
Mouse performs two distinct functions. First, it maintains the cor­
rect cursor in the appropriate area of the screen in much the same 
way as the IconEditor program. The only difference between the 
maintenance of the mouse in IconEditor and its maintenance in the 
Window Manager program . is that the Window Manager program 
must track the mouse outside of the drawing window, whereas the 
entire screen of the IconEditor program is contained within the 
drawing area. This means that the results of the GetMouse call in 
the Window Manager program must be compensated by translating 
them from the local coordinate system into the global coordinate sys­
tem. This is done by adding the left boundary of the window to the 
horizontal mouse position and the top boundary of the window to the 
vertical mouse position. 

Alternatively, QuickDraw has a special procedure available that 
performs this same conversion. This procedure is called LocalTo­
Global and is defined as 

procedure LocalToGlobal (var pt:Point); 

LocalToGlobal converts the point defined by pt from the local coor­
dinates of the grafPort associated with the window to a global coor­
dinate system. 

There is also a procedure, GlobalToLocal, that performs the oppo­
site function of LocalToGlobal. 

procedure GlobalToLocal (var pt:Point); 

The point defined by pt is converted from global coordinates to the 
local coordinate system as defined by the window's grafPort. 

After the current mouse position has been adjusted to global coor­
dinates, it is then used in the same way as demonstrated in the pre­
vious cursor demonstration program to maintain the cursor. This 



84 MASTERING THE MACINTOSH TOOLBOX 

continues until a mouse button down event occurs, at which time the 
TrackMouse procedure performs its second function. The program 
records the position where the mouse button down event occurred by 
saving it in the MouseDown variable. It then waits until the mouse 
button is released. After the mouse button is released, it is possible 
to calculate the change in the mouse's position. It is this change in 
the mouse's position that, when applied correctly to the boundaries 
of the window, results in either the new position of the window or 
the new size of the window. The program calculates the variable 
DeltaMouse by using the SubPt procedure. SubPt is a QuickDraw 
procedure defined as 

procedure SubPt (srcPt:Point; var dstPt:Point); 

The SubPt procedure subtracts the point stored in srcPt from the 
point stored in dstPt and places the result in dstPt. 

DeltaMouse now contains the mouse's change in position, which 
needs to be applied to the window. The MouseDown variable, in 
which the position of the mouse button down event is stored, can now 
be interrogated by the PtlnRect procedure. If the mouse button 
down event occurred in the title bar, indicating that the window is 
moving, the MoveWindow procedure is called. If the mouse button 
down event occurred in the size box, the Size Window procedure is 
called. Each of these procedures applies DeltaMouse to the window 
and redisplays the window in its new size or position. 

The Move Window procedure uses the OffsetRect procedure to 
apply the change in mouse position to the window. This changes the 
position of the window without changing its size. The InitWindow 
procedure is then called to redraw the window in its new position. 

The SizeWindow procedure applies the change in mouse position 
in a different way. When the window is moved, as described above, it 
is only necessary to use the OffsetRect procedure to create the 
change. However, changing the size of the window does not change 
the location of the window, even though the bottom and right edges 
of the window move according to the change in the mouse's position. 
Adding the horizontal component of DeltaMouse to the right boun­
dary of the window and the vertical component of DeltaMouse to the 
bottom boundary of the window causes the required changes in the 
window. As in MoveWindow, the InitWindow procedure is then 
called to redraw the window in its new size. 



PRIMITIVE WINDOW MANAGEMENT 85 

The program continues to repeat this loop, allowing the window to 
be moved and resized until the mouse is clicked within the menu 
bar. This action terminates the program. 

Notice that the rectangle drawn in the window disappears if the 
window is sized down and then sized up again. Applications that use 
this resizing technique must redraw the window contents after resiz­
ing. The simplest way to redraw the window is to use the Quick­
Draw picture facility when originally drawing the contents of the 
window. After the window has been sized, it is simple to redraw the 
contents without having to recall all the procedures originally 
involved in producing the window contents. 

You may have noticed that the Window Manager program handles 
windows significantly slower than does the Macintosh itself when 
using windows in applications like Mac Write. The reason for this is 
that you are running a program (WindowManager) that is several 
steps removed from directly accessing the Toolbox procedures 
within the Macintosh. Because Macintosh Pascal is interpreted 
rather than compiled, each line of the program must be translated 
into actual machine language of l's and O's before it is executed. 
This translation is done while the program is running, which 
obviously requires a great deal of time. Of course, the closer you get 
to the Macintosh's Toolbox routines using compiled languages, the 
faster programs will operate. 

Summary 
This chapter examined the anatomy of the windows available 
through the Macintosh Pascal interpreter. It pointed out that, 
although the Macintosh Pascal interpreter does not allow any direct 
access to the Window Manager, it is still possible to create programs 
that exert a modicum of control over the window. 

The two particular management features that were demonstrated 
in this chapter were the ability to move the drawing window or the 
text window about the screen and the ability to resize either of these 
windows using the mouse. 



86 MASTERING THE MACINTOSH TOOLBOX 

The effects of local and global coordinate systems were also dis­
cussed, along with techniques that permit conversion from one coor­
dinate system to the other. 

Finally, the chapter showed the problems inherent in the resizing 
of windows. It further indicated that, after resizing has been com­
pleted, it is necessary for an applications program to have the capa­
bility of redrawing the window. 



c H A p T E R 

Advanced 
Macintosh 
Programming 

Until now the programs in this book have depended heavily on the 
libraries of Macintosh Pascal. A library is a collection of routines, 
functions, or procedures that can be accessed by a program. The 
routines contained in a library are there for a programmer's use and 
do not have to be declared or written by the programmer. This elim-

87 



88 MASTERING THE MACINTOSH TOOLBOX 

inates the need for the programmer to write routines to perform 
commonly used tasks in programs. 

In this chapter we will explore ways in which we can access other 
controlling functions of the Macintosh Toolbox that are not imple­
mented in Macirttosh Pascal. This is principally achieved through 
the use of the InLine routine. 

The InLine Routine 
The Macintosh Pascal interpreter contains a special routine called 
InLine which, by disabling the parameter-checking procedures of 
Pascal, allows different parameter lists to be substituted wherever 
necessary. There are four variations of InLine that may be used. 
Which InLine variation you use depends upon which Toolbox proce­
dure or function is to be called. 

A Pascal function returns a value of one of three different sizes-a 
byte (eight bits), a word (sixteen bits), or a long word (thirty-two 
bits). The InLine functions do not care what the returned data type 
is. Their only concern is with the size of the result. This makes it 
possible to call all of the Toolbox functions using only three 
functions-BlnLineF, WinLineF, and LlnLineF. BlnLineF is used 
for functions that yield a byte-size result. WinLineF is used for 
functions that yield a word-size result, and LinLineF is used to call 
functions that yield a long word-size result. InLineP is a fourth func­
tion used to call Toolbox procedures that do not return a value. 

Though lnLine might seem confusing upon first encounter, if you 
keep the following in mind you'll have no trouble putting InLine to 
work in your Pascal programs. BlnLineF, WlnLineF, and LlnLineF 
are functions; that is, they return a single value as their result, just 
like any other Pascal function. InLineP is a procedure that, like 
other Pascal procedures, passes one or more values to the called 
procedure. These four InLine routines let you use any Toolbox 
procedure or function, whether they are directly available through 
Macintosh Pascal or not. 

Unfortunately, the InLine routines have not been documented in 
any Apple publication. This makes their use rather difficult. How­
ever, this section of the book shows how accessing the four InLine 
routines is done and describes some of the functions and procedures 
that may be accessed by these routines. 



ADVANCED MACINTOSH PROGRAMMING 89 

WARNING: It is possible to destroy data or even the Macintosh 
Pascal disk itself by incorrect use of the InLine routines. Make sure 
you have a backup copy of your Pascal disk before attempting to use 
InLine in your own programs. Pay particular attention to functions 
that concern folders, files, and disk access. These functions have the 
potential to erase things you may not want to erase. Whenever a 
dangerous situation presents itself in the following discussion, you 
will be informed about the harm that may result from misuse of the 
InLine routines. 

The Inline routines work by referencing a trap number. A trap 
number is the number associated with each procedure or function in 
the Macintosh Toolbox. In other words, instead of using the function 
or procedure name to call the Toolbox function or procedure, you 
should give the appropriate InLine routine the trap number of the 
function or procedure you want to use. Appendix C gives a complete 
list of Toolbox procedures and functions together with their asso­
ciated trap numbers. 

In the InLine routine, the first parameter in the parameter list is 
the trap number of the procedure or function that you want to call. 
Any successive parameters given to InLine are those required by the 
procedure or function being called. 

The following listing uses the FrameRect procedure to demon­
strate the use of the lnLine procedure called InLineP. 

program lnlineDemo; 
const 

SetRect = $A8A7; 
FrameRect = $A8A I; 

type 
rect = array[ 1..4) of integer; 

var 
Square : Rect; 

begin 
Hideall; 
ShowDrawing; 
lnlineP(SetRect, oSquare, I 00, I 00, 200, 200); 
lnlineP(FrameRect, Square); 

end. 

In this program, the procedures SetRect and FrameRect are 
called indirectly through the InLineP procedure. The first parame­
ter is a constant that has been set to the trap number of the appro­
priate procedure. Simply select the proper trap number and give it 



90 MASTERING THE MACINTOSH TOOLBOX 

to the InLine routine, followed by the necessary parameters of the 
function or procedure you wish to use. In this fashion, InLine gives 
you access to most of the useful Toolbox utilities. 

You may also have noticed that the data type Rect has been explic­
itly defined as an array of four integers. This has been done to dem­
onstrate an alternative to predefined data types, functions, and 
procedures. When a program references a library function or data 
type, Macintosh Pascal includes in your program the entire library 
containing the definition for the referenced item, regardless of 
whether references are made to anything else in the library. In this 
program, for instance, the Rect data type would only have been ref­
erenced to a QuickDraw library entry. If Rect had not been explic­
itly defined, Macintosh Pascal would have defaulted to including the 
QuickDraw library references into your program. These libraries 
can take up as much as 4K bytes of memory that otherwise could be 
used for your program. 

Although sidestepping library references gains application space, 
it involves some disadvantages. First, you always have to define 
explicitly the data types required by your program. Aside from 
being tedious, this is also poor programming practice. If, for exam­
ple, Apple decides to change one of the data types, you will have to 
go through every program that uses this data type and change its 
definition to match the new definition. By using the library refer­
ences, you would only have to get an updated Macintosh Pascal disk 
containing all of the changes within its libraries. 

Another problem, illustrated in the above program, is that 
although this explicit definition of Rect is suitable in that it provides 
enough space to store the definition of a rectangle, it does not work if 
it becomes necessary to refer to the record fields of right, top, left, 
and bottom. This limits the use and application of the explicit data 
type definition. 

One last point on using lnLine. Notice the use of the "at" symbol 
(@)preceding the variable Square. As you may know, this symbol is 
an operator that returns the memory address of the variable it pre­
cedes. When the address of a parameter is passed to the function or 
procedure, it is called call-by-reference. In Pascal, the default 
parameter passing mechanism, in which the value of a parameter is 
passed and not its address, is call-by-value. You may override this 
default mechanism by preceding the formal parameter with the 
Pascal keyword var when the function or procedure is defined. 



ADVANCED MACINTOSH PROGRAMMING 91 

For example, the procedure SetRect is defined as 

procedure SetRect (var r:Rect; left, top, right, bottom:integer); 

In this case, the procedure explicitly requests the address of rectangle 
r. The remaining four parameters are integers and merely have their 
values passed normally. Always use the "@" operator whenever the 
procedure or function defines the parameter with the var keyword. 

Whenever you access a function or procedure through an InLine 
routine, you must be especially careful to supply the proper parame­
ters. InLine does not check your parameter list for the proper for­
mat. If any of the parameters do not match, or if there are too few or 
too many parameters, the results are unpredictable and potentially 
disastrous. 

The Menu Manager 
The Menu Manager consists of a set of routines in the Toolbox that 
support the use of menus by an application. Menu control is a very 
important function for the Macintosh. 

With menus, the user of an application may browse through the 
choices that are available without necessarily choosing any of them. 
Menus eliminate the need for a user to remember special commands 
or keystrokes. A user may open any menu at any time by moving the 
cursor up to the menu bar and pressing the mouse button over one of 
the displayed menu titles. This highlights the menu title, and the 
corresponding menu drops down. By moving the mouse down while 
holding the mouse button down, each item in the menu is highlighted. 
If the mouse button is released over one of these menu items, the 
item blinks to indicate that it has been selected. The menu then dis­
appears. The menu title remains highlighted, however, until the ap­
plication has completed the action associated with the selected item. 

The menu bar always appears at the top of the Macintosh's screen. 
It is 20 pixels high and appears in front of everything else on the 
screen except the cursor. It is a white bar with a thin black lower 
edge. As shown in Figure 6-1, menu titles appear in the menu bar 
in the system font of Chicago in 12-point size. 

The first menu title that normally appears in an application is the 



92 MASTERING THE MACINTOSH TOOLBOX 

s file Edit Search Font Style~-------­
lnsert Ruler 
Hide Rulers 
Open Header 
Open Footer 
Display Headers 
Display footers 
Set Page# ... 
Insert Page Break 
Title Page 

Figure 6-1. Sample menu bar from MacWrite 

Apple menu. This menu contains selections that access the desk 
accessories. Some applications may not support the use of desk 
accessories, so the Apple may not always be present. 

Menus sometimes have all of their items disabled (as in Mac Write 
when there is no open file). The Menu Manager causes menu titles to 
appear dimmed or unhighlighted, thus preventing their selection 
with the mouse. 

The menu bar may contain up to 16 menu titles. Depending upon 
the length of the menu titles, however, it is usually not possible or 
even necessary to use all 16 titles. 

A menu consists of a number of lines of text that, like the titles, 
always appear in the 12-point system font. The items appear in a 
shadowed rectangle that, when activated, always appears in front of 
everything else on the screen except the cursor. Each line of text 
may take a number of variations: 

• An icon may appear to the left of the item text. 

• A check mark may appear to the left of the item text and/or an 
icon. 

• The COMMAND key symbol and a character may appear to the 
right of the item text. This indicates that the particular menu 
item may be invoked from the keyboard by pressing the COM­
MAND key and the specified character key. 



ADVANCED MACINTOSH PROGRAMMING 93 

• The item may appear in a character style other than the stan­
dard, such as bold, shadow, underline, italic, outline, or any 
combination of these. 

• The item may appear dimmed, indicating that the item is dis­
abled and may not be selected. 

• The menu may contain up to twenty entries, some of which may 
be blank items or lines of dashes used to separate groups of 
items. 

Creating Menus 
Macintosh applications have several ways to define menus and even 
alter their appearance. Menus may also be stored in an area of 
memory known as a resource file. It is, however, outside the scope of 
this book and beyond Macintosh Pascal's ability to develop full-scale 
applications. 

Two routines may be used to create menus from an applications 
program-NewMenu and AppendMenu. NewMenu initializes space 
in memory for the menu and returns a handle to this data space. 
Essentially, a handle is a pointer to a pointer. This process is called 
double indirection, and it is used for efficient memory management. 
It is not necessary to know the exact format of the menu data struc­
ture because all interaction is done through the Menu Manager rou­
tines stored in the Toolbox. The NewMenu function is defined as 
follows: 

function NewMenu (menuID:integer; menuTitle:Str255):MenuHandle; 

New Menu returns a handle (of type MenuHandle) that is used to 
refer to the menu you wish to create. Essentially, the NewMenu 
function is used to inform the Menu Manager that you will need 
space in memory for a new menu that will have the ID menuID and 
the title menuTitle. The new menu is created empty, so it is neces­
sary to use the routine AppendMenu to fill it with the items you 
want. The menu ID should be a positive integer greater than zero. 

The AppendMenu routine is used to set up the items in the menu 
and is defined as 

procedure AppendMenu (theMenu:MenuHandle; data:Str255); 



94 MASTERING THE MACINTOSH TOOLBOX 

AppendMenu adds an item or items in data to the end of the menu 
specified by theMenu. The data string may be blank but it should not 
be null. This string contains the text of the item or items you want to 
append to the menu. Table 6-1 shows some special metacharacters 
that have special significance for the Menu Manager. 

Here are some examples of the AppendMenu routine as it may be 
used: 

1. AppendMenu (MyMenu,"Item l;Item 2"); 

2. AppendMenu (MyMenu,"Item 1;( ;Item 2"); 

3. AppendMenu (MyMenu,"Item 1/l;Item 2/2"); 

4. AppendMenu (MyMenu,"Item l<S;Item 2<B"); 

Example 1 sets up a menu with two items in it. The items appear 
in plain text, with no keyboard equivalent, one beneath the other. 
Example 2 sets up a menu with three items, one of which is blank 
and disabled. Example 3 sets up a menu with two items in it, each 
with a keyboard equivalent. Example 4 sets up a menu with two 
items in it. The first item is drawn in the shadow character style, 
and the second is drawn in the bold style. 

After the menus have been initialized by NewMenu and sent to 
the Menu Manager via the AppendMenu command, the menu bar 
must be formed and drawn. Several procedures and functions are 

Table 6-1. MetaCharacters 

MetaCharacter 

; or Return 

< 

I 

Meaning 

Separates multiple items. 

Followed by an icon number, adds that icon 
to the item. 

Followed by a character marks that item 
with that character. 

Followed by B, I, U, 0, or S, sets the 
character style of the item. 

Followed by a character, associates a 
keyboard equivalent with that item. 

Disables the item. 



ADVANCED MACINTOSH PROGRAMMING 95 

available to help do this. The first thing that must be done is to 
create a list of the menus that will make up the menu bar. This is 
done by using the InsertMenu procedure. The InsertMenu procedure 
is defined as 

procedure InsertMenu (theMenu:MenuHandle; beforeID:integer); 

The InsertMenu procedure forms the menu list by inserting 
the handle of the menu referenced by the variable theMenu before 
the menu whose menu ID is referenced by the variable beforeID. If 
beforeID is set to 0, the new menu will be added after the last menu 
in the list. 

When the menu list has been created through the use of the 
InsertMenu procedure, the menu bar must be displayed. This is 
done by the DrawMenuBar procedure, which is defined as 

procedure DrawMenuBar; 

Draw MenuBar redraws the menu bar, incorporating any changes 
that have been made since the last time the menu bar was drawn. 
This procedure should always be called after invoking any proce­
dure that makes any changes to the menu list. The new menu list 
will not become active until this procedure is called; nor will the 
user be aware that there may be a new menu present. 

In summary, the following steps must be taken to create a set of 
Macintosh menus: 

1. Initialize the menu by calling the New Menu function. 

2. Set up the menu using the AppendMenu procedure. 

3. After the menus are set up, use the InsertMenu procedure to 
create the menu list. 

4. After the menu list has been created, call the Draw MenuBar 
procedure to actually draw the new menu bar and activate the 
menus. 

Closing Menus 
Often during the course of an applications program, some menus 
will no longer be required or new menus may be needed. Certain 



96 MASTERING THE MACINTOSH TOOLBOX 

procedures allow a programmer to change the contents of the menu 
list while an applications program is executing. 

The DeleteMenu procedure may be used to remove a menu from 
the menu list. DeleteMenu is defined as 

procedure DeleteMenu (menuID:integer); 

The menu identified by menu!D will be deleted from the menu 
list. If there is no menu with the specified ID, the procedure will 
have no effect. 

To completely clear the menu list, the Clear MenuBar procedure 
may be used: 

procedure Clear MenuBar; 

Clear MenuBar deletes all the menus in the current menu bar, 
allowing the programmer to start afresh and create a completely 
new menu list. 

It is possible that a program will need two sets of menus, each 
menu list being used for different reasons. Two Menu Manager rou­
tines let two menus exist without regenerating the menu specifica­
tions each time a new menu is required. The first method involves 
using a function that creates a copy of the current menu list and 
returns a handle to it. The GetMenuBar function is defined as 

function GetMenuBar:Handle; 

After this procedure has been called, the menu list may be modi­
fied using any of the routines already discussed that affect the menu 
list. The old menu list may be reused at a later time by using the 
SetMenuBar procedure, which is defined as 

procedure SetMenuBar (menuList:Handle); 

The SetMenuBar procedure will reinstate the menu list indicated 
by the handle menuList as the current menu list. 

These two procedures are important to programs that run under 
the Macintosh Pascal interpreter and need to take advantage of the 
Menu Manager routines to control program flow. The Macintosh Pas­
cal interpreter is already using the menu bar to control its own pro­
gram flow; therefore, these menus must be saved at the beginning oJ 



ADVANCED MACINTOSH PROGRAMMING 97 

a program, using the GetMenuBar function, and restored at the 
termination of the program, using the SetMenuBar procedure. 

Remember to use the Draw MenuBar procedure after each change 
to the menu list, or else the new menu list will not become active. 
This is especially important when you are running a program under 
the Macintosh Pascal interpreter. If the menu bar is not restored 
and activated, you will lose control of the interpreter and will not be 
able to quit Macintosh Pascal. 

Using Menus in Applications 
Now that the procedures for creating and displaying the menu bar 
have been introduced, it is necessary for an applications program to 
know when an item from a menu is selected, so that it can act upon 
that selection. In addition, an applications program must also rec­
ognize and act upon a press of the COMMAND key in conjunction 
with a character key if some menu items have been set up with 
COMMAND key equivalents. Two routines perform this function, the 
MenuSelect function and the MenuKey function. 

When a mouse button down event occurs in the menu bar, an 
applications program should call the MenuSelect function to deter­
mine the result of the mouse action. The MenuSelect function then 
takes over the tracking of the mouse and returns any results. The 
MenuSelect function is defined as 

function MenuSelect (startPt:Point):longint; 

The startPt variable should be set to the point at which the mouse 
button down event occurred (the where field from the event record). 
Once the MenuSelect function has been called, it tracks the mouse, 
pulls down menus as required, and highlights the menu items as the 
mouse moves over them. When the mouse button is finally released, 
the MenuSelect function returns two integers. The first integer is in 
the high-word port'ion of the longint result. The second integer is in 
the low-word portion of the longint result. The high-word portion 
contains the menu ID of the menu in which the final selection 
occurs. The low-word portion contains the item number of the final 
selection. As in Figure 6-2, items are numbered from the top of the 
menu to the bottom, starting with the value 1. 



