
Creative Programming in

M C R 0 S 0 F T®

I-

a:
L..LJ

=
~

<(

__J

L..LJ

>
L..LJ

I-

C/) .. '

Creative Programming in

Microsoft® BAS IC

For Optimal
Macintostf
Performance

Creative Programming in

Microsoft® BASIC

For Optimal
MacintosH"
Performance

Steve Lambert

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
10700 Northup Way, Box 97200, Bellevue, Washington 98009

Copyright © 1985 by Steve Lambert
All rights reserved. No part of the contents of this book
may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Cataloging in Publication Data
Lambert, Steve, 1945-
Creative programming in Microsoft BASIC for
optimal Macintosh performance.
Includes index.
1. Macintosh (Computer)-Programming. 2. BASIC
(Computer program language) I. Title.
QA76.8.M3L36 1985 005.265 85-18952
ISBN 0-914845-57-8

Printed and bound in the United States of America.

123456789 FGFG 89098765

Distributed to the book trade in the United States by Harper and Row.

Distributed to the book trade in Canada by General Publishing Company, Ltd.

Distributed to the book trade outside the United States and Canada
by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N. Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging in Publication Data available

Apple® is a registered trademark, ImageWriter'" and MacPaint™ are
trademarks, and Macintosh TM is a trademark licensed to Apple Computer,
Incorporated. Commodore TM 64 is a trademark of Commodore
Electronics Limited. CompuServe® is a registered trademark of
CompuServe Information Service. DIALOG® is a registered service
mark of DIALOG Information Services, Incorporated. Dow Jones
News/Retrieval® is a registered trademark of Dow Jones & Company,
Incorporated. PL-lOOOT" is a trademark ofElexor Associates. IBM® PC is a
registered trademark oflnternational Business Machines Corporation.
Microsoft® and Multiplan® are registered trademarks of Microsoft
Corporation. THE SOURCE"' is a service mark of Source Telecomputing
Corporation. The Sensorbus TM is a trademark ofTransensory Devices,
Incorporated.

Preface
Acknowledgments

I Contents I

Section I: Introduction x

Chapter 1: An Introduction to BASIC
Chapter 2: The Macintosh BASIC Environment

3

13

Section II: Graphics 24

Chapter 3: Introduction to Graphics
Chapter 4: Tracking the Mouse
Chapter 5: Drawing a Grid
Chapter 6: Transferring a Picture
Chapter 7: Manipulating a Picture
Chapter 8: Generating a Pattern
Chapter 9: The MiniPaint Program

27
31
43
55
67
85

111

Section Ill: Communications 142

Chapter 10: Introduction to Communications
Chapter 11: The Terminal Program
Chapter 12: The Expanded Communication Program

145
153
177

v

vi CREATIVE PROGRAMMING IN MICROSOFT BASIC

Section IV : Games 262

Chapter 13: Introduction to Games

Chapter 14: The Shell Game
Chapter 15: The Backgammon Game

265
267
303

Section V: Data Acquisition and Control 336

Chapter 16: Introduction to Data Acquisition and Control
Chapter 17: The ADC-1

Chapter 18: The HBC-1

339
347

371

Section VI: Appendices 394

Appendix A: Alphabetical List of Commands
Appendix B: A Few Short Utility Programs
Appendix C: Building the HBC-1

Index

397
443

481

531

Preface

I have been studying Microsoft BASIC, on and off, for about eight years-ever since I
assembled my first kit-computer and discovered that if I wanted software for it, I had
to write it myself. The availability of computer programs has improved since 1977, but
every now and then I still want a program that just doesn't exist, and I dig out my
BASIC books, refresh my memory, and become a programmer for a week or so. I have a
pretty good collection of books about BASIC, having been through eight or nine com
puters with five different operating systems since that first kit. And because there are
versions of Microsoft BASIC that will take advantage of the special features of almost
every computer on the market, the purchase of each computer requires a new BASIC

and a new book.
If I have come up with a few truths in these years of learning and relearning

BASIC, they are that complex programs are no more difficult to write than simple pro
grams-they are just longer-and the fastest way to learn how to program is by
studying other people's programs and figuring out how they work (or why they don't). I
have tried to apply these truths to this book about Microsoft BASIC for the Macintosh.
The sample programs are not short, simple examples demonstrating features you
could easily understand by reading the manual. They are, for the most part, programs
that serve a useful purpose or demonstrate techniques that can be applied to such
programs. I have tried to point out the pitfalls and "undocumented features" that I
stumbled in or over, and explain the reasons for my approach to different problems.

The power and speed of new versions of BASIC have kept pace with the power
and speed of newly released computers. If this trend continues-and there is no rea
son to believe that it won't-it will soon be feasible to write commercial-application,

vii

viii CREATIVE PROGRAMMING IN MICROSOFT BASIC

entertainment, and utility software in BASIC, thereby re-establishing computer pro
gramming as a cottage industry open to anyone with a personal computer and the
ability to reason clearly.

For the part-time programmer, it is easy to fall into the trap of using the old fa
miliar commands that have faithfully followed you from version to version of BASIC. I

hope this book encourages you to explore new territory, expand your horizons, and
take advantage of the tremendous potential of the power offered by the team of
Microsoft BASIC and the Macintosh.

Acknowledgments

As with every book that manages to make the journey from a mere idea to a finished
product in the hands of a reader, this book was produced through the cooperative
efforts of many people. The people in the editorial, technical review, and production
departments at Microsoft Press have my unqualified respect for their ability to pull all
the pieces together into one cohesive package. My particular thanks go to Managing
Editor Joyce Cox, who took personal responsibility for editing the manuscript, to
Technical Review Manager Barry Preppernau, who provided the backgammon game
in Chapter 15 and reviewed all programs for reliability, and to Technical Reviewer
Chris Matthews, who built and tested an HBC-1, and helped with the technical as
pects of explaining analog-to-digital conversion.

Special thanks go to two people who don't work for Microsoft Press, but who

contributed greatly to this book:
John Socha, fellow author and programmer, critically reviewed many of the pro

grams. He forced me to clean up my programming style, taught me much about both
Microsoft BASIC and the Macintosh, and was always available to help me through the
rough spots.

Gordon Mills, a linear field engineer for Texas Instruments, devoted several hun
dred hours of his own time to the task of designing the HBC-1, and to the even greater
task of explaining its theory of operation to me.

ix

SECTION I

Introduction

An
Introduction

to BASIC Chapter 1

When Apple created the Macintosh, it totally broke away from the orderly evolution

ary path followed by previous computers. The Mac is not only easy to use, it is friendly
to the point of being fresh and has the potential for amazing power. Version 2.0 of Mi

crosoft BASIC made most of this power available to the average programmer, and the
enhancements provided by version 2.1 and the BASIC compiler continue to increase

the pleasure of programming on the Macintosh.
Although this book is not a primer on either BASIC or the Macintosh, the chap

ters in this section give a short explanation of how the two fit together, and may help
those readers familiar with traditional versions of BASIC on traditional machines to

understand the power available through this new partnership.

I The BASICs I
People purchase the BASIC programming language for various reasons. Some

have access to programs that are written in BASIC and need the language to run them.
Others have specific problems and think they can create a program in BASIC that will

solve them. A few intend to write programs for commercial distribution. But I imag
ine that the vast majority of the people who purchase BASIC do so out of a vague feel
ing that it is simply part of owning a computer. The computer is a mysterious device,

and programming it occasionally is a responsibility much like the weekly winding of
the grandfather clock, required to keep it running smoothly. Even after they discover
their clock to be self-winding, people often continue to write programs in BASIC just
because they find the exercise to be an entertaining form of mental gymnastics: Writ

ing and debugging a complex BASIC program can generate all the excitement and plea
sure of an adventure game you would pay to play in an arcade.

3

4 SECTION I: INTRODUCTION

Microsoft BASIC is the most popular of all microcomputer BASICs, with versions
that run on almost every brand of computer. Most of these versions are reasonably
compatible, the primary differences being in commands that take advantage of spe
cial characteristics of individual machines. The additional scope of BASIC commands

available on the Macintosh because of its high-resolution screen display and its ability

to rapidly manipulate graphic images makes this version of BASIC a particularly chal

lenging and enjoyable language in which to work. Some examples of these special
commands are those that allow you to use the mouse, to create windows, and to ma

nipulate graphics. In the version of BASIC for the IBM PC, the commands for dealing
with different colors fall into this category. These special commands are obviously not
transportable between machines that don't have like capabilities. Most other com
mands, however, behave exactly the same in the Macintosh version as they do in any

other version.

If you have Microsoft BASIC programs that run on other machines, the com

munication program we develop in Chapter 12 will allow you to transfer them to your
Macintosh, and you should be able to run them directly. Programs written in other
brands of BASIC can also be translated to Microsoft BASIC for the Macintosh: It is
simply a matter of sitting down with the documentation for each brand, finding the
commands that aren't directly compatible, and replacing them with the equivalent
Microsoft BASIC commands.

J BASIC differences I
The programs you create in versions 2.0 and above of Microsoft BASIC for the

Mac will have a different appearance from programs in other versions with which you
may have worked. Figure 1-1, which shows the same program listing in version 2.0 and
in a traditional BASIC, illustrates the most obvious visual differences.

The listing on the top is in the traditional format. The lines are numbered in as

cending order and the characters all appear in the style in which you typed them. The
program listing on the bottom accomplishes the same task, but was modified to take

advantage of BASIC for the Mac. And what a difference in appearance.
First, the line numbers are gone, replaced by an occasional label. Since the nor

mal flow of a BASIC program is from the first line to the last, the only time you have to
provide a number or label for a line is when the normal flow is to be diverted to that
line from elsewhere in the program. A label can be indented, but it must be the first

Chapter 1: An Introduction to BASIC

1000 ' Communication Loop
1010 WHILE true
1020 IF pauseFlag THEN GOTO 1500

5

1030 IF (LOC(l) = 0) AND stopFlag THEN PRINT #1, xON$: stopFlag = false
1040 WHILE LOC(l) = o 'nothing waiting to come in
1050 GOSUB 2000 •send key typed to file #1
1060 IF (sendFlag OR viewFlag) AND NOT waitFlag THEN GOSUB 2500
1070 IF endViewFlag THEN GOSUB 3000
1080 WEND
1090 WEND

Commloop:
WHILE true

IF pauseFlag THEN GOTO CommSkip
IF (LOC(1) = 0) AND stopFlag THEN PRINT #1 , xON$; : stopFlag = false
WHILE LOC(1) = 0 'nothing waiting to come in

SendKey 'send key typed to file #1
IF (sendFlag OR viewFlag) AND NOT waitFlag THEN CALL Sendline
IF endViewFlag THEN GOSUB EndFile

WEND
WEND

Figure 1-1. Traditional BASIC versus Microsoft BASIC for the Mac

item printed on the line and must be followed by a colon. It can be practically any
combination of letters, numbers, and periods, as long as it starts with a letter, is no
more than 40 characters long, and contains no spaces. Multiple words can be run to
gether with the initial letter of each capitalized or with a period separating them to
make them more readable. This flexibility allows you to use labels to specify the pur
pose of a line as well as its location: AccountBalance:, InvestmentCredit:, MouseAc
tion:, Dial.The.Phone:, and so on. Since a label can appear on a line by itself, it can also
be used to separate and identify subroutines and other program segments.

The second obvious feature of a version 2.0 program listing is that all the re
served words-BASIC statements and functions-are in a boldface type style. This
happens automatically: When you press Return after typing a line, BASIC picks out all
the reserved words and converts them to this style. This helps you easily locate many
typos, since a misspelled reserved word will stay as it was typed. This feature also
helps you avoid the accidental use of an obscure reserved word as a variable name:
When the variable you just typed springs boldly back at you, you can change it on the
spot, rather than waiting until you have a syntax error while running the program.

6 SECTION I: INTRODUCTION

I interpreter versus compiler I
Microsoft BASIC comes in two forms: as an interpreter and as a compiler. The

difference between the two is the manner in which they translate high-level BASIC
commands into the low-level language understood by the computer. Interpreters
translate a program one line at a time, executing each translated line before translat
ing the next. Compilers translate the entire program, and then run it. Microsoft
BASIC 2.0 and 2.1 are interpreters. Microsoft is developing a BASIC compiler for the
Macintosh.

There are advantages to each style of translation. With an interpreter you can
run a program as soon as you finish typing it. Then, if you want to make changes, you
can edit it and immediately run it again. With a compiler, there is an extra step in the
middle - the compilation -which can take quite a bit of time. However, a compiled
program runs substantially faster than an interpreted version of the same program,
and doesn't require that BASIC be loaded first.

Interpreters are usually considered most convenient when writing and debug

ging a program. Compilers are most convenient when running a finished program.
Compiled languages are especially appreciated by programmers offering their work
for sale, as they don't have to depend on the purchaser having the appropriate version
of BASIC in order to run the program. The ideal situation is a version of BASIC that can
run your program interpretively until all debugging is complete, and then compile it.
This level of convenience is approached by the combination of BASICs available from
Microsoft.

Since the compiler will compile a program written with the interpreter, the deci
sion to compile a program can be made retroactively and has no particular influence
on how the program is written. And since this book is about writing programs, it is
based on the interpretive versions of BASIC-specifically, on versions 2.0 and above
of Microsoft BASIC for the Macintosh.

I Generic syntax I
The commands available to you in BASIC often have options that aren't neces

sarily obvious from the context in which the command appears in a program. So that
you will be aware of all the possible options that might be available, as I introduce

Chapter 1: An Introduction to BASIC 7

each new BASIC command, I will also list its generic syntax using the same format as is

used in the Microsoft BASIC manual. For example:

INPUT$(X[, [#]_filenumber])

Significant aspects of this format are:

Feature

CAPS

italics

x

()

[]

Meaning

Capitalized words (longer than one character) must be typed letter
for letter as shown, although you don't have to capitalize them;
BASIC automatically does this for you

Italicized words represent program-specific variables to be supplied
by the user

A single capitalized letter, or a letter followed by a string-specifier
(such as X$) also represents a program-specific variable that the
user supplies

Parentheses are part of the command and must be typed in

Square brackets indicate optional parameters; they are not typed in

Ellipses indicate that the preceding item may be repeated any
number of times

I Programming style I
One of the things about programming that makes it enjoyable for me is the fact

that there are many ways to get the job done, and the method is rarely as important as

the result. There is good programming style, and there are techniques that are gener

ally considered "proper." These contribute to the speed and efficiency with which you
write programs, and the ease with which their operation can be understood by others,

but the ultimate test of whether or not a program is "good" is how well it does the job.

Each programmer is free to develop his or her own style and structure.

My programming technique, with anything other than the simplest of programs,

is to sit down first with a pencil and paper and list the things the program will do and

the order in which they will be done. My approach is far too primitive to be glorified

with the title "flow chart"; it is more a simple sketch. I also sketch where I think ob

jects should appear on the screen at different points in the program (we will develop a

grid in the next section that will help in this task).

8 SECTION I: INTRODUCTION

My programming style is a little more involved. As I said earlier, programming

style is pretty much up to the programmer and can vary from program to program -
unless you are writing a book about programming and need to make it easy for your

readers to move from one program to another without having to reorient themselves
after each move. Here are some pointers about the style I have chosen for this book.

I Comments I
Most of the programs in this book are heavily commented. If you choose to type

these programs into your Macintosh and run them, there is really no point in typing
the comments as you can always refer to the book. However, if you modify a program,

you should add a comment of your own to explain each modification so that you, or
someone else, will understand its purpose when it is stumbled across in the future.

BASIC recognizes two types of comment, set off either by REM or by a single
quote mark. I use only the single quote mark, but use it in several distinct ways (Fig
ure 1-2). Comments that apply to a whole section of the program are typed flush left,

and have at least one line of open space above. Comments that apply only to the line
that follows them are indented as far as that line. Comments that are on their own
lines are set off by the single quote mark followed by an asterisk. Short comments

tacked onto the end of a command line are set off by only the single quote mark.

'* Define variables . ..
top= 20
left= 20
bottom= 300
right= 500

..
'* Open window for display . ..
WINDOW 1,, (0, 20) - (512, 342), 3
TEXTFONT4
TEXTSIZE6

Figure 1-2. Samples of comments

'top of output window
'left side
'bottom

'right side

'Monaco font -- monospaced
'make it small, to get numbers in

Chapter 1: An Introduction to BASIC 9

You will probably notice that the short comments to the right of the command
lines in my programs are aligned with the right edge of the display. This is not a new

feature of BASIC, but was done to increase the readability of the program listings by
separating the comments from the commands as much as possible. (It also produces a
better balanced and therefore more pleasing page.)

One other comment on comments. The maximum size program that BASIC can
load is determined by the amount of random access memory (RAM) available in your

Macintosh. This is not usually a significant factor with a 512K Mac, which has about

370K available for your program, but a 128K Macintosh only has about 20K available

for your program and its variables. Often, removing the comments will reduce the size
of an unloadable program enough so that it can be loaded. One of the utility programs
developed in Section VI performs this task for you.

I Labels I
I use labels only where necessary: that is, when the normal program flow is di

verted to the label. In other words, I don't use labels simply as comments; I use them

in place of traditional line numbers. Labels (at least in this book) have initial caps and

describe the purpose of the section they label. Statements can follow labels on the
same line, but I consistently put labels on their own line.

I Variable names I
I have adopted the convention of using initial lowercase letters for variable

names. If the name is composed of multiple words run together, I capitalize the first
letter of the second and all following words. Space permitting, variable names are long
enough to describe what they represent. The maximum length and components of a
variable name are the same as for a label: 1to40 letters, numbers. or periods.

Programmers accustomed to other wrsions of BASIC may feel that long variable
names and labels are an extravagance they will pay for with slower-running programs.
This is not the case in BASIC versions 2.1 and above, which tokenize variable and label
names. This means that they replace the variable name with a symbol (token), which is

stored in a list along with the name it replaced. The only time your meaningful names
and labels are used is when they are displayed on the screen for you to read; BASIC it
self works strictly with the tokens.

10 SECTION I: INTRODUCTION

There is an interesting side effect to this method of dealing with variable names.
BASIC stores the variable names with the exact combination of upper- and lowercase

characters you type, but recognizes the same combination of characters, however

they are typed, as that variable. BASIC stores the name only once, and then uses that
name each time it has to display the variable. Each time you type the name, the stored

version is updated with the specific combination of upper- and lowercase characters
you type. As a result, each time the screen is refreshed- that is, each time a line is re
drawn because you have edited it, or because the screen has scrolled-all occur
rences of the name are updated to match the way you last typed it.

I indents I
Labels and major comments are printed flush left. The body of the program is in

dented four spaces, and the body of each FOR. .. NEXT and WHILE. . .WEND loop is

indented an additional four spaces from its beginning level.

I Spaces I
BASIC has very little use for spaces; they are needed only to make the program

more readable for people. But since people, as well as a few computers, will be reading

these programs, I separate almost everything with spaces. An advantage of following

this practice, even if you aren't producing programs for public consumption, is that it
is easier to automatically search for and replace a word if it is always set off by spaces.

I GOTO statements I
The use of GOTO statements is generally frowned on by people who teach BASIC

programming. The justification for this attitude is that GOTO statements, improperly

used, can make it very difficult for a person reading the program to follow its logical
flow. The effect of too many GOTOs is often called "spaghetti logic:' The proper use of
subroutines and subprograms usually eliminates the need for most GOTO statements.

My primary use of GOTOs is to jump around several lines, or return to the begin
ning of a loop. The purist would avoid even these uses, possibly through the use of an
IF. .. THEN ... ELSE statement, or a WHILE. . .WEND loop."-Purity, however, has never
been one of my major vices.

Chapter 1: An Introduction to BASIC 11

I Programs on disk I
The purpose of the programs in this book is to help you understand how BASIC

commands are used to create useful programs. You can learn about programming by
simply reading the program listings and their explanations, but it is much more effec
tive if you also run the programs, study what they do, and then make changes to test
your understanding. However, typing the longer programs is a rather tedious task, so
if you would like to run the programs in this book without having to type them,
you can purchase the Companion Disk to Creative Programming in Microsoft BASIC,

which contains the programs exactly as they appear in the book. The disk also con
tains additional information about the construction of the HBC-1 analog-to-digital
converter described in Chapter 18 and Appendix C.

You can order the disk with the order card bound into this book, or by sending
your name and address, along with $19.95 (plus $1.00 for postage and handling), for
each disk. U.S. funds only, please. California residents must add 6.5% sales tax and
Washington state residents 8.1 % sales tax. Payment must be made by check or credit
card. Include your MasterCard, VISA, or American Express Card number, along with
the expiration date, with your order. Send your order to: Microsoft Press, Attn: LDSK,

10700 Northup Way, Bellevue, WA 98004. Please allow fourweeks for delivery.
I have made every attempt to ensure that the programs on the Companion Disk

are "bug-free:' However, if you should discover something I missed, you can drop me
a line at: 15 Central Way, #280, Kirkland, WA 98033. I will include the correction on
future disks.

Now that you have seen a few of the ways Microsoft BASIC for the Mac differs
from other versions of BASIC, and I've told you about the way I format my own BASIC

programs, let's move on to Chapter 2 for a look at some of the unique aspects of the
Macintosh.

The Macintosh
BASIC

Environment Chapter 2

When Apple released the Macintosh, it stressed the new computer's "user friend
liness" and ease of operation. It billed the Mac as the machine for "the rest of us" -
for the people who have no desire to become programmers in order to use a computer.
The Mac has lived up to this billing, but with the development of programming lan
guages that allow access to its power, it has also become a delight for programmers,
from neophyte to expert. This chapter provides an overview of the Macintosh's fea
tures as they apply to Microsoft BASIC, for those users who are not familiar with this
combination.

First let's take a quick tour of the BASIC work environment-the screenful of
windows and menus that Apple calls a desktop. If you have seen other Macintosh ap
plications, the items on the desktop shown.in Figure 2-1 should be familiar.

At the top is the menu bar, displaying the titles that, with a press of the mouse
button, drop down into full command menus. You choose a command by dragging
down the list and releasing the button while the pointer is over the desired command.

Three windows occupy the remainder of the screen: the List, Output (labeled
Untitled in Figure 2-1), and Command windows. From the time you load the BASIC in
terpreter, it is in one of three modes of operation: edit, program execution, or com
mand. Each mode is associated with a different window on the Macintosh desktop.
The edit mode is used to create and modify programs in the List window. The pro
gram-execution mode is used to run these programs, displaying the results in the
Output window. The command mode allows you to enter commands directly into the
Command window and have them immediately executed. We will look at each of these
windows a little more closely in a few moments.

13

14 SECTION I: INTRODUCTION

s File Edit Search Run Windows

D List

1Q

I
I IQ

Command

Figure 2-1. The BASIC desktop

You have undoubtedly used other Macintosh applications in which you could

open and close windows, use the mouse to change their size and location, click buttons

in them to make selections, and so on. So you won't be too amazed to hear that BASIC

makes use of all these same features. What may come as a pleasant surprise, though, is

the fact that BASIC also allows you to integrate these features into the programs you

write. Let's take a closer look at what we have here.

I The Macintosh screen I
The first time you saw the Macintosh in operation, you were undoubtedly im

pressed by the sharpness of the image on its screen. This crispness is due to the high

resolution and small size of the Macintosh screen compared with most other computer

screens. The Macintosh always operates in a graphic mode (as opposed to a text

mode), creating images on its screen by turning on or off little dots called pixels. Sec

tion II explains how you can use BASIC to control the condition of these pixels, either

Chapter 2: The Macintosh BASIC Environment 15

individually or in groups, to create and move images, including windows, pushbuttons,
and pictures you bring in from MacPaint.

I The mouse and pointer I
As you know, moving the mouse controls where the pointer points. Clicking the

mouse button, either once or rapidly several times, selects an object for some action or
gets the action going. Holding the button down while moving the mouse controls
other activities, perhaps moving a window or drawing a line. Each of these mouse
events is constantly monitored by the Macintosh and information about them is made
available to you through BASIC. You can tell where the mouse is now and where it was
when it was last clicked, double clicked, or even triple clicked. You can identify the be
ginning and ending points of a drag, as well as the ID number of any button, box, or
window clicked. You can even change the shape of the pointer or hide it away when it
isn't needed. You will be familiar with most of these techniques by the time you get
through Section III.

I The standard windows I
BASIC itself uses four windows to manage your creative efforts while you are

writing a program. Three of these windows-List, Command, and Output-were
shown in the initial desktop displayed earlier; the fourth window-a second List
window-is used with the first List window to simultaneously list different parts of
the same program.

I The Command window I
When you load the BASIC interpreter, the Command window is active and BASIC

is in the immediate mode, waiting for you to type a command. Anything you type ap
pears in the Command window. When you press Return, BASIC assumes the contents
of this window to be a command and attempts to execute it. After the command is exe
cuted, it is discarded; to repeat the command, you have to enter it again. You can enter
multiple commands in the Command window by separating them with colons. If you
enter more text than will fit on one line of the Command window, the additional text is
automatically wrapped around to the next line-up to a total of about 250 characters.

16 SECTION I: INTRODUCTION

If you exceed this limit, an error message is displayed when you press Return, and
your commands are not executed.

NOTE: The Cut, Copy, and Paste commands function in the Command window
just as they do elsewhere. If you think you might want to repeat a command, or change
it slightly and try it again, copy it to the Clipboard before pressing Return. After the
command has been executed, press Command-V to paste a copy from the Clipboard
back into the Command window.

You enter commands in the Command window to test or change the value of vari
ables while debugging a program, to get the results of a single calculation rapidly, or to
try out a short string of commands before using it in a program. To create a program
composed of more than about three lines, however, you must use the List window. If
the List window is visible, simply click in it to enter the edit mode. If the List window
is not visible, choose Show List from the Windows menu or type List in the Command
window and press Return.

I The List window I
BASIC's List window is essentially a specialized word-processing program, de

signed to help you write and modify programs. It allows you to use the Macintosh's
standard Cut, Copy, and Paste commands to edit text, and has word-processing fea
tures such as Find and Replace.

The title bar, scroll bars, and size box in this window function just as they do in
similar windows in other Macintosh applications: You can drag the window by its title
bar, scroll to different spots in the listing with the scroll bars, and change the size of
the window with the size box.

There is a shortcut for changing the size of any BASIC window that has a title bar:
You can double-click the title bar. BASIC remembers two sizes for each window, and
when you double-click, it switches the window to the other size.

The second List window

The second List window, which is identical to the first, can be used to display a
different section of the program than the one in the first window. This is very handy
when you are reorganizing a program by cutting and pasting segments within it.

Chapter 2: The Macintosh BASIC Environment 17

I The Output window I
The Output window is automatically opened by BASIC to display the results of

the program you run in the List Window or the commands you enter in the Command
window. BASIC designates the Output window as window #I, and counts it as one of

four output windows you can have open in your programs. You can use BASIC com
mands to create another window as #I, in which case the stock Output window is re
placed with the one of your own design.

I Creating your own windows I
The windows discussed so far are displayed by the BASIC interpreter. The pro

grams you write in BASIC can also display up to four windows on the screen at a time,

and you can tailor the size, shape, and style of these windows to your needs. Typically,
they are used to gather input, display the result of whatever task your program is per
forming, or alert the user to pertinent points along the way.

Most of the housekeeping tasks associated with displaying windows on your
screen are taken care of by the Macintosh. For example, if you create a window that

can be dragged with the mouse, or expanded and contracted, the Macintosh steps in

on your behalf when the user attempts one of these operations. Just as with significant
events in the life of your mouse, the Macintosh traps significant window events, stores
information about them, and passes it on to you if you request it. Information stored
includes the size of each window, the currently active window, the number of the most
recently pressed button or most recently used edit field, and whether a window has
had a previously covered area exposed, and therefore needs to be refreshed. You'll
find out more about trapping these events in Section II.

I Dialog boxes I
A dialog box is simply a window that has been put to a special purpose. If you are

near your Macintosh now, you can have a look at a dialog box by choosing from the
menu any item with an ellipsis after it. Choosing Open ... from the File menu, for ex
ample, produces a dialog box similar to the one shown in Figure 2-2. This dialog box is
used to gather the information needed to carry out the Open ... command. It offers
items you can scroll through and buttons you can click; other dialog boxes might have
edit fields into which you can type a word or phrase.

18 SECTION I: INTRODUCTION

ALPHABETIZE.BAS ~
check file

I
(OJl(m) Microsoft B ...

Compressor
create data st ... (Eject)
Draw
fill file (Cancel) (Driue)
fill file (t)

Figure 2-2. The Open dialog box

You can build your own dialog boxes in BASIC or you can use a few of the stock

ones offered by the Macintosh. As an example, the dialog box you produced by choos

ing Open ... from the File menu could also be produced from within a BASIC program

with the FILES$(I) function, which you'll learn about in Section II. Not only does this

function produce the dialog box, it also retrieves the user's selection. Isn't that easier

than the old LINE INPUT "Type the name of the file (filename. ext) to open"; f$ routine?

And selecting from a list in a dialog box solves the problem of whether or not the user's

entry is correctly typed and spelled.

I Menus I
The menu bar across the top of the screen has six items on it. The Apple icon at

the left end heads a menu that is common to most Macintosh applications; the remain

ing five menus contain some items that are similar to menu items in other applications,

but most are unique to BASIC. If you place the pointer over one of the menu titles and

press the mouse button, that entire menu drops down. If you drag the pointer down
the menu, the commands that are currently available become highlighted when the

pointer is over them. Releasing the mouse button while a menu item is highlighted

chooses that item, causing whatever action it controls to take place.

The commands available from the BASIC menu bar are grouped by function and

arranged beneath titles that more or less describe the function. Most commands in

the File and Run menus serve the same purpose as similarly named commands that
you would type in other versions of BASIC. Figure 2-3 illustrates the relationship be
tween menu items, their keyboard equivalents (typed in the Command window) and

standard BASIC commands.

Chapter 2: The Macintosh BASIC Environment 19

Menu Item Keyboard Equivalent BASIC on IBM PC

File New New New
Open ... Load Load
Close Window Close # n/a (not the same as

Close (filename))
Save n/a n/a
Save As ... Save Save
Print ... Llist (List, LPTl:Prompt is Llist

exact replacement)
Quit System System

Edit Cut n/a n/a
Copy n/a n/a
Paste n/a n/a

Search Find ... n/a n/a
Find Next n/a n/a
Find Selected Text n/a n/a
Find Label n/a n/a
Find the Cursor n/a n/a
Replace ... n/a n/a

Run Start Run Run
Stop Stop Stop
Continue Cont Cont
Suspend n/a n/a
Trace On/Off Tron/Troff Tron/Troff
Step n/a n/a

Window Show Command n/a n/a
Show List List n/a
Show Second List n/a n/a
Show Output Window#l n/a

Figure 2-3. Macintosh menu options and their keyboard equivalents

The individual menu commands are explained in detail in the Microsoft BASIC

manual and in introductory books on BASIC. Here is an overview of the commands
and a brief description of those that either aren't obvious or don't relate directly to tra
ditional BASIC commands.

20 SECTION I: INTRODUCTION

The commands that you can select by dragging through the File menu are used

primarily to move programs in and out of BASIC.

Command

New

Open

Close

Save

Save As ...

Print ...

Quit

Action

Clears memory before you type new program

Brings program in from disk

Closes active window on screen; not same as BASIC statement
that closes file

Updates program that you have already named

Assigns name to program currently in memory; can also be used
to change name of program or save copy on different disk

Sends program listing to printer; standard Macintosh Print dialog
boxes appear, allowing you to set format

Returns you to Macintosh desktop (the Finder), which appears
when you turn on machine and insert disk; if there are unsaved
changes to program, you are prompted to save them

The Edit menu commands, used when typing or modifying a program in the List

or Command window, are common to almost all Macintosh applications. Once ac

customed to cutting, copying, and pasting, you will wonder how you ever got along

without them.

Command

Cut

Copy

Paste

Action

Deletes currently selected text and replaces contents of
Clipboard with deleted text

Replaces contents of Clipboard with copy of currently selected
text, without deleting text

Puts copy of Clipboard contents at location currently selected in
List or Command window

The Search menu commands are useful when editing and debugging a program,

and are great when you decide to clean up your program by renaming variables or la

bels. With the exception of Find Label and Find the Cursor, these are standard word

processor features.

Chapter 2: The Macintosh BASIC Environment 21

Command Action

Find Label

Find the Cursor

Adds colon to selected (highlighted) program text, and
searches for matching label

Scrolls List window to display section of program
containing cursor

NOTE: If you do loose the cursor, which is possible when you scroll through a

long listing, there is actually no need to resort to the Find the Cursor command: You

can return to the cursor immediately, with no effect on the program, by typing any

character followed by a Backspace (typing the character brings the section of the text

containing the cursor onto the screen and enters the character; pressing the Back
space key deletes the character, leaving the text as it was).

The Run menu commands control the execution of your program. Start, Stop,

and Continue are pretty obvious. The remainder cause the following actions:

Command

Suspend

Trace On

Step

Action

Causes execution of program to pause until any key is pressed
(other than Command-S, which invokes Suspend)

When you select Trace On, menu item changes to Trace Off.
Each statement is framed in List window as it is executed and
result is displayed in Output window, allowing you to watch
cause and effect to discover where things are going wrong

Essentially same as Trace command, except it executes only one
statement and then returns to immediate mode, allowing you to
test or alter variables before continuing to next step

The Windows menu commands all bring hidden or closed windows to the sur

face and make them active.

I Keyboard command shortcuts I
The most-often-used menu commands can be chosen by holding down the Com

mand (88) key and pressing a letter that represents the command. Where available,

the keyboard shortcut appears to the right of the command on the menu. For conve

nience they' re also listed here in the table on the following page.

22

Command

Cut
Copy
Paste
Find
Find Next
Start
Stop
Suspend
Step
Show List

Keyboard shortcut

Wx
We
Wv
OOF
00 N
00 R
00 .
Ws
00 T
00 L

I Creating your own menus I

SECTION I: INTRODUCTION

Your BASIC programs can display up to ten drop-down menus (in addition to the
menu beneath the Apple icon, over which you have no control), with up to 20 items on
each. The custom menus you create can replace some or all of BASICs five stock
menus. Imagine how much more convenient these are than the conventional hier

archical menus, where typing a response to one menu leads you to another menu, and
another, and so on. Your program need only specify the items for each menu and what

will be done when one is chosen: BASIC, or the Macintosh operating system, keeps
track of whether the pointer is over an item and what is going on with the mouse but
ton. We will start creating our own menus in Section III.

I Memory Management I
A stock Macintosh, as it comes from the factory, has either 128K or 512K of RAM.

Because the Macintosh operating system requires a lot of memory, and applications

typically gobble more, other companies offer upgrade kits to expand the memory to as
much as 2M (2 million bytes). Additional memory will allow you to run larger pro
grams, and sometimes increases the speed of the programs you could run before the
addition; but efficient management of whatever memory you have will allow optimum
performance from the Macintosh. We will look at specific memory-management tech
niques as we develop large programs that require them.

Now that we have the background information out of the way, let's dig into the
fun stuff. The next section deals with how you can control the display of text and pic
tures on the Macintosh screen.

SECTION II

Graphics

Introduction
to Graphics Chapter 3

An obvious and very pleasant difference between using the Macintosh and using prac
tically any other computer results from what is called the "user interface:' This is
computer jargon for the manner in which you relate to the machine: how you give
commands and provide the information needed to produce the results you desire. As
you undoubtedly realized the first time you used it, the Macintosh leans heavily on
graphic images and the mouse to communicate with the user. You quickly learn to rec
ognize the graphic icons representing the files on your disk, and making selections
from drop-down menus and dialog boxes by clicking buttons with your mouse be
comes second nature.

One of Apple's goals in developing the Macintosh was to create a user interface
that would be easy for the average person to understand, and then to make the compo
nents of this interface readily available to companies creating application software for
the Macintosh. As a result, most commercial Mac applications-spreadsheets, word
processors, database managers, and so on-make use of a similar interface. Once you
master one program, you can learn the others relatively quickly, since you already un
derstand the basics.

As we saw in Chapter 2, versions 2.0 and later of Microsoft BASIC for the Macin
tosh provide access to interface features such as menus, multiple windows, dialog
boxes, and buttons, allowing you to create programs with all the power and pizzazz of
those produced by the professionals. They also allow you to store, display, move, and
manipulate other kinds of visual information: pictures you create in BASIC and those
you transfer in from other programs, such as MacPaint or Microsoft Chart. You will
utilize these features most effectively if you understand how images are produced on
the Macintosh screen.

27

28 SECTION II: GRAPHICS

I Screen control I
The portion of the screen that lights up to display an image is 6 .75 inches wide by

4.5 inches high. The patterns that appear in this area, whether they represent letters
of the alphabet or parts of a picture, are created by turning on or off individual ele
ments in a grid of small rectangles called pixels. The pixels are neatly organized into
342 rows and 512 columns. This works out to about 5765 pixels per square inch (as op

posed to 2144 pixels per square inch for an IBM PC in its highest resolution graphic
mode, displayed on a typical 12 inch monitor). If you have used FatBits in MacPaint,

you have already seen and controlled individual pixels. Figure 3-1 shows a portion of

the screen, enlarged by FatBits.
Many of the commands available in BASIC allow you to manipulate individual

pixels or groups of pixels to form lines, shapes, and patterns. In order to do this accu -
rately, you must have a way to identify the location of the pixels you want to control.

•••• • ••••••• • •• • ••• •• •••• •• • •••• •• • • • •• • • •• • • •• • • •• •••••••• •••••••• • •• •••• • •• ••••• • •• • • ••• • •• • • •

Figure 3-1. Pixels, as enlarged by FatBits

Chapter 3: Introduction to Graphics 29

30 38
.LlJ.1--=-=-:::II: =-=-I ---- --

Figure 3-2. The display coordinate system

You do this on the Macintosh not by referencing the pixel itself, but by referencing an
imaginary and infinitely small point at the upper left corner of the pixel. Let's have an
other look at some fatbits, this time with an imaginary grid laid over them, as shown in
Figure 3-2.

This grid extends over the entire display area of the Macintosh screen, and forms
the coordinate system used to specify where graphics and text are to be printed. The
vertical lines are numbered consecutively from 0 to 512, and the horizontal from 0 to

342. You can specify a position at which something is to be displayed by specifying
the coordinates of the point formed by the junction of a vertical and horizontal line on
this grid, with the point (O,O) in the upper left corner of the screen and the point
(512,342) in the lower right corner.

I Pixel commands I
The actual pixels affected by your command depend upon the type of command

used. There are two classes of display commands: those provided directly by Apple
and available to the programmer as built-in programs, known as ROM (read-only
memory) calls, and those provided by Microsoft as BASIC statements. We will see ex
amples of both in the programs we develop, so let's take a look at the differences now.

A pair of coordinates passed to a ROM call references the pixel directly below
and to the right of the coordinate. The same coordinates used in a BASIC statement
reference the pixel above and to the right. The difference between the two is most ev
ident when printing text on the. screen. The BASIC PRINT command that displayed
the letter A in Figure 3-2 instructed the Macintosh to print the letter at location

30 SECTION II: GRAPHICS

(30, 40). The character is nine pixels high and seven pixels wide (plus a pixel of white
space on each side), and extends from grid location (30,40) upward and to the right.

The ROM call that drew the line located one pixel below the letter instructed the Mac
intosh to draw a line from (30,41) to (38,41). The line fills the row of pixels hanging

below grid line 41.

I Multiple windows I
The Macintosh allows you to display information in up to four windows at a time.

To make the mechanics of this somewhat easier, each window has its own coordinate
system, starting at (0,0) in its upper left corner. This means you can judge the place

ment of images using the borders of the window as guidelines, rather than having to

pinpoint particular pixel locations within the screen as a whole. Also, as you move a

window, the coordinates of images in it stay the same, since they are always relative to
the corner of the window. We will play with this feature as we develop our first pro
gram in the next chapter. We will also experiment a little with where the different dis
play commands place text and graphics.

Tracking
the Mouse Ch(=!.pter 4

Although this first program, shown in Figure 4-1, is rather short, it introduces several
interesting commands and will, I think, give you a better understanding of how the
grid coordinate system is used to identify pixel locations. I'll explain how this program
works in a moment. My practice throughout this book is to explain each command the
first time I use it. (If you skip ahead and find that you've missed an explanation, you

can either locate the command in the Index and return to the explanation, or look it

up in Appendix A, which contains an alphabetical listing of all the Microsoft BASIC

commands.) My explanations will probably be much easier to follow if you first load
BASIC into your Mac, type into the List window each program as it appears in the text
(less the comments), and run it. If you have experience with other versions of BASIC,

you may want to simply glance through the explanation of each program, to pick up
new commands.

After you have typed in the program in Figure 4-1 and chosen Start from the
Run menu, position the pointer within the small window that is created on the screen
and press the mouse button. The (x,y) coordinates that identify the grid location of

the pixel at the head of the pointer (using ROM convention) are printed in the upper
left corner of the window, as shown in Figure 4-2. Now drag the mouse and watch the
coordinates change.

We will try a few other experiments with this display shortly, but first let's take a
closer look at the individual lines in the program and consider what each command
contributes to the final display.

31

32

'*Tracking the Mouse
'*

'*
'* Open two windows.
'*
WINDOW 1, "Background", (0, 38) - (512, 342), 1
WINDOW 2, "Tracking the Mouse", (275, 150) - (475, 300), 1

'*
'* Print instructions.
'*
CALL MOVETO (2, 50)
PRINT "Position the pointer in this"
PRINT "window, press the mouse"
PRINT "button, and drag."
PRINT "Triple click to quit."

