
Richard 0. Parker

Mastering the THINK Class Library

Using Symantec C++ ™ and Visual Architect™

Richard 0. Parker

..
'Y'Y

Addison-Wesley Publishing Company

Reading, Massachusetts • Menlo Park, California • New York

Don Mills, Ontario • Wokingham, England • Amsterdam

Bonn • Sydney • Singapore • Tokyo • Madrid • San Juan

Paris • Seoul • Milan • Mexico City • Taipei

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and Addison-Wesley was aware of a trademark claim, the designations have been
printed in initial capital letters or all capital letters.

The author and publishers have taken care in preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the information or programs contained herein.

Library of Congress Cataloging-in-Publication Data

Parker, Richard 0.
Mastering the THINK Class Library : Using Symantec C++ and

Visual Architect I Richard 0. Parker.
p. cm.

Includes index.
ISBN 0-201-48356-4 (alk. paper)
1. Symantec C++ for the Macintosh.

-Programming. I. Tide.
QA76.73.C153P39 1995
005.26'2-dc20

2. Macintosh (Computer)-

Copyright© 1995 by Addison-Wesley Publishing Company

95-218
CIP

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

Sponsoring Editor: Martha Steffen
Project Manager: Sarah Weaver
Production Coordinator: Deborah McKenna
Cover design: David High
Set in 11 point Adobe Garamond by Pure Imaging

1 2 3 4 5 6 7 8 9-MA-9998979695
First printing, July 1995

Addison-Wesley books are available for bulk purchases by corporations, institutions,
and other organizations. For more information please contact the Corporate,
Government, and Special Sales Department at (800) 238-9682.

This book is dedicated to my extended family, and especially to my

mother, my son Rick, my daughter Kathryn, her husband Jerry,

and my grandchildren Shannon, Aaron, and Emily.

My sister Marianne, her husband Terry, her son Dafydd,

and their son Chris are always close to my heart.

My family is more important to me than any of them imagines.

May they always give more than they get and love

one another-that's what makes life worthwhile.

Contents

Preface .. xvii
Notation Used in This Book .. xx
Acknowledgments .. xx

Chapter 1

Introduction to the TCL ... 1
Looking More Deeply into the TCL .. 2

Basic Structure of the TCL ... 3
Defining the Visual Hierarchy .. 4
Defining the Chain of Command ... 5
More About Commands ... 7

Using the Visual Architect .. 8
Chapter Summary ... 10

Chapter 2

Building the Application's Foundation .. 11
Creating the Skeleton Application .. 11
Examining the Skeleton Application Code ... 14

Starting in the Main Function .. 16
Constructing the CApp Object ... 17

CCollaborator Construction, 17
CBureaucrat Construction, 18
CDirectorOwner Construction, 18
CApplication Construction, 19
X_CApp and CApp Construction, 22

Initializing the Application Object .. 22
Initializing CApp, 22
Initializing CApplication, 23

Making the Application Helpers ... 26
Loading Important Resources, 26

v

vi >- Contents

Chapter 3

Creating the CSwitchboard Object, 27
Creating the CError Object, 28
Creating the CDesktop Object, 28
Creating the CClipboard Object, 29
Creating the CDecorator Object, 32
Setting the File Parameters, 33
Forcing Class References, 33
Setting Up the Application's Menus, 35

Running the Application .. 37
Processing Events ... 40

Customizing the Application Skeleton ... 41
Examining the Application's Initialization Code 41
Modifying the Apple Event-Handling Code ... 42

Existing Handlers, 42
Handling New Events, 43

Other Application Services ... 46
Chapter Summary .. 47

Creating and Managing Documents49
Creating the Default Document and Its Window .. 49

Creating the Document with an Open Application Event 57
Managing the Document's Data .. 58

Handling a Single File Type ... 59
Handling Multiple File Types .. 63

Opening a Document, 65
Creating a New Document, 68
Creating a File Type Dialog, 69
Generating the Dialog Code, 73
Adding the DoNewDialog Code, 74
Modifying the GetDocTypeFromDialog Code, 75
Modifying the CNewFile Dialog Code, 76

Performing Simple Text File Input and Output ... 78
Creating a CTextEdit Panorama in the NewView Window 79
Examining the x_CNewView Header File Changes 81
Examining the x_CNewView Source File Changes 82
Examining the CTextData Header File ... 83
Examining the CTextData Source File ... 83

CT extData.cp Beginning Declarations, 84
CT extData OpenFile Function Code, 84
CTextData ReadData Function Code, 86
CTextData DoSave Function Code, 87
CTextData WriteData Function Code, 88

Chapter4

CTextData DoSaveAs Function Code, 89
CTextData DoRevert Function Code, 91
CTextData Position Window Function Code, 92
CTextData ContentsToWindow Function Code, 92
CTextData WindowToContents Function Code, 93
CTextData MakeWindowName Function Code, 93

Contents vii

Examining the CNewView Source File Changes .. 94
CNewView ICNewView Function Code, 94
CNewView ContentsToWindow Function Code, 94
CNewView WindowToContents Function Code, 95
CApp ICApp Function Code Addition, 95
CApp MakeNewWindow Override Suggestion, 98

Multiple Documents Versus Multiple Views .. 98
Application Document Summary .. 99

Creating and Displaying Views 101
Creating a Business Account View ... 101

Creating the Main View ... 102
Creating the Account View ... 105
Adding an Account Menu .. 113
Creating a New Account Dialog ... 113
Adding Menu Commands to the Account Menu 115
Generating Code and Viewing the Results .. 117
Examining the Generated Code in x_ CMain............. 119

MakeNewWindow Function Code, 119
DoCommand Function Code, 120
DoCmdNewAcct Function Code, 120
DoCmdEditAcct Function Code, 121
DoCmdDeleteAcct Function Code, 121
UpdateMenus Function Code, 122

What About the Rest of the Generated Code? 122
Making the Business View Fully Functional ... 123
Examining the Custom Code in the CApp Class 124

Adding a New Instance Variable, 124
Newly Added Initialization Features, 125

Examining Custom Code in the CMain Class 125
CMain Header File Additions, 126
ICMain Function Code, 126
MakeNewWindow Override Function Code, 127
DoCommand Override Function Code, 127
DoCmdNewAcct Override Function Code, 128
DoCmdEditAcct Override Function Code, 129

viii :>- Contents

DoCmdDeleteAcct Override Function Code, 131
MakeDefau!tSettings Function Code, 133
ProviderChanged Override Function Code, 133

Examining the Custom Code in the CMainList Class 135
GetCellText Function Code, 135

Examining Newly Added CTransaction Class Code 135
CTransaction Class Header File, 135
CTransaction Class Source Code, 137

Examining Custom Code in the CAccount Class 139
CAccount Class Header File, 139
Preprocessor and Compiler Directives, 141
ICAccount Member Function Code, 141
CloseWind Override Function Code, 142
CreateNewEntries Function Code, 142

Examining Custom Code in the CAcctList Class 144
CAcctList Header File Contents, 144
Global List Border Array, 144
DrawCell Override Function Source Code, 145

Recommended Tasks For Completing The Business Account View 146
Creating a Splash Screen View ... 150

Creating the Splash View .. 150
Examining the Splash View Code ... 152

MakeNewWindow Function Code, 152
ShowSplashScreen Function Code, 153

Creating a Floating Palette View .. 154
Creating the View ... 154
Creating the PICT Image for the Palette .. 156
Creating the PICT Grid Resource .. 157
Examining the Floating Palette View Code ... 158

SetUpMenus Function Code, 159
CWidgets Constructor Function Code, 159
MakeNewWindow Function Code, 160
CMain MakeNewWindow Override Function Code, 161
CMain Activate Override Function Code, 161
CMain Deactivate Override Function Code, 161
CWidgets DoCommand Function Code, 162

Creating a Tear-off Menu View ... 163
Creating the Tear-off View ... 163
Examining the Tear-off View's Code .. 167

SetUpMenus Function Code, 168
CT ools Constructor Function Code, 168

A View Summary ... 169

Contents ix

Chapter 5

Creating and Managing Dialogs ... 171
Creating a Text Style Modal Dialog ... 171
Creating the Main and Notebook Views .. 172

Creating The CFontList and CSizeList Classes, 173
Creating the Font and Size Lists, 17 4
Creating the Style Checkboxes, 175
Creating the Justification Radio Buttons, 175
Creating the CDialog Text Fields, 175
Creating the OK and Cancel Buttons, 175
Creating the Labels, 17 6

Creating the Format Menu ... 176
Generating and Running the Skeleton Code ... 177
Examining the Custom CApp Code ... 179

SetUpMenus Function Code, 179
Examining the Custom CMain Code ... 179

Defining the CT extSettings Structure, 179
The CMain Header File Contents, 180
ICMain Initialization Function Code, 181
DoCommand Function Code, 182
DoCmdNotebook Override Function Code, 182
Initializing the Dialog, 183
ExchangeSettings Function Code, 183

Examining the Notebook Dialog Code ... 184
Ix_CNotebook Function Code, 184
MakeNewWindow Function Code, 185
DoBeginData Function Code, 187
BeginData Function Code, 189
DrawSample Function Code, 192
DispensePaneValues Function Code, 193

Examining the Code for Running the Notebook Dialog 195
DoModalDialog Function Code, 196
x_CNotebook ProviderChanged Function Code, 198
CNotebookUpdate Structure Definition, 200
UpdateData Function Code, 201

Examining the Code to Dismiss the Notebook Dialog 203
EndDialog Function Code, 203
DoEndData Function Code, 205
EndData Function Code, 205
Update Function Code, 207

Creating a Category Editor Dialog ... 208
Creating the Dialog Views .. 208
Examining the CMain Code ... 216

CMain.h Header File Contents, 217

x :>-Contents

Chapter6

ICMain Function Code, 218
AddCategory Function Code, 218
De!Category Function Code, 219
GetCategory Function Code, 219
SetCategory Function Code, 220
SorrCat Function Code, 220
SetSelected Category Function Code, 221
DoCmdEditCategories Function Code, 222

Examining the CCategories Code ... 223
The x_ CCategories Class Header File, 223
Ix_ CCategories Function Code, 225
MakeNewWindow Function Code, 226
The CCategories Class Header File, 227
ICCategories Function Code, 228
BeginData Function Code, 229
DisableButtons Function Code, 230
CmdUseCat Function Code, 230
CmdDeleteCat Function Code, 230
CmdNewCat Function Code, 231
DoCmdEditCat Function Code, 233
ExchangeSettings Function Code, 234

Examining the CNewCat Dialog Code ... 234
BeginData Function Code, 234
EndData Function Code, 236
CNewCat Header File Additions, 236

Examining the CCatTable Class Code .. 237
Examining the CCat Class Code .. 237

CCat Class Header File, 238
CCat Constructor Function Code, 238
PutTo and GetFrom Function Code, 239
CCat Class Access Function Code, 239

Creating a Dynamic Modeless Dialog .. 241
Examining the x_CMain Code ... 245
Examining the CSettings Code ... 246

MakeNewWindow Override Function Code, 247
ProviderChanged Function Code, 248

Modal and Modeless Dialog Summary ... 250

Creating and Managing Controls ... 253
So What Is a Semantic Event? .. 253
Learning About Buttons ... 260

Examining the CButton Class .. 261

Chapter?

Button Properties, 261
Button Actions, 265

Contents xi

Examining the CRadioControl Class .. 267
Radio Button Properties, 268
Radio Button Actions, 269

Examining the CCheckBox Class ... 271
CCheckBox Properties, 271
CCheckBox Actions, 271

Learning About Pop-Up Menus ... 272
Pop-up Menu Properties, 273
Pop-up Menu Actions, 275

Learning About Tables ... 277
Table Properties, 278
Table Actions, 285

Learning About Text .. 289
Text Properties, 290
Text Actions, 292

Control Object Summary ... 294

Handling Events .. 295
Examining the Main Event Loop ... 295

The Process Event Function's Role ... 297
The Doldle Function's Role ... 297
The DispatchEvent Function's Role ... 299

Handling Mouse Down Events, 299
Handling Mouse Up Events, 299
Handling Key Events, 300
Handling Disk Inserted Events, 301
Handling Update Events, 301
Handling Activate and Deactivate Events, 305
Handling Suspend and Resume Events, 309
Handling High-Level Events, 309

More About Mouse Down Events .. 310
Handling inDesk Clicks, 311
Handling inMenuBar Clicks, 311
Handling inSys Window Clicks, 312
Handling inContent Clicks, 312
Handling inDrag Clicks, 315
Handling inGrow Clicks, 316
Handling inGoAway Clicks, 321
Handling inZoomln and inZoomOut Clicks, 323

Summary Event Processing .. 325

xii >-Contents

Chapters

Examining Template and Collection Classes .. 327
Using the CArray Class .. 327

Looping Through CArray Objects with an Index 331
Looping Through CArray Objects with an Iterator. 332
Creating a Push-Pop Stack ... 334

Using the CVoidPtrArray Class .. 336
Looping Through CVoidPtrArray Objects with an Iterator 336

Using the CRunArray Class ... 337
Using the CPtrArray Template to Create Collections 338
Collection and Template Summary ... 342

Chapter 9

Understanding and Using Object 1/0 .. 343
What is Object I/O and How Is It Used? ... 343
Creating a User Interface View ... 344

Creating the Categories Dialog Object ... 344
Accessing the View Resource, 345

Creating and Initializing the CDialog Object 346
Initializing the Dialog's CWindow Class Variables, 349
Initializing the Dialog's CView Class Variables, 349

Creating and Initializing the CPanorama Object 351
Initializing the CPanorama's CPane Class Variables, 351
Initializing the Panorama's CView Class Variables, 352

Creating and Initializing the CScrollPane Object 353
Initializing the Scroll Pane's CPane Class Variables, 354
Initializing the Scroll Pane's CView Class Variables, 355
Creating and Initializing the CColorTextEnvirons Object, 356
Initializing the CTextEnvirons Class Variables, 357
Initializing the CEnvirons Class Variables, 358
Creating and Initializing the CPaneBorder Object, 358

Creating and Initializing the CCatTable Object 359
Initializing the CCatTable's CArrayPane Class Variables, 359
Initializing the CCatTable's CPanorama Class Variables, 361
Initializing the CCatTable's CPane Class Variables, 361
Initializing the CCatTable's CView Class Variables, 362
Initializing the CCatTable's CBureaucrat Class Variables, 363
Creating and Initializing the CTextEnvirons Object, 363
Creating and Initializing the CRunArray Object, 364
Initializing the CRunArray's CArray Class Variables, 364
Initializing the CRunArray's CCollection Class Variables, 365
Continuing the CArray Class Variable Initialization, 365

Contents xiii

Creating and Initializing the CRunArray Object, 365
Initializing the CRunArray's CArray Class Variables, 366
Initializing the CRunArray's CCollection Class Variables, 366
Continuing the CArray Class Variable Initialization, 366
Continuing the Initialization of the CArrayPane Variables, 367

Creating and Initializing the CButton Objects 367
Initializing the Use Button's CControl Class Variables, 368
Initializing the Use Button's CPane Class Variables, 369
Initializing the Use Button's CView Class Variables, 369
Initializing the Use Button's CBureaucrat Class Variables, 370
Creating and Initializing the CColorTextEnvirons Object, 370
Initializing the CTextEnvirons Class Variables, 371
Initializing the CEnvirons Class Variables, 371
Creating and Initializing the CPaneBorder Object, 372
Creating and Initializing the Edit CButton Object, 372
Initializing the Edit Button's CControl Class Variables, 373
Initializing the Edit Button's CPane Class Variables, 373
Initializing the Edit Button's CView Class Variables, 374
Initializing the Edit Button's CBureaucrat Class Variables, 374
Creating and Initializing the CColorTextEnvirons Object, 375
Initializing the CTextEnvirons Class Variables, 376
Initializing the CEnvirons Class Variables, 376
Continuing the Edit Button's CPane Class Initialization, 376
Creating and Initializing the New CButton Object, 376
Initializing the New Button's CControl Class Variables, 377
Initializing the New Button's CPane Class Variables, 377
Initializing the New Button's CView Class Variables, 378
Initializing the New Button's CBureaucrat Class Variables, 378
Creating and Initializing the CColorTextEnvirons Object, 379
Initializing the CTextEnvirons Class Variables, 380
Initializing the CEnvirons Class Variables, 380
Continuing the New Button's CPane Class Initialization, 380
Creating and Initializing the Delete CButton Object, 380
Initializing the Delete Button's CControl Class Variables, 381
Initializing the Delete Button's CPane Class Variables, 381
Initializing the Delete Button's CView Class Variables, 382
Initializing the Delete Button's CBureaucrat Class Variables, 382
Creating and Initializing the CColorTextEnvirons Object, 383
Initializing the CTextEnvirons Class Variables, 384
Initializing the CEnvirons Class Variables, 384
Continuing the Delete Button's CPane Class Initialization, 384

Completing the Creation of the CCategories CDialog Object 384
Creating and Initializing the CColorTextEnvirons Object, 385
Initializing the CTextEnvirons Class Variables, 385

xiv ._ Contents

Chapter 10

Initializing the CEnvirons Class Variables, 386
Finishing the Creation of the CDialog Object, 386

Using Object 1/0 to Save and Restore Data Objects 387
Object 1/0 Code That the VA Generates ... 387
Reading and Writing the Notebook Contents 389

Step 1: Define the Data Contents Class, 389
Step 2: Modify the itsContents_CMain.h File, 393
Step 3: Expand the CStream Class Templates, 393
Step 4: Create and Initialize the itsContents Variable, 394
Step 5: Call TCL_FORCE_REFERENCE, 394
Step 6: Add Code to Transfer the Data to/from Windows, 395

Reading and Writing the Categories List Contents 396
Defining the Categories List, 396
The New Prescription for Object 1/0 With Lists, 397
Step 1: Define Your Contents Class, 398
Step 2: Modify the itsContents_CMain.h File, 398
Step 3: Expand the GetObject and PutObject Templates, 399
Step 4: Initialize the itsContents Pointer, 399
Step 5: Call TCL_FORCE_REFERENCE, 400
Step 6: Expand the Templates for CList and CPtrArray, 400
Step 7: Expand the Template for the PutObjectl Function, 401
Step 8: Implement the Contents Transfer Functions, 402

When You Don't Want To Use Object 1/0 ... 402
Creating a Simple User Interface .. 403
Writing the Code to Read and Write the File 404

ReadContents Function Code, 406
WriteContents Function Code, 406

Object 1/0 and CSimpleSaver Summary .. 407

Apple Events, Factoring, and Recording409
Support for Receiving Apple Events in the TCL .. 410

Handling the Required Events .. 410
Handling Other Core and Miscellaneous Suite Events 413
Handling Object Specifiers in Events ... 420

Installing an Object Accessor Function, 420
Accessing the Event's Direct Object, 420
Handling Events in the Application Class, 422
Handling Events in Other Classes, 426
Handling Object Information Accesses, 427
Comparing Objects, 428

Support for Sending Apple Events in the TCL. .. 428
Replying to Apple Event Requests .. 429

Contents xv

Sending Apple Event Requests .. 431
Sending an Event to Yourself, 431
Sending an Event to Another Process, 433

Adding Factoring and Recording Support .. 434
Apple Events Feature Summary ... 434

Chapter 11

Understanding Chores, Tasks, and Undo/Redo .. 437
Using Chores ... 437

Creating a Periodic Chore .. 438
How the TCL Uses Urgent Chores .. 441

Understanding the CTearChore Class, 441
Using Tasks, Undo, and Redo .. 444

Creating a Text Sryle Undoable Action, 445
Creating a Task for Mouse Tracking, 446

Chore Tasks Summary ... 448

Chapter 12

Drawing and Printing .. 449
Implementing the Draw Function .. 449

Drawing a Custom View .. 450
Printing a Window's Contents ... 452

Printing the Notebook Pane ... 453
Printing an Offset Pane .. 457
Printing a Secondary Window's Contents ... 459

Drawing and Printing Summary .. 460

Index ... 463

Preface

This book is an exploration of the internal workings of the
THINK Class Library (TcL). The book uses the Visual Architect
(VA) and Symantec C++ compiler to aid the exploration effort, al
lowing us to show how various user interface elements are con
structed and the code that is generated to operate them.

It is a rare individual who appreciates the complexity of writing an
application for present day Macintosh users. There are many con
siderations not immediately apparent that the TCL handles, auto
matically, behind the scenes. In writing this book, I show that
using the Visual Architect and the TCL allows you to safely ignore
many of these considerations and concentrate on the features of
your application. I also point out the things to which you must
pay attention during the application development process.

The book covers most of the entire scope of the TCL; however, it is
not a reference manual, per se. It presents the library in terms of
its major components (a functional organization) and shows illus
trations, VA tutorials, and sample code fragments. The plan is to
provide insight into how the TCL works internally, so that when
you make use of its features, you will be better equipped to under
stand and use them to their fullest extent. In that regard, the book
can be treated as a reference by topic, rather than by object class.
If you want to learn how to implement a particular feature or how
the TCL handles a particular situation, then this book is for you. If
you want only to look up the calling sequences for member func
tions of a particular class, then you should refer to the class de
scriptions in the product documentation or in THINK Reference.

The book includes many VA tutorials that illustrate how to create
visual elements of your application's user interface and how then
to modify the generated code to fully implement your applica
tion's intentions. Instead of showing complete examples, in most
cases I have described as much detail as possible.

xvii

xviii > Preface

In addition to the VA tutorials, the book covers a broad range of
topics, including the following:

• An introduction to the structure, visual hierarchy, and chain of
command in the TCL, and an introduction to the Visual Archi
tect (VA).

• Detailed descriptions of how the application framework is ini
tialized when your application starts running are provided. The
entire application construction sequence is described.

• Descriptions of how documents are created and how support
for both single and multiple document (file) types are provided
in the TCL. A detailed code example of how to read and write
simple text files is provided.

• The creation of various types of views with the Visual Architect
is described, along with descriptions of the generated code for a
business account main view, a splash screen view, a floating pal
ette view, and a tear-off menu view.

• Both modal and modeless dialogs are described. The code for a
complex text style modal dialog, a category editor modeless
dialog, and a dynamic modeless dialog are examined in detail.

• A variety of standard controls and their behaviors are
described. The methodology of handling push buttons, radio
buttons, checkboxes, pop-up menus, one and two-dimension
tables, and text fields is described. Semantic events are defined
and described, as they pertain to the various TCL controls.

• The entire event loop and the actions for each type of event
handled by the TCL, are described. The descriptions are inter
spersed with diagrams that illustrate the dynamic relationships
of the various objects that participate in handling events.

• Template classes and their use in the TCL to define various types
of collections are covered. The use of "iterators" to loop
through the elements of a collection is described.

• The topic of Object 1/0 is covered both with respect to how
the TCL uses this facility to create instances of visual objects
when a window or dialog is opened, and how you can make
use of the Object 1/0 facilities to read and write your applica
tion's data. A complete Object 1/0 example is presented. The

Preface xix

use of the SimpleSaver facility for performing simplified input
and output is also described.

• The TCL v2.0 is highly factored, with support for sending and
receiving Apple events both to and from its own classes, but
also to and from classes that you may create. The entire topic of
Apple event handling is described in great detail. The support
functions, callback routines, and handling of object specifiers
are covered in detail.

• Chores and tasks, as well as how the Undo/Redo facilities of
the TCL are described. Examples of periodic chores and tasks
for undoing a text style and mouse tracking are provided.

• Drawing and printing are covered, with respect to main docu
ment windows and secondary windows. The entire process of
printing a window's contents is described.

Many of the descriptions in the book are punctuated with VA tu
torials or dynamic class construction diagrams. The diagrams pro
vide a view of the dynamic state of the application, when it is
performing a particular function, that is not immediately appar
ent when looking at a class hierarchy diagram.

Some of the more detailed descriptions provide a verbal trace
through the TCL code that handles a particular operation. These
descriptions can provide insight into the ramifications of perform
ing even some of the most trivial operations. The descriptions are
intended both to illuminate the complexity of the procedures and
also to make you glad that the TCL is handling most of those de
tails for you.

Some of you may wish after reading this book that some of the ex
amples had been expanded more fully. It was with a great deal of
soul searching that I decided that covering more of the breadth of
the TcL's features, instead of focusing attention on only a few fea
tures, was the better and more helpful approach. This is not to say
that the examples are trivial. Far from it. Many of the examples
include detailed VA tutorials and full source code for implement
ing the feature or features being described.

xx >-Preface

Notation Used in This Book

In order to make this book easier to read and to stress certain ele
ments in the text, we have chosen to use a number of different
type styles and type faces. These are as follows:

• Class and member function names are written in the body text
typeface (Adobe Garamond), in the same form that they are
shown in the code. So, for example, you will see us write about
the MakeNewWindow function of the x_CMain class.

• References to variable names in the text are in the Courier
typeface. A variable name might be written as elementSize.
Values of variables are also in Courier, so you will see us repre
sent a particular variable's value as 0 or FALSE in the text.

• Acronyms and abbreviations that are three letters or longer are
shown in small capitals to improve readability (for example,
TCL is TCL and ASCII is ASCII in this book).

• File names are shown in boldface body type. You will see these
as CMain.h or CAppleEventObject.cp. Menu and command
names are also shown in boldface type, so you will see that the
Print command in the File menu is shown this way.

• All code examples are displayed in the Courier typeface.

Acknowledgments

The author would like to thank several people who made this
book possible. First and foremost is Bob Foster of the Object Fac
tory, without whose tireless efforts the current versions of the TCL

and VA would not exist, and from whom the author received
many tips and explanations of the inner workings of the library.

Many thanks go to David Neal, Dave Alcott, Kevin Iden, and
Tom Emerson of Symantec Corp. I could not have written the
book without their help and advice.

Of course, I cannot forget my editor, Martha Steffen, at Addison
Wesley, who let loose of the reins and let me follow my own path
in writing this book; and the help of my agent, Carole McClen
don, who was paramount in getting this book project off the
ground. Thanks to you both.

Chapter 1

Introduction to the TCL

Let's clear up a couple of confusing terms before getting into the
middle of the TCL and how it works. You will often hear the terms
"class library'' and "application framework" used in the same sen
tence and perhaps are wondering whether there is a difference be
tween the two, or if they are synonymous. Let me try to clear this
up, ifl can.

A class library is a collection of classes that provide a specified set
of features. A library of matrix arithmetic classes would qualify as
a genuine class library, as would a set of classes that implement an
interface to Apple's MIDI manager or the communications tool
box. Each of these is merely a collection of classes, with their asso
ciated member functions and data, that enable a C++ program to
acquire new functionality by simply including the classes in the
program.

An application framework, on the other hand, is a complete ap
plication skeleton-in the respect that it contains all of the funda
mental features that enable a Macintosh application to run. By
writing just a few lines of code and including the essential classes
and member functions from the TCL, you can create a complete
application that is missing only the custom code to implement the
unique features of your final product. Such an application frame
work contains provisions for establishing a menu bar, a set of de
fault menus, and perhaps even a default window. The application
also includes the ability to handle events and process menu com
mands; however, unless a particular command is handled by the
framework, the framework may simply ignore the command.

I hope that you can see the distinction between just a class library
and an entire application framework. The TCL is a complete appli
cation framework, embodying the fundamental features that are
common to all Macintosh applications. By supplementing the TCL

1

2 Chapter l ~Introduction to the TCL

with your own custom classes and member functions, you can
build a custom Macintosh application.

So with respect to the two foregoing definitions, the THINK class
library should rightfully be renamed the THINK Application
Framework. However, because the former is forever frozen in the
pages of history, I will refrain from belaboring the distinction. In
stead, I will use the term TCL, even though I am using an applica
tion framework.

Looking More Deeply into the TCL

Beneath the label, the TCL is a rich collection of classes and mem
ber functions. The TCL is so richly endowed that many parts of it
work automatically, completely behind the scenes, to provide im
portant functions that you would otherwise have to include in
your own code. In addition to the broad range of functions in
cluded in the library-I will cover these in much greater detail
later-it is important to describe how the operation of the appli
cation framework differs from that of a typical procedural applica
tion.

You might think that an application framework is no different
from a library of very capable subroutines, but there is a great dif
ference between the two. In the first place, an application frame
work is upside-down in comparison to a subroutine library. In
the case of the subroutine library, you write your program to per
form most of the tasks that are unique to your application and
then call subroutines to perform special functions that the library
routines implement. In contrast, an application framework, once
given control, performs all of the tasks that it possibly can and
then calls your program to handle the tasks that it is unable to
perform.

So once you have given control to the TCL, it runs by itself, accept
ing and handling the user's actions (events) to the extent of its
abilities and then calls upon your application, as needed, to per
form the remaining tasks. Examples of tasks that the TCL can han
dle without assistance include zooming and closing windows,
dragging windows from one area of the screen to another, imple
menting pull-down menus, allowing the user to choose a menu
command, redrawing the contents of many types of windows,

Looking More Deeply into the TCL 3

handling pop-up menus, checking checkboxes, changing the ac
tive selection for radio controls, and many other tasks. Examples
of tasks that your program must implement include what to do
when the user chooses a particular menu command, updating (re
drawing) the contents of graphic or other special windows and
their contents, deciding what to do when a particular checkbox or
radio button is clicked, and other tasks that are unique to the
functionality of your application.

Basic Structure of the TCL

The TCL is organized as a tree with multiple roots. The designers
of the TCL labored long and hard to personalize the framework by
defining names for the classes that were indicative of their func
tions. For example, many of the foundation components of the
framework are rooted in a class named CCollaborator that con
tains functions to accept messages from objects in other parts of
the tree and passes them on to other objects in the tree. In this
way, all of the classes in this subtree are capable of talking with
one another via the collaboration mechanism. The tree rooted in
the CCollaborator class is the largest in the framework, encom
passing over eighty separate classes.

In addition to the tree of CCollaborator objects, there are several
other trees in the TCL, some of which consist of only a single class.
Also, because the TCL supports multiple inheritance, various trees
are interconnected with inheritance links to other trees. Trees with
multiple classes in their hierarchy include CEnvirons, which es
tablishes various types of drawing environments, including sub
classes that manage text and color text environments for
individual window panes; the CStream-rooted tree, which han
dles various types of stream 1/0; the CFile-rooted tree, which
handles more conventional Macintosh file 1/0; the CChore
rooted tree, which handles periodic tasks; the CTask-rooted tree,
which handles text and table-related tasks that can be undone;
and many other trees and single root classes.

Some of the classes that stand alone in the framework are of great
importance to every Macintosh application. The COecorator class
is responsible for arranging the sizes and positions of all of the ap
plication's windows. The CSwitchboard class is the first to access
most events before dispatching them to other classes to be han-

4 Chapter 1 > Introduction to the TCL

dled. The CBartender class is responsible for handling the menu
bar and events that result in the choice of a menu command. The
CError class posts standard Macintosh Alerts for error conditions
recognized by the TCL and also by your application. And the CEx
ception class contains more comprehensive exception handling
functions. For even more sophisticated error handling, the TCL

implements a large subset of the typed exception handling pro
posed by the draft C++ standard.

Many of the individual classes in the TCL inherit functionality from
a class called CAppleEventObject. This class provides the basis for
responding to and sending Apple Events in the course of an appli
cation's execution. Much of the support for handling Apple Events
is built into the various framework classes. You can also add your
own classes to handle (or record) Apple Events as they occur or
produce fully factored applications by sending Apple Events to
your own application. The TCL is already set up to provide these
features, automatically, when you set the value of a single Boolean
variable (factoring) to TRUE. When this is done, the TCL will send
Apple Events to itself to handle many standard operations, such as
opening files, printing files, and closing, dragging, zooming, and
resizing windows. Using the features of the TCL as a basis, you can
create fully factored applications that can, in turn, be driven by
AppleScript, Userland Frontier, or other OSA-compatible script
ing languages.

Defining the Visual Hierarchy

In addition to the various class trees and inheritance links that are
built into the framework, there are two additional groupings of
classes. These are called the Visual Hierarchy and the Chain of
Command.

The Visual Hierarchy is easy to explain. It consists of all of the
windows and each of the individual panes that make up each win
dow in the completed application. All of the windows are man
aged by the CDesktop object and each CWindow object may
contain one or more CPane objects. The visual hierarchy of an ap
plication that has three open windows might appear like what is
shown in Figure 1-1. Note in the figure that the CDesktop object
is at the top of the visual hierarchy. That object keeps track of all
open windows and is the dispatcher for mouse events that affect

Figure 1-1
Visual Hierarchy
example

Looking More Deeply into the TCL 5

CDesktop

CWindow CWindow CWindow

CPane

CPane CPane

the windows. Each window is represented by a CWindow object
that may contain one or more CPane objects. CPane is really the
base class for a whole collection of visible object classes, including
CPanorama, CSubviewDisplayer, ClconPane, CRadioGroup
Pane, CPopupPane, CSizeBox, CScrollPane, CControl, and all of
their subclasses. Figure 1-1 illustrates one possible containment
model, but a given window can contain any number of panes and
each pane can contain other panes, as is illustrated for the middle
CWindow object in the figure.

It's not important to understand all of the details regarding the
visual hierarchy right now. We will look at the individual compo
nents in a later chapter. The important point is that the CDesktop
object is responsible for all of the CWindow objects, and each of
the CWindow objects is responsible for all of its CPane objects. It
is also true that CPane objects can be responsible for any subpanes
that they contain. Mouse and window activation and update
events travel down in the hierarchy from the CDesktop to the
CWindow to the individual CPane objects. I will cover how these
events are handled in a later chapter.

Defining the Chain of Command

In addition to the visual hierarchy described in the previous sec
tion, I need to introduce the concept of the "chain of command."
While mouse clicks and window events travel down the visual

6 Chapter 1 :>- Introduction to the TCL

Figure 1-2
Chain of command
for typical application

hierarchy and reach their appropriate destination because of the
position information they contain (that is, the coordinates of a
mouse click), commands (including menu commands, click com
mands, and keystrokes) travel along a different path, according to
a different set of rules. The TCL defines a global variable called
gGopher, which contains the pointer to the first object to receive
any command. The object to which the gGopher variable points
is usually an active pane in the currently active window and is re
ferred to as the current "gopher." The chain of command for a
typical application hierarchy is shown in Figure 1-2.

CCollaborator

CBureaucrat

CDirectorOwner

CApplication

x_CApp

CApp

......... --.. -............ ..

LEGEND

-- Inherited Behavior
~ Object Construction
..... Chain of Command

CDirector

CDocument

x_CDoc

CDoc

:.,.
' '

:...

CView

CWindow

CPane

CPane
~--...---~

gGopher •• !

Figure 1-2 illustrates the hierarchy of the major objects in a typi
cal application. Although the CPane objects are part of the chain
of command, the CWindow object rarely assumes this role. In
stead, the window's director (the CDoc object in this case) is next
in the chain of command, after a CPane object has relinquished
that role. The CApp object is the last to handle a command and
does so only if all other members of the chain of command have
passed on that responsibility.

Looking More Deeply into the TCL 7

Note that the gopher points directly to (what is assumed to be)
the active pane in the currently active window. Commands and
keystrokes are sent to this object first. If that object is unable to
handle the command or keystroke, it is passed up to the next level
in the class hierarchy, not to another pane in the same window. If
the document object (CDoc in our case) decides that another
CPane object in the current window should handle the command,
it will arrange for that pane to become the gopher and will reissue
the command. It is rarely necessary for the document object to
operate in this manner. A given CPane object is active because the
user has clicked on it, causing it to activate.

When an application is first initialized (I will cover that topic in
much more detail later) the CApp object becomes the gopher.
When the user chooses the New command from the File menu,
the CreateDocument member function in the x_CApp class cre
ates a new instance of the CDoc class and then creates the initial
CWindow object and its enclosed CPane objects. The CWindow
object is created by its CDirector object (which is the CDoc ob
ject in Figure 1-2) and the director's Activate member function is
called. This results in the CDirector (CDoc) becoming the go
pher. When the user clicks in one of the CPane objects in the win
dow, then that object becomes the gopher, receiving all further
commands and keystrokes until some other pane or the director
becomes the gopher. Your program can force a given pane to be
come the gopher by calling BecomeGopher (a member function
of the CBureaucrat class) for that pane. When a window is closed
or deactivated, its director will become the gopher until that or
another window is activated and one of its panes is clicked.

If all of the talk about gophers and the chain of command seems
confusing, don't worry. These concepts should become clear after
you learn a bit more about how the TCL operates. Just remember
that most of the machinations described in the foregoing sections
happen automatically, without the need for you to intervene.

More About Commands

Commands are events that are created by virtue of some action
taken by the user. The most well known of these are the commands
associated with the user's choice of a menu item. Officially, the vari-

8 Chapter 1 >Introduction to the TCL

ous items in an application's menus are called menu commands.
When the user chooses a menu command, a command token (a
unique 32-bit value) is sent to the current gopher to be handled. If
the current gopher can't handle the command, then the command
is passed on to the next higher member of the chain of command to
handle. The application object is the last to receive a command if
no other object is capable of handling it. If the application can't
handle the command, then the command is thrown away.

Commands can also be generated when the user presses the Com
mand-key shortcut associated with a menu command. This action
results in the creation of the same kind of command token, which
is then sent to the current gopher, as described earlier.

In addition to menu choices and keyboard shortcuts, commands
can also be associated with mouse clicks on push buttons, check
boxes, or radio buttons. When you add one of these buttons to a
window or dialog either by using the VA or creating it program
matically, you can specify a "click command" for the button.
When the application is running and the user clicks on that but
ton, a command token will be generated, just as was the case for a
menu command or keyboard shortcut, and the command will be
sent to the current gopher to handle.

Using the Visual Architect

The Visual Architect (VA) is both a graphic user interface design
tool and a code generator. Using the VA, you can create the user
interface for applications that have multiple windows, open mul
tiple files of the same or different types, display various modal or
modeless dialogs or floating tool palettes, and respond to com
mands associated with menus that you specify. You can also con
struct splash screens and error alerts using the VA.

The entire user interface need not be designed all at once. You can
design the various features of your application one by one, gener
ate code, implement and test any custom features, and then pro
ceed to design the next set of features, repeating these steps as
many times as necessary.

When any particular set of features has been designed, you can in
struct the VA to generate code to implement the appearance of

Using the Visual Architect 9

those features. Of course, any custom behavior associated with the
user interface features will have to be written manually, but the
VA includes comments in the generated code to instruct you
where to add your custom code, and, in general, what it should
accomplish. When you generate code, the VA will generate a pair
of files for each major feature (application, document, menu, win
dow, alert, dialog, and so on). You can see an example of this tech
nique in Figure 1-2, where the application class has been broken
into a base class (x_CApp) and a subclass (CApp). The document
subclass is handled in the same way with the creation of the
x_CDoc and CDoc classes. Each of these is written into a separate
source file, with its own unique header file. The class declaration
is written into the header file (for example, CDoc.h), whereas the
member functions are implemented in the code generated into
the source file (for example, CDoc.cp).

Each time you generate code, the VA will regenerate the appropri
ate base class files (both source and header). Once generated, the
subclass files are never regenerated. The approach allows you to

modify the user interface at any time without losing any of your
custom code in the subclass files.

You can use the VA to develop a user interface and its correspond
ing code in an incremental manner; however, if you make drastic
changes to your user interface, you may find that you will have to
modify some of the code in a subclass file to compensate for these
changes. So although the VA is an incredible help in generating
the necessary skeleton code for a user interface design, it helps to
have spent some time with pencil and paper, sketching your ex
pected user interface design, before you actually use the VA to im
plement the design and generate code.

When you update your project for the first time, you will find
that you will need to compile almost every class in the TCL. There
after, you need only compile the files that have changed (or any
files that depend upon the changes you have made). The VA pro
vides an intimate interface with the Symantec development envi
ronment, allowing newly generated source modules to be added
automatically to your project.

As an extra added bonus, the VA includes a simulator that allows
you to view the final appearance of windows, dialogs, and alerts,
from within the designer program. With windows or dialogs that

10 Chapter 1 > Introduction to the TCL

contain controls, you can even test the functionality of those con
trols in the context of the simulated display. This allows you to see
the effect of any changes and to delay the generation of code until
you are sure that the appearance of each feature is what you want
in the final form of the application.

When you design the various user interface elements that make
up your application's appearance, the VA writes the settings for
each of these into special CVue resources. The CVue resources can
not be edited by a normal resource editor (for example, ResEdit or
Resorcerer) because the resources consist of a highly complex
stream of data. When your application is launched, the CVue re
sources are read into memory, as needed, and are made available
for use by the remainder of your application and the TCL, auto
matically. I will cover more of this topic when discussing the cre
ation of windows and dialogs in later chapters.

Chapter Summary

As you may have guessed by this time, I will be using the VA toil
lustrate how various user interface features can be designed. The
generated code, as well as custom code, will be used to elaborate
on how the features are best implemented in the context of the
TCL. In so doing, I hope to cover a number of popular user inter
face features and their alternatives.

I will, for example, cover application structures that consist of sin
gle or multiple standard document windows, multiple files, and
the use of modal or modeless dialogs. I will do my best to present
you with examples of how to create whatever you need to by using
a combination of the VA, the TCL, and whatever custom code is
needed.

This book does not come with a disk because I don't intend to
show you a bunch of simple do-nothing applications or even one
large application. Instead, I am including a large number of tuto
rials, code fragments, and detailed code descriptions that are orga
nized in a fashion that you will be able to pick up and use without
any additional assistance.

The adventure begins in the next chapter.

Chapter 2

Building the Application's Foundation

This chapter describes how to create a skeleton TCL application
using the Visual Architect (VA) tool. The application will contain
a single window, with a color PICT image created by the VA, and
standard Apple, File, and Edit menus. In the course of examining
the generated code, we will discover how the application is con
structed, how it is initialized, how various important TCL objects
are created, and how all of these work together with the generated
code to produce a fully functioning application.

Even though the application I will create and describe in this
chapter has limited functionality, it does serve as an excellent basis
for illuminating the foundation on which all TCL applications are
built.

Creating the Skeleton Application

To commence development of the skeleton application for use in
this chapter, the first step is to launch the Symantec C++ develop
ment environment. The Project Manager will display a dialog that
offers a choice of various types of new projects. We will choose to
create a Visual Architect Project. This will result in the population
of the Symantec C++ project window with all of the files that are
necessary to the creation of this type of project. In addition to the
files associated with the TCL, the project will include a file called
Visual Architect.rsrc that contains the initial resources that are
applicable to a VA project. That file will also contain the resources
that are unique to your user interface when you choose to change
the default design. For now, we will use the default design. With
the foregoing as a backdrop, the procedure for creating the skele
ton project is as follows:

11

12 Chapter 2 >Building the Application's Foundation

Figure 2-1
Visual Architect main
window appearance

1. Name the new project Skeleton. The Project Manager will
automatically add all of the initial files needed to commence
the development of the project.

2. After the project is created, double-dick on the Visual Archi
tect.rsrc file in the project window to launch the Visual
Architect application. When you do so, you will see a menu
bar with VNs standard menus and a main window titled
"Visual Architect.rsrc" that contains a single entry called
"Main." The main window appears as shown in Figure 2-1.
The entry for "Main" is the default view that is supplied by
the VA for all new projects. The VA supports various types of
views, and the default view just happens to be a document
window that contains both horizontal and vertical scroll bars,
a size box, and a go-away box.

§:0~ Uisual Rrchitect.rsrc
Main ~

tzy
~

3. Double-dick on the word Main in the Visual Architect.rsrc
window to show the Main window's contents. What you'll see
is a color version (if you are using a color monitor) of what is
depicted in Figure 2-2. The default window contains a PICT
image (named Pictl) that has been imported from the
resource fork of the Visual Architect.rsrc file and also a static
text field that contains the "hello world" text. After you have

Figure 2-2
Contents of Main
window supplied by
the Visual Architect

Figure 2-3
Menu Bar editor
window in Visual
Architect

Creating the Skeleton Application 13

Main

.. t····

Menu Bar

@ s (Apple Menu)

(Edit Menu Items J

MENU ID:

MDEF ID: 0

Add Menu:B (Cancel)

OK

finished looking at the contents of the window called Main,
you can close that window.

4. To view and/or modify the menu bar, its menus, and the vari
ous menu commands, pull down the Edit menu and choose
the Menu Bar command. A window displaying the current
menu bar and its included menus will be shown, as illustrated
in Figure 2-3. Note that Apple, File, and Edit menus are
included in the default menu bar. If you wish to examine the

14 Chapter 2 >-Building the Application's Foundation

contents of any of the menus, select the menu in the list and
then click the Edit Menu Items button. If you do that, you
will be able to see all of the menu commands for the selected
menu. When you are done, click Cancel in the Menu Items
window, and then click Cancel again to dismiss the menu bar
editor when you are finished examining the menu bar and its
menus. We will not be modifying any of the menus in the
skeleton application described in this chapter.

5. At this point we have looked at the user interface elements
that are provided by default for all VA projects. The elements
include a single window that contains a PICT image and a
menu bar with Apple, File, and Edit menus. The next step in
the creation of the skeleton application is to choose Generate
All from the Project menu (shown immediately to the right
of the Windows menu) in the VA, as an icon. When you per
form this step, the VA will display first a window indicating
the name of each file it is generating, then a message indicat
ing that it is updating your project file.

6. After the code generation step is complete, you can quit the
VA application by choosing Quit from its File menu. If the
VA asks you whether you wish to save changes, click the No
button in that dialog (this is just to ensure that the interface
resources are all still in their default form).

After the foregoing steps are complete, your project has been up
dated with the files containing skeleton code to implement the
basic features of the application. If you compile the files that com
prise the project and then run the application, you will see the
window and menu bar that were included in the default VA inter
face design.

Examining the Skeleton Application Code

The main purpose of creating a skeleton application is to produce
a complete set of source code that we can dissect and analyze so
that you will have a better understanding of the foundation on
which all TCL applications are built.

Examining the Skeleton Application Code 15

The first step in analyzing the source code is to describe each of
the source and header files produced by the VA when it generated
code and added it to the project. The various files and their roles
in the context of the application are as follows:

CApp.cp This file is a subclass of the x_CApp file, which inherits its func
tionality directly from the CApplication class of the TCL. The
CApp.cp file contains member functions that override or enhance
the functionality of its base class and is the file that you would
modify to include application-wide changes in the program. Once
generated by the VA, the CApp.cp file will never be regenerated,
unless the original file is deleted. The file is generated only once
and you are free to modify this file.

CApp.h This header file contains the declaration of the CApp class, its
member functions, and member variables. It is generated only
once, and you are free to add function and variable declarations to
this file.

x_ CApp.cp This file contains the member functions that inherit and supple
ment the behavior of the functions in the CApplication class,
from which it is derived. The x_CApp class is the direct ancestor
of the CApp class and the direct descendent of the CApplication
class. This file is regenerated whenever the VA deems it necessary
to do so. You should not modify this file directly.

x_ CApp.h The declarations of the x_ CApp class, its member functions, and
member variables are contained in this header file. This file should
never be modified directly. It will be regenerated by the VA when
ever it is necessary to do so.

CMain.cp This file contains the member functions for the CMain class. This
class is derived from the x_ CMain class and is the document sub
class. The CMain class is where you add any code to implement
functions that are associated with your document or its data. The
file is generated only once.

CMain.h This header file contains the declaration of the CMain class and
its member functions and member variables. The file is generated
only once. You are free to add function and variable declarations
to this file.

x_CMain.cp This file contains member functions that override and supple
ment the behavior of the CSaver class (from which it is derived),
that, in turn, is derived from the TcL's CDocument class. If your
application does not perform file 1/0, then the x_CMain class

16 Chapter 2 ~Building the Application's Foundation

will be derived directly from the CDocument class. The file is
regenerated by the VA whenever it is necessary to do so. You
should not modify the contents of this file at any time.

x_CMain.h This header file contains the declarations of the x_CMain class
and its member functions and member variables. The file is regen
erated by the VA whenever it is necessary to do so. You should not
modify the contents of this file.

References.cp This file includes most of the TCL header files that will be used by
your project and also contains a function called ReferenceStd
Classes that contains TCL_FORCE_REFERENCE macros to force the
standard TCL classes to be linked into your final application. This
file is regenerated each time you generate code with the VA. If you
need to force class references for your own classes, there is a Force
ClassReferences member function in the CApp class where you
can add these function references. We will cover this topic in more
detail later.

References.h This header file includes the TCLForceReferences.h file that con
tains the definitions of the TCL_FORCE_REFERENCE and the
TCL_FORCE_TEMPLATE_REFERENCE macros. It also contains the
prototype for the ReferenceStdClasses function.

mam.cp Finally, the main module of your program is contained in this file.
The main function in the file is given control when your applica
tion commences execution. The file is generated only once and is
very short. You should not need to make changes to this file; how
ever, you are free to do so.

Starting in the Main Function

I intend to examine the skeleton code (and therefore the TCL) by
following the thread of execution of the application, starting with
the main.cp module. The main function is not part of any class. It
is not object-oriented and is merely the standard function that re
ceives control when any C or C++ application is executed. The
code for the main function is as follows:

/***
main.cp

Main Program

Copyright © 1994 My Software Inc. All rights reserved.

Generated by Visual Architect™ 2:56 PM Thu, Sep 22, 1994
***/

llinclude "CApp.h"

void main()
{

Examining the Skeleton Application Code 17

CApp *application = TCL_NEW(CApp, ());
application->ICApp();
application->Run();
application->Exit();

As you can see from the foregoing code, the main function is very
small. The code begins by creating a CApp object, storing its
pointer into the temporary stack variable called application.
Rather than using the C++ new operator, the foregoing code uses
a macro called TCL_NEW that, by default, simply expands into the
use of the new operator for the class. If the Bedrock Exception Li
brary exception handling facilities are being used, then the use of
the TCL_NEW macro will result in additional code being generated.

The point of bringing up the different possible expansions of the
TCL_NEW macro is to advise you to use this macro when you cre
ate new objects in your own code. If you do so and later decide to
use more extensive exception handling, you will be able to do so
by including a single #define statement in the Prefix settings for
your project.

When the CApp object is created, the constructor functions for
all of its ancestors and then the CApp object itself are executed, in
that order. The class hierarchy after the CApp object has been
constructed is shown in Figure 2-4.

Constructing the CApp Object

Using the foregoing figure as a guide, you can see that the con
structors for the CCollaborator, CBureaucrat, CDirectorOwner,
CApplication, CAppleEventObject, x_CApp, and then the CApp
class are executed. Some of these objects do not define default
constructor functions; however, the compiler will generate code to
perform any needed construction, even if an explicit constructor
does not exist. The following sections describe the construction
process and what is accomplished in each step.

CCol laborator Construction

The constructor for CCollaborator class is the first to be executed.
In this case, a default constructor exists. The function performs
the following actions:

18 Chapter 2 >Building the Application's Foundation

Figure 2-4
Class hierarchy after
CApp object is
constructed

CCollaborator CAppleEventObject

CBureaucrat

CDirectorOwner

CApplication

x_CApp

CApp

'
: gGopher

Execution
begins here

main

LEGEND

- Inherited Behavior
~ Object Construction
- - - .,.. Chain of Command

1. The i tsProviders member variable is set to NULL. This
ensures that the list of providers for this CCollaborator object
is empty.

2. The i tsDependents member variable is set to NULL. This
ensures that the list of dependents for this CCollaborator
object is empty.

The function of CCollaborator objects will be discussed in a later
chapter; however, simply put, CCollaborator objects provide the
means to communicate changes to objects in the visual hierarchy
with one another through a mechanism of providers and depen
dents that is managed entirely by the TCL.

CBureaucrat Construction

The CBureaucrat class has a default constructor with a single ar
gument (aSupervisor) for which the CDirectorOwner derived
class's constructor specifies an initializer value of NULL. Therefore,
when the constructor executes, it sets the value of the application's
its Supervisor member variable to the NULL value.

CDirectorOwner Construction

The CDirectorOwner class has a constructor with a single argu
ment (aSupervisor), for which an initializer in the CApplica
tion derived class specifies a value of NULL. When the

Examining the Skeleton Application Code 19

CDirectorOwner constructor continues execution, it sets the
value of the i tsDirectors member variable (a list) to NULL,

indicating that the list is empty.

CApplication Construction

The CApplication class contains a default constructor that pro
vides initializers for the constructors of both the CDirectorOwner
and CAppleEventObject base classes from which it is derived.
When the CApplication constructor is executed, it performs the
following functions:

1. The CApplication class inherits behavior from the CAp
pleEventObject class, so the constructor for that class is called
with an argument of FALSE, which is taken to be the
isDisposable argument for the constructor.

2. The CAppleEvent class's constructor takes the FALSE value
and stores it into the disposable member variable. This
ensures that the application object is not disposed when
Apple Event handling is complete (I will discuss Apple Events
in a later chapter). In addition, the elementID is a unique
identifier for this object that is set to the value of the
lastElementID member variable and then that member
variable is incremented by one.

3. Finally, the pointer to this object (if you've lost track by now,
we're still talking about the CApp object) is entered into a
linked list of CAppleEventObject objects.

The last action of the constructor for the CApplication class is to
call an additional member function of that class to complete the
details of construction. This function is called CApplicationX and
its code in the TCL is as follows:

void CApplication::CApplicationX()
{

gApplication = this; II initialize the global pointer

phase= appinitializing; II indicate initialization phase
running = FALSE;
urgentsToDo = FALSE;
newWindowOnStartup =TRUE; II derived constructor can

II override

recording = FALSE;
factoring = kFactorWhenRecording;

gDesktop = NULL; II pointers to helpers

20 Chapter 2 ~Building the Application's Foundation

gClipboard = NULL;
itsSwitchboard = NULL;
gDecorator = NULL;
gBartender = NULL;
gError = NULL;

sfFileFilter = NULL;
sfGetDLOGHook = NULL;
sfGetDLOGFilter = NULL;

lastTask = NULL;

itsidleChores = NULL;
itsUrgentChores = NULL;

rainyDay = NULL;

urgentsToDo = FALSE;
running = TRUE;
lastTask = NULL;
undone = FALSE;

ginBackground = FALSE;
gSignature = '???\?';
gSleepTime = 0;

gGopher = this;
gLastViewHit = NULL;
gLastMouseUp.when = OL;
gClicks = O;

InitToolbox{);

II We want an early first Idle

II Initialize Toolbox Managers

appResFile = CurResFile(); II Remember application resource
II file

As you can see in the foregoing code, the CApplicationX function
performs many initializations. These prepare the application for
future operation with a "clean slate."

The gApplication global variable is set to point to the CApp
object. This gives you the ability to access the application object
from any other object in the program.

The urgentsToDo member variable is initialized to FALSE, in
dicating that there are no pending urgent chores.

The newWindowOnStartup member variable is set to TRUE, in
dicating that the default behavior for the application is to create a
document and new windows when the application starts up. You
can override this behavior in your own code.

Examining the Skeleton Application Code 21

The recording member variable is set to FALSE and the fac
toring variable is set to the value of the kFactorWhenRe
cording constant. These actions specify that the application is
currently not recording and that the application is factored only
when it is recording. You can override these settings in your own
code.

A number of other variables are initialized to NULL. These include
a number of global variables, such as gDesktop, gClipboard,
gDecorator, gBartender, and gError. In addition, other
variables, procedure pointers, and lists are set to NULL. These in
clude the itsSwitchboard pointer and the sfFileFilter,
sfGetDLOGHook, and sfGetDLOGFilter procedure pointers.

The last Task (CTask object pointer) and the i tsidle
Chores and i tsUrgentChores lists of chores are set to NULL,
making sure these lists are empty.

The running variable is set to TRUE, indicating that the applica
tion is running. The undone variable is initialized to FALSE, in
dicating that the last task has not been undone. The
ginBackground variable is set to FALSE, indicating that the ap
plication is running in the foreground. The gSignature vari
able (creator code) is set to'????'. The gSleepTime variable is set
to 0, ensuring that when the application begins processing events,
it will generate an early idle event. The gGopher variable is set to
point to the CApp object, and the gLastViewHi t variable is set
to NULL, indicating that the last view in which the mouse was
clicked has not been specified. The time at which the last mouse
up event occurred is set to 0 in the gLastMouseUp variable and
the number of previous mouse clicks is set to 0 in the gClicks
variable.

After the foregoing initialization steps are taken, the CApplica
tionX function calls the !nit Toolbox function to initialize the Mac
toolbox managers. These are called in the following order: lnit
Graf, lnitFonts, lnitWindows, lnitMenus, TEinit, InitDialogs,
and lnitCursor.

Finally, after initializing the toolbox managers, the CApplicationX
function sets the appResFile variable to the current resource
file by calling the CurResFile toolbox function.

22 Chapter 2 ~Building the Application's Foundation

X_CApp and CApp Construction

Neither the x_CApp nor the CApp classes have explicit construc
tor functions, so the construction of the CApp object is complete
after default constructors are executed for these classes.

As you can see in Figure 2-4, the gGopher variable, which repre
sents the beginning of the chain of command, is pointing to the
CApp object after construction of that object is complete. What
this means is that any events, such as mouse clicks or keystrokes,
will be sent to the CApp object when the application begins pro
cessing events.

Initializing the Application Object

After the application object (CApp) has been constructed fully,
the code in the main function continues execution by using the
pointer to the CApp object (application) to call the ICApp
member function of the CApp class.

Initializing CApp

Refer back to the code for the main function (see page 16). After
the CApp object has been constructed, you will see that the func
tion calls the ICApp member function of the CApp object to per
form additional initialization.

The I CApp member function calls the Ix_ CApp member func
tion inherited from the x_CApp class. The arguments to the call
to Ix_ CApp are as follows:

1. The first argument (extraMasters) specifies the number of
times that the MoreMasters toolbox routine will be executed.
In the default case, the argument to the Ix_CApp function is
the number 4, indicating that MoreMasters should be called
four times.

2. The second argument (aRainyDayFund) specifies the size of
the "Rainy Day" fund-an allocated block of memory that is
held in reserve in case a low-memory situation requires it to
be used. The default value is 24,000 bytes.

3. The third argument (aCri ticalBalance) specifies the
portion of the Rainy Day fund to be reserved for use in criti
cal operations such as in execution of the Save or Quit com
mands. The value of this argument is 20,480 bytes.

Examining the Skeleton Application Code 23

4. The fourth argument (aToolboxBalance) specifies the
portion of the Rainy Day fund to be reserved to allocate a
"system bomb" dialog in the case where a toolbox call fails.
The value given for this argument is 2,048 bytes.

Initializing CApplication

When the Ix_CApp function executes, it calls the !Application
function inherited from the CApplication class with the foregoing
four arguments. The !Application function begins by calling the
IApplicationX function, which performs the following actions:

1. The first task is to call the InitMemory member function of
the CApplication class to initialize the memory usage for the
application. The function proceeds as follows:

a. When the InitMemory function commences execution, it
validates that the value of the aRainyDayFund argu -
ment is greater or equal to the value of the aCriti
calBalance. In addition, the function validates that
the aCri ticalBalance is greater or equal to the value
of the aToolboxBalance argument. If either assertion
is 23FALSE, then the application will display an error dia
log and terminate execution.

b. After validating the arguments, the function calls the
MaxApplZone toolbox routine to expand the application
zone to include all available heap memory.

c. When the application zone has been fully expanded, the
MoreMasters toolbox routine is called to allocate the
specified number of master pointer blocks, the default
number of which is four.

d. The InitMemory function calls SetGrowZone with a
pointer to a function to be called when a memory request
cannot be filled. This is specified, by default, to be a glo
bal function called GrowZoneFunc, which is in the CEr
ror.cp source file. The GrowZoneFunc, when called,
attempts to release enough memory to satisfy a failed
memory-allocation request.

e. The function then stores the values in the argument list
into member variables of the application object (CApp).
The rainyDayFund variable is set to the value of the

24 Chapter 2 :>-Building the Application's Foundation

aRainyDayFund argument, the cri ticalBalance
variable is set to the value of the aCriticalBalance
argument, and the toolboxBalance variable is set to
the value of the aToolboxBalance argument.

f. In addition to storing the values of the function's argu
ments into the CApp object's member variables, the func
tion initializes the values of other member variables for
the application object. The rainyDayUsed variable is
set to FALSE, the rnemWarningissued variable is set to
FALSE, the canFail variable is set to FALSE, the value
of the inCri ticalOperation variable is set to FALSE
(indicating that a critical operation is not in progress),
the ternpAllocation variable is set to 0, and the value
of the _MMPrirnitiveAllocate variable is set to
FALSE.

g. The final action of the InitMemory function is to allocate
a handle in the heap that is the size specified in the
rainyDayFund variable and then verify that the mem
ory has been allocated. If the memory request fails, then
the application will display an error alert and will stop
execution.

2. After the InitMemory function completes its execution, the
IApplicationX function resumes execution and calls the
InspectSystem member function of the CApplication class.
This function performs the following actions:

a. The InspectSystem function determines whether the
_ GestaltDispatch trap is available in the user's system,
whether the WaitNextEvent trap is implemented, and
whether the _ScriptUtil (Script Manager) trap is avail
able. It stores these values into a series of fields in the glo
bal gSystern structure. The foregoing values are stored
into the hasGestal t, hasWNE, and hasScriptMgr
fidds. The scriptsinstalled field is set to l, indi
cating that a single script only (assumed to be Roman) is
installed.

b. The SysEnvirons toolbox routine is called to determine
whether the user's system has Color QuickDraw installed,
whether it has a floating-point unit, and which version of

Examining the Skeleton Application Code 25

the operating system is being run. These values are stored
into the gSystem structure in its hasColorQD, has

FPU, and systemVersion fields. If the call to SysEnvi
rons results in an error, then the values of the
hasColorQD and hasFPU fields are set to FALSE, and
the value of the systemVersion field is set to 0.

c. If the hasGestal t field of the gSystem structure con
tains a value of TRUE, then the Gestalt toolbox routine is
called to initialize additional fields in the gSystem struc
ture. These include the hasAppleEvents, hasAli

asMgr, hasEdi tionMgr and hasHelpMgr fields. In
addition, if the value of the hasScriptMgr field is
TRUE, then Gestalt is called to access the number of
scripts installed in the system and store this into the
scriptsinstalled field. Finally, Gestalt is called to
determine whether the Process Manager is installed and
store the Boolean result into the hasProcessMgr field.

d. If the hasGestalt field has a value of FALSE, then the
hasAppleEvents, hasAliasMgr, hasEditionMgr,

hasHelpMgr, and hasProcessMgr fields are set to
FALSE. In addition, if the value of the hasScriptMgr
field is TRUE, then Gestalt is called to access the number
of scripts installed in the system

3. After the lnspectSystem function returns control to the IAp
plicationX function, that function resumes execution. When
the CApplication.cp source file is compiled, if the developer's
system is not a Power Macintosh, then a call to the Install
Patches member function is compiled and is executed next. If
the developer's machine is a Power Macintosh, then the func
tion call is not compiled. The Install Patches function patches
the ExitToShell trap to reference the ETS_Patch code and
patches the LoadSeg trap to reference the LoadSeg_Patch
code. The IApplicationX member function continues execu
tion by performing the following actions:

a. The ginEnvironment global variable is set to TRUE if a
CODE 0 resource is present; otherwise, the variable is set
to FALSE. This indicates whether the application is exe
cuting within the Project Manager environment.

26 Chapter 2 ~Building the Application's Foundation

b. A CChoreList object is created and the value of the
i tsidleChores variable is set to point to the empty
list. Another CChoreList object is created and its pointer
is stored in the i tsUrgentChores variable.

c. The !Beam cursor resource is accessed and its handle is
stored into the gIBeamCursor variable. The handle for
the !Beam cursor is set to not purge the resource. The
Watch cursor resource is also accessed and its handle is
stored into the gWatchCursor variable. The handle is
also set not to be purged.

d. A "utility" region is created and its handle is stored into
the gUtilRgn variable. This region is used for various
purposes by portions of the TCL.

e. If the hasAppleEvents field of the gSystem structure
holds a TRUE value, then the process serial number is
accessed and stored into the psn variable and an Apple
Event descriptor is created and stored into the self
PsnDesc variable.

Making the Application Helpers

Although the following is part of the initialization process for the
application object, it is convenient to treat these steps as separate
tasks because they relate to the construction of other important
objects that are unrelated to the application object, but nonethe
less very important to the application as a whole.

The MakeHelpers member function is responsible for creating
some of the more important objects that interact with and per
form many tasks on behalf of your application. When execution
of the MakeHelpers function is complete, the structure of your
application will look like what is shown in Figure 2-5.

Loading Important Resources

One of the first tasks of the MakeHelpers function is to access a
number of' STR,' 'STR#,' and 1ALRT 1 resources so that these are
located permanently in memory during the execution of the ap
plication. If any of the standard resources is not accessible, then
the application will display an error alert and then terminate.

Figure 2-5
Application object
after construction
and initialization

gDesklop

Execution
begins here

main

LEGEND

--+ Inherited Behavior
....._ Object Construction
..... Chain of Command

Examining the Skeleton Application Code 27

CCollaborator

CBureaucrat

CApplication

gClipboard

x_CApp gError

itsSwitchboard
CApp

gDecorator

gBartender

Creating the CSwitchboard Object

After the resources have been loaded, the CSwitchboard object is
created by calling the MakeSwitchboard member function. The
CSwitchboard object is responsible for accessing the Macintosh
event queue to acquire each event and then dispatch that event to
the appropriate destination object. The MakeSwitchboard func
tion creates the CSwitchboard object and stores its pointer into
the i tsSwi tchboard member variable. After doing so, it calls
the lnitAppleEvents function using the pointer to the CSwitch
board object. The InitAppleEvents function performs the follow
ing tasks:

1. The AEObjectlnit function is called to initialize the object
support library.

2. The hasAppleEvents field of the gSystem structure is
tested to determine whether the user's system is capable of
processing Apple Events. If so, then the function continues by
establishing a rather large number of event handlers, object
accessors, callbacks, and coercion handlers. It does this by
calling the lnstallEventHandlers, lnstallObjectAccessors, Install
Callbacks, and InstallCoercionHandlers functions.

28 Chapter 2 > Building the Application's Foundation

Creating the CError Object

After the MakeSwitchboard function returns, the MakeHelpers
function calls MakeError, which creates a CError object and
stores its pointer into the gError variable. The CError object is
used for reporting unrecoverable errors and must be constructed
when the application is initialized so that it will be available
whenever needed to post important error alerts.

Creating the CDesktop Object

A CDesktop object is next to be constructed by calling the
MakeDesktop function. The pointer to the CDesktop object is
stored into the gDesktop variable. The CDesktop object is re
sponsible for managing all of the windows that are created during
the execution of the application. During construction of the
CDesktop object, the following actions are taken:

1. The CDesktop's list of windows, which are kept in a CWin
dowList object called i tsWindows, is set to NULL, indicat
ing that the list has not been allocated.

2. The CDesktop member variable called topWindow is set to
NULL, indicating that no window currently exists.

3. The CDesktop's list of floating windows is created as a CWin
dowList object, whose pointer is stored into the itsFloats
member variable. Although this list is allocated, it is initially
empty.

4. The CDesktop's member variable called topFloat is set to
NULL, indicating that no floating windows currently exist.

5. The CDesktop constructor then calls the IDesktopX member
function to complete the initialization of the CDesktop
object.

6. The IDesktopX function begins by testing whether the user's
system contains Color QuickDraw. This is determined by
checking the value in the hasColorQD field of the gSystem
structure. If the test result is TRUE, then the function allocates
a pointer that is the size of a color grafport (CGrafPort) and
stores the pointer into the mac Port member variable. It then
opens the port by calling the OpenCPort toolbox routine. If
the user's system does not support Color QuickDraw, then
the IDesktopX function allocates a pointer the size of a nor-

Examining the Skeleton Application Code 29

mal grafport (GrafPort) and stores the pointer into the
macPort member variable. It then opens the port by calling
the OpenPort toolbox routine.

7. The IDesktopX function continues by getting the size of the
"gray region" of the primary monitor (the screen size minus
the space taken by the menu bar), sets the size of the port to
include the entire gray region, and then sets the port's origin
to the top-left corner of the region. The clipping region is set
to the same size as the port and the gray region is copied to
the visRgn field of the port defined by the mac Port vari
able. The visible, active, and wantsClicks variables
of the CDesktop object are set to TRUE values.

8. Finally, the IDesktopX function creates a CWindowList
object, stores its pointer into the i tsWindows member vari
able, and then sets the value of the topWindow variable to
NULL to make certain that the CDesktop object is initialized
to indicate that no windows currently exist.

Creating the CClipboard Object

The CClipboard object implements a standard Macintosh clip
board and supports a window to display the contents of TEXT or
PICT images. You can derive your own clipboard class from the
CClipboard to provide support for other clipboard data types.
The CClipboard object is created by calling the MakeClipboard
function from within MakeHelpers. When the CClipboard object
is constructed and initialized, it will have a more detailed set of as
sociated objects than are shown in Figure 2-5. The structure of
just the CClipboard portion of the application under construc
tion is shown in Figure 2-6.

The MakeClipboard function takes the following actions:

1. MakeClipboard creates a new CClipboard object, calling its
constructor with a TRUE argument, and stores the pointer
into the gClipboard global variable.

2. The CClipboard constructor uses the single argument to
specify whether the clipboard has an associated window. The
CClipboard class inherits functionality from both the CDi
rector and the CAppleEventObject classes. The CClipboard
constructor supplies an initializer value of gApplication

30 Chapter 2 >Building the Application's Foundation

Figure 2-6
CClipboard object
construction and
initialization

CAppleEventObject

CApplication

LEGEND

- Inherited Behavior
~ Object Construction
--- ... Chain of Command

CClipboard

CColleclion

CView
CArray

CPtrArray<CDirector>

CScrollPane
itsDirectors

for the CDirector constructor to use and an initializer of
FALSE for the CAppleEventObject constructor to use.

3. The constructor for CDirector passes on the initializer value
of gApplication for its CDirectorOwner base class to use
as its aSupervisor argument. The CDirectorOwner con
structor passes on the gApplication value as the initializer
for its CBureaucrat base class, which uses that value as its
aSupervisor argument. This results in the itsSupervi

sor member variable being set to the gApplication value.
In essence, the CApp object is being made the supervisor (in
the chain of command) of the CClipboard object. The CCol
laborator constructor has no arguments, but does have a
default constructor function.

4. The constructors for the CClipboard derived class are called
in order, from CCollaborator, then CBureaucrat, then CDi
rectorOwner, then CDirector, CAppleEventObject, and then
CClipboard.

5. When the constructor for CDirector executes, it initializes the
values of several of its member variables. The i tsWindow

variable is set to NULL, indicating that no window currently
exists. In addition, its active variable is set to FALSE. A
director cannot be active without having a window. In addi
tion, the acti veWindOnResume variable is set to FALSE,
the alreadyClosing variable is set to FALSE, and the
wasDirty variable is set to FALSE. Finally, because the con-

Examining the Skeleton Application Code 31

structor is called with an argument of gApplication-the
pointer to the application object-the constructor also calls
the !Director function in the CDirector class, passing on the
gApplication argument to that function.

6. The !Director function calls the IDirectorOwner function
inherited from its CDirectorOwner base class, passing it the
gApplication argument as the supervisor of the director.
The IDirectorOwner function, in turn, calls the !Bureaucrat
function inherited from its CBureaucrat base class, that, once
again, sets the value of the its Supervisor member vari
able to the value held in the gApplication variable (that is,
the pointer to CApp). When control is returned to the !Di
rector function in the CDirector class, that function calls the
AddDirector function of the object pointed to by the aSu -
pervisor argument (the pointer to CApp), with an argu
ment that points to the CClipboard object (this). This
action results in the supervisor of the CClipboard object
being set to the CApp object. In essence, the application is
the supervisor of the clipboard.

7. The AddDirector member function is found in the CApplica
tion base class. When called with an argument (aDirector)
specifying a pointer to a CDirector object (CClipboard in
this case), it calls the AddDirector member function of its
CDirectorOwner base class, that, in turn, determines whether
a list of directors currently exists (evidenced by a valid pointer
in the i tsDirectors member variable). Because the list has
not been allocated at this point (see page 19), a new CDirec
torList object is created and its pointer is stored into the
i tsDirectors member variable.

The AddDirector function of the CDirectorOwner class con
tinues by calling the Add function for the CDirectorList
object to add the CClipboard object pointer (aDirector) to
the list as its first i tern.

8. When the AddDirector function of the CApplication class
resumes execution, it stores the pointer to the new CDirector
object into the application's lastAdded member variable.

9. At this point, the constructor for the CAppleEventObject
class is called with an argument of FALSE, indicating that the

32 Chapter 2 >Building the Application's Foundation

object is not disposable. The CAppleEventObject constructor
function sets its disposable member variable to the FALSE
value, sets its elementID variable to the current value of the
lastElementID variable, and then increments that vari
able. The new CAppleEventObject (CClipboard) is linked
into the list of CAppleEventObject objects.

10. When execution of the constructor for CAppleEventObject is
complete, the body of the constructor for the CClipboard
object is executed. That function initializes a number of its
member variables. The i tsWindow variable is set to NULL,
the itsScrollPane variable is set to NULL, and the its

Contents variable is set to NULL. The values of the
theLength, theOffset, and lastScrapCount variables
are all set to 0. The privateNewer and windowVisible

variables are set to FALSE. Finally, the CClipboard construc
tor calls its IClipboardX function to finish up the initializa
tion of the CClipboard object.

11. The IClipboardX function allocates a new CWindow object
and stores the pointer into the i tsWindow member variable.
Then it constructs a CScrollPane object, making the window
its enclosure and the CClipboard object itself (this) its
supervisor, and stores the pointer to the CScrollPane object
into the itsScrollPane member variable. Finally, the Fit
ToEnclFrame member function of the CScrollPane object is
called to size the object to the window's default size.

12. Finally, execution resumes in the MakeHelpers function in
the CApplication class. At this point, the CClipboard object
is fully constructed and initialized.

Creating the CDecorator Object

The MakeHelpers function of the CApplication class continues
execution by calling its MakeDecorator function. The function
creates a CDecorator object whose constructor sets the object's
wCount variable to 0, its index variable to l, and then computes
the width and height of the main monitor using the bounds infor
mation for the screen, storing those values into its wWidth and
wHeight variables.

Examining the Skeleton Application Code 33

Setting the File Parameters

The MakeHelpers function then calls the SetUpFileParameters
function that is overridden in the VA-created code in the applica
tion's x_ CApp class. That code is as follows:

void x_CApp::SetUpFileParameters()
{

CApplication::SetUpFileParameters();

II File types as defined in CApp.h

sfNumTypes = kNumFileTypes;
sfFileTypes[O] = kFileTypel;
sfFileTypes[l] = kFileType2;
sfFileTypes[2] = kFileType3;
sfFileTypes[3] = kFileType4;
gSignature = 'cApp';

As is evident in the foregoing code, the first action of the override
function is to call the SetUpFileParameters function in the base
class to perform its initialization tasks. In the SetUpFileParame
ters function of the CApplication class, the s fNurnTypes variable
is set to -1, the sfFileTypes [OJ entry is set to 1 ???\ ?'(this
syntax defeats the use of trigraph settings), the sfFileFil ter

pointer is set to NULL, the s fGetDLOGHook pointer is set to
NULL, the sfGetDLOGID variable is set to the value in the get

DlgID variable, and the sfGetDLOGFilter pointer is set to
NULL.

When the SetUpFileParameters function in the CApplication
class returns, the foregoing code continues to execute. The num
ber of file types for this application is specified in the kNumFile

Types constant. In this case, the constant has the value 1 and all
of the kFileTypei...4 variables are defined with 1TEXT1 as their
type code. The default signature code of 'cApp' is stored into the
global gSignature variable.

Forcing Class References

The MakeHelpers function calls a member function called Force
ClassReferences at this point. The purpose of the function is to
ensure that all of the necessary member functions are linked into
the final application. When classes or their member functions are
referenced in other than a direct call, it is possible for the linker to
leave them out of the final binary file. The ForceClassReferences

34 Chapter 2 >Building the Application's Foundation

function in the CApplication class is empty. The expectation is
that you will provide an override for this function in your derived
application class.

The x_ CApp derived class has an override for the ForceClassRef
erences function, but the CApp class, derived from the x_CApp
class, also contains that function in the VA-created code. The de
fault code in the CApp class is as follows:

void CApp::ForceClassReferences(void)
{

x_CApp: :ForceClassReferences();

II Insert your own class references here
II by calling TCL_FORCE_REFERENCE for each class
II See x_CApp.cp

As you can see, the foregoing code merely calls the ForceClassRef
erences function in its base class (x_CApp), whose code for the
function is as follows:

void x_CApp::ForceClassReferences(void)
{

CApplication::ForceClassReferences();

ReferenceStdClasses();
I* From References.c *I
I* See template file Ref *I

As you can see in the foregoing, the first act of the code is to call
the function in the CApplication class that we have already indi
cated is empty. This is a good practice, however, because we have
no way of knowing whether it will always be empty. The next
statement in the foregoing code calls the ReferenceStdClasses
function. This function is contained in the References.cp file and
the code for the function is as follows:

void ReferenceStdClasses(void)
{

TCL_FORCE_REFERENCE(CArray);
TCL_FORCE_REFERENCE(CArrayPane);
TCL_FORCE_REFERENCE(CArrowPopupPane);
TCL_FORCE_REFERENCE(CBitMap);
TCL_FORCE_REFERENCE(CBitMapPane);
TCL_FORCE_REFERENCE(CButton);
TCL_FORCE_REFERENCE(CCheckBox);
TCL_FORCE_REFERENCE(CDialog);
TCL_FORCE_REFERENCE(CDialogText);

Examining the Skeleton Application Code 35

TCL_FORCE_REFERENCE(CEditText};
TCL_FORCE_REFERENCE(CEnvironment};
TCL_FORCE_REFERENCE(CiconPane};
TCL_FORCE_REFERENCE(CintegerText};
TCL_FORCE_REFERENCE(CPane};
TCL_FORCE_REFERENCE(CPaneBorder);
TCL_FORCE_REFERENCE(CPanorama);
TCL_FORCE_REFERENCE(CPicture);
TCL_FORCE_REFERENCE(CPopupMenu);
TCL_FORCE_REFERENCE(CRadioControl);
TCL_FORCE_REFERENCE(CRadioGroupPane};
TCL_FORCE_REFERENCE(CRunArray);
TCL_FORCE_REFERENCE(CScrollBar);
TCL_FORCE_REFERENCE(CScrollPane);
TCL_FORCE_REFERENCE(CStaticText);
TCL_FORCE_REFERENCE(CStdPopupPane);
TCL_FORCE_REFERENCE(CStyleText};
TCL_FORCE_REFERENCE(CTable);
TCL_FORCE_REFERENCE(CTextEnvirons);
TCL_FORCE_REFERENCE(CWindow);

TCL_FORCE_REFERENCE(CColorTextEnvirons);
TCL_FORCE_REFERENCE(CiconButton);
TCL_FORCE_REFERENCE(CLine);
TCL_FORCE_REFERENCE(CPICTGrid};
TCL_FORCE_REFERENCE(CPictureButton);
TCL_FORCE_REFERENCE(CPolyButton);
TCL_FORCE_REFERENCE(CRectOvalButton);
TCL_FORCE_REFERENCE(CRoundRectButton);
TCL_FORCE_REFERENCE(CSubviewDisplayer};

The foregoing code uses the TCL_FORCE_REFERENCE macro to en
sure that all of the standard TCL classes that perform Object 1/0
are included in the resulting application. This is necessary because
the user interface is established by reading the 'cvue' resources
generated by the VA and constructing all of the visual elements
"on the fly." You can see in the code for the CApp override of the
ForceClassReferences function (see page 34) that the VA has cre
ated the override function as a placeholder for you to add refer
ences to your own classes, for the same purpose.

Setting Up the Application's Menus

The last task of the MakeHelpers function is to call the SetUp
Menus member function. The x_CApp derived class overrides
this function to install additional menus, but the skeleton applica
tion does not contain any of these. The code in the x_ CApp class
for the SetUpMenus function is as follows:

void x_CApp::SetUpMenus()
{

CApplication::SetUpMenus();

36 Chapter 2 >Building the Application's Foundation

Note in the foregoing that the derived class merely calls the Set
UpMenus function in the CApplication base class. The code in
the CApplication class for that function begins by creating a new
CBartender object, calling its constructor (with a single argument
of the application menu bar identifier, MBARapp). During the
course of execution of the CBartender constructor, the function
sets the nurnMenus member variable to 0, sets the theMenus
variable to NULL, and sets the choreAssigned and forceM
BarUpdate variables to FALSE. The CBartender constructor then
calls the !Bartender member function to complete the initializa
tion process as follows:

1. The !Bartender function begins execution by accessing the
1MBAR1 resource for the application menu, determines the
number of menus in the menu bar, and then allocates a han
dle of the necessary size to contain all of the menus. The
function then loops through the entries in the menu bar, allo
cating storage for each menu entry, and initializing the fields
of each entry to default values, as follows:

a. The dirruning field is set to DEFAULT_DIM.

b. The unchecking field is set to FALSE.

c. The hasHMenus (hierarchical menus) field is set to
FALSE.

d. The inMenuBar field is set to TRUE indicating that the
menu has been installed into the menu bar.

e. The isHier field is set to FALSE, indicating that it is
not a hierarchical menu.

£ The useCount field is set to l, indicating that it is cur
rently in use and cannot be purged.

g. The lastEnable field is set to the value of bit-0 of the
enableFlags field in the menu entry.

2. The next step in the !Bartender function is to extract the
command code strings from the menu bar entry for the cur
rent menu and convert these to command numbers. This is
carried out by the ExtractCommandCodes function. Entries
that do not contain command codes are assigned a command

Running the Application 37

number of zero. The list of command codes is stored in the
theComrnands field of the menu entry.

3. The !Bartender function continues by determining whether
the current menu entry contains a hierarchical menu by call
ing the ExtractHierMenus function. If a hierarchical menu is
found, it is inserted into the menu entry by calling the
AddMenu function. The menu is initialized in a fashion simi
lar to what was just described in steps 1 and 2; if the current
hierarchical menu also includes hierarchical menus, these are
recursively installed by the AddMenu/ExtractHierMenus
functions.

4. After all of the menus have been installed and initialized, the
1MBAR1 resource is released, DrawMenuBar is called to draw
the menu bar, and the choreAssigned and forceM
BarUpdate fields are set to FALSE.

When the !Bartender function completes execution, the Make
Bartender function in the CApplication class resumes execution
and stores the CBartender object pointer into the gBartender

global variable.

Running the Application

Returning to the code for the main function, shown on page 16,
we see that after the !Application function is called, the Run func
tion is called for the application object.

The Run function, once invoked, does not return control to the
main function until the running member variable for the appli
cation is set to FALSE. This means that the TCL takes complete
control of your application at this point. It will operate autono
mously until it needs assistance to handle a particular event, in
which case it will call a function that you must override in the ap
propriate derived class in your source code. The Run function
commences its task by executing a loop that calls the HandleFor
eignExceptions function continually until the running variable
is set to FALSE.

The HandleForeignExceptions function establishes the top-level
error handler for exceptions not thrown by the TCL. The main
body of the function is a single call to the DoRun function,

38 Chapter 2 > Building the Application's Foundation

within a "try" block, which has a "catch all" block that catches all
exceptions and calls ErrorAlert to display an alert to the user.

The DoRun function commences execution by testing the value
of the current execution "phase," which is held in the phase

member variable. If the phase is equal to the value appini tial
izing (which is the normal case at first), then the DoRun func
tion performs the following tasks:

1. It determines whether the CSwitchboard object has been cre
ated (this is possible if the user created the initial CApplica
tion object using a constructor with arguments for the various
memory specification parameters). If the value of the its
Swi tchboard variable is NULL, then the DoRun function
calls MakeHelpers, which performs all of the tasks described
on pages 26-37.

2. Regardless of whether the i tsSwi tchboard value was
NULL, the DoRun function continues execution by calling
the ShowSpashScreen function. This function is empty in the
implementation of the CApplication class; however, you can
display a splash screen for your application by overriding this
function. The VA provides the means to create splash screens,
so you can use that feature to create whatever you wish to dis
play. This is described in a later chapter.

3. The DoRun application calls the Preload function at this
point. When the user selects files in the Finder and then
chooses either the Open or Print command from the File
menu, the Preload function has the responsibility for opening
the files. If the Print command was chosen and your applica
tion provides the feature of printing its files, the Preload func
tion is used to initiate this process.

4. If your application has been compiled to execute on other
than a Power Macintosh, then the Preload function com
mences execution by counting the number of files supplied at
the time the application was launched and then initiates a
loop to process each of the files according to the "open" or
"print" request. The process for each file consists of the fol
lowing steps:

a. A MacSFReply record is constructed to contain the file
type (fType), volume reference number (vRefNum), the

Running the Application 39

version number (versNum), the "good" flag (good), and
the file name (fName).

b. The OpenDocument function is then called to open the
file, using the MacSFReply record just constructed.

c. The openOrPrint variable is tested to determine
whether the file is to be printed (appPrint). If so, the
UpdateWindows function for the gDesktop object is
called (causing the window's contents to be drawn), and
then the print command (cmdPrint) is sent to the
object pointed to by the gGopher variable (the initial
object in the chain of command).

d. The current file name is removed from the list of files to
process and then the loop continues for the next file.

The foregoing steps are repeated for each file in the set of ini
tial files to open or print.

5. If the application was compiled to execute on a Power Macin
tosh, then it is known that the target computer will receive a
series of Apple Events, one for each file to be opened or
printed. In this case, the Preload function does not contain
the code described in the foregoing step.

6. In either case (whether Power Macintosh or not), the Preload
function executes another function called StartUpAction.
This function is relatively simple in the default code for the
CApplication class; however, it could be overridden to per
form whatever startup action you require. The default code
for the StartUpAction function performs the following tasks:

a. The FlushEvents toolbox routine is called to flush every
event except for disk-inserted events. Any such events are
kept in the event queue, to be handled later.

b. The hasAppleEvents, numPreloads, and newWin
dowOnStartup variables are tested to determine whether
the system has no Apple Event handling, the number of
preloads is 0, and the developer wishes a new window to
be opened on startup. If these conditions are met, then
the StartUpAction function calls the DoCommand func
tion, with cmdNew argument, for the object whose
pointer is contained in the gGopher global variable.

40 Chapter 2 >-Building the Application's Foundation

Processing Events

7. When the preceding operations are complete, then the run

ning variable is set to TRUE and the DoRun function con
tinues execution.

Whether or not the phase variable was set to appini tializ

ing, the DoRun function sets that variable to running at this
time. This ensures that the preceding steps are executed only once,
in case the DoRun function is called a second time.

The DoRun function contains two nested loops at this point in
the code. The first loop executes the following statements while
the running variable is still TRUE. The statements within this
loop are a top-level "try'' block, which has a "catch" error handler,
but for exceptions that are of class CException only. These are
thrown by functions in the TCL or by your source code if you use
the same mechanism. The try block contains another loop, but it
is a do-while loop that also executes the enclosed statements while
the running variable is TRUE. Within the do-while loop is a sin
gle statement that calls the ProcesslEvent function. In other
words, the DoRun function will continue to process events until
some internal or external condition occurs that either throws an
exception or sets the value of the running variable to FALSE.

At this point, the application is initialized fully and is ready to
process events initiated by the user or, perhaps, by itself or another
application (in the case of received Apple Events). The
ProcesslEvent function is responsible for calling the CSwitch
board object to process one event, processing urgent chores if any
exist, handling the switching in or out of desk accessory windows,
and then calling the ForceNextPrepare function to force the next
Prepare call to perform a full prepare.

I intend to cover event processing in depth in a subsequent chap
ter; however, bringing you this far, I thought it necessary to de
scribe the basic functioning of the DoRun function, its
methodology for opening or printing files (if applicable), and then
the structure of the code to handle the application's event loop. In
case either of the catch handlers (for CException class exceptions
or foreign exceptions) is invoked, the associated code displays an
appropriate alert.

Customizing the Application Skeleton 41

Customizing the Application Skeleton

Figure 2-7
Custom changes to
the application's
structure

The application skeleton can be customized in various ways, de
pending upon what features you wish to implement. I will cover a
few obvious areas where you can add custom code at the applica
tion level in the sections that follow. Other chapters discuss cus
tom code modifications that apply to other aspects of your
program code. The main areas of focus for this section are de
picted in Figure 2-7.

CCollaborator

CBureaucrat

CDirectorOwner

CApplication

LEGEND

-. Inherited Behavior
~ Object Construction
• • • ... Chain of Command

1x DoAppleEvent o
)>o --~---1 3 -6' !!!. :g "O gApplication "'

•• gGopher

Examining the Application's Initialization Code

In the TCL, there are certain member functions that you must
override when you create a derived class. This is the case for the
x_CApp and CApp classes. The x_CApp class, consisting of the
x_CApp.cp source file and x_CApp.h header file, is derived di
rectly from the TCL's CApplication class. The SetUpFileParameters
and SetUpMenus functions described previously are examples of
functions that override those in the CApplication class.

The CApp class, consisting of the CApp.cp source file and the
CApp.h header file, contains overrides for various functions that
are either entirely empty or are only partially implemented in the
CApplication and x_CApp classes. The ICApp function is one
that must be overridden to provide application specific values for
the various memory allocations described in the section titled
"Initializing CApp," beginning on page 22.

42 Chapter 2 ~Building the Application's Foundation

The ICApp function is a very good place to put additional appli
cation-wide initialization code. If you need to load additional re
sources or create lists of objects that need to be referenced
throughout the application, this is the place to put that code.

Modifying the Apple Event-Handling Code

If you intend for your application to handle Apple Events other
than those that are built into the TCL, then you will need to install
handlers for these. Before getting into the details of handlers and
their installation, it is instructive to look at the list of handlers
that are installed by the TCL in its lnitAppleEvents member func
tion of the CSwitchboard class.

Existing Handlers

A brief description of the lnitAppleEvents function was provided
in the "Creating the CSwitchboard Object,'' section beginning on
page 27. That function calls the lnstallEventHandlers member
function to install Apple Event handlers for the following suites
and event types:

+ Handlers are installed for the Required Suite, including those
for OpenApplication, OpenDocuments, PrintDocuments, and
Quit Application events.

+ Handlers are installed for the Core Suite, including those for
Clone, Close, Count Elements, Create Element, Delete, Do
Objects Exist, Get Data, Get Data Size, Move, Save, and Set
Data events.

+ Handlers are installed for some of the Miscellaneous Standards
Suite, in the "Core Events" section, including those for Notify
Start Recording, Notify Stop Recording, and Application Died
events.

+ Handlers are installed for other events in the Miscellaneous
Standards Suite, including those for Begin Transaction, Copy,
Cut, Do Script, End Transaction, Is Uniform, Paste, Redo,
Revert, Transaction Terminated, and Undo events.

Events in the foregoing mentioned suites for which no handlers
are installed, if sent to the application, will result in the return of
an errAEEventNotHandled response from the AEProcessAp
pleEvent toolbox function.

Customizing the Application Skeleton 43

Handling New Events

In order to handle new Apple Events, you must install a handler
for each new event. This is accomplished by installing new han
dlers in the application's initialization code. A good place to ac
complish this is in the ICApp member function of the CApp
class. That code is as follows:

/***
ICApp

Initialize an Application.
***/
void CApp: : ICApp ()
{

II The values below are:
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

extraMasters- The number of additional master pointer
blocks to be allocated.

aRainyDayFund- The total amount of reserved memory.
When allocation digs into the rainy day
fund, the user is notified that memory
is low. Set this value to the sum of
aCriticalBalance plus aToolboxBalance
plus a fudge for user warning.

aCriticalBalance- The part of the rainy day fund
reserved for critical operations, like
Save or Quit. Set this value to the
memory needed for the largest possible
Save plus aToolboxBalance. This memory
will only be used if SetCriticalOperation()
is set TRUE or if RequestMemory()I
SetAllocation() is set FALSE
(kAllocCantFail).

aToolboxBalance- The part of the rainy day fund
reserved for ToolBox bozos that bomb if
a memory request fails. This memory is
used unless RequestMemory()I
SetAllocation() is set TRUE
(kAllocCanFail) . Almost all TCL memory
allocation is done with kAllocCanFail,
and yours should be, too. The default
2K is probably enough.

Ix_CApp(4, 24000L, 20480L, 2048L);

II Initialize your own application data here.
II We're installing a new Apple Event Handler.

itsSwitchboard->InstallEventHandler (kMyAppSuite,
kMyShowAboutBox, GenericAppHandlerUPP) ;

As you can see in the foregoing code, the VA has generated the
call to initialize the base class (lx_CAPP) and we have added the
call to install the Apple Event handler for the "Show About Box"
event.

44 Chapter 2 ~Building the Application's Foundation

You will want to call lnstallEventHandler for each new event to be
handled. If you wish to dispatch events to the application, you
can refer to the global GenericAppHandlerUPP function pointer
(defined in the CSwitchboard class) as the handler for your new
events. The GenericAppHandler function itself is located in the
CAppleEventObject class. When called, it in turn calls the Gener
icHandler function in that same class, passing it a pointer to a
static function called DispatchApp. The GenericHandler begins
execution by calling the application (via the gApplication glo
bal variable) object's PackageAppleEvent function. That function
creates a new CAppleEvent object with the information from the
current event. The event is passed to the DispatchApp handler,
from which it is passed to the DoAppleEvent function associated
with the application object. Don't worry about the details of all of
this right now. I will cover all of the complexities of Apple Event
dispatching in a later chapter.

In order to process (handle) new Apple Events, your CApp de
rived class should override the DoAppleEvent function inherited
from the CApplication class. This is illustrated in Figure 2-7 by
the DoAppleEvent label on the inheritance arrow from the CApp
class to its x_ CApp base class. The newly added code in the CApp
class that overrides the DoAppleEvent function is as follows:

/***
DoAppleEvent (override)

overrides the DoAppleEvent function inherited from the
CApplication class.