98 MASTERING THE MACINTOSH TOOLBOX 

menu !D's 

10 11 12 

• File 

1 
2 

menu 
3 

item 
4 

numbers 
5 
6 

Re.suit of MenuSelect or MenuKey 

I 12 I s I 
Highword Lowword 

Figure 6-2. Menu selections 

After a selection has been made, the MenuSelect function blinks 
the item selected, releases the menu, and highlights the menu title. 
Blinking is most easily controlled with the Control Panel desk acces­
sory. After the menu item selection, control is passed back to the 
applications program to process the selection. Once the applications 
program has processed the selection, it should call the HiliteMenu 
procedure with menuID set to 0 to clear the highlighting of the 
menu title, thus completing the processing of a selection. 

If no selection is made, either by the mouse being released over a 
disabled item or by its being outside the menu itself, MenuSelect 
returns 0. 

Both the MenuKey function and the MenuSelect function return 
the same types of results. The difference between the two is that 
MenuKey determines whether a keystroke invoked a menu item. 
MenuKey is defined as 

function MenuKey (ch:char):longint; 

The MenuKey function should be called when a key down event 
occurs with the COMMAND key held down. The character typed 



ADVANCED MACINTOSH PROGRAMMING 99 

should be passed to the MenuKey function in the ch field of the 
parameter list. The MenuKey function then returns the same result 
as if the item had been selected from the menu itself, and will, in the 
same way as MenuSelect, highlight the menu title of the menu. Once 
again, after processing the result of MenuKey, it is necessary to call 
HiliteMenu(O) to remove the menu title's highlighting. If no item in 
any menu with the COMMAND key equivalent exists, MenuKey 
returns 0. 

In the earlier discussion of the MenuSelect and MenuKey func­
tions, mention was made of the HiliteMenu procedure. The Hi­
liteMenu is the procedure you use after processing a menu selection 
when processing is completed. The HiliteMenu procedure may be 
used to highlight any menu title and is defined as 

procedure HiliteMenu (menulD:integer); 

HiliteMenu highlights the menu title specified by menuID. If the 
title is already highlighted, calling this procedure has no effect. If 
the menuID is set to 0 or is set to a menuID that does not exist in the 
menu list, then any menu that is highlighted is unhighlighted. This 
procedure should be called to reverse the effects of MenuSelect or 
MenuKey when an applications program has completed processing a 
menu selection. 

When an applications program is running, some menu functions 
may not be applicable to whatever is being performed at that time. 
For example, in the Mac Write word processing program, the Cut 
item in the Edit menu is not available until the text to be cut has 
been selected. The Menu Manager supplies two routines that are 
used to enable or disable (signified by dimming the item) a menu 
item, either preventing a menu item from being selected or allowing 
it to be selected. 

The routine that disables a menu item is the Disableltem proce­
dure. It is defined as 

procedure Disableltem (theMenu:MenuHandle; item:integer); 

Disableltem disables the menu item specified by item in the menu 
pointed to by theMenu. If item is set to 0, the entire menu is disabled. 
If the entire menu is disabled, the menu title is dimmed, but it is 
necessary to call Draw MenuBar to display the dimmed menu title. 



100 MASTERING THE MACINTOSH TOOLBOX 

Enableltem performs the opposite function to Disableltem. It is 
defined as 

procedure Enableltem (theMenu:MenuHandle; item:integer); 

Enableltem enables the item number specified by item in the 
menu pointed to by theMenu. If item is set to 0, the entire menu is 
enabled. However, it is necessary to call Draw MenuBar to display 
the new appearance of the menu title. 

Sometimes an application contains menu items that have a per­
manent effect on a program's processing after the item has been 
selected. An example of this is the Grid item in the Goodies menu of 
MacPaint. After Grid has been selected, the cursor moves only to the 
points of an invisible grid mapped onto the drawing window. Lines 
or shapes are drawn on these invisible grid lines. A check appears 
next to the Grid item in the Goodies menu to signify that the grid is 
in effect. Selecting the Grid item again turns off the grid feature, 
and the check mark disappears. The check mark is a Macintosh 
User Interface requirement that informs the person using a pro­
gram about the menu items in effect at any one time. 

The procedure that allows menu items to be checked in this way is 
the Checkltem procedure: 

procedure Checkltem (theMenu:MenuHandle; item:integer; 
checked: boolean); 

When Checkltem is called, with checked equal to the Boolean 
value of True, a check mark appears beside the specified item in the 
menu pointed to by theMenu. To reverse the effect (to remove the 
check mark from an item), call the procedure with checked equal 
to the Boolean value of False. Before calling this procedure, you 
must always have the item set to item number and theMenu set to 
the MenuHandle of the menu in which the item resides. 

Two final Menu Manager routines may be useful to the Macintosh 
Pascal programmer. These two routines allow an applications pro­
gram to determine and set a menu item's appearance in any desired 
character style. The two procedures are SetltemStyle and Getltem­
Style and are defined as 

procedure SetitemStyle (theMenu:MenuHandle; item:integer; 
chStyle:style); 

procedure GetltemStyle (theMenu:MenuHandle; item:integer; var 
chStyle:style); 



ADVANCED MACINTOSH PROGRAMMING 101 

SetltemStyle is used to change the character style of a menu 
item's appearance, and GetltemStyle is used to find a menu item's 
appearance. SetltemStyle (MyMenu,2,[bold,Underline]) sets the 
second item in MyMenu to boldfacing underlined character style. 
GetltemStyle returns the current style settings of the menu item in 
variable chStyle. 

This completes the review of the Menu Manager routines that may 
be usefully and safely called from a Macintosh Pascal program, 
using the four InLine routines supplied by Macintosh Pascal. An 
excellent example of their use may be found in the TextEditor pro­
gram that accompanies the Macintosh Pascal disk. This program 
should be studied before you attempt to use these routines in one of 
your own applications programs. 

The Window Manager 
An earlier section of this book described a program that provided 
some primitive Window Manager functions available from Macin­
tosh Pascal's own libraries. This section describes the set of routines 
stored in the Toolbox; they make up the Window Manager. 

The Window Manager can display several different types of win­
dows. An applications program can display a predefined type of 
window known as a document window. A document window contains 
a title bar, size box, and scroll bars. Other types of windows, such as 
dialog windows, may be created when you use other parts of the 
Toolbox. Windows created by an application are known as applica­
tion windows, whereas windows created by the system, such as desk 
accessory windows, are known as system windows. 

An applications program may create and control as many win­
dows as necessary, depending on the limitations of available memory. 
Several different windows may exist on the desktop simultaneously. 
The Window Manager keeps track of the different windows on the 
desktop as the user moves them from one place to another, resizes 
them, or activates them one at a time. 

Regardless of how many windows are on the desktop at any one 
time, there is always only one active window. The active window is 
the one into which a user may enter or edit information. This win­
dow has its title bar highlighted to distinguish it from other win­
dows on the desktop, and it is always the front-most window on the 
desktop. The Window Manager keeps track of which portions of the 



102 MASTERING THE MACINTOSH TOOLBOX 

various windows are visible and which portions of the windows need 
to be redrawn due to movement of the windows by the user. 

The Window Manager also contains a set of routines that allows a 
standard set of mouse actions to have a similar effect inside each of 
the various windows that may appear on the desktop. These actions 
are 

1. Clicking in an inactive window makes it the active window and 
brings it to the foreground with a highlighted title bar. 

2. Clicking inside the close box of a window removes the window 
from the desktop. 

3. Dragging while inside the title bar (except in the close box) 
moves the window around the screen. 

4. Dragging inside the size box resizes the window. 

A window is made up of two distinct regions: The content region, 
which is the area in which the applications program draws, and the 
structure region, which is the entire window. The structure region 
contains the content region plus the window frame. When a window 
is created, the content region is defined by a rectangle lying within 
the portRect rectangle of the graf Port that will be set to the window. 
This rectangle defines the area in which the applications program 
will draw the window. 

Windows are drawn on the screen in a special grafPort that has 
the entire screen as its portRect. This grafPort is known as the 
Window Manager Port. All windows drawn by the Window Manager 
are drawn in the Window Manager Port. In turn, each window has 
its own grafPort set up by the applications program for drawing. 

The Window Manager maintains one other important region, 
called the update region. Areas of the content region that need to be 
redrawn are accumulated by the Window Manager into the update 
region. The applications program is responsible for redrawing the 
contents of the update region after an update event has occurred. An 
update event is a special event (such as resizing or activation) that is 
posted to the event queue by the Window Manager each time the 
contents of a window need to be redrawn. 

Drawing a window is a two-step process. When the command to 
draw the window is issued, the Window Manager draws the window 
on the screen. The manager then posts an update event into the 
event queue, and the application draws the contents of the window. 



ADVANCED MANINTOSH PROGRAMMING 103 

Periodically, the application should check the event queue for update 
events with the GetNextEvent function using the UpdateMask and 
ActiveMask constants. If one is found, the window should be 
redrawn. 

Only Window Manager routines applicable to Macintosh Pascal 
programs are discussed in the following text. Some of the other 
available Window Manager routines can only be used by a true 
Macintosh application. Some Window Manager functions are used 
by Macintosh Pascal itself, and calling these routines could interfere 
with the operation of the interpreter. 

Inside the Window Manager 
The Window Manager maintains a record data structure known as a 
window record for each window created by an applications program. 
It is not important for the programmer to know the exact structure 
of the window record. Knowing its size, however, is important 
because the storage area for this record must exist in the applica­
tions program. The window record requires 156 bytes of storage and 
may be declared as follows: 

type 
Window Record:packed array [1 .. 78] of integer; 

var 
Window Storage: Window Record; 

Once again we have merely allocated the appropriate amount of 
memory for a window record. We have not defined the exact struc­
ture and will not do so for the purposes of this discussion. 

A pointer to the Window Record is also required. This may be 
declared as 

type 
Window Ptr:A Window Record; 

var 
the Window: Window Ptr; 

Declarations of this type are required for each window displayed 
by an applications program. 

The New Window function is the routine used to create a new win-



104 MASTERING THE MACINTOSH TOOLBOX 

dow. It is defined as follows: 

function NewWindow (wStorage:Ptr; boundsRect:Rect; title:Str255; 
visible:boolean; procID:integer; behind:WindowPtr; 
goAway Flag: boolean; refCon:longint):Window Ptr; 

The NewWindow function creates a new window, as specified by 
its parameter list, and returns a handle to it. The variable wStorage 
is a pointer to the storage area for the window record. In the exam­
ples of the declaration above, the wStorage parameter would be the 
pointer theWindow. The boundsRect parameter determines the 
initial size and location of the window in a manner similar to that 
done for the Macintosh Pascal drawing window through the Set­
DrawingRect procedure. The title parameter refers to the window's 
title, which will appear centered in the window's title _bar. 

If the visible parameter is set to True, the Window Manager will 
draw the window immediately. How the Window Manager draws 
the new window depends upon the behind parameter. 

The behind parameter determines whether or not the window is 
in front of any other windows currently on the screen. If the behind 
field is set to Nil, the new window is drawn behind all the other 
windows. If the behind field is set to the pointer of another window, 
the new window is drawn behind the window indicated. Placing the 
window in front of all the other windows on the screen is done by 
setting behind to -1. When placed in the front-most position, the 
Window Manager deactivates the previously active window and 
creates an activate event for the new window. In addition, if the go­
AwayFlag parameter is set to True, the Window Manager draws a 
close box in the title bar of the new window. 

The proc!D parameter determines what kind of window will be 
drawn by the Window Manager. Any one of the following constants 
may be used: 

Constant 

0 
1 
2 
3 

16 

Description 

Standard document window 
Alert box or dialog box 
Same as alert box but no shadow 
Modeless dialog box 
Desk Accessory window 

The re/Con parameter is set and used only by the application and 
has no effect on the Window Manager. This variable may be used for 
storing a handle to the contents of a window. 



ADVANCED MACINTOSH PROGRAMMING 105 

After an application has finished with a window, it can use the 
Close Window procedure to remove the window from the screen. 

procedure Close Window (the Window: Window Ptr ); 

The Close Window procedure removes the window indicated by 
the Window from the screen. Any update events that may be pending 
for this window are discarded when this procedure is called. This 
procedure may also create an activate event for another window if 
the window being closed is the front-most window. 

Windoiv Titles 
Two routines may be used to interrogate and set the title of a win­
dow. These are useful for applications that need to change the title of 
the window. For example, when creating a new file in Mac Write, the 
name of the default document window is Untitled. However, when 
the contents of the window have been saved as a file, the window title 
becomes the name of the file. The first of the routines to name a 
window title is GetWTitle, which is defined as 

procedure GetWTitle (theWindow:WindowPtr; var title:Str255); 

GetWTitle returns the title of the window indicated by the Window 
in the title variable. 

SetWTitle is used to change the window title. It is defined as 

procedure Set WTitle (the Window: Window Ptr; title:Str255); 

Set WTitle changes the title of the window designated by the Win­
dow to the title specified by title. Set WTitle performs any necessary 
redrawing of the window to fit the new title into the title bar. 

Windoiv Mani]YUlation 
All window manipulation is initiated by the user of a program when 
he or she moves, clicks, or drags the mouse in the different regions 
of windows displayed on the screen at any one time. Although it is 



106 MASTERING THE MACINTOSH TOOLBOX 

the responsibility of the applications program to call the routines 
necessary to satisfy a user's needs, the program must first deter­
mine where the mouse button down event occurred in order to 
determine the appropriate routine to call. This is done by using the 
FindWindow function, which is defined as 

function FindWindow (thePt:Point; var 
which Window:Window Ptr):integer; 

Following the occurrence of a mouse button down event, the appli­
cation should call FindWindow with thePt, set to the point where the 
mouse button down event occurred. This should be in global coordi­
nates obtained from the where field in the event record. To indicate 
where the mouse button down event occurred, the FindWindow 
function returns one of the following predefined constants. (Note 
that Apple's technical documentation refers to the title bar as a 
"drag region," the size box as a "grow region," and the close box as a 
"go away region.") 

Constant Value 

inDesk 0 
inMenuBar 1 
in Sys Window 2 
inContent 3 

inDrag 4 
in Grow 5 
inGoAway 6 

Description 

In none of the following regions 
In the MenuBar 
In a system window 
In the content region 

(except the grow region if it is active) 
In the drag region 
In the grow region (active window only) 
In the go away region (active window only) 

If the mouse button down event occurs in a window displayed on 
the screen, the which Window field will have a pointer indicating the 
window in which the mouse button down took place. 

The program can take appropriate action after it has used the 
FindWindow procedure to determine which window had the mouse 
button down event. There are a number of procedures available to 
the Window Manager program for determining this. 

If the mouse button down event occurred in the close box of an 
active window, the required action is the removal of the window 
from the screen. This is done by using the TrackGoAway function 
and the Hide Window procedure. TrackGoAway is defined as 

function TrackGoAway (theWindow:WindowPtr; thePt:Point):boolean; 



ADVANCED MACINTOSH PROGRAMMING 107 

The TrackGoAway function should be called after a mouse button 
down event has occurred in the close box. The thePt parameter 
should be set to the position at which the mouse button down event 
occurred. This is in global coordinates and is easily obtained from 
the "where" field in the event record. The the Window parameter 
should be set to the window pointer obtained from the FindWindow 
procedure. TrackGoAway tracks the position of the mouse until a 
mouse button up event occurs. During the tracking, and while the 
mouse remains in the close box, the TrackGoAway function causes 
the close box to be highlighted. If the mouse moves outside the close 
box, the highlighting is removed. After a mouse button up event 
occurs, TrackGoAway returns control to the calling program, yield­
ing True if the mouse button up event occurred in the close box. If 
the mouse button up event did not occur in the close box, False is 
returned. 

A TrackGoAway result of True indicates to the applications pro­
gram that the window should be removed from the screen. This is 
done by the Hide Window procedure. 

procedure HideWindow (theWindow:WindowPtr); 

HideWindow removes the window pointed to by theWindow. This 
procedure should only be called for an active window, as it removes 
the active window, brings the window behind the removed window 
to the front, highlights that window, and creates the appropriate 
activate events. 

The opposite of the HideWindow procedure is the ShowWindow 
procedure, defined as 

procedure ShowWindow (theWindow:WindowPtr); 

The ShowWindow procedure makes the window indicated by the­
Window field visible on the screen. The window displayed on the 
screen is never the front-most window. 

The ShowWindow procedure is not usually called as a result of a 
mouse b.utton down event. Instead, it is more likely to be called as a 
result of a user-selected item from a menu. 

If the FindWindow procedure has indicated that a mouse button 
down event occurred in a window other than the active window, the 
window in which the mouse button down event occurred becomes 
the active window. Two procedures are required to activate the win-



108 MASTERING THE MACINTOSH TOOLBOX 

dow. The first of these procedures is the BringToFront procedure, 
defined as 

procedure BringToFront (theWindow:WindowPtr); 

The BringToFront procedure brings the window indicated by 
the Window to the front of all the other windows on the screen and 
redraws the window. 

After the BringToFront procedure has been used to bring the 
window to the front, use the HiLite Window procedure to make it the 
active window. This procedure is defined as 

procedure HiLiteWindow (theWindow:WindowPtr; fHilite:boolean); 

If fHilite equals True, the HiLite Window procedure highlights 
the window pointed to by the Window. If fHilite equals False, then 
the HiLiteWindow performs the opposite action by unhighlighting 
the window. This action can be demonstrated by setting the Macin­
tosh Pascal edit window to cover one-half of the screen and the 
Drawing window to cover the other half. By moving the mouse back 
and forth between the windows and clicking in alternate windows, 
you will see the title bar highlight change from window to window. 

An alternative procedure, SelectWindow, performs the actions of 
both BringToFront and HiLite Window, essentially making any win­
dow active through one procedure call. The SelectWindow proce­
dure is defined as 

procedure SelectWindow (theWindow:WindowPtr); 

The SelectWindow procedure makes the window pointed to by 
the Window the active window by deactivating the currently active 
window, bringing the selected window to the front and activating it. 

The active window may always be determined by using the 
FrontWindow function, as shown: 

function Front Window: Window Ptr; 

This function simply returns a pointer to the currently active 
window. 

Determination by the FindWindow procedure that a mouse button 
down event has occurred in the title bar of a window informs an 
applications program that the user of the program wishes to move 



ADVANCED MACINTOSH PROGRAMMING 109 

the position of that particular window to a new position on the 
screen. This movement is done by the DragWindow procedure, 
defined as 

procedure DragWindow (theWindow:WindowPtr; startPt:Point; 
boundsRect:Rect); 

The DragWindow procedure is called after a mouse button down 
event has occurred in the title bar of the window pointed to by the 
Window. The startPt parameter is set to the position at which the 
mouse button was pressed. This position should be in global coordi­
nates; it is obtained from the where field in the event record. Drag­
Window tracks the mouse until a mouse button up event occurs. As 
it is tracking, DragWindow pulls a gray outline of the window 
around the screen, following the path of the mouse. After the mouse 
button up event occurs, DragWindow redraws the window and 
makes it the active window. The boundsRect parameter is used to 
limit the movement of the window. The Drag Window procedure will 
not redraw the window if the mouse moves outside of the rectangle 
specified by boundsRect. The value of (4, 24, 508, 338) is most often 
used as a boundary for boundsRect. Using this value ensures that at 
least four pixels of the title bar are always visible on the screen. 

An indication by the FindWindow procedure that a mouse button 
down event has occurred in the size box of a window informs an 
applications program that the user wishes to resize the window, 
making it larger or smaller. A mouse button down event in a size 
box can only occur in the active window. After the event has 
occurred, the applications program should call the GrowWindow 
function, which performs the resizing of the window. The Grow Win­
dow function is defined as 

function GrowWindow (theWindow:WindowPtr; startPt:Point; 
sizeRect:Rect):longint; 

The Grow Window function should be called after a mouse button 
down event has occurred in the size box of the active window pointed 
to by the Window. The field startPt should be set to the position 
where the mouse button down event occurred in global coordinates. 
The GrowWindow function, performing in much the same way as 
the DragWindow procedure, tracks the mouse around the screen 
until a mouse button up event is recorded. As the mouse moves about 
the screen, Grow Window pulls a variable-sized image of the window 



110 MASTERING THE MACINTOSH TOOLBOX 

around the screen in response to the movements of the mouse. This 
image is similar to the outlined window seen when dragging a win­
dow by its title bar. Grow Window creates a gray outline of the title 
bar, scroll bar, and size box, but the window is anchored in its upper 
left corner. When the mouse button up event occurs, GrowWindow 
redraws the window in its new size. It does not redraw the contents 
of a newly exposed content region. This must be done by the applica­
tions program. 

The sizeRect parameter functions in a manner similar to the 
boundsRect parameter in DragWindow. It specifies the minimum 
and maximum sizes of a window. These minimum and maximum 
sizes represent the rectangle structure as follows: 

sizeRect.top = minimum vertical measurement 
sizeRect.left = minimum horizontal measurement 
sizeRect.bottom = maximum vertical measurement 
sizeRect.right = maximum horizontal measurement 

After the Grow Window function is complete, the actual size of the 
window is returned in the longint result. The high-order word con­
tains the vertical measurement in pixels, while the low-order word 
contains the horizontal measurement in pixels. GrowWindow re­
turns a value of 0 if the size of the window does not change. 

After the GrowWindow function returns control to the calling 
program, it is necessary to reset the graf Port of the newly sized 
window to its new dimensions. This is done by passing the result of 
the GrowWindow function to the SizeWindow procedure. The Size­
Window procedure is defined as 

procedure SizeWindow (theWindow:windowPtr; w, h:integer; 
fUpdate:boolean); 

The Size Window procedure resets the size of the window's graf­
Port to the new size of the window. This procedure should always be 
called after the Grow Window function. The parameter the Window 
should be set to point to the window that has just been resized. The 
w parameter should contain the low-order word of the result of 
GrowWindow, and h should be set to the high-order word of the 
GrowWindow result. If fUpdai,e is set to True, SizeWindow will 
accumulate the newly exposed area of the content region into the 
update region. However, if fUpdate is False, the applications pro­
gram must redraw the newly exposed content region itself. 