'*
'* Wait for the mouse button and print coordinates.
'*
WHILE MOUSE(O) <> -3

WHILE MOUSE(O) = -1
CALL MOVETO (10, 20)
PRINT "x="; MOUSE(1), "y="; MOUSE(2)

WEND

'*

SECTION II: GRAPHICS

'position to print onscreen

'while no triple click
'while button is down

'x and y coordinates

'* The button has been released. Go back and wait for it to be
'*pressed again.
'*

WEND
END

Figure 4-1. Mouse-tracking program listing

Chapter 4: Tracking the Mouse 33

s rn<~ Edit S<rnn h Run Windows
Background

~lO§ Tracking the Mouse

X: 145 Y= 112

Position the pointer in this
window, press the mouse
button, and drag.
Triple click to quit.

tt
li

Figure 4-2. Tracking the mouse

I The WINDOW command I
The WINDOW command is a new one, even for those familiar with versions of

BASIC for other machines. This program uses two windows: a background window
that fills the entire screen, overlaid by a display window that starts rather small, but
can be enlarged. (The idea of a background window is common to many of my pro
grams: Its purpose is to cover the List and Command windows that BASIC normally
displays so that the program output is more prominent on the screen.) Here are the
statements that create these windows:

WINDOW 1, "Background", (0, 38) - (512, 342), 1
WINDOW 2, "Tracking the Mouse", (275, 150) - (475, 300), 1

34 SECTION II: GRAPHICS

As with many BASIC commands, there are several versions of the WINDOW

command: four statements and one function. Here is the syntax for each version. First
the statements:

WINDOW ID[, [title][, [rectangle][, type]]]

WINDOW CLOSE ID

WINDOW OUTPUT ID

WINDOW OUTPUT file#

And here's the function:

WINDOW(n)

The four statements allow you to create windows, close existing windows, specify
which will be the output window, and redirect the output from the screen to a file.
The function returns information about the active and the current output windows.

The mouse-tracking program uses the first form of the WINDOW command to
create two windows. The active window is the highlighted window in front of any
other window on the desktop. In our program, window #2 is the active window, as it
was the last window drawn and we haven't specifically designated another window as
active. INPUT statements, MOUSE and DIALOG functions, and dialog event trapping
(all of these subjects will be covered later) are monitored in the active window.

The current output window is the one in which print and graphic statements dis
play their results. When a window is created, it automatically becomes both the active
window and the current output window, but when more than one window is created
(recall that you can have up to four), you can designate separate windows as active
and current output.

In the WINDOW statement that creates it, our active window is identified as
window #2 by the ID parameter and given the title Tracking the Mouse. The rectangle
option determines where on the screen the window will appear, by specifying the
(x,y) coordinates of its upper left and lower right corners: This output window
stretches from (275,150) to (475,300). The type option specifies the window type,
from the four possible types shown in Figure 4-3.

Chapter 4: Tracking the Mouse 35

Type 1 Type 2

-D Untitled

Type 3 Type 4

Figure 4-3. Four types of window

The integers 1 through 4 and - 1 through - 4 are used to specify these window
types. Windows with negative type numbers, called modal windows, look just like
their positive counterparts, but when a modal window is active, any attempt to select
something outside it results in a beep. You can use this feature to force the person
running the program to respond to a request for information, rather than select an
item from a menu or wander off on some other tangent.

I The CALL statement I
The CALL statement diverts the How of a program to a BASIC subprogram or, as

in this program, to a machine-language routine.

CALL MOVETO (2, 50)

This particular machine-language routine-MOVETO (x,y)-is one of the group of
predefined routines that Apple stored in the Macintosh ROM. These ROM calls are

36 SECTION II: GRAPHICS

among those provided to standardize the appearance of application programs (see
Chapter 3). Calling these ROM routines from within BASIC is much easier than trying
to accomplish the same task with a series of BASIC commands and, since they are writ
ten in machine language, they perform their tasks much faster than BASIC could.

The CALL statement is unusual, in that the statement name itself is optional.
The two syntaxes of the CALL statement are:

CALL name [(argument list)]

name [argument list]

If you choose to drop CALL, notice that you must also drop the parentheses surround
ing the list of arguments. I usually choose the shorter format.

I The MOVETO statement I
MOVETO positions the Mac's pen-the graphic point used for drawing lines,

shapes, and text-at the pixel specified by the (x,y) coordinates given in the argu
ment list: in this case (2,50). This is usually done in preparation for printing text or
drawing a line or shape.

When running this program, you will notice that the origin of the coordinate
system-that is, the point at which both x and y equal zero-is not at the same spot
on the screen for every command that references coordinates. The WINDOW state
ment, for example, creates a window defined by (x,y) coordinates relative to the upper
left corner of the screen. However, PRINT statements and other graphic commands
(such as MOVETO) reference coordinates that are relative to the upper left corner of
the current output window. We will experiment with this feature in just a moment.

I The PRINT statement I
The PRINT statement should be familiar to anyone who has used any version of

BASIC. There is nothing new or different about the Macintosh version, which causes
the expressions following it to be printed in the current output window, starting at the
current pen location. The expressions to be printed can be either text or numbers.
Those that are to be printed just as they appear in the PRINT statement, like the ones
in our mouse-tracking program, are enclosed in quotation marks.

Chapter 4: Tracking the Mouse

PRINT "Position the pointer in this"
PRINT "window, press the mouse"
PRINT "button, and drag."
PRINT "Triple click to quit."

37

Variables representing text or numbers are listed without quotes, and are auto
matically replaced by their actual values at the time of printing. We will see an exam
ple of this soon.

Multiple expressions, separated by semicolons or commas, can follow a single
PRINT statement, as in this line from the mouse-tracking program:

PRINT "x="; MOUSE(1), "y="; MOUSE(2)

An expression following a semicolon is printed immediately adjacent to the previous
expression; an expression following a comma is printed at the beginning of the next
comma stop (the comma stop is a position set by the WIDTH statement, which de
faults to the width of a string of 14 numbers in whichever font you are using). You can
also terminate an entire PRINT statement with a semicolon or comma, causing the

next PRINT statement to continue on the same line, after the current statement has
been printed.

I The WHILE ... WEND statements I
The WHILE. . .WEND statements are often referred to as a WHILE. . .WEND

loop. The full syntax for these statements is:

WHILE expression [statements] WEND

When the program encounters a WHILE. .. statement, it checks to see if the ex
pression after the WHILE is true. The first such e~pression evaluated in this program
is the following:

WHILE MOUSE(O) <> -3

38 SECTION II: GRAPHICS

If the expression is not true, the program continues with the line after the WEND. If
it is true, the statements between WHILE and WEND are executed and the program
returns to the WHILE statement and repeats the process until the expression is no

longer true.

I The MOUSE function I
The MOUSE function is actually a group of functions-MOUSE(O) through

MOUSE(6)-that make available information about the status of the mouse button

and the location of the pointer. This information is trapped by a section of the Macin

tosh operating system called the Event Manager. (The Event Manager also traps infor

mation about other activities in your program, such as the most recently selected

menu and menu item, and the fact that an inactive window has been clicked.)

Function

MOUSE(O)

MOUSE(l) and MOUSE(2)

MOUSE(3) and MOUSE(4)

MOUSE(5) and MOUSE(6)

Information returned

Returns integer between 3 and -3, depending
upon status of mouse button

Return x and y coordinates, respectively, of
pointer at moment MOUSE(O) function was
last used

Return x and y coordinates of pointer at
button-press prior to last use of MOUSE (0)
function (starting point of drag)

Return x and y coordinates, respectively, of
pointer at moment oflast MOUSE(O) if button
was down at that moment; if button was not
down, they return coordinates at which it was
last released

The number returned by the MOUSE(O) function ranges from -3 to 3, and is de

termined by whether the mouse button has been pressed since the last MOUSE(O)

and, if so, whether there has been a single, double, or triple click and whether the but

ton is still down. The possible values returned by MOUSE(O) are explained in the fol
lowing table.

Chapter4: Tracking the Mouse

Mouse value

0

1

2

3

-1 to -3

Meaning

Button is not down and has not been pressed since last
MOUSE(O)

Button is not down, but single click has occurred since last
MOUSE(O)

Button is not down, but double click has occurred

Button is not down, but triple click has occurred

Same as 1 through 3, except that button is still down (in middle
of drag)

39

So, what the WHILE statement in our program essentially does is allow the main
body of the program to run as long as the mouse is not triple clicked. When a triple
click is detected, program flow continues with the statement after the WEND that is

paired with this WHILE: in this case an END statement, which stops the program and

returns you to BASIC.

NOTE: You have to click very rapidly in order to register a triple click. If you click
too slowly, BASIC interprets it as a single click and acts accordingly. (We will develop a
routine, about two programs down the line, that gets around this problem.)

I Nested WHILE ... WEND statements I
Within the outside WHILE. . .WEND loop in our program is another WHILE. ..

WEND loop. The program cycles through the inner loop as long as MOUSE(O) is equal
to -1; that is, as long as the mouse button is held down after a single click.

WHILE MOUSE(O) = -1
CALL MOVETO (10, 20)
PRINT "x="; MOUSE(1), "y="; MOUSE(2)

WEND

The two lines in this loop-a MOVETO statement and a PRINT statement-move the
pen to the upper left part of window #2 and print the x and y values of the pointer po
sition at the last MOUSE(O). Recall that MOUSE(l) and MOUSE(2) return the x and y
coordinates of the pointer the last time the MOUSE(O) function was used. You could

40 SECTION II: GRAPHICS

substitute MOUSE(5) and MOUSE(6) for MOUSE(l) and MOUSE(2) in this application,

since they return the current (x, y) position if the button is down, and this loop is exe
cuted only if the button is down. The WEND statement then returns program flow to
the WHILE at the beginning of the loop. If the mouse button is still down, the pro
gram cycles through the MOVETO and PRINT statements again. If the mouse button
has been released, the program continues with the statement after WEND: in this

case the outer WEND that sends the program back to wait for the mouse button to go
down again.

I Experimenting with the program I
Now that the explanations are out of the way, let's get on to the more interesting

stuff. When you ran the program, you saw that it created a background window and a
small display window, and that if you pressed the mouse button while the pointer was

inside the small window, the program displayed the (x,y) coordinates of the pixel at
the head of the pointer. You saw the coordinate display change as you moved the

pointer. With a little experimentation, you can discover the origin (0,0) of the coordi
nate system at the upper left corner of the output window. If you move the pointer to
the left of the origin, the x value increases in a negative direction; move it above the
origin and the y value does the same. Now move the pointer to the lower left corner of
the first line of instructions. You should be able to identify the point (2,50), which is
where the MOVETO statement placed the pen before printing.

If you look at the display window, you will see that it has a title bar and size box
just like the windows created by Macintosh application programs. And just as in those

programs, you can use these features to control the location and size of the window.
You move the window by placing the pointer in the title bar and dragging the mouse,

and you can change the window's size by either dragging the size box or double click
ing in the title bar. (Double clicking enlarges the window to fill the screen; double
clicking in the title bar of the enlarged window returns it to its previous size.) As you
change the size and location of the window and display new coordinates, notice that
they are always relative to the upper left corner of the window.

These housekeeping tasks are taken care of through the special relationship be
tween BASIC and the machine-language ROM calls provided by Apple. All that was re

quired of you was a single command line to create the window. If you have experience

Chapter 4: Tracking the Mouse 41

writing programs in BASIC for other computers, you can imagine the commands that

would be required to duplicate the features of this window. You may also have noticed
a housekeeping task that was not totally taken care of by BASIC. The text displayed in
the window moves with the window as you drag it, but if you do anything that causes
the text to be erased, such as double clicking the title bar to enlarge the window or
dragging the size box to make the window smaller than required to show all the text,
the text is not redisplayed. BASIC does trap this fact, and later we will learn how to tell
when a window needs to be refreshed-that is, its text needs to be redrawn.

Stop the program by triple clicking in the the active window. Choose Show List

from the Windows menu and, when the program appears, change the beginning size
and location of window #2 (by changing the rectangle parameter), and perhaps its
type (by changing the number at the right end of the statement to 2, 3, or 4). See if you
can anticipate where the window will appear when you run the program again, and
what it will look like. The keyboard commands that can be used in lieu of choices from
the menu are convenient when making quick changes to a program and then check

ing to see the effect. Pressing Command-period will stop the program, Command-L
shows the List window, and Command-R runs the program.

As you experiment with different window types, compare the size of each with
the dimensions you specified in the WINDOW statement. Our original window, for ex
ample, was 200 pixels wide by 150 high (the ending minus the beginning x and y
values). If you check the actual dimensions of the window, you will find that the title
bar is added on to the top dimension, but the vertical column at the side is included in
the window width specified. In addition, the Macintosh menu bar is always displayed
in, the top 20 pixels of the screen. This explains why the background window (window

1 in our program) has a beginning y coordinate of 38, indicating that its top is 38 pix
els down from the top of the screen: The menu bar is 20 pixels high, and the title bar
for the window is 18. If you had specified the coordinates (0,0)-(512,342) for this win
dow in an attempt to fill the entire screen, the title bar would be totally off the screen
and the top two pixels of the window would be behind the menu bar.

As a final experiment, change the WHILE MOUSE(O) = -1 statement to WHILE

MOUSE(O) = 0. This causes the program to display the position of the pointer as long as

the mouse button is not pressed. This may not seem too significant right now, but it
will be an important element of the program in the last chapter in this section.

Drawing a Grid Chapter 5

Now that you have a general understanding of how the coordinate system is used to

position both text and graphic output on the Macintosh screen, let's whip out a slightly
longer program (with a little less explanation) to create the grid shown in Figure 5-1.

You can print copies of this grid and use them to help plan your screen displays.

s me~ Edit Scrnrc h Run Windows

~ t---+--+---l----l~-l---+--+---l----ll---l---+--t---l----l~-l---+--+---1----1~-l---+--t---I---+

~ t---+--t---l----l~-1---+--t---t----ll--+--T--t---t----t~+--T--t---+----t~+--T--t---+----t

~ t---+--+----+---l~-l---+--+---l----ll---l---+--t---l----l~-l---+--+---1----1~-l---+--t---I---+

100t---+--t---t----l~-l---T--t---t----ll--+--T--t---+----t~+--T--t---+----t~+--T--t---+----t

1~t---+--+---l----l~-l---+--t---l----ll---l---+--t---+----l~-l---+--t---l----l~-l---+--t---I---+

1~+-+--+-+--+~+-+--+-+--+r--+-+--+-+--+~+-+--+-+--+~+-+--+-+--+

1~t---+--t---t----t~+--T--t---t----tl--+--T--t---t----t~+--T--t---+----t~+--T--t---+---+

1~+--+--+---l----l~-l---+--+---l----11---l---+--t---l----l~-l---+--+---l----l~-l---+--+---I---+

200t---T--t---t----t~+--T--t---t----t,__+--T--t---+----t~+--T--t---+----t~+--T--t---+----t

2:210t---+--+---l----l~-l---+--t---l----ll---l---+--t---l----l~-l---+--t---l----l~-l---+--t---I---+

2140t---T--t---t----t~+--T--t---t----t,__+--T--t---+----t~+--T--t---+----t~+--T--t---+----t

2160t---+--t---t----t~-1---T--t---t----l,__+--T--t---+----t~+--T--t---+----t~+--T--t---+----t

2190t---+--t---l----lr---l---+--t---+----ll--+--T--t---+----tr--+--T--t---+----l,__+--+--t---+---+

Figure 5-1. A grid for plotting displays

43

44

'* Drawing a grid
'*

'*
'* Define variables.
'*
top= 20
left= 20
bottom= 300
right= 500

'*
'* Open window and set display font.
'* -

WINDOW 1,, (0, 20) - (512, 342), 3
TEXTFONT4
TEXTSIZE6

'*
'* Print numbers down left side and draw horizontal lines.
'*
FOR hline = top TO bottom STEP 20

MOVETO 0, hline + 2
PRINT hline
MOVETO left - 1, hline
LINETO right + 1, hline

NEXT hline

'*
'* Print numbers across top and draw vertical lines.
'*
FOR vline = left TO right STEP 20

'*
'* Width function returns number of pixels in string.
'*
MOVETO vline - WIDTH(STR$(vline)) I 2 - 2, top - 7
PRINTvline
MOVETO vline, top-1
LINETO vline, bottom + 1

NEXT vline

Figure 5-2. The grid-drawing program

SECTION II: GRAPHICS

'top of output window
'left side
'bottom

'right side

'Monaco font monospaced
'small, to get numbers in

more ...

Chapter 5: Drawing a Grid

'*
'* Wait for mouse click.
'*
WHILE MOUSE(O) = 0
WEND
END

Figure 5-2. The grid-drawing program (continued)

45

The grid program listed in Figure 5-2 first creates a window that fills all the

space beneath the BASIC menu bar, then changes the font size to 6-point in order to

squeeze the line labels into a small space. The monospaced Monaco font is used to

make the labels as easy to read as possible in the small size. It then draws and labels

the set of horizontal and vertical lines that represent the imaginary coordinate system

we discussed in Chapter 4, and pauses, waiting for you to click the mouse button to

signal that it should end. (The final click was thrown in to give you a chance to print an

image of the screen by pressing Command-Shift-3-a task we could also do from

)Vithin the program.) You should recognize many of the statements in this program

listing, so let's just review it quickly and then take a closer look at the new commands.

The first section of the program assigns the values of the coordinates that form

the boundaries of the grid to top, left, bottom, and right. The variables top and bottom
are, of course, the minimum and maximum y values; left and right are the minimum

and maximum x values. These variables are used by the ROM calls that draw the

boundary and grid lines. We could simply use the coordinate numbers, but attaching

names to them makes it a little easier to follow what is going on in the program. More

important, if you decide to change a value that is used throughout the program, you
need change it only once, in the initial assignment.

It is a good practice to group the variables you will be using throughout the pro

gram near the beginning. If you use adequate comments in this section, it provides a

handy and easy-to-locate reference to the use of each variable. With versions of BASIC

prior to 2.1, there is a more important reason for doing this: These earlier versions

store variables in a sequential list, in the order in which they are first encountered in

the program. Each time a variable is encountered while running the program, the list

46 SECTION II: GRAPHICS

is searched, again sequentially, until the variable is found and its value retrieved, so
the speed at which a complex program runs can definitely be affected by where in the
list the most commonly used variables are stored. However, starting with version 2.1
of BASIC, variables are accessed by a different method, so this becomes a less impor

tant consideration.
The first statement in the grid program is the WINDOW statement, which cre

ates the background for the grid:

WINDOW 1,, (0, 20) - (512, 342), 3

Since I have defined this as a type 3 window, which does not display a title, there is no
point in including a title parameter in the statement. You must, however, include the

commas to hold its place.

I The TEXTFONT statement I
TEXTFONT calls a Macintosh ROM routine in the same manner as the MOVETO

call used in the last program. Remember that there are two syntaxes for the call state
ment: CALL name [(argument list)] and simply name [argument list]. We used the first
syntax in the mouse-tracking program, and will use the second from now on. (The
word CALL and the parentheses are optional, but not individually so: You must use

both or neither.)

TEXTFONT provides access to the standard Macintosh fonts that you have used
in other applications, and to any special or custom fonts you may have loaded onto
your disk. The number after TEXTFONT specifies your choice. The font designated
with this call will be used for all printing in the current output window. The table on
the next page lists the standard fonts available at the time BASIC 2.0 was released.

The system font is the one used automatically when you are working at the oper
ating-system level, as when typing a name under a file icon in the Finder. The applica
tion font is the default font for BASIC PRINT statements. In order to use a font, it must,

of course, be on your disk. Since storing fonts requires a lot of disk space, you probably
won't want to keep all of them on every disk. You can use the Font Mover program on

Chapter5: Drawing a Grid 47

Font no. Font

0 System font (Chicago)
1 Application font (Geneva)
2 New York
3 Geneva
4 ~onaco

5 Venice
6 London
7 Athens
8 San Francisco
9 Toronto

10 Seattle
11 Cairo

your Macintosh System Disk to rearrange them as needed. (If the font you specify
with TEXTFONT is not on your disk, the Macintosh substitutes what it considers the

most similar one.) The TEXTFONT 4 call in our program specifies that printing will be
done in the Monaco font.

I The TEXTSIZE statement I
The TEXTSIZE call sets the point size of the selected font. As you have probably

discovered in using other applications, each font has specific sizes in which it looks
best. The monospaced Monaco font is readable at 6-point, and this small size will al

low us to squeeze our grid labels into the limited space available.

I The FOR ... NEXT statements I
The FOR. .. NEXT pair of statements is usually called a FOR. .. NEXT loop. The

syntax of these statements is:

FOR variable = x TO y [STEP z]

NEXT [variable][, variable ...]

The variable in the FOR statement represents a counter, which has an initial value of x
and a final value of y. When BASIC encounters a FOR ... statement, it tests the counter
to see if it is greater than the final value (unless STEP is negative, in which case it

48 SECTION II: GRAPHICS

checks to see if the counter is less than the final value). If the counter is in the proper
range, the program executes the statements between FOR and NEXT. When it gets to
NEXT, the counter is incremented by the value of z and is again tested against the final
value (if the optional z is omitted, the counter is incremented by 1). This loop con
tinues until the counter exceeds the final value, at which time the program continues
with the statement after NEXT.

The FOR ... NEXT loop in our program initializes the variable hLine to the value
of top-they coordinate of the top horizontal line-and increments it by 20 after
each loop until it exceeds bottom-they coordinate of the bottom line.

FOR hline =top TO bottom STEP 20

Therefore, hLine equals 20 on the first pass through the loop, it equals 40 on the sec
ond pass, and so on until the 15th pass, when it equals 300. After the 15th pass, hLine
is incremented to 320, tested against the final value, and found to be greater, so pro
gram flow moves on to the line after the NEXT statement. As long as hLine is not
greater than bottom, the statements between FOR and NEXT are executed. We'll look
at these statements one at a time.

Yoti are already familiar with the MOVETO ROM call, which positions the pen
prior to printing or drawing. In this program one of the arguments we are passing to
the routine is the variable hLine, which will take on a different value for each pass

through the loop.

MOVETO 0, hline + 2

This statement positions the pen two pixels below the horizontal line that will be
drawn in a moment, in preparation for the BASIC statement that prints the line label
beside each horizontal line.

The next command, PRINT hLine, is pretty straightforward. It simply prints the
current value of hLine, which is some multiple of 20. Then the MOVE TO left -1, hLine

Chapter 5: Drawing a Grid 49

call repositions the pen in preparation for drawing the horizontal line. The actual
drawing is done by the next statement:

LINETO right + 1, hline

LINETO is another ROM call. It draws a line from the current pen position to the co

ordinates specified in the argument list. On the first pass through this loop, it will
draw a line from (19,20) to (501,20).

The statement NEXT hLine marks the end of the FOR. .. NEXT loop. The NEXT

statement increments the counter and returns the program to the FOR statement. The
computer remembers which NEXT goes with which FOR, so it isn't really necessary to
include the variable name hLine in the NEXT statement-this is a matter of personal
preference; but it is a good idea to include the variable if not doing so could cause con

fusion, as with embedded loops or long loops where the NEXT statement may be a
page or more away from its corresponding FOR.

I The WIDTH and STR$ functions I
The next section of the program draws the vertical lines of the grid using, with

two exceptions, the same commands used to draw horizontal lines. The exceptions are
the WIDTH and STR$ functions, which keep the labels centered above their lines.

MOVETO vline - WIDTH(STR$(vLine)) I 2 - 2, top - 7

This MOVETO call, like the first one in the previous section, positions the pen
prior to printing a line label. However, things become a little more complex here. The
labels printed across the top of the grid vary in width (some are two digits wide and
some are three), and our grid will look neater and more orderly if each label is cen
tered on its line. To accomplish this you still pass just two arguments-the horizontal
and the vertical distances from the origin-to the MOVETO call, but this time you

use compound expressions that evaluate to two simple numbers.

50 SECTION II: GRAPHICS

NOTE: Compound expressions may look a bit confusing at first. If you are read
ing, and trying to understand, a program that contains them, their meaning will usu

ally become clear if you work your way through several steps of the program, replacing

each variable with its current value. If you are writing a program and want to describe
a certain location or value that can only be expressed relative to other values, try first

describing the value in English. Then look through your list of BASIC commands for
one that will shape the English expression into an expression that the computer can
understand.

To center a two- or three-digit number on a vertical line, you want to start print

ing the number about half its width to the left of the line. In this case, both the num

ber and the position of the line are represented by the variable vLine, so the location

to start printing will be vLine minus the quantity that is half its width (vLine minus
vLine divided by 2). Looking through the list of BASIC commands, you will discover

the WIDTH function, which returns the width of a string in pixels. This is fine, except
that vLine is a numeric variable, not a string. A little more rummaging around will
produce the STR$ function, which returns a string representation of a numeric value.
Combining the two gives you WIDTH(STR$(vLine)), which should be the width of the
present value of vLine in pixels. Now divide this by 2 and subtract it from the location

of vLine and you have what turns out to be alrrwst the correct spot to start printing.

Why almost? Well, if you use this value for the horizontal distance, you will find that
the numbers are printed with their centers slightly to the right of each line. This is be

cause BASIC always prints four pixels of white space in front of a number. Going back
to your formula and subtracting another two pixels will take care of this. This is the
type of problem that is usually solved through experimentation the first few times it

occurs; then you start remembering the extra space.

The expression for the distance you want the number to be printed above the

grid, top - 7, is easier to evaluate. Bearing in mind that grid coordinates increase as
you move down and to the right, subtracting 7 from the top of the grid moves the print
location seven pixel lines up from the location passed to the ROM call that drew the
horizontal line at the top of the grid. Since the line is drawn with the pixel below the
location passed to it, and the number is printed starting at the pixel above the print lo
cation, there will be seven pixels of open space between the two.

Chapter 5: Drawing a Grid 51

I Ending the program I
When the program ends, the Command window, and possibly the List window,

appear on the screen, covering parts of the grid. So that this doesn't happen before

you are ready for it, the last WHILE. . .WEND loop pauses the program until you press
the mouse button, to give you time to study the grid or to use Command-Shift-3 or

Command-Shift-4 to send a copy of the screen display to the printer or to a disk file.

WHILE MOUSE(O) = 0
WEND

NOTE: There are several ways besides Command-Shift-3 to reproduce a screen

display on a graphic printer such as the ImageWriter. The easiest, if your printer is
hooked up and ready to print, is to insert an LCOPY statement in your program at the
point when the screen will be displaying the image you want to print.

Armed with a printout of this grid and an understanding of the relative coordi
nates used by the different graphic commands in BASIC, you should now find it easier

to plan the layout of your windows, dialog boxes, pushbuttons, and other designs.

I More experiments I
As you type these programs and experiment with them, bear in mind that rou

tines developed in one program, and even entire programs, can easily be included in
other programs. For example, you could replace the WHILE. . .WEND loop at the end
of this program with the WHILE MOUSE(O) <> -3 .. . WEND loop from the mouse
tracking program. This would allow you to confirm the accuracy of your grid and in
terpret exact locations between the printed lines. If you do this, change the location at
which the coordinates are printed from (10,20) to (30,315) and end the PRINT state

ment with a semicolon, to prevent a carriage return after the coordinates are printed
(a carriage return here would scroll the screen, since you are printing on the bottom
line). With the new WHILE .. .WEND loop the program should look like Figure 5-3.

52

'* Drawing a grid, Version 2
'*

'*
'* Define variables.
'*
top= 20
left= 20
bottom·= 300
right= 500

'*
'* Open window and set display font.
'*
WINDOW 1, I (0, 20) - (512, 342), 3
TEXTFONT4
TEXTSIZE6

'*
'* Print numbers down left side and draw horizontal lines.
'*
FOR hLine =top TO bottom STEP 20

MOVETO 0, hLine + 2
PRINThLine
MOVETO left - 1, hLine
LINETO right + 1, hLine

NEXT hline

'*
'* Print numbers across top and draw vertical lines.
'*
FOR vLine = left TO right STEP 20

'*
'* Width function returns number of pixels in string.
'*
MOVETO vLine - WIDTH(STR$(vline)) I 2 - 2, top - 7
PRINTvLine
MOVETO vLine, top- 1
LINETO vline, bottom + 1

NEXTvLine
TEXTSIZE 10

SECTION II: GRAPHICS

'top of output window
'left side
'bottom

'right side

'Monaco font monospaced
'small, to get numbers in

Figure 5-3. The grid program with a new WHILE .. .WEND
more ...

Chapter 5: Drawing a Grid

'*
'*Wait for the mouse button and print coordinates.
'*
WHILE MOUSE(O) <> -3

WHILE MOUSE(O) < 0
CALL MOVETO (30, 315)
PRINT "x="; MOUSE(1), "y="; MOUSE(2)

WEND

'*
'* The button has been released. Go back and wait for it to be
'* pressed again.
'*

WEND
END

53

'while no triple-click
'while button is down

'x and y coordinates

Figure 5-3. The grid program with a new WHILE. . .WEND (continued)

Now that you understand how to specify the location of text and graphics on the

Mac screen, let's move on to some programs that let you use your new knowledge.

Transferring
a Picture Chapter 6

An advantage of storing information in common formats, as most applications for the
Macintosh do, is that you can easily transfer information between applications. Most
versions of BASIC are capable of reading text files created by word-processing, spread
sheet, and database programs, but Microsoft BASIC for the Macintosh goes one step
beyond these, by allowing you to control graphic information produced in other appli
cations. You can transfer into BASIC any graphic that you can cut or copy to the Clip
board. You can then move, scale, and modify these images just as you would images
you created entirely in BASIC. And you can send any graphic created or modified in
BASIC to the Clipboard and then paste it from there into other applications (assuming
they accept graphics).

Using the Clipboard in this way has its drawbacks. Information stored in the
Clipboard is rather transitory, disappearing the next time you cut or copy something
else, and using the Clipboard as the direct intermediary between some other applica
tion and BASIC can be a bit of a hassle, since you have to load the application, create
the picture, copy it to the Clipboard, quit the application, load BASIC, load or type the
program to read the Clipboard, and then run the program. If you are interrupted, re
set your Macintosh, cut something else to the Clipboard, or mess up in some other
manner, you will probably have to go all the way back to the beginning and start over.
And you can transfer only one picture each time you go through this process.

A less frustrating method is to use the Clipboard to transfer as many images as
you like, one at a time, from the application to the Scrapbook. Since the Scrapbook is
stored as a disk file, you can later copy it to the BASIC disk (I'm assuming your BASIC

disk is the startup disk), load BASIC and run the program that reads the Clipboard,
open the Scrapbook, select an image, and choose Copy from the Edit menu. The se
lected image is transferred to the Clipboard and brought into BASIC. If you want to

55

56 SECTION II: GRAPHICS

bring in a second image, you simply select and copy again. (By the time this book is re
leased, Apple's Switcher should be a standard feature on everyone's menu, and the

hassles just described will live on only in the memories of the" old timers:')
NOTE: You can have only one file named Scrapbook on a disk, so if you don't

want to lose BASIC's existing Scrapbook file when you copy the Scrapbook from the
application to the BASIC disk, rename the existing one x-Scrapbook, or Scrapbook-2,
or something else that you will recognize later. When you have finished transferring

the images, you can discard the Scrapbook they are stored in and give x-Scrapbook its

old name back.

I Transferring the picture I
To avoid having to rename the currrent Scrapbook file every time you want to

transfer a new set of stored images onto your BASIC disk, you can store each image in a
file of its own. You bring a picture into BASIC from a file where BASIC has previously
stored it the same way you bring a picture in from the Clipboard. Both storage areas

are treated as sequential files, so you use the same commands to get the information;
the only difference is whether you open the Clipboard or the file for input. In this

chapter we will write a short program that brings an image in from the Clipboard and
writes it back out to a disk file. Then in Chapter 7 we will develop a more substantial
program that brings an image in from a disk file and allows you the flexibility of copy
ing, moving, and scaling it.

Figure 6-1 lists the first program, which asks you for a file name, then brings a
picture in from the Clipboard and stores it in that file. After typing this program, run
it and follow the instructions. You are told to copy an image to the Clipboard from the

Scrapbook, and then asked to provide a name for the file in which it will be stored. I

used the picture of a robot that seems to be a standard fixture in the Scrapbook of
most applications (though my robot has developed romantic interests, the clandestine
handiwork of my teenage daughter, who recently developed a fascination for Mac
Paint). The picture you copied to the Clipboard appears in an output window (Figure
6-2) and when you quit BASIC, you will discover that you now have a new icon bearing
the file name you assigned.

Although this program is short, it shows off several commands that are unique to
the Macintosh. Let's take a look at the ones we haven't encountered.

Chapter 6: Transferring a Picture

'*Transferring a picture
'*

'*
'* Clear screen.
'*
CLS

'*
'*Tell user what to do.
'*
Start:

WINDOW 2, , (100, 50) - (350, 170), 2
PRINT "Copy a picture from the Scrapbook"
PRINT "and then click OK."
PRINT "Click Quit to return to BASIC."
BUTTON 1, 1, "Quit", (20, 85) - (80, l05)
BUTTON 2, 1, "OK", (175, 85) - (235, 105)

'*
'* Wait until button clicked.
'*
WHILE DIALOG(O) <> 1
WEND
butSel = DIALOG(1)
IF butSel = 1 THEN END
WINDOW CLOSE 2

'*
'*Transfer picture.
'* Open Clipboard in preparation for bringing in picture
'* previously placed there.
'*
OPEN "clip:picture" FOR INPUT AS #1
image$= INPUT$ (LOF(1), 1)
CLOSE 1
IF image$ = "" THEN GOTO Start

Figure 6-1. The picture-transferring program

57

'bringing in image

more ...

58

'*
'*Open output file to store image in.
'*
filename$= FILES$(0, "Store image in file:")
IF filename$= ""THEN END
OPEN filename$ FOR OUTPUT AS #2
PRINT #2, image$
CLOSE 2
PICTURE (50, 50) - (200, 200), image$
BUTTON 1, 1, "Continue", (400, 250) - (460, 280)
WHILE DIALOG(O) <> 1
WEND
GOTO Start

Figure 6-1. The picture-transferring program (continued)

S H!(~ Edit S(rnn h Run Windows

~D Picture Transfer

~j1mm1111~F· .~m1~mm1~;~.
~ -·

Figure 6-2. The robot from the Scrapbook, with a friend

SECTION II: GRAPHICS

'storing image in file
'closing file

'displaying image

~on ti nu~

Chapter 6: Transferring a Picture 59

I The CLS statement I
The program starts by clearing the screen and using the now-familiar WINDOW

statement to open a small window, where the instruction to copy a picture to the Clip
board is displayed. This is the first time we have used the CLS clear-screen statement,
which clears the contents of the current output window and positions the pen in the
upper left corner. On the Macintosh, this command affects only the current output
window, and does not erase edit fields or buttons in the cleared window.

I The BUTTON statement I
At the bottom of the window are two buttons: a Quit button and an OK button.

Here are the statements that create them:

BUTTON 1, 1, "Quit", (20, 85) - (80, 105)
BUTTON 2, 1, "OK", (175, 85) - (235, 105)

The Quit button is used to signal to the program that you are through transferring pic
tures and would like to return to BASIC. Clicking the OK button indicates that you are
satisfied with the file name you have entered, and the program can transfer the pic
ture and store it in that file.

Toward the end of the program, after the picture has been brought into the pro
gram and displayed on the screen, another button, called Continue, is created and
displayed in the lower right corner of the screen.

BUTTON 1, 1, "Continue", (400, 250) - (460, 280)

Clicking this button, after you have taken a moment to scrutinize the picture just
brought in, returns you to the beginning of the program.

Buttons are pretty routine items in Macintosh applications, but this is the first
time we have created our own in a BASIG program. The syntax of the BUTTON state
ment is similar to that of the WINDOW statement:

BUTTON ID, state [,title, rectangle[, type]]

60 SECTION II: GRAPHICS

Except for state, each of these parameters is used like its counterpart in the
WINDOW statement. For instance, ID is a number greater than zero that you assign to
identify the buttons in a window. Buttons are usually numbered consecutively, start

ing with 1, but this isn't required. Since there is no practical limit to the number of but
tons you can have in a window and the numbering system for each window is separate
from that of other windows, the same numbers can be used in more than one window.

The state is a number from 0 through 2 that indicates the current status of the

button, as follows:

State Button condition

0 Inactive and dimmed on screen
1 Active, but not currently selected
2 Active and currently selected

The title is the text associated with the button (in this case Quit, OK, and Con
tinue), and rectangle refers to the screen coordinates within the current window.

There are three button types available: Figure 6-3 shows them in each of their
possible states. Although you can use each of the button types for any task you would
like, there are some accepted standard usages. Button type 1 is normally used when
you want the user to select an action such as Quit, Run, Cancel, OK, and so on. Button

type 2 is used to select one or more options from a list. Button type 3 is used to select
one item from a list of mutually exclusive items; that is, each time a new item is se

lected, the previously selected item should be deselected (we will soon see how a but
ton is deselected).

State 0 State 1 State 2

C<m(•~I Help Saue Type 1

D lh.J•~ DRace 181 SeH Type 2

Q NO Pm·i1y O Euen Parity ®Odd Parity Type 3

Figure 6-3. Buttons in all possible type/state combinations

Chapter 6: Transferring a Picture 61

I The DIALOG function I
Once the buttons are displayed, the program has to have a way of knowing when

one is clicked. This is one of several events trapped by the DIALOG function, in a
manner similar to that by which the MOUSE function traps mouse events. DIALOG(0)

returns a number from 0 through 7 indicating the kind of event trapped, and the DIA

LOG(I) through DIALOG(5) functions return more information about specific events.

The number returned by a DIALOG function is reset to 0 each time it is read, so it
must be stored in a variable in order to be used later. We will look into the DIALOG

function in more detail in Section Ill; in this program we use only DIALOG(O) and
DIALOG(!).

WHILE DIALOG(O) <> 1
WEND
butSel = DIALOG(1)
IF butSel = 1 THEN END

DIALOG(O) returns a 1 if a button is clicked in the active output window (other
wise it returns a 0), so the WHILE DIALOG(O) <> 1 ... WEND loop causes the program
to pause until a button is clicked.

DIALOG(I) returns the ID of the most recently clicked button, so setting the
variable butSel equal to DIALOG(I) after a button is clicked stores the number of that
button in butSel. butSel is then tested and the program either ends or continues, de
pending upon its value. If the program continues, it closes window #2 and opens the
Clipboard for input.

I The OPEN statement I
The OPEN statement is used to associate a file number with the device (screen,

keyboard, printer, Clipboard, or communication port) or file name that information is
going to or from. All subsequent statements dealing with that device or file refer to it
by the assigned file number, which can be any integer or integer expression with a
value from 1through255.

62 SECTION II: GRAPHICS

There are two ways to express the OPEN statement. Both provide the same in
formation but in a different order:

OPEN rrwde, [#]filenumber, filespec[,file-buffer-size]

OPEN filespec [FOR rrwde] AS [#]filenumber [LEN =file-buffer-size]

The two formats are interchangeable, though the actual words used in each may
differ, depending upon what you are opening and why. We will discuss the variations
as we use them, but for now I will simply explain the OPEN statements used in this
program.

OPEN "clip:picture" FOR INPUT AS #1

The first OPEN statement uses the second format. The filespec "clip:picture" in
dicates which way you wish to open the Clipboard. There are three possible ways:

filespec

"clip:"
"clip: text"
"clip:picture"

Use

Transferring tabular data such as spreadsheets
Transferring text to and from word processors
Transferring graphic images

The OPEN statement's rrwde parameter is INPUT. The words "input" and "out
put" are relative to the controlling program, not to the file or device-that is, opening
for input means opening a file to input data to the program from the file. The file
number assigned to this file is # 1.

OPEN filename$ FOR OUTPUT AS #2

This statement uses the same format as the one that opened the Clipboard for in
put. When a file is opened for output, data is sent from the program to the disk file. If
you open a nonexistent file for output, a new file with the specified name is automat
ically created.

Chapter 6: Transferring a Picture 63

Disk files use two storage formats: sequential and random access. The files we
create with this program are sequential files, which means that the data is stored se
quentially, just as it is read in, and can be accessed only in the same manner.

I The INPUT$ and LOF functions I
The next line in the program uses two functions to bring the data from the Clip

board and assign it to the string variable image$.

image$= INPUT$ (LOF(1), 1)

The general format of these two functions is:

INPUT$ (X[, [#]jilenumber])

LOF(jilenumber)

The X argument in INPUT$ stands for the number of characters to be read from
the file referenced by jilenumber. The function LOF(l), which replaces X in this pro
gram, returns the number of characters in file # 1, so the combination says "read how
ever many characters there are in file# 1, from file# l." The characters that are read in
are stored as a single string variable (string variables can be up to 32, 767 characters
long) called image$.

I The CLOSE statement I
The CLOSE statement dissociates the file number from the file or device it was

associated with by the OPEN statement.

CLOSE 1

Having dissociated file # 1 from the Clipboard, you will be able to reuse the same
number with a different file, or you can reopen the original file with the same or a dif
ferent number and mode.

64 SECTION II: GRAPHICS

I The FILES$ function I
After the file is opened and its contents are stored in image$, image$ is checked

to make sure it contains something-there's no point in filling files with blank pic

tures. Since the instructions offered you the option of quitting, if you continued with

out putting something in the Clipboard, the program assumes you didn't understand

and returns to the beginning of the routine and displays the instructions again. If
there is a picture in the Clipboard, the program solicits a file name under which to

store it, by displaying a dialog box (shown in Figure 6-4) similar to the one displayed

when you choose Save As ... from the File menu. The command line in our program

that asks the user to name the file in which the image brought in from the Clipboard

will be stored is:

filename$= FILES$(0, "Store image in file:")

There are two variations of the FILES$ function: One gets the name of a file to

open and the other, as you have seen in this program, asks you for a name under which

to store a file. The general format for the two is:

FILES$(n[, prompt-string])

The argument n can be either 0 or 1. If it is 0, the Save-type dialog box is dis

played and the function returns either the file name entered by the user, or, if the

Cancel button is clicked, a null string (a string of zero length). If n is 1, a dialog box

Store image in file: Steue's Gr ...

Ii Eject

Cancel Driue

Figure 6-4. Dialog box for soliciting file name

Chapter 6: Transferring a Picture 65

similar to the standard Macintosh Open dialog box is displayed. We will take a closer

look at FILES$(I) in the next program. The prompt-string parameter has a different

purpose in each variation. For FILES$(0), the text you enter as prompt-string appears
in the dialog box to prompt the user; for FILES$(I), this string can be a list of the
types of files you would like listed in the mini-finder, from which the user can select.

I The IF ... THEN ... ELSE statement I
After asking the user for a file name and assigning the response to the variable

.filename$, the program must decide what to do next.