***/
void CApp: :DoAppleEvent(CAppleEvent *theEvent, AEDesc *result)
{

long
Boolean
OS Err

eventID = theEvent->GetEventID();
handled = TRUE;
err;

switch (theEvent->GetEventClass())
{

case kMyAppSuite:
{

switch (eventID)
{

case kMyShowAboutBox:
{

gGopher->DoCommand(cmdAbout);
break;

default:
{

handled = FALSE;
break;

break;

default:
{

handled = FALSE;
break;

if (! handled)
{

Customizing the Application Skeleton 45

CApplication: :DoAppleEvent (theEvent, result);

The DoAppleEvent member function is the only one that we have
added at this time. The code for DoAppleEvent references a new
suite identifier called kMyAppSui te. Apple recommends placing
all application-specific events into a separate suite, distinct from
any of its predefined suites. I also use unique identifiers for the
suite {class ID) and event type (type ID) to ensure that my choices
won't conflict with future assignments by Apple. I have chosen to
use the name kMyAppSui te to represent a suite whose code is
'skel' {for skeleton), and a type name of kMyShowAboutBox
to represent a code of 'Bout'. The code to process the event
consists merely of a single statement that sends a command to the
current gopher to display the "About Box" for the application
{cmdAbout).

Because the CApp object is the current gopher, the DoCommand
function in that class is first to be called. The source code for the
DoCommand function is as follows:

void CApp: :DoCommand(long theCommand)
{

switch (theCommand)
{

II Insert your command cases here

default:
x....CApp: : DoCommand (theCommand) ;
break;

As you can see, the foregoing code merely calls the DoCommand
function in the x_ CApp base class to handle every command;
however, when you add code to process application-wide com-

46 Chapter 2 >-Building the Application's Foundation

mands, this function is where you should place that code. The
code for the DoCommand function in the x_ CApp base class is as
follows:

void x_CApp: :DoCommand(long theCommand)
{

switch (theCommand)
{

case cmdAbout:
{

II Simple About alert. Subclasses will probably
II trap this command to do something sexier.

PositionDialog('ALRT', ALRTabout);
InitCursor () ;
Parantrext ("\pCApp", "\pSkeleton Application"," \p", "\p");
Alert (ALRTabout, NULL);
break;

}
default:
{

CApplication::DoCommand(theCommand);
break;

The foregoing code handles the cmd.Abou t command by display
ing an alert that contains the name of the application as a portion
of its contents. After the user has dismissed the alert, processing of
the Apple Event is complete. Apple Events, event handlers, coer
cion handlers, and other aspects of high-level events are discussed
in detail in a subsequent chapter.

Other Application Services

The CApplication class contains many other functions that are
called in the course of executing an application. Some of the im
portant functions are as follows:

+ The DoCommand function is the last in the chain of com
mand to handle menu commands or keyboard shortcuts. The
DoCommand function has the primary responsibility for per
forming the initial tasks in handling the following commands:

• For the cmdNew command, it calls the CreateDocument
function.

• For the cmdOpen command, it calls the OpenDocument
function.

Chapter Summary 47

• For the cmdQui t command, it calls the Quit function.

+ The UpdateMenus function is responsible for enabling the
appropriate menu commands just before a menu is displayed.
Many other objects in the chain of command will also override
this function to enable or disable various menus and their com
mands, as is appropriate.

+ PackageAppleEvent is used to package an incoming Apple
Event into a CAppleEvent object for dispatch to the appropri
ate handler.

+ The Suspend function, by default, calls the Suspend function
of CDirectorOwner and sets the ginBackground global vari
able to TRUE.

+ The Resume function, by default, calls the Resume function of
CDirectorOwner and sets the ginBackground global vari
able to FALSE.

+ The Idle function handles periodic tasks. Idle calls the Dawdle
function of the current gopher and of each of the gopher's
supervisors.

+ The Quit function is responsible for terminating execution of
the application.

+ The ChooseFile function displays a standard get file dialog and
returns the SFReply pointer associated with the user's choice.
This is a general purpose utility function.

+ For periodic task management, the CApplication class provides
AssignidleChore to add a new chore to the list of idle chores,
CancelldleChore to remove a chore, and AssignUrgentChore
to add an urgent chore to the list of urgent chores. Unlike Idle
chores, urgent chores are removed from the list when they have
been dispatched.

Chapter Summary

The focus of this chapter has been on the creation and initializa
tion of the application and its related "helper" classes. The whole
process of construction, initialization, and then execution of a
TCL-based application commences in the global main function.

48 Chapter 2 > Building the Application's Foundation

The main function creates the application object (which in our
case is the CApp object) and then proceeds to execute the con
structors for all of the ancestors of the CApp class, from the earli
est ancestor to the CApp itself (which, by the way, doesn't have an
explicit constructor function).

After the application has been constructed, the main function
uses the global gApplication object pointer to initialize the
application and all of its "helpers," including construction and
initialization of the CSwitchboard (to handle events), CError (to
handle errors), CDesktop (to manage windows and mouse
events), CDecorator (to arrange windows on the screen), and the
CBartender (to handle the menu bar). In addition, the IApp
member function of the CApp class is responsible for setting the
memory requirements for the application.

We have modified the ICApp function to show how a new Apple
Event handler is installed into the code and have overridden the
DoAppleEvents function inherited from the CApplication class so
that we can process the newly installed event. Processing a new
event is handled easily in the DoAppleEvents function. Events
that we can't handle in our override function are passed on to the
DoAppleEvents function in the CApplication base class.

When the initialization is complete, the main function uses the
global gApplication pointer to call the Run function, which
commences processing events and "running" the application. At
this point in its execution, the application is fully functional;
however, we have not yet opened a document and/or its associated
file. The Run function does not return to the main function until
the user chooses the Quit command or until a fatal error occurs.

If some other application (for example, AppleScript) sends the
Show About Box command to the application, the newly added
Apple Event handler will cause the DoAppleEvents override func
tion to be invoked. This in turn, will call the DoCommand func
tion to cause an alert to be displayed, just as if the user had chosen
the About application command from the Apple menu.

In the next chapter, I will continue the examination of the VA
created code and look specifically at the creation of the document
object and the features it provides.

Chapter 3

Creating and Managing Documents

The TCL, like most modern application frameworks, is structured
according to what is called a document/view architecture. What
this means is that the application object is responsible for creating
one or more document objects, each of which is (normally) asso
ciated with a file and one or more views. A view is normally a win
dow, but could be a modal or modeless dialog as well.

In this chapter, we will focus our attention on the role of the doc
ument object in the overall application. I will show how multiple
document types can be created with the help of the VA and how
these types manage different types of Macintosh files and the data
they contain.

Creating the Default Document and Its Window

When we generated the skeleton code in Chapter 2, we generated
code for a pair of document-oriented source and header files in
addition to the application files we studied in that chapter. The
VA generates files named x_ CMain.cp, x_ CMain.h, CMain.cp,
and CMain.h as the base class and derived class source and header
files for the default document objects.

When the application is being initialized, specifically when exe
cuting the StartUpAction function (see page 39, step 6), the code
determines whether the user's system has the facilities to process
Apple Events, whether the number of files pre-loaded was 0, and
whether the value in the newWindowOnStartup variable
is TRUE (which is the default case). If so, then the StartUpAction
function calls the DoCommand function for the current gopher
with a cmdNew command. Let's follow the execution path of that
option, in which case the following steps occur:

49

50 Chapter 3 >- Creating and Managing Documents

1. Because the CApp object is the current gopher, it receives the
DoCommand function call to handle the cmdNew command.

2. If you refer to the code for the DoCommand function in the
CApp class (see page 45), you will see that it has some skele
ton code, but simply passes on all of the commands to the
function inherited from the x_CApp class. When you want to
process application-wide commands, this is the place to add
the code to do so.

3. By the same token, the code for the DoCommand function
in the x_CApp class (see page 46) also passes on the cmdNew

function, in this case to its CApplication base class.

4. The DoCommand function in the CApplication class han
dles the crndNew command and calls the CreateDocument
function to create a new document object.

5. The CreateDocument function is empty in the CApplication
class and is one that our application code must override. The
VA-generated code creates an override of the CreateDocu
ment function in the x_ CApp class.

Let's stop at this point and examine the code for the CreateDocu
ment function in the x_CApp class, which is as follows:

void x_CApp::CreateDocument()
{

CDocument* volatile theDocument = NULL;

theDocument = TCL_NEW(CMain, ());
TRY
{

((CMain*) theDocument)->ICMain();
theDocument->NewFile();

}
CATCH
{

TCLForgetObject(theDocument);
}
ENDTRY

As you can see from the foregoing code, a new object of the
CMain class is constructed, initialized, and then its NewFile func
tion is called. Note that the theDocurnent variable is declared as
"volatile." This ensures that the variable will be stored in memory,
rather than in a register. This is important, should the process of
initializing the object or the call to its NewFile function fail for

Figure 3-1
Construction of
document object

Creating the Default Document and Its Window 51

CCollaborator

CBureaucrat CDirector

CDirectorOwner CDocument

CApplication CSaver<CCollaborator>

x_CApp

CA pp

LEGEND

- Inherited Behavior
==- Object Construction
• • • • Chain of Command

x_CMain

CMain

' : ____ gGopher

any reason. For the CATCH exception handling code to work
properly, the theDocument variable must be stored in memory.

Before examining the next series of steps, it will be instructive to
refer to Figure 3-1, which shows the inheritance tree for the object
that we are constructing. As you can see from the figure, I have
chosen to show only the objects of interest in this case. The inher
itance tree for the CApp object and also the new tree for the
CMain object (and its base classes) are shown.

The construction and initialization of the document object is de
scribed in the steps that follow. Note the strange nomenclature in
the case of the CSaver<CCollaborator> class. This indicates a vari
ation of the CSaver class that operates on CCollaborator objects.
It is constructed from a template (held in the CSaver.tem file in
this case). Deriving a class from the CSaver base class enables the
application to perform Object 1/0, which is covered in a later
chapter.

For now, let's continue the discussion of the creation and initial
ization of the CMain document derived class, for which the steps
are as follows:

52 Chapter 3 >- Creating and Managing Documents

1. Referring to Figure 3-1, you can see that the first constructor
to be called when the CMain object is created will be its earli
est ancestor, which in this case is CCollaborator. The con
structor for CCollaborator merely sets the its Providers

and itsDependents variables to the value NULL. The next
younger ancestor in the inheritance tree is CBureaucrat,
whose constructor is called with an initializer value of gAp
plication, which is supplied by its CDirectorOwner
derived class. This results in the value of the its Supervi

sor variable being set to gApplication. Next, the con
structor for CDirectorOwner is called with the value of the
gApplication initializer supplied by its CDirector derived
class. This results in the application (CApp object) being
made the supervisor of the document (CMain) object. The
constructor for the CDirector class is next to execute and it
performs several tasks, as follows:

a. The i tsWindow variable is set to NULL.

b. The active variable is set to FALSE, indicating that it
can't be active because there is no window yet.

c. The it sGopher variable is set to this, indicating that
when the document's window becomes inactive, the doc
ument object (CMain in this case) will become the cur
rent gopher in the chain of command.

d. Several other variables are initialized. These include set
ting activateWindOnResurne to FALSE, already

Closing to FALSE, wasDirty to FALSE, and dirty
to FALSE.

e. Finally, because the aSupervisor argument of the con
structor is being initialized to the value held in the gAp
plication member variable, the !Director function is
called with the value of gApplication as its argument.
The initialization sequence, commencing with the !Di
rector function, is described fully in Chapter 2, begin
ning on page 31, in steps 6-8. The end result of the
foregoing steps is the installation of the document object
(CMain) as a new director in the list of directors for the
application object (CApp).

Creating the Default Document and Its Window 53

2. The constructor for the CDocument class begins by setting a
number of member variables to the value NULL, including
itsMainPane, itsFile, savePrintPane, save

Printer, askToSave, and itsPrinter. It then sets the
pageWidth variable to the constant STD_PAGE_WIDTH and
sets the pageHeight variable to STD_PAGE_HEIGHT.
Then, because the definition of the constructor has a default
argument of TRUE for printable, the constructor calls the
SetupPrinter function, which creates a CPrinter object and
stores its pointer into the i tsPrinter variable.

3. The default constructor for the CSaver class merely sets the
i tsContents variable to NULL, indicating that there are no
data currently associated with the document.

4. Neither the x_ CMain nor CMain classes has a constructor
function, so the construction of the document object is com
plete at this point, after the default constructors for those
classes are executed.

5. When construction of the CMain object is complete, the
foregoing CreateDocument function (see page 50) continues
execution by calling the ICMain function of the object to ini
tialize its contents. The code for the ICMain function in the
VA-generated code is as follows:

void CMain: : ICMain ()
{

Ix_CMain () ;

II Initialize data members here

As is evident from the foregoing code, the function merely
calls the Ix_ CMain function in its base class. In addition, the
VA has placed a comment into the code that indicates the
place to add your own initialization code for the object. The
code for the Ix_ CMain function is as follows:

void x_CMain::Ix_CMain()
{

IDocurnent(gApplication, TRUE);

II Initialize data members below.

54 Chapter 3 :>- Creating and Managing Documents

The foregoing code is written into the x_CMain.cp file by the
VA and should not be modified manually. The VA may write
additional code into this function in the future. And in any
case, the file will be regenerated each time that you call upon
the VA to generate code.

In the foregoing, the !Document function is called with argu
ments of gApplication and TRUE. These correspond to
the formal arguments of itsSupervisor and printable
in the !Document function of the CDocument class. Note
that in calling the !Document function, we have skipped over
any potential initialization in the CSaver class.

6. When the !Document function is called with the gAppli
ca t ion and TRUE arguments, the function calls the Setup
Printer function, which creates a new CPrinter object and
stores its pointer into the its Printer variable for the docu
ment object. Some additional printer-related initialization is
performed and the !Document function returns.

The foregoing steps complete the initialization process for the
document object. At this point, the CreateDocument function
(refer to page 50) calls the NewFile function for the newly created
document object.

It is worthwhile to note at this point that the NewFile function
does not create a new file, but leaves the i tsFile member vari
able for the document set to NULL. A file will be created only
when (or if) the user performs a Save or Save As command. The
primary function of the NewFile command is to create a new
window that is populated with whatever contents were specified
in the VA for the (default) Main window.

The NewFile function exists in the CSaver class, which is a tem
plate class that inherits behavior from the CDocument class and
handles objects of the CCollaborator class by default. The New
File function in the CSaver class performs the following steps:

1. The MakeNewWindow function is called. This function
exists in the CDocument class, but is overridden by the VA
generated code in the x_ CMain class. The code for the over
ride of the MakeNewWindow function is as follows:

Creating the Default Document and Its Window 55

void x_CMain::MakeNewWindow(void)
{

i tsWindow = TCLGetNamedWindow ("\pMain" , this) ;
itsMainPane = (CPane*) TCLGetitemPointer(itsWindow, 0);
II Initialize pointers to the subpanes in the window
fMain_Pictl = (CPicture*) itsWindow->FindViewByID(kMain_PictlID);

ASSERT(mernber(fMain_Pictl, CPicture));

fMain_Stat2 = (CStaticText*) itsWindow->FindViewByID(kMain_Stat2ID);
ASSERT(mernber(fMain_Stat2, CStaticText));

The foregoing code uses the facilities of the TCL to access the
'CVue' resource whose name is Main, to get the location and
bounds of the window to be created. The window is created
using the TCLGetNamedWindow function (located in the
ViewUtilities.cp source file) and is assigned the current docu
ment object (this) as its supervisor in the chain of com
mand. The GetNamedWindow function is described in a
later chapter that covers Object I/0. It is important to point
out that the functions in the ViewUtilities.cp source file are
used only if windows and views are being constructed using
the TCL's facilities for Object I/O.

The MakeNewWindow function continues by calling the
TCLGetltemPointer function (in ViewUtilities.cp) to access
the pointer to the CPanorama object associated with the win
dow constructed by the VA. This pointer is stored into the
i tsMainPane variable, which is used by various functions
in the application.

2. MakeNewWindow continues by calling the FindViewByID
function for the CWindow object, using the value of the
kMain_PictlID constant as the identifier of the view to be
located. The values associated with the various mnemonic
constants for the Main window are found in the Mainltems.h
header file and are defined as follows:

en um
{

};

Main_Begin_,
kMain_Pictl = l,
kMain_PictlID = lL,
kMain_Stat2 = 2,
kMain_Stat2ID = 2L,
Main_End_

56 Chapter 3 ~ Creating and Managing Documents

The VA assigns a value to the ID variable of each view and the
foregoing enumeration indicates that the FindViewBylD
function will be used to search for a view that has an ID of 1
in the case of the kMain_PictlID constant. The FindView
ByID function is located in the CView class of the TCL. That
function calls an iterator function called Match View that
searches for a subview associated with the current window,
whose ID matches what is being sought. In this case it is the
CPicture view, illustrated in black and white in Figure 2-2,
except for the words "Hello, world!" in that figure.

The pointer to the CPicture variable is stored into the
fMain_Pictl member variable for the document and then
is verified to be of the CPicture class.

3. The MakeNewWindow function then searches for the sub
view whose view-ID corresponds to the kMain_Stat210 con
stant, stores the pointer into the fMain_Stat2 member
variable for the document, and then verifies that the pointer is
of the CStatic Text class.

At this point, the construction of the window is complete; how
ever, the MakeNewWindow function returns to the NewFile
function in the CSaver class and that function continues execu
tion by calling the MakeNewContents function. That function is
intended to populate the window with new contents that are
unique to the current application. Therefore, the MakeNewCon
tents function is overridden in the CMain derived class, in the de
fault VA-generated code. The code is as follows:

void CMain: :MakeNewContents {}
{

II Initialize document contents and itsWindow here

Although the foregoing function is empty, the VA has indicated
that this is the appropriate place to initialize the document's con
tents and also to perform any initialization that is appropriate to
the window, by accessing the i tsWindow member variable. The
NewFile function continues by calling the Contents To Window
function, which is also overridden in the VA-generated code for
CMain. That code is as follows:

Creating the Default Document and Its Window 57

void CMain::ContentsToWindow()

II Transfer data from itsContents to itsWindow.
II See Chapter 8, Using Object IIO

The foregoing code for the ContentsToWindow function is also
empty; however, the comments indicate that this function is the
place to put custom code to transfer the contents of the docu
ment's data into the associated window. At this point, there is no
data to transfer (as is normally the case with a new window).

The NewFile function continues execution by calling the Posi
tion Window function to position the window on the screen and
then calling the MakeWindowName function to determine the
appropriate name for the window in its title bar. New windows
are always named with the document's name (for example, Main),
with the window number (that is, 1) appended to create a window
title of "Main 1" for the first new window, "Main 2" for the sec
ond new window, and so forth. After the window name has been
concocted, it is written into the window's title bar.

The final task of the NewFile function is to call the SetChanged
function with an argument of FALSE, indicating that the docu
ment has not been changed (that is, it is not "dirty'' at this point).
Following that, the Select function is called for the i tsWindow
pointer, which activates the newly constructed window.

Creating the Document with an Open Application Event

I began the previous section by making the assumption that the
user's Macintosh was not capable of handling Apple Events. In
this section, I'll cover the differences between what was presumed
earlier and how the application behaves when Apple Events are
handled by the user's machine.

In the first place, if Apple Event support is present, the StartUp
Action function in the CApplication class (see page 39) does not
call the DoCommand function for the current gopher with the
crndNew command. Instead, after the application has been initial
ized and is in a stable state, commencing to process events, it re
ceives an Open Application event from the system.

58 Chapter 3 > Creating and Managing Documents

When the Open Application event is received by the application,
it calls the GenericAppHandler function in the CAppleEventOb
ject class to handle the event. That handler calls the GenericHan
dler function to create and package the Apple Event, and then the
DoAppleEvent function associated with the object pointed to by
the gApplication variable is called (CApp in this case). As you
may recall, the DoAppleEvent code in our CApp class handles
only the new Show About Box event and passes all other events to
the DoAppleEvent function in the CApplication class to handle.
That function does handle the k.AEOpenApplication event by
first checking whether the value of the newWindowOnStartup
variable is TRUE, and if so, it calls the application's DoCommand
function with an argument of cmdNew. This brings us to the same
point in the execution logic as described previously, beginning
with step 1 on page 50.

If you choose not to open a new window when the document ob
ject is created, then you can put the following statement into the
ICApp function in your application:

newWindowOnStartup =FALSE; //prevent creation of a new window

If the typical use of your application is to input a data file and dis
play its contents, then you may wish for the creation of a new
window to be an explicit function by the user's choice of the New
command from the File menu and, instead, launch the applica
tion with no default window present on start-up.

Managing the Document's Data

The document object is the data server for most applications. It is
responsible for initiating the reading and writing of data files and
is also the manager for the document's data in most cases. A single
document object is created, by default, each time the user chooses
the New or Open command from the File menu. In the case of
the New command, no file is associated with the document object
initially. However, if the user chooses either the Save or Save As
command, he or she will be prompted with a Standard File dialog
to specify a path and file name for the data to be saved.

A given TCL-based application can arrange to handle one or more
files and their data in various ways. The following sections illus-

Managing the Document's Data 59

trate common application structures, with regard to the individ
ual document objects and file types supported.

Handling a Single File Type

The most common application structure is one that supports a
single file type (for example, a 1TEXT 1 file) and one or more in
stances of the document object that handles data for that file type,
depending upon how many such files are open concurrently.

When the user chooses the Open command from the File menu,
the DoCommand function in the CApplication class handles the
command by calling the ChooseFile function (which prompts the
user for which file to open) and then the OpenDocument func
tion is called, the code for which is as follows:

void x_CApp: :OpenDocument(SFReply *macSFReply)
{

CDocument*volatile theDocument = NULL;

theDocument = TCL_NEW(CMain, ());
TRY
{

((CMain*) theDocument)->ICMain();
theDocument->OpenFile(macSFReply);

}
CATCH
{

TCLForgetObject(theDocument);
}
ENDTRY

The code creates a new document object (CMain in this case),
initializes the object, and then calls the document's OpenFile
function. Neither the x_ CApp nor CApp derived classes contain
overrides for the OpenFile function. In this case, that function is
contained in the CSaver class (in the file CSaver.tem, the template
file from which the CSaver<CCollaborator> object is constructed).
The code for the OpenFile function is as follows:

template<class T>
void csaver<T>: ·: OpenFile (SFReply*macSFReply)
{

CDataFile *theFile = NULL;
FSSpec spec;

theFile = TCL_NEW(CDataFile, ()); //Try to open this file

try_
{

60 Chapter 3 > Creating and Managing Documents

theFile->IDataFile();
theFile->SFSpecify(macSFReply);
theFile->GetFSSpec(&spec);
FailOpen(&spec); II Fail if open in this application
theFile->Open(fsRdWrPerm); II Fail if open in another app

II (and lots of other reasons)
itsFile = theFile; II Promote to document file

}
catch_all_ ()
{

}

TCLForgetObject(theFile);
throw_same_ () ;

end_ try_

ReadDocument(); II Read document from file

As is evident in the foregoing code, the OpenFile function creates
a CDataFile object, initializes the object, and then uses the infor
mation in the macSFReply variable to resolve the file specifica
tion and call the Open function to open the file.

Assuming that the Open operation is successful, the OpenFile func
tion concludes by calling the ReadDocument function. This func
tion is also contained in the CSaver class and its code is as follows:

template<class T>
void csaver<T>::ReadDocument()
{

CFileStream *theStream = NULL;
Str255 theName;

II Create a file stream
theStream = NewinputFileStream((CDataFile*) itsFile);

try_
{

ReadContents(theStream);
SetChanged(FALSE);
delete theStream;

}
catch_all_ ()
{

delete theStream;
throw_same_ () ;

}
end_try_

if (itsWindow == NULL)
MakeNewWindow();

ContentsToWindow();

PositionWindow();
MakeWindowName(theName);
itsWindow->SetTitle(theName);
itsWindow->Select();

II Read contents of document
II Not dirty any longer
II Get rid of stream

II If window wasn't created by
II ReadContents, make it now
II Make contents displayable

II Must do before making name
II Change the window title

II Activate the window

Managing the Document's Data 61

As is evident in the foregoing code, the ReadDocument function
creates a new input file stream to access the user-specified file and
then calls the ReadContents function to read the contents of the
file into memory. The process of reading the file involves the spe
cial Object 1/0 features of the TCL that I will be describing in a
later chapter; however, it is fair to state that the contents of the file
will reside in memory after the ReadContents operation is com
plete. After this, the document's SetChanged function is called to
ensure that the document's contents is not "dirty" at this point
(having been newly read) and then the stream used to input the
file's contents is deleted.

The ReadContents function continues execution by testing
whether the document's i tsWindow variable has a NULL value.
This is the case for a user-specified file, so the function calls the
MakeNewWindow function to create the document's window (or
windows). The MakeNewWindow function is overridden in the
derived x_ CMain class and its code is as follows:

void x_CMain::MakeNewWindow(void)
{

i tsWindow = TCLGetNamedWindow ("\pMain" , this) ;

itsMainPane = (CPane*) TCLGetitemPointer(itsWindow, 0);

II Initialize pointers to the subpanes in the window

fMain_Pictl = (CPicture*) itsWindow->FindViewByID(kMain_PictlID);
ASSERT(member(fMain_Pictl, CPicture));

fMain_Stat2 = (CStaticText*) itsWindow->FindViewByID(kMain_Stat2ID);
ASSERT(member(fMain_Stat2, CStaticText));

As you can see in the foregoing code, the MakeNewWindow
function calls TCLGetNamedWindow to construct the window
whose name is "Main," as specified to the VA when the view was
created. This is the default name for the main window in the skel
eton project. You can change the name to whatever you wish and
also specify additional windows within the VA that will also be
created in the foregoing function, if they are specified. (The
TCLGetNamedWindow function is contained in the ViewUtili
ties.cp source file.)

Returning to our examination of the MakeNewWindow function,
we see that after the window has been created and its pointer has

62 Chapter 3 >- Creating and Managing Documents

Figure 3-2
Application structure
after the document's
file and views have
been created

been stored into the i tsWindow member variable for the docu
ment object, the code calls the TCLGetltemPointer function (also
contained in the ViewUtilities.cp file) to access item 0 for the
newly created window. This item is the CPanorama object for the
window (if any). The pointer to the panorama (or NULL) is stored
into the i tsMainPane member variable of the document object.

The code continues by creating objects for each of the panes in
the view and storing their pointers into corresponding member
variables of the document object. This practice allows you to write
code in your document subclass that refers directly to the visual
elements of the document's window. When this step is complete,
the application has the structure shown in Figure 3-2.

CCollaborator

CApp

LEGEND

--+ Inherited Behavior
..._ Object Construction
••• ... Chain of Command

CMaln CScrollPane

:.. •• gGopher

CView

CWindow

HsMainWindow

CPane

CPanorema

itsMainPane

CPicture

After the window and all of its subviews have been created, the
ReadDocument function of the CSaver class continues by calling
the Contents To Window function to display the data read from
the user-specified file in the window. The Contents To Window
function is overridden in the VA-generated code for the CMain
derived class and is as follows:

void CMain::ContentsToWindow()

II Transfer data from itsContents to itsWindow.
II See Chapter 8, Using Object IIO

Managing the Document's Data 63

As is evident, the VA has generated this function as a placeholder
in which you can add the necessary code to perform the specified
operation. I will be covering the whole topic of Object 1/0 in a
later chapter.

After the contents have been added to the window, the ReadDoc
ument function continues by calling the Position Window func
tion. This function calls the CDecorator object (by means of the
gDecorator global variable) to stagger the window with respect
to other windows on the desktop for this application. Although
the default-generated code doesn't do so, you can override this
function to place the window wherever you wish.

After the window has been placed into position on the desktop,
the ReadDocument function sets the window's title to the name
of the associated file and a sequence number (by default) by call
ing the MakeWindowName and SetTitle functions. The Read
Document function concludes execution by selecting the current
window, making it the frontmost window on the desktop.

When the execution of ReadDocument is complete, the OpenFile
function also concludes execution, returning control to the Open
Document function in x_CApp (shown on page 59), and con
cluding execution of the Open command.

Handling Multiple File Types

If your application is able to open files of various types (for exam
ple both 1TEXT 1 and 1PICT 1 files), then you should create a sepa
rate document class for each file type. This is easily done using the
VA. Double-dick on the Visual Architect.rsrc file in your project
window to launch the VA, and then choose New View from the
V/\s View menu. This will cause the VA to display a dialog that
requests a name for the view and also its type. The type of a main
document view is "Main Window," as shown in Figure 3-3, and
as chosen from the dialog's pop-up menu.

Click OK in the dialog to dismiss it, and the VA will show a default
view on the screen. At this point, you may want to change the
characteristics of the view, in which case you should choose View
Info from the View menu. This will cause VA to display a view in
formation dialog.

64 Chapter 3)-- Creating and Managing Documents

Figure 3-3
Visual Architect's New
View dialog

Figure 3-4
Visual Architect's
View Info dialog

Please name the new uiew

Newlliew Name: I~~~~~~~~~
Uiew Kind: I Main Window .,..I

(Cancel) (OK)

I chose for the new view to have both a close box and a zoom box,
so I changed the window type. In addition, I checked the Size
Box checkbox to ensure that the new view can be resized and also
checked the "Vert Scroll" checkbox to add a vertical scroll bar.
Finally, I unchecked the Use File checkbox so that the CSaver
oriented files are not created for this document and its view. The
final appearance of the View Info dialog is as shown in Figure 3-4.

Main (Document) Info

Na me : I NewVi ew

Title : I New View

ID: 129 D modal ([OK JJ
D Use file
[8J Print [Cancel J

Wi ndow Cl ass : ,_I ...;..;....;....;.;..;_...;...,._,I

~uDDuD
[8J Vert . Scroll D Horiz . Scroll [8J Size Box [8J goAwayflag

Posi tion I Staggered Tl ;.,,·l T,,,,

Width : 1400
::::=====:

Min Width: 140
::::=====:

Max Widt h: ~I s_1 _2 ---~

Height : I 200
::::===~

Min Height : I 40
::::===~

Max Height : ~I 3_42 ___ ~

D actClick

proclD: ~

Dismiss the View Info dialog to save the selections we made. To
see what the view will look like when it is created, choose the Try
Out option. It will appear as shown in Figure 3-5.

Notice that the new view has the tide we specified (New View)
and that it has the close, zoom, and size boxes. Also note that it
has only a vertical scroll bar. If we were going to use this view to

Figure 3-5
Appearance of rhe
New View in rhe
Visual Archirecr

Managing the Document's Data 65

New Uiew

display a particular type of data (for example, a 'PICT' file), we
should create a CPicture or other subpane derived from CPan
orama in which to display the contents of the 'PICT' file or
resource. I have not added any subviews at this point.

After the new view has been specified, you will need to choose the
Generate command from V/\s Project menu (the menu immedi
ately to the right of its Windows menu). If this is the first time
that you are generating code for the project, then choose Gener
ate All from the Project menu.

Opening a Document

After the code has been generated, open the x_ CApp.cp file and
examine the OpenDocument override function. You will see that
the generated code is quite different from what was shown for
that function on page 59. The earlier example corresponds to the
code that VA generates for a single file document. The newly gen
erated code for that function is as follows:

void x_CApp: :OpenDocument(SFReply *macSFReply)
{

CDocument *volatile theDocument = NULL;
Finfo info;

FailOSErr(GetFinfo(macSFReply->fName,
macSFReply->vRefNum, &info)) ;

TRY
{

theDocument = CreateTypedDocument(info.fdType);

66 Chapter 3 > Creating and Managing Documents

if (theDocument != NULL}
theDocument->OpenFile(macSFReply);

CATCH
{

TCLForgetObject(theDocument);

ENDTRY

The foregoing code has been generated to take the prospect of
opening multiple document files into account. Notice that the
function now calls the CreateTypedDocument function to create
a document object of the correct type. After the proper document
type has been created, the OpenDocument function calls the
OpenFile function, which is unchanged from what was presented
on page 59. The code for the CreateTypedDocument function is
as follows:

CDocument *x_CApp::CreateTypedDocument(OSType filetype)
{

CDocument *theDocument;

if (filetype == CMainFType}
{

theDocument = TCL_NEW(CMain, ());
((CMain*} theDocument}->ICMain(};

else if (filetype == CNewViewFType}
{

theDocument = TCL_NEW(CNewView, (});
((CNewView*} theDocument}->ICNewView(};

else
{

ASSERT(! "\pNo document of the argument type"};
theDocument = NULL;

return theDocument;

The foregoing code determines whether the file that the user has
just opened (via the ChooseFile call in the DoCommand function
in CApplication) matches the CMainType or CNewViewType

constants. These constants are defined in the header files of the
most derived class for the corresponding view (that is, CMain.h
and CNewView.h). You will have to edit the definitions in these
files to correspond to the actual file types you expect to open.
They are set to type 1TEXT 1 by default.

Managing the Document's Data 67

After the appropriate file type match has been made, the Create
TypedDocument function creates and initializes the appropriate
document class. The ICMain and ICNewView initialization func
tions are empty; however, you can add whatever code is necessary
to perform additional initialization, after the statement that calls
the initialization function for the immediate base class. For exam
ple, the code for the ICNewView functions is as follows:

void CNewView: : ICNewView ()
{

Ix_CNewView () ;

II Initialize data members here

And the code for the Ix_ CNewView base class is as follows:

void x_CNewView: : Ix_CNewView ()
{

IDocument(gApplication, TRUE);

II Initialize data members below.

The !Document function creates and initializes a CPrinter object
for the document if the second argument is TRUE (as is the case in
the foregoing code). If you had chosen to uncheck the "Print"
checkbox in the View Info dialog (shown in Figure 3-4), then the
VA would have generated a FALSE value for the printable ar
gument of the !Document function.

After the CreateTypedDocument function returns, the OpenDoc
ument function continues execution by calling the OpenFile
function for the selected document object. Because the "Use File"
checkbox in the View Info dialog for the new view is unchecked,
there is no generated code in either the CNewView or
x_CNewView classes that overrides the OpenFile function in the
CDocument class (which is an empty function). So to implement
opening the specified file, you will have to add an override for the
OpenFile function to the CNewView derived class in order to
open and read the file's contents. The "Use File" checkbox, when
checked, instructs the VA to generate code chat references the Ob
ject 110 features of the CSaver class. When the checkbox is not
checked, then it is up to you to write the necessary code to open

68 Chapter 3 ~ Creating and Managing Documents

and read the specified data file. Instead of using the Object 1/0
features, you can derive your document class from the CSimple
Saver class (as described in the chapter concerning Object 110)
and benefit from the great deal of support it provides for reading
and writing files with arbitrary formats.

Don't conclude from this that simply checking the "Use File"
checkbox will solve your problems. If you do so, you will have to
make use of a file that is written in a very specific format. The Ob
ject 1/0 facilities cannot handle plain text or other standard files.
Only files that were written previously using the Object 1/0 facil
ities are suitable for input with the facilities of the CSaver class. I
will cover the Object 1/0 facilities in a later chapter.

Creating a New Document

When the user chooses the New command from the File menu,
the newly generated code must determine what type of file (that
is, document type) should be created. Because the VA has no way
of knowing how you might wish to specify the appropriate file
type, it leaves much of the selection process up to your program
code. The code for the CreateDocument function is as follows:

void x_CApp: :CreateDocument()
{

CDocument *volatile theDocument = NULL;
OSType doctype;

TRY
{

if (DoNewDialog(&doctype))
{

CATCH
{

theDocument = CreateTypedDocument(doctype);
if (theDocument ! = NULL)

theDocument->NewFile();

TCLForgetObject(theDocument);

ENDTRY

The foregoing code commences by calling a function called
DoNewDialog, which is intended to store the file type to create
into the doctype argument and return TRUE to indicate that a
file type was chosen, or FALSE if not. The default code for the

Managing the Document's Data 69

DoNewDialog is generated into the x_CApp.cp source file and is
as follows:

Boolean x_CApp::DoNewDialog(OSType *filetype)
{

Boolean haveType = FALSE;

return haveType;

As you can see in the foregoing code, the function simply returns
a FALSE result. You will have to override this function in your
CApp derived class to provide the results that you desire. If, for
example, you wish for the New command to create only a docu
ment of the CMainFType type, then your override function
could be written as follows:

Boolean CApp::DoNewDialog (OSType *filetype)
{

filetype = CMainFType;
return TRUE;

This would cause the CreateDocument function to call the Cre
ateTypedDocument function with the CMainFType argument.
The code for that function has been shown previously (see
page 66). If, instead oflimiting the creation to the single docu
ment type, you wish for the user to be able to create either type of
document, then your DoNewDialog override function should
probably open a dialog that specifies a choice between the two file
types.

Creating a File Type Dialog

Let's assume that you wish to create such a dialog to offer the user
the choice between the two supported file types. This is easily ac
complished by using the VA to design the dialog, generating new
code, and then writing a new version of the DoNewDialog func
tion. The steps for implementing this concept are as follows:

1. The first step in this process is to launch the VA by double
clicking on the Visual Architect.rsrc file name in the project
window.

70 Chapter 3 :>- Creating and Managing Documents

Figure 3-6
Creating a New File
dialog view

Figure 3-7
View Info settings for
the NewFile view

2. After the VA has been launched, pull down the View menu
and choose the New View command. You will be presented
with a dialog similar to what is shown in Figure 3-3. Enter
"NewFile" for the view name and choose Dialog as the view
type from the pop-up menu, as shown in Figure 3-6.

Please name the new uiew

Name:~I ~~
Uiew Kind: I Dialog

'--~~--~~~~~~--'

(Cancel) [OK ~

3. After dismissing the dialog shown in the foregoing figure, the
VA will display a new view. Choose View Info from the View
menu and make the entries and change the settings to match
what is shown in Figure 3-7.

Name: I New file

Title : I New file

Window Class: I CDialog Tl

Position I Centered Tl ;,,>([

Width: 1400
:====

Min Width: 140
~==~

Max Width : ~I s_12 ___ ~

Dialog Info

~ ~:~~:,, n DK JJ
D ; ,.,,,, (Cancel J

I D: 130

Height: I 200
:======;

Min Height : 140
:=====;

Max Height : 1342 -----

D actClick

proclD: ~

4. Note in Figure 3-7 that we have selected the window type
with the double border (third from the right in the pictures of
the window types). We have assigned the name NewFile to
the view, have given it a title of New Name, and have checked
the modal checkbox, making it a modal dialog.

Figure 3-8
Completed NewFile
dialog view

Managing the Document's Data 71

5. After making the foregoing selections in the View Info dialog,
we clicked OK to dismiss the dialog and then added some
simple controls to the view. The appearance of the completed
dialog, as it appears in the VA, is shown in Figure 3-8.

NewFile

Choose a file type:

0 Main document file

0 New Uiew document file

(Cancel) n OK D

111111

111111

The creation of the view shown in Figure 3-8 is relatively sim
ple and was accomplished as follows:

a. Choose the Static text tool from the Tools palette (the
one that has the "A" icon), and type in the "Choose a file
type:" text string.

b. Choose the Radio button tool from the Tools palette, and
create the two radio buttons shown in the figure.

c. Choose the Push button tool from the Tools palette, and
create first the OK and then the Cancel buttons by sim
ply clicking the mouse in the positions shown in the fig
ure.The first button you create will be created as a default
OK button, the second will be created as a Cancel but
ton, all automatically.

d. Resize the ScrollPane that encloses the controls to be just
large enough to encompass the contents of the dialog.

6. After the dialog has been created, you will need to change the
settings for the radio buttons so that the one corresponding to

72 Chapter 3 :>- Creating and Managing Documents

Figure 3-9
Settings for mainDoc
radio button in
NewFile dialog view

the "Main document file" caption is turned on and the one
corresponding to the "New View document file" caption is
turned off. These changes are made to the parameters for 'the
CControl class and are accessible by either double-clicking on
the control or by selecting the control and choosing the Pane
Info command (Command-L) from the Pane menu. The set
tings for the "Main document file" button are shown in Fig
ure 3-9 (only the settings for the CControl class are pictured
in the figure).

mainDoc

Identifier: Imai nDoc

Left: I 1 6 Top: I s2

~==~
Width: I 1 45 Height: ~11_6 ___ ~

CControl

cont rlTi tl e:

I Main document file

contrlValue : I 1
~=====:

contrl Min: I 0
::====~

contrlMax: ~I 1 ____ _,

Figure 3-9 shows the results of making two changes to the set
tings for the "Main document file" radio button control. The
Identifier has been changed to mainDoc, and then the trian
gle control next to the CControl class has been clicked to
open up its settings, changing the controlValue setting to 1,
instead of the default value of 0. After those changes have
been made, the Pane Info window can be closed by clicking
in its close box.

7. The settings for the "New View document file" radio button
are changed in a similar fashion to those for the "Main docu
ment file" radio button and are shown in Figure 3-10. We
have changed the Identifier to newViewDoc and have left the
controlValue setting as 0 (the default value) . After the change
to the identifier has been made, the Pane Info window can be
closed by clicking in its close box.

This completes the steps for creating and modifying the NewFile
dialog view. If you choose the Try Out command from the View
menu, you will see a dialog pictured in Figure 3-11.

Figure 3-10
Settings for NewView
radio button in New
File dialog view

Figure 3-11
Final appearance of
NewFile dialog
within the VA

D newUiewDoc

Identifier: I ne"1Vie"1Doc

Left : I 1 6
~=~

Width: ._I 1_7_8 _ __,

~ CControl
contrlTitl e:
I Ne"' Vie"1 document file

Top: I as
::===~

Height: ~11_6 __ ~

contrlVal ue: I 0
~==~

co ntrl Min: I 0
~==~

co ntrl Max: ._I 1 ___ -'
• ~n.

¢1

Choose a file type:

@ Main document file

Managing the Document's Data 73

O New mew document file

(Cancel) K OK ll

When you have finished testing the dialog shown in Figure 3-11,
click either the OK or Cancel button to close the dialog.

Generating the Dialog Code

At this point, we have done everything necessary in VA to create
the new dialog, so the next step is to generate code to support its
creation and management. Pull down the Project menu in the
VA, and choose the Generate command. This will cause the VA to
generate the new files and modified versions of existing files to
manage the new dialog view. The Symantec Project Manager

7 4 Chapter 3 > Creating and Managing Documents

project will also be updated to include the newly generated files
when code generation is complete. If you look in the project win
dow, you will see two new files, named CNewFile.cp and
x_CNewFile.cp.These are the derived and base class files to create
and manage the new dialog view.

Adding the DoNewDialog Code

In order to support the creation of the appropriate view (docu
ment) type when the user chooses the New command from the
File menu (or when the application starts up), the existing code in
the CreateDocument function in the x_CApp class (see page 68)
calls the DoNewDialog function to ascertain what type of docu
ment object to create. I have written an override DoNewDialog
function in the CApp class whose code is as follows:

Boolean CApp: :DoNewDialog(OSType *filetype)
{

Boolean haveType = FALSE;

*filetype = O; II specify a NULL file type
itsNewDialog = TCL_NEW(CNewFile, ()); II create dialog
itsNewDialog->ICNewFile(this); II initialize dialog
itsNewDialog->BeginModalDialog();
if (itsNewDialog->DoModalDialog (cmdNull) == cmdOK)
{

*filetype = GetDocTypeFrornDialog (itsNewDialog);
haveType = TRUE;

ForgetObject (itsNewDialog);

return haveType;

The foregoing code is not much more complex than what was
presented earlier (see page 69) to handle the creation of a single
document type. In the case of the foregoing code, I created the
CNewFile dialog object and then invoked it to allow the user the
opportunity to specify what document type should be created
when the New command is chosen.

In addition to the source code for the DoNewDialog function,
I added a declaration of the function and one new private mem
ber variable declaration into the CApp.h header file. These are as
follows:

Managing the Document's Data 75

virtual Boolean DoNewDialog(OSType *filetype);

private:

CNewFile *itsNewDialog; //newly added

The DoNewDialog code is relatively simple. It creates a new
CNewFile object, calls its INewFile initialization function, calls
the BeginModalDialog function for that object, and then calls the
DoModalDialog function (which actually "runs" the dialog).
When DoModalDialog returns, the new code tests whether the
function returned a value equal to the cmdOK constant. If so, then
the code calls another function called GetDocTypeFromDialog to
access the dialog object to extract the user's choice of document
type. The type is stored into the fileType variable and the value
of the haveType variable is set to TRUE. This indicates that a
type was chosen (that is, the user didn't cancel the dialog). If the
return value from the DoModalDialog function is not equal to
the value of the cmdOK constant, then the user must have can
celled the dialog and the haveType variable will remain set to
the FALSE value with which it was initialized prior to running the
dialog. In either case, the code calls the ForgetObject function to
delete the CNewFile object and then returns the value of the
haveType variable (indicating success or failure-the file
Type variable is passed back to the caller to use when a selection
has been made).

Modifying the GetDocTypeFromDialog Code

When the VA generated code for the CApp class originally, it cre
ated the GetDocTypeFromDialog function, which was unused in
the initial single document implementation of our skeleton appli
cation. Because the current version of the application requires the
choice between various file types when a new file is created, we
will use this function to access the selected file type from the
CNewFile dialog director object. The modified code for the Get
Doc TypeFromDialog function is as follows:

OSType CApp: :GetDocTypeFromDialog(CNewFile *dialog)
{

if (dialog->endData.fNewFile_rnainDoc == 1)
{

return CMainFType;
}
else if (dialog->endData.fNewFile_newViewDoc == 1)

76 Chapter 3 >- Creating and Managing Documents

return CNewViewFI'ype;

else

return O;

The foregoing code accesses a data structure called endData
from the dialog argument to the function and tests whether
the fNewFile_mainDoc or fNewFile_newViewDoc field
has been set to 1 (indicating that the associated radio button was
clicked). Only one of the fields can have a value of 1. The func
tion returns the file type (CMainFType) or (CNewViewFType)
corresponding to the selected radio button. Because the default
generated code specifies a file type of 1TEXT1 for both file types, I
changed the code for the CMainFType constant to 'savr', indi
cating that the main document uses the CSaver class (Object 1/0
features) to read and write its data. This change is made to the
CMain.h header file and is as follows:

II If you have !lDlltiple document classes, you must change
II the file type below to the appropriate type for this class.
II If not, this #define is not used.

#define CMainFI'ype 'Savr'

Note in the foregoing code that the VA requests a definition that
is appropriate to the class. (Although the header file for the
CNewView class has a similar definition, I have not modified the
default-generated definition of 1TEXT 1 for that document type.)

Modifying the CNewFile Dialog Code

In order for the CNewFile dialog to operate properly, it's neces
sary to add some code to the CNewFile.cp derived class source
file. The number of changes is minimal, and I will not attempt to
explain the intricacies of the dialog's operation at this point.

I will explain dialogs in depth in a later chapter. The first change
we made was to the CNewFile.h header file, in which we added a
new instance of the CNewFileOata structure member variable, as
follows:

Managing the Document's Data 77

II Insert your own public data members here

CNewFileData endData;

The endData structure gives us a place to store the final results of
the user's selections in the dialog. The only other change made
was to the CNewFile.cp source file, in the EndData function,
whose code is as follows:

void CNewFile::EndData(CNewFileData *final)
{

II The values of all panes are returned by this function,
II which is called just before Close for a modeless dialog,
II or just before returning from DoModalDialog.

I I If DoModalDialog returns cmdCancel, EndData is called
II with the values initially supplied to BeginData,
II allowing you to back out any intermediate changes made
II in response to UpdateData. If you do not use UpdateData,
II you can test the value of dismissOnd to see whether to
II respond to EndData.

endData = *final;

As you can see in the foregoing code, a single statement was added
to the otherwise empty EndData function. The assignment of the
contents of the structure addressed by the final argument to the
function to the newly added endData structure ensures that the
structure contains the final values associated with the radio but
tons when the dialog is dismissed.

The comments in the EndData function make reference to an
other function called BeginData. Just for your reference, this
function stores the values associated with the dialog's controls (as
defined in the VA) into another instance of the CNewFileData
structure called savedData. It is a pointer to the savedData
structure that is passed to the EndData function in the final ar
gument if the user cancels the dialog. Because we are not using
these values when the DoModalDialog function returns other
than a cmdOK value, we don't care what they contain.

The foregoing code, along with the changes made to the CApp
class to invoke the dialog and test the results, are all that are
needed to implement the choice between two different document
types when the New command is chosen. (Because the default be
havior for TCL-based applications is for the cmdNew command to

78 Chapter 3 >Creating and Managing Documents

be sent to the current gopher when the application is initialized,
the new dialog will be displayed when the application is first
launched. This behavior can be changed by initializing the appli
cation's newWindowOnStartup variable to FALSE in the IApp
function of the CApp class.)

Performing Simple Text File Input and Output

When I described the default-generated code for the CMain class,
I indicated that the input and output of data for that document
type would be handled largely by the CSaver class, using the Ob
ject 1/0 facilities of the TCL.

In the case of the CNewView class, I glossed over the concept of
input and output facilities. When the user chooses the Open
command from the File menu and opens a file whose type
matches the value of the CNewViewFType constant (which hap
pens to be 1TEXT 1 in our case), the OpenDocument function of
the x_CApp class (see page 65) determines the appropriate docu
ment type to create (CNewView in this case), creates the docu
ment object, and then calls its OpenFile function. Because I chose
to uncheck the "Use File" checkbox for the NewView view, no
code was generated into either the CNewView derived class or the
x_CNewView base class source files. Therefore, the OpenFile
function is inherited from the CDocument class in the TCL, and is
as follows:

void CDocument::OpenFile(SFReply*macSFReply)

As is painfully evident, the OpenFile function in the CDocument
class is empty. This indicates that we must write the necessary
code to perform the OpenFile task if we want to open a file and
display its data in the associated view. In fact, if we intend to pro
vide the ability to handle the Save, Save As, and Revert com
mands, we will also have to add functions to implement them. We
have two possible ways to approach this task. These are as follows:

+ Add the necessary functions directly to the CNewView class.

Figure3-12
Specifying CTextData
as the Library Class
for CNewView

Performing Simple Text File Input and Output 79

+ Create a new class that is derived from the CDocument class
and then derive our CNewView class from that one, imple
menting all of the input and output-related functions in the
new class.

The first option is more appropriate if we want to handle data in a
unique file format that would not likely be used in another docu
ment.

The second option provides a class that can be used for other ap
plications (and other views). It is probably the best long-term
choice. When we create a new view in the VA and wish to use the
features of the new class for input and output, we would specify it
as the "Library Class" for the new view. For example, if we launch
the VA right now and choose the Classes command from the Edit
menu, the opportunity to choose a class and specify its Library
Class is provided, as shown in Figure 3-12.

CA pp ~
CMain

CNewFile
(:ll

~

Classes

Library I CTeHtData

(Cancel)

OK

Creating a CTextEdit Panorama in the NewView Window

In order to illustrate how effective writing a separate "Library
Class" will be for our purpose, we will add a CEditText panorama
to the NewView window while we are still inside the VA. This
will provide an editable text pane that we can use to demonstrate
the features of the CTextData class. The steps for doing so are as
follows:

1. Close the Classes window, after making the change shown in
Figure 3-12, by clicking the OK button.

2. Choose the View Info command from the View menu and,
referring to Figure 3-4, remove the check in the Vert Scroll

80 Chapter 3 :>-- Creating and Managing Documents

Figure 3-13
Panorama pane added
to the NewView
window

checkbox. This will ensure that the window itself does not
contain a scroll bar. Click OK in the dialog to dismiss it.

3. Double-dick the NewView name in the list of views to open
the NewViewwindow. Pull down the Tools menu and choose
the Panorama tool (it looks like a window with horizontal
and vertical scroll bars). Position the crosshairs of the Pan
orama tool at the top-left corner of the grey outline within
the view, drag down and to the right until the dotted outline
of the panorama just overlaps both the right and bottom
edges of the grey outline, and then release the mouse button.
The result should look like what is shown in Figure 3-13.

NewUiew

0,0 236 , 188

4. Notice that the panorama just created displays a vertical scroll
bar. This is the default setting for that element within the VA.
Double-dick on the newly created panorama (or click to
select it and choose the Pane Info command from the Pane
menu) to open the Pane Info window.

5. Change the name of the pane at the top of the Pane Info win
dow to TextPane, and then also change the sizing characteris
tics within the CPane object settings to correspond with what
is shown in Figure 3-14.

6. Note in Figure 3-14 that the hSizing and vSizing set
tings are set to sizElastic from the corresponding pop-up

Figure 3-14
Pane Info window for
the new TextPane

panorama element

Figure 3-15
Scrollpane Info for the
TextPane panorama

Peiforming Simple Text File Input and Output 81

TeHtPane

Identifier: ._I T_ex_t_Pa_n_e ______ _,

Left : l._o _ __ _. Top: l._o ___ _,

Width: l._2_3_6 __ _, Height : l._1_a_a _ _ _.

CPane

width : 219 I heig ht: i 1 a6
:::::===========: :::::===========:
.___ ___ _.I vEncl : ._I 1 ___ __, hEncl :

hSizi ng: sizELASTI C 1

vSizi ng: sizELASTIC

pri ntCli p. I cli pPAG E

[8J autoRefresh O

¢ !!!!!!!i!i!iiiiiii!iiiiii!ii!iii!iiiiii!mi!i!i!!!iii!iii!!!iii!i!!iiii!!i!iiii!!iii!iiiiiii!ii!!iii!i!i!iiiiiiii!!i!ii!!!!ii!!ii!ii!i!iiiiiiiii!i!iiiiiii!ii! ¢ l2l

menus. These are all that are needed for the new pane. Close
the window by clicking in its close box.

7. Choose the Scrollpane Info command from the Pane menu,
and you should see that the settings are as shown in Figure
3-15. You don't have to change any of these settings, so you
can close the window after looking at its contents.

CScroll Pane

[8J Vertical Scroll
D Horizontal Scroll
D Size Box

[8J Border

TeHtPane

Examining the x_CNewView Header File Changes

The foregoing steps complete the changes that are necessary to
provide the new panorama subview in the NewView view. Choose

82 Chapter 3 > Creating and Managing Documents

Generate from the V/\s Project menu to generate code that corre
sponds to the changes that were just made.

If you examine the default-generated code for the x_CNewView
class, you will find that the class declaration in the
x_ CNewView.h header file begins as follows:

#include "CTextData.h"
class CEditText;
#define x_CNewView_super CTextData
class CFile;

class x_CNewView public x_CNewView_super

public:

TCL_DECLARE_CLASS

II Pointers to panes in window
CEditText *fNewView_TextPane;

The foregoing code shows that the x_CNewView class is derived
from the newly specified CTextData class. In addition to generat
ing a new base class declaration for the x_CNewView class, the
VA has also generated a new member variable for the panorama
pane called fNewView_TextPane that will contain a pointer to
the text pane when the window is created. The remainder of the
header file is the same as was presented previously.

Examining the x_CNewView Source File Changes

The changes to the x_CNewView.cp source file are relatively mi
nor and are limited to the statements in the MakeNewWindow
function. The newly generated code for that function is as follows:

void x_CNewView: :MakeNewWindow(void}
{

itsWindow = TCLGetNamedWindow("\pNewView", this};
itsMainPane = (CPane*} TCLGetitemPointer(itsWindow, 0};

II Initialize pointers to the subpanes in the window
fNewView_TextPane = (CEditText*} itsWindow

->FindViewByID(kNewView_TextPaneID};
ASSERT(rnember(fNewView_TextPane, CEditText)};

Peifimning Simple Text File Input and Output 83

Examining the CTextData Header File

The CTextData.h header file defines the CTextData class and de
clares the member variables and functions that are needed to im
plement the simple text input and output features we require. The
contents of the file are as follows:

/***
CTextData

Header File For CTextData Lower-Layer Data Handling

Copyright © 1995 Richard 0. Parker. All rights reserved.

This file declares functions to override the empty functions
in the CDocument class for simple TEXT file IIO.

***/

#pragma once

class CFile;
class CDataFile;

class CTextData public CDocument
{
public:

TCL_DECLARE_CLASS

Handle itsData;

protected:

);

virtual void
virtual Boolean
virtual Boolean
virtual void
virtual void
virtual void
virtual void
virtual void
virtual void
virtual void

II place to put the document's data

OpenFile(SFReply *macSFReply) = O;
DoSave();
DoSaveAs(SFReply *macSFReply);
DoRevert();
ReadData ();
WriteData();
PositionWindow();
ContentsToWindow();
WindowToContents();
MakeWindowName (Str255 name);

The foregoing class declaration indicates that the CTextData class
is derived directly from the CDocument base class in the TCL.

This provides it with the opportunity to implement many of the
functions that are empty in the base class implementation.

Examining the CTextData Source File

I have written the CTextData.cp source file so that it implements
the features of the functions shown in the class definition. Many

84 Chapter 3 >Creating and Managing Documents

of the functions are quite simple and all can be overridden for any
view that wishes to perform input or output to other than simple
text files. The following sections describe the code contained in
the various functions of the CTextData class.

CTextData.cp Beginning Declarations

The first part of the CTextData.cp source file contains declara
tions and #inc 1 ude statements that are needed by the various
functions. These are as follows:

/***
CTextData.cp

CTextData Document I/O Class

Copyright © 1995 Richard o. Parker. All rights reserved.

***/

#include "CTextData.h"
#include <CApplication.h>
#include <CBartender.h>
#include <Cornmands.h>
#include <Constants.h>
#include <CDecorator.h>
#include <CDesktop.h>
#include <CFile.h>
#include <TBUtilities.h>
#include <CWindow.h>
#include <CDocument.h>

extern CApplication
extern CDecorator
extern CDesktop
extern CBartender
extern OSType

*gApplication;
*gDecorator;
*gDesktop;
*gBartender;
gSignature;

II The application
II The Decorator
II The visible Desktop
II Manages all menus
II Application's creator

TCL_DEFINE_CLASS_Ml(CTextData, CDocument);

CTextData OpenFile Function Code

The OpenFile function gets called, eventually, as a result of the
user's choice of the Open command from the application's File
menu. When this occurs, the DoCommand function for the cur
rent gopher is called with a cmdOpen argument. The CApp ob
ject is still the gopher at this point (unless another document
object is already open-in which case its "main pane" will be the
current gopher). None of the objects that are both in the chain of
command and also in the generated code handle the cmdOpen
command in their DoCommand functions. As a result, that com
mand gets passed up the chain until it enters the DoCommand

Performing Simple Text File Input and Output 85

function for the CApplication object in the TCL. The code that
handles the command in this function is as follows:

case cmdOpen:

II Have to ask the user what document to open,
II so do cormnand nonnally and then sum up
II for recording

SFReply rnacSFReply;
ChooseFile(&rnacSFReply);
if (rnacSFReply.good)
{

SetCursor(*gWatchCursor);
OpenDocument(&rnacSFReply);
if (Factoring ())
{

CDocument *doc = TCL_DYNAMIC_CAST(CDocument,
lastAdded);

TCL_ASSERT (doc) ;

doc->SendOpen(kAEDontExecute
I kAENeverinteract);

break;

The first action of the foregoing code is to execute the ChooseFile
function, which asks the user (via the standard open file dialog)
what file is to be opened. The ChooseFile function is also imple
mented in the CApplication class, although it could be overridden
in your application-derived class if you wish to use something
other than the standard file dialog for choosing files. If the Choose
File function returns a "good" result, then the user did not cancel
the dialog and the foregoing code continues by calling the Open
Document function, which is implemented in the x_ CApp base
class in the VA-generated code (see page 65). The OpenDocu
ment function creates a document object that matches the type of
the chosen file and then calls OpenFile to open the file that the
user chose. The code for the OpenFile function in our new
CTextData class is as follows:

void CTextData::OpenFile(SFReply *rnacSFReply)
{

CDataFile *theFile = NULL;
FSSpec spec;

theFile = TCL_NEW(CDataFile, ());II Create the file object
try_
{

theFile->IDataFile();
theFile->SFSpecify(rnacSFReply);

86 Chapter 3 >Creating and Managing Documents

theFile->GetFSSpec(&spec);
FailOpen(&spec); II Fail if open in this application
theFile->Open(fsRdWrPerm); II Fail if open in another app

II (and lots of other reasons)
itsFile = theFile; II Promote to document file

}
catch_all_ ()
{

TCLForgetObject(theFile);
throw_same_ () ;

}
end_try_

ReadDa ta () ; II Read data from file

The foregoing code creates a new CDataFile object, initializes the
object, calls the SFSpecify and GetFSSpec functions in the CFile
class of the TCL to fill in all of the fields of the FSSpec record, and
checks to see whether the chosen file is already open in this appli
cation. The code continues by calling the Open function for the
CDataFile object, which calls the HOpen toolbox function to
open the file. If the file cannot be opened, an exception will occur
and the ca tch_all_ block of the OpenFile code will be exe
cuted. If the Open operation is successful, the theFile variable's
contents are stored into the document's itsFile variable, and
then the OpenFile function calls ReadData to read all of the data
for the chosen file into an handle in memory.

CTextData ReadData Function Code

The ReadData function for our new CTextData class is responsi
ble for reading the file's data, calling the document's MakeNew
Window function to create the appropriate window to hold the
text data, and then calling the document's ContentsToWindow
function to copy the data to the window. The code for the Read
Data function is as follows:

void CTextData: :ReadData()
{

Str255 theName;

try_
{

II read all of the file's data into a Handle

itsData = ((CDataFile *)itsFile)->ReadAll();
}
catch_all_ ()
{

throw_same_ () ;
}
end_try_

Performing Simple Text File Input and Output 87

if (itsWindow == NULL)
{

MakeNewWindow();

ContentsToWindow();

PositionWindow();
MakeWindowName (theName) ;
itsWindow->SetTitle(theName);
itsWindow->Select();

II If window wasn't created

II create the window

II Make contents displayable

II Done before making name
II Change the window title

II Activate the window

The foregoing ReadData function reads all of the file's data into
memory, storing it into a handle called itsData. The handle is
defined in the CTextData.h header file shown on page 83. After
reading the data, the function determines whether a window is al
ready open (this can happen in case ReadData is called as a result
of the execution of a crndRevert command); if not, it calls the
MakeNewWindow function in the document base class (in this
case, x_CNewView). The CTextData class contains only an
empty version of that function. ReadData continues by calling
the ContentsToWindow function (also empty in the CTextData
class, but fully implemented in the CNewView derived class). The
ReadData function completes execution by calling the MakeWin
dowName function to create an appropriate name for the win
dow, calling SetTide to store the name into the window's tide bar,
and then calling Select to select and make the new window active.

CTextData DoSave Function Code

When the user chooses the Save command from the application's
File menu, the crndSave command travels up the chain of com
mand until it reaches the DoCommand function in the CDocu
ment class, where it is handled as follows:

case crndSave:
Boolean specify = itsFile == NULL;
SetCursor(*gWatchCursor);
DoSave();

II We send the Save event after doing the save to
II give the user a chance to specify a save file
II if one is not already open. If itsFile is NULL
II after calling DoSave, the user canceled.

if (factoring && itsFile)
SendSave(specify, kAEDontExecute);

break;

88 Chapter 3)>- Creating and Managing Documents

The foregoing code changes the cursor to the "watch" icon and
then calls the DoSave function to perform the save operation.
Our CTextData class contains an override for the DoSave func
tion and its code is as follows:

Boolean CTextData::DoSave()
{

if (itsFile == NULL)
{

return DoSaveFileAs();

else
{

WriteData(); //need to override this function
return TRUE;

As is evident in the foregoing code, if the i tsFile variable has
not yet been assigned (as would be the case when the user created
a new CNewView window, entered some data, and then chose the
Save command from the File menu), the function calls the
DoSaveFileAs function to perform the save operation; otherwise,
if the file has already been created, the DoSave function calls the
WriteData function to write out the data and indicate its success
in doing so.

CTextData WriteData Function Code

The WriteData function for the CTextData class operates in re
verse to the ReadData function. The code is as follows:

void CTextData::WriteData()
{

try_
{

gApplication->SetCriticalOperation(TRUE);
WindowToContents(); //get data from window
if (itsData && itsFile)
{

((CDataFile *)itsFile)->WriteAll (itsData);
}
SetChanged(FALSE); //Not dirty any longer
gApplication->SetCriticalOperation(FALSE);

}
catch_all_ ()
{

gApplication->SetCriticalOperation(FALSE);
throw_same_ () ;

}
end_try_

Performing Simple Text File Input and Output 89

The foregoing code commences by calling the SetCriticalOpera
tion function of the application object with a TRUE argument that
enables the function to use more memory from the memory re
serve, if it becomes necessary to do so. The WindowToContents
function is then called to move the data from the window to the
itsData handle (perhaps creating a new handle in the process);
if the i tsData and i tsFile variables are both nonzero, the
WriteAll function of the CDataFile class is called to write out the
contents of the itsData handle to the i tsFile file. The docu
ment's SetChanged function is called with a value of FALSE, indi
cating that the document is no longer "dirty," and then the
SetCriticalOperation function is called with a FALSE value to in
dicate that the critical operation is complete. If an exception oc
curs during any of the foregoing processes, then the catch_all_
block will be executed.

CTextData DoSaveAs Function Code

In the event that a file has not yet been assigned when the user
chooses the Save command, the DoSaveAs function is called.
Also, if the user chooses the Save As command from the File
menu, the cmdSaveAs command is passed up the chain of com
mand until it is handled by the DoCommand function in the
CDocument class. The code for that section of the function is as
follows:

case cmdSaveAs:
DoSaveFileAs();
if (factoring && itsFile)

SendSave(TRUE, kAEDontExecute);
break;

The foregoing code calls the DoSaveFileAs function that is also
implemented in the CDocument class of the TCL. The code for
that function is as follows:

Boolean CDocument::DoSaveFileAs()
{

SFReply macSFReply; II Standard File reply record

PickFileName(&macSFReply); II Let user enter a file name

if {macSFReply.good)
{

SetCursor{*gWatchCursor);
return(DoSaveAs(&macSFReply));

90 Chapter 3 ~ Creating and Managing Documents

else
{

return(FALSE); II User cancelled SaveAs dialog

The DoSaveFileAs function displays the standard SaveAs dialog
box and allows the user to specify the name and location of the
file to be saved. If the dialog is not cancelled, the function contin
ues by setting the cursor to the "watch" icon and then calls the
DoSaveAs function to handle the remainder of the task. Our
CTextData class overrides the DoSaveAs function, the code for
which is as follows:

Boolean CTextData::DoSaveAs(SFReply *macSFReply)
{

OSErr theError;
CDataFile *theFile = NULL;
FSSpec spec;

TCLForgetObject(itsFile); II Delete the current file
theFile = TCL_NEW(CDataFile, ());II Create a new file

try_ II Most of the following operations
II can fail for various reasons

theFile->IDataFile();
theFile->SFSpecify(macSFReply);
theFile->GetFSSpec(&spec);
FailOpen(&spec);
if (theFile->ExistsOnDisk()) II If file is on disk
{

theFile->ThrowOut(); I I dispose of it
}
II create and open a TEXT file
theFile->CreateNew(gSignature, 'TEXT');
theFile->Open(fsRdWrPerm);

II Change window name to match the new file name
if (itsWindow)
{

itsWindow->SetTitle(macSFReply->fName);

}
catch_all_ ()
{

}

TCLForgetObject(theFile);
throw_same_ () ;

end_ try_

itsFile = theFile; II Set instance variable

II Let DoSave() write the document to disk. Note
I I that DoSave () may have called DoSaveAs () , but
II itsFile is now non-NULL, so the recursion stops.
return DoSave() ;

Performing Simple Text File Input and Output 91

The foregoing code implements the Save As command-or is ex
ecuted when called by the DoSave function-by disposing of any
CDataFile object that is currently allocated, creating a new object,
initializing the object, and filling in the fields of the macSFReply
record. Then, if the chosen file already exists on the disk, it is dis
posed and a new file is created and opened. The window tide is
changed to reflect the new file name, the document's i tsFile
variable is set to point to the new CDataFile object, and then the
code calls the DoSave function to complete the operation of writ
ing the contents of the i tsDa ta handle to the disk.

The comments at the end of the foregoing code point out that al
though the DoSaveAs function might have been called by the
DoSave function it, in turn, calls the DoSave function to com
plete its task only after a file has been created to hold the data to
be written. Therefore, any possible recursion is avoided.

CTextData DoRevert Function Code

The DoRevert function is called by the DoCommand function in
the CDocument class when the user chooses the Revert command
from the application's File menu. The section of code in the
DoCommand function that handles the cmdRevert command
is as follows:

case cmdRevert:
PositionDialog('ALRT', ALRTrevert);
if (CautionAlert(ALRTrevert, NULL) == OK)

SetCursor(*gWatchCursor);
DoRevert();

break;

The foregoing code displays a dialog that asks whether the user re
ally wants to revert to the version of the file that was previously
saved. If the user clicks the OK button, indicating acceptance of
the proposed action, then the code changes the cursor to the
"watch" icon and calls the DoRevert function to perform the re
vert operation.

Our CTextData class overrides the DoRevert function for text
files and the code for this is as follows:

92 Chapter 3 :>-Creating and Managing Documents

void CTextData::DoRevert()
{

if (itsData)
{

DisposHandle (itsData);
}
if (itsFile)
{

ReadDa ta () ;

The foregoing code is quite simple. It checks to make sure that
the i tsDa ta handle has been allocated and disposes it if so.
Then, if the file has been created, it calls the ReadData function
to reread the contents of the file on disk. Both of the tests are pro
vided to bulletproof the code, as both the data handle and the cor
responding file should have been created before the Revert
command is enabled in the File menu.

CTextData PositionWindow Function Code

The Position Window function is called by the ReadData function
to position a newly created window on the desktop. Our CText
Data class overrides this function to allow the CDecorator object
to perform the default action of staggering the window. The code
is as follows:

void CTextData: :PositionWindow()
{

gDecorator->PlaceNewWindow(itsWindow);

CTextData ContentsToWindow Function Code

When the ReadData function is called, after the data file has been
read into the its Data handle and a new window is constructed,
the ContentsToWindow function is called to transfer the data to
the window in an appropriate manner. You must override the de
fault code in your derived document class (for example, CNew
View). The default code for the function is as follows:

void CTextData::ContentsToWindow()
{

II you must override this function

Peiforming Simple Text File Input and Output 93

CTextData WindowToContents Function Code

Before the WriteData function can write the contents of the its
Da ta handle to the disk, the WindowToContents function is
called to ensure that the i tsData handle contains the latest copy
of the window's data. You must override this function in your de
rived document class (for example, CNewView). The default code
for the function is as follows:

void CTextData::WindowToContents()
{

II you must override this function

CTextData MakeWindowName Function Code

When the ReadData function executes, after a new window is cre
ated, it calls the MakeWindowName function to create a name
for the new window. The default code for the function is empty;
however, the VA-generated code in the base class for the derived
document class source file (i.e., CNewView.cp) overrides this
function. The default code is as follows:

void CTextData::MakeWindowName (Str255 name)
{

II you must override this function

The VA-generated code for the MakeWindowName override
function in the x_ CNewView class is as follows:

void x_CNewView: :MakeWindowName(Str255 newName)
{

Str31 count;

if (itsFile !=NULL)
itsFile->GetName{newName); /*Return file name*/

else
{

/* Append window count to window*/
/* title {from resource) */
itsWindow->GetTitle{newName);
if {Length{newName) == 0)

GetindString{newName, STRcommon, strUNTITLED);
NumToString(gDecorator->GetWCount(), count);
ConcatPStrings (newName, (unsigned char *) "\p ") ;
ConcatPStrings(newName, count);

94 Chapter 3 > Creating and Managing Documents

As is evident from the foregoing code, the window name is cre
ated by combining the name of the file that was opened with a se
quence number supplied by the "decorator," which maintains a
count of the windows under its management. You can override
the MakeWindowName function in the CNewView derived class
to return whatever sort of window name is appropriate.

Examining the CNewView Source File Changes

In order to implement fully the new text pane in the NewView
window, I added some code to the CNewView.cp source file. I did
not add any new functions to the file, so the header file is un
changed. The sections that follow describe the changes to the ex
isting VA-generated functions.

CNewView ICNewView Function Code

I added a single statement to the ICNewView function to initial
ize the i tsData handle to a NULL value, as follows:

void CNewView: : ICNewView ()
{

Ix_CNewView();

II Initialize data members here

itsData = NULL; II make sure data is NULL

CNewView ContentsToWindow Function Code

As you may recall, the ContentsToWindow function is called by
the CTextData ReadData function, after the contents of the data
file has been read, to install the data into the current window. Be
cause that operation is application dependent, we must override
the function in our CNewView class. The VA generates an empty
function for this purpose; I added the following code to make it
fully functional:

void CNewView::ContentsToWindow()
{

II set the CEditText's Handle to our data

fNewView_TextPane->SetTextHandle (itsData);

Examining the CNew View Source File Changes 95

To display the data in memory in the CEditText pane in the New
View window, all we have to do in the foregoing code is call the
SetTextHandle function for the CEditText pane, passing it the
handle to our data. The TCL copies the data in our handle into a
new handle and then manages its own copy, displaying the data
using the TextEdit features of the toolbox.

CNewView WindowToContents Function Code

The WindowToContents function is called by the WriteData
function of the CTextData class in order to store the latest version
of the window's contents into the i tsDa ta handle for the docu
ment so that the data can be written to a file. The code for this
function is as follows:

void CNewView: :WindowToContents ()
{

Handle theData;

II check whether there is existing data in the "itsData"
II variable and dispose the data if so. Then, get the Handle
II from the CEditText pane and copy it and the data into a
II new Handle.
if (itsData != NULL)
{

DisposHandle (itsData);

theData = fNewView_TextPane->GetTextHandle ();
itsData = theData;
FailOSErr(HandToHand (&itsData));

When the foregoing function is called, a file might not yet be as
signed (that is, the user created a new window) and the i tsData
handle might be NULL. If not, then a file has been assigned and
the contents of the handle may not reflect what is displayed cur
rently in the window. In this case, we dispose of the handle and
then, in either case, create a new handle by calling the Get
TextHandle function of the CEditText class, and then copy the
handle and its data using the HandToHand toolbox function.

CApp ICApp Function Code Addition

I have made one more small addition to the !App function in the
CApp class to suppress the display of the NewFile dialog on start
up. Because I want the user to be able to either open an existing
file or create a new file at his or her discretion, I will launch the

96 Chapter 3 >Creating and Managing Documents

Figure 3-16
Choosing a New View
file type

application without displaying a window at the outset. The code
to accomplish this is as follows:

voidCApp: : ICApp ()
{

Ix_CApp(4, 24000L, 20480L, 2048L);
JI Initialize your own application data here.
newWindowOnStartup = FALSE;

The foregoing changes are all that are required to fully implement
the newly defined view and its CEditText panorama. After the
changes have been made and the application is recompiled and
run, the user will have the option of opening an existing file or
choosing the New command from the File menu. In the latter
case, the user will see the dialog displayed in Figure 3-16:

Choose a file type:

O Main document file

@ New Uiew document file

(Cancel)

As is evident in the foregoing figure, the user has chosen a New
View document file that results in the construction of a CNew
View document object and its associated view. The user is able to
enter data into the view by using the keyboard. After several para
graphs have been entered, the view may appear like what is shown
in Figure 3-1 7.

We have entered enough data into the window to activate the ver
tical scroll bar, just to illustrate that it is possible to do so. We were
also able to use the Copy and Paste commands in the Edit menu
to duplicate the sentence that is displayed in the figure. These fea
tures are provided automatically by the TCL for CEditText objects.

Figure 3-17
New View window
conraining newly
enrered text

Figure 3-18
Window title after
data has been saved to

a file

Examining the CN ew View Source File Changes 97

D New Uiew 1
Here is some teHt that I want to ;Q
saue into a file. b

:::: :~::~~u':."t thot I wont to ~Ill!
::::: :
..

:::: :~::~~ll~."t thot I wont to !!!I!!

Here is some teHt that I want to
saue into a file.

One other thing to note in Figure 3-1 7 is that the window tide is
the default value constructed for a new window of the New View
type. It includes the name of the view and the CDecorator's se
quence number. After saving the foregoing window's contents
into a file-by choosing the Save or Save As command from the
application's File menu-the window's title is changed to reflect
the file's name, as shown in Figure 3-18.

§jD~ New Uiew TeHt ~t!J§j
Here is some teHt that I want to ;Q,
saue into a file. !mm

:::: :~::~~u':."t thot I wont to 1!11

Here is some teHt that I want to !l!l!l
saue into a file.

!111·1
Here is some teHt that I want to Ht

~
0

saue into a file.

In the case of the foregoing window, the data was saved to a file
named New View Text. Using the facilities that have been de-

98 Chapter 3 >- Creating and Managing Documents

scribed in the foregoing sections, as well as the comprehensive
support of the TCL, we are able to close that window and open the
file once again and see the identical contents in the new window.

CApp MakeNewWindow Override Suggestion

There's one final addition that you may wish to make to the newly
created view. With the addition of a simple override of the Make
NewWindow function in the CNewView class, you can arrange
to print the contents of the text in the view. The override function
code to accomplish this is as follows:

void CNewView: :MakeNewWindow(void)

x_CNewView::MakeNewWindow();

II change itsMainPane to point to the CEditText panorama

itsMainPane = fNewView_TextPane;

The foregoing code illustrates the simplicity of changing the value
of the i tsMainPane pointer to reference the text pane, rather
than the window's panorama (as is the case with the VA-generated
code). The base class function is called first, followed by the state
ment to change the value of the i tsMainPane pointer.

Multiple Documents Versus Multiple Views

It is important to understand the distinction between multiple file
types, their associated document objects, and simply the case of
multiple views of the data for a single document and file type. In
the foregoing sections, I described how to create separate docu
ment objects to handle single or multiple file types. The distinc
tion between these two topics is very simple. If you need to open
multiple files, then (with few exceptions) you should define a new
"Main Window" view for each. If, instead, you wish to open a sin
gle file and show various views of its contents, then you will want
to create a single "Main Window" view and then multiple plain
"Window" views to display the data in different ways.

Application Document Summary 99

Application Document Summary

This chapter has described the role of the document object in the
application. The document is the data server for the application
and an application can have one or more document objects. Each
document object has an associated file, and each file has an associ
ated file type; therefore, each unique file type has an associated
document object.

We also described the code for the CTextData class, which could
be used to perform simple text input and output from/to a
'TEXT' file. A more comprehensive simple file 1/0 functionality
(CSimpleSaver) is described in a later chapter.

In the next chapter, I will discuss how to create multiple views on
the data contained within one or more documents and their asso
ciated files.

Chapter 4

Creating and Displaying Views

This chapter is all about views of various types. The intention here
is to present several different types of views so that you will get
some idea of how they are created and what you need to do to im
plement them fully in your own applications.

I will be using the VA to create the various view types and I will
also present its default-generated code, along with custom code
and suggestions on how to complete the customization process.

All of the views in this chapter are based upon windows, rather
than dialogs; however, I will show dialogs that are associated with
the implementation of the new views, but will cover them in more
depth in a later chapter. With that said, let's begin the chapter
with a very interesting view.

Creating a Business Account View

You are probably very familiar with a class of commercial software
that allows you to manage your money in various ways. These ap
plications provide you with an account register view into which
you enter your transactions for checking, savings, credit cards,
and so forth. It is the account register view that you will learn how
to create using the VA and the TCL.

Implementing the account view consists of many more elements
than just the view itself because you will also want to include the
following features with such a view:

+ A main view that holds a list of account names, from which
you can select the account to be viewed

+ A dialog that allows you to name the account, choose its type,
and store other pertinent information about the account

101

102 Chapter 4 >-Creating and Displaying Views

+ An ''Account" menu that offers the ability to create a new
account, edit an existing account, delete an account, or simply
select an account to view

+ A separate view for each account, so that multiple account
views can be displayed simultaneously

Creating the Main View

In order to satisfy the foregoing list of features, let's create the list
of accounts (Main) view such that it displays the name of each
account. Clicking on any entry in the list will immediately show
its corresponding view. The steps to create this behavior are as
follows:

1. Launch the Symantec Project Manager application and choose
to create a new project using the "VA Application'' project
model.

2. Choose a new folder in which to store the project, name it
"Business View f," name the project "Business View," and
then let the Project Manager create the project file using the
VA Application as its template.

3. When the project has been created, double-dick on the
"Visual Architect.rsrc" entry to launch the VA application.

4. When the VA launches, it displays a list of existing views that
at the outset includes only the "Main" view (as shown in Fig
ure 2-1). Double-dick on the Main entry in that list and the
predefined main view (as shown in Figure 2-2) will be dis
played.

5. Choose the Select All command from the Edit menu and
press the Delete key to delete the existing view components (a
PICT image and a static text field).

6. Pull down the Tools menu and choose the List/Table tool
(fifth tool down in the first column). You may also want to
tear off the Tools palette so that it will be handy for use in
some of the later steps in this section.

7. With the List/Table tool selected, posltlon the cursor
crosshairs at the top-left corner of the window boundary and

Figure 4-1
Scroll lisr creared in
Main view

Figure 4-2
View Info serrings for
the Main view

Creating a Business Account View 103

D Main

o, o 164, 236 1¢ [JHi[¢ QJ

Main (Document) Info

JD: 128 Name: I Main
:::::============-~~--,

0 modal n OK ll
[81 Use file

Title : l~M_ai_n __________ ~ [81 Print (Cancel)

Wi ndw Cl ass: I CWi ndow ..-1

[81 Vert. Scroll 0 Horiz . Scroll [81 Size Box [81 goAwayFlag

Positi on I Staggered ..-1 Lei"l T,,.,

Width: 11 60
~====:

Min Width : 140
:======:

Max Wi dth : ~I s_12 ___ ~

Height : I 233
~====:

Min Height : I 40
~====:

Max Height: ~13_4_2 ---~

D actClick

proc/D: E::::J

drag down and to the right to create a list pane that looks
similar to what is shown in Figure 4-1.

8. Now, pull down the View menu and choose the View Info
command and change the settings to correspond with what is
shown in Figure 4-2. Note in the figure that the view has a
vertical scroll bar, a size box, a close box (go-away flag) , and
that the "Use File" checkbox is checked. You will probably
want to use the Object I/O features of the TCL in the applica
tion that is built around this view. Click the OK button to

104 Chapter 4 >Creating and Displaying Views

Figure 4-3
Setting hSizing and
vSizing values for the
Accounts list pane

§0 Recounts

Identifier: J Accounts

Left: I 0 Top: ~Io __ ~
Width: J 164 Height: ._l 2_3_6 __ _,

CPane

width: J 147 I height :
~==~

hEncl: I 1 I vEncl:
111111

hSizi ng: I sizELASTIC -... I
vSizi ng: I sizELASTIC -... I
printclip : I clipPAGE -...I
[ZJ auto Refresh

dismiss the dialog after the view's characteristics have been
specified.

9. The next step is to set the sizing characteristics of the CPan
orama object for the list. Select the new list pane (if it isn't
already selected), and then choose the Pane Info command
from the Pane menu. Change the name of the pane to
''.Accounts," and then twist the indicator next to the CPane
class in the Pane Info view, making sure that the pop-up
menus for the hSizing and vSizing parameters are both
set to sizELASTIC, as shown in Figure 4-3.

10. After the sizing characteristics for the Accounts pane have
been set, you can click the close boxes on both the Accounts
and Main windows.

11. At this point, you need to create a new class, derived from
CArrayPane so that you can override the "GetCellText" func
tion, in order to display the account names in the Accounts
pane. Choose Classes from the Edit menu, and then choose
the New Class command from the Edit menu. Create the
CMainList class, as shown in Figure 4-4, and then dismiss the
dialog.

12. After the CMainList class has been created, double-click on
the Main view in VNs list of views, click to select the list pane,

Figure 4-4
Creating the
CMainLisr class

Figure 4-5
Changing the list pane
class to CMainList

cnccount

cncctlist
CR pp

CM Bin

CMainlist

CNewnccount

Font
Size
Style
Color ...

Creating a Business Account View 105

CIBsses

"°' [riil -~~L
BBse CIBss: I cnrrnyPBne ""I

[Define Diltil Members J

librnry

[CBncel)

DK

Tools Windows

8€L

CArrnyPane

and then pull down the Pane menu and choose CMainList as
the Class for that pane, as shown in Figure 4-5.

This concludes the procedure for creating the "Main" view. Its
sole purpose is to display a list of accounts and their balances,
from which an individual account view can be selected.

Creating the Account View

The next procedure concerns the creation of the Account view.
The steps for doing so are as follows:

1. Assuming that the VA is still running and that you are con
tinuing on from the previous tutorial, pull down the View
menu and choose the New View command.

106 Chapter 4 >- Creating and Displaying Views

Figure 4-6
Creating the Account
window view

Figure 4-7
View Info settings for
the Account window

Please name the new uiew

Name: I Recount

LITT: ~ !II ../Dialog
Floating Window
Main Window
Modal Dialog
New ... Dialog
Splash Screen
Subuiew
Tearoff Menu
Windo111 .

J

2. Enter "Account" for the name of the view, and then choose
"Window" as the type of view, as shown in Figure 4-6. (Note
that Dialog is checked as the default selection, but the Win
dow type is being chosen in the figure.) Click the OK button
to dismiss the dialog.

3. When the new view dialog is dismissed, the VA will display a
new window, whose name is ''Account." After the view has
been created, pull down the View menu, and choose the View
Info command. The settings should be changed to corre
spond with what is shown in Figure 4-7.

Window Info

D modal ([OK ll
D ;y.,·111~
D ;>;·,,,• [Cancel)

Name: !Account
~==========-~~-,

Title : .__IA_cc_ou_nt __________ _,

ID: 129

Wi ndow Cl ass: I CWi ndow ..,.. I

~L]guDDuD CJ
D Vert. Scroll D Horiz. Sc roll 1:8:1 Size Box 1:8:1 goAwayflag D actCli ck

Positi on I Staggered ..,.. I ;.,•;"l ; ,,,,

Width: 1454 Height: lrn proc lD : ~

Min Width: 1454 Min Height : lt90
Max Width : 1454 Max Height: 1400

Figure 4-8
Finished appearance
of Account view

Creating a Business Account View 107

D Account 0
ORTE l NUMBER j DESCR I PT I ON T PAYMENT l DEPOSIT T BALANCE ~

.,__l..__~~l_c_RT_rn_oR_Y~'~-ME_Mo~J..__~~~J~~---'I~~~.....-ll"""
s ::::I:

II!

[Record J [Restore J ::::::· : :::::; I
{).

Just to help you visualize what needs to be accomplished in
the following steps, the final appearance of the Account view
is displayed in Figure 4-8. The view consists of quite a num
ber of elements, so you may wish to tear off the Tools palette
so that the various tools are easier to reach.

4. The column heading section of the view shown in Figure 4-8
was created by choosing the Rectangle tool and drawing an
outline large enough to surround all of the heading info at the
top of the view (our outline is named "TitleBox" and it's
456x36 pixels in size). Both the hSizing and vS izing

parameters in the CPane class are set to sizFIXEDSTICKY
and the pen "h" and "v" settings in the CShapeButton class
are set to 1 (indicating a 1-point pen width and height). All of
the settings were made by selecting the rectangle and choos
ing Pane Info from the Pane menu. The various elements
within the TitleBox were created as follows:

a. The vertical and horizontal lines were drawn using the
Line tool, and each of these is also a 1-poim line.

b. The text inside the pseudo columns of the TitleBox is in
all capital letters in the Chicago 9-poim font. Use the
hierarchical Font menu, within the Pane menu, to select
the font, and then the hierarchical Size menu, within the
Pane menu to select the font size.

108 Chapter 4)-- Creating and Displaying Views

Figure 4-9
Record button
command behavior

5. The next major element in the construction of the Account
view is the creation of the scrolling list in which the account
transactions will be displayed. Construct this pane by choos
ing the List/Table tool from the Tools palette, position the
cursor crosshairs just below the bottom-left corner of the
TideBox construction, and drag down and to the right until
you have created a list pane that is the same width as the
TideBox and is also an integral multiple of its height (the
pane measures 456x216 pixels, which allows space for six
entries, each of which is 36 pixels in height). Name the pane
"Entries" by choosing the Pane Info command from the Pane
menu and entering the name. The default assignment of CAr
rayPane for this element is fine for now, but we will be chang
ing this shortly.

6. The next element to be created is the Record button at the
bottom of the view. Note that we have left space below the
scroll pane, created in the foregoing step, to place two buttons
and four static text fields. To create the Record button (that
when pushed saves the transaction just entered), simply
choose the Button tool from the Tools palette, and click
where you wish the button to be placed.

cmdOpen
cmdOutline
cmdPageSetup
cmdPaste
cmdPlain

Rctions:------------

1 n Class: I CRccount ..-1
Oo: I Call ..-1

NonP :; .. j

[Cancel J

OD

After placing the Record button and entering its name, you
will want to assign a command to be executed when the but
ton is clicked. This is called a "behavior." To assign the com
mand behavior for the Record button, make sure the button
is still selected, and then pull down the Pane menu and
choose the Pane Info command. Twist the indicator next to
the CButton class, click the pop-up menu next to the Com

mand setting, and choose Other from the top of the menu of

Figure 4-10
Record burron
settings

Creating a Business Account View 109

available commands. This will display a Commands window
with the cmdlHalfSpace command selected by default.
Notice that the Edit menu is active when this dialog is being
displayed. Choose the New Command command from that
menu (or use the Command-K keyboard shortcut), type in a
new command name (I used cmdRecord), choose CAccount
as the class in which the command is to be executed (you
want the Account class to handle commands associated with
the Account view), and then choose Call as the action to

perform when the command is executed. This will result in
the DoCommand function for the CAccount class to contain
code to call a function called cmdRecord. The completed dia
log settings are shown in Figure 4-9.

7. The next step is to modify the settings in the CControl class
for the Record button. Twist the indicator next to that class
name, and change the settings to correspond with what is
shown in Figure 4-10.

Record

Identifier: I R_e_co_r_d _______ __.

Left: ~j 1_7 __ ~

Width: ~15_9 __ ~

CButton

Top: 12_3_8 __ __.

Height: ~I 2_0 __ ~

Com mand : J cmdRecord TI
CControl

contrlTitle :
j Record

contrlVal ue:

contrl Min:

co ntrl Max:

8. Next, just as we described in the steps pertammg to the
Record button, create a new button called Restore, place it
onto the view as shown in the depiction of the completed
view in Figure 4-8, open the Pane Info dialog, and create a
new command (I used cmdRestore) for the button, with
the behavior shown in Figure 4-11.

110 Chapter 4 ~Creating and Displaying Views

Figure 4-11
Restore button
command behavior

Figure 4-12
Restore button
settings

Commands

1•· I • cmdOpen
cmdOutline
cmdPageSetup
cmdPaste
cmdPlain
cmdPrint
cmdQuit

Number: 51:5

Actions:-----------~

In Class: I CRccount ... I
Do: I Call ... I
l}iHW~ ~ Nni,P :,; .. i

D Restore

ldentifiH: I Restore
'.::====:;----;::::::=::____,

Left: I 101 Top: 1238

::=::=~
Width: 159 Height: ~I 2_0 __ ~

p CButton

Command: ._I _c;..m""d;..Re:.;.st_or_e __ ,.._,I

1'7 CControl

contrlTitle:
I Restore

contrlVal ue:

contrl Min:

contrl Max:

lo
lo I

0

9. Just as we specified the settings for the CControl class for the
Record button, we also need to choose the Pane Info com
mand and make sure that the settings for the Restore button
correspond to what is shown in Figure 4-12.

10. The next step is to create a new class called CAcctList, which
we will derive from the CArrayPane class to enable us to cus
tomize the appearance of the main (Entries) transaction list in
the view. Pull down the Edit menu, choose Classes, and then
choose New Class from the Edit menu, after the Classes win
dow is displayed. Change the settings for the new class to
match what is shown in Figure 4-13.

Figure4-13
Creation of new
CAcctList class

Figure 4-14
Changing the Entries
pane to the CAcctList
class

CRccount {} .
CRpp
CMain

-0

Creating a Business Account View 111

Classes

I CRcctlist

Base Class: I CRrrayPane 1

[Define Data Members J

Library class: "-II _______ _,

(Cancel J

OK

Options Tools Windows
Pane Info... SCL
ScrollPane Info .•.

Font
Size
Style
Color ...

CHrrayPane

11. Then we need to change the class for the "Entries" pane to be
CAcctList, instead of the default CArrayPane that the VA has
assigned. This is easily accomplished by selecting the
"Entries" list pane, pulling down the Pane menu, and select
ing CAcctList in the list of acceptable classes in the Class
hierarchical menu, as shown in Figure 4-14.

12. In addition to the foregoing elements, we have also created
four static text fields, as follows:

a. The "Current Balance" label field is created at the bottom
of the Account view. It need not have a special name.

b. The "Ending Balance" label field is created at the bottom
of the Account view. It need not have a special name.

112 Chapter 4 ~Creating and Displaying Views

Table 4-1
Position and sizing of
Account view elements

c. Another static text field that we have called "CurBal" is
created at the bottom of the Account view, to the right of
the "Current Balance" label. We have entered an initial
value into the field, but this will be replaced by the pro
gram with the actual value when the account balance is
computed.

d. The final static text field is called "EndBal," and it is cre
ated to the right of the "Ending Balance" label. We have
also entered an initial value into this field, but it will be
replaced by the program when the ending balance is
computed.

This concludes the creation of the elements of the Account view.
The positions and sizes of all of the foregoing elements are sum
marized in Table 4-1.