ADVANCED MACINTOSH PROGRAMMING 111 

You may have noticed that the w and h parameters are integers 
contained within the long integer result from GrowWindow. You 
should use the two ToolBox utilities Hi Word and Lo Word to assist 
you in your conversion of the long integer value into the two integer 
parameters. 

function HiWord (x:longint):integer; 
function LoWord (x:longint):integer; 

Function HiWord returns the high-order word of the parameter x. 
Conversely, Lo Word returns the low-order word of x. Most applica­
tions programs would contain the following program segment: 

result := GrowWindow(currentWindow, startWindowPt, sizeLimits); 
if result <> 0 then 

SizeWindow (currentWindow, HiWord(result), LoWord(result), True); 

In this example, the result is a long integer that must be split into 
two discrete integers if SizeWindow is to perform its function prop­
erly. The parameter current Window points to the currently active 
window. Start WindowPt is the point at which the mouse button 
down event occurred, thereby initiating the resizing of the window. 
The maximum and minimum sizes of the window are specified by 
sizeLimits. If a resizing is to take place (because result is not equal 
to 0), the Size Window procedure is called, using the functions 
HiWord and LoWord to break the long integer result into the two 
required integers. For simplicity in this case, a constant value of 
True is used for fUpdate. 

The Manager Program 
For those of you interested in writing a program that controls 
menus or windows, here is a sample program that does both. As you 
type the program into Macintosh Pascal, examine each line to 
understand its purpose. If you decide not to dissect each program 
line while typing, then read through this chapter again to find out 
why each program line is in the program and what it does. 
Remember to save your typing frequently using the Save option of 
the File menu. 



112 MASTERING THE MACINTOSH TOOLBOX 

program Manager; 
const 

(**** Menu Manager Trap Numbers ****) 
lnitMenus = $A930; 
NewMenu = $A93 I ; 
DisposeMenu = $A932; 
Appen<l"lenu = $A933; 
ClearMenuBar = $A934; 
lnsertMenu = $A935; 
DeleteMenu = $A936; 
DrawMenuBar = $A937; 
HillteMenu = $A938; 
Enableltem = $A939; 
Disableltem = $A93A; 
GetMenuBar = $A93B; 
SetMenuBar = $A93C; 
MenuSelect = $A93D; 
MenuKey = $A93E; 
AddResMenu = $A940; 

(**** Event Manager Trap Numbers ****) 
GetNextEvent = $A970; 

(**** Toolbox Utility Trap Numbers ****) 
Hi~ord = $A86A; 
Loword = $A86B; 

(**** Window Manager Trap Numbers ****) 
CloseWindow = $A92D; 
GetNewWindow = $A9BD; 
NewWindow = $A913; 
FindWindow = $A92C; 
DragWindow = $A925; 

(**** QuickDraw Trap Numbers ****) 
SetPort = SA873; 

(**** Program Constants ****) 
EventMask = 14; (*** mouse button down, up, and key down events***) 
MouseDown = I ; 
MouseUp = 2; 
MouseUpMask = 4; 
KeyDown = 3; 
lnMenuBar = I; 
lnDrag = 4; 
ltemMenu = 100; 
Ob jectMenu = I 0 I; 

type 
Handle = "Longint; 

(**** Working Storage for Window Manager ****} 
WindowRecord = array[ 1 .. 98] of char; 
WindowPtr = "WindowRecord; 



var 
OldMenuBar: Handle; 
Menu : array( 1 .. 2] of Handle; 
MenuTitle: string( I OJ; 
Done, Temp: boolean; 
Event : EventRecord; 
WindowStorage : WindowRecord; 

ADVANCED MACINTOSH PROGRAMMING 113 

DispWindow, whichWlndow, TheWindow: Longint; 
DragRect, Window, Paper: Rect; 

procedure lnitWlndow; 
begin 

(**** Get Window rrom resource file, Set size, and display it****} 
DlspWindow := LlnlineF(GetNewWlndow, 256, OWindowStorage, pointer(- I)); 
SetRect(Wlndow, 5, 50, 300, 200); · 
DispWlndow := LlnllneF(NewWlndow, OWlndowStorage, Window, 'Menu Demo', true, 4, 

pointer(- I), raise, nil); 
lnlineP(SetPort, DispWlndow); 

end; 

procedure SetUp; 
begin 

HldeAll; 
lnitWlndow; 

(**** Save Macintosh Pascal's Menus ***} 
01<11enuBar := Pointer(LlnllneF(GetMenuBar)); 
lnlineP(ClearMenuBar); 

[**** Set up and display our menus ****} 
MenuTitle :='Items'; 
Menu[ I]:= Pointer(LlnlineHNewMenu, ltemMenu, MenuTitle)); 
MenuTitle :='Objects'; 
Menu[2] := Pointer(LlnlineF(NewMenu, Ob jectMenu, MenuTitle)); 
lnlineP(AppendMenu, Menu[ I], 'Item l/l;ltem 2/2;1tem 3/3;Quit/Q'); 
lnlineP(AppendMenu, Menu[2], 'Object I ;Object 2;0bject 3'); 
lnlineP(lnsertMenu, Menu[ I], 0); 
lnllneP(lnsertMenu, Menu[2], 0); 
lnlineP(DrawMenuBar); 

(**** Set boundary for moving window ****} 
SetRect(DragRect, 4, 24, 508, 338); 

(**** Set the area to erase before printing ****} 
SetRect(Paper, 50, 50, 300, 300); 

end; 

procedure Terminate; 
begin 

(**** Get rid of our menus ****} 
lnlineP(ClearMenuBar); 
lnlineP(DisposeMenu, Menu[ I]); 
lnl ineP(DlsposeMenu, Menu[2]); 

(**** Get rid or the window ****} 
lnlineP(CloseWlndow, DlspWlndow); 

(**** Restore Macintosh Pascal's Menus ****} 
tnlineP(SetMenuBar, OldMenuBar); 



114 MASTERING THE MACINTOSH TOOLBOX 

I nL ineP(DrawMenuBar ); 
end; 

procedure Drawln (TextStr: Str255); 
begin 

(**** Write a string in the middle of the window in the system font **1E*) 
EraseRect(Paper); 
MoveTo( 100, 100); 
TextFont(O); 
DrawString(TextStr); 

end; 

procedure DoCommand (Result: Longint); 
var 

Temp: Boolean; 
(**** Process a menu selection ****) 
begin 

(**** Determine which menu was selected ***1E) 
case WlnlineF(HiWord, Result) of 

ltemMenu: 
(*1E** Determine which menu item from Item menu *1E*1E) 
(**** Print Detail of selection **1E*) 

case WlnlineF(LoWord, Result) of 
I: 
Drawln('ltem 1 selected'); 

2: 
Drawln('ltem 2 Selected'); 

3: 
Drawln('ltem 3 Selected'); 

4: 
Done := true; 

end; 
Ob jectMenu : 

(**** Determine which menu item from Object menu ****) 
(**** Print detail of selection *1E**l 

case WlnlineF(LoWord, Result) of 
1: 
Drawln('Object 1 selected'); 

2: 
Drawln('Object 2 Selected'); 

3: 
Drawln('Object 3 Selected'); 

end; 
otherwise 

Drawln('Nothing Selected'); 
end; 

{**1'* Unlight menu title once processing is complete **1E*) 
lnlineP(HiliteMenu, 0); 
Temp:= BlnlineF(GetNextEvent, MouseUp, @Event); 

end; 
· procedure TrackMouse; 

var 
Temp: Boolean; 



begin 
repeat 

ADVANCED MACINTOSH PROGRAMMING 115 

[**** Wait until an event occurs ****} 
repeat 
until BlnllneF(GetNextEvent, EventMask, @Event); 

[**** Determine type of event and process ****} 
case Event.what or 
MouseDown: 

[**** Event is mouse button down - Determine where and process ****) 
case WlnllneF(FindWindow, Event.where, @whichWindow) or 

lnMenuBar: 
DoCommand(LlnlineF(MenuSelect, Event.where)); 

lnDrag: 
lnllneP(DragWindow, whichWindow, Event.where, DragRect); 

otherwise 
begin 
Drawln('No Action Taken'); 
repeat 
until BlnllneF(GetNextEvent, MouseUpMask, liilEventl; 

end; 
end; 

KeyDown: 
DoCommand(LlnllneF(MenuKey, chr(Event.message mod 256))); 

otherwise 
Drawln('No Corresponding Menu Item'); 

end; 
unti I Done = true; 

end; 

begin 
(**** NBin Loop ****) 
Setup; 
TrackMouse; 
Terminate; 

end. 

This program begins by naming the constants to be used through­
out the rest of the program. The trap locations, listed first, are 
divided into their respective managers. These trap locations are fol­
lowed by manager constants-those values returned by manager 
functions to indicate a specific condition. For example, EventMask 
has bit 1 and bit 3 set (bits are a number from right to left starting 
with O) to tell the Event Manager to look for mouse button down or 
key down events only. The last pair of constants gives the menus an 
arbitrary reference "name" for use by the Menu Manager. 

The program begins with a call to procedure SetUp, which 
removes Macintosh Pascal's windows from the desktop and calls a 
procedure to initialize a new window. The remainder of SetUp 



116 MASTERING THE MACINTOSH TOOLBOX 

stores and clears the Pascal menu bar and creates a new menu bar. 
The next procedure, TrackMouse, again controls the operation of 

the program. TrackMouse waits for a key or mouse button down 
event to occur. If a key down event occurs, we use the MenuKey 
function to determine which menu and item were selected. Since the 
MenuKey function uses a character as its parameter, our program 
must determine which character was pressed. Fortunately, the 
Event Manager gives us this information in the Event.message field. 
This field is of type longint, making it four bytes long. After a key 
down event, the lowest byte contains the character code of the key 
pressed. This code depends upon the current configuration of the 
keyboard and upon whether any modifier keys were pressed as well. 
Normally, the code is the ASCII code for that key. The next highest 
byte contains the key code in case you want to use the keyboard for 
some unusual purpose, such as composing music. The remaining two 
bytes of this field are not used during a key down event. The 
expression 

Event.message mod 256 

conveniently returns the low-order byte of the message field that 
contains the character code. 

If the event is a mouse button down event, there are two possible 
outcomes: either the user has selected a menu or wants to drag the 
window. By using the FindWindow function, the Window Manager 
tells the program where the mouse button down event occurred. 
Notice the address operator @ in the parameter list of the InLine 
function. If you go back to the definition of the FindWindow func­
tion, you will see that this second parameter is defined with the var 
statement and awaits the address of the variable. After you run the 
program a few times, remove the @ symbol. Run the program and 
first use the mouse and keyboard to select a few menu items. Then 
use the mouse to drag the window. As soon as you press the mouse 
button in the title bar, you will get a system error. This means that 
the FindWindow function does not use the second parameter at all 
when the event is related to the menu bar. When writing programs 
using the InLine routines, be aware that a routine may work prop­
erly under one or more conditions but may cause a system error 
under another condition. This kind of bug is extremely difficult to 
find. 

Once we have determined the location of the mouse button down 
event, it can be processed by the respective manager functions, 



ADVANCED MACINTOSH PROGRAMMING 117 

either MenuSelect or DragWindow. 
The DoCommand procedure takes the longint result from the 

MenuSelect or MenuKey function and processes it to perform the 
appropriate menu selection. If the Quit option is chosen, the global 
variable Done is set to True, which causes the TrackMouse function 
to terminate. 

Finally, the program calls procedure Terminate, which removes 
the menus and window and restores the regular Pascal menu bar. 

Some Final Notes 
At this point, you can take the basic program and enhance it. You 
may want to start by working with the Menu Manager routines 
because they are less complicated. Try adding new menus with 
options that disable and enable other menu items. You may begin by 
removing the ClearMenuBar call in Set Up and see what effect your 
menus have on the Pascal menu bar. 

Despite this head start, you will find working with windows quite 
complex. For example, remove the HideAll statement from SetUp 
and drag the window around the screen. You will notice that it 
erases what is underneath it. Unfortunately, there is no convenient 
way to redraw these newly visible regions from Macintosh Pascal. If 
you want to use your own windows, you may not want to allow the 
user to move or resize the window unless it is the only window on the 
desktop. Instead, you may have two or four · windows set on the 
screen and allow the user to move from window to window using the 
appropriate functions. 

Summary 
This chapter explained how to use the four Inline routines, InlineP, 
BinlineF, WinlineF, and LinlineF, to gain access to the Macintosh 
Toolbox. It showed that using only these four routines makes it pos­
sible to implement all of the procedures and functions stored in the 
Toolbox. To use them, however, you must incorporate the trap 
numbers associated with each routine you want to call in your 
program. 



118 MASTERING THE MACINTOSH TOOLBOX 

Two of the most important managers contained in the Toolbox 
were examined in detail. In the section about the Menu Manager, 
techniques were explained for initializing and using these routines 
to create your own menus. These menus can be used in the same way 
that a complete Macintosh application uses its menus. 

Windows and their uses were discussed in the section about the 
Window Manager. Using a window to exploit its utmost potential 
requires many different routines. The Macintosh Toolbox, particu­
larly the Window Manager, provide procedures and functions to 
handle the multitude of events that occur during window processing. 
The effective use of these procedures and functions can give your 
programs sophistication and elegance. 



A p p E N D x 

A Reference 
Guide 

Even after you become familiar with Macintosh programming, you 
may occasionally require assistance with a procedure, function, or 
data type. The following reference guide has been designed to pro­
vide rapid answers to questions concerning Macintosh Pascal. 

The guide is divided into thirteen sections, each section dealing 
with one specific area of specialization (such as data types and 
QuickDraw Calculation Procedures). To use this guide, simply find 
the appropriate section, then read down the summary list to find the 
desired item. The syntax of the procedure or function is given if 
required, followed by a brief description of its use. An example of 
how to use the operation is sometimes provided when the meaning of 
the operation's use is not completely clear. The thirteen sections are 
presented in the following order: 

119 



120 MASTERING THE MACINTOSH TOOLBOX 

Bit Transfer Procedures 

Cursor Control Procedures 

Menu Manager Routines 

Miscellaneous QuickDraw Routines 

Mouse Control Routines 

Pen Control Procedures 

Picture Routines 

QuickDraw Calculation Routines 

QuickDraw Data Types 

QuickDraw Graphics Procedures 

Text Control Procedures 

Window Manager Functions 

Window Manipulation Procedures 

Bit Transfer Procedures 
These procedures are used to transfer bit images between different 
bit maps. The bit transfer procedures are presented in the following 
sequence: 

Copy Bits 

ScrollRect 

procedure CopyBits (srcBits, dstBits:BitMap; srcRect, 
dstRect:Rect; mode:integer; 
maskRgn:RgnHandle); 

The CopyBits procedure transfers the bit image bounded by 
srcRect from the srcBits bit map to the bit image bounded by 
dstRect in the dstBits bitmap. The transfer mode is specified by 
mode, and the resulting bit image is clipped by the region pointed to 
by maskRgn. 

The transfer mode may be one of the following eight modes:. 

srcCopy 
srcOr 

srcXor 
srcBic 

notSrcCopy 
notSrcOr 

notSrcXor 
notSrcBic 



A REFERENCE GUIDE 121 

If nil is passed as the maskRgn parameter, no clipping of the des­
tination bit image takes place. The srcRect rectangle will always be 
completely aligned with the dstRect rectangle. If the two rectangles 
are of different sizes, the source bit image will be resized (shrunk or 
expanded) as necessary to fit the bit image enclosed by the dstRect 
rectangle. 

The coordinate plane of srcBits defined by srcBits.bounds is used 
as the basis for srcRect, and the coordinate plane of dstBits defined 
by dstBits.bounds is used as the basis for dstRect and maskRgn. 

Figure A-1 illustrates an example of the operation of the Copy Bits 
procedure. 

maskRgn 

Source 
Tninsfer 

Mode 

srcRect 

dstRect 

Source Bitmap Destination Bitmap 

Source 
Tnmsfer 

Mode 

srcRect 
dstRect 

maskRgn = nn 

Source Bitmap Destination Bitmap 

Figure A-1. CopyBits example 



122 MASTERING THE MACINTOSH TOOLBOX 

procedure ScrollRect (r:Rect; dh, dv:integer; 
updateRgn:RgnHandle); 

The ScrollRect procedure shifts the bits inside the intersection of 
the rectangle specified by r, VisRgn, clipRgn, portRect, and port­
Bits.bounds. The bits are shifted horizontally by the distance speci­
fied in dh and vertically by the distance specified by dv. If dh and dv 
are positive, the direction of movement is to the right and down. If 
dh and dv are negative, the direction of movement is to the left and 
up. Bits outside the scroll intersection area are not affected, because 
bits shifted outside the scroll area are lost. The space created by the 
shift inside the scroll area will be filled with the current grafPort's 
background pattern. The region pointed to by updateRgn will be set 
to the area filled with the background pattern. The pen location is 
not changed by ScrollRect, although it will change relative to the 
shifted area. Figure A-2 shows an example of the effects of 
ScrollRect. 

Cursor Control Procedures 
These procedures are used to control the cursor that is connected to 
the mouse. The five cursor control procedures are presented in the 
following sequence: 

HideCursor 

lnitCursor 

ObscureCursor 

SetCursor 

ShowCursor 

procedure HideCursor; 

The HideCursor procedure removes the cursor from the screen, 
allowing the bits under it to become visible. HideCursor also decre­
ments the cursor level. Calls to HideCursor should be balanced by 
later calls to ShowCursor. 

procedure InitCursor; 

The InitCursor procedure initializes the cursor to a predefined 



A REFERENCE GUIDE 123 

Before ScrollRect After ScrollRect(dstRect, 10.10 J 

110 

updateRgn 

Figure A-2. ScrollRect example 

arrow pointing north-northwest and sets the cursor level to 0. The 
cursor level is used to keep track of repeated calls to HideCursor 
and ShowCursor. The cursor level is set to 0 when the Macintosh is 
started. 

procedure ObscureCursor; 

ObscureCursor hides the cursor until the mouse is moved. It has 
no effect on the cursor level and need not be balanced by a call to 
ShowCursor. 

procedure SetCursor (crsr:Cursor); 

The SetCursor procedure defines the cursor as the 16 X 16 bit 
image in crsr. If the cursor is visible, it immediately changes to the 
image defined in crsr. If the cursor is hidden, however, it takes on its 
new appearance when uncovered. 

procedure ShowCursor; 

ShowCursor negates the effects of a previous call to HideCursor, 
making the cursor visible on the screen and incrementing the cursor 
level. Extraneous calls to ShowCursor when the cursor is already 
visible have no effect. If there has been a prior call to SetCursor 
while the cursor was hidden, ShowCursor presents the new cursor. 



124 MASTERING THE MACINTOSH TOOLBOX 

Menu Manager Ruutines 
There are 16 routines in this category. They are presented in the 
following order: 

AppendMenu 

Checkitem 

ClearMenuBar 

DeleteMenu 

Disableltem 

DrawMenuBar 

Enableltem 

GetitemStyle 

GetMenuBar 

HiliteMenu 

InsertMenu 

MenuKey 

MenuSelect 

New Menu 

SetitemStyle 

SetMenuBar 

procedure AppendMenu (theMenu:MenuHandle; 
data:Str255); 

AppendMenu adds an item or items to the end of the menu speci­
fied by theMenu. The data string may be blank but should not be 
null. This string contains the text of the item or items that you wish 
to append to the menu. Special metacharacters may be used: 

Metacharacter 

; or Return 
/\ 

< 

Meaning 

Separates multiple items. 
Followed by an icon number, adds that icon to the 

item. 
Followed by a character, marks that item with that 

character. 
Followed by B, I, U, 0, or S, sets the character style of 

the item. 



A REFERENCE GUIDE 125 

I Followed by a character, associates a keyboard equiv­
alent with that item. 

Disables the item. 

procedure Checkltem (menu:MenuHandle; item:integer; 
checked: boolean); 

When Checkltem is called (with checked set to True), a check 
mark will appear next to the specified item number in the menu 
pointed to by menu. To reverse the effect-to remove the check 
mark from an item-call the procedure with checked set to False, 
item set to the item number, and menu set to the menuhandle of the 
menu in which the item resides. 

procedure ClearMenuBar; 

Clear MenuBar deletes all of the menus in the current menu bar, 
allowing the programmer to start afresh and create a completely 
new menu list. 

procedure DeleteMenu (menulD:integer); 

The menu identified by menuID will be deleted from the menu 
list. If there is no menu with the specified ID, the procedure has no 
effect. 

procedure Disableltem (theMenu:MenuHandle; 
item:integer ); 

Disableltem disables the menu item specified by item in the menu 
pointed to by theMenu. If item is set to 0, the entire menu is dis­
abled. If the entire menu is disabled, the menu title appears 
dimmed, but it is necessary to call Draw MenuBar to display the 
dimmed menu title. 

procedure DrawMenuBar; 

Draw MenuBar redraws the menu bar, incorporating any changes 
that have been made since the last time the menu bar was drawn. 
This procedure is always called after invoking any procedure that 
makes any changes to the menu list. The new menu list will not 
become active until this procedure is called. 

procedure Enableltem (theMenu:MenuHandle; 
item:integer ); 



126 MASTERING THE MACINTOSH TOOLBOX 

Enableltem enables the item number specified by item in the 
menu indicated by theMenu. If item is set to 0, the entire menu is 
enabled. As with Disableltem, it is necessary to call Draw MenuBar 
to display the new appearance of the menu title. 

procedure GetltemStyle (theMenu:MenuHandle; 
item:integer; var chStyle:Style); 

GetltemStyle is used to interrogate a menu item's character style. 

function GetMenuBar:Handle; 

GetMenuBar saves a copy of the current menu list. This allows for 
the use of new menu lists (or for the modification of the current 
menu list) and then to return to the current menu (the one now 
being saved). An old menu may be recalled at any time by using the 
SetMenuBar procedure. This function returns a handle to reference 
the copy of the menu list that has been stored. 

procedure HiliteMenu (menulD:integer); 

HiliteMenu highlights the menu title specified by menuID. This 
procedure has no effect if the title is already highlighted. If the 
menuID is set to 0 or is a menuID that does not exist in the menu 
list, any menu that is highlighted will be unhighlighted. To reverse 
the effects of MenuSelect or MenuKey on the menu title, call this 
procedure when an applications program completes processing a 
menu selection. 

procedure InsertMenu (theMenu:MenuHandle; 
beforeID:integer); 

InsertMenu forms the menu list by inserting the handle of the 
menu defined by theMenu before the menu whose menu ID is 
defined by beforeID. If beforeID is set to 0, the new menu is added 
after the last menu in the list. Remember to use Draw MenuBar to 
update the menu bar. 

function MenuKey (ch:char):longint; 

MenuKey is called when a key press occurs with the COMMAND 
key held down. The character typed is passed to the MenuKey func­
tion in the ch parameter. The MenuKey function returns the result 
as if the item had been selected from a menu by using the mouse, 
and it highlights the menu title of the menu in the same way as 



A REFERENCE GUIDE 127 

MenuSelect. After processing the result of MenuKey, it is necessary 
to call HiliteMenu(O) to remove the menu title's highlighting. 