IF filename$="" THEN END

This line uses the IF ... THEN ... ELSE statement to test whether a file name was

entered in response to the previous line, and to quit if none was. The syntax for this
statement is:

IF expression THEN then-clause [ELSE else-clause]

The statement first evaluates the expression after IF. If it is true, the program ex

ecutes the then-clause. If the expression is not true, the program executes the optional
else-clause, if present; otherwise it continues with the next command line, the OPEN
.filename$ FOR OUTPUT AS #2 statement already discussed.

I A new kind of PRINT statement I
I mentioned that the PRINT statement has many variations. When followed by a

file number, as it is here:

PRINT #2, image$

it prints whatever follows the comma to the specified file. The picture you stored in
image$ was stored as a series of numbers that tells the Macintosh which pixels to
darken on the screen in order to reproduce the picture. This PRINT statement stores

66 SECTION II: GRAPHICS

image$ in the file you opened as file #2, so that at some other time the image can be
read back into the computer and displayed on the screen. After the string is printed to

file #2, the file is closed.

I The PICTURE statement I
The program has actually done all the work of bringing the image in from the

Clipboard and storing it in the disk file; I threw in the next statement just to prove that

something actually happened while the disk drive was whirring.

PICTURE (50, 50) - (200, 200), image$

The PICTURE statement draws the picture stored in P$ (in this case image$)
within the rectangular space defined by the coordinates (xl,yl) and (x2,y2), scaling it
as necessary to fit. The generic syntax for this statement is:

PICTURE [(xl,yl) [-(x2,y2)]][, P$]

You may want to take a moment to look at the picture just brought in, then click

the Continue button displayed in the lower right corner of the screen to return to the

beginning of the program.
Bringing your picture back from the disk file you just stored it in is no more diffi

cult than bringing it in from the Clipboard. The program in the next chapter not .only
brings your picture back to life; it also allows you to move it around the screen and

change its size.

Manipulating
a Picture Chapter 7

The program in this chapter retrieves the picture you stored in a disk file in Chapter 6

and again displays it in the output window. You then have three options: You can click
once and drag across an area of the window, to select an image to be copied or moved.

You can click twice and drag, to reproduce a previously selected image in the scale of

the new area you just dragged over. Or you can click three times and drag, to cause the
selected image to follow the pointer around the window.

Because this program is longer and more complex than our previous ones, I will

discuss it in five sections: bringing in the picture, branching on a click, and the three
options. The full program is listed in Figure 7-9, at the end of this chapter.

I Bringing in the picture I
The first section of the program, shown in Figure 7-1, is very similar to the pro

gram in Chapter 6. It defines all variables as integers, dimensions an array, creates two
windows, prints instructions, brings the picture in from the disk file, displays it, and
then sets the pen mode for future graphic calls. This section contains two new state
ments (DEFINT a-z and DIM pict(3000)), one new ROM call (PENMODE 10), and one
new function (FILES$(1, "TEXT")).

I The DEFINT statement I
DEFINT is one of a group of four statements that are used to declare variables as

integers, single- or double-precision numbers, or strings. The other three statements
are DEFSNG, DEFDBL, and DEFSTR. The syntax for the entire group is:

STATEMENT-NAME letter-range

67

68

'*
'* Bring in picture.
'*
CLS
DEFINTa-z
DIM pict(3000)
WINDOW 1,, (0, 20) - (512, 342), 3
WINDOW 2, , (10, 220) - (500, 340), 3
PRINT" INSTRUCTIONS"

SECTION II: GRAPHICS

'clear screen
'integers are faster

'space to store picture
'open display window

PRINT "Select a picture file saved by picture-transferring program."
PRINT "Use the following mouse actions to manipulate the picture:"
PRINT
PRINT "Single click and drag selects an area to work with."
PRINT "Double click and drag copies and scales selected area to new rectangle."
PRINT "Triple click and drag moves selected area.";
filename$ = FILES$(1 , "TEXT")
IF filename$ = '"' THEN END
OPEN filename$ FOR INPUT AS #1
image$= INPUT$ (LOF(1), 1)
CLOSE1

'*
'*Define picture's boundaries.
'*
top= 50
left= 50
bottom= 200
right= 200
WINDOW1
PICTURE (top, left) - (bottom, right), image$
PENMODE 10

Figure 7-1. Bringing in a picture from a disk file

'which file to open
'quit if no file

'open file we stored picture in
'bring in picture

'close file

'write to screen in XOR mode

So, in this program the statement DEFINT a-z tells BASIC to treat all variables begin
ning with all letters from a through z as integers.

Numeric variables should be declared as integers unless they absolutely have to
have the higher precision offered by the other types. This is because integers require
less memory to store and can be handled faster. If you don't specifically declare the
variables, they default to double precision in the decimal version of BASIC and to sin
gle precision in the binary version.

Chapter 7: Manipulating a Picture 69

A type-declaration character (% , ! , #, and $ for integer, single-precision, double
precision, and stringvariables, respectively) can be used within a BASIC statement to
override this blanket declaration. This enables you to make a general declaration
about variables at the beginning of a program and then make specific exceptions if cir
cumstances warrant it.

I The DIM statement I
An array variable, also called a subscripted variable, is a group of related vari

ables that have been gathered together under a common name. Each element in the
array is identified by a subscript (in parentheses) added to the variable name. For ex
ample, if I wanted to assign a list of years to variable names, I could use the sub
scripted variable year(n), and assign 1980 to year(O), 1981 to year(l), and so on.

The dimension (DIM) statement lists the arrays that will be used in the program
and specifies the maximum value of the subscript for each, using the general format:

DIM subscripted-variable-list

If there is only one subscript listed after the array variable, the array is said to be "one
dimensional." An array can have up to 255 dimensions, though actually using more
than four dimensions is unusual. The array in this program is one-dimensional; we
will use a two-dimensional array in the next program.

It is not absolutely necessary to dimension an array in order to use a subscripted
variable; if you don't, the maximum value of the subscript simply defaults to 10. How
ever, if you do dimension an array, you must do so before the first time you reference
one of its elements. To ensure that this is the case, the DIM statement is usually placed
at the beginning of the program. A second reason for placing it there is that you don't
want the program to flow past it a second time: Attempting to dimension an array a
second time, or attempting to dimension a variable that has already been referenced
(and thereby defaulted to a maximum subscript of 10) will cause a "Duplicate defini
tion" error and stop the program.

This program lists only one array, using the statement DIM pict(3000). The num
ber in parentheses after the variable name is the largest subscript that may be used
with that variable. However, unless you specify otherwise with the OPTION BASE

statement, the lowest subscript is 0, so you can actually have one more variable in an

70 SECTION II: GRAPHICS

array than the value given in the DIM statement-a fact that occasionally confuses
people. (Programmers often avoid this confusion by simply not assigning a value to the
zero-subscripted variable, though this is a slight waste of memory space.)

The DEFINT statement has defined all variables as integers, which each require
two bytes of memory for storage, so the integer array pict(3000) sets aside 6002 bytes
of memory to hold the section of the output window we will later select by single click
ing and dragging over it. I will explain how I came up with the number 3000 in a mo
ment; for now let's skip to the next new command.

I A new version of FILES$ I
A few lines down we encounter a new version of the FILES$ function.

FILES$(1), used to determine which file you want to open in this statement:

filename$= FILES$(1, "TEXT")

is the alternate form of the function used in the last chapter's picture-transferring
program to get the name of a file in which to store the picture. The four lines following
this one, familiar from the previous program, open the file, bring in the picture, and
close the file again.

I The PENMODE call I
Having assigned values to a few variables and displayed the image with a PIC

TURE statement, the program uses a PENMODE ROM call (without the optional
CALL statement and parentheses) to determine the effect of subsequent graphic calls
on existing images and background patterns in the output window. The PENMODE

call has the following format:

PEN MODE mode

and there are eight modes, numbered 8 through 15. For now, we need to worry about
only two of them. Mode 8, the default mode, copies the new pattern on top of any ex
isting pattern, each pixel of the new pattern replacing the corresponding pixel of the

Chapter 7: Manipulating a Picture 71

old pattern at that location. Mode 10, specified in this program with the simple state

ment PEN MODE 10, XO Rs the pixels of the new pattern with those of the old, inverting
each pixel of the old pattern that is covered by the new pattern. If terms like XOR are
new to you, don't worry: We will play with modes after we get the program running.

I Branching on a click l
After the image is displayed on the screen, the program goes into the loop shown

in Figure 7-2, where it stays until there is a single, double, or triple click of the mouse
button. The program is then immediately diverted to the subroutine appropriate to
the number of clicks.

The WHILE. . .WEND loop simply holds the program at that point until the
mouse button is pressed (remember that MOUSE(O) returns a negative number when
the button is held down). Once the button is pressed, the FOR. .. NEXT loop is used as

a delay. The program should branch to one of three subroutines, based on the number
of clicks, but BASIC is so fast that it is often impossible to get the second click in before

the program branches to the subroutine for a single click. This delay loop gives the

..
'* Branch on click.

Loop:

..
'*Wait for mouse click and drag.
'*
WHILE MOUSE(O) > -1
WEND
FOR pause = 1 TO 2000
NEXT
IF MOUSE(O) = -1 THEN GOSUB GetPicture
IF MOUSE(O) = -2 THEN GOSUB PutPicture
IF MOUSE(O) = -3 THEN GOSUB MovePicture
GOTO Loop

Figure 7-2. Branching on a single, double, or triple click

'single click and drag
'double click and drag

'triple click and drag

72 SECTION II: GRAPHICS

user time (about one second) to get all the clicks in before the decision is made where
to go. (After you have the program running, remove the delay to see the difference.)
This is all familiar territory, but the next set of statements introduces something new.

I The GOSUB ... RETURN statements I
The three IF ... THEN loops use GOSUB statements to branch to the subroutine

appropriate to the number of clicks. Each subroutine must be identified with either a
line number or a label. Once called, the subroutine is in control until a RETURN

statement is encountered, at which time control returns to the statement following the
most recent GOSUB, or to the line or label optionally specified after the RETURN.

This is the generic syntax of the GOSUB statement:

GOSUB line ... RETURN [line]

The IF ... THEN statements are mutually exclusive, so after executing the appro
priate subroutine, the program returns to the GOTO Loop statement, which sends it
back to the label at the top of the loop. However, if you learned BASIC from someone
who rapped your knuckles with a ruler every time you wrote a GOTO, and you just
can't get over your aversion to them, this GOTO could be replaced by enclosing the en
tire branching loop in another WHILE .. .WEND loop-perhaps something like
WHILE 1 = 1. . . WEND. I'll leave the GOTO haters to find their own solution and move
on to discuss the three subroutines.

I The GetPicture subroutine I
The section of the program shown in Figure 7-3 does three things. First, as you

drag the mouse, the program draws a rectangle from the location of the pointer when
you clicked to its current location. Second, when you release the button, the program
stores the image enclosed by the rectangle in the integer arraypict(3000). Third, be
fore returning, it sets the flag variable lastAction to -1 (a logical true) to indicate to
subsequent routines that a single click was the previous action.

The segment of the program within the WHILE. . .WEND loop draws, erases,
and redraws the selection rectangle as long as MOUSE(O) returns a value of -1 (mean
ing that the button is still down after a single click). To do this, it calls two other sub
routines and uses a couple of new statements and ROM calls.

Chapter 7: Manipulating a Picture

..
•• Single click and drag will drag out rectangle and, when mouse
·•button is released, store enclosed picture . ..
GetPicture:

WHILE MOUSE(O) = -1
GOSUB GetRectangle

••
•• Draw and erase frame from starting to ending points .
••
FRAMERECT VARPTR(boundary(O))
FRAMERECT VARPTR(boundary(O))

WEND

..
••Use final set of coordinates to define rectangle enclosing
••picture we will store . ..
GOSUB Reassign

..
••Store picture in pict array, and then return to await
•• next click .
••
GET (left, top) - (right, bottom), pict
lastAction = -1
RETURN

Figure 7-3. Selecting an image with GetPicture

I The GetRectang/e subroutine I

73

Each time through the loop, the GetRectangle subroutine is used to assign the
starting and ending coordinates of the drag to the appropriate elements of an integer
array called boundary. The listing in Figure 7-4 on the following page shows this
subroutine.

GetRectangle first assigns the current values of MOUSE(4), (3), (6), and (5)-in
that order-to the integer array variables boundary(O) through boundary(3). Two
IF ... THEN statements then compare the starting and ending points to see whether

74 SECTION II: GRAPHICS

'*
'* Retrieve starting and ending x and y coordinates
'*of mouse-drag. These will be used to draw rectangle on screen.
'*
Get Rectangle:

boundary(O) = MOUSE(4)
boundary(1) = MOUSE(3)
boundary(2) = MOUSE(6)
boundary(3) = MOUSE(S)

'*
'* If dragging down or left, swap appropriate coordinates so
'*ending coordinate is always larger than starting coordinate.
'*

'starting y coordinate
'starting x coordinate
'ending y coordinate
'ending x coordinate

IF boundary(O) > boundary(2) THEN SWAP boundary(O), boundary(2)
IF boundary(1) > boundary(3) THEN SWAP boundary(1), boundary(3)
RETURN

Figure 7-4. Getting the mouse-drag coordinates with GetRectangle

you are dragging either left or up, in which case the starting and ending coordinates
are swapped. (The SWAP command exchanges the values of the two variables listed

after it.) This is necessary (if the drag is not down and to the right) because the ROM

call that draws the rectangle expects boundary(0) to specify the top of the rectangle,

boundary(l) the left edge, boundary(2) the bottom, and boundary(3) the right edge.

I The FRAM ERECT can I
After control returns from GetRectangle, the FRAMERECT ROM call draws a

rectangle in the current output window, using the current height, width, pattern, and
mode of the pen. Before invoking this ROM routine, you must store the value of the
top, left, bottom, and right edges of the rectangle in an array, as we just did in the

GetRectangle subroutine.
The function VARPTR(array(n)) returns the address in memory of the specified

element of the array, so in the first FRAMERECT call:

FRAMERECT VARPTR(boundary(O))

Chapter 7: Manipulating a Picture 75

VARPTR returns the address of boundary(O) so FRAMERECT can read that element
and the next three and use them to draw the rectangle.

The FRAMERECT ROM call is one of a group of similar calls that draw, erase,
fill, paint, and invert rectangles, ovals, and other shapes. All require that you use this
same method of storing the edges of the shape in an array; they then reference the ar
ray with the VARPTR function.

The second time FRAMERECT is called in each pass through GetRectangle's
WHILE .. .WEND loop, a second rectangle is drawn on top of the first. Since we have
specified PENMODE 10 (the inversion mode) for the pen, the second drawing inverts
the colors of the pixels of the first, making it disappear. The effect of this is to drag out
a shimmering rectangle as you move the mouse. When you release the mouse button,
MOUSE(O) is no longer -1, so the WHILE condition is not satisfied and the program
continues with the line after the WEND.

I The Reassign subroutine I
The statement immediately after the loop is another GOSUB directing the pro

gram to the Reassign subroutine shown in Figure 7-5.
This subroutine assigns the current values ofboundary(O) throughboundary(3)

to the variables we are using to identify the top, left, bottom, and right edges of our

'*
'*Reassign top, left, bottom, and right boundaries
'* of picture. These boundaries are used to either GET or PUT picture.
'*
Reassign:

top = boundary(O)
left= boundary(1)
bottom = boundary(2)
right= boundary(3)
RETURN

Figure 7-5. Changing variables with Reassign

76 SECTION II: GRAPHICS

picture. These four assignment statements are an example, like CALL, of a statement
with an optional name. The first statement is actually LET top =boundary(0), but the

word LET is optional.

I The GET statement I
The program returns from Reassign to the GET statement in the GetPicture sub

routine. GET has two totally different forms: a random-file GET and a screen GET.

The screen GET used here (we'll discuss the random-file GET in another chapter) re

cords the condition of each pixel (on or off) within the area defined by the (x,y) coor

dinates of the upper left and lower right corners of a rectangle. This information is
stored in the array specified after the coordinates in the GET statement:

GET (xl,yl) - (x2,y2), array [(index[, index ... , index])]

In this case the coordinates of the rectangle are specified by the variables left,
top, right, and bottom, which are the starting and ending points of your drag.

GET (left, top) - (right, bottom), pict

This image is stored in the pict array, which we dimensioned to a maximum subscript

value of 3000 at the beginning of the program. I chose the number 3000 pretty much
through experimentation: This is a large enough array to hold the size rectangle I usu
ally drag out. If you drag out a rectangle too large for the array, the program will crash
with an "Illegal function call" error message, in which case you will want to dimension

pict to a larger value. If you know the size of the largest rectangle you will use, the fol

lowing formula will tell you exactly how big the array must be:

4+ (((y2-yl) + l)* 2*INT(((x2-xl)+16)/16))

The values y2 -yl and x2- xl represent the right minus the left edge and the bottom
minus the top of your proposed rectangle. The formula returns the number of bytes of
storage the rectangle will require. Since an integer array allocates two bytes per ele
ment, you then dimension the array to hold half the value returned by the formula.

Chapter 7: Manipulating a Picture 77

Following the GET statement, the variable lastAction is set to -1 so that any rou
tine that might follow will know that a single-click action was just performed. Then

the RETURN statement sends the program via the GOTO Loop statement back to the
Loop label, to wait for the next single, double, or triple click of the mouse.

I The PutPicture subroutine I
Figure 7-6 lists the routine that the program branches to on a double click. The

only differences between this and the previous section are that the WHILE .. .WEND

loop is active as long as the button is held down after a double click (MOUSE(O) = -2)
and that the PUT statement is used to redisplay the image, rather than the GET state
ment that originally got it.

I The PUT statement I
PUT, like GET, has two forms: a random-file PUT, which we will deal with later,

and a screen PUT, which redisplays the image stored by the screen GET. The format

of the screen PUT is:

PUT (xl,yl) [- (x2,y2)], array [(index[, index ... , index])][, action-verb]

'*
'* Double click and drag defines new rectangle, and places stored picture in it.
'*Picture is automatically scaled to fit.
'*
PutPicture:

WHILE MOUSE(O) = -2
GOSUB GetRectangle
FRAMERECT VARPTR(boundary(O))
FRAMERECT VARPTR(boundary(O))

WEND
GOSUB Reassign
PUT (left, top) - (right, bottom), pict
lastAction = -2
RETURN

Figure 7-6. Changing the size of the picture with PutPicture

78 SECTION II: GRAPHICS

Notice the square brackets indicating the optional portions of this statement. You

need specify only the (xl,y 1) coordinates and the array name if you want to reproduce

the stored image in its original size, with the upper left corner of the display area lo
cated at the specified coordinates. If you also specify the optional (x2,y2) coordinates
of the lower right corner, the image is scaled to fit in the area defined by the two sets of
coordinates. As you will see when you run the program, this allows you to change the
size and proportions of an image.

I The MovePicture subroutine I
The last section of this program, listed in Figure 7-7, is the one branched to on a

triple click. The MovePicture subroutine gets the image contained in the last rect

angle dragged out after a single click and moves the image around the screen as you
move the mouse.

The variables top, left, bottom, and right are redefined after each drag, so they
always contain the boundaries of the most recent rectangle. MovePict first checks to
see if this rectangle was defined by a single or a double click. If it was defined by a dou
ble click, which means that a scaled version of the original image was the last thing

drawn, then MoveRect redefines top and left as the current position of the mouse
pointer, and displays the original image there. If the current rectangle was defined by
a single click, meaning an image was selected, the selected image is displayed on top

'*
'* Triple click and drag moves stored picture around window . ..
Move Picture:

WHILE MOUSE(O) = -3
IF lastAction <> -2 THEN PUT (left, top), pict
left = MOUSE(1)
top = MOUSE(2)
PUT (left, top), pict
lastAction = -3

WEND
RETURN

Figure 7-7. Moving the picture with MovePict

Chapter 7: Manipulating a Picture 79

of itself, making it disappear. Then, as long as MOUSE(O) is equal to -3, the picture is

drawn with its upper left corner at (l,eft,tap). left and tap are then redefined as the cur
rent mouse coordinates, and the picture is redrawn. After the first image is drawn, the

drawing created by the first PUT statement in the loop is always superimposed on top
of a previous drawing, making it disappear. The drawing created by the second PUT in
the loop redisplays the picture at a new location.

I Sending a picture out of BASIC I
Having manipulated a picture in BASIC, you may want to transfer it to your word

processor or some other application. The program for sending a picture out of BASIC

differs very little from the one we developed in Chapter 6 to bring one in. If you use

the program in Figure 6-1 to create an image you'd like to transfer to another pro
gram, a few lines of code before and after the part that draws the picture will capture
it and send it to the Clipboard; from there, you can recover it once you have loaded the
other application. The modified program should look like the one in Figure 7-8.

'* Transferring a picture
'*

'*
'* Clear screen.
'*
CLS

'*
'*Tell user what to do.
'*
Start:

WINDOW 2, I (100, 50) - (350, 170), 2
PRINT "Copy a picture from the Scrapbook"
PRINT "and then click OK."
PRINT "Click Quit to return to BASIC."
BUTTON 1, 1, "Quit", (20, 85) - (80, 105)
BUTTON 2, 1 , "OK", (175, 85) - (235, 105)

Figure 7-8. Transferring an image out of BASIC
more ...

80

'*
'* Wait until button clicked.
'*
WHILE DIALOG(O) <> 1
WEND
butSel = DIALOG(1)
IF butSel = 1 THEN END
WINDOW CLOSE 2

.,.

'* Transfer picture.
'* Open Clipboard in preparation for bringing in picture
'*previously placed there.
'*
OPEN "clip:picture" FOR INPUT AS #1
image$ = INPUT$ (LOF(1), 1)
CLOSE 1
IF image$="" THEN GOTO Start

'*
'* Open output file to store image in.
'*
filename$= FILES$(0, "Store image in file:")
IF filename$ = "" THEN END
OPEN filename$ FOR OUTPUT AS #2
PRINT #2, image$
CLOSE2
PICTURE ON
PICTURE (50, 50) - (200, 200), image$
PICTURE OFF
OPEN "clip:picture" FOR OUTPUT AS #1
PRINT #1, PICTURE$
CLOSE#1
BUTTON 1, 1, "Continue", (400, 250) - (460, 280)
WHILE DIALOG(O) <> 1
WEND
GOTO Start

Figure 7-8. Transferring an image out of BASIC (continued)

SECTION II: GRAPHICS

'bringing in image

'storing image in file
'closing file

'displaying image

In this program, on the line before the program starts drawing the picture, the
PICTURE ON statement has been inserted to start recording screen graphic state
ments. After the picture is drawn, the PICTURE OFF statement stops the recording.

Chapter 7: Manipulating a Picture 81

The PICTURE$ function returns the string containing the image recorded by the last

PICTURE ON statement. So the next two program lines open "clip:picture" for output
and print PICTURE$ to the Clipboard.

NOTE: If you want your picture to appear on the screen during this recording,
also insert CALL SHOWPEN just before or after the PICTURE ON statement.

That's all there is to it. After running the new program, you can open the Scrap

book and paste the contents of the Clipboard into it. Since you changed the picture's
size when you transferred it into BASIC, it will look distinctly different from the orig
inal when you transfer it back to the Scrapbook, so you will know you haven't simply

pasted back out what you originally copied in.

'*Manipulating a Picture ..
.•
·• Bring in picture . ..
CLS
DEFINTa- z
DIM pict(3000)
WINDOW 1,, (0, 20) - (512, 342), 3
WINDOW 2,, (10, 220) - (500, 340), 3
PRINT" INSTRUCTIONS"

'clear screen
'integers are faster

'space to store picture
'open display window

PRINT "Select a picture file saved by picture-transferring program."
PRINT "Use the following mouse actions to manipulate the picture:"
PRINT
PRINT "Single click and drag selects an area to work with."
PRINT "Double click and drag copies and scales selected area to new rectangle."
PRINT "Triple click and drag moves selected area.";
filename$= FILES$(1, "TEXT")
IF filename$ = "" THEN END
OPEN filename$ FOR INPUT AS #1
image$= INPUT$ (LOF(1), 1)
CLOSE 1

Figure 7-9. The complete picture-manipulating program

'which file to open
'quit if no file

'open file we stored picture in
'bring in picture

'close file

morn ...

82

'*
'* Define picture's boundaries.
'*
top= 50
left= 50
bottom= 200
right= 200
WINDOW1

SECTION II: GRAPHICS

PICTURE (top, left) - (bottom, right), image$
PENMODE 10 'write to screen in XOR mode

'*
'* Branch on click.
'*
Loop:

'*

'*
'*Wait for mouse click and drag.
'*
WHILE MOUSE(O) > -1
WEND
FOR pause = 1 TO 2000
NEXT
IF MOUSE(O) = -1 THEN GOSUB GetPicture
IF MOUSE(O) = -2 THEN GOSUB PutPicture
IF MOUSE(O) = -3 THEN GOSUB MovePicture
GOTO Loop

'* Single click and drag will drag out rectangle and, when mouse
'*button is released, store enclosed picture.
'*
GetPicture:

WHILE MOUSE(O) = -1
GOSUB GetRectangle

'*
'*Draw and erase frame from starting to ending points.
'*
FRAMERECT VARPTR(boundary(O))
FRAMERECT VARPTR(boundary(O))

WEND

'single click and drag
'double click and drag

'triple click and drag

Figure 7-9. The complete picture-manipulating program (continued) more ...

Chapter 7: Manipulating a Picture

..

••
••Use final set of coordinates to define rectangle enclosing
'* picture we will store . ..
GOSUB Reassign

..
••Store picture in pict array, and then return to await
••next click .
••
GET (left, top) - (right, bottom), pict
lastAction = -1
RETURN

·• Double click and drag defines new rectangle, and places stored picture in it.
••Picture is automatically scaled to fit. ..
PutPicture:

..

WHILE MOUSE(O) = -2
GOSUB GetRectangle
FRAMERECT VARPTR(boundary(O))
FRAMERECT VARPTR(boundary(O))

WEND
GOSUB Reassign
PUT (left, top) - (right, bottom), pict
lastAction = -2
RETURN

'* Triple click and drag moves stored picture around window.
'*

Move Picture:
WHILE MOUSE(O) = -3

IF lastAction <> -2 THEN PUT (left, top), pict
left = MOUSE(1)
top = MOUSE(2)
PUT (left, top), pict
lastAction = -3

WEND
RETURN

Figure 7-9. The complete picture-manipulating program (continued)

83

more ...

84 SECTION II: GRAPHICS

..
'* Retrieve starting and ending x and y coordinates
'* of mouse-drag~ These will be used to draw rectangle on screen .
••
GetRectangle:

'*

boundary(O) = MOUSE(4)
boundary(1) = MOUSE(3)
boundary(2) = MOUSE(6)
boundary(3) = MOUSE(S)

••
'* If dragging down or left, swap appropriate coordinates so
'* ending coordinate is always larger than starting coordinate .
••

'starting y coordinate
'starting x coordinate
'ending y coordinate.
'ending x coordinate

IF boundary(O) > boundary(2) THEN SWAP boundary(O), boundary(2)
IF boundary(1) > boundary(3) THEN SWAP boundary(1), boundary(3)
RETURN

•• Reassign top, left, bottom, and right boundaries
'* of picture. These boundaries are used to either GET or PUT picture .
••
Reassign:

top = boundary(O)
left = boundary(1)
bottom = boundary(2)
right = boundary(3)
RETURN

Figure 7-9. The complete picture-manipulating program (continued)

Generating
a Pattern Chapter 8

In this chapter we will work our way through a program that quickly computes the
values required to define a custom-made pattern. Quite a few ROM calls available
through BASIC make use of patterns: setting them, drawing lines in them, and paint
ing or filling shapes with them. The process of defining the patterns is easy, once you
have done it a few times. However, attempting to figure it out for the first time may be
a bit frustrating, so before we get into the program, let's have a look at the general for
mat used in pattern ROM calls, and the type of information you pass to them.

As you know, the Macintosh display is composed of rows and columns of pixels
that can be turned on or off: To draw a black line on the screen, the Macintosh simply
turns on consecutive pixels in the path of the line. Before a specific pattern can be
used, someone has to define which pixels the Macintosh must turn on to create that
pattern. The definition encompasses an eight-row by eight-column block of pixels,
which is then repeated in a horizontal or vertical direction, as needed, to draw or fill
an area. When you draw, fill, or spraypaint (as in MacPaint) with a pattern, the only
pixels turned on in the line or fill area are those that correspond to the turned-on pix

els in the pattern.
To define a pattern block by hand, you first sketch an eight-by-eight grid and

then blacken the squares representing the pixels you want turned on. The sample grid
in Figure 8-1 on the next page would produce a gray pattern, since every other pixel is
turned on.

Now consider each set of two rows in the grid, starting with the top two, to be a
16-bit binary number, with each black square representing a 1 and each white square
a 0. The first row is the left half of this 16-bit number, and the second row is the right
half. Figure 8-2 on the following page shows this concept applied to the top two rows
of the gray pattern.

85

86 SECTION II: GRAPHICS

Figure 8-1. A gray pixel pattern

Figure 8-2. Two rows of a pattern grid that make a 16-bit number

If you do the same thing with the other three sets of rows, you will have a group
of four 16-bit binary numbers that uniquely defines the gray pattern. You can pass this
definition to a Macintosh ROM call so that it can use the pattern while drawing a line
or filling an area on its screen. To pass the pattern definition, you store these four
numbers in an integer array and include the first element of this array as a parameter
of the pattern ROM call, just as you did with the FRAMERECT ROM call in the pic
ture-manipulation program.

I Hex numbers revisited I
Computers work very comfortably with binary numbers, but we mere mortals

find them a little cumbersome: We have to convert these numbers to either decimal or
hexadecimal before entering them into an array. There are several methods by which
we can make this conversion. Since we are working this out by hand right now, let's
use an easy way. Later, in the pattern-generator program, we will let the computer do
it another way.

Chapter 8: Generating a Pattern 87

The following table shows the binary and decimal equivalents of hexadecimal

numbers 0 through F, for those who are a little rusty on number systems.

Binary Decimal Hexadecimal

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 c
1101 13 D
1110 14 E
1111 15 F

You can convert the 16-bit binary number shown earlier into hexadecimal form

by partitioning the binary number into four 4-bit segments and converting each seg

ment to hex, using the table above if necessary. Figure 8-3 shows how the 16-bit num

ber that stores the first two rows of the gray pattern ends up as the hex number AA55.

If this method seems too easy to be true, you can always add up the powers of 2

to convert the binary number 1010101001010101 to the decimal number 43605, and

then convert 43605 to hex - but you'll end up with the same number.

A A 5 5

1010=A 0101=5

Figure 8-3. Converting a 16-bit binary number to hex

88 SECTION II: GRAPHICS

I Storing the pattern I
The four sets of rows in the gray pattern are identical, so the hex number AASS

can be used to describe each. When you store this number in the computer as an array

element, you have to tell the computer that this combination of letters and numbers is

a hex number, not a string, by preceding it with the symbol &H. To the computer,

&HAASS is a hex number that is the same as the decimal number 43605.

To store the gray pattern in memory, assign the four &H row-set numbers to four

consecutive elements of an integer array (defined as integer with either a DEFINT

statement or the % symbol). In this case, the elements of the array could be:

pato/o(O) = &HAASS
pat%(1) =&HAASS
pat%(2) = &HAASS
pat%(3) = &HAASS

Then to use the pattern, point to its first element with the VARPTR function included

in all pattern ROM calls. For example, to set the pen pattern to gray, you would use the

ROM call:

CALL PENPAT (VARPTR (pato/o(O)))

The ROM calls that create shapes get the top, left, bottom, and right boundaries

of the shape from another array, so a single ROM call that both creates and fills a shape

will include two VARPTR functions, to pass the address of the first element of each ar

ray. For example, to create the filled rectangle shown in Figure 8-4, you would store

the boundaries in an array, like this:

boundo/o(O) = 50
bound%(1) = 20
bound%(2) = 200
bound%(3) = 100

Chapter 8: Generating a Pattern 89

and then use the ROM call:

CALL FILLRECT (VARPTR (bound%(0)), VARPTR (pat%(0)))

That is how you do the whole process of setting a pattern by hand. Now let's have
a look at a program that shows you what the pattern you are setting will look like, and

automatically provides the numbers you need for the array. This program creates the
work area shown in Figure 8-5 on the next page. When you click a magnified "pixel" in
the grid on the left, the value of that row, in both decimal and hexadecimal, is dis
played in the center window and the pattern, in a normal scale, is displayed in the

right window. The program goes through essentially the same process we just did by
hand, only faster. I will describe the activities in this program in eight sections. The

complete program is shown at the end of the chapter in Figure 8-18.

s File Edit Search Run Windows

pat%(0) = &HAA55
pat%(1) = &HAA55
pat%(2) = &HAA55
pat%(3) = &HAA55
bound%(0) = 50
bound%(1) = 20
bound%(2) = 200
bound%(3) = 1 00

List

CALL FILLRECT (VARPTR (bound%(0)), VARPTR (pat%(0)))

Command

Figure 8-4. A filled gray rectangle

Ill

90 SECTION II: GRAPHICS

Pattern Generator

149= &H95

74= &H4A

164= &HA4

69= &H59

154= &H9A

37= &H25

62= &H52

169= &HA9

Hold down command key and press. to return to BASIC.

Figure 8-5. The pattern-generator work area

I Calling the subroutines I
The first section (Figure 8-6) of the pattern-generator program is simply a bunch

of GOSUB statements that send the program to other sections, where initial values are
defined and the screen display is created. After executing the five subroutines, the
program Hows into the main loop-CatchClick-where it stays until you quit.

GOSUB DefineVariables
GOSUB CreateWindows
GOSUB lnitializePowers
GOSUB CreateGrid
GOSUB ShowlnitialValues
GOTO CatchClick

Figure 8-6. Calling the subroutines

Chapter 8: Generating a Pattern 91

I Dimensioning arrays and defining variables I
The DefineVariables subroutine listed in Figure 8-7 dimensions the arrays used

by the program and defines some of the more common variables. The pattern-genera
tion program uses five arrays: bound(4), pattern(3), decimalValue(8), displayWin(3),
and power(15). I will explain the contents of each of these arrays when we put some
thing in them.

The variables wide and high are simply the width and height of the two square
windows. The variable increment is the width, in pixels, of a row or column. Rather
than use constants for these values, which are later used in formulas, I have assigned
them to variables to make it easier to understand the computations (this also makes it
easier to change them throughout the program should you later decide to modify the
display). Moreover, BASIC can mathematically manipulate a value stored as a variable

'*
'* Dimension arrays and define many variables used in program.
'*
Define Variables:

DEFINTa-z

••
'.* Dimension arrays used by program.
'*
DIM bound(4)
DIM pattern(3)
DIM decima1Value(8)
DIM displayWin(3)
DIM power(15)
wide= 160
high= 160
increment = 20
displayWin(O) = o
displayWin(1) = o
displayWin(2) = 160
displayWin(3) = 160
RETURN·

'use integers for speed

'edges of grid location
'pattern array

'decimal value of row
'edges of display window

'powers of 2
'width of pattern display window

'height of pattern display window
'height of row, width of column
'top of pattern display window

'left
'bottom

'right

Figure 8-7. Dimensioning arrays and defining the variables

92 SECTION II: GRAPHICS

faster than it can manipulate the same value given directly as a constant. This, plus the
fact that BASIC 2.0 stores, and therefore accesses, variables in the order they appear in
the program, should encourage you to use descriptive variables for values to be ma
nipulated mathematically, define all variables at the beginning of the program, and
place the ones that require the most rapid access first. (As mentioned earlier, BASIC

2.1 stores variables in a different manner, so with that version the reasons for doing all
this aren't so strong.)

The DefineVariables subroutine finishes by assigning the coordinates of the top,
left, bottom, and right sides of the pattern display area in window #2 to the elements

of the display Win array.

I Creating windows I
The CreateWindows subroutine (Figure 8-8) creates four windows and prints an

instruction in the first one-nothing new to you. This is a good time to remind you,
though, that PRINT statements display their text in the active output window. Placing
the PRINT statement after any WINDOW statement other than the first one wottld
cause the instructions to be printed in that window.

'*
'*Create four windows used by program. Window #4 is background window,
'*window #3 displays decimal and hexadecimal values of each row,
'* window #2 displays pattern, and window #1 is used to create pattern.
'* Note that window #1 is modal (specified by negative type number),
'* meaning that it is only window in which user can make selection.
'*
Create Windows:

WINDOW 4, "Pattern Generator", (0, 38) - (512, 342), 1
MOVETO 85, 250
PRINT "Hold down command key and press . to return to BASIC."
WINDOW 3,, (200, 60)- (300, 220), 3
WINDOW 2, , (320, 60) - (480, 220), 3
WINDOW 1, , (20, 60) - (180, 220), -3
RETURN

Figure 8-8. Creating four windows

'background

'display values
'display patterns

'display pixels

Chapter 8: Generating a Pattern 93

The only other thing worth pointing out in this section is the use of - 3 as a type

for window # 1. You will recall from our earlier explanation of windows that this cre

ates a modal window, which means that as long as that window is displayed, user input
is limited to it-even the menus are inaccessible.

I Initializing the power array I
The InitializePowers subroutine, shown in Figure 8-9, fills an array with powers

of2-that is, with the number 2 raised to each of the powers from 0through14, plus
the negative value -32768 to represent the 15th power of 2, which would exceed the
upper limit for an integer variable (32767) if calculated directly. The power array will

be used to convert the decimal values of the double rows of pixels in the pattern grid

to binary numbers, which will then be used to create the pattern.

I Creating a grid I
The two FOR. .. NEXT loops in the CreateGrid subroutine (Figure 8-10 on the

next page) are used to draw a seven-by-seven grid in window# 1. This actually forms a
grid composed of eight rows by eight columns, since the window frame forms the

outer boundary. This grid is used to simulate the pattern being defined.

'*
'* Initialize array containing powers of 2.
'* Used to convert from pixels to binary numbers:
'* power(bit) = 2 ,.. bit
'*
Initialize Powers:

FOR bit = 0 TO 14
power(bit) = 2 ,.. bit

NEXT bit
power(15) = -32768!
RETURN

Figure 8-9. Initializing the power array

94 SECTION II: GRAPHICS

'*
'*Draw grid used to simulate 8 by 8 array of pixels.
'*
CreateGrid:

FOR hline = 1 TO 7
MOVETO 0, hline * increment
LINETO wide, hline * increment

NEXT hline

FOR vline = 1 TO 7
MOVETO vline * increment, 0
LINETO vline * increment, high

NEXT vline
RETURN

Figure 8-10. Creating the pattern grid

I Showing initial values I

'draw horizontal lines

'draw vertical lines

The short ShowlnitialValues subroutine in Figure 8-11 simply sets the display
conditions at the start of the program, before any pixels have been clicked.

The decim.alValue array is where the current value of each row is stored. The
FOR ... NEXT loop selects each row in turn and sets its decimal value equal to zero.
The GOSUB statement then diverts program How to the ShowNum subroutine, which
makes window #3 active, prints the decimal and hexadecimal values, and then reacti
vates window# 1. We'll leave a more detailed discussion of ShowNum for later.

'*
'* Display initial decimal and hexadecimal values of each row of grid.
'*
ShowlnitialValues:

FOR row= 1TO8
decimalValue(row) = 0
GOSUB ShowNum

NEXT row
RETURN

Figure 8-11. Showing the values at the beginning of the program

Chapter 8: Generating a Pattern 95

l Recording the pattern-pixel selected I
The CatchClick routine, listed in Figure 8-12, is active most of the time the pro

gram is running, waiting for you to click a spot in the grid and then using the mouse

'*
'*Wait for user to click in grid, then determine row/column location
'* of click, update values of grid and call subroutines to show
'* decimal and hexadecimal values and display pattern created . ..
CatchClick:

'*
'* Wait for button press.
'*
WHILE MOUSE(O) = 0
WEND
xCord = MOUSE(1)
yCord = MOUSE(2)
row= ((8 * yCord \high)+ 1)
doubleRow = INT((row - 1) \ 2)
IF row MOD 2 = 0 THEN offset = 8 ELSE offset = 16
column = ((8 * xCord \wide) + 1)
bitLocation = offset - column

'*
'*Set up array to describe selected grid location.
'*
top= (row -1) *increment
left = (column -1) * increment
SetRelRect top, left
INVERTRECT V ARPTR(bound(O))

'*
'*Update decimal value of row.
'*

'current x coordinate of mouse
'current y coordinate of mouse

'compute row number
'which double-row set

'compute column number
'which bit out of 16

'top border
'left edge

'invert selection

decimalValue(row) = decimalValue(row) XOR power(8 - column)
GOSUB ShowNum 'show number

'show pattern
'wait for next click

GOSUB PaintWin
GOTO CatchClick

Figure 8-12. Recording the pixel selected in the grid with CatchClick

96 SECTION II: GRAPHICS

coordinates to compute the row and column containing that spot. Once it knows the
grid location you have clicked, CatchClick uses two subroutines-ShowNum and
PaintWin-to compute and show the value of the row in the middle window, and to
create and display the pattern in the right window.

The first loop in this section of code simply stalls as long as the value returned by
MOUSE(O) is equal to zero (no mouse action). The program breaks out of this
WHILE ... WEND loop only when the mouse button is clicked. The MOUSE(l) and
MOUSE(2) functions return the x and y coordinates of the pointer at the time of the
last MOUSE(O), which would be when the button was clicked, and these values are as
signed to the program variables xCord and yCord.