Element Name Dimensions * Sizingt

TitleBox (O, 0, 456, 36) H:F,V:F
Linell (32, 0, 1, 36) H:F,V:F

Line12 (84, 0, 1, 36) H:F,V:F

Line13 (220, 0, 1, 36) H:F,V:F

Linel4 (292, 0, l, 36) H:F,V:F
Line15 (360, 0, l, 36) H:F,V:F
Line2 (32, 16, 424, 1) H:F,V:F
Line19 (148, 16, 424, 1) H:F, V:F
Entries (O, 36, 456, 216) H:E,V:E
Record (17' 238, 59, 20) H:F,V:B

Restore (101, 238, 59, 20) H:E,V:B
Stat23 (276, 232, 97, 16) H:E,V:B
Cur Bal (388, 232, 60, 12) H:E,V:B
Stat24 (276, 250, 91, 12) H:E,V:B
EndBal (388, 250, 60, 12) H:E,V:B

* Order is (Left, Top, Width, Height)

t F = sizFIXEDSTICKY, E = sizELASTIC, B = sizFIXEDBOTTOM

In the table, the "Line" elements are the vertical and horizontal
lines; the "Stat" elements are static text, as are the special static
text items named "CurBal" and "EndBal"; the "TitleBox" element

Creating a Business Account View 113

is the rectangle that encloses all of the other heading elements; the
"Entries" element is the scrolling list; and the "Record" and "Re
store" elements are the buttons at the bottom of the view.

Adding an Account Menu

Figure 4-15
Account menu added
to menu bar

The next few steps create a new Account menu and four new
menu commands. Then the menu is added to the standard menu
bar. The steps are as follows:

1. Choose the Menu Bar command from the Edit menu.

2. Choose the New Menu command from the Edit menu (or
use the Command-K keyboard shortcut) .

3. Enter the name Account into the Edit Text field at the top
right side of the Menu Bar dialog. The result is as shown in
Figure 4-15. After the new menu has been added, click the
OK button to dismiss the Menu Bar dialog.

• File
Edit

IDnmlJli

Menu Bar

~

.

-01

O s (Apple Menu)

[Edit Menu Items J

MENU ID: 128

MDEF ID: D

Add Menu:6 (Cancel J

OK

This concludes the procedure for adding the Account menu to the
menu bar. Before adding commands to the menu, we will con
struct a New Account dialog.

Creating a New Account Dialog

Two of the menu commands we want to add to the Account
·menu require that we display a dialog that lists the settings for an
account. Before adding the menu commands, we will create the
dialog so that the VA will generate code to open the dialog when

114 Chapter 4)o- Creating and Displaying Views

Figure 4-16
NewAccounr dialog
as displayed in the VA

D NewRccount

New Recount

rRccount Type -----, Name: [~-----~J
®Checking Info:
O Sauings ~-------~

0 Cash
O Credit Card
O Rsset
O Liability

(Cancel J ((OK

the command is chosen. The steps for creating the New Account
dialog are as follows:

1. Choose New View from the View menu, and then name the
view "NewAccount." Select Dialog as the type of view.

2. Create the dialog as shown in Figure 4-16. The border sur
rounding the various ''Account Type" radio buttons is created
using the Rectangle tool. Use the Static Text tool to type the
''Account Type" caption on top of the upper area of the bor
der. The bordered fields associated with the "Name" and
"Info" labels are Edit Text fields. The OK and Cancel buttons
should be, created in that order (first OK and then Cancel) .
The VA will create them with the proper settings automati
cally. The "value" of the "Checking" radio button has been
changed to 1 so that this button is selected, by default.

3. Choose the View Info command from the View menu, and
make sure that the "Modal" checkbox is checked and that the
view type is the third picture from the right (standard bor
dered dialog). Click OK to dismiss the dialog, and then click
in the close box of the NewAccount view to close the view's
window.

This concludes the steps for creating the NewAccount dialog. I
have purposely avoided going into much detail about the ratio
nale for the dialog's construction, mainly because knowing this in
formation is not essential to the explanation of how the Business
View operates. All of the foregoing, and much of what follows, is

Creating a Business Account View 115

preliminary to the discussion of how to implement the Account
view. Although it is necessary to show the various components
that interact with the view, it isn't really necessary to describe why
they have been implemented-at least, not at this point.

Adding Menu Commands to the Account Menu

After the NewAccount dialog has been constructed, the VA will
have knowledge that files for a new class called NewAccount will
need to be generated. It also knows that the class concerns a
modal dialog view. With this in mind, we can now add com
mands to the Account menu we constructed earlier. The steps are
as follows:

1. Choose Menus from the Edit menu, and select the Account
menu in the list of available menus.

2. Click the Edit Menu Items button in the Menus dialog, and
then choose the New Menu Item command from the Edit
menu (or use the Command-K keyboard shortcut).

3. Enter the name New Account, followed by an ellipsis charac
ter (indicating that a dialog will open when the command is
chosen. (Note: The ellipsis character is created by typing the
semicolon key with the Option key held down.)

4. Click the pop-up menu at the bottom of the menu item dia
log, next to the label "Command." Scroll up to the top of the
list and choose "Other." This will cause the "Commands" dia
log to open. Choose New Command from the Edit menu (or
use the Command-K keyboard shortcut). Enter the name
crnd.NewAcct into the Edit Text box, and change the settings
to match what is shown in Figure 4-17.

Note that in the Actions settings for the crnd.NewAcct entry
we have chosen CMain for the class in which the code is to be
generated; we have chosen the Open action for the code to

"Do;" and we have chosen CNewAccount (the NewAccount
dialog view) for the generated code to open.

5. Repeat the actions described in the foregoing steps 3 and 4
for a new command named crndEdi tAcct, and set the
Actions for that command to be as shown in Figure 4-18.

116 Chapter 4 >-Creating and Displaying Views

Figure 4-17
cmdNewAcct
command added to

Account menu

Figure 4-18
cmdEditAcct
command added to

Account menu

Figure 4-19
cmdDeleteAcct
command added to

Account menu

cm cl Close
cmclConclense
cmclCopy
cmclCut
cmclDoubleSpace
cmclEHtencl
cm cl Italic
cmclJustify
cmclNe
cmclNe111Acct m

Number: 516

Actions:-------------~

In Class: I CMain ,,,.I
Do: I Open ,,,.I
Uiew: I CNewAccount ,,,.I

[Cancel J

OK

cmclCopy Hf !.!!!!~I!!!!!~

~~:~~:eteAcct I NAuc::~:=:-5-1-8-----------~
~clllmll!cl~Daloll!u!i]bl!ellSplalcle••H In Class: I CMain ,,,.I

~~::,, I L_~-~-~-=~J=P=~=~=e=w=A=~=c=~=u=nt==,,,.=--l ____ [_ca_:_;_e_JIJ

cmclDoubleSpace
cmclEclitAcct
cmclEHtencl
cmclltalic
cmclJustify
cmclNew
cmclNewAcct

Commands

Actions:-------------~

In Class: I CMain ,,,.I
Do: I Call ,,,.I

Noni~ :;.:;:]

(Cancel]

OK

6. Repeat the actions described in the foregoing steps 3 and 4
for a new command named cmdDe l eteAcct, and set the
Actions for that command to be as shown in Figure 4-19.

7. Finally, create one more new command in the Account menu,
and set its name to a single "dash" character (that is, '-').This

Figure 4-20
Completed list of
menu commands for
the Account menu

Creating a Business Account View 117

Menu Items

Account

New Account... r!1
Edit Account •.•
Delete Account

Command: I cmdNewAcct

D Has submenu

Subm~~nu c.-.-.......................... :.-:::.·:::."J c:J
Cmd-key:D

I con: i 1!!~ I Mark: I None •I

•I

(Cancel)

OK

will cause a dividing line to be drawn in the menu at that
point. No Actions are associated with a dividing line. The line
will serve to separate the foregoing commands from the
names of new accounts that are added to the menu when the
user creates them. The final result is as shown in Figure 4-20.

8. When the foregoing steps are complete, click OK in the
Menu Items dialog, and then click OK in the Menus dialog
to complete the process of adding menu commands to the
Account menu.

Generating Code and Viewing the Results

After creating the user interface elements described in the forego
ing sections, choose the Generate All command from V/fs project
menu (the Symantec Project Manager "star field" icon), and let
VA update your project with the generated files (it may have asked
you to save the file before generating code and you should do so).
You can now Quit from the VA.

The default-generated code for the CApp and CMain classes is
the same as was described in Chapters 2 and 3. In this section, we
will focus on the functionality of the newly generated code. A
later section will discuss the code itself and what we need to do to
implement the Account view fully.

118 Chapter 4 > Creating and Displaying Views

Figure 4-21
Application running,
with Main window
and menus shown

Figure 4-22
Choosing New
Account from the
Account menu

,.. s File Edit Recount

D Main 1

When the VA-generated code is compiled and executed, the struc
ture of the application is as shown in Chapter 3, Figure 3- L Only
the application and main document objects have been created. In
fact, you should see the main window and menus, as depicted in
Figure 4-21 (the figure shows only a portion of the screen).

The VA-generated code also makes provision for opening the
New Account dialog, so you can display the dialog if you pull
down the Account menu and choose the New Account com
mand, as shown in Figure 4-22.

When the New Account command is chosen, the VA-generated
code (in the x_CMain class) creates a CNewAccount object, ini
tializes the object, and then calls the DoModalDialog function to
"run" the dialog. The result of doing so is shown in Figure 4-23
(with values entered into the Edit Text fields and the Savings radio
button selected).

Figure 4-23
Running the New
Account dialog

Creating a Business Account View 119

New Recount

rAccountType~

0 Checking
@Sauings
ocash
O Credit Card
O Rsset
O Liability

Name: J Home Sauings

Info:
llttt. No. 123-45-6 789
Hometown Sauings
1588 Main Street
Hometown, USll 99999
(988) 999-999~

(Cancel)

Although clicking the OK button in the foregoing dialog dis
misses it, nothing happens after that. We have not yet added the
functions that implement what to do with the data in the dialog
once it has been dismissed.

Examining the Generated Code in x_CMain

Most of the functionality described in the foregoing section is im
plemented in the x_CMain class, including the display of the
Main window and the handling of the Account menu commands.
This section will concentrate on showing only the relevant sec
tions of that code.

MakeNewWindow Function Code

The code for the MakeNewWindow function is as follows:

void x_CMain: :MakeNewWindow(void)
{

itsWindow = TCLGetNamedWindow(" \ pMain", this) ;

i t sMainPane = (CPane*) TCLGetitemPointer(itsWindow, 0) ;

II Initialize pointers to the subpanes in the window

fMain_Accounts = (CArrayPane*) itsWindow
- >FindViewByID(kMain_AccountsID);

ASSERT(member(fMain_Accounts, CMainList));

The MakeNewWindow function in the x_CMain class is called as
a result of the c mdNew command being sent to the current gopher
during the StartupAction function in the CApplication class. The

120 Chapter 4 ~Creating and Displaying Views

whole process is described in Chapter 3, on pages 49-57. As you
can see, the foregoing code merely creates a new window and then
populates it with the CMainList object that will hold our list of
accounts.

The Account menu-in fact, the whole menu bar-is created
during the application start-up process, when the SetUpMenus
function is called by the TCL. This is described in Chapter 2, be
ginning on page 35.

DoCommand Function Code

The DoCommand function generated into the x_ CMain class
handles commands that are sent to the current gopher, including
those that begin with the user's choice of one of the commands
from the Account menu. The code for this function is as follows:

void x_CMain::DoCommand(long theCommand)
{

switch (theCommand)
{

case cmdNewAcct:
DoCmdNewAcct();
break;

case cmdEditAcct:
DoCmdEditAcct();
break;

case cmdDeleteAcct:
DoCmdDeleteAcct();
break;

default:
CDocument: : DoCorranand (theCommand) ;

The foregoing code has cases that handle the three new com
mands that we added to the Account menu. In each case, the Do
Command function calls a separate function to implement the
command. If the command is not any of these, then the base class
DoCommand function is called to handle the command.

DoCmdNewAcct Function Code

The DoCmdNewAcct function in the x_CMain class is called to
handle the cmd.NewAcct command. The code is as follows:

void x_CMain: : DoCmdNewAcct ()
{

CNewAccount *dialog;

II Respond to command by opening a dialog

Creating a Business Account View 121

dialog= TCL_NEW(CNewAccount, ());
dialog->ICNewAccount(this);

dialog->DoModalDialog(cmdNull);
TCLForgetObject(dialog);

The foregoing VA-generated code creates a new CNewAccount
object, initializes the object, calls DoModalDialog to "run" the di
alog, and then disposes of the object. So although the basic func
tionality of creating the dialog and running it is provided by this
code, it does nothing to implement what should be done with the
data once the dialog has been filled in and dismissed. We will need
to override this function in our custom code for the CMain class.

DoCmdEditAcct Function Code

The VA-generated code for the DoCmdEditAcct function is iden
tical to what was presented for the DoCmdNewAcct function.
This is because we chose for this code to also open the NewAc
count dialog. The code is as follows:

void x_CMain: :DoCmdEditAcct()
{

CNewAccount*dialog;

II Respond to command by opening a dialog

dialog= TCL_NEW(CNewAccount, ());
dialog->ICNewAccount(this);

dialog->DoModalDialog(cmdNull);
TCLForgetObject(dialog);

DoCmdDeleteAcct Function Code

The code generated for the cmdDeleteAcct command is some
what different from the foregoing. We don't need to open the dia
log to delete an account, so we chose simply to call a function to
handle the command. Because the VA doesn't quite know what to
do in this case, it indicates that the subclass (in our case, that's
CMain) must override the function. The code is as follows:

void x_CMain: : DoCmdDeleteAcct ()
{

II Subclass must override this function to
II handle the command

122 Chapter 4 > Creating and Displaying Views

UpdateMenus Function Code

In addition to the code to create the Main window and handle the
menu commands that we just examined, the VA generates an
override of the document's UpdateMenus function. When the
user clicks on the menu bar, the default action by the CBartender
object is to disable all menu commands and then call the Update
Menus command for the current gopher (which, in this case, is
the CMain object) to enable the menu commands that are appro
priate for the current context. Because CMain does not contain
an override for the UpdateMenus command, the version inherited
from the x_ CMain class is executed. The code for this function is
as follows:

void x_CMain: : UpdateMenus ()
{

CDocument::UpdateMenus();
gBartender->EnableCmd(cmdNewAcct);
gBartender->EnableCmd(cmdEditAcct);
gBartender->EnableCmd(cmdDeleteAcct);

As is evident, the foregoing code first calls its CDocument base
class function (to update menus that it and other members of the
chain of command manage-this includes the File and Edit
menus), and then it calls the EnableCmd function for the global
gBartender object to enable all of the Account menu commands.

The foregoing is not quite the behavior we have in mind for our
application. It doesn't make sense to edit or delete an account
when none is selected in the Main window, so we must override
the UpdateMenus function in our CMain class to enable only the
commands that are appropriate in the current context.

What About the Rest of the Generated Code?

Although we created the NewAccount dialog in the VA and gen
erated code to implement it, we will discuss the dialog and its as
sociated (CNewAccount, x_CNewAccount) code later when we
cover the custom code we need to add to implement the creation
and editing of accounts fully. In addition, even though we spent a
lot of time creating the appearance of the Account view, we will
also wait to discuss of the CAccount, x_CAccount, CAccountList,
and x_ CAccountList classes until we have covered how the user
interface features should function.

Creating a Business Account View 123

Making the Business View Fully Functional

The process of making a new view functional often consists of
writing quite a bit of custom code in the various derived class
modules that the VA generates. In a large sense, the VA has pro
vided very little functionality in the derived class code, except for
what is obviously necessary. Much of the content of both the
CApp and CMain classes has been covered fully in Chapters 2
and 3. In this section, we will concentrate on describing the addi
tional custom code that is needed to implement the Business View
fully.

Before delving into the code, let's take a minute to discuss how the
Business View should operate, from the user's perspective. Some
features that we'd like to see are the following:

+ Because the user will most likely want to open an existing file
of accounts when the program is launched, the creation of a
new Main window should be suppressed. If a new file of
accounts is to be created, the user should choose the New com
mand from the File menu to do so.

+ When no accounts are present, or no account is selected in the
Main window's account list, then the Edit Account and Delete
Account commands in the Account menu should be disabled.
The New Account command should always be enabled.

+ When the New Account command is chosen and the NewAc
count dialog is displayed and then dismissed, the application
should determine whether the OK or Cancel button was
clicked. If the dismisser was the Cancel button, then no action
is required; however, if OK was clicked, then the application
should create a new CAccount object, save the other features of
the account in the CAccount object, open a window with the
account's name in its title, and add the account name both to

the list of accounts in the Main window and also to the bottom
of the Account menu. Newly added accounts should also be
associated with unique identifiers that can also serve as their
command IDs in the Account menu.

+ If an account name is selected (hilited) in the Main window,
then both the Edit Account and Delete Account commands
should be enabled when the UpdateMenus function is called.

124 Chapter 4 >- Creating and Displaying Views

+ If the Edit Account command is chosen for a selected account,
then the NewAccount dialog should be opened and its settings
should be made to correspond with those saved in the CAc
count object. When the dialog is dismissed with the OK but
ton, the settings in the CAccount object should be changed to
correspond with the settings in the dialog. If the dialog is dis
missed with the Cancel button, the account's settings should
remain the same as specified previously.

+ If the Delete Account command is chosen for a selected
account, an Alert should be displayed, allowing the user to
decide whether deletion of the account object, its name in both
the Main view and the Account menu, and its transactions is
really wanted. If not, then the command should be ignored.

+ Each entry in the Account view should indicate the appearance
of having two rows of data, with multiple columns, as implied
by the caption information that we designed to head the scroll
ing CAcctList pane in the view.

Ideally, we should carry the foregoing specifications further and
design the behavior of making entries into the account and the
loading and saving the account data; however, my intention in the
sections that follow is to show the fundamental concepts behind
the implementation of the foregoing-specified features-although
I will show some of the necessary code, my main goal is to show
how to use the features built into the TCL to support our efforts.
I'll conclude this section with suggestions on what remaining fea
tures would be worthwhile and how these could be implemented.

Examining the Custom Code in the CApp Class

The CApp class is derived from the x_CApp class to hold the cus
tom code for application-wide features. In this regard, we need to
ensure that a new Main window is not created when the applica
tion is launched, and also that account IDs are unique when new
accounts are created.

Adding a New Instance Variable

I have added a new instance variable to the CApp class, called
theNextAccount, whose purpose is to hold the next available
unique account identifier. The value also serves as the command

Creating a Business Account View 125

ID for accounts newly added to the Account menu. The additions
to the CApp.h header file are as follows:

public:
long theNextAccount; II the next available account number

#define kFirstAcctCmdID 2000

I have declared theNextAccount as a long value only because
command IDs are passed around to various functions in that for
mat. The #define statement-placed at the end of the file
provides an initial value for the theNextAccount variable. The
value '2000' was chosen arbitrarily, so as not to conflict with any
command numbers predefined for the TCL, or any that will be
generated in the future by the VA.

Newly Added Initialization Features

Newly added code to set the value for theNextAccount vari
able and suppress the creation of the Main view on start-up is
contained in the ICApp function, as follows (copious comments
elided):

void CApp: : ICApp ()
{

Ix_CApp(4, 24000L, 20480L, 2048L);

II initialize the first account ID and
II suppress the creation of the Main window
II on startup.
theNextAccount = kFirstAcctCmdID;
newWindowOnStartup = FALSE;

The kFirstAcctCmdID constant is defined in the CApp.h
header file, as discussed earlier.

Examining Custom Code in the CMain Class

The CMain class is the document object for the application. As
such, it is both the "keeper" of the document's data and the man
ager of its views and the menu commands and associated actions
for the views. When the user chooses the New command from the
File menu, a new CMain document object is created and its view
(list of accounts) is displayed.

126 Chapter 4 > Creating and Displaying Views

CMain Header File Additions

I have added new member variables and function declarations to
the CMain.h header file. These are as follows:

#define kAccountMenuID 128
#define kOKCancelAlert 130

II VA-assigned Account menuID
II Standard Yes/No/Cancel Dialog
II OK button is control ID #1 #define kAlertOK 1

The foregoing definitions are referenced in the source code of the
CMain class.

public:
CArray *itsAccounts; II list of CAccount objects
CArray *itsViewArray; II account name pointer array

II new account dialog settings CNewAccountData itsAcctData;

The foregoing CArray member variables refer to the various arrays
of data managed by the CMain object. The CNewAccountData

variable is an instance of the structure defined in the CNewAc
count class to hold the settings for the NewAccount dialog.

virtual void
virtual void
virtual void
virtual void
virtual void
virtual void

MakeNewWindow(void); //newly added override
DoCmdNewAcct(void); //newly added override
DoCmdEditAcct(void); //newly added override
DoCmdDeleteAcct(void);// newly added override
UpdateMenus (void); I I newly added override
DoCorranand (I I new override
long theCorranand); // command value

virtual void GetAcctSettings (// transfer to/from dlg
Boolean fromDocument, // transfer direction
CNewAccountData *data); //settings pointer

virtual void MakeDefaultSettings(void); //default settings

The foregoing member function declarations were added to the
CMain.h header file. All are public functions.

ICMain Function Code

After the CMain object is created, its ICMain function is called.
The ICMain function is a good place to create the CArray object
that will hold our list of CAccount (view) objects, as well as the
CArray object to hold the strings that contain the names of the
accounts that are displayed in the Main view. The newly modified
version of this code is as follows:

void CMain::ICMain()
{

Ix_CMain () ;

Creating a Business Account View 127

11 create the array of accounts (itsAccounts) and the array
II of account names (itsViewArray)
itsAccounts = TCL_NE.W(CArray, (sizeof (CAccount *)));
itsViewArray= TCL_NEW(CArray, (sizeof (Str255 *)));

In the foregoing code, the i tsAccounts and i tsViewArray
variables are both declared as pointers to CArray objects in the
CMain.h header file. Both arrays are setup to contain pointers to
objects (CAccount and STR2SS).

MakeNewWindow Override Function Code

One of the first things I had to do to make sure that the its -
MainPane variable was set properly was to override the Make
NewWindow function (generated by VA in the x_CMain class).
The newly created code is as follows:

void CMain: :MakeNewWindow()
{

x_CMain: :MakeNewWindow();
itsMainPane = fMain_Accounts;
fMain_Accounts->SetArray(itsViewArray, TRUE);

The foregoing code begins by calling the base class function to
create the window, but then changes the value of i tsMainPane
to correspond to the CMainList object (fMain_Accounts). In
addition, the array associated with the fMain_Accounts object
is specified. We have indicated that the CMainList object is the
owner of the array so that when the window is closed, the array
will be deleted automatically.

DoCommand Override Function Code

I have overridden the DoCommand function to provide behavior
that is specific to the user's choice of an account name command
from the Account menu. The code for the override of this func
tion is a5 follows:

void CMain::DoCommand(long theCommand)
(

long nextAccount = ((CApp *)gApplication)->theNextAccount;
if (theCommand >= 2000L && theCommand < nextAccount)

128 Chapter 4 >-Creating and Displaying Views

II it's one of our newly added Account menu commands.
II Process the command by bringing the associated window
II to the front, or by showing the window if it's hidden.

CAccount *theAccount;
CArrayiterator Iter (itsAccounts, kStartAtBeginning);
while (Iter.Next (&theAccount))
{

if (theAccount->itsAcctID == theCommand)
{

II found the account, so get its window to the front

if (!theAccount->itsWindow->IsVisible())
{

theAccount->itsWindow->Show();
}
theAccount->itsWindow->Select();

else
{

x_CMain: : DoCommand (theCommand) ;

When the user chooses an account name that has been installed
into the Account menu, the window for that account has already
been created, but may or may not be hidden from view. If the
window is hidden, then the foregoing code locates and makes the
window visible. If the window is already open, it is selected to
bring it to the front.

DoCmdNewAcct Override Function Code

I have overridden the DoCmdNewAcct function that VA gener
ated into the x_ CMain class in order to add the functionality nec
essary to realize the objectives listed on page 123 when New
Account is chosen. The code is as follows:

void CMain::DoCmdNewAcct()
{

CNewAccount *dialog;

II override of DoCmdNewAcct function in x_CMain
II initialize the "itsAcctData" to default values and then
II run the dialog.

MakeDefaultSettings();
dialog= TCL~(CNewAccount, ());
dialog->ICNewAccount(this);
dialog->BeginDialog();
if (dialog->DoModalDialog(cmdNull) == cmdOK)
{

11 dialog was dismissed with OK button, so we need to create
II a new CAccount object, initialize the object with the
I I document as its supervisor, transfer the characteristics

Creating a Business Account View 129

II specified by the user, add the account to the document's
II list, and then call the account's function to initialize
II the array.

CAccount *anAccount = TCL_NEW(CAccount, ());
anAccount->ICAccount (this);
anAccount->itsSettings = itsAcctData;
itsAccounts->Add (&anAccount);
anAccount->CreateNewEntries();

II the next step is to allocate space for the new account
II name string, store the string in memory, and then add
II the string pointer to the document's list window array.

short nNameLength = anAccount
->itsSettings.fNewAccount_AcctName[O];

StringPtr aPtr =new unsigned char[nNameLength + l];
TCLpstrcpy (aPtr, anAccount

->itsSettings.fNewAccount_AcctName);
itsViewArray->Add (&aPtr);

II finally, we append the account name to the Account menu
II by calling the Bartender's InsertMenuCmd function with
II the next available account command ID and the address
II of the name string.

long itsID = ((CApp *)gApplication)->theNextAccount++;
anAccount->itsAcctID = itsID;
gBartender->InsertMenuOnd (itsID, aPtr, kAccountMenuID, 999);

}
TCLForgetObject(dialog);

The comments in the foregoing explain the functions performed
by the various sections of code. Basically, if the NewAccount dia
log is dismissed with the OK button, we need to create a new
CAccount object, initialize the object, and add the object's pointer
to our array of accounts (itsAccounts). Then we need to allo
cate memory for the name of the account, store the account name
in the allocated area and add its pointer to the array associated
with the Main view's list of account names (i tsViewArray). Fi
nally, we need to add the account name and ID to the Account
menu by using the CBartender's lnsertMenuCmd function.

DoCmdEditAcct Override Function Code

I have also overridden the DoCmdEditAcct function (generated
by the VA into the x_CMain class) so that we can provide the ad
ditional functionality needed when the user chooses the Edit Ac
count function. The newly added code is as follows:

void CMain::DoCmdEditAcct()
{

CNewAccount *dialog; I I new account dialog
Cell selAcct = {0, 0}; II selected account

130 Chapter 4 >Creating and Displaying Views

StringPtr selName = NULL; II name of selected account

II begin by getting the name of the selected account

TCL_ASSERT(((CAcctList *)itsMainPane)->GetSelect(TRUE, &selAcct));
itsViewArray->GetArrayitem (&selName, selAcct.v + l);
TCL_ASSERT (selName);

II next, find the matching account in the "itsAccounts" array

Boolean found = FALSE;
CAccount *anAccount;
CNewAccountData acctData;
CArrayiterator Iter (itsAccounts, kStartAtBeginning);
while (Iter.Next (&anAccount))
{

acctData = anAccount->itsSettings;
if (TCLpstrcmp (selName, acctData.fNewAccount_AcctName) == 0)
(

II account found, so use its settings for the dialog

itsAcctData = acctData;
found = TRUE;
break;

TCL_ASSERT (found);// fail if not found

II respond to command by opening a dialog

dialog= TCL_NEW(CNewAccount, ());
dialog->ICNewAccount(this);
if (dialog->DoModalDialog(cmdNull) == cmdOK)
{

II assume that settings were changed and update the
II existing account.

anAccount->itsSettings
}
TCLForgetObject(dialog);

itsAcctData;

The foregoing code commences by locating the account name
for the selected account in the i tsViewArray array. Once the
name is found, it is used to locate the CAccount object, using an
instance of CArraylterator to iterate through the objects in the
i tsAccounts array variable. When the matching account is
found, its settings (acctData) are saved temporarily in the docu
ment's i tsAcctData structure and the NewAccount dialog is
displayed (the settings in the document's itsAcctData are used
to preset the controls and values in the dialog). If the dialog is
dismissed with the OK button, then the account's settings are re
placed with the final values in the dialog object. (Note: The
foregoing logic permits the user to change an account from one
type to another without any quarrel. In a robust version of the

Creating a Business Account View 131

application, it might be useful to restrict the type of changes that
the user can make to the various accounts.)

DoCmdDeleteAcct Override Function Code

I have also overridden the DoCmdDeleteAcct function (generated
by the VA into the x_CMain class). The newly added code pro
vides the functionality we require when the user chooses the De
lete Account command from the Account menu. The code is as
follows:

void CMain: : DoCmdDeleteAcct ()
{

Cell
StringPtr
CTransaction
Boolean

selAcct = {0, 0};
selName = NULL;
*aTrans;
found;

II selected account
II name of selected account
II one transaction
II search result

II to delete an account means to remove all of its
II transactions, the account entry, and also the menu command.
II Start by finding the name of the account.

'TCL_ASSERT (((CAcctList *) i tsMainPane) ->GetSelect (TRUE, &selAcct)) ;
itsViewArray->GetArrayitem (&selName, selAcct.v + l);
TCL_ASSERT (selName);

II next we inquire of the user whether he/she really wants to
II delete the account and all of its transactions.

ParamText (selName, 0, 0, 0);
if (CautionAlert (kOKCancelAlert, NULL) == kAlertOK)
{

II user really wants to delete the account, so find the
II account and delete all of its transactions.

CNewAccountData acctData;
CAccount *anAccount;
long acctID;

CArrayiterator Iter (itsAccounts, kStartAtBeginning);
found = FALSE;
while (Iter.Next (&anAccount))
{

acctData = anAccount->itsSettings;
if (TCLpstrcrcp (selName, acctData. fNewAccount_AcctName) == 0)
{

II account was found, so get its ID, delete it from
// the list, remove the menu command that relates to
II the account, and then delete the selected name.

itsAccounts->Deleteitem (Iter.GetCursor());
acctID = anAccount->itsAcctID;
gBartender->RemoveMenuCmd (acctID);
itsViewArray->Deleteitem (selAcct.v + 1);
found = TRUE;

I I also, because the account is being deleted, we need
II to delete all of its transactions.

CArray *theTransactions = anAccount->itsTransactions;
int numitems = theTransactions->GetNumitems();

132 Chapter 4 >-Creating and Displaying Views

Figure 4-24
ALRT 130 resource
appearance

for (int count=O; count < nwnitems; count++)
{

theTransactions->GetArrayitem (&aTrans, lL);
TCLForgetObject (aTrans);
theTransactions->Deleteitem (lL);

break;// break out of the while loop

}
TCL_ASSERT (found);

II finally, we get the account's window, make sure it's
II visible, select it, and then send it the cmdClose
// command. Note that this also disposes of the CAccount
II object.

TCL_ASSERT (anAccount->itsWindow);
if {!anAccount->itsWindow->IsVisible)
{

anAccount->itsWindow->Show{);

anAccount->itsWindow->Select();
gGopher->DoCommand (cmdClose);

The procedure for deleting an account, as demonstrated by the
foregoing code, is not simple. The first step is to display a Cau
tion Alert to the user, indicating that if the deletion process is al
lowed to proceed, the account and all of its transactions will be
deleted. Only if the user clicks the OK button in that alert do
we continue the process; otherwise, the function just returns at
its bottom.

The Caution Alert (kOKCancelAlert) was created with Res
Edit and the kOKCancelAlert symbol was added to the header
file for the CMain class (see page 126). The appearance of the
alert is shown in Figure 4-24. Note that the alert contains a single
parameter (indicated by the "0 placeholder in the text).

§0 Dill ID = 130 from Business Uiew.rsrc

Deleting the "O account will result in the~
deletion of all of its transactions. Do you
really want to do this?

[OK Lg [Canc9"aj _.

Creating a Business Account View 133

If the user chooses to proceed with the deletion of the account
and its transactions, then the foregoing code locates the CAccount
object corresponding to the selected account name and proceeds
to delete its entry from the itsAccounts array; then the menu
command corresponding to the account is deleted by calling the
Bartender's RemoveMenuCmd function with the account's ID
(that is also its command ID); then the account's name is deleted
from the list of accounts in the Main view by removing the entry
from the i tsViewArray array; then all of the account's transac
tions are deleted; and finally the account's window is made visible
(if not) and is activated and closed. Closing the account's window
results in deletion of the CAccount object.

MakeDefaultSettings Function Code

The DoCmdNewAcct function (in response to the user's choice
to create a new account) calls the MakeDefaultSettings function
to create the default settings for the NewAccount dialog. The code
for this function is as follows:

void CMain::MakeDefaultSettings ()
{

itsAcctData.fNewAccount_Rect2 = O;
itsAcctData.fNewAccount_CheckingRadio = 1;
itsAcctData.fNewAccount_SavingsRadio = O;
itsAcctData.fNewAccount_CreditRadio = 0;
itsAcctData.fNewAccount_CashRadio = O;
itsAcctData.fNewAccount_AssetRadio = O;
itsAcctData.fNewAccount_LiabilityRadio = O;
TCLpstrcpy (itsAcctData.fNewAccount_AcctName, "\p");
TCLpstrcpy (itsAcctData.fNewAccount_InfoText, "\p");

The foregoing code fills the various fields in the itsAcctData struc
ture with default settings.

ProviderChanged Override Function Code

The functional specifications for the application stated that
when the user clicked on an account name in the Main view,
then the corresponding account window should be brought to
the front. To accomplish this task, I have created an override for
the ProviderChanged function (inherited from the CDirector
base class) and have written code to test whether the selection in
the Main view has changed. If the user clicks the name of a new
account, then the SelectRect function of the CTable class calls
the BroadcastChange function, that results in (eventually) the

134 Chapter 4 > Creating and Displaying Views

CDirector-derived ProviderChanged function being called. The
code for the ProviderChanged function is as follows:

void CMain::ProviderChanged(CCollaborator *aProvider, long
reason, void* info)
{

Cell aCell = {0, 0};
StringPtr selName;

if (aProvider == fMain_Accounts)
{

if (reason == tableSelectionChanged)
{

if (fMain_Accounts->GetSelect (TRUE, &aCell))
{

itsViewArray->GetArrayitem (&selName, aCell.v + l);
Boolean found = FALSE;
CAccount *anAccount;
CNewAccountData acctData;
CArrayiterator Iter(itsAccounts, kStartAtBeginning);
while (Iter.Next (&anAccount))
{

acctData = anAccount->itsSettings;
if (TCLpstrcmp (selName,

acctData.fNewAccount_AcctName)==O)

II account found, so use activate the view

if (!anAccount->itsWindow->IsVisible())
{

anAccount->itsWindow->Show();

anAccount->itsWindow->Select();
found = TRUE;
break;

TCL_ASSERT (found) ;
return;

x_CMain::ProviderChanged(aProvider, reason, info);

The foregoing code first checks whether the "provider" of the
message is the fMain_Accounts object (that is the CMainList
pane of our Main view). If so, then the code continues by check
ing whether the reason for the call is tableSelection
Changed. If so, then the code continues by locating the account
whose name is selected, showing its window if it is hidden, and
then selecting the window to make it frontmost. If the provider or
reason arguments to the function do not satisfy our criteria, then
the base class ProviderChanged function is called.

Creating a Business Account View 135

Examining the Custom Code in the CMainList Class

The CMainList class is generated by the VA to be derived from
the CArrayPane class so that we can override the GetCellText
function to supply the account names for display in the Main
view. The generated code for this class contains only GetFrom and
PutTo functions in both the base class (x_CMainList) and derived
class (CMainList) source files.

GetCellText Function Code

I have added the GetCellText (override) function to the CMain
List class so that we can supply the text that is written into the
scroll list in the Main view. The custom code is as follows:

void CMainList::GetCellText(Cell aCell, short width,
StringPtr itsText)

StringPtr aPtr;
CArray *itsArray = GetArray();
itsArray->GetArrayitern (&aPtr, (long) aCell.v + 1);
TCLpstrcpy (itsText, aPtr);

The foregoing code accesses the CArray object associated with the
CMainList (CArrayPane-derived) object and then retrieves the
string that is associated with the aCell argument of the call. The
string is copied to the its Text pointer to complete the task.
This is all that is required to cause the account names to appear in
the scroll list of the Main view.

Examining Newly Added CTransaction Class Code

When we started customizing the CAccount class, we realized that
we needed to create some entries in each new account's view so
that its scroll bar would be active and the separators for the entries
would be drawn. We designed a CTransaction class to hold the
transactions for an account and we wrote some code to imple
ment access functions for all of the member variables in that class.

CTransaction Class Header File

The class declaration for the CTransaction class is contained in
the CTransaction.h header file, whose contents are as follows:

136 Chapter 4 > Creating and Displaying Views

/***
CTransaction.h

Header File For CTransaction Class

Copyright © 1995 Richard 0. Parker. All rights reserved.

***/
#pragma once
#include <OSUtils.h>

typedef enum
{

EMPTY,
ACTIVE,
MODIFIED,
COMPLETE

AcctStatus;

class CTransaction TCL_AUTO_DESTRUCT_OBJECT
{
public:

TCL_DECLARE_CLASS

CTransaction (long theAccountID);// constructor w/account ID
CTransaction (void); //default constructor

short
AcctStatus
CString
CString
CString
CString
CString
long
long
long

void
void
void
void
void
void
void
void
void

GetAccountID (void) ;
GetStatus (void);
GetDate (void) ;
GetNumber (void) ;
GetDescription (void);
GetCategory (void);
Getinfo (void) ;
GetPayment (void) ;
GetDeposit (void);
GetBalance (void);

SetStatus (AcctStatus n);
SetDate (DateTimeRec dt);
SetNumber (CString& s);
SetDescription (CString& s);
SetCategory (CString& s);
Setinfo (CString& s);
SetPayment (long v);
SetDeposit (long v);
SetBalance (long v);

private:

} ;

short
AcctStatus
DateTimeRec
CString
CString
CString
CString
long
long
long

accountID;
status;
date;
number;
description;
category;
info;
payment
deposit
balance

Creating a Business Account View 137

The foregoing class declaration shows that all of the member vari
ables for the class are private. "Access functions" were declared to
get and set the values of all of the variables and to provide the
greatest flexibility for future changes.

CTransaction Class Source Code

The CTransaction.cp source file implements the access functions
discussed in the foregoing as follows:

/***
CTransaction.cp

Transaction Data For Accounts

Copyright © 1995 Richard 0. Parker. All rights reserved.

There are a lot of "access functions" in this class. Rather
than publish its internal structure, we publish the functions
by which the member variables are accessed.

***/
#include "CTransaction.h"

#include <TCLpstring.h>

TCL_DEFINE_CLASS_MO (CTransaction) ;

/**** C 0 N S T RU C T I 0 N I DE S T RU C T I 0 N F UN CT I 0 N S ****I

CTransaction::CTransaction(long theAccountID)
{

accountID = theAccountID;
TCL_END_CONSTRUCTOR

CTransaction::CTransaction (void)
{

accountID = -1;
TCL_END_CONSTRUCTOR

/**** A C C E S S F U N C T I 0 N S F 0 R G E T T I N G VA L U E S ****I

short CTransaction::GetAccountID (void)
{

return accountID;

AcctStatus CTransaction::GetStatus (void)
{

return status;

cstring CTransaction::GetDate (void)
{

CString dateString;
char s[lO];

sprintf (s, "%02d/%02d/%02d", date.month, date.day,
date.year - 1900);

dateString = s;
return dateString;

138 Chapter 4 ~ Creating and Displaying Views

CString CTransaction::GetNurnber (void)
{

return number;

CString CTransaction::GetDescription (void)
{

return description;

CString CTransaction: :GetCategory (void)
{

return category;

CString CTransaction::Getinfo (void)
{

return info;

long CTransaction::GetPayrnent (void)
{

return payment;

long CTransaction: :GetDeposit (void)
{

return deposit;

long CTransaction::GetBalance (void)
{

return balance;

/**** AC C E S S F UN C T I 0 N S F 0 R S E T T I NG VA L U E S ****I

void CTransaction::SetStatus (AcctStatus n)
{

status = n;

void CTransaction: :SetDate (DateTimeRec dt)
{

date = dt;

void CTransaction::SetNumber (CString& s)
{

number = s;

void CTransaction::SetDescription (CString& s)
{

description = s;

void CTransaction: :SetCategory (CString& s)
{

category = s;

void CTransaction::Setinfo (CStri.ng& s)
{

info = s;

Creating a Business Account View 139

void CTransaction::SetPayment (long v)
{

payment = v;

void CTransaction::SetDeposit (long v)
{

deposit = v;

void CTransaction::SetBalance (long v)
{

balance = v;

The foregoing functions are each very simple; however, rather
than have full access to the transaction variables, programmers
will have to use the access functions. Developing new classes in
this way-especially classes that have no inheritance relationship
to the remainder of the code-is a good approach, and one that
isolates the data structures from the remainder of the user's code
and allows us the flexibility to change these, should we decide to
do so.

Examining Custom Code in the CAccount Class

When the user chooses to create a new account, the DoCmd
NewAcct function (described on page 120) creates a new CAc
count object and then initializes that object. Each new view in the
application has a director that is responsible for managing the
view's window and handling commands that pertain to various el
ements of the view.

The CAccount class is the CDirector-derived class for the Ac
count view. The CMain (CDocument-derived) class is the "super
visor" of the CAccount director, which means that functions in
the CAccount class can access public member functions and
member variables in the document. Also, because code has been
added to the CMain class to keep a record of the CAccount ob
jects, the document can communicate with any of the public
member functions and variables in the CAccount class. This pro
vides two-way communication between the objects.

CAccount Class Header File

The CAccount.h header file contains the declarations for the
CAccount class. The contents of that file are as follows:

140 Chapter 4 ._Creating and Displaying Views

/***
CAccount.h

CAccount Window Director Class

Copyright © 1994 Richard O. Parker. All rights reserved.

Generated by Visual Architect™ 10:58 AM Mon, Oct 31, 1994

This file is only generated once. You can modify it by filling
in the placeholder functions and adding any new functions you
wish.

If you change the name of the document class, a fresh version
of this file will be generated. If you have made any changes
to the file with the old name, you will have to copy those
changes to the new file by hand.

***/

#pragma once
#include •x_CAccount.h"
#include "x_CNewAccount.h"

class CDirectorOwner;

class CAccount : public x_CAccount
{
public:

TCL_DECLARE_CLASS

II Insert your own public data members here

} ;

CNewAccountData itsSettings;
long itsAcctID;
CArray *itsTransactions;

II account settings
II account command ID
II list of transactions

void ICAccount(CDirectorOwner *aSupervisor);

void ProviderChanged(
CCollaborator *aProvider,
long reason,
void* info) ;

void DoCommand(long theCommand);

II newly added override
II who's the provider?
II for what reason?
11 other info.
II override

void CloseWind (CWindow *theWindow);ll newly added override
void CreateNewEntries (void); II create account entries

As is evident in the foregoing class declaration, I have added three
new "public" variables. The its Set tings variable holds the set
tings for each CAccount object that is created (account name,
type of account, and miscellaneous information). The i tsAc
ctID variable serves double duty; it is both a unique identifier for
the account and the command ID used to address the account in
the Account menu. The third public variable is a CArray object
that is intended to hold all of the transactions for the CAccount
object.

Creating a Business Account View 141

In addition to adding new public member variables, I have also
added public member functions to override functions in the base
classes from which the CAccount class inherits its behavior. The
following sections display and discuss all of the newly added
source code.

Preprocessor and Compiler Directives

I have added some preprocessor and compiler directives to what
the VA has generated automatically into the CAccount.cp source
file. The newly added code is as follows:

#include "CTransaction.h"
#include "CAcctList.h"

extern CApplication
extern CDecorator
extern CDesktop

*gApplication;
*gDecorator;
*gDesktop;

11 newly added
11 newly added

II The application
II The Window Decorator
II The visible Desktop

In addition to including the header files for the newly added
CTransaction class, I have also specified that the application, dec
orator, and bartender objects are defined externally as global ob
ject pointers to the specified classes.

ICAccount Member Function Code

The ICAccount function is called by the DoCmdNewAcct func
tion in the CMain class when a new CAccount object has been
created. The function of the ICAccount code is to perform any
additional initialization functions, prior to performing any other
operations on the CAccount object. The code is as follows:

void CAccount: :ICAccount{CDirectorOWner *aSupervisor)
{

II Initialize data members here that must be set up
II before BeginData is called

x_CAccount::Ix_CAccount{aSupervisor);

II create the array to hold the CTransaction objects and
II associate it with the CAcctList object.

itsTransactions = TCL_NEW(CArray, (sizeof (CTransaction *)));
fAccount_Entries->SetArray {itsTransactions, TRUE);

The VA-generated code for the ICAccount function includes only
the call to the Ix_ CAccount function in the x_ CAccount base
class. That function performs the task of creating the CAccount

142 Chapter 4 >Creating and Displaying Views

window (by calling its MakeNewWindow function) and then re
turns. I have added the code to create the i tsTransactions
CArray object and then call the SetArray function to specify the
array for the fAccount_Entries object (CAcctList), which is
the list pane for the CAccount window. By making the connec
tion between the list and its array, any changes made to the array
will cause the list to be redrawn (this is by virtue of the collabora
tion mechanism in the TCL, which converts the BroadcastChange
function call by the CArray object to a ProviderChanged call to
the CArrayPane-based object).

The VA-generated code for the CAccount class includes functions
that override both the ProviderChanged and DoCommand func
tions of the base class. I have not modified any of the code in
these functions to implement the Account view.

CloseWind Override Function Code

In order to keep the TCL from disposing of CAccount objects
when the user clicks in the window's close box, I have chosen to
hide the window in that case. The window is shown when the cor
responding account is selected in the Main window or by choos
ing the account, by name, from the Account menu.

When the user clicks a window's close box, the Close Wind func
tion for the window's director is called. I have overridden this
function to provide the desired behavior. The code is as follows:

void CAccount::CloseWind (CWindow *theWindow)
{

II overrides the CDirector::CloseWind function to hide the
II window rather than closing it and disposing of the
II window's director.

TCL_ASSERT (theWindow) ;
theWindow->Hide ();

CreateNewEntries Function Code

When a new CAccount object is created by the DoCmdNewAcct
function in the CMain class, that function also calls the Create
NewEntries function in the CAccount class to populate the list
for the Account view with enough "empty" entries to cause the
vertical scroll bar to activate and the blank entries to be drawn.
The code for the CreateNewEntries function is as follows:

Creating a Business Account View 143

void CAccount::CreateNewEntries ()
{

CTransaction *anEntry;
DateTimeRec date;
CString s ("\p");

for (int i=O; i < 10; i++)
{

anEntry = TCL_NEW (CTransaction, (itsAcctID));
anEntry->SetStatus (EMPTY);
GetTime (&date);
anEntry->SetDate (date);
anEntry->SetNumber (s);
anEntry->SetDescription (s);
anEntry->Setinfo (s);
anEntry->SetPayment (0);
anEntry->SetDeposit (0);
anEntry->SetBalance (O);
itsTransactions->Add (&anEntry);

The foregoing code creates ten-an arbitrary number-entries in
the i tsTransactions array. Each entry is initialized with de
fault values that indicate it is empty and has no useful informa
tion in any of its fields. As indicated previously, the intention of
this code is to populate the array with enough transactions to
cause the scroll pane's vertical scroll bar to activate and the separa
tors and other graphic components of the entries to be drawn.

It is important to point out that adding CTransaction objects to
the i tsTransactions array causes the CAcctList object (which
implements the transaction list display) to receive a succession of
calls to draw the contents of each of the newly entered entries.
This occurs because of the collaboration mechanism that ties the
i tsTransactions array to the fAccount_Entries CAcct
List object. The CArrayPane (base class) contains the primary
code in its ProviderChanged function to cause the drawing opera
tion to occur when an entry is added to its corresponding array
object. It then calls the AddRow function in the CTable class to
cause the entry to be drawn. At the most fundamental level, the
DrawCell function is responsible for drawing a cell in any object
that inherits functionality from the CTable class (that is, CArray
Pane and its derived class, CAcctList).

The foregoing is the last function to be customized in the CAc
count class; however, doing so does not implement the ability to
input text into the entries, add or remove new entries, or perform
any other related functions. I will leave this for you to implement,

144 Chapter 4 >Creating and Displaying Views

but will provide some advice in how to accomplish these tasks at
the end of the section. The next area to discuss is the code that
implements drawing the pseudo fields of the CAcctList entries.

Examining Custom Code in the CAcctlist Class

We created the CAcctList class with the VA (described beginning
on page 110, in step 10) and generated code. The VA generated
both an x_CAcctList base class and a CAcctList derived class.
Both source files contain only GetFrom and PutTo functions, for
compatibility with the Object 1/0 features of the TCL.

CAcctlist Header File Contents

The header file for the CAcctList class is named CAcctList.cp and
contains the class declaration, with the addition of our single,
newly added, override function. The contents of the header file is
as follows:

#pragma once
#include "x_tAcctList.h"

class CAcctList : public x_CAcctList
{

public:

} ;

TCL_DECLARE_CLASS

II Object IIO functions

virtual void
virtual void

PutTo(CStream &aStream);
GetFrom(CStream &aStream);

II override of function in CTable class
virtual void DrawCell (Cell theCell, Rect *cellRect);

The foregoing class declaration shows the prototypes for the
PutTo and GetFrom member functions generated by the VA, as
well as the prototype for the DrawCell function that we have
added to override that function in the CTable class.

Global List Border Array

To support drawing the separators for individual cells in the CAcct
List subview, I have created an array of listBorders elements
(each of which is a variable of type Rect), whose contents are as
follows:

Creating a Business Account View 145

Rect listBorders[] =
{

} ;

[0, 31, 36, 31), (0, 83, 36, 83), {0, 219, 36, 219),
(0, 291, 36, 291), {0, 359, 36, 359), [17' 31, 17' 439),
(17, 147, 36, 147}

As is evident in the foregoing definitions, there are seven distinct
elements whose top, left, right, and bottom coordinates are speci
fied. These definitions are used by the DrawCell function to ren
der the separators for each entry. The coordinates are relative to
the top-left corner of the cell's rectangle.

DrawCell Override Function Source Code

The DrawCell function is called by various functions in the
CTable class to render the contents of a single cell. The function is
called as many times as necessary to render the appearance of each
visible cell in the subview. Because the table contains but a single
column, in which each cell occupies a single row, custom render
ing code is needed to give the appearance of two rows and multi
ple columns in each cell, according to the prototype heading for
the table shown in Figure 4-8. As you can see from the figure, a
simple table, with multiple rows and columns wouldn't be appro
priate for this application.

When the DrawCell function is called, the first task is to draw the
outline and separators that make up an entry in the table. The
code to accomplish this task is as follows:

void CAcctList: :DrawCell(Cell theCell, Rect *cellRect)
{

PenState savePen;
short cTop, cLeft, cBottom, cRight;
Rect r, rB;

II save the current pen state structure
GetPenState(&savePen);

II draw the border with a black pen
PenPat (&qd.black);
Pensize (1,1);
FrameRect (cellRect);

II next draw the cell dividers using a blue pen

ForeColor (blueColor);
r = *cellRect;
for (int i = O; i < 7; i++)
{

rB.top = listBorders[i].top;

146 Chapter 4 >Creating and Displaying Views

}

rB.left = listBorders[i] .left;
rB.bottom = listBorders[i] .bottom;
rB.right = listBorders[i] .right;
cTop = r.top + rB.top;
cLeft = r.left + rB.left;
cBottom = r.top + rB.bottom;
cRight = r.left + rB.right;
MoveTo (cLeft, cTop) ;
LineTo (cRight, cBottom);

ForeColor (blackColor);

II now draw the contents of the individual fields

CTransaction *anEntry;
itsArray->GetArrayitem (&anEntry, theCell. v + 1);

II reset the pen state
SetPenState (&savePen);

The foregoing code uses a black pen to outline the rectangular
border of the cell (whose height and width were specified to the
VA when the table was designed). Then a blue pen is used to draw
the separator lines between the pseudo fields in the entry.

After the entry's outline and its field separators have been drawn,
the foregoing code accesses the CTransaction object that corre
sponds to the cell being drawn. The i tsArray variable refers to
the member variable associated with the CArray object called
i tsTransactions in the CAccount class. While executing
code inside the CAcctList object, that same array can be refer
enced by using the i tsArray name. I have also included a func
tion call to restore the pen that was used upon entry to the
DrawCell function. This should be the last statement in the func
tion, to ensure that the environment is restored.

I have purposely stopped writing code at this stage, before at
tempting to draw the contents of the CTransaction object inside
the corresponding fields. I will leave that for you to complete. All
of the data needed to draw the fields are accessible from the
CTransaction object using its access functions (shown in the
source code listing for the class beginning on page 137).

Recommended Tasks for Completing the Business Account View

As indicated previously, I have not implemented the Business Ac
count View completely. I have shown how to create the compo
nents of the view and how to render the individual cells, but have
stopped short of showing the complete functionality of what

Figure4-25
Final appearance of
the Business Account
view and its windows

Figure 4-26
Structure of Business
Account View and its
component objects

Creating a Business Account View 147

~Main!~ ABC sau1nas l
ABC Savings ~ ""'' L NUMBER_l DESCRIFTION :.r PA'IMENT 1 DEPOSIT I BRLANCE l

.J CIITTGDR9 .J MEMO]] ::r]_ Hometown Bonk

I

CDirector

x_CAccount

CAccount

CCollection

CArray

itsArray

Hometown Bank

""" NUMBER D£SCAI PrlON PAYMENT DEPOSIT BRLANCE

Clll"EOORY l MEMO

l

l
I

[Record J [He•tt>re]
current aa1an1:e:,,,..
Ending ... "' i-1

CView

CWindow

its Window

CPane

LEGEND

- Inherited Behavior
=+ Object Construction
• • • • Chain of Command
- Object Relationship

CControl

CPanorama CButton

CTable CAbstractText

CArrayPane CEditText

CAcctList CStalicText

could be a good home accounting application. Executing the fore
going code produces what is shown in Figure 4-25.

Figure 4-25 shows both the Main view (with two accounts listed)
and also the CAccount views for those two accounts. As you can
see, no data has been entered into the individual entries, but the
figure gives you an idea of the final appearance of the user inter
face (of course, when a file of data is read, the name of the Main
view will reflect the file's name, rather than "Main 1 ").

The structure of the application (beginning in the CAccount
class, which is created in the OoCmdNewAcct function of the

148 Chapter 4 ~Creating and Displaying Views

CMain class), is shown in Figure 4-26. The figure illustrates most
of the major objects making up the Account view, their interrela
tionships, and their inheritances.

In order to complete the functionality of the Business Account
View application, here are some suggestions that may be of help:

+ Because data cannot be keyed directly into a CTable-based
object, you should create a CEditText object in a newly added
IAcctList function that can be called by the ICAccount func
tion when the account is initialized. The window will have
been created at this time. You can create an array of pane loca
tions and sizes, much like the array of listBorders elements
(shown on page 145). The individual elements might be speci
fied something like the following:

Rect listPanes[] =
{

) ;

{1, 1, 16, 31}, {18, 1, 35, 31}, {18, 33, 35, 83},
{l, 85, 16, 219}, (1, 221, 16, 291}, {l, 293, 16, 359},
(18, 85, 35, 147)' {18, 149, 35, 220)' (1, 361, 16, 455)

As with the listBorders Rect definitions, the listPanes
specify the top, left, right, and bottom locations of the indi
vidual fields that occupy each entry in the CAcctList object.
They are also relative to the top-left corner of a cell rectangle
in the subview. You might have to play around with the set
tings of the foregoing to get them exactly right. Each is inset
one pixel on each side from the corresponding border loca
tions of the field.

+ The CEditText object should be sized and positioned on top of
the date field of the first empty cell in the array and the list
should be scrolled to make the CEditText object visible. The
CEditText object should display a blinking cursor, indicating
that the user can begin entering text at that location of the
entry.

+ The application should make provision to recognize the TAB

and arrow keys and should position and resize the CEdit Text
object such that it occupies the next (or previous) position in

Creating a Business Account View 149

the entry when these keys are pressed. Before you move the
object, its text should be verified (if desired) and be stored into
the corresponding CTransaction entry, using the access func
tions provided for this purpose. Then the CEditText object can
be cleared of its contents, be resized, and repositioned.

+ The DrawCell function of the CAcctList class should be
improved to draw the contents of the individual fields of a
CTransaction entry. It should also keep the current balance of
the account up to date.

+ If the user decides to change the date of an entry, the entry
should be moved to a new position in the i tsTransactions
array so that the entries are always kept in chronological order.

+ The original contents of an entry being edited should be kept
in a temporary CTransaction object so that it can be restored
should the user desire to dick the Restore button in the view. If
the user dicks the Record button, the saved object can be dis
posed, and then the CEditText object can then be positioned at
the date field of the next entry in the subview (scrolling the
view to display the next entry if it is necessary to do so).

+ The CAccount class can be enhanced in many ways, allowing
the user to delete an entry in the list, create printed reports,
and perform many other chores that are associated with a fully
capable home or business accounting application.

+ Each time an entry is made or changed, you should call the
document's SetChanged function with a TRUE argument. (The
document (CMain) is accessible to the CAccount class by refer
ring to the i tsSupervisor variable.)

+ Providing Object I/O for the application is the topic of a later
chapter and you will be able to get some ideas of how to imple
ment it from that material.

The main focus in this section was to show how to create and
implement the special view, and although the foregoing sugges
tions are just an outline of what you need to do to complete the
application, the work that we have done should give you a good
start.

150 Chapter 4 > Creating and Displaying Views

Creating a Splash Screen View

Let's turn our attention to a different sort of view-one that is a
standard component of shipping applications, but also one that
developers are constantly asking how to create. The splash screen
that appears briefly when a program is launched is a simple view
that is also very simple to implement with the facilities of the VA
and the TCL.

Creating the Splash View

Figure 4-27
Choosing to create a
Splash Screen view
called "Splash"

We've created a new VA project, called "Splash," to illustrate how
easy it is to add a splash screen to any TCL application. The steps
to accomplish this are as follows:

1. After the project and its files have been created, launch the
VA by double-clicking on the Visual Architect.rsrc entry in
the project's list of files.

2. When it starts up, you will see that the VA has created a Main
view that you can use as the basis for the application's primary
view. In order to create a splash screen view, pull down the
View menu and choose the New View command. This will
cause the VA to display a dialog, allowing you to enter the
name of the view and its type. Enter "Splash" as the name of
the view, choose Splash Screen from the pop-up menu, and
then click OK, as shown in Figure 4-27.

Please name the new uiew

Name: I Splash

Uiew Kind: I Splash Screen TI

(cancel) -

3. The VA will create a new "Splash'' view and will display a
blank window in which you can place the content of the
splash screen. For our purposes, using the color wheel PICT

image built into the project resource file is fine. Choose the

Figure 4-28
Completed splash
screen view inside
the VA

Creating a Splash Screen View 151

Picture tool from the Tools menu and drag a frame in which
to display the picture. The standard PICT image will be dis
played automatically in the frame.

If you place a number of PICT images into the Visual Archi
tect.rsrc resource file, you can choose the one you want to use
for the splash screen by double-clicking on the PICT image (or
select it and choose Pane Info from the Pane menu), twisting
the control at the side of the CPicture class to display the set
tings (showing the default PICT image), and then clicking on
the image. This will display a dialog that contains thumbnail
views of all of the PICT images in the Visual Architect.rsrc file.
Click to choose the one you want to use and click OK to dis
miss the dialog. Then in the settings for the CPicture object,
you can choose for the picture to be scaled to the size you've
specified when creating the picture frame. If you do not
choose the "Scaled" option, then the image will be clipped to
the boundaries of the frame you've drawn.

4. At this point, we added a single static text field, with the word
"Splash!," to add something to make the view unique. You
have complete freedom to put whatever content you wish in
the splash screen view. Our example screen appears in the VA
as shown in Figure 4-28.

152 Chapter 4 > Creating and Displaying Views

5. Choose Generate All from the Project menu in the VA to
generate all of the files that are necessary to create the applica
tion and its Main and Splash Screen views.

You can compile and execute the application at this point. When
you do, you'll see that the splash screen that you designed will
magically appear when the application commences execution. I
think you'll agree that nothing could be easier than the foregoing
steps for creating splash screen views.

Examining the Splash View Code

You are probably wondering what code is generated to display the
splash screen we designed in the foregoing section, and I'm going
to show it to you in what follows; however, you should first refer
back to Chapter 2, where the start-up actions of the TCL are de
scribed (beginning on page 38, in step 2). If you recall, the TCL
calls a function called ShowSplashScreen and allows you to over
ride that function to display a custom splash screen. The built-in
functionality of the TCL is the basis for the code generated by
the VA.

When the VA generates code for the project, in addition to the
skeleton code for the Main view (described in detail in previous
chapters), the VA generates an x_CSplash and CSplash classes
(with corresponding source and header files). These classes are de
rived from the TCL's CDialogDirector class. The splash screen is
really just a dialog window that happens to be created and shown
briefly as the application starts up.

MakeNewWindow Function Code

The portion of the VA-generated code that creates the Splash view
is contained within the x_CSplash.cp base class file, in the Make
NewWindow function. That code is as follows:

void :x;_CSplash::MakeNewWindow(void)
{

i tsWindow = TCLGetNamedWindow (" \pSplash" , this) ;

II Initialize pointers to the subpanes in the window
fSplash,_Pictl = (CPicture*) FindPane(kSplash,_PictlID);

ASSERT(member(fSplash_Pictl, CPicture));
fSplash_Stat2 = (CStaticText*) FindPane(kSplash_Stat2ID);

ASSERT(member(fSplash_Stat2, CStaticText));

Creating a Splash Screen View 153

The foregoing code illustrates that creating the Splash view is no
different from creating any other window. The MakeNewWin
dow function accesses the 'cvue' resource named "Splash" to cre
ate the individual components of the view. In this case, the
window contains a CPicture resource (kSplash_PictlID) and
a CStaticText resource (kSplash_Stat2ID). Each of these re
sources is reified and its pointer is stored into a corresponding
member variable of the CSplash object. That process completes
the creation of the view.

ShowSplashScreen Function Code

The VA-generated code for the x_CApp class contains the over
ride of the TcL's CApplication class ShowSplashScreen function
(which is empty in that class). The newly generated code for in
voking the Splash dialog is as follows:

void :icCApp: : ShowSplashScreen ()
{

long dummy;
CSplash *splash;

I* Run splash screen for a short while *I
splash= TCL_NEW(CSplash, ());
splash->ICSplash(this);
splash->BeginDialog();
splash->itsWindow->Update();

II If you want a longer delay, change the _App.cp
II template below. If you want entirely different
II splash screen handling, override ShowSplashScreen
II in your application class and do your own thing.

Delay(60, &dummy); I* Delay long enough for user to see *I
TCLForgetObject(splash);I* Get rid of splash screen *I

The foregoing code creates the CSplash object, initializes the ob
ject, calls BeginDialog to select and display the window's con
tents, and then calls Update to update the screen. Following those
steps, the code calls the Delay toolbox function with a duration of
60 "ticks" (60ths of a second), causing the splash screen to be dis
played for approximately one second. After the delay has elapsed,
the TCLForgetObject function is called to dispose of the object
and its window.

That's all there is to creating a splash screen for your applications.
You will probably spend a lot more time designing the PICT image
than it took for me to write this section of the chapter.

154 Chapter 4 ~Creating and Displaying Views

Creating a Floating Palette View

Creating the View

Figure4-29
Creating the Widgets
floating window

Many applications use floating "palette" windows to contain tool
boxes or other items that are referenced frequently. The VA incor
porates the design and code generation tools and the TCL contains
all the functions you will need to create and use this type of view
in your applications.

I'm going to build a Tool palette in a floating window to show you
how it's done. Tear-off menus will be described shortly. These are
also floating windows after they have been torn off.

The palette is built in a new VA project by choosing New View
from the View menu and then filling in the dialog, as shown in
Figure 4-29.

Please name the new uiew

(cancel) -

The "View Kind" is set to "Floating Window" from the pop-up
menu, and the view is named "Widgets." After you click OK, the
VA will create a blank window, whose characteristics are set by
choosing View Info from the View menu. The settings for our
Widgets window are shown in Figure 4-30.

I have used the default settings, except that I have set the width of
the window to 95 pixels and its height to 255 pixels. This is to al
low enough space for a palette that has 8 rows of cells, each of
which has 3 columns, for a total of 24 individually selectable
"widgets" from the palette.

Figure 4-30
View Info for the
Widgets window

Figure 4-31
Widgets floating
window as displayed
by the VA

Creating a Floating Palette View 155

Name: I Widgets

Title: I Widgets

Float Info

ID : 129

Window Class: .-I -c"'"w""'i-nd..,...o-w-.,...--.1

(O]D~
D Vert. Scroll D Horiz Scroll ~ actClick

procl D: 13200 I WDEF ID: 200

Position I Centered .,.. I '·'' ''
,.

T:.~;~
'-••••····················· ···'

Width: 195 Height: 12 55

MinWidth: 140 MinHeight : 140
[Cancel J

MaxWidth: 1512 Max Height: 134~ ((OK J)

D Widgets

I
{}

J¢[]}¢'2:l

The final appearance of our (unpopulated) floating window ap
pears as shown in Figure 4-31. The window is tall and thin and
includes only a CPanorama object.

After the Widgets window has been created, you can tell the VA
to generate code to create source and header files for the CWid
gets and x_CWidgets classes.

156 Chapter 4 >Creating and Displaying Views

Figure 4-32
Widgets PICT
resource ID 3000

~0§ PI CT "Widgets" ID = 3000 frc ~

~h~

-:- $ *
.&. T +
+KO . ~ ~
•• <lJ

Creating the PICT Image for the Palette

In order to display a palette of tools, one good approach is to cre
ate a single PICT resource that contains all of the tools, located in
proper relationship to one another, and in the proper size. I used a
drawing program (Canvas™, by Deneba Software) to create the
image, then copied it to the clipboard and then added it to the
Project Resources.rsrc file for our project, by creating a 1PICT1 re
source in ResEdit™ (Apple Computer's resource editor) and then
pasting the contents of the clipboard.

I gave the resource an ID of 3000 (large enough not to conflict
with any of the TCL or VA resources). The PICT resource image,
as displayed in ResEdit, is shown in Figure 4-32. (Note that the
resource is only 96 pixels wide by 256 pixels high-it is centered
in the PICT image editor by ResEdit.)

The image itself is formed by selecting individual characters from
the Zapf Dingbats™ font. Of course, you will want to draw a pic
ture of "real" tools, patterns, colors, or whatever you wish for your
palette to display. Be sure that each tool's image has uniform hori
zontal and vertical spacing.

Creating a Floating Palette View 157

Creating the PICT Grid Resource

In order to display the PICT image shown in Figure 4-32 as a pal
ette of individually selectable images, you will also need to create a
1PcGd1 resource to specify to the TCL's CPICTGrid class, which
PICT image is to be used for the palette and how the image is to
be partitioned into rows and columns. I created a separate file
called widgets.r to add to our project file. The contents of that file
are as follows:

/*

*/

PcGd resource type

creates a 'PcGd' resource for use with
the TCL's CPICTGrid class.

type 'PcGd'
{

} ;

integer;
integer;
integer;
integer;
integer

sizFIXEDLEFT = 0,
sizFIXEDRIGHT = l,
sizFIXEDSTICKY = 4,
sizELASTIC = 5;

integer
sizFIXEDTOP 2,
sizFIXEDBOTTOM = 3,
sizFIXEDSTICKY = 4,
sizELASTIC = 5;

integer;
integer;
integer;
integer;

/* rows */
/* columns */
/* boxWidth */
/* boxHeight */
/* hSizing */

/* vSizing */

/* hLoc */
/* vLoc */
I* commandBase *I
I* PICTid */

resource 'PcGd' (3000, "Widget Grid", appheap, preload)
{

} ;

8,
3,
32,
32,
sizFIXEDSTICKY,
sizFIXEDSTICKY,
0,
0,
3000,
3000,

/* rows */
/* columns */
!* boxWidth */
!* boxHeight */
/* hSizing */
/* vSizing */
/* hLoc */
/* vLoc */
/* commandBase */
/* PICTid */

The first section of the widgets.r file contains the definition of the
format and contents of a 1PcGd1 resource. The second section of
the file defines the "Widget Grid" resource, whose ID is 3000.

158 Chapter 4 ~Creating and Displaying Views

Figure 4-33
Final appearance of
Tool palette when the
window is opened ~ x -+- 0

-:- * *
.A. T •
+i K 0

" ~ ~ • t_, ®

I have specified that the resource is to be stored into the applica
tion heap and is to be preloaded when the resource file is opened.
The resource specifies values for each of the required fields. Notice
that I have referenced our PICT resource in the last field, by spec
ifying its resource ID (3000). The next to last field in the PcGd

resource contains a value called the comrnandBase. This value is
used as the basis for a command number for each of the palette's
tools, when it is selected. Figure 4-33 shows the Tool palette as it
appears when the floating window is opened in the application.
The first tool is selected by default.

Examining the Floating Palette View Code

The VA-generated code for the floating palette is held in two
classes. The x_ CWidgets class contains the code to create the ap
pearance of the floating window in its MakeNewWindow func
tion. The CWidgets class contains only a constructor function
and a ProviderChanged override function. A small amount of ad
ditional code is generated into the CApp class. We'll examine that
code first.

Creating a Floating Palette ~ew 159

SetUpMenus Function Code

As you may recall from the discussions about the application ob
ject in Chapter 2, beginning on page 35, you will recall that when
the application is in the process of creating and initializing its
"helper" objects (CBartender, CSwitchboard, and so on), it also
calls the SetUpMenus function. The VA-generated code for our
application overrides this function in the x_ CApp class to create
the floating window at the same time that the application's menus
are created. The code for the function is as follows:

void x_CApp: : SetUpMenus ()
{

/* Create floating windows*/

gCWidgets = TCL_NE.W(CWidgets, ());

CApplication::SetUpMenus();

The foregoing code creates the CWidgets object (causing its con
structor function to execute, which we will examine shortly) and
stores its pointer into a global variable called gCWidgets. By
making the pointer to the CWidgets object global, the VA has al
lowed the floating window to be accessed from anywhere in the
application. It is simply not known how you intend to use the
window, or whether it should be associated with the application
object, the document object, or some other object in the program.

CWidgets Constructor Function Code

The next series of events take place in the constructor function for
the CWidgets object. Its code is as follows:

cwidgets::CWidgets()
{

II create the new window and then also create the
II CPICTGrid object that implements the palette.

MakeNewWindow();
widgets = TCk._NEW(CPICIGrid, (k!NidgetPaletteID, itsWindow, this));

The constructor for the CWidgets object calls the MakeNewWin
dow function in its base class to create the floating window. I have
added a statement to create a new member variable, whose type is
CPICTGrid, specifying the resource ID for the 1 PcGd1 resource

160 Chapter 4 >-Creating and Displaying Views

we created, as well as specifying that the CWidgets' window
(i tsWindow) is the enclosure for the palette and the CWidgets
object (this) is the supervisor for the palette. Accordingly, I have
added new declarations to the CWidgets.h header file for both
the resource ID (kWidgetPaletteID) and the widgets mem
ber variable. That code is as follows:

llpragrna once
#include "x_CWidgets.h"
#define kWidgetPaletteID 3000 II rsrc ID for PcGd resource
#define kBaseWidgetCmd. 3000 11 base command for selection

class CDirectorOwner;
class CPICTGrid;

class CWidgets : public x_CWidgets
{
public:

} ;

TCL_DECLARE_CLASS

II Insert your own public data members here
CPICTGrid *widgets;

CWidgets();

virtual void ProviderChanged(CCollaborator *aProvider,
long reason, void* info);

virtual void DoCommand(long theCommand);

The only additions to the foregoing code are shown in a bold
typeface. Note that I have defined symbolic constants for both the
1PcGd1 resource and the command base value.

MakeNewWindow Function Cc•de

The constructor for the CWidgets object calls the MakeNewWin
dow function to create the floating window. The code for that
function is as follows:

void x_CWidgets::MakeNewWindow(void)
{

itsWindow = TCLGetNamedWindow("\pWidgets", this);
Hideinitially();

II Initialize pointers to the subpanes in the window

After the window is created, the VA-generated code calls the
Hideinitially function to hide the window. In order to use the
window, we must first open and then show it.

Creating a Floating Palette View 161

CMain MakeNewWindow Override Function Code

In order to show the floating palette, I decided to override the
MakeNewWindow function for the CMain (document) class ob
ject. If you want the window to be associated with a particular
document, then you can do it as I did. The code for the override
function is as follows:

void CMain::MakeNewWindow(void)
{

Point where= {50, 350};

II
II call the base class function to create the Main view
II and then open the Widgets palette.
II
x_CMain::MakeNewWindow();
gCWidgets->OpenWind (where);

CMain Activate Override Function Code

To show the floating palette when the Main view is active, I added
an override for the Activate function (inherited from the CDirec
tor class) to our CMain class. The code is as follows:

void CMain::Activate()
{

x_CM~in: :Activate();
gCWidgets->ShowWindow();

In the foregoing code, I call the Activate function in the base class
and then use the global gCWidgets variable to call the Show
Window function for the palette.

CMain Deactivate Override Function Code

Just to complete the functionality of the floating palette, I also
added an override for the Deactivate function of the CDirector
class in our CMain source code. The code hides the floating win
dow when the Main view becomes inactive, as follows:

void CMain::Deactivate()
{

x_CMain::Deactivate();
gCWidgets->HideWindow();

162 Chapter 4 :>Creating and Displaying Views

As with the Activate function, the foregoing Deactivate function
calls the base class version of the function and then calls the win
dow director's HideWindow function by using the gCWidgets

global variable to reference the object.

CWidgets DoCommand Function Code

When the user clicks on any of the tools in the palette, the TCL

calls the DoCommand function of the current gopher with a 32-
bit (long integer) value representing the command associated with
the selected tool. Unique command numbers are formed by stor
ing the commandBase value in the high order 16 bits of the
word, with a tool-number in the low order 16 bits, and then the
entire word is negated.

You can determine whether the command pertains to your palette
by first determining whether the command number is negative,
negating the word, and then comparing the high order bits of the
command value with what you assigned as your commandBase

(in our case it is 3000). If the value matches, then you can deter
mine which tool was clicked by negating the command and exam
ining its low order 16-bit word.

I have added code to the VA-generated code for the CWidgets
class to show how selection commands can be recognized. The
code is as follows:

void CWidgets::DoCommand(long theCommand}
{

short base, tool;

if (theCommand < 0)
{

base = HiShort (-theCommand;,;
tool = LoShort(-theCommand);

if (base == kBaseWidgetQnd'1
{

II handle the selection of the tool

else
{

else
{

x_CWidgets: : DoCommand (theCommand} ;

x_CWidgets: : DoCommand (theCommand} ;

Creating a Tear-of!Menu View 163

The foregoing code is only interested in handling commands if
the command identifier (theCommand) is negative. If it is a posi
tive value, then the DoCommand function for the base class is
called. If the command identifier is negative, then we check to see
whether its upper 16-bit word (after negating the value) matches
the value for our kBaseWidgetCrnd constant. If so, then we
know that we can use the value in the tool variable to determine
which tool was selected.

Tools are specified in the low order 16-bit word of the command
identifier by commencing with the value 1 for the first row and
column, and then advancing the tool number by 1 as you proceed
left to right and top to bottom in the palette. The top-left tool
number is 1; the top-right tool number is 3; the bottom-left tool
number is 22; and the bottom-right tool number is 24.

Creating a Tear-off Menu View

A tear-off menu is very similar to a floating window, but offers the
additional functionality of a normal menu. When the menu is
torn off, it becomes a floating window, just like what was de
scribed in the previous section. If you create a tear-off menu view,
you have the option of using just the floating window or includ
ing the functionality of a tear-off menu.

Creating the Tear-off View

Before creating the tear-off view, you should prepare a PICT re
source that contains the view that you want to be shown. Store
the resource into the Visual Architect.rsrc file, where the VA can
access it.

The tear-off menu view is created in the VA in just the same way
as any other view. Choose New View from the View menu, and
then name and select the view type as shown in Figure 4-34.

After the dialog is dismissed, the VA will display a window con
taining a sample PICT image, as shown in Figure 4-35. Double
click on the PICT image, or select the image and choose the Pane
Info command from the Pane menu. This will cause a window to
be displayed, showing the various classes in the hierarchy of the
new view. Note that the VA has decided to create the new view as
a CPICTGrid object.

164 Chapter 4 >-Creating and Displaying Views

Figure4-34
Creating the Tools
tear-off menu view

Figure 4-35
Default window
contents for tear-off
menu view

Please name the new uiew

f g

C:? a~
~ \ •=·m

Tools

.......................................

o,o 83, 89

I
Twist the indicator next to the CPI CTGrid class, and then click
on the image shown in the pane. This will display a window that
allows you to choose the image you want to be associated with the
view. An example of this window is shown in Figure 4-36. I have
chosen to use a copy of the "Widgets" PICT image that was used
in the previous section for this example.

After you click OK in the PICT selection window, you will need
to specify a command for the menu to execute when the user
chooses one of the tools in the menu. Click on the Command
pop-up menu, and choose Other. Then choose New Command
from the Edit menu, and enter cmdSelectTool as the name of
the command. You also need to select the class in which the com
mand is to be handled and specify what the command should ac
complish. In our case, we specified that the CTools class should

Figure 4-36
Selector window for
tear-off view's PICT
image

Figure 4-37
Specifying the
command for a
selection from the
Tools menu

~ ~"!I [lM-

1:::,.mi. "---= ·-
- -- :c::;:~ -=- -t--

Creating a Tear-of!Menu View 165

111 ··'
3000

..
::- -=- ~r •
_.. ..±.-

(Cancel)

....... -d:l.- ~~- m

I ~II

cmdPageSetup
cmdPaste
cmdPlain
cmdPrint
cmdQuit
cmdReuert
cmdS
cmdSaueRs
cmdSelect

I • • 11

Commands

I • • 11

Number: 513

"'''' Rctions:'------------
mm In Class: I CTools Tl

Do: I Call Tl
lli(m•; r·····N"i)i\!;····:;i

[Cancel] ..
handle the command and that it should call a function to do so.
The result is shown in Figure 4-37.

After the command has been chosen, you will need to specify
some of the settings for the CGridSelector base class in the Tools
window. Twist the indicator next to the CGridSelector class name,
and change the settings so that they correspond to what is shown
in Figure 4-38. Notice that the "Grid On" option for the CGrid
Selector class has also been selected. After these settings have been
made, the view is complete. After you dismiss the Tools settings
window, the Tools window is displayed in the VA, as shown in
Figure 4-39.

What remains to be done is to specify a menu in the menu bar to
contain the tear-off view. This is an optional step and if you
choose not to create a menu, then the resulting generated code
will be much the same as what we generated for the floating win-

166 Chapter 4 >Creating and Displaying Views

Figure 4-38
The complete settings
for the Tools tear-off
menu view

Figure 4-39
Completed Tools
view inside the VA

Identifier: I Tools

Len: Io
:=====~

Width: '--19_5 __ ---'

CPICTGrid - ~ -~ &---=

Command: I cmd Null

CGridSelector

FO'WS: Is
columns: 13
boxWidth: 132
box Height: 132
~ gridOn

Tools ·

~
Top: @=~

Height:l2ss~

D Tools

~· h~i

~ x ---1
~-+- Q

-:- * *
i.A.T+
~ K 0

• • ~ • .. (f)
r;. ..

0,0 95,255

~I

I
iiiiii

Figure4-40
Tools menu added to

the menu bar • File
Edit

11111

Creating a Tear-off Menu View 167

Menu Bar

iit

-01

0 s (Apple Menu)

[Edit Menu Items J

MENU ID: 129

MDEF ID: 129

Add Menu:G (Cancel J

OK

dow view. If you do decide to create a menu and allow it to be
torn off, then the steps for doing so are quite simple. Choose
Menu Bar from the Edit menu, and then click the arrow next to
the "Add Menu" label in the window. Choose the Tools palette,
which probably has a name something like "Tearoff 129,'' or
something similar. After you have chosen that menu, you can re
name it. I have chosen to call our version "Tools," as shown in
Figure 4-40.

Finally, after the menu has been added, you can generate code and
test the functionality of the skeleton application, as generated by
the VA. As you can see in Figure 4-41, the menu is fully imple
mented. Although I can't show it being torn off, you'll have to
take my word that it works just fine.

Examining the Tear-off View's Code

The VA-generated code for the Tools view is very much like what
was generated for the floating window. In fact, after a menu is
torn off, it becomes a floating window. So what is different in this
case is the functionality of the menu and the ability for the user to
tear it off. All of this is handled automatically by the TCL when
you add the tear-off view to the menu bar.

Once again, it is useful to point out that if you prefer to create
your Tool palettes as tear-off menus and then simply avoid adding
them to the menu bar, they will function in the same manner as
the floating window view shown earlier.

168 Chapter 4 >Creating and Displaying Views

Figure 4-41
Tools menu inside the
running application
with one of the tools
selected

SetUpMenus Function Code

As with the "floating window" view, the VA generates code in the
SetUpMenus function of the x_CApp class to create the tear-off
menu's floating window view. The code is as follows:

void x_CApp: :SetUpMenus()
{

/* Create floating windows*/
gCTools = TCL_NEW(CTools, ());

CApplication::SetUpMenus();

In the foregoing code, the CTools object is created first, its pointer
is stored in a global variable called gCTools, and then the SetUp
Menus function in the CApplication base class is called.

CTools Constructor Function Code

The constructor for the CTools function takes on the task of cre
ating the floating window view, which is hidden initially. The
code for that function is as follows:

A View Summary

CTools: : CTools ()
{

A View Summary 169

II Call the IViewPICTGridDirector member function
II to read in the window and initialize it.
II Here instead of in a lower-level class so
II can be modified.

x_CTools::IViewPICTGridDirector("\pTools", 129);

The foregoing code calls one of the V.N.s library functions to create
the floating window. This is different from the approach you saw
in the generated code for the floating-window example (CWid
gets), where the MakeNewWindow code was called. The forego
ing code takes advantage of the TCL's Object 1/0 facilities to load
the values of the various parameters specified for the CGridSelec
tor class in the Pane Info window (see Figure 4-38) for the Tools
pane; for the CWidgets code, I had to create a separate 1PcGd1 re
source.

No other code is needed to make the new Tools menu operate as a
menu or be torn off to create a floating palette. The TCL contains
all of the requisite functionality to handle these tasks.

The examples in this chapter have shown that it is possible to cre
ate almost any type of view by using the VA to create the basic el
ements of the view and then generate skeleton code. The
generated code is often quite easy to customize to provide the
complete functionality required by a given application.

The "Business View" was the most complex, mainly because it re
quired us to create a custom draw function and make provisions
for handling multiple rows and unaligned columns in a single col
umn view. The remaining examples were quite straightforward
and were implemented almost solely in the VA, with a minimum
of additional custom code.

We will be looking at other examples of views in the chapters that
follow. The very next chapter deals with dialog views-both
modal and modeless.

Chapter 5

Creating and Managing Dialogs

Dialogs, both modal and modeless, are views in the strict sense of
the word. We treat them differently mainly because in the past
the Macintosh Dialog Manager handled them. This is no longer
the case because the TCL treats dialogs just like other windows,
except for which menus it allows to be displayed and how events
are processed. A modeless dialog is not very different from a nor
mal window view. The VA handles it differently, mainly because
dialogs are intended to solicit input from the user, while win
dows normally display output to the user. A modal dialog is espe
cially unique in the respect that it requires the user to input a
response and dismiss the dialog before any other work can be
performed.

There are many similarities to modal and modeless dialogs, how
ever, and I will attempt to make these apparent as we look at ex
amples of each.

Creating a Text Style Modal Dialog

Let's begin our examination of dialogs by describing a typical ap
plication. Our application contains a simple Edit Text window,
whose text we wish to format in different fonts, sizes, styles, and
justifications. One approach to this problem is to create a series of
menus, each of which specifies a single characteristic and requires
the user to choose font, size, style, and justification parameters
one at a time. Another approach-and the one we'll use for this
example-is to allow the user to open a single dialog, make all of
the changes at once, and then dismiss the dialog.

The example that illustrates the text style dialog is called
"Notebook," because it portrays a notebook in which one
might enter various types of text. The notebook does not im
plement "styled text," but, instead, assigns the selected font,

171

172 Chapter 5 :>- Creating and Managing Dialogs

size, style, and justification to the entire text. In this respect,
the notebook cannot be used as a substitute for a full-fledged
word processor program.

Creating the Main and Notebook Views

Figure 5-1
New Main view with
Edit Text panorama

Create a new VA project in the Project Manager, and then double
click the Visual Architect.rsrc file to launch the VA. We don't
want to keep the contents of the Main view, so double-click the
Main view name in the V.Ns list of views, choose Select All from
the Edit menu, and press the Delete key to delete the contents of
the view. In place of the picture and static text, choose the Pan
orama tool from the Tools menu, position the crosshairs of the
mouse pointer at the top-left corner of the window, and draw a
panorama that has the appearance shown in Figure 5-1. You'll
have to adjust the gray rectangle (the window port's dimension) so
that there is room at the bottom of the window for its size box.

Main

When you create the new panorama in the Main view, the VA cre
ates it as a CEditText object. This is what we want in this case.

Now that the Main view has been created to hold editable text, we
can create a dialog-that is our main purpose for this section-to
give us the ability to change the text's font, size, style, and justifi
cation settings. To create the dialog, choose New View from the
V.Ns View menu, enter "Notebook" as its name, make sure that

Figure 5-2
View Info for
Notebook view

Figure 5-3
Appearance of
completed Notebook
dialog

Name:

Title : I Notebook

Window Class: I CDialog ""I

Position I Centered ""I ;.,,,.l

Width : 1434
:======:

Min Widt h: 140
:======:

Max Width: ._I s_1 2 ___ __,

0
Font Size

~

11

Creating a Text Style Modal Dialog 173

Dialog Info

~ ~,~,~~~"' ~ OK D
O ; ,., ,,, [Cancel J

ID: 129

Height : I 2 1 0
:======:

Min Height : 140
:======:

Max Height : ._I 3_4_2 ___ _,

Notebook

0 actCli ck

proclD: E::::J

Style

DBold
D ltolic

Justification ~

D Underline
omrn!lD~m©
D ~llJ[lc11CDl!D
D Condense
D E11tend

@Left

0 Center

0 Right

H

D
[Cancel) ([OK D 0

the view type is Dialog, and then click OK to dismiss the view
type dialog. The VA will display a new view window in which we
can enter the fields and controls that will make up our Modal dia
log. Choose the View Info command from the View menu, and
make sure that the settings for the dialog correspond to what is
shown in Figure 5-2. Note that the Modal checkbox is checked in
the figure. Click OK to dismiss the View Info window.

The appearance of the completed Notebook dialog is shown in
Figure 5-3. You may wish to refer to this figure as you create the
various elements of the dialog.

Creating The CFontlist and CSizelist Classes

Before creating the list element under the Font label in the Note
book view, you will need to create a new class that is derived from

174 Chapter 5 ~Creating and Managing Dialogs

Figure 5-4
CFontList class
created

Classes

CH pp

mm!lllimmi•••••fl Base Closs: I ... 1
CMain ·

CNotebook (Define Data Members J
CSizelist

Library

(Cancel J

OK

the CArrayPane class so that you can supply the contents of the
list to the CTable class when the DrawCell function is called. You
will always have to create a derived class when you use the List/Ta
ble tool in the VA. Choose the Classes command from the Edit
menu, and then choose New Class (or the Command-K keyboard
shortcut). Fill in the dialog as shown in Figure 5-4. Note that the
Base Class is specified as CArrayPane in the dialog. Click OK to
dismiss the dialog.

Create another new class called CSizeList, as shown in the list of
classes in Figure 5-4. Make sure that the new class is also derived
from CArrayPane, and then click OK to dismiss the dialog.

Creating the Font and Size Lists

After the CFontList and CSizeList classes have been created, you
can create the lists themselves. Choose the Table/List tool from
VNs Tool menu, and draw the font list so that it appears like what
is shown in Figure 5-3. Double-dick the list pane, change the
name of the list to FontList, and also change the selection
Flags settings in the CTable class to selOnlyOne. This makes
sure that the user can select only one entry at a time. None of the
other settings need be changed. You can dismiss the Pane Info
window by clicking in its close box.

To associate the FontList element with the proper class, make sure
it is still selected in the Notebook view, pull down the Pane menu,
and choose CFontList from the list of classes in the Class hierar
chical menu.

Create the SizeList by using the Table/List tool, creating a list that
has the appearance shown in Figure 5-3. Double-dick the list

Creating a Text Style Modal Dialog 175

pane and change the element's name to SizeList, change its se
lectionFlags settings to selOnlyOne, and then click the
close box to dismiss the window. Change the class of the SizeList
by selecting it (if it isn't selected already) and choosing the CSize
List class from the Class hierarchical menu in the Pane menu.

Creating the Style Checkboxes

The checkboxes under the Style label are created by choosing the
Check Box tool from the Vl\s Tool menu and then dicking at the
position where you wish for the checkbox to be placed. At that
time you will be able to type in a label for the checkbox. After typ
ing the label, make sure the checkbox and its label are selected and
then pull down the Pane menu and choose the style that corre
sponds to the checkbox's name from the Style hierarchical menu
(for example, Underline is underlined and Italic is in italics).

Creating the Justification Radio Buttons

The radio buttons that select the justification of the text (Left,
Center, or Right) are created by first using the Rectangle tool to
draw a frame within which the buttons will be placed and then
choosing the Button tool and clicking and naming each of the
buttons. When you have created and positioned the three buttons,
double-dick on the button named Left, and change its con

trl Value setting in the CControl class of the Pane Info window
to l, making that selection the default for the radio group.

Creating the CDialogText Fields

Each of the FontList and SizeList lists has a text field underneath
the list. And there is a third text field underneath the set of radio
buttons. Choose the Edit Text tool from the Vl\s Tool menu, and
draw each of these fields. When editable text fields are placed into
dialog windows, the VA automatically creates a framed field of the
CDialog Text class (rather than the CEditText field that is created
for normal windows). Make sure that the fields under the lists are
tall enough for a single 12-point line of text and that the field un
der the radio buttons is about 64 pixels tall (we show a sample of
the text, the way it will appear in the Main view, in this field).

Creating the OK and Cancel Buttons

Choose the Button tool from the Vl\s Tool menu, and click to
create the OK button. The first button you create will be named

176 Chapter 5 >-Creating and Managing Dialogs

Figure 5-5
Creating the Format
menu • File

Edit
I

Menu Bar

~

~

0 .S (Hpple Menu)

(Edit Menu Items)

MENU ID: 128

MOH ID: 0

Rdd Menu:B [Cancel)

OK

OK, automatically; the second button you create will be named
Cancel, automatically. The OK button will be outlined as the de
fault button for the dialog, automatically.

Creating the Labels

Each of the labels (Font, Size, Style, and Justification) is created
with the V!\.s Static Text tool. Just use the default font, size, and
style for these labels to duplicate their appearance in Figure 5-3.

Creating the Format Menu

In order to display the Notebook dialog, we need to provide the
means for the user to choose to do so. Our approach will be to
add a Format menu to the Notebook project's menu bar.

Choose Menu Bar from the V!\.s Edit menu to display the Menu
Bar window. Choose New Menu from the Edit menu (or use the
Command-K keyboard shortcut), and enter the name Format for
the new menu. The result is shown in Figure 5-5.

Click the Edit Menu Items button in the Menu Bar window to
display the Menu Items dialog. Choose New Menu Item from the
V!\.s Edit menu, and enter Notebook. .. as its name (the ellipsis is
created by using the Option-; [semicolon] keyboard character) .

While the Menu Items dialog is still being shown, click the pop
u p menu next to the word "Command" and choose "Other."
When the Commands window is displayed, choose New Com
mand from the Edit menu, and create the cmdNotebook com-

Figure 5-6
Creating the
Notebook command

Figure 5-7
Completed Notebook
menu command for
the Format menu

cmdJustify
cmdJustleft
cmdJustRight

cmdNew
cmdNotebook

cmdNull
cmdDK
cmdOpen

Format

Creating a Text Style Modal Dialog 177

Commands

Rctions::-----------~

In Class: I CMain

Do: I Open ..-1
CNotebook ..-1

Menu Items

(Cancel J

OK

Notebook... m

Command: I cmdNotebook

D Has submenu
•..................... ,

'>ubnu~nu Hl: ~
'·· ····················· ········· l..::..J

Cmd-key:D

I con: J 1~0: I Mark: I None ,,. ,

(Cancel J

OK

mand for the Notebook menu item, making sure that it
corresponds to what is shown in Figure 5-6.

After you have created the cmdNotebook command, dismiss the
Commands dialog by clicking the OK button. The Menu Items
window should still be on your screen, and its appearance should
correspond to what is shown in Figure 5-7.

Generating and Running the Skeleton Code

After the Notebook view has been created, you can save the VA
file and generate code by choosing the Generate All command
from the Project menu (the menu to the right of the Windows

178 Chapter 5 > Creating and Managing Dialogs

Figure 5-8
Dynamic structure of
application with
Notebook dialog

LEGEND

- Inherited Behavior
- Object Construction
••• ,. Chain of Command

CDlractor

: •••• gGopher

CScrollPane

ltsMainPane

CVlew

menu). This will cause the VA to generate the default skeleton
code to implement and operate the user interface, including the
Notebook dialog.

After the code has been generated, you can quit the VA and then
compile and execute the newly created code. Note when you do
that you can type text into the Main window, and when you
choose the Notebook command from the Format menu, each of
the controls works as expected. Of course, the lists are empty of
contents, and clicking the OK button to dismiss the dialog has no
effect on the text in the Main window, but that functionality will
have to be added with our custom code. When the skeleton appli
cation is executed, its dynamic structure corresponds to what is
shown in Figure 5-8.