If no item in any menu possesses the COMMAND key equivalent, 
MenuKey returns 0. 

function MenuSelect (startPt:Point):longint; 

During a menu selection, MenuSelect performs the necessary 
menu management routines. The startPt parameter should be set to 
the point at which the mouse button down event occurs (the where 
field from the event record). The MenuSelect function tracks the 
mouse, pulls down the menus as required, and highlights the menu 
items as the mouse moves over them. When the mouse button is 
released, the MenuSelect function returns two integers in the high­
and low-order words of the long integer. The high word contains the 
menuID of the menu in which the final selection occurred. The low 
word contains the item number of the final selection. Items are 
numbered from the top to the bottom of the menu, starting with 1. 

After a selection is made, the MenuSelect function blinks the item 
selected, releases the menu, and highlights the menu title. When the 
applications program completes processing the selection, it calls the 
HiliteMenu procedure with menuID set to 0 to clear the highlight­
ing from the menuTitle. 

If no selection is made, MenuSelect returns to 0. 

function NewMenu (menuID:integer; 
menuTitle:Str255):MenuHandle; 

New Menu is used to inform the Menu Manager that you want the 
space for a new menu. The new menu will have the ID menuID and 
the title menuTitle. The new menu is created empty. Therefore, you 
should use AppendMenu to fill the menu with the items you want. 
The menu ID should be a positive integer greater than 0. 

procedure SetltemStyle (theMenu:MenuHandle; 
item:integer; chStyle:Style ); 

SetltemStyle is used to change the character style of a menu 
item's appearance. 

procedure SetMenuBar (menuList:Handle); 

This procedure reinstates the menu list pointed to by menuList as 
the current menu. 



128 MASTERING THE MACINTOSH TOOLBOX 

Miscellaneous QuickDraw 
Routines 

This category is composed of eight QuickDraw routines, which are 
presented in the following order: 

GetPixel 

MapPoly 

Map Pt 

MapRect 

MapRgn 

Random 

ScalePt 

StuffHex 

function GetPixel (h, v:integer):boolean; 

Function GetPixel examines the pixel at the coordinates specified 
by h and v. GetPixel returns True if the pixel is black and False if 
the pixel is white. GetPixel will return the status of the coordinate 
specified, even if the point does not exist within the current graf­
Port. To determine whether or not the point belongs to the current 
grafPort, use PtlnRgn. 

procedure MapPoly (poly:PolyHandle; srcRect, 
dstRect:Rect); 

Given a polygon within srcRect, MapPoly maps it to a similarly 
located polygon within dstRect. MapPoly uses MapPt to map all the 
points that define the polygon. 

procedure MapPt (var pt:Point; srcRect, dstRect:Rect); 

Given a point within srcRect, MapPt places it into a similarly 
located point within dstRect. In locating the position of the destina­
tion rectangle, MapPt expands or contracts the source to fit within 
the destination. The result is returned in pt. 



A REFERENCE GUIDE 129 

procedure MapRect (var r:Rect; srcRect, dstRect:Rect); 

Given a rectangle within srcRect, MapRect maps it to a similarly 
located rectangle within dstRect. It calls MapPt to map the upper 
left and lower right corners of the rectangle. The result of the map­
ping is returned in r. 

procedure MapRgn (rgn:RgnHandle; srcRect, dstRect:Rect); 

Given a region within srcRect, MapRgn maps it to a similarly 
located region within dstRect. It calls MapPt to map all the points 
within the region. 

function Random:integer; 

Like any good random number generator, the Random function 
returns an integer between -32768 and +32767. The sequence of 
values returned depends upon the value of global variable Rand­
Seed, which InitGraf sets to 1. Should you want to perform the 
sequence again from the beginning, simply reset RandSeed to 1. 

procedure ScalePt (var pt:Point; srcRect, dstRect:Rect); 

The width and height are passed in pt. The horizontal component 
is the width and the vertical component is the height. ScalePt 
manipulates these measurements as follows and returns the result in 
pt: ScalePt multiplies the given width by the ratio of dstRect's width 
to srcRect's width and multiplies the given height by the ratio of 
dstRect's height to srcRect's height. 

procedure StuffHex (thingPtr:QDPtr; s:Str255); 

Stufffiex pokes bits into a data structure. The bits are expressed 
as a string of hexadecimal digits. Using Stufffiex is great for creat­
ing cursors, patterns, or other bit images that can later be pushed 
onto the screen using CopyBits. 

There is no range testing performed on the size of the destination 
variable. Therefore, it's up to the programmer to ensure that there is 
enough space on the receiving side of the destination variable. If you 
are not careful, you can easily overrun the size of the variable and 
destroy the contents of some unknown location in memory. 



130 MASTERING THE MACINTOSH TOOLBOX 

M<mSe Control Routines 
This section describes the procedures and functions used to deter­
mine the mouse status. The four routines are presented in the follow­
mg sequence: 

Button 

Get Mouse 

StillDown 

WaitMouseUp 

function Button:boolean; 

Button is a Boolean procedure that returns True if the mouse but­
ton is currently held down and False if the button isn't being held 
down. 

procedure GetMouse (var x,y:integer); 

GetMouse returns the current location of the cursor hotspot, with 
the variable x equivalent to the Point.v coordinate and the variable y 
equivalent to the Point.h coordinate. A returned negative value indi­
cates that the hotspot is outside the drawing window. 

function StillDown:boolean; 

StillDown is a Boolean function that returns True if the mouse 
button has been held down continuously since the last mouse event 
inquiry. 

function WaitMouseUp:boolean; 

WaitMouseUp returns True if the mouse button has been held 
down since the last mouse event inquiry. If the mouse button has 
been released, the mouse up event is removed from the event queue. 

Pen Control Procedures 
The pen control procedures are used to control the various features 
of the graphics pen used for drawing operations by QuickDraw. 
Each gra£Port has one pen. This section also covers procedures used 



A REFERENCE GUIDE 131 

to both move the pen around the grafPort and to draw lines. The 13 
items are presented in the following sequence: 

GetPen 

GetPenState 

HidePen 

Line 

LineTo 

Move 

MoveTo 

Pen Mode 

PenNormal 

Pen Pat 

Pen Size 

SetPenState 

Show Pen 

procedure GetPen (var pt:Point); 

The GetPen procedure returns the current pen location in pt. The 
location returned is in the local coordinates of the current grafPort. 

procedure GetPenState (var pnState:PenState); 

The GetPenState procedure uses the variable pnState to save the 
pen location, size, pattern, and mode. The pen state may be restored 
with a later call to SetPenState. This is a handy procedure that can 
be used when calling short subroutines that operate in the current 
grafPort but that must change the attributes of the graphics pen. 

procedure HidePen; 

The HidePen procedure has the effect of preventing the graphics 
pen from drawing on the screen. It decrements the grafPort's pn Vis 
field (initialized to 0 by OpenPort). If pn Vis is negative, the pen will 
not draw on the screen. Pn Vis is used in a manner similar to the 
cursor level, compensating for repeated calls to HidePen and 
Show Pen. OpenRgn, OpenPicture, and OpenPoly all call HidePen so 
that regions, pictures, and polygons may be created without affect­
ing the screen. 



132 MASTERING THE MACINTOSH TOOLBOX 

procedure Line (dh, dv:integer); 

The Line procedure draws a line from the current pen location to 
the location that is specified by dh horizontally and dv vertically. 
The pen ends up at the position that is specified by (h + dh, v + dv). 
If dh and dv are positive, the movement is to the right and down. If 
dh and dv are negative, the movement is to the left and up. 

procedure LineTo (h, v:integer); 

The LineTo procedure draws a line from the current pen location 
to the location specified by h and v in the coordinates of the current 
grafPort. The pen ends up at the location specified by (h,v). If a 
region definition or polygon structure is open, a call to LineTo will 
mathematically add the line to the region or polygon being formed. 

procedure Move (h, v:integer); 

Without drawing on the screen, the Move procedure moves the pen 
from its current location horizontally by the distance specified in h 
and vertically by the distance specified by v. If h and v are positive, 
the movement is to the right and down. If h and v are negative, the 
movement is to the left and up. 

procedure MoveTo (h, v:integer); 

Without drawing on the screen, the MoveTo procedure moves the 
graphics pen to the location specified by (h,v) in the local coordinates 
of the current grafPort. 

procedure PenMode (mode:integer); 

The PenMode procedure is used to define the transfer mode by 
which a pattern is transferred to the bit map when graphics draw­
ing takes place. The mode may be any one of the following pattern 
transfer modes: 

patCopy 
patOr 

patXor 
patBic 

notPatCopy 
notPatOr 

notPatXor 
notPatBic 

If the mode is a source transfer mode or is negative, no drawing 
takes place. The field pnMode contains the current pen mode, which 
is initially set to patCopy. 

procedure PenNormal; 

The PenNormal procedure is used to initialize or reset the initial 



A REFERENCE GUIDE 133 

state of the pen in the current grafPort. PenNormal sets pensize to 
(1,1), pnMode to PatCopy, and pnPat to black. The pen's location is 
not changed. 

procedure PenPat (pat:Pattern); 

The PenPat procedure is used to set the pattern used by the pen in 
the current grafPort. The constants white, black, light gray, and 
dark gray may be used to set the respective predefined pen patterns. 
The field pnPat contains the current grafPort's pen pattern, which 
is initialized to black. 

procedure PenSize (width, height:integer); 

The PenSize procedure sets the dimensions of the graphics pen in 
the current grafPort to the specified width and height. Subsequent 
calls to graphics procedures that use the graphics pen utilize the 
new pen dimensions. The field pnSize, which is of type Point, con­
tains the current pen dimensions. If either of the pen dimensions 
becomes negative, the pen assumes the dimensions (0,0) and no 
drawing is performed. 

procedure SetPenState (pnState:PenState); 

The SetPenState procedure sets the pen location, size, pattern, and 
mode of the graphics pen of the current grafPort to the values 
stored in pnState. 

procedure Show Pen; 

The Show Pen procedure has the effect of allowing the graphics 
pen to draw graphics images on the screen. Show Pen increments the 
current grafPort's pn Vis field, which may have been previously 
decremented by HidePen. As soon as pn Vis becomes equal to 0, 
QuickDraw commences drawing on the screen. CloseRgn, ClosePic­
ture, and ClosePoly all call Show Pen to balance the calls to HidePen 
made by OpenRgn, OpenPicture, and OpenPoly. 

Picture Routines 
Pictures are formed from a transcript of calls to QuickDraw rou­
tines. When completed, they may be manipulated as single graphics 
objects by the following routines. The five routines are arranged in 



134 MASTERING THE MACINTOSH TOOLBOX 

the following sequence: 

ClosePicture 

Draw Picture 

KillPicture 

OpenPicture 

PicComment 

procedure ClosePicture; 

ClosePicture completes the formation of a picture, telling Quick­
Draw to stop saving function calls and picture comments. ClosePic­
ture calls ShowPen to balance OpenPicture's call to HidePen. 

procedure DrawPicture (myPicture:PicHandle; 
dstRect:Rect); 

This procedure draws the given picture to scale in dstRect, 
expanding or contracting it as necessary to align the borders of the 
picture frame with dstRect. 

procedure KillPicture (myPicture:PicHandle); 

Procedure KillPicture clears the memory required to store the 
picture defined by the handle specified in PicHandle. The memory 
occupied by the picture is returned to the free memory pool. 

function OpenPicture (picFrame:Rect):picHandle; 

Used to start a picture definition, OpenPicture returns a handle to 
the new picture, which is drawn within the rectangle specified by 
picFrame. Subsequent calls to drawing procedures and picture 
comments will be saved as part of the picture definition. OpenPic­
ture calls the procedure HidePen, preventing calls to graphics 
procedures from drawing upon the screen. A call to ShowPen after 
the call to OpenPicture will allow drawing to occur. While a picture 
is open, the current grafPort's picSave field contains a handle to the 
information about the picture. In order to temporarily disable the 
formation of a picture, this field may be saved and set to nil. Later 
restoration of the field reenables picture formation. 



A REFERENCE GUIDE 135 

procedure PicComment (kind, dataSize:integer; 
dataHandle:QDHandle ); 

PicComment writes the specified text into the definition of the 
currently opened picture. Additional data is sent to the procedure 
through dataHandle, where dataSize is the size of the data in bytes. 
If there is no additional data for the comment, dataHandle should be 
nil and dataSize should be 0. The surrounding program that pro­
cesses the picture comments must include a procedure to process 
and store a pointer according to the procedure in the data structure 
pointed to by the graf Pro cs field in the grafPort. 

QuickDraw Caleulation Routines 
This section details all of the routines available to perform various 
calculations on the different graphics objects that may be manipu­
lated by QuickDraw. Calculations do not normally affect the screen, 
but are utilized prior to calling one of the QuickDraw graphics rou­
tines. The 38 routines are arranged in the following order: 

AddPt 

ClosePoly 

CloseRgn 

CopyRgn 

DiffRgn 

DisposeRgn 

EmptyRect 

EmptyRgn 

EqualPt 

EqualRect 

EqualRgn 

GlobalToLocal 

InsetRect 



136 MASTERING THE MACINTOSH TOOLBOX 

InsetRgn 

Kill Poly 

LocalToGlobal 

NewRgn 

OffsetPoly 

OffsetRect 

OffsetRgn 

OpenPoly 

OpenRgn 

Pt2Rect 

PtinRect 

PtinRgn 

PtToAngle 

RectinRgn 

RectRgn 

SectRect 

SectRgn 

SetEmptyRgn 

Set Pt 

SetRect 

SetRectRgn 

Sub Pt 

UnionRect 

UnionRgn 

XorRgn 

procedure AddPt (srcPt:Point; var dstPt:Point); 

AddPt adds the coordinates defined by srcPt and dstPt and 
returns the result in dstPt. 

procedure ClosePoly; 

ClosePoly completes the polygon definition initiated by OpenPoly, 



A REFERENCE GUIDE 137 

organizes the collection of lines into a polygon definition, and com­
putes the Poly Box rectangle. Only one ClosePoly call should be per­
formed for each call to OpenPoly. ClosePoly calls Show Pen to bal­
ance OpenPoly's call to HidePen. 

procedure CloseRgn (dstRgn:RgnHandle); 

CloseRgn completes the region definition initiated by OpenRgn by 
organizing the collection of lines and framed shapes into a region 
definition. It then saves the resulting region into the structure 
pointed to by dstRgn. Only one call to CloseRgn should be performed 
for each call to OpenRgn. CloseRgn calls Show Pen to balance 
OpenRgn's call to HidePen. 

procedure CopyRgn (srcRgn, dstRgn:RgnHandle); 

CopyRgn makes a duplicate copy of srcRgn in dstRgn. NewRgn 
must be called prior to calling Copy Rgn to initialize dstRgn and 
reserve the memory required on Macintosh's heap. 

procedure Difffign (srcRgnA, srcRgn~, 
dstRgn:RgnHandle); 

DiffRgn subtracts the region pointed to by srcRgnB from the 
region pointed to by srcRgnA and places the result into the region 
pointed to by dstRgn. If the region pointed to by srcRgnA is empty, 
the region pointed to by dstRgn is set to the empty region (0,0,0,0). 
Difffign does not create the region pointed to by dstRgn. While 
dstRgn may be set to one of the source regions, if it is a separate 
region it is necessary to call NewRgn to create the region pointed to 
by dstRgn prior to calling Difffign. 

procedure DisposeRgn (rgn:RgnHandle); 

DisposeRgn deallocates the space previously used for the region 
definition rgn. The memory is returneq to the free memory pool. 
The contents of a region are not recoverable once this procedure has 
been called for a region. 

function EmptyRect (r:Rect):boolean; 

EmptyRect returns True if the rectangle r is an empty rectangle 
(0,0,0,0). A rectangle is considered empty if the bottom coordinate is 
equal to or less than the top coordinate or if the right coordinate is 
equal to or less than the left coordinate. 



138 MASTERING THE MACINTOSH TOOLBOX 

function EmptyRgn (rgn:RgnHandle):boolean; 

EmptyRgn returns True if the region pointed to by rgn is an 
empty region. 

function EqualPt (ptA, ptB:Point):boolean; 

EqualPt compares the points ptA and ptB and returns True if 
they are equal. Otherwise, False is returned. 

function EqualRect (rectA, rectB:Rect):boolean; 

EqualRect returns True if the two source rectangles rectA and 
rectB are equal. The two rectangles must have identical boundary 
coordinates to be considered equal. 

function EqualRgn (rgnA, rgnB:RgnHandle):boolean; 

EqualRgn returns True if the two source regions pointed to by 
srcRgnA and srcRgnB are equal. The two regions must have identi­
cal sizes, shapes, and locations to be considered equal. 

procedure GlobalToLocal (var pt:Point); 

GlobalToLocal converts the point pt, expressed as a global coordi­
nate, with the upper left corner of the bit map as (0,0),-to the local 
coordinates of the current grafPort. 

procedure InsetRect (var r:Rect; dh, dv:integer); 

InsetRect shrinks or expands the rectangle defined by r. The left 
and right sides are moved in if positive or out if negative, by the 
quantity specified in dh. The top and bottom are moved in or out 
(depending on positive or negative, respectively) by the amount speci­
fied in dv. If the width or height become less than l, the rectangle 
returned is the empty rectangle, (0,0,0,0). 

procedure InsetRgn (rgn:RgnHandle; dh, dv:integer); 

Similar to InsetRect, InsetRgn shrinks or expands the region 
pointed to by rgn horizontally by the distance specified in dh and 
vertically by the distance specified in dv. If dh and dv are positive, 
the points defining the region are moved inward. If they are nega­
tive, the points defining the region are moved outward. The region 
will remain centered at its current position and will not affect the 
screen until a subsequent call to a procedure that draws the region. 



A REFERENCE GUIDE 139 

procedure KillPoly (poly:PolyHandle); 

KillPoly deallocates space for the polygon whose handle is defined 
by poly. It returns the memory used by the polygon definition to the 
free memory pool. 

procedure LocalToGlobal (var pt:Point); 

LocalToGlobal converts the point pt from the current grafPort's 
local coordinate system to a point with the origin at (O,O) at the 
upper left corner of the port's bit image. This global point can then 
be compared with other global points or changed into the local coor­
dinates of another grafPort. 

function New Rgn:RgnHandle; 

NewRgn allocates space on the Macintosh heap for a new, 
dynamic, variable-sized region. It is initialized to the empty region 
(0,0,0,0) and returns a handle to the new region. 

procedure OffsetPoly (poly:PolyHandle; dh, dv:integer); 

Similar to OffsetRect, OffsetPoly moves the polygon pointed to by 
poly horizontally on the coordinate plane by the distance specified in 
dh and vertically by the distance specified by dv. If dh and dv are 
positive, the movement is to the right and down. If they are negative, 
the movement is to the left and up. OffsetPoly does not affect the 
screen until a subsequent call to a procedure to draw the polygon, 
nor does it affect the size and shape of the polygon. 

procedure OffsetRect (var r:Rect; dh, dv:integer ); 

OffSetRect moves the rectangle defined by r. It adds dv to the 
vertical coordinates and dh to the horizontal coordinates. The cor­
responding movement is to the right and down if dh and dv are posi­
tive, and to the left and up if dh and dv are negative. 

procedure OffsetRgn (rgn:RgnHandle; dh, dv:integer); 

Similar to OffsetRect, OffsetRgn moves the region pointed to by 
rgn horizontally on the coordinate plane by the distance specified by 
dh and vertically by the distance specified by dv. If dh and dv are 
positive, the movement is to the right and down. If they are negative, 
the movement is to the left and up. OffsetRgn does not affect the 
screen until a subsequent call to draw the region, nor does it affect 
the size and shape of the region. 



140 MASTERING THE MACINTOSH TOOLBOX 

function OpenPoly:PolyHandle; 

OpenPoly initiates the construction of a polygon definition. It allo­
cates temporary space on Macintosh's heap to hold the polygon defi­
nition and calls the routine HidePen to prevent further calls to 
graphics operations from drawing on the screen. While the polygon 
is open, all calls to Line and LineTo are mathematically added to the 
outline of the polygon. Only the line end points will affect the 
polygon definition. A polygon should consist of a closed loop. 

procedure OpenRgn; 

OpenRgn initiates the construction of a region definition. It allo­
cates temporary space on Macintosh's heap to hold the region defini­
tion and calls the routine HidePen to prevent further calls to graph­
ics operations from drawing on the screen. While the region is open, 
all calls to MoveTo, Line, LineTo, and the procedures that draw 
framed shapes (except arcs) affect the outline of the region. Only the 
line end points and shape boundaries affect the region definition. A 
region should consist of one or more closed loops. Each framed shape 
is itself a closed loop. 

procedure Pt2Rect (ptA, ptB:Point; var dstRect:Rect); 

Pt2Rect returns the smallest rectangle in dstRect that encloses the 
two input points ptA and ptB. 

function PtlnRect (pt:Point; r:Rect):boolean; 

PtlnRect returns True if the pixel below and to the right of the 
given coordinate point pt is enclosed within the rectangle specified 
by r. 

function PtlnRgn (pt:Point; rgn:RgnHandle):boolean; 

PtinRgn returns True if the pixel below and to the right of the 
given coordinate point pt is enclosed within the region pointed to by 
rgn. 

procedure PtToAngle (r:Rect; pt:Point; var angle:integer); 

PtToAngle returns the integer angle in degrees in variable angle 
between a line from the center of the rectangle straight up (12 
o'clock) and a line from the center of the rectangle to the given point 
pt. The angle returned is measured clockwise from the vertical line. 