I integer division I
The next line introduces one new concept: that of integer division. Integer divi

sion, denoted by a backslash (\) rather than a regular slash, rounds the dividend and
divisor to integer values before dividing, and then truncates the quotient-about the
same thing you would do if you had to divide 8.9 by 4.2 in your head (you would round
it to 9 divided by 4 and say the truncated answer is about 2). The computer performs
integer division faster than it does floating-point division (the regular slash), and in
situations like this, where the operands are all integers and the dividend is an even
multiple of the divisor, the answer is the same either way.

row= ((8 * yCord \high)+ 1)

The method by which this program line computes the row number is almost ex
actly the reverse of the process used to compute the location to draw a grid line. The
expression (8 * yCord \ high) evaluates to an integer in the range 0 through 7; adding
1 makes it a row number. You can check the math on this quite easily. Pick a possible
value of yCord (remember, it can vary from 0through160, the coordinates assigned to
the top and bottom of the pattern display window), then multiply by 8 and divide by
160 (the value of high). For example, let's say you picked 70 for yCord: 10 times 8 is
560; 560 divided by 160 would be 3.5 if this were floating-point division, but since
this is integer division, the answer is truncated to 3; add 1 and you have 4. If you do a

Chapter 8: Generating a Pattern 97

quick sketch of our grid and figure out where 70 pixels down from the top would be,
you will find it is in the fourth row.

We will use the row and column numbers directly to highlight the location
clicked on the grid, but to create the pattern displayed in window #2, we must com
pute the value of a double row, just as when we performed this operation by hand.
There are four double rows, numbered 0 through 3, and the next line decides which
double row was clicked:

doubleRow = INT((row - 1) \ 2)

The INT function returns the largest integer that is less than or equal to the expres
sion within the parentheses. Again, try the math in your head with a few row numbers.

I Modulo arithmetic I
The next line introduces another new concept: modulo arithmetic. Modulo

arithmetic, denoted by the operator MOD, provides the integer remainder of integer
division. Modulo arithmetic is very useful, once you get in the habit of using it. I use it
most frequently to count by some number other than one. MOD's syntax is:

dividend MOD divisor= remainder

Both the dividend and the divisor are rounded to integers before the division takes
place, and the remainder is naturally an integer.

This program line uses MOD to check if the row clicked is the first or second row
of a double-row set.

IF row MOD 2 = 0 THEN offset = 8 ELSE offset = 16

As you can see, if the row is equal to 2, 4, 6, or 8, row MOD 2 will be equal to 0 and the
IF ... THEN statement will set offset to 8. If the row is an odd number, then the ELSE

clause will take effect and offset will be set to 16.

98 SECTION II: GRAPHICS

The column number is computed in the same manner as the row number, using
the line column = ((8 * xCord \ wide) + 1). Then the offset and column values are used
to assign a value to bitLocation, which tells us which of the 16 bits in the double row
was clicked. (We'll do something kind of tricky with this in a few minutes.)

bitlocation = offset - column

In this program I have used two different methods to number grid positions, and
the calculation of bit Location is a conversion point between the two that could cause
some confusion. I numbered columns in the grid from 1 through 8, going from left to
right. This seemed like an intuitively correct way to do it. But I numbered the bit lo
cations in the double row from 0 to 15, going from right to left, since we will use the
combined bits of the double row to represent a binary number and that is the con
ventional notation for binary numbers. Figure 8-13 shows the relationship between
the bit Location values and the columns.

Column

12345678

1
0

15 14 13 12 11 10 9 8 1 16

2 7 6 5 4 3 2 1 0 0 8

3 15 14 13 12 11 10 9 8 1 16
1

double Row
4

Row
7 6 5 4 3 2 1 0 0 8

Row MOD2 offiet
5 15 14 13 12 11 10 9 8 1 16

2
6 7 6 5 4 3 2 1 0 0 8

7 15 14 13 12 11 10 9 8 1 16
3

8 7 6 5 4 3 2 1 0 0 8

bit Location

Figure 8-13. The relationship of bitLocation values to grid columns

Chapter 8: Generating a Pattern 99

I Calling a subprogram I
The next few lines store the boundaries of the selected grid location in an array

and then use the array to invert the selection, which simulates a black pixel in the giant
grid. This section introduces the concept of calling subprograms, which you will find
is a handy tool for rapidly writing clear and uncluttered programs.

A subprogram is similar to a subroutine, except that the subprogram has its own
set of variables. Unless you specifically instruct the subprogram to share some of the
variables used in the main program, its variables remain unique to it. This feature al
lows you to use the same subprogram in different calling programs without worrying
about whether you are overwriting a significant variable in the main program. An
other way in which a subprogram differs from a subroutine is that when you call it, you
can pass it information to use while it performs its function.

NOTE: Although the variables in a subprogram are unique, the line labels are
not, so you might want to develop line labels that include a reference to the sub
program containing them, to make them unique.

In the CatchClick routine, the statement SetRelRect tcrp, left calls the sub
program SetRelRect and passes it the values of tcrp and left (the argument list). Just as
with a call that summons a ROM routine or an assembly-language program, the CALL

statement itself is optional. If CALL is used, however, parentheses are required
around the argument list.

Let's take a closer look at the subprogram. In fact, let's look at two (Figure 8-14
on the next page), since the primary purpose of the first is to call the second. Between
them, these examples demonstrate almost everything that can be included in a sub
program.

The first line of a subprogram identifies it as a subprogram and lists the param
eters being passed, using this syntax:

SUB subprogram-name [(formal-parameter-list)] STATIC

The subprogram-name is what you use to call it from within the main program.
The formal-parameter-list is one of two methods of passing values between the main
program and the subprogram. When the program is run, each variable listed in the
parameter list will have assigned to it the current value of the sequentially corre
sponding variable in the argument list in the calling statement. For instance, the Set
RelRect subprogram assigns the values of t<rp and left to the variables x and y.

100

'*
'* SetRelRect is passed upper left corner of rectangle,
'*computes other two sides, and stores values in array.
'*
SUB SetRelRect(x, y) STATIC

SHARED bound(), increment
setRectangle bound(), (x), (y), x + increment, y + increment

END SUB

'*

SECTION II: GRAPHICS

'* Take pair of points and set rectangle so it encloses these points.
'*
SUB setRectangle(array(), y1, x1, y2, x2) STATIC

array(O) = y1
array(1) = x1
array(2) = y2
array(3) = x2

END SUB

Figure 8-14. The SetRelRect and SetRectangle subprograms

The word STATIC at the end of the line is required through version 2.1 of BASIC,

and means that all variables in the subprogram not specifically passed from the main
program retain their values between the times the subprogram is called (as long as

you are running the calling program). Since there are no alternatives to STATIC, it
may seem pointless to require you to include it: The obvious implication is that future
versions of BASIC will allow a different treatment of the variables between times the
subprogram is called.

The SHARED statement on the second line of the subprogram demonstrates the

other method of making variables in the main program accessible to the subprogram.
The values of the variables listed in the SHARED statement can be altered both from
within the subprogram and from the main program. Notice that to reference an array,
such as the first variable in the SHARED statement, you include empty parentheses,
without the number of dimensions.

The SetRelRect subprogram modifies the variables passed to it and passes them
on to the SetRectangle subprogram with this statement:

Chapter 8: Generating a Pattern 101

setRectangle bound(), (x), (y), x + increment, y + increment

Each of the arguments passed is assigned to a new variable in the SetRectangle sub
program, which fills an array with these values and then ends, returning control to the
first subprogram and then to the line after the calling statement in the main program.
Notice that variables that are passed as parameters to one subprogram, and then
passed by that subprogram to another one, must be enclosed in parentheses for the
second transfer.

The END SUB statement obviously ends the subprogram. There can be only one
END SUB in a subprogram: If you want to conditionally branch out of the subprogram
from within its body, use the EXIT SUB statement.

So, we left the main program back in the CatchClick section, after assigning a
value to the top border and left edge of the selected grid location. The subprogram
SetRelRect causes an array to be filled with the information necessary to describe a
rectangle around the selection. The line the subprogram returns to-INVERTRECT
VARPTR(bound(O))-then inverts the selected rectangle. By inverting rather than
painting with black or white, the program can just reverse the color of a selection each
time you click; it doesn't have to keep track of what color the selection is.

I The XOR operator I
In this program, decimalValue is the array that stores the current decimal value

of each row. This next line sets the new value by XORing the old value with the deci
mal value of 2 raised to the power of the number of the column clicked:

decimalValue(row) = decimalValue(row) XOR power(8 - column)

Make sense to you? Sentences like that have been known to make people lose in
terest in programming-or at least in reading about programming. But XORing num
bers is a very handy technique that you will master pretty easily if you take the time to
study it carefully, so let's pick the concept apart a bit.

102 SECTION II: GRAPHICS

XOR is a logical operator, in the same class as AND and OR. XOR performs its op
eration on two operands. The operands must be either numbers or expressions that
evaluate to numbers. Before performing the operation, the computer converts the op
erands to 16-bit, signed, two's-complement integers between -32768 and +32767.
An operand outside this range will stop the program and cause an error message to be

displayed.
The "16-bit, two's-complement" business sounds a little complex, but it is really

just a binary number composed of ls and Os. All the fancy stuff is just how the com
puter manages to deal with 2 raised to the 15th power (32768), which is one greater

than the highest allowable integer.
So, the computer performs this operation we are so gently working up to by com

paring the operands, bit by bit, and forming a new number based on the comparison.
If the digits match, the result is O; if they don't, the result is 1. The result of XORing

any two binary digits is shown in this truth table:

X Y XXORY

1 1 0
1 0 1
0 1 1
0 0 0

Now, let's leave the discussion of XOR for a moment and have a closer look at the

rows and columns in our eight-by-eight grid. As I said earlier, to help me keep the col

umns straight in my mind, I numbered the columns in each row from 1 through 8,
going from left to right. The program, however, computes the value of the row by
numbering the columns from 0 through 7, right to left, and considering each clicked
column to have the value of 2 raised to the power of its column number. Figure 8-15
shows the value of each column in a row.

128 64 32 16 8 4 2 1

I 27 I 26 I 2s I 24 23 22 21 20

Figure 8-15. The value of each column in a row

Chapter 8: Generating a Pattern 103

This is obviously standard binary notation, so each row can be represented by a
binary number, with a 1 for each cell that has been clicked and a 0 for each that hasn't.

The decimal equivalent of the row is computed by adding up the powers of 2 for the

clicked cells. This table shows the binary and decimal values of each power of 2 from 0
through 7:

Binary Decimal Powerof2

00000001 1 0
00000010 2 1
00000100 4 2
00001000 8 3
00010000 16 4
00100000 32 5
01000000 64 6
10000000 128 7

So, if the pattern for a row is:

0 0 1 0 1 0 1 = 45 decimal

then it can be represented by the binary number 00101101, which is equal to decimal

45. If you click column 4:

0 0 1 0 1 = 61 decimal

the binary representation of that row of the pattern should change to 00111101, which
is equal to decimal 61. The program figures this new value by using our formula that
says it should XOR the old value with the value of the power of the column clicked.

Let's check that out.

104

Old value:
24 =16:

Old value XOR 24 :

00101101
00010000

00111101

SECTION II: GRAPHICS

Use the truth table to check each bit comparison. Then work out what would happen if

you clicked column 4 again. This same operation could be done with FOR. .. NEXT
loops and a bunch of math, but the computer does it so much faster with XOR that it is

worth making the effort to understand the technique.

I Displaying the values I
CatchClick goes on to call the ShowNum subroutine (Figure 8-16) which up

dates the display of the decimal and hexadecimal values for the row just clicked.
There are two new commands introduced in this section: the PRINT USING state

ment and the HEX$ function.

This subroutine first makes the number-display window (window #3) active, so

that subsequent PRINT statements will display there. (An alternative, since the pro

gram does not expect any input from this window, is to use the WINDOW OUTPUT 3

statement, which leaves window# 1 active for input but sends output to window# 3 .) It
then uses a MOVETO statement to position the pen in window #3, aligned with the

row just clicked in window # 1, before the decimal and hexadecimal values of the row

are printed .

..
·•Print value of row in decimal and hexadecimal. ..
ShowNum:

WINDOW3
MOVETO 15, (row • increment) - 5
PRINT USING"###"; decimalValue(row);
PRINT"="; "&H"; HEX$ (decimalValue(row));
WINDOW1
RETURN

'make value display window active
'get ready to print

'print value

'make window #1 active
'go back to end of CatchClick

Figure 8-16. Displaying the row values with ShowNum

Chapter 8: Generating a Pattern 105

The next line introduces the PRINT USING variation on the standard PRINT

statement, which allows you to format the appearance of printed material. The syntax
for this statement is:

PRINT USING string-exp; expression-list

The string-exp is a list of special formatting characters-in our case #s-and
the expression-list is the list of string or numeric expressions to be printed. Each#
sign in string-exp is a space holder representing one digit of a number to be printed.
Other formatting characters are available to control how many characters are to be
printed from a string, and to force other special formatting. If the number actually
printed has fewer digits than the spaces available, it is right-aligned (preceded by the
extra spaces). The purpose of the PRINT USING statement in this section is to keep
the decimal values, which may have different numbers of digits, neatly aligned so the
equal signs and hex numbers printed to their right will also be neatly aligned.

The HEX$ function in the next line returns the hexadecimal equivalent of the
decimal number within the parentheses. Although the PRINT USING statement that
prints the decimal number and the PRINT statement that prints the hexadecimal
number are on separate lines in the program, the semicolon at the end of the first
statement forces everything to be displayed on one line in window #3.

Before returning control to CatchClick, the subroutine uses the WINDOW 1
statement to make that window active again.

I Displaying the pattern I
CatchClick now calls the PaintWin subroutine, listed in Figure 8-17 on the next

page, to make window #2-the one in which the pattern is displayed in its normal
size-the active output window. Paint Win in turn calls the Update Pattern subroutine
to change the value in the pattern array for the double row just clicked. Update Pattern
uses the same XOR method used to update the decimal value of the row. When control
returns to PaintWin, it uses the ROM call FILLRECT to fill window #2 with the pat
tern. The two VARPTR statements used by FILLRECT point to the first element of the
display Win array (window-boundary) and the first element of the pattern array.

106

'*
'*Call UpdatePattern to update pattern array,
'*then fill window #2 with new pattern.
'*
PaintWin:

WINDOW2
GOSUB UpdatePattern

'*
'* Fill window with new pattern.
'*
FILLRECT VARPTR (displayWin(O)), VARPTR (pattern(O))
WINDOW1
RETURN

Figure 8-17. Displaying the pattern with Paint Win

SECTION II: GRAPHICS

'make window #2 active
'compute pattern array

And that's all there is to the program. If you would like a challenging experiment,
you might try to modify this program so that dragging across a block of pixels on the
big grid inverts the entire block.

'* Generating a pattern
'*

'*

GOSUB DefineVariables
GOSUB CreateWindows
GOSUB lnitializePowers
GOSUB CreateGrid
GOSUB ShowlnitialValues
GOTO CatchClick

'* Dimension arrays and define many variables used in program.
'*
DefineVariables:

DEFINTa- z

Figure 8-18. The complete pattern-generating program

'use integers for speed

more ...

Chapter 8: Generating a Pattern

'*

'*

'*Dimension arrays used by program.
'*

DIM bound(4)
DIM pattern(3)
DIM decima1Value(8)
DIM displayWin(3)
DIM power(15)
wide= 160
high= 160
increment = 20
displayWin(O) = O
displayWin(1) = o
displayWin(2) = 160
displayWin(3) = 160
RETURN

107

'edges of grid location
'pattern array

'decimal value of row
'edges of display window

'powers of 2
'width of pattern display window

'height of pattern display window
'height of row, width of column
'top of pattern display window

'left
'bottom

'right

'* Create four windows used by program. Window #4 is background window,
'*window #3 displays decimal and hexadecimal values of each row,
'* window #2 displays pattern, and window #1 is used to create pattern.
'* Note that window #1 is modal (specified by negative type number),
'*meaning that it is only window in which user can make selection.
'*
CreateWindows:

'*

WINDOW 4, "Pattern Generator", (0, 38) - (512, 342), 1
MOVETO 85, 250
PRINT "Hold down command key and press. to return to BASIC."
WINDOW 3, , (200, 60) - (300, 220), 3
WINDOW 2, I (320, 60) - (480, 220), 3
WINDOW 1,, (20, 60) - (180, 220), -3
RETURN

'* Initialize array containing powers of 2.
'* Used to convert from pixels to binary numbers:
'* power(bit) = 2 I\ bit
'*
lnitializePowers:

FOR bit = 0 TO 14
power(bit) = 2 I\ bit

NEXT bit
power(15) = -32768!
RETURN

Figure 8-18. The complete pattern-generating program (continued)

'background

'display values
'display patterns

'display pixels

nwre . ..

108

'*
'* Draw grid used to simulate 8 by 8 array of pixels . ..
CreateGrid:

'*

FOR hLine = 1 TO 7
MOVETO 0, hLine * increment
LiNETO wide, hLine * increment

NEXT hLine

FOR vLine = 1 TO 7
MOVETO vLine * increment, 0
LINETO vLine * increment, high

NEXTvLine
RETURN

SECTION II: GRAPHICS

'draw horizontal lines

'draw vertical lines

'* Display initial decimal and hexadecimal values of each row of grid.
'*
ShowlnitialValues:

'*

FOR row = 1 TO 8
decimalValue(row) = o
GOSUB ShowNum

NEXT row
RETURN

'* Wait for user to click in grid, then determine row/column location
'* of click, update values of grid and call subroutines to show
'* decimal and hexadecimal values and display pattern created.
'*
CatchClick:

'*
'* Wait for button press.
'*
WHILE MOUSE(O) = 0
WEND
xCord = MOUSE(1)
yCord = MOUSE(2)
row= ((8 * yCord \high)+ 1)
doubleRow = INT((row - 1) \ 2)

'current x coordinate of mouse
'current y coordinate of mouse

'compute row number
'which double-row set

Figure 8-18. The complete pattern-generating program (continued) more ...

Chapter 8: Generating a Pattern

IF row MOD 2 = 0 THEN offset = 8 ELSE offset = 16
column = ((8 * xCord \wide) + 1)
bitlocation = offset - column

'*
'* Set up array to describe selected grid location.
'*
top = (row -1) * increment
left= (column -1) *increment
SetRelRect top, left
INVERTRECT VARPTR(bound(O))

'*
'*Update decimal value of row.
'*

109

'compute column number
'which bit out of 16

'top border
'left edge

'invert selection

decimalValue(row) = decimalValue(row) XOR power(8 - column)
GOSUB ShowNum 'show number

'show pattern
'wait for next click

GOSUB PaintWin
GOTO CatchClick

'*
'*Print value of row in decimal and hexadecimal. ..
ShowNum:

••

WINDOW3
MOVETO 15, (row * increment) - 5
PRINT USING "###"; decimalValue(row);
PRINT"="; "&H"; HEX$ (decimalValue(row));
WINDOW 1
RETURN

••Call UpdatePattern to update pattern array,
'*then fill window #2 with new pattern . ..
PaintWin:

WINDOW2
GOSUB UpdatePattem

'make value display window active
'get ready to print

'print value

'make window #1 active
'go back to end of CatchClick

'make window #2 active
'compute pattern array

Figure 8-18. The complete pattern-generating program (continued)
more ...

110

'*

'*
'* Fill window with new pattern.
'*
FILLRECT VARPTR (displayWin(O)), VARPTR (pattern(O))
WINDOW1
RETURN

SECTION II: GRAPHICS

'* Pattern array is composed of four values, one for each double row in
'* grid. Next subroutine updates value for double row just clicked by
'* XORing current value with power of 2 of bit location clicked.
'*
Update Pattern:

'*

pattern(doubleRow) = pattern(doubleRow) XOR power(bitLocation)
RETURN

'* SetRelRect is passed upper left corner of rectangle,
'*computes other two sides, and stores values in array . ..
SUB SetRelRect(x, y) STATIC

SHARED bound(), increment
setRectangle bound(), (x), (y), x + increment, y +increment

END SUB

'*
'* Take pair of points and set rectangle so it encloses these points.
'*
SUB setRectangle(array(), y1, x1, y2, x2) STATIC

array(O) = y1
array(1) = x1
array(2) = y2
array(3) = x2

END SUB

Figure 8-18. The complete pattern-generating program (continued)

The MiniPaint
Program Chapter 9

Now that you understand how to create different patterns on the Macintosh screen,
let's have a look at a program that uses these patterns. If you have a Macintosh, you are
at least vaguely familiar with the MacPaint program created by Bill Atkinson. The di
minutive version of MacPaint we're going to create in this chapter-MiniPaint
won't threaten Bill's position as the supreme master of Macintosh graphics, but it will
demonstrate how easily you can include many of the various shapes and patterns in
your own programs.

The MiniPaint program allows you to create empty and filled rectangular or oval
frames and produce freehand drawings in the large center window of the work area
shown in Figure 9-1 on the following page. By clicking the different options arranged
around the edge, you can specify the shape, thickness, and pattern of the frame or
drawing line and the fill pattern used.

There are few new commands used in this program, so we won't get too bogged
down in explanation. As you read through the program, notice that almost all screen
positions are expressed relative to the width or height of the active window, and that
these dimensions are returned by the WINDOW(2) and WINDOW(3) functions. This
approach allows you to experiment with different window sizes without rewriting the
entire program.

The program consists of seven sections. Section one, shown in Figure 9-2 on the
following page, routes the program through sections two through six to set up the ini
tial screen. (I will discuss the ON DIALOG and DIALOG ON statements shortly, when
we've taken a look at these first six sections.) Then the program flows into section
seven, the main loop, where it will stay.

111

112 SECTION II : GRAPHICS

• HI<~ Edit S<rnn h Run Windows

D

~~ -C) .._. ~·--

- ® -erase

.,~ '

•

-
Figure 9-1. The MiniPaint work area

You will notice, if you study the full program listing in Figure 9-20, at the end of
the chapter, that the sections of the program are grouped there not in the order I will
discuss them in but by type: the subprograms in one group, the subroutines in an
other, and so on. This is only for convenience in finding different sections, and you can

arrange your listing as you see fit.

GOSUB DefineVariables
GOSUB CreateWindows
GOSUB CreateSymbols
GOSUB CreatePatterns
GOSUB ShowDefaults
ON DIALOG GOSUB SelectWindow
DIALOG ON

'if inactive window clicked

Figure 9-2. Calling subroutines to set up the MiniPaint work area

1

Chapter 9: The MiniPaint Program

'*
'* Define variables and dimension arrays.
'*
DefineVariables:

DEFINTa-z
DIM div(3)
DIM but(3)
DIM pat(28)
DIM bord(3)
DIM oldBord(3)
false= o
true = -1
div(1)=6
div(2) = 4
div(3) = 7
function= 1
RETURN

Figure 9-3. Defining the variables

I Defining the variables I

113

'make all variables integers for speed
'number of window division

'current button in each window
'pattern definitions

'top, left, bottom, and right borders

'number of divisions in shape window
'number of divisions in line-thickness window

'number of divisions in pattern window
'default shape to draw--rectangle

Figure 9-3 lists the DefineVariables subroutine-the usual define-declare-and
dimension section. The values assigned to the variables false and true are the same as
those generated by the logical operators: 0 for false and -1 for true. The values of the
array elements div(l), div(2), and div(3) are the number of divisions in windows #1,

#2, and #3, respectively.

I Creating the windows l
The CreateWindows subroutine, shown in Figure 9-4 on the following page, uses

familiar WINDOW statements to produce the four windows you see on the MiniPaint
screen: a main work area, two small windows on the left for shapes and line thick
nesses, and one long window on the right for patterns.

114

••
'* Create four windows . ..
Create Windows:

WINDOW 1, , (0, 20) - (50, 209), 3
WINDOW 2, , (0, 210) - (50, 342) ,3
WINDOW 3,, (460, 20)- (512, 342), 3
WINDOW 4, , (51, 20) - (459, 342), 3
RETURN

Figure 9-4. Creating the windows

I Creating the symbols I

SECTION II: GRAPHICS

'shape window
'line-thickness window

'pattern window
'work-area window

Figure 9-5 shows the CreateSymbols subroutine, which draws the horizontal di
vision lines in the shape, line, and pattern windows and then creates the symbol or
pattern for each option and displays it. The FOR windo = 1 TO 3 loop draws the hori
zontal division lines in each of the three windows. First the window is made active
(WINDOWwindo), and then the WINDOW(2) and WINDOW(3) functions are used to
retrieve the width and height of the window and assign these values to the variables
wide and high. These values are used, along with the number of divisions in the win
dow, to compute the size of the boxes and hence their positions down the screen, and
then to draw the lines. Nothing here should look particularly confusing to you if you
have worked your way through the previous programs.

I Creating the shapes I
The method of creating the actual symbols or patterns varies somewhat for each

window. To create the symbols in window #1, the height, width, and number of divi
sions in the window-div()-are passed to the DrawFuncs subprogram, shown in
Figure 9-6 on page 116.

There are only a couple of things worth pointing out in this subprogram: the
DIM statement at the beginning, the variety of ROM calls to frame and invert rect
angles and ovals, and the LINE STEP statement that draws the crooked line.

The only reason the DIM statement is significant here is that it again points out
the concept of variables that are unique to the subprogram. If you are using a variable
or an array in a subprogram but not in the main program, there is no point in creating

Chapter 9: The MiniPaint Program

'*
'* Create window divisions.
'*
CreateSymbols:

FOR windo = 1 TO 3
WINDOW windo
wide = WINDOW{2)
high = WINDOW{3)
FOR division= 1 TO div{windo) - 1

MOVETO 0, division * high\ div{windo)
LINETO wide, division* high\ div{windo)

NEXT division
NEXTwindo

'*
'*Draw symbols in shape window.
'*
WINDOW1
high = WINDOW{3)
wide = WINDOW{2)

'*
'* Call subprogram that creates six shapes.
'*
DrawFuncs wide, high, div{1)

'*
'* Create line-thickness window.
'*
WINDOW2
high = WINDOW{3)
wide = WINDOW{2)

FOR division = 1 TO 4
PENSIZE 1, division
MOVETO 5, {division - .5) * high\ div{2)
CALL LINE {wide - 10, 0)

NEXT
RETURN

Figure 9-5. Creating the symbols

115

'make window windo active
'width of current window

'height of current window
'draw division lines

'shape window

'note parentheses

116

'*
'* Draw symbols in shape window.
'*
SUB DrawFuncs (wide, high, numDivs) STATIC

DIM Rect(3)
boxWidth =wide -10: boxHeight =high\ numDivs - 9
deltaY = high \ numDivs

'*
'* Draw rectangle.
'*
SetRelRect Rect(), 5, 5, boxWidth, boxHeight
FRAMERECT VARPTR(Rect(O))

'*
'*Draw filled rectangle.
'*
SetRelRect Rect(), 5, deltaY + 5, boxWidth, boxHeight
INVERTRECT VARPTR(Rect(O))

'*
'* Draw circle.
'*
SetRelRect Rect(), 5, 2 * deltaY + 5, boxWidth, boxHeight
FRAMEOVAL VARPTR(Rect(O))

'*
'*Draw filled circle.
'*
SetRelRect Rect(), 5, 3 * deltaY + 5, boxWidth, boxHeight
INVERTOVAL VARPTR(Rect(O))

'*

'* Draw crooked line.
'*
LINE (6, 4.3 * deltaY) - STEP (10, 10)
LINE- STEP (10, -10)
LINE-STEP (10, 10)

Figure 9-6. Creating the shape symbols with DrawFuncs

SECTION II: GRAPHICS

more ...

Chapter 9: The MiniPaint Program

'*
'* Draw eraser .
••
MOVETO 6, 6 * deltaY - 10
PRINT "erase";

END SUB

Figure 9-6. Creating the shape symbols with Draw Funes (continued)

117

or defining it in the main program and then passing it to the subprogram: Even if the
rect array existed in the main program, dimensioning a new array with the same name

in the subprogram would have no effect on it. However, if you call the subprogram
more than once, you will have to use the ERASE statement at the end of it to eliminate
the array, so that dimensioning it the next time will not cause an error.

The ROM calls FRAMERECT, INVERTRECT, FRAMEOVAL, and INVERTOVAL

all use the familiar format of pointing to the first element of an array containing the
top, left, bottom, and right boundaries of the section of the screen where the shape
will appear.

The LINE statement is another BASIC statement that has a variety of formats and
uses. (There is also a LINE ROM call, which is always preceded by the CALL state

ment, to avoid confusion.) The syntax for the LINE statement is:

LINE [[STEP] (x1,y1)]-[STEP] (~,y2)[,[color][, b[f]]]

It is used to draw a line or a box. Without the b and f options tacked onto the end,
LINE draws a line from point (xl,yl) to point (x2,y2). If you add the b, it draws a box
with opposite corners at those points; if you add the f option after the b, it also fills the
box with the current pattern.

Although the word color does not seem applicable to the Macintosh screen-at
least right now-the choice of black or white is one more choice than the purchasers
of Henry Ford's first machine had. As then, the default is black. The number 30 in the
color position causes both the line and the fill pattern to be white. The number 33 is
for black, but since leaving the option blank will also produce a black line, there seems
to be little point in specifying it. Note, however, that if you omit the color option but
still want to use the b or bf options, you must include the commas that show where the

color option would appear.

118 SECTION II: GRAPHICS

The STEP option changes the (x,y) coordinates from absolute pixel locations to
relative pixel locations. In other words, a STEP location is x pixels horizontally and y
pixels vertically relative to the previous position of the pen, not the corner of the win

dow. STEP can be used with the first set of coordinates, the second set, or both. You
can also omit the first set, as we do in Draw Funes in the three statements used to draw

the crooked line: The statement LINE- STEP (x,y) draws a line from the current pen
position to the point (x,y) pixels away. The first LINE statement in this section draws

the initial segment of the crooked line; the second and third statements step the line
to the right and either up or down 10 pixels.

I Creating the lines I
Window #2 displays the line-width options that are available for drawing lines

and frames. The different line thicknesses are set with the PENSIZE ROM call in the

CreateSymbols subroutine:

PENSIZE 1 , division

Pen width and height are in pixels. In this section we set the width equal to 1 and

the height equal to the number of the window division in which the line is drawn.

Since window #2 is divided into four parts, numbered 1 through 4, the pen heights

will range from 1to4. We can leave the pen width at 1 here, since we are drawing only
horizontal lines, but in the main body of the program, where we draw both horizontal
and vertical lines in the work area, the width and height will be set to the same value.

Each line is drawn with the same sequence of statements. First the pen size is set

and the pen is positioned five pixels in from the left edge and halfway down a division.
Then the LINE ROM call is used to draw the line to another location relative to the
first. So the LINE ROM call works just like the STEP option in the LINE statement, in

this case drawing a line from the current pen location to a point 10 pixels less than the
width of the window and on the same level.

There are two things of importance to note about the PENSIZE call: It applies
only to the current output window, and it applies only to lines produced by other ROM

graphic calls (not to BASIC LINE and CIRCLE statements). If you change the output

Chapter9: The MiniPaint Program 119

window, the pen size reverts to the last size specified for that window. If no size has
specifically been set, the default size ofl,1 is used.

I Creating the patterns I
The CreatePatterns subroutine (Figure 9-7), which displays the seven available

patterns, reads the data statements listed elsewhere in the program and stores the hex
numbers found there in the pat array. Each hex number represents a double row of the
pattern. The elements of the array are then taken four at a time, each set of four being

used to define one of the seven patterns, which are displayed in window #3.
There are several ways to make information available to a program. You can store

the information in a disk file and retrieve it with an INPUT$, INPUT#, or LINE IN

PUT# statement. Or you can ask the user to supply the information via the keyboard

and retrieve it with an INPUT or LINE INPUT statement or the INKEY$ function. Or

you can store the information in the program itself in the form of DATA statements
that can be read as needed and assigned to variables. This last method (used in this

subroutine) is particularly appropriate when the information is not subject to change.

'*
'* Read data for patterns.
'*
Create Patterns:

WINDOW3
wide = WINDOW(2)
high = WINDOW(3)
FOR design = 0 TO 27

READ pat(design)
NEXT
countBy4 = 0
FOR division = 0 TO div(3) - 1

'make window #3 active
'get its height and width

'read DATA statement

'initialize--used to count by fours
'fill pattern swatches

SetRelRect bord(), 0, division * high\ div(3), wide, high\ div(3)
FILLRECT VARPTR(bord(O)), VARPTR(pat(countBy4))
countBy4 = countBy4 + 4 'increment counter

NEXT
RETURN

Figure 9-7. Creating the patterns

120 SECTION II: GRAPHICS

CreatePatterns uses the READ statement to assign the hexadecimal numbers
stored in the DATA statements to the 28 elements of the pat array. The syntax of the
READ statement is:

READ variable-list

The variable-list can contain as many variables as you like, and they can be either nu
meric or string. The only restrictions are that there must be at least as many pieces of
data to read as there are variables in the statement, and that each item must be of the
same type (string or numeric) as the variable to which it is assigned.

The first FOR. .. NEXT loop in CreatePatterns is cycled through 28 times; at each
pass it assigns a value from the DATA statements to an element in the pat array. After
all 28 values have been read, the next FOR ... NEXT loop passes every fourth element
of the array to the FILLRECT ROM call, which uses it to create and display a pattern.

It is important to note that pattern arrays can consist of more than four elements.
Most programs show a separate array for each pattern, and use the VARPTR function
to point to the memory location of the first element of the array when creating the pat
tern. However, as you can see from this example, one pattern array can contain as
many elements as you like: You simply point to the first of the four consecutive ele
ments you want to use. This approach would be very useful if you wanted to create an
evenly graduated gray scale for highlighting or shading graphics.

I Highlighting the defaults I
The ShowDefaults subroutine in Figure 9-8 highlights the default setting for

each of the option windows. Later, when you select a different option, the highlight
will have to be removed and applied to your new choice.

The selection is highlighted by inverting a smaller rectangle centered inside the
rectangle holding the selected symbol. The inverted rectangle is made a little smaller
than the selection it is highlighting in order to create a border around the highlight.
The width of the border is determined by the value of the variable inset. The reason
for making the inset a variable is that a wider border (10 pixels) is needed in window
#3 to make it obvious which pattern is selected (an inverted white pattern looks just
like a black pattern). After the inset is defined, each window is made active in turn,
and the SetRectangle subprogram is called to create a rectangle with dimensions two

Chapter 9: The MiniPaint Program 121

••
'*Highlight default selection in each window . ..
ShowDefaults:

inset = 2 'size of border around highlight
FOR windo = 1 TO 3

IF windo = 3 THEN inset = 1 O
WINDOW windo
wide = WINDOW(2)
high = WINDOW(3)
SetRectangle bord(), inset, inset, wide - inset, high\ div(windo) - inset
INVERTRECT VARPTR(bord{O)) 'invert center of selection
but(windo) = 1 'store this window's button-press

NEXT
RETURN

Figure 9-8. Highlighting the defaults

times inset smaller than the width and height of a window division. The INVERT

RECT ROM call is then invoked to highlight that area in the first division of the win
dow (the default division).

The last action in this section assigns the number of the currently highlighted di
vision to the variable IJUt(windo). which stands for the active "button" in that window.
This is done so that when another option is selected, we will know which option has to

have the highlight removed.

I Changing options I
Before moving into the main loop of the program to create shapes in window #4,

we must make provisions for what to do if another window is clicked, which would in
dicate a desire to change options. We can do this with the ON DIALOG statement
which I deferred discussing when we encountered it at the beginning of the program.
This is ON DIALOG's general format:

ON DIALOG GOSUB line

The DIALOG function returns information about events that involve buttons,

windows, and edit fields created by BASIC. The ON DIALOG GOSUB statement is an
event trap that sends the program to a specified line if there has been a change in one

122 SECTION II: GRAPHICS

of the conditions monitored by the DIALOG function. Once you have specified where
to go if a dialog event is trapped, you activate the trapping with the DIALOG ON state
ment. We will take a closer look at the DIALOG function soon.

I The main loop I
The MainLoop routine, shown in Figure 9-9, is a short section of code through

which the program loops continuously while waiting for the mouse button to be
pressed to indicate that a shape should be drawn. While waiting, the program is con
stantly updating the value of yCord with the current coordinate value of MOUSE(2).

We will use this information a little later, when a different option is selected by click
ing in a side window.

The sections that follow MainLoop contain the routines that actually draw rect
angles, ovals, and lines as you drag the mouse around in window #4. Other than the
difference in the actual ROM call that draws the shape, the routines for the rectangle
and the oval are identical. Both have chunks of code that are used repeatedly, so these
chunks have been assigned to subprograms, several of which you have already seen in
other programs.

'*
'* Allow user to create lines and shapes, while waiting
'*for click in side windows.
'*
Mainloop:

WINDOW4
WHILE MOUSE(O) = 0

'*
'* While waiting for mouse click, store current location of
'* pointer. This information will be used if next click is outside
'*work-area window.
'*
yCord = MOUSE(2)

WEND
ON function GOSUB Rect, Oval, Lin
GOTO Mainloop

Figure 9-9. Waiting for the mouse button to be pressed

'make window #4 active

Chapter 9: The MiniPaint Program 123

When the mouse button is pressed, the program branches to the most recently
specified drawing routine (Rect, Oval, or Lin), as determined by the ON ... GOSUB

statement, which has this syntax:

ON expression GOSUB line-list

This is a "computed GOSUB" statement: The value of the expression is computed and
the program branches to the subroutine whose label or line number is that far into
line-list. For example, if the value of the expression is 2, the program goes to the sec

ond subroutine in the list; if the value is 7, the program goes to the seventh subroutine
listed. If the value is 0, or if it is greater than the number of items in line-list, the pro

gram continues with the statement after ON ... GOSUB. (A parallel statement that op
erates this way is ON ... GOTO, which branches to a line other than the beginning of a
subroutine.)

In our program, the expression to be evaluated is function. The program will
branch to Rect, Oval, or Lin, depending upon the value assigned to function. The first
time through MainLoop, the initially assigned value of 1 sends the program to the Rect

subroutine. Each of these subroutines ends by returning to MainLoop.

I Drawing rectangles I
The subroutine labeled Rect, shown in Figure 9-10 on the following page, can

create both framed and filled rectangles. The factor that determines which type is
drawn is a variable named fill, which is set equal to true (-1) when either of the filled
shape options is selected from window # 1.

The Rect subroutine has several distinctly separate stages. First it sets the pat
tern to black (using the MakePattern subprogram with an argument of 1) and draws
the first rectangle (using SetRectangle and FRAMERECT). Then it checks to see
whether the mouse button has been pressed once and is still being held down
(MOUSE(O) = -1). If so, it constantly erases and redraws the rectangle as the mouse is
dragged, keeping track of the coordinate information it needs using the CopyRect
subprogram, and all the while waiting for the button to be released. Figure 9-11 on
page 125 lists the three subprograms used by the Rect routine.

124 SECTION II: GRAPHICS

'*
'* Draw rectangle.
'*
Rect:

PENMODE 10 'XOR mode

'*
'*Draw first rectangle.
'*
MakePattern 1 'use black pattern for frame
SetRectangle oldBord(), MOUSE(3), MOUSE(4), MOUSE(1), MOUSE(2)
FRAMERECT VARPTR(oldBord(O)) 'draw rectangle
WHILE MOUSE(O) = -1 'while mouse button is pressed

SetRectangle bord(), MOUSE(3), MOUSE(4), MOUSE(S), MOUSE(6)
FRAMERECT VARPTR(oldBord(O)) 'erase rectangle (while dragging)
FRAMERECT VARPTR(bord(O)) 'draw new rectangle
CopyRect oldBord(), bord()

WEND

'* Create filled rectangle if this symbol was selected.
'*
MakePattern but(3)
PENMODE8
FRAMERECT VARPTR(bord(O))
IF fill THEN PAINTRECT VARPTR (oldBord(O))

'*
'* And now for a little fun.
'*
WHILE MOUSE(O) = -2

PENMODE10

'reinstate stored pattern
'copy mode

'draw rectangle

SetRectangle bord(), MOUSE(3), MOUSE(4), MOUSE(S), MOUSE(6)
FRAMERECT VARPTR(bord(O))
IF fill THEN PAINTRECT VARPTR(bord(O))

WEND
PENMODE8
RETURN

Figure 9-10. Drawing rectangles with Rect

Chapter 9: The MiniPaint Program

·• Make one of stored patterns active . ..
SUB MakePattern(patNum) STATIC

SHARED pat()

125

PENPAT VARPTR(pat(4 * patNum - 4))
END SUB

'Pat() is first of group of four

..
·• Copy one rectangle into another . ..
SUB CopyRect(rect1 (), rect2()) STATIC

FOR count = 0 TO 3
rect1 (count) = rect2(count)

NEXT
END SUB

..
·•Take pair of points and set rectangle so it encloses these points . ..
SUB SetRectangle(array(), x1, y1, x2, y2) STATIC

array(O) = y1
array(1) = x1
array(2) = y2
array(3) = x2
IF x1 > x2 THEN SWAP array(1 }, array(3)
IF y1 > y2 THEN SWAP array(O), array(2)

END SUB

..
'* SetRelRect is just like SetRectangle except it takes as input
'*top, left point and height and width . ..
SUB SetRelRect(array(), x, y, wide, high) STATIC

CALL SetRectangle (array(), (x), (y), x +wide, y + high)
END SUB

Figure 9-11. The drawing subprograms MakePattern, CopyRect,
SetRectangle, and SetRelRect

The MakePattern subprogram points to the first of a set of four elements in the
pattern array-in this case pat(O)-so that the rectangle that is drawn as you drag
the mouse will always be in the same pattern. (I originally used whatever pattern was

126 SECTION II: GRAPHICS

currently selected to draw this rectangle, but found that if the white pattern was se
lected, the rectangle was a little difficult to detect against the white background.)
When the mouse button is released, MakePattern is called again to reset the pattern to
the one currently selected, before drawing the final rectangle.

The SetRectangle subprogram fills the array passed to it with the top, left, bot
tom, and right boundaries of the rectangle described by the mouse drag. The starting
and current coordinates of the pointer are used to define the boundaries, and the di
rection in which the mouse is being dragged is checked by comparing the starting and
current coordinates. If the drag is not down and to the right, the upper/lower or left/
right boundaries are exchanged using the SWAP statement. (This swap is done in
order to keep the coordinates in the order expected by the ROM call that draws the
rectangle.)

The boundaries are stored in an array called oldBord, and a rectangle is drawn.
The new current coordinates of the pointer are located and stored in an array called
bord, the old rectangle is erased by drawing another rectangle on top of it, and a new
rectangle is drawn using the original starting coordinates and the new coordinates of
bord for the ending point. Then the CapyRect subprogram is called to move the ele
ments of bord into the oldBoard array, freeing the bord array to receive the coordi
nates of the still-moving pointer.