The figure is not quite accurate, but the major objects are shown.
The base class for the Notebook dialog (x_CNotebook) is not
shown, nor are any of the objects (controls, static text, edit text,
and so on) that populate the dialog. All of the controls and other
window contents are created by the MakeNewWindow function
of the x_CNotebook class.

Instead of examining the skeleton code and then looking at how it
needs to be customized to create a fully functional dialog, we'll
jump right to the bottom line and examine the final form of the
code related to the dialog, as it has been customized in both the
CMain and CNotebook classes. In so doing, you will gain a better
understanding of how the various components of the document,
its window, and the dialog work together.

Creating a Text Style Modal Dialog I 79

Examining the Custom CApp Code

The only change that I have made to the CApp (application) code
is to access the Font menu that VA provides and populate it with
all of the user's fonts in the SetUpMenus function.

SetUpMenus Function Code

The code for the SetUpMenus function is as follows:

void CApp: :SetUpMenus()
{

MenuHandle macMenu;

II override SetUpMenus to install a FONT menu into the
II bartender's list, containing all of the current font names

x_CApp: :SetUpMenus();
macMenu = GetMenu (MENUfont);
FailNILRes (macMenu);
AddResMenu (macMenu, 'FONT');
gBartender->AddMenu (MENUfont, TRUE, hierMenu);

The foregoing code calls the SetUpMenus function for its base
class and then accesses the Font menu from the VA-generated re
sources and loads all of the user's font names into it using the
AddResMenu toolbox call. The menu is added to the bartender's
list, but as though it is a hierarchical menu (hierMenu, which
tells the bartender not to redraw the menu bar).

Examining the Custom CMain Code

If you recall, the Main view contains a CEditText object to hold
the text that the user types. The object has an associated scroll bar
that will activate to allow the user to enter up to 32,000 bytes of
text. The view is not intended to be a text editor, but more like a
simple notebook for recording text in a particular font, size, style,
and justification. The main point of the code is to show how a
fairly complex dialog can be constructed to operate in conjunc
tion with a text window.

Defining the CTextSettings Structure

In order to associate the text with its characteristics, I have defined
a structure to hold the font name and its size, style, and justifica
tion values. The structure is defined in a separate header file that

180 Chapter 5 ~Creating and Managing Dialogs

was created manually with the Symantec editor. The file is named
CTextSettings.h and its contents are as follows:

/********************************~'****************************

CTextSettings.h

Font settings for text in dialog
***/

#pragma once

struct CTextSettings
{

} ;

Str255 spFontName;
Str255 spFontSize;
short nFontStyle;
short nFontJust;

Although I could have defined the CTextSettings structure inside
the CMain.h header file, I chose for it to be separate because of
the Object 1/0 support that we will be adding to this application
in a later chapter and also because the structure must be known to
both the CMain class and its CNotebook dialog.

The CMain Header File Conten~s

The CMain.h header file has bee111 modified by adding one new
public function, two protected functions that override the corre
sponding base class functions, and also a newly added function to
update the window text's appearance. In addition, the header file
contains a private member variable that holds the CTextSettings
data. The contents of the CMain.h header file are as follows:

/*******************************'~*****************************

CMain.h

Header File For CMain Document Class

Copyright © 1994 Richard 0. Parker. All rights reserved.
***/

#pragma once

#include "x_CMain.h"
#include "CTextSettings.h"

class CMain : public x_CMain
{
public:

TCL_DECLARE_CLASS

Creating a Text Style Modal Dialog 181

void ICMain(void);

virtual void MakeNeWContents(void);
virtual void ContentsToWindow(void);
virtual void WindowToContents(void);
virtual void ExchangeSettings(

CTextSettings& itssettings,
Boolean bFromDialog);

11 newly added
11 settings
I I from dialog?

protected:
virtual void
virtual void
virtual void

DoDndNotebook (void) ; I I override
UpdateWindowText(void); II newly added
MakeNewWindow(void); 11 override

private:
CTextSettings settings; 11 newly added

} ;

II If you have multiple document classes, you must change
II the file type below to the appropriate type for this class.
II If not, this #define is not used.

#define CMainFType 'TEXT'

The added functions and settings member variable are accom
panied with comments that indicate whether they override exist
ing code in the base class or are newly added. The settings
variable is accessible only within the CMain class.

ICMain Initialization Function Code

I have modified the ICMain function to initialize the contents of
the settings structure when the document object is created.
This is so we will have some initial settings to use for a new docu
ment. The code is as follows:

void CMain::ICMain()
{

Ix_CMain () ;

II Initialize Font Settings

TCLpstrcpy (settings. spFontName, "\pChicago") ;
TCLpstrcpy(settings.spFontSize, "\p12");
settings.nFontStyle = normal;
settings.nFontJust = teFlushLeft;

The first action of the foregoing code is to call the lx_CMain base
class initialization function. Then the code initializes the contents
of each of the fields in the settings structure.

182 Chapter 5 ~Creating and Managing Dialogs

DoCommand Function Code

The code to intercept the command to open the Notebook dialog
is generated into the DoCommand function for the x_CMain
class. That code remains unchanged, as it was generated by the
VA, and is as follows:

void x_CMain::DoCormnand(long theCormnand)
{

switch (theCormnand)
{

case cmdNotebook:
DoCmdNotebook();
break;

default:
CDocurnent: : DoCormnand (theCormnand) ;

The foregoing code tests only whether the function has been
called to handle the cmdNotebook command and if so, it calls a
function named DoCmdNotebook to handle the command. All
other commands are passed on to the CDocument base class to
handle.

DoCmdNotebook Override Function Code

Though the VA has generated skeleton code for the DoCmdNote
book function in the x_ CMain class, I have chosen to override
that function in the CMain class (as indicated in the CMain.h
header file). The VA-generated code merely creates the Notebook
dialog and "runs" it, not taking into consideration what function
it might perform. The newly added override function in the
CMain class is as follows:

void CMain: :DoCmdNotebook()
{

CNotebook *dialog;

II Respond to cormnand by creating a dialog object
dialog = TCL_NEW(CNotebook, ());

II create the dialog window, with its controls
dialog->ICNotebook(this);

II run the dialog
if (dialog->DoModalDialog(cmdNull) == cmdOK)
{

II update the window's text to correspond with
II the newly specified settings.

UpdateWindowText();

SetChanged (TRUE);
}
ForgetObject(dialog);

Creating a Text Style Modal Dialog 183

As the foregoing code shows, after creating the CNotebook ob
ject, the ICNotebook initialization function is called, causing the
dialog's window to be created with initial settings for the values of
the controls, lists, and EditText fields.

Initializing the Dialog

The ICNotebook function causes a series of other functions to be
called. The code for the function is as follows:

void CNotebook::ICNotebook(CDirectorOwner *aSupervisor)
{

II access the document to retrieve the current settings to use
II for initializing the controls in the dialog.

((CMain *)aSupervisor)->ExchangeSettings (itsSettings, FALSE);

II create the window and initialize the controls with the
II settings transferred from the document.

x_CNotebook::Ix_CNotebook(aSupervisor);

The foregoing initialization code commences its execution by call
ing a function named ExchangeSettings, located in the supervisor
of the dialog (which, in this case, is the document-the CMain
class). The purpose of the ExchangeSettings function is to transfer
the font information settings either from the document to the di
alog or to the document from the dialog. In either case, the first
argument to the function is a reference to the dialog's CSettings
structure (itsSettings).The second argument specifies whether the
settings are to be transferred from the document to the dialog
(FALSE) or from the dialog to the document (TRUE). The IC
Notebook function calls the function with a value of FALSE, to
cause the document's initial settings to be transferred to the dialog
before the dialog's window (and its associated controls, lists, and
fields) is created.

ExchangeSettings Function Code

The ExchangeSettings function is located in the CMain class and
is newly added (custom) code. The function is quite simple and
the code is as follows:

184 Chapter 5 >Creating and Managing Dialogs

void CMain::ExchangeSettings (CTextSettings& itsSettings,
Boolean bFromDialog)

if (bFromDialog)
{

II
JI move settings from the dialog to the document
II
settings = itsSettings;

else
{

II
JI move settings from the document to the dialog
II
itsSettings = settings;

The foregoing code tests the value of the bFromDialog variable
and then either transfers the contents of the its Set tings ar
gument to the document's settings structure or transfers the
contents of the document's set tings structure to the its Set
tings argument.

Examining the Notebook Dialog Code

lx_CNotebook Function Code

The ICNotebook function calls the Ix_CNotebook function to fi
nalize the initialization of the dialog. The VA-generated code for
that function ((in the x_CNotebook class) is as follows:

void x_CNotebook::Ix_CNotebook(CDirectorOwner *aSupervisor,
Boolean push)

IDialogDirector(aSupervisor);

JI There are several circumstances where we don't want
JI ProviderChanged to be called. During initialization,
JI during calls to UpdateData, etc. The ignore flag
JI heads these off.

ignore = TRUE;
MakeNewWindow();
DoBeginData(push);
ignore = FALSE;

/*Don't call UpdateData now
/* Create the dialog's window
/* Gather initial values

*/
*/
*/

The first act of the foregoing code is to call the IDialogDirector
function for the x_CNotebook's base class (CDialogDirector). This
function call results in a chain of calls to initialize each of the
classes in the CNotebook class's hierarchy (that is, IDialogDirector

Creatinga Text Style Modal Dialog 185

calls !Director, which calls IDirectorOwner, which calls !Bureau
crat, which finally stores the aSupervisor value, contained in
the original call to ICNotebook, into the i tsSupervisor vari
able). The functionality of most of the foregoing initialization
functions is described in Chapter 2, beginning on page 31, in
step 6 (with regard to the application object as the supervisor in
that case). The IDialogDirector function merely sets the dis -
missCmd (dismiss command) value to cmdNULL and then calls
the !Director function.

The Ix_CNotebook function continues by setting the ignore
member variable of the x_CNotebook class to TRUE. The expla
nation given in the comments for this action is that it is to prevent
the ProviderChanged function from being called when a change is
made to any of the window's "collaborators" (controls, lists, text
fields) when it is initialized. I will discuss how the collaboration
mechanism works in a later chapter. For now, just bear in mind
that setting the ignore variable to TRUE prevents inappropriate
ProviderChanged actions from being taken until it is set to
FALSE once again.

MakeNewWindow Function Code

The Ix_CNotebook function continues by calling the MakeNew
Window function, whose VA-generated code is as follows:

void x_CNotebook::MakeNewWindow(void)
{

i tsWindow = TCLGetNamedWindow (" \pNotebook" , this) ;

II Initialize pointers to the subpanes in the window
fNotebook_OkButton =

(CButton*) FindPane (kNotebook._OkButtonID) ;
ASSERT(member(fNotebook_OkButton, CButton));

fNotebook_CancelButton =
(CButton*) FindPane(kNotebook._CancelButtonID);

ASSERT(member(fNotebook_CancelButton, CButton));

fNotebook FontLabel =
(CStati.cText *) FindPane (kNotebook_FontLabelID) ;

ASSERT(member(fNotebook_FontLabel, CStaticText));

fNotebook SizeLabel =
(CStati.cText*) FindPane(kNotebook_SizeLabelID);

ASSERT(member(fNotebook_SizeLabel, CStaticText));

fNotebook_StyleLabel =
(CStaticText*) FindPane(kNotebook_StyleLabelID);

ASSERT(member(fNotebook_StyleLabel, CStaticText));
fNotebook_JustLabel =

(CStaticText*) FindPane(kNotebook_JustLabelID);

186 Chapter 5 >- Creating and Managing Dialogs

ASSERT(member(fNotebook_JustLabel, CStaticText));

fNotebook FontList =
(CFontList*) FindPane(kNotebook_FontListID);

ASSERT(member(fNotebook_FontList, CFontList));

fNotebook SizeList =
(CSizeList*) FindPane (kNotebook_SizeListID) ;

ASSERT(member(fNotebook_SizeList, CSizeList));

fNotebook_BoldCheck =
(CCheckBox*) FindPane(kNotebook_BoldCheckID);

ASSERT(member(fNotebook_BoldCheck, CCheckBox));

fNotebook ItalicCheck =
(CCheckBox*) FindPane(kNotebook_ItalicCheckID);

ASSERT(member(fNotebook_ItalicCheck, CCheckBox));

fNotebook UnderlineCheck =
(CCheckBox*) FindPane(kNotel::ook_UnderlineCheckID);

ASSERT(member(fNotebook_UnderlineCheck, CCheckBox));

fNotebook OutlineCheck =
(CCheckBox*) FindPane (kNotebook_OutlineCheckID) ;

ASSERT(member(fNotebook_OutlineCheck, CCheckBox));

fNotebook_ShadoWCheck =
(CCheckBox*) FindPane(kNotebook_ShadoWCheckID);

ASSERT(member(fNotebook_ShadoWCheck, CCheckBox));

fNotebook_CondenseCheck =
(CCheckBox*) FindPane (kNotebook_CondenseCheckID);

ASSERT(member(fNotebook_CondenseCheck, CCheckBox));

fNotebook ExtendCheck =
(CCheC:kBox*) FindPane(kNotebook_ExtendCheckID);

ASSERT(member(fNotebook_ExtendCheck, CCheckBox));

fNotebook_Rect16 =
(CRectOvalButton*) FindPane(kNotebook_Rect16ID);

ASSERT(member(fNotebook_Rect16, CRectOvalButton));

fNotebook_LeftRadio =
(CRadioControl*) FindPane(kNotebook_LeftRadioID);

ASSERT(member(fNotebook_LeftRadio, CRadioControl));

fNotebook_JustCenterRadio =
(CRadioControl*) FindPane(kNotebook_JustCenterRadioID);

ASSERT(member(fNotebook_JustCenterRadio, CRadioControl));

fNotebook_JustRightRadio =
(CRadioControl*) FindPane(kNotebook_JustRightRadioID);

ASSERT (member (fNotebook_JustRi·;rhtRadio, CRadioControl)) ;

fNotebook_FontName =
(CDialogText*) FindPane(kNotebook_FontNameID);

ASSERT(member(fNotebook_FontName, CDialogText));

fNotebook_FontSize =
(CDialogText*) FindPane(kNotebook_FontSizeID);

ASSERT(member(fNotebook_FontSize, CDialogText));

fNotebook_FontSample =
(CDialogText*) FindPane(kNotebook_FontSampleID);

ASSERT(member(fNotebook_FontSample, CDialogText));

Creating a Text Style Modal Dialog 187

Although the foregoing code is quite lengthy, it is quite simple.
The statements use the V/fs Object 110 features to read in the
contents of the 'cvue' resource that describes the dialog and its
contents, create each element in the process, and store its pointer
into a member variable of the x_CNotebook class. After each of
the window's subpanes is created, an ASSERT statement validates
the class of the subpane's pointer, just to ensure that the initializa
tion process is robust. When the MakeNewWindow function's ex
ecution is complete, the window and all of its subpanes have been
created, but the window has not yet been made visible to the user.

DoBeginData Function Code

The initialization process continues in the Ix_CNotebook func
tion, after MakeNewWindow returns, by calling the DoBegin
Data function with the value of an argument named push. If
you look back at the Ix_CNotebook function definition (see
page 184), you will see that the variable push is the second argu
ment to that function; however, if you look at the ICNotebook
function code that calls the lx_CNotebook function, you will see
that it doesn't supply a value for this second argument. This situa
tion illustrates an interesting feature of the C++ language (the fa
cility for including default values in function declarations). If you
look into the x_CNotebook.h header file, you will see that the
Ix_ CNotebook function has been declared as follows:

void Ix_CNotebook(CDirectorOWner *aSupervisor,
Boolean push= FALSE);

Note in the foregoing that the push argument to the function has
been given a default value of FALSE. It will take on this value if
another value is not supplied for the argument. This is exactly the
case when our ICNotebook function calls the function. Also note
that when the lx_CNotebook function calls the DoBeginData
function, it passes the value of the push variable to that function.
The VA-generated code for DoBeginData is as follows:

void :x;_CNotebook::DoBeginData(Boolean push)
{

CNotebookData data= {0}; // The initial value record
BeginData(&data); //Ask subclass for initial values

if (!push)
{

188 Chapter 5 >Creating and Managing Dialogs

DispensePaneValues(data); //Set panes
}
II Save the initial values in case user cancels
saveData = data;

Note that the foregoing code begins by setting the value of a tem
porary data structure named data to 0. The CNotebookData
structure is declared in the x_CNotebook.h header file to contain
the values for each of the controls and fields in the dialog. The
structure declaration is as follows:

typedef struct
{

/*Array pane (table)*/
Point fNotebook_FontList;

/*Array pane (table)*/
Point fNotebook_SizeList;

/*Control (radio or checkbox)*/
short fNotebook_BoldCheck;

/*Control (radio or checkbox)*/
short fNotebook_ItalicCheck;

/*Control (radio or checkbox)*/
short fNotebook_UnderlineCheck;

/*Control (radio or checkbox)*/
short fNotebook_OutlineCheck;

/*Control (radio or checkbox)*/
short fNotebook_ShadowCheck;

/* Control (radio or checkbox)*/
short fNotebook_CondenseCheck;

/*Control (radio or checkbox)*/
short fNotebook_ExtendCheck;
short fNotebook_Rectl6;

/*Control (radio or checkbox)*/
short fNotebook_LeftRadio;

/* Control (radio or checkbox)*/
short fNotebook_JustCenterR;idio;

/*Control (radio or checkbox)*/
short fNotebook_JustRightRadio;

/* Dialog text */
Str255 fNotebook_FontName;

/* Dialog text */
Str255 fNotebook_FontSize;

/* Dialog text */
Str255 fNotebook_FontSample;

CNotebookData;

As you can see in the foregoing definition, the CNotebookData
structure contains a field for each of the dialog's elements. I didn't
want to save all of this data, and that is why I defined the CText
Settings structure (see page 179) to hold only the values that I was
interested in saving from one invocation of the dialog to the next.
The VA-generated code keeps track of all of the dialog's settings in
the foregoing structure.

Creating a Text Style Modal Dialog 189

BeginData Function Code

The DoBeginData function continues by calling BeginData with
a pointer to the temporary data structure as its argument. The
CNotebook class contains our highly modified version of this
function. The purpose of the code is to initialize the fields in the
CNotebookData structure with the settings passed to the dialog
from the document obje~t. The code is quite lengthy and I will
describe it in sections, beginning as follows:

void CNotebook::BeginData(CNotebookData *initial)
{

StringPtr pFontName, pFontSize;
short index;

II Define values for CNotebookData fields, starting
II with the font style value.

initial->fNotebook_BoldCheck = O;
initial->fNotebook_ItalicCheck = 0;
initial->fNotebook.....UnderlineCheck = O;
initial->fNotebook._OutlineCheck = O;
initial->fNotebook_ShadowCheck = O;
initial->fNotebook_CondenseCheck = O;
initial->fNotebook_ExtendCheck = O;

if (itsSettings.nFontStyle & bold)
initial->fNotebook_BoldCheck = l;

if (itsSettings.nFontStyle & italic)
initial->fNotebook_ItalicCheck = l;

if (itsSettings.nFontStyle & underline)
initial->fNotebook_UnderlineCheck = l;

if (itsSettings.nFontStyle & outline)
initial->fNotebook_OutlineCheck = 1;

if (itsSettings.nFontStyle & shadow)
initial->fNotebook_ShadoWCheck = l;

if (itsSettings.nFontStyle & condense)
initial->fNotebook_CondenseCheck = l;

if (itsSettings.nFontStyle & extend)
initial->fNotebook_ExtendCheck = l;

The foregoing section of the code sets the values in the data
structure for each of the checkbox controls to 0, thereby turning
them off. The code continues by testing whether a particular
checkbox should be checked, by testing the value of the font style
that was stored into the itsSettings variable when the Ex
changeSettings function was called to acquire this value from the
CMain object. The BeginData code continues as follows:

II now, initialize the text justification setting

initial->fNotebook_LeftRadio = 0;
initial->fNotebook_JustCenterRadio = O;
initial->fNotebook_JustRightRadio = O;

190 Chapter 5 >Creating and Managing Dialogs

switch (itsSettings.nFontJust)
{

case teFlushLeft:
{

initial->fNotebook_LeftRadio l;
break;

case teCenter:
{

}

initial->fNotebook_JustCenterRadio l;
break;

case teFlushRight:
{

initial->fNotebook_JustRightRadio 1;
break;

}
default:
{

initial->fNotebook_LeftRadio l;
break;

The foregoing code sets the state of each of the dialog's radio but
ton values to 0 (off) and then tests the acquired initial settings to
determine the current text justification setting and select the ap
propriate radio button in the dialog. The BeginData code contin
ues as follows:

II next, create the array to receive the font names, set the
II array pointer into the fNotebook_FontList list, and then
II load the font names into the array to cause them to be
I I displayed.

itsFontArray = TCL_NEW (CArray, (sizeof (StringPtr)));
fNotebook_FontList->SetArray (itsFontArray, TRUE);
MenuHandle fontMenu = GetMHandle (MENUfont);
short numFonts = CountMitems (fontMenu);

for (index=l; index <= numFonts; index++)
{

Str255 spMenuText;
Getitem (fontMenu, index, spMenuText);
pFontName = (unsigned char *)malloc ((long) spMenuText[O] +l);
FailNIL (pFontName);
TCLpstrcpy(pFontName, spMenuText);
itsFontArray->Add (&pFontNcime);

As the comments that precede the foregoing code indicate, that
section of the code is responsible for loading the dialog's font list
array with the names of all of the fonts that are available on the
user's system. It does this by accessing the handle to a Font menu
that was created within the VA and then populated with the sys
tems's fonts in the SetUpMenus function of the CApp class (see

Creating a Text Style Modal Dialog 191

page 179). It operates by accessing the Font menu for each font
name and then adding each entry into the i tsFontArray array.
The BeginData code continues as follows:

II create an array to receive the font sizes, set the array
II pointer into the fNotebook_SizeList list, and then load
II the sizes into the array to cause them to be displayed.

unsigned char *p;
itsSizeArray = TCL_NEW (CArray, (sizeof (StringPtr)));
fNotebook_SizeList->SetArray (itsSizeArray, TRUE);
for (index=O; fontSizes[index] !=NULL; index++)
{

itsSizeArray->Add (&fontSizes[index]);

The foregoing code adds a list of predefined font sizes to the size
list. The font sizes were created as an array of Pascal strings in the
CSizeList class (the CArrayPane-derived class for the size list con
trol in the dialog). We will look at the code for the CSizeList class
shortly. The BeginData function code continues as follows:

II set up the initial selections in the font and size lists
II and then put the list item values into the text fields.

SetPt (&initial->fNotebook_FontList, 0, 0);
CArrayiterator fiter (itsFontArray, kStartAtBeginning);
for (index=O; fiter.Next (&pFontName); index++)
{

}

if (IUCompString(itsSettings.spFontName, pFontName) 0)
{

SetPt (&initial->fNotebook_FontList, 0, index);
break;

'l'CLpstrcpy (initial->fNotebook_FontName, itsSettings.spFontName);

SetPt (&initial->fNotebook_SizeList, 0, 0);
CArrayiterator siter (itsSizeArray, kStartAtBeginning);
for (index=O; siter.Next (&pFontSize); index++)
{

}

if (IUCompString(itsSettings.spFontSize, pFontSize) 0)
(

SetPt (&initial->fNotebook_SizeList, 0, index);
break;

'Icrpstrcpy (initial->fNotebook_FontSize, itsSettings.spFontSize);

The foregoing code iterates through the array of font names, look
ing for the font that was specified as the "current" font in the set
tings. When it is found, the index into the array is stored as the
cell to be selected in the Font list control's data field. If the font

192 Chapter 5 >-Creating and Managing Dialogs

isn't found, the first font name will be selected. In a similar fash
ion, the size list array is searched for the size that was specified in
the initial settings. If it is found, the corresponding entry in the
size list control's data field is selected. If the entry is not found,
then the first size list entry will be selected. The code for the Be
ginData function concludes as follows:

II set the font sample field to "Sample", set its font name,
II size, style, and justification, and then draw the sample.

TCLpstrcpy (initial->fNotebook__FontSample, "\pSample");
fNotebook,_FontName->SetTextString (itsSettings.spFontName);
fNotebook_FontSize->SetTextString (itsSettings.spFontSize);
fNotebook_FontSample->SetFontStyle (itsSettings.nFontStyle);
fNotebook_FontSample->SetAlignment (itsSettings.nFontJust);
DrawSample();

The last act of the BeginData function is to store the final values
into the controls for the FontSample, FontName, FontSize, Font
Style, and FontJust controls and then call a function named
DrawSample to render the word "Sample" in the corresponding
font, size, style, and justification in the EditText field underneath
the radio button controls.

DrawSample Function Code

The DrawSample function is newly added and is as follows:

void CNotebook: :DrawSample ()
{

Str255 theFontText;
short theFontNum;
short theFontSize;

if (fNotebook_FontName->GetLength() > 0)
{

fNotebook_FontName->GetTextString (theFontText);
GetFNum (theFontText, &thePontNum) ;

}
else
{

theFontNum = systemFont;
}
if (fNotebook_FontSize->GetLength () > O)
{

fNotebook_FontSize->GetTextString (theFontText);
theFontSize = atoi ((Const char*) (&theFontText[l]));
if (theFontSize <= O I I theFontSize > 72)
{

}
else

theFontSize = 12;

Creating a Text Style Modal Dialog 193

theFontSize = 12;
}
fNotebook_FontSample->SetFontNumber (theFontNum);
fNotebook_FontSample->SetFontSize (theFontSize);
fNotebook_FontSample->SetTextString ("\pSample");

The DrawSample function doesn't actually draw anything. It up
dates the font and size specifications for the FontSample field,
which causes the TCL to redraw the contents of the field with the
new settings. The style and justification settings have already been
made in the BeginData function and will be changed dynamically,
causing the FontSample field to be redrawn, as the user interacts
with the dialog.

After the DrawSample function returns to BeginData, it, in turn,
returns control to the DoBeginData function described begin
ning on page 187. The DoBeginData function continues by test
ing whether the value of the push variable is TRUE or FALSE. If
it is FALSE, then the DispensePaneValues function is called to
set the dialog's subpanes to the values contained in the fields of
the CNotebookData structure. This is the case, by default, for
the DoBeginData function.

DispensePaneValues Function Code

The DispensePaneValues function code is generated by the VA to
take each field in the NotebookData structure and store its value
into the corresponding control in the dialog, as follows:

void x_CNotebook::DispensePaneValues(const CNotebookData& data)

II Initialize the panes based on the values supplied.
II The ASSERT statements ensure that the generated
II code is in synch with the view resource.

fNotebook_FontList->SelectCell(
(Cell) &data.fNotebook_FontList, FALSE, TRUE);

fNotebook SizeList->SelectCell(
(Cell> &data. fNotebook_SizeList, FALSE, TRUE);

fNotebook_BoldCheck->SetValue(data.fNotebook_BoldCheck);

fNotebook_ItalicCheck->SetValue(data.fNotebook_ItalicCheck);

fNotebook_UnderlineCheck->SetValue (data. fNotebook_UnderlineCheck) ;

fNotebook_OutlineCheck->SetValue(data.fNotebook_OutlineCheck);

fNotebook_ShadowCheck->SetValue (data. fNotebook_ShadowCheck) ;

194 Chapter 5 >-Creating and Managing Dialogs

fNotebook_CondenseCheck->SetValue(data.fNotebook_CondenseCheck);

fNotebook_ExtendCheck->SetValue(data.fNotebook_ExtendCheck);

fNotebook_LeftRadio->SetValue(data.fNotebook_LeftRadio);

fNotebook_JustCenterRadio->SetValue (data. fNotebook_JustCenterRadio) ;

fNotebook_JustRightRadio->SetValue(data.fNotebook_JustRightRadio);

fNotebook_FontName->SetTextString(data.fNotebook_FontName);

fNotebook_FontSize->SetTextString(data.fNotebook_FontSize);

fNotebook_FontSarrple->SetTextString(data.fNotebook_FontSarrple);

After the DispensePaneValues function completes execution and
returns to the DoBeginData function, all of the dialog's controls
will contain the current settings. The DoBeginData function con
cludes execution by storing the values in its temporary data
structure into a corresponding instance of the CNotebookData
structure called saveData. This is so the initial values can be re
stored if the user decides to cancel the dialog after the settings
have been changed.

When the DoBeginData function returns, the Ix_ CNotebook
function regains control and concludes its own execution by set
ting the value of the ignore variable to FALSE. This will allow
any further changes to the controls or fields in the dialog to be
acted upon in the ProviderChanged member function.

When the Ix_CNotebook function returns, the DoCmdNote
book function of the CMain class regains control. The dialog is
still not visible to the user, so the DoCmdNotebook function con
tinues its own execution (you can refer back to pages 182-183 to
see this code) by calling the DoModalDialog function for the dia
log object. This causes the dialog to be made visible and for a
modal event loop to be executed.. The user can interact with the
dialog, change the values of any of its controls, and then dismiss
the dialog either with the OK or Cancel buttons. Until the dialog
is dismissed, no other actions can be performed.

Before examining the functions that are involved with the user's
dynamic changes to the dialog, it might be instructive to recap the
sequence of initialization actions. Here's what happened:

Creating a Text Style Modal Dialog 195

I. The user chooses the Notebook command from the Format
menu, causing a cmdNotebook command to be sent to the
current gopher's DoCommand function. At this point m
time, the current gopher is the document object (CMain).

2. The DoCommand function recognizes the cmdNotebook
command and calls the DoCmdNotebook function to handle
the command.

3. DoCmdNotebook creates the CNotebook (dialog director)
object and calls its ICNotebook function.

4. The CNotebook object's ICNotebook function calls the doc
ument's ExchangeSettings function to acquire the current
(previous) settings from the document, storing these into the
its Settings structure that we have defined. The structure
definition is contained in the CTextSettings.h file.

5. Next the ICNotebook function calls the Ix_CNotebook func
tion in its base class to continue the initialization process.

6. The Ix_CNotebook function calls MakeNewWindow to cre
ate the document's window and its subpanes and then calls
the DoBeginData function.

7. DoBeginData calls the BeginData function in the CNote
book class that we modified heavily to convert the document's
settings into values for each of the dialog's fields in the data
structure that is local to the DoBeginData function. The val
ues stored into the fields of the data structure are used to ini
tialize the corresponding controls (subpanes) in the dialog
with the values we have supplied.

8. DoBeginData returns to the Ix_ CNotebook function, which
returns to the ICNotebook function, which returns to the
DoCmdNotebook function in the CMain class. That func
tion calls DoModalDialog to "run" the dialog.

Examining the Code for Running the Notebook Dialog

Running of the dialog commences when the DoModalDialog
function is called by the DoCmdNotebook function of the
CMain class. When control returns to the DoCmdNotebook
function, the dialog will have been dismissed by the user by click
ing either its OK or Cancel button.

196 Chapter 5 >Creating and Managing Dialogs

DoModalDialog Function Code

The x_CNotebook class contains an override of the DoModal
Dialog function inherited from its CDialogDirector base class.
The override code is as follows:

long x_CNotebook::DoModalDialog(long defaultCrnd)
{

long result= CDialogDirector::DoModalDialog(defaultCrnd);

DoEndData(result);
return result;

The purpose of overriding the DoModal dialog function is so that
the foregoing function can regain control after the dialog has been
dismissed, but before control returns to the DoCmdNotebook
function in the CMain class. The foregoing function calls the Do
ModalDialog function in the CDialogDirector class of the TCL to
perform the major task of running the dialog. That function calls
DoChangeableDialog (in that same class) to perform the actions
of managing the dialog. The code in the TCL for the DoChange
ableDialog function is very instructive and is as follows:

long CDialogDirector::DoChangeableModalDialog(long defaultCrnd,
Boolean changeDoc)

CDialog
tGopherinfo
Boolean

itsDialog = (CDialog) itsWindow;
gopherinfo;
wasChanged = GetChanged();

II Setup the desired default command, and make sure
II the window is modal and visible.

itsDialog->SetDefaultCrnd(defau.ltCrnd);
itsDialog->SetModal(kModal);
DisableTheMenus(); II (2.0.4)
itsDialog->Select();

II Set the initial gopher

itsDialog->FindGophers(&gopherinfo);
itsGopher = gopherinfo.firstGopher? gopherinfo.firstGopher

: itsDialog;

if (member(itsGopher, CAbstractText))
((CAbstractText*)itsGopher)->SelectAll(TRUE);

if (active)
itsGopher->BecomeGopher(TRUE);

dismissCrnd = cmdNull; II So DoModalDialog can be repeated

while (dismissCrnd == cmdNull)
{

Creating a Text Style Modal Dialog 197

t:ry_ 11 post an exception handler to prevent exceptions from
{ II prematurely aborting the dialog

do
{

gApplication->ProcesslEvent();

} while(dismissCmd == cmdNull};

catch_(CException, thrown}
{

HiliteMenu(O};
if (thrown->GetErr(} != kSilentErr}

ErrorAlert(thrown->GetErr(}, thrown->GetMsg(}};

end_try_

EnableTheMenus(};

II Restore the changed state if the dialog was canceled
II or if changes are not allowed

if (dismissCmd == cmdCancel I I !changeDoc}
SetChanged(wasChanged};

return dismissCmd;

The DoChangeableModalDialog function permits you to have
changes in the dialog reflect the "changed" status of the docu
ment. The value of the changeDoc argument to the function
(that is set to FALSE, by default, in the function's prototype) de
termines whether the document's status is affected by the user's
actions in the dialog.

After setting the value of the defaul tCmd (to cmdNULL in our
case), calling the SetModal function to ensure that the window is
treated as a modal dialog, and calling Disable TheMenus to disable
all of the menus in the menu bar, the function calls the Select
function to (finally) make the window visible and allow user inter
action with the dialog.

Before commencing to execute the private event loop, the Do
ChangeableModalDialog function examines the possible gophers
in the dialog, then tests whether the first gopher is a member of,
or derived from, the CAbstractText class (meaning that it is a text
field). If so, then the contents of the field are selected, causing it to
become hilited.

198 Chapter 5 >Creating and Managing Dialogs

Finally the DoChangeableModalDialog function commences exe
cuting an event loop (within a "try-catch" block to protect against
exception errors) by repeatedly calling the application object's
ProcesslEvent function, until the dismissCmd variable is found
to contain something other than the (initial) cmd.Null value.

While the foregoing loop is running, the user is allowed to per
form any allowable actions with the dialog's controls or fields.
Such actions as clicking a checkbox or a radio button, or selecting
a font name or size from their respective lists results in an event
being posted to the application's event queue. The ProcesslEvent
function removes one event from the queue and calls the Switch
board object's ProcessEvent function to handle the event. We will
cover events in a later chapter, but the end result of the user's in
teraction with the dialog's controls, in this case, is that the Pro
viderChanged function in the x_ CNotebook class is called. This is
because each of the controls and fields is descended from the
CCollaborator class in the TCL, and when its state is changed, it
calls its BroadcastChange function. If the control doesn't override
the BroadcastChange function, then the BroadcastChange func
tion of the CBureaucrat class will handle the call. In that case, the
ProviderChanged function in the control's supervisor (in this case
it's the CNotebook object, in the CDialogDirector-derived class)
is called to perform any functions necessary to handle the change
to the control's state.

x_CNotebook ProviderChanged Function Code

The VA-generated code for the ProviderChanged function of the
x_CNotebook class handles changes to all of the fields and con
trols in the dialog. The code is quite lengthy and is as follows:

void x_CNotebook::ProviderChanged(CCollaborator *aProvider,
long reason, void* info)

CNotebookUpdate data; I* The update value record * /
Str255 str;
Boolean saveignore = ignore;

if (ignore)
return;

ignore = TRUE;

TRY
{

if (FALSE) {}

/* Don't be a chatterbox *I

else if (reason == tableSelectionChanged
&& aProvider == fNotebook_FontList)

}

Creating a Text Style Modal Dialog 199

RgnHandle rgn = ((CTable*) aProvider)->GetSelection();

data.selection= topLeft((**rgn) .rgnBBox);
UpdateData(&data, kNotebook_FontListID);

else if (reason == tableSelectionChanged
&& aProvider == fNotebook_SizeList)

RgnHandlergn = ((CTable*) aProvider)->GetSelection();

data.selection= topLeft((**rgn) .rgnBBox);
UpdateData(&data, kNotebook_SizeListID);

else if (reason == controlValueChanged
&& aProvider == fNotebook_BoldCheck)

data.value= *(short*) info;
UpdateData(&data, kNotebook_BoldCheckID);

}
else if (reason == controlValueChanged

&& aProvider == fNotebook_ItalicCheck)

data.value= *(short*) info;
UpdateData(&data, kNotebook_ItalicCheckID);

else if (reason == controlValueChanged
&& aProvider == fNotebook_UnderlineCheck)

data.value= *(short*) info;
UpdateData(&data, kNotebook_UnderlineCheckID);

else if (reason == controlValueChanged
&& aProvider == fNotebook_OutlineCheck)

data.value = *(short*) info;
UPdateData(&data, kNotebook_OutlineCheckID);

else if (reason == controlValueChanged
&& aProvider == fNotebook_ShadowCheck)

data.value= *(short*) info;
UpdateData(&data, kNotebook_ShadowCheckID);

}
else if (reason == controlValueChanged

&& aProvider == fNotebook_CondenseCheck)

data.value= *(short*) info;
UpdateData(&data, kNotebook_CondenseCheckID);

else if (reason == controlValueChanged
&& aProvider == fNotebook_ExtendCheck)

data.value= *(short*) info;
UpdateData(&data, kNotebook_ExtendCheckID);

}
else if (reason == controlValueChanged

&& aProvider == fNotebook_LeftRadio)

data.value= *(short*) info;
UpdateData(&data, kNotebook_LeftRadioID);

else if (reason == controlValueChanged
&& aProvider == fNotebook_JustCenterRadio)

data.value= *(short*) info;
UpdateData(&data, kNotebook_JustCenterRadioID);

200 Chapter 5 ~Creating and Managing Dialogs

else if (reason == controlValueChanged
&& aProvider == fNotebook_JustRightRadio)

data.value= *(short*) info;
UpdateData(&data, kNotebook_JustRightRadioID);

}
else if (reason == dialogTextChanged

}

&& aProvider == fNotebook_FontName)

((CDialogText*) aProvider)->GetTextString(data.stringvalue);
UpdateData(&data, kNotebook_FontNameID);

else if (reason == dialogTextChanged
&& aProvider == fNotebook_FontSize)

((CDialogText*) aProvider) ->GetTextString (data. stringvalue) ;
UpdateData(&data, kNotebook_FontSizeID);

}
else if (reason == dialogTextChanged

&& aProvider == fNotebook_FontSample)

((CDialogText*) aProvider)->GetTextString(data.stringvalue);
UpdateData(&data, kNotebook_FontSampleID);

}
else

CDialogDirector::ProviderChanged(aProvider, reason, info);
}
CATCH

ignore = savelgnore;
ENDTRY

ignore = savelgnore; I* ProviderChanged() can't Close()! *I

The foregoing code consists of many tests of the values for the
reason and the aProvider arguments to the call. These
identify which object was changed (aProvider) and what
kind of change was made (reason). When a match is found for
the reason and aProvider values, then the appropriate field in
the CNotebookUpdate structure (data) is modified to reflect the
change and the UpdateData function is called with a pointer to
the data and the VA-assigned identifier of the control whose
state was changed.

CNotebookUpdate Structure Definition

The CNotebookUpdate structure contains one of each type of
field associated with the various subpanes in the dialog. In the
case of the Notebook dialog, the VA-generated CNotebookUp
date structure is defined as follows:

typedef struct
{

Str255
long
short

stringvalue;
longvalue;
value;

II CDialogText
II CintegerText
II All other controls and buttons

Creating a Text Style Modal Dialog 201

Point selection; II CArrayPane

CNotebookUpdate;

The comments associated with the fields in the foregoing defini
tion identify the their contents. For example, if the user clicks one
of the style checkboxes, the value field will be changed to con
tain the state of the checkbox. When the UpdateData function is
called with a pointer to the (data) instance of this structure and
the identifier of the control to which it pertains (aProvider),
then it can use this datum to make changes to the current text set
tings for the dialog.

UpdateData Function Code

The UpdateData function in the VA-generated code for the
x_CNotebook class is empty, as is the code for that same function
in the CNotebook class; however I have added custom code to re
act to the calls to UpdateData in the CNotebook class version of
this function and the new custom code is as follows:

void CNotebook::UpdateData(CNotebookUpdate *update, long itemNo)

StringPtr pString;

11 UpdateData is called every time the user or the program
I I changes the value of a dialog pane. (Changes you make to
II panes during a call to UpdateData do not result in
11 recursive calls to UpdateData.)

II Override to dynamically update other program objects.
II Note that *only* the value corresponding to itemNo is
II present in the update record. If you need the values of
II other panes, you must ask the panes for them.

switch (itemNo)
{

case kNotebook_FontListID:
{

}

II
II the user selected a font from the font list,
II so we change the font name in the text box
II and redisplay the sample.
II
long index= update->selection.v + l;
itsFontArray->GetArrayitem (&pString, index);
fNotebook_FontName->SetTextString (pString);
DrawSample();
break;

case kNotebook_SizeListID:
{

II
II the user selected a size from the size list,
II so we change the size string in the text box

202 Chapter 5 >-Creating and Managing Dialogs

II

I I and redisplay the sarnp:Le.
II
long index= update->selection.v + 1;
itsSizeArray->GetArrayitern (&pString, index);
fNotebook_FontSize->SetTextString (pString);
DrawSarnple();
break;

II the following cases handle changes to the font style
II checkboxes
II
case kNotebook_BoldCheckID:
{

}

fNotebook_FontSarnple->SetFontStyle (bold);
break;

case kNotebook_ItalicCheckID:
{

}

fNotebook_FontSarnple->SetFontStyle (italic);
break;

case kNotebook_UnderlineCheckID:
{

}

fNotebook_FontSarnple->Set:FontStyle (underline);
break;

case kNotebook_OutlineCheckID:
{

}

fNotebook_FontSample->SetFontStyle (outline);
break;

case kNotebook_ShadoWCheckID:
{

}

fNotebook_FontSample->SetFontStyle (shadow);
break;

case kNotebook_CondenseCheckID:
{

}

fNotebook_FontSample->SetFontStyle (condense);
break;

case kNotebook_ExtendCheckID:
{

II

fNotebook_FontSarnple->SetFontStyle (extend);
break;

II the following cases handle font justification changes
II
case kNotebook_LeftRadioID:
{

}

if (update->value)
{

fNotebook_FontSample->SetAlignment (teFlushLeft);
}
break;

case kNotebook_JustCenterRadioID:
{

if (update->value)
{

fNotebook_FontSample->SetAlignment (teCenter);

break;

Creating a Text Style Modal Dialog 203

}
case kNotebook_JustRightRadioID:
{

if (update->value)
{

fNotebook_FontSample->SetAlignrnent (teFlushRight);

break;

The foregoing code tests each of the checkbox, radio button, and
list selections to determine whether the associated control's state
was changed. If so, then the appropriate change is made to the
fNotebook_FontSample field. This results in the Sample text
field being redrawn with the new font, size, style, or justification
setting. In the case where a new font name or size is chosen from
the respective list, the foregoing code changes the contents of the
text field below the list to correspond with the string value of the
newly selected item. In addition, the DrawSample function is
called to redraw the contents of the Sample field.

By placing code in the UpdateData function, you can react imme
diately to any changes the user might make. Doing so is not al
ways necessary, but in this case, we want the Sample field to

always reflect the current settings. If the settings in the dialog are
not needed until it is dismissed, then you don't have to put any
code into the UpdateData function.

Examining the Code to Dismiss the Notebook Dialog

When the user clicks either the OK or Cancel buttons in the dia
log, then the DoCommand function of the CDialogDirector class
winds up handling the cmdOK or cmdCancel commands. No
matter whether the OK or Cancel button was clicked, the
DoCommand function of the CDialogDirector calls the EndDia
log function with the command code and a Boolean value that in
dicates whether the Validate function is to be called before the
dialog is dismissed. The fValidate argument to the EndDialog
function is TRUE in the case where the OK button was clicked
and is FALSE in the case where the Cancel button was clicked.

EndDialog Function Code

The EndDialog function is quite straightforward. Its purpose is to
cause the final contents of the dialog to be validated if the OK

204 Chapter 5)loo- Creating and Managing Dialogs

button was clicked and make a decision whether to close the dia
log or leave it open. The code is as follows:

Boolean CDialogDirector::EndDialog(long withCmd,
Boolean fValidate)

Boolean closeit = TRUE;

if (itsWindow)
{

if (fValidate)
closeit =Validate();

if (closert)
dismissCmd = withCmd;

return closeit;

The foregoing code shows that the closeit variable is set to
TRUE at the beginning of the function and then if the window
still exists (which it should), then the fVal ida te argument is
tested to determine whether to call the Validate function or not. If
Validate is called, its return value will change the state of the
closeit variable. If the closeit variable is TRUE, then the
value of the disrnissCmd is changed to the value of the with

Cmd argument, which will cause the event loop in the DoChange
ableDialog function to be exited (see pages 196-197). If the result
of the Validate function is FALSE, then that function will display
a dialog indicating the reason for the failure in validating the con
tents of the dialog. When the user dismisses that dialog, the event
loop in the DoChangeableDialog function will continue running.

The default action of the Validate function is to determine
whether any of the text fields in the dialog were specified as "re
quired" fields. This ensures that such text fields are never left
empty when the dialog is dismissed. In order to take advantage of
this automatic behavior, you need to check the isRequired

checkbox in the CDialogText settings for the field when the field's
characteristics are described in the VA. Of course, you can over
ride the Validate function in your dialog director (which, in our
case, would be the CNotebook class) and perform any validation
procedures you like. Validate returns a TRUE or FALSE value, and
that result determines whether the dialog is closed or not.

Creating a Text Style Modal Dialog 205

DoEndData Function Code

If the dialog was dismissed with the Cancel button, or if the OK
button was clicked and the Validate function returned a TRUE re
sult, then the dialog window will be closed and the DoModalDia
log function in the x_CNotebook class will eventually receive
control. When it does, it calls the DoEndData function with the
command code that was used to dismiss the dialog. The code in
the VA-generated DoEndData function is as follows:

void x_CNotebook::DoEndData(long theCormnand)
{

CNotebookData data;
RgnHandle rgn;

/* The initial value record */
/* Selection region */

/* If user canceled the dialog,*/
if (theCornmand == cmdCancel)/* return the initial values*/
{

data = saveData;

else
CollectPaneValues(data);// Get current pane values

EndData(&data); II Tell the derived class

saveData = data; II Now has current values

The foregoing code is the first step in the process of retrieving the
final settings in the dialog and returning these to the document
(or other caller) for its use. If the value of the theComrnand argu
ment is crndCancel, then the temporary data structure is
loaded with the saved data, from when the dialog was first en
tered, from the saveData variable. This ensures that the settings
returned to the document (or other caller) reflect the original set
tings if the user cancels the dialog. If the dialog is dismissed with
the OK button, then the foregoing code calls the CollectPaneVal
ues function to access each of the controls and fields in the dialog
and retrieve its current (final) value.

EndData Function Code

The value stored into the data structure is passed to the EndData
function. As stated previously, the data structure (an instance of
the CNotebookData structure) may contain either the original
settings (in case the dialog was dismissed by clicking the Cancel
button) or the final values (if the dialog was dismissed with the
OK button). The code for the EndData function is as follows:

206 Chapter 5 >Creating and Managing Dialogs

void CNotebook::EndData(CNotebookData *final)
{

II The values of all panes are returned by this function,
II which is called just before Close for a modeless dialog,
II or just before returning from DoModalDialog.

I I If DoModalDialog returns cmdCancel, EndData is called
II with the values initially supplied to BeginData, allowing
II you to back out any intermediate changes made in response
II to UpdateData. If you do not use UpdateData, you can
II test the value of dismissCmd to see whether to respond
11 to EndData.

II
II transfer the pane values into the itsSettings structure, in
II preparation for the transferral of that structure by the
II ExchangeSettings function.
II
itsSettings.nFontStyle = normal;
if (final->fNotebook_BoldCheck)

itsSettings.nFontStyle I= bold;
if (final->fNotebook_ItalicCheck)

itsSettings.nFontStyle I= italic;
if (final->fNotebook_UnderlineCheck)

itsSettings.nFontStyle I= underline;
if (final->fNotebook_OutlineCheck)

itsSettings.nFontStyle I= outline;
if (final->fNotebook_ShadowCheck)

itsSettings.nFontStyle I= shadow;
if (final->fNotebook_CondenseCheck)

itsSettings.nFontStyle I= condense;
if (final->fNotebook_ExtendCheck)

itsSettings.nFontStyle I= extend;

if (final->fNotebook_LeftRadio)
itsSettings.nFontJust = teFlushLeft;

if (final->fNotebook_JustCenterRadio)
itsSettings.nFontJust = teCenter;

if (final->fNotebook_JustRightRadio)
itsSettings.nFontJust = teFlushRight;

if (final->fNotebook_FontName[O] > 0)
'TCLpstrcpy (itsSettings.spFontName, final->fNotebook_FontName);

else
TCLpstrcpy (itsSettings.spFontName, "\pChicago");

if (final->fNotebook_FontSize[O] > 0)
TCipstrcpy (itsSettings.spFontSize, final->fNotebook_FontSize);

else
TCLpstrcpy (itsSettings.spFontSize, "\pl2");

II
II call the document's ExchangeSettings function to store the
II new settings into the document's copy only if the dialog
II was dismissed with the OK button.
II

if (dismissCmd == cmdOK)
{

((CMain *) itsSupe:rvisor) ->Ex:changeSettings (itsSettings, 'IRUE);

II
II free all of the font name strings allocated by the
I I BeginData function. The itsFontArray and itsSizeArray will

Creating a Text Style Modal Dialog 207

II be disposed when the corresponding lists are disposed.
II
StringPtr pFontName;
CArrayiterator iter (itsFontArray, kStartAtBeginning);
while (iter.Next (&pFontName))
{

free (pFontName) ;

Our version of the EndOata function in the CNotebook class
(shown in the foregoing code) takes the information from the
data structure (called final) and condenses it into the abbrevi
ated structure that we defined in the its Set tings variable.
This variable (also a structure) is an instance of the CTextSettings
structure shown on page 180. It is the value of the i tsSettings
variable that we pass back to the document as the result of the di
alog's execution.

Toward the end of the foregoing code, the ExchangeSettings func
tion is called with a reference to the itsSettings structure and
also a TRUE second argument, which tells the ExchangeSettings
function that the data are to be transferred from the dialog to the
document.

After the exchange of data is complete, the EndData function
cleans up by disposing of the font name strings that were allocated
when the dialog was first invoked. The contents of the two array
objects will be disposed automatically when their corresponding
lists are disposed (this is because the fOwnership argument of
the SetArray function is specified to be TRUE, indicating that the
list owned the array once it was made known to the list). If you
want to manage the storage for the array independently of the list,
then you must specify FALSE for the fOwnership argument in
the SetArray function call (see page 190 for an example of the Set
Array call for the font name list in the BeginData function).

Update Function Code

After the foregoing steps are complete, control returns to the
DoCmdNotebook function, whose code is shown beginning on
page 182. When DoModalDialog returns and it is determined
that the return value is cmdOK (indicating that the OK button
was clicked to dismiss the dialog), then the DoCmdNotebook
function calls the Update Window Text function to modify the ap-

208 Chapter 5 ~Creating and Managing Dialogs

pearance of the text within the Main view to reflect the new dia
log settings. The UpdateWindowText code is as follows:

void CMain::UpdateWindowText ()
{

short nFontNum, nFontSize;

GetFNum (settings.spFontName, &nFontNum);
nFontSize = atoi ((const char

*)&settings.spFontSize[l]);
fMain_TextPane->SetFontNumber (nFontNum);
fMain_TextPane->SetFontSize (nFontSize);
fMain_TextPane->SetFontStyle (normal);
fMain_TextPane->SetFontStyle (settings.nFontStyle);
fMain_TextPane->SetAlignment (settings.nFontJust);

The foregoing code uses the values in the set tings structure to
set the font name, size, style, and alignment for the text in the
Main view.

Creating a Category Editor Dialog

Let's assume that you have continued to develop the Business
View that was described in the previous chapter. If so, you may
have come to the point where you wish to construct a list of cate
gories that you can use to verify the user's transaction entries.

This task cries out for a modeless dialog in which the current list
of categories can be displayed alongside the normal account win
dow. The dialog will also provide the user with the means to cre
ate new categories, edit existing categories, or delete categories.

In addition to showing how to create and make use of modeless
dialogs, this example illustrates the similarities in the VA-gener
ated code for modeless and modal dialogs. The example also con
structs a modal dialog for creating or editing category names.

Creating the Dialog Views

I have created a new VA project to illustrate the features of the
Categories view and its associated NewCat view. I have not altered
the Main view that the VA creates by default, but have added new
views, as shown in Figure 5-9.

The first new view constructed was the NewCat view. I knew that
when the user wanted to enter a n•~W category that the means of

Figure 5-9
Views constructed for
Categories project

Creating a Category Editor Dialog 209

~D Uisual Rrchitect.rsrc
Categories tit
Main
Newcat

-0
~

doing so should be simple and accessible from the main Catego
ries view, but after the new category was entered, the screen space
taken up by that process shouldn't add to the size of the Catego
ries view. With these requirements in mind, I designed a sepa
rate, modal dialog, that could be opened from the Categories
view. By creating the modal dialog first, we can refer to it when
constructing the Categories view. Choose New View from the
V.Ns View menu to create the view. Enter the name "NewCat,"
and choose Dialog as the view type in the dialog that the VA dis
plays.

The NewCat view is shown in its completed form in Figure 5-10.
It is a simple view, with two Edit Text fields (the category name is
a required entry), a "Tax-Related" checkbox, and standard OK
and Cancel buttons. The "View Info" for the NewCat view is
shown in Figure 5-11. Note that the "modal" checkbox is checked
for the view and that the standard bordered dialog (third from the
right) is selected as the window type.

The Pane Info specifications for the category name (NewCat
Name) field are shown in Figure 5-12. Note that the isRe

quired checkbox is checked to ensure that the user enters a
nonempty string in that field. The Pane Info specifications for the
description (NewCatDescrip) field are shown in Figure 5-13.

The "Expense" and "Income" radio buttons are unremarkable and
need no additional explanation, except that I changed the setting
for the contrl Value attribute of the CControl class for the Ex
pense radio button to 1 so that it would be active initially.

210 Chapter 5 :>-Creating and Managing Dialogs

Figure 5-10
NewCat view fully
constructed

Figure 5-11
View Info for NewCat
modal dialog

D NewCat

New Category

Name:[...____ _____]

Description:

l._____J
D TaH-Related

@EHpense

0 lncomu

OK (Cancel]

Dialog Inf o

Na me : I NewCat

:::::============----~
Title : I New Category ===i

ID: 130

Window Class: I CDialog •I

Posi tion I Centered TI ;,,•:'l

~modal

0 '·'"eh1e

0 '•'"•'

([OK)J

(Cancel J

0 actClick

Widt h: I 219
~====~

Min Width: 140

Height : [1 99 proclD: ~
===::::::

Min Height: [40
===::::::

Max Height : [,_34_2 ___ ~ ~====~
Max Width : ~I s_12 ___ ~

The Pane Info specifications for t e Tax-Related (New Taxable)
checkbox are shown in Figure 5-14.

After the NewCat view has been constructed, we can turn our at
tention to the Categories view. Close the NewCat view, and then
choose New View from the View menu. Enter "Categories" as the
name, and select Dialog as the view type in the dialog that the VA
displays. The completed appearance of the Categories view is
shown in Figure 5-15. I have tried to minimize the screen real es
tate taken up by this view, so the buttons below the list of catego-

Figure 5-12
NewCarName field
specifications

Figure 5-13
NewCarDescrip field
specifications

Creating a Category Editor Dialog 211

NewCatName

Identifier: I NeW'CatName

Left: '~5_2 __ ~
Width: l._1_6_0 __ _,

CDialogText

Top: ~I 2_s __ ~

Height: ._I 1_6 __ ___.

maxValidlength: 12147483647

[8J is Req ui red

[8J validateOnResign

t> CEditText

t> CAbstractText

NewCatOescrip

Identifier: I NeW'CatDescri p

Left: Is
~===~

Width: l._2_0_4 __ ~

t> CDialogText

[> CEditText

t> CAbstractText

[> CPanorama
¢

Top: 176
~===~

Height: l._4_8 __ __,

lllill

ries are smaller than the normal size. This is a reasonable deviation
from the user interface guidelines. After constructing the "Use"
button and assigning it a command, I chose Set Default Com
mand from the View menu and specified the same command that
was assigned to the "Use" button. This allows the user to select a
category in the list and then press the return key to cause that cat
egory to be "used" for the current transaction. The intention is for
the Categories view to communicate the user's selections to the
CMain document class, as transactions are being entered and cat
egories are chosen. Also, the Use, Edit, and Delete buttons will be

212 Chapter 5 '>- Creating and Managing Dialogs

Figure 5-14
New Taxable
checkbox
specifications

Figure 5-15
Categories view fully
constructed

NewTirnable -

Identifier: I Ne'w'Taxable J
Left: I a Top: ~~

Width: 197 I Height:~~
[> CCb;')d:.Bvx

l> CButton

[> CControl

[> CPone

n Use

disabled unless a category is selected in the view's list. We can dis
able the buttons in the initialization function for the view and
then enable them when the ProvlderChanged function receives
notification that a list entry has been selected. The New button
should always be enabled, because: we want the user to be able to

enter new categories at any time.

The Pane Info specifications for rhe category list (CatTable) are
shown in Figure 5-16. Note that the selOnlyOne checkbox is

Figure 5-16
CarTirle lisr
specificarions

Creating a Category Editor Dialog 213

D Callable

Identifier: I CatTable

Left: 14 Top: ~14 ___ _,
Width: ~I 2_1_2 __ _, Height: ~I 1_a_a __ _,

I> CCatTable

I> CM·ruuP111w

p CTable

top left Indent : h: EJv: EJ
dra\./ order I tbl Rw ,.. I
def Ro\./ Height: I 1 8

::=:=====~
defColWidth: I so

;;;~::n::·,m~~-u-'.-:'-::-t·-:~-~-t :~ •I I
¢ L J:mm:m::::::::::::mmm::m::::::::::::m:::::J:::::::::::::::::mmm::m::::::::mrnm:m::::::::mmm::m::::::::::::mm:[¢ 12:i

checked and that the cmdUseCat command was assigned to the
list. The command is issued when the user double-clicks on an en
try in the list. You will notice that our CatTable list is created
from the CCatTable object, which is a new class that was created
in the VA. It is derived from the CArrayPane class so that we can
supply the contents for the table, when called to do so, in the Get
CellText override function (see page 237).

The Pane Info specifications for the Use button are shown in Fig
ure 5-17. Note that the cmdUseCat command has been assigned
to this button as well, allowing the user to select a category and
click the button or press the Return key to cause that category to
be used in the current transaction.

The Pane Info specifications for the Edit button are shown in
Figure 5-18. The cmdEditCat command was assigned to this
button.

The Pane Info specifications for the New button are shown in Fig
ure 5-19. The cmdNewCat command was assigned to this button.

214 Chapter 5 ~Creating and Managing Dialogs

Figure 5-17
Use button
specifications

Figure 5-18
Edit button
specifications

UseCat

Identifier: ._I u_s_ec_a_t ______ ~

Left: 19 Top: ~-3 --~
Width: 147 Height:~--~

CButton

Command: I cmdUseCat

I> CControl

!iiO EditCat ~

Identifier: I EditCat :=:=J
Left: 165 Top: ~._s __ ~

Width: 147 Height:@_· __ __,

CButton

Command: I cmdEditCat TI
I> CControl

...

111111

The Pane Info specifications for the Delete button are shown in
Figure 5-20. The cmdDeleteCat command was assigned to this
button.

The command behavior for the various buttons is different. The
Use button is specified to "Call" a function in the CCategories
class when the command is issued. Both the Edit and New but
tons are specified to "Open" the CNewCat view. The Delete but
ton is specified to "Call" a function in the CCategories class when
the command is issued.

Figure 5-19
New button
specifications

Figure 5-20
Delete button
specifications

Creating a Category Editor Dial.og 215

== NewCat

Identifier: l N_e_w_ca_t _______ _,

Left: I 1_1_a __ _.

Width: .__I 4_7 __ ___.

CButton

Command: I cmdNewCat

t> CControl

t> CPane
¢

Top: I 2_o_s __ _.

Height: .__I 1_6 __ ___.

D DelCat

Identifier: l.__o_e_lC_at _______ __,

Left: I 170 Top: I 2_o_s __ _.

Width: .__I 4_7 __ ___. Height: .__I 1_6 __ ___.

p CButton

111111

Finally, in addition to the views, an Account menu was con
structed and a single menu item (command) was added to it. The
command entry is named Categories and the command assigned
to that menu item is cmdEdi tCategories, for which the be
havior to "Open" the CCategories view was assigned.

The foregoing creates the user interface framework for what we
want to accomplish. At this point, choose the Generate All com
mand from the V/\s project menu, and then compile and execute

216 Chapter 5 >Creating and Managing Dialogs

Figure 5-21
Categories
application in
execution, with all
views shown

Categories

New Category

Name: I Mortgage

Description:

M1~ City Mortgage Co.
Recount #12-345-67-8-9~

181 TaH-Related
® EHpense

0 Income

K OK JJ (Cancel)

the application. After the application commences execution, the
Main window will appear. Choose the Categories command from
the Account menu to see the new Categories view. To also see the
NewCat modal dialog, click either of the New or Edit buttons.
The result should be similar to what is shown in Figure 5-21.
Note that we have altered the size of the Main view and have en
tered a new category into the NewCat modal dialog.

Examining the CMain Code

In order to "run" the Categories dialog, a number of functions
were built into the CMain class to handle interaction with the di
alog. Because the Categories dialog is modeless, it will remain on
the screen until the user dismisses it explicitly. Therefore, when
the user adds a new category, modifies an existing category, deletes
a category, or even "uses" an existing category, the document
needs to be notified of this fact. The list of categories is kept in the
document, rather than in a member variable of the CCategories
class, mainly because the document survives the closure of the di
alog. That is, the user may elect to define some categories in the
dialog and then close the dialog window to make its screen space
available for something else. In this scenario, you certainly
wouldn't want the newly defined categories to be discarded.

Creating a Category Editor Dialog 217

A new CArray member variable was added to the CMain class to
hold all of the category information. Because there is more than
just the category name to consider, a new class called CCat was
created, which defines member variables and access functions for
each of a category's related data items (name, information, type
[that is, expense or income], and tax-related status). The array in
CMain.h holds a CCat object for each category that is defined.

CMain.h Header File Contents

The contents of the CMain.h header file includes prototypes for
new member functions as well as the CArray and is as follows:

/***
CMain.h

Header File For CMain Document Class

Copyright © 1995 Richard 0. Parker. All rights reserved.

Generated by Visual Architect™ 12:02 PM Wed, Dec 14, 1994

***/

#pragma once
#include "x_CMain.h"
class CArray;
class CCat;

class CMain public x_CMain
{
public:

TCL_DECLARE_CLASS

CArray *categories; II list of category names
void ICMain(void);

virtual void MakeNewContents (void} ;
virtual void ContentsToWindow(void);
virtual void WindowToContents(void);

virtual
virtual
virtual
virtual

void AddCategory (CCat *aCat);
void DelCategory (long index);
ccat* GetCategory (long index);
void Setcategory (CCat *aCat,

long index);

II add a category
II delete a category
II find a category
II store category

virtual void SetSelectedCategory (long index); 11 handle
virtual void DoCmdEditCategories (void); II override

"use"

private:

virtual void SortCat (); II sort category list
} ;

#define CMainFType 'TEXT'

218 Chapter 5 >Creating and Managing Dialogs

The newly added portions of the foregoing header file are anno
tated with comments. The categories variable is a pointer to a
CArray object that we will create when the document is initial
ized. The newly added functions that interface with the CCatego
ries class include AddCategory, DelCategory, GetCategory,
SetCategory, SetSelectedCategory, and the "private" SortCat func
tion. The DoCmdEditCategories function is an override of the
function of that same name that the VA generated into our
x_ CMain class to handle the Categories command from the Ac
count menu. The SortCat function was defined to be private be
cause it is used only by the category-oriented member functions
that were added to the class.

ICMain Function Code

A single statement was added to the ICMain function in order to
create the categories array when the document is initialized.
The code is as follows:

void CMain::ICMain()
{

Ix_CMain () ;

II create the categories list
categories = TCL_NEW (CArray, (sizeof (CCat *)));

The foregoing code illustrates that the base class function is called
first, and then the categories array is created. It also indicates
that the size of each element of the array is what is required to
hold a pointer to a CCat object.

The constructor of the CArray object also takes an optional sec
ond argument that specifies the number of slots that are allocated
each time the array is expanded. By default, the value of this argu
ment is 3. You can provide your own value for this argument if
you wish, but the default value will minimize the amount of stor
age taken up by unused members of the array.

AddCategory Function Code

The AddCategory function is called by the command handler for
the ''Add" button in the Categories dialog to add a new category
to the document's categories array. The code for this function
is as follows:

Creating a Category Editor Dialog 219

void CMain::AddCategory (CCat *aCat)
{

II
II the easiest way to add a category is to add it
II to the end of the array and then sort the array.
II
categories->Add (&aCat);
SortCat();

The comments in the foregoing code indicate the methodology
used for adding new categories; the list of categories is kept alpha
betized at all times. You'll also note that no attempt is made to en
sure that duplicate category names aren't added. Code to perform
that function could be added later.

DelCategory Function Code

The DelCategory function is called to delete a category from the
categories array. The code is as follows:

void CMain::DelCategory (long index)
{

long num = categories->GetNumitems();

if (index <= num && index >= 1)
{

categories->Deleteitem (index);

The foregoing code takes an array index as its argument, validates
the index, and then uses it to call the Deleteltem function of the
CArray class.

GetCategory Function Code

The GetCategory function provides the means for a category to
be accessed from the categories array. The code is as follows:

CCat* CMain: :GetCategory (long index)
{

CCat *aCat;
long num;

num = categories->GetNumitems();
if (index > num 11 index < 1)
{

return NULL;

categories->GetArrayitem (&aCat, index);

220 Chapter 5 > Creating and Managing Dialogs

return acat;

The foregoing code takes an array index as its argument, validates
the index, and then uses it in the call to the GetA.rrayltem func
tion of the CArray class. The return value from the function is a
pointer to a CCat object (which contains all of the information
pertinent to a category entry).

SetCategory Function Code

The SetCategory function provides the means to store a category
back into the categories array. The code is as follows:

void CMain::SetCategory (CCat *aCat, long index}
{

CCat *theCat = GetCategory (index};
if (theCat == NULL}
{

ASSERT (!"Invalid category index"};

DelCategory (index};
AddCategory (aCat};

The foregoing code takes a pointer to a CCat object and the orig
inal index of that object in the categories array. The purpose
of the function is to replace an existing entry with a new version
of that same entry (when the user '"edits" the category). The func
tion performs its task by calling the GetCategory function to re
trieve the original category entry using the supplied index (simply
to verify that the category entry exists), then deletes the existing
category, and, finally, adds the new CCat object to the array by
calling the AddCategory function.

SortCat Function Code

The SortCat function performs a simple N 2 algorithm to sort the
elements of the categories array into alphabetical sequence ac
cording to the category name. The code is as follows:

void CMain:: SortCat (}
{

CCat *pCat, *neat;
Str255 pName, nName;

CArrayiterator plter (categories, kStartAtBeginning};
CArrayiterator nlter (categor.Les, 0};

Creating a Category Editor Dialog 221

II
II perfonn a simple NA2 sort of the categories array
II
while (piter.Next (&peat))
{

pCat->GeteatName(pName);
niter.MoveTo (piter.Geteursor());
while (niter.Next (&neat))
{

neat->GeteatName(nName);
if (IUeompString(nName, pName) < 0)
{

categories->Swap (piter.GetCursor(), niter.GetCursor());

The foregoing code is very straightforward, but it uses two CAr
raylterator objects to iterate through the array. The outer loop
commences with the piter iterator initialized to the beginning
of the array. Following its initialization, the piter iterator is used
to access the next (first) CCat object and then call its GetCat
Name access function to get the object's category name. The inner
loop commences with the niter iterator initialized to the posi
tion immediately following the piter iterator. The inner loop
accesses the next CCat object in the list and uses its pointer to call
the GetCatName function for the object to get the object's cate
gory name. The IUCompString function (a toolbox routine) is
used to compare the two category names. If the object addressed
by the niter iterator has a name that should precede the object
addressed by the piter iterator, then the two entries are swapped
by calling the Swap function of the CArray class. Notice that, in
this case, we are merely swapping object pointers, so the sort algo
rithm is fairly efficient-certainly enough for our purpose. We
will cover more about collections and iterators in a later chapter.

SetSelected Category Function Code

The code for the SetSelected category function is called when the
user selects a category from the list in the Categories dialog and
then clicks the "Use" button. The skeleton code for this function
is as follows:

void CMain::SetSelectedCategory (long index)
{

II this function is errpty, rut it should be revised to store
I I the relevant information from the specified category index

222 Chapter 5 >- Creating and Managing Dialogs

II into the currently active account entry.

As is apparent in the foregoing, I have not implemented any spe
cific behavior when the function is called. I presume that if users
are editing account transactions they will store the selected cate
gory into the current transaction. Because the main purpose of
this example application is to show the functionality of the mode
less Categories dialog, I didn't feel justified in obscuring that with
a lot of other code.

DoCmdEditCategories Function Code

When the Account menu was created in the VA, a single menu
command called Categories was also added. The code specified
that the behavior when choosing the Categories command was to
respond to the cmdEdi tCategories command by calling a
function that the VA has named DoCmdEditCategories. The
original code for this function is generated into the x_ CMain
class, automatically, and you saw the result of choosing the func
tion in Figure 5-21. The Categories dialog window is opened
when the function is executed. However, because we also wish to
disable several of the buttons when the dialog is first opened, the
base class code is overridden, as follows:

void CMain::DoCmdEditCategories()
{

ccategories *dialog;

dialog= TCL_NEW(CCategories, ());
dialog->ICCategories(this);
dialog->BeginDialog();
dialog->DisableButtons();

The foregoing code creates a CCai:egories object, whose pointer is
stored into the dialog variable. The ICCategories initialization
function is called to create the dialog's window and controls, the
BeginDialog function is called to display the dialog, and then the
DisableButtons function is called m ensure that the Use, Edit, and
Delete buttons are inactive when the dialog is first opened.

Notice that, unlike a modal dialog where control doesn't return to
the caller until the user dismisses the dialog, the BeginDialog
function returns control after activating the dialog, so that we can

Creating a Category Editor Dialog 223

continue to execute and process normal events. Of course, the
pointer to the CCategories object is lost when the DoCmdEdit
Categories function returns, but we don't need to communicate
with the dialog. It will communicate with the CMain object by
storing the CMain object pointer (this) as the value of the
i tsSupervisor variable. If you need to retain a pointer to the
dialog for any reason, then you could set aside a member variable
in the CMain class to hold it.

Examining the CCategories Code

The CCategories class holds all of the code that is relevant to the
operation of the Categories dialog. The dialog is constructed from
the code generated into the x_ CCategories base class source file
and the custom code to support the behavior of the dialog is
vested in the additions we have made to the CCategories derived
class. The following sections discuss the relevant portions of both
the base class and its derived class.

One thing you'll notice in the case of a modeless dialog is that the
code is structured very much like that of the modal dialog. For ex
ample, when the dialog is first invoked, the BeginData function is
called to initialize the contents of the various subpanes of the dia
log (that is, its controls). Also, when the dialog is closed (in this
instance, the user must "close" the dialog, rather than dismiss it)
the EndData function is called to allow the current (final) settings
to be saved. Also, as for the modal dialog example, the various
subpanes of the dialog window, as well as the window itself, are
constructed in the MakeNewWindow function, which is called
from the object's initialization code.

When a modeless dialog is running, its events are posted in the
normal event queue and are handled just the same as other events.
So, in the respect that a modeless dialog allows the user to choose
menu commands and interact with windows other than the dialog
when it is open, a modeless dialog is not much different than a
normal window and is handled in much the same way by the TCL.

The x_CCategories Class Header File

The intrinsic features of the Categories dialog are provided by
member variables in the x_ CCategories.h header file, and the data
exchanged while the dialog is running are held in structures de
fined in that file as well. The contents of the file are as follows:

224 Chapter 5 :>- Creating and Managing Dialogs

/********************************~****************************
x_CCategories.h

Header File For CCategories Lower-Layer Dialog Class

Copyright © 1995 Richardo. Parker. All rights reserved.

Generated by Visual Architect™

This file is rewritten each time you generate code. You should
not make changes to this file; changes should go in the My.h
file, instead.

If you want to change how Visuctl Architect generates this
file, you can change the template for this file. It is
"_Dialog.h" in the Visual Architect Templates folder.

***/

#pragma once
llinclude "CDialogDirector.h"

class CCatTable;
class CButton;

II Data struct for initializing dialog items
// and receiving changed value:~

typedef struct
(

/*Array pane (table)*/
Point fCategories_CatTable;

CCategoriesData;

I I We define a separate struct for UpdateData () which
II eliminates duplicate data types

typedef struct
(

Str255 stringvalue;
long longvalue;
short value;
Point selection;

CCategoriesUpdate;

II CDialogText
II CintegerText
II All o~her controls and buttons
II CArrayPane

class CDirectorOwner;
class CPanorama;
class CPane;

class x_CCategories
(
public:

TCL_DECLARE_CLASS

public CDialogDirector

II Pointers to panes in window
CCatTable *fCategories_CatTable;
CButton *fCategories_UseCat;
CButton *fCategories_EditCat;
CButton *fCategories_NewCat;
CButton *fCategories_DelCat;

void Ix_CCategories(CDirectorOwner *aSupervisor,
Boolean push= FALSE);

virtual long DoModalDialog(long defaultCmd);

virtual Boolean
virtual void

long reason,
virtual void
virtual void

Creating a Category Editor Dialog 225

Close(Boolean quitting);
ProviderChanged(CCollaborator

void* info);
DoCommand{long theComma.nd);
UpdateMenus {void) ;

*aProvider,

protected:
Boolean ignore;

virtual void MakeNewWindow{void);

II Pull-style functions
virtual void BeginData{CCategoriesData *initial);
virtual void UpdateData{CCategoriesUpdate *update,

long i temNo) ;
virtual void EndData{CCategoriesData *final);

II Push-style functions
virtual void SetData{const CCategoriesData& initial);
virtual void GetData{CCategoriesData& final);

virtual void
virtual void

virtual void
virtual void
virtual void
virtual void

DispensePaneValues { const CCategoriesD:lta& data) ;
CollectPaneValues{CCategoriesData& data);

DoCmdUseCat{void);
DoCmdEditCat{void);
DoCmdDeleteCat{void);
DoCmdNewCat {void) ;

CPane *FindPane{long ID);

private:
virtual void
virtual void

DoBeginData{Boolean push);
DoEndData{long theCommand);

} ;

#define CVueCCategories 129

The main features of the foregoing declarations are the member
variable declarations for the pointers to panes in the window and
the declarations for functions to implement the behaviors for the
controls. In addition, lx_CCategories (initialization), MakeNew
Window, BeginData, and EndData are standard functions in any
dialog, either modal or modeless.

lx_CCategories Function Code

The Ix_CCategories function is called by the ICCategories func
tion right after the CCategories object is first constructed in the
DoCmdEditCategories function (see page 222). The code for the
Ix_ CCategories function is as follows:

void x_CCategories::Ix_CCategories{CDirectorOwner *aSupervisor,
Boolean push)

IDialogDirector{aSupervisor);

II There are several circumstances where we don't want

226 Chapter 5 ~ Creating and Managing Dialogs

II ProviderChanged to be called. During initialization,
II during calls to UpdateData, etc. The ignore flag
II heads these off.

ignore = TRUE;
MakeNewWindow();
DoBeginData(push);
ignore = FALSE;

I* Don' t call UpdateData now *I
I* Create the dialog' s window *I
I* Gather initial values *I

It is interesting to compare the foregoing code with what was gen
erated by the VA for the Notebook modal dialog in its
Ix_CNotebook function on page 184. You'll notice that the code
is identical. This is because, at least in the beginning, both modal
and modeless dialogs are initialized in the same fashion.

The rationale for setting the ignore variable to TRUE, creating
the window, initializing the dialog's controls, and then setting the
ignore variable to FALSE was discussed on page 185.

MakeNewWindow Function Code

The first main task of the Ix_ CCategories function is to create the
objects that define the controls and other panes in the dialog. The
MakeNewWindow function accomplishes this task with the code
that follows:

void x_CCategories::MakeNewWindow(void)
{

itsWindow = TCLGetNarnedWindow("\pCategories", this);

II Initialize pointers to the subpanes in the window

fCategories_CatTable = (CCatTable*) FindPane (kCategories_CatTableID) ;
ASSERT(member(fCategories_CatTable, CCatTable));

fCategories_UseCat = (CButton*) FindPane(kCategories_UseCatID);
ASSERT(member(fCategories_UseCat, CButton));

fCategories_EditCat = (CButton*) FindPane(kCategories_EditCatID);
ASSERT(member(fCategories_EditCat, CButton));

fCategories_NeWCat = (CButton*) FindPane(kCategories_NewCatID);
ASSERT(member(fCategories_NeWCat, CButton));

fCategories_DelCat = (CButton*) FindPane (kCategories_DelCatID);
ASSERT(member(fCategories_DelCat, CButton));

The foregoing code calls the TCLGetNamedWindow function to
access the 'cvue' resource for the specified window name and
then makes calls to the FindPane function to locate each subpane
with its associated identifier in the VA-constructed 'cvue' re-

Creating a Category Editor Dialog 227

source. This constructs the window and its subpanes, but they are
not yet made visible to the user. The window and its contents are
made visible only after the BeginDialog function is called in the
DoCmdEditCategories function (see page 222).

Although the next action in the Ix_CCategories function is to call
the DoBeginData function (which calls BeginData), we will defer
an examination of the BeginData function for a moment, while
we catch up with the code in the CCategories derived class.

The CCategories Class Header File

The header file for the CCategories class contains declarations
that were generated by the VA as well as declarations that were
added to customize the code. Our declarations contain comments
that indicate that they have been newly added. The header file is
as follows:

/***
CCategories.h

CCategories Dialog Director Class

Copyright © 1995 Richard 0. Parker. All rights reserved.

Generated by Visual Architect™ 12:02 PM Wed, Dec 14, 1994

This file is only generated once. You can modify it by filling
in the placeholder functions and adding any new functions you
wish.

If you change the name of the dialog class, a fresh version
of this file will be generated. If you have made any changes
to the file with the old name, you will have to copy those
changes to the new file by hand.

***/

#pragma once
#include "x_ccategories.h"

class CDirectorOwner;
class CCat; II newly added

class CCategories : public x_CCategories
{
public:

TCL_DECLARE_CLASS

II Insert your own public data members here
CCat *settings; II newly added

void ICCategories(CDirectorOwner *aSupervisor);
virtual void ProviderChanged(CCollaborator *aProvider,

228 Chapter 5 ~ Creating and Managing Dialogs

long reason, void* info);
virtual void DoCommand (long theCommand) ;

virtual void ExchangeSettings (CCat *&aCat, II new
Boolean from) ;

virtual void DisableButtons (void); II new

protected:

} ;

virtual void
virtual void

long i temNo) ;

BeginData(CCategoriesData *initial);
UpdateData(CCategoriesUpdate *update,

virtual void EndData(CCategoriesData *final);

virtual void
virtual void
virtual void
virtual void

DoCmd.UseCat(void); II override
DoCmdEditCat(void); II override
DoCmd.DeleteCat(void); II override
DoCmdNewCat (void) ; I I override

In the foregoing, I added the declaration of the settings vari
able, which is a pointer to a CCat object; I also added the Ex
changeSettings and DisableButtons public member function dec
larations, as well as the DoCmdUseCat, DoCmdEditCat,
DoCmdDeleteCat, and DoCmdNewCat protected function dec
larations to override what the VA generated for those functions in
the x_ CCategories class. All of the remaining declarations and
content were generated by the VA

ICCategories Function Code

The ICCategories function is called by the DoCmdEditCatego
ries function of the CMain class when the user chooses the Cate
gories command from the Account menu. The code for that
function is shown beginning on page 222. The code for the IC
Categories function is as follows:

void CCategories::ICCategories(CDirectorOwner *aSupervisor)
{

II Initialize data members that must be set up before
II BeginData is called here.

x_CCategories::Ix_CCategories(aSupervisor, FALSE);

The foregoing code merely calls the Ix_ CCategories function to
perform the initialization for the CCategories object. That code
was shown beginning on page 225.

Creating a Category Editor Dialog 229

BeginData Function Code

The BeginData function is called during the initialization process
to specify the initial values for each of the dialog's panes. The
newly modified version of this code is as follows:

void CCategories::BeginData(CCategoriesData *initial)
{

I I Base class calls BeginData once after the window is created
II to gather the initial values for the dialog panes. Note
II that BeginData is called *before* Ix_CCategories returns.
II The initial struct is cleared to zeros.

11 Calling CollectPaneValues copies the initial values you set
II in Visual Architect from the panes. This lets you
II use these values as the starting point every time the
II dialog is run. If you want to use values determined by your
II program instead, omit this call.

CollectPaneValues(*initial);

II Specify the array associated with the category list. By
II doing so, the table will be redrawn by calling its
II GetCellText function. Note: we do _not_ own this array.
II It's owned by the document.
fCategories_CatTable->SetArray (((CMain *)itsSupervisor)

->categories, FALSE);

The only change made to the foregoing function was to assign the
categories array (defined in the CMain class) as the array asso
ciated with the CCatTable (CArrayPane-derived) object in the di
alog. As the comments indicate, we do not want the CCatTable
object to own the array, because we do not want the array to be
disposed when the dialog is dosed. Therefore, we provide FALSE

as the second argument to the SetArray call. When we execute the
SetArray call and the array is "attached" to the CCatTable object,
the code in the SetArray function will cause the list to be redrawn
with any existing category names, automatically. It does this by
adding as many rows as there are entries in the array and then calls
the Refresh function of the CTable class to cause the GetCellText
function to be called to furnish the contents to be drawn for each
row. Our CCatTable class defines the GetCellText function (see
page 237) for just this purpose. I should emphasize that anytime
you create a CArrayPane object in the VA, you should create a de
rived class of CArrayPane (also within the VA) to implement ei
ther or both of the DrawCell and GetCellText functions. For the
Categories dialog, the list is defined to be implemented by the

230 Chapter 5 >Creating and Managing Dialogs

CCatList class (inheriting most of its functionality from the CAr
rayPane and CTable base classes, of course).

DisableButtons Function Code

When we first created the Categories dialog and called its Begin
Dialog function to cause it to be shown, we then called the Dis
ableButtons function to disable the Use, Edit, and Delete buttons
in the dialog. The code for that function is as follows:

void CCategories::DisableButtons (void)
{

fCategories_UseCat->Deactivate();
fCategories_EditCat->Deactivate();
fCategories_DelCat->Deactivate();

CmdUseCat Function Code

When any of the Use, Edit, New, or Delete buttons is dicked, a
corresponding command is dispatched (see pages 212-214 for the
button command assignments) to the current gopher's DoCom
mand function. The VA has generated code in the DoCommand
function of the x_ CCategories class to handle the button com
mands by calling an appropriate fonction. In the case of the Use
button, the CmdUseCat function is called. We have overridden
the VA-generated code in the CCategories class, as follows:

void CCategories::DoCmdUseCat()
{

Cell aCell = {0, 0};

if (fCategories_CatTable->GetSelect (TRUE, &aCell))
{

((CMain *}itsSUpervisor)->SetSelectedCategory (aCell.v+l);

In the foregoing code, we handle the "click command" for the Use
button by accessing the category list to determine the currently se
lected item, and then call the SetSelectedCategory function in the
CMain (itsSupervisor) object. That fonction is shown beginning
on page 221.

CmdDeleteCat Function Code

The "click command" for the Delete button is also handled by the
DoCommand function in the x __ CCategories class. It calls the

Creating a Category Editor Dialog 231

CmdDeleteCat function, which we have overridden to provide
the custom behavior we require. The code is as follows:

void ccategories: :DoCmdDeleteCat()
{

Cell theCell = {0, 0};

if (fCategories_CatTable->GetSelect (TRUE, &theCell))
{

long index = theCell.v + l;
((CMain *}itsSupervisor}->DelCategory (index};

As for the Use button, the foregoing code determines the index of
the selected category that the user wishes to delete and then calls
the DelCategory function in the CMain class (itsSupervisor) to
perform the operation. Recall that the CMain (document) class
"owns" the array in which the categories are stored, so it is sensible
for it to perform the management functions for that array's con
tents. The DelCategory function is shown on page 219.

CmdNewCat Function Code

We purposely left the explanations of the New and Edit button
"click commands" until last, because both of these invoke the
NewCat modal dialog to allow the user to create or edit a category
entry. We will cover the source code for the CNewCat class
shortly, but it is very similar in structure to what was presented
earlier for the Notebook dialog (see pages 184-208). As with the
other buttons in the Categories dialog, when the New button is
clicked, the DoCommand function in the x_ CCategories class is
called to handle that command. The DoCommand function, in
the case of the cmdNewCat command, calls the CmdNewCat
function to open the NewCat dialog. You can see that it performs
this task, automatically, by looking at the skeleton VA-generated
code and the result of compiling and executing that code, shown
in Figure 5-21. However, because we wish to customize the be
havior of the NewCat dialog, the CmdNewCat function is over
ridden. The newly added code is as follows:

void CCategories::DoCmdNeWCat(}
{

CNeWCat *dialog;

II create a new CCat object as the "settings"
settings= TCL_NEW (CCat, ()};

232 Chapter 5 > Creating and Managing Dialogs

II then create and run the CNewCat dialog
dialog= TCL_NEW(CNewCat, ());
dialog->ICNewCat(this);

if (dialog->DoModalDialog(cmdNull) == cmdOK)
{

((CMain *) itsSupervisor) ->AddCategory (settings);

else
{

II if the user dismissed the dialog with Cancel,
II we want to delete the CCat object.

TCLForgetObject (settings);
}
TCLForgetObject(dialog);

The foregoing code is fairly straightforward. If you recall, we have
defined a member variable in the CCategories class that holds a
pointer to a CCat object (see page 228 for the definition in the
CCategories.h header file). The foregoing code creates a new
CCat object and stores its pointer into the set tings variable.
The contents of this variable are transferred to the NewCat dialog
to establish the initial settings. In this case, a new category is being
defined, so the settings are empty (we will cover the code for the
CCat constructor function shortly).

The DoCmdNewCat function continues by creating the CNew
Cat object (dialog) and then running the dialog by calling Do
ModalDialog. During the time that the NewCat dialog is
running, no other tasks can be undertaken, because it is a modal
dialog. If the user dismisses the dialog with its OK button, then
the foregoing code calls the AddCategory function of the CMain
class (itsSupervisor) to add the newly specified category to the
document's array. This addition will cause the CTable class, by
virtue of the intimate connection between the CArray object and
the table, to cause the newly added category to be drawn into the
CCatTable list. This occurs as a result of the CArray object (the
provider) calling the BroadcastChange function with a message
type of arrayinsertElement, that the CArrayPane class (the
dependent) interprets as an instruction to add a new row to the
table. The CTable class handles the AddRow function call by call
ing the GetCellText function (which we override in our CCatTa
ble class) to furnish the contents for the newly added row. In this
case, our function will provide the newly added category name to
that function. The AddCategory function code is shown begin
ning on page 218.

Creating a Category Editor Dialog 233

The DoCmdNewCat function also handles the case where the
user dismisses the NewCat dialog with the Cancel button. In that
case, because we have created a CCat object, we need to delete
that object, because it will not be added to the document's array.
In any case, the function completes its work by deleting the
CNewCat dialog object.

DoCmdEditCat Function Code

When the user has selected an existing category name in the list
and clicks the Edit button, the DoCommand function in the
x_CCategories class handles this command by calling the Do
CmdEditCat function, that we have overridden, as follows:

void CCategories::DoCmdEditCat()
{

CNewCat *dialog;
Cell aCell = (0, O};

II Get a pointer to the category to be edited, but don't do
II anything if a cell isn't selected in the list of category
11 names.

if (fCategories_CatTable->GetSelect (TRUE, &aCell))
{

long index= aCell.v + l;
settings= {(CMain *)itsSupervisor)->GetCategory(index);

II Respond to command by opening a dialog

dialog= TCL_NEW(CNewCat, ());
dialog->ICNewCat(this);
if (dialog->DoModalDialog(cmdNull) == cmdOK)
{

((CMain *)itsSupervisor)->SetCategory(settings, index);
}
TCLForgetObject(dialog);

Unlike the DoCmdNewCat function, we do not have to create a
CCat object. The object already exists. In this case, we determine
which entry in the list the user has selected and access the object
by calling the GetCategory function from the CMain class. Then
the foregoing code "runs" the dialog. If the user dismisses the dia
log with the OK button, then we call the SetCategory function of
the CMain class to store the revised category description back into
the document's categories array. If the user dismisses the dia
log with the Cancel button, we don't have to do anything more.
In either case, however, we delete the CNewCat dialog object.

234 Chapter 5 >Creating and Managing Dialogs

ExchangeSettings Function Code

When the CNewCat dialog runs, we must provide it with initial
settings. When the dialog is dismissed with the OK button, and
just before it is disposed, we must receive the final settings of the
dialog. Our ExchangeSettings function serves both purposes and
is as follows:

void CCategories::ExchangeSettings (CCat *&aCat, Boolean from)
{

if (from)
{

acat = settings;

else
{

settings = aCat;

Note that the foregoing function uses a reference to a CCat object
pointer as its first argument and that the second argument indi
cates whether the contents of the pointer are to be loaded from the
CCategories class, or the contents of the pointer are to be stored
into the settings variable of the CCategories class. We will see
how the ExchangeSettings function operates when we examine
the code for the CNewCat dialog class.

Examining the CNewCat Dialog Code

The CNewCat class and its x_CNewCat base class implement a
modal dialog in much the same fashion as has already been de
scribed for the Notebook dialog, earlier in this chapter. The New
Cat dialog is modal, which means that when it is "running," no
other actions can be taken by the user until it is dismissed.

As with the Notebook dialog (and the Categories dialog as well),
the initialization code calls the MakeNewWindow function to
create the dialogs window and its panes and then calls the Begin
Data function to specify the initial values for the dialog's panes. It
is at the point of the call to BeginData that we will examine this
dialog's code.

BeginData Function Code

We have customized the code for the BeginData function so that
we can initialize the dialog's panes with values supplied by a call to

Creating a Category Editor Dialog 235

the ExchangeSettings function that was shown on page 234. The
newly added code to the BeginData function is as follows:

void CNeWCat: :BeginData(CNeWCatData *initial)
{

Str255 name;

CollectPaneValues(*initial);

II Exchange the settings and specify the pane values
II if new data are supplied.
((CCategories *)itsSupervisor)

->ExchangeSettings (itscategory, TRUE);
itsCategory->GetCatName (name) ;
if (name[OJ > 0)
{

II an existing category object was supplied, so use its
II member values.

itsCategory->GetCatName(initial->fNeWCat_NeWCatName);
itsCategory->GetCatDescrip(initial->fNeWCat_NewCatDescrip);
if (itsCategory->GetCatType() == k:NeWCat_ExpenseID)
{

initial->fNeWCat_Expense = l;
initial->fNeWCat_Income = O;

else
{

}

initial->fNeWCat_Expense = O;
initial->fNeWCat_Income = l;

initial->fNewCat_NewTaxable = itsCategory->GetCatTaxable();

I have kept the VA-generated call to the CollectPaneValues func
tion, but then call the ExchangeSettings function to access the
CCat object that contains the settings we wish to substitute for
the initial values. I determine whether the object retrieved from
the CCategories class is newly created by testing whether its name
field is empty. If so, then the settings specified by the execution of
the CollectPaneValues function are used. If, however, the name
field is not empty, then the foregoing function extracts the set
tings for the various panes by calling the access functions in the
CCat class to ascertain their values. I have stored a single variable
in the CCat object to indicate which of the Expense or Income ra
dio buttons was previously set and then use the identifier stored in
that variable to determine the states of the two buttons. I also ac
cess the category name, its description string, and its tax-related
status (checkbox) value. These values are stored into the initial
structure that the VA-generated code has provided as an argument
to the BeginData function.

236 Chapter 5 >Creating and Managing Dialogs

EndData Function Code

In contrast to our approach to the Notebook modal dialog, we
aren't interested in handling changes to the various settings until
the user has dismissed the dialog. Therefore, I have not included
any code to customize the UpdateData function for the CNewCat
dialog class. The EndData function, however, is called when the
dialog has been dismissed by the user. We are very interested in
preserving the values that have been entered, but only if the OK
button was used as the dialog's dismisser. The code is as follows:

void CNewCat::EndData(CNewCatData *final)
{

if (dismissCmd == cmdOK)
{

II use the final values to update the category entry

itsCategory->SetCatName (final->fNewCat_NewCatName);
itsCategory->SetCatDescrip (f:Lnal->fNewCat_NewCatDescrip) ;
itsCategory->SetCatTaxable (Einal->fNewCat_NewTaxable);
if (final->fNewCat_Expense > O)
{

itsCategory->SetCatType (kNewCat_ExpenseID);

else
{

itsCategory->SetCatType (kNewCat_IncomeID);

((CCategories *)itsSupervisor)
->ExchangeSettings (itsCategory, FALSE);

The first thing to check in the forc~going code is the value of the
dismissCmd variable, which holds the command associated with
the button used to dismiss the dialog. If the command is cmdOK,
then we access the values for each of the dialog's panes from the
final data structure passed to the function and store these into
the CCat object by using that object's access functions. When the
user's settings have been stored into the local CCat object, we pass
a reference to that object to the CCategories class by calling its
ExchangeSettings function with a FALSE second argument. This
causes the settings member variable in the CCategories class
to be updated with the new values.