A RE}<'ERENCE GUIDE 141 

If the line to the given point passes through the upper right corner 
of the rectangle, the angle returned is 45 degrees. The value of 45 is 
returned even if the rectangle is not a square. If the line passes 
through the lower right corner of the rectangle, the angle returned 
is 135 degrees, and so on. 

function RectlnRgn (r:Rect; rgn:RgnHandle):boolean; 

RectinRgn returns True if the rectangle r intersects the region 
pointed to by rgn and at least one bit is enclosed. 

procedure RectRgn (rgn:RgnHandle; r:Rect); 

Similar to SetRectRgn, this procedure destroys the structure 
pointed to by rgn and replaces it with the rectangle specified by r. 
The difference between RectRgn and SetRectRgn is that the input 
rectangle in RectRgn is defined by a rectangle, rather than by the 
four boundary coordinates defined in SetRectRgn. 

function SectRect (srcRectA, srcRectB:Rect; var 
dstRect:Rect):boolean; 

SectRect calculates the rectangle that is the intersection of the two 
source rectangles srcRectA and srcRectB. It returns True if they 
intersect and False if they don't. Touching rectangles are not consid­
ered to intersect. If the rectangles do not intersect, the destination 
rectangle dstRect is set to the empty rectangle (0,0,0,0). 

procedure SectRgn (srcRgnA, srcRgnB, 
dstRgn:RgnHandle); 

Like SectRect, SectRgn calculates the intersection of the two 
regions pointed to by srcRgnA and srcRgnB. The procedure places 
the result into the region pointed to by dstRgn. If the regions do not 
intersect, or if one of the regions contains an empty region, dstRgn 
is set to the empty region (0,0,0,0). SectRgn does not create the 
region pointed to by dstRgn. While dstRgn may be set to point at 
one of the source regions, if it is a separate region it is necessary to 
call NewRgn to create the region pointed to by dstRgn prior to call­
ing SectRgn. 

procedure SetEmptyRgn (rgn:RgnHandle); 

SetEmptyRgn destroys the structure of the region definition 
pointed to by rgn and replaces it with the empty region (0,0,0,0). 



142 MASTERING THE MACINTOSH TOOLBOX 

procedure SetPt (var pt:Point; h, v:integer); 

SetPt assigns the two integer coordinates h and v to the point pt. 

procedure SetRect (var r:Rect; left, top, right, 
bottom:integer ); 

SetRect returns the variable r set to the four boundary coordinates 
of a rectangle: left, top, right, and bottom. 

procedure SetRectRgn (rgn:RgnHandle; left, top, right, 
bottom:integer); 

SetRectRgn destroys the structure of the region pointed to by rgn 
and then sets the new structure to the rectangle specified by left, 
top, right, and bottom. If the specified rectangle is empty, the struc­
ture is set to the empty region (0,0,0,0). 

procedure SubPt (srcPt:Point; var dstPt:Point); 

SubPt subtracts the coordinates specified by srcPt from dstPt and 
returns the result in dstPt. 

procedure UnionRect (srcRectA, srcRectB:Rect; 
var dstRect:Rect); 

UnionRect calculates the smallest rectangle that encloses both the 
source rectangles srcRectA and srcRectB and returns the result in 
dstRect. 

procedure UnionRgn (srcRgnA, srcRgnB, 
dstRgn:RgnHandle); 

Similar to UnionRect, UnionRgn calculates the union of the two 
regions pointed to by srcRgnA and srcRgnB and places the result 
into the region pointed to by dstRgn. If both regions are empty, the 
destination region is set to the empty region (0,0,0,0). UnionRgn does 
not create dstRgn. While dstRgn may be set to one of the source 
regions, it is necessary to call New Rgn to create dstRgn prior to 
calling UnionRgn, if it is a separate region. 

procedure XorRgn (srcRgnA, srcRgnB, 
dstRgn:RgnHandle); 

Xor Rgn calculates the difference between the union and the inter­
section of the region pointed to by srcRgnA and the region pointed 



A REFERENCE GUIDE 143 

to by srcRgnB and places the result into the region pointed to by 
dstRgn. If the regions are coincident, the region pointed to by 
dstRgn is set to the empty region (0,0,0,0). XorRgn does not create 
dstRgn. While dstRgn may be set to one of the source regions, if it is 
a separate region it is necessary to call New Rgn to create the region 
pointed to by dstRgn prior to calling Xor Rgn. 

QuickDraw Data Types 
This section describes the various data types and structures used in 
parameters and variables throughout QuickDraw procedures and 
functions. The 18 data types are presented in the following sequence: 

BitMap 

Cursor 

Pattern 

PicHandle 

PicPtr 

Picture 

Point 

Poly Handle 

PolyPtr 

Polygon 

QDByte 

QDHandle 

QDPtr 

Re ct 

Region 

RgnHandle 

RgnPtr 

Style 



144 MASTERING THE MACINTOSH TOOLBOX 

BitMap 

The data type BitMap is used by QuickDraw to impose a coordi­
nate system to an area of memory that contains a bit image. It is 
defined as 

type BitMap = record 
baseAddr: 
row Bytes: 
bounds: 

end;· 

QDPtr; 
integer; 
Rect; 

where baseAddr is a pointer to the beginning of the image in 
memory, and the row Bytes field defines the number of bytes in each 
row of the image. The bounds field defines a rectangle that imposes 
the coordinate system on the bit image. 

Cursor 

The data type Cursor is used by QuickDraw to define a 256-bit 
image organized as a 16 X 16 rectangle. It defines the shape of the 
cursor controlled by the mouse. It is defined as 

type Cursor = record 
data: 
mask: 
hotspot: 

array [ 0 .. 15] of integer; 
array [ 0 .. 15] of integer; 
Point; 

end; 

The data field contains the bit image of the cursor itself, while the 
mask field is used by QuickDraw to determine both the screen 
appearance of each bit of the cursor and the bits under the cursor 
that are already on the screen. Hotspot aligns the cursor with the 
position of the mouse. The following table shows Quickdraw's use of 
the mask and data fields to produce the final screen appearance of 
the cursor: 

Data Mask 

0 1 
1 1 
0 0 
1 0 

Resulting Pixel on the Screen 

White 
Black 
Same as pixel under cursor 
Inverse of pixel under cursor 



A REFERENCE GUIDE 145 

Pattern 

The data type pattern is used by QuickDraw to define a 64-bit 
image organized as an 8 X 8 rectangle that defines the tone of the 
repeating pattern. It is defined as 

type Pattern = packed array [O .. 7] of 0 .. 255; 

PicHandle 

The data type PicHandle is defined as 

type PicHandle = "PicPtr; 

PicHandle is used by QuickDraw to implement Macintosh's double­
indirection method of memory management. 

PicPtr 

The data type PicPtr is used to point at the area of memory that 
contains the variable-length picture data. It is defined as 

type PicPtr = "Picture; 

Picture 

The data type Picture is used by QuickDraw to maintain a trans­
cript of calls to routines that draw any picture on the bit map. It is 
used by QuickDraw to "replay" the sequence of commands that were 
originally used to draw the image. It is a variable-length structure 
and is defined as 

type Picture = record 
picSize: integer; 
picFrame: Rect; 
{picture definition data} 

end; 

The picSize field contains the size in bytes of the picture variable. 
The picFrame field defines a rectangle that completely encloses the 
picture. PicFrame is used for scaling by routines that redraw the 
picture. 



146 MASTERING THE MACINTOSH TOOLBOX 

Point 

A data type of Point defines the intersection of horizontal and ver­
tical grid lines on the QuickDraw coordinate plane. The data type of 
Point is defined as 

type VHSelect = (V,H); 
Point = record case integer of 

0: (v: integer; 
h: integer); 

1: (vh:. array [VHSelect] of integer) 
end; 

Poly Handle 

The data type Poly Handle is defined as 

type PolyHandle = "PolyPtr; 

PolyHandle is used by QuickDraw to implement Macintosh's double­
indirection method of memory management. 

PolyPtr 

The data type Poly Ptr is used to point at the area of memory that 
contains the variable-length polygon data. It is defined as 

type PolyPtr ="Polygon; 

Polygon 

The data type polygon is used by QuickDraw to maintain the 
array of points used by QuickDraw to construct a polygon. It is a 
variable-length structure and is defined as 

type Polygon = record 
polySize: 
polyBBox: 
poly Points: 

end; 

integer; 
Rect; 
array [O .. O] of Point; 

The polySize field contains the size in bytes of the polygon variable. 
The polyBBox field defines a rectangle that encloses the polygon. 
The array poly Points will expand as necessary to contain the points 
in the polygon. 



A REFERENCE GUIDE 147 

QDByte 

The data type QDByte is one of three general data types. It is used 
to define the 8-bit byte as 

type QDByte = -128 .. 127; 

where QDByte ranges in values from -128 and +127, inclusive. 

QDHandle 

The data type QDHandle is a QuickDraw general data type. It is 
used by QuickDraw to implement the Macintosh's double-indirection 
method of memory management. It is defined as 

type QDHandle = "QDPtr; 

QDPtr 

The data type QDPtr is another of QuickDraw's general data 
types. It is used to define a pointer to a contiguous area of memory 
on the Macintosh's heap. It is defined as 

type QDPtr = "QDByte; 

Rect 

The data type Rect defines both the upper left and the lower right 
points used by QuickDraw to construct a rectangle. It is defined as 

type Rect = record case integer of 

end; 

Region 

0: (top: integer; 
left: integer; 
bottom: integer; 
right: integer); 

1: (topleft: 
botright: 

Point; 
Point); 

The data type Region consists of an arbitrary set of spatially 
related, coherent points used by QuickDraw to define a region. It is 
a variable-length type defined as 



148 MASTERING THE MACINTOSH TOOLBOX 

type Region = record 
rgnSize: integer; 
rgnBBox: Rect; 

{optional region definition data} 
end; 

The rgnSize field contains the size of the Region variable and the 
rgnBBox field is a rectangle that completely encloses the region. 

RgnHandle 

The data type RgnHandle is another implementation of double­
indirection and is defined as 

type RgnHandle = "RgnPtr; 

This data type is used by QuickDraw to locate an area of memory 
under Macintosh's double-indirection method of memory manage­
ment. 

RgnPtr 

The data type RgnPtr points to the area of memory that contains 
the variable-length region. It is defined as 

type RgnPtr = "Region; 

Style 

The data type Style is used by QuickDraw to define the set of text 
faces that may be utilized during text drawing operations. It is 
defined as 

type Styleltem = (bold, italic, underline, outline, shadow, 
condense, extend); 

Style = set of Styleltem; 

QuickDraw Graphics Procedures 
This section describes the different procedures that may be used to 
draw graphics images on the screen. QuickDraw has five classes of 
graphics operations-Frame, Paint, Erase, Invert, and Fill. Figures 
A-3 through A-6 illustrate the five different classes. 



A REFERENCE GUIDE 149 

( J I~___. 

0 
Figure A-3. Example of QuickDraw operaiions Frame and Paint 

:1 
Figure A-4. Example of QuickDraw operaiion Erase 

Figure A-5. Example of QuickDraw operaiwn Invert 



150 MASTERING THE MACINTOSH TOOLBOX 

--
.. . ...... . 

. . . . . . . . . . . 

. . . . . . . . . 

. . . . . . . . . 

. : : : : : : : : : : : 

Figure A- 6. Example of QuickDraw operation Fill 

There are 30 QuickDraw Graphics Procedures. They are pre­
sented in the following sequence: 

EraseArc 

EraseOval 

ErasePoly 

EraseRect 

EraseRgn 

EraseRoundRect 

FillArc 

Fill Oval 

FillPoly 

FillRect 

FillRgn 

FillRoundRect 

FrameArc 

FrameOval 

FramePoly 



FrameRect 

FrameRgn 

FrameRoundRect 

InvertArc 

InvertOval 

InvertPoly 

InvertRect 

InvertRgn 

InvertRoundRect 

PaintArc 

PaintOval 

PaintPoly 

PaintRect 

PaintRgn 

PaintRoundRect 

A REFERENCE GUIDE 151 

procedure EraseArc (r:Rect; startAngle, arcAngle:integer); 

Using the current grafPort's background pattern in patCopy 
mode, EraseArc paints a wedge of the oval just inside the rectangle 
specified by arc. StartAngle and arcAngle are used in the same 
manner as in FrameArc. The pen's location is not changed. 

procedure EraseOval (r:Rect); 

EraseOval forms the specified oval with the current grafPort's 
background pattern in patCopy mode. The pen's location is not 
changed. 

procedure ErasePoly (poly:PolyHandle); 

Using the current grafPort's background pattern in patCopy 
mode, ErasePoly paints the polygon defined by poly. The pen's loca­
tion is not changed. 

procedure EraseRect (r:Rect); 

EraseRect forms the specified rectangle with the current graf­
Port's background pattern in patCopy mode. The pen's location is not 
changed. 



152 MASTERING THE MACINTOSH TOOLBOX 

procedure EraseRgn (rgn:RgnHandle); 

Using the current grafPort's background pattern in patCopy 
mode, the EraseRgn procedure paints the region pointed to by rgn. 
The pen's location is not changed. 

procedure EraseRoundRect (r:Rect; ovalWidth, 
ovalHeight:integer); 

Similar to EraseRect, EraseRoundRect forms the specified round­
cornered rectangle with the current grafPort background pattern 
patCopy mode. The pen's location is not changed. 

procedure FillArc (r:Rect; startAngle, arcAngle:integer; 
pat:Pattern); 

Using the pattern specified by pat, FillArc fills the wedge of the 
oval just inside the rectangle specified by r. StartAngle and arcAn­
gle are used as in FrameArc. The pen's location is not changed. 

procedure FillOval (r:Rect; pat:Pattern); 

Fill Oval fills the oval formed just inside the rectangle specified by 
r with the pattern specified with pat in patCopy mode. The pen's 
location is not changed. 

procedure FillPoly (poly:PolyHandle; pat:Pattern); 

Using the pattern specified by pat in patCopy mode, FillPoly 
paints the polygon pointed to by poly. The pen's location is not 
changed. 

procedure FillRect (r:Rect; pat:Pattern); 

FillRect fills the rectangle specified by r with the pattern speci­
fied with pat in patCopy mode. The pen's location is not changed. 

procedure FillRgn (rgn:RgnHandle; pat:Pattern); 

Using the pattern specified by pat, FillRgn fills the region pointed 
to by rgn. The pen's location is not changed. 

procedure FillRoundRect (r:Rect; ovalWidth, 
ovalHeight:integer; pat:Pattern); 

Similar to FillRect, FillRoundRect fills the rectangle specified by 



A REFERENCE GUIDE 153 

r with the pattern specified by pat in patCopy mode. The pen's loca­
tion is not changed. 

procedure FrameArc (r:Rect; startAngle, arcAngle:integer); 

Using the current pen pattern, mode, and size, FrameArc draws 
the arc of the oval that fits inside the rectangle specified by r. Start­
Angle indicates the angle from which the arc will begin, and arcAn­
gle defines the actual angle of arc that will be drawn. Angles may be 
positive or negative, with a positive angle indicating the clockwise 
direction and a negative angle indicating the counterclockwise 
direction. Figure A-7 indicates the major quadrants with reference 
to a clock. The arc will be as wide as the pen width and as tall as the 
pen height. It is drawn with the current pen pattern, according to 
the pen mode. The pen's location is not changed. 

As illustrated in Figure A-8, angles are measured relative to the 
enclosing rectangle. A line passing through the upper right corner 
of the rectangle is measured at an angle of 45 degrees, whether or 
not the enclosing rectangle is square. 

procedure FrameOval (r:Rect); 

FrameOval forms the outline of an oval that just fits inside the 
specified rectangle. The outline is as wide as the pen width and as 

315 45 
-45 0 -315 

270 90 
-90 -270 

225 180 135 
-135 - 180 -225 

Figure A- 7. Major arc quadrants 



154 MASTERING THE MACINTOSH TOOLBOX 

stertAngle = O 

ercAngle = -45 

r 

stertAngl e = O 

ere Ang 1 e = 45 
.-----:::.-----..·/ 

r 

FremeArc 

FremeArc 

r 

PaintArc I 
r 

stertAngl e = o 

Figure A- 8. Angles measured relative to enclosing rectangles 

tall as the pen height. It is drawn with the current pen pattern, 
· using the pattern transfer mode specified by pnMode. The pen loca­

tion is not changed by the procedure. 

procedure FramePoly (poly:PolyHandle); 

Using the current grafPort's pen pattern, mode, and size, Frame­
Poly "plays back" the line-drawing routine calls that define the 
given polygon pointed to by poly. The lines will be as wide as the pen 
width and as tall as the pen height. Because the pen hangs below 
and to the right of the pen location, the polygon will extend beyond 



A REFERENCE GUIDE 155 

the right and lower edges of the rectangle in the poly BBox field by 
the pen width and the pen height, respectively. 

If a polygon is open, the line-drawing routines pointed to by poly 
are added to the outline of the polygon being formed. If a region is 
open, the outline of the polygon is added mathematically to the 
region's boundary. 

procedure FrameRect (r:Rect); 

FrameRect draws the outline of a rectangle using the current pen 
pattern, mode, and size. The outline will appear just inside the speci­
fied rectangle and is as wide as the pen width and as tall as the pen 
height. It is drawn with the pen pattern according to the pattern 
transfer mode. The pen location is not changed. If a region is open 
and being formed, the outline of the new rectangle is added 
mathematically to the region's boundary. 

procedure FrameRgn (rgn:RgnHandle); 

Using the current grafPort's pen pattern, mode, and size, Frame­
Rgn draws a hollow outline just inside the region pointed to by rgn. 
The outline will be as wide as the pen width and as tall as the pen 
height. The pen's location is not changed. 

If a region is currently open, the outline of the region pointed to by 
rgn is added mathematically to the open region's boundary. 

procedure FrameRoundRect (r:Rect; ovalWidth, 
ovalHeight:integer); 

As illustrated in Figure A-9, FrameRoundRect draws the outline 
of a round-cornered rectangle using the current pen pattern, mode, 
and size. The outline will appear just inside the specified rectangle 
and is as wide as the pen width and as tall as the pen height. The 
ovalWidth and ovalHeight are used to size the ovals that form the 
rounded corners of the rectangle, as shown in Figure A-9. It is 
drawn with the pen pattern, according to the pattern transfer mode. 
The pen location is not changed. If a region is open and being 
formed, the outline of the new round-cornered rectangle is added 
mathematically to the region's boundary. 

procedure InvertArc (r:Rect; startAngle, arcAngle:integer); 

InvertArc inverts the pixels enclosed by the wedge of the oval just 
inside the rectangle specified by r. StartAngle and arcAngle are 



156 MASTERING THE MACINTOSH TOOLBOX 

OvalW1d1h OvalHeight 

Figure A- 9. A round-cornered rectangle drawn by 
FrameRoundRect 

used in the same manner as in FrameArc. The pen's location is not 
changed. 

procedure InvertOval (r:Rect); 

InvertOval inverts the pixels enclosed by the oval just inside the 
rectangle specified by r. Each white pixel becomes black and each 
black pixel becomes white. The pen's location is not changed. 

procedure InvertPoly (poly:Poly Handle); 

Like InvertRect, InvertPoly inverts the pixels enclosed by the 
polygon pointed to by poly. Every w bite pixel becomes black and 
every black pixel becomes white. The pen's location is not changed. 

procedure InvertRect (r:Rect); 

InvertRect inverts the pixels enclosed by the rectangle specified 
by r. Each white pixel becomes black and each black pixel becomes 
white. The pen's location is not changed. 



A REFERENCE GUIDE 157 

procedure InvertRgn (rgn:RgnHandle); 

Like InvertRect, InvertRgn inverts the pixels enclosed by the 
region pointed to by rgn. Every white pixel becomes black and 
every black pixel becomes white. The pen's location is not changed. 

procedure lnvertRoundRect (r:Rect; ovalWidth, 
ovalHeight:integer ); 

Similar to lnvertRect, InvertRoundRect inverts the pixels enclosed 
by the round-cornered rectangle specified by r. Each white pixel 
becomes black and each black pixel becomes white. The pen's loca­
tion is not changed. 

procedure PaintArc (r:Rect; startAngle, arcAngle:integer); 

Using the current grafPort's pen pattern and mode, paintArc 
paints a wedge of the oval that fits just inside the rectangle specified 
by r. StartAngle and arcAngle define the arc of the wedge as in 
FrameArc. The pen's location is not changed. 

procedure PaintOval (r:Rect); 

Like PaintRect, PaintOval forms an oval just inside the rectangle 
specified by r. It is drawn with the current pen pattern, using the 
pattern transfer mode specified by pnMode. The pen location is not 
changed by the procedure. 

procedure PaintPoly (poly:PolyHandle); 

Using the current grafPort's pen pattern and pen mode, PaintPoly 
paints the polygon pointed to by poly. The pen's location is not 
changed. 

procedure PaintRect (r:Rect); 

PaintRect draws the specified rectangle filled with the current 
pen pattern according to the current pen pattern transfer mode. The 
pen's location is not changed. 

procedure PaintRgn (rgn:RgnHandle); 

Using the current grafPort's pen pattern and pen mode, PaintRgn 
paints the region pointed to by rgn. The region is filled with the pen 



158 MASTERING THE MACINTOSH TOOLBOX 

pattern according to the pen mode specified by the current grafPort. 
The pen's location is not changed. 

procedure PaintRoundRect (r:Rect; ovalWidth, 
ovalHeight:integer ); 

PaintRoundRect draws the specified round-cornered rectangle 
filled with the current pen pattern according to the current pen pat­
tern transfer mode. The pen's location is not changed. 



A p p E N D x 

Mathematical 
Systems and 
Concepts 

This appendix presents concepts of Boolean mathematics and de­
scribes decimal, binary, and hexadecimal numbering systems. 

Concepts of Boolean Mathematics 
Boolean logic is a system of mathematical logic first proposed by 
George Boole in 1857. At that time, mathematicians were excited by 
the prospect of formulating an entire system of symbolic logic, 
something hitherto unaccomplished. It was not until the invention of 

159 



160 MASTERING THE MACINTOSH TOOLBOX 

electronic computers, however, that Boolean logic had any practical 
application outside of mathematics. Now Boolean logic is used to 
design the electronic circuits that make up a computer. It is thus an 
integral part of almost all programming languages. 

Boolean algebra, like conventional algebra, makes statements that 
have operators (such as the plus sign for addition or the minus sign 
for subtraction) and operands (the quantities operated on by the 
operators). Unlike everyday algebraic equations such as 5 + 7 = 12, 
Boolean algebraic expressions may have one of two values-True or 
False. Boolean operands also take the value of either True or False. 
The four common logical, or Boolean, operators are NOT, AND, 
inclusive OR (called OR), and exclusive OR (known as XOR). 