The rapid drawing and erasing of rectangles has the effect of lightly tracing the
changing shape of the rectangle as the mouse is dragged. After the button is released,
one more rectangle is drawn, this time from the starting coordinate to the ending co
ordinate. It is at this point that.fill is checked, and, if it is true, PAINTRECT is called.

If the mouse button is double clicked (MOUSE(O) = -2), the next loop is entered.
Look closely at this loop to see if you can figure out what will happen as the mouse is
dragged. The significant differences between this routine and the previous one are
that the rectangle is not erased after each draw, and the pen mode is set to 10, which is
XOR mode, rather than 8, which is Copy mode.

l Drawing ovals I
The subroutine labeled Oval, shown in Figure 9-12, does essentially the same

thing as Rect, using the FRAMEOVAL and PAINTOVAL ROM calls.

Chapter 9: The MiniPaint Program 127

'*
'*Draw oval.
'*
Oval:

PENMODE 10
MakePattern 1 'use black pattern for rectangle
SetRectangle oldBord(), MOUSE(3), MOUSE(4), MOUSE(1), MOUSE(2)
FRAMEOVAL VARPTR(oldBord(O))
WHILE MOUSE(O) = -1

SetRectangle bord(), MOUSE(3), MOUSE(4), MOUSE(5), MOUSE(6)
FRAMEOVAL VARPTR(oldBord(O))
FRAMEOVAL VARPTR(bord(O))
CopyRect oldBord(), bord()

WEND
PENMODE8
MakePattern but(3) 'reinstate selected pattern
FRAMEOV AL VARPTR(bord(O))
IF fill THEN PAINTOVAL VARPTR(oldBord(O))
WHILE MOUSE(O) = -2

PENMODE 10
SetRectangle bord(), MOUSE(3), MOUSE(4), MOUSE(5), MOUSE(6)
FRAMEOVAL VARPTR(bord(O))
IF fill THEN PAINTOVAL VARPTR(bord(O))

WEND
PENMODE8
RETURN

Figure 9-12. Drawing ovals

I Drawing lines I
The third subroutine, shown in Figure 9-13 on the following page, is labeled Lin

(notice that you have to abbreviate Line so that BASIC doesn't confuse the Lin sub
routine with the LINE statement). Lin draws a line that follows the pointer around as

long as the mouse button is held down after a single click. Dragging the mouse after a
double click will continuously draw new lines from the starting point to the changing
pointer location, giving a sunbeam effect.

128 SECTION II: GRAPHICS

'*
'*Draw line.
'*
Lin:

'*
'*Move pen point to beginning of drag.
'*
IF MOUSE(O) = -1 THEN MOVETO MOUSE(3), MOUSE(4)
WHILE MOUSE(O) = -1 'while mouse is being dragged

point1 = MOUSE(S) 'ending coordinate is also current
point2 = MOUSE(6) 'coordinate as long as button is down
LINETO point1, point2 'draw line
MOVETO point1, point2 'move pen to end of line

WEND 'button released

'*
'* Mouse double clicked before drag.
'*
WHILE MOUSE(O) = -2

PENMODE 10
MOVETO MOUSE(3), MOUSE(4)
LINETO MOUSE(S), MOUSE(6)

WEND
PENMODE8
RETURN

Figure 9-13. Drawing lines with Lin

I Dialog event trapping I
If the button is clicked while the pointer is over a window other than window #4,

BASIC considers this a significant dialog event and traps it. The ON DIALOG GOSUB

statement executed earlier then sends the program to the line labeled SelectWindow
to execute the subroutine shown in Figure 9-14.

The DIALOG function is like the MOUSE function, in that DIALOG(O) returns
the type of event that has occurred, and DIALOG(l) through DIALOG(5) give specific
information about the event. In this case, the only dialog event we want to trap is when·

Chapter 9: The MiniPaint Program

'*
'* Routine branched to if dialog event is trapped
'*
SelectWindow:

IF DIALOG(O) <> 3 THEN RETURN
WINDOW DIALOG(3)
windo = WINDOW(O)
wide = WINDOW(2)
high = WINDOW(3)
GOSUB Selectltem
WINDOW4
ON windo GOTO SetShape, SetUne, SetPattern

129

'inactive window clicked
'make clicked window active

'active window
'width

'height
'get option selection

'make window #4 active
'implement selection

Figure 9-14. Responding to dialog events with SelectWindow

an inactive window is clicked, which causes DIALOG(O) to return the value 3. So if
DIALOG(O) is not equal to 3, the first line of this subroutine simply returns the pro
gram to where it was when the dialog event occurred. If DIALOG(0) is equal to 3, then
DIALOG(3), which returns the ID number of the inactive window that was clicked, is
used to make the clicked window active. The ID number, width, and height of the cur
rent window are returned by the WINDOW(O), WINDOW(2), and WINDOW(3) func
tions, and then the Selectltem subroutine determines which option in the new window
was clicked.

I Selecting options I
The Selectltem subroutine shown in Figure 9-15 on the following page deter

mines which option was clicked, removes the highlight from the old selection, high
lights the new, and then assigns the number of the new selection to the variable IJUtSel.
This is where the constant updating of yCord while the program is waiting for the
mouse click comes in handy. If we wait until the option window is clicked to check for
the pointer location, we have to click twice: once to activate the window and once to
spot the pointer. This is necessary because the MOUSE functions return information

only about the location of the pointer relative to the active output window, so each
time you change windows, the pointer coordinates are automatically reset, thus re
quiring the second click.

130 SECTION II: GRAPHICS

'*
'* Determine which option was clicked.
'*
Selectltem:

inset= 2 'border for highlight
'window#3
'window#2

'increment down from top
'don't highlight erase button

IF windo = 3 THEN inset = 1 O
IF windo = 2 THEN yCord = yCord - 190
butSel = ((div(windo) * yCord \high)+ 1)
IF windo = 1 AND butSel = 6 THEN RETURN
top= (but(windo) - 1) *high\ div(windo) +inset
SetRelRect bord(), inset, top, wide - 2 * inset, high\ div(windo) - 2 * inset
INVERTRECT VARPTR(bord(O)) 'return previous selection to normal
top= (butSel - 1) * high\ div(windo) +inset
SetRelRect bord(), inset, top, wide - 2 *inset, high\ div(windo) - 2 * inset
INVERTRECT VARPTR(bord(O)) 'invert center of new selection
but(windo) = butSel
RETURN

Figure 9-15. Deselecting the old option and selecting the new with Selectltem

If the click was in window# 1 or #3, the previously stored value of yCord is used

directly to determine the window division selected. If the click was in window #2,

which starts 190 pixels down from the top of window #4 (where we were when yCord
was first stored), then 190 is subtracted from yCord to give it a value that is relative to
the top of window#2.

Once the window division is determined, the rest of the subroutine simply sets
up and calls a few familiar subprograms and ROM calls to remove the highlight from

the old selection and highlight the new one, and then updates the value of butSel.
When the program returns from Selectltem, it makes window #4 active and then

goes to the subroutine determined by the window in which the selection was made.
If the option window selected was window # 1, the program branches to the Set

Shape subroutine, shown in Figure 9-16. This subroutine sets the values of fill and
function, depending upon the item selected in the window. If either the filled rect
angle or the filled oval is selected, the variable fill is set equal to true, which causes the
relevant drawing routine to call PAINTRECT or PAINTOVAL rather than calling
FRAMERECT or FRAMEOVAL. If the hollow rectangle or oval is selected, fill is set to
false (in case it had previously been true).

Chapter 9: The MiniPaint Program

'*
'*Select option from shape window.
'*
SetShape:

IF butSel = 6 THEN CLS : RETURN
IF butSel = 5 THEN function = 3 : RETURN
fill= true
IF butSel = 4 THEN function = 2 : RETURN
IF butSel = 2 THEN function = 1 : RETURN
fill= false
IF butSel = 3 THEN function = 2 : RETURN
function = 1 : RETURN

Figure 9-16. Selecting the shape with SetShape

131

If the option window selected was #2, the SetLine subroutine (Figure 9-17) uses
the PENSIZE ROM call to set the size of the pen that the other ROM calls use to draw
lines and frames. You will recall that this pen size does not affect BASIC drawing

statements such as LINE and CIRCLE, and applies only to the current output window.

This is why it was important to make window #4 active again before branching to this
section. The width and height of the pen are given in pixels, and in this case are simply

set equal to the number of the option selected in window #2.
And finally, if option window #3 was selected, the SetPattern subroutine, shown

in Figure 9-18 on the next page, passes the number of the division selected within the
window (butSel) to the MakePattern subprogram, which then sets the pattern.

'*
'* Set size of pen.
'*
Setline:

PENSIZE butSel, butSel
RETURN

Figure 9-17. Setting the line width with SetLine

'butSel equals 1, 2, 3, or 4

132

'* Specify which pattern is to be used.
'*
SetPattern:

MakePattern butSel
RETURN

Figure 9-18. Selecting the pattern with SetPattern

SECTION II: GRAPHICS

The only thing left in the MiniPaint program is the set of DATA statements (Fig
ure 9-19) that stores the hexadecimal numbers describing the optional patterns. These

numbers are arranged in groups of four, for clarity, but as far as the program is con

cerned you can put as many on a line as you want-the program considers all DATA

statements to be one large storage area. The first READ statement in the program
reads the first piece of information, the second READ statement reads the second
piece of information, and so on. To change one of the patterns used by the program,
simply edit the information in the appropriate DATA statement here.

I Suggestions for experimenting I
If you feel you understand this program fairly well, you might try to integrate the

pattern-generating program into it. Perhaps double clicking on a pattern could bring
up the routine to create a new pattern that will replace the existing one. You would
probably want to store the patterns in a disk file, rather than in DATA statements.

'*
'* Data statements for patterns.
'*
DATA &HFFFF, &HFFFF, &hFFFF, &hFFFF
DATA &H55AA,&H55M, &HSSM, &HSSM
DATA &HOOOO,&HOOOO, &HOOOO, &HOOOO
DATA &H1188, &H4422, &H1188, &H4422
DATA &H8040, &H4090, &H0902, &H0201
DATA &H82AA, &H8244, &H4444, &HAA92
DATA &H0044, &HOOOO, &H0088, &HOOOO

Figure 9-19. The DATA statements that define the patterns

Chapter 9: The MiniPaint Program

'* MiniPaint, a diminutive version of MacPaint
'*

GOSUB DefineVariables
GOSUB CreateWindows
GOSUB CreateSymbols
GOSUB CreatePatterns
GOSUB ShowDefaults

133

ON DIALOG GOSUB SelectWindow
DIALOG ON

'if inactive window clicked

'*
'*Allow user to create lines and shapes, while waiting
'* for click in side windows.
'*
Mainloop:

WINDOW4 'make window #4 active

'*

WHILE MOUSE(O) = 0

'*
'* While waiting for mouse click, store current location of
'*pointer. This information will be used if next click is outside
'* work-area window.
'*
yCord = MOUSE(2)

WEND
ON function GOSUB Rect, Oval, Lin
GOTO Mainloop

'* Draw rectangle.
'*
Rect:

PENMODE 10 'XOR mode

'*
'*Draw first rectangle.
'*
MakePattem 1 'use black pattern for frame
SetRectangle oldBord(), MOUSE(3), MOUSE(4), MOUSE(1), MOUSE(2)
FRAMERECT VARPTR(oldBord(O)) 'draw rectangle
WHILE MOUSE(O) = -1 'while mouse button is pressed

SetRectangle bord(), MOUSE(3), MOUSE(4), MOUSE(5), MOUSE(6)

Figure 9-20. The complete MiniPaint program
more ...

134 SECTION II: GRAPHICS

'*

FRAMERECT VARPTR(oldBord(O))
FRAMERECT VARPTR(bord(O))
CopyRect oldBord(), bord()

WEND

'*
'* Create filled rectangle if this symbol was selected.
'*
MakePattern but(3)
PENMODE8
FRAMERECT VARPTR(bord(O))
IF fill THEN PAINTRECT VARPTR (oldBord(O))

'*
'*And now for a little fun.
'*
WHILE MOUSE(O) = -2

PENMODE 10

'erase rectangle (while dragging)
'draw new rectangle

'reinstate stored pattern
'copy mode

'draw rectangle

SetRectangle bord(), MOUSE(3), MOUSE(4), MOUSE(5), MOUSE(6)
FRAMERECT VARPTR(bord(O))
IF fill THEN PAINTRECT VARPTR(bord(O))

WEND
PENMODE8
RETURN

'*Draw oval.
'*
Oval:

PENMODE 10
MakePattern 1 'use black pattern for rectangle
SetRectangle oldBord(), MOUSE(3), MOUSE(4), MOUSE(1), MOUSE(2)
FRAMEOVAL VARPTR(oldBord(O))
WHILE MOUSE(O) = -1

SetRectangle bord(), MOUSE(3), MOUSE(4), MOUSE(5), MOUSE(6)
FRAMEOVAL VARPTR(oldBord(O))
FRAMEOV AL V ARPTR(bord(O))
CopyRect oldBord(), bord()

WEND
PENMODE8
MakePattern hutf3)
FRAMEOVAL VARPTR(bord(O))

'reinstate selected pattern

Figure 9-20. The complete MiniPaint program (continued)
more ...

Chapter 9: The MiniPaint Program 135

'*

IF fill THEN PAINTOVAL VARPTR(oldBord(O))
WHILE MOUSE(O) = -2

PENMODE 10
SetRectangle borcl(), MOUSE(3), MOUSE(4), MOUSE(5), MOUSE(6)
FRAMEOVAL VARPTR(borcl(O))
IF fill THEN PAINTOVAL VARPTR(bord(O))

WEND
PENMODE8
RETURN

'*Draw line.
'*
Lin:

'*

..
'* Move pen point to beginning of drag . ..
IF MOUSE(O) =-1 THEN MOVETO MOUSE(3), MOUSE(4)
WHILE MOUSE(O) = -1 'While mouse is being dragged

point1 = MOUSE(5) 'ending coordinate is also current
point2 = MOUSE(6) 'coordinate as long as button is down
LINETO point1 , point2 'draw line
MOVETO point1, point2 'move pen to end of line

WEND 'button released

..
'*Mouse double clicked before drag.
'*
WHILE MOUSE(O) = -2

PENMODE 10
MOVETO MOUSE(3), MOUSE(4)
LINETO MOUSE(5), MOUSE(6)

WEND
PENMODE8
RETURN

'* Define variables and dimension arrays .
••
Define Variables:

DEFINTa- z 'make all variables integers for speed

Figure 9-20. The complete MiniPaint program (continued)
nwre ...

136

'*

DIM div(3)
DIM but(3)
DIM pat(28)
DIM bord(3)
DIM oldBorcl(3)
false= O
true= -1
div(1) = 6
div(2) = 4
div(3) = 7
function= 1
RETURN

'* Create four windows.
'*
CreateWindows:

'*

WINDOW 1, , (0, 20) - (50, 209), 3
WINDOW 2, , (0, 210) - (50, 342) ,3
WINDOW 3, , (460, 20) - (512, 342), 3
WINDOW 4, , (51, 20) - (459, 342), 3
RETURN

'* Create window divisions . ..
CreateSymbols:

FOR windo = 1 TO 3
WINDOW windo
wide = WINDOW(2)
high = WINDOW(3)

SECTION II: GRAPHICS

'number of window division
'current button in each window

'pattern definitions
'top, left, bottom, and right borders

'number of divisions in shape window
'number of divisions in line-thickness window

'number of divisions in pattern window
'default shape to draw--rectangle

'shape window
'line-thickness window

'pattern window
'work-area window

FOR division= 1 TO div(windo)-1
MOVETO 0, division* high\ div(windo)
LINETO wide, division * high \ div(windo)

NEXT division

'make window windo active
'width of current window

'height of current window
'draw division lines

NEXTwindo

'*
'* Draw symbols in shape window.
'*
WINDOW1
higti = WiNDOW(3)
wide = WINDOW(2)

Figure 9-20. The complete MiniPaint program (continued)

'shape window

more ...

Chapter 9: The MiniPaint Program

'*

'*
'* Call subprogram that creates six shapes.
'*
DrawFuncs wide, high, div(1)

'*
'*Create line-thickness window.
'*
WINDOW2
high = WINDOW(3)
wide = WINDOW(2)

FOR division = 1 TO 4
PENSIZE 1 , division
MOVETO 5, (division - .5) * high \ div(2)
CALL LINE (wide - 10, 0)

NEXT
RETURN

'* Read data for patterns.
'*

Create Patterns:
WINDOW3
wide = WINDOW(2)
high = WINDOW(3)
FOR design = 0 TO 27

READ pat(design)
NEXT
countBy4 = O
FOR division = 0 TO div(3) - 1

137

'note parentheses

'make window #3 active
'get its height and width

'read DATA statement

'initialize--used to count by fours
'fill patern swatches

SetRelRect bord(), 0, division* high\ div(3), wide, high\ div(3)
FILLRECT VARPTR(bord(O)), VARPTR(pat(countBy4))
countBy4 = countBy4 + 4 'increment counter

'*

NEXT
RETURN

'* Highlight default selection in each window.
'*
ShowDefaults:

inset= 2 'size of border around highlight

Figure 9-20. The complete MiniPaint program (continued) more ...

138

FOR windo = 1 TO 3
IF windo = 3 THEN inset = 10
WINDOW windo
wide = WINDOW(2)
high = WINDOW(3)

SECTION II: GRAPHICS

SetRectangle bord(), inset, inset, wide - inset, high\ div(windo) - inset
INVERTRECT VARPTR(bord(O)) 'invert center of selection
but(windo) = 1 'store this window's button-press

NEXT
RETURN

'*
'* Routine branched to if dialog event is trapped
'*
SelectWindow:

'*

IF DIALOG(O) <> 3 THEN RETURN
WINDOW DIALOG(3)
windo = WINDOW(O)
wide = WINDOW(2)
high = WINDOW(3)
GOSUB Selectltem
WINDOW4
ON windo GOTO SetShape, SetLine, SetPattern

'*Select option from shape window.
'*
SetShape:

'*

IF butSel = 6 THEN CLS : RETURN
IF butSel = 5 THEN function = 3 : RETURN
fill= true
IF butSel = 4 THEN function = 2 : RETURN
IF butSel = 2 THEN function = 1 : RETURN
fill= false
IF butSel = 3 THEN function = 2 : RETURN
function = 1 : RETURN

'* Set size of pen.
'*
Setline:

PENSIZE butSel, butSel
RETURN

Figure 9-20. The complete MiniPaint program (continued)

'inactive window clicked
'make clicked window active

'active window
'width

'height
'get option selection

'make window #4 active
'implement selection

'butSel equals 1, 2, 3, or 4

nwre ...

Chapter 9: The MiniPaint Program

'*
'* Specify which pattern is to be used.
'*
SetPattern:

'*

MakePattern butSel
RETURN

'* Determine which option was clicked.
'*
Selectltem:

inset= 2
IF windo = 3 THEN inset = 1 O
IF windo = 2 THEN yCord = yCord - 190
butSel = ((div(windo) * yCorcl \high)+ 1)
IF windo = 1 AND butSel = 6 THEN RETURN
top= (but(windo) - 1) *high\ div(windo) +inset

139

'border for highlight
'window#3
'window#2

'increment down from top
'don't highlight erase button

SetRelRect bord(), inset, top, wide - 2 *inset, high\ div(windo) - 2 *inset

'*

INVERTRECT VARPTR(bord(O)) 'return previous selection to normal
top= (butSel - 1) * high\ div(windo) +inset
SetRelRect bord(), inset, top, wide - 2 * inset, high\ div(windo) - 2 *inset
INVERTRECT VARPTR(borcl(O)) 'invert center of new selection
but(windo) = butSel
RETURN

'*
'* Data statements for patterns.
'*
DATA &HFFFF, &HFFFF, &hFFFF, &hFFFF
DATA &H55AA,&H55AA, &H55AA, &H55AA
DATA &HOOOO,&HOOOO, &HOOOO, &HOOOO
DATA &H 1188, &H4422, &H 1188, &H4422
DATA &H8040, &H4090, &H0902, &H0201
DATA &H82AA, &H8244, &H4444, &HAA92
DATA &H0044, &HOOOO, &H0088, &HOOOO

'* Start of subprogram section.
'*

Figure 9-20. The complete MiniPaint program (continued)
more ...

140

..
'* Make one of stored patterns active .
••
SUB MakePattern(patNum) STATIC

SHARED pat()
PENPATVARPTR(pat(4 * patNum - 4))

END SUB

..
'* Copy one rectangle into another . ..
SUB CopyRect(rect1 (), rect2()) STATIC

FOR count = 0 TO 3
rect1 (count) = rect2(count)

NEXT
END SUB

••
'* Draw symbols in shape window .
••
SUB DrawFuncs (wide, high, numDivs) STATIC

DIM Rect(3)
boxWidth = wide - 1 O : boxHeight = high \ numDivs - 9
deltaY = high \ numDivs

'*
'*Draw rectangle . ..
SetRelRect Rect(), 5, 5, boxWidth, boxHeight
FRAMERECT VARPTR(Rect(O))

..
'*Draw filled rectangle . ..
SetRelRect Rect(), 5, deltaY + 5, boxWidth, boxHeight
INVERTRECT VARPTR(Rect(O))

'*
'* Draw circle.
'*
SetRelRect Rect(), 5, 2 * deltaY + 5, boxWidth, boxHeight
FRAMEOVAL VARPTR(Rect(O))

Figure 9-20. The complete MiniPaint program (continued)

SECTION II: GRAPHICS

'Pat() is first of group of four

more ...

'·
Chapter 9: The MiniPaint Program

'*
'* Draw filled circle.
'*
SetRelRect Rect(), 5, 3 * deltaY + 5, boxWidth, boxHeight
INVERTOVAL VARPTR{Rect{O))

'*
'*Draw crooked line.
'*
LINE (6, 4.3 * deltaY) - STEP (10, 10)
LINE- STEP (10, -10)
LINE - STEP (10, 10)

'*
'* Draw eraser.
'*
MOVETO 6, 6 * deltaY - 10
PRINT "erase";

END SUB

'*
'*Take pair of points and set rectangle so it encloses these points.
'*
SUB SetRectangle{array(), x1, y1, x2, y2) STATIC

array{O) = y1
array{1) = x1
array{2) = y2
array{3) = x2
IF x1 > x2 THEN SWAP array{1), array{3)
IF y1 > y2 THEN SWAP array{O), array{2)

END SUB

'*
'* SetRelRect is just like SetRectangle except it takes as input
'* top, left point and height and width.
'*
SUB SetRelRect{array{), x, y, wide, high) STATIC

CALL SetRectangle {array(), {x), {y), x +wide, y + high)
END SUB

Figure 9-20. The complete MiniPaint program (continued)

141

SECTION Ill

Communications

Introduction to
Communications Chapter IO

The application programs available for your Macintosh make it a useful and entertain
ing tool. But just as individuals can increase their knowledge and power through asso
ciation with the rest of the community, the power of your Macintosh-and the scope

of the information you can process with it-can be extended through communication
with other computers. Connecting your computer to others allows you to search for
and retrieve information from commercial databases, exchange electronic mail, send

telegrams and telex messages, check airline fares and schedules and purchase tickets,
manage your bank account, monitor and control conditions at remote sites, and par
ticipate in many other useful and entertaining activities.

The only items, in addition to your Macintosh, that you need to gain access to the
world of electronic information and services are a telephone line, a modem, and com
munication software.

I Modems and the modem port I
Before getting too involved with the software that allows your computer to com

municate, let's have a look at the hardware end of things, and at how you physically
hook your Macintosh to a modem or another computer.

If you look at the back of your Macintosh, you will see four sockets, called ports,
in a row at the bottom. As you undoubtedly know, these are for connecting, from left
to right, the mouse, the external drive, the printer, and the modem. (The modem port
is also called the communication port or COM!:.) The printer and modem ports are
physically identical; either could be used to communicate with a printer, a modem, a
hard disk, the AppleBus, the Microsoft MacEnhancer, or just about any other device
that normally connects to the serial port of a computer. However, differences in the

145

146 SECTION III: COMMUNICATIONS

way the operating system handles information received at the printer port restrict the
speed at which you can communicate through it, so for practical purposes, telecom
munication or communication with other computers is limited to the modem port.

There are two standard methods-serial and parallel-by which a computer
communicates with other devices. Very briefly, serial communication sends a stream
of single bits that are grouped together at the receiving end to make characters; paral
lel communication sends eight bits-the equivalent of one character-at a time. The
Macintosh uses serial communication.

Now that the Mac has been out for a while, modems and other devices adver
tised as "Macintosh compatible" or "for the Macintosh" are appearing on the market.
This sounds like a breakthrough, as if the manufacturers had to develop a special mo
dem to allow your Macintosh to communicate; but the fact of the matter is that almost
any serial device can be connected to the Macintosh. There are serial versions of al
most every computer peripheral, including modems, printers, plotters, and data ac
quisition equipment. Your Macintosh can even connect directly to an IBM PC or any
other computer that has a serial port. The only "interface" required between the Mac
and the device with which it is communicating is a cable with the proper connector on
each end.

I The connectors I
Physically, the Mac's serial-port connectors are somewhat smaller than the con

nectors you may be accustomed to seeing on the serial ports of other computers. The
standard system for connecting serial devices has for years been the RS-232C pro
tocol. (A communication protocol is a set of rules that establish a standard for inter
connecting devices. Computer manufacturers are not required to follow any particular
communication protocol when designing their equipment, but doing so usually adds
to their product's popularity.) RS-232C devices connect through a 25-pin connector,
commonly called a DB-25 connector.

The Macintosh is not an RS-232 device. Its serial ports follow the RS-422 pro
tocol, which is an enhanced version of RS-232 that allows higher-speed communica
tion and greater distance between devices. The connector used by the Macintosh has
nine pins and is commonly called a DB-9 connector. It can easily be hooked to most

Chapter 10: Introduction to Communications 147

serial devices-even those using a different protocol-with the proper cable. Your
Macintosh dealer can probably supply a cable with the proper connectors to hook to
any other device you purchase, but if you are into being self-sufficient or saving
money, you cani assemble your own cables with relatively little effort.

The nine-pin connectors at each of the Macintosh serial ports have the following
signals on them:

Pin Signal

1 Ground
2 +5 volts
3 Ground
4 TXD +(transmitted data)
5 TXD-
6 Filtered+ 12 volts
7 Handshake for printer or carrier detect for modem; also for

external clock in synchronous communication mode
8 RXD +(received data)
9 RXD-

Of these, the minimum required for communication are a ground, a transmit, and a
receive signal. The signals available on pins 3, 5, and 9 of the Macintosh modem port
satisfy this requirement, and correspond to pins 7, 2, and 3 on an RS-232 (DB-25) con
nector. Some devices also require a carrier-detect signal from pin 7 of the Macintosh.
The connectors and wire required are readily available and not too expensive. Radio
Shack, for example, stocks both the DB-9 and DB-25 connectors under the following
part numbers:

DB-9

DB-29

Male
Female
Male
Female

276-1537
276-1538
276-1547
276-1548

The wiring diagrams in Figure 10-1 on the next page show the connections for
cables used to hook the Macintosh to other specific.devices.

148 SECTION III: COMMUNICATIONS

Mac to Mac Mac to IBM PC

1 1 1 1
2 2 2 2
3 3 3 3

·~·
4 !:J 5 5 5

6 6
6 6

7 7
8 8 7 7

9 9 8 8
9 9

Mac to D.C Hayes Modem

1 1 20

2 2 Mac dummy plug
3 3
4 4 1
5 5 2
6 6 3
7 7 4
8 8

iJ
9 9

20

Figure 10-1. Various cable connections

I Communication programs I
Programs that allow the Macintosh to communicate with other computers come

in many sizes and shapes, and at a variety of prices. They share the common quality of
being able to send the characters you type at the keyboard out the modem port at the
back of the Mac, and of transferring the characters that come in the modem port to
the screen, but other than that, they may differ greatly.

To really take advantage of the power of your Macintosh, sophisticated software
is usually required, but because this is a book about BASIC and not a book about com
munications per se, I'm going to limit the discussion of communication programs in

Chapter 10: Introduction to Communications 149

this chapter to the relatively simple terminal emulation program, called Terminal, that
Microsoft has included on the BASIC disk. This program-written, naturally, in

BASIC-does nothing more than allow your powerful Macintosh to act like a simple
terminal. (A terminal is a keyboard/screen combination that has no computing power

and no internal or external storage for the information that passes through it.)

There are many situations in which this level of communication is adequate. For
example, if you can connect your Macintosh to the office computer and use its storage
and computational power, then simply being able to enter information from home or

while traveling may be useful. Also, many of the electronic services, such as directing
your bank to pay a bill, or retrieving airline scheduling information, can be utilized
with a simple terminal.

In addition to providing terminal emulation capability, I like to think that Termi

nal was provided to help you learn more about BASIC. And as a learning tool, it is
ideal: It is well written and documented, it uses several commands unique to the Mac

intosh, it performs a simple task in an understandable manner, and it can be expanded

almost infinitely. In Chapter 11, we will tear the Terminal program apart, and learn
what it does and how it does it. Then in Chapter 12, we will add some features to make
it more useful. By the time you finish Chapter 12, you should understand the Terminal
program well enough to tailor it to your own needs. For now, let's finish this chapter
with a brief discussion of some of the services that will be available to you once you

have your modem connected and your communication program up and running.

I Let your fingers do the walking I
The electronic services to which you can connect your Macintosh vary in cost

from nothing (or just the cost of a telephone call) to several hundred dollars an hour.
I'll just mention the bargains.

I Bulletin boards I
The most common free services are bulletin boards-computerized versions of

the cork-board at the neighborhood grocery store, where people post notices about
things to buy or sell, and carry on "pen-pal" type relationships with other comput
erists. If you are new to telecommunication and would like a cheap way to try out your

150 SECTION III: COMMUNICATIONS

system, and perhaps meet a few people with common interests, you should try out a
few bulletin boards. The phone numbers of local bulletin boards can usually be ob

tained from someone at a computer store or in a users'...group meeting.

I A communication sampler: Online I
The commercial services (those that charge money) offer such a vast variety of

information and service that it is difficult to decide which to subscribe to. If you would

like to try out a few of these services for free, I recommend you buy my book: Online

(Microsoft Press, 1985). Included with the purchase of this book are subscriptions to
six major services, and free time on one more. As an example of what is available via a
modem, here's a summary of the services offered through Online.

MCI Mail specializes in what is often called ''store and forward" electronic mail
delivery. Your subscription to MCI Mail allows you to send messages to other subscrib

ers-anything from a short note to long documents created with your word processor.
Mail sent electronically is instantly available in recipient MCI Mailboxes. The next

time the people you have sent messages to log on, they are notified of mail waiting and
can read it or transfer it directly to a computer file.

If the intended recipient is not a subscriber, MCI offers the option of telecom
municating your message to a facility as close to the recipient as possible, printing the
message, placing it in an envelope, and then delivering it by courier or turning it over
to the U.S. Postal system, as you desire.

CompuServe is an information utility, offering a broad range of topics at a low
price. CompuServe's Executive Information Servise (EIS) offers in-depth coverage of

the financial community, access to a variety of news services, statistical information,
shopping, and communication-both electronic mail and an online computer con
ferencing service.

News Net offers the publishers of newsletters the opportunity to make their prod
uct instantly available online to readers. When you call NewsNet, you tap into a huge
database containing years of subscriptions to hundreds of newsletters. Every key word
of every newsletter is electronically indexed; enter a word or phrase that interests you
and NewsNet will tell you which newsletter issues include references to it. You can
then select and read specific articles or headlines.

Chapter 10: Introduction to Communications 151

If you have a continuing interest in a particular subject, NewsNet will monitor
this subject for you and tell you, each time you log on, if new information has been
added to the database since your last session.

Official Airline Guides (OAG) is a database containing fares and schedules for
over 700 airlines throughout the world. With a quick call to OAG, you can find all di
rect or connecting flights between any two cities, including departure and arrival
times and specific fares. You can discover the "specials" and excursion fares, and see
what restrictions apply to them.

Western Union is a name that brings up visions of old men dinging the bells on
their bicycles as they pedal through traffic to deliver urgent telegrams. But the deliv
ery "boys" are gone: Western Union has enthusiastically entered the electronic era.

Your subscription to Western Union's EasyLink service provides a link to the
people on the other side of 1.6 million telex machines; allows you to send telegrams,
mailgrams, cablegrams, and ties you into an electronic mail network with 110,000
other Easy Link subscribers-all without leaving your computer keyboard. Western
Union also provides a currrent affairs news service.

DIALOG is the granddaddy of all databases. Actually, DIALOG is a vendor of
database information; it has gathered together hundreds of specialized databases,
covering almost every imaginable subject, and provides an organized method to ac
cess all of them.

Dow Jones News/Retrieval Service is a subsidiary of the company that publishes
The Wall Street Journal. Although it specializes in stock-market information, it also
makes available to its subscribers an array of business and general-interest informa
tion and services-everything from Wall Street news to movie reviews.

These services are just a sample of what is available online. There are thousands
of sources of information and services with which you can communicate using your
computer. Now that you know what you are going to do with telecommunication, let's
have a look at a simple program that helps you do it.

The Terminal
Program Chapter 11

The Terminal program supplied by Microsoft on the BASIC disk is a relatively simple
program. It occupies about 4K bytes on your disk, and when printed fills about two

and a half pages. By contrast, the powerful PC-Talk III, a communication program
written in BASIC for the IBM PC, is about 45K bytes long and fills 19 pages. They both
perform the same primary function: the exchange of information between two com
puters. PC-Talk III simply offers more refinements and options. In this chapter we will
learn how the Terminal program operates, and in the next look at possible enhance
ments to it. By the time you finish this section, you should be able to create a com

munication program tailored exactly to your own needs.
Since the Terminal program is on your disk and ready to run, go ahead and try it

out before we get into the explanation of how it works. (I assume, since you are read
ing this chapter, that you have either a modem or access to a second computer to which
you can connect your Macintosh.)

The first thing you will notice as the Terminal program starts to run is that it re
places BASIC's menu bar with one of its own. There are only two selections on this
menu bar, with only one item on each menu. Figure 11-1, on the next page, shows the
screen after you choose Set Configuration Parameters from the Configure menu. The
dialog box that appears allows you to set the baud rate, parity, number of data bits, and
number of stop bits used to communicate, by clicking a button opposite each param
eter. The default parameters are indicated by black dots in their buttons.

If, when you start the program with your modem connected and turned on,
these default settings are satisfactory, you can simply dial the phone number of the
computer you want to connect with and start communicating. Everything you type
will go out the modem port, and anything that comes in the modem port will appear

153

154 SECTION III: COMMUNICATIONS

• File I lllJ 1 llll.;.m

Terminal

O 110 bits per sec O 5 Data bits O No parity

® 300 bits per sec O 6 Data bits ® Euen parity

O 600 bits per sec ® 7 Data bits O Odd parity

O 1200 bits per sec O 8 Data bits

0 2400 bits per sec

O 4800 bits per sec ® 1 Stop bits G O 9600 bits per sec O 2 Stop bits

Figure 11-1. The Terminal configuration screen

on the screen. Normally, what you type will also appear on the screen, echoed back by
either your modem or the computer with which you are communicating.

Other than the configuration dialog box and the text that you send or receive,
there is not much to look at when you run this program, but it does its simple job well.
Let's read through the program and discuss the new commands. After you understand
how this fundamental program works, we will create a more powerful communication
program based on the same concepts.

The complete Terminal program is shown in Figure 11-13 at the end of the chap
ter. For the purposes of this discussion, I have divided Terminal into sections, and in
the next few pages, I list and briefly describe each section in the order in which it
would typically be used, not the order in which it appears on your disk. Figure 11-2
shows the flow of the program. Once it enters the communication loop, it stays there
unless it is interrupted to handle a menu request, which in turn leads it into one or
more of the subroutines and possibly the subprogram. When the peripheral activities
are taken care of, the program returns to the communication loop.

Chapter 11: The Terminal Program

START

!
DIM

INIT
text attributes

menu
default

open com

1 ,
COMMUNICATION LOOP __ •• HANDLE MENU

l

155

QUIT I SELECT OPTIONS

+
END DISPLAY DEFAULTS

read data
simulate press

1
SELECT BUTTON

Figure 11-2. A flow chart of the Terminal communication program

156

REM --- Terminal
REM --- Terminal Emulation Program

DIM nam$(17), group(17), choice(4), choice$(4)
GOSUB lnit

Figure 11-3. Dimensioning the arrays

SECTION III: COMMUNICATIONS

You should be familiar with most of the commands in this program, and the com
ments will help refresh your memory. (Notice that REM statements are used for the
comments in this program, instead of the single-quote/asterisk convention I usually
use.) If, after glancing through the listing, you feel you already understand the com
mands used and would like to get on with enhancing Terminal to make it a more pow
erful program, feel free to skip ahead to the next chapter.

I Dimensioning the arrays I
Figure 11-3 lists the section of the Terminal program that identifies the program

(in the initial comments) and sets aside storage space for array variables. As you can
see, the program uses four arrays: nam$(17), group(l 7), choice(4), and choice$(4). Re
member that the number in parentheses after each variable name is the highest sub
script that may be used with that variable, and that 0 is the lowest, so you can have one
more variable in each array than the value given in the DIM statement.

Once the arrays have been dimensioned, the GOSUB statement diverts program
flow around the main communication loop (labeled Loop:) to the Init subroutine.

I initializing the program I
The Init subroutine, as its label implies, sets up the initial, or default, conditions

of the program. It establishes the text font that will be displayed on the screen, creates
the menus and their selections, specifies the default communication parameters, and
opens the communication port. Read through the listing in Figure 11-4 on the next
page, and then we will take a closer look at each line.

Chapter 11: The Terminal Program

lnit:
TEXTFONT4
TEXTSIZE9
TEXTMODE1

REM --- Setup menu
MENU 1, 0, 1 , "File"
MENU 1, 1 , 1, "Quit"
MENU 2, 0, 1, "Configure"·
MENU 2, 1, 1 , "Set configuration parameters"
MENU 3, 0, 0, ""
MENU 4, 0, 0, ""
MENU 5, 0, 0, ""
ON MENU GOSUB HandleMenu
MENU ON

REM --- Setup default options
choice(1) = 2
choice(2) = 9
choice(3) = 13
choice(4) = 15

157

'mono-spaced font
'allows 80 characters per line

'print mode = XOR, not COPY

'300 baud
'even parity
'7 data bits

'1 stop bit
REM --- Open Communications port with 2000 byte input buffer
OPEN "COM1: 300, e, 7, 1" AS 1 LEN= 2000
RETURN

Figure 11-4. Initializing the program

You are familiar with the TEXTFONT and TEXTSIZE ROM calls from earlier
chapters. They set the font and character size used for printing in the output window.

The TEXTMODE call controls whether the pixels that make up new text on the Macin
tosh screen replace old pixels at the same location or are displayed on top of them in
some manner. The two possible syntaxes for this call are:

CALL TEXTMODE (mode)

TEXTMODE mode

The mode argument is a numeric expression from 0 through 3. Figure 11-5, on the
next page, demonstrates the effect of each mode.

158

TEXTMODE 0

overlay on ~
white background~

overlay on
black background

overlay on
gray background

Figure 11-5. Text modes

SECTION Ill: COMMUNICATIONS

TEXTMODE 1 TEXTMODE 2 TEXTMODE 3

EJEJ D
overlay

If you don't specify a mode, BASIC defaults to mode 0, in which new text, black

on a white background, replaces old. Mode 1 ORs new text with old, meaning that all
pixels turned on for either new or old text remain turned on. Mode 2 XORs the new
with the old, meaning that any pixel that would be turned on for the new text that has

already been turned on for the old text is inverted in color (turned off) and appears

white. Mode 3 changes only black pixels of the old text, making them white where the
new text appears.

The next block of commands provides the power to personalize your program by
creating a menu bar and dropdown menus. This part of the Mac's visual interface is a
distinctive feature of commercially available programs for the Macintosh, and the
BASIC MENU command allows you to create and control it.

A menu is actually dealt with in two stages. The first stage, which you see in this
section, creates the menu and specifies the selections and the state (disabled or en
abled) of each. The second stage, discussed in a moment, defines what happens when
the user selects an item from the menu.

There are nine commands in BASIC that include the word MENU. Each has a
different syntax and results in a different action being taken. Here, we use three
MENU commands. The first of these is the statement that actually creates menu items.
Its syntax is:

MENU menu-ID, item-ID, state [title]

Chapter 11: The Terminal Program

Here is what the italicized arguments in this statement mean:

Argument

menu-id

item-id

state

title

Value and meaning

A number from 1 through 10, identifying position of menu in
menu bar (from left to right).

A number from 0 through 20, identifying item in menu (menu
title is item O; selections in menu are numbered 1through20).

A number from 0 through 2 that determines whether item
referenced in this statement is disabled (0), enabled (1), or
enabled and preceded by check mark (2).

A string of text, enclosed in quotation marks, assigned to
referenced item and appearing either as menu title or as item
on menu.

159

Let's take a closer look at how the Terminal-program menus are created. When
you ran the program, you saw that there were three menus-Apple, File, and Config

ure. The latter two are created by the program and each displays one item. (You can
have as many as 10 BASIC-created menus with up to 20 items on each.) The desk ac

cessory menu under the Apple icon is a permanent fixture that we can neither turn off
nor control from BASIC, so it has no number. You issue this version of the MENU com

mand once for each menu title and each selection item you want to define. Glancing at
the block of MENU commands in the Terminal program, you can see that five menus,
in addition to the Apple menu, are defined. The three that you did not see when you
ran the program (numbers 3, 4, and 5), are "dummy" menus, included in the program
as a way of turning off the standard BASIC menus in those locations (remember that
this program is run from within BASIC, so the BASIC menu bar appears at the top of

the screen until you change it).
Once a menu is created, the program uses another of the nine MENU com

mands, the ON MENU statement, to tell the Macintosh what to do when an item is se
lected from the menu. In this case ON MENU GOSUB HandleMenu sends the program
off to a subroutine for more instructions. The ON MENU statement is one of a group
of ON ... statements that set up the action to be taken should some event occur in the
future. The Macintosh stores this information· and, once trapping for that event is

160 SECTION III: COMMUNICATIONS

enabled, watches for it as the program runs, taking the specified action if the event
occurs. The subsequent MENU ON statement, the third version of MENU that we'll

meet in this chapter, enables menu event trapping. From this point on, if a menu item

is chosen, program flow is diverted to the HandleMenu subroutine.
The next part of this section of code assigns values to four elements of the choice

array, which was dimensioned in the first section. Later you will see how these set

tings are used to display the default communication parameters when we arrive at the
DisplayDefaults subroutine.