CNewCat Header File Additiom;

The foregoing BeginData and EndData functions are the only
code that have been modified from what was generated automati-

Creating a Category Editor Dialog 237

cally by the VA; however, I did add a single member variable to
the CNewCat.h header file. That declaration is as follows:

II Insert your own public data members here
ccat *itsCategory; II newly added

You'll note that the foregoing is simply a placeholder for the CCat
object pointer that is passed into and out of the CNewCat object
when the ExchangeSettings function is called.

Examining the CCatTable Class Code

I created the category name list element of the CCategories class
as a CCatTable object that was derived from the CArrayPane
class. Creating the derived class for the table was necessary for us
to override the GetCellText function of the CArrayPane class. By
overriding that function, we are able to supply the text for a cate
gory name when the CTable class calls the function. The GetCell
Text function is all that we have changed and it is as follows:

void CCatTable::GetCellText(Cell aCell, short availableWidth,
StringPtr itsText}

CCat *aCat;
long item= aCell.v + l;
CArray *itsArray = GetArray(};
itsArray->GetArrayitem (&aCat, item} ;
aCat->GetCatName (itsText};

The foregoing code uses the vertical coordinate of the aCell ar
gument to the function to access the specified item in the list's as
sociated array and use the item pointer to access the category
name for the item, storing it into the its Text argument.

Examining the CCat Class Code

In order to encapsulate all of the information relevant to a cate
gory entry, I defined a new class called CCat and created the
source and header files for this class using the Symantec Project
Manager's text editor. Because objects such as this should be en
capsulated fully, I defined all of its member variables to be pro
tected and then provided access functions to enable the values of
those variables to be retrieved or changed.

238 Chapter 5 > Creating and Managing Dialogs

CCat Class Header File

The header file for the CCat class is as follows:

/***
CCat.h

Header File For CCat class

Copyright © 1995 Richard 0. Parker. All rights reserved.

*********************************'(***************************/

llpragma once

class CString;

class CCat TCL AUTO DESTRUCT_OBJECT
{

public:

TCL DECLARE_CLASS

ccat();
virtual -ccat();

} ;

void
void

void
void
void
void
long
void
short
void

protected:

CString
CString
long
short

PutTo(CStream&);
GetFrom(CStrearn&);

GetCatName(StringPtr name);
SetCatName (StringPtr name);
GetCatDescrip(StringPtr descrip);
SetCatDescrip (St.ringPtr descrip);
GetCatType () ;
SetCatType (long type);
GetCatTaxable();
SetCatTaxable (short taxable);

catName;
catDescrip;
cat Type;
catTaxable;

All of the foregoing declarations are newly added. I have used
CString objects to hold the catName and catDescrip strings
because of the ease with which these objects can be manipulated.

CCat Constructor Function Code

The constructor for the CCat class initializes the object with de
fault values. The code is as follows:

CCat: :CCat()
{

catName = 1111.

'

catDescrip = 1111 ;

catType = OL;
catTaxable = O;

TCL_END_CONSTRUCTOR

Creating a Category Editor Dialog 239

As is apparent, the fields of the CCat object are initialized to
empty values so that a newly created object can be distinguished
from one whose values have been specified fully.

PutTo and GetFrom Function Code

We have defined PutTo and GetFrom functions for the CCat ob
ject so that we may add Object 1/0 support for reading in or writ
ing out these objects. At this point in the implementation of the
code, the functions are empty and serve only to remind us that
the code should be provided at some later date. The code for these
functions is as follows:

/***
PutTo

Writes a CCat object onto the stream.
***/

void ccat: :PutTo (CStream& stream)
{
}

/***
GetFrom

Reads a ccat object from the stream.
***/

void CCat: :GetFrom (CStream& stream)
{
}

I show the foregoing code only because it is important to stress
that you should make provision for adding these functions to each
of your newly created objects, if you intend for them to be read
from or written to an external file.

CCat Class Access Function Code

The next series of functions provide the ability for the values asso
ciated with the member variables in the object to be retrieved and
stored. These functions are very simple, but it is important to cre
ate them because they allow the CCat object to be treated as a

240 Chapter 5 ~ Creating and Managing Dialogs

"black box," rather than exposing all of its internal structure to
the developer. Such "information hiding" principles are a major
objective of object-oriented technology. If you get into the habit
of creating access functions for all of your object's member vari
ables, you will have fewer problems when the functionality of the
object needs to change. As long as you preserve the calling conven
tions (that is, the object's interfaces), you can change every aspect
of an object, without causing any interference to existing code.

The code for the CCat object's access functions is as follows:

/***
GetCatName

Retrieves the name of a CCat object.
*********************************~'***************************/

void CCat::GetCatName{StringPtr ncime)
{

catName.GetPStr {name);

/********************************'r****************************
SetCatName

Specifies the name for a CCat object.
*********************************'~***************************/

void CCat::SetCatName (StringPtr name)
{

I

CString s (name);
catName s;

GetCatDescrip

Retrieves the description for a CCat object.
***/

void CCat::GetCatDescrip (StringPtr descrip)
{

catDescrip.GetPStr (descrip);

/***
SetCatDescrip

Specifies the description of a ccat object.
********************************~·****************************/

void CCat::SetCatDescrip (StringPtr descrip)
{

CString s (descrip);
catDescrip = s;

/*******************************)r*****************************
GetCatType

Creating a Dynamic Modeless Dialog 241

Retrieves the expense or income type of a CCat object.
***/

long CCat::GetCatType()
{

return catType;

/***
SetCatType

Specifies the expense or income type of a CCat object.
***/

void CCat::SetCatType (long type)
{

catType = type;

/***
GetCatTaxable

Retrieves the tax-related status of a ccat object.
***/

short CCat::GetCatTaxable()
{

return catTaxable;

!***
SetCatTaxable

Specifies the tax-related status of a ccat object.
***/

void CCat::SetCatTaxable (short taxable)
{

catTaxable = taxable;

The foregoing functions provide the means to retrieve and store
the values of each of the object's member variables. Although each
function consists of only one or two lines of code, by providing
these functions to access the object's member variables, we are able
to insulate the object fully from its clients.

Creating a Dynamic Modeless Dialog

One of the interesting features of the VA is its ability to create
subviews that can be shared between multiple views and also
swapped into and out of views, whether they are windows or dia
logs. This section describes a modeless dialog that includes several
(two in our example) subviews that are swapped into the basic di
alog, when the user selects the options to which they pertain.

242 Chapter 5 >-Creating and Managing Dialogs

Figure 5-22
Main Settings dialog

D Setting~''

Title: l
From: I I To: I Period I Year to Date ,..I

Options I Recounts ... I @splay] Print

1111

1111

For this example, I hypothesize that a business application might
require a set of reports and that the reports might each have var
ious options . Rather than create a separate options dialog for
each set of options, I have elected to create a single dialog that
contains a section at its bottom in which various subviews can
be displayed. I start out by creating the base dialog, as shown in
Figure 5-22.

Note in the foregoing figure that a bordered area (created with the
rectangle tool) has been set aside ai: the bottom of the dialog. This
is to hold the various subviews that are to be swapped into and out
of the dialog. The dialog itself is not remarkable. The various ele
ments are self-explanatory. The pop-up menu to the right of the
Options label selects which subview is to be displayed. The View
Info for the dialog is shown in Figure 5-23.

After creating the rectangular frame at the bottom of the dialog, I
jotted down its location and dimensions in the dialog's window.
The width and height are needed to create the subviews in the
VA, and the location of the top-left corner is needed when placing
the subview into the view in the application's code.

After the main view has been created, we can create a menu
named Report whose single command is Settings. We might wish

Figure 5-23
View Info for Serrings
dialog

Figure 5-24
Complered
AccrSerrings subview

D

Na me : I Setti ngs

Title: I Report Settings

Window Class : I CDialog •I

Creating a Dynamic Modeless Dialog 243

Dialog Info

8 ~:~~~ "' n DK l
D ;:.,.,,,, [Cancel J

ID: 129

~uDDuD
D actCli ck

Position \ Centered •I ;. ,•,.l

Height: ._I 2_9_7 ___ _,

Min Height : ._I 4_0 ___ __,

Max Height : ._I 3_4_2 ___ _,

proclD:~ Width: 1422
:=======!

Min Width : 140
:=======!

Max Width : ._I s_1 _2 ___ _,

RcctSettings

~Select------

® Rll Recounts

O No Recounts

¢T

to add other commands at a later date, but, for the time being, the
Settings command is the only entry. The behavior of that com
mand is to "Open" the CSettings dialog when the command is
chosen by the user.

The next step is to create the subviews. To do so, choose New
View from the View menu, and select the Subview type from the
pop-up menu. The VA will present you with a new window in
which to construct the subview. The first subview is named Acct
Settings. Its completed appearance is shown in Figure 5-24. The
Subview Info settings for the subview (choose View Info from the
View menu for this subview) are shown in Figure 5-25. Note in
the figure that the subview width is the same as the width of the
rectangular area we outlined in the Settings dialog, and that the
height is also the same. The Bounds and Step settings aren't rele
vant to this usage.

244 Chapter 5 ~ Creating and Managing Dialogs

Figure 5-25
Subview Info for
AcctSettings subview

Figure 5-26
Completed
CatSettings subview

Figure 5-27
Subview Info for
CatSettings subview

D

Subuiew Info

Na me: j AcctSetti ngs I ID: 130

O Vert. Scroll 0 Horiz . Scroll 0 Size Box

Frame: 'vlidth:l 408

Bounds: right: Is 12

Step: hStep : 116

Na me: I CatSetti ngs

heigh'!: 1168

bottom: 1342

vStep: 116

CatSettLngs

J¢___L

,categories;------,

0 Lllll

QNone

O TaH-Related

Subuiew Info

I ID : 131

O Vert. Sc roll O Horiz . Scroll O Size Box

Frame : 'Width: 1408 height: 1168

Bounds: right: I s12 bottom: 1342

Step: hStep: 116 vStep: 11~

(Cancel)

n OK J

(Cancel)

n OK l
The next step is to construct the CatSettings subview in order to

provide the user the ability to select the categories to be reported.
The completed CatSettings subview is shown in Figure 5-26, and
the Subview Info settings are shown in Figure 5-27.

After the foregoing elements have been created (I have purposely
not spent any time discussing the details of doing so), you can
generate code and begin the implementation of the custom code

Creating a Dynamic Modeless Dialog 245

that is needed to swap the subviews into and out of the Settings
dialog. The main purpose of this section was to show how the
subviews could be swapped easily, using the built-in features of
the TCL to do so.

Examining the x_CMain Code

The generated code in the x_ CMain class for this example is iden
tical to most of the other code presented previously for this class.
One difference, however, is the addition of a case in the DoCom
mand function to handle the user's choice of the Settings com
mand from the Report menu. The DoCommand code, as
generated by the VA, is as follows:

void x_CMain::DoCormnand(long theCormnand)
{

switch (theCormnand)
{

case cmdOpenSettings:
DoCmdOpenSettings();
break;

default:
CDocument::DoCormnand(theCormnand);

Note that the foregoing code tests whether the cmdOpenSet
tings has been chosen, and if so, it calls the DoCmdOpenSet
tings function. The code for that function is as follows:

void x_CMain: :DoCmdOpenSettings()
{

csettings *dialog;

II Respond to corrunand by opening a dialog

dialog= TCL_NEW(CSettings, ());
dialog->ICSettings(this);
dialog->BeginDialog();

As was the case with the Categories dialog, the Settings dialog is
created by constructing a new CSettings object, initializing the
object, and then calling its BeginDialog function. All of the logic
to swap subviews into and out of the Settings dialog is contained
in the CSettings class itself.

246 Chapter 5 >Creating and Managing Dialogs

Examining the CSettings Code

The VA-generated code in the CSettings class was modified to
provide the functionality required for this dialog. The first step in
doing so was to specify new member variables and functions that
would be needed. The contents of the CSettings.h header file that
shows these features are as follows:

/***
csettings.h

CSettings Dialog Direc·:or Class

Copyright © 1995 Richard 0. Parker All rights reserved.

Generated by Visual Architect TM 2: 00 PM Mon, Dec 12, 1994

This file is only generated once. You can modify it by filling
in the placeholder functions and adding any new functions you
wish. If you change the name of the dialog class, a fresh
version of this file will be generated. If you have made any
changes to the file with the old name, you will have to copy
those changes to the new file by hand.

********************************~'****************************/

#pragma once

#include "x_CSettings.h"

class CDirectorOwner;
class CSubviewDisplayer;
class CView;
class CArrayPane;
class CRectOValButton;
class CStaticText;
class CRadioButton;

enum subviewType
{

};

kAcctSettings,
kCatSettings

class CSettings public x_CSettings
{
public:

TCL_DECLARE_CLASS

II Pointer to current subview in Settings window & subview ID

CSubviewDisplayer
subviewType

*fSettingsSubview;
fSubviewID;

II Account subview-related controls

II subview pointer
II subview type

CArrayPane *fAcctSettings_AcctNames; I I Account Names
CRectOValButton *fAcctSettings_Rect7; II Account Radio

I I Group Rect

CStaticText
CRadioButton
CRadioButton

Creating a Dynamic Modeless Dialog 247

*fAcctSettings_Stat8; II Static Text
*fAcctSettings_SelAllAccts;ll All Radio
*fAcctSettings_SelNoAccts;ll None Radio

void ICSettings(CDirectorOwner *aSupervisor);

virtual void ProviderChanged(CCollaborator *aProvider,
long reason, void* info);

virtual void DoCommand(long theCommand);

protected:

) ;

virtual void BeginData(CSettingsData *initial);
virtual void UpdateData(CSettingsUpdate *update, long itemNo);
virtual void EndData(CSettingsData *final);

virtual void MakeNeWWindow (void); 11 override

In the foregoing header file, I have defined an enumerator called
subviewType that defines the two subviews that we created (kAc
ctSettings and kCatSettings). These values are used only
to keep us aware of which subview currently resides in the Settings
dialog. The value for that is stored in the fSubviewID variable. I
have provided a variable to hold a pointer to a CSubviewDisplayer
object, which was created for the purpose of displaying the vari
ous subviews.

In addition, I have created variables to hold pointers to the vari
ous controls in each of the subviews when they are active. The use
of these variables will become clear when I show the code to create
and display the subviews.

MakeNewWindow Override Function Code

The logic to display the initial subview (AcctSettings by default) is
contained in the MakeNewWindow override function provided.
The code for that function is as follows:

void CSettings::MakeNeWWindow (void)
{

x_CSettings: :MakeNeWWindow{);ll call the base class version

II load the initial subview into the newly created dialog
II and specify the type of subview being displayed.

fSettingsSubview = TCL_NE.W (CSubviewDisplayer,
("\pAcctSettings", itsWindow, this, 404, 164, 10, 126));

fSubviewID = kAcctSettings;

248 Chapter 5 >Creating and Managing Dialogs

The foregoing code calls the base class version of the MakeNew
Window function and then creates a new CSubviewDisplayer ob
ject whose constructor takes the name of a subview (as defined in
the VA), the subview's enclosure, its supervisor (this), its width,
height, and its horizontal and vertical offset values. The subview is
located, constructed by the Object I/O code in the TCL (this pro
cess is described in a later chapter), and the subview is displayed.
After constructing the subview, I indicate which one is being dis
played currently by storing its enumeration value into the fSub

viewID variable.

Once the initial subview has been created, we can rely on the Pro
viderChanged function being called whenever the user chooses a
different subview name from the pop-up menu in the main por
tion of the dialog.

ProviderChanged Function Code

The ProviderChanged function implements swapping the sub
views into and out of the CSubviewDisplayer object. The code to
do this is as follows:

void CSettings::ProviderChanged(CCollaborator *aProvider,
long reason, void* info)

Boolean saveignore = ignore;
short selecteditem;

if (ignore)
{

return;
}
ignore = TRUE;

TRY
{

if (reason == popupMenuNewE:election
&& aProvider == fSettings_Options)

selecteditem =*(short*) info;
switch (selecteditem)
(

case 1:// Account Options
{

}

if (fSubviewID == kAcctSettings)
{

return;
}

fSettingsSubview->Empty();
fSettingsSubview->SetViewNarne ("\pAcctSettings");
fSettingsSubview->Fill();
fSubviewID = kAcct.Settings;
break;

case 2:// Category Options

else
{

Creating a Dynamic Modeless Dialog 249

if (fSubviewID == kCatSettings)
{

return;
}
fSettingsSubview->Empty();
fSettingsSubview->SetViewNarne ("\pCatSettings");
fSettingsSubview->Fill();
fSubviewID = kCatSettings;
break;

case 3:// Payment Options
{

break;
}
case 4:// Deposit Options
{

break;

x_CSettings: :ProviderChanged(aProvider, reason, info);

}
CATCH

ignore = saveignore;
ENIYI'RY

ignore = saveignore;

I have written the ProviderChanged function according to the
pattern of that function in the base class. That is, I defined the
ignore variable, tested to see whether it is TRUE and returned if
so, and then set it to TRUE before continuing the process of test
ing what type of semantic event has occurred.

The main body of the function is concerned with only one type of
semantic event. This is the popupMenuNewSelection event
that is broadcast by the fSettings_Options pop-up menu
control. If the reason or provider don't match these values, then
the ProviderChanged function in the base class is called to handle
the event.

When the user chooses one of the entries in the Options pop-up
menu, a pointer to the item number is stored into the info argu
ment that is passed to the ProviderChanged function. A switch
statement is executed to test the value of the info argument to
determine which item has been chosen. Each item corresponds to
a subview. I have made provisions for Payment and Deposit sub
views to be defined at a later date. If the chosen item corresponds
to the AcctSettings subview (item 1), then we test whether that

250 Chapter 5 >Creating and Managing Dialogs

Figure 5-28
Reporr Settings
dialog with
AcctSettings subview
shown

D Report Settings

Tit le: I My New Report J
From: I 1 /1 /95 I To : 1 12 /31/9~ 1 Period I Year to Date Tl

Options I Accounts Tl [Displ~ [Print)

~

[; I Accounts

o Accounts

izy

subview is already being displayed. This can occur if the user
clicks the pop-up menu and chooses the item that is already the
current selection. In that case, we simply return. If the AcctSet
tings subview is not currently being displayed, then we call the
Empty function of the CSubviewDisplayer object (fSet
tingsSubview) to remove the current subview from the dialog
and dispose of it . Then we call the SetViewName function to
specify the name of the subview that we intend to load, and then
call the Fill function to create and display the new subview. After
doing so, we set the value of the :E Subv iewID variable to reflect
the fact that the AcctSettings subview is currently being displayed.

The process for handling the CatSettings subview is the same as
for the AcctSettings subview. All of the machinations needed to
create and dispose of the various elements in the subviews are
handled automatically by the TCL. The appearance of the Settings
dialog with the AcctSettings and CatSettings subviews installed is
shown in Figures 5-28 and 5-29.

Modal and Modeless Dialog Summary

The three examples in this chapter illustrated modal, modeless,
and dynamic modeless dialogs. It was probably evident to you
that their structures were quite similar, and, in fact, they are.
However, some of their individual properties are as follows:

Figure 5-29
Report Settings
dialog with
CarSettings subview
shown

Modal and Modeless Dialog Summary 251

D Report Settings

Tit le: I My New Report I
From: I 111 / 95 I To: I 12/31 / 95 1 Period I Year to Date Tl

Options I Categories Tl [Display J [Print l

~
r Categories-

@Rll

ONone

O TaH-Related

~

+ A modal dialog sets up its own event loop and requires the user
to confine his/her activities to the controls and fields in the dia
log until it is dismissed.

+ A modeless dialog, once opened, allows the user to freely inter
act with the menu bar and other windows. It is, in effect, quite
similar to an ordinary window; however, its director is a
derived class of CDialogDirector.

+ The exchange of settings between the object that invokes a
modal dialog and the dialog itself usually takes place only when
the dialog is first created (in the BeginData function) and when
it is dismissed (in the EndData function) .

+ Modeless dialogs, because they are fully accessible while they
are open, require that you make provision for storing changes
to their settings as the changes occur. A good way to provide
this exchange facility is to create access functions in the object
that creates the dialog, so that when the dialog is finally closed,
the settings will be preserved.

+ Modal dialogs are closed by using a "dismisser," which is usu
ally an OK or Cancel button (but can be any object that is
capable of issuing a command).

+ Modeless dialogs are closed when the user clicks the dialog's
close box (or by any other means that causes the Close function
to be called) .

252 Chapter 5 >- Creating and Managing Dialogs

+ Dynamic modal or modeless dialogs (or windows) can be cre
ated by designing a main dialog (or window), leaving space for
a subview to be displayed, and then creating each of the sub
views separately in the VA. The subviews can be loaded dynam
ically, when needed, by the application.

+ A dynamic window or dialog can have multiple subviews, and
each of these can, in turn, have subviews, nested to any depth.
Each subview is displayed in a CSubviewDisplayer object that
must be created programmatically in your custom code.

The foregoing points are "typical" for modal and modeless dia
logs. They are not cast in concrete and you are free to experiment
to change the functionality demonstrated in the examples. Bear in
mind, however, that the TCL assumes that you will be following
the guidelines that I have described.

The next chapter describes various types of controls, how they are
created in the VA, how they operate, and the various types of se
mantic events that they generate.

Chapter 6

Creating and Managing Controls

This chapter describes various controls that you can create with
the VA and also programmatically, with the help of the TCL. The
main thing I'm going to try to do is explain how to customize
controls and manage the "semantic events" they produce when
operated by the user.

In earlier days, controls were limited to buttons, checkboxes, and
scroll bars; however, the word "control" has now become a generic
definition of any subpane of a window upon which the user can
exercise some type of control. This includes both static and edit
able text fields, tables and visual lists of various types, "progress"
gauges, pop-up menus, scroll bars, tear-off menus, and a large
number of buttons of all varieties. In fact, it is almost impossible
to enumerate all of the various types of controls that are contained
in the full spectrum of today's Macintosh applications. Because of
this, we will limit our focus to the controls that are supported di
rectly by the VA and the TCL.

So What Is a Semantic Event?

Controls, in the large sense described in the foregoing explana
tion, are manipulated by the user to inform the application about
actions that they mean for it to execute. When we select an ele
ment from a list or type some text into an Edit Text field, we are
informing the application that we wish for it to accept these in
puts and do the proper thing. In addition, the actions of the ap
plication itself may require that another section of the same
application respond to that action. In support of these ideals, the
TCL includes a base class called CCollaborator, from which most
of the control classes derive their functionality. In addition to con
trols, all of the classes derived from CView descend from CCol
laborator, as do the CApplication, CDocument, and a grand total
of nearly 80 classes-the bulk of the TCL.

253

254 Chapter 6 >- Creating and Managing Controls

Figure 6-1
The CCollaborator
class and its
descendents

s CView

~~

r
~~

CSwlssArmySutton CSubviewDisplayer

CPopupPene

CButton CScroUBar ~]
CRadioControl CCheckBox I CArrayPane J

LEGEND

- Inherited Behavior
-----. Object Construction
---~ Chain of Command

CCollection

CArray

CRunArray I I CVoidPtrArray I

CAadioComponent

CScrollPane

CSelector

CEditText CGridSetector

Because of the intimate relationship of these classes to one an
other-by virtue of their common ancestry-they are in a perfect
position to communicate one with the other. You might wonder
what type of inter-object communications would be useful in this
regard, and rightly so. I will describe the specifics when discussing
each type of control, later in this text. But for now, I will describe
the "collaboration mechanism" and its support for handling se
mantic events.

Many of the common descendents of the CCollaborator class are
shown in Figure 6-1. However, bear in mind that the diagram is
not exhaustive, though it does show most of the commonly used
classes. Note that "collaborators" include the application object it
self, the document object, any windows, dialogs, and their direc
tors. Collaborators also include all of the descendents of CPane
and all of the CCollection class derivatives (although only two of
these are shown).

So what does it mean to be a collaborator, anyway? First of all, it
means that any of the classes in the hierarchy shown in Figure 6-1
can communicate with one another if they arrange to do so. This
is accomplished by sending a BroadcastChange message (call the
function by that name) with a reason for the call and a pointer to
any important information that needs to be passed on to the re-

So What Is a Semantic Event? 255

ceiver. The BroadcastChange message travels up the hierarchy,
pausing briefly in the CBureaucrat's BroadcastChange function
(more about that later), and then proceeds to the Broad
castChange function in the CCollaborator class.

Each collaborator object has a pair of lists (CPtrArray objects)
that contain dependents and providers associated with the object.
If the object intends to be a "receiver" of semantic events, then it
calls the DependUpon function with a pointer to the provider ob
ject whose events it intends to handle. The DependUpon func
tion adds the pointer to the specified provider to the object's list of
providers (its Providers) and then calls the provider's AddDe
pendent function with its own pointer. Therefore, when the
BroadcastChange function for a collaborator is called, the func
tion iterates through its list of dependents (i tsDependents),
calling the ProviderChanged function for each one in the list,
with the identity of (pointer to) itself (this), and the reason and
additional information data passed in the BroadcastChange func
tion call.

The foregoing description is demonstrated quite succinctly by the
code example for the Categories view, described in BeginData
function code shown on page 235. Specifically, I am referring to
the SetArray function call, which establishes a "connection" be
tween the CArray object holding the category names and the
CCatTable object (derived from CArrayPane) that displays the
contents of the array in its cells. The connection in this case is
through the collaboration mechanism. The CArray object is the
provider, and the CCatTable object is the dependent in this case.
The code for the SetArray function of the CArrayPane class is
quite illuminating and is as follows:

void CArrayPane::SetArray(CArray *anArray, Boolean fOwnership)
{

short deltaRows;
Long Pt toPt = { 0 , 0} ;

TCL_ASSERT (anArray ! = NULL) ;

if (itsArray)
{

if (itsArray->GetNumitems() > 0)
ScrollTo(&toPt, FALSE);

if (ownsArray)
TCLForgetObject(itsArray);

else
CancelDependency(itsArray);

256 Chapter 6 ~ Creating and Managing Controls

itsArray = anArray;
ownsArray = fOwnership;

DependUpon(itsArray);

I I make sure table has same number of rows as the new array
II has elements.

deltaRows = itsArray->GetNumitems() - tableBounds.bottom;

if (deltaRows > 0)
AddRow(deltaRows, tableBow1ds.bottom-l);

else if (deltaRows < 0)
{

deltaRows = -deltaRows;
DeleteRow(deltaRows, tableBounds.bottom - deltaRows);

}
Refresh();

The foregoing code first determines whether there is an existing
array attached to the dependent object (CCatTable in this case). If
so, then the following actions are taken:

+ If the array contains any items,. the table is scrolled to the first
item in the array. This prevents any rendering problems when
the array ceases to exist.

+ If the table "owns" the array, then that array is disposed by call
ing the TCLForgetObj ect macro.

+ If the array is not owned by the table, then the CancelDepen-
dency function is called, with the existing array as its argument.

When the foregoing actions are complete, the table's array (its -
Array) variable is set to point to the new array, the ownership of
the array is recorded, and the table's DependUpon function is
called, with the array as its provider.

For example, if a new entry is added to the table's CArray object,
its lnsertAtlndex function is called. The code for the lnsertAtln
dex function in the CArray class of the TCL is as follows:

void CArray::InsertAtindex(void *itemPtr, long index)
{

Insertitem(index);
Store(itemPtr, index);
BroadcastChange(arrayinsertElement, &index);
if (itsiterators)

itsiterators->ArrayChanged(arrayinsertElement,
(void*) &index) ;

So What Is a Semantic Event? 257

AB you can see in the foregoing code, the item is inserted into the
array (Insertltem followed by Store function calls), and then the
BroadcastChange function is called with a reason of arrayin
sertElement and a pointer to the index of the element that was
inserted.

Following the foregoing BroadcastChange call into the Array's
BroadcastChange function reveals the following code:

void CCollaborator::BroadcastChange(long reason, void* info)
{

long nullinfo;

II We allow the senders of BroadcastChange to pass NULL for
II info. However, assuming dereferencing NULL is bad, it is
II easier for receivers of ProviderChanged if dereferencing
II info is always safe. Therefore, when info is NULL, we
II substitute of pointer to OL

if (itsDependents)
{

if (!info)
{

nullinfo = OL;
info = &nullinfo;

II We use a CVoidPtrArrayiterator to avoid template
II overhead. itsDependents is guaranteed to contain
II collaborators,

CVoidPtrArrayiterator iter(itsDependents, kStartAtBeginning);
CCollaborator *aDependent;
while (iter .Next ((void*) aDependent))

aDependent->ProviderChanged(this, reason, info);

The foregoing code in the TCL illustrates how the Broadcast
Change function call is handled. If the object's i tsDependents
list is empty, then nothing needs to be done; otherwise, after mak
ing sure that a valid pointer is created for the info argument, the
function iterates through its list of dependents, calling the Pro
viderChanged function for each one, with a pointer to the current
object, the reason for the call, and the additional info pointer.

Because we know that the CCatTable is the one and only depen
dent for the categories CArray object in our example, we
know that the ProviderChanged function of the CArrayPane class
(from which the CCatTable object is derived) will be called. Its
code is as follows:

258 Chapter 6 > Creating and Managing Controls

void CArrayPane::ProviderChanged(CCollaborator *aProvider,
long reason, void* info)

tMovedElementinfo
Rect

*moveinfo;
cellRect;
infoindex long *(long*) info;

if (aProvider
{

itsArray)

switch(reason)
{

}
else

case arrayinsertElement:
II new element inserted, add a new row
AddRow(l, infoindex - 2);
break;

case arrayDeleteElement:
II element was deleted, delete its row
DeleteRow(l, infoindex-1);
break;

case arrayMoveElement:
11 an element was mov•3d, redraw all
II elements encompassing its old and
II new positions
moveinfo = (tMovedElei.nentinfo *) info;
cellRect.left = O;
cellRect.right = tableBounds.right;
cellRect.top = Min(moveinfo->originalindex,

moveinfo->newindex) -1;
cellRect.bottom = Max(moveinfo->originalindex,

moveinfo->newindexl;
RefreshCellRect(&cellRect);
break;

case arrayElementChanged:
II an element was changed, redraw its row

cellRect.left = O;
cellRect.right = tableBounds.right;
cellRect.top = infoindex-1;
cellRect.bottom = infoindex;
RefreshCellRect(&cellRect);
break;

default:
CTable::ProviderChanged(aProvider, reason, info);
break;

CTable::ProviderChanged(aProvider, reason, info);

The foregoing code is fairly straightforward. It includes cases to
handle the arrayinsertElement, arrayDeleteElement,
and arrayElementChanged reason codes for its array. Any
other reasons, or if the provider isn't the current table's array, cause
the code to call the ProviderChanged function of its base class
(CTable).

So What Is a Semantic Event? 259

So in answer to the original question, "So What Is a Semantic
Event?" we can now answer that it is an event that communicates
the meaning of a particular action during the course of an applica
tion's execution.

The TCL supports many such semantic events and we will cover
most of these in the sections that follow. Before going on to do so,
however, it is also important to discuss one last ramification of the
calling of the BroadcastChange function. If you recall, I men
tioned earlier that when that function was called, there was a brief
pause in the implementation of that function in the CBureaucrat
class. I will now describe the essence and meaning of that "pause"
by showing the code, which is as follows:

void CBureaucrat::BroadcastChange(long reason, void* info)
{

if (itsSupervisor)
itsSupervisor->ProviderChanged(this, reason, info);

CCollaborator::BroadcastChange(reason, info);

The BroadcastChange function in the CBureaucrat class pauses to
determine whether the provider calling the function has a defined
supervisor. If so, then the supervisor (i tsSupervisor) object's
ProviderChanged function is called immediately, with a pointer to
the provider, and the reason and added information data. Follow
ing that call, the BroadcastChange function of the CCollaborator
class is called. If you refer to that code, you will see that in the case
where the i tsDependents list is empty, no further action will
be taken.

By calling the ProviderChanged function of the supervisor of
the provider object, the CBureaucrat recognizes that in many
cases there will be no explicit, registered, dependents to recog
nize and handle a given provider's semantic events. This allows
us to put a ProviderChanged function directly into the CDirector
derived objects of our application (for example, our CApplica
tion-derived, CDocument-derived, and CDialog-derived classes)
and handle semantic events at that level. This is convenient be
cause we would otherwise have to use the DependUpon mecha
nism for each provider whose actions we wish to monitor at the
document or application level.

260 Chapter 6 >-Creating and Managing Controls

It is very convenient to handle semantic events at the docu
ment, dialog, or application level. Although this causes a lot of
traffic through the ProviderChanged function, we can make it
operate as efficiently as possible by checking whether the pro
vider object in the call is of interest and whether any of its rea
sons are of interest.

As a final note with regard to semantic events, it is useful to know
that you can create your own classes, derived from the CCollabo
rator class, and use the collaboration mechanism to communicate
between your own objects, using semantic messages of your own
design. This might be important in an application where you have
a lot of cooperating objects that need to know what their peers are
doing at any point in time.

Learning About Buttons

A CButton object is one of the most "pure" types of controls. In
fact, if you look at Figure 6-1, you will see that CButton is one of
only two "true" derived classes of the CControl base class
(CScrollBar being the other). The TCL supports other types of
button controls as well, such as those derived from the CSwissAr
myButton class and the ClconPane class.

Pure CButton objects do not generate semantic events; instead,
they generate commands, which, like menu commands, are
handled by the DoCommand function of the button's supervi
sor (i tsSupervisor). You will hear the term "click com
mand" being applied to this type of event. CRadioControl
objects are different in this respect and I will cover that differ
ence shortly.

The buttons covered by this section include standard push but
tons, icon buttons, picture buttons, radio buttons, checkboxes,
round rectangle buttons, oval buttons, polygon buttons, and even
lines! All of these are descendents of the CCollaborator class, and
all are descendents of the CPane class. Just remember that a win
dow is populated by panes of various types, and some of these can
be control panes as well. There is no longer anything sacred about
placing controls only into dialog windows. Because the original
Mac toolbox supported rendering and operation of controls with
its Dialog Manager, this concept has survived far too long. Mod-

Learning About Buttons 261

em user interfaces contain toolbars, buttons, palettes, and all vari
ety of controls in both modal and modeless dialogs and in
windows. The TCL supports all of these without the assistance of
the Dialog Manager. The code to render and manage modern in
terface controls is part and parcel of the framework's code.

Examining the CButton Class

As indicated previously, the CButton class implements "pure"
push buttons, according to the original Macintosh Interface
Guidelines. Although the VA allows you to create CButton ob
jects in any size, it uses a "standard" size of 59x20 pixels when you
choose the Button tool and "click" anywhere in your window or
dialog. The standard button is placed in that position (the
crosshairs specify the top-left corner of where the button should
be placed) and its size is set to the standard width and height. On
the other hand, if you click and drag the mouse after choosing the
Button tool, you can create a button with any dimensions you de
sire. It will always be a standard rounded rectangle button,
though.

Button Properties

If you create a simple button called "Push Me" using the VJ\s But
ton tool, you will see that the member properties of the button's
class hierarchy are as shown in Figure 6-2.

Let's examine these properties to gain an understanding of the
flexibility of CButton objects and any other object derived from
the CView base class. The important properties are as follows:

+ The button's name (Push Me) has been entered into the "Iden
tifier" field at the top of the properties. Immediately below
that, the Left and Top positions, as well as the Width and
Height, are specified. Any of these can be changed by entering
new values into the corresponding fields, and the position and
size of the button will change to match them.

+ The member properties of the various classes follow, in order,
from the most derived class (CButton) to the earliest base class
(CView). A single "Command" property is provided for the
CButton class. It is set to cmdNULL by default, but I have
defined a "click command" for this button of cmdPushMe.

This is accomplished as follows:

262 Chapter 6 >-Creating and Managing Controls

Figure 6-2
Member properties of
a CButton object
inside the VA

Pushf'vle

Identifier: I PushMe :=J
Left: 121 Top: ~

:====:
Width: 1 s9 Height:~---'

CButton

Command: I cmdPushMe .,.. l
CControl

contrlTitle :

I Push Me

contrlValue: I 0

contrl Min: i=I o=====:
contrlMax: ~I 1 ____ ~
CPane

Vlidth: I s9 I height: ~o
===~

hEncl: 121 I vEncl: @_6 ____ _

hSizi ng: I sizFI XEDSTICKY .,.. ,

vSizi ng: I sizFIXEDSTICKY .,.. l
pri ntCli p: I cli pFRAME .,.. l
[2J autoRefresh

CVieY

[2J visible [2J VlantsCli cks
[2J active D canBeGopher
Dusi nglongCoord

ID: 13
~----;::===---

he 1 pResl ndex: IO
~----

• Click on the pop-up menu that specifies the initial crnd

NULL value, and select the Other entry at the top of the
menu. This will cause the VA to display the Commands
dialog.

• Choose New Command from the Edit menu (or use the
Command-K keyboard shortcut), enter the values shown in
Figure 6-3, and then click the OK button in the Commands
dialog to complete the entry and dismiss the dialog.

Figure 6-3
New cmdPushMe
command creared

cmdOpen
cmdOutline
cmdPageSetup
cmdPaste
cmdPicture
cmdPlain
cmdPrint

, .
cmdPushMyself

Learning About Buttons 263

Number: 512

Rctions::-----------~

In Class: I CMain ..,..I
Do: I Call ..,..I
tli(~u>: j Noni~ ;;;;··i

[Cancel J

OK

+ The properties of the CControl class include a title (contrl
Ti tle), current control value (contrl Value), minimum
control value (contrlMin), and maximum control value
(contrlMax) for the control. Push buttons can have only two
possible values: 0 and 1, for any of these values. The default
current value is always 0.

+ The properties for the CPane class include the width and
height as well as the left (hEncl) and top (vEncl) positions
of the pane in its enclosure. In addition, the horizontal and ver
tical sizing characteristics of the pane when its enclosure is
resized are specified by pop-up menus that offer the following
choices:

• Horizontal properties of sizFIXEDLEFT, sizFIXED

RIGHT, sizFIXEDSTICKY, and sizELASTIC, which
specify that when the enclosure is resized, the pane's left
edge should remain fixed in place, its right edge should
remain fixed, it should be firmly fixed both left and right, or
that it can expand or shrink as needed.

• Vertical properties of sizFIXEDTOP, sizFIXEDBOTTOM,

sizFIXEDSTICKY, and sizELASTIC. Similar to the hori
zontal properties, but for the pane's vertical positioning
when its enclosure is resized, these specify that the pane's
top edge should remain fixed, its bottom edge should
remain fixed, it should be firmly fixed both top and bottom,
or that it can expand or shrink, as needed.

264 Chapter 6 >Creating and Managing Controls

+ The properties of CPane also include properties for printing
the pane. These are chosen from a pop-up menu, which offers
the following choices:

• clipAPERTURE, which limits printing of the pane to the
contents "inside" its frame (that is, its aperture)

• clipFRAME, which limits printing of the pane to the con
tents circumscribed by its frame

• clipPAGE, which allows the entire page on which the con
trol is placed to be printed

+ The CPane properties conclude with a checkbox titled
autoRefresh. If this is checked, then the control will be
redrawn whenever the TCL deems it appropriate to do so; oth
erwise, the application will be responsible for redrawing the
control, at its discretion. The autoRefresh checkbox is usu
ally checked for buttons.

+ The CView class properties begin with a number of checkboxes
that define the appearance of the view and its response to
"click" events. These are as follows:

• The visible checkbox indicates whether the view (but
ton) is to be visible after it is created.

• The active checkbox indicates whether the view (button)
is enabled or disabled when it is visible. When checked, the
button is enabled. A disabled button shows up drawn with a
gray frame and gray text, rather than black. In this condi
tion, the button will not accept any mouse clicks.

• The wantsClicks checkbox indicates whether the view
(button) is intended to acc(:pt mouse clicks and act upon
them. Checking the checkbox allows a visible, active, button
to receive clicks.

• The canBeGopher checkbox allows the view (button) to
become the current gopher if its BecomeGopher function is
called. Generally speaking, this checkbox is unchecked for
buttons.

• The usingLongCoord checkbox indicates whether long
coordinates (that is, 32-bit quantities) are to be used for

Learning About Buttons 265

locations and sizes of the view. Generally speaking, this
checkbox will be unchecked for buttons.

+ The CView class also has a field with the view's ID and also its
helpResindex, with the latter offering the ability to attach
balloon help to the view. If you create balloon help (by choos
ing Balloon Help from the VN.s Edit menu, the VA will assign
the helpResindex value.

The foregoing property descriptions show the scope of the infor
mation that is associated with each button control that you create
while inside the VA.

Button Actions

When the application is in execution and the user clicks a button,
the actions taken depend upon various of the button's properties.
If the button wasn't visible, then clicks in the location of where
the button should be have no effect.

If a button is not visible, is not active, or its wantsClicks prop
erty is FALSE, then mouse clicks on the control will be ignored;
otherwise, the following procedure is followed when a mouse
click is detected:

1. The CSwitchboard DoMouseDown function is called. It calls
the DispatchClick function of the CDesktop (gDesktop)
object.

2. The CDesktop DispatchClick function determines that the
click was in the "content" region of the window (where a but
ton should be located) and then tests whether the window is
currently active. If not, the window is selected, bringing it to
the front.

If the window properties specify that it does not want to pro
cess the click that causes it to activate, then processing of the
mouse click ends at this point. However, if the (previously
unselected) window wishes to process the click that causes it
to become selected, then its Activate function is called.

In the case where the window is already active or newly acti
vated, its wantsClicks property is tested to determine
whether it wishes to handle mouse clicks. If not, then the
click is handled the same as a click on the desktop (that is,

266 Chapter 6 >- Creating and Managing Controls

nothing is done). If the window wishes to receive mouse click
events, the Update function is called for each of the desktop's
windows and then the DispatchClick function for the win
dow in which the mouse click occurred is called.

3. The CWindow DispatchClick function (unless you have
overridden this) converts the location of the mouse click (the
where field of the event record) to local window coordinates
and then calls the CView DispatchClick function with the
updated event record.

4. The CView DispatchClick function calls its FindSubview
function with the location of the click to locate a subview
whose wantsClicks property is TRUE. If none is found
that matches the criteria, the PindSubview function returns a
value of NULL.

If a "willing" subview is found, its DispatchClick function is
called. Because none of the CPane, CControl, or CButton
derived classes of CView handles the DispatchClick function,
the process continues by the subview calling the CView Dis
patchClick function, which it has inherited, to locate one of
its "willing" subviews.

When the CView DispatchClick function returns a value of
NULL, then it is assumed that the current view is the one in
which the click occurred. Ycm'll find that this is a valid
assumption by considering the fact that the click occurred
inside the window's content region and the final view to be
handled by the DispatchClick function has no subviews-or
at least none that is willing to handle a mouse click. In this
case, the DispatchClick function continues by calling the
DoClick function for the current view (or subview) object.

5. The DoClick function is handled by the CControl class when
a CButton object is clicked. DoClick calls the Mac toolbox
TestControl function to determine which part of the control
was clicked. In the case of stationary controls such as buttons,
the TestControl function returns a non-zero "part code" (that
is, inButton) if the control is active; otherwise TestControl
returns zero and the click is ignored.

If the control is active, then the TrackControl function is
called to track the mouse position until the button is released.

Learning About Buttons 267

If it is released still within the control in which it was clicked,
then the TrackControl function will return a non-zero value
and the DoGoodClick function will be called. IfTrackCon
trol returns a zero value, then the user had a change of heart
and didn't release the button while the cursor was inside the
control in which it was clicked.

6. The DoGoodClick function is overridden by the CButton
class to process a valid click on an active control that wants to
receive clicks. This function tests whether a clickCrnd has
been assigned to the button. If so, it calls the DoCommand
function of the button's supervisor (itsSupervisor) with
the clickCrnd code. If the clickCrnd is equal to the value
crndNULL, then the click is ignored.

The final step in the foregoing illustrates how important it is to
assign "click commands" to the buttons in your dialogs and win
dows. If you do not do so, then mouse clicks on these controls
will be ignored. Notice in Figure 6-2 that a Command value of
crndPushMe has been assigned to the button. The behavior as
signed to the occurrence of this command is shown in Figure 6-3,
where it is specified that the VA should generate code to call a
function in the CMain class when the button is clicked. This will
result in the generation of a test for the crndPushMe command
code in the DoCommand function of the CMain class and the
generation of a DoCmdPushMe function in the CMain class to
handle the command.

Examining the CRadioControl Class

Radio buttons (and checkboxes) are more complex than simple
push buttons. Both of those classes inherit behavior from both the
CControl and CGroupButton classes, as shown in Figure 6-4.

The CRadioControl class supports the creation and management
of radio button controls. CRadioControl is derived directly from
the CButton class and shares its functionality to a large extent;
however, radio buttons are unique in that they are usually created
in groups and only one button in the group can be turned on at a
time. This behavior is a metaphor for the buttons for selecting sta
tions in a (somewhat dated) car radio-hence the name "radio
button."

268 Chapter 6 ~ Creating and Managing Controls

Figure 6-4
Inheritance diagram
for CRadioControl
and CCheckbox
classes

CCollaborator

CBureaucra~

CGroupButtonEnclosure CView

CWindow

~ane
·~-~

CDialog

CButton

CRadioControl CCheckbox

LEGEND

---. Inherited Behavior
==-- Object Construction
---•Chain of Command

Radio Button Properties

The "Pane Info" properties for a CRadioControl called "First" are
shown in Figure 6-5. The CPane and CView class properties are
the same as for the CButton object, whose properties are shown in
Figure 6-2. Notice that there are no data members for the CRa
dioControl class, so the primary difference between the properties
shown for CRadioControl and CButton are in the CControl class
(where the "First" button's contrlValue setting is l, indicating
that it is turned on by default).

Another special property of CRadioControl is that it inherits
behavior from the CGroupButton class, which is responsible for
operations on the button that have relevance to the button's
group. The VA assigns a group ID to each button, and you can
group buttons either by placing them inside another enclosure or by
selecting the set of buttons that comprise a group and then choos
ing the Set Button Group command from the VN.s Pane menu.

Figure 6-5
Pane Info settings for
the First radio button

Learning About Buttons 269

First

ldentif'i er-: I F_i r_s_t _______ ___.

Left: ._I 2_1_2 __ _,

Width: ._I 4_8 __ ___.

I> CRaiHiJCsntriJ!

Iv CButton

Command: I cmdNull

Iv CCo nt r-o 1

contrlTitle:

I First

contrlVal ue:

contrl Min:

contrlMax:

I> CPane

lo

Radio Button Actions

Top: ._I 3_6 __ ___.

Height: ._I 1_6 __ __.

Because radio buttons are derived from the CButton class as well
as the CGroupButton class, the actions that are taken when a ra
dio button is clicked are initially very similar to those for CButton
objects. In fact, the main distinction from the description of "But
ton Actions" for the CButton class-albeit a large one-is in the
override of the DoGoodClick function in the CRadioControl
class (this was described for CButton on page 267). The DoGood
Click function in the CRadioControl class operates as follows:

1. The current state of the button is ascertained. If the button is
currently "on," then no action will be taken and the click will
be ignored.

2. If the button is currently turned "off," then the button is
turned on by calling its SetValue function with BUTTON_ON

as its argument.

270 Chapter 6 :>-Creating and Managing Controls

3. The SetValue function sets the new control value into the
radio button by calling the Set Value function of the CButton
class to do so. If the new valm: for the control is the same as
the old value (not possible with a radio button), then nothing
further is done. However, if the new value is nonzero and it is
different from the old value, the TellTurningOn function is
called.

4. TellTurningOn is a member fimction of the CGroupButton
class, which is multiply inherited by the CRadioControl class
in the TCL. The CGroupButton class provides the specialized
behavior for radio buttons, checkboxes, and other similar
objects. When a CRadioControl object is constructed, its
CGroupButton constructor initializer is executed.

When the CGroupButton constructor is executed and an
enclosure is specified for the button-this is always the case
with VA-created radio buttons--the IGroupButton initializa
tion function is executed. This function searches through the
enclosure chain to find the window or dialog that encloses all
of the buttons in that view and saves that pointer into the
button's i tsGroupEnclosure variable. When the window
or dialog is located, a CGroupButtonList object is con
structed (if it doesn't already exist), its pointer is saved in a
member variable of the enclosure (i tsGroupButtons), and
then the newly created radio button object is added to the
list.

The TellTurningOn function calls the TurningOn function of
the button's CGroupButtonEnclosure (i tsGroupEnclo
sure) object.

5. The TurningOn function in the CGroupButtonEnclosure
object iterates through the list of buttons in the i tsGroup
But tons list and calls the CGroupButton TurningOn func
tion for each button in the list. If the button's group ID
matches the current button's group ID and the button is not
the current button, the button's TurnOff function is called.
This ensures that only one button in a group is turned on at a
time. If a group consists of checkbox controls, as well as radio
buttons, then the code ensures that radio buttons turn off
other radio buttons and checkboxes, but that checkboxes only
turn off radio buttons.

Learning About Buttons 271

Examining the CCheckBox Class

Checkbox objects of class CCheckbox are similar both to CRadio
Control and CButton objects in the following ways:

+ The objects dispatch a command (if one is associated with the
object) when the checkbox is checked or unchecked. This is the
primary behavior of a CButton object.

+ CCheckbox objects inherit the features of the CGroupButton
class and can cause radio buttons in the same group to turn off
when the checkbox is checked. This is similar to how the CRa
dioControl object functions.

As the foregoing indicates, a checkbox is somewhat of a cross be
tween a radio button and a push button, at least as far as its be
havior is concerned. Its properties are basically the same as that of
a CRadioControl object-both of which are derived from the
CButton and CGroupButton classes. The main difference be
tween checkbox and radio button controls is that multiple check
box controls in a group can be simultaneously checked.

CCheckBox Properties

The properties for the CCheckbox class are identical to those for
the CRadioControl class. If you substitute the name CCheckbox
for CRadioControl in Figure 6-5, you will see the same properties
when looking at the object's Pane Info inside the VA.

CCheckBox Actions

The major distinction between CCheckBox and CRadioControl
objects is in their DoGoodClick functions. The DoGoodClick
function for the CCheckbox object-called when the user's
mouse-down and mouse-up actions for a checkbox are both inside
the control's bounds-performs the following actions:

1. The state of the checkbox's value is toggled between values
of 0 and 1 by calling Set Value for the checkbox.

2. If a command is associated with the checkbox, then the
DoCommand function for the current gopher is called with
the command code specified for the checkbox.

3. If the group ID for the checkbox is nonzero and the checkbox
has just been checked, then the TellTurningOn function will

272 Chapter 6)ii-- Creating and Managing Controls

Figure 6-6
Pop-up Menu object
construction and
hierarchy

CPaneBorder

CPane

itsPopupBox

LEGEND

-- Inherited Behavior
~ Object Construction
---~Chain of Command

CCollaborator

CBureaucrat

CViE1w CPopupMenu

itsMenu
CPane

CPopupPane

CStdPopupPane

be called. As with the CRadioControl object, this function
searches for any radio controls in the same group as the
checkbox and turns them off. Therefore, when a checkbox in
a mixed group of radio buttons and checkboxes is checked,
the radio buttons in that same group will be turned off.
Clicking one of those same radio buttons will not, however,
uncheck any of the checkboxes.

Learning About Pop-Up Menus

While pop-up menus implement the functionality of menus
within a window or dialog, rather than the menu bar, they are
treated more like controls by those who develop and use them.
The VA creates a CStdPopupPane object when you specify a pop
up menu in a window or dialog. This object consists of a small
pane to display the current menu choice (i tsPopupBox), with a
border around the pane that is created by the CPaneBorder class,
and is installed into the pane as i tsBorder. The object contains
a CPopupMenu object that contains the menu item entries and
provides the "pull-down" menu behavior. The object relationships
and hierarchy are shown in Figure 6-6.

Figure 6-7
ChoiceMenu pop-up
menu settings

Learning About Pop-Up Menus 273

-D ChoiceMenu

Identifier: I ChoiceMenu

Left: ._I 1_4_8 __ __,

Width: ._I 1_8_9 __ __,

Top: ._I 1_3_6 __ __.

Height: ._I 1_9 __ __.

[> C~HdPaj.IUj.IPUl'lt.:

tv CPopupPane

itsMenu- >

CPopupMenu:

itsMark: ._I _./ ___ ... _.I
0 radioGroup
12] autoSelect
D multiSelect

itsMenu: I Choices ..-1
fi rstSelection: l._1 ____ __.

tv CPane

W'idt h:

hEncl:

hSizi ng:

vSizi ng:

189 height:

148 I vEncl:

sizFIXEDSTICKV ..-1
sizFIXEDSTICKV ..-1

pri ntCli p. I cli pfRAME

IZI autoRefresh

tv~~ 0
¢ 1 ummmmmmmmmmmm:mmmmmmmmmmmmmmmmmmmmm:mmmmmfil" ¢ 12J

Pop-up Menu Properties

The VA Pane Info properties for an example pop-up menu called
ChoiceMenu are shown in Figure 6-7. These indicate that the
control has an associated menu, whose name is Choices. When a
menu item is chosen, it is marked with the symbol chosen from
the i tsMark pop-up menu, and the choice is displayed in the
bordered pane. The Choices menu is specified to have the au
toSelect property, which causes a previous selection to be un
marked and the newly chosen selection to be marked,
automatically. The radioGroup property allows only one menu

274 Chaprer 6 >-Crearing and Managing Conrrols

Figure 6-8
Choices menu
command irems

Menu Items

Choices

First (hoic e m
Second Choice
Third Choice
Last Choice

Command: I cmdChoices

D H1is submenu , ,
'>uhnwnu In: ~

'·········· ·····················' L..:..J
Cmd-key:D

Icon: 1 1~0~ I Mark: I ./ •I

(Cancel J

OK

item to be checked at a time. In this case, with the autoSelect

property, only one item can be chosen; if we had also checked the
mul tiSelect property, then multiple items could be chosen.
The CPane properties are as shown.

The Choices menu items are illustrated in Figure 6-8. Each of
the choices has an associated command that specifies the code to
be used when the command is dispatched. The command code
(cmdChoices) is the same for all of the menu commands in this
example, and the behavior of the cmdChoices command is for
the DoCommand function in the CMain class to call a function
when any of the items is chosen.

As is often the case with pop-up menus, we have defined each of
the menu's entries when we defined it in the VA. It is also possible
to populate a pop-up menu during execution of the program, but
that technique is not used too frequently. If you wish to do so,
you can access the menu handle and use the AppendMenu tool
box call to add items to the menu. The menu handle is stored in
the CPopupMenu object as a protected member variable, so you
must use the GetMacMenu member function of that class to ac
cess the handle.

When the CStdPopupMenu objeci: is constructed, its display pane
(i tsPopupBox) and menu (i tsMenu) objects are also con
structed and initialized.

Learning About Pop-Up Menus 275

Pop-up Menu Actions

When the user clicks on the pop-up menu pane, the pane high
lights and the menu pulls down to displays either the full set or a
partial set of item choices. In the case where there are many
choices, an arrow is drawn at the bottom of the list to indicate
that more choices are available. The pop-up menu shown in Fig
ure 6-8 has only four choices (First Choice, Second Choice, Third
Choice, and Last Choice). When a choice is made, its associated
command (if any) is dispatched and the choice's text is displayed
in the pop-up pane. The detailed actions are as follows:

+ The act of clicking on a pop-up menu pane causes the CStd
PopupPane's DoClick function to be called. This function veri
fies that the click occurred inside the pane; if so, it inverts the
title in the pane and calls the CPopupPane's DoClick function.

+ The DoClick function in the CPopupPane class calls the Pop
upSelect function for the CPopupMenu object associated with
the pane. The last argument of the PopupSelect function is the
command code of the choice to which the menu should scroll
when it is first displayed. In this case, the argument is a call to
the CalcPopupCmd function, which returns a value of cmd

NULL, by default. You could override this to choose another
command code if you create a pop-up menu that is derived
from the CStdPopupPane class.

+ The PopupSelect function of the CPopupMenu class deter
mines which entry to display as the initial selected item in the
menu, either by searching the menu for a choice whose com
mand matches the last argument to the function call, or by
arbitrarily selecting the first item. The function then inserts the
menu into the application's menu list and calls the PopUp
MenuSelect toolbox function to handle the selection process.

+ When PopUpMenuSelect returns to the PopupSelect function,
the menu is removed from the menu list and then the result of
the selection action is tested. If no item was selected, then
cmdNULL is returned to the DoClick function in the CPopup
Pane class; however, if a choice was made and its associated
command code is not cmd.Null, the DoCommand function
for the menu's supervisor (itsSupervisor) is called, and
then one of two possible actions is taken, as follows:

276 Chapter 6)>-Creating and Managing Controls

• If the autoSelect property for the menu is not specified,
then the firstSelection member variable is set to the
selected item and the BroadcastChange function is called to
report the popupMenuNewSelection semantic event. A
pointer to the selected item is passed in the call.

• If the autoSelect property is specified, then the Select
Item function of the CPopupMenu class is called to handle
the change in the selection, automatically. The action argu
ment to the Selectltem function is prnToggle, which tog
gles the state of the mark for the selected item. While inside
the Selectltem function, the rnul tiSelect property is
tested. If that property is specified, and if the prnToggle
action type is specified, the mark for the selected item is tog
gled; otherwise, the selected mark is attached, or not,
depending upon whether prnForceOn is the specified
action type. If the rnul tiSelect property is not specified
and the action is prnForceOf f or the new selection is the
same as the previous selection, then the Selectltem function
returns to PopupSelect; otherwise, if there is an existing
selection, its mark is removed, the selected mark is attached
to the newly selected item, and, finally, BroadcastChange is
called with the popupMenuNewSelection semantic
event and a pointer to the newly selected item number.
Selectltem then returns to PopupSelect.

+ When PopupSelect receives control once again, it returns the
command code associated with the newly selected item to the
DoClick function of the CPopupPane object, which ignores
the returned value, but returns control to the DoClick function
of the CStdPopupPane class. That function reinverts the pop
up menu's tide, returning it to its normal appearance. Process
ing of the mouse click is complete at this point.

There is ample opportunity to customize the behavior of the pop
up menu-related functions, but you must do so by creating de
rived classes of the appropriate CStdPopupPane or CPopupMenu
base classes in order to override any of their functions. Customiza
tion of some of the actions can be performed by carefully choos
ing the action types in the VNs Pane Info properties, or by calling
the SetAutoSelect, SetMultiSelect, SetRadioStyle or SetMarkChar
functions of the CPopupMenu class (i tsMenu).

Figure 6-9
VA-created table class
hierarchy and actions

CTask

f
CMouseTask

LEGEND

-- Inherited Behavior
~ Object Construction
- • • • Chain of Command

Learning About Tables 277

CCollaborator

CBureaucrat

CView CCollection

CPane CArray

itsArray
CPanorama

CTable

CArrayPane

CMyTable

Learning About Tables

The CTable class in the TCL makes provision for the creation of
one- or two-dimensional tables, with a myriad of options. The
CArrayPane class is derived from CTable to provide support for
an associated array (if desired) that will hold the data for table ob
jects. The class hierarchy for VA-created tables is shown in Figure
6-9. The CTableDragger object is created as a task to handle the
selection criteria for table entries.

The CTable class has no storage for the data contained in a table's
cells. It relies upon the GetCellText function to provide this data,
and you must override either GetCellText or DrawCell to imple
ment tables in your applications.

The VA-created table objects are all derived from the CArrayPane
class, mainly because it is most often the case that you'll want an
array to hold the table's data. Even so, to create a table, you must

278 Chapter 6 ~ Creating and Managing Controls

first create a new class (choose Classes in the Edit menu), and
specify that it is to be derived from CArrayPane. After doing so,
you can create a table using the VNs List/Table tool, and set its
class to the one that you created previously, by selecting the table
object and then choosing your new class's name from the Class
submenu of the VNs Pane menu. This is shown as CMyTable in
the class hierarchy of Figure 6-9.

One of the most useful aspects of the CTable and CArrayPane
classes is the variety of semantic messages that they generate. The
CArray (or other CArray-derived) class, when an array is created
and specified as a provider to the dependent table, calls Broadcast
Change for each insertion, deletion, or change to an element of
the array. In addition, the CTable class calls BroadcastChange
when the user makes a selection in the table. These semantic mes
sages can be easily processed in the window director's Provider
Changed function.

Table Properties

Lists and tables (both constructed from the CArrayPane class by
the VA) can have up to 32,768 rows and 32,768 columns. A short
(16-bit) integer is used to hold each of these values. Unlike the
List Manager in the Macintosh toolbox, the CTable class supports
the full range of columns and rows. However, because the maxi
mum size would comprise more than a billion cells, the only prac
tical limit to a table's size is the amount of memory you wish to
devote to contain its data. A robust design could even access the
table's data from disk and be able to support only the amount that
could fit into memory at a given time; however, that technique is
beyond the scope of this book.

Now that you're convinced that tables or lists can grow to any rea
sonable size, it is important to point out the other properties of
these very special "controls."

I have created a new class called CMyTable, derived from CArray
Pane, and have set its properties in the VA, as shown in Figure
6-10. As you can see from the figure, neither the CMyTable nor
CArrayPane has any properties that you can specify. The proper
ties of the CTable class are quite extensive, however. The various
properties of the CTable class are as follows:

Figure 6-10
CMyTable properties,
as shown in the VP.:s
Pane Info

Leaming About Tables 279

=D Mylable

ldentifie r: ._I M_y_T_a_bl_e ______ ----'

Left: I 1 44 Top :

Width: ._I 2_6_4 __ __. Height: ._I 1_2_a __ __.

l> CMyTable

l> Uu·ru!!P1rn~

p CTable

topLeftlndent: h: ~ v : ~
drav order I tbl Rov TI
defRov Height: I 1 a

::====~
defColWidth: ..._I s=o ___ __.
selectionflags: ~ selOnl yOne

D selNoDi sjoint
D sel Extend Drag
D sel DragRects

indent: h: [=:Jv: ~
Command: I cmdMyTable

D dravActiveBorder
~ cli pToCell s

Tl

rovBorders: thickness: !:::I 1=====

penMode: ._I a ____ _,
pat: ~I -g-r-ay--T~I

col Borders: thickness: !:::I 1=====

penMode: ._I a ____ _,
pat: I gray Tl

p CPanorama 0
¢ L JrnmrnmrnJH::rn::: :::::::mrnmmu:::::umrn:um:HHmrn:rn:HH:mrnm:T ¢ 12J

+ The t opLeftindent property specifies the horizontal and
vertical displacement of the entire table from its enclosure. As
is usual for such values, positive values indicate horizontal
indentation to the right and vertical indentation from the top
of the enclosure.

+ The drawOrder can be specified as tblRow or tblCol; the
former specifies that each row is drawn before any cell in the
next row (left to right and then top to bottom), and the latter

280 Chapter 6 > Creating and Managing Controls

specifies that each column is drawn before the next column
(top to bottom and then left to right).

+ The defRowHeight and de:EColWidth properties specify
the height of rows and the width of columns. These are default
values, as the height and width of individual rows and col
umns, respectively, are adjustable under program control.

+ The selectionFlags property governs the type of selec
tions the user can make when clicking on the table's cells. The
various choices are as follows:

• selOnlyOne specifies that only one cell at a time can be
selected. This is standard behavior for a list, but it is not the
default for VA-created tables. Make sure that you check this
box if you wish for only one cell to be selected.

• selNoDisjoint specifies that if multiple cells are allowed
to be selected, the selected cells must be adjacent (that is, not
separated by any other cells). If the box is not checked, then
any collection of cells, throughout the table, can be included
in a selection. This checkbox is ineffective if selOnlyOne
is checked.

• selExtendDrag, if checked, allows the user to extend the
selection by adding the cell just clicked, when the Shift key
is down, but not by extending the selection rectangle to
encompass the newly clicked cell.

• selDragRects restricts the selection to a single cell or a
rectangular collection of cells.

+ The indent property specifies the horizontal (H) and vertical
(V) indentation of each cell's contents. This is a default value
and assumes that text is to be written into the cell. In that case,
the indent specifies the indent for the leftmost character's base
line in the cell. For example, using a cell height of 18 pixels, the
13-pixel vertical indent shown in Figure 6-10 specifies that the
baseline of the text is 5 pixels above the bottom of the cell,
leaving room for the descenders in the text. The indent values
are used primarily by the DrawCell function. If you override
this function to draw the contents of the table's cells yourself,
then you can safely ignore the value of the indent property
and draw whatever you wish inside the table's cells. Each cell

Learning About Tables 281

can have its own font, size, style, justification, or any other
non-text contents that you wish, if you override DrawCell.

+ The Command property is a double-dick command that you
can assign when you design the table inside the VA. I have
defined a command called cmd.MyTable, whose behavior is to
call a function in the CMain class when the user double-dicks
a cell in the table. When the user performs that action, the
DoCommand function in the CMain class is called with the
cmd.MyTable command. The VA-generated code dispatches
that command to a function called DoCmdMy Table, which it
has generated into the x_ CMain class's source code.

+ The drawActiveBorder property, when checked, specifies
that the border of the table is to be drawn when the table is the
current gopher. This behavior is standard for Standard File lists
and the like, but is not part of the Apple User Interface Guide
lines for normal tables. Check or uncheck this property as you
wish.

+ The clipToCells property, if checked, ensures that when
text is drawn (using the CTable's DrawCell function) it does
not exceed the boundaries of the cell being drawn. If the prop
erty is not checked, then DrawCell will draw beyond the
boundaries of the cell.

+ The RowBorders property specifies the thickness (in pix
els), the penMode, and the pen pattern to be used in
drawing row borders, if they are to be drawn. The values shown
in Figure 6-10 indicate a row border thickness of 1 pixel, a pen
mode of patCopy (8), and a pen pattern of gray. The vari
ous pen modes and their associated values are (patCopy=8,
pat0r=9, patXor=lO, patBic=ll, notPatCopy=12,
notPatOr=13,notPatXor=14,notPatBic=l5).Thepen
patterns are chosen from a pop-up menu and the only choices
are gray or black. If you wish to use some other pattern for the
borders, you can call the SetRowBorders function in the
CTable class.

+ The ColBorders property is specified in the same way as the
RowBorders property. To use a custom pen pattern for the bor
der, you can call the SetColBorders function in the CTable

282 Chapter 6)- Creating and Managing Controls

Figure 6-11
Scroll Pane Info for the
CMy Table object

~n MyTable §§

Identifier: J MyTable ~

Left: J 144 Top: ~-_,s __ __.
Width: J 26 4 Height: ~:_-~s __ __.

CScroll Pane

~Verti cal Scroll
D Horizontal Scroll
D Size Box

D U,><; ':T' ~~

~Border

class. The table in Figure 6-10 has a column border thickness
of 1 pixel, a pen mode of pa tCopy and a pattern of gray.

In addition to the foregoing properties, a CArrayPane-derived ob
ject is enclosed by a CScrollPane, whose ScrollPane Info (chosen
from the Pane menu when the table object is selected in the VA)
are shown in Figure 6-11. In the case of the My Table object, the
table's enclosure has a vertical scroll bar and a border only.

Tables (and lists) also have properties for their CPanorama.,
CPane, and CView base classes. These are shown for the My Table
object in Figure 6-12. Although fairly extensive, the properties are
fairly self explanatory.

Even though quite a number of the table properties can be speci
fied inside the VA, there are others that must be set programmati
cally. The following paragraphs should help in this regard:

+ Tables are created with a single column and no rows (that is, no
table entries). If you want to increase the number of columns,
then call the AddCol function. A very large positive value for
the afterCols argument wi ll ensure that columns are added
after the last column, whereas a negative value will ensure that
they are added before the first column.

+ To add rows to the table, call the AddRow function and specify
a large value for the afterRow argument to add the rows after

Figure 6-12
Base class properties
of the My Table object

D MyToble

ldent;fier : I MyTable

Left : 1144 Top: I 168
~=~

w;dth: I 264 He;ght: ..._I 1_2s __ _,

I> CTable

p CPanonma

hScale : -11----1 vScale: ..._I 1 ___ _,

bounds:
left : ~I 0-----1 top: I 0

~======'
right : 1 a I bottom: .._I a ____ _,

position : ____ _

h I a I v lo
p CPane

widt h: I 247 I height : I 126
~====='

hEncl : I 1 I vEncl: ..._I 1 ___ _,

hSizi ng: I sizFIXEDSTICKV •I
vSizi ng: I sizFI XEDSTIC KV •I
pri ntCli p: I cli pPAGE •I
i:gj auto Refres h

p cv;ev

i:gJ visible i:gj wantsClicks

Learning About Tables 283

i:gj active i:gJ ca nBeGopher

~i~~~ I
hel pResl ndex: I q '{}

the existing row (if any), or a negative value to add the rows
before the existing rows.

+ If you wish to change the default column width or row height,
you must first delete the single column that is created by the
VA. To do so, call the DeleteCol function and specify 1 as the
value for the numCols argument and 0 as the value for the
startCol argument. Table columns and rows are numbered
starting with 0, so you must always translate 1-based index val
ues in an array, for example, to 0-based table-cell numbering.
After deleting the single column, you can call SetDefaults and
specify the default column width and row height values.

+ To change the height of a single row, or the width of a single
column, call the SetRowHeight or SetColWidth functions
with the appropriate arguments (remembering that rows and
columns are numbered commencing with O).

284 Chapter 6 ~ Creating and Managing Controls

+ If you are creating a spreadsheet, you may wish to create a fixed
number of columns and rows and yet still retain the ability to
add or delete entries from an associated array. When a CArray
(or one of its derived class) objects is attached to a table (with
SetArray), then calls to Add or Deleteltem for the array will
result in the ProviderChanged function of the CArrayPane
class to expand or shrink the associated table. To prevent this,
you should override the table's ProviderChanged function and
handle the arrayinsertElement and arrayDeleteEle
ment semantic events. Proper handling in this case is to simply
ignore these events. This will allow the table itself to retain the
fixed number of ~ows and columns, but allow you to add and
delete entries to the table without any expanding or shrinking
problem. Creating a large table doesn't take any more memory
than creating a small one. It's the contents of the cells that adds
to the memory requirements, and these contents are not part of
the table object's storage, but must be supplied by your applica
tion, either by using an associated array, or by some other
means.

+ If you choose to provide text font, size, style, and alignment
on a per-cell basis, you may wish to store those settings in the
individual cell objects themselves. Then an approach to han
dling the rendering of the ceU's data is to override the Draw
Cell function for the table. In that function, you should first
save the existing text properties, set the new properties and
draw the text, and then reset the properties to their original
values before exiting. In this way, each cell can have its own
characteristics.

+ For spreadsheet designs, you should create CArrayPane-derived
objects for the column title and row title lists. To enable these
to scroll in synchronism when the table is scrolled, override the
table's Scroll function (inherited from CPanorama), and test
whether a horizontal or vertical (or both) scroll was done. Call
the Scroll function for the associated column title or row title
lists, and then call the Scroll function for the CTable object.
The code for this will look something like the following:

void MyTable::Scroll (long hDelta, long vDelta, Boolean redraw)
{

if (hDelta > 0)
{

Learning About Tables 285

itsColTitles->Scroll (hDelta, 0, TRUE};
}
if (vDelta > 0)
{

itsRowTitles->Scroll (0, vDelta, TRUE};
}
CTable: :Scroll(hDelta, vDelta, redraw};

The foregoing code is adaptable to any situation where you want
to synchronize the scrolling of two or more lists or tables. The ob
ject pointers itsColTitles and itsRowTitles are assumed
to be known to the table being scrolled. You can create an access
function in your derived table class to set these pointers when the
function is called from the director of all three of the objects.

Table Actions

When we speak of tables, we are speaking of CArrayPane-derived
objects, because that is what the VA creates. In most cases, you
will want to create a CArray (or CArray-derived) object to contain
the data to be displayed in a table or list. It is not mandatory that

. you assign an array to a table created as a CArrayPane-derived ob
ject, but it is often convenient to do so.

You can create the array at any time. It can be a CArray or an ob
ject in any of the CArray-derived classes. The array should not be
attached until the table has been created (in an override of Make
NewWindow, for example). Calling the SetArray function of the
CArrayPane-derived object with a pointer to the array object and
an "ownership" flag will "attach'' the array to the table. If the own
ership flag is TRUE, then the table "owns" the array and it will be
disposed when the table is disposed. On the other hand, if the
ownership flag is FALSE, then you will be responsible for deleting
the array and its contents. Generally speaking, you should set the
flag to FALSE if the table contains other dynamically allocated
objects, because although the array itself is disposed (if it is
"owned") when the table is disposed, any objects contained in the
array are not disposed. If the array contains values or strings that
have not been dynamically allocated, setting the ownership flag to
TRUE provides a truly carefree combination.

If you refer to the code for Category list that we presented in
Chapter 5, you will see that we created the array in the ICMain
function of the CMain class (see page 218) and then called SetAr
ray in the BeginData function of the CCategories class, after the

286 Chapter 6 >-Creating and Managing Controls

MakeNewWindow function had been called to create the array
• (see page 229). In this case, the document "owns" the array and

the CCategories modeless dialog just "uses" the data it contains,
so the ownership flag in the SetArray call is FALSE. The data in
this case are pointers to objects in the CCat class, sorted alphabet
ically by category name.

When the user selects a cell (entry) in a table, the following ac
tions are performed:

+ The CTable class overrides the DoClick function of the CView
class to perform the following actions:

• The point at which the mouse click occurred is tested to
determine whether it is within the bounds of the existing
table cells. If not, then the ClickOutsideBounds function is
called. That function calls DeselectAll, which clears any
existing selections by calling DeselectRect for the entire
redraw rectangle of the table. This results in Broadcast
Change being called with a semantic event type of table

SelectionChanged.

• If the click was within the bounds of the existing table cells,
then DoClick tests whether the click is a double-dick. If so,
then the DoDblClick function is called. That function tests
whether a double-dick command is assigned to this event; if
so, it calls the DoCommand function of the current object
(the table). The CTable cla'>s override for the DoCommand
function handles only the cmdSelectAll command, pass
ing all other commands to the CPanorama (base class) to
handle. Of course, commands travel up the hierarchy and
the dblClickCmd command will be passed on to the
table's supervisor (its Supervisor) by the actions of the
DoCommand function in the CBureaucrat class. You can
either override DoCommand in your own CArrayPane
derived class or test for the dblClickCmd in your window
or dialog director's DoCommand function.

• If the click was not a double-dick, then the DoClick func
tion in the CTable class creates a CTableDragger object to
track the mouse. The mouseTask object is passed to the
TrackMouse function inherited from the CPane class. The
TrackMouse function calls the BeginTracking function of

Learning About Tables 287

the mouseTask object, and then while the mouse button is
still down, it calls the Keep Tracking function for that
object. When the mouse button is released, TrackMouse
calls the EndTracking function of the mouseTask object.

• The Begin Tracking function of CTableDragger determines
the initial selection criteria to be associated with the mouse
click, taking into account any modifier keys pressed on the
keyboard at the time the mouse button was clicked. There
are some rather complex criteria for determining what to do
when a cell is clicked. If the Command key is down and the
cell was selected already, then the DeselectCell function of
the CT able class is called, resulting in the BroadcastChange
function being called with a semantic event type of table

SelectionChanged. If the Command key is down and
the cell was not already selected, then the SelectCell func
tion of the CT able class is called to select the cell. This
results in BroadcastChange being called with the semantic
event code of tableSelectionChanged. If the Shift key
is down, the Command key is not down, the table's
selDragRects property is checked, and the selOnly
One property is unchecked, then the newly clicked cell is
added to the selection range, and the SelectRect function of
the table object is called to select the cell and call Broad
castChange with the semantic event type of tableSelec

t i onChanged. If neither the Shift nor Command keys is
down, then SelectCell is called to select the table cell, and
BroadcastChange is called with the tableSelection
Changed semantic event type.

• The KeepTracking function of CTableDragger is called
continuously while the mouse button is still down. It deter
mines whether to select or deselect cells, depending upon
the state of the modifier keys and the table properties, as the
user drags the mouse. Newly added selections or newly dese
lected cells result in BroadcastChange being called with the
tableSelectionChanged semantic event type.

• The EndTracking function of CTableDragger is called
when the mouse button is released. This function merely
disposes of the current CTableDragger object (this) and
returns.

288 Chapter 6 ~Creating and Managing Controls

+ After the Track.Mouse function returns control to the table's
DoClick function, that function concludes execution.

In addition to the actions performed with the mouse and key
board modifier keys, other actions can cause semantic events to be
dispatched. These are all associated with operations on the array
that is attached to the table object, and for which a dependency
relationship exists. The following semantic events are created by
the CArray class:

+ When the array's destructor is executed, BroadcastChange is
called with the semantic event type of arrayGoingAway.

+ When you call SetArrayltem, BroadcastChange is called to
report the arrayElementChanged semantic event.

+ When you call lnsertAtlndex, BroadcastChange is called to
report the arrayinsertElement semantic event.

+ When you call Deleteltem, BroadcastChange is called to report
the arrayDeleteElement semantic event.

+ When you call MoveltemTolndex, BroadcastChange is called
to report the arrayMoveElement semantic event.

+ When you call the Swap function, BroadcastChange is called
twice with the arrayElementChanged semantic event; once
for each of the elements being swapped.

You can override the ProviderChanged function in your derived
table class, or you can override that function in your director class
(for example, CMain) to handle any one or more of the foregoing
events (including the ones dispatched by the selection and dese
lection functions in the CTable class). ProviderChanged is called
with a pointer to the provider (the table object or the array), the
event type code, and any additional information (for example, an
array item index).

If you are implementing a spreadsheet-like object, you may wish
to handle the arrayinsertElement and arrayDeleteEle
ment events by ignoring them, as described on page 284.

If your ProviderChanged function is called for a table cell selec
tion or deselecting event, you will have to determine the meaning
of the event by calling GetSelection to ascertain what cells (if any)
are selected. If you have specified the selOnlyOne property,

Figure 6-13
Object hierarchy of
text object "controls"

CTask

CTextEditTask

CStaticText

LEGEND

-- Inherited Behavior
....._. Object Construction
--- .. Chain of Command

CStyleText

Learning About Text 289

CCollaborator

CBureaucrat

CView

CPane

CPanorama

CAbstractT ext

CEditText

CDialogText

ClntegerText

then it is very easy to determine which cell (if any) has just been
selected by calling the GetSelect function. In the case where you
allow extended selections or disjoint selections, you will have to
keep track of the selection region and compare the cells it contains
to which were selected previously, if you wish to use these seman
tic events. The GetSelection function returns a region handle
(RgnHandle) object.

Learning About Text

While text fields (either static or editable) are not specifically con
sidered as "controls," per se, they can respond to various com
mands and create various semantic events when operated upon by
the user. The object hierarchy and undoable text editing task ob
jects for editable text objects are shown in Figure 6-13.

CDialogText and ClntegerText objects will occur only in dialogs,
whereas CStaticText, CStyleText, and CEditText objects can oc
cur in any window type. The VA does not support the creation of
the CStyleText object at this time; however, you can create objects

290 Chaprer 6 >- Crearing and Managing Controls

Figure 6-14
Sraric rexr objecr
properries

StaticTeHt

Identifier: I Static Text J
Left: I 204 Top: ~~

'Width:l71 I Height:~~

I> CStaUdext

CEditText

hText : I static Text

spaci ngC md : ~I _c_m...,.dS'"'"i n-g~l e~S p-ac-e-...,~I

alignCmd: I cmdAlignLeft TI
CA bst ractT ext

lineWidth : ._l-_1 ___ _,

1:8;] fi xed Li neHeights
1:8;] wholeli nes

D editable

!Ill\!
:;:··

of this type programmatically and use the features of the CStyle
Text class. All of the classes derived from the CEditText object use
the Mac toolbox's TextEdit features and are subject to its limita
tions, as well. If you wish to create a robust text editor application,
you will need to derive your custom text object from the CAb
stractText class and then add all of the functionality that you re
quire. The CAbstractText class has only a limited number of
features you can use for this task, although it does support the cre
ation of tasks to handle cut and paste, as well as text styling.

Text Properties

The VA-related properties of a static text object are shown in Fig
ure 6-14. Note that although the CStaticText class has no explicit
properties, the editable and styleable properties of the
CAbstractText base class are unchecked and disabled, respectively.

A static text field usually include:; the specification of a text string
in the hText property of the CEditText class, as shown in the fig
ure. Other properties of the static text field are as follows:

+ The spacingCmd property has three choices in the pop-up
menu. These are cmdSingl eSpace, cmdlHalfSpace, and
cmdDoubleSpace.

Learning About Text 291

+ The alignCrnd property has four choices in the pop-up menu.
These are crndAlignLeft, cmdAlignRight, crndAlign

Center, and crndAlignJustify. While the last property
might suggest that "full justification" is supported, this is not
the case. The Mac toolbox does not support full justification
and the choice is provided in case you wish to perform this
operation in your derived class.

The CAbstractText class properties for a CStaticText (or any other
derived class) are shown in Figure 6-14. These are as follows:

+ The lineWidth property specifies the length of text lines in
pixels. If the value is negative (as is shown), then the width is
taken to be the width of the text pane.

+ The fixedLineHeights property, if checked, ensures that
all lines in the text field are the same height.

+ The wholeLines property, if checked, ensures that only
whole lines (relating to their height) are displayed when the
field is scrolled or changed in size.

+ The editable property applies only to CEditText or CStyle
Text fields, and not to CStatic Text fields, for which this prop
erty is disabled when the object is initialized.

+ The styleable property applies only to CEditText or
CStyleText fields, and not to CStaticText fields, for which this
property is disabled when the object is initialized.

Other properties for the CPanorama, CPane, and CView base
classes for text fields are as shown in many of the other illustra
tions for these classes.

The properties for a CDialogText object are shown in Figure
6-15. This object is created for editable text fields in dialogs-one
visible difference between these and CEditText objects is a border
around the CDialogText field. Because dialog fields are meant to
be validated, CDialogText fields have properties in addition to
those shown for CEditText fields, as follows:

+ The rnaxValidLength property specifies the maximum
number of characters that the user can enter into the field. It is
set to the size of a long (32-bit) variable, by default.

292 Chaprer 6 > Crearing and Managing Conrrols

Figure 6-15
CDialogTexr field
properries

EditableTeHt

I de nti fi er: I Edi tab 1 e Text :::::J
Left: I 2ss Top: ~~

Width: I 11 6 Height:~~

COialogText

maxValidlength: 12147483647 ~
D isRequi red

[81 va 1 i dateO n Resign

CEditText

hText :

spaci ngCmd : cmdSi ngleSpace ,.. I
alignCmd: I cmdAlign Left Tl
CA bst ractT ext

li neWidth: j ~ -_1 ___ ~
[81 fi xed Li neHeights

[81 whole Lines

[81 editable

+ The isRequired property, if checked, specifies chat the user
must enter text into this field; otherwise, any attempt to move
to another field or dismiss the dialog with the OK button will
cause the TCL to display an alert, indicating that the field is a
required input.

+ The validateOnResign property determines whether vali
dation is performed at the time the user dismisses the dialog
with the OK button (no validation is performed if the dialog is
cancelled, in any case). You can override the Validate function
of your dialog's director (usually a CDialog-derived class) and
perform your own validation of the user's inputs.

In addition to the foregoing properties, CDialogText objects also
inherit all of the properties of their CEditText, CAbstractText,
CPanorama, CPane, and CView base classes.

Text Actions

In addition to the normal actions associated with editable text
(copying, cutting, and pasting), the DoCommand function of the

Learning About Text 293

CAbstractText class supports the choice of a command from the
application's Font (MENUfont) or Size (MENUsize) menus, if
these exist. Both of these menus are provided in the V.Pl.s list of
potential menus to add to the menu bar when you choose Menu
Bar from the Edit menu. Just click on the Add pop-up menu at
the right side of the Menu Bar dialog, and choose either Font or
Size as the menu to add.

If either of the foregoing menu commands (or a command to
change the text style) is sent to the DoCommand function of
CAbstractText, and if the editable and styleable properties
of the text field are TRUE, then it creates a CTextStyleTask object,
calls the Notify function for the field's supervisor (usually a CDi
rector object) to set the "dirty" flag for the document (and inter
mediate directors), and then calls the Do function for the
CTextStyleTask object. The Do function saves the current style
settings, assigns the newly specified style, and then prepares for
the user to Undo the action. If the CTextStyleTask's Undo func
tion is called subsequent to the previous action, it swaps the new
and previous style information and performs the Undo or Redo
operation.

If any of the Copy, Cut, Paste, or Clear commands is chosen by
the user for the text field, then the CAbstractText class creates a
CTextEditTask object and calls its Do function to perform the re
quested action. The Do function of the CTextEditTask calls upon
the text field's PerformEditCommand function to perform the ac
tual requested action-interacting with the CClipboard object
(gClipboard) for Cut, Copy, and Paste commands. The CEdit
Text class contains the PerformEditCommand function. After the
requested has been performed, ReportChange for the CTextEdit
Task is called-resulting in BroadcastChange being called with a
semantic event type of textValueChanged.

If the chosen command was Select All, the DoCommand func
tion of CAbstractText selects the entire contents of the text field
and then calls SelectionChanged-resulting in BroadcastChange
being called with a semantic event type of textSelection
Changed. In addition, if a "typing task" was created for the field,
then its SelectionChanged function is called (typing tasks are as
sociated with key events, which will be covered in a later chapter).

294 Chapter 6 >- Creating and Managing Controls

Table 6-1
Semantic event classes
and code summary

Class Type Code Event

CAbstracrText textSelectionChanged New selection made

CArray arrayGoingAway Destructor called

CArray arrayElementChanged Element is changed

CArray arraylnsertElement Element is inserted

CArray atrayDeleteElement Element is deleted

CArray arrayMoveElement Element is moved

CBureaucrat bureaucratlsGopher Newly assigned gopher

CBureaucrat bureaucratlsNotGopher Newly resigned gopher

CControl controlValueChanged Control value changed

CDialog Text dialog TextChanged Text field has changed

CPopupMenu popupMenuNewSelection Command newly chosen

CRunArray runArraySizeCha.nged Array size changed

CRunArray runArrayElementChanged Element is changed

CTable tableSelectionChanged New selection made

CTextEditTask textValueChanged Text field has changed

ClconButton controlValueChanged Control value changed

CSwissArmyButton contro!ValueChanged Control value change

Any other command intercepted by the DoCommand function of
the CAbstractText class is passed to its CPanorama base class to
resolve.

Control Object Summary

This chapter has described a number of controls, their properties,
and the semantic events that they create when operated by the
user. I have talked about buttons, radio buttons, checkboxes, pop
up menus, tables, and text controls, how each of these is created
within the VA, and how the properties of each of these can be de
fined or changed.

Because quite a number of semantic events are generated by a va
riety of classes in the TCL, I have summarized them for easier refer
ence in Table 6-1.

Events other than commands and semantic events are handled by
the normal event loop of the application. These events will be dis
cussed in the next chapter.

Chapter 7

Handling Events

This chapter is all about how the TCL handles standard Macintosh
events. I will describe how the "standard" events are dispatched
from the main application's event loop and how they are handled.
High-level events will be covered in a later chapter. Figure 7-1 il
lustrates the major components of the event mechanism in the
TCL. It is supplemented by what is shown in Figure 7-2. In each of
the two figures, individual functions are enclosed by rounded
rectangles and function calls are indicated by directed lines from
the source of the call to its destination. The thick vertical lines are
used to eliminate a "rat's nest" of connections and are intended to
show that calls to all of the destination functions are made from
the single source. Classes are shown inside the dotted rectangles.

Examining the Main Event Loop

The main event loop in the TCL is contained in the CApplication
class, in the DoRun function, as shown in Figure 7-1. That func
tion calls the ProcesslEvent function in the same class, which, in
turn calls the ProcessEvent function in the CSwitchboard class.
When control returns to the DoRun function, it loops, waiting
until the value of the running yariable becomes FALSE (which
will occur when the user chooses the Quit command from the
File menu), continuing to call ProcesslEvent on each trip through
its loop.

When a modal dialog is created and DoModalDialog is called, the
DoChangeableModalDialog function in the CDialogDirector
class also calls the ProcesslEvent function, in a loop, waiting for
the command to dismiss the dialog to occur.

So the focus of attention in the TCL's event mechanism is inside
the ProcesslEvent function. The steps taken to handle events in
that function are as follows:

295

296 Chapter 7 >Handling Events

Figure 7-1
Major event-handling
elements in the TCL

Idle

Resume

Suspend

CApplication

LEGEND

----. Function Call

[_?~~!~~~~~-~·-~ ------------_;

DispatchCursor i+---.._

DlspatchCllck

,----------------·--·-··

~
~ --~~-~~~-n-~~~-. -- -- . --

,-----------------. -----~

; :
~l

~i
:~:
~:

l--~~~r~nt"'.'.~do"'. _____ J

OlspatchCursor

CWindow

, --------···
' '
' '

l ___ ?.~;;~~:~~~~:, ___ I
-----------------------,

Do Command

Do Key Down

DoKeyUp

DoAutoKey

--~~~p~-~~-----------j

1. The ProcessEvent function m the CSwitchboard class is
called.

2. If any urgent chores exist, each is executed, in turn. An urgent
chore is entered into that list by calling the application
object's AssignUrgentChore fimction. After the urgent chores
(if any) are executed, they are removed from the list. An
urgent chore is a one-shot task that must be executed as soon
as possible, but only once.

3. If the front window is a "system'' window (that is, for a desk
accessory), then the Suspend function is called, allowing the
DA to continue execution. If the front window is not a system
window, and a desk accessory has just become inactive, then
Resume is called.

It should be clear that no significant tasks were left out of this ex
planation, though no event has yet been processed by the

Examining the Main Event Loop 297

ProcesslEvent function-that task is left to the ProcessEvent
function of the CSwitchboard class.

The Process Event Function's Role

The ProcessEvent function in the CSwitchboard class is the func
tion that calls the Mac's WaitNextEvent or GetNextEvent toolbox
function to access the next event. Most modern Macintosh com
puters include the code for the WaitNextEvent function, which
supersedes the functionality of the original GetNextEvent func
tion. In any case, the end result of calling either function is the ac
quisition of a single new event (or no event). The sequence of
steps taken by the ProcessEvent function is as follows:

I. The current mouse location is acquired and then the Dis
patchCursor function of the CDesktop class is called. That
function, in turn, calls the DispatchCursor function of the
CWindow class, which calls DispatchCursor for the CView
class. If the view has any subviews, then DispatchCursor is
called for the "hit" subview. This allows a subview to control
the shape of the cursor on an event-by-event basis.

2. ProcessEvent then calls GetAnEvent, which in turn calls the
appropriate toolbox function to get an event from the Mac's
event queue. If the event code returned by the GetAnEvent
function is nonzero, then DispatchEvent is called; otherwise,
Doldle is called.

When the foregoing steps are complete, the ProcessEvent function
returns to the ProcesslEvent function in the CApplication class,
and that function returns to the loop in the application's DoRun
function.

The Doldle Function's Role

Let's talk about the case where no event was found in the Mac's
event queue. In this case, the GetAnEvent function returns a zero
value as the event code (NULL event). As mentioned previously,
the ProcessEvent function calls the Doldle function in the
CSwitchboard class, which, in turn, calls the Idle function for the
application object (gApplication). You can provide an Idle
function in your application subclass to override the default be-

298 Chapter 7 :>-Handling Events

havior. The Idle function in the CApplication class performs the
following actions:

I. If the "Rainy Day Fund" of additional memory, held by the
application, has been used (rainyDayUsed is TRUE), then
the Idle function attempts to replenish the used memory by
allocating a new block. If the fund cannot be replenished,
then the Idle function posts an alert, informing the user that
memory is getting low.

2. Then the Idle function enters into a loop that calls the Daw
dle function of each Bureaucrat in the chain of command,
starting with the current gopher. Generally speaking, the cur
rent gopher is a pane in the frontmost window. That pane's
Dawdle function (if any), its supervisor's Dawdle function,
then the Dawdle function for the supervisor's supervisor, and
so forth, are called, until the end of the chain of command is
reached. You may choose to provide a Dawdle function for
various objects in the chain of command, in order to take
advantage of "idle" time, when the user has not performed
any action that would cause an event to enter the queue.

3. After completing the loop which calls the various Dawdle
functions, the Idle function calls a static function named
DoChores to cycle through the list itsidleChores and
call the Perform function for each member of the list. Idle
chores are entered into the list by calling the application
object's AssignidleChore function. They remain in the list
and are called periodically, until they are removed by calling
the application's CancelldleChore function.

There is great merit, in certain circumstances, to using the Daw
dle function or idle chores to manage a periodic process. For ex
ample, in a time-scheduling application, there is often a need to
examine a list of reminders to ascertain whether it is time for the
earliest reminder to be posted. Using the Dawdle function to han
dle a periodic task such as this is recommended highly.

If a periodic task must be performed for an object that is not di
rectly in the chain of command, then posting an idle chore to call
its Perform function is a good way to proceed. For example, if cal
culations are to be performed when the application is idle, then an

Examining the Main Event Loop 299

idle chore would be an appropriate mechanism to initiate the next
cycle of processing.

The DispatchEvent Function's Role

If the result of calling the GetAnEvent function is TRUE, then an
event has been removed from the Mac's event queue and is avail
able for inspection in the rnacEvent record (an EventRecord
structure). The primary feature of the DispatchEvent function is a
switch statement, which determines from the type field of the
record (what) what kind of event has been removed from the
queue. As you can see from Figure 7-1, the DispatchEvent func
tion calls quite a number of other functions, also located in the
CSwitchboard class, depending upon the type of event being pro
cessed. Both the functions responsible for handling the various
event types and the actions that they perform are described in the
paragraphs that follow.