NOT 
The NOT, or negation operator, performs the same function in Boo­
lean algebra as the word "not" does in the English language. If an 
element P has the value of True, then NOT P has the value of False. 
Similarly, NOT False is equivalent to True. The standard format for 
displaying the results of a Boolean operator on an element or 
between two elements is the truth table. Here is the truth table for 
NOT: 

AND 

p 

T 
F 

NOTP 

F 
T 

The AND operator corresponds to the conjunction of two operands. 
For example, for the expression P AND Q to yield True, both P and 
Q must be True; otherwise, the result will be False. The truth table 
for AND is as follows: 

p 

T 
T 
F 
F 

Q 
T 
F 
T 
F 

PANDQ 

T 
F 
F 
F 



OR 
MATHEMATICAL SYSTEMS AND CONCEPTS 161 

The OR operator corresponds to a disjunction. When either operand 
is True, the entire expression yields True. The truth table for the OR 
operation is 

p 

T 
T 
F 
F 

Q 

T 
F 
T 
F 

PORQ 

T 
T 
T 
F 

XOR 
The XOR operator will yield True only if either operand, but not 
both, is True. XOR's truth table is 

p 

T 
T 
F 
F 

Q 

T 
F 
T 
F 

Boolean Logic in Programming 
Languages 

PXORQ 

F 
T 
T 
F 

All programming languages provide for the use of Boolean opera­
tors. Pascal even provides a special data type, Boolean, to handle a 
variable used in these logical operations. To understand how these 
variables operate in a program, be advised that an operand can rep­
resent one of two binary values. Thus, it is possible to equate the 
operand with a binary digit, either 1 or 0. By convention, the value 
of True is equal to 1 (sometimes -1 or NOT 0 in other languages) 
and the value of False is equal to 0. A series of binary digits, called 
bits for short, may be operated upon element by element. For 
example: 

01101001 NOT 

10010110 



162 MASTERING THE MACINTOSH TOOLBOX 

In the above example, the NOT operator, acting on the series of bi­
nary digits 01101001, has as its result the negation of the.operand. In 
NOT, each bit that has the value of 0 is translated into a bit that has 
the value of 1. Likewise, a value of 1 is converted into a value of 0. 

As an example of the Boolean AND operation, look at the follow­
ing example: 

01101001 
11100011 AND 

01100001 

The AND operator produces a 1 as a result only if both bits being 
ANDed are l's. Otherwise, a 0 is produced. Remember this from the 
truth table at the beginning of the appendix, where the conjunction 
of two operands was True only when both were themselves True. All 
other combinations produced False. 

An example of the OR logical operation is 

01101001 
11100011 OR 

11101011 

The OR operator generates a 1 if there is a 1 in either of the two 
bits being compared. A 0 is returned only if both bits being com­
pared are 0. Again, think back to the truth table for the OR opera­
tion, where the result was True when either (or both) of the op­
erands were True and False only when both operands were False. 

Unlike the standard OR operation, the XOR operation takes a "one 
or the other, but not both" approach to making its decisions. Look at 
this example: 

01101001 
11100011 XOR 

10001010 

The XOR operation produces a 1 if either of the bits being com­
pared contains a 1. In any other case, a 0 is returned as the answer. 

Although the techniques borrowed from Boolean logic are impor­
tant to a programming language for controlling program flow, the 
Macintosh uses Boolean techniques for transferring graphics images 
as well as for their more conventional role of directing program 
flow. 



MATHEMATICAL SYSTEMS AND CONCEPTS 163 

Numbering Systems 
Many Macintosh applications require the use of a diverse set of 
graphics techniques to control the appearance of the Macintosh 
screen. The use of these techniques depends heavily on a knowledge 
of numbering systems other than the standard decimal system used 
almost everywhere. The following section explains the different 
numbering systems used by computers and illustrates their applica­
tion to programming the Macintosh. 

Decimal 
The numbering system we use on a day-to-day basis is known as the 
decimal system. It has a set of ten digits labeled 0 through 9. Each 
digit position in a decimal number represents a power of ten, as 
illustrated below: 

Digit Position 4 3 2 1 0 

L10° =units 

101 = tens 

102 = hundreds 
...._ _____ 103 = thousands 

'-------- 104 = ten thousands 

so that the decimal number 62,023 is equal to 

6 x 10,000 = 60,000 
2 x 1,000 = 2,000 
ox 100= 0 
2 x 10 = 20 
3 x 1 = 3 

62,023 

Each decimal position is multiplied by the power of ten repre­
sented by that position. These values are then added together to 
form the total. The decimal system is said to be base 10. That is, 
there are a total of ten elements composing the set of possible digits. 



164 MASTERING THE MACINTOSH TOOLBOX 

Other numbering systems use numbers other than 10 as their 
base. The binary system, which we just saw in the previous section 
on Boolean logic, is also called base 2 because only the digits 0 and 1 
are utilized. Octa~ also called base 8, uses the digits 0, l, 2, 3, 4, 5, 6, 
and 7. Hexadecimal, also referred to as base 16, uses the digits 0 
through 9 and then the letters A, B, C, D, E, and F to represent the 
decimal values 10 through 15. 

Binary 
The decimal system is not a very useful system for computers 
because it is difficult for a computer to distinguish among ten dif­
ferent digits. Binary was chosen as the numbering system for com­
puters because it is very easy to represent the binary digits in the 
electronic circuitry that make up a computer. Electronically, the 
binary digits 0 and 1 can be represented by a switch that is either on 
or off. You can liken this to a light switch. When on, the light is 
incandescent. This corresponds to a True state. When flipped off, the 
light goes out and the circuit is in a False state. 

Each digit position in the binary system represents a power of 2 
as follows: 

Digit Position 4 3 2 1 0 

'fl = units 

21 = twos 

'!- = fours 
,__ _____ Z3 = eights 

....__------24 = sixteens 

The binary number 10110 is therefore equal to: 

1 x 16 = 16 
0 x 8 = 0 
1 x 4 = 4 
1 x 2 = 2 
0 x 1 = 0 

22 in decimal 

The previous example demonstrates how to convert from the 



MATHEMATICAL SYSTEMS AND CONCEPTS 165 

binary number system to the decimal number system. It is very easy 
for a computer to store the number 19 as a binary number. Imagine 
the computer's memory as a row of five switches. The first switch is 
on, indicating a value of sixteen. The second switch is off, indicating 
a value of 0, and so on for each switch. Converting from decimal to 
binary is just as simple as converting from binary to decimal. The 
procedure consists of a series of repeated steps. Each time the 
procedure is repeated, it returns the next higher digit position. 

In order to convert decimal numbers into binary numbers, follow 
these steps: 

1. Divide the decimal number by 2. 

2. If there is a remainder from the division, write down the 
number 1; otherwise, write down the number 0. 

3. Discard the remainder and use the quotient obtained earlier as 
the dividend in the next division. 

4. Repeat steps 1 through 3 until you obtain 1 as the quotient. This 
last 1 becomes the last binary digit in the number. 

Converting the decimal number 22 into binary is shown in the 
following example: 

22 divided by 2 = 11 with a remainder of 0 --------. 

11 divided by 2 = 

5 divided by 2 = 
2 divided by 2 = 

1 divided by 2 = 

5 with a remainder of 1 ---------. 

2 with a remainder of 1 ~ 
1 with a remainder of 0 =1 
0 with a remainder of 1 1 1 

1 0 1 1 0 

Thus, the number 22 in decimal is 10110 in binary. The best way to 
understand these conversions is to practice them. 

Hexadecimal 
As with decimal numbers, binary numbers may be added, sub­
tracted, divided, and multiplied. However, for the purposes of this 
book, it is not necessary to understand the basic operations of binary 



166 MASTERING THE MACINTOSH TOOLBOX 

arithmetic. What is important to know is how to use hexadecimal 
notation. Because it is extremely easy to make a mistake when deal­
ing with long strings of binary numbers, the practice of converting 
binary numbers into hexadecimal numbers for easier manipulation 
has developed. Hexadecimal is a numbering system that uses the 
base 16 (which is a power of 2). Each digit position of a hexadecimal 
number represents powers of sixteen as follows: 

Digit Position: 3 

1 =units 

16 = sixteens 

256 = two hundred fifty-sixes 

....._ ___ 163 = 4096 = four thousand ninety-sixes 

The hexadecimal system uses the sixteen digits labeled 0 though 9 
plus the alphabetic characters A through F to represent the values 
10 through 15, respectively. The use of the hexadecimal number sys­
tem may seem extremely clumsy until the organization of the com­
puter's memory is taken into consideration. As previously menti­
oned, the computer's memory is organized as an array of switches, 
with each switch representing one bit. This array of switches is 
organized further into groups of eight bits, each group commonly 
known as a byte. Because 16 is the fourth power of two, conversion 
from a binary number to a hexadecimal number is both simple and 
direct. And because any hexadecimal number can be represented by 
four bits, a byte can be represented by two hexadecimal numbers. 
For example: 

0100 binary = 4 hexadecimal = 4 decimal 
1111 binary = F hexadecimal = 15 decimal 

01001111 binary = 4F hexadecimal = 79 decimal 

This simple conversion makes it easy to code long binary strings 
in a program without worrying about binary-to-decimal conversion. 
This conversion is extremely important in a graphics computer like 
the Macintosh because the graphics images that appear on the 
Macintosh screen are held in memory as a series of bits called bit 
images. 

As you read in the beginning of this book, the Macintosh's screen 
is made up of a grid of dots called pixels. Each pixel is represented 



MATHEMATICAL SYSTEMS AND CONCEPTS 167 

somewhere in the Macintosh's memory as a single bit. You can 
imagine what it would be like trying to write a binary string of 
digits with enough bits in it to describe even a simple picture on the 
screen. It would be extremely easy to make a mistake. Using hexa­
decimal numbers reduces the chance for error and is much quicker 
to write and test. 

Hexadecimal to Decimal 
Conversion Chart 

Column = first nibble (4 bytes) of byte. 
Row = second nibble (4 bytes) of byte. 

0 1 2 3 4 5 6 7 8 9A BCD E F 

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 
4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 
5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 
7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 
8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 
9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 

A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 
B 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 
c 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 
D 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 
E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 
F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 



A p p E N D x 

Macintosh Trap 
Locations 

Macintosh Trap Locations 
Listed by 

Trap Address 

Trap Name 

Open 
Close 
Read 
Write 

Address 

AOOO 
AOOl 
A002 
A003 

Macintosh Trap Locations 
Listed by 

Trap Name 

Trap Name 

AddDrive 
AddPt 
AddReference 
AddResMenu 

Address 

A04E 
A87E 
A9AC 
A94D 

169 



170 MASTERING THE MACINTOSH TOOLBOX 

Macintosh Trap Locations Macintosh Trap Locations 
Listed by Listed by 

Trap Address Trap Name 

Trap Name Address Trap Name Address 

Control A004 Add Resource A9AB 
Status A005 Alert A985 
Kill IO A006 AngleFromSlope A8C4 
GetVollnfo A007 AppendMenu A933 
FileCreate A008 BackColor A863 
FileDelete A009 BackPat A87C 
OpenRf AOOA Begin Update A922 
Rename AOOB BitAnd A858 
GetFilelnfo AOOC BitClr A85F 
SetFilelnfo AOOD BitNot A85A 
Unmount Vol AOOE BitOr A85B 
Mount Vol AOOF BitSet A85E 
FileAllocate AOlO BitShift A85C 
GetEOF AOll BitTst A85D 
SetEOF A012 BitXor A859 
Flush Vol A013 BlockMove A02E 
Get Vol A014 Bring'ThFront A920 
Set Vol A015 Button A974 
FlnitQueue A016 CalcMenuSize A948 
Eject A017 Cale Vis A909 
GetFPos A018 Cale VisBehind A90A 
InitZone A019 CautionAlert A988 
GetZone AOlA Chain A9F3 
SetZone AOlB ChangedResData A9AA 
FreeMem AOlC Char Width A88D 
MaxMem AOlD Checkltem A945 
NewPtr AOlE Check Update A911 
DisposePtr AOlF ClearMenuBar A934 
SetPtrSize A020 ClipAbove A90B 
GetPtrSize A021 ClipRect A87B 
NWHandle A022 Close AOOl 
DsposeHandle A023 CloseDeskAcc A9B7 
SetHandleSize A024 CloseDialog A982 
GetHandleSize A025 ClosePicture A8F4 
Handle1.one A026 ClosePoly A8CC 
ReAllocHandle A027 ClosePort A87D 
Recover Handle A028 CloseResFile A99A 
HLock A029 CloseRgn A8DB 
HUnlock A02A Close Window A92D 
Empty Handle A02B CmpString A03C 
InitAppl1.one A02C Color Bit A864 
SetApplLimit A02D CompactMem A04C 
BlockMove A02E Control A004 



MACINTOSH TRAP LOCATIONS 171 

Macintosh Trap Locations Macintosh Trap Locations 
Listed by Listed by 

Trap Address Trap Name 

Trap Name Address Trap Name Address 

PostEvent A02F Copy Bits A8EC 
OSEventAvail A030 CopyRgn A8DC 
GetOSEvent A031 CouldAlert A989 
FlushEvents A032 CouldDialog A979 
Vlnstall A033 CountMitems A950 
VRemove A034 CountResources A99C 
OffLine A035 CountTypes A99E 
MoreMasters A036 CreateResFile A9Bl 
Read Par am A037 CurResFile A994 
WrtiteParam A038 DeQueue A96E 
ReadDateTime A039 Delay A03B 
SetDateTime A03A DeleteMenu A936 
Delay A03B DeltaPoint A94F 
CmpString A03C DetatchResource A992 
Drvr Install A03D DialogSelect A980 
DrvrRemove A03E DiffRgn A8E6 
InitUtil A03F Disableltem A93A 
ResrvMem A040 DisposeControl A955 
SetFi!Lock A041 DisposeDialog A983 
RstFi!Lock A042 DisposeMenu A932 
SetFi!Type A043 DisposePtr AOlF 
SetFPos A044 DisposeRgn A8D9 
FlushFil A045 Dispose Window A914 
GetTrapAddress A046 DragControl A967 
SetTrapAddress A047 DragGrayRgn A905 
PtrZone A048 DragTheRgn A926 
HHPurge A049 Drag Window A925 
HNoPurge A04A DrawChar A883 
SetGrowZone A04B DrawControls A969 
CompactMem A04C Draw Dialog A981 
PurgeMem A04D DrawGrowicon A904 
AddDrive A04E DrawMenuBar A937 
InstallRDrivers A04F Draw New A90F 
InitCursor A850 Draw Picture A8F6 
SetCursor A851 Drawstring A884 
HideCursor A852 DrawText A885 
ShowCursor A853 Drvr Install A03D 
UprString A854 DrvrRemove A03E 
ShieldCursor A855 DisposeHandle A023 
ObscureCursor A856 Eject A017 
SetApp!Base A857 Empty Handle A02B 
BitAnd A858 EmptyRect A8AE 
BitXor A859 EmptyRgn A8E2 



172 MASTERING THE MACINTOSH TOOLBOX 

Macintosh Trap Locations Macintosh Trap Locations 
Listed by Listed by 

Trap Address Trap Name 

Trap Name Address Trap Name Address 

BitNot A85A En Queue A96F 
BitOr A85B Enableltem A939 
BitShift A85C End Update A923 
BitTst A85D Equal Pt A881 
BitSet A85E EqualRect A8A6 
BitClr A85F EqualRgn A8E3 
Random A861 EraseArc ABCO 
ForeColor A862 EraseOval A8B9 
BackColor A863 ErasePoly A8C8 
Color Bit A864 EraseRect A8A3 
GetPixel A865 EraseRgn A8D4 
Stufffiex A866 EraseRoundRect A8B2 
Long Mui A867 ErrorSound A98C 
FixMul ·A868 EventAvail A971 
FixRatio A869 ExitToShell A9F4 
Hi Word A86A FinitQueue A016 
Lo Word A86B FMSwapFont A901 
FixRound A86C FileAllocate AOlO 
InitPort A86D FileCreate A008 
InitGraf A86E FileDelete A009 
OpenPort A86F FillArc A8C2 
LocalToGlobal A870 Fill Oval A8BB 
GlobalToLocal A871 FillPoly A8CA 
GrafDevice A872 FillRect A8A5 
SetPort A873 FillRgn A8D6 
GetPort A874 FillRoundRect A8B4 
SetPortBits A875 FindControl A96C 
PortSize A876 FindWindow A92C 
MovePortTo A877 Fix Mui A868 
SetOrigin A878 Fix Ratio A869 
SetClip A879 FixRound A86C 
GetClip A87A FlashMenuBar A94C 
ClipRect A87B FlushEvents A032 
Back Pat A87C FlushFil A045 
ClosePort A87D Flush Vol A013 
AddPt A87E ForeColor A862 
Sub Pt A87F FrameArc ABBE 
SetPt A880 FrameOval A8B7 
EqualPt A881 FramePoly A8C6 
Std Text A882 FrameRect A8Al 
DrawChar A883 FrameRgn A8D2 
Drawstring A884 FrameRoundRect A8BO 
DrawText A885 FreeAlert A98A 



MACINTOSH TRAP LOCATIONS 173 

Macintosh Trap Locations Macintosh Trap Locations 
Listed by Listed by 

Trap Address Trap Name 

Trap Name Address Trap Name Address 

Text Width A886 FreeDialog A97A 
TextFont A887 FreeMem AOlC 
TextFace A888 Front Window A924 
TextMode A889 GetAppParms A9F5 
TextSize A88A GetCRefCon A95A 
GetFontlnfo A88B GetCTitle A95E 
String Width A88C GetClip A87A 
Char Width A88D GetCtlAction A96A 
SpaceExtra A88E GetCtlMax A962 
StdLine A890 GetCtlMin A961 
LineTo A891 GetCtlValue A960 
Line A892 GetCursor A9B9 
Move To A893 GetDitem A98D 
Move A894 GetEOF Aon 
HidePen A896 GetFNum A900 
Show Pen A897 GetFPos A018 
GetPenState A898 GetFileinfo AOOC 
SetPenState A899 GetFontinfo A88B 
Get Pen A89A GetFontN ame A8FF 
PenSize A89B GetHandleSize A025 
PenMode A89C GetIText A990 
Pen Pat A89D Getlcon A9BB 
PenNormal A89E GetindResource A99D 
StdRect A8AO GetindType A99F 
FrameRect A8Al Getltem A946 
PaintRect A8A2 Get! temicon A93F 
EraseRect A8A3 GetitemMark A943 
InvertRect A8A4 GetltemStyle A941 
FillRect A8A5 GetKeys A976 
EqualRect A8A6 GetMHandle A949 
SetRect A8A7 GetMenu A9BF 
OffsetRect A8A8 GetMenuBar A93B 
InsetRect A8A9 GetMouse A972 
SectRect A8AA GetNamedResourc A9Al 
UnionRect A8AB GetNewControl A9BE 
Pt2Rect A8AC GetNew Dialog A97C 
PtlnRect ASAD GetNewMBar A9CO 
EmptyRect A8AE GetNewWindow A9BD 
StdRRect A8AF GetNextEvent A970 
FrameRoundRect A8BO GetOSEvent A031 
PaintRoundRect A8Bl GetPattern A9B8 
EraseRoundRect A8B2 GetPen A89A 
InvertRoundRect A8B3 GetPenState A898 



174 MASTERING THE MACINTOSH TOOLBOX 

Macintosh Trap Locations Macintosh Trap Locations 
Listed by Listed by 

Trap Address Trap Name 

Trap Name Address Trap Name Address 

FillRoundRect ABB4 GetPicture A9BC 
Std Oval ABB6 GetPixel AB65 
FrameOval ABB7 GetPort AB74 
PaintOval ABBB GetPtrSize A021 
EraseOval ABB9 GetResAttrs A9A6 
InvertOval ABBA GetResFileAttrs A9F6 
Fill Oval ABBB GetReslnfo A9AB 
SlopeFromAngle ABBC GetResource A9AO 
StdArc ABBD GetScrap A9FD 
FrameArc ABBE GetString A9BA 
PaintArc ABBF GetTrapAddress A046 
EraseArc ABCO Get Vol A014 
InvertArc ABCl GetVollnfo A007 
FillArc ABC2 GetWMgrPort A910 
PtToAngle ABC3 GetWRefCon A917 
AngleFromSlope ABC4 GetWTitle A919 
StdPoly ABC5 GetWindowPic A92F 
FramePoly ABC6 GetZone AOlA 
PaintPoly ABC7 GlobalToLocal AB71 
ErasePoly ABCB GrafDevice AB72 
InvertPoly ABC9 Grow Window A92B 
FillPoly ABCA HHPurge A049 
OpenPoly ABCB HLock A029 
ClosePoly ABCC HNoPurge A04A 
KillPoly ABCD HUnlock A02A 
OffsetPoly ABCE HandAndHand A9E4 
PackBits ABCF HandToHand A9El 
UnPackBits ABDO HandleZone A026 
StdRgn ABDl Hi Word AB6A 
FrameRgn ABD2 HideControl A95B 
PaintRgn ABD3 HideCursor AB52 
EraseRgn ABD4 HidePen AB96 
InvertRgn ABD5 Hide Window A916 
FillRgn ABD6 HiliteControl A95D 
NewRgn ABDB HiliteMenu A93B 
DisposeRgn ABD9 Hilite Window A91C 
OpenRgn ABDA HomeResFile A9A4 
CloseRgn ABDB InfoScrap A9F9 
CopyRgn ABDC InitApplZone A02C 
SetEmpty Rgn ABDD InitCursor AB50 
SetRectRgn ABDE InitDialogs A97B 
RectRgn ABDF InitFonts ABFE 
OffsetRgn ABEO InitGraf AB6E 



MACINTOSH TRAP LOCATIONS 175 

Macintosh Trap Locations Macintosh Trap Locations 
Listed by Listed by 

Trap Address Trap Name 

Trap Name Address Trap Name Address 

InsetRgn ABE! InitMath A9E6 
EmptyRgn ABE2 InitMenus A930 
EqualRgn ABE3 InitPack A9E5 
SectRgn ABE4 InitPort A86D 
UnionRgn ABE5 InitResources A995 
Difffign ABE6 InitUtil A03F 
XorRgn ABE7 !nit Windows A912 
PtlnRgn ABEB InitZone A019 
RectlnRgn ABE9 InsertMenu A935 
SetStdProcs ABEA InsertResMenu A951 
StdBits ABEB InsetRect A8A9 
Copy Bits ABEC InsetRgn ABE! 
StdTxMeasure ABED InstallRDrivers A04F 
StdGetPic ABEE InvalRect A928 
ScrollRect ABEF InvalRgn A927 
StdPutPic ABFO InvertArc ABC! 
Std Comment ABFl InvertOval ABBA 
PicComment ABF2 InvertPoly ABC9 
OpenPicture ABF3 InvertRect ABA4 
ClosePicture ABF4 InvertRgn ABD5 
KiIIPicture ABF5 InvertRoundRect ABB3 
Draw Picture ABF6 IsDialogEvent A97F 
ScalePt ABFB Kill Controls A956 
Map Pt ABF9 KiIIIO A006 
MapRect ABFA Kill Picture ABF5 
MapRgn ABFB Kill Poly ABCD 
Map Poly ABFC Launch A9F2 
InitFonts ABFE Line AB92 
GetFontN ame ABFF Line To AB91 
GetFNum A900 Lo Word AB6B 
FMSwapFont A901 Load Resource A9A2 
Real Font A902 Load Scrap A9FB 
SetFontLock A903 LoadSeg A9FO 
DrawGrowlcon A904 LocalToGlobal AB70 
DragGray Rgn A905 Long Mui AB67 
NewString A906 Map Poly ABFC 
SetString A907 MapPt ABF9 
Show Hide A90B MapRect ABFA 
Cale Vis A909 MapRgn ABFB 
Cale VisBehind A90A MaxMem AOlD 
ClipAbove A90B MenuKey A93E 
PaintOne A90C MenuSelect A93D 
PaintBehind A90D ModalDialog A991 