The final step in the initialization process is to open the communication port. In
addition to opening sequential and random-access files, you can use the OPEN com

mand to open 1/0 devices: the keyboard (KYBD:), the Clipboard (CLIP:), the screen
(SCRN:), theprinter(LPTI:), and the communication port (COM!:). The syntax of the

OPEN command when used to open the communication port includes information to

set the baud rate, parity, number of data bits, and number of stop bits. The specific
command given in the Terminal program-Open "COMl: 300, e, 7, l" AS 1 LEN=
2000-sets the baud rate to 300, the parity to even, the number of data bits to 7, and
the number of stop bits to 1. The complete list of possible settings for these communi
cation parameters is:

Parameter

Baud rate

Parity

Data bits

Stop bits

Possible values

110,150,300,600,1200,1800,2400,3600,4800,
7200,9600,19200,or57600

Odd, even, or none

5, 6, 7, or8

1, 1.5, or2

The AS 1 portion of the command opens the port as file # 1. The file number can
be any integer from 1 through 255, and is essentially the address used when sending
information to the file (PRINT #filenumber) or getting information from the file (IN
PUT$(X,filenumber)). The final part of the OPEN statement, LEN=2000, allocates
2000 bytes of memory as an input buffer in which to store data bits that come in faster
than the program can accept them.

Chapter 11: The Terminal Program 161

By the time the program has gotten this far, both it and the computer are ini
tialized and ready to start communicating. So the RETURN statement sends the pro
gram back to the line following the GOSUB that called the lnit subroutine, and the
program flows on into the main communication loop, where it will remain until a
menu item is chosen.

I An exercise I
One of the nice things about studying a working program already on your disk is

that you don't have to type it in and worry about whether what you have typed will
work. It is easy to load the program into BASIC and run it. You can then stop the pro
gram, list it, and make minor changes to check your understanding of the various
commands. A simple change you can make to this section is to replace the menu titles
with other words. You could even add a few more items to one of the menus, or add an
entire new menu. As long as you don't save your changes when you quit, the original
program won't be affected.

I The main communication loop I
Although the program is initially directed around the Loop: section by the

GOSUB Init statement, Loop is the main part of the program and, as we will see later,
can practically stand on its own as a useful program. The program accomplished one
essential action during its diversion, however: It opened the communication port
(COMl:) so that you can send and receive information.

The main communication loop, shown in Figure 11-6 on the next page, does just
what the comment in its first line indicates. (Remember that remarks can be set off
with either REM or a single quote mark.) It displays the characters arriving at COMI:

on the screen, and sends the characters typed at the keyboard out the same port. The
main loop is entered on the line labeled Loop. The next two lines monitor COMl: for
incoming characters and print any that appear. The following two check to see if a key
has been pressed since the last check, and if one has, the next-to-last line sends the
character out COMl:. The last line directs the program back to Loop to repeat the se
quence. As a matter of fact, it will repeat forever unless an outside event-in this case
a selection from the menu-interrupts it.

162 SECTION III: COMMUNICATIONS

'Display characters from COM1, send keystrokes to COM1
Loop:

PRINT INPUT$(LOC(1), 1);
IF LOC(1) > 0 THEN Loop
k$= INKEV$
IF k$ = "" THEN Loop
PRINT #1, k$;
GOTO Loop

Figure 11-6. The main communication loop

Let's look more closely at the individual lines in this section, and I will explain
the commands we haven't previously used.

PRINT INPUT$(LOC(1), 1);

You are already familiar with the PRINT statement. Used in this context, it will
display the string represented by INPUT$(LOC(l), 1) on the screen. We already know
that this string will be one or more characters waiting at COM!:, but how many char
acters are there and how are they collected? Well, you'll recall that the full syntax of
the INPUT$ function is:

INPUT$(X[, [#]jilenumber])

This function returns a stringX characters long from the specified file (if no file num
ber is specified, INPUT$ gathers its characters from the keyboard). In this case, the
file specified is # 1, the file number assigned to the communication port. The number
of characters to gather, however, has been replaced by the function LOC(l). The par
enthetical number in this function is again a file number. The LOC function returns
different types of information, depending upon the kind of file referenced by the file
number. The number returned for COM!:, which we are using here, is the total num
ber of characters waiting to be input (remember that the input buffer holds characters
arriving faster than they can be displayed). So what this line in essence says, is: Find
out how many characters are waiting at the communication port, bring them in, and
print them on the screen.

Chapter 11: The Terminal Program 163

The semicolon that ends the PRINT statement serves its usual purpose: It pre
vents an automatic carriage return, so that the next PRINT statement will display its
characters directly after these, on the same line of the screen.

The next line instructs the computer to check the input port again and, if any
thing is waiting to come in, to direct the program flow back to Loop, which will input
and print it.

IF LOC(1) > 0 THEN Loop

The purpose of this statement is to give incoming characters priority over those typed
at the keyboard. If the previous line emptied the buffer but characters are still coming
in, this line sends the program back to empty the buffer again. If there are no charac
ters waiting to come in, the program continues to the next line.

k$= INKEY$

This statement simply assigns the character returned by the INKEY$ function to
the variable k$. INKEY$ returns either the next character from the keyboard buffer
or, if the buffer is empty, a null string. Because it does not hold the waiting character,
we assign the retrieved character to k$ so that we can later test it and, if necessary,
print it. The next line:

IF k$ = "" THEN Loop

instructs the computer to go back to Loop if there is no keystroke waiting ink$. (Dou
ble quotes with neither character nor space between them are the symbol for the null
string.) If k$ is not equal to the null string-in other words, if a character has been as
signed to k$- the program goes on to the next line, without executing the THEN por
tion of the IF ... THEN statement.

164 SECTION III: COMMUNICATIONS

PRINT #1, k$;

Here we see yet another version of the PRINT statement. The # 1 included in this

statement directs the printing to file # 1, rather than to the screen. Again, note the
closing semicolon which keeps the printed characters on the same line.

When you are using the Terminal program, it will seem that the characters you
type are immediately printed on the screen. In reality, however, they are sent out the
communication port to the computer you are hooked to, which (assuming it has been
instructed to do so) echoes them back to your computer, in addition to whatever other
uses it makes of them.

The final line of this section directs program flow back to the beginning of the

loop, to repeat the cycle.

GOTO Loop

The constant checking of COMl: and the keyboard will continue until you stop the

program by pressing Command-period, or make a selection from the menu, so you
can see where this program will spend most of its time. The remainder of the program

simply accomplishes the housekeeping tasks of displaying and managing the menus
and allowing you to change the baud rate and other communication parameters.

I Managing the menus I
When an item is chosen from a menu, program flow is diverted to the Handle

Menu subroutine shown in Figure 11-7. Since there is only one item on each menu, in
this case determining. the menu that was chosen also determines the item.

The MENU(O) function checks to see which menu was selected; if it was menu
1, the SYSTEM statement is issued to quit BASIC and return to the Macintosh desk
top. If menu # 1 was not selected, then #2 must have been, so the program assumes
you want to change the communication parameters and closes file # 1, displays a list of
options, accepts your choices, and reopens the communication port with the new pa
rameters. (It is unusual to have only two items to choose between in the entire menu.)

Chapter 11: The Terminal Program 165

HandleMenu:
IF MENU(O) = 1 THEN SYSTEM
CLOSE1

'got quit command
'else it must be Set configuration parameters

WINDOW 2,, (50, 50) - (450, 250), 2
GOSUB DisplayDefaults
GOSUB SelectOptions
WINDOW CLOSE 2
options$= choice$(1) + "," + choice$(2) + "," + choice$(3) + "," + choice$(4)
REM --- Open Communications port with 2000 byte input buffer
OPEN "COM1: " + options$ AS 1 LEN = 2000
CLS
MENU 1, 0, 1
RETURN

Figure 11-7. Managing the menus

The CLOSE statement puts away files opened with the OPEN statement. You can
specify one or more files to close, separated by commas, or you can simply use CLOSE,
with no file numbers, to close all open files. Files are closed automatically if you issue a
CLEAR, END, NEW, RESET, or SYSTEM statement.

You have already used the WINDOW command in Chapter 4, so there is no need
to discuss it in detail. The window created in this program is used as a dialog box, to

display the communication-parameter options. These parameters are managed by the

subroutines Display Defaults and SelectOptions, which will be discussed in a bit: They
do essentially what their names imply. After the two GOSUBs, the program returns to

HandleMenu and uses the statement WINDOW CLOSE 2 to close the dialog window,
which is no longer needed.

The two subroutines generate new values for elements 1 through 4 in the choice$
array. These new values-baud rate, parity, number of data bits, and number of stop
bits-are joined together as one long string named options$, which is then used to re
open COM 1:. Creating one new string by using plus signs to "add" smaller strings to

gether like this is called concatenation. The commas are characters in the new string,
required to open the communication port, and are not a part of the concatenation
process. If you selected 1200 baud, 8 data bits, 1 stop bit, and no parity, option$ would

look like this:

"1200,8,1,N"

166 SECTION III: COMMUNICATIONS

Finally, in preparation for starting a new communication session, the screen is
cleared with CLS and the previously highlighted menu title is reset to an active but
unselected state.

I Displaying the default parameters I
HandleMenu calls the DisplayDefaults subroutine to display the communica

tion-parameter options and mark the current selections in the dialog box created by
its WINDOW statement. The values of these parameters are stored in the DATA state
ments that follow the subroutine. DisplayDefaults reads the DATA statements and as
signs the values they contain to elements of the nam$ and group arrays. It then uses
these arrays to place the buttons in the dialog box. After the buttons are displayed, the
Select Button subprogram is called to simulate the selection of the buttons for the cur
rent communication parameters, choice(l) through choice(4). Figure 11-8 shows the
dialog box created, and Figure 11-9 lists the subroutine that produces the display.

You'll recall that there are several ways to provide a program with the informa
tion it needs to make decisions, create displays, and so on: You can store information
in a disk file and retrieve it with an INPUT$, INPUT#, or LINE INPUT# statement;
you can ask the user to supply it via the keyboard and retrieve it with an INPUT or

0 11 0 bits per sec O 5 Data bits O No parity

® 300 bits per sec O 6 Data bits ® Euen parity

0 600 bits per sec ® 1 Data bits 0 Odd parity

O 1200 bits per sec O 8 Data bits

O 2400 bits per sec

O 4800 bits per sec ® 1 Stop bits G O 9600 bits per sec O 2 Stop bits

Figure 11-8. The default communication parameters

Chapter 11: The Terminal Program

DisplayDefaults:
REM *** Prompt user for Communications Parameters
RESTORE
FOR i = 1TO16

READ x, y, group(i), nam$(i)
BUTTON i, 1, nam$(i), (x, y) - (x + 135, y + 15), 3
NEXTi

BUTTON 17, 1, "Ok", (310, 110) - (350, 150)
REM *** Simulate button pushes to highlight defaults
FOR i=1 T04

SelectButton choice(i)
NEXTi

RETURN

Figure 11-9. Displaying the default parameters

167

LINE INPUT statement or the INKEY$ function; or you can store it in the program it

self in the form of DATA statements that can then be read as needed and assigned to

variables. This third method is the one used here to store the default communication
parameters and the (x, y) coordinates needed to properly position their buttons, since
this information is not subject to change.

The RESTORE statement at the beginning of this subroutine determines the
first DATA statement to be read. The syntax for this statement is:

RESTORE [line]

When used with neither line number nor label, as it is here, RESTORE causes the next
READ statement to start at the first DATA statement in the program. If you include the

line number or label of a specific DATA statement, the next READ will start with that
statement.

After resetting the READ position to the beginning of the DATA statements, the
program sets up a loop to read the 16 DATA statements and assign the four pieces of in
formation in each to four variables. The 16 DATA statements, taken from top to bot
tom, correspond to the 16 buttons in the dialog box. You are already familiar with the
FOR. .. NEXT statement: This one will cycle 16 times, executing the READ and BUT

TON statements each time. The first time through the loop, i (the counter in the
FOR. .. NEXT loop) is equal to 1. The READ statement, READ x, y, group(i), nam$(i),

168 SECTION III: COMMUNICATIONS

will read the first DATA statement, DATA 10, 10, 1, 110 bits per sec, and make the follow
ing variable assignments:

x=lO

y=lO

group(l)= 1

nam$(1) = "110 bits per sec"

The READ statement is followed by the BUTTON statement, which uses three of the
newly assigned variables to position the first button. You'll recall that the syntax for
the BUTTON statement is:

BUTTON ID, state[, title, rectangle[, type]]

The BUTTON statement in the Terminal program reads:

BUTTON i, 1, nam$(i), (x, y) - (x + 135, y + 15), 3

so on the first time through the loop, it will look like this:

BUTTON 1, 1, "llObitspersec", (10, 10)-(145, 25), 3

The values of x and y, brought in from the DATA statement, are used to define the up
per left corner of the rectangle that determines the button's location. The x value is
then increased by 135 and they value by 15 to define the lower right corner.

After 16 times through the loop, there will be 16 active radio-type buttons. The
line following the FOR ... NEXT loop then creates one additional button, titled OK, for
the user to click to institute the new communication parameters.

The second FOR ... NEXT loop in this section calls the SelectButton subprogram
four times to change each of the buttons that were stored in the choice array by the
lnit subroutine to the default state.

Following the DisplayDefaults subroutine are the DATA statements it reads (Fig
ure 11-10). You could move this section to any other place in the program, or divide it
into parts and scatter them throughout the program. As long as the statements ap
peared in the same order, moving them would not affect how the program runs.

Chapter 11: The Terminal Program

REM --- x,y coordinate of button, groupid, title
DATA 10, 10, 1, 110 bits per sec
DATA 10, 30, 1, 300 bits per sec
DATA 10, 50, 1, 600 bits per sec
DATA 10, 70, 1, 1200 bits per sec
DATA 10, 90, 1, 2400 bits per sec
DATA 10, 110, 1, 4800 bits per sec
DATA 10, 130, 1, 9600 bits per sec

DATA 290, 10, 2,No parity
DATA 290, 30, 2,Even parity
DATA 290, 50, 2,0dd parity

DATA 150, 10, 3, 5 Data bits
DATA 150, 30, 3, 6 Data bits
DATA 150, 50, 3, 7 Data bits
DATA 150, 70, 3, 8 Data bits

DATA 150, 110, 4, 1 Stop bits
DATA 150, 130, 4, 2 Stop bits

Figure 11-10. The DATA statements

169

The individual items in a DATA statement are separated from each other by com
mas. There is no need to place quotation marks around an individual string unless the
string itself contains commas, colons, or leading or trailing spaces that you want to
preserve.

I Managing the parameter options I
Having returned from DisplayDefaults, HandleMenu branches to SelectOptions

(Figure 11-11 on the next page), which waits for a button to be clicked. If a button with
an ID ofless than 17 is clicked, the number of the button is passed to the SelectButton
subprogram, which changes the status of the selected button and stores the selection
in the choice array. If the OK button (# 17) is clicked, indicating that the user has
finished changing parameters, then program flow returns to HandleMenu, where the
options are set and the communication port reopened.

170

SelectOptions:
Selectloop:

dialogld = DIALOG(O)
IF dialogld <> 1 THEN Selectloop
button Id = DIALOG(1)

SECTION Ill: COMMUNICATIONS

IF buttonld < 17 THEN CALL SelectButton(buttonld) : GOTO Selectloop
RETURN

Figure 11-11. Managing the option selections

We discussed the DIALOG function when we first encountered it in Chapter 6.

Then, as now, we used only two of the seven possible variations: DIALOG(O) and DIA

LOG(I). Recall that DIALOG(O) returns a 1 if a button is clicked (otherwise it returns
a O) and that DIALOG(!) returns the ID of the most recently clicked button. Since a

function does not store the value returned, you must assign it to a variable in order to
use the value more than once. At the beginning of this section DIALOG(O) is assigned

to dialogld, and DIALOG(!) is assigned to huttonld. Once the program moves to the
SelectOptions subroutine, it goes into a loop and waits for dialogld to become equal to
1, indicating that a button has been clicked in the window. As soon as a button is

clicked, DIALOG(I), which has been set equal to huttonld, returns the button num

ber, which will be used to set the new communication parameters.

I Managing the buttons I
The management of the parameter buttons is handled by the SelectButton sub

program. As was pointed out in Chapter 8, a subprogram is similar to a subroutine, ex
cept that the subprogram has its own set of variables, which remain unique to it unless

you specifically instruct it to share some of the variables used in the main program.
SelectButton, shown in Figure 11-12, is called each time a button other than the

OK button is pressed in the configuration dialog box. It determines which of the pa
rameter buttons was pressed, removes the highlight from the previously selected but
ton, and highlights the current selection. It then assigns the selected parameter to the
array variable choice$(groupld), where groupld identifies the selected parameter's
group (baud, parity, data bits, or stop bits). Since the array choice$ is a shared vari
able, the new value will also be available to the main program.

Chapter 11: The Terminal Program

REM --- The user has just pushed a button. Highlight
REM --- that button and remember the selection in choice()
REM --- and choice$()
REM ---
SUB SelectButton(buttonld) STATIC

SHARED nam$(), group(), choice(), choice$()

groupld = group(buttonld)
IF choice(groupld) > O THEN BUTTON choice(groupld), 1
BUTTON buttonld, 2
choice(groupld) = buttonld
IF groupld = 2 THEN setParity
choice$(groupld) = STR$(VAL(nam$(buttonld)))
EXIT SUB

setParity:
choice$(groupld) = LEFT$(nam$(buttonld), 1)

END SUB

Figure 11-12. Managing the parameter buttons

171

This subprogram is a little more complex than the subroutines we've looked at,

so let's examine it one line at a time. The first line simply identifies the start of the sub

program and lists the formal parameters and storage class.

SUB SelectButton(buttonld) STATIC

The SHARED statement then identifies which of the variables are common to both the

main progam and the subprogram.

SHARED nam$(), group(), choice(), choice$()

The next line assigns the group number of the button selected to the variable grvupld.
Baud-rate options (buttons 1 through 7) are group l; parity options (buttons 8 through
10) are group 2; data bit options (buttons 11through14) are group 3; and stop bit op
tions (buttons 15and16) are group 4.

172 SECTION Ill: COMMUNICATIONS

groupld = group(buttonld)

Next, an IF ... THEN statement checks the value of the shared array variable choice to

confirm that a button was previously selected for this group, and then deselects it (re

moves the highlight by changing the button status to 1).

IF choice(groupld) > O THEN BUTTON choice(groupld), 1

The following two lines highlight the button that was just pressed and make it the

choice for its group.

BUTTON buttonld, 2
choice(groupld) = buttonld

If the button is in group 2 (parity), an IF ... THEN statement diverts program flow

to the line labeled SetParity for reasons that will become clear in a moment. (It's worth

pausing here to remind you that although variable names are unique within a sub

program, line labels are not. If you use a label within the subprogram that is also used

in the main program, the program stops and the error message "Duplicate label'' is

displayed.) If the button is not in group 2, the program continues with this line:

choice$(groupld) = STR$(VAL(nam$(buttonld)))

The VAL(X$) function is typically used to convert a number that has been stored

as a string variable back to a numeric variable, so that it can be manipulated mathe

matically. A secondary effect of this function is useful in this program: In performing
the conversion, all leading blanks, tabs, and linefeeds are stripped from the argument
(X$), and then, working from left to right, each remaining character is converted to a
numeric value until a character is encountered that is not a number, at which time the

Chapter 11: The Terminal Program 173

function terminates. The result of the VAL function is thus to convert a string such as
110 bits per sec, which was stored in the nam$ array by the Display Defaults subroutine
earlier in the program, to the number 110.

The STR$(X) function does just the opposite, converting numbers to strings. The
result of the combination of these two functions is to pull the leading number from
each of the strings that store the names of the parity, data-bit and stop-bit buttons
(groups 1, 3, and 4) and convert it back to a string. This retrieved string is then as
signed to the variable choice$(groupld), which will later be used as a parameter when
opening the communication port.

If a parity button is chosen (group 2), the portion of the parameter that has to be
assigned to choice$(groupld) is the first letter of the button name. Since the name
consists entirely ofletters-No parity, Even parity, Odd parity-the VAL function is
of no use. However, we can use the LEFT$ function, which has the syntax:

LEFT$(X$, I)

to return the leftmost I characters of X$. In this case, it returns just the leftmost char
acter of nam$(buttonld)-N, E, or 0-which is then assigned to choice$(group Id).

choice$(groupld) = LEFT$(nam$(buttonld), 1)

If the button that was pressed to cause this subprogram to be called was in group
1, 3, or 4, the subprogram is terminated by the conditional EXIT SUB statement. If the
button was in group 2, the subprogram is terminated by the END SUB statement.
Either way, program flow returns to the statement following the CALL statement in
the SelectOptions subroutine: GOTO SelectLoop. Flow returns from SelectOptions to
Handle Menu when the OK button (# 17) is clicked.

That completes our discussion of the Terminal program. If your Macintosh is
hooked to a modem or to another computer, you may have used this program to send
the characters you type and read the response, but you probably found that its
usefulness is limited by its inability to store the information received. However, now
that you understand how the program works, you can see that it would not be too diffi
cult to open an extra file and, each time a character from the modem port is printed

174 SECTION III: COMMUNICATIONS

on the screen, to also print it in the file. This could be accomplished by adding just a
few lines to the program, but such a simple refinement wouldn't give me a chance to
explain many new BASIC commands. Instead, I'll use the next chapter to add some ex
tra bells and whistles to create a more useful communication program.

REM --- Terminal
REM --- Terminal Emulation Program

DIM nam$(17), group(17), choice(4), choice$(4)
GOSUB lnit

'Display characters from COM1, send keystrokes to COM1
Loop:

PRINT INPUT$(LOC(1), 1);
IF LOC(1) > 0 THEN Loop
k$= INKEY$
IF k$ = "" THEN Loop
PRINT #1 , k$;
GOTO Loop

lnit:
TEXTFONT4
TEXTSIZE9
TEXTMODE 1

REM --- Setup menu
MENU 1, 0, 1, "File"
MENU 1 , 1 , 1 , "Quit"
MENU 2, 0, 1, "Configure"
MENU 2, 1, 1, "Set configuration parameters"
MENU 3, 0, 0, ""
MENU 4, 0, 0, ""
MENU 5, 0, 0, ""
ON MENU GOSUB HandleMenu
MENU ON

REM --- Setup default options
choice(1) = 2
choice(2) = 9

Figure 11-13. The complete Terminal program

'mono-spaced font
'allows 80 characters per line

'print mode = XOR, not COPY

'300 baud
'even parity

more ...

Chapter 11: The Terminal Program

choice(3) = 13
choice(4) = 15
REM --- Open Communications port with 2000 byte input buffer
OPEN "COM1: 300, e, 7, 1" AS 1 LEN= 2000
RETURN

HandleMenu:

175

'7 data bits
'1 stop bit

IF MENU(O) = 1 THEN SYSTEM
CLOSE1

'got quit command
'else it must be Set configuration parameters

WINDOW 2,, (50, 50) -(450, 250), 2
GOSUB DisplayDefaults
GOSUB SelectOptions
WINDOW CLOSE 2
options$= choice$(1) + "," + choice${2) + "," + choice$(3) + "," + choice${4)
REM --- Open Communications port with 2000 byte input buffer
OPEN "COM1: " + options$ AS 1 LEN = 2000
CLS
MENU 1, 0, 1
RETURN

DisplayDefaults:
REM *** Prompt user for Communications Parameters
RESTORE
FOR i = 1TO16

READ x, y, group{i), nam${i)
BUTTON i, 1, nam${i), (x, y) - (x + 135, y + 15), 3
NEXTi

BUTTON 17, 1, "Ok", {310, 110) - {350, 150)
REM *** Simulate button pushes to highlight defaults
FOR i=1 T04

SelectButton choice(i)
NEXTi

RETURN

REM --- x,y coordinate of button, groupid, title
DATA 10, 10, 1, 110 bits per sec
DATA 10, 30, 1, 300 bits per sec
DATA 10, 50, 1, 600 bits per sec
DATA 10, 70, 1, 1200 bits per sec
DATA 10, 90, 1, 2400 bits per sec
DATA 10, 110, 1, 4800 bits per sec
DATA 10, 130, 1, 9600 bits per sec

Figure 11-13. The complete Terminal program(continued)
nwre ...

176

DATA 290, 10, 2,No parity
DATA 290, 30, 2,Even parity
DATA 290, 50, 2,0dd parity

DATA 150, 10, 3, 5 Data bits
DATA 150, 30, 3, 6 Data bits
DATA 150, 50, 3, 7 Data bits
DATA 150, 70, 3, 8 Data bits

DATA 150, 110, 4, 1 Stop bits
DATA 150, 130, 4, 2 Stop bits

SelectOptions:
Selectloop:

dialogld = DIALOG(O)
IF dialogld <> 1 THEN SelectLoop
button Id = DIALOG(1)

SECTION III: COMMUNICATIONS

IF buttonld < 17 THEN CALL SelectButton(buttonld) : GOTO Selectloop
RETURN

REM --- The user has just pushed a button. Highlight
REM --- that button and remember the selection in choice()
REM --- and choice$()
REM---
SUB SelectButton(buttonld) STATIC

SHARED nam$(), group(), choice(), choice$()

groupld = group(buttonld)
IF choice(groupld) > O THEN BUTTON choice(groupld), 1
BUTTON buttonld, 2
choice(groupld) = buttonld
IF groupld = 2 THEN setParity
choice$(groupld) = STR$(VAL(nam$(buttonld)))
EXIT SUB

setParity:
choice$(groupld) = LEFT$(nam$(buttonld), 1)

END SUB

Figure 11-13. The complete Terminal program (continued)

The Expanded
Communication

Program Chapter 12

The terminal emulation program supplied on your BASIC disk and explained in Chap
ter 11 is an excellent learning tool, and in certain circumstances has practical value.
But it lacks many of the features considered standard in a communication program. In
this chapter we will expand the terminal program to include the features I consider
desirable. By the time we are through, you should understand the program well
enough to tailor it precisely to your needs.

Before we get involved with enhancing the Terminal program, let's prove how
simple communication is by stripping Terminal down to its bare essentials. Figure
12-1 shows a shorter version of this program that still manages to move information be
tween computers. As you can see, it is really just the program we have been working
with, without the menus and choices of communication parameters. With only very
minor modifications, this program will run on almost any computer that runs some
form of BASIC.

lnit:
OPEN "COM1 :300, e, 7, 1" AS 1 LEN= 2000

Loop:
PRINT INPUT$(LOC(1), 1)
IF LOC(1) > 0 THEN Loop
k$= INKEY$
IF k$ = "" THEN Loop
PRINT #1, k$;
GOTO Loop

Figure 12-1. A stripped-down communication program

177

178 SECTION III: COMMUNICATIONS

You could consider this the core of the communication program we are about to

develop. The program we worked with in Chapter 11 is the second stage: It added a

few visual refinements and niceties. Now we will carry the development a little fur
ther by adding routines that give the user the ability to toggle on and off the saving of
information that passes through the Macintosh's port and across its screen. We will
also add the ability to upload and download files, and to store and edit a directory of
telephone numbers and dial one of these numbers with a single command.

The flow chart in Figure 12-2 shows the major sections of the program we are
going to build. Can you recognize the Terminal program buried in it? In designing

this program, I analyzed the features of the Terminal program, made a list of features
I wanted to add, and sketched a chart similar to this one. Since this program is quite a
bit more complex than Terminal (not necessarily more difficult-just more of it), I

added a "flow control" section consisting of a series of GOSUB statements that route

the program through initialization subroutines that define key variables, create the
screen display, set default communication parameters, open the communication port,
and create the menu, before allowing it to flow into the main communication loop.
Since each of the initialization subroutines is used only once, the program could sim

ply be allowed to flow through them in a linear fashion, without all the GOSUBs and
RETURN s, but this section is helpful to someone encountering the program for the

first time, as it gives them a quick feeling for the flow and the significant sections.
In this chapter, I'm basically going to re-enact the process I went through to cre

ate the program you will find in Figure 12-63 (without all the mistakes and dead ends
involved in the original task). If you are entering this program as you follow along,
there is no point in including the comments, as they slow the program down apprecia
bly. As a matter of fact, if you have a Macintosh with 128K of RAM, the comments

would make this program too large to load.

After I wrote the flow-control GOSUB statements, I labeled each subroutine and
stubbed it out with a RETURN statement, as shown in Figure 12-3 on the page after
next. When the program returned from all the subroutines, I had it fall into the main
communication loop, labeled CommLoop:, where I placed an infinite WHILE ...
WEND loop to hold it. Then I began filling in individual modules.

Chapter 12: The Expanded Communication Program 179

Initialize Variables

CreateWindow Subroutines

Set Defaults

Open Comm

Define Menu

Comm Loop

menu event.,_ _____ ..,.. Handle Menu
'----.....------'

File

View File Pause Start Directory

Receive File Configure Continue Enter Number

Send File Stop Hang Up

Quit to BASIC Redial

Quit to Desktop

Figure 12-2. A flow chart of the enhanced communication program

180

'*
'* Execute all initializing subroutines.
'*

GOSUB lnitializeVariables
GOSUB CreateWindow
GOSUB SetDefaults
GOSUB OpenComm
GOSUB DefineMenu

Commloop:
WHILE 1=1
WEND

lnitializeVariables:
RETURN

Create Window:
RETURN

SetDefaults:
RETURN

OpenComm:
RETURN

DefineMenu:
RETURN

Figure 12-3. The framework

I initializing the variables I

SECTION III: COMMUNICATIONS

The first section to add is the one that initializes the variables and dimensions

the arrays. It is important to place this section near the beginning of the program, be
fore any arrays are actually used.

As you can see in Figure 12-4, I have added only three arrays to those used in the
Terminal program, but one of them is very large. The two small arrays, num$(10) and
who$(10), are used in the subprogram that creates the telephone directory. The large
array, scrnsave(4889), is used to refresh portions of the screen that are covered, then
uncovered, as we display various dialog boxes.

Chapter 12: The Expanded Communication Program 181

'*
'* Dimension arrays and initialize variables.
'*
Initialize Variables:

DEFINTa-z
DIM choice(4)
DIM choice$(4)
DIM group(17)
DIM nam$(17)
DIM num$(10)
DIM scrnsave(4889)
DIM who$(10)

'for speed
'selected parameters

'likewise
'parameter buttons

'likewise
'directory phone number

'used to restore screen
'directory name

alert$= CHR$(7) 'beep
buffer= 2000 'input buffer
bufferlimit = .9 * buffer 'buffer limit--send XOFF
choice(1) = 4 '1200 baud
choice(2) = 9 'even parity
choice(3) = 13 '7 data bits
choice(4) = 16 '2 stop bits
er$ = CHR$(13) 'carriage return
dial$= "ATDT" 'D.C. Hayes dial command
directFile$ = "directory file" 'file containing phone #'s
endMessage$ = sp$ + er$ + If$ + alert$ + "End of Transmission" + er$
false= 0
hangup$= "-+++-ATHO"
If$= CHR$(10)
pauseFlag = false
posit$ = er$ + " "
receiveFlag = false
saveFlag = false
sendFlag = false
sp$ = CHR$(32)
stopFlag = false
true= -1
viewFlag = false
waitFlag = false
xoff$ = CHR$(19)
xon$ = CHR$(17)
RETURN

Figure 12-4. Initializing the variables

'hangup command
'linefeed

'activity paused

'Receive File selected
'save flag

'Send File selected

'XOFF sent flag

'View file selected
'XOFF received flag

'stop sending
'send more

182 SECTION III: COMMUNICATIONS

I also chose to define quite a few variables in this section, and to specify that all
variables wi)l be integers unless individually defined otherwise. These variables were
not the result of a tremendous amount of forethought. In fact, they weren't even here
before I started fleshing out the program, but were added as I needed them. Since I
now know what's needed here, we may as well list them all, and discuss each of them
as they are used.

Setting aside a specific area of a program in which significant variables are de
fined as you add them can be useful in three ways: First, you then have one place
where you can look up the values assigned to these variables. Second, if you include
adequate remarks here, you will be able, a few months later, to look up variables with
names you thought you'd never forget the meaning of to see what they mean. And
third, if variables are subject to change between versions of the program, you can
make one change here rather than searching and replacing throughout the program.

An example of this last point is the assignment of "ATDT" to dial$. ATDT is the
D.C. Hayes command to dial a touch-tone telephone. By using dial$ throughout the
program whenever I want to dial the phone, I need only replace this one definition to
change to a different modem or to a rotary phone.

I Testing the module I
There is really no operational test for this section, since it does nothing obvious.

You can, however, practice a troubleshooting technique that may be handy in the fu

ture. Run the program, and then stop it and make the Command window active. Use
the PRINT statement to display the values of the variables that you defined in Ini

tializeVariables. To prove that the program is setting these variables, change one of
them from the Command window, as with this command:

LET endMessage$ ="Goodbye"

Now print your new value, and then run the program and print it again.

I Creating the window I
The addition of an output window seems straightforward: You simply want

something that will fill the available space and provide a background for text. It seems
straightforward, but I experienced a little frustration before I settled on the window

Chapter 12: The Expanded Communication Program 183

created by the listing in Figure 12-5. The cause of my frustration was a desire to have
the maximum amount of space possible for displaying text. The original window went
from (0,20) to (512,342), and when I reached the point where the program was capa
ble of displaying text, I found that it scrolled rather slowly and flickered a lot. It turns
out that the contortions the Macintosh goes through to scroll a window that does not
have square corners (as when the corners are cut off by the rounded corners of the
screen) are considerably more involved than when the corners are square. A less
obtrusive problem involved a narrow strip along the left edge of the window that dis
appeared after certain operations. This was just a pixel or two of the first character of
each line, but it was noticeable. Moving the window in three pixels and up four solved
both problems. You may want to enlarge the window later in the program, just to see
what I was dealing with.

I chose a type 3 window, which does not have a title bar, so there is no point in in
cluding a title parameter in the WINDOW statement that begins this subroutine, but
notice the two commas used to hold the space.

Next, PENMODE sets the graphic-call mode to XOR, which reverses the color of
the pixels where a new graphic appears. The only graphic call in the program is the
one to create the cursor: The XOR mode allows the cursor to be erased by drawing an
other cursor on top of it. The PENMODE, TEXTFONT, and TEXTSIZE ROM calls
were placed in this section rather than in the InitializeVariables subroutine because
they apply only to the current window, and you therefore have to wait until after the
window is opened to call them.

·•Create output window.
'*
Create Window:

WINDOW 1, , (3, 20) - (511, 338), 3
PENMODE 10
TEXTFONT4
TEXTSIZE9
RETURN

Figure 12-5. Creating the output window

'monospace font
'80 characters per line

184 SECTION III: COMMUNICATIONS

You can run the program again to test for typographical errors, but there still
isn't much to look at. About all you can experiment with at this point is the window
type, size, or title.

I Setting the defaults I
This section of the program uses the values you assigned to choice(l) through

choice(4) in the InitializeVariables subroutine to actually set the default options used
when the communication port is initially opened. This is a slight improvement on the
Terminal program, which assigned the default values but used them only to simulate
the button pushes in the configuration dialog box, thus requiring you to edit both the
choice array and the statement that opened the port in order to change the default set
ting in the program. The method used in the SetDefaults subroutine (Figure 12-6) al
lows you to open COMl: with new parameters simply by changing values assigned to
choice(l) through choice(4) in the Initialize Variables subroutine.

The FOR ... NEXT loop in this subroutine reads through the 16 sets of DATA

statements located a little further into the program and discards everything except 16
values that are assigned to the array variable nam$ (the unwanted values are assigned
to the variable garbage, which is never used). The four values assigned to the choice
array in InitializeVariables are used to extract the default communication parameters
(currently 1200 baud rate, even parity, 7 data bits, and 2 stop bits), which are then
concatenated into option$.

The method used to extract the default parameters is the same as that used in
the SelectButton subprogram we discussed in Chapter 11. You'll recall that each ele
ment of the nam$ array holds more information than we need (for example, 110 bits
per sec), so choice$(1), choice$(3), and choice$(4) are extracted by using the VAL func
tion to return the numerical value of nam$ and then the STR$ function to convert this
new value back to a string, while choice$(2) is extracted by using the LEFT$ function
to return the leftmost character of nam$.

If you would like to test this section of the program now, you could add a PRINT

statement after the concatenation of option$, to display the options on the screen.
Then, after running the program, you could edit the values assigned to the choice ar
ray in the InitializeVariables subroutine and run the program again. This time option$
should indicate the new defaults. (Don't forget to delete the PRINT statement after
completing the test.)

Chapter 12: The Expanded Communication Program

·• Set up default options . ..
•• choice(1) is baud rate: 1 -- 110
.• 2 -- 300
•• 3 -- 600
.• 4 -- 1200

5 -- 2400
6 -- 4800
7 -- 9600 ..

•• choice(2) is parity:
8 -- None
9 -- Even

10 -- Odd

·• choice(3) is data bits: 11 -- 5
.• 12 -- 6
•• 13 -- 7
.• 14 -- 8

·• choice(4) is stop bits: 15 -- 1
.• 16 -- 2 ..
..
•• Changing default choices here will control initial parameters . ..
SetDefaults:

FOR count::: 1TO16

185

READ garbage, garbage, garbage, nam$(count) 'discard garbage
NEXT
choice$(1) == STR$(VAL(nam$(choice(1))))
choice$(2) == LEFT$(nam$(choice(2)), 1)
choice$(3) == STR$(V AL(nam$(choice(3))))
choice$(4) == STR$(VAL(nam$(choice(4))))
options$== choice$(1) + "," + choice$(2) + "," + choice$(3) + "," + choice$(4)
RETURN

Figure 12-6. Setting the defaults

186 SECTION III: COMMUNICATIONS

l Opening the port I
The OpenComm subroutine (Figure 12-7) opens the communication port with

our default parameters. I decided to add the Flush subroutine, which simply grabs any
garbage that might be in the input buffer and discards it, to ensure that the first char
acters printed on the screen will be those actually received through the port.

l Setting up the menus I
This section of the program should be a little more satisfying than the preceding

ones, since it does something you can actually see. I discussed the three MENU state
ments used here while explaining the Terminal program. When you finish typing De
.fineMenu (Figure 12-8), your program will have four new menus (the MENU 5, 0, O,""

statement simply creates a blank menu to "erase" the fifth menu from BASIC's menu
bar) with a total ofl4 items from which to select. The menu items with a status param

eter of 0 (Continue, Stop, and Redial) are initially disabled, since it is not reasonable to

select them before something else happens. For example, there is no point in enabling
Redial until after the user has dialed a number.

Now you need to stub out the Handle Menu subroutine with a RETURN, just as
you did for each of the initialization subroutines, so that you can run the program and

look at all your new menus. It is a little disappointing to have nothing happen when
you select from a menu, so let's try another troubleshooting technique. Go back to the

'*
'* Open communications port.
'*
OpenComm:

OPEN "COM1 :"+options$ AS 1 LEN= buffer

'* Clear input buffer.
'*
Flush:

garbage$= INPUT$ (LOC(1), 1)
RETURN

Figure 12-7. Opening the communication port

Chapter 12: The Expanded Communication Program

..
'* Set up custom menu . ..
DefineMenu:

..

MENU 1, 0, 1, "File"
MENU 1, 1 , 1, "View File"
MENU 1, 2, 1, "Receive File"
MENU 1, 3, 1, "Send File"
MENU 1, 4, 1, "Quit to BASIC"
MENU 1, 5, 1 , "Quit to Desktop"
MENU 2, 0, 1, "Options"
MENU 2, 1 , 1, "Pause"
MENU 2, 3, 1, "Set Configuration Parameters"
MENU 3, 0, 1, "Save"
MENU 3, 1 , 1 , "Start"
MENU 3, 2, O, "Continue"
MENU 3, 3, 0, "Stop"
MENU 4, 0, 1, "Phone"
MENU 4, 1 , 1 , "Directory"
MENU 4, 2, 1, "Enter Number''
MENU 4, 3, 1, "Hang Up"
MENU 4, 4, 0, "Redial"
MENU 5, 0, 0, ""
ON MENU GOSUB HandleMenu
MENU ON
RETURN

'*Decide which menu item selected and take action . ..
HandleMenu:

RETURN

Figure 12-8. Setting up the menus

187

'if menu item chosen
'activate trapping

stubbed-out HandleMenu subroutine and insert a statement that does something-I
usually use the BEEP statement, which sounds a short tone. You could also type:

PRINT alert$

which uses the variable alert$ that we defined to be CHR$(7)-the beep character
in the Initialize Variables subroutine. Now when you run your program, you will hear a
beep each time you select an item from the menu.

\

188 SECTION III: COMMUNICATIONS

When you have finished testing this part of the program, you will have to hold
down the Command key while pressing the period key to quit to BASIC, since we have
replaced the BASIC menu and have not yet activated Quit on our new menu. When the

Command window appears on your screen, type MENU RESET to restore the BASIC

'*
'* Display characters from COM1 :, send keystrokes to COM1 :.
'*

Commloop:
WHILE true

WHILE pauseFlag : WEND
IF (LOC(1) = 0) AND stopFlag THEN PRINT #1, xon$; : stopFlag =false

lt:.E L:OC 1) = 0 'nothing waiting to come in
SendKe 'send key typed to file #1
MENU STOP 'don't get sidetracked
IF (sendFlag OR viewFlag) AND NOT waitFlag THEN CALL Sendline
IF endViewFlag THEN GOSUB EndFile
MENU ON 'see if anything selected

IF LOC(1) > bufferlimit THEN PRINT #1, xoff$; : stopFlag =true
lin$ =INPUT$ LOC 1 1 'get everything waiting
RemoveChars lin$, If$ 'strip linefeeds
RemoveChars lin$, xon$
IF sendFlag AND waitFlag AND removeFlag THEN waitFlag =false
RemoveChars lin$, xoff$
IF sendFlag AND removeFlag THEN waitFlag = true
MENusTsr
PrintStrin Im$
MENU ON
IF endSendFlag THEN GOSUB EndFile

'* File #3 is automatically named file that stores input when
'* Start or Continue is chosen from Save menu. File #2
••stores received file after asking for name to store it under.
'*

IF saveFlag THEN PRINT #3, lin$;
IF receiveFlag THEN PRINT #2, lin$;

WEND

Figure 12-9. The main communication loop

Chapter 12: The Expanded Communication Program 189

menu and choose Show List from the Windows menu to redisplay the program in the
List window.