Handling Mouse Down Events

If the event type is determined to be rnouseDown, then the Dis
patchEvent function calls the DoMouseDown function. The steps
taken by the DoMouseDown function are as follows:

1. The DispatchCursor function of the CDesktop object
(gDesktop) is called. That function calls the DispatchCur
sor function for the CWindow class, and then that function
calls DispatchCursor for the CView class. As described earlier
for the ProcessEvent function, DispatchCursor is then called
for the subview that was "hit" by the mouse click (if any).

2. DoMouseDown also calls the DispatchClick function in the
CDesktop object. That function performs quite a number of
additional operations, as shown in Figure 7-2. We will cover
these additional operations shortly.

3. The EventRecord is saved into the gLastMouseDown
record, which is used to determine whether multiple rnouse
Down events (double-click events, for example) have occurred.

Handling Mouse Up Events

If the event type is determined to be mouse UP, then the Oo
MouseUp function is called. That function performs the follow
ing steps:

300 Chapter 7 ~Handling Events

1. If the mouseDown event that preceded the mouseUp event
occurred on the desktop or in the content region of a win
dow, then the OoMouseUp function for the view that was last
"hit" (gLastViewHi t) is called.

2. The current event record is saved m the gLastMouseUp
structure.

Handling Key Events

The keyDown, keyUp, and autoKey events are all handled by
calling the DoKeyEvent function. Depending upon the nature of
the keystroke, this function performs a number of different tasks,
which are as follows:

1. If the event is keyDown and the Command key is also down,
then the event is assumed to be a command shortcut and the
following steps are taken:

a. The UpdateAllMenus function of the CBartender object
(gBartender) is called. That function loops through all
of the menus, dimming or unchecking the commands
according to the specifications for each menu, and then
calls the UpdateMenus function associated with the cur
rent gopher.

b. A menuChoice variable takes on the value returned by
the MenuKey toolbox call, identifying the menu and to
which item within that menu the command shortcut per
tains. It is possible that no menu contains a command
code that matches the shortcut keystroke.

c. If a menu does contain a command that matches the key
stroke, then the OoCommand function for the current
gopher is called with the command code associated with
that menu command.

d. If no menu contains the matching keystroke, then the
DoKeyDown function for the current gopher is called
with the character, its keycode, and the event record. This
permits the application to perform internal command
dispatching, according to iits own needs.

2. If the event is keyDown and the Command key is not also
down, then the OoKeyEvent function tests the keystroke to

Examining the Main Event Loop 301

determine whether it is one of the Fl-F4 function keys. If so,
then one of the following steps is taken:

a. If the keystroke is Fl, then the Update.AllMenus function
of the CBartender object (gBartender) is called, fol
lowed by calling the FindMenultem function of the
CBartender object, looking for a match for the cmdUndo
command (Undo). If the command was found to pertain
to an existing menu, then the menu title is highlighted.
Whether or not the command is found to pertain to a
menu, the DoCommand function for the current gopher
is called with the cmdUndo command code, and then the
highlight (if any) is removed from the menu title.

b. If the keystroke is F2, then the same steps as in the fore
going are taken, with the exception that the menus are
searched for the cmdCut (Cut) command, and the
DoCommand function for the current gopher is called
with the cmdCu t command code.

c. If the keystroke is F3, then the menus are searched for the
cmdCopy (Copy) command, and DoCommand for the
current gopher is called with the cmdCopy command
code.

d. If the keycode is F4, then the menus are searched for the
cmdPaste (Paste) command, and DoCommand for the
current gopher is called with the cmdPaste command
code.

3. If the event is keyDown and is none of the foregoing, then
the DoKeyDown function of the current gopher is called
with the character, its keycode, and the event record.

Handling Disk Inserted Events

If the event is diskEvt, then the user has inserted a disk and Do
DiskEvent is called to test the result of the disk mount process.
The Mac toolbox handles the event, but the TCL will display an
alert if the mount failed.

Handling Update Events

If the event is upda teEvt, then the Mac OS has determined that
the contents of one or more windows needs to be updated (that is,

302 Chapter 7 :>- Handling Events

the update region is not empty), so it manufactures an update
event, returning it as the next event in the call to GetNextEvent or
WaitNextEvent. The update process is quite complex and its steps
are as follows:

1. The DispatchEvent function commences processing the
updateEvt by calling DoUpdate with the event record. The
currently active window object is ascertained and its Update
function is called. That function calls the toolbox BeginUp
date, DeviceLoop, and EndUpdate functions to update (draw
the regions to be updated) the screen. The DeviceLoop tool
box function scans all of the active display devices, calling the
specified drawing procedure (DoUpdateDraw) for each
screen that intersects the drawing region (visRgn for the
current port). The steps taken by the DoUpdateDraw func
tion are as follows:

a. First of all, Do UpdateDraw is a universal procedure
pointer member variable: of the CWindow class. The
actual procedure used to perform the drawing action in
the window class is sDoUpdateDraw, which is a static
function of the CWindow class. That function calls the
UpdateDraw function for the current window.

b. The UpdateDraw function sets the clipping region to the
full port rectangle and determines whether the user's
computer has Color QuickDraw. If so, it calls GetFore
Color, RGBForeColor, GetBackColor, and then it calls
RGBBackColor.

c. The update rectangle is set to the bounding box of the
port's visible region, and then UpdateErase is called with
that value. UpdateErase calls the EraseRect toolbox func
tion to erase the update region, prior to causing it to be
redrawn.

d. After the update region has been erased, the Pane_Draw
function for each of the window's subviews, in turn, is
called.

2. The Pane_Draw function of the CPane class is called to draw
the current pane to be updated. The steps that it takes are as
follows:

Examining the Main Event Loop 303

a. The Pane_Draw function is called with a pointer to the
pane to be drawn and also the update rectangle. The pane
object is first tested to determine whether it is really visi
ble (it could hidden). If it is not really visible, then the
Pane_Draw function does nothing further for this sub
v1ew.

b. Next the pane is tested to determine whether it has a bor
der. If so, then the intersection of the border with the
update region is computed and stored into the clipping
rectangle by calling ClipRect. Then the border is drawn
by calling DrawBorder for the border object. A gray bor
der is drawn for a disabled pane object, and special atten
tion is paid to whether the border is being drawn or
printed. In the latter case, the origin is set to 0,0.

c. If the pane itself is being printed (rather than being
drawn), the intersection of the pane and the update rect
angle is computed, and this value is used in the call to the
DrawAll function for the pane.

d. If the pane is being drawn (rather than being printed),
the DrawAll function is called with the entire update
rectangle as its argument (that is, the drawing is not
clipped to its own pane).

3. The DrawAll function is fairly complex-it handles the draw
ing of the current pane and all of its subpanes (subviews). The
steps it takes are as follows:

a. The first step in drawing the current pane (subview) is to
convert its update area from global to frame (Quick
Draw) coordinates.

b. Then it is determined whether the pane is being printed
or drawn. If it is being printed, then the clipping rectan
gle is set to the intersection of the drawing area and the
pane's aperture (area inside its borders); otherwise, the
area to be drawn is not clipped.

c. Next the pane's i tsEnvirorunent member variable is
tested to determine whether the pane has an associated
CEnvirons object. The CEnvirons class provides
extended drawing facilities for a given CPane-derived

304 Chapter 7 ~Handling Events

object. If the i tsEnvironment pointer is not NULL,
then the Background function of that object is called
with the drawing area andl a pointer to the current pane.
In fact, because CEnvirons objects can be linked, one to
another, in a chain, the Background function calls itsel£
recursively, for each of the objects in the chain. Obvi
ously, if the itsEnvironment object is NULL, then the
Background function is not called.

d. Then the Draw function for the pane is called with the
drawing rectangle as its argument.

e. Then, once again, the :L tsEnvironment variable is
tested and if it holds a non-NULL pointer, its Foreground
function is called. This allows an object to perform more
embellishment of the foreground of the pane, after the
contents of the pane have been drawn.

f. After the foregoing drawing operations are complete, if
the status of the pane reflects that it is disabled, then the
GrayOut function is called to draw over the entire draw
ing area with a gray pattern, using the patBic transfer
mode. This shows the pane as being disabled.

g. At this point, the pane has been drawn, including any
background or foreground embellishments that were
applied as a result of the associated CEnvirons object
chain. The DrawAll function then proceeds to call
Pane_Draw for each of the current pane's subviews (if
any). This results in the innermost pane being drawn last,
and in front of all of the rest. The description of the
Pane_Draw function and the functions it calls begins on
page 302.

h. After all of the current pane's subpanes (subviews) have
been drawn, then the DrawAll function calls the Put
BackEnvironment function, which tests whether the
itsEnvironment object exists and calls the TearDown
function for that object. The objective here is to reset the
drawing environment of a pane, so that when it is
redrawn, the correct beginning state will exist. This step
concludes the drawing process for a pane and its enclosed
panes (subviews).

Examining the Main Event Loop 305

It is not entirely clear what might constitute a drawing envi
ronment, but if, for example, printed pages need to contain
an underlying "watermark" symbol, or some other back
ground or foreground contents, the CEnvirons class provides
the ability to associate this with panes on an individual basis.

Handling Activate and Deactivate Events

The DispatchEvent function in the CSwitchboard class deter
mines whether the current event is the activateEvt (activate).
When this event occurs, the function tests whether the "active
bit" is set in the event. If so, then it calls the DoActivate function,
the steps for which are as follows:

1. The DoActivate function first tests the ginBackground
global variable, to determine whether the application was sus
pended previously. If ginBackground is TRUE, then the
Resume function for the application object (gApplica
tion) is called. The Resume function determines whether
the front window belongs to the application. If so, the gin -
Background variable is set to FALSE, and the Resume func
tion in the CDirectorOwner class is called. That function
performs the following steps:

a. The Resume function of the CDirectorOwner class loops
through its list of directors (i tsDirectors) and calls
the Resume function for each director. Generally speak
ing, these directors are CDocument, CDialog, or other
window director (CDirector) objects.

b. The Resume function of the CDirector class calls the
Resume function of the CDirectorOwner (its base class)
as its first step. (This step refers to the function men
tioned in the foregoing step, which refers to the applica
tion's list of CDirector objects-CDocument objects.
The step currently being discussed refers to a document's
list of directors-usually CDialog objects.)

c. After the Resume function of the base class is called, then
it is determined whether the director's active member
variable is TRUE. If not, then the Resume function of the
CDirector class returns.

306 Chapter 7 >Handling Events

d. If the active variable is TRUE, then it is determined
whether the director's window (i tsWindow) is owned
by the director (that is, whether the director is the win
dow's supervisor) and also whether the activateWin

dOnResume variable is TRUE. If both of these are TRUE,

then the active variable is set to FALSE, the Activate
function for the window object is called, and the acti

vateWindOnResume variable is set to FALSE. The
functionality of the Activate function in the CWindow
class is covered in the next step.

2. If the application object's ginBackground variable is
FALSE, then the application's front window (if any) is
located. If it exists, the Activate function of the window
object (CWindow) is called. If the window is already active,
the Activate function does nothing. If the window is not
active, then Activate calls the HiliteWindow toolbox function
to ensure that the window appears to be active (its title bar,
grow, zoom, and close box icons are redrawn), and then the
Activate function of the CView class is called. The Activate
function in the CView class loops through all of the views in
the window, calling the Activate function for each of them.
When control returns to the Activate function in the CWin
dow class, the Activate Wind fonction of the window's super
visor-a CDirector object-is called. That function in the
CDirector class calls its Activate function, which perform the
following steps:

a. If the director is not currently active, then execution skips
to step e in the sequence that follows.

b. The active member variable for the director is set to
TRUE, and then the function tests whether a window
exists and whether or not it is a floating window.

c. If the window exists and is not floating, then the
BecomeGopher function for the i tsGopher object
pointer is called to request that the object become the
new current gopher. If the current gopher refuses to
resign, then the Activate function of the CDirector class
returns to the ActivateWind function, which returns to
the Activate function of the CWindow class.

Examining the Main Event Loop 307

d. If the current gopher resigns as the gopher, then the
object pointed to by the i tsGopher variable has
become the current gopher and the BecomeGopher func
tion returns a TRUE result. In this case, the Activate func
tion continues by setting the gSleepTime global
variable to 0, causing the event loop to perform all of the
idle tasks (if any), at the earliest possible moment. Execu
tion continues in the next step.

e. At this point, whether or not the director's active vari
able is TRUE, the Activate function of the CDirector class
calls the ActivateDirector function of the director's super
visor-a CDirectorOwner object-with a pointer to the
current director (this).

f. The ActivateDirector function of the CDirectorOwner
class tests whether its list of directors has at least one
member. If so, it calls the BringFront function of the list
of directors (i tsDirectors). This moves the specified
director's pointer to the front of the list. Then the Acti
vateDirector function sets the active member variable
to TRUE, returns control to the Activate function of the
CWindow class, and pops back through the stack of calls
to the event loop, from which DispatchEvent was called
to handle the Activate event.

If the "active-bit" is not set in the acti vateEvt, then it is a de
activate event, and the DispatchEvent function calls DoDeacti
vate to handle the event. Steps performed by the DoDeactivate
function are as follows:

1. The front window is examined to determine whether it is a
"system" window (usually a desk accessory). If so, then the
DoDeactivate function calls the Suspend function for the
application object (gApplication).

2. The Suspend function of the CApplication class tests whether
the ginBackground member variable is TRUE (indicating
that the application is already running in the background). If
so, it does nothing further. If the application is not currently
executing in the background, the Suspend function of the
CDirectorOwner class is called, the ginBackground vari
able is set to TRUE, and then the BecomeGopher function is

308 Chapter 7 ~ Handling Events

called to make sure that the application object is the current
gopher when the application's execution is suspended. (By the
way, what I mean by "execution is suspended" is that the
application is no longer in the foreground, although back
ground execution can continue by virtue of the multitasking
features of the Mac OS and the TCL's ability to dispatch Idle
events when nothing else is happening.)

3. When, in the foregoing step, the Suspend function of the
CDirectorOwner class is called, that function loops through
its list of directors and calls the Suspend function for each
such object in the list.

4. The Suspend function in the CDirector class tests whether
the director is active. If not, it simply returns. If the director is
currently active, then it is determined whether the director
owns (is the supervisor of) the window object contained in
the i tsWindow member variable and whether that window
is active. If both of these are 'TRUE, then execution continues;
otherwise, the function returns.

5. If the window is owned by the director and it is active, then
the Deactivate function for the window object is called. This
action results in the following actions:

a. The Hilite Window toolbox function is called to cause
the window to be redrawn as inactive (the tide bar is
redrawn in white and the grow, zoom, and close box
icons are erased).

b. Next, the DeactivateWind function of the window's
supervisor (the original C:Director object) is called. That
function calls the director's Deactivate function.

c. The Deactivate function of the CDirector class first tests
whether the director is active. If not, then execution con
tinues at the next step. The function continues in the case
where the director is active by setting its active variable
to FALSE and then testing whether the current gopher is
identical to the director object. If so, then the function
calls BecomeGopher for its supervisor to ensure that an
inactive director is not the current gopher, and then the
function returns. If the director is not the current gopher,
then execution continues at the next step.

Examining the Main Event Loop 309

d. Whether or not the director was active in the foregoing
step, the Deactivate function of the CDirector class calls
the DeactivateDirector function of its supervisor-a
CDirectorOwner object. That function sets the active
member variable to FALSE and returns.

6. After the window's Deactivate function is called, then the
active variable for the director will have been set to FALSE,
essentially deactivating the director. This is not necessary
when an application has been suspended via a deactivate
event, so the Suspend function in the CDirector class contin
ues by setting the active variable back to TRUE, and then
also sets the activateWindOnResume variable to TRUE.
This ensures that when you switch to another application and
then switch back, an active window will be reinstated as active
after the switch.

Handling Suspend and Resume Events

When the user switches to another application, the current appli
cation is sent a suspendEvt (suspend event), and the new appli
cation is sent a resumeEvt (resume event). When the user
switches back to the original application, the sequence of events is
repeated.

The DoSuspend function is called by the DispatchEvent function
when it receives a suspend event. That function simply calls the
application object's Suspend function, as shown in Figure 7-1.
Process steps for the Suspend function of the CApplication class
are described in connection with the Deactivate event, beginning
on page 307, in step 2.

The DoResume function is called by the DispatchEvent function
when it receives a resume event. That function simply calls the ap
plication object's Resume function, as shown in Figure 7-1. Pro
cess steps for the Resume function of the CApplication class are
described in connection with the Activate event, beginning on
page 305, in step 1.

Handling High-Level Events

High-level events, also called ''Apple events," are handled by in
stalling "handlers," as described in Chapter 2, regarding the cre
ation of the CSwitchboard object (see page 27). The whole topic
of high-level events is covered in a later chapter; however, when a

310 Chapter 7 >- Handling Events

Figure 7-2
Additional event
handling elements in
the TCL

itsSwitchboard

LEGEND

-+ Function Call

DispatchCursor)

DispatchClick

CDesktop _____________ ,,_

;--~----------!

; ~mand) !

UpdateAllMenus

MenuSelect

Select

Activate

DispatchClick

UserDrag

UserResize

UserClose

User Zoom

Deactivate

current window

high-level event is input to the DispatchEvent function, its re
sponse is to call the DoHighLevelEvent function, which deter
mines whether the user's system can handle these events. If so, it
calls the AEProcessAppleEvent toolbox function, recording any
error result, and then returns.

More About Mouse Down Events

The DispatchEvent function of the CSwitchboard class receives
mouseDown events, as described earlier (see page 299). Figure 7-2
depicts more of the detail in the process of handling these events.
In particular, the DispatchClick fonction of the CDesktop class is
responsible for determining what actions need to be performed.

The first action of the DispatchClick function of the CDesktop
class is to call the FindWindow toolbox function to determine
whether or not some portion of an existing window was clicked
in which case it returns a pointer to the window-and also what

Examining the Main Event Loop 311

part of the window, desktop, or menu bar was clicked. If the re
turn value is inDesk or inMenuBar, the window pointer will al
ways be NULL. The DispatchClick function then tests whether the
window kind is OBJ _WINDOW_KIND, which is the type created
by the TCL. If so, then the function tests whether the top window
is a modal dialog and the click occurred in a window or the menu
bar, either of which could cause the modal dialog to become inac
tive. This is not allowed, so the function calls SysBeep and returns
if the situation is proven to be true. Otherwise, execution contin
ues to the section of the DispatchClick function that determines
what actions to perform in response to the rnouseDown event.

Handling inDesk Clicks

If the part code returned by the FindWindow function is in
Desk, then the mouse click was on the desktop, and not in any
specific window. The code for this situation tests whether the top
window exists and whether it is a modal dialog. If so, then the
function calls SysBeep and returns.

If there is no top window or it is not a modal dialog, then the Dis
patchClick function continues by calling the CountClicks func
tion (a global function in the CView source file). CountClicks
determines whether the current click occurred in the same view as
the previous click. If so, it increments the gClicks global vari
able. If the click is in a different view, then gClicks is set to 1.
In either case, the gLastViewHi t global variable is set to the
pointer to the current view.

The final action in handling a click on the desktop is to call the
DoClick function that is inherited by the CDesktop class from
the CView class. That function is empty and the click is ignored.
If you wish to handle the DoClick function call, you can do so by
creating a subclass of CDesktop and then override that function.

Handling inMenuBar Clicks

If the part code returned by the FindWindow function is in
MenuBar, then the mouse click was in the menu bar. In that case,
the DispatchClick function calls the UpdateAllMenus function of
the CBartender object (gBartender). The processing steps of
that function were described earlier, in connection with a key
Down event, where the Command key was also held down (see
page 300, step la).

312 Chapter 7 >-Handling Events

After the dimming and unchecking operations associated with the
UpdateAllMenus function, and the subsequent undimming and
checking functions of individual UpdateMenus functions have
been performed, the DispatchClick function calls the MenuSe
lect toolbox function to determine the menu and item that was
chosen by the user (if any). The high-order 16 bits of the return
value reference the menu number and the low-order 16 bits refer
to the item (command), within that menu, that was chosen. If a
menu command was chosen, MenuSelect highlights the menu in
the menu bar. The DispatchClick function calls the DoCom
mand function for the current gopher if a command was chosen.
In either case, processing of a click in the menu bar is completed
by calling HiliteMenu to remove the highlight from the chosen
menu (if any).

Handling inSysWindow Clicks

If the part code returned by FindWindow is inSysWindow, then
the user has clicked in a system window (that is, a desk accessory).
In that case, the DispatchClick function calls the SystemClick
toolbox function to handle the click.

Handling inContent Clicks

If the part code returned by FindWindow is inContent, then
the click has occurred in the content region of a window. If the
window kind is not OBJ_WINDOW_KIND (that is., a window cre
ated by the TCL), then the inContent mouse click is ignored.

If the window kind is OBJ_WINDOW_KIND, then the Dispatch
Click function continues by testing whether the window is inac
tive (that is, its active variable is FALSE) or whether it is a
floating window that is not the front window. If either of these
cases is TRUE, then the steps taken are as follows:

1. The Select function for the window object is called. That
function calls SelectWind for the window's enclosure (which
is usually the CDesktop object). The SelectWind function
performs a number of steps, depending upon the type of win
dow that was clicked and the current status of the application.
These are summarized as follows:

a. If the window is the top window, is also a floating win
dow, and the front window is not a desk accessory win
dow, then the function returns.

Examining the Main Event Loop 313

b. If the front window belongs to a desk accessory, then a
click in a different window requires activating the appli
cation. In this case, the window pointer for the DNs win
dow is placed behind the bottom window of the desktop's
window list (itsWindows).

c. If the window in which the click occurred is a floating
window and is not the "top" floating window (top
Float), then the function tests whether a modal dialog
currently exists. If so, the floating window is placed
behind the modal dialog; otherwise, it is brought to the
front. In either case, the window is brought to the front
of the list of floating windows, and its Show function is
called to make the window visible.

d. If the window in which the click occurred is not a float
ing window and is not the top window, then the window
list is rearranged so that any modal windows are in front,
floating windows are directly behind modal windows,
and any non-modal window is behind all of the rest.
Then the clicked window is shown, and its visible

variable is set to TRUE.

e. If, however, the window in which the click occurred is a
modal dialog, is not the top window, and no modal dia
logs are currently visible, then the function sets the top
window to the clicked window and tests whether a desk
accessory was active at the time of the click. If so, then
the HiliteWindow toolbox function is called to make the
DA window inactive, and the sSetlnactive function is
called for the old top window (this sets the active vari
able for the window's director to FALSE and also sets the
acti vateWindOnResume variable to FALSE). The
sSetActive function is then called for the new top window
(this sets the active variable for the window's director
to TRUE; if the ginBackground variable is true, it sets
the activateWindOnResume variable to TRUE).

f. If the window in which the click occurred is not the top
window, no modal dialogs were visible, this window is a
modal dialog, but no desk accessory was active, then the
old top window is deactivated (if the ginBackground
variable is TRUE, then the sSetlnactive function is called;

314 Chapter 7 ~Handling Events

otherwise, the Deactivate function is called for the old
top window). Then if the ginBackground variable is
TRUE, the SelectWind function loops through the list of
windows (i tsWindows), calls the sSetlnactive function
for each, and then calls the sSetActive function for the
new top window. If the ginBackground variable is
FALSE, then the Activate function of the new top win
dow is called.

The foregoing steps are rather difficult to describe in words,
but I hope the steps will help you understand what is going
on when you look at the code in the SelectWind function of
the CDesktop class.

2. After the Select function continues (having selected the cor
rect window as the top window), the DispatchClick function
tests whether the actClick variable for the window object
in which the click occurred is TRUE. If not, then processing of
the click is complete; otherwise, the Activate function for the
clicked window object is called and processing continues.

At this point in the DispatchClick logic, for a click that occurred
in the content portion of a window, the function tests whether the
wantsClicks variable of the clicked window object is TRUE. If
so, then the UpdateWindows function is called, followed by call
ing the DispatchClick function for the clicked window. The Up
date Windows function loops through the list of windows
(itsWindows), calling the Update function for each window
whose update region is not empty:

The DispatchClick function of the CWindow class merely calls
the DispatchClick function of the CView class (its base class).
That function tests whether the "hit" view has a subview that con
tains the point on which the mouse was clicked. If so, it calls Dis
patch Click recursively for that subview. If no "hit" subview is
found, the current subview's object pointer is used for the remain
ing operations, which are as follows:

1. The CountClicks function is called for this subview, to tally
the number of consecutive clicks that have occurred.

2. If the canBeGopher variable for the object is TRUE, then the
BecomeGopher function is called for the object. If the return
value from that function is FALSE (indicating that the cur-

Examining the Main Event Loop 315

rent gopher refuses to resign), then the DispatchClick func
tion returns; otherwise, the DoClick function for the view is
called. The DoClick function is empty in the CView class;
however, many other classes in the TCL implement the
DoClick function (for example, see the explanation of
DoClick for the CControl class in Chapter 6, on page 266).

If the wantsClicks variable for the clicked window is FALSE,
then the CountClicks function is called to tally the number of
consecutive clicks for the current subview, and the DoClick func
tion for the CDesktop class (inherited from CView) is called. This
function is empty, but if you subclass CDesktop, you can override
this function.

Handling inDrag Clicks

If the part code returned by the FindWindow function is in
Drag, then the dick occurred on the tide bar of the window, and
it is assumed that the user may wish to drag the window to some
other position on the screen. The function first tests whether the
window kind is OBJ_WINDOW_KIND, indicating that it is a TCL

window. If not, the function returns. If so, then the User Drag
function for the current window object is called with the event
record as its argument. The steps taken by the UserDrag function
are as follows:

1. The Drag function in the CWindow class is called with the
current event record as its argument.

2. The Drag function of the CWindow class calls the Drag Wind
function of the window object's enclosure (CDesktop) with a
pointer to the current window and the event record as argu
ments. The DragWind function of the CDesktop class per
forms a number of steps, as follows:

a. If the window is not the top window, is not the top float
ing window, and the Command key is not down, then
the SelectWind function is called to select the window
(see the description of the SelectWind function, begin
ning on page 312, in step I). Execution continues with
the next step.

b. The state of the mouse button is tested to determine
whether it is still down. If not, then the function returns.

316 Chapter 7 >-Handling Events

c. The current port is saved, and then the port is set to the
window's port. The PenNormal toolbox function is called
to set the default pen properties, a variable named drag
Box is set to the window's bounds, and then those values
are inset by a constant DRAG_MARGIN, which is defined
to be 4 pixels. The current clipping region is saved, the
strucRgn (content region plus the frame) of the win
dow is copied into a utility region (defined in the TCL as
gUtilRgn), and then that region, the mouse position in
the event record, and the dragBox are passed to the
DragGrayRgn toolbox function to track the mouse and
drag a dotted outline of the window while the mouse
button is still down. The return value from the Drag
GrayRgn function is the new location of the mouse after
the drag is complete.

d. The saved clipping region is restored, the window is
moved to the final location by calling the Move Window
toolbox function (if the window was actually moved), the
saved port is restored, and the ForceNextPrepare function
is called to ensure that the port is reset before any new
drawing operations take place.

3. The UserDrag function continues by testing whether the
result of calling the application's Factoring function is TRUE
and the window is not modal and not floating. If one or more
of these conditions is FALSE, then the function returns. If
they are all TRUE, then the new window's bounds (in global
coordinates) are passed as an argument to the SendSetProper
tyToThis function of the CAppleEvent class (which is also a
base class of the CWindow class) to send an Apple Event to
this same application, reporting the window's new position.

The foregoing step is an example of how the TCL is factored to

send events to itself, allowing your application to be scriptable
and recordable. We will cover this intrinsic feature of the TCL in a
later chapter.

Handling inGrow Clicks

If the part code returned by the FindWindow function is in
Grow, then the user has clicked in the window's grow box and it is
assumed that the window is going to be resized. If the window

Examining the Main Event Loop 317

kind is OBJ_WIND_KIND, then the window's User Resize function
is called; otherwise the event is ignored. The steps taken by the
UserResize function are as follows:

1. The UserResize function of the CWindow class begins by
calling the Resize function. That function computes the cur
rent size of the window (width and height) and then calls the
GrowWindow toolbox function to track the mouse and allow
the user to change the size of the window. After GrowWin
dow returns, the function tests whether the window has been
resized. If so, it calls the ChangeSize function in the CWin
dow class.

2. The ChangeSize function in the CWindow class calls the
Size Window toolbox function with the new height and width
for the window, as well as a TRUE value for the updateFlag

argument, so that any newly exposed area of the window will
be added to the update region. Then the ChangeSize function
tests whether the window contains any subviews. If so, it
loops through the list of subviews (i tsSubviews) and calls
Pane_AdjustToEnclosure for each. This global function in the
CPane class calls the AdjustToEnclosure function for the
specified pane.

3. The AdjustToEnclosure function in the CPane class has to
determine whether a pane should be moved or resized when
its enclosure is resized, depending upon its "sizing" character
istics. If you recall, each pane has both a horizontal and verti
cal sizing characteristic that can be set when the pane is
designed in the VA. These must be taken into account when
the pane's enclosure changes size. The action to take when the
pane's enclosure is resized is determined by the AdjustHoriz
and AdjustVert functions, which are called, in turn, to com
pute movement and resizing values. The AdjustHoriz func
tion of the CPane class determines whether the pane's sizing
characteristic is sizFIXEDLEFT, sizFIXEDRIGHT, or
sizELASTIC, and then calculates the offset, moved, and
sized results as follows:

a. If the hSizing characteristic is sizFIXEDLEFT and the
left edge of the enclosure has changed position, then the
offset result is set to the value of that delta change and
the moved result is set to TRUE .

318 Chapter 7 >Handling Events

b. If the hSizing characteristic is sizFIXEDRIGHT and
the right edge of the enclosure has changed position, then
the offset result is set to the value of that delta change
and the moved result is set to TRUE.

c. If the hSizing characteristic is sizELASTIC, the delta
change for both the left and right edges of the enclosure
is computed, and if either value is nonzero, the sized

result is set to TRUE.

4. The AdjustVert function of the CPane class determines
whether the pane's sizing characteristic is sizFIXEDTOP,

sizFIXEDBOTTOM, or sizELASTIC, and then calculates
the offset, moved, and sized results as follows:

a. If the vSizing characteristic is sizFIXEDTOP and the
top edge of the enclosure has changed position, then the
offset result is set to the value of that delta change and
the moved result is set to TRUE.

b. If the vSizing characteristic is sizFIXEDBOTTOM and
the bottom edge of the enclosure has changed position,
then the offset result is set to the value of that delta
change and the moved result is set to TRUE.

c. If the vSizing characteristic is sizELASTIC, the delta
change in both the top and bottom of the enclosure's
edges is computed. If either value is nonzero, the sized

result is set to TRUE.

5. After both the AdjustHoriz and AdjustVert functions have
returned, then the AdjustToEnclosure function tests the
return values to determine what actions to perform. If both
the moved and sized results are TRUE, then the Adjust
ToEnclosure function proceeds as follows:

a. The Offset function is called with the horizontal and ver
tical offset values and a redraw argument of TRUE (forc
ing the pane to be redrawn).

b. The Offset function tests whether the redraw argument
is TRUE and calls the Refresh and RefreshBorder func
tions to redraw the area of the window where the pane
currently resides. The hOrigin and vOrigin values for
the pane are modified according to the amount the pane

Examining the Main Event Loop 319

has moved, Offset recalculates the hEncl and vEncl
values for the pane, and then calls CalcAperture to recal
culate the pane's aperture. If the redraw argument is
TRUE (as it is in this case), then the Refresh and Refresh
Border functions are called to update the pane's content
at its new location.

c. If the pane has any subviews (i tsSubviews) the
Pane_EnclosureMoved function is called for each of
these, which results in the Offset function being called
for each of the subviews of the current pane. These are, in
essence, recursive calls of the Offset function to enable
the changes associated with changing the size of a pane's
enclosure to ripple down throughout a set of nested
panes, causing the innermost pane to be drawn last.

d. After the Offset function has been called, the ChangeSize
function is called for the pane (it has been both moved
and resized), with the delta change in size values and a
redraw argument of TRUE.

e. The ChangeSize function begins by testing whether the
redraw argument is TRUE. If so, then the Refresh and
RefreshBorder functions are called to cause the area occu
pied by the pane's current position is added to the update
region.

f. If either the left or top of the pane has changed in posi
tion, the Place function is called for the pane. That func
tion determines the new location of the pane in the
window and calls the Offset function to cause it to be
redrawn in the new location. Then the right delta size
change is decreased by the amount the left edge was
moved, the bottom delta size change is decreased by the
amount the top edge was moved, and then the left and
top size changes are set to 0.

g. The ChangeSize function then calls ResizeFrame to
adjust the width and height of the pane, change the loca
tion of its frame coordinates, and change its hOrigin
and vOrigin values. CalcAperture is called to calculate
the new aperture of the pane, and then the redraw argu
ment is tested to determine whether it is TRUE. If so,

320 Chapter 7 >- Handling Events

then the Refresh and RefreshBorder functions are called
to force the pane (at its new size and position) to be
added to the update area. If the autoRefresh property
for the pane is FALSE and the pane is really visible, then
the ValidRect toolbox function is called to revalidate the
area of the pane; and if the pane has a border, then the
border's rectangle is calculated and ValidRect is called to
validate its rectangle. These actions prevent the pane
from being drawn automatically when the enclosure's size
is changed. The default setting is for autoRefresh to
be TRUE, thereby causing the pane to be redrawn.

h. In any event, the ChangeSize function completes its exe
cution by testing whether the pane has any subviews and
calls the Pane_AdjustToEnclosure function for each of
these (that function is described on page 317, in step 2).

6. In the AdjustToEnclosure function of the CPane class, if the
moved result is TRUE, but the sized result is FALSE, then
only the Offset function is called for the pane. That function
is described beginning on page 318, in steps 5b and 5c.

7. In the AdjustToEndosure function of the CPane class, if the
moved result is FALSE, and the sized result is TRUE, then
the ChangeSize function is called for the pane. That function
is described beginning on page 319, in steps 5e through 5h.

8. If, in the AdjustToEnclosure function of the CPane class, nei
ther the moved nor sized results is TRUE, then the function
calls the CalcAperture function to recalculate the pane's aper
ture (which might have changed when the enclosure's size was
changed).

9. After all of the panes in the window have been moved or
resized, as necessary, the ChangeSize function of the CWin
dow class regains control. That function calls ForceNextPre
pare to ensure that the port is reset before anything is
redrawn, and then calls the Update function of the CWindow
class to cause the entire window's contents to be redrawn.
Prior to this, all of the calls to Refresh and RefreshBorder
have only added rectangular areas to the window's update
region and no drawing has actually taken place. As you saw in
step 5g, when autoRefresh was FALSE, a pane and its bor-

Examining the Main Event Loop 321

der's areas were revalidated in the update region. All of the
foregoing steps are intended to determine what really needs to
be redrawn when the window's contents are updated. By call
ing Update directly, the ChangeSize function in the CWin
dow class has "faked" an update event. To reread what occurs
in the processing of that event, refer to the description begin
ning on page 302, in step 1.

10. After the window has been redrawn, control returns to the User
Resize function. The function then tests whether the factor

ing property of the application is TRUE, that the window is
not a floating window, and that it is not a modal window. If
these are all TRUE, then the bounds of the window are ascer
tained, and the SendSetPropertyToThis function in the
CAppleEventObject class is called to send an Apple Event of
the window's new bounds to the current application (to be
acted upon or recorded, as you desire).

The foregoing is the final step in the UserResize function, which
was called to handle a mouse down event in the size box of the
current window.

Handling inGoAway Clicks

When the user clicks in the close (go-away) box of the current
window, the Dispatch Click function of the CDesktop class tests
whether the window pointer is NULL. If so, then the click is ig
nored. If the window pointer is not NULL, then the TrackGoAway
toolbox function is called to track the mouse pointer, returning
TRUE only if the mouse button is released while still inside the
close box of the window. If the result of the function is TRUE,

then DispatchClick calls the UserClose function in the CWindow
class.

The UserClose function tests whether the factoring property
of the application is TRUE. If so, it sends an Apple Event of kAE

Close to itself, indicating that the event should be executed and
also recorded (if desired). If the factoring property is FALSE,

then the Close function for the CWindow class is called. That
function calls the CloseWind function for its supervisor (a CDi
rector object). The CloseWind function in the CDirector class
first determines whether the window being closed is the same ob
ject as that whose pointer is stored in the i tsWindow member

322 Chapter 7 > Handling Events

variable. If so, then the Close Wind function performs a number
of actions, as follows:

1. The Close function of the director is called with a value of
FALSE for the quit ting argument.

2. A given director object usually overrides the Close member
function to perform actions specific to the director when that
function is called. In the case where the director is derived
from the CDocument class, the director attempts to close the
document's file (if any) and then calls the Close function in
the CDirector class. Following that, the director's Close func
tion returns TRUE, indicating success in the performance of
the Close function.

In the case where the director is derived from the CDialogDi
rector class-itself being derived from CDirector-the Close
function initiates the EndDialog process, calls the Close func
tion of the CDirector class, and then returns TRUE, indicat
ing success in the performance of the Close function.

3. In any case, when the Close £Unction of the CDirector class is
called, that function tests whether the alreadyClosing
variable is true. If so, it returns with a result of FALSE; other
wise, the alreadyClosin~r variable is set to TRUE and the
function proceeds to call the Close function of the CDirec
torOwner (its base class) with the value of the quit ting
argument passed to it (which is FALSE in this case).

4. The Close function of the CDirectorOwner class accesses the
first object in its list of director objects (i tsDirectors),
which are the subdirectors for that director, and assigns this
object to the theDirector variable and performs the fol
lowing steps in a loop that terminates only when the value in
the theDirector variable is NULL:

a. It calls the Close function for the theDirector object.

b. If the Close function returns a result of FALSE (indicat
ing that it is unwilling to close), then the Close £Unction
of the CDirectorOwner class returns to the Close func
tion of the CDirector class with a FALSE result.

c. If the Close function returns a TRUE result, indicating
that the close operation succeeded, the subdirector will

Examining the Main Event Loop 323

have been removed from the list of directors by virtue of
the execution of the director's destructor function (see
step 5 next), so that, in the event that the list is empty
after the preceding operation is complete, the Close func
tion of the CDirectorOwner will terminate execution
and return a TRUE result.

d. If the list is not empty, the new first element in the list is
chosen, and the loop will repeat.

5. Returning to the Close function of the CDirector class, in the
case where the Close function of the CDirectorOwner class
has returned a value of TRUE, the function disposes of its own
object by calling the TCLForgetThis macro, which calls Dis
pose with an argument of this. Dispose executes a delete
this statement, disposing of the object. When the destruc
tor of the object is executed, if the director owns the window
object stored in the i tsWindow variable, the window is dis
posed by calling TCLForgetObject with the window pointer
as its argument, and then the RemoveDirector function of its
supervisor (a CDirectorOwner object) is called. This removes
the CDirector-derived object from the list of its directors
(itsDirectors).

Whether or not the window being closed is identical to the object
whose pointer is stored in the director's i tsWindow member
variable, the Close Wind function in the CDirector class disposes
of the window by calling TCLForgetObject with the window
pointer as its argument. Then if both the itsWindow and its
Directors (list of subdirectors) are NULL, the steps described in
detail beginning on page 322, in step l, are executed.

After calling the Close function for the CDirector object, the
Close Wind function returns to the Close function of the CWin
dow class, which, in turn, returns control to the UserClose func
tion in the CWindow class, which returns control to the event
loop.

Handling inZoomln and inZoomOut Clicks

When the user clicks in the "zoom" box of the window, the part
code returned by the FindWindow toolbox function is either in
Zoomin or inZoomOu t, depending upon whether or not the
window has already been expanded (zoomed) to its full size. In ei-

324 Chapter 7 ~ Handling Events

ther case, the DispatchClick function of the CDesktop class first
tests whether the window pointer is NULL. If so, then the click is
ignored; otherwise, the TrackBox toolbox function is called to
track the mouse. If the button is released when the mouse pointer
is outside the zoom box, then the click is ignored. If the mouse
pointer is still within the zoom box when the button is released,
then TrackBox returns a TRUE result, and DispatchClick calls the
window object's UserZoom function.

UserZoom determines whether factoring is TRUE for the current
application and that the window is not floating and is also not a
modal dialog. If these are all TRUE, then the SendSetProperty
To This function is called to send an Apple Event to the applica
tion, indicating the new zoom status of the window. It is assumed
that the application will record the new status, in addition to per
forming the zoom operation.

If the application is not factored, or if the window is floating or a
modal dialog, then the Zoom function for the CWindow class is
called with a direction argument of TRUE for a zoom out, or
FALSE for zoom in. The Zoom function performs the following
actions:

1. The current window's contents are erased.

2. The window size is computed for a zoom-out operation, to be
as large as possible for the current display device. There are
complications to this. If the window spans more than one dis
play device, the dominant device's characteristics are used
when sizing the window.

3. The Zoom Window toolbox function is used to perform the
zoom in or zoom out function.

4. If the window's list of subviews (i tsSubviews) is not NULL,
then the Zoom function loops through the list, calling the
Pane_AdjustToEnclosure function for each (the actions taken
by this function are described beginning on page 317, toward
the end of step 2).

5. After all of the subpanes have been adjusted to the new enclo
sure size, the InvalRect toolbox function is called to invalidate
the port rectangle of the entire window, causing it to be
redrawn when the next update event is processed.

Event Processing Summary 325

6. Finally, if the window is floating, the Select Wind function for
the window's enclosure (CDesktop) is called to make the win
dow the current top window. (The SelectWind function's
process steps are described beginning on page 312, in step 1.)

Event Processing Summary

The foregoing sections have gone into a great amount of detail to
describe the actions of the TCL in response to all possible events
(except for high-level events, which will be covered in a later chap
ter). In general, Figure 7-1 illustrates the gross logic for handling
other than mouse-down events and Figure 7-2 illustrates the gross
logic for handling mouse-down events.

Most of the complexity of event handling occurs when windows
are moved or changed in size. This affects the positions or sizes of
all of the subviews of the window. And because views can be
nested inside other views, the process of resolving the new posi
tions and sizes of these is necessarily complex. However, the good
news is that the TCL does almost all of the work, and you need
only perform whatever operations are needed when your own
Draw functions are called. Controls and other TCL objects are
drawn automatically. You needn't add code to provide these fea
tures, unless you are subclassing a control object and wish to cus
tomize a control's appearance.

Chapter 8

Examining Template and Collection Classes

In this chapter, I am going to describe the collection classes de
fined in the TCL. Some of these are implemented with a generic
class template (CPtrArray), and they will be described also. In
general, the TCL implements only arrays and lists. Although there
are no stacks or dictionary-type collections, these can be imple
mented easily with the existing facilities.

In addition to the existing collections, we will discuss the iterator
classes that provide a robust means for iterating through a collec
tion and performing actions safely that might otherwise operate
incorrectly in procedures that rely on index values for element se
lection. There are two iterator classes. One is CArraylterator, and
the other is CVoidPtrArraylterator. The collection and iterator
class hierarchy is shown in Figure 8-1.

Using the CArray Class

In addition to being the base class for the other collections, CArray
is fully capable of being used as a concrete class. That is, you can
create CArray objects and use them in your applications.

The CArray class provides the means to hold items of any type
and size, as long as all of the items are the same size. When you
create a CArray object, you specify the size of each of the items
you intend to store in the array, and, optionally, the number of
slots by which the array should grow when more space is needed.
The default block size is three slots. If you expect to allocate a lot
of array items, then you might set the block size a bit larger than
this; however, each time the array is increased in size, the block
size multiplied by the item size is used to allocate new storage.

The CArray class allocates contiguous storage, in the form of a
handle, to contain the array's data. Access to items in the array is
very efficient, because the requested item's location can be com-

327

328 Chapter 8 >-Examining Template and Collection Classes

Figure 8-1
Collection and
iterator class hierarchy

CPtrArray<CGroupButton>

CPtrArray<CCollaborator>

CCollaboratorlist

LEGEND

-- Inherited Behavior
~ Object Construction
...... Chain of Command

CCollaborator

L CCollection CArraylterator

CArray CVoid Ptr Arraylterator

CVoidPtrArray CRunArray

CPtrArray<CDirector> CPtrArray<CChore>

CPtrArray<CWindow> CPtrArray<CView>

CList<CWindow> CList<CVieW>

puted from its index value (since the items's size is known). Some
operations on the array require that it be searched for an item that
meets a condition specified by a compare function (for example,
as in the Search member function). Other operations may require
that array items be moved to make space for a newly inserted item
(InsertAtlndex) or a deleted item (Deleteltem). Items can be
added (Add) to the end of the array efficiently.

I have shown a number of examples of using the CArray class in
earlier chapters. For example, in Chapter 5, I used a CArray ob
ject to hold CCat object pointers. The code to create the CArray
object was placed in the ICMain function of the CMain class (the
document owns the categories list in this case). The code to
create the array is as follows:

void CMain: :ICMain()
{

Ix_CMain();

II create the categories list
categories= TCL_NEW (CArray, (sizeof (CCat *)));

Using the CArray Class 329

As is evident in the foregoing, the creation of the CArray object is
accomplished with a single statement. The TCL_NEW macro cre
ates a new CArray object with items that are the size of a CCat
object pointer. I could have used a CVoidPtrArray for this pur
pose, but I am comfortable using the CArray class.

The code for adding items to an array is very simple. Once again,
this is illustrated in Chapter 5 for the categories array. A func
tion called AddCategory in the CMain class was created to per
form this task. The code is as follows:

void CMain: :AddCategory (CCat *aCat)
{

II the easiest way to add a category is to add it
II to the end of the array and then sort the array.

categories->Add (&aCat);
SortCat();

The foregoing code adds a category to the end of the list (array)
and then calls SortCat to sort all of the categories into order ac
cording to their names. Notice in the foregoing code that the Add
function is called with a pointer to the item to be added. The
item, in this case, is an object pointer, but we still pass a pointer to
that pointer when we call the Add function. The most common
mistake when using arrays is to forget to use a pointer to the ob
ject pointer (or other type of item) being added.

When you wish to retrieve an item from a CArray object, you
must also supply a pointer to the container that is to receive the
item. So, for example, the GetCategory function described in
Chapter 5 shows how a CCat object pointer is retrieved from the
categories array. The code is as follows:

CCat* CMain::GetCategory (long index)
{

CCat *aCat;
long nurn;

nurn = categories->GetNurnitems();
if (index > nurn I I index < 1)
{

return NULL;

categories->GetArrayitem (&aCat, index);
return aCat;

330 Chapter 8 >Examining Template and Collection Classes

In the foregoing, notice that the GetArrayltem function of the
CArray class is being called with a pointer to the CCat object
pointer and also an index-a long variable-of the item to be re
trieved. Index values are positive values greater than zero (that is,
they run from 1 through the number of items in the array).

It is also simple to delete an item from an array. The DelCategory
function described in Chapter 5 shows how that operation is per
formed. The code is as follows:

void CMain::DelCategory (long index)
{

long num = categories->GetNumitems();

if (index <= num && index >= 1)
{

categories->Deleteitem (index);

Although the foregoing code tests the index value to make sure
that it is within the bounds of the array, the Deleteltem function
requires only the index of the item to be deleted from the array.

Documentation for the CArray dass in the TCL describes a num
ber of other useful member functions. If you wish to change the
contents of an item in a CArray object, then you can use the Set
Arrayltem member function. That function wasn't used for our
categories array, but the function could be used as follows:

void CMain::SetCategory (CCat *aCat, long index)
{

CCat *theCat = GetCategory (index};
if (theCat == NULL}
{

ASSERT (! "Invalid category index"} ;

categories->SetArrayitem (&aCat, index};

The foregoing code accesses a specified category by calling the
GetCategory function with the item's index. After ensuring that
the CCat object pointer returned by the function is not NULL, the
function calls the SetArrayltem function to provide replacement
contents for the element at the specified index in the array.

Using the Olrray Class 331

Looping Through CArray Objects with an Index

There are times when you will need to iterate through all of the
items in a CArray object to find one that matches some compari
son criteria. There are two ways to accomplish the iteration. If you
are merely going to compare each item to determine whether it
meets a specified criteria, then it is easy to access the number of
items in the array, then loop through the items, one by one, until
one is found (or not) that matches the criteria. For example, each
CCat object has a name string that is stored in a CString object
within the CCat object. If you are looking for a category whose
name is "Mortgage," then you could do it as follows:

CCat *CMain: :FindCategoryByName (CString name)
{

ccat *aCat;
long numitems;
long index;

II
II find a category item by name and return a pointer
II to the CCat object if found, or NULL if not found.
II
numitems = categories->GetNumitems();
for (index=l; index <= numitems; index++)
{

categories->GetArrayitem (&aCat, index);
if (aCat->catName == name)
{

return aCat;

return NULL;

In the foregoing, there is no question of confusion in the array in
dex, because the array is not being altered within the loop. How
ever, in cases where the array is being altered (items added, moved,
or deleted while the loop is in progress), then it is a lot safer to use
a CArraylterator object to iterate through the array.

An example of this is a function that deletes every array item
whose taxable status (catTaxable) is FALSE, leaving only items
that have tax consequences remaining in the array, after the loop is
complete. It should be clear that if you delete a particular item in
the array, then the index of the next item will be the same as the
current item's index (because items beyond the deleted item are
moved to occupy the empty space). While you could still cope

332 Chapter 8 > Examining Template and Collection Classes

with this situation by using an index-oriented loop, it is much
safer to use a CArraylterator object for this purpose.

Looping Through CArray Objects with an Iterator

Figure 8-2
CArraylterator cursor
relationship to array
index

A CArraylterator object uses the notion of a "cursor" to denote
the current position in an array. The cursor does not point directly
to an item in the array, but, rather, sits between the previous and
next items in an array, as shown in lFigure 8-2.

Cursor

i
Cursor positions: 0 2 3 4 5 6 7 8 9 10 11

Index values: 1 2 3 4 5 6 7 8 9 10 11

i i
Prev Next

While the foregoing figure illustrates a direct relationship to an ar
ray index and what is called the cursor and an array index, the
cursor will keep track of the current position in the array, regard
less of how many insertions, deletions, and movements of the data
are made. An example of using a CArraylterator object and its
cursor position is illustrated by the SortCat function presented
initially in Chapter 5. That function sorts an array of CCat object
pointers, such that the objects are in order, from beginning to end
of the array, according to the values of their ca tName fields. The
code for the SortCat function is as follows:

void eMain: :Sorteat ()
{

eeat *pCat, *neat;
Str255 pName, nName;

eArrayiterator piter (categories, kStartAtBeginning);
eArrayiterator niter (categories, 0);

II
II perform a simple NA2 sort of the categories array
II
while (piter.Next (&peat))
{

peat->GeteatName(pName);
niter.MoveTo (piter.Geteursor());
while (niter.Next (&neat))

Using the CArray Class 333

nCat->GetCatName(nName);
if (IUCompString(nName, pName) < 0)
{

categories->Swap (piter.GetCursor(), niter.GetCursor());

The foregoing code creates two CArraylterator objects and initial
izes them both to point at the categories array. The first itera
tor (piter) is initialized to start at the beginning of the array by
using the kStartAtBeginning constant in its construction.
The second iterator (niter) is initialized with 0 as its start ar
gument (it turns out that both of the start values are the same
in this case, but I use 0 in the second iterator simply to indicate
that I don't care about its start point when it is first constructed).
Iteration begins by calling the Next member function of the itera
tor. A call to Next returns a pointer to the next item in the array
(if any). I could also call Prev and it would return a pointer to the
previous item in the array (if any). When there is no "next" item,
Next returns NULL; when there is no previous item, Prev returns
NULL. We can access the current cursor value at any time by call
ing GetCursor.

So the SortCat code begins iterating through the categories
array by accessing the pointer to the item at its cursor position
and then advancing the cursor. Then the CCat object's name
string is acquired by calling the GetCatName access function for
that object. After doing this, the code calls Move To for the second
iterator, telling it to move its cursor to the location in the array
where the first iterator's cursor now points. An inner loop iterates
through the categories array, accessing each new item, acquir
ing its name, and then comparing that name with the name ac
quired with the first iterator. If the object associated with the
second iterator has a name that sorts in front of the one for the
first iterator's object, then the two array items are swapped by call
ing the Swap function for the categories object. The Swap
function is called with the current cursor values for each of the it
erators. The inner loop continues until the Next function returns
NULL (indicating there is no next entry). The first iterator then
calls its Next function to access the next array item, gets its name,
moves the second iterator's cursor to the following location in the

334 Chapter 8 >-Examining Template and Collection Classes

array, and then runs the inner loop again. The process continues
until the Next function of the first iterator returns a NULL result.
When the operation is complete, the objects will have been
sorted, from beginning to end of the array, in ascending alphabet
ical order by their category names. The sort algorithm in the fore
going is not terribly efficient. It is a simple NZ loop within a loop;
however, for a small number of category names, it will be efficient
enough.

Creating a Push-Pop Stack

Creating new collection classes is quite simple. The CArray class
can be used as the basis of most of these, because of its flexibility
and robust behavior. In this section I will create a stack, upon
which objects (or any other type of data) are pushed to be stored,
and from which data are popped to be retrieved. It is a last-in first
out type of stack (a LIFO).

In order to implement the stack (CStack), I will need to derive the
class from the CArray object. This is done in a header file named
CStack.h, and whose corresponding source file is named
CStack.cp. The header file is as follows:

/*****************************w*******************************
CStack.h

Interface for CStack class

BASE CLASS = CArray

Copyright© 1995 Richard 0. Parker. All rights reserved.

******************************~~******************************/

#pragma once

#include <CArray.h>

class CStack: public CArray
{

public:

};

TCL DECLARE_CLASS

CStack (long anElementSize, short blockSize 3);

virtual void Push(void *itemPtr);
virtual void Pop (void *itemPtr);

Using the CArray Class 335

The foregoing header file defines a constructor for the stack and
two member functions (Push and Pop). This is a very simple im
plementation and shows only the very basic features that could be
provided in a full stack implementation. For example, one might
be tempted to add Forth-like Swap, Roll, Dup, and other stack
operations for the new class. You are welcome to do so in your
own version of the code. The source file (CStack.cp) that imple
ments the foregoing declarations is as follows:

/***
CStack.cp

CStack is a dynamic array that implements a conventional
LIFO stack. Push and Pop member functions are included.

Copyright© 1995 Richard 0. Parker. All rights reserved.
***/

#ifdef TCL_PCH
#include <TCLHeaders>
#end if

#include "CStack.h"

#define TCL_ASSERT_INDEX(index)TCL_ASSERT((index > 0)\
&&(index<= itemCount))

TCL_DEFINE_CLASS_Dl(CStack, CArray);

/***
CS tack

Constructor

***/

CStack: :CStack(long anElementSize, short blockSize)
: CArray (anElementSize, blockSize)

TCL_END_CONSTRUCTOR

void CStack: :Push (void *itemPtr)
{

Add (i temPtr) ;

void CStack: :Pop (void *itemPtr)
{

long numitems = GetNumitems();
TCL_ASSERT (numitems > 0);
GetArrayitem (itemPtr, numitems);
Deleteitem (numitems);

As you can see from the foregoing, the implementation of a sim
ple stack is quite trivial. I use member functions from the CArray

336 Chapter 8 ~Examining Template and Collection Classes

class to handle the addition of an item to the stack (Push) and
then other member functions from CArray to handle the removal
of an item (Pop). The Pop function includes an assertion that
makes sure that one or more items is on the stack before an at
tempt is made to remove an item.

Using the CVoidPtrArray Class

One of the common uses of an array is to hold object pointers,
as in a list. The TCL makes it easy to do so by providing a
CVoidPtrArray class for this purpose. If you refer to Figure 8-1,
you will see that the CVoidPtrArray class is derived directly from
the CArray base class. This class provides a number of new func
tions that are important additions to the functionality of the
CArray class, particularly for handling the storage, access, and
manipulation of object pointers. The new functions are summa
rized in Table 8-1.

In addition to the new functions, the CVoidPtrArray object in
herits all of the member functions of the CArray class. In addi
tion to these, the CVoidPtrArray class also includes a set of built
in iterator functions, many of which are used in various areas of
the TCL in manipulating lists of objects. The iterator functions
included within the CVoidPtrArray class include those shown in
Table 8-2.

Looping Through CVoidPtrArray Objects with an Iterator

In addition to the iterator functions built into the CVoidPtrAr
ray class, the TCL provides a CVoidPtrArraylterator class that
provides the same functionality as the CArraylterator class, but
specifically for CVoidPtrArray objects. The CVoidPtrArrayltera
tor class uses the notion of a "cursor," as shown in Figure 8-2, to
iterate through the array. The Next function accesses the next
item (if any) in the array, returning its object pointer, and the
Prev function accesses the previous item (if any) in the array, re
turning its object pointer. The GetCursor function obtains the
current value of the cursor. The Next and Prev functions return
TRUE if they are successful in accessing the specified object; oth
erwise, they return FALSE.

Table 8-1
New functions in the
CVoidPtrArray class

Function

Copy

Remove

Includes

Offset

InsertAfter

lnsertAt

BringFront

SendBack

Move Up

MoveDown

MoveTolndex

Findlndex

Firstltem

Lastltem

Nthltem

Using the CRunArray Class 337

Description

Makes a copy of the specified object and returns its
pointer.

Takes a pointer to an object, searches for the matching
pointer in the array, and removes the item.

Returns TRUE if the array holds the specified pointer.

Returns the array index-1 of the specified pointer.

Takes the pointer to an existing object and another
pointer to a new object to be inserted after the existing
object in rhe array.

Mimics rhe lnsertAtlndex function of CArray

Moves an object pointer to rhe first position in the array.

Moves an object pointer to the end of the array.

Moves an object pointer one slot closer to rhe from of
the array.

Moves an object pointer one slot closer to the end of the
array.

Moves rhe specified pointer to the specified index posi
tion in the array.

Returns the index of the specified pointer.

Returns rhe first object pointer in the array.

Returns rhe last object pointer in the array.

Returns the Nth object pointer in the array.

Using the CRunArray Class

The TCL has defined a special array class, called CRunArray, that is
derived from the CArray class, as shown in Figure 8-1. The
CRunArray was defined primarily as an object for keeping track
of "runs" of identical values. It is used by the CTable class to keep
track of runs of identical row heights and column widths for a
given table. It is also used in the CPrinter class to keep track of
runs of identical "strip widths" and "strip heights."

Whenever you need to keep track of a sequence of consecutive
long integer values, you can use a CRunArray object to minimize
the storage required to do so.

338 Chapter 8 >Examining Template and Collection Classes

Table 8-2
Built-in iterator
functions for the
CVoidPtrArray class

Function

DoForEach

DoForEachl

Findltem

Findlteml

FirstSuccess

FirstSuccess 1

LastSuccess

LastSuccess 1

Description

Iterates through the array, calling the specified function
for each object in the array, with the object's pointer.

Iterates through the array, calling the specified function
for each object in the array with the object's pointer and
one additional long integer argument.

Iterates through the array, calling the specified function
and continuing to loop until the function rerurns a TRUE
result, in which case: the object's pointer is returned; oth
erwise, NULLis returned.

Operates the same as Findltem but passes the specified
function an additional long integer argument.

A synonym for Findltem.

A synonym for Findltem 1.

Same as FirstSuccess, except that the loop runs from the
end of the array to its beginning.

Same as FirstSuccessl, except that the loop runs from
the end of the array to its beginning. .

The CRunArray object contains a structure, consisting of a long
integer runLength and a long integer value, as a member vari
able of the class. Therefore, each item in the array is the size of
that structure. The functions in the CRunArray class are summa
rized in Table 8-3.

Using the CPtrArray Template to Create CoUections

The CPtrArray class consists of a generic template that provides
the ability to construct arrays of various specific kinds of pointers
and then operate on those items. The CPtrArray class is declared
as follows:

template <class T>
class CPtrArray : public CVoidPtrArray
{

} ;

II
II member function declarations
II

In order to use the CPtrArray class, you need to create a specific
instance of it. This is done in the TCL for all of the concrete classes

Table 8-3
CRunArray class
function summary

Function

GetNumitems

Insert Value

Set Value

Get Value

Delete Value

DisposeAll

SumRange

FindSum

FindRun

InsertRun

DeleteRun

Using the CPtrArray Template to Create Collections 339

Description

Returns the number of runs in the array.

Inserts a run of values into the array, at the specified item
index.

Sers the value of the item at the specified index to the
specified value.

Returns the value in the array, at the specified index.

Decrements the run length for the specified index. If the
run length becomes zero, it deletes the array entry.

Removes all of the entries from the array.

Computes the sum of the values within the start and end
index values.

Returns the index of the item in the array for which the
sum of values from the beginning of the array to that
item equals or exceeds the specified value.

Returns the number of the run that contains the entry at
the specified index.

Inserts a new run, consisting of value and run length,
into the array at the specified index.

Deletes an entire run at the specified index.

that are derived from CPtrArray, as shown in Figure 8-1. One ex
ample of these is the code for the CPtrArray<CDirector> class,
whose source code is in the file CPtrArray<CDirector>.cpp, and
is as follows:

#include "CPtrArray.h"
#include "CDirector.h"

#pragma template_access public

#pragma template CPtrArray<CDirector>

TCL_DEFINE_CLASS_Ml(CPtrArray<CDirector>, CVoidPtrArray};

#include "CPtrArray.tem"

As you can see in the foregoing, the header files for both the
CPtrArray and CDirector classes are included by #include
statements in the source. In addition, the #pragma
template_access public statement specifies that the
scope of the instantiation of the class and its member functions

340 Chapter 8 >Examining Template and Collection Classes

is public. The actual source code for the CPtrArray class is con
tained in the CPtrArray. tern file.

Let us assume that you wish to create a list of pointers to CWidget
objects in your CMain (document class). In order to accomplish
this, you will need to provide a declaration of the list within the
class declaration in your CMain.h header file. Following is the
way it would be done in the TCL:

typedef CPtrArray<CWidget> CWidgetList;

class CMain : public x_CMain
{

CWidgetList *itsWidgets;

II other member variable and function declarations
} ;

In addition to the foregoing, you would need to create a source
file called something like CPtrArray _ CWidget.cpp and add the
code to instantiate the template for your class, as follows:

#include <CPtrArray.h>
#include "CWidget.h•

#pragma template_access public
#pragma template CPtrArray<CWidget>

TCL_DEFINE_CLASS_Ml(CPtrArray<CWidget>, CVoidPtrArray);

#include <CPtrArray.tem>

The foregoing is all that is required to create a list of pointers to
your CWidget class. Now that this has been accomplished, let's
turn our attention to the functions available in the CPtrArray
class. These are summarized in Table 8-4. In addition to functions
for adding, removing, and inserting items into the list, the table
also includes iteration functions that are built into the CPtrArray
class. Of all of the functions listed, only the DisposeAll and Dis
poseltems functions (in addition to the constructor) are included
in the CPtrArray.tem source file. The CPtrArray.h class declara
tion includes in-line definitions of the remaining functions, in the
form of specialized calls to the corresponding functions in the
CVoidPtrArray class.

Figure 8-1 shows a number of classes that are derived from the
CPtrArray template class. In addition, there are three classes that

Table 8-4
CPtrArray class
function summary

Function

DisposeAll

Disposeltems

Add

Remove

SetArrayltem

Append

Pre pend

InsertAfter

InsertAt

BringFront

SendBack

Move Up

Move Down

DoForEach

DoForEachl

First Item

Lastltem

FirstSuccess

FirstSuccess 1

LastSuccess

LastSuccess 1

Using the CPtrA"ay Template to Create Collections 341

Description

Disposes all of the items in the list and then deletes the
list itsel£

Disposes all of the items in the list.

Adds the specified object pointer to the end of the list.

Removes the specified object pointer from the list.

Stores the object pointer at the specified index in the list.

Adds the specified object pointer to the end of the list.

Adds the specified object pointer to the front of the list.

Inserts the specified object pointer after another speci
fied object pointer in the list.

Inserts the specified object pointer at the specified index.

Moves the specified object pointer to the front of the list.

Moves the specified object pointer to the end of the list.

Moves the specified object pointer one slot closer to the
front of the list.

Moves the specified object pointer one slot closer to the
end of the list.

Performs a specified function for each item in the list.

Performs a specified function for each item in the list,
passing it an additional long integer argument.

Returns the first object pointer in the list.

Returns the last object pointer in the list.

Performs a specified function for each item in the list
and returns the pointer to the item for which the func
tion first returns a TRUEresult.

Same as FirstSuccess, but calls the test function with one
additional long integer argument.

Same as FirstSuccess, but loops from the end to the be
ginning of the list.

Same as LastSuccess, but calls the test function with one
additional long integer argument.

are derived from these. The three newly derived classes are CCol
laboratorList, CList<CWindoW>, and CList<CVieW>. All three of
these are based upon the CList class, which is based upon the
CPtrArray class, but adds Putltems and Getltems functions for
writing and reading list items of the specified type to/ from an

342 Chapter 8 > Examining Template and Collection Classes

output or input stream. Both the CList<CWindow> and
CList<CVieW> classes are defined in the CList_ CView.cpp source
file, whose contents are as follows:

#include "CList.h"
#include "CWindow.h"

#pragma template_access public

#pragma template CList<CView>
#pragma template CList<CWindow>

TCL_DEFINE_TEMPLATE_CLASS_Dl(CList, CView, CPtrArray<CView>)
TCL_DEFINE_TEMPLATE_CLASS_Dl(C:List, CWindow,
CPtrArray<CWindow>)

#include "CList.tem"

The TCL_DEFINE_TEMPLATE_CLASS_Dl macros in the fore
going code define dynamic template classes. The first argument is
the variant class name, the second argument is the item's class
name, and the third argument is the base class name. These tem
plates work only for a single variant class, but are used quite a bit
in the TCL to define lists of objects for which Object 1/0 is to be
performed. I will discuss Object VO in a later chapter.

There are two ways that template classes can be instantiated. One
is by usage, and the other is by applying the #pragma tem
plate directive. The TCL uses this second method for all of the
template classes. In fact, the compiler is instructed that all tem
plate accesses are external in the TCL #includes.cpp predefined
headers source file for VA projects.

Collection and Template Summary

This chapter has described a number of collection classes, some of
which are based upon templates that you must instantiate explic
itly with the #pragma template directive to use with your data
types. The Symantec C++ product also provides access to the
"Standard Template Library" developed by Hewlett Packard,
which offers queues, vectors, maps, stacks, trees, and a variety of
other collection classes. You can also create quite a variety of col
lection classes by basing these on the CArray class itself.

The next chapter covers the intricacies of the Object 1/0 features
of the TCL.

Chapter 9

Understanding and Using Object 1/0

This chapter is all about input and output techniques. In addition
to the Object I/O facilities for persistent object storage that is
built into the TCL, I will cover a related capability that is an alter
native to Object I/O for saving and restoring data in a more con
ventional manner or in a user-specified file format.

In regard to what I call a more conventional manner, I showed
you how to implement simple text file input and output in
Chapter 3, concerning the CTextOata object and its member
functions. This chapter will show you how to improve upon that
method for saving your document's data in an arbitrary file for
mat. Prior to showing the simplified techniques for writing and
reading data files, I will discuss the TCL's built-in facilities for Ob
ject I/0.

What Is Object 1/0 and How Is It Used?

The short answer to the question posed by the title of this section
is that Object I/O is a means for saving objects in an external data
file, and in such a manner that, when the file is read at a later
time, the objects can be reconstructed to create the same applica
tion state as when the objects were written. This means that what
ever values the member variables of a given set of objects contain
when the objects are written, those same values will be restored
when the objects are recreated as the external file is read. It also
means that if a member variable of an object points to some other
object at the time both objects are written to the external file, that
both objects will be restored fully when the external file is read. In
other words, Object I/O is persistent storage and retrieval of ob
ject-oriented data.

343

344 Chapter 9 >Understanding and Using Object 1/0

Creating a User Interface View

Object 1/0 is central to the creation of the user interface objects
that are specified by the developer using the VA tool. The VA
writes a file called Visual Architect.rsrc, in standard resource for
mat, that contains the information needed to recreate each of the
windows, dialogs, and their subview objects, including all of the
property settings defined by the developer, in ' CVue ' resources.

In addition to the use of Object 1/0 by the TCL, the developer can
also make use of these same features to save and restore objects
that pertain to the application's own data. The remainder of the
chapter is devoted to descriptions of both the interface and data
oriented Object 1/0 facilities.

Creating the Categories Dialog Object

Although menus-and, perhaps a few other user-interface fea
tures-are described by conventional resource types in the appli
cation file, all of the windows, dialogs, and the views and subviews
contained within these are described by special 'cvue' resources.
These resources cannot be read by programs like Apple's ResEdit,
because their contents are too complex. Instead, they are read and
written by the VA resource editor and code generation tool. They
are also read by code in the TCL that has been fashioned to both
read and write these data.

The best way to understand how the user interface is recreated by
the TCL is to use an example such as the Categories dialog that was
designed, implemented, and described in Chapter 5 for this pur
pose. The dialog, as it appears inside the VA, is shown in Figure
9-1. As is evident in the figure, the dialog contains a panorama
(every VA view contains one of these as the top-level element), a
list (CCatTable) with an accompanying scroll pane, and four but
tons, one of which is the default button. The Categories dialog is
created by calling the MakeNewWindow function in the
x_ CCategories class, whose code is as follows:

void x_CCategories: :MakeNewWindow (void}
{

i tsWindow = TCLGetNarnedWindow ("\pCategories" , this) ;

Figure 9-1
Categories dialog as it
appears inside the VA

D

fi Use

Creating a User Interface View 345

Categories

l[Edit ... J [New ...)[Delete) JI
0-

The foregoing is all that is needed to create the dialog and all of its
subviews and controls. The MakeNewWindow function contin
ues execution by accessing the pointers to the various objects cre
ated by the TCL; however, the acquisition of these pointers is not a
necessary part of the dialog's creation.

You'll note in the foregoing MakeNewWindow code that to create
the dialog, one need only call the TCLGetNamedWindow func
tion with a Pascal string that identifies the window (in this case, it
is a modeless dialog) by name and an object pointer that is taken
to be the window's supervisor (shown as this in the code).

Accessing the View Resource

The TCLGetNamedWindow function can be found in the
ViewUtilities.cp file in the section of VA Library source files of
the project. The sequence of events in recreating the Categories
dialog window, starting with the execution of the TCLGetNamed
Window function, is as follows:

+ The function calls GetNamedResourceCanFail, passing it the
Pascal name of the window and the 'cvue' resource type. A
handle to the resource is returned.

+ The function then calls ReadAndReleaseViewResource with
arguments of gDesktop, the supervisor passed to the function

346 Chapter 9 >Understanding and Using Object 1/0

(this), the handle to the view resource, the kTCLViewWin

dowKind constant (indicating this is a window and not a sub
view), and a pointer to a Point variable in which the called
function returns the window position.

+ The ReadAndReleaseViewResource function starts the process
of parsing the view resource and creating the objects it speci
fies. The first action of the function is to call Newln
putHandleStream, with the handle to the view resource, to
create an input stream to read the contents of the view resource
data, using its handle. That function can be found in the
CHandleStream class.

+ After the input handle stream has been created, the ReadAnd
ReleaseViewResource function reads one byte from the stream.
This first byte is the version of the Object I/O code that wrote
the stream. The function then tests to ensure that the version is
within the range of the minimum and maximum versions sup
ported by the version of the Object I/O code being used to
read the stream. If the test fails, then a failure is posted and the
process terminates. If the view resource was written by a com
patible version of the TCL, then the function reads one more
byte and tests it to determine whether it matches the view type
that is to be created (kTCLViewWindowKind). Once again, a
failure condition is created if the view kind does not match the
expected view kind. The next operation of the function is to
call the Get function of the stream object and access the initial
position of the window, storing it into the initialPosition argu
ment to the ReadAndRelease View Resource function. The next
operation is to call the GetView function of the stream, with
arguments of the enclosure (CDesktop) and the view's supervi
sor (this). That function call begins the process of accessing
and creating all of the user interface objects associated with the
view. The call returns a CView object, and then the function
finishes its execution by deleting the stream object, releasing
the view resource, and returning the CView object to its caller
(TCLGetNamedWindow).

Creating and Initializing the CDialog Object

The process of accessing the object descriptions stored in the view
resource is fairly complex. The values of member variables of the

Figure 9-2
Creation of
CCategories dialog
object

Creating a User Inteiface View 347

CStream CCollaborator

GetObject

CBureaucrat

CView

CWindow

CD l
CDialog

LEGEND

- Inherited Behavior
~ Object Construction
--- ... Chain of Command

CPane

l ®
CPanorama

objects, as well as their names and position information are stored
in the resource. A schematic of the creation of the CCategories di
alog object is shown in Figure 9-2. The circled numbers are object
numbers in the stream's list of objects (checklist). The opera
tion of the GetView function for the specific example of the Cate
gories dialog is as follows:

+ The GetView function is in the CStream class. The function
begins by saving the enclosure object's pointer into a variable
named gIOEnclosure, whose value, in this case, is the
CDesktop object. The function then calls GetBureaucrat for
the stream, returning the result as the requested view pointer.

+ GetBureaucrat (also in the CStream class) saves the pointer to
the view's supervisor (CMain in this case) in a variable named
gIOSupervisor and then calls GetObject with a reference to
the stream and a reference to a pointer to the specified object
class (CCollaborator in this case). The GetObject function is in
the CStream.tem file (it's a template-derived class). You will see
that several classes are derived from these templates, including

348 Chapter 9 >-Understanding and Using Object 1/0

CBitMap, CCollaborator, CEnvironment, CEnvirons and
CPaneBorder. All of these are CStream-oriented classes whose
template directives can be found in the files beginning with the
name CStream_ and ending with the .cpp extension. The con
tents of the file is as follows:

#include "CStream.h"
#include "CWindow.h"

#pragma template_access public

#pragma template PutObject(CStrearn&, CCollaborator*)
#pragma template GetObject(CStream&, CCollaborator*&)
#pragma template PutObject(CStream&, CView*)
#pragma template GetObject(CStrearn&, CView*&)
#pragma template PutObject(CStrearn&, CWindow*)
#pragma template GetObject(CStream&, CWindow*&)

#include "CStream.tem"

Notice in the foregoing that PutObject and GetObject func
tions are being created for the specified classes (CCollaborator,
CView, and CWindow).

+ The GetObject function begins by calling the GetClassName
function of the CStream class. In the case of our example, the
class name is CDialog. The name is stored as either a C or Pas
cal string in the stream. In either case, the GetClassName func
tion returns the name as a C string, which the GetObject
function uses in a call to the new _by _name function, creating
a CDialog object (in this case) and casting it as a CCollabora
tor object. The newly constructed object's pointer is passed in a
call to the stream's AddReference function, which keeps a list of
objects that may be referenced by other objects in the stream.
The CDialog object is the fim object in the list for this stream.

+ The GetObject function then calls the GetFrom function for
the object that was just constructed (CDialog), passing it the
stream as an argument. The GetFrom function of the CDialog
class begins by accessing the: scrollable (Boolean) value
from the stream. This is FF,LSE for our Categories dialog.
Then GetFrom calls the GetFrom function of CWindow (its
base class). That function accesses the following member vari
able values from the stream:

• procID = 4

Creating a User Interface View 349

• theSizeRect = { 40, 40, 342, 512}

• floating = FALSE

• isColor TRUE

• isModal FALSE

• actClick FALSE

• portRect { 0 I 0, 230, 221 }

• helpResID = 0

• visible = FALSE

• goAwayFlag = TRUE

• title = Categories

Initializing the Dialog's CWindow Class Variables

Following the acquisition of the foregoing member variables from
the stream, the GetFrom function of the CWindow class deter
mines whether the isColor variable is TRUE and whether the
user's machine has Color QuickDraw installed. Depending upon
whether both of these are TRUE, the function calls the New
CWindow or NewWindow toolbox functions to create either a
color or monochrome window with the portRect, title,
procID, goAwayFlag, and an indication of whether the win
dow should be in the front (in case the floating variable is
TRUE) or behind all other windows (in case f 1 oat ing is
FALSE). The window pointer is stored into the mac Port variable
of the CDialog object.

At this point, the GetFrom function of the CWindow class con
tinues by setting the windowKind field of the mac Port variable
to OBJ_WINDOW_KIND, setting the current port to the mac Port
value, setting the CDialog object's i tsEnclosure to the
gDesktop object (CDesktop), calling the AddWind function of
the CDesktop class to add the current window to its list, calling
the window's SetSizeRect function with the theSizeRect value,
and then, finally, calling the GetFrom function for the CView
class (its base class).

Initializing the Dialog's CView Class Variables

Initialization of the CDialog (CCategories) object continues in
the GetFrom function of the CView class. The purpose here is to

350 Chapter 9 >Understanding and Using Object 1/0

access the values that pertain to rhe CView base class from the
stream and store these into the appropriate member variables of
the object. The GetFrom function accesses the following member
variable values from the stream:

• visible = FALSE

• active = FALSE

• wantsClicks TRUE

• canBeGopher FALSE

• ID = 0

• usingLongCoord FALSE

• (reserved) = 0

• helpResindex 0

• numSubviews = 1

After accessing the foregoing values and storing them into the cor
responding member variables, the function tests whether the
value in the i tsEnclosure variable is equal to the object
pointer stored in the gDesktop variable (CDesktop). If not, then
the AddSubview function of the object pointed to by the i tsEn
closure variable is called to add the current object to the enclo
sure's list of subviews (The enclosure for the CCategories
(CDialog) object is the CDesktop object, so the foregoing step is
not taken for that object).

At this point the GetFrom function of the CView class calls the
GetFrom function for the CBureaucrat class (its base class), which
accesses a zero-length string as the name of the object's supervisor.
After accessing one more byte and finding that it is also zero, a
NULL pointer is returned as the object's supervisor. Therefore, the
i tsSupervisor member variable is set to the value of the gIO
Supervisor variable (CMain, as described on page 347). The
GetFrom function in the CView class continues by commencing a
loop, whose number of iterations is specified by the numSub
views variable, accessing the stream to create new subviews by
calling the GetObject function in the CStream.tem file.

Creating a User Interface View 351

Creating and Initializing the CPanorama Object

The single subview of the CDialog view is a CPanorama object.
The GetObject function accesses that class name from the stream,
constructs the object using the new _by _name function, and then
calls the GetFrom function in the newly created CPanorama ob
ject. That function accesses the various values from the stream,
storing them into corresponding member variables, as follows:

• hScale 1

• vScale 1

• bounds.top = 0

• bounds.left = 0

• bounds.bottom = 342

• bounds.right 512

• position.v 0

• position.h 0

Following the acquisition of the foregoing values, the function
calls the GetFrom function of the CPane class.

Initializing the CPanorama's CPane Class Variables

The GetFrom function of the CPane class accesses the stream to
acquire the values for storage in various of its member variables, as
follows:

+ width = 222

+ height = 231

+ hEncl -1

+ vEncl -1

+ hSizing 5 (sizELASTIC)

+ vSizing 5 (sizELASTIC)

• printClip 2 (clipPAGE)

• frame.top -1

• frame.left = -1

• frame.bottom = 230

352 Chapter 9 >-Understanding and Using Object 1/0

+ frame.right

+ autoRef resh

+ flags = 3

221

TRUE

After the foregoing variable's values have been acquired, the
flags variable is tested to determine whether it equals the value
of the disabled_flags constant (1). Because it is not equal,
the value of the enabled member variable is set to TRUE.

At this point in the GetFrom function in the CPane class, the
code attempts to access the name of the enclosure from the stream
by calling GetObject once again. Because the enclosure name is a
zero-length string, the GetClassName function accesses the very
next byte and finds that it is nonzero. This indicates that the fol
lowing four-byte value is the reference number of the object in the
stream's reference list (checklist). In this case, because the ref
erence number is l, the referenced object is CDialog. Therefore,
the pointer to the CDialog object (CCategories) is stored into the
i tsEnclosure variable.

The GetFrom function in the CPane class continues by calling the
SubpaneLocation function for the object whose pointer is stored
in the i tsEnclosure variable. The hEncl and vEncl values
are passed to the function, which calculates hloc and vloc posi
tions for the CPanorama subview, converted to window coordi
nates. Then the hOrigin and vOrigin values are calculated and
CalcAperture is called to calculate the CPanorama's aperture.
Then the GetFrom function of the CView class (its base class) is
called to continue the initialization process.

Initializing the Panorama's CView Class Variables

The initialization sequence for the CView class was described ear
lier, beginning on page 349. The process for parsing the stream
for the member variables of the CPanorama object follows the
same logic; however, the values obtained from the stream, and the
variables in which they are stored, are as follows:

+ visible = TRUE

+ active = TRUE

+ wantsClicks TRUE

+ canBeGopher FALSE

Creating a User Inteiface View 353

• ID = 0

• usingLongCoord FALSE

• (reserved) = 0

• helpResindex = 0

• nurnSubviews = 5

As was described in the earlier narrative for the GetFrom function
of the CView class, the function tests whether the object's enclo
sure is the CDesktop object, and the function calls AddSubview
to add the new object (CPanorama) to its list of subviews. Then
the function calls the GetFrom function of the CBureaucrat class.

The GetFrom function of the CBureaucrat class attempts to ac
quire a pointer to the CPanorama object's supervisor (i tsSu
pervisor) by accessing its name from the stream. Instead, it
retrieves a reference to the first object in the stream's list of objects
(checklist) and returns it (the CDialog object) as the CPan
orama object's supervisor. Following that, the GetFrom function
of the CCollaborator class is called, which merely initializes the
values of its Providers and i tsDependents to NULL and
then returns control to the GetFrom function in the CBureaucrat
class. That function returns to the GetFrom function of the
CView class, which continues by starting a loop, whose number
of iterations is set to the value contained in the nurnSubviews
variable, and then calls the GetObject function for each of the
subviews. The dialog's CPanorama object has five subviews.

Creating and Initializing the CScrollPane Object

The next object in the 'CVue' resource for the Categories dialog is
a CScrollPane. This is the scrollpane for the table of categories,
but we will come to that shortly. A schematic diagram that shows
the creation of the CScrollPane, its CColorTextEnvirons, and its
CPaneBorder objects is shown in Figure 9-3. After the CScroll
Pane object has been created by calling the new_by_name func
tion, the object is added to the stream's list of object pointers
(checklist), and then the GetFrom function for the object is
called to initialize the object. The GetFrom function for the
CScrollPane class accesses the stream to obtain various values,
which it stores into member variables. The member variables and
the values that are assigned for this example are as follows:

354 Chapter 9 ~Understanding and Using Object 1/0

Figure 9-3
Creation of the
CScrollPane and its
associated objects

•
•
•
•
•
•
•
•

CPane

CPanorama

LEGEND

---.. Inherited Behavior
-=- Object Construction
...... Chain of Command

CScrollPane

The CPanorama's
first subvlew

hasHoriz = FALSE

hasVert = TRUE

hasSizeBox = FALSE

useSICN = FALSE

hStep = 50

vStep = 18

hOverlap = 50

voverlap 18

CPaneBorder

®

CStream

Ge!Object

At this point, the GetFrom function calls the GetFrom function
of the CPane class (its base class).

Initializing the Scroll Pane's CPane Class Variables

As was described earlier {see page 351), the GetFrom function in
the CPane class accesses the stream to acquire a number of values
that it stores in member variables for the object. The member
variables and their contents for this example are as follows:

+ width = 212

+ height = 188

+ hEncl = 4

+ vEncl = 4

Creating a User Interface View 355

• hSizing = 4(sizFIXEDSTICKY)

• vSizing 4(sizFIXEDSTICKY)

• printClip 1 (clipFRAME)

• frame.top 0

• frame.left = 0

• frame.bottom 188

• frame.right 212

• autoRefresh TRUE

• flags = 3

At this point, the GetFrom function of the CPane class calls the
GetObject function, with the stream, to access the CScrollPane
object's enclosure pointer. The 'cvue' resource contains an object
reference, rather than an object name, for this object. The refer
ence is to the second object in the stream's checklist. That ob
ject is the CPanorama. So the CPanorama object's pointer is used
as the value for the CScrollPane's i tsEnclosure member vari
able. The SubpaneLocation function is called to compute the lo
cation of the CScrollpane within its enclosure, and the values of
its top and left positions within the enclosure (in window coordi
nates) are returned in the hloc and vloc arguments to the func
tion. Then the aperture of the CScrollpane object is computed by
calling CalcAperture. With those tasks accomplished, the Get
From function of the CPane class calls the GetFrom function of
the CView class (its base class) to access additional values from the
stream.

Initializing the Scroll Pane's CView Class Variables

As for the CDialog and CPanorama objects, the member variables
associated with the CView class follow those for the CPane class
in the stream. The member variables and their values for the ex
ample CScrollPane object are as follows:

+ visible = TRUE

+ active = TRUE

+ wantsClicks

+ canBeGopher

+ ID = 0

TRUE

FALSE

356 Chapter 9 >-Understanding and Using Object 1/0

• usingLongCoord FALSE

• (reserved) = 0

• helpResindex 0

• numSubviews = 0

At this point, the GetFrom function for the CView class tests
whether the CScrollPane object's enclosure is the CDesktop ob
ject. Because this is FALSE, the port for the CScrollPane object
(mac Port) is set to the port of its enclosure object (CPanorama),
and the AddSubview function for its enclosure class is called to
add the CScrollPane object as a subview of that object. Then the
GetFrom function calls the GetFrom function of the CBureaucrat
class (its base class) to access additional member variable values
from the stream.

The GetFrom function of the CBureaucrat class attempts to get a
pointer for the CScrollPane object's supervisor (its Supervi
sor) by accessing its name from the stream. Instead, it retrieves a
reference to the second object in the stream's list of objects
(checklist) and returns it (the CPanorama object) as the
CScrollPane object's supervisor. Following that, the GetFrom
function of the CCollaborator class is called, which merely initial
izes the values of i tsProviders and i tsDependents to
NULL and then returns control to the GetFrom function in the
CBureaucrat class. That function returns to the GetFrom func
tion of the CView class, which continues by attempting to create
all of the subviews of the object, in a loop. Because the numSub
v i ews value is 0 for the CScrollPane object, the loop exits imme
diately, causing the GetFrom function of the CView class to
return to the GetFrom function of the CPane class.

Creating and Initializing the CColorTextEnvirons Object

When the GetFrom function of the CView class returns to the
GetFrom function of the CPane class, that function continues ex
ecution by calling the GetObject fonction to access the object that
establishes the value of the i tsE:nvironment member variable
for the CScrollPane object. In the case of the Categories dialog ex
ample, the class name next in the stream is CColorTextEnvirons.

The CColorTextEnvirons object establishes the text environment
for the CScrollPane object. After the CColorTextEnvirons object

Creating a User Interface View 357

has been created and added to the stream's list of objects (check
list), the GetFrom function for that object is called to access a
number of values that are placed into variables associated with the
object. The GetFrom function accesses the stream to acquire the
values for various member variables that are stored in the form of
a structure whose type is SaveColorTextEnvirons. The various
fields of the structure and the values obtained are as follows:

• foreColor { 0 I 0 I 0 }

• backColor 65535, 65535, 65535 }

• penSize = 1, 1 }

• changeForeColor FALSE

• changeBackColor FALSE

• changeForePattern FALSE

• changeBackPattern FALSE

• res Patterns = TRUE

• penMode = 8 (patCopy)

• (reserved) = 0

After the foregoing are retrieved, they are stored in member vari
ables of the same names as the fields. Because the resPatterns
variable is TRUE, the GetFrom function continues by accessing
the following variables from the stream:

+ forePatID 0

+ backPatID 0

+ forePatind 0

+ backPatind 0

Then the GetFrom function of the CColorTextEnvirons class
completes its execution by calling the GetFrom function of the
CTextEnvirons class.

Initializing the CTextEnvirons Class Variables

The GetFrom function of the CTextEnvirons class accesses vari
ous values from the stream and places them into member vari-

358 Chapter 9 ~Understanding and Using Object 1/0

ables. The variables and their values for this example are as
follows:

+ textinfo.theSize = 12

+ textinfo.theStyle = 0 (normal)

+ textinfo.theMode = 0 (srcCopy)

+ fontName = Chicago

The value in the fontName variable is used to look up the corre
sponding font number by calling the GetFNum toolbox function,
and the number is placed into the text Info. fontNumber
member variable for the object. The GetFrom function then calls
the GetFrom function in the CEnvironment class (its base class)
to access additional values from the~ stream.

Initializing the CEnvirons Class Variables

The CEnvironment class has no data members, so the GetFrom
member function in the CEnvirons class (its base class) is called
instead. That function accesses the value of the moreEnvirons
pointer from the stream, which is NULL in this case. Execution
continues in the GetFrom function of the CPane class, after the
environment data has been accessed.

Creating and Initializing the CPaneBorder Object

After the GetFrom function of the CColor TextEnvirons class re
turns to the GetFrom function in the CPane class, that function
calls GetObject to acquire the pointer to the i tsBorder object.
The GetObject function accesses the stream to find an object
name of CPaneBorder in this case. After the CPaneBorder object
is constructed and added to the stream's list of objects (check
list), the GetFrom function for the CPaneBorder object is
called. That function accesses the stream to acquire a number of
values that are placed into the object's member variables. The vari
ables and values for this example are as follows:

• borderFlags OxOOOOOOOF

• borderPen = 1, 1 }

• shadowOffset = { 2, 2

• shadowPen = { 0 I 0 }

• roundDiameter = { 16, 16 }

Creating a User Interface View 359

+ penPat = OxFFFFFFFF FFFFFFFF

+ margin = { 1, 1, -1, -1 }

After filling in the values of the foregoing variables, the GetFrom
function of the CPaneBorder object returns to the GetFrom func
tion of the CPane object. At this point, execution continues in the
GetFrom function of the CScrollPane object. That function con
tinues by calling GetObject to access the panorama object that is
controlled by the scroll pane. In this case, the panorama object is a
subclass of CArrayPane (CCatTable), whose construction is de
scribed in the next section. After the CCatTable object has been
constructed, the GetFrom function in the CScrollPane class fin
ishes by installing the CCatTable object as the scroll pane's pan
orama. Then the loop in the CView class continues by accessing
the stream to create the first subview of the dialog's CPanorama
object.

Creating and Initializing the CCatTable Object

The CCatTable object was created in the VA as a derived class of
the CArrayPane class. A schematic of the recreation of this, its
CRunArray, and CTextEnvirons objects is shown in Figure 9-4.
After the CCatTable object has been created in the GetObject
function, its GetFrom function is called. That function merely
calls the GetFrom function of the CArrayPane class (its base
class).

Initializing the CCatTable's CArrayPane Class Variables

The GetFrom function in the CArrayPane class accesses the
stream to acquire the value of the ownsArray variable, which is
found to be FALSE. The function continues by calling the Get
From function of the CTable class (its base class) to access addi
tional values from the stream. The first set of variables is accessed
in the form of a structure, whose fields and the corresponding val
ues are as follows:

• nurnRows 0

• numCols 1

• topLeftindent = { 0, 0

• drawOrder = 0 (tblRow)

• defRowHeight = 18

360 Chapter 9 >Understanding and Using Object 1/0

Figure 9-4
Creation of the
CCatTable and its
associated objects

CCollaborator CEnvirons

CEnvironment

CTextEnvirons 0

CRunArray

CCatTable ®

LEGEND

-----. Inherited Behavior
~ Object Construction
-- - ... Chain of Command

CStream

GetObject

+ defColWidth = 50

itsRows@)

itsCols 9

+ selectionFlags OxOOOOOOOl

+ indent = { 13, 3

+ dblClickCmd = 512

+ drawActiveBorder = FALSE

+ clipToCells = FALSE

itsEnvironment

+ rowBorders = (a structure with fields as follows)

• thickness 0

• penMode = 0 (patCopy)

• pat = OxFFFFFFFF FFFFFFFF

+ colBorders = (a structure with fields as follows)

• thickness 0

• penMode = 0 (patCopy)

• pat = OxFFFFFFFF FFFFFFFF

Creating a User Interface View 361

After the foregoing structure has been read from the stream, the
fields are stored into correspondingly named member variables in
the object, and then the GetFrom function of the CPanorama
class (its base class) is called.

Initializing the CCatTable's CPanorama Class Variables

The GetFrom function in the CPanorama class was described be
ginning on page 3 51. That function accesses the stream to acquire
various values that are stored into the object's member variables,
as follows:

• hScale 1

• vScale 1

+bounds.top = 0

• bounds.left = 0

• bounds.bottom 0

• bounds.right 0

• position.v 0

• position.h = 0

Following the initialization of the foregoing member variables, the
GetFrom function of the CPane class is called.

Initializing the CCatTable's CPane Class Variables

The GetFrom function in the CPane class accesses a number of
values from the stream that it places in member variables for the
object, as follows:

+ width = 195

+ height = 186

+ hEncl 1

+ vEncl 1

+ hSizing 5 (sizELASTIC)

+ vSizing 5 (sizELASTIC)

+ printClip 2 (clipPAGE)

+ frame.top 0

+ frame.left = 0

362 Chapter 9 >Understanding and Using Object 1/0

+ frame.bottom = 186

195 + frame.right

+ autoRefresh TRUE

+ flags = 3

After the foregoing values have been stored into the CCatTable's
member variables, the GetFrom fonction in the CPane class ac
cesses the stream to acquire the pointer to the table's enclosure. In
this case, the stream contains a reference to the third object (the
CScrollPane object) in the stream's checklist. The CCatTable
object is installed in the CScrollPane object's enclosure when the
GetFrom function calls the SubpaneLocation function, returning
the hloc and vloc values that establish its horizontal and verti
cal position (in window coordinates). The table's aperture is calcu
lated with a call to CalcAperture and then the GetFrom function
of the CView class (its base class) is called.