176 MASTERING THE MACINTOSH TOOLBOX 

Macintosh Trap Locations Macintosh Trap Locations 
Listed by Listed by 

Trap Address Trap Name 

Trap Name Address Trap Name Address 

SaveOld A90E MoreMasters A036 
Draw New A90F Mount Vol AOOF 
GetWMgr Port A910 Move A894 
Check Update A911 MoveControl A959 
!nit Windows A912 MovePortTo A877 
New Window A913 MoveTo A893 
Dispose Window A914 Move Window A91B 
Show Window A915 Munger A9EO 
Hide Window A916 NWHandle A022 
GetWRefCon A917 NewControl A954 
SetWRefCon A918 New Dialog A97D 
GetWTitle A919 New Menu A931 
SetWTitle A91A NewPtr AOlE 
Move Window A91B NewRgn A8D8 
HiliteWindow A91C New String A906 
Size Window A91D New Window A913 
TrackGoAway A91E NoteAlert A987 
Select Window A91F OSEventAvail A030 
BringToFront A920 ObscureCursor A856 
SendBehind A921 OffLine A035 
Begin Update A922 OffsetPoly A8CE 
End Update A923 OffsetRect A8A8 
Front Window A924 OffsetRgn A8EO 
Drag Window A925 Open AOOO 
DragTheRgn A926 OpenDeskAcc A9B6 
InvalRgn A927 Open Picture A8F3 
InvalRect A928 Open Poly A8CB 
ValidRgn A929 Open Port A86F 
ValidRect A92A OpenResFile A997 
Grow Window A92B Open Rf AOOA 
FindWindow A92C OpenRgn A8DA 
Close Window A92D PackO A9E7 
SetWindowPic A92E Packl A9E8 
GetWindowPic A92F Pack2 A9E9 
InitMenus A930 Pack3 A9EA 
New Menu A931 Pack4 A9EB 
DisposeMenu A932 Pack5 A9EC 
AppendMenu A933 Pack6 A9ED 
ClearMenuBar A934 Pack7 A9EE 
InsertMenu A935 PackBits A8CF 
DeleteMenu A936 PaintArc A8BF 
Draw MenuBar A937 PaintBehind A90D 
HiliteMenu A938 PaintOne A90C 



MACINTOSH TRAP LOCATIONS 177 

Macintosh Trap Locations Macintosh Trap Locations 
Listed by Listed by 

Trap Address Trap Name 

Trap Name Address Trap Name Address 

Enableitem A939 PaintOval A8B8 
Disableltem A93A PaintPoly A8C7 
GetMenuBar A93B PaintRect A8A2 
SetMenuBar A93C PaintRgn A8D3 
Menu Select A93D PaintRoundRect A8Bl 
Menu Key A93E Par am Text A98B 
Getl temlcon A93F Pen Mode A89C 
Setltemlcon A940 PenNormal A89E 
GetltemStyle A941 PenPat A89D 
SetitemStyle A942 Pen Size A89B 
GetltemMark A943 PicComment A8F2 
SetltemMark A944 PinRect A94E 
Checkltem A945 Plotlcon A94B 
Getltem A946 PortSize A876 
Setitem A947 PostEvent A02F 
CalcMenuSize A948 Pt2Rect A8AC 
GetMHandle A949 PtlnRect ASAD 
SetMenuFlash A94A PtlnRgn A8E8 
Plotlcon A94B PtToAngle A8C3 
FlashMenuBar A94C PtrAndHand A9EF 
AddResMenu A94D PtrToHand A9E3 
PinRect A94E PtrToXHand A9E2 
DeltaPoint A94F PtrZone A048 
CountMitems A950 PurgeMem A04D 
InsertResMenu A951 Pu ti con A9CA 
NewControl A954 PutScrap A9FE 
DisposeControl A955 Random A861 
Kill Controls A956 ReAllocHandle A027 
ShowControl A957 Read A002 
HideControl A958 ReadDateTime A039 
MoveControl A959 ReadParam A037 
GetCRefCon A95A Real Font A902 
SetCRefCon A95B Recover Handle A028 
SizeControl A95C RectlnRgn A8E9 
HiliteControl A95D RectRgn A8DF 
GetCTitle A95E ReleaseResource A9A3 
SetCTitle A95F Rename AOOB 
GetCtlValue A960 Res Error A9AF 
GetCtlMin A961 ResrvMem A040 
GetCtlMax A962 RmveReference A9AE 
SetCtlValue A963 RmveResource A9AD 
SetCtlMin A964 RsrcZonelnit A996 
SetCtlMax A965 RstFilLock A042 



178 MASTERING THE MACINTOSH TOOLBOX 

Macintosh Trap Locations Macintosh Trap Locations 
Listed by Listed by 

Trap Address Trap Name 

Trap Name Address Trap Name Address 

TestControl A966 SaveOld A90E 
DragControl A967 ScalePt A8F8 
TrackControl A968 ScrollRect A8EF 
DrawControls A969 SectRect A8AA 
GetCtlAction A96A SectRgn A8E4 
SetCtlAction A96B Select Window A91F 
FindControl A96C SendBehind A921 
DeQueue A96E SetApplBase A857 
En Queue A96F SetApplLimit A02D 
GetNextEvent A970 SetCRefCon A95B 
EventAvail A971 SetCTitle A95F 
Get Mouse A972 SetClip A879 
Still Down A973 SetCtlAction A96B 
Button A974 SetCtlMax A965 
TickCount A975 SetCtlMin A964 
GetKeys A976 SetCtlValue A963 
WaitMouseUp A977 SetCursor A851 
CouldDialog A979 SetDitem A98E 
FreeDialog A97A SetDateTime A03A 
InitDialogs A97B SetEOF A012 
GetNewDialog A97C SetEmptyRgn A8DD 
New Dialog A97D SetFPos A044 
SetIText A97E SetFilLock A041 
IsDialogEvent A97F SetFilType A043 
DialogSelect A980 SetFileinfo AOOD 
Draw Dialog A981 SetFontLock A903 
CloseDialog A982 SetGrowZone A04B 
DisposeDialog A983 SetHandleSize A024 
Alert A985 SetIText A97E 
StopAlert A986 SetIText A98F 
NoteAlert A987 Setltem A947 
CautionAlert A988 Setltemlcon A940 
CouldAlert A989 SetltemMark A944 
FreeAlert A98A SetitemStyle A942 
ParamText A98B SetMenuBar A93C 
Error Sound A98C SetMenuFlash A94A 
GetDitem A98D SetOrigin A878 
SetDitem A98E SetPenState A899 
SetIText A98F SetPort A873 
GetIText A990 SetPortBits A875 
ModalDialog A991 SetPt A880 
DetatchResource A992 SetPtrSize A020 
SetResPurge A993 SetRect A8A7 



MACINTOSH TRAP LOCATIONS 179 

Macintosh Trap Locations Macintosh Trap Locations 
Listed by Listed by 

Trap Address Trap Name 

Trap Name Address Trap Name Address 

CurResFile A994 SetRectRgn ASDE 
lnitResources A995 SetResAttrs A9A7 
RsrcZonelnit A996 SetResFileAttrs A9F7 
OpenResFile A997 SetReslnfo A9A9 
UseResFile A998 SetResLoad A99B 
UpdateResFile A999 SetResPurge A993 
CloseResFile A99A SetStdProcs ASEA 
SetResLoad A99B SetString A907 
CountResources A99C SetTrapAddress A047 
GetlndResource A99D Set Vol A015 
CountTypes A99E SetWRefCon A918 
GetlndType A99F SetWTitle A91A 
Get Resource A9AO SetWindowPic A92E 
GetN amedResourc A9Al SetZone AOlB 
Lo ad Resource A9A2 Shield Cursor A855 
ReleaseResource A9A3 ShowControl A957 
HomeResFile A9A4 ShowCursor A853 
SizeRsrc A9A5 Show Hide A908 
GetResAttrs A9A6 Show Pen A897 
SetResAttrs A9A7 Show Window A915 
GetReslnfo A9A8 SizeControl A95C 
SetReslnfo A9A9 SizeRsrc A9A5 
ChangedResData A9AA Size Window A91D 
Add Resource A9AB SlopeFromAngle ASBC 
Add Reference A9AC SpaceExtra A88E 
RmveResource A9AD Status A005 
RmveReference A9AE StdArc ASBD 
ResError A9AF StdBits A8EB 
WriteResource A9BO Std Comment A8Fl 
CreateResFile A9Bl StdGetPic ASEE 
SystemEvent A9B2 StdLine A890 
System Click A9B3 Std Oval A8B6 
System Task A9B4 Std Poly A8C5 
SystemMenu A9B5 StdPutPic ASFO 
OpenDeskAcc A9B6 StdRRect ASAF 
CloseDeskAcc A9B7 StdRect A8AO 
GetPattern A9B8 StdRgn A8Dl 
GetCursor A9B9 Std Text A882 
GetString A9BA StdTxMeasure A8ED 
Getlcon A9BB StillDown A973 
GetPicture A9BC StopAlert A986 
GetNewWindow A9BD String Width A88C 
GetN ewControl A9BE StuffHex A866 



180 MASTERING THE MACINTOSH TOOLBOX 

Macintosh Trap Locations Macintosh Trap Locations 
Listed by Listed by 

Trap Address Trap Name 

Trap Name Address Trap Name Address 

GetMenu A9BF Sub Pt A87F 
GetNewMBar A9CO SystemBeep A9C8 
UniqueID A9Cl System Click A9B3 
SystemEdit A9C2 SystemEdit A9C2 
System Beep A9C8 SystemError A9C9 
System Error A9C9 SystemEvent A9B2 
Putlcon A9CA SystemMenu A9B5 
TEGetText A9CB System Task A9B4 
TEinit A9CC TE Activate A9D8 
TE Dispose A9CD TECalText A9DO 
TextBox A9CE TEClick A9D4 
TESetText A9CF TE Copy A9D5 
TECalText A9DO TECut A9D6 
TESetSelect A9Dl TE Deactivate A9D9 
TE New A9D2 TE Delete A9D7 
TE Update A9D3 TE Dispose A9CD 
TEClick A9D4 TEGetText A9CB 
TECopy A9D5 TE Idle A9DA 
TECut A9D6 TE In it A9CC 
TE Delete A9D7 TE Insert A9DE 
TE Activate A9D8 TE Key A9DC 
TE Deactivate A9D9 TE New A9D2 
TE Idle A9DA TE Paste A9DB 
TE Paste A9DB TE Scroll A9DD 
TE Key A9DC TE Set.Just A9DF 
TE Scroll A9DD TESetSelect A9Dl 
TE Insert A9DE TESetText A9CF 
TE Set.Just A9DF TE Update A9D3 
Munger A9EO TestControl A966 
HandToHand A9El TextBox A9CE 
PtrToXHand A9E2 TextFace A888 
PtrToHand A9E3 TextFont A887 
HandAndHand A9E4 TextMode A889 
InitPack A9E5 TextSize A88A 
InitMath A9E6 Text Width A886 
PackO A9E7 TickCount A975 
Packl A9E8 TrackControl A968 
Pack2 A9E9 TrackGoAway A91E 
Pack3 A9EA UnLoadSeg A9Fl 
Pack4 A9EB UnPackBits ABDO 
Pack5 A9EC UnionRect A8AB 
Pack6 A9ED UnionRgn A8E5 
Pack7 A9EE UniqueID A9Cl 



MACINTOSH TRAP LOCATIONS 181 

Macintosh Trap Locations Macintosh Trap Locations 
Listed by Listed by 

Trap Address Trap Name 

Trap Name Address Trap Name Address 

PtrAndHand A9EF Unload Scrap A9FA 
LoadSeg A9FO Unmount Vol AOOE 
UnLoadSeg A9Fl UpdateResFile A999 
Launch A9F2 UprString A854 
Chain A9F3 UseResFile A998 
ExitToShell A9F4 Vlnstall A033 
GetAppParms A9F5 VRemove A034 
GetResFileAttrs A9F6 ValidRect A92A 
SetResFileAttrs A9F7 ValidRgn A929 
lnfoScrap A9F9 WaitMouseUp A977 
Unload Scrap A9FA Write A003 
LoadScrap A9FB WriteResource A9BO 
ZeroScrap A9FC WrtiteParam A038 
GetScrap A9FD XorRgn A8E7 
PutScrap A9FE ZeroScrap A9FC 



G L 0 s s A R y 

The following glossary contains terms and phrases used in this book. 
A number of other terms that relate to computers in general and the 
Macintosh in particular have been added. 

Abort: To stop processing. 

Access: To get at. Information, both in memory and on disk files, may be 
accessed through applications programs. 

Accessories: Small applications generally available to the user at all 
times. On the Macintosh, these applications perform such functions 
as displaying an alarm clock, a calculator, and a puzzle. 

Activate Event: An event generated by the Window Manager when a 
window becomes active. 

Active Window: The front-most window on the desktop. The window in 
which any data typed by a user appears. 

Address: The numerical digits (whether in binary, decimal, or hexade­
cimal) that identify a particular location in memory. 

183 



184 MASTERING THE MACINTOSH TOOLBOX 

Alert Box: A kind of window containing warnings and cautions dis­
played by an application when it encounters a problem. 

Alert Message: An audible or visible message or warning generated by 
an application to signal input errors, problems relating to the inter­
pretation of data, or situations threatening the safety of a user's 
information. 

Algorithm: A set of calculating procedures. An algorithm can be 
thought of as a series of steps designed to solve a problem. 

Allocate: To set apart and designate for a purpose. The Macintosh allo­
cates memory for menus, screens, icons, and other internal func­
tions. Various procedures are used within Macintosh Pascal to 
obtain and free available memory space as needed. 

Alphanumeric: Any alphabetic or numeric character produced using 
the standard keyboard. Alphanumerics do not include special 
characters. 

Applications Window: The window created by an applications program 
either directly via the Window Manager or indirectly via the Dialog 
Manager. 

Array: A collection of data organized in matrix fashion, all of the same 
data type. Arrays use subscripts to indicate the location of particu­
lar elements in the array. 

Ascent: The vertical distance from a font's baseline to its ascent line. 

Ascent Line: A horizontal line coincident with the top of the tallest 
characters in a font. 

ASCII: The standard character set used on most microcomputers. 
ASCII is the acronym for American Standard Code for Information 
Interchange. 

Assembler: A piece of software designed to translate assembly language 
source code into directly executable machine code. 

Assembly Language: A very low-level language that uses macros and 
simple commands to perform single operations at the machine level. 
Assembly language is one step higher than actual machine language. 

BASIC: The programming language (Beginner's All-Purpose Symbolic 
Instruction Code) that first used interpreters. 

Binary: The base two numbering system, in which numbers are formed 
exclusively from the digits 0 and 1. 



GLOSSARY 185 

Bit: A common contraction for binary digit. This is the smallest unit of 
storage within a computer. Eight bits form a standard byte. 

Bit Image: A collection of bits in memory that have a rectilinear 
appearance. The Macintosh screen is a visible bit image. 

Bit Map: A pointer to a bit image, the row width of that image, and its 
boundary rectangle. 

Bitwise: Performed bit-by-bit-that is, using bits as they are en­
countered. 

Black Box: A process that produces output from given input which is 
invisible to the user outside the box. 

Boolean: A system of logic that evaluates expressions as true or false. In 
Pascal, Boolean expressions evaluate to True or False, and all condi­
tional statements evaluate to a Boolean result. 

Boot: A process that causes the computer to load, from a disk, an operat­
ing system. 

Boundary Rectangle: A rectangle that encloses the active area of a bit 
image and imposes a coordinate system upon it. 

Buffer: Something that serves to separate two items. A temporary stor­
age unit that accepts information at one rate and delivers it at 
another. 

Byte: The basic unit of storage. A standard byte contains eight bits and 
may range in value from 0 to 255. 

Call: To begin processing at a designated label or to begin execution 
through a specific function. The call is most often associated with 
functions and procedures in Pascal where parameters are used to 
pass data to the routine. 

Character: Any alphanumeric, control character, punctuation, or spe­
cial symbol that requires one byte of storage space (both in memory 
and on disk). 

Character Height: The vertical height of a character. 

Character Image: The bit image that defines a character. 

Character Style: A set of stylistic variations such as bold, italic, and 
underline. 

Character Width: The distance the graphics pen moves while drawing 
one character. 



186 MASTERING THE MACINTOSH TOOLBOX 

Checked Item: A menu item marked with a check mark. 

Click: To position the pointer and briefly press and release the mouse 
button without moving the mouse. 

Close: To remove a window from the screen. 

Close Box: A small box to the left of a window's title bar which, when 
clicked on, closes the window. Also called the go-away region. 

Command Key: A special key on the Macintosh keyboard that modifies 
the character typed. It is frequently used as an alternative to choos­
ing a command in a menu with the mouse. 

Compiler: A piece of software designed to translate source programs 
into object or intermediate code that is taken by a linker to produce 
executable code. 

Constant: A numeric or string quantity that does not change its value 
throughout program execution. 

Content Region: The area of a window that an application draws in. 

Control: An object on the screen that causes an action when clicked or 
dragged. Buttons, dials, and scroll bars are common controls. 

Control Character: Any character that causes special processing and 
occurs between 0 and 31 ASCII. 

Control Statement: A statement that directs execution to another por­
tion of the program. 

Coordinate Plane: A two-dimensional Cartesian grid with infinitely 
thin grid lines. 

CPU: The acronym for Central Processing Unit. This is the "brain" of 
the computer and is responsible for all information processing. 

Crash: A system. malfunction that causes the "bomb" dialog box to 
appear. The only way to continue using your computer after it 
crashes is to restart it. 

Cursor: A symbol on the screen indicating where the mouse pointer or 
text insertion point, for example, is located. 

Cursor Level: A value that keeps track of the number of times that the 
cursor has been hidden. 

Data: A collection of characters, symbols, or control codes that represent 
a logical item. The computer differentiates data in memory from 
program code by its memory location. 



GLOSSARY 187 

Data Base: A large collection of (usually related) information. 

Data File: Any named storage location on a disk or similar storage 
device containing either program code or other data. 

Data Structure: A way of organizing collections of data. The data may 
be of differing data types. 

Data Type: One of the classifications for designating data storage and 
representation. 

Datum: A single piece of information. A character, individual field, or 
individual record, if treated as a unit, can be thought of as a datum. 

Deactivate Event: An event that causes a window to become inactive; 
usually occurs in tandem with an activate event. 

Debug: To rid a program of errors. The process one undertakes to 
ensure program accuracy and completeness. 

Declaration Statement: A statement assigning a data type to a variable 
name. 

Default: A value supplied by an application. Usually, default values may 
be changed by the program's users. 

Delete: To remove. Delete applies to files, memory, and text, for 
example. 

Delimiter: To serve as a boundary between two elements. Used to separ­
ate fields within a record. 

Descent: The vertical distance from a font's baseline to its descent line. 

Descent Line: A horizontal line coincident with the bottom of the lowest­
reaching characters in a font, including the characters' descenders. 

Desktop: The Macintosh metaphor for its operating system called the 
Finder. 

Dialog Box: A type of window opened by an application that needs more 
information supplied by the user to continue. 

Dimension: A property of arrays. A dimension is analogous to a direc­
tion in space. One dimension is linear, two dimensions are planar, 
and three dimensions are cubic. 

Dimmed: Drawn in gray rather than in black. 

Disabled: A disabled menu item or menu is one that cannot be chosen. 

Document Window: A standard Macintosh window for presenting 
information. 



188 MASTERING THE MACINTOSH TOOLBOX 

Drag: To press and hold the mouse button while moving the mouse. 

Edit: To change or modify information previously entered into an 
application. 

Editor: A word processor, line editor, or other software that can create 
and alter the contents of a disk file. 

Element: One of the members of an array, designated by a unique com­
bination of subscripts. 

Empty: Containing no bits as a shape defined by only one point. 

Error: A statement or expression that does not follow the syntax regula­
tions for that command. The Pascal interpreter indicates where 
such syntax errors exist. Logical errors that produce undesired 
results must be found through execution and debugging. 

Event: Notification to an applications program of some event that the 
program must respond to. 

Event Code: An integer representing a particular type of event. 

Event Mask: A parameter passed to an Event Manager routine specify­
ing the types of events that the routine is to be applied to. 

Event Message: A field of an event record containing event-specific 
information. 

Event Queue: The Event Manager's list of pending events waiting to be 
processed. 

Execute: To run or begin a program. 

Exponent: The power of a number. The power of 10 multiplied by the 
mantissa to yield a notation of the form: n.nnn E exp 

Field: A unit containing zero or more characters that are grouped 
together to form a record. A name, account number, address, or dol­
lar amount can be a field. 

File: A logically organized collection of information in which each 
record, field, or element is related to the other by some criteria. 

Font: A complete set of characters of one typeface. 

Font Number: The number by which a font is identified. 

Font Record: The data structure that contains all of the information 
needed to describe a font. 

Font Size: The size of a font in points. 



GLOSSARY 189 

Frame: To draw a shape by drawing an outline of it. 

Function: A Pascal construct that may be activated from a program and 
returns a value of a specified type. 

Global Variable: A variable accessible to all statements within an entire 
program. 

Go Away Region: A synonym for Close box. 

GrafPort: A complete drawing environment including such elements as 
a bit map in which to draw a character font, patterns for drawing 
and erasing, and other pen characteristics. 

Grow Image: The image that appears when resizing a window to indi­
cate the current size of the window. 

Handle: A pointer to a master pointer to a dynamic, relocatable data 
structure. 