I The main communication loop I
The main communication loop is the heart of this program, just as it was in the

Terminal program. Although the final version of CommLoop, shown in Figure 12-9,
is the result of a lot of refinement that went on as sections were added to the program,
the highlighted statements that make up its core are very similar to those in the Ter

minal program.
The logic in this section is a little difficult to follow if you don't understand what

is going on in the rest of the program. I use a set of variables ending in Flag
pauseFlag, stopFlag1 viewFlag, and so on-to indicate that a selection has been made
elsewhere in the program that affects how CommLoop should deal with the text it
processes. To avoid having to explain all these functions before their time, let's start
with just the core loop shown in Figure 12-10.

This listing is made up of the highlighted statements from the previous listing,
except for the SendKey and PrintString subprograms, which have been replaced by
simple statements. As soon as you are certain this core loop works, we will add the

subprograms.
You can test the communication loop by hooking your modem to the Macintosh,

running the program, and typing something. As with the Terminal program, what you

'*
'* Initial Commloop
'*

WHILE true
WHILE LOC(1) = 0

keyTyped$ = INKEY$
IF keyTyped$ <> "" THEN PRINT #1 , keyTyped$

WEND
lin$ = INPUT$(LOC(1), 1)
PRINTlin$

WEND

Figure 12-10. The core communication loop

190 SECTION III: COMMUNICATIONS

type can get to your screen only by going out the communication port and being re
flected back by either a modem or another computer. If you do not have a modem or
another computer to hook to, and still feel compelled to type and test this program,
you can simulate a modem by placing a jumper between the transmitted-data and
received-data pins on the communication-port connector. Since this is a female con
nector, a lightweight paper clip straightened out and then rebent to fit between sock
ets 5 and 9, as shown in Figure 12-11, will do the trick.

CAUTION: If you try this, be careful not to force too large a paper clip into the
hole, and BE EVEN MORE CAREFUL NOT TO GO INTO THE WRONG HOLES. Pin 2
is tied to the Mac's +5-volt power supply, and pin 6 to the + 12-volt power supply.
Shorting either of these to ground, which is on neighboring pins 1and3, will add a lit
tle unexpected excitement to your life.

When you've successfully tested the loop, go on to the next section, where we
will replace the PRINT lin$ statement with the PrintString subprogram, to add a cur
sor to the screen at the next print location.

I Adding a cursor I
Adding and managing the cursor requires a couple of subprograms and the use

of two new functions-WINDOW(4) and WINDOW(5). WINDOW(4) returns the x
coordinate of the location in the current window where the next character will be
drawn, and WINDOW(5) returns they coordinate. Since this is where you want the
cursor to be drawn, this will be a handy set of functions.

In the next few minutes we will create four subprograms, so this seems like a
good time to discuss how we want to store all of the subprograms in this application. I
like to arrange them in alphabetical order after the main program, as you will see in
the full listing in Figure 12~63, but there are undoubtedly other methods, and you are

5 4 3 2 1

9 8 7 6
Figure 12-11. A simple dummy plug

Chapter 12: The Expanded Communication Program 191

welcome to choose the one that suits you. However you arrange them, I think it is im
portant that they be in some logical order, so that people reading your program can lo
cate them easily.

The first subprogram we will discuss, ShowCur, is listed in Figure 12-12. This
subprogram first assigns the x and y coordinates of the current pen location to the
variables curX and curY. It next uses the LINE ROM call to draw~ line (the cursor)
from the current pen location to a point five pixels to the right and on the same level
(5,0), and then returns the pen to its previous position, at the front of the cursor.

You can see the result of this subprogram by returning to CommLoo-p and call
ing ShowCur right after the PRINT lin$ statement. When you run the program, a cur
sor appears after each character you type. There are a few minor cosmetic problems,
however: For one thing, the first line of text is printed just above the output window,
so all that shows is the cursor, which hangs a little below the line. Then you'll notice
that pressing the Return key leaves a cursor at the end of each line. This is because
each character you type overwrites the previous cursor (due to the default text mode
of 0), but no character is printed for a carriage return. Also, there is no initial cursor
on the blank screen, since this subprogram is not called until something is printed.

The solutions to these problems are not particularly difficult. Let's start by get
ting the first line down where we can see it. It's out of sight because when.a window is
created or cleared, the pen is automatically moved to location (0,0). As you will recall,
ROM calls like LINE are drawn below the pen location, and BASIC statements like
PRINT are displayed above the pen location. So the text is out of sight, but we can see

'*
'* Show cursor at end of current line.
'*
SUB ShowCur STATIC

SHARED curX, curY
curX = WINDOW(4)
curY = WINDOW(S)
CALL LINE (5, 0)
MOVETO curX, curY

END SUB

Figure 12-12. The SlwwCur subprogram

'horizontal location of next character
'vertical location

'draw cursor
'put print location back where it was

192

'* Place cursor in upper left corner . ..
SUB RestoreCur STATIC

MOVETO 0, 10
ShowCur

END SUB

Figure 12-13. The RestoreCur subprogram

SECTION III: COMMUNICATIONS

the cursor. We have to move the pen location down a bit before we call ShowCur the
first time after creating or clearing the window. Let's use another subprogram to do
this: We'll call this one Restore Cur: It consists of the few lines shown in Figure 12-13.

Make sense? Now return to the CreateWindow subroutine and add a call to this

subprogram between the TEXTSIZE call and the RETURN statement. This is the
only addition we'll make to CreateWindow, which should now look like Figure 12-14.

If you run the program again, the first line of text will now be visible.
Now we'll get rid of the extra cursor at the end of each line. We can do this by

erasing the cursor just before each new line is printed. This means erasing the cursor
many times when it isn't really necessary, as the text would .overwrite it anyway, but
testing each character to see if it is a carriage return, and erasing the cursor only if it

is, slows the program substantially.

·· Create output window . ..
CreateWindow:

WINDOW 1, , (3, 20) - (511, 338) , 3
PENMODE 10
TEXTFONT 4
TEXTSIZE9

eC
RETURN

Figure 12-14. The final CreateWindow subroutine

'monospace font
'80 characters per line

Chapter 12: The Expanded Communication Program

'*
'* Print string of text.
'*
SUB PrintString(text$) STATIC

SHARED curX, curY
CALL LINE (5, 0)
MOVETO curX, curY
PRINT text$;
ShowCur

END SUB

Figure 12-15. The PrintString subprogram

193

'erase cursor
'move back

'show new cursor

Now is the time to replace the PRINT Zin$ statement (and the ShowCur call) in
CommLoop with PrintString lin$, a new call to the PrintString subprogram shown
in Figure 12-15.

You can see immediately that this subprogram will print the text$ characters
passed to it, and then call ShowCur, but do you understand why it causes the cursor to
disappear? The last time ShowCur was called, it left the pen at the beginning of the
cursor. So when we call LINE (5,0) again, we are drawing a second cursor on top of
the first one. Since we specified PENMODE 10 in the CreateWindow subroutine, the
new pixels drawn are XO Red with the old, reversing their color to white.

I Managing the menus I
Now that we have the cursor under control, let's flesh out the File menu, so that

. you can at least quit in a civilized manner. First, let's replace the BEEP statement in
the HandleMenu subroutine with the subroutine in Figure 12-16 on the next page,
which controls where the program branches when an item is chosen from the menu.

The MENU(O) and MENU(l) functions, two new variations of the MENU com
mand, return the number of the selected menu and the number of the item chosen
from that menu, which are assigned here to the variables MenuSel and ItemSel, re
spectively. HandleMenu then uses a computed GOSUB statement to branch to the first
(FileMenu), second (OptionMenu), third (SaveMenu), or fourth (PhoneMenu) sub
routine listed, depending upon the value (1through4) returned by MENU(O) and as
signed to MenuSel.

194

'*
'* Decide which menu item selected and take action.
'*
HandleMenu:

MenuSel = MENU(O)
ltemSel = MENU(1)

'*
'* Go to appropriate subroutine for menu selected.
'*

SECTION Ill: COMMUNICATIONS

'get number of menu
'get number of item

ON MenuSel GOSUB FileMenu, OptionMenu, SaveMenu, PhoneMenu
MENU
RETURN

Figure 12-16. Managing the menus

Upon returning from the menu subroutine, the program encounters the MENU

statement, used this time with no arguments. This statement changes the title of the
menu in the menu bar from the highlighted state back to normal black-on-white.

After typing the HandleMenu subroutine, stub out the menu subroutines. Now
when you select an item from your new menu, the title is highlighted, the program
takes a short side trip to your stub, the title is returned to normal by the MENU state
ment, and the program returns to where it was when the selection was made.

Each of the menu subroutines branched to from HandleMenu starts with an
other computed COSUB statement, to direct the program to the proper subroutine for
the specific item chosen. In the program listing, I have organized these subroutines
into four groups, labeled A through D, for the four menus, and then further divided
each group into the number of items on that menu. For example, A(l) contains the sub
routine for the first item on the first menu, C(2) contains the subroutine for the second
item on the third menu, and so on. Now let's get on with the process of fleshing out the
File menu.

I The File menu I
Type the computed COSUB statement shown in Figure 12-17, and stub out the

five menu items. Then drop down to DoneBas and DoneDesk and type the routines
shown in Figure 12-18.

Chapter 12: The Expanded Communication Program 195

'* File menu was selected.
'*
FileMenu:

ON ltemSel GOSUB ViewFile, ReceiveFile, SendFile, DoneBas, DoneDesk
RETURN

ViewFile:
RETURN

Receive File:
RETURN

Send File:
RETURN

DoneBas:

DoneDesk:

Figure 12-17. The FileMenu subroutine

'* A(4): Return to BASIC.
'*
DoneBas:

MENU RESET
CLOSE
END

'* A(5): Return to Macintosh desktop.
'*
Done Desk:

CLOSE
SYSTEM

Figure 12-18. The DoneBas and DoneDesk routines

'restore BASIC menu
'close all open files

'return to BASIC

196 SECTION III: COMMUNICATIONS

Notice that these aren't subroutines, in that they end the program rather than
returning to the main program. DoneBas provides an orderly method of retreating to
BASIC. The advantage of using this method over pressing Command-period is that
this routine restores the BASIC menu before closing all open files and returning to
BASIC. DoneDesk issues the SYSTEM statement, to quit BASIC and return to the Mac
intosh Finder.

I The ViewFile, ReceiveFile, and SendFile subroutines I
The next three features operate in much the same manner, with very similar

subroutines. The object in each case is to move information from one place to another:
ViewFile transfers information from a disk file to the screen; ReceiveFile transfers in
formation received at the communication port to a disk file, simultaneously displaying
it on the screen; and SendFile transfers information from a disk file to the communica
tion port so it can be sent to another computer. Selecting any one of the three puts a
check mark in front of it on the menu and disables the other two. When the file trans
fer is complete, the check mark is removed and the disabled item is enabled. Selecting
the checked item again, before the file transfer is compete, aborts the transfer and re
turns everything to normal. Since the procedures for each selection are almost identi
cal, I will explain the one for ViewFile and then point out the differences for the other
selections. (Because they use so many of the same routines, you may as well enter all
three before we do a test.)

Selecting View File from the File menu causes the program to branch to the
ViewFile subroutine (Figure 12-19), which allows you to view a text file while running
the communication program. You may want to do this before sending the file, or to
check a file after receiving it.

Since the program calls ViewFile both when you ask to start viewing a file and
when you ask to stop viewing before the end of a file, the first thing the ViewFile sub
routine does is check the value of startFlag, to see whether you are starting to view a
file or already in the process of viewing one. If this flag is not true, then the program
continues with the subroutine, where viewing is enabled and startFlag, among other
flags, is set to true. If startFlag is already true when ViewFile is called, the program
jumps to EndFile, a common ending routine for View File, Receive File, and SendFile.

Chapter 12: The Expanded Communication Program

'* A(1): View file before sending or after receiving.
'*
ViewFile:

IF startFlag = true THEN GOTO EndFile
Save Screen
filename$= FILES$(1, "TEXT")
Restore Screen
IF filename$= ""THEN RETURN
MENU 1, 2, 0
MENU 1, 3, 0
MENU 1, 1, 2
MENU 2, 0, 0
MENU 3, 0, 0
MENU 4, 0, 0
OPEN filename$ FOR INPUT AS #2
oldSaveFlag = saveFlag
saveFlag = false
viewFlag = true
startFlag = true
RETURN

Figure 12-19. The ViewFile subroutine

197

'terminating ViewFile

'disable Receive File
'put check mark by Send File
'put check mark by View File

'disable Options menu
'disable Save menu

'disable Phone menu

'store state of save flag
'if previously saving, stop

The next thing we want to do is find out which file the user wants to view (or
send, in the case of the SendFile subroutine). You already know how to get this infor
mation, using the FILES$(1) function. A new twist introduced in this program is the
idea of saving the information that is already on the screen, where the FILES$ dialog
box will appear. This is done with the same GET and PUT statements you used in

Chapter 7 to move images around the screen.

Since restoring the screen after a dialog box has been displayed is frequently re
quired during the program, I have written two subprograms that work together to ac
complish the task: SaveScreen andRestoreScreen (see Figure 12-20 on the next page).
These two subprograms capture the image on a portion of the screen and return it to
the same area. Rather than use a different subprogram for each dialog box, or pass
screen coordinates in order to save exactly the area covered, I always save the area
covered by the largest dialog box used, after making sure that all the rest of the dialog
boxes are displayed within that area.

198 SECTION III: COMMUNICATIONS

'*
'* Save maximum screen area used by any dialog box, before displaying dialog box.
'*
SUB SaveScreen STATIC

SHARED scrnsave()
GET (39, 7) - (455, 187), scrnsave(O)

END SUB

'*
'* Display previously saved screen area after removing dialog box.
'*
SUB RestoreScreen STATIC

SHARED scrnsave()
PUT (39, 7), scrnsave(O), PSET

END SUB

Figure 12-20. Saving and restoring the screen

There is one critical difference between the format used for the graphic calls
here and that used in Chapter 7. The syntax of the PUT statement allows an optional
action-verb at its end:

PUT (xl,yl) [- (x2,y2)], array [(INDEX[(, index, ... index])][, action-verb]

This verb, which can be PSET, PRESET, AND, OR, or XOR, determines the in

teraction between the stored image and the one on the screen. If the option is ig
nored, as it was in our previous programs, the XOR default is used. This would still
work if we covered and then uncovered exactly the area we saved, but if you either
save more than you cover or cover more than you save, you will end up with a white
border around the text when it is returned to the screen. The action-verb PSET solves

this problem. Try the different options after you get this section running, just to see
what happens.

Back to viewing the file Once the ViewFile subroutine has saved the screen,
retrieved a file name, and restored the screen, it disables the other two menu items
and puts a check mark by itself on the menu. With all three routines, the entire Op
tions, Save, and Phone menus are disabled and save Flag is set to false after its current

Chapter 12: The Expanded Communication Program 199

condition is stored. (The selections available from the Save menu allow you to toggle
the saving of text on and off as the text passes across the screen. Saved text is ap
pended to a file that is automatically opened with a file name consisting of the time of
day that you first started saving. There is no point in saving information in this manner
if you are viewing, receiving, or sending a file, since you either have it saved on disk al
ready, or are about to save it.) The ViewFile and SendFile subroutines then open the
selected file for input, while the ReceiveFile subroutine opens it for output. Then all
three subroutines set the viewFlag, receiveFlag, or sendFlag (as appropriate) and the

startFlag to true.
The only differences in the ReceiveFile subroutine (Figure 12-21) are that

FILES$(0) is used to prompt the user for a name under which to store the file, and dif
ferent menus and flags are set.

'* A(2): Transfer information received at COM1: to disk file.
'*
ReceiveFile:

IF startFlag =true THEN EndFile
Save Screen
filename$= FILES$(0, "Name to save file under")
Restore Screen
IF filename$ = "" THEN RETURN
MENU 1, 3, 0
MENU 1, 2, 2
MENU 1, 1, 0
MENU 2, 0,0
MENU 3, 0, 0
MENU 4, 0, 0
OPEN "0", #2, filename$
oldSaveFlag = saveFlag
saveFlag =false
receiveFlag = true
startflag = true
RETURN

Figure 12-21. The ReceiveFile subroutine

'terminating Receivefile

'disable Send File
'put check mark by Receive File

'disable View File
'disable Options menu

'disable Save menu
'disable Phone menu

'turn on receiving

200 SECTION III: COMMUNICATIONS

The SendFile subroutine, shown in Figure 12-22, is also similar to ViewFile, ex
cept that after FILES$(I) is used to get the name of an existing file, the file is opened
for input and sendFlag is set to true.

I The EndFile subroutine I
The EndFile subroutine, shown in Figure 12-23, is common to all three file oper

ations. It is the routine branched to when you quit in the middle of a file operation by
choosing the checked selection from the File menu.

This subroutine begins by closing file #2, which has been opened by one of the
preceding File subroutines to either get or receive information. Then it puts the cur
sor back on the screen, since we have been ignoring that task, and prints endMessage$.
Finally, it restores the menus and flags to their normal conditions and sets three new

'*
'* A(3): Transmit file stored on disk.
'*
SendFile:

IF startFlag = true THEN EndFile
Save Screen
filename$= FILES$(1, "TEXT")
Restore Screen
IF filename$ = "" THEN RETURN
MENU 1, 2, 0
MENU 1, 3, 2
MENU 1, 1, 0
MENU 2, 0, 0
MENU 3, 0, 0
MENU 4, 0, 0
OPEN "I", #2, filename$
oldSaveFlag = saveFlag
saveFlag = false
sendFlag = true
startFlag = true
RETURN

Figure 12-22. The SendFile subroutine

'terminating SendFile

'disable Receive File
'put check mark by Send File

'disable View File
'disable Options menu

'disable Save menu
'disable Phone menu

'turn on sending

Chapter 12: The Expanded Communication Program

..
'* Close file and re-enable various competing menus ..
EndFile:

CLOSE#2
ShowCur
PrintString endMessage$
MENU 1, 2, 1
MENU 1, 3, 1
MENU 1, 1, 1
MENU 2, 0, 1
MENU 3, 0, 1
MENU 4, 0, 1
saveFlag = oldSaveFlag
viewFlag = false
sendFlag =false
receiveFlag = false
startFlag = false
endFlag = false
endSendFlag = false
endViewFlag = false
RETURN

Figure 12-23. The EndFile subroutine

201

'enable Receive File option
'enable Send File option

'remove check mark
'enable Options menu

'enable Save menu
'enable Phone menu
'restore state of Save

'turn off viewing

flags: endFlag, endSendFlag, and endViewFlag. You will see how each of these flags is

used as we work our way through CommLOO'fJ.

We have added a whole bunch of lines to our core program, just to do something
as simple as look at a file, but if you were paying close attention, you may have noticed
that not one routine included the most important lines of all: the ones to read the file
and print its contents. We could add these features to each of the subroutines, but
since we already have most of the commands we need built into CommLOO'p, we might
as well make them do double duty.

I Modifying CommLoop I
Let's return to the simple CommLOO'fJ routine and add a call to the short sub

program we'll create in a moment to allow you to actually view a file. Right after the

202 SECTION III: COMMUNICATIONS

line that prints keyTyped$ (IF keyTyped$ <> 1111 THEN PRINT #1, keyTyped$), add
these lines:

MENU STOP
IF viewFlag THEN CALL Sendline
IF endViewFlag THEN GOSUB EndFile
MENU ON

I hope you appreciate the ease and speed with which you were able to enter those
lines. They are the result of an hour or so of frustrating experimentation on my part,
trying to understand the cause of seemingly inexplicable error messages, after starting
with the line:

IF viewFlag THEN Sendline

It turns out that this is one case in which the CALL statement is not optional: If
you call a subprogram from the THEN or ELSE portion of an IF. .. THEN ... ELSE

statement, CALL is required to make it clear that the name refers to a subprogram,
not a line label. An exception to this exception seems to occur if you also pass an argu
ment to the subprogram, in which case BASIC recognizes it as a subprogram re
gardless of where it is. These situations are not documented in the BASIC manual, so
you might make special note of them.

The reason for testing endViewFlag is to see if the end of the file has been
reached, and if so to branch to the EndFile subroutine. We will add a similar test for
endSendFlag, but at a different location in the program. We differentiate between the
endings of these two processes in order to allow the last characters sent out the com
munication port to be retrieved and printed on the screen (viewed) before the end
message is printed.

MENU STOP, another variation of the MENU command, must be added at the
beginning of this sequence to suspend the practice of branching to a subroutine when
a menu event is trapped (a record of events trapped will be kept, and they will be re
sponded to when the MENU ON statement is issued). Here's why we suspend event

Chapter 12: The Expanded Communication Program

..
'* View or send a file.

SUB SendLine STATIC
SHARED viewFlag, endViewFlag
SHARED true, false
LINE INPUT #2, lin$
PRINTlin$
IF NOT EOF(2) THEN EXIT SUB
endViewFlag = true
viewFlag = false

END SUB

Figure 12-24. The SendLine subprogram

203

'get line from file
'send it someplace

trapping: The obvious menu event to trap while viewing a file is the reselection of
View File to abort viewing, which closes file #2. If this reselection is made between
the time the SendLine subprogram is called and the time it tries to input a line from

file #2, the program is stopped and a Bad File Number error message is generated.
Finally, go to your subprogram section and add the SendLine subprogram,

shown in Figure 12-24.
Now you can fire up the program and choose View File from the File menu

(don't choose Receive File or Send File yet, since we haven't added the last bit of code
they need). If you don't have a text file on the disk, you can use the options in the
FILES$(!) dialog box to change drives or to eject the disk and insert one containing a

text file. After you select a file, it should scroll across your screen; at the end of the file
(or if you abort viewing from the menu), the end message will be printed.

I Finishing up: Sending I
Let's go ahead and wrap up the other two sections. Finishing the Send File op

tion is pretty easy: Go back to the lines you just added to CommLoop and change the
second one to:

IF (viewFlag OR sendFlag) THEN CALL SendLine

204 SECTION III: COMMUNICATIONS

To avoid the same problems that I had in the View File section, you will also want to
drop down to PrintString Zin$ and add a few lines on either side of it, so that it looks
like this:

MENU STOP
PrintString lin$
MENU ON
IF endSendFlag THEN GOSUB EndFile

and then go on down to the SendLine subprogram and add the highlighted items in

Figure 12-25.

You should now be able to use this communication program to send a file. Test it
by sending a file to another computer, or by simply turning your modem on and send

ing the file without calling anyone. If the file appears on your screen, it must have
made it out the communication port and back in.

The only other feature we will add to the Send File option is something variously
called flow control, handshaking, or XON/XOFF. All of these terms refer to the ability

of the receiving computer to tell the sending computer to stop sending for a while.

This is usually done when information is arriving at the computer faster than it can be

·• View or send a file.

Figure 12-25. The final SendLine subroutine

'get line from file
'send it someplace

Chapter 12: The Expanded Communication Program 205

brought in and processed. When the input buffer fills up to a certain point, the receiv
ing computer sends an XOFF signal and the communication program in the other

computer stops sending information. When the buffer is emptied, the receiving com
puter sends an XON signal and transmission resumes. We have already defined xon$
and xoff$ as CHR$(17) and CHR$(19) in the lnitializeVariables subroutine: Now we
have to decide when to send them and what to do when we receive them.

If we are sending a file, we have to watch the incoming data for an XOFF. If we
receive an XOFF, we have to stop sending until we receive an XON. So far so good.

The next step is figuring out how to recognize these specific characters in the input,
when we often bring in a whole bunch of characters at a time. At this point, some pro

grams revert to bringing in characters one at a time and testing each against a list of
"special" characters (XON, XOFF, carriage return, and so on). This works well up to

about 300 baud, but beyond that it slows down communication too much, so we will
develop a subprogram that searches a string (the line read in from the input port) for a

specific character, removes it if found, and then sets a flag to tell us it was there. We
can use this subprogram as a general-purpose character stripper, and it will also serve
to tell us if we receive an XON or XOFF, which we would always want to strip anyway.
Figure 12-26 shows RemoveChars, the subprogram that will do the job. When we call

RerrwveChars, we will pass it the line to be searched and the character to remove .

..
•• Remove passed character from passed line . ..
SUB RemoveChars(lin$, char$) STATIC

SHARED removeFlag
removeFlag =false 'reset flag
position = INSTR(lin$, char$) 'where is first offensive character
IF position= o THEN EXIT SUB 'there wasn't one
removeFlag = true 'there was one
WHILE position > O 'remove first and check for more

lin$ = LEFT$(1in$, position - 1) + RIGHT$(1in$, LEN(lin$) - position)
position= INSTR(lin$, char$)

WEND
END SUB

Figure 12-26. The RerrwveChars subprogram

206 SECTION Ill: COMMUNICATIONS

When we leave this subprogram, rerrwveFlag will be set to true if the character
was found, so the first thing we have to do is set it to false, in case the previous pass set
it to true. Then we use the INSTR function to see if the string contains the character

we are looking for. This is a very useful function; its full syntax is:

INSTR([I,]X$, Y$)

INSTR searches for the first occurrence ofY$ inX$. If you don't want to start the
search with the first character of X$, you can use the optional offset, I, to specify
where to start. If Y$ is not found in X$, the function returns O; otherwise it returns
the character position at which the match is found. In our subprogram, we assign the
returned value to the variable position, and then test position to see if it is 0. If it is,
meaning the character was not in the string, we use EXIT SUB to return to the main

program. If, on the other hand, position is greater than 0, we set rerrwveFlag to true
and continue through the subprogram.

Within the WHILE .. .WEND loop, lin$ is restructured by setting it equal to the
left portion of lin$, up to the character before position, plus the right portion from

'*Display characters from COM1 :, send keystrokes to COM1 :.
'*
CommLoop:

WHILE true
WHILE LOC(1) = 0

keyTyped = INKEY$
IF keyTyped <> "" THEN PRINT #1, keyTyped$
MENU STOP
IF (sendFlag OR viewFlag) THEN CALL SendLine
IF endViewFlag THEN GOSUB EndFile
MENU ON

WEND
lin$ = INPUT$(LOC(1), 1)
MENU STOP
PrintString lin$
MENU ON
IF endSendFlag THEN GOSUB EndFile

WEND

Figure 12-27. The modified CommLoop routine

'nothing waiting to come in
'send key typed to file #1

'don't get sidetracked

'see if anything selected

'get everything waiting

Chapter 12: The Expanded Communication Program 207

the character after position to the end of the string. Then the string is tested again. If
there is another "special" character, the process is repeated; otherwise the sub
program ends. Add RerrwveChars to your subprogram section, and then we'll return
to CommLoop and figure out when we need to call it. (CommLoop should now look
like Figure 12-27.)

Since we want to remove the extra character between the time we receive it and
the time we'd otherwise print it, we have to call our new subprogram between the
lines Zin$= INPUT$(LOC(l), 1) and MENU STOP. So insert the line:

RemoveChars lin$, xoff$

between those two lines. Then you will immediately want to test rerrwveFlag, to see if
an XOFF was in fact removed (actually, you don't always have to check rerrwveFlag
only when you are sending a file). This next line will do the trick:

IF sendFlag AND removeFlag THEN waitFlag =true

So, if we do receive an XOFF and set waitFlag to true, where is the best place to
test waitFlag to prevent any more lines from being sent? Let's go back up a few lines
to where we call SendLine if viewFlag and sendFlag are true and insert a check for
waitFlag there. The line will look like this:

IF sendFlag OR viewFlag AND NOT waitFlag THEN CALL Sendline

That takes care of stopping the transmission if we receive an XOFF. Now, we
need to turn it back on when we receive an XON. Sounds like another job for Rerrwve
Chars. Insert these two lines just above or below the two lines you added for XOFF:

RemoveChars lin$, xon$
IF sendFlag AND waitFlag AND removeFlag THEN waitFlag =false

208 SECTION Ill: COMMUNICATIONS

..
'* Get keystroke from keyboard and send it out COM1 : . ..
SUB SendKey STATIC

keyTyped$ = INKEY$
IF keyTyped$ <> "" THEN PRINT #1 , keyTyped$;

END SUB

Figure 12-28. The &ndKey subprogram

Before we tackle the receive side of flow control, let's update CommLoop again
and make sure it works. First, to cut down on the clutter let's convert to a subprogram
the two lines near the top that send a character typed at the keyboard out the com
munication port. We'll call the subprogram SendKey, and it will look like Figure
12-28. Nothing new here, just clean-up.

There is one more character we will almost always want to remove, since the
Macintosh automatically inserts it when a carriage return is received, and that charac
ter is the linefeed. To take care of this, insert the line:

RemoveChars lin$, If$

above, below, or between the two sets oflines that remove and test for XON and XOFF.

Just don't put the new line between a RemoveChars call and the line that tests re
moveFlag, or wait Flag will be set or reset whenever a linefeed is received.

Now for a quick test. If you have added a call to rem~ve linefeeds, replace lf$
with some letter of the alphabet, enclosed in quotation marks. Start the program and
"send" a file to your modem-no need to be connected to another computer. The text
that is reflected back to your screen should not contain the character you passed to the
RemoveChars subprogram.

If you would like to experiment a bit more, write another subprogram, similar to
RemoveChars, that replaces one character with another. Pass to the subprogram the

Chapter 12: The Expanded Communication Program 209

string, the character to remove, and its replacement. A line similar to this next one
will probably play an important role in the subprogram.

lin$ = LEFT$(1in$, position - 1) + newChar$ + RIGHT$(1in$, LEN(lin$) - position)

I Finishing up: Receiving I
Now that you can easily send the files on your disk to other computers, let's finish

off the process of receiving a file from someone else and storing it in a disk file. When
Receive File is chosen from the File menu, the program goes to a subroutine that so
licits a name under which to store the file, opens that file as #2, and sets receiveFlag to
true. It then returns to CommLoop, where characters are brought in from the com
munication port and displayed on the screen. If we want to find out if those characters
should also be put in a file, we can have CommLoop check the status of receiveFlag. A
good time to do this is right after each line is displayed on the screen (after
PrintString lin$). This next line, inserted at that point, will print the line in file #2 if
receiveFlag is true.

IF receiveFlag THEN PRINT #2, lin$

That was pretty easy. Now, what do we do if data is coming in faster than we can
process it? Well, best tell the other computer to stop for a moment-sounds like just
the job forxojf$.

When we opened COMl:, we specified a buffer length of 2000 characters. All in
coming data goes into the buffer and CommLoop retrieves it from the buffer with
lin$ = INPUT$(LOC(l), 1). At modem transmittal speeds (300 and 1200 baud), we will
probably never receive data faster than it can be retrieved and processed, but with a
higher-speed connection to another computer, it is likely we would lose data if we
couldn't stop transmission every now and then. If we wait until the buffer is full to tell
the other computer to stop, we will lose what came in between the time the buffer

210 SECTION III: COMMUNICATIONS

filled and the time the other computer got around to interpreting our XOFF and re
sponding to it. So when we defined the variable lmfferLimit in the InitializeVariables
section, we set it equal to a percentage of the buffer. Now we can test lmfferLimit and
start the XOFF procedure as soon as it is exceeded.

The best place to test the buffer is just before the line that inputs all characters
from the buffer and assigns them to Zin$ (Zin$= INPUT$(LOC(l), 1), since that is when
it will contain the most characters. Here is the line you want to insert:

IF LOC(1) > bufferlimit THEN PRINT #1, xoff$; : stopFlag =true

And as you know from working out flow control for the sending routine, after you
finish processing the data in the buffer you have to tell the other computer to resume
sending. This next line will do that job. A good place to insert it is just before the
WHILE LOC(l) = 0 ... WEND loop near the top of CommLoop.

IF LOC(1) = 0 AND stopFlag THEN PRINT #1, xon$; : stopFlag =false

This takes care of the entire viewing, receiving, and sending sections of our pro
gram. The CommLoop routine should now look like Figure 12-29. (The lines that we
have entered since the last complete listing are highlighted.) There will be a few
minor additions to CommLoop, when we add the Pause and Save features, and then we
will be through with it.

I The Options menu I
This section of code includes a short subroutine and the section from the Termi

nal program that sets communication parameters. The new item is a Pause selection,
which stops the processing of data until Pause is selected again. The stubbed version
of OptionMenu is shown in Figure 12-30.

Chapter 12: The Expanded Communication Program 211

'* Display characters from COM1 :, send keystrokes to COM1 :.
'*
Commloop:

WHILE true
IF {LOC{1) = 0) AND StOQFla THEN PRINT #1, xon$; : sto Fla =false
WHILE LOC{1) = 0 'nothing waiting to come in

SenaKey 'send key typed to file #1
MENU STOP 'don't get sidetracked
IF sendFlag OR viewFlag AND OT waitFlag THEN CALL Sendline
IF endViewFlag THEN GOSUB EndFile
MENU ON 'see if anything selected

WEND
IF LOC 1 > bufferLimit THEN PRINT #1, xo =true
lin$ = INPUT${LOC{1), 1) 'get everything waiting
Remove ars lin$, f$
RemoveChars lin$, xon$
IF sendFlag AND waitFlag .AND removeFlag THEN waitFlag =false
RemoveChars lin$, xoff$
IF sendFI AND removeFlag THEN waitFlag =true
MENU STOP
PrintString lin$
MENU ON
IF endSendFlag THEN GOSUB EndFile
IF receiveF ag THEN PRINT #2, lin$;

WEND

Figure 12-29. The updated CommLoop

stnp me ee s

'* Options Menu was selected.
'*
OptionMenu:

ON ltemSel GOSUB Pause, Config
RETURN

Pause:
RETURN

Config:
RETURN

Figure 12-30. The OptionMenu subroutine

212 SECTION III: COMMUNICATIONS

I The Pause subroutine I
The first time Pause (Figure 12-31) is chosen from the Options menu, it stops the

flow of whatever data was being viewed, received, or sent. The next time it is chosen,

it starts things back up, right where they left off. To accomplish this it toggles the con
dition of pauseFlag between false andtrue (O and -1) bysettingpauseFlag equal to it
self XORed with -1 (the value of true). The Pause menu selection itself is also toggled

between an unchecked state and a checked state by using the value of pauseFlag to
control the value of the state argument (state is set equal to -1 *pause Flag+ 1).

The final action of this subroutine, before returning, is to send an XOFF if Pause
is being started or an XON if it is being stopped, so that the buffer won't be filling up
while we aren't removing anything.

To prevent the program from continuing to loop through CommLOO'p, we'll need

to add a line. Just after WHILE true, insert:

WHILE pauseFlag : WEND

This definitely wraps up CommLOO'p; I promise not to drag you back here for any

more additions. Although this program is much larger than the Terminal program, all
the real work takes place in CommLOO'p (which should now look like Figure 12-32),

just as it did in Terminal. If you understand what this section does, then you under
stand the essence of telecommunication, and if you understand how BASIC performs
this communication, then you understand more about BASIC than most people do .

..
•• B(1): Stop processing of data . ..
Pause:

pauseFlag = pauseFlag XOR -1
MENU 2, 1, -1 * pauseFlag + 1
IF pauseFlag THEN PRINT #1, xon$; ELSE PRINT #1, xoff$;
RETURN

Figure 12-31. The Pause subroutine

Chapter 12: The Expanded Communication Program 213

..
•• Display characters from COM1 :, send keystrokes to COM1 : . ..
Commloop:

WHILE true
WHILE pauseFlag : WEND
IF (LOC(1) = 0) AND stopFlag THEN PRINT #1, xon$; : stopFlag = false
WHILE LOC(1) = 0 'nothing waiting to come in

SendKey 'send key typed to file #1
MENU STOP 'don't get sidetracked
IF (sendFlag OR viewFlag) AND NOT waitFlag THEN CALL SendLine
IF endViewFlag THEN GOSUB EndFile
MENU ON 'see if anything selected

WEND
IF LOC(1) > bufferlimit THEN PRINT #1, xoff$; : stopFlag =true
lin$ = INPUT$(LOC(1), 1) 'get everything waiting
RemoveChars lin$, If$ 'strip linefeeds
RemoveChars lin$, xon$
IF sendFlag AND waitFlag AND removeFlag THEN waitFlag = false
RemoveChars lin$, xoff$
IF sendFlag AND removeFlag THEN waitFlag = true
MENU STOP
PrintString lin$
MENU ON
IF endSendFlag THEN Gosue- EndFile

..
'* File #3 is automatically named file that stores input when
'* Start or Continue is chosen from Save menu. File #2
'*stores received file after asking for name to store it under . ..
IF saveFlag THEN PRINT #3, lin$;
IF receiveFlag THEN PRINT #2, lin$;

WEND

Figure 12-32. The final CommLoop

I The Config subroutine I
The Config subroutine used here is almost identical to the one used by the Ter

minal program. The main differences are that a few of the variable names are longer,
and the buttons in the window are closer together. Figure 12-33 shows the new listing.
The changes are so minor that the comments should explain them adequately.

214 SECTION III: COMMUNICATIONS

'*
'* Set communication parameters.
'*
Config:

CLOSE 1 'close COM1 :
Save Screen
WINDOW 2, , (50, 35) - (450, 185), 2 'open new window
GOSUB DisplayDefaults 'show parameters
GOSUB SelectOptions 'get selection
options$= choice$(1) + "," + choice$(2) + "," + choice$(3) + "," + choice$(4)

'*
'* Open communications port.
'*
OPEN "COM1 :" + options$ AS 1 LEN = buffer
WINDOW CLOSE 2
Restore Screen
RETURN

DisplayDefaults:
RESTORE 'to read data statements from start

'*

FOR count= 1TO16
READ x, y, group(count), nam$(count)
BUTTON count, 1, nam$(count), (x, y) - (x + 130, y + 15), 3

NEXT count
BUTTON 17, 1, "OK", (320, 110) - (380, 135)

'*
'* Simulate button pushes to highlight defaults.
'*
FOR count = 1 TO 4

ButtonSelect choice(count)
NEXT
RETURN

'* Here is x,y coordinate of button, groupNum, title.
'*

DATA 10, 10, 1, 110 bits per sec
DATA 10, 30, 1, 300 bits per sec
DATA 1 o, 50, 1, 600 bits per sec
DATA 10, 70, 1, 1200 bits per sec
DATA 10, 90, 1, 2400 bits per sec

Figure 12-33. The Con.fig subroutine
more ...

Chapter 12: The Expanded Communication Program

DATA 10, 110, 1, 4800 bits per sec
DATA 10, 130, 1, 9600 bits per sec

DATA 292, 10, 2, No parity
DATA 292, 30, 2, Even parity
DATA 292, 50, 2, Odd parity

DATA 162, 10, 3, 5 Data bits
DATA 162, 30, 3, 6 Data bits
DATA 162, 50, 3, 7 Data bits
DATA 162, 70, 3, 8 Data bits

DATA 162, 110, 4, 1 Stop bits
DATA 162, 130, 4, 2 Stop bits

SelectOptions:
eventTrapped = DIALOG(O)
IF eventTrapped <> 1 THEN SelectOptions
buttonPushed = DIALOG(1)

'*
'* Get button number if through making selections (clicked OK).
'*

215

'dialog event
'watch for button press

'which button

IF buttonPushed < 17 THEN ButtonSelect buttonPushed : GOTO SelectOptions
RETURN

'* Subprogram ButtonSelect(buttonPushed) is called from DisplayDefaults and
'* SelectOptions subroutines. User has just pushed button. Highlight
'* that button and remember selection in choice() and choice$().
'*

SUB ButtonSelect(buttonPushed) STATIC
SHARED nam$(), group(), choice(), choice$()
groupNum = group(buttonPushed)
BUTTON choice(groupNum), 1
BUTTON buttonPushed, 2
choice(groupNum) = buttonPushed
IF groupNum = 2 THEN SetParity
choice$(groupNum) = STR$(VAL(nam$(buttonPushed)))
EXIT SUB

Set Parity:
choice$(groupNum) = LEFT$(nam$(buttonPushed), 1)

END SUB

Figure 12-33. The Con.fig subroutine (continued)

'group 1 , 2, 3, or 4
'reset old selection
'set new selection

'1 through 16
'from parity group
'from other group

'get first letter

216 SECTION Ill: COMMUNICATIONS

I The Save menu I
The three selections on the Save menu allow the user to start, stop, or continue

saving information that passes across the screen. These menu items are obviously in
terdependent-you can't stop saving something you haven't started saving, or con
tinue when you haven't started and then stopped-so we will use BASIC's ability to
enable and disable menu items to let the user know which selection is available at any
moment. Figure 12-34 shows the standard computed GOSUB used to branch to the
routine appropriate to the item selected from the menu.