Initializing the CCatTable's CViiew Class Variables

The member variables of the CView class are the same as what
was presented earlier for other objects. The values for the variables
for the CCatTable object are as follows:

+ visible = TRUE

+ active = TRUE

+ wantsClicks

+ canBeGopher

+ ID = 2049

+ usingLongCoord

+ (reserved) = 0

TRUE

TRUE

TRUE

+ helpResindex 0

+ numSubviews = 0

At this point, the GetFrom function for the CView class tests
whether the CScrollPane object's enclosure is the CDesktop ob
ject. Because this is FALSE, the port for the CCatTable object
(mac Port) is set to the port of its enclosure object (CPanorama),
and the AddSubview function for its enclosure class is called to
add the CCatTable object as a subview of that object. Then the

Creating a User Interface View 363

function calls the GetFrom function of the CBureaucrat class (its
base class) to access additional member variable values from the
stream.

Initializing the CCatTable's CBureaucrat Class Variables

The GetFrom function of the CBureaucrat class first accesses the
stream to determine the object pointer for the CCatTable object's
supervisor. In the case of this example, the i tsSupervisor
pointer is stored as a reference to the CPanorama object. The next
step of the GetFrom function is to call the GetFrom function of
the CCollaborator class, which merely sets the values of i tsPro
viders and i tsDependents list pointers to NULL values.

Execution continues in the GetFrom function of the CView class.
Because the CCatTable object has no subviews, the loop in that
function is skipped and the i tsSubviews list pointer is set to
NULL. Then execution continues in the GetFrom function of the
CPane class.

Creating and Initializing the CTextEnvirons Object

When the GetFrom function in the CView class returns to the
·GetFrom function in the CPane class, that function calls the Get
Object function in the CStream class to create what will become
the CCatTable's i tsEnvironrnent object pointer. In the case of
our example, the VA has written the CTextEnvirons name into
the stream, and so an object of that class is created. After being
created, the CTextEnvirons object is added to the stream's list of
objects (checklist) and then its GetFrom function is called.

The GetFrom function of the CTextEnvirons class accesses the
stream to acquire the values of various member variables. The
variables and their values, for our example, are as follows:

+ textinfo.theSize = 12

+ textinfo.theStyle = 0 (normal)

+ textinfo.theMode = l(srcOr)

+ fontName = Geneva

After the foregoing values have been extracted from the stream,
the GetFrom function for the CTextEnvirons class uses the
fontName string in a call to the GetFNum toolbox function to
get the font number for that typeface. After that, the GetFrom

364 Chapter 9 ~Understanding and Using Object 110

function calls the GetFrom function in the CEnvironment class
(its base class). Because the CEnvironment class has no GetFrom
function, the one inherited from the CEnvirons class is called.

The GetFrom function of the CEnvirons class accesses the stream
to acquire the value of the moreEnvirons object pointer. This is
a NULL value in the stream. After this, execution continues in the
GetFrom function of the CPane class, where the GetObject func
tion is called to create the i tsBorder object for the CCatTable
object. This object is also NULL, so execution continues in the
GetFrom function of the CTable class, where the GetObject func
tion is called to access the it sRows object. In this case, a
CRunArray object is created.

Creating and Initializing the CR:unArray Object

The CRunArray object for the CCatTable's i tsRows variable is
used to contain the heights of all of the rows in the table. The pos
itive attributes of the CRunArray object were discussed in
Chapter 8, where it was shown that these objects minimize the
amount of array storage needed to represent "runs" of identical
values. After the CRunArray object is created, it is added to the
stream's list of objects (checklist), and then its GetFrom func
tion is called to initialize the object.

The GetFrom function of the CRunArray class accesses the
stream to acquire the value of the i temCoun t variable. This
value is 0 (no rows) in our example. The function then calls the
GetFrom function of the CArray class (its base class).

Initializing the CRunArray's CArray Class Variables

The GetFrom function in the CArray class accesses the stream to
acquire the values for several of the CRunArray object's member
variables. The variables and their values for our example dialog are
as follows:

+ blockSize 3

+ elementSize 8

After the foregoing values have been accessed and stored in mem
ber variables, the GetFrom function for the CArray class calls the
GetFrom function in the CCollect:ion class (its base class).

Creating a User Interface View 365

Initializing the CRunArray's CCollection Class Variables

The GetFrom function in the CCollection class accesses the
stream to acquire the value of the numitems variable, whose
value is 0 for our example. Execution continues in the GetFrom
function in the CArray class.

Continuing the CArray Class Variable Initialization

When control returns to the GetFrom function in the CArray
class, that function calls the Getltems function in the same class
to complete the initialization process. The Getltems function ac
cesses the stream to acquire the value of the slots variable,
which is 0 for our example. Then the GetHandle function of the
CStream class is called to access the handle to be stored into the
hitems variable. In this case, the GetHandle function accesses
the stream to acquire the handle. In the process of doing so, the
handle length is acquired, the handle is created, and then the con
tents of the handle are read from the stream. The length and con
tents are as follows:

+ len = 8

• h = {0, 0}

The values in the handle 'h' consist of two long (4-byte) fields of
a single structure. The first field is the length of the run and the
second field is the value of the run. Because the value of the
i temCoun t variable is 0 for this object, the foregoing handle's
contents are irrelevant. After the foregoing have been accessed and
stored, execution continues in the GetFrom function of the
CTable class, where it calls the GetObject function to create the ob
ject whose pointer is stored into the i tsCols variable of the
CCatTable object.

Creating and Initializing the CRunArray Object

As was the case with the CRunArray object that specifies "runs" of
row heights, the new CRunArray object is created to hold "runs"
of column widths in the table. After the object has been created
and added to the stream's list of objects (checklist), the ob
ject's GetFrom function is called.

The GetFrom function of the CRunArray class accesses the
stream to acquire the value of the i temCount variable, which
is 1 (one column) in our example. Following this, the function

366 Chapter 9 >-Understanding and Using Object 1/0

calls the GetFrom function of the CArray class to access addi
tional values from the stream.

Initializing the CRunArray's CArray Class Variables

The GetFrom function in the CArray class accesses the stream to
acquire the values for several of the CRunArray object's member
variables. The variables and their values for our example dialog are
as follows:

+ blockSize = 3

+ elementSize 8

After the foregoing values have been accessed and stored in mem
ber variables, the GetFrom function for the CArray class calls the
GetFrom function in the CCollection class (its base class).

Initializing the CRunArray's CCollection Class Variables

The GetFrom function in the CCollection class accesses the
stream to acquire the value of the numitems variable, whose
value is 1 for our example. Execution continues in the GetFrom
function in the CArray class.

Continuing the CArray Class Variable Initialization

When control returns to the GetFrom function in the CArray
class, that function calls the Gedtems function in the same class
to complete the initialization process. The Getltems function ac
cesses the stream to acquire the value of the slots variable,
which is 3 for our example (because the array contains one col
umn and the blockSize variable has a value of 3, three array
slots are allocated in this case). Then the GetHandle function of
the CStream class is called to access the handle to be stored into
the hitems variable. In this case, the GetHandle function ac
cesses the stream to acquire the handle. In the process of doing so,
the handle length is acquired, the handle is created, and then the
contents of the handle are read from the stream. The length and
contents are as follows:

+ len = 32

+ h = {1, 195L}, {O, 0}, {0, 0}, {0, 0}

The values in the handle 'h' consist of two long (4-byte) fields of a
single structure. The first field is the length of the run and the sec
ond field is the value of the run. Because the value of the i tern-

Creating a User Inteiface View 367

Count variable is 1 for our example, only the first entry in the
foregoing handle is relevant. The remaining three entries can be
ignored and are allocated merely to fill the array's slots. After the
foregoing have been accessed and stored, execution continues in
the GetFrom function of the CArrayPane class.

Continuing the Initialization of the CArrayPane Variables

When the GetFrom function of the CTable class returns to the
GetFrom function in the CArrayPane class, that function calls the
GetObject function to access the object whose pointer will be
stored into the i tsArray member variable of the CCatTable ob
ject. The value returned by the GetObject function, for this exam
ple, is a NULL pointer. In our application, the array is created in
the ICMain function of the CMain class and is installed in the
BeginData function of the CCategories class (see page 229).

After i:he CCatTable and its associated objects have been fully
constructed, execution continues in the GetFrom function of the
CScrollPane class to install the CCatTable object as the CScroll
Pane's panorama. Control of the execution then returns to the
GetFrom function in the CView class to access the CPanorama
object's next (second) subview.

Creating and Initializing the CButton Objects

The GetFrom function of the CView class continues its loop, call
ing the GetObject function in the CStream class to create the re
maining subviews of the CPanorama object. In the case of our
example, these are the four CButton objects (Use, Edit, New, and
Delete). Each of these has an associated CColorTextEnvirons ob
ject, and the first of them also has a CPaneBorder object to serve
as the default button for the dialog. A schematic of the construc
tion of the remaining four subviews is shown in Figure 9-5. The
first CButton object is labeled with a circled number 10. Its CCo
lorTextEnvirons object is number 11, and its CPaneBorder object
is number 12. This is the button named "Use" in the dialog. The
remaining CButton objects (Edit, New, and Delete) and their as
sociated CColorTextEnvirons objects are numbered in pairs: 13
and 14, 15 and 16, and then 17 and 18.

The GetObject function creates the first CButton object, adds it
to the stream's list of objects (checklist), and then calls the
GetFrom function for the object. That function accesses the

368 Chapter 9 >Understanding and Using Object I/O

Figure 9-5
Creation of the
CButton and
associated objects

CCollaborator CEnvirons

CColorTextEnvirons

CColorTextEnvirons

CColorTextEnvirons

CColorTextEnvirons

CButton
@

CButton

CButton
@

LEGEND

---+- Inherited Behavior
~ Object Construction
---•Chain of Command

CPaneBorder

CStream

Get Object

stream to acquire the values for two member variables of the ob
ject, as follows:

+ procID = 8

+ clickCmd 512 (cmdUseCat)

After the foregoing values have been stored, the function calls the
GetControl function that it inherits from the CControl class.
When that function returns, the NewControl toolbox function is
called to create the button using the values of the button's mem
ber variables.

Initializing the Use Button's CControl Class Variables

The GetControl function of the CControl class accesses the
stream to get the values of four variables, as follows:

+ value = 0

+ cmin 0

+ cmax 1

+ title = Use

Following the acquisition of the foregoing values, the GetControl
function calls the GetFrom function of the CPane class.

Creating a User Interface View 369

Initializing the Use Button's CPane Class Variables

The GetFrom function in the CPane class has been described for
many other objects. In the case of the Use button, the values ac
cessed from the stream are as follows:

• width = 47

• height = 16

• hEncl 9

• vEncl 205

• hSizing 4(sizFIXEDSTICKY)

• vSizing 4(sizFIXEDSTICKY)

• printClip l(clipFRAME)

• frame.top = 0

• frame.left = 0

• frame.bottom 16

• frame.right 47

• autoRefresh TRUE

• flags = 3

After the foregoing values have been stored into the Use button's
member variables, the GetFrom function in the CPane class ac
cesses the stream to acquire the pointer to the button's enclosure.
In this case, the stream contains a reference to the second object
(the CPanorama object) in the stream's checklist. The func
tion continues by calling the SubpaneLocation and GetAperture
functions. Then the function calls the GetFrom function in the
CView class.

Initializing the Use Button's CView Class Variables

The GetFrom function of the CView class has been discussed pre
viously. The member variables and the values accessed from the
stream for the Use button are as follows:

+ visible = TRUE

+ active = FALSE

+ wantsClicks TRUE

+ canBeGopher = FALSE

370 Chapter 9 ~Understanding and Using Object 1/0

• ID = 2050

• usingLongCoord FALSE

• (reserved) = 0

• helpResindex = 0

• numSubviews = 0

After the foregoing values have been acquired, the port for the
view is set to the port of its enclosure (CPanorama), and the view
is added to its enclosure's list of subviews (itsSubviews). The
fact that the value of numSubviews variable is 0 causes the loop
to be skipped and the GetFrom function of the CBureaucrat class
(its base class) to be called.

Initializing the Use Button's CBureaucrat Class Variables

The GetFrom function of the CBureaucrat class accesses the
stream to get the object which is to be assigned as the button's
supervisor. In the case of the Use button, the its Supervi
sor is set to a pointer to the CPanorama object (a reference in
the stream). Following this, the GetFrom function of the CCo
llaborator class is called. That function merely sets the values
of the its Providers and i tsDependents lists to NULL
pointers.

After the foregoing operations are complete, execution control re
turns to the GetFrom function in the CPane class, where GetOb
ject is called to create the object that is to serve as the Use button's
environment (i tsEnvironment).

Creating and Initializing the CColorTextEnvirons Object

The CColorTextEnvirons object has been discussed previously.
The values of the member variables that apply to the Use button's
environment are as follows:

• foreColor 0' 0' 0 }

• backColor 65535, 65535, 65535 }

• penSize = 1, 1 }

• changeForeColor FALSE

• changeBackColor FALSE

• changeForePattern = FALSE

Creating a User Interface View 371

+ changeBackPattern = FALSE

+ resPatterns = TRUE

+ penMode = 8 (patCopy)

+ (reserved) = 0

After the foregoing are retrieved, they are stored in member vari
ables of the same names as the fields. Because the resPatterns

variable is TRUE, the GetFrom function continues by accessing
the following variables from the stream:

• forePatID = 0

• backPatro'= 0

• forePatind 0

• backPatind 0

Then the GetFrom function of the CColorTextEnvirons class
completes its execution by calling the GetFrom function of the
CTextEnvirons class.

Initializing the CTextEnvirons Class Variables

The GetFrom function of the CTextEnvirons class accesses vari
ous values from the stream and places them into member vari
ables. The variables and their values for this example are as
follows:

+ textinfo.theSize = 10

+ textinfo.theStyle = 0 (normal)

+ textinfo.theMode = 0 (srcCopy)

+ fontNarne = Chicago

The value in the fontNarne variable is used to look up the corre
sponding font number by calling the GetFNum toolbox function,
and the number is placed into the text Info. fontNurnber
member variable for the object. The GetFrom function then calls
the GetFrom function in the CEnvironment class (its base class)
to access additional values from the stream.

Initializing the CEnvirons Class Variables

The CEnvironment class has no data members, so the GetFrom
member function in the CEnvirons class {its base class) is called

372 Chapter 9 >Understanding and Using Object I/O

instead. That function accesses the value of the moreEnvirons

pointer from the stream, which is NULL in this case. Execution
continues in the GetFrom function of the CPane class, after the
environment data has been accessed.

Creating and Initializing the CPaneBorder Object

After the GetFrom function of the CColorTextEnvirons class re
turns to the GetFrom function in the CPane class, that function
calls GetObject to acquire the pointer to the i tsBorder object.
The GetObject function accesses the stream to find an object
name of CPaneBorder in this case. After the CPaneBorder object
is constructed and added to the stream's list of objects (check

list), the GetFrom function for the CPaneBorder object is
called. That function accesses the stream to acquire a number of
values that are placed into the object's member variables. The vari
ables and values for this example are as follows:

• borderFlags Ox00000020

• borderPen = 3 I 3}

• shadowOffset = { 2, 2

• shadowPen = { 0 t 0 }

• roundDiameter = { 16, 16 }

• penPat OxFFFFFFFF FFFFFFFF

• margin { -1, -1, 1, 1 }

After filling in the values of the foregoing variables, the GetFrom
function of the CPaneBorder object returns to the GetFrom func
tion of the CPane object. At this point, the GetFrom function of
the CPane class has completed its task of creating the Use button
object, and the loop in the CView class continues by accessing the
stream to create the next subview of the CPanorama object.

Creating and Initializing the Edit CButton Object

The GetObject function is called inside the GetFrom function of
the CView class to access and create the next subview of the
CPanorama object. This is the Edit button shown in Figure 9-1,
and whose components are shown in Figure 9-5. The values for
the CButton class variables are as follows:

+ procID = 8

Creating a User Inteiface View 373

+ clickCmd = 514 (cmdEditCat)

After the foregoing values have been stored, the function calls the
GetControl function that it inherits from the CControl class.
When that function returns, the NewControl toolbox function is
called to create the button using the values of the button's mem
ber variables.

Initializing the Edit Button's CControl Class Variables

The GetControl function of the CControl class accesses the
stream to get the values of four variables, as follows:

+ value = 0

+ cmin 0

+ cmax 1

+ title = Edit ...

Notice the ellipsis character at the end of the button's title. Fol
lowing the acquisition of the foregoing values, the GetControl
function calls the GetFrom function of the CPane class.

Initializing the Edit Button's CPane Class Variables

The GetFrom function in the CPane class has been described for
many other objects. In the case of the Use button, the values ac
cessed from the stream are as follows:

+ width = 47

+ height = 16

• hEncl 65

• vEncl 205

• hSizing 4(sizFIXEDSTICKY)

• vSizing 4(sizFIXEDSTICKY)

• printClip 1 (clipFRAME)

• frame.top 0

• frame.left = 0

• frame.bottom 16

• frame.right 47

• autoRefresh TRUE

374 Chapter 9 >-Understanding and Using Object 1/0

+ flags = 3

After the foregoing values have been stored into the Edit button's
member variables, the GetFrom function in the CPane class ac
cesses the stream to acquire the pointer to the button's enclosure.
In this case, the stream contains a reference to the second object
(the CPanorama object) in the stream's checklist. The func
tion continues by calling the SubpaneLocation and GetAperture
functions. Then the function calls the GetFrom function in the
CView class.

Initializing the Edit Button's CView Class Variables

The GetFrom function of the CView class has been discussed pre
viously. The member variables and the values accessed from the
stream for the Edit button are as follows:

• visible = TRUE

• active = FALSE

• wantsClicks TRUE

• canBeGopher FALSE

• ID = 2051

• usingLongCoord FALSE

• (reserved) = 0

• helpResindex 0

• numSubviews = 0

After the foregoing values have been acquired, the port for the
view is set to the port of its enclosure (CPanorama), and the view
is added to its enclosure's list of subviews (i tsSubviews). The
fact that the value of numSubviews variable is 0 causes the loop
to be skipped and the GetFrom function of the CBureaucrat class
(its base class) to be called.

Initializing the Edit Button's CBureaucrat Class Variables

The GetFrom function of the CBureaucrat class accesses the
stream to get the object which is to be assigned as the button's su
pervisor. In the case of the Edit button, the i tsSupervisor is
set to a pointer to the CPanorama object (a reference in the
stream). Following this, the GetFrom function of the CCollabora-

Creating a User Interface View 375

tor class is called. That function merely sets the values of the
itsProviders and itsDependents lists to NULL pointers.

After the foregoing operations are complete, execution control re
turns to the GetFrom function in the CPane class, where GetOb
ject is called to create the object that is to serve as the Edit button's
environment (itsEnvironment).

Creating and Initializing the CColorTextEnvirons Object

The CColorTextEnvirons object has been discussed previously.
The values of the member variables that apply to the Edit button's
environment are as follows:

• foreColor { 0, 0, 0 }

• backColor 65535, 65535, 65535 }

• penSize = 1, 1 }

• changeForeColor = FALSE

• changeBackColor = FALSE

• changeForePattern FALSE

• changeBackPattern FALSE

• resPatterns = TRUE

• penMode = 8 (patCopy)

• (reserved) = 0

After the foregoing are retrieved, they are stored in member vari
ables of the same names as the fields. Because the res Patterns
variable is TRUE, the GetFrom function continues by accessing
the following variables from the stream:

+ forePatID 0

+ backPatID = 0

+ forePatind 0

+ backPatind 0

The GetFrom function of the CColorTextEnvirons class then
completes its execution by calling the GetFrom function of the
CTextEnvirons class.

376 Chapter 9 >Understanding and Using Object I/O

Initializing the CTextEnvirons Class Variables

The GetFrom function of the CTextEnvirons class accesses vari
ous values from the stream and places them into member vari
ables. The variables and their values for this example are as
follows:

+ textinfo.theSize = 10

+ textinfo.theStyle = 0 (normal)

+ textinfo.theMode = 0 (srcCopy)

+ fontName = Chicago

The value in the fontName variable is used to look up the corre
sponding font number by calling the GetFNum toolbox function,
and the number is placed into the text Info. fontNumber
member variable for the object. The GetFrom function then calls
the GetFrom function in the CEnvironment class (its base class)
to access additional values from the stream.

Initializing the CEnvirons Class Variables

The CEnvironment class has no data members, so the GetFrom
member function in the CEnvirons class (its base class) is called
instead. That function accesses the value of the moreEnvirons
pointer from the stream, which is NULL in this case. Execution
continues in the GetFrom function of the CPane class, after the
environment data has been accessed.

Continuing the Edit Button's CPane Class Initialization

The Edit button has no associated border object, so the object re
turned by GetObject in the Getf rom function of the CPane class
returns a NULL pointer for the i tsBorder member variable.

Creating and Initializing the New CButton Object

The GetObject function is called inside the GetFrom function of
the CView class to access and create the next subview of the
CPanorama object. This is the New button shown in Figure 9-1,
whose components are shown in Figure 9-5. The values for the
CButton class variables are as follows:

+ procID = 8

+ clickCmd 516 (cmdNewCat)

Creating a User Inteiface View 377

After the foregoing values have been stored, the function calls the
GetConrrol function that it inherits from the CControl class.
When that function returns, the NewControl toolbox function is
called to create the button using the values of the button's mem
ber variables.

Initializing the New Button's CControl Class Variables

The GetControl function of the CControl class accesses the
stream to get the values of four variables, as follows:

+ value = 0

+ cmin 0

+ cmax 1

+ title = New ...

Notice the ellipsis character at the end of the button's title. Fol
lowing the acquisition of the foregoing values, the GetConrrol
function calls the GetFrom function of the CPane class.

Initializing the New Button's CPane Class Variables

The GetFrom function in the CPane class has been described for
many other objects. In the case of the Use button, the values ac
cessed from the stream are as follows:

• width = 47

• height = 16

• hEncl 118

• vEncl 205

• hSizing 4(sizFIXEDSTICKY)

• vSizing 4(sizFIXEDSTICKY)

• printClip l(clipFRAME)

• frame.top 0

• frame.left = 0

• frame.bottom = 16

• frame.right 47

• autoRef resh TRUE

• flags = 3

378 Chapter 9 >Understanding and Using Object 1/0

After the foregoing values have been stored into the New button's
member variables, the GetFrom function in the CPane class ac
cesses the stream to acquire the pointer to the button's enclosure.
In this case, the stream contains a reference to the second object
(the CPanorama object) in the stream's checklist. The func
tion continues by calling the SubpaneLocation and GetAperture
functions. Then the function calls the GetFrom function in the
CView class.

Initializing the New Button's CView Class Variables

The GetFrom function of the CView class has been discussed pre
viously. The member variables and the values accessed from the
stream for the New button are as follows:

• visible = TRUE

• active = TRUE

• wantsClicks TRUE

• canBeGopher FALSE

• ID = 2052

• usingLongCoord FALSE

• (reserved) = 0

• helpResindex = 0

• numSubviews = 0

After the foregoing values have been acquired, the port for the
view is set to the port of its enclosure (CPanorama) and the view
is added to its enclosure's list of subviews (i tsSubviews). The
fact that the value of numSubviews variable is 0 causes the loop
to be skipped and the GetFrom function of the CBureaucrat class
(its base class) to be called.

Initializing the New Button's CBureaucrat Class Variables

The GetFrom function of the CBureaucrat class accesses the
stream to get the object that is to be assigned as the button's super
visor. In the case of the New button, the i tsSupervisor is set
to a pointer to the CPanorama object (a reference in the stream).
Following this, the GetFrom function of the CCollaborator class
is called. That function merely sets the values of the its Provid
ers and i tsDependents lists to NULL pointers.

Creating a User Interface View 379

After the foregoing operations are complete, execution control re
turns to the GetFrom function in the CPane class, where GetOb
j ect is called to create the object that is to serve as the New
button's environment (i tsEnvironrnent).

Creating and Initializing the CColorTextEnvirons Object

The CColorTextEnvirons object has been discussed previously.
The values of the member variables that apply to the New but
ton's environment are as follows:

• foreColor 0, 0, 0

• backColor 65535, 65535, 65535 }

• penSize = l, 1 }

• changeForeColor FALSE

• changeBackColor FALSE

• changeForePattern FALSE

• changeBackPattern FALSE

• res Patterns = TRUE

• penMode = 8 (patCopy)

• (reserved) = 0

After the foregoing are retrieved they are stored in member vari
ables of the same names as the fields. Because the resPatterns
variable is TRUE, the GetFrom function continues by accessing
the following variables from the stream:

+ forePatID 0

+ backPatID 0

+ forePatind 0

+ backPatind = 0

The GetFrom function of the CColorTextEnvirons class com
pletes its execution by calling the GetFrom function of the CText
Environs class.

380 Chapter 9 :>-Understanding and Using Object 1/0

Initializing the CTextEnvirons Class Variables

The GetFrom function of the CTextEnvirons class accesses vari
ous values from the stream and places them into member vari
ables. The variables and their values for this example are as
follows:

+ textinfo.theSize = 10

+ textinfo.theStyle = 0 (normal)

+ textinfo.theMode = 0 (srcCopy)

+ fontName = Chicago

The value in the fontName variable is used to look up the corre
sponding font number by calling the GetFNum toolbox function,
and the number is placed into the textinfo. fontNumber
member variable for the object. The GetFrom function then calls
the GetFrom function in the CEnvironment class (its base class)
to access additional values from the stream.

Initializing the CEnvirons Class Variables

The CEnvironment class has no data members, so the GetFrom
member function in the CEnvirons class (its base class) is called
instead. That function accesses the value of the moreEnvirons
pointer from the stream, which is NULL in this case. Execution
continues in the GetFrom function of the CPane class, after the
environment data has been accessed.

Continuing the New Button's CPane Class Initialization

The New button has no associated border object, so the object re
turned by GetObject in the GetFrom function of the CPane class
returns a NULL pointer for the i tsBorder member variable.

Creating and Initializing the Delete CButton Object

The GetObject function is called inside the GetFrom function of
the CView class to access and create the next subview of the
CPanorama object. This is the Delete button shown in Figure
9-1, whose components are shown in Figure 9-5. The values for
the CButton class variables are as follows:

+ procID = 8

+ clickCmd 515 (cmdDeleteCat)

Creating a User Inteiface View 381

After the foregoing values have been stored, the function calls the
GetControl function that it inherits from the CControl class.
When that function returns, the NewControl toolbox function is
called to create the button using the values of the button's mem
ber variables.

Initializing the Delete Button's CControl Class Variables

The GetControl function of the CControl class accesses the
stream to get the values of four variables, as follows:

+ value = 0

+ cmin 0

+ cmax 1

+ title = Delete

Following the acquisition of the foregoing values, the GetControl
function calls the GetFrom function of the CPane class.

Initializing the Delete Button's CPane Class Variables

The GetFrom function in the CPane class has been described for
many other objects. In the case of the Use button, the values ac
cessed from the stream are as follows:

+width = 47

+ height = 16

• hEncl 170

• vEncl 205

• hSizing 4(sizFIXEDSTICKY)

• vSizing 4(sizFIXEDSTICKY)

• printClip l(clipFRAME)

• frame.top = 0

• frame.left = 0

• frame.bottom 16

• frame.right = 47

• autoRefresh TRUE

• flags = 3

382 Chapter 9 >Understanding and Using Object 110

After the foregoing values have been stored into the Delete but
ton's member variables, the GetFrom function in the CPane class
accesses the stream to acquire the pointer to the button's enclo
sure. In this case, the stream contains a reference to the second ob
ject (the CPanorama object) in the stream's checklist. The
function continues by calling the SubpaneLocation and GetAper
ture functions. Then the function calls the GetFrom function in
the CView class.

Initializing the Delete Button's CView Class Variables

The GetFrom function of the CView class has been discussed pre
viously. The member variables and the values accessed from the
stream for the New button are as follows:

+ visible = TRUE

+ active = FALSE

+ wantsClicks

+ canBeGopher

+ ID = 2053

TRUE

FALSE

+ usingLongCoord = FALSE

+ (reserved) = 0

+ helpResindex 0

+ numSubviews = 0

After the foregoing values have been acquired, the port for the
view is set to the port of its enclosure (CPanorama) and the view
is added to its enclosure's list of subviews (i tsSubviews). The
fact that the value of numSubviews variable is 0 causes the loop
to be skipped and the GetFrom function of the CBureaucrat class
(its base class) to be called.

Initializing the Delete Button's CBureaucrat Class Variables

The GetFrom function of the CBureaucrat class accesses the
stream to get the object that is to be assigned as the button's super
visor. In the case of the Delete button, the i tsSupervisor is
set to a pointer to the CPanorama object (a reference in the
stream). Following this, the GetFrom function of the CCollabora
tor class is called. That function merely sets the values of the
its Providers and i tsDependents lists to NULL pointers.

Creating a User Interface View 383

After the foregoing operations are complete, execution control re
turns to the GetFrom function in the CPane class, where GetOb
j ect is called to create the object that is to serve as the New
button's environment (i tsEnvironment).

Creating and Initializing the CColorTextEnvirons Object

The CColorTextEnvirons object has been discussed previously.
The values of the member variables that apply to the New but
ton's environment are as follows:

+ foreColor 0 / 0 / 0

+ backColor 65535, 65535, 65535 }

+ penSize = 1, 1 }

• changeForeColor = FALSE

• changeBackColor = FALSE

• changeForePattern FALSE

• changeBackPattern FALSE

• resPatterns = TRUE

• penMode = 8 (patCopy)

• (reserved) = 0

After the foregoing are retrieved they are stored in member vari
ables of the same names as the fields. Because the resPatterns
variable is TRUE, the GetFrom function continues by accessing
the following variables from the stream:

+ forePatID = 0

+ backPatID 0

+ forePatind 0

+ backPatind 0

The GetFrom function of the CColorTextEnvirons class com
pletes its execution by calling the GetFrom function of the CText
Environs class.

384 Chapter 9 :>Understanding and Using Object I/O

Initializing the CTextEnvirons Class Variables

The GetFrom function of the CTextEnvirons class accesses vari
ous values from the stream and places them into member vari
ables. The variables and their values for this example are as
follows:

+ textinfo.theSize = 10

+ textinfo.theStyle = 0 (normal)

+ textinfo.theMode = 0 (srcCopy)

+ fontName = Chicago

The value in the fontName variable is used to look up the corre
sponding font number by calling the GetFNum toolbox function,
and the number is placed into the text Info. fontNumber
member variable for the object. The GetFrom function then calls
the GetFrom function in the CEnvironment class (its base class)
to access additional values from the stream.

Initializing the CEnvirons Class Variables

The CEnvironment class has no data members, so the GetFrom
member function in the CEnvirons class {its base class) is called
instead. That function accesses the value of the moreEnvirons
pointer from the stream, which is NULL in this case. Execution
continues in the GetFrom function of the CPane class, after the
environment data has been accessed.

Continuing the Delete Button's CPane Class Initialization

The Delete button has no associated border object, so the object
returned by GetObject in the GetFrom function of the CPane
class returns a NULL poi11:ter for the i tsBorder member vari
able.

Completing the Creation of the CCategories CDialog Object

After the foregoing objects have been created and the loop in the
CView class of the CPanorama object has finished the creation of
all of the panorama's subviews, control returns to the GetFrom
function in the CPane class to finish the creation of the CPan
orama object. The GetObject function is called to acquire and
create the object that will serve as the panorama's environment
{itsEnvironment). The function accesses the stream to find

Creating a User Interface View 385

and create a CColorTextEnvirons object. After the object has been
created and added to the stream's list of object (checklist), the
object's GetFrom function is called to initialize the object.

Creating and Initializing the CColorTextEnvirons Object

The CColorTextEnvirons object has been discussed previously.
The values of the member variables that apply to the CPanorama
object's environment are as follows:

+ foreColor 0 I 0 I 0 }

+ backColor 65535 I 65535, 65535 }

• penSize = { 1, 1 }

• changeForeColor FALSE

• changeBackColor FALSE

• changeForePattern = FALSE

• changeBackPattern FALSE

• res Patterns = TRUE

• penMode = 8 (patCopy)

• (reserved) = 0

After the foregoing are retrieved, they are stored in member vari
ables of the same names as the fields. Because the resPatterns
variable is TRUE, the GetFrom function continues by accessing
the following variables from the stream:

+ forePatID 0

+ backPatID 0

+ forePatind 0

+ backPatind 0

The GetFrom function of the CColorTextEnvirons class com
pletes its execution by calling the GetFrom function of the CText
Environs class.

Initializing the CTextEnvirons Class Variables

The GetFrom function of the CTextEnvirons class accesses vari
ous values from the stream and places them into member vari-

386 Chapter 9 >-Understanding and Using Object 1/0

ables. The variables and their values for this example are as
follows:

+ textinfo.theSize = 12

+ textinfo.theStyle = 0 (normal)

+ textinfo.theMode = 0 (srcCopy)

+ fontName = Chicago

The value in the fontName variable is used to look up the corre
sponding font number by calling the GetFNum toolbox function,
and the number is placed into the text Info. fontNumber
member variable for the object. The GetFrom function then calls
the GetFrom function in the CEnvironment class (its base class)
to access additional values from the stream.

Initializing the CEnvirons Class Variables

The CEnvironment class has no data members, so the GetFrom
member function in the CEnvirons class (its base class) is called
instead. That function accesses the value of the moreEnvirons
pointer from the stream, which is NULL in this case. Execution
continues in the GetFrom function of the CPane class, after the
environment data has been accessed.

The CPanorama object has no border, so when the GetObject
function is called to access and create a border, a NULL pointer is
returned.

Finishing the Creation of the CDialog Object

After the CPanorama object (the single subview of the CDialog
object) has been created and all of its subviews have been created,
control returns to the GetFrom function of the CDialog class to
access the stream and create the objects that will serve as the dia
log's default button (itsDefaultButton) and its panorama
(its Panorama). Both of these objects have been created previ
ously, so the stream contains references to them both. The values
accessed for these variables are as follows:

+ itsDefaultButton = object #10 (Use CButton)

+ itsPanorama = object #2 (CPanorama)

Using Object l/O to Save and Restore Data Objects 387

After the foregoing have been accessed from the stream, the cre
ation of the Categories dialog view is complete and control re
turns to the user's MakeNewWindow function.

Using Object 1/0 to Save and Restore Data Objects

In addition to the features to recreate user interface elements us
ing the Object 1/0 capabilities of the TCL, many of these same fea
tures can be used to save and restore data objects.

The bulk of the code to save and restore objects from an external
file is contained in the CSaver.tem file. That file implements the
functionality for handling the New, Open, Save, Save As, and Re
vert commands. The CStream.tem file implements the stream
oriented 1/0 that is used for reading and writing objects. Both of
these files contain functions that pertain to the class for which
their template is expanded. And the templates must be expanded
explicitly in the code, some of which is generated automatically by
the VA, and some of which you may have to write. The base class
for the CSaver class is CDocument.

Object 1/0 Code That the VA Generates

When you create a VA application and then check the Use File
checkbox in the View Info dialog for its main window, the VA will
generate several pieces of important data.

Assuming that your main window is named Main, the VA gener
ates a file called CSaver_ CMain.cpp whose contents are as follows:

#include <CSaver.h>

#pragma template_access public

#define GENERATE_TEMPLATE
#include "ItsContents_CMain.h"

#include <CSaver.tern>

The foregoing code includes the contents of the CSaver.h header
file, which declares the CSaver class as a template class. Then the
#pragma statement declares that the scope of the instantiation of
the class and its member functions is public. The #define is ref
erenced in the itsContents_ CMain.h file to force the CSaver class

388 Chapter 9 >Understanding and Using Object 1/0

template definitions to be generated. The contents of the
itsContents_ CMain.h file are as follows:

#pragma once

#include "CCollaborator.h"

#define ITSCONTENTS_CMain CCollaborator

llifdef GENERATE_TEMPLATE

#pragma template CSaver<CCollaborator>

#endif

In the foregoing, the contents of the CCollaborator.h header file
defines the variables and member functions of that class. Then the
ITSCONTENTS_CMain symbol is defined to be CCollaborator,
and then if the GENERATE_TEMPLATE symbol is defined (which
it is), the #pragma statement causes the compiler to instantiate a
CCollaborator version of the CSaver template.

The inclusion of the CSaver.tem file, by means of the #include

statement at the end of the CSaver_ CMain.cpp file (shown ear
lier) brings in the definitions for all of the member functions of
the CSaver class, instantiated for the CCollaborator object.

The CCollaborator class includes GetFrom and PutTo functions
for reading from and writing to a stream. As the previous section
of this chapter demonstrates, the CStream_ CCollaborator class
provides the ability to read CCollaborator objects from a stream.
It also allows you to write a CCollaborator object to a stream.

However, the VA-generated code is really not capable of saving or
reading the data for even a CCollaborator-derived data class. The
general prescription for doing so is as follows:

1. Define your data contents class and create both source and
header files for it.

2. Modify the itsContents_CMain.h file (if your document
class is CMain) to refer to your data contents class instead of
CCollaborator.

3. Expand the templates for the GetObject, PutObject, and
PutObjectReference functions in a CStream_Contents.cpp
file (or equivalent).

Using Object 110 to Save and Restore Data Objects 389

4. Create and initialize the i tsContents variable in the
MakeNewContents function of your CSaver-derived docu
ment class (for example, CMain).

5. Call TCL_FORCE_REFERENCE () for your data contents
class, and any other classes whose data it reads or writes, either
directly or indirectly, in its GetFrom or Put To functions.

6. Add code to the ContentsToWindow and WindowToCon
tents functions, if necessary.

The next section contains an example that follows the foregoing
prescription.

Reading and Writing the Notebook Contents

In Chapter 5, I described a typical application that included a text
window and a modal dialog for changing the font, size, style, and
justification of the text. The description of that application begins
on page 171. While that chapter was devoted primarily to the dis
cussion of various types of dialogs, the application itself is perfect
for illustrating how to read and write data using the Object 1/0
features of the TCL. The following sections describe how each of
the steps of the foregoing prescription is followed to implement
the Object 1/0 features for the Notebook application.

Step 1 : Define the Data Contents Class

In what I'll call the Notebook application, we need to create a
handle that can contain all of the text typed into the main win
dow of the application. In addition to the contents of the handle,
we need to store information that will enable us to recreate the
text font, size, style, and justification features of the text, as the
user has specified them.

I have created a new class, called CNoteContents to hold these
data. The header file for the class is named NoteContents.h, and
it was created with the Symantec C++ editor. The contents of this
file are as follows:

/***
NoteContents.h

Header File For CNoteContents class

Copyright © 1995 Richard 0. Parker. All rights reserved.
***/

390 Chapter 9 ~Understanding and Using Object 110

#pragma once

#include "CTextSettings.h"

class CNoteContents TCL_AUTO_DES~~RUCT_OBJECT
{

public:

TCL_DECLARE_CLASS

CNoteContents();
virtual -CNoteContents();

void PutTo(CStrearn&);
void GetFrom(CStrearn&);

Handle GetTextHandle();
void SetTextHandle(Handle t);
CTextSettings GetTextSettings();
void SetTextSettings (CTextSettings& settings);

protected:

CTextSettings itsSettings;
Handle i tsText;

} ;

The foregoing class declaration contains a constructor, destructor,
and a number of member functions. In addition, it contains two
sets of data. The first is a CTextSettings structure, whose contents
define the text font, size, style, and justification information.
These data are stored in the itsSettings variable. In addition,
a handle is provided to contain the ASCII text. The CTextSet
tings.h header file contents are as follows:

#pragma once

struct CTextSettings
{

} ;

Str255 spFontName;
Str255 spFontSize;
short nFontStyle;
short nFontJust;

In the foregoing, the font name, font size, font style, and font jus
tification data formats are described. The font size is stored as a
string, even though it is a numeric value. This facilitates its use in
the remainder of the application. The contents of the NoteCon
tents.cp source file are as follows:

Using Object 110 to Save and R.estore Data Objects 391

/***
NoteContents.cp

Source File For CNoteContents class

Copyright © 1995 Richard 0. Parker. All rights reserved.
***/

#include "NoteContents.h"

TCL_DEFINE_CLASS_DO(CNoteContents);

The first section of the file includes the class declaration header
file and defines the class to the TCL so that the run-time type iden
tification features can be used to recreate the class.

CNoteContents::CNoteContents()
(

itsText = OL;
TCLpstrcpy (itsSettings.spFontName, "\pChicago");
TCLpstrcpy (itsSettings.spFontSize, "\p12");
itsSettings.nFontStyle = normal;
itsSettings.nFontJust = teFlushLeft;

TCL_END_CONSTRUCTOR

The foregoing is the default constructor that is executed when the
object is first created.

CNoteContents::-CNoteContents()
{

TCL_START_DESTRUCTOR
DisposHandle (itsText);

The foregoing is the destructor for the CNoteContents object. It
disposes of the handle to the object's text. The itsSettings
variable does not need to be disposed. It will disappear when the
object is deleted.

void CNoteContents::PutTo (CStream& stream)
{

stream<< itsSettings.spFontName
stream << itsSettings.spFontSize
stream << itsSettings.nFontStyle
stream<< itsSettings.nFontJust;
stream << itsText;

392 Chapter 9 >Understanding and Using Object 1/0

The foregoing is the entire code that is needed to write out the
contents of the CNoteContents object. As is evident, the features
of the CStream class to write out strings, short variables, and the
text handle are used.

void CNoteContents::GetFrom (CStream& stream)
{

stream >> itsSettings.spFontName;
stream >> itsSettings.spFontSize;
stream >> itsSettings.nFontStyle;
stream >> itsSettings.nFontJust;
stream >> itsText;

As for the PutTo function, the foregoing GetFrom function is
very simple. It too uses the features of the CStream class to read
strings, short variables, and the text handle.

Handle CNoteeontents::GetTextHandle()
{

return itsText;

The foregoing function is an "access function" used by the appli
cation to get the handle to the object's text. You will see this func
tion being used later in the code.

void CNoteContents::SetTextHandle(Handle t)
{

itsText = t;

As for the GetTextHandle function, this is an "access function"
that is used by the application to specify a handle for the text. The
function is referenced later in the code.

CTextSettings CNoteContents::GetTextSettings()
{

return itsSettings;

void CNoteContents::SetTextSetti:ngs (CTextSettings& settings)
{

itsSettings = settings;

Using Object IIO to Save and Restore Data Objects 393

The foregoing two functions are also "access functions" used by
the application to get and set the font settings of the CNoteCon
tents object. The functions are referenced later in the code.

Step 2: Modify the itsContents_CMain.h File

The prescription for implementing Object 1/0 specifies that we
should modify the itsContents_CMain.h file to reference our
new data contents class (CNoteContents in this case). The modi
fied contents of that file are as follows:

#pragma once

#include "NoteContents.h"

#define ITSCONTENTS_CMain CNoteContents

#ifdef GENERATE_TEMPLATE

#pragma template CSaver<CNoteContents>

#endif

Notice that the foregoing is remarkably similar to what was shown
for this file in the VA-generated code (see page 388). We include
the NoteContents.h header file and then define the contents vari
able, ITSCONTENTS_CMain to CNoteContents. That estab
lishes the class name of the contents object. Then the #pragma

statement tells the compiler to instantiate the CSaver template for
the CNoteContents class.

Step 3: Expand the CStream Class Templates

The third step of the Object 1/0 prescription calls for expanding
the templates for GetObject, PutObject, and PutObjectReference
for the CStream-based template. In our case, this is a file we have
created, called CStream_CNoteContents.cpp. The contents of
that file are as follows:

#include "CStream.h"
#include "NoteContents.h"

#pragma template_access public
#pragma template PutObject(CStrearn&, CNoteContents*)
#pragma template GetObject(CStrearn&, CNoteContents*&)
#pragma template PutObjectReference(CStrearn&, CNoteContents*)

#include "CStrearn.tem"

394 Chapter 9 >Understanding and Using Object 110

As is evident from the foregoing, I have included the header file
for our CNoteContents class, have declared that the scope of the
class and member functions of the CStream<CNoteContents>
template are public, and then have expanded the templates for the
specified functions. Including the CStream. tern file provides the
source code from which the template-derived classes are created.

Step 4: Create and Initialize the itsContents Variable

This step requires that we provide code in our CSaver-derived
class-CMain in this case-to create and initialize the its

Contents variable that contains a pointer to the data con
tents object. The code to do this for our example is in the
MakeNewContents function in our CMain class. The code is
as follows:

void CMain::MakeNeWContents()
{

itsContents = new CNoteContents;

The foregoing code creates a new CNoteContents object and the
constructor of that object fills in default values for both the data
handle and the text font, size, style, and justification settings. Re
fer to page 391 for the listing of the CNoteContents constructor
function.

Step 5: Call TCL_FORCE_REFIERENCE

The fifth step in the Object 1/0 prescription indicates that we
should call the TCL_FORCE_REFERENCE macro for our data
contents class, to ensure that it is linked into the final object file.
Because our data contents object is being created implicitly, there
is no way that the compiler can know to include its code, other
than by our making an explicit reference to it. I have included the
necessary code in the ForceClassReferences function of the
CApp.cp source file, as follows:

void CApp: :ForceClassReferences (void)
{

x_CApp::ForceClassReferences();

TCL_FORCE_REFERENCE (CNoteContents);

Using Object 110 to Save and Restore Data Objects 395

The foregoing code calls the ForceClassReferences function in the
base class first and then uses the TCL_FORCE_REFERENCE macro
to force the reference to our CNoteContents class.

Step 6: Add Code to Transfer the Data to/from Windows

The final step in the Object 1/0 prescription is to add code to the
ContentsToWindow and WindowToContents functions, if neces
sary, to display the data in a window or take the data from a win
dow for storage. The additional code for the ContentsToWindow
function is as follows:

void CMain::ContentsToWindow()
{

II Transfer data from itsContents to itsWindow.
II See Chapter 8, Using Object IIO

fMain_TextPane->SetTextHandle (itsContents->GetTextHandle());
settings= itsContents->GetTextSettings();
UpdateWindowText();

As the foregoing code illustrates, the process of transferring the
contents of the data handle to the window is accomplished by us
ing the GetTextHandle access function in the CNoteContents
class (see page 392) and then using the pointer to the CEditText
pane to call its SetTextHandle function to store the handle we just
accessed. We also access the GetTextSettings function to retrieve
the font, size, style, and justification data, storing these into the
settings variable. UpdateWindowText is a function that I have
provided to update the appearance of the text, using the data in the
settings variable. The code for this function is as follows:

void CMain: :UPdateWindowText ()
{

short nFontNum, nFontSize;

GetFNum (settings.spFontName, &nFontNum);
nFontSize = atoi ((const char *)&settings.spFontSize[l]);
fMain_TextPane->SetFontNumber (nFontNum);
fMain_TextPane->SetFontSize (nFontSize);
fMain_TextPane->SetFontStyle (normal);
fMain_TextPane->SetFontStyle (settings.nFontStyle);
fMain_TextPane->SetAlignment (settings.nFontJust);

The foregoing code translates the font name into a font number,
converts the font size string into a numeric value, and then calls

396 Chapter 9 >Understanding and Using Object 1/0

the various member functions of the CEditText class to set the at
tributes of the text pane to the values in the set tings variable.
This results in an update event being created for the window,
causing the TCL to redraw the text in the specified font, size, style,
and justification.

The code to transfer the contents of the window back to the data
contents object, in preparation for storing the data and its specifi
cations into a file, is held in the WindowToContents function,
which is as follows:

void CMain: :WindowToContents(}
{

II Transfer data from itsWindow to itsContents

itsContents->SetTextHandle (fMain_TextPane->GetTextHandle(}};
itsContents->SetTextSettings (settings};

The foregoing code merely calls the SetTextHandle (see page 392)
and SetTextSettings (see page 392) functions of the CNoteCon
tents class to transfer the data and its settings from the window to
the data contents object. The data and settings are written out us
ing the PutTo function for the CNoteContents class that was
shown on page 391.

Reading and Writing the Categories List Contents

Our next example relates to the categories list that was shown in
connection with the CCategories class modeless dialog presented
in Chapter 5 (see page 208). The discussion with regard to the
categories list defines it as a CArray object. In order to show you
how to use the Object 1/0 facilities of the TCL to read and write
the members of a CList object, I have modified the code in both
the CMain and CCategories classes and have added new code to
the GetFrom and PutTo functions in the CCat class (the class as
sociated with individual category objects). The changes to the
foregoing code are not significant; however, they will be presented
here, in the interests of completeness.

Defining the Categories List

The CMain.h header file contains the definition of the catego
ries variable. Instead of defining it as a CArray object, I have

Using Object IIO to Save and Restore Data Objects 397

changed it to a CList object. The first part of the modified header
file is as follows:

#include "x_CMain.h"
#include <CList.h>

class CList;
class CCat;

typedef CList<CCat> CCatList;

class CMain : public x_CMain

{

public:

TCL_DECLARE_CLASS

CCatList *categories; II list of category names

I've added a typedef statement that declares a CCatList object is
really a CList<CCat> object. In other words, the CList template is
going to be expanded to handle CCat objects in the list.

The New Prescription for Object 1/0 With Lists

Because CList is a template class and because the expansion of
templates both for the CList and its base class (CPtrArray) is nec
essary, the prescription for creating Object 1/0 code for these
objects is somewhat more complex. The steps for including the
necessary code to perform the 1/0 are as follows:

1. Define your contents class (CCat, in our case).

2. Modify the itsContents_ CMain.h file to use your CList class
instead of CCollaborator (CList<CCat>, in our case).

3. Expand the templates for PutObject and GetObject functions
for your contents class and your list class.

4. Initialize the itsContents pointer in the MakeNewCon
tents function of your generated contents class (CMain).

5. Call the TCL_FORCE_REFERENCE macro for your contents
class and any other classes it reads, directly or indirectly, in its
GetFrom function and call the TCL_FORCE_TEMPLATE_ -

REFERENCE macro for your list class.

6. Expand the templates for the CList and CPtrArray classes.

398 Chapter 9 >--Understanding and Using Object I/O

7. Expand the template for the PutObjectl function for your
contents class (CCat).

8. Implement the ContentsToWindow and WindowToCon
tents functions in your contents class, if necessary.

The foregoing steps are illustrated with code exhibits in the next
several sections.

Step 1: Define Your Contents Class

I have defined the CCat class as the class that implements the
functionality of an individual category list object. To this end, I
have added code to its GetFrom and PutTo functions to read and
write the data associated with one of these objects. The code for
the PutTo and GetFrom functions is as follows:

void CCat::PutTo (CStream& stream)
{

stream << catName << catDescrip << catType << catTaxable;

void CCat::GetFrom (CStream& stream)
{

stream >> catName >> catDescrip >> catType >> catTaxable;

The foregoing code writes (PutTo) and reads (GetFrom) four
member variables of the class that describe the information per
taining to a category. There's the category name (catName), the
category description string (catDescrip), the category type
code (cat Type) and the tax-related status of the category (cat
Taxable). The code to perform the I/O is quite straightforward.

Step 2: Modify the itsContents_CMain.h File

This step requires identifying the nature of the i tsContents
variable to other files which include this header file, including the
CSaver_CMain.cpp and x_CMain.h files. The contents of the
itsContents_ CMain.h file are as follows:

#pragma once
#include "CCat.h"
#define ITSCONTENTS_CMain CList<CCat>
#ifdef GENERATE_TEMPLATE
#pragma template CSaver<CList<CCat>>
#endif

Using Object IIO to Save and Restore Data Objects 399

The foregoing code defines the ITSCONTENTS_CMain symbol as
the CList<CCat> object and then permits the compiler to create
an instance of the CList<CCat> object for the CSaver template
class.

Step 3: Expand the GetObject and PutObject Templates

The GetObject and PutObject functions are members of the
CStream class and so to expand the functions for our contents
class, I created a new file called CStream_ CCat.cpp. The contents
of that file are as follows:

#include "CStrearn.h"
#include "CCat.h"

#pragma template_access public
#pragma template PutObject(CStrearn&, CCat*)
#pragma template GetObject(CStrearn&, CCat*&)

#pragma template PutObject(CStrearn&, CList<CCat>*)
#pragma template GetObject(CStrearn&, CList<CCat>*&)
#include "CStrearn.tem"

The foregoing code includes the header files for both the CStream
and CCat classes, declares that the scope of the template member
functions and variables is to be public, and then explicitly expands
templates for the PutObject and GetObject functions, for both
the CCat and the CList<CCat> classes. The CStream.tem file
supplies the source code to perform the GetObject and PutObject
1/0 for the objects.

Step 4: Initialize the itsContents Pointer

When the TCL creates a new window, it also calls the MakeNew
Contents function in the CMain (or your document class). The
revised code for the MakeNewContents function is as follows:

void CMain::MakeNewContents()
{

II Initialize document contents and itsWindow here
itsContents = TCL_NEW (CCatList, ());

The foregoing code creates a new instance of the CCatList object.
The typedef statement equates the name CCatList to refer to a
CList<CCat> object.

400 Chapter 9 ~Understanding and Using Object 1/0

Step 5: Call TCL_FORCE_REFERENCE

In order to ensure that the contents list and the objects stored
within that list are linked into the final application code, you have
to modify the CApp.cp file to incorporate these references. There
is one concern with regard to this, particularly with respect to
template-derived objects. You must also include, at the beginning
of the file, a statement like the following:

II
II the following statement is required to
II make the Symantec C++ compiler happy.
II
typedef CList<CCat> dummytype;

The foregoing indicates that some "durrunytype" is equivalent to
typing CList<CCat>. This is an "occult" feature of the compiler,
and you need only follow this example, using your own object
type in substitution for CList<CCat>. In addition to the forego
ing, the code in the ForceClassReferences function of the CApp
class includes the following code:

void CApp: :ForceClassReferences(void)
{

x_CApp: :ForceClassReferences(I;
TCL_FORCE_REFERENCE(CCat);
TCL_FORCE_TEMPLATE_REFERENCE(CList, CCat);

As is evident, the TCL_FORCE_.REFERENCE macro forces the
linker to include the CCat class. The additional macro call
(TCL_FORCE_TEMPLATE_REFERENCE) forces the CList<CCat>
code to be linked as well.

Step 6: Expand the Templates for Clist and CPtrArray

The CList class is derived from the CPtrArray class and provides
the stream input/ output features for lists. We expand the tem
plates for these two classes, with regard to our contents object, by
creating a new file named CList_ CCat.cpp, whose contents are as
follows:

#include "CCat.h"

#pragma template_access public

#pragma template CPtrArray<CCat>

Using Object 110 to Save and Restore Data Objects 401

#pragrna template CList<CCat>

TCL_DEFINE_TEMPLATE_CLASS_Dl(CList, CCat, CPtrArray<CCat>)
TCL_DEFINE_TEMPLATE_CLASS_Dl(CPtrArray, CCat, CVoidPtrArray)

#include <CList.tem>
#include <CPtrArray.tem>

The foregoing code includes the header file for the CCat class, de
clares that the scope of the expanded template code and member
variables is public, then expands the templates for the CPtrAr
ray<CCat> and CList<CCat> classes. In addition to this, the
TCL_DEFINE_TEMPLATE_CLASS macros allow the dynamic
creation of template-based objects with the new_by_name facili
ties of the TCL. These macros work only when there is a single
variant class. The first parameter is the class name, the second pa
rameter is the template type name, and the third argument is the
base class name. Therefore, the first of these macros provides for
creation of the CList<CCat> class, which is based upon the CPtr
Array<CCat> class. The second provides for creation of the CPtr
Array<CCat> class, based upon the CVoidPtrArray class.

Inclusion of the Clist.tem and CPtrArray.tem files provides the
source code, which implements the functionality of the expanded
templates.

Step 7: Expand the Template for the Put0bject1 Function

The PutObjectl function is called in a loop by the Putltems func
tion of the CList<CCat> class, for each object in the list. The
PutObjectl function calls PutObject, with the stream and the ob
ject type we specify as its arguments. We need to expand the tem
plate for the PutObjectl function so that it will refer to our CCat
objects when it is called. We accomplish this by creating another
new file named PutObjectl_CCat.cpp. The contents of this file
are as follows:

#include "CCat.h"
#pragrna template_access public
#pragrna template PutObjectl(CCat*, long)
#include <PutObjectl.tem>

The foregoing code includes the header file for the CCat class, de
clares the scope of the expanded template code and variables to be
public, and expands the template for the PutObjectl function

402 Chapter 9 >Understanding and Using Object 1/0

with arguments of our CCat class pointer and a long variable,
which will hold the stream pointer. The PutObjectl.tem file con
tains the source code for the PutObject function.

Step 8: Implement the Contents Transfer Functions

The ContentsToWindow function is called when a file is read and
the contents are to be transferred to a window. In our case, the
contents are not transferred, but we have used this function to
copy the itsContents pointer to our local document's cate
gories pointer. The code is as follows:

void CMain::ContentsToWindow()
{

categories = itsContents;

Similar to the foregoing, the code for the WindowToContents
function transfers the local pointer to the i tsContents vari
able, as follows:

void CMain::WindowToContents()
{

itsContents = categories;

The foregoing sections demonstrate the complete implementation
of Object 1/0 facilities for our categories list. While there are a
number of steps to follow in implementing this functionality,
each of the steps is rather simple.

When You Don't Want to Use Object 1/0

There are times when you need to read and write files in a specific
format that is different from what is produced by the Object 1/0
features of the TCL. I gave you an example of this in Chapter 3,
where I introduced the CTextData class to implement simple text
input and output.

The TCL also includes a generic facility for input and output of
data in an arbitrary format. This facility is encapsulated in the
CSimpleSaver class, whose base class is CDocument.

When You Don't Want to Use Object 110 403

Creating a Simple User Interface

Figure 9-6
A simple main
window concaining a
CEditText pane

To illustrate the use of the features of the CSimpleSaver class, I
have created a simple project, like the Notebook example pre
sented earlier, including a main window that contains a CPan
orama as its only object. In this case, the VA will create a window
that appears like what is shown in Figure 9-6.

Main

1

0,0 308, 222

The foregoing figure shows the design of the Main document's
window, indicating that it contains a CPanorama object, with a
vertical scroll bar, that will be stored as a CEditText object in the
"Main" window's 'cvue' resource. In order to make use of the
CSimpleSaver features, rather than the somewhat more complex
features of Object 1/0, it is necessary to remove the check from
the "Use File" checkbox in the View Info dialog. This is shown in
Figure 9-7. Note that I have also unchecked the Vert Scroll and
Horiz Scroll checkboxes for the window.

Because the Use file checkbox is not checked, the VA would nor
mally generate the x_ CMain class as being derived directly from
the CDocument class. Because we want it to be derived from the
CSimpleSaver class instead (which itself is derived from CDocu
ment), we must choose the Classes command from the Edit
menu, select the CMain class in the left-hand list, and then enter
the CSimpleSaver class name as the Library Class for the CMain
class, as shown in Figure 9-8.

404 Chapter 9 >-Understanding and Using Object 1/0

Figure 9-7
View Info dialog for
Main window

Figure 9-8
CSimpleSaver
specified as the
Library class

Main (Document) Info

Name: I Main
:============:::::'..._--~---,

Title : I M_a_in ____________ ~

ID: 128 D modal ([OK D
D Use file
[gJ Print [Cancel J

Wi ndo"' Cl ass: I CWi ndo"' • I

D Vert. Scroll D Horiz. Scroll [gJ Size Bllx

Position I Staggered ..-1 ;. ,, it
[gJ goA..,ayFlag D actClick

Width: 1306
:========:

Min Width: 140
::=======:

Max Widt h: I s_1_2 ___ __,

CR pp

illJ

Height : 1236
::=======:

proclD:~

Min Height: 140
::=======:

Max Height: .._I 3_4_2 ___ __,

IQ

to

Clas:ses

!cMai_in ________ ~

E!<J~t~ !: l!is ~: ! [Oot:umen1

[ll!~tim~ Ontn Mt~mbPrs J

library class: ~I il·~·i·~·liii!IJ

[Cancel J

OK

Writing the Code to Read and Write the File

By using CSimpleSaver as the "Library Class" for the CMain class,
you are telling the VA to generate the code such that the base class
for the x_CMain class will be CSimpleSaver. This is illustrated by
the x_CMain.h header file, whose contents are as follows:

#pragma once

#include "CSimpleSaver .h"
c lass CEditText;

#define x_CMain_super CSimpleSaver

class CFile;

class x_CMain public x_CMain_super
{
public:

When You Don't Want to Use Object 110 405

TCL_DECLARE_CLASS

II Pointers to panes in window
CEdi tText * fMain_TextPane;

void Ix_CMain(void);

protected:

} ;

virtual void MakeNewWindow(void);

virtual void NewFile (void) ;
virtual void OpenFile (SFReply *rnacSFReply) {}
virtual void MakeWindowName (Str255 newName);
virtual void MakeNeWContents(void);

#define CVueCMain 128

Note in the foregoing that the symbol x_CMain_super is being
defined as CSimpleSaver and that the symbol is used as the
base class name for the x_ CMain class. In effect, CSimpleSaver is
the base class for the x_ CMain class.

Now, after generating the code for this project, you must also de
fine the ReadContents and WriteContents member functions for
the CMain class. This is because the CSimpleSaver class (which is
a base class for CMain) declares those functions (as well as the
MakeNewWindow function) as pure virtual functions. If you
don't at least create declarations in the CMain.h and stubs for
these in the CMain.cp file, then you will get compile errors in the
x_CApp class, which attempts to construct CMain objects in its
CreateDocument and OpenDocument member functions.

The contents of the CMain.h header file, to which the declara
tions for the ReadContents and WriteContents functions were
added, are as follows:

#pragma once

#include "x_CMain.h"

class CMain : public x_CMain
{
public:

TCL_DECLARE_CLASS

void ICMain (void) ;

virtual void MakeNeWContents (void) ;
virtual void ContentsToWindow(void);
virtual void WindowToContents (void) ;

406 Chapter 9 :>Understanding and Using Object 1/0

} ;

virtual void ReadContents (CFi.leStream *aStream) ;
virtual void WriteContents (CPileStream *aStream);

ReadContents Function Code

The custom code to read the contents of a text file and store the
data into the CEditText pane's handle is as follows:

void CMain::ReadContents(CFileStream *aStream)
{

Handle h = aStream->GetHandle();

HLock(h);
try_
{

fMain_TextPane->SetTextPtr(*h, GetHandleSize(h));
DisposeHandle(h);

}
catch_all_ ()
{

DisposeHandle(h);
}
end_ try_

The foregoing code reads the contents of the selected file (using
the GetHandle function of the CFileStream object) into a tempo
rary handle, locks the handle, and then calls the SetTextPtr func
tion for the CEditText pane (fMain_TextPane). The reason for
using a temporary handle and placing the SetTextPtr call inside a
"try" block is that the Set TextPtr function makes a copy of the
data in the pointer that is passed, so it is possible that lack of suffi
cient memory to do so could cause an exception. If the call to Set
TextPtr is successful, then the temporary handle is disposed.

WriteContents Function Code

The code to write out the CEditText pane's contents is quite sim
ple and is as follows:

void CMain::WriteContents(CFileStream *aStream)
{

aStream->PutHandle(fMain_Tex~Pane->GetTextHandle());

The foregoing code calls the PutHandle function of the CFile
Stream object, using the handle returned by calling the GetText
Handle function for the CEditText pane (fMain_TextPane).

Object 110 and CSimpleSaver Summary 407

And that's all there is to using CSimpleSaver as the base class for
your document class. Obviously, if you have more complex data,
you will need to output and input it using individual put and get
calls for the appropriate object types, but the CStream class offers
a great number of 1/0 functions for this purpose. You can't con
struct objects using the features of CSimpleSaver, but you can
read and write data that are stored in a complex form.

Object VO and CSimpleSaver Summary

This chapter describes two major features of the Object 1/0 sup
port that is provided within the TCL. The first of these is the abil
ity of the framework to create a complete user interface by reading
the 'CVue' resourced with each window and dialog, and then
creating the views and subviews in those objects.

The chapter also shows how these same Object 1/0 features can
be used to read and write data in the form of persistent objects in
your application. Two prescriptions for adding Object 1/0 fea
tures to your applications were described.

When an application needs to read and write data files in a spe
cific format, then you can take advantage of the CSimpleSaver
class whose features are described in this chapter.

We described the handling of standard events in Chapter 7. The
next chapter discusses Apple events in detail.

Chapter 10

Apple Events, Factoring, and Recording

This chapter focuses on the high-level events known as Apple
events. It covers how the events are handled if received by your
application, how you can arrange to receive new types of events,
how you can factor your application to make it scriptable, and
how to prepare for recording and playback of Apple events.

The TCL implements the four "required" Apple events. These are
Open Application, Open Document, Print Document, and Quit.
When you create any stand-alone application, these events will be
handled automatically.

When Apple Computer defined the "Object Model" (also referred
to as the OM in this text), it also segregated groups of common ap
plication-oriented events into "suites." Each suite offers either
fundamental support that most applications will want to imple
ment (for example, the "Core Suite"), as well as application-type
specific suites, such as the "Table Suite" or "Text Suite." The TCL
contains classes and member functions that implement much of
the "Core Suite" of the Apple event Object Model. All of the
suites that are currently defined are documented in the Apple
Event Registry publication of Apple Computer. The registry is up
dated periodically and contains definitions of all of the standard
events.

I described the installation of the TCL's Apple event handlers in
Chapter 2, beginning on page 27, in the section tided "Creating
the Switchboard Object." In addition, in that same chapter, I
talked briefly about the various installed handlers and in what
suite they belonged (see page 42). I also touched briefly on the
topic of high-level events when describing event handling in
Chapter 7 (see page 309). This chapter delves more deeply into
the existing installed handlers and provides insight into how they
can be used and supplemented to provide the scope of high-level
event handling that is applicable to your application's needs.

409

410 Chapter 10 >-Apple Events, Factoring, and Recording

Support for Receiving Apple Events in the TCL

As described previously, handling of Apple events in the TCL is
separated into three classes. The Required Suite is fully imple
mented and will be described shortly. Portions of the Core Suite
are implemented and they too will be described. Several aspects of
the Miscellaneous Suite are also implemented and will be de
scribed in the sections that follow~

Handling the Required Events

Handlers for the four required events (Open Application, Open
Document, Print Document, and Quit) are installed at the time
the lnstallHandlers function of the CSwitchboard class is exe
cuted, when the application is initialized. The code to install these
handlers is as follows:

InstallEventHandler{kCoreEventClass,
kAEOpenApplicat:Lon,
GenericAppHandl1~rUPP};

InstallEventHandler{kCoreEventClass,
kAEOpenDocuments,
GenericAppHandlerUPP} ;

InstallEventHandler{kCoreEventClass,
kAEPrintDocumen~s,
GenericNoResultHandlerUPP} ;

InstallEventHandler{kCoreEventClass,
kAEQuitApplication,
GenericAppHandl1:rUPP} ;

The foregoing statements install handlers for the required events
by calling the lnstallEventHandlcr function in the TCL to perform
the installation. The argumems are the event class (kCore
EventClas s), event type (klrnOpenApplication, kAE
OpenDocumen ts, kAEPrintDocuments, and
kAEQui tApplication), and a pointer to the handler for the
event (GenericAppHandlerUPP). The symbols commencing with
the letter 'k' are defined in the Apple Event Registry for the corre
sponding constant values, and the definitions for the TCL's use of
these constants are in the AppleEvents.h header file.

lnstallEventHandler is a function in the CSwitchboard class that
interfaces with the Apple Event Manager in the Macintosh OS.
The code for the lnstallEventHandler function is as follows:

Support for Receiving Apple Events in the TCL 411

void CSwitchboard::InstallEventHandler(
AEEventClass theAEEventClass,
AEEventID theAEEventID, AEEventHandlerUPP theHandler)

FailOSErr(AEinstallEventHandler(
theAEEventClass, theAEEventID, theHandler, 0, FALSE));

The foregoing code calls the AEinstallEventHandler function, us
ing the supplied arguments. If the function returns a nonzero re
sult, then the FailOSErr function will raise an exception.

Each of the required events specified GenericAppHandlerUPP as
the pointer to the handler for the event. This pointer is defined in
the CSwitchboard class as a pointer to the GenericAppHandler
function in the CAppleEventObject class.

When one of the required events occurs, the event-handling code
in the CSwitchboard class accesses the event from the application's
event queue and calls the DoHighLevelEvent function to process
the event. The code for that function is as follows:

voidCSwitchboard::DoHighLevelEvent(const EventRecord *theEvent)
{

OSErrerr;
if (gSystem.hasAppleEvents)
{

err= AEProcessAppleEvent(theEvent);

As is evident in the foregoing, the event is processed only if the
user's machine handles Apple events (hasAppleEvents). If so,
then the AEProcessAppleEvent toolbox function is called to pro
cess the event. Processing the event consists of looking in the ap
plication's event dispatch table for a handler whose event class and
event ID match those of the received event. If such a handler is
not found, then an error is returned; otherwise, the handler is
called with a pointer to the event descriptor, a pointer to a default
reply descriptor, and a "reference constant" value that was defined
when the handler was installed (this is 0 in the case of the required
event handlers).

The GenericAppHandler function is called by the Apple Event
Manager when one of the required events is sent to the applica
tion. The code for that function is as follows:

412 Chapter 10 >-Apple Events, Factoring, and Recording

pascal OSErr CAppleEventObject::GenericAppHandler(
const AppleEvent *theEvent,
AppleEvent *theReply, long refCon)

return GenericHandler(theEvent, theReply, refCon, DispatchApp);

The foregoing code calls the GenericHandler function to perform
the operation, passing it a pointer to the event descriptor, a
pointer to the reply descriptor, the value of the reference constant,
and a pointer to a static function called DispatchApp.

The GenericHandler function is used to handle a variety of Apple
event types, including the required events. The operations per
formed by the code in that function are as follows:

+ The PackageAppleEvent function of the CApplication object
(gApplication) is called to construct a CAppleEvent object
with the event, reply, and reference constant values. The con
structor for the CAppleEvent class initializes a number of
member variables and calls the BeginEvent function of the
CAppleEventObject class to initialize the stack of CAp
pleEventObject instances that may be created during process
ing of the current event. Then the IAppleEvent function is
called to initialize the theEvent, theReply, and theRef

Con variables to the values supplied to the constructor. Finally,
the GetAttributePtr function is called to get a pointer into a
buffer containing the event class and event ID values. The
pointers are stored for later reference into the eventClass
and eventID variables. The packaged CAppleEvent object
pointer is returned to the GenericHandler function.

+ After the Apple event has been packaged into a CAppleEvent
object, the specific handler function (that is, DispatchApp) is
called, with the pointer to the packaged object and a pointer to
the result descriptor, to handle the event.

+ The DispatchApp function, in turn, calls the DoAppleEvent
function in the application object (gApplication) to per
form the requested function.

+ The DoAppleEvent function in the CApplication class handles
quite a number of events. The first action of that function is to
access the event's class and then determine what to do based

Support for Receiving Apple Events in the TCL 413

upon that code. For the required events in the core class, the
actions are as follows:

• For the Open Application event, if the newWindowOn -
Startup flag is TRUE, the function calls the DoCommand
function for the current gopher, passing it the cmdNew
command code.

• For either the Open Documents or Print Documents
events, the function calls the DoOpenOrPrintDocEvent
function. That function calls OpenDocument to open each
specified document and then optionally prints the docu
ment. If the document is printed, it is closed after the opera
tion is complete.

• For the Quit Application event, the function calls the
DoQuitApplicationEvent function, which accesses the save
options in the event and then calls the Quit function. That
function sets the running variable to FALSE, then calls the
Quit function for each open window's director, allowing the
contents of the window to be saved, if the option to do so
was set. If any director refuses to quit, then the running
variable is set back to TRUE and execution continues; other
wise, the event loop is terminated when the state of the
running variable is tested and found to be FALSE, causing
the application to quit.

Handling Other Core and Miscellaneous Suite Events

The DoAppleEvent function of the CApplication class handles a
number of other application-wide events. These include the Noti
fyStartRecording and NotifyStopRecording events in the core
suite, as well as the Get AETE event in the AppleScript suite and
the Activate event in the miscellaneous suite.

In addition to and to amplify the foregoing, during the applica
tion's initialization phase, handlers are installed for quite a num
ber of different event types. The TCL does not completely
implement many of the events for which handlers are installed;
however, it calls a function for which you can provide an override
in many of these cases. The various events and what handling is
performed are as follows:

+ Clone - An event in the Core Suite that can apply to a num
ber of different object types. Functions are provided in the

414 Chapter IO> Apple Events, Factoring, and Recording

CDocument, CWindow, and CAppleEventObject classes for
this event. None implements the operation, but the opportu
nity to override the function leaves the functionality open to
the developer.

+ Close - An event in the Core Suite that is implemented in
several of the TCL classes, most notably in CDocument and
CWindow, as follows:

• In CDocument, the DoCloseEvent function is called to
close the document and, optionally, save the document's
data either in the default file or a file specified in the event.
If a file is specified in the event and the i tsFile object
exists, the existing file is closed and the new file is opened
before the Close function in the CDocument class is called.

• In CWindow, the DoCloseEvent function of the window's
director is called. That function calls Close Wind for the
window. If the window's director is the document, then the
DoCloseEvent in the CDoc:ument class is called.

+ Count Elements - An event in the Core Suite that is intended
to return the number of elements of a particular class in the
specified object.

• An override for the DoCountElementsEvent function is
provided in the CWindow class; however, the default
behavior is to return an event-not-handled error. You can
override this function to provide whatever functionality you
desire.

• The CAppleEventObject class calls the CountObjects func
tion, which returns an event-not-handled error; however, in
any class that inherits behavior from the CAppleEventOb
ject class, you can implement the CountObjects function
and supply the desired functionality for this event.

+ Create Element - An event in the Core Suite that is imple
mented in the DoCreateElementEvent function of the CAppli
cation class to allow the creation of a new document object.
The CAppleEventObject class implements the event by over
riding the DoCreateElementEvent, but returns an event-not
handled error. You can override this function to provide the
desired functionality.

Support for Receiving Apple Events in the TCL 415

+ Delete - An event in the Core Suite that is intended to allow
one or more elements to be deleted from an object that con
tains them. An example of this might be deleting one or more
paragraphs displayed in a particular window.

• An override for the DoDeleteEvent function is provided in
the CWindow class; however, that function returns an
event-not-handled error. You can override the function to
provide the desired behavior.

• The CAppleEventObject class also contains the Do
DeleteEvent function. It also returns the event-not-handled
error; however, you can override that function in any class
that inherits behavior from the CAppleEventObject class
and implement the Delete event functionality.

+ Do Objects Exist - An event in the Core Suite that specifies a
set of objects and asks whether they all exist. It is intended to
be handled by the application object (gApplication). The
CApplication class in the TCL does not implement this event;
however, if your application class overrides the DoAppleEvent
function, you can choose to handle the event. Proper handling
of the event requires that you return an Apple event object of
typeBoolean that has a value of TRUE if and only if all of the
specified objects exist; otherwise, a value of FALSE must be
returned.

+ Get Data - An event in the Core Suite that requests that the
data associated with a set of objects be returned. The "data" in
this case depend upon the object to which the event is
addressed. The DoGetData function in the CProperty class
handles requests for various object properties, as follows:

• The CWindow class creates CProperty objects to hold prop
erties of type cBoolean, with TRUE or FALSE values, such
as pisModified, pHasCloseBox, pHasTitleBar,
pisFloating, pVisible, or pisZoomed; of type
cQDRectangle for the pBounds property; of type cQD
Point for the pPosition property; and a type of cOb
j ectSpecifier for the pSelection property.

• The CDocument class creates a CProperty object to hold
the cBoolean type pisModified property.

416 Chapter 10 >Apple Events, Factoring, and Recording

• The CApplication class creates a CProperty object to hold
the cintlText type pName property, and the cLongin

teger type of pVersion property.

The DoGetData function is overridden in the CAppleEvent
Object class to return the properties of the specified object by
calling the MakeSelfSpecifier function in that same class.

+ Get Data Size - An event in the Core Suite that is imple
mented in the CAppleEventObject class by the DoGetData
SizeEvent function. That function returns the size of the object
that is addressed by the event.

+ Move - An event in the Core Suite that requests that a set of
objects be moved to another location. The event is handled by
the DoMoveEvent function of the CAppleEventObject class,
which returns an event-not-handled error result. You can over
ride this function in any class that inherits behavior from the
CAppleEventObject class and performs the requested action.

+ Save - An event in the Core Suite that requests that a set of
objects be saved in the current or specified file. The TCL imple
ments saving of the current document by recognizing a direct
object of the event as pertaining to the CDocument class and
calls its DoAppleEvent function to implement the Save opera
tion. If the event contains an optional file specifier, then the
DoSaveEvent function in the CDocument class tests whether
the i tsFile object exists, closes the file if it is open, and then
opens the specified file before saving the document's contents
into the file.

+ Set Data - An event in the Core Suite that requests that a set
of objects be set to the specified data value. The TCL imple
ments the DoSetDataEvent function as follows:

• The CClipboard class implements the DoSetDataEvent for
a set of "specified types" of objects, including TEXT, styl,
and PICT. You can override the GetSupportedTypes func
tion in a class derived from the CClipboard class and pro
vide your own set of supported data types. The
DoSetDataEvent function will probably provide the neces
sary functionality for most applications.

Support for Receiving Apple Events in the TCL 417

• The CProperty class implements the DoSetDataEvent func
tion for classes that create CProperty objects. These were
described with regard to the Get Data event on page 415
and include properties for the CWindow and CDocument
classes. The DoPropertySetDataEvent function is called for
this purpose.

• The CAppleEventObject class returns an event-not-handled
error code for this event type. You can override the DoSet
DataEvent function in any class that inherits functionality
from the CAppleEventObject class.

+ Notify Start Recording - An event in the Core Suite that
calls upon the application object (gApplication) to handle
the event in its DoAppleEvent function. That function calls the
SetRecording function with an argument of TRUE to set the
recording variable to TRUE.

+ Notify Stop Recording - An event in the Core Suite that
calls upon the application object (gApplication) to handle
the event in its DoAppleEvent function. That function calls the
SetRecording function with an argument of TRUE to set the
recording variable to FALSE.

+ Application Died - An event in the Core Suite for which a
handler is installed, but no code is provided. When the event
occurs, an event-not-handled error code will be returned to the
sender. If you wish to handle this event, you can override the
DoAppleEvent function in your CApplication-derived class
and provide the functionality you require.

+ Begin Transaction - An event in the Miscellaneous Suite that
provides the means to specify a transaction ID to a server appli
cation, follows that event with a series of other events bearing
the same transaction ID, and then terminates the transaction
by sending an End Transaction event for that transaction ID.
The TCL recognizes the Begin Transaction event; however it
does not process it and returns an event-not-handled error code
to the sender. If you wish to handle transactions, then you can
override the DoAppleEvent function in your CApplication
derived class and provide the necessary functionality. In so
doing, your application must not allow events with other than

418 Chapter 10 >-Apple Events, Factoring, and Recording

the specified transaction ID to be processed, until the End
Transaction event has been received.

+ Copy-An event in the Miscellaneous Suite that requests that
the current selection be transferred to the clipboard. The pro
cess of determining the current selection begins in the applica
tion object (gApplication), which determines which of its
CDirector objects is currently active. The GetSelection func
tion of the active director object is called to ascertain which of
its windows is active. That window searches through its list of
subviews (itsSubviews) and accesses the subview that is the
current gopher. The gopher is cast as a CAppleEventObject
instance, and its GetSelection function is called to access the
current selection. The current gopher need not be the selection
in Apple event terms, but to implement the event, it must
know how to return a CAppleEventObject pointer that repre
sents the current selection object. Copy is not implemented in
the TCL; however, you can do so by creating a subclass of any of
the CView-derived classes and implementing GetSelection and
DoAppleEvent functions for it.

+ Cut - An event in the Miscellaneous Suite that requests that
the current selection be removed and stored into the clipboard.
As for the Copy event, Cut is not implemented in the TCL;

however, you may do so by following the prescription given for
the Copy event.

+ DoScript - An event in the Miscellaneous Suite that requests
that the application object perform the specified script. This
event is not implemented in the TCL; however, if you wish to
do so, you can override the DoAppleEvent function in your
CApplication-derived class to do so.

+ End Transaction - An event in the Miscellaneous Suite that
requests that the server application terminate a transaction (a
series of events with a common transaction ID). See the Begin
Transaction event for a description of how this works.

+ Is Uniform - An event in the Miscellaneous Suite that asks
whether a set of objects has the same value for a specified prop
erty. The TCL does not implement this event; however, you
can do so by overriding the DoAppleEvent function in your
CApplication-derived class.

Support for Receiving Apple Events in the TCL 419

+ Paste - An event that requests that a copy of the contents of
the clipboard be stored into the current selection or be inserted
at the current insertion point. This event, like Copy and Cut, is
not implemented by the TCL, but you can do so by providing
the GetSelection and DoAppleEvent functions for subviews
that need to handle this event.

+ Redo - An event in the Miscellaneous Suite that requests that
the results of a previous undo operation be reversed. The TCL

does not implement this event; however, you can do so by
implementing the GetSelection and DoAppleEvent functions
for subviews that are able to handle Undo/Redo events.

+ Revert - An event in the Miscellaneous Suite that restores a
set of objects with the version of the objects that was most
recently saved. This event is not implemented in the TCL; how
ever, you can do so by implementing the methodology for
accessing the application's objects and returning the token
(object class and pointer information) pertaining to the most
specific object indicated in the event. We will cover this topic
shortly.

+ Transaction Terminated-An event in the Miscellaneous Suite
that informs an application that a transaction in progress (one
that has been begun with a Begin Transaction event and has
not yet been ended with an End Transaction event) has been
terminated. This event is intended to merely inform the server
application that the event has occurred. No action is required,
other than forgetting that a transaction was in progress. The
event is not implemented in the TCL.

+ Undo-An event in the Miscellaneous Suite that requests
that the results of the last action on a set of objects be undone.
The TCL does not implement this event; however, you can do
so by implementing the GetSelection and DoAppleEvent
functions for subviews that are able to handle Undo/Redo
events.

+ Get AETE - An event in the AppleScript Suite that requests
that the application return its AETE resource to the requesting
application. The TCL implements this function in the DoGet
AETEEvent function of the CApplication class by accessing

420 Chapter 10 >-Apple Events, Factoring, and Recording

the AETE resource of the application and returning the con
tents of the resource in the reply.

Handling Object Specifiers in Events

Many Apple events require an "object specifier" as the direct ob
ject (or other parameter) of the event. Such an object specifier
might refer to the title of the first document in the application. In
this case, the Apple event would contain descriptors that require
the application to return a token that references the first document
object, then that object would be requested to return a token rep
resenting its title property. This would satisfy the request and
complete the handling of the event.

It is important to point out that the method by which a particular
event is dispatched to a specific object in your application is ac
complished with a combination of facilities that are present in the
Apple Event Manager, the Object Support Library, and also by
means of "helper" functions that you install to aid the Apple
Event Manager's AEResolve function to perform this task.

Installing an Object Accessor !Function

The TCL installs a single "object accessor" function to aid in re
solving object specifier references. This accessor is installed during
the initialization process of the CSwitchboard class and the code is
as follows:

void CSwitchboard::InstallObject~ccessors()
{

InstallObjectAccessor(typeWildCard,
typeWildCard,
MyAccessObjectUPP);

The foregoing code specifies that an object accessor function
pointer called MyAccessObjectUPP is to be used for resolving ob
jects of any class and any container type (that is, the type codes are
both of typeWildCard, indicating that they will match any
type). The MyAccessObjectUPP symbol is defined to be a pointer
to the MyAccessObject function of the CAppleEventObject class.

Accessing the Event's Direct Object

When an Apple event arrives in the event queue and is dispatched
to the appropriate handler, that handler will usually call the Get-

Support for Receiving Apple Events in the TCL 421

DirectObject function in the CAppleEvent class to access the di
rect object parameter in the event. If the event is sent to the
application object, then the TCL needs only to call the DoAp
pleEvent function in the CApplication class.

If the direct object is an object specifier (that is, it refers to an ob
ject class, such as cDocurnent), the GetDirectObject function
calls the Resolve function of the CAppleEventObject class to re
solve the class-type to a pointer to the appropriate object of that
class.

The TCL knows only how to find the application object (gAp

plica tion) when an event is first being handled, so the event
must specify the "null" container for the object being sought. The
"null" container is the outermost container of the Apple event
Object Model (OM). Because of this, the Resolve function
(which calls the AEResolve toolbox function in the Apple Event
Manager) will call the MyAccessObject function that was installed
as the object accessor function for all types of objects. Recall that
the MyAccessObject accessor specified "wild card" values for both
the class and container type codes.

When the MyAccessObject function gains control from the
AEResolve function of the Apple Event Manager, it is handed the
type code of the desired class (for example, cDocurnent), a de
scriptor token for the container, a type code for the container class
(for example, typeNULL), a type code for the "key form," a
pointer to the "key data,'' a pointer to the target token's descrip
tor, and the value of the reference constant. The function creates a
data structure that contains the desired class, container class, key
form, key data, and reference constant values and then calls the
MapDesc function with the container token's descriptor pointer, a
pointer to the sAccessObject function, a pointer to the data struc
ture, and a pointer to the result token descriptor.

The MapDesc function calls the specified function for a descrip
tor or for each element of a list of descriptors in the container to
ken's descriptor structure. Because a container hierarchy is
specified as a nested list of descriptors, each container object being
represented by another descriptor, the MapDesc function
traverses the hierarchy, calls the sAccessObject function, which, in
turn, calls the AccessObject function for each container in the list
until the specific target object has been located. So in the course

422 Chapter 10 >Apple Events, Factoring, and Recording

of locating the title of a specified document, the AccessObject
function for the application object (gApplication) is called to
locate the specified document object, and then the AccessObject
function for the document object is called to locate its tide prop
erty to satisfy the request.

Handling Events in the Application Class

The AccessObject function in the CApplication class is equipped
only to handle requests for cProperty objects, which include
the clipboard (pClipboard), insertion location (pinsertion),
user selection (pUserSelection), and properties of the applica
tion itself, such as whether it is the frontmost application (pis
FrontProcess), the application's name (pName), and the
application's version (pVersion). If the desired class is any other
than the foregoing, then AccessObject calls the base class function
in the CAppleEventObject class to handle the request.

When an event requests that an action be performed for some
other object, it specifies which object of that type is being refer
enced. For example, it might specifjr the first document or the doc
ument named Notes. In either case, the AccessObject function in
the CAppleEventObject class handles the request as follows:

+ The property of an Apple event object is defined as an Apple
event direct object whose container is the object to which the
property belongs. The object specifier record for a property of
the CApplication class specifies cProperty as the container
and a constant such as pClass as the requested property
(requesting the name of the class to which the property
belongs). If the container (desired class) is cProperty and the
property is pBestType, pClass, or pDefaultType, the
AccessObject function creates a CProperty object containing
the requested property and the current object (the application)
as its container object, and a type code of cType. It uses the
pointer to this object to call the MakeToken function to create
a descriptor whose descriptorType field contains the con
stant kTokenType and a dataHandle field that contains a
pointer to a pointer (that is, a handle) to the current object
(that is, the CProperty object). A pointer to the token is stored
into the theToken argument of the AccessObject function (as
its result object pointer) and the AccessObject function
returns.

Support for Receiving Apple Events in the TCL 423

+ If the desired class is cProperty and the requested property is
pindex or pID, then the property type is set to pLonginte
ger. If the property is pName, then the property type is set to
cChar. In any of these cases, a CProperty object is constructed
to hold the current container object, the requested property,
and the type code. Then the pointer to this object is used to
call the MakeToken function to create a token that points to

the CProperty object with a descriptor type of kTokenType.
The token pointer is stored into the theToken argument of
the call and the AccessObject function returns.

+ If the desired class of the descriptor is not cProperty, then
the keyForm parameter is tested. The keyForm parameter in
an object specifier record indicates how the keyDa ta parame
ter is to be interpreted. Several keyForm values are handled in
the AccessObject function of the CAppleEventObject class, as
follows:

• If the keyForm parameter contains the formAbso
lutePosi tion value, then the CountObjects function is
called with the desired class and a pointer to a long integer
variable to hold the resulting count. Because this code is
executing for the CApplication-derived object (gApplica
tion), the CountObjects function for that class is called.

If the desired class is cWindow, the CountObjects function
of the CApplication class calls the GetNum Windows func
tion of the CDesktop object (gDesktop) to return the
number of windows it is managing. If the desired class is
cDocument, then the CountObjects function iterates
through its list of directors (i tsDirectors), testing each
to determine whether it is a member of the CDocument
class and incrementing the count if so.

After the count of the desired class of objects has been
determined, the descriptorType field of the keyData
descriptor is tested to determine whether it is equal to the
typeLonginteger value. If so, then the index value
held in the descriptor is accessed and tested against the
count value to ensure that the index is within the range of
the count. If not, a failure exception is raised; otherwise,
the GetElementBylndex function is called with the desired
class, the index value, and a pointer to the theToken

424 Chapter 10 ~Apple Events, Factoring, and Recording

argument, into which the result token pointer 1s to be
stored.

The GetElementBylndex function in the CApplication class
tests whether the desired class is cWindow. If so, then it calls
the Nth Window function of the CDesktop object to return
the pointer to the window whose index is specified in the
call. The CWindow object pointer that is returned by that
call is used to call Make Token to encapsulate the returned
object with a descriptorType of kTokenType. After
doing so, the function returns and the AccessObject func
tion that called it also returns, having resolved that portion
of the request. If the GetElementBylndex function deter
mines that the desired class is cDocurnent, then it iterates
through its list of directors (:L tsDirectors), searching for
the one that is a member of the CDocument class, whose
index matches the argument to the function. After finding
the specified object, it calls MakeToken to encapsulate the
object and then returns. The AccessObject function then
also returns, having satisfied the current portion of the
Apple event request.

If, instead of typeLonginteger, the descriptor
Type of the keyData descriptor is typeAbsoluteOr

dinal, then there are several possibilities to handle. An
ordinal is a constant value such as kAEFirst, kAEMid
dle, kAELast, kAEAny, or kAEAll. The meanings of
these are fairly self-explanatory. The AccessObject func
tion handles each of these by calling the GetElementByln
dex function for the container object's class (for example,
CApplication). The value of the index is 1 for the kAE
F i rs t ordinal value, is the value of halfof the count (plus
one) for kAEMiddle, is the value of the count for
kAELast, and is a randomly selected value in the range of
1 through the value of the count in the case of kAEAny. In
the case of kAEAll, a list is created for the theToken
descriptor and then GetElementBylndex is called to access
each entry for the desired class, in the range of 1 through
the value of the count, appending the returned token to
the list. The AccessObject function returns after the
requested object token (or list of tokens) is stored.

Support for Receiving Apple Events in the TCL 425

• If the keyForm parameter contains the formName value,
then the name string is accessed from the keyDa ta field,
and the GetElementByName function is called with the
desired class, the name string, and a pointer to where the
result token should be stored.

The GetElementByName function is implemented in the
CAppleEventObject class {from which the CApplication
class is derived). It performs the task of locating the object
of the desired class by calling the CountObjects function
with the desired class and a pointer to a long integer variable
in which to place the result. It then iterates through the set
of objects of the desired class by calling the GetElementBy
Index function with index values that vary from 1 to the
value of the count. In each iteration it calls the GetElement
Name function for each returned token's object pointer and
compares the returned name with the specified name to
determine whether it matches. If any returned token's name
matches the specified name, then that token is stored into
the theToken argument and the operation is complete. If
none of the objects has a matching name, then the request
has failed and an errAENotAnElement error value is
returned in the reply to the event.

The GetElementName function of the CDocument class
returns the name of the file if a file exists, the title of its win
dow if a file does not exist but a window does exist, or NULL

if neither exists. The GetElementName function of the
CWindow class returns the window's title.

• If the keyForm parameter contains the formUniqueID
value, then the AccessObject function accesses the long inte
ger value held in the keyDa ta descriptor and calls the
GetElementByID function with the desired class, the ID
value, and a pointer to where the result token is to be stored.

The GetElementByID function is implemented in the CAp
pleEventObject class {from which the CApplication class is
derived). It performs the task of locating the object of the
desired class by calling the CountObjects function with the
desired class and a pointer to a long integer variable in
which to place the result. It then iterates through the set of
objects of the desired class by calling the GetElemendD

426 Chapter 10 >Apple Events, Factoring, and Recording

function and then matching the returned ID value with the
specified ID value, looking for equality in the two identifi
ers. (Note: A unique element ID is assigned to each CAp
pleEventObject when it is constructed.) If an object with a
matching element ID is found, its token is stored in the
theToken result argument to the AccessObject function
and the function returns.

Handling Events in Other Clas!l;es

You have read in the foregoing section how a CDocument or
CWindow object can be accessed, either by name or position, us
ing the AccessObject function. This section is concerned with the
ability to access items contained by those objects by using the
same mechanism, with the exception that the AccessObject func
tion for the CDocument or CWindow class is called to perform
the function of locating the desired class.

Object specifier records consist of a set of nested Apple event de
scriptors that specify the eventual target object in terms of a "con
tainer hierarchy" that begins with the application object and
proceeds to locate the object by naming each of its enclosing ob
jects, in turn, from the outermost w innermost enclosure.

An Apple event requesting a particular property of a specified
window will specify the default container (typeNULL) as its ini
tial container and then call the AccessObject function of the CAp
plication object to locate the specified cWindow object. The
token returned for the cWindow object is used by the Apple
Event Manager to call the MyAccessObject (object accessor) func
tion for the CWindow object's desired class of cProperty, to ac
cess one of several window properties.