Hexadecimal: The base 16 numbering system used to represent ASCII 
characters in one-byte formats. The digits 0 through 9 and the let­
ters A through F are used to represent the numbers 0 through 15. 

Highlight: To emphasize something by making it visually distinct from 
its normal appearance. 

Hotspot: The point in a cursor that is aligned with the mouse position. 

1/0: The standard abbreviation for input/output. 

Icon: A graphics representation of a file, disk, or application. 

Inactive Window: Any window that is not the front-most window on the 
desktop. 

Indirection: Referencing by address. Using a variable's address instead 
of the variable itself. See also pointers and handles. 

Initialize: In Pascal, to set a variable to a specific value. In the Macin­
tosh Finder, one initializes, or formats, a disk. 

Input: The information that comes to the computer from the outside. 
Input is usually provided to the computer through the mouse or 
keyboard. 

Input/Output: The process of communication between computer, opera­
tor, and peripherals. 

Insertion Point: Indicates the position at which newly inserted items 
will be placed. 



190 MASTERING THE MACINTOSH TOOLBOX 

Integer: A whole numeric value with no fractional component. 

Interface: A shared boundary or a piece of hardware used between two 
pieces of equipment to facilitate communication between them. 

Interpreter: An applications program that translates English-like pro­
gram statements into the native language of the computer. 

Invert: To invert the black and white pixels in an image. Inverting is the 
most common form of highlighting. 

Key Code: An integer representing a key on the keyboard or the key pad 
without reference to the character that key represents. 

Key Down Event: An event generated when the user presses a key on 
the keyboard or key pad. 

Key Up Event: An event generated when the user releases a key on the 
keyboard or key pad. 

Keyboard Equivalent: A method of invoking a menu item from the 
keyboard by holding down the Command key and typing a character. 

Keyboard Event: An event generated when a user presses, releases, or 
holds down a key on the keyboard or key pad. 

Kilobyte: 1,024 bytes. From the Greek prefix kilo, meaning thousand. 

Label: A location within a source program. A program's flow can be 
altered by directing it to a label within the program itself. 

Leading: The amount of blank vertical space between the descent line of 
one line of text and the ascent line of another line of text. 

Linear: Relating to a line, having a single dimension. Contrasted with 
planar, cubic, etc. 

Local Variable: A variable accessible only within a defined block of 
programming statements. 

Logical Expression: An expression yielding True or False. 

Logical Operator: An operator used to compare the truth values of two 
expressions. 

Machine Language: A programming language with a very limited 
instruction set designed to directly control every function of the 
CPU. 

Macintosh Pascal: A Pascal interpreter for creating programs. 

MacPaint: An applications program demonstrating the graphics capa­
bilities of the Macintosh. 



GLOSSARY 191 

Macro: An identifier used as synonym for a set of instructions or a con­
stant value. 

Mac Write: A word processor for the Macintosh. 

Mask: A specific arrangement of bits within a byte used to extract or 
alter the bits within another byte through the use of Boolean 
operators. 

Matrix: A collection of numbers or characters arranged in rows and 
columns or higher dimensions. Also known as an array. 

Memory: Storage space for data within the computer. Memory is mea­
sured in kilobytes (usually in 64K increments). 

Menu: A rectangular list of menu items that appears when the user 
points to and presses a menu title in the menu bar. Dragging 
through the menu and releasing over a menu item chooses that item. 

Menu Bar: The .horizontal strip at the top of the Macintosh screen that 
contains the menu titles of all menus in the menu list. 

Menu ID: A positive number that uniquely identifies a menu. 

Menu Item: A choice in a menu, usually a command for the current 
application. In a standard Macintosh menu, a line containing text 
and possibly an icon. 

Menu Item Number: The index starting from 1 of a menu item in a 
menu. 

Menu List: A list of menu handles for all menus in the menu bar. Kept 
internally by the Menu Manager. 

Menu Record: The data structure of a menu where the Menu Manager 
stores all of the information it needs to perform operations on that 
menu. 

Menu Title: A word or phrase in the menu bar that names a menu. 

Metacharacter: A special character used by the Menu Manager to 
separate menu items or alter their appearance. 

Methodology: A means by which an action is performed. 

Microprocessor: The microprocessor is responsible for all calculations 
and hardware controlling functions. 

Missing Symbol: A symbol that is drawn in place of a character that is 
not defined within a particular font. 

Mode: The current state of an object discrete from other possible states. 



192 MASTERING THE MACINTOSH TOOLBOX 

Modifier Key: Special keys on the keyboard that generate no events of 
their own but change the meanings of other keys. The Shift and 
Command keys are two examples of modifier keys. 

Mouse: A small device used to control the Macintosh. As the mouse is 
moved around a desk top, it causes corresponding movements of a 
pointer on the Macintosh screen. 

Mouse Button: A rectangular button on top of the mouse. Pressing the 
mouse button initiates some action at the position of the pointer. 

Mouse Button Down Event: An event generated when the user presses 
the mouse button. (Also called simply "mouse down.") 

Mouse Button Up Event: An event generated when the user releases the 
mouse button. (Also called simply "mouse up.") 

Multidimensional: Having more than one dimension. 

Nibble: Half of a byte. Four bits. 

NIL: A Pascal constant signifying zero. 

Null: Used to signify nothing (nothing is not zero). 

Null Event: An event returned by the Event Manager when it has no 
other events to report. 

Octal: The base eight numbering system, in which numbers are ex­
pressed with the digits 0 through 7. 

Operand: A component of an expression that has a value. 

Output: The information that goes from the computer to a peripheral. 
Output is usually displayed on the screen or printer. 

Paint: To draw a solid shape. 

Parameter: The value or values required by a function or procedure, 
enclosed within parentheses. 

Pascal: A structured programming language developed by Niklaus 
Wirth. 

Pattern: An 8 X 8 bit image used to define a repeating design or tone. 

Pattern Transfer Mode: One of eight transfer modes used for drawing 
lines or shapes using a pattern. 

Pen: A conceptual device used to draw on the Macintosh screen. 

Peripheral: Any device connected to a computer that provides input, 
accepts output, or performs auxiliary functions (such as a storage 
device). 



GLOSSARY 193 

Picture: A saved sequence of QuickDraw drawing commands that may 
be replayed through a single procedure call. 

Picture Frame: A rectangle that surrounds the picture and provides a 
frame of reference for scaling the picture. 

Pixel: The visual representation of a bit on the screen (white if the bit is 
0, black if the bit is 1). The word stems from the contraction of the 
term picture element. 

Plane: The front to back position of a window on the Macintosh screen. 

Point: The intersection of a horizontal and vertical grid line on a coordi­
nate plane defined by a horizontal and vertical coordinate. 

Pointer: A data type that holds the address of another variable. 

Polygon: A sequence of connected lines defined by QuickDraw drawing 
commands. 

Port: Same as a grafPort. 

Port Bits: The bit map of a grafPort. 

Proportional Font: A font whose characters all have character widths 
that are proportional to their image widths. 

Post: To place an event in the event queue for later processing. 

Procedure: A program entity containing statements logically grouped 
to process one specific task. The procedure may be activated from 
any section of the program. 

Queue: A First-In/First-Out list of items. 

RAM: An acronym for Random Access Memory. 

Random Access File: A file whose organization and declaration permit 
access in a random fashion. 

Random Access Memory: Memory that is reusable and volatile. Most 
storage space within the computer is of this type. 

Read: To take as input. A program can read from the keyboard, the 
mouse, a file, or from memory. 

Read-Only Memory: Memory that cannot be erased, written on, or 
changed. Inherent capabilities of the computer and its start-up 
procedure are stored in Read-Only Memory to provide permanent 
storage. 

Record: A logical grouping of fields in a file. Records are composed of 
fields. Files are composed of records. 



194 MASTERING THE MACINTOSH TOOLBOX 

Rectangle: The area defined by two points on a coordinate plane. 

Recursion: Something that contains part of itself in its definition. 

Recursive Function: A function that may call itself. 

Region: An arbitrary area or set of areas on a coordinate plane. 

Returned Value: A number or string produced by a function that can be 
used in an expression or assignment statement. 

ROM: An acronym for Read-Only Memory. 

Row Width: The number of bytes in each row of a bit image. 

Run: To execute a program. 

Run Time: Occurring during execution. 

Segment: A piece of program, data, etc. 

Select: To choose a menu item. 

Sequential File: A file whose organization and declaration permit 
access only in a sequential manner, either from top to bottom, from bot­
tom to top, or from any midpoint to an endpoint. 

Size Box: A region usually at the lower right corner of a window that 
lets the user change the size of the active window. 

Solid: Filled in with any pattern. 

Source Transfer Mode: One of eight transfer modes for drawing text or 
transferring any bit image between bit maps. 

Structure Region: An entire window. Its complete structure. 

Style: See character style. 

Subroutine: A procedure to which control can be transferred within a 
program. Performs one function and returns program flow to the 
instruction immediately following the call. 

Subscript: One of the dimensions of an array. To specify an element of 
an array, one uses subscripts to identify the unique placement of the 
element within the array. 

Syntax: A statement structure. The arrangement of commands in their 
proper usage. 

System Font: The font, identified by font number 0, that the system 
uses. 

System Font Size: The size of the text drawn by the system using the 
system font (12 point). 



GLOSSARY 195 

System Window: Any window that is not created by an application. 
Desk accessories appear in system windows. 

Transfer Mode: A specification of which Boolean operation QuickDraw 
should perform when transferring a bit image from one bit map to 
another. 

Text: Any large body of alphanumeric characters. 

Update Event: An event generated by the Window Manager when the 
update region of a window needs to be redrawn. 

Update Region: A window region consisting of all areas of the content 
region that have to be redrawn. 

Variable: Any valid identifier that can change value. 

Visible Window: A window that is drawn in its plane on the desktop. 

Window: An object on the desktop that presents information. 

Window Class: An indication of whether a window is a system window, a 
dialog or alert window, or a window created by an application. 

Window Frame: The structure drawn around the content region of a 
window by the Window Manager. 

Window List: A list of all windows ordered according to their front to 
back position on the desktop. 

Window Manager Port: A grafPort that has the entire screen as its 
port record and is used by the Window Manager to draw its window 
frames. 

Window Record: A data structure used internally by the Window Man­
ager to store all of the information it needs to perform an operation 
on a window. 

Write: Opposite of read. To write is to send information to a storage 
device such as memory or file. 



N D 

@, 89, 90-91, 116 
ActiveButtons (program), 18-23 
AddPt, 136 
AddResMenu, 112 
AppendMenu, 93-94, 95, 112, 113, 124-25 

BASIC, 3 
Bic transfer mode (transfer mode, Bic), 32 
BlnLineF, 88, 114, 115, 117 
bit image, 28-29, 30, 36, 38, 39 
bit map, 28, 29-30, 31, 39 
bit mapped, 28-29 
BitMap, 29-30, 144 
bold, 38, 92 
BringToFront, 108 
Button, 47, 130 

call-by-reference, 90 
call-by-value, 90 
Checkitem, 100, 125 
ClearMenuBar, 96, 112, 113, 117, 125 
click, 65, 71, 102, 105 
close box, window (window close box), 

104, 106 
ClosePicture, 134 
ClosePoly, 136-37 

E x 

CloseRgn, 137 
CloseWindow, 105, 112, 113 
condense, 38-39 
content region, 102 
Control Manager, 5 
coordinate plane, 28, 29, 34, 39, 77. 

See also drawing plane 
coordinate system, 34 
Copy transfer mode (transfer mode, Copy) 32 
CopyBits, 120 
CopyRgn, 137 
cursor, 28, 30-31, 39, 41-44, 47-52, 53, 66, 68, 

7i, 83, 91, 92, 122-23 
Cursor, 31, 42, 44, 56, 60, 79, 144 
Cursors (program), 44-47, 48, 50, 52 

DeleteMenu, 96, 112, 125 
Desk Manager, 6 
Dialog Manager, 4, 6 
DiffRgn, 137 
Disable! tern, 99-100, 112, 125 
DisposeMenu, 112, 113 
DisposeRgn, 137 
drag, 60, 65, 71, 102, 105, 110, 116 
drag region. See title bar 

197 



198 MASTERING THE MACINTOSH TOOLBOX 

DragWindow, 109, 110, 112, 115, 117 
Draw Boxes (program), 11-15, 16 
Draw Buttons (program), 15-18 
DrawChar, 16, 18, 19 
drawing area, window (window drawing 

area), 76, 79 
drawing plane, 26, 36 
Draw Ln, 114, 115 
Draw MenuBar, 95, 97, 99, 100, 112, 113, 

114, 125 
Draw Picture, 134 
Drawstring, 19, 22, 46, 58, 114 

EmptyRect, 137 
EmptyRgn, 138 
Enableltem, 100, 112, 125-26 
EqualPt, 59, 70, 138 
EqualRect, 138 
EqualRgn, 138 
EraseArc, 151 
EraseOval, 151 
ErasePoly, 151 
EraseRect, 114, 151 
EraseRgn, 152 
EraseRoundRect, 152 
Event Manager, 4, 74, 115, 116 
event queue, 62-65, 74, 78-79, 102 
event record, 62, 78-79 
EventAvail, 63 
EventRecord, 59, 62, 70, 82, 113 
extend, 38-39 

FillArc, 152 
FillOval, 152 
FillPoly, 152 
FillRect, 152 
FillRgn, 152 
FillRoundRect, 152-53 
FindWindow, 106, 107, 112, 

115, 116 
Font Manger, 4, 39 
font number, 22-23, 37 
Fontinfo, 57, 69 
FrameArc, 153 
FrameOval, 153 
FramePoly, 154-55 

FrameRect, 12, 15, 19, 47, 50, 58, 66, 69, 
89, 155 

FrameRgn, 155 
FrameRoundRect, 58, 68, 155 
FrontWindow, 108-09 
function, Pascal, 6, 7 

GetDrawingRect, 81 
GetFontlnfo, 57, 69 
GetltemStyle, 100-01, 126 
GetMenuBar, 96-97, 112, 113, 126 
GetMouse, 19, 20, 46, 51, 59, 70, 78-79, 82, 

83, 130 
GetNewWindow, 112, 113 
GetNextEvent, 59, 60, 63, 70, 71, 82, 102, 

112, 114, 115 
GetPen, 131 
GetPenState, 131 
GetPixel, 59, 71-72, 128 
GetWTitle, 105 
global coordinate system (coordinate, 

global), 34, 78-79, 83, 85, 107, 109, 110 
GlobalToLocal, 83, 138 
goAway region. See close box 
grafPort, 11, 32-39, 40, 69, 78, 83, 102, 110 
grow region. See size box 
GrowWindow, 109-10, 111 

HideAll, 7, 9, 12, 46, 56, 60, 81, 113, 117, 122 
HidePen, 131 
HideWindow, 107 
HiliteMenu, 98, 99, 112, 126 
HiLiteWindow, 108 
HiWord, 111, 112, 114 
hotspot, cursor (cursor hotspot), 42, 44, 52 

icon, 30, 31, 39, 53-74, 92 
IconBits, 56 
IconEditor (program), 53, 54, 56-60, 61, 65, 

67, 68, 70, 74, 83 
InitCursor, 46, 51, 59, 60, 70, 71, 82, 122-23 
InitMenus, 112 
InLine routine, 88-91, 116, 117 
InLineDemo (program), 89, 101 
InLineP, 88, 89, 113, 114, 115, 117 
InsertMenu, 95, 112, 113, 126 
InsetRect, 58, 66, 69-70, 138 



InsetRgn, 138 
InvertArc, 155-56 
InvertOval, 156 
InvertPoly, 156 
InvertRect, 19, 22, 59, 72, 156 
InvertRgn, 157 
InvertRoundRect, 157 
italic, 38, 92 

KillPicture, 134 
KillPoly, 139 

Line, 57, 67, 68, 132 
LineTo, 132 
LinLineF, 88, 113, 115, 117 
local coordinate system (coordinate, local), 34, 

78-79, 83, 85 
LocalToGlobal, 83, 139 
LoWord, 111, 112, 114 

Macintosh User Interface, 2, 3, 5, 28, 
30, 100 

Manager (program), 111-15 
MapPoly, 128 
MapPt, 128 
MapRect, 129 
MapRgn, 129 
mask, cursor (cursor mask), 42-43, 48, 50 
mask, event (event mask), 63 
menu bar, 91. 92, 116, 117 
menu ID, 93, 95, 97 
menu list, 95 
Menu Manager, 4, 5, 91, 92, 93, 94, 96, 99, 

100, 101, 115, 118 
MenuHandle, 93, 100 
MenuKey, 97, 98-99, 112, 115, 116, 126-27 
MenuSelect, 97-98, 112, 115, 117, 127 
metacharacters, 94 
Move, 132 
MoveTo, 16, 17, 19, 22, 46, 51, 57, 58, 67, 68, 

114, 132 

NewMenu, 93, 94, 95, 112, 113, 127 
NewRgn, 139 
NewWindow, 103-04, 112, 113 
NOT transfer mode (transfer mode, 

NOT), 32 

ObscureCursor, 58, 66, 123 
OffsetPoly, 139 

INDEX 199 

OffsetRect, 15, 16, 47, 50, 81, 84, 139 
OffsetRgn, 139 
OpenPicture, 134 
OpenPoly, 140 
OpenRgn, 140 
OR transfer ·mode (transfer mode, OR), 32 
outline, 38, 92 

PaintArc, 157 
PaintOval, 157 
PaintPoly, 157 
PaintRect, 157 
PaintRgn, 157-58 
PaintRoundRect, 158 
pattern, 28, 30, 31, 35, 36, 39 
Pattern, 30, 145 
pattern transfer mode (transfer mode, 

pattern), 31 
pen, 13-14, 16, 17, 22, 35, 36, 40, 65, 67 
pen height, 14, 36 
pen location, 36 
pen mode, 14, 36, 39 
pen pattern, 14, 36 
pen size, 36 
pen width, 14, 36 
pen visibility, 36 
PenMode, 132 
PenNormal, 12, 13, 15, 19, 47, 58, 66, 132-33 
PenPat, 133 
PenSize, 15, 16, 19, 47, 58, 68, 133 
PicComment, 135 
PicHandle, 145 
PicPtr, 145 
Picture, 145 
pixel, 22, 27, 28, 29, 30, 31, 36, 38, 39, 43, 

51, 53, 54, 60, 65, 67, 69, 70, 71, 91 
plane. S ee drawing plane 
Plotlcon, 59, 73 
point, 27, 28, 36, 39, 44, 83, 84 
Point, 18, 21, 27, 44, 45, 46, 56, 57, 58, 59, 

70, 72, 73, 79, 82, 83, 84, 146 
PolyHandle, 146 
PolyPtr, 146 



200 MASTERING THE MACINTOSH TOOLBOX 

Polygon, 146 
predefined routine, 7 
procedure, Pascal, 6-7 
Pt2Rect, 140 
PtinRect, 19, 21, 46, 59, 60, 70, 71, 82, 140 
PtlnRgn, 140 
PtToAngle, 140-41 

QDByte, 147 
QDHandle, 56, 147 
QDPtr, 56, 147 
queue, 62 

Random, 129 
Rect, 7, 10, 12, 15, 16, 18, 28, 44, 56, 57, 58, 

72, 79, 89, 113, 147 
rectangle, 27-28, 39, 69-70, 78, 90 
RectinRgn, 141 
RectRgn, 141 
region, 28 
Region, 147-48 
Resource Manager, 4 
RgnHandle, 148 
RgnPtr, 148 row width, 28-30 
row width 28-30 

ScalePt, 129 
scroll bar, window (window scroll bar) 76, 

101, 110 
ScrollRect, 120 
SectRect, 141 
SectRgn, 141 
SelectWindow, 108 
SetCursor, 46, 51, 59, 70, 82, 123 
SetDrawingRect, 7, 10, 12, 15, 18, 46, 56, 

77, 81, 104 
SetEmptyRgn, 141 
SetltemStyle, 100-01, 127 
SetMenuBar, 96-97, 112, 113, 127 
SetPenState, 133 
SetPort, 112, 113 
SetPt, 142 
SetRect, 7, 10, 11, 12, 15, 18, 19, 46, 47, 56, 

57, 58, 66, 67, 68, 69, 81, 89, 91, 113, 142 
SetRectRgn, 142 
SetTextRect, 11 
SetWTitle, 105 

shadow, 38, 92 
ShowCursor, 123 
Show Drawing, 7, 10, 12, 15, 18, 46, 56, 81 
ShowPen, 133 
ShowText, 11 
ShowWindow, 107 
size box, window (window size box) 76, 84, 

101, 110 
SizeWindow, 110, 111 
source transfer mode (transfer mode, 

source), 31, 32 
StillDown, 130 
StringWidth, 46, 51, 57 
structure region, 102 
StuffHex, 129 
Style, 38, 148 
SubPt, 82, 84, 142 
SysBeep, 19, 22 

Text Edit, 6 
TextFont, 15, 18, 19, 22, 114 
TextMode, 16, 18, 19 
TextSize, 16, 19 
title bar, window (window title bar), 76, 84, 

101, 104, 105, 108, 109, 110, 116 
TrackGoAway, 106-07 
transfer mode, 31-32, 120-21, 132 ' 
trap number, 89, 117 

underline 38, 92 
UnionRect, 142 
UnionRgn, 142 
update region, 102 

WaitMouseUp, 130 
window, 34, 75-86, 101-18 
Window Manager, 4, 64, 79, 85, 101-08, 116, 118 
Window Manager Port, 102 
window record, 103, 104 
Window Manager (program), 79-82, 83, 

85, 101 
WindowRecord, 103, 112, 113 
WinLineF, 88, 114, 115, 117 

XOR transfer mode (transfer mode, 
XOR), 32 

XorRgn, 142-43 



r~: ~::?~=-~~--~=-~ , - ___ . __ "-- -- - - - ·-
,--· 

MASTERING THE MACINTOSH™ TOOLBOX 
Now experienced programmers can ea-sily include the unique features of the 
Apple" Macintosh™ computer in a variety of software applications. 

Mastering the Macintosh™ Toolbox shows·you how to access the storehouse of 
programming routines found in the Macintosh Toolbox. 

You 'll learn to use Macintosh Pascal to call up Toolbox routines for programming: 
•Graphics 
•Icons 
•Windows 
•Menus 
•the Cursor 
·the Mouse 

Mastering the Macintosh™ Toolbox provides you with a compendium of powerful routines 
that enables you to write software that takes full advantage of the Macintosh. 

•Apple is a registered trademark and Macintosh is a trademark of Apple Computer, Inc 

_JSBN 0-07-881203-8 