In order to implement object model support in your applications,
you should read the Apple Event Registry to determine the appro
priate way to organize your classes to make use of the implied
framework of the Object Model. Then you should derive the
classes for which you intend to provide Apple event support, from
the CAppleEventObject class. If certain events are not imple
mented for your application, the TCL will send the appropriate
errAEEventNotHandled response. You should be careful to
create your AETE resource such that it doesn't imply support for
events that are truly not supported in the application.

Support far Receiving Apple Events in the TCL 427

Classes derived from CAppleEventObject will need to override
the GetClasslD, GetDefaultType, GetContainer, and GetEle
mentName functions. Any events that a base class handles will
have to be handled by an override to that function in your new
class. If your class handles any events that are not handled by any
of the base classes, then you will have to write a new function to
handle that event and override the DoAppleEvent function to call
the appropriate function for each of those events.

If your new class has properties, then you will need to override the
DoPropertyGetDataEvent and DoPropertySetDataEvent func
tions. If the class supports any properties that are not supported
by any of its base classes, then you will need to override Access
Object and call MakeToken to create appropriate tokens for the
new properties.

If your class has elements that are not present in any of its base
classes, then you will need to override the GetElementBylndex
and CountObjects functions. For example, if your application in
tends to support the access to paragraphs, sentences, and words in
a text object, you must first derive that object from CAppleEvent
Object and then, perhaps, CEditText or CAbstractText. To handle
access to any of the text class's elements, you should implement all
of the foregoing mentioned functions.

Handling Object Information Accesses

As mentioned earlier, your new class should override the Get
ClassID, GetDefaultType, GetContainer, and GetElementName
functions. The data returned by these functions is as follows:

+ The GetClassID function should return a defined OM class
ID, but only if the base class does not already do so. In the case
of the text object mentioned earlier, you should return cText
as the OM class.

+ The GetDefaultType function should return the default type of
the data returned by the object. In the case of the text object
that we have been using as an example, a default type of type
Char, indicating an unterminated string of text, is returned. If
your application can return various types of data, then you may
have to override the GetBestType function. CAppleEventOb
ject implements GetBestType by calling the GetDefaultType
function. If this is not appropriate (for example, the "best" type

428 Chapter I 0 ~Apple Events, Factoring, and Recording

of data handled by your text object is styled text), then you
should override GetBestType to return a type code that pertains
to the data you intend to return if the "best type" is requested.

+ The GetContainer function should return a pointer to the C++
object that is the container for the specified object. Usually this
is the enclosure (itsEnclosure) for the object, but may be
the supervisor (its Supervisor) for the object, as is the case
for the CDocument object, whose "container" is the applica
tion object (gApplication).

+ The GetElementName function should return a string that is
the name associated with the element. A text object may not
have a name and so it should return a MULL string as the result
in that case.

Comparing Objects

The TCL implements two comparison functions that provide the
ability to compare two objects for equality (EqualObject) or per
form more complex comparisons such as less than, greater than,
begins with, ends with, contains, and others. The logic for per
forming these comparisons is triggered by the presence of compar
ison operators in the events themselves. If the supplied
CompareObjects function does not provide the functionality you
require, then your CAppleEventObject-derived object should
override the CompareObjects function.

Events containing clauses such as "every window whose name be
gins with 'untitled"' are handled automatically by the Apple Event
Manager by calling the counting fimction to ascertain the number
of windows and then calling the compare function to determine
each window's name. The "whose" and "where" clauses are all
handled in this way. You may have to supply a counting and/or
compare function for your new class, but most of the work of
handling complex events will be automated.

Support for Sending Apple Events in the TCL

Apple events can be sent from your application in several circum
stances. If another application (or even your own application)
makes a request, then the reply is in the form of an Apple event.
You can also send Apple events to other applications using the

Support for Sending Apple Events in the TCL 429

support functions in the TCL. And, finally, as indicated earlier, you
can send Apple events to your own application. When an applica
tion is "factored," it separates the request from the action that im
plements the request. So by factoring your application, as the TCL

itself is factored, you can write applications where every action
can be commanded by your own or another application.

Replying to Apple Event Requests

When an Apple event is received, the TCL creates an "empty" re
sponse descriptor. Your application (or the TCL) can add descrip
tors to the response record, as required, to send the appropriate
result back to the requestor. No overt action is required on your
part to reply to an Apple event request.

As an example, consider the simple case where another applica
tion has sent an event requesting your application's name. The
event is processed as follows:

1. The DoHighLevelEvent function of the CSwitchboard class
recognizes the high-level event and calls the AEProcessApple
Event function of the Apple Event Manager.

2. The Apple Event Manager calls the GenericResultHandler
function in the CAppleEventObject class that we installed to
handle Get Data events (kAEGetData).

3. The GenericResultHandler function calls the GenericHan
dler function with the event and result descriptors and also a
pointer to the DispatchResult function.

4. The GenericHandler function calls the PackageAppleEvent
function to create a CAppleEvent object with the event, its
reply, and the reference constant, and then calls the Dis
patchResult function to continue processing.

5. DispatchResult calls the GetDirectObject function in the
CAppleEvent class. This accesses the object specifier record in
the incoming event; the desired class will be cProperty
(indicating that the request is for a property), the container
will be a null descriptor record (the application has no con
tainer), the key form descriptor will have a descriptor type of
typeEnurnerated and its data will be 'prop' (forrnProp
ertyID), and the key data will have a property type of pnarn

430 Chapter 10 >Apple Events, Factoring, and Recording

(pName). After accessing the direct object, DispatchResult
calls the Resolve function of the CAppleEventObject class
with the direct object descriptor to be resolved and a pointer
to where the resolved object descriptor is to be stored. The
Resolve function calls the AEResolve function of the Apple
Event Manager to perform the resolution. In this case, the
AccessObject function in the CApplication class will be called
first.

6. The AccessObject function in the CApplication class tests
whether the desired class is cProperty. If so, it tests whether
the property is one of several that it handles, including the
pName property. In the case of pName, it constructs a
CProperty object with this (the application pointer) as the
object, pName as the property ID, and a descriptor type of
cintlText (international text). The pointer to the CProp
erty object is used to call the MakeToken function to con
struct a token whose descriptor type is kTokenType and
whose data handle points to the CProperty object. At this
point, the direct object has been resolved, so execution con
tinues in the DispatchResult function of the CAppleEvent
Object class, which calls the MapDesc function to map the
DispatchResultl function against the direct object token that
was just constructed.

7. The DispatchResultl function accesses the token with which
it is called and calls that token's DoAppleEvent function with
the event and the result descriptors.

8. The CProperty class, which is the object class associated with
the token, does not implement the DoAppleEvent function;
however, the function inherited from the CAppleEventObject
base class is called. That function handles the Get Data event
by calling the object's DoGetDataEvent function, which ts

implemented in the CProperty class.

9. The DoGetDataEvent function in the CProperty class
accesses the original event descriptor to acquire the optional
result type parameter and then verifies that there are no more
required parameters in the event. That being accomplished,
the DoGetDataEvent function accesses the "object" associated
with the CProperty object, which in this case is the applica
tion object (indicated as this in the foregoing step 6). The

Support for Sending Apple Events in the TCL 431

application object pointer is used to call the DoPropertyGet
DataEvent function in the CApplication class with the prop
erty, the requested type, and a pointer to the result.

10. The CApplication class does not implement the DoProperty
GetDataEvent function, so that function inherited from the
CAppleEventObject class is called. The function determines
which property has been requested and calls the GetElement
NameDesc function.

11. The GetElementNameDesc function calls the GetElement
Name function in the CApplication class to access the appli
cation's name string and then packages the name in a
descriptor that it returns as the result to the GetDataEvent
function in the CProperty class.

12. The GetDataEvent function in the CProperty class calls the
CoerceDescList function to coerce the result (using either its
built-in or user-supplied coercion handlers to do so), storing
the result into the final Apple event reply descriptor.

At this point, processing of the event is complete, and the forego
ing routines return back through the calling chain to return con
trol to the AEProcessAppleEvent toolbox function, which sends
the reply to the requesting application.

Sending Apple Event Requests

The TCL contains support classes and member functions that aid
in the creation and sending of Apple events, either to your own
application (in the event that your application has been
factored-more on that later), or to another application.

Sending an Event to Yourself

If your application is factored-I will talk more about the topic
of factoring shortly-and you wish to send an event to yourself,
then the TCL provides the MakeEventToThis and SendEvent
NoReply functions in the CAppleEventObject class.

An example of sending an event to your own application would
be the decision to quit the application when in the midst of doing
something else. You might also want the user to determine
whether or not to quit before saving any results. When factoring is
enabled for an application, the Quit command is handled in just

432 Chapter 10 >Apple Events, Factoring, and Recording

this way. The code in the DoCommand function of the CApplica
tion class for accomplishing this is as follows:

case cmdQuit:
if (Factoring())

SendAEQuit (kAEAsk) ;
else

Quit();
break;

Note that the SendAEQuit function is executed only if the call to
the Factoring function returns a nonzero result. The code for the
SendAEQuit function is as follows:

void CApplication::SendAEQuit(DescType saveOption)
{

AppleEvent event;

MakeEventToThis(kCoreEventClass, kAEQuitApplication,
FALSE, &event);

CWatchDesc watch(event);
FailOSErr(AEPutPararnPtr(&event, keyAESaveOptions,

typeEnumerated, &saveOption, sizeof (saveOption))) ;
SendEventNoReply(&event, kAEAlwaysinteract);

Note in the foregoing that the code defines an AppleEvent vari
able called event and then builds an event by calling the Make
EventToThis function with the event class (kCoreEventClass)
and the event type (kAEQui tApplication), as well as a Bool
ean value indicating whether a direct object is to be included in
the event, and then a pointer to the AppleEvent variable into
which the event is constructed.

After the event has been constructed, a CWatchDesc object is
constructed that includes the event variable in its construction.
When the watch object is constructed, the event variable refer
ence is stored into the watched member variable of the CWatch
Desc object. If the CWatchDesc object is disposed (as it will be
when the SendAEQuit function exits), the destructor for the
CWatchDesc class will recognize that the watched variable con
tains a nonzero pointer and the destructor will dispose the de
scriptor (AppleEvent) variable. The AEPutParamPtr function call
adds a parameter with the specified key (keyAESaveOptions)
to the event, the specified data type (typeEnumerated), a
pointer to the data (saveOption), and the size of the data item.

Support for Sending Apple Events in the TCL 433

After the event has been constructed fully, SendEventNoReply is
called to send the Apple event, with the user interaction specifica
tion of kAlwaysinteract.

Sending an Event to Another Process

If you want to send events to another process, then the TCL con
tains a great deal of help for doing so. You will have to create a
CAppleEventSender object, create a descriptor for the event you
intend to send, add any needed parameters to the event, and then
call one of the Send functions for the object to send the event.

Apple events sent to another process require the Process Serial
Number (PSN) of the process to which the event is to be sent.
The CAppleEventSender class has a member function called
FindProcess that loops through the existing processes, looking for
one whose Creator and Type codes match the ones you provide.

An example of a function that sends a quit event to an application
whose signature is 'Nsbl' is as follows:

void CApp: :TellNsblToQuit()
{

ProcessSerialNumber psn;
OSErr err;

err= CAppleEventSender::FindProcess ('APPL', 'Nsbl', &psn);
if (err == noErr)

CAppleEventSender event (kCoreEventClass,
kAEQuitApplication, &psn) ;

event.SendNoWait (kAENoReply);

Although the foregoing code is rather simple, it should give you
an idea of how to use the CAppleEventSender class both to find
an existing process by using its creator and type codes, and also to
send an event to that process. Obviously, if you need to construct
complex events that make use of object specifiers and the like, you
can use the PutParamDesc or PutParamPtr functions to add de
scriptor or buffer pointer parameters to the basic event. The CAp
pleEventSender class also supports the ability to send an event and
wait for a reply, with a specified time-out value.

434 Chapter 10 ~Apple Events, Factoring, and Recording

Adding Factoring and Recording Support

A factored application is one in which the code that recognizes the
request to perform an action and the code to perform the action
are separate. The TCL is highly factored and handles almost every
user-specified action by sending an Apple event to itself to per
form the action. If you factor your own application in this same
way, then all of the application's actions will be recordable by any
scripting component. Recording by a scripting component is ac
complished by watching the Apple events your application re
ceives and recording these. Because the TCL is already factored, it
is also set up to support recording.

When your application is initialized, the factoring variable is
set to kFactorWhenRecording and the recording variable
is set to FALSE. So, by default, factoring will not be enabled.
There are three settings for the factoring variable. These are
kNeverFactor, kAlwaysFactor,andkFactorWhenRe
cording. You can specify the factoring setting by calling the Set
FactoringLevel function with one of the foregoing choices. You
can access the current factoring setting by calling the GetFactor
ingLevel function. You can specify the recording setting by calling
the SetRecording function with a TRUE or FALSE value, and you
can access the current recording setting by calling the GetRecord
ing function, which will return a TRUE or FALSE result.

Apple Events Feature Summary

The TCL contains a great deal of support for handling Apple
events automatically. Providing comprehensive handling of a large
variety of Apple events (that is, making the application scriptable)
is a nontrivial task; however, the TCL will help greatly in easing the
burden of this task.

The major elements of the task are the creation and registration of
handlers for each of the unique Apple events that the application
intends to handle. It is also very important to create an ' AETE '
resource which describes the extent of your application's Apple
event support. You can use Apple's ResEdit program to create or
modify an ' AETE ' resource, but there are other products that
make this process easier. ,

Apple Events Feature Summary 435

Creating a factored and scriptable (recordable) application re
quires a lot of work. You need to go into each of the DoCom
mand functions and separate the recognition of each command
from the actions that perform it, write code to send an Apple
event specifying the command and any of its parameters in the
recognition section (usually in the DoCommand function or a
function that it calls), and then provide code in a DoAppleEvent
function to handle the event and perform the specified action.
There are many examples of how this is done in the TCL source
code.

The next chapter describes how to use chores, tasks, and the
Undo/Redo features of the TCL.

Chapter 11

Understanding Chores, Tasks, and Undo/Redo

Figure 11-1
Class inheritance
diagram for tasks and
chores

Using Chores

This chapter describes the various types of chores and tasks that
you can schedule for execution using the services of the TCL. Each
of the defined classes is either used by the TCL in the course of
handling a specific task, or is available to be used as a base or con
crete class. The sections that follow discuss the various classes and
how they are used. The class inheritance diagram for both tasks
and chores is shown in Figure 11-1.

CTask

CTextStyleTask CTextEditTask

CStyleTEStyleTask CStyleTEEditTask

CChore

CTearChore CMBarChore

LEGEND

- Inherited Behavior
~ Object Construction
___ ,..Chain of Command

CMouseTask

CTableDragger

There are two types of chores, but both are associated with the ap
plication as a whole, rather than a document or other object of
your program. The CApplication class provides two queues in
which chores can be installed. If you need to perform some peri-

437

438 Chapter 11 >Understanding Chores, Tasks, and Undo/Redo

odic operation at idle time, then you can create a subclass of the
CChore class and override the Perform function to execute the
chore. After creating an object of your derived class, you can in
stall the idle-time chore by calling the AssignldleChore function
of the application object (gApplication). The chore will then
be executed periodically, until it is removed by calling the applica
tion object's CancelldleChore function.

The other type of chore is an "urgent chore." Urgent chores are
tasks that must be performed at the next possible opportunity.
They are executed only once and then are disposed automatically.
After processing the current event, the event loop checks whether
any urgent chores are present, executes all of them, and then dis
poses their pointers before processing the next event.

Creating a Periodic Chore

A perfect example of an idle-time chore would be one that checks
the current time when it is executed, comparing that value against
the time in the first member of a time-ordered list of reminder ob
ject entries. If the current time equals or exceeds the time value as
sociated with the first entry in the list, then the chore might post a
notification to the user. The header file of a simple class, derived
from CChore, to accomplish this function is as follows:

II
II CTirneCheckChore.h
II Header file for CTirneCheckChore class
II Copyright© 1995, Richard 0. Parker. All rights reserved.
II

#pragma once
#include <CChore.h>
#include "CReminderList.h"

class CTirneCheckChore : public CChore
{

TCL_DECLARE_CLASS

public:
CTirneCheckChore (CReminderList *aList);
virtual void Perfonn (long *maxSleep);

private:
CReminderList *theList;

} ;

The foregoing class definition includes the declaration of a con
structor function and an override for the Perform function inher-

Using Chores 439

ited from the CChore base class. The class also declares a private
variable that holds a pointer to the list of reminder objects (the
Li st). For purposes of this example, we assume that the objects
in the list are of type CReminder and that the CReminder class
provides access functions to obtain the time that the reminder
should be posted, and the text of the reminder message. We will
not attempt to get too carried away with the form of the notifica
tion, and so we will not display the application's icon or play a
sound when the notification is posted. You can certainly choose to
do so in your own version of such a chore. The source file con
tents for the CTimeCheckChore class are as follows:

II
II
II
II
II

CTimeCheckChore.cp
Source file for CTimeCheckChore class
Copyright © 1995, Richard O. Parker. All rights reserved

#include "CTimeCheckChore.h"
#include "CReminderList.h"
#include "CReminder.h"
extern Boolean gNotePosted;
extern struct NMRec gNMRec;

TCL_DEFINE_CLASS_Ml (CTimeCheckChore, CChore);

/***
CTimeCheckChore

Constructor

***/

CTimeCheckChore::CTimeCheckChore (CReminderList *aList)
{

theList = aList;
gNotePosted = FALSE;

/***
Perform

Check the current time, compare it with the time
associated with the first entry in the aList list
and install a notification if the time has come
to do so.

***/

CTimeCheckChore::Perform (long *maxsleep)
{

unsigned long curTime, noteTime;
CReminder *theFirstEntry;

II check to see whether a note is already posted
II if so, then just return; otherwise, start checking.
if (gNotePosted I I (theList->GetNumitems <= 0))
{

*maxsleep = 300;
return;

II 5 seconds

440 Chapter 11 :>- Understanding Chores, Tasks, and Undo I Redo

}
GetDateTime (&curTime);
theList->GetArrayitem (&theFirstEntry, l);
if (curTime < theFirstEntry->GetNoteTime())
{

II it's not yet time to post the notification,
I I so just return, but afte:c setting a sleep time
II of about 30 seconds.

*maxsleep = 1800; II 30 seconds
return;

II now it's time to issue a notification for the first
II entry in the list, so we use the access function to
II obtain the information for the message to display to
II the user. The notification record structure is
II declared as a global structure called gNMRec.

gNMRec.qType = nmType; II queue type== notification
gNMRec.nmMark = l; 11 mark in the app menu
gNMRec.nmicon =NULL; II no flashing icon
gNMRec.nmSound = NULL; 11 no sound
gNMRec. str = theFirstEntry->Ge,tNoteStringPtr () ;
gNMRec.nmResp =NULL; II no response procedure
gNMRec.nmRefCon = O; II no reference constant
NMinstall (&gNMRec) ; I I install the notification
gNotePosted = TRUE; I I set note posted

The foregoing code is rather short and sweet. We are under the as
sumption that there is only one CTimeCheckChore object and
that it will be executed approximately every 30 seconds (1800
ticks). When it is executed, it first checks a global variable called
gNotePosted to determine whether a note has already been
posted (the user can handle only one at a time) or if the list of re
minders is empty. If either expn:ssion is TRUE, then we set the
maxsleep variable to request that the function be called again,
in about five seconds (300 ticks).

If the value of the gNotePosted variable is FALSE, then we can
proceed to check whether the current time (using the millisecond
clock value returned by the GetDateTime toolbox function) is
later than the time in the first list entry (accessed by using the
GetArrayltem function to access the object pointer and then us
ing that to call its GetNoteTime access function). If the current
time is less than the time in the first entry, then we set the max

sleep variable to 1800 ticks (30 seconds) and return.

If the current time is greater or equal to the time in the first entry,
then we must create a notification record and call the NMlnstall
toolbox function to install it in the operating system queue.

Using Chores 441

Our notification specifies that no icon is to rotate in the applica
tion menu (System 7), no sound is to play, and no response proce
dure is to execute when the notification is complete. We do
provide the text for the Notification Manager to display in a dia
log to the user, by accessing a pointer to the text using the Get
NoteStringPtr access function.

You may wonder how we are going to remove the entry from the
list after the notification has been posted (it has to remain there
until the user dismisses the notification because of the pointer to
its text string in the notification). One way to do this is to require
that the user pull down a Reminder menu and choose a Remove
Notification command. Another way would be for our Perform
function to install a pointer to a response procedure that the Noti
fication Manager could call when the user dismissed the note. The
response procedure can remove the first entry from the list (as
suming it has access to it). However, if you choose to remove the
entry from the list, you must also set the value of the gNote

Posted variable to FALSE, allowing the Perform function to be
gin checking the new first entry in the list, if any.

How the TCL Uses Urgent Chores

Urgent chores are tasks that must be executed at the earliest possi
ble time. As described earlier, these are executed immediately after
the current event has been processed. Urgent chores are executed
only once and then are disposed automatically.

The TCL includes two classes derived from the CChore base class.
These are shown in Figure 11-1 as CTearChore and CMBar
Chore.

Understanding the CTearChore Class

The CTearChore class implements an urgent chore that causes a
torn-off menu's window to be displayed at the point where the
user has released the mouse button. The process by which this oc
curs is somewhat complex, but it is instructive to review how tear
off menus work, so we will cover that, with reference to the Tools
menu that we created in Chapter 4 (see page 163), at this point.
The various facts regarding a tear-off menu are as follows:

442 Chapter 11 >-Understanding Chores, Tasks, and Undo/Redo

+ The standard toolbox menu definition procedure handles only
normal menus. So tear-off menus require a custom menu defi
nition procedure to work prop{:rly.

+ When the CTools class is constructed (see page 168), the con
structor code calls the IViewPICTGridDirector function of its
CPictGridDirector base class. The arguments to the function
are the name of the Tools floating palette view (Tools) and the
associated menu ID (129). The IViewPICTGridDirector func
tion creates the floating palette and stores its pointer into the
i tsWindow variable of the director. Then that function cre
ates a CGridMDEF object and passes its constructor the Menu
ID, a pointer to the CPICTGrid pane that contains the tools to
be displayed in the menu, and a pointer to the CTools object
(this).

+ The constructor of the CGridMDEF class causes the construc
tor initializer for its CSelectorMDEF base class to be called,
which, in turn, causes the constructor initializer for its
CPaneMDEF base class to be called. The constructor for the
CPaneMDEF class causes the constructor initializer for the
CMenuDefProc base class to be called with the menu ID as its
sole argument. That constructor function loads the MDEF
resource whose ID matches the menu ID passed to the func
tion. The def Proc field of the resource is set to the address of
the GenericMDEF function (sGenericMDEF), and the its
MenuDefProc field is set to point to the CGridMDEF object
(this). After the constructors of the base classes have com
pleted execution, the body of the CPaneMDEF constructor
executes and stores the CPICTGrid object pointer into the
its Pane member variable, and the pointer to the CTools
object into the i tsTearOffMenu member variable.

+ At this point, the menu definition procedure has been
installed, and the MenuSelec1t toolbox function can jump to
the first location of the MDEF 129 resource (which itself con
tains a JMP instruction whose jump target has been patched to
call the GenericMDEF function [sGenericMDEF]). That
function handles the messages to draw the menu (rnDrawMsg),
handles selections from the menu (rnChooseMsg), determines
the menu's dimensions (rnSizeMsg), and specifies placement
for a pop-up menu (rnPopUpMsg). When the user dicks on the

Using Chores 443

Tools menu, the sGenericMDEF function will receive the mes
sages to calculate the menu's size, draw the menu, and then
report the user's choice. It is in this latter message handler that
the tear-off functionality occurs.

+ After the menu's dimensions are known and its contents are
drawn, then the mChooseMsg handler is called. That han
dler calls the Chooseltem function of the CGridMDEF class
(the specific C++ menu definition procedure) to respond to the
user's menu choice. If the current mouse position is outside
the original menu rectangle, then the choice is set to NOTHING

and the TearOffMenu function of the CPaneMDEF base class
is called with arguments of the menu's original rectangle and
the current "hit point."

+ The TearOffMenu function is responsible for tracking the
mouse, displaying the gray outline of the menu being torn off,
and then causing the torn off version of the menu to be dis
played in a floating palette. The final step of the foregoing pro
cedure is handled by calling the TornOff function of the
menu's CTearOffMenu class (itsTearOffMenu), a base class
of the CTools class, with the current mouse location.

+ The TornOff function serves but one purpose: to create a CTe
arChore object, initialize the object with a pointer to the
CTools object, and then call the AssignUrgentChore function
of the application object. That chore object is installed into the
application's urgent chores queue and will be executed immedi
ately after processing of the current event is complete.

+ The Perform function of the CTearChore object, when called
by the event loop when urgent chores are processed, uses the
pointer to the tear-off menu's window director object (CTools)
to call the MoveToCorner function inherited from its CFloat
Director base class.

+ Finally the MoveToCorner function moves the top-left corner
of the director's window to the location at which the mouse
cursor was released, makes the window visible, and selects it to
make it frontmost and active.

The final step in the foregoing sequence completes the process of
tearing off a menu and then displaying it as a floating palette. The
purpose of using the urgent chore is to cause the window to be

444 Chapter 11 ~Understanding Chores, Tasks, and Undo/Redo

shown only after processing of the tear-off action is complete, and
also to separate the code related to handling the menu from the
code that handles the window. Any selection of a tool from the
window, once it has been displayed, will be treated as a window
item selection, rather than a menu selection, even though the dis
tinction between the two is fairly blurred.

I know that the foregoing is rather complex; however, it is inter
esting to review the process by which tear-off menus are handled,
even though this is somewhat incidental to how an urgent chore is
created and processed.

The CMBarChore object is created by the CBartender object
(gBartender) and is scheduled as an urgent chore for all opera
tions that require the menu bar to be redrawn during the process
ing of the current event. By executing the chore just once, the TCL

prevents any unnecessary flashing of the menu bar.

You can create urgent chores for whatever purpose you desire. Just
keep in mind that such chores are intended to be associated with
the application-and its look and feel-as a whole. If it is neces
sary to create a chore that is associated with a specific document,
then, perhaps, a task would be a better choice.

Using Tasks and Undo/Redo

Tasks are objects that are usually created to handle undoable ac
tions. The TCL supports a number of these, and you can add tasks
to your application to support other undoable actions.

You can create and use CTask-derived objects in two different
ways, as follows:

1. You can perform an action, then create a CTask-derived
object, storing enough information in that object to undo the
action, and then call the Notify function of the current
object's supervisor (for example, the CDirector-derived
object).

2. You can create a CTask-derived object and then call its Do
function (which you must override) to perform the action.
After that, you must call the Notify function for the current
supervisor (for example, the CDirector-derived object).

Using Tasks and Undo/Redo 445

The Notify function of the CBureaucrat class that is inherited by
the majority of the objects that might participate in an undoable
action merely calls the Notify function of the object's supervisor
(i tsSupervisor).

When the Notify function is called, a pointer to the caller's win
dow (if any) is saved in the cTaskWindow variable, and then the
NotifyClean function of the application object (gApplication)
is called. That function disposes of any task object that is cur
rently stored in the application's last Task variable, and then the
pointer to the current task is stored into that variable. In addition,
the undone variable is set to a value of FALSE.

Creating a Text Style Undoable Action

An example of an undoable task that uses the second method, de
scribed earlier, is the case of a style command being applied to a
text subview that is derived from CEditText or its CAbstractText
base class. In either of these cases, the DoCommand function de
termines whether a style change (for example, cmdBold, cmd
Italic, cmdAlignCenter, and so on) has been commanded,
and the MakeStyleTask function inherited from the CAbstract
Text class is called to create a CTextStyleTask object, initialize it
with the style command to be executed, and return the CText
StyleTask object to the DoCommand function. DoCommand
continues by saving the pointer to the CTextStyleTask object, call
ing the Notify function of the CAbstractText-derived object's su
pervisor, and then calling the task's Do function to perform the
task.

The task's Do function saves the current style, spacing, and align
ment settings for the object to which it applies, performs the spec
ified style change command, and returns to the DoCommand
function that called the task's Do function.

If the user decides to undo the previous action and pulls down the
Edit menu to choose the appropriate command, the Update
Menus function will be called for each of the CDirector-derived
objects. The Undo/Redo operations are managed by the Update
Menus function in the CApplication class. That function per
forms its normal operations and then tests whether the
lastTask variable contains other than a NULL pointer. If so,
then the CBartender object (gBartender) is called to enable the

446 Chapter 11 >-Understanding Chores, Tasks, and Undo/Redo

cmdUndo command in the Edit menu, and then the UpdateUndo
function is called.

The Update Undo function accesses the 'STR ' resource that
corresponds to either the Undo or Redo text, depending upon
whether the undone variable has a value of TRUE or FALSE.
Initially, the value in this variable will be FALSE, and the string
"Undo" will be accessed. The function then uses the pointer
stored in the lastTask variable to access the task's name index
value. The index addresses the nth string in another 'STR ' re
source to append the text representation of the task to the
"Undo" string. The result is written into the command text for
the Undo command in the Edit menu. Thus, the command text
would read "Undo Formatting" in the case of a text style
change.

When the foregoing command is chosen, the DoCommand func
tion in the CApplication class determines whether the undone
variable is TRUE or FALSE. In the current example, the value is
still FALSE, so the DoCommand function will call the Undo
function for the task whose pointer is stored in the lastTask
variable. Had the undone variable been TRUE, then DoCom
mand would have called the Redo function of the task. The Undo
function of the CTextStyleTask. object saves the current style,
spacing, and justification attributes, restores the corresponding
previous values of those attributes, performs the operations to re
store the style of the text object, calls the CDirector object's Tog
gleChanged function to set the document's status as unchanged or
changed, depending on the previous setting, and, finally negates
the value of the undone variable, making it TRUE if it was FALSE
or FALSE if it was TRUE. The Redo function inherited from the
CTask base class merely calls the Undo function that is overridden
by the CTextStyleTask object. Even though the command text
changes to "Redo Formatting," the operations necessary to per
form the function are handled entirely by the Undo function.

Creating a Task for Mouse Tracking

The CTable class in the TCL implements a one- or two-dimension
table, in which one or more cells can be selected by clicking the
mouse pointer on a cell and dragging the pointer to encompass
additional cells, if this behavior is allowed.

Using Tasks and Undo/Redo 447

When the user clicks on a table cell, the DoClick function of the
CTable class is called to handle the click. If the DoClick function
finds that the click is inside the table's bounds, then it checks first
to see whether it is a double-dick. If so, then the command (if
any) associated with the CTable object is dispatched by calling the
DoCommand function with the cell number in which the click
occurred. If the click is not a double-click, then the DoClick func
tion calls the MakeMouseTask function to construct a CTable
Dragger object, which is returned to the DoClick function. The
CTableDragger object is a task that inherits functionality from the
CMouseTask and CTask classes. The DoClick function sets the
mouse tracking task in motion by calling the TrackMouse func
tion in the CPane class, passing it a pointer to the task object, the
point where the mouse click occurred, and the table's bounds.

The TrackMouse function performs the mouse-tracking function
as follows:

1. The task's BeginTracking function is called to initialize the
task with the beginning mouse location. The BeginTracking
function also determines the "rules" by which cells can be
selected for the current table, by checking whether only one
or multiple cells can be selected and whether selected cells can
be non-contiguous. The cell in which the mouse is clicked is
selected, and the selection is added to or replaces the existing
selections, depending upon whether multiple and/or non
contiguous selections are allowed.

2. The TrackMouse function then enters into a loop that runs
while the mouse button is still down. Each time through the
loop, the task's Keep Tracking function is called with the cur
rent mouse location, the previous mouse location, and the
initial mouse location. The KeepTracking function deter
mines the cell in which the current mouse location lies and
scrolls the table to bring that cell into view, if necessary. After
doing so, depending upon the selection criteria, the new cell
is selected and, perhaps, added to the previous selections.

3. When the mouse button is released, the TrackMouse function
calls the task's EndTracking function with the current point,
the previous point, and the initial point. The EndTracking
function performs but one function. It deletes the current
task by calling TCLForgetObject with this as its argument.

448 Chapter 11 >Understanding Chores, Tasks, and Undo/Redo

The foregoing steps show how a task can be used to handle opera
tions that are unique to a specific user interface object. In this
case, the task is not an undoable task-after all, you can't undo
the user's dragging of the mouse-but the code in the Track
Mouse function of the CPane class is generic enough that it can
be used by a variety of task objects to handle tracking the mouse
for numerous applications. For example, it is easy to picture the
creation of a mouse task that allows the user of a drawing program
to drag objects around on the screen. A similar mouse task could
be used to provide the drawing function itself. If you wish to cre
ate a mouse task for your application, then derive the task object
from the CMouseTask class, as was done for the CTableDragger
class.

Chores and Tasks Summary

This chapter has described how to you can use chores to perform
periodic actions or urgent actions. The TCL keeps two lists of
chores for these purposes. The first list of chores contains pointers
to procedures that are to be performed when no other events are
pending. These are idle chores and are often used for tasks that
must be executed periodically. Once an idle chore is entered into
the list, it remains in the list until it is removed explicitly.

The second list contains pointers to procedures that must be exe
cuted as soon as is practically possible. These chores are executed
only once after being entered, but are executed within the event
loop, immediately after the current event has completed execu
tion. Urgent chores are often used to handle memory shortages
and other urgent situations.

Tasks are used primarily to implement the Undo/Redo of the
user's most recent action. A task will save the necessary context so
that when an undoable action is taken, the effects of the action
can be undone or redone. Tasks are also used to implement ge
neric actions such as mouse tracking and the like.

The next chapter describes some of the nuances of drawing and
printing, with emphasis on printing multiple windows and offset
panes.

Chapter 12

Drawing and Printing

This chapter wraps up the discussion of the THINK Class Library
by discussing the methodology used in the TCL for drawing and
printing. In many cases, you will not have to do anything to have
the contents of a window drawn or printed; however, in case that
you do, the sections that follow describe this process.

Implementing the Draw Function

If you recall, in Chapter 7 we discussed how the Update event
caused the Do Update function of the CSwitchboard class to call
the Update function for the window whose pointer is held in the
message field of the update event (see page 301).

The Update function in the CWindow class saves the current
GrafPort pointer, sets the current window's GrafPort pointer, calls
the BeginUpdate toolbox function with the window's pointer,
then calls the DeviceLoop toolbox function with the window's
visible region (visRgn), a pointer to the DoUpdateDraw func
tion as the drawing function to perform, the window's object
pointer (this) as user data to be passed to the drawing function,
and a value of 0 for the flags argument.

The DoUpdateDraw function is defined in the CWindow class as
a universal procedure pointer to the static drawing function
named sDoUpdateDraw. That function is called automatically by
the DeviceLoop toolbox function, for each device on which any
portion of the visRgn appears. The sDoUpdateDraw function
uses the pointer to the window object passed in the userData
argument to call the window's UpdateDraw function.

The UpdateDraw function draws the contents of the window as
follows:

449

450 Chapter 12 >-Drawing and Printing

1. The clipping rectangle for the port is set to the rectangle of
the current port (portRect).

2. If the user's machine has Color QuickDraw installed, then the
function calls GetForeColor to access the current port's fore
ground color and calls RGBForeColor with that color to set
the color to the closest match for the current device. The Get
BackColor and RGBBackColor functions are called to set the
closest background color for the device.

3. Then the update rectangle is calculated to be the bounding
box of the update region. This is the rectangle that encom
passes all of the elements whose contents need to be updated.

4. The UpdateErase function is called to erase the entire con
tents of the update region by calling the EraseRect toolbox
function with a pointer to the update rectangle, causing it to
be filled with the background color.

5. The UpdateDraw function completes its job by testing
whether the window has any subviews, and if so, calling the
Pane_Draw function of the CPane class for each of these.

6. Upon completion of drawing all of the subviews of the win
dow, the window's Update function regains control and calls
the EndUpdate toolbox function to cause the update region
to be disposed.

The Pane_Draw function is a global function in the CPane class
that is called with a pointer to the CPane-derived object and a
pointer to the update rectangle value. The function determines
whether any portion of the pane or its border (if any) needs to be
drawn and does so as described in Chapter 7, beginning in step 2
on page 302. The important thing to bear in mind is that in the
course of implementing the drawing of each pane, the Draw func
tion is called with a pointer to the rectangle to be redrawn.

Drawing a Custom View

Most of the logic that prepares you to draw a subview of your ap
plication is handled behind the scenes by the foregoing described
functions. Your main job is to override the Draw function in the
classes in which you need to perform the drawing operation.

Implementing the Draw Function 451

We discussed a custom view in Chapter 4, beginning on
page 101, in the section called "Creating a Business Account
View." The text in that chapter also describes the custom code
needed to draw the cells in the CArrayPane-derived CAcctList
class. The Draw function is implemented in the CTable base class,
and it determines which of the table's cells need to be redrawn,
based upon the update rectangle passed to the Draw function. Af
ter determining the cells to be drawn, either its DrawRow or
DrawCol function is called (depending upon whether cells are to
be drawn a row at a time or a column at a time), and both of those
functions call the DrawCell function that we have overridden in
our CAcctList class. The custom code for our DrawCell function
is shown in Chapter 4, beginning on page 145.

Many of the features of a generic Draw function are shown in the
DrawCell code. Some suggestions for implementing your own
custom Draw function are as follows:

+ Save the current pen state before you make any changes to it.
This is accomplished in the DrawCell code by calling the Get
PenState toolbox function and passing it a pointer to PenState
structure called savePen that we defined in the DrawCell
function.

+ Perform any drawing functions that are needed to update the
drawing rectangle passed to the Draw function. In the case of
the DrawCell function, we are passed only the cell number and
its rectangle. If it is more convenient for you to draw the entire
pane for which your Draw function is called (rather than just
the portion that needs to be updated), then do so. The dipping
region will ensure that none of your drawing will overwrite
anything else that covers up an area on which you might draw.

+ All standard controls are drawn automatically by the Draw
function in the CControl class. That function calls the
Draw 1 Control toolbox function to draw a single control in the
active window. It handles drawing both active and inactive
controls. If you wish to implement a custom control, such as
the CShapeButton control implemented in the VA library,
then you can write your own Draw function to do so. Take a
look at the Draw function in that class to get ideas of how to
draw custom controls.

452 Chapter 12 ~Drawing and Printing

+ Restore the saved pen state before returning from your Draw
function. This is accomplished in our DrawCell function by
calling the SetPenState toolbox function with the pointer to
our savePen structure.

Other than the foregoing general suggestions, there is nothing
special that you need to observe. The TCL will have taken care of
ensuring that the current GrafPort is set properly and that the Be
gin Update function is called before your Draw function is called.
The EndUpdate function is called after your drawing is complete.
Bear in mind that your Draw function might be called multiple
times to draw the same pane if the pane covers more than one dis
play device. So don't save any data in your drawing function, be
cause the data will be saved again, with possibly different values, if
the function is called multiple times.

In the case of text panes that are based upon the CEditText class,
you need not override the Draw fonction. The TextEdit Manager
will handle all of the drawing that is necessary for those panes.

Printing a Window's Contents

The TCL provides the functionality for printing the contents of the
window that is owned by the CDocument-based class. Each
CDocument-based object has a member variable called its
MainPane that contains a pointer to the primary, or most impor
tant, CPane object in the document's window (i tsWindow).
Each CDocument-based object also has a member variable called
its Printer that contains a pointer to a CPrinter object. The
CPrinter object is constructed and assigned to the itsPrinter
variable when the CDocument class constructor executes. The
i tsMainPane variable is assigned in the MakeNewWindow
function after the document's window has been constructed.

When the user chooses the Page Setup or Print commands from
the File menu, the pointer in the i tsPrinter variable is used to
call the DoPageSetup and DoPrint functions in the CPrinter class.
The pointer in the i tsMainPane variable is taken to be the pane
whose contents are to be printed.

Although the TCL assumes that only the window that belongs di
rectly to the CDocument-based class will be printed, it also pro-

Printing a Window's Contents 453

vides a method by which other windows' contents can be printed,
using their own values for the its Printer and i tsMainPane
variables. We will discuss this shortly, but for the time being, to
cover the basic features of printing support, we will talk only in
terms of the two variables in the CDocument-based object.

Printing the Notebook Pane

When we speak of printing, we are usually talking about drawing
the contents of a window that appears on the screen onto a printer
device. In fact, there is very little difference, in most cases, be
tween drawing and printing. If, for example, you have a simple
text window-as is the case in the Notebook application example
that we showed in Chapters 5 and 9-printing the contents of the
window is accomplished entirely by the TCL, with no' additional
custom code needed. The TCL handles this case as follows:

1. When the user pulls down the File menu and chooses the
Print command, the command is sent to the DoCommand
function of the current gopher (in this case, it's the CEditText
pane in the main window), and the command rattles up the
chain of command until it reaches the DoCommand func
tion of the CDocument class, where it is handled.

2. The cmdPrint case of the DoCommand function in the
CDocument class calls the DoPrint function for the object
whose pointer is stored in the i tsPrinter variable (a
CPrinter object).

3. The DoPrint function first calls the GetPrintRecord function
to access and validate the print record for the current printer.
It then calls the OpenPrintMgr function to open the Print
Manager and calls the Requestlnteraction function of the
application object (gApplication) to ascertain whether the
DoPrint function was called in response to an Apple event. If
not, then the DoPrint function calls the PrJobDialog toolbox
function with the print record.

4. The PrJobDialog function displays the standard print dialog
box to ascertain the starting and ending pages, the number of
copies, and other information related to printing the current
document. If the user clicks the Cancel button, the PrJobDia-

454 Chapter 12 >-Drawing and Printing

log function returns FALSE; otherwise, it returns TRUE. This
value is stored into the wantsToPrint variable.

5. The DoPrint function continues by calling the ClosePrint
Mgr function and then testing the value stored in the
wantsToPrint variable. If the value is TRUE, then the
PrintPageRange function is called with the iFstPage and
iLstPage (first and last page) values from the print record.

6. The PrintPageRange function in the CPrinter class is respon
sible for causing the specified range of pages in the document
to be printed. It performs this function as follows:

a. The GetPrintRecord function is called to get the print
record.

b. The AboutToPrint function in the document object
(i tsDocument) is called .. The AboutToPrint function in
the CDocument base class accesses the print record and
calculates the page width and page height values. It veri
fies that the user-specified last page number is larger than
the first page number and swaps these two numbers if
that relation is not TRUE. It then sets the last page num
ber to the minimum of the specified last page value and
the value returned by the PageCount function.

c. The PageCount function tests whether pagination infor
mation has been calculated for this document. If not,
then the Paginate function in the CDocument class is
called. That function determines the page width and page
height once again and then calls the Paginate function in
the class pertaining to the document's i tsMainPane
variable. In the case of our text pane, this is the CEdit
Text pane in the main window. The Paginate function is
called with a pointer to the current CPrinter object
(aPrinter) and the pageWidth and pageHeight
arguments.

d. The Paginate function for the text pane is inherited from
the CAbstractText class. That function tests whether the
fixedLineHeights variable is TRUE (as is the case for
our text pane). If so, then the lineHeight, lines
PerPage, and pageHei9ht values are calculated. Then
the Paginate function of the CPanorama class is called

Printing a Window's Contents 455

with the pointer to the printer object (aPrinter) and
the pageWidth and pageHeight values.

e. The Paginate function in the CPanorama class first
accesses the width and height of the panorama, in pixels,
and then computes the number of horiwntal strips that
will be printed by taking the total height in pixels and
dividing that by the page height. In a similar fashion, the
number of vertical strips is computed by taking the total
width of the panorama in pixels and dividing that by the
page width. Then the SetStrips function for the CPrinter
object is called to record the number of horizontal and
vertical strips that make up the entire panorama. In addi
tion, the SetAllStrip Widths and SetAllStripHeights func
tions of the CPrinter object are called with the page
height and page width values, so that all of the printed
strips will be of the same height and width.

f. When execution resumes in the PrintPageRange function
of the CPrinter class, the pagination of the text pane is
complete and the OpenPrintMgr function is called prior
to commencing the print operation. Immediately after
that, a printer port (macPrintPort) is assigned by call
ing the PrOpenDoc toolbox function with the print
record. The printDocOpen variable is also set to TRUE.

g. The main body of the print operation is then handled in
a loop in the PrintPageRange function. The function
loops through the set of pages, from the first page to last
page, sets the printPageOpen variable to TRUE, and
calls the PrOpenPage toolbox function with the printer
port. If no error has yet been reported, it calls the Print
PageOfDoc function in the document object (i tsDoc
ument), sets the printPageOpen variable to FALSE,
and calls the PrClosePage toolbox function. The forego
ing actions are executed repeatedly until either the PrEr
ror function returns a nonzero result or the specified
number of pages have been printed.

h. After printing is complete, the PrintPageRange function
sets the printDocOpen variable to FALSE, calls the
PrCloseDoc toolbox function, sets the macPrintPort
printer port variable to NULL, determines whether the

456 Chapter 12 ~Drawing and Printing

printout was spooled to an external file by testing the
print record's prJob. bJDocLoop field, calls the PrPic
File toolbox function to initiate hard copy printout of
the spooled output, calls the ClosePrintMgr function to
terminate the print operation, and, finally, calls the
DonePrinting function of the document object (its
Docurnent), which, in turn, calls the DonePrinting func
tion of the text pane (i tsMainPane).

7. When the DoCommand function of the CDocument class
regains control, the printout will have been accomplished. At
this point, the function tests whether the application has been
factored. If so, it calls the SendPrint function, which sends an
Apple event to its own application, specifying that a Print
operation has been requested, but also telling the application
not to execute the operation. This is for the benefit of any
other application that is recording the user's events, so that
the print operation can be "played back" at a later time.

What we haven't yet covered in the foregoing steps is how each
page of the document is printed. In the inner loop, we indicated
that the PrintPageOfDoc function is called to print each page of
the document. That function calls the PrintPage function of the
main pane object (itsMainPane), which, in this case, is the
CEditText object.

The PrintPage function of the CEditText class substitutes the
printer port for the port in the Text Edit Record (TERec) and
then tests whether the output is to be clipped to the page bound
ary (clipPAGE). If so, then the view rectangle is resized to the
width and height of the printer's page and the PrintPage function
of the CAbstract Text base class is called.

The PrintPage function is inherited by the CAbstractText class
from the CPanorama class. That function is called with the page
number, page height, page width, and a pointer to the current
CPrinter object. The function prints each page as follows:

1. The GetPageArea function of the CPrinter object is called
with the page number and a pointer to where the rectangular
coordinates corresponding to that page are to be stored.

2. After the coordinates for the page within the panorama have
been calculated, the ScrollTo function is called to position the

Printing a Windows Contents 457

top-left corner of the pane to be printed at the top-left corner
of the panorama.

3. The page area's coordinates are then converted to window
coordinates and are stored into both the cPageArea CPane
class variable and the local qdArea variable. Then the
DrawAll function is called to draw the specified area into the
current port (which is now a printer port). The DrawAll
function was described in Chapter 7, in the section tided
"Handling Update Events," beginning on page 301. The core
operation in the DrawAll function is to call the Draw func
tion for the pane-just as the Draw function is called to draw
the pane when it is being displayed on the screen.

Other than the functions that execute before and after the draw
ing operation, there is little difference between drawing to the
screen and drawing to the printer, at least as far as your program is
concerned.

Printing an Offset Pane

Figure 12-1
An offset scrolling text
pane view

In some cases, you will want to design a window in which the
pane to be printed is offset from the top and/or left edge of the
window. This is illustrated in Figure 12-1.

The Soul
of an Icon

Icons have a long histoq :irt
= cul tnre. They have been
used to identify evetytliing
from deities to computer
progmms.

Offset
There is a long history of the
use of the icon in our culture.
Its use with computers was
first popularized in the Apple
Maci ntos h user i nte rface.

We have come to acknowledge
that icons can be used to
provide visual identification
of a particular computer
program or ib associated
files.

The design of di stinctive icons
has become a particularly
specialized art, requiring the
talents of an accompli shed
graphic arti st to create a

The foregoing figure shows a view called Offset that has a picture
of a particular item in its upper-left corner, an item tide, a brief

458 Chapter 12 >Drawing and Priming

description of the icon, and then a scrolling text field that is in
tended to contain a more comprehensive description of the item.
The programmer's intention here is to allow the user to print the
contents of the scrolling text field, which is assigned to the its -

MainPane variable in the program.

If we do nothing, the text will be printed offset from the left edge
of the printed page by the amount that the scrolling text field is
offset from the left edge of the window. This is usually not what is
wanted.

If you recall from our discussion of the PrintPage function on
page 457, I mentioned in step 2 that the ScrollTo function was
called to scroll the pane to be primed to the top-left corner of the
panorama. In this case, the CEditText (scrolling text) field is the
panorama, and so the ScrollTo function merely positions the text
with its first line at the top-left corner of the scroll pane.

In order to print the text, beginning at the top-left corner of the
printed page, we need to move the entire pane so that it is physi
cally positioned at the top-left corner of the window. To do this,
we need to override the AboutToPrint function in our CMain
(CDocument-derived) class, move the CEditText panorama to
the window's corner, print the pane, and then override the Done
Printing function to move the pane back to where it was originally
positioned. It should be mentioned that the user will be unaware
of the pane's movement, because the display port will still show it
in its original position while the printout (or print spooling) func
tion is in progress. The code for the AboutToPrint override func
tion is as follows:

void CMain::AboutToPrint (short *firstPage, short *lastPage)
{

II call the base class function first,
II before moving the current pane.
x_CMain: :AboutToPrint (firstPage, lastPage);

II then save the pane's current horizontal
II and vertical origin values and move
II the pane.
saveHOrigin = itsMainPane->hOrigin;
saveVOrigin = itsMainPane->vOrigin;
itsMainPane->Offset (hOrigin, vOrigin, FALSE);

The saveHOrigin and saveVOrigin variables are defined as
member variables in our CMain.h header file. They will hold the

Printing a Windows Contents 459

original value of the horizontal and vertical components of the
scrolling text pane (i tsMainPane). The Offset function moves
the pane by subtracting the specified offset values from the origi
nal hOrigin and vOrigin values. It also adjusts the origin of
the pane's enclosure (the scroll pane) by the same amount in each
direction.

At this point, the pane is positioned correctly to be drawn at the
top-left edge of the printed output. When the printout is com
plete, we override the DonePrinting function to reverse the offset
procedure, as follows:

void CMain: :DonePrinting ()
{

II call the base class function and then
I I move the pane back where it belongs .
x_CMain::DonePrinting();
Offset (-saveHOrigin, -saveVOrigin, TRUE);

Note in the foregoing that we have negated the values of the saved
origin values, when the Offset function negates these, it will move
the pane (and its enclosure) in a positive direction, back to its
original position.

Printing a Secondary Window's Contents

We have been talking about printing the contents of a particular
pane in the main window up to this point. Our description of the
methodology of printing a window's main pane should make it
clear that the document's CPrinter object (i tsPrinter) and the
main pane (i tsMainPane) are securely bolted into the printing
code. Fortunately, it is fairly simple to use the same code to print
the contents of other windows by overriding the DoCommand
function and handling the cmdPageSetup and cmdPrint com
mands in the window's director. The code to perform this task, as
suming that the Offset window shown in Figure 12-1 1s a
secondary window for the document, is as follows:

void COffset::DoCommand (long theCommand)
{

switch (theCommand)
{

case cmdPageSetup:
case cmdPrint:
{

460 Chapter 12 ~Drawing and Printing

try_
{

((CMain *)itsSupervisor)->AboutToPrintSubDirector(
itsMainPane, itsPrinter);

x_COffset: : DoCommand (theCommand) ;
((CMain *)itsSupervisor)->DonePrintingSubDirector();

}
catch,_all_ ()
{

((CMain *) i tsSupervisor) ->DonePrintingSubDirector () ;
throw_same_ () ;

)
end_try_
break;

}

default:
{

x_COffset: : DoCommand (theCommand) ;

The foregoing code uses the AboutToPrintSubDirector and
DonePrintingSubDirector functions inherited from the CDocu
ment class to save and restore the itsPrinter and itsMain
Pane variables. The document's copies of those variables are saved
into the savePrinter and savePrintPane variables when
the AboutToPrintSubDirector is called, replacing the document's
variables with the specified values. When the DonePrintingSub
D ire cto r function is called, the original values of the
itsPrinter and itsMainPane are restored. The code is exe
cuted in a try block because it is possible for a failure condition
to occur, and we want to make sure that the original values of the
document's variables are restored in that case.

Drawing and Printing Summary

This chapter described the methodology of the TCL in implement
ing drawing and printing operations. In general, printing is han
dled by the same Draw function that handles drawing to the
screen. There are a few more complexities to the printing process,
however, and these are described in terms of the additional actions
taken by the TCL to implement the appropriate behavior.

Printing a pane whose left and/or top edges don't coincide with
the corresponding edges of the enclosing window is handled by
shifting the pane prior to printing, and then shifting it back into
its original position after printing is complete.

Drawing and Printing Summary 461

Printing of the contents of multiple windows requires that the
AboutToPrintSubDirector class to be used to save the main docu
ment's i tsMainPane and i tsPrinter pointers, substitute
pointers to the corresponding objects for the window to be
printed, and then restore the original main document's pointers.

Index

Note: Page numbers in italics refer to illustrations.

A
AboutToPrint function, 458
AccessObject function, Apple Events, 421-426, 430
Account menu, 113, 115-117
Account view, 105-113
Account window view, I 06, I 07
Accounts list pane, 104
AcctSettings subview, dynamic modeless dialogs,

243, 244, 250
Actions

buttons, 265-267
pop-up menus, 275-276
radio buttons, 269-270
tables, 285-289
text fields, 292-294

Activate events, 305-309
Activate override function code, Floating Palette

view, 161
AddCategory function

CArray class, 329
category editor dialog, 218-219

Adjust functions, events, 317-320
ALRT 130 resource, Business Account view, 132
Apple Events, 409-433

accessing direct objects, 420-422
AccessObject function, 421-426, 430
Application Died event, 417
Begin Transaction event, 417-418
Clone event, 413-414
Close event, 414
comparing objects, 428
Copy event, 418
Count Elements event, 414
Create Element event, 414
Cut event, 418
Delete event, 415
DispatchApp function, 412
DispatchResult function, 429-430
Do Objects Exist event, 415
DoAppleEvent function, 412-413
DoCommand function, 432

DoGetDataEvent function, 430-431
DoHighLevelEvent function, 411, 429
DoScript event, 418
End Transaction event, 418
factoring and recording support, 434
FindProcess function, 433
GenericAppHandler function, 411-413
GenericHandler function, 429
GenericResultHandler function, 429
Get AETE event, 419-420
Get Data event, 415-416
Get Data Size event, 416
GetClassID function, 427
GetContainer function, 428
GetDataEvent function, 431
GetDefaultType function, 427-428
GetDirectObject function, 420-421
GetElementBylD function, 425-426
GetElementBylndex function, 424
GetElementByName function, 425
GetElementNameDesc function, 431
handling

Application class events, 422-426
core and miscellaneous suite events,

413-420
miscellaneous class events, 426-427
object information accesses, 427-428
object specifiers, 420-428
required events, 410-413

as high-level events, 309-310
lnstal!EventHandler function, 43-46, 410-411
installing object accessor functions, 420
Is Uniform event, 418
MapDesc function, 421-422
modifying code, 42-46
Move event, 416
MyAccessObject function, 421
Notify Start Recording event, 417
Notify Stop Recording event, 417
Open Application events, 57-58
overview, 409

463

464 >-Index

PackageAppleEvent function, 412
Paste event, 419
properties, 422-423
Redo event, 419
replying to requests, 429-431
Revert event, 419
Save event, 416
SendAEQuit function,432
sending requests, 431-433
Set Data event, 416-417
summary, 434-43 5
support for receiving, 410-428
support for sending, 428-433
Transaction Terminated event, 419
Undo event, 419

Application class, handling events in, 422-426
Application Died event, 417
Application frameworks, defined, 1
Application objects

See also CApp Objects
initiliazing, 22-26

Applications
running, 37-40
skeleton. See Skeleton applications

Arrays, CArray class, 327-336
AutoSelect property, pop-up menus, 276

B
Begin Transaction event, 417-418
BeginData function code

category editor dialog, 229-230, 234-235
text style modal dialog, 189-192

BeginTracking function, tables, 287
BroadcastChange function, semantic events, 257, 259
BroadcastChange messages, semantic events, 254-255
Business Account view, 101-149

Account menu, 113, 115-117
Account view, 105-113
Account window view, 106, 107
Accounts list pane, 104
ALRT 130 resource, 132
CAccount class custom code, 139-144
CAcctList class, 110-111
CAcctList class custom code, 144-146
CAcctList header file, 144
CApp Class custom code, 124-125
CEditText object, 148-149
CloseWind override function code, 142
CMain Class custom code, 125-134

CMain header file additions, 126
CMainList class, 105
CMainList class custom code, 135
cmdDdeteAcct command, 116
cmdEditAcct command, 116
code generation and viewing, 117-119
CreateNewEntries function code, 142-144
CTransaction class code, 135-139
CTransaction class header file, 135-137
Delete Account command, 123-124
DoCmdDeleteAcct override function code,

131-133
DoCmdEditAcct override function code,

129-131
DoCmdNewAcct function, 116
DoCmdNewAcct override function code,

128-129
DoCommand override function code, 127-128
DrawCell override function source code,

145-146
Edit Account command, 123-124
elements, 112-113
full functionality, 123-124
GetCel!Text function code, 135
global list border array, 144-145
ICAccount member function code, 141-142
ICMain function code, 126-127
initilialization features, 125
instance variables, 124-125
Main view, 102-105
MakeDefaultSettings function code, 133
MakeNewWindow override function code, 127
New Account command, 118-119, 123
New Account dialog, 113-115, 119
preprocessor and compiler directives, 141
ProviderChanged override function code,

133-134
recommended tasks for completing, 146-149
Record button, 108-109
Restore button, 109-110
structure of, 147
x_CMain code, 119-122

Buttons, 260-272
actions, 265-267
CButton class, 261-267
CCheckBox class, 271-272
CRadioControl class, 267-272
properties, 261-265

c
CAccount class custom code, Business Account view,

139-144
CAcctList class, Business Account view, 110-111
CAcctList class custom code, Business Account view,

144-146
CAcctList header file, Business Account view, 144
Cancel button, text style modal dialog, 175-176
CApp class

Business Account view, 124-125
foundations, 22
ICApp function, 95-98
text style modal dialog, 179

CApp Objects
See also Application objects
foundations, 17-26

CApp.cp, skeleton applications, 15
CApp.h, skeleton applications, 15
CApplication class

foundations, 19-21
miscellaneous functions, 46-47

CArray class, 327-336
AddCategory function, 329
collection and iterator class hierarchy, 328
DelCategory function, 330
GetCategory function, 329
ICMain function, 328
looping through CArray objects

with indexes, 331-332
with iterators, 332-334

Object I/O variables, 364-367
push-pop stacks, 334-336
SetArrayltem function, 330
SetCategory function, 330
SortCat function, 332-333

CArrayPane class variables, Object I/O, 359-361, 367
Categories dialog object, Object I/O, 344-346
Categories list contents, reading and writing, 396-402
Categories view, category editor dialog, 210-216
Category editor dialog, 208-241

AddCategory function code, 218-219
BeginData function code, 229-230, 234-235
Categories view, 210-216
CCat class access function code, 239-241
CCat class code, 237-241
CCat class header file, 238
CCat constructor function code, 238-239
CCategories class header file, 227-228
CCatTable class code, 237

Index 465

CMain code, 216-223
CMain.h header file, 217-218
CmdDeleteCat function code, 230-231
CmdNewCat function code, 231-233
CmdUseCat function code, 230
CNewCat dialog code, 234-237
CNewCat header file, 236-237
DelCategory function code, 219
dialog view creation, 208-216
DisableButtons function code, 230
DoCmdEditCat function code, 233
DoCmdEditCategories function code, 222-223
EndData function code, 236
ExchangeSettings function code, 234
GetCategory function code, 219-220
ICCategories function code, 228
ICMain function code, 218
Ix_CCategories function code, 225-226
MakeNewWindow function code, 226-227
NewCat view, 208-216
Pane Info specifications, 212-214
PutTo and GetFrom function code, 239
SetCategory function code, 220
SetSelected category function code, 221-222
SortCat function code, 220-221
x_ CCategories class header file, 223-225

CatSettings subview, dynamic modeless dialogs, 244
CBureaucrat class

foundations, 18
variables, Object I/O creation of

CCatTable object, 363
Delete CButton object, 382-383
Edit CButton object, 374-375
New CButton object, 378-379
Use button, 370

CButton class, 261-267
CButton objects, Object I/0, 367-384
CCat class, 237-241

access function code, 239-241
header file, 238

CCat constructor function code, category editor dia
log, 238-239

CCategories class header file, category editor dialog,
227-228

CCategories dialog object, Object I/O, 347, 384-387
CCatTable class code, category editor dialog, 237
CCatTable object, Object I/O, 359-367
CCheckBox class, buttons, 271-272
CC!ipboard Objects, foundations, 29-32

466 >Index

CCollaborator class
foundations, 17-18
semantic events, 254

CCollection class variables, Object 1/0, 365, 366
CColorTextEnvirons class variables, Object 1/0

creation of
CPanorama object, 385
CScrollPane object, 356-357
Delete CButton object, 383
Edit CButton object, 375-376
New CButton object, 379
Use button, 370-371

CControl class variables, Object 1/0 creation of
Delete CButton object, 381
Edit CButton object, 373
New CButton object, 377
Use button, 368

CDecorator Objects, foundations, 32
CDesktop DispatchClick function, buttons,

265-266
CDesktop Objects, foundations, 28-29
CDialog object creation and initialization, Object II

0,346-350,386-387
CDialogText fields, text style modal dialog, 175
CDirectOwner class, foundations, 18-19
CEditText object, Business Account view, 148-149
CEnvirons class variables, Object 1/0 creation of

CPanorama object, 386
CScrollPane object, 358
Delete CButton object, 384
Edit CButton object, 376
New CButton object, 380
Use button, 371-372

CError Objects, foundations, 28
CFontList class, text style modal dialog, 173-17 4
Chain of command, THINK Class Library, 5-7
ChangeSize function, events, 317
Checkboxes, 271-272
ChoiceMenu settings, pop-up menus, 273
Choices menu, pop-up menus, 274
Chores, 437-444

CTearChore class, 441-444
idle-time, 438-441
inheritance diagram, 437
MoveToCorner function, 443
Perform function, 443
periodic, 438-441
summary, 448
TearOffMenu function, 443
TornOff function, 443

types of, 437-438
urgent, 438, 441-444

Class libraries
defined, 1
THINK. See THINK Class Library

Class references, ForceClassReferences function, 33-35
Clear command, text fields, 293
CList class template expansion, Object 1/0, 400-401
Clone event, Apple Events, 413-414
Close event, Apple Events, 414
Close functions, events, 321-323
Close Wind override function code, Business Account

view, 142
CMain Activate override function code, Floating

Palette view, 161
CMaincode

Business Account view, 125-134
category editor dialog, 216-223
text style modal dialog, 179-184

CMain Deactivate override function code, Floating
Palette view, 161-162

CMain document derived class, creation and initial
ization, 51-54

CMain header files
Business Account view, 126
category editor dialog, 217-218
Object I/O, 405-406
skeleton applications, 15
text style modal dialog, 180-181

CMain MakeNewWindow override function code,
Floating P;Jette view, 161

CMain.cp, skeleton applications, 15
CMainList class, Business Account view, 105, 135
cmdDeleteAcct command, Business Account view, 116
CmdDeleteCat function code, category editor dialog,

230-231
cmdEditAcct command, Business Account view, 116
cmdNewAcct command, Business Account view, 116
CmdNewCat function code, category editor dialog,

231-233
CmdUseCat fimction code, category editor dialog, 230
CMyTable class, tables, 278-285
CNewCat dialog code, category editor dialog, 234--237
CNewCat header file, category editor dialog, 236-

237
CNewFile dialog, code modification, 76-78
CNewView source file, document objects, 94--98
CNotebookUpdate structure, text style modal dialog,

200-201
Collaborators, described, 254--255

Collection class. See Template and collection classes
Commands, overview, 7-8
Comparing objects, Apple Events, 428
Compiler directives, Business Account view, 141
Contents class definition, Object I/0, 398
Contents transfer functions, Object I/O, 402
ContentsToWindow function

CNewView source file, 94-95
CTextData code, 92
NewFile function, 56-67

Controls, 253-294
buttons, 260-272
pop-up menus, 272-277
semantic events, 253-260
summary, 294
tables, 277-289
text fields, 289-294

Copy command, text fields, 293
Copy event, 418
Core and Miscellaneous Suite events, handling,

413-420
Count Elements event, 414
CPane class variables, Object I/O creation of

CCatTable object, 361-362
CPanorama object, 351-352
CScrollPane object, 354-355
Delete CButton object, 381-382
Edit CButton object, 373-374
New CButton object, 377-378
Use button, 369

CPaneBorder class variables, Object I/O creation of
CScrollPane object, 358-359
Use button, 372

CPanorama class variables, Object I/O, 361
CPanorama class variables, Object I/O creation of

CColorTextEnvirons object, 385
Object I/O, 351-353

CPcrArray template, 338-342
functions, 341
Object I/O, 400-401
source code, 339-340

CRadioControl class, buttons, 267-272
Create Element event, Apple Events, 414
CreateDocument function

CMain document derived class, 50, 54
multiple file types, 68-69

CreateNewEntries function code, Business Account
view, 142-144

CreateTypedDocument function, multiple file types,
66-68

CRunArray class, 337-338
functions, 339

Index 467

CRunArray class variables, Object I/O creation of,
364,365-366

CSaver class, NewFile function, 54-56
CSaver_CMain.cpp, Object I/O, 387
CScrollPane object, Object I/O, 353-359
CSettings code, dynamic modeless dialogs, 246-

250
CSimpleSaver class, Object I/O, 402-407
CSitchboard objects, foundations, 27
CSizeList class, text style modal dialog, 173-17 4
CStream class templates, Object 1/0, 393-394
CTextData

header file, 83
source file, 83-94

CTextEdit panorama, NewViewwindow, 79-81
CTextEnvirons class variables, Object I/O creation of

CPanorama object, 385-386
CScrollPane object, 357-358
Delete CButton object, 384
Edit CButton object, 376
New CButton object, 380
Use button, 371

CTextEnvirons object, Object I/O, 363-364
CTextSettings structure, text style modal dialog,

179-180
CTools constructor function code, Tear-off Menu

view, 168-169
CTransaction class, 135-139

header file, 135-137
Cursors in iterator objects

CArray class, 332-334
CVoidPtrArray class, 336-337

Custom views, drawing, 450-452
Cut command, text fields, 293
Cut event, 418
CView class variables, Object I/O creation of

CCatTable object, 362-363
CDialog object, 349-350
CPanorama object, 352-353
CScrollPane object, 355-356
Delete CButton object, 382
Edit CButton object, 374
New CButton object, 378
Use button, 369-370

CView DispatchClick function, buttons, 266
CVoidPtrArray class, 336-337

functions, 337. 338
looping through with iterators, 336

468 >-Index

CWidgets
Constructor function code, 159-160
DoCommand function code, 162-163

CWindow class variables, Object 1/0, 349
CWindow Dispatch Click function, buttons, 266

D
Data, transferring to/from windows, 395-396
Data Contents class, Object 1/0, 389-393
Data management, document objects, 58-63
Data objects, saving and restoring, 387-402
Dawdle function, events, 298
Deactivate events, 305-309
Deactivate override function code, Floating Palette

view, 161-162
Default documents, document objects, 49-57
DelCategory function

CArray class, 330
category editor dialog, 219

Delete Account command, Business Account view,
123-124

Delete CButton object, Object 1/0, 380-384
Delete event, 415
Dialogs, 171-252

category editor, 208-241
code generation, 73-74
dynamic modeless, 241-250
file types, 69-73
summary, 250-252
text style modal, 171-208

Direct objects, accessing, 420-422
DisableButtons function code, category editor dialog,

230
Disk inserted events, 301
DispatchApp function, Apple Events, 412
DispatchOick functions

buttons, 265-266
InContent clicks, 314-315
mouseDown events, 310-312

DispatchEvent function, 299-31 O
DispatchResult function, Apple Events, 429-430
DispensePaneValues function code, text sryle modal

dialog, 193-195
Do Objects Exist event, 415
DoActivate function, events, 305-307
DoAppleEvent function

Apple Events, 412-413
foundations, 45-46

DoBeginData function code, text style modal dialog,
187-188

DoChangeableModalDialog function, text style
modal dialog, 197-198

DoClick function
buttons, 266-267
pop-up menus, 275
tables, 286-287
tasks and undo/redo, 447

DoCmdDeleteAcct function
Business Account view, 131-133
x_ CMain code, 121

DoCmdEditAcct function
Business Account view, 129-131
x_ CMain code, 121

DoCmdEditCat function code, category editor dia
log, 233

DoCmdEditCategories function code, category edi
tor dialog, 222-223

DoCmdNewAcct function
Business Account view, 116, 128-129
x_CMain code, 120-121

DoCmdNotebook override function code, text style
modal dialog, 182-183

DoCommancl function
Apple Events, 432
Business Account view, 127-128
Floating Palette view, 162-163
printing, 453
tasks and undo/redo, 445-446
text fields, 292-294
text style modal dialog, 182
x_CMain code, 120

Document objects, 49-99
CNewView source file, 94-98
CTextData header file, 83
CTextData source file, 83-94
data management, 58-63
default documents, 49-57
multiple documents compared to multiple

views, 98
multiple file types, 63-78
Open Application events, 57-58
single file types, 59-63
text file input/output, 78-94
x_CNewView header file changes, 81-82
x_CNewView source file changes, 82

DoDeactivatc function, events, 307-309

DoEndData function code, text style modal dialog,
205

DoGetDataEvent function, Apple Events, 430-431
DoGoodClick function, buttons, 267
DoHighLeve!Event function, Apple Events, 411, 429
Doldle function, events, 297-299
DoModalDialog function code, text style modal dia-

log, 196-198
DoMouseDown function, events, 299
DoMouseUp function, events, 299-300
DonePrinting function, 459
DoNewDialog function

adding code to, 74-75
multiple file types, 68-69

DoPrint function, 453, 454
DoResume function, events, 309
DoRevert function, CTextData code, 91-92
DoRun function, Run function and, 38-40
DoSave function, CTextData code, 87-88
DoSaveAs function, CTextData code, 89-91
DoScript event, 418
DoSuspend function, events, 309
DoUpdateDraw function, 449-450
Drag function, events, 315-316
Draw functions, custom, 451-452
DrawAll function, events, 303-305
DrawCell override function source code, Business

Account view, 145-146
Drawing, 449-452

custom views, 450-452
DoUpdateDraw function, 449
Pane_Draw function, 450
summary, 460-461
UpdateDraw function, 449-450

DrawSample function code, text style modal dialog,
192-193

Dynamic modeless dialogs, 241-250
AcctSettings subview, 243, 244, 250
CatSettings subview, 244

E

CSettings code, 246-250
Main Settings dialog, 242, 243
MakeNewWindow override function code,

247-248
ProviderChanged function code, 248-250
x_CMain code, 245

Edit Account command, Business Account view,
123-124

Index 469

Edit CButton object, Object I/O, 372-375
Elements, Business Account view, 112-113
End Transaction event, 418
EndData function code

category editor dialog, 236
text style modal dialog, 205-207

EndDialog function code, text style modal dialog,
203-204

EndTracking function, tables, 287
Events, 295-325

activate and deactivate, 305-309
Apple. See Apple Events
ChangeSize function, 317
Close functions, 321-323
Dawdle function, 298
disk inserted, 301
DispatchClick function, 314-315
DispatchEvent function, 299-310
DoActivate function, 305-307
DoDeactivate function, 307-309
Doldle function, 297-299
DoResume function, 309
DoSuspend function, 309
Drag function, 315-316
DrawAll function, 303-305
enclosure size adjustments, 317-320
FindWindow function, 310-325
high-level. See Apple Events
Idle function, 297-298
InContent clicks, 312-315
InDesk clicks, 311
InDrag clicks, 315-316
InGoAway clicks, 321-323
InGrow clicks, 316-321
InMenuBar clicks, 311-312
InSysWindow clicks, 312
InZoomin and InZoomOut clicks, 323-325
key, 300-301
main loop, 295-325
mouse down, 299, 310-325
mouse up, 299-300
Pane_Draw function, 302-303
ProcessEvent function, 297
processing, 40
processing summary, 325
semantic, 253-260
suspend and resume, 309
update, 301-305
UserResize function, 317

470 >Index

ExchangeSettings function code
category editor dialog, 234
text style modal dialog, 183-184

F
Factoring and recording support, Apple Events, 434
File parameters, SetUpFileParameters function, 33
File types

dialog creation, 69-73
multiple, 63-78
New View dialog box, 96
single, 59-63

FindProcess function, Apple Events, 433
FindWindow function, events, 310-325
Floating Palette view, 154-163

CMain Activate override function code, 161
CMain Deactivate override function code,

161-162
CMain MakeNewWindow override function

code, 161
CWidgets Constructor function code, 159-

160
CWidgets DoCommand function code, 162-

163
MakeNewWindow function code, 160
PICT grid resource, 157-158
PICT image, 156
SetUpMenus function code, 159
view creation, 154-156
Widgets window, 154-156

Font lists, text style modal dialog, 17 4-175
ForceClassReferences function, foundations, 33-35
Format menu, text style modal dialog, 176-177
Foundations, 11-48

CApp Objects, 17-26
main function, 16-17
MakeHelpers function, 26-37
processing events, 40
running applications, 37-40
skeleton application, 11-16

Functions

G

See also specific functions by name
CApplication class, 46-47
CPtrArray class,
CRunArray class, 339
CVoidPtrArray class, 337, 338

GenericAppHandler function, Apple Events, 411-413
GenericHandler function, Apple Events, 429

GenericResultHandler function, Apple Events, 429
GetAETE event, 419-420
Get Data event, Apple Events, 415-416
Get Data Size event, Apple Events, 416
GetBureaucrat function, Object I/O, 347-348
GetCategory function

CArray class, 329
category editor dialog, 219-220

GetCellText function code, Business Account view,

135
GetClassID function, Apple Events, 427
GetContainer function, Apple Events, 428
GetDataEvent function, Apple Events, 431
GetDefaultType function, Apple Events, 427-428
GetDirectObject function, Apple Events, 420-421
GetDocTypeFromDialog function, code modifica-

tion, 75-76
GetElementByID function, Apple Events, 425-426
GetElementByindex function, Apple Events, 424
GetElementByName function, Apple Events, 425
GetElementNameDesc function, Apple Events, 431
GetFrom function

category editor dialog, 239
Object I/O, 348-350

GetObject function, Object I/O, 348
GetObject template, Object I/O, 399
GetView function, Object I/O, 347
Global list border array, Business Account view, 144-

145

H
Handlers, Apple Event, 42-46, 410-428
Header file changes, document objects, 81-82

I
I/O

CSimpleSaver, 402-407
Object. See Object I/O
text file, 78-94

!Bartender function, SetUpMenus function, 36-37
I CAccount member function code, Business Account

view, 141-142
ICApp funccion, CApp class, 95-98
I CCategories function code, category editor dialog, 228
ICMain function

Business Account view, 126-127
CArray class, 328
category editor dialog, 218

ICMain initialization function code, text style modal
dialog, 181

ICNewView function, CNewView source file, 94
Idle function, events, 297-298
Idle-time chores, 438-441
!Document function, CMain document derived

class, 54
lnContent clicks, events, 312-315
InDesk clicks, events, 311
Indexes, looping through CArray objects with, 331-

332
lnDrag clicks, events, 315-316
Information accesses, handling object, 427-428
lnGoAway clicks, events, 321-323
InGrow clicks, events, 316-321
Inheritance diagrams

radio buttons, 268
tasks and chores, 437

InitAppleEvents function, foundations, 42
Initialization

application objects, 22-26
application skeleton, 41-42
Business Account view, 125
text style modal dialog, 183

lnitMemory function, initiliazing application ob
jects, 23-24

InMenuBar clicks, events, 311-312
Input/output

CSimpleSaver, 402-407
Object. See Object 110
text file, 78-94

lnsertAtlndex function, semantic events, 256
lnstallEventHandler function, Apple Events, 43-46,

410-411
Instance variables, Business Account view, 124-125
lnSysWindowclicks, events, 312
InZoomln and lnZoomOut clicks, events, 323-325
Is Uniform event, 418
Iterator and collection class hierarchy, CArray class, 328
Iterators, looping through CArray objects with, 332-334
ltsContents pointer, Object 1/0, 399
ltsContents variable, Object 1/0, 394
ltsContents_ CMain.h, Object 1/0, 388, 393, 398-399
lx_CApp function, initiliazing application objects,

22-26
Ix_CCategories function code, category editor dia

log, 225-226
Ix_CNotebook function code, text style modal dia

log, 184-185

J
Justification radio buttons, text style modal dialog,

175

K
Keep Tracking function, tables, 287
Key events, 300-301

L
Labels, text style modal dialog, 176
Looping through CArray objects

M

with indexes, 331-332
with iterators, 332-334

Main event loop, 295-325
Main function, foundations, 16-17

Index 471

Main Settings dialog, dynamic modeless dialogs,
242,243

Main view
Business Accounts, 102-105
text style modal dialog, 172-176

main.cp, skeleton application, 16
mainDoc radio button, NewFile dialog box, 72
MakeDefaultSettings function code, Business Ac-

count view, 133
MakeHelpers function, foundations, 26-37
MakeNewWindow function

Business Account view, 127
category editor dialog, 226-227
dynamic modeless dialogs, 247-248
Floating Palette view, 160, 161
ICApp function, 98
NewFile function, 54-57
Object 1/0, 344-345
single file types, 61-62
Splash Screen view, 152-153
text style modal dialog, 185-187
x_ CMain code, 119-120

MakeWindowName function, CTextData code,
93-94

MapDesc function, Apple Events, 421-422
Menu Bar editor window, Visual Architect, 13
Menu commands, Account Menu, 115-117
Menus

SetUpMenus function, 35-37
Tear-off Menu view, 163-169
TearOffMenu function, 443

Modal and modeless dialog summary, 250-252
Mouse down events, 299, 310-325
Mouse up events, 299-300
Mouse-tracking tasks, tasks and undo/redo, 446-448
Move event, Apple Events, 416
MoveToCorner function, chores, 443
Multiple documents compared to multiple views, 98

I

I

\

472 >-Index

Multiple file types, document objects, 63-78
MyAccessObject function, Apple Events, 421

N
Names

GetElementByName function, 425
GetElementNameDesc function, 431
MakeWindowName function, 93-94
TCLGetNamedWindow function, 345-346

New Account command, Business Account view;
118-119, 123

New Account dialog, Business Accounts, 113-115, 119
New CButton object, Object 1/0, 376-380
New prescription with lists, Object 1/0, 397-398
New View dialog box

file types, 96
ICApp function, 95-98
Visual Architect, 64, 70, 73

NewCat view, category editor dialog, 208-216
NewFile dialog box

mainDoc radio button, 72
Visual Architect, 71, 73

NewFile function, CSaver class, 54-57
NewView window, CTextEdit panorama, 79-81
Notebook contents, reading and writing, 389-396
Notebook dialog applications, dynamic structure of,

178
Notebook pane, printing, 453-457
Notebook view, text style modal dialog, 172-176
Notify function, tasks and undo/redo, 444-445
Notify Start Recording event, Apple Events, 417
Notify Stop Recording event, Apple Events, 417

0
Object accessor functions, installing, 420
Object 110, 343-407

CArray class variables, 364-367
CArrayPane class variables, 359-361, 367
categories dialog object, 344-346
categories list definition, 396-397
CBureaucrat class variables

CCatTable object, 363
Delete CButton object, 382-383
Edit CButton object, 374-375
New CButton object, 378-379
Use button, 370

CButton objects, 367-384
CCategories CDialog object, 384-387
CCategories dialog object, 347
CCatTable object, 359-367

CCollection class variables, 365, 366
CColorTextEnvirons class variables

CCategories CDialog object, 385
CScrollPane object, 356-357
Delete CButton object, 383
Edit CButton object, 375-376
New CButton object, 379
Use button, 370-371

CControl class variables
Delete CButton object, 381
Edit CButton object, 373
New CButton object, 377
Use button, 368

CDialog object creation and initialization,
346-350

CEnvirons class variables
CPanorama object, 386
CScrol!Pane object, 358
Delete CButton object, 384
Edit CButton object, 376
New CButton object, 380
Use button, 371-372

CList class template expansion, 400-401
CMain.h header file, 405-406
Contents class definition, 398
Contents transfer functions, 402
CPane class variables

CCatTable object, 361-362
CPanorama object, 351-352
CScrollPane object, 354-355
Delete CButton object, 381-382
Edit CButton object, 373-374
New CButton object, 377-378
Use button, 369

CPancBorder class variables
CScrol!Pane object, 358-359
Use button, 372

CPanorama class variables, 361
CPanorama object, 351-353
CPtrArray class template expansion, 400-401
CRunArray object, 364, 365-366
CSavcr_CMain.cpp, 387
CScrol!Pane object, 353-359
CSimpleSaver class, 402-407
CStream class templates, 393-394
CTextEnvirons class variables

CPanorama object, 385-386
CScrollPane object, 357-358
Delete CButton object, 384

Edit CButton object, 376
New CButton object, 380
Use button, 371

CTextEnvirons object, 363-364
CView class variables

CCatTable object, 362-363
CDialog object, 349-350
CPanorama object, 352-353
CScrollPane object, 355-356
Delete CButton object, 382
Edit CButton object, 374
New CButton object, 378
Use button, 369-370

CWindow class variables, 349
Data Contents class, 389-393
defined,343
Delete CButton object, 380-384
Edit CButton object, 372-375
GetBureaucrat function, 347-348
GetFrom function, 348-350
GetObject function, 348
GetObject template, 399
GetView function, 347
itsContents pointer, 399
itsContents variable, 394
itsContents_CMain.h, 388, 393, 398-399
MakeNewWindow function, 344-345
New CButton object, 376-380
new prescription with lists, 397-398
PurObjectl function template expansion,

401-402
PutObject template, 399
Reac!AndReleaseViewResource function, 346
ReadContents function code, 406
reading and writing

categories list contents, 396-402
files, 404-407
notebook contents, 389-396

saving and restoring data objects, 387-402
summary, 407
TCL FORCE REFERENCE, 394-395, 400
TCLGetNamedWindow function, 345-346
transferring data to/from windows, 395-396
Use button, 367-384
user interface view, 344-387
View Info dialog, 404
Visual Architect code generation, 387-389
when you don't want to use, 402-407
WriteContents function code, 406-407

Index 473

Objects
See also specific objects by class name
comparing, 428
handling information accesses, 427-428
handling specifiers, 420-427

Offset pane, printing, 457-459
OK buttons, text sryle modal dialog, 175-176
Open Application events, document objects, 57-58
OpenDocument function

multiple file types, 65-68
single file types, 59-60

OpenFile function, CTextData code, 84-86

p
PackageAppleEvent function, Apple Events, 412
Pane Info settings, radio buttons, 269
Pane Info specifications, category editor dialog, 212-

214
Pane_Draw function

drawing, 450
events, 302-303

Parameters, SetUpFileParameters function, 33
Paste command, text fields, 293
Paste event, 419
Perform function, chores, 443
Periodic chores, 438-441
PICT grid resource, Floating Palette view, 157-158
PICT image, Floating Palette view, 156
Pop-up menus, 272-277

actions, 275-276
autoSelect property, 276
ChoiceMenu settings, 273
Choices menu, 274
DoClick function, 275
object construction and hierarchy, 272
PopupSelect function, 275, 276
properties, 273-274

Position Window function, CTextData code, 92
Preprocessor directives, Business Account view, 141
Prescription with lists, Object I/O, 397-398
Printing, 452-461

AboutToPrint function, 458
DoCommand function, 453
DonePrinting function, 459
DoPrint function, 453, 454
notebook pane, 453-457
offset pane, 457--459
overview, 452-453
PrintPage function, 456-457

J
i

\

474 >Index

PrintPageRange function, 454-456
PrJobDialog function, 453-454
secondary window contents, 459-460
summary, 460-461

ProcessEvent function, 297
Properties

Apple Event, 422-423
button, 261-265
pop-up menu, 273-274
radio button, 268
table, 278-285
text field, 290-292

ProviderChanged function
Business Account view, 133-134
dynamic modeless dialogs, 248-250
semantic events, 257-258, 259-260
tables, 288-289
text style modal dialog, 198-200

Push-pop stacks, CArray class, 334-336
PutObjectl function template expansion, Object II

0, 401-402
PutObject template, Object 1/0, 399
PutTo function code, category editor dialog, 239

R
Radio buttons, 267-272

actions, 269-270
inheritance diagram, 268
Pane Info settings, 269
properties, 268
SetValue function, 270
TellTurningOn function, 270
TurningOn function, 270

ReadAndReleaseViewResource function, Object 1/0,
346

ReadContents function code, Object 1/0, 406
ReadData function, CTextData code, 86-87
ReadDocument function, single file types, 60-63
Reading and writing

categories list contents, 396-402
files, 404-407
notebook contents, 389-396

Record button, Business Account view, 108-109
Recording and factoring support, Apple Events, 434
Redo event, 419
References.cp, skeleton application, 16
References.h, skeleton application, 16
Replying to Apple Event requests, 429-431
Restore button, Business Account view, 109-110
Resume events, 309

Revert event, 419
Run function, running applications, 37-40

s
Saving

DoSave function, 87-88
DoSaveAs function, 89-91
and restoring data objects, 387-402
Save event, 416

Secondary window contents, printing, 459-460
Select All command, text fields, 293
Semantic events, 253-260

BroadcastChange function, 257, 259
BroadcastChange messages, 254-255
CCollaborator class and its descendents, 254
classes and code summary, 294
defined,259
lnserL'\tindex function, 256
ProviclerChanged function, 257-258, 259-

260
SetArray function, 255-256

SendAEQuit function, Apple Events, 432
Sending Apple Event requests, 431-433
Set Data event, 416-417
SetArray function, semantic events, 255-256
SetArrayltem function, CArray class, 330
SetCategory function

CArray class, 330
category editor dialog, 220

SetSelected category function code, category editor
dialog, 221-222

SetUpFileParameters function, foundations, 33
SetUpMenus function

Floating Palette view, 159
foundations, 35-37
Tear-off Menu view, 168

SetValue function, radio buttons, 270
ShowSplashScreen function code, Splash Screen view,

153
Single file types, document objects, 59-63
Size lists, text style modal dialog, 17 4-175
Skeleton applications

code analysis, 14-16
creating, 11-14
customizing, 41-46

Skeleton code, text style modal dialog, 177-178
SortCat function

CArray class, 332-333
category editor dialog, 220-221

Splash Screen view, 150-153
MakeNewWindow function code, 152-153
ShowSplashScreen function code, 153

Spreadsheets, tables, 284-285
Stacks, push-pop, 334-336
Style checkboxes, text style modal dialog, 175
Suite and core events, handling, 413-420
Suspend events, 309
Symantec C++, skeleton applications, 11

T
Tables, 277-289

actions, 285-289
Begin Tracking function, 287
CMyTable class, 278-285
DoClick function, 286-287
EndTracking function, 287
KeepTracking function, 287
properties, 278-285
ProviderChanged function, 288-289
spreadsheets, 284-285

Tasks and undo/redo, 444-448
DoClick function, 447
DoCommand function, 445-446
inheritance diagram, 437
mouse-tracking tasks, 446-448
Notify function, 444-445
summaty, 448
text style undoable actions, 445-446
TrackMouse function, 447-448
UpdateUndo function, 446

TCL. See THINK Class Libraty
TCL_FORCE_REFERENCE, Object I/O, 394-

395, 400
TCLGetNamedWindow function, Object 1/0, 345-

346
Tear-off Menu view, 163-169

creating, 163-167
CTools constructor function code, 168-169
SetUpMenus function code, 168

TearOffMenu function, chores, 443
TellTurningOn function, radio buttons, 270
Template and collection classes, 327-342

CArray class, 327-336
collection and iterator class hierarchy, 328
CPtrArray template, 338-342
CRunArray class, 337-338
CVoidPtrArray class, 336-337
summaty, 342

Text fields, 289-294
actions, 292-294
Clear command, 293
Copy command, 293
Cut command, 293
DoCommand function, 292-294
Paste command, 293
properties, 290-292
Select All command, 293

Index 475

Text file input/output, document objects, 78-94
Text style modal dialog, 171-208

BeginData function code, 189-192
CApp class custom code, 179
CDialogText fields, 175
CFontList and CSizeList classes, 173-17 4
CMain class custom code, 179-184
CMain header file, 180-181
CNotebookUpdate structure, 200-201
CTextSettings structure, 179-180
DispensePaneValues function code, 193-195
DoBeginData function code, 187-188
DoChangeableModa!Dialog function, 197-198
DoCmdNotebook override function code,

182-183
DoCommand function code, 182
DoEndData function code, 205
DoModalDialog function code, 196-198
DrawSample function code, 192-193
EndData function code, 205-207
EndDialog function code, 203-204
ExchangeSettings function code, 183-184
font list, 174-175
Format menu, 176-177
ICMain initialization function code, 181
initialization, 183
Ix_CNotebook function code, 184-185
Justification radio buttons, 175
labels, 176
Main and Notebook views, 172-176
MakeNewWindow function code, 185-187
OK and Cancel buttons, 175-176
ProviderChanged function code, 198-200
size list, 174-175
skeleron code, 177-178
style checkboxes, 175
Update function code, 207-208
UpdateData function code, 201-203
x_CNotebook ProviderChanged function

code, 198-200

I

476 ~Index

Text style undoable actions, tasks and undo/redo,
445-446

THINK Class Library
Apple Events, 409-433
application foundations, 11-48
basic structure of, 3-4
chain of command, 5-7
chores, 437-444
command overview, 7-8
controls, 253-294
dialogs, 171-252
document management, 49-99
drawing and printing, 449-461
event handling, 295-325
factoring and recording support, 434
foundations, 11-48
introduction to, 1-10
Object 1/0, 343-407
overview, 2-3
tasks and undo/redo, 444-448
template and collection classes, 327-342
views, 101-169
Visual Architect, 8-10
Visual Hierarchy, 4-5

Torn Off function, chores, 443
TrackMouse function, tasks and undo/redo, 447-448
Transaction Terminated event, 419
TurningOn function, radio buttons, 270

u
Undo event, 419
Undo/redo. See Tasks and undo/redo
Update events, 301-305
Update function code, text style modal dialog, 207-

208
UpdateData function code, text style modal dialog,

201-203
UpdateDraw function, 449-450
UpdateMenus function, x_CMain code, 122
UpdateUndo function, tasks and undo/redo, 446
Urgent chores, 438, 441-444
Use button, Object 1/0, 367-384
User interface view, Object 1/0, 344-387
UserResize function, events, 317

v
VA. See Visual Architect
View Info dialog box

Main window, CSimpleSaver, 404
Object 1/0, 404
Visual Architect, 64, 70

Views, 101-169
Business Account, 101-149
Floating Palette, 154-163
Main, 102-105
Splash Screen, 150-153
Tear-off Menu, 163-169

Visual Architect
foundations, 11-48
Main window, 13
Menu Bar editor window, 13
multiple file types, 63-78
New View dialog box, 64, 70, 73
NewFile dialog box, 71, 73
object 1/0 code generation, 387-389
overview, 8-10
user interface view, 344-387
View Info dialog box, 64, 70

Visual Hierarchy, THINK Class Library, 4-5

w
Widgets window, Floating Palette view, 154-156
WindowToContents function

CNewView source file, 95
CTextData code, 93

WriteContents function code, Object 1/0, 406-407
WriteData function, CTextData code, 88-89
Writing. See Reading and writing

x
X_CApp class, foundations, 22
X_ CApp.cp, skeleton applications, 15
X_CApp.h, skeleton applications, 15
X_CCategories class header file, category editor dia-

log, 223-225
X_ CMain code

Business Account view, 119-122
dynamic modeless dialogs, 245

X_ CMain.cp, skeleton applications, 15-16
X_ CMain.h, skeleton applications, 16
X_CNewView

header file changes, 81-82
source file changes, 82

X_CNotebook ProviderChanged function code, text
style modal dialog, 198-200

z
Zooming, lnZoomin and InZoomOuc clicks, 323-

325

MACINTOSH PROGRAMMING

The THINK Class Library (TCL) is a comprehensive application framework, common to
Symantec c+ + TM compiler products for both the 68000 and PowerPC. Mastering the
THINK Class Library provides a thorough examination of !:he TCL and the Visual
Architect,™ a graphic user interface development tool that alk1ws you to produce commercial
quality app lications with a minimum of effort.

The author describes fulJy the structure and operation of the TCL, including explanations of
all code generated by the Visual Architect, any necessary st1>m code, and the operation of
th.is code. Visual Architect tutori provide 9u with a st -by-step approach for simplifying
the development of complex Mac th , TCL. You'll also learn:

• how to use the Visual Arc
application features

• inside information on modal,

• how event processing works an
work for you

• the inside scoop on how Apple event

• how Object 1/0 wo

nt~;rface and custom

differe t types of views

dynamic aialogs

L perfor s most of the

Ii cations

ws and offset panes.

Mastering the THINK Class Library is an essenf
oper using TCL and Visual Architect.

e for every Macintosh devel -

Cover design by David High

Cover photographs by Steff any Rubin

Addison-Wesley Publishing Company

tosh programming and
rogramrning books. His career
erience includes everything from
esign of microprocessor CPU

52995

9 780201 483567

ISBN 0-201-48356-4

$29.95 us
$41.00 CANADA