I Start saving I
In order to start saving information without bothering the user with a request for

a file name, some sort of unique file name must automatically be assigned. As shown in
Figure 12-35, the StartSave subroutine does this by using the TIME$ function to re
trieve the current time, and then using that value, preceded by the word Saved, as the
file name. The only difficulty in doing this is that the time is expressed with colons
separating the hours, minutes, and seconds, and the Macintosh uses a colon to sepa
rate the volume name (the name assigned to the disk) from the file name. We could

'*
'* Save Menu was selected.
'*
SaveMenu:

ON ltemSel GOSUB StartSave, ContSave, StopSave
RETURN

StartSave:
RETURN

ContSave:
RETURN

StopSave:
RETURN

Rigure 12-34. The SaveMenu subroutine

Chapter 12: The Expanded Communication Program

..
'* C(1): Start saving . ..
StartSave:

tim$ =TIME$
FOR count = 3 TO 6 STEP 3

MID$(tim$, count) = "r'
NEXT count
filename$ = "Saved " + tim$
OPEN "A", #3, filename$
saveFlag =true
MENU 3, 1, 0
MENU 3, 3, 1
RETURN

Figure 12-35. The StartSave subroutine

217

'get current time for filename
'change : to I

'assign filename
'open new file

'set save flag to true
'disable Start
'enable Stop

write a loop to test each character and replace it if it is a colon, but since we know
which characters are always colons, we can use an easier method to replace them au

tomatically: a FOR. .. NEXT loop that uses the MID$ statement to replace the third
and sixth characters with slashes. The syntax of the MID$ statement is:

MID$(string-expl, n[, m]) = string-exp2

This statement replaces m characters in string-expl with the same number of charac
ters from string-exp2, starting with the character in position n in string-expl. The
variable m is optional; if omitted, as our program does, all of string-exp2 will be used
in place of n.

Before returning, StartSave also sets saveFlag to true, disables the Start menu
selection, and enables the Stop menu selection.

I Continue saving I
The menu item that leads to the ContSave subroutine can be selected only if sav

ing has been started and then stopped. If those conditions exist and Continue is
chosen from the Save menu, ContSave (Figure 12-36 on the next page) sets saveFlag

to true, disables itself, and enables the Stop selection.

218

'*
'*C(2): Continue saving (if stopped).
'*
ContSave:

saveFlag = true
MENU 3, 2, 0
MENU 3, 3, 1
RETURN

Figure 12-36. The ContSave subroutine

I Stop saving I

SECTION III: COMMUNICATIONS

'disable Continue
'enable Stop

The StopSave subroutine, shown in Figure 12-37, is essentially the same as the
previous section, except that it sets saveFlag to false, enables the Continue selection,

and disables itself.
That's all there is to the Save menu. Its selections are useful when trying to con

serve disk storage space while connected to a remote computer that has a little useful
information buried in a bunch of irrelevant material. You simply toggle saving on as
you get into the interesting parts, and toggle it off as you leave them.

I Testing the Save section I
The obvious test for the Save menu is to fire the program up and save portions of

a communication session. You can also try interrupting this save routine to receive a
file under a name you assign by choosing the Save option from the File menu.

'*
'*C(3): Stop saving . ..
StopSave:

saveFlag = false
MENU 3, 2, 1
MENU 3, 3,0
RETURN

Figure 12-3Z The StopSave subroutine

'set save flag to false
'enable Continue

'disable Stop

Chapter 12: The Expanded Communication Program

..
'* Phone Menu was selected . ..
Phone Menu:

ON ltemSel GOSUB Directory, EnterNumber, Disconnect, Redial
RETURN

Directory:
RETURN

EnterNumber:
RETURN

Disconnect:
RETURN

Redial:
RETURN

Figure 12-38. The PhoneMenu subroutine

I The Phone menu I

219

The items on the Phone menu handle the various telephone-related functions
provided by the program. They allow the user to enter a telephone number that the
computer will then dial, or to hang up the phone, redial, or select a number from a list
stored on disk. The stubbed PhoneMenu subroutines are shown Figure 12-38. The
only new concept introduced in the subroutines for the first three options is edit
fields: the text-input function common to many Macintosh dialog boxes.

I Entering a number I
The section branched to when the Enter Number option is chosen from the

Phone menu consists of three subroutines. The first, EnterNumber, creates the dialog
box shown in Figure 12-39 on the next page, to ask the user for a phone number. The
other two subroutines, EnterLoap and EnterContinue, retrieve the number and pass
it to the SendToModem subprogram, which dials it.

220 SECTION III: COMMUNICATIONS

enter phone number

(Cancel J (OK)

Figure 12-39. The number-entry dialog box

The EnterNumber subroutine

EnterNumber, which opens a window, prints some instructions, and then creates

an edit field and two buttons, is shown in Figure 12-40.

The new statement in this section of code, EDIT FIELD, belongs in the same

class as DIALOG, WINDOW, and MOUSE: They all pack a lot of power. Here is the ge

neric sytax for EDIT FIELD:

EDIT FIELD ID[, default, rectangle[, [type][,justify]]]

The ID is a number greater than zero used to identify a particular edit field in a

window. Typically, the fields are numbered consecutively from 1. Just as with buttons,
these ID numbers are unique to the window in which they are used, so an edit field

with the same number in two different windows will not cause a conflict.

The optional default is the text to be edited. If you provide this text, it will auto

matically appear in the edit field. The default can be specified as actual text, enclosed

..
•• 0(2): Create dialog box . ..
EnterNumber:

SaveScreen
WINDOW 4, , (100, 100) - (370, 185), -4
MOVETO 20, 27
PRINT "enter phone number"
EDIT FIELD 1, phoNum$, (160, 15) - (260, 30)
BUTTON 1, 1, "Cancel", (20, 45) - (80, 70)
BUTTON 2, 1, "OK", (190, 45) - (250, 70)

Figure 12-40. The EnterNumber subroutine

'create edit field

Chapter 12: The Expanded Communication Program 221

in quotation marks, or it can be a string variable defined elsewhere (if you want to dis

play a numeric variable, use the STR$ function, as in EDIT FIELD 1, STR$(age), . . .). If
you don't include default text, you must still include the quotation marks.

The rectangle argument is the same type of upper left, lower right coordinate

description used to define windows and boxes in other BASIC statements, and type is a

number from 1to4 that determines the editing format as follows:

Value Meaning

1 The default. Draws a box around the rectangle to be edited; does not
allow Returns in the edit field (most applications trap the Return and
interpret it the same as a click of the OK button)

2 Boxed; allows Return key

3 No box; does not allow Return key

4 No box; allows Return key

Another optional argument is justify, a number from 1 to 3, specifying the loca

tion of text within the edit-field rectangle:

Value Meaning

1 The default. Left-justifies text

2 Centers text

3 Right-justifies text

When a window contains more than one edit field, the fields are created in the

order they are listed in the program. The contents of the last edit field created are al

ways highlighted, and standard Macintosh Cut, Copy, and Paste techniques can be

used to make changes. These edit features aren't necessary with the edit field created
to input a phone number, but they can be useful elsewhere.

NOTE: Even if the Edit menu is replaced or turned off by your BASIC program,

as it is by this one, the Command-key equivalents of the Cut, Copy, and Paste com

mands will still work.

222 SECTION III: COMMUNICATIONS

The EnterLoop subroutine

Once the dialog box has been created by EnterNumber, the program goes into

the EnterLoop subroutine, shown in Figure 12-41, to wait for the user to click a button

or press the Return key to signal that the number has been entered.

In previous programs, we have trapped DIALOG(O) to see when a button was

pushed, but this time we are interested in two dialog events, not just one:

Value

DIALOG(O) = 1

DIALOG(O) = 6

Meaning

Button in active output window selected with mouse;
number of button is returned by DIALOG(1) function, and
this number is used to determine which subroutine should
respond to the event

Return key pressed in active window that has button or edit
field that cannot accept Return as input text; treated same
as click of the OK button in that window

Pressing the Return key or clicking the OK button causes the program to move on to

EnterContinue. Clicking Cancel terminates the EnterLoop subroutine simply by not

branching out of it before the end .

..
·• Wait for user to finish entering number . ..
Enterloop:

eventTrapped = DIALOG(O)
IF.eventTrapped = 6 THEN GOTO EnterContinue
IF eventTrapped <> 1 THEN GOTO Enterloop
buttonSel = DIALOG(1)
IF buttonSel <> 1 THEN GOTO EnterContinue
WINDOW CLOSE 4
RestoreScreen
RETURN

Figure 12-41. The EnterLoop subroutine

'Return key pressed
'button wasn't selected

'Cancel button clicked

Chapter 12: The Expanded Communication Program

..
·• Retrieve number from dialog box . ..
EnterContinue:

phoNum$ = EDIT$(1)
phoNam$ = "manually entered number"
WINDOW CLOSE 4
Restore Screen
num$ =dial$+ phoNum$
SendToModem num$
MENU 4, 4, 1
RETURN

Figure 12-42. The EnterContinue subroutine

The EnterContinue subroutine

223

'retrieve number

'dial number
'enable Redial

This subroutine, shown in Figure 12-42, uses the EDIT$ function to retrieve the
contents of the edit field. The syntax for this function is:

EDIT$(1D)

The ID used here must be the same number used to open the edit field you want to re
trieve information from.

You use the EDIT$ function by setting it equal to a string variable- in this case,
phoNum$- thereby assigning the number entered in the edit field to the variable.
(We deal with the phone number as a string to avoid problems with the non-numeric
symbols, such as dashes and parentheses, often included in phone numbers.) The sec
ond line of the subroutine assigns the phrase "manually entered number" to the vari
able phoNam$, which is used in other parts of the program to store the name of the
party being called. When the number is actually dialed, the text assigned to phoNam$
is displayed on the screen. Once the number is retrieved, the dial command for your
modem (assigned to the variable dial$ in the InitializeVariables subroutine) is placed
in front of it and they are passed to the SendToModem subprogram, showri in Figure
12-43 on the following page. After the number is dialed, the menu is reset and the pro
gram returns to CommLoop.

224 SECTION III: COMMUNICATIONS

'*
'* Send passed string to modem, one character at a time with pause
••between characters. Used to pass commands and phone numbers to modem . ..
SUB SendToModem(out$) STATIC

FOR position= 1 TO LEN(out$)
code$= MID$(out$, position, 1)
Delay 500
IF code$ = "-" THEN Delay 8000 : GOTO SkipCode
PRINT #1, code$;

SkipCode:
NEXT
Delay 5000
PRINT #1 , er$

END SUB

..
'*Delay.
'*
SUB Delay(count) STATIC

FOR hold = 1 TO count
NEXT

END SUB

Figure 12-43. The SerulToModem subprogram

I Hanging up I

'take numbers one by one

'don't send too fast
'long pause

'end with carriage return

If the user selects Hang Up from the Phone menu, the short subroutine shown in
Figure 12-44 passes "hangup$ to SendToModem. This variable was defined in Ini
tializeVariables as"-++ +-ATHO", but it can easily be changed to match the modem
in use (though the D.C. Hayes command used here works with most modems). The
tildes (-) on either side of the three plus signs, which are used to put the modem in
the command mode, cause a pause of about two seconds, so that the modem will be
ready to respond to the ATHO that follows.

Chapter 12: The Expanded Communication Program

'*
'* D(3): Tell modem to hang up.
'*
Disconnect:

SendToModem hangup$
RETURN

Figure 12-44. The Disconnect subroutine

I Redialing I

225

Selecting Redial from the Phone menu causes the Redial subroutine, shown in
Figure 12-45, to send the last number dialed (whether it was entered manually or from
the directory) and your modem dial command (assigned to dial$ in InitializeVariables)
to SendToModem.

I Dialing from a directory I
When Directory is selected from the Phone menu, the Directory subroutine,

shown in Figure 12-46 on the next page, calls the Direct subprogram, which in turn
displays a list of numbers and allows the user to select one to dial. Notice that before
the Direct subprogram is called, Directory sets the variable dialFlag to false. This
variable is shared with the subprogram, which sets it to true, and assigns values to
phoNum$ and phoNam$ if the user selects a number to dial. Upon returning from the

'*
'* 0(4): Send number last dialed to modem.
'*
Redial:

PRINT "Dialing "; phoNam$; ":"
num$ = dial$ + phoNum$
SendToModem num$
RETURN

Figure 12-45. The Redial subroutine

'tell us who we're calling

226 SECTION III: COMMUNICATIONS

'*
'* D(1): Call Direct subprogram.
'*
Directory:

SaveScreen
dialflag = false
Direct
RestoreScreen
IF NOT dialflag THEN RETURN
PrintString "Dialing " + phoNam$ + er$
num$ =dial$ + phoNum$
SendToModem num$
RETURN

Figure 12-46. The IJirectory subroutine

'set dialflag going into subprogram
'call directory subprogram

'check dialflag on return
'tell us who we're calling

'add modem dial command
'send dial command and number

subprogram, the Directory subroutine tests dialFlag and, if it is true, prints the name
and dials the number just as was done when the number was entered by hand.

I The Direct subprogram I
The Direct subprogram produces a display similar to that shown in Figure 12-4 7,

which is a list of phone numbers that can be edited or dialed. This subprogram is
really a fairly major program which, with a few modifications, could be split off to

CompuServe EIS
Western Union Easylink
Telenet
Tymnet

(C:ancel I Add

282-3077 •
241-9111

1-800-324-4112
625-9612
285-0109

Done Dial

Figure 12-4Z The directory display

Chapter 12: The Expanded Communication Program 227

maintain your address book or some similar list. Since it can stand on its own, I sug
gest you type Direct as a separate program and, when everything works smoothly,
merge it with the main program. To make it an independent program, simply drop the
first three lines and change the END SUB and EXIT SUB statements to END state
ments. For test purposes, you may want to include the SendToModem subprogram and
change the Dial subroutine at the very end of the subprogram so that it passes the
phone number to SendToModem, rather than back to the main program.

We will stumble across a few new concepts in this section of code, but most of it
should look pretty familiar to you by now. I will list the program in sections, and com
ment on new items and problem areas as we come to them.

Initializing the subprogram

The first section, shown in Figure 12-48, contains the standard subprogram
statement and a few GOSUBs to initialize the directory display. Notice that there are
two SHARED statements: You can use as many as you need to list all the shared vari
ables. They aren't required to be at the beginning of the subprogram, but you will
avoid problems if you always put them there.

A second thing to notice in this section is the subroutine labels. I tend to use the
same labels for the same functions in different programs. For example, I usually use
InitializeVariables for the subroutine that does what the first one here does. However,
in this case doing so would result in a duplicate-label error, since that label is already
used in the main program. This doesn't seem to be quite in keeping with the theory of

'*
'*Subprogram Direct called from Directory. Display telephone
'* directory and allow user to edit directory or select number to dial.
'*
SUB Direct STATIC

SHARED phoNum$, phoNam$, dialFlago/o, scrnsaveo/o(), directFile$
SHARED num$(), who$(), er$, false, true
GOSUB DefineVariables
GOSUB ReadData
GOSUB ShowWindow

Figure 12-48. Initializing the subprogram

228 SECTION Ill: COMMUNICATIONS

unique variable names that makes subprograms portable between programs, but
there are exceptions to every rule, and there is probably a good reason for this one.

Defining the variables

The DefineVariables subroutine (Figure 12-49) is included primarily to keep the
format consistent, since most variables pertinent to this section were already defined
in the main program and are included in the SHARED statements. One thing is worth
pointing out, though: You do need to define all variables as integers again, since the
DEFINT statement in the main program does not apply here. The variable yDist is
used here to establish the vertical distance between lines in the directory display.

Reading data

The ReadData subroutine shown in Figure 12-50 attempts to open a disk file
containing the names and numbers to be displayed. If it has a problem doing so, it
branches to an error-handling routine that should take care of the problem. Once the
file is opened, the names and numbers are read and assigned to the elements of the ar
rays wlw$ and num$.

I set the maximum number of entries to be read at 10. My original version of this
directory allowed you to page through unlimited entries, but I decided I was adding
complexity and length to the program without really explaining anything new. (A sim
ple method of storing more numbers is to use multiple directory files and add a
FILES$(1) statement to allow you to choose one of them.)

'*
'*Define variables (most are shared with main program).
'*
Define Variables:

DEFINTa-z
yDist = 12
RETURN

Figure 12-49. The De.fineVariables subroutine

'vertical distance between entries

Chapter 12: The Expanded Communication Program

'*
'*Open directory file and assign entries to who$() and num$().
'*
ReadData:

ON ERROR GOTO NoFileError
OPEN directFile$ FOR INPUT AS #4
IF errQuitFlag THEN EXIT SUB
ON ERROR GOTO 0
entry= 0
WHILE (entry< 11) AND (NOT EOF(4))

entry = entry + 1
INPUT #4, who$(entry), num$(entry)

WEND
last= entry
CLOSE#4
RETURN

Figure 12-50. The ReadData subroutine

229

'enable error trapping

'disable error trapping

'number of entries

'last entry
'we're through with it

The ON ERROR GOTO statement at the beginning of this section puts error
trapping into effect, instructing the program to branch to NoFileError should any er
ror occur later in the program. Of course, since we are about to open a file, we suspect
that if there is an error now it will be a File Not Found error (number53).

Let's assume for the moment that the file is there and that we have opened it. We
will bypass errQuitFlag, which is set by the error-handling routine. The ON ERROR

GOTO 0 statement turns error trapping off, so that the program won't branch to the
NoFileError routine if it later encounters an error.

The next line initializes the variable entry to 0. This variable is used to keep
track of the line occupied by each name and phone number on the display. It would be
unnecessary to initialize entry to 0 if we ran this subprogram only once, since all nu
meric variables are initially set to 0 unless we specify otherwise. However, when a
subprogram is rerun, all variables that are not shared with the main program have ex
actly the value they had when the subprogram last ended (assuming that you have not
stopped running the main program between calls), so we need to take the precaution
of re-initializing the variable here.

Next, a WHILE. . .WEND loop repeats until the number of entries exceeds 10 or
the end of the file is reached. The test for the number of entries is included to avoid an

230 SECTION III: COMMUNICATIONS

error (Subscript Out of Range, number 9) if the user opens a file containing too many
entries-perhaps one created by another program. After the WHILE. . .WEND loop,
we again test the number of entries, this time to see if the file we opened was empty. If
it was, who$(1) is assigned the string "empty directory", so that the user will at least
know the file was opened and checked. The last value of entry {which is incremented
by 1 each time through the loop) is assigned to the variable fost, which is used to deter
mine how many edit fields to display.

The NoFileError subroutine

If the directory file was not on the startup disk, the program branches to the
NoFileError routine shown here in Figure 12-51. This routine makes sure the error
trapped was number 53 (File Not Found) and then gives the user a choice of solutions
(Figure 12-52). If it was some other error, then the ON ERROR GOTO 0 statement stops
the program and prints the error number. However, by placing the error trap where
we did, it is unlikely we will trap any other error.

'*
'* Attempt made to open directory file that wasn't on startup disk.
'*
NoFileError:

'* Crash if error other than File Not Found was trapped.
'*
IF ERR <> 53 THEN ON ERROR GOTO 0
BEEP
Save Screen
WINDOW 3, , (50, 50) - (375, 185), -2
PRINT "The file containing the telephone directory"
PRINT "is not on the startup disk"
BUTTON 1, 1, "Load from another disk", (20, 50) - (200, 70), 2
BUTTON 2, 1, "Use default settings", (20, 80) - (200, 100), 2
BUTTON 3, 1, "Cancel", (250, 95) - (310, 120)
WHILE DIALOG(O) <> 1
WEND
butPush = DIALOG(1)

Figure 12-51. The NoFileError subroutine

'get some attention

'wait for some action
'which button was clicked

nwre ...

Chapter 12: The Expanded Communication Program

IF butPush = 3 THEN WINDOW CLOSE 3 : RestoreScreen
IF butPush = 3 THEN errQuitFlag =true : RESUME NEXT
IF butPush = 2 THEN GOTO DefaultDirectory
WINDOW CLOSE 3
Restore Screen
directFile$ = FILES$(1 , "TEXT")
IF directFile$ = ""THEN GOTO NoFileError
OPEN directFile$ FOR INPUT AS #4 .
RESUME NEXT

DefaultDirectory:
OPEN directFile$ FOR OUTPUT AS #4
WRITE #4, "New Directory", "number''
CLOSE#4
WINDOW CLOSE 3
Restore Screen
RESUME

Figure 12-51. The NoFileError subroutine (continued)

231

'open file dialog box
'no selection

'create new file
'store something in it

'close it

One very important point you should note about error trapping from within a
subprogram is that the subroutine branched to when the error is encountered must be
located outside the subprogram. If you try to branch to an error-handling subroutine
inside the subprogram, you will be greeted by an Undefined Label error. (We will dis
cover one more little quirk when we get ready to return to the subprogram from this
error routine.)

The file containing the telephone directory
is not on the system disk

D Load from another disk

D Use default settings
(Cancel)

Figure 12-52. The NoFileError dialog box

232 SECTION III: COMMUNICATIONS

If the user decides to cancel the directory request, the program has to do a little

fancy footwork to get you back to the main program. Normally, a RESUME statement
with one of these four syntaxes is used to exit the error-handling routine:

Syntax

RESUME

RESUME 0

RESUME NEXT

RESUME line

Action

Execution resumes at statement that caused error

Same as RESUME

Execution resumes at statement immediately following
one that caused error

Execution resumes at line

The one additional quirk I referred to earlier is that you cannot use the RESUME
statement to return to a specific label in a subprogram because BASIC, at this point,

decides not to recognize subprogram labels. You also can't just jump back into the
main program, as that would leave an unENDed subprogram hanging around. The so

lution is to set a flag that tells the subprogram you want to go back to the main pro
gram, then RESUME with the next statement in the subprogram, which should be a
test of that flag. So in this program, if the user chooses to cancel the directory request

by clicking the Cancel button in the error dialog box, we set errQuitFlag to true and
issue a RESUME NEXT statement.

If the user decides to use the default directory, the subprogram opens a new di
rectory file, directFile$, and stores the strings "New directory" and "number" in it.
The RESUME statement returns the program to the OPEN statement in the subpro
gram, which can now re-open this new directory file and retrieve the information that
was just stored.

If the user decides to use a different directory, the subprogram displays an
OPEN dialog box, opens the requested file, and then resumes with the next line in the
subprogram.

Displaying data

The ShowWindow subroutine, shown in Figure 12-53, opens a window, creates
an edit field for each name and phone number read from the directory file, and dis
plays the option buttons.

Chapter 12: The Expanded Communication Program

'*
'*Open directory display window.
'*
ShowWindow:

WINDOW 3, "Phone Directory", (50, 35) - (367, 200), -2
LINE (15, 5) - (305, 140), I b
TEXTMODE 1
TEXTSIZE 9

'*
'* List names and numbers.
'*
FOR entry = 1 TO last

yPos = entry * yDist

'*
'* Create name and number edit fields.
'*

233

'inside box
'keep selection dot clean

'keep dialog box small

'to shorten following lines

EDIT FIELD 2 *entry - 1, who$(entry), (20, 2 + yPos) - (155, 15 + yPos), 3
EDIT FIELD 2 *entry, num$(entry), (170, 2 + yPos) - (280, 15 + yPos), 3, 3

NEXT
edField = 1 : EDIT FIELD edField
GOSUB PutDot

'*
'* Create command buttons at bottom.
'*
BUTTON 1, 1, "Cancel", (15, 145) - (75, 160)
BUTTON 2, 1, "Add", (91, 145)- (151, 160)
BUTTON 3, 1, "Done", (169, 145) - (229, 160)
BUTTON 4, 1, "Dial", (245, 145) - (305, 160)
RETURN

Figure n-53. The ShowWindow subroutine

'make first edit field active
'show which entry is active

This method of creating a number of edit fields is similar to that used to create
buttons in the configuration dialog box in the last chapter. In this case, the position of
each edit field is expressed relative to the entry number and the variable yDist. The
edit-field ID numbers are also expressed relative to the entry, but since there are two
fields per entry line, we have to do a little manipulation here (I think anyone who has
written more than two or three programs starts to develop a knack for expressing a
variable in terms of one or more other variables).

234

'*
'*Place dot at right end of currently selected entry.
'*
PutDot:

entry = (edField + 1) \ 2
LINE (290, 16) - (304, 139), 30, bf
MOVETO 290, 12 + entry * yDist
PRINT CHR$(165);
RETURN

Figure 12-54. The PutDot subroutine

SECTION III: COMMUNICATIONS

'white box erases old dot
'active entry

'print dot

Notice that the edit fields for both name and number are type 3, which means
that there will be no box drawn around them. It also means that Return keys are not
allowed, though in this case I simply ignore Returns, rather than trapping them and
taking some action, because it does not seem to me that any particular action is intu
itively correct in this situation (unlike many cases, where Return would signal the end
of an edit action and therefore a desire to return to the main program).

Next, the subroutine PutDot, shown in Figure 12-54, places a dot to the right of
the line that contains the currently selected edit field. As far as the program is con
cerned, the entire line is selected and clicking the Dial button will dial its number.

Put Dot determines the selected line by evaluating the current edit field, which is
always assigned to edField. It then draws a filled white box over the area where the
dots are displayed, to erase the current dot. (We can get away with this tactic because
speed isn't really important at this point. If it were, we would use a ROM call to XOR

the dot into oblivion.) The new dot is produced by printing CHR$(165) to the right of
the current line. You can substitute any other ASCII code you like for 165: perhaps
CHR$(60) + CHR$(45) to produce this <- arrow, or CHR$(199) to indicate the se
lected line with this < < chevron.

Direct's main loop

The MainLoop routine (Figure 12-55) is a forever-loop (WHILE true ... WEND)

that the program falls into after the initialization subroutines. The purpose of this
loop is to branch to an appropriate subroutine if a command button or edit field is

Chapter 12: The Expanded Communication Program 235

..
•• Trap button and edit-field actions, and branch to appropriate subroutine . ..
Mainloop:

WHILE true
eventTrapped = DIALOG(O)
IF eventTrapped = 1 THEN GOSUB ButPush
IF eventTrapped = 2 THEN GOSUB EdFldClk
IF eventTrapped = 7 THEN GOSUB EdFldTb

WEND

Figure 12-55. The MainLoop routine

'button clicked
'edit field clicked

Tab key pressed

clicked or a Tab key pressed, as indicated by the value returned when the DIALOG(O)

function is used.

Tabbing

Pressing the Tab key while one edit field is active typically (in Macintosh appli
cations) deactivates that field and makes the next available edit field active. In our
program the EdFldTb subroutine (Figure 12-56) performs this task. Since we plan to
move from one edit field to another, the contents of the current field are first checked
for change. If the program is not already in the last edit-field position, EdFldTb ad
vances it one position; if it is, then the subroutine moves it to the first edit-field posi
tion, so you can cycle through the entries again .

..
·•Tab key was pressed; move to next edit field . ..
EdFldTb:

GOSUB CheckEdit
IF edField < 2 * last THEN edField = edField + 1 ELSE edField = 1
EDIT FIELD edField
GOSUB PutDot
RETURN

Figure 12-56. The EdFldTb subroutine

'make it active

236 SECTION III: COMMUNICATIONS

..
•• Inactive edit field was clicked; determine which one and make it active . ..
EdFldClk:

GOSUB CheckEdit
eclField = DIALOG(2) : EDIT FIELD edField
GOSUB PutDot

'see if current field has changed
'make new field active

RETURN

Figure 12-5Z The EdFMClk subroutine

Clicking an edit field

The EdFldClk subroutine, shown in Figure 12-57, assigns the value returned by
DIALOG(2) to the variable edField, then makes edField the current edit field. This al
lows the user to select an edit field by clicking in it.

Clicking a button

The ButPush subroutine, shown in Figure 12-58, assigns the value returned by
DIALOG(l)-the number of the button clicked-to the variable huttonPushed. It

then tests huttonPushed and takes the action appropriate to its value.
If Button #1 (Cancel) is clicked, changeFlag is set to false, meaning that the di

rectory file won't be updated, and the program branches to the closing routine (Fini).

•• Button was clicked; determine which one and take action . ..
ButPush:

buttonPushecl = DIALOG(1)
IF buttonPushed = 1 THEN changeFlag =false: GOTO Fini
IF buttonPushed = 2 THEN GOSUB CheckEdit : GOSUB AddEntry
IF buttonPushed = 3 THEN GOSUB CheckEdit : GOTO Fini
IF buttonPushed = 4 THEN GOSUB CheckEdit : GOTO Dial
RETURN

Figure 12-58. The ButPush subroutine

'Cancel clicked
'Add clicked

'Done clicked
'Dial clicked

Chapter 12: The Expanded Communication Program 237

If Button #2, #3, or #4 is clicked, the ButPush subroutine passes the program to the
CheckEdit subroutine, which checks the contents of the current edit field to see if
they have changed.

Checking for changes

The CheckEdit subroutine, shown in Figure 12-59, first determines the number
of the active line, then determines whether the active edit field is the first (name) or
second (number) field on that line. If it is the first field, the program branches to the
line labeled CheckName; otherwise, it continues its normal flow. Either way, the orig
inal value of that edit field is compared to the current value. If they aren't the same,
changeFlag is set and the new value is assigned to the appropriate element of either
the who$ array or the num$ array.

Upon returning from CheckEdit, the program goes toAddEntry if the Add but
ton was clicked, to Fini if the Done button was clicked, or to Dial if the Dial button
was clicked.

Adding new entries

The AddEntry subroutine, shown in Figure 12-60 on the next page, adds a new
line to the list, if there is room for it, and puts two edit fields on the line.

'*
'*Check if any changes have been made to edit field before
'* quitting, dialing, or moving to another edit field.
'*
CheckEdit:

entry = (edField + 1) \ 2
IF (edField MOD 2 = 1) THEN CheckNam
IF num$(entry) <> EDIT$(edField) THEN changeFlag = true
IF num$(entry) <> EDIT$(edField) THEN num$(entry) = EDIT$(edField)
RETURN

CheckNam:
IF who$(entry) <> EDIT$(edField) THEN changeFlag = true
IF who$(entry) <> EDIT$(edField) THEN who$(entry) = EDIT$(edField)
RETURN

Figure 12-59. The CheckEdit subroutine

238

'*
'* Activate new edit field below last one.
'*
Add Entry:

changeFlag = true
last = last + 1
IF last= 10 THEN BUTTON 2, 0

'*

SECTION III: COMMUNICATIONS

'update file when quitting

'* Create right edit field first, so left one ends up active.
'*
EDIT FIELD 2 * last, "number", (170, 2 + last * yDist) - (280, 15 + last * yDist), 3, 3
EDIT FIELD 2 * last - 1, "name", (20, 2 + last* yDist) - (155, 15 + last* yDist), 3
edField = 2 * last - 1
num$(1ast) = "number" 'assign temporary values
who$(1ast) = "name"
GOSUB PutDot
RETURN

Figure 12-60. The AddEntry subroutine

Since something is being added to the directory, change Flag is set to true, so that

the disk file will be updated when the subprogram ends, and the value oflast is incre
mented and then tested. If this brings the number of entries to 10, the Add button is
disabled. The edit fields, with the default entries of "name" and "number", are created

in the same way as in the ShowWindow subroutine, except that the edit field on the
right is created first, in order to leave the one on the left active without having to spe
cifically set it. As usual, the dot is displayed to indicate this is the active line.

Finishing up

The Fini routine (Figure 12-61) checks changeFlag to see if any changes have
been made. If not, the window is closed and the EXIT SUB statement issued to leave
the subprogram and return to the main program. If changes have been made, the di
rectory file is opened and the elements of the who$ and num$ arrays are written to it.
During this process, any lines that have had the contents of both fields deleted are

deleted from the file, so if there is a blank line when you quit, it won't be there when
you next look at the directory. After storing the entries, the file is closed, the window
is closed, and the subprogram is ended.

Chapter 12: The Expanded Communication Program

'*
'*Return to main program.
'*
Fini:

IF changeFlag <>true THEN WINDOW CLOSE 3 : EXIT SUB
OPEN directFile$ FOR OUTPUT AS #4
FOR entry = 1 TO last

IF who$(entry) = "" AND num$(entry) = "" THEN PrintSkip
WRITE #4, who$(entry); num$(entry)

PrintSkip:
NEXT
CLOSE#4
WINDOW CLOSE 3

END SUB

Figure 12-61. The Fini routine

Dialing a number

239

'no changes

'compress

'close file

If the Dial button is clicked, the program goes to the Dial routine (see Figure
12-62), which is located just above the Fini routine, so that after flowing through Dial
the program automatically goes to Fini.

Dial assigns the current values of who$ and num$ to the variables phoNam$ and
phoNum$, which the main program will use, and sets dialFlag to true to tell the main
program to dial a number.

That pretty well covers the communication program. In modifying the Terminal
program supplied on your BASIC disk, I added the features that I wanted. By now, you
should understand both the initial program and its modifications well enough to add

'* Dial button was pressed; get number.
'*
Dial:

phoNam$ = who$(entry)
phoNum$ = num$(entry)
dialFlag = true

Figure 12-62. The Dial routine

'who are we going to call
'their phone number

'tell main program

240 SECTION III: COMMUNICATIONS

any features that are important to you. You may want to add a routine to change one

character to another or a routine to automatically send your password and the logon
sequence for an online service. The beauty of BASIC is that you are not limited to the

features someone else feels you should have in a program.
If you have not previously used a computer to sample the online services avail

able and are about to do so, you have a treat in store. You will find a fascinating variety
of information and services at your fingertips.

'* Enhanced Terminal Emulation Program
'*

'*
'* Execute all initializing subroutines.
'*

'*

GOSUB lnitializeVariables
GOSUB CreateWindow
GOSUB SetDefaults
GOSUB OpenComm
GOSUB DefineMenu

'* Fall through to main communication loop after completing all initializing
'* subroutines and remain there until selection is made from menu.
'*

'*
'* Display characters from COM1 :, send keystrokes to COM1 :.
'*
Commloop:

WHILE true
WHILE pauseFlag : WEND
IF (LOC(1) = 0) AND stopFlag THEN PRINT #1, xon$; : stopFlag = false
WHILE LOC(1) = 0 'nothing waiting to come in

SendKey 'send key typed to file #1
MENU STOP 'don't get sidetracked
IF (sendFlag OR viewFlag) AND NOT waitFlag THEN CALL Sendline
IF endViewFlag THEN GOSUB EndFile
MENU ON 'see if anything selected

WEND

Figure 12-63. The complete enhanced communication program
more ...

Chapter 12: The Expanded Communication Program 241

'*

IF LOC(1) > bufferLimit THEN PRINT #1, xoff$; : stopFlag =true
lin$ = INPUT$(LOC(1), 1) 'get everything waiting
RemoveChars lin$, If$ 'strip linefeeds
RemoveChars lin$, xon$
IF sendFlag AND waitFlag AND removeFlag THEN waitFlag =false
RemoveChars lin$, xoff$
IF sendFlag AND removeFlag THEN waitFlag =true
MENU STOP
PrintString lin$
MENU ON
IF endSendFlag THEN GOSUB EndFile

'*
'* File #3 is automatically named file that stores input when
'* Start or Continue is chosen from Save menu. File #2
'*stores received file after asking for name to store it under.
'*
IF saveFlag THEN PRINT #3, lin$;
IF receiveFlag THEN PRINT #2, lin$;

WEND

'* Dimension arrays and initialize variables.
'*
Initialize Variables:

DEFINTa-z
DIM choice(4)
DIM choice$(4)
DIM group(17)
DIM nam$(17)
DIM num$(10)
DIM scrnsave(4889)
DIM who$(10)

alert$ = CHR$(7)
buffer = 2000
bufferLimit = .9 * buffer
choice(1) = 4
choice(2) = 9
choice(3) = 13
choice(4) = 16
er$ = CHR$(13)
Dial$ = "ATDT"

'for speed
'selected parameters

'likewise
'parameter buttons

'likewise
'directory phone number

'used to restore screen
'directory name

'beep
'input buffer

'buffer limit--send XOFF
'1200 baud
'even parity
'7 data bits
'2 stop bits

'carriage return
'D.C. Hayes dial command

Figure 12-63. The complete enhanced communication program (continued)
mofl1 •••

242 SECTION III: COMMUNICATIONS

directFile$ = "directory file" 'file containing phone #'s
endMessage$ = sp$ + er$ + If$ + alert$ + "End of Transmission" + er$

'*

false= o
hangup$= "-+++-ATHO"
If$= CHR$(10)
pauseFlag =false
posit$ = er$ + " "
receiveFlag =false
saveFlag = false
sendFlag = false
sp$ = CHR$(32)
stopFlag = false
true= -1
viewFlag = false
waitFlag = false
xoff$ = CHR$(19)
xon$ = CHR$(17)
RETURN

'* Create output window.
'*
CreateWindow:

'*

WINDOW 1, , (3, 20) - (511, 338), 3
PENMODE 10
TEXTFONT4
TEXTSIZE9
RestoreCur
RETURN

'* Set up default options.
'*
'* choice(1) is baud rate: 1 -- 11 O
'* 2 -- 300
'* 3 -- 600
'* 4 -- 1200

'*
'*

5 -- 2400
6 -- 4800
7 -- 9600

'hangup command
'linefeed

'activity paused

'Receive File selected
'save flag

'Send File selected

'XOFF sent flag

'View file selected
'XOFF received flag

'stop sending
'send more

'monospace font
'80 characters per line

Figure 12-63. The complete enhanced communication program (continued) more ...

Chapter 12: The Expanded Communication Program

..
·• choice(2) is parity:

8 -- None
9 -- Even

10 -- Odd

·• choice(3) is data bits: 11 -- 5
•• 12 -- 6
•• 13 -- 7
•• 14 -- 8 ..
•• choice(4) is stop bits: 15 -- 1
'* 16 -- 2 ..
'*
'* Changing default choices here will control initial parameters.
'*
SetDefaults:

FOR count= 1 TO 16

243

READ garbage, garbage, garbage, nam$(count) 'discard garbage
NEXT
choice$(1) = STR$(VAL(nam$(choice(1))))
choice$(2) = LEFT$(nam$(choice(2)), 1)
choice$(3) = STR$(VAL(nam$(choice(3))))
choice$(4) = STR$(VAL(nam$(choice(4))))
options$= choice$(1) + "," + choice$(2) + "," + choice$(3) + "," + choice$(4)
RETURN

·• Open communications port.
'*
OpenComm:

OPEN "COM1 :" + options$ AS 1 LEN = buffer

..
·• Clear input buffer . ..
Flush:

garbage$= INPUT$ (LOC(1), 1)
RETURN

Figure 12-63. The complete enhanced communication program (continued)
more ...

244

'*
'* Set up custom menu.
'*
DefineMenu:

'*

MENU 1, 0, 1, "File"
MENU 1, 1 , 1 , "View File"
MENU 1, 2, 1, "Receive File"
MENU 1, 3, 1, "Send File"
MENU 1, 4, 1 , "Quit to BASIC"
MENU 1, 5, 1, "Quit to Desktop"
MENU 2, 0, 1, "Options"
MENU 2, 1 , 1 , "Pause"
MENU 2, 3, 1 , "Set Configuration Parameters"
MENU 3, 0, 1, "Save"
MENU 3, 1, 1 , "Start"
MENU 3, 2, o, "Continue"
MENU 3, 3, 0, "Stop"
MENU 4, 0, 1, "Phone"
MENU 4, 1 , 1 , "Directory"
MENU 4, 2, 1, "Enter Number"
MENU 4, 3, 1 , "Hang Up"
MENU 4, 4, 0, "Redial"
MENU 5, 0, 0, ""
ON MENU GOSUB HandleMenu
MENU ON
RETURN

'* Decide which menu item selected and take action.
'*
HandleMenu:

MenuSel = MENU(O)
ltemSel = MENU(1)

'*
'* Go to appropriate subroutine for menu selected.
'*

SECTION III: COMMUNICATIONS

'if menu item chosen
'activate trapping

'get number of menu
'get number of item

ON MenuSel GOSUB FileMenu, OptionMenu, SaveMenu, PhoneMenu
MENU
RETURN

Figure 12-63. The complete enhanced communication program (continued) more ...

Chapter 12: The Expanded Communication Program 245

'* File menu was selected.
'*
FileMenu:

ON ltemSel GOSUB ViewFile, ReceiveFile, SendFile, DoneBas, DoneDesk
RETURN

'*
'* A(1): View file before sending or after receiving.
'*
ViewFile:

'*

IF startFlag = true THEN GOTO EndFile
Save Screen
filename$= FILES$(1, "TEXT")
Restore Screen
IF filename$ = "" THEN RETURN
MENU 1, 2, 0
MENU 1, 3, 0
MENU 1, 1, 2
MENU 2, 0, 0
MENU 3, 0, 0
MENU 4, 0, 0
OPEN filename$ FOR INPUT AS #2
oldSaveFlag = saveFlag
saveFlag = false
viewFlag = true
startFlag = true
RETURN

'* A(2): Transfer information received at COM1: to disk file.
'*
Receive File:

IF startFlag =true THEN EndFile
SaveScreen
filename$= FILES$(0, "Name to save file under")
Restore Screen
IF filename$ = "" THEN RETURN
MENU 1, 3, 0
MENU 1, 2, 2
MENU 1, 1, 0
MENU 2, 0, 0

'terminating ViewFile

'disable Receive File
'put check mark by Send File
'put check mark by View File

'disable Options menu
'disable Save menu

'disable Phone menu

'store state of save flag
'if previously saving, stop

'terminating ~eceiveFile

'disable Send File
'put check mark by Receive File

'disable View File
'disable Options menu

_Figure 12-63. The complete enhanced communication program (continued)
more ...

246

'*

MENU 3, 0, 0
MENU 4, 0, 0
OPEN "O", #2, filename$
oldSaveFlag = saveFlag
saveFlag = false
receiveFlag = true
startFlag = true
RETURN

'* A(3): Transmit file stored on disk.
'*
SendFile:

'*

IF startFlag =true THEN EndFile
Save Screen
filename$ = FILES$(1, "TEXT")
RestoreScreen
IF filename$ = "" THEN RETURN
MENU 1, 2, 0
MENU 1, 3, 2
MENU 1, 1, 0
MENU 2, 0, 0
MENU 3, 0, 0
MENU 4, 0, 0
OPEN "I", #2, filename$
oldSaveFlag = saveFlag
saveFlag = false
sendFlag = true
startFlag = true
RETURN

'* Close file and re-enable various competing menus
'*
EndFile:

CLOSE#2
ShowCur
PrintString endMessage$
MENU 1, 2, 1
MENU 1, 3, 1
MENU 1, 1, 1
MENU 2, 0, 1

SECTION Ill: COMMUNICATIONS

'disable Save menu
'disable Phone menu

'turn on receiving

'terminating SendFile

'disable Receive File
'put check mark by Send File

'disable View File
'disable Options menu

'disable Save menu
'disable Phone menu

'turn on sending

'enable Receive File option
'enable Send File option

'remove check mark
'enable Options menu

Figure 12-63. The complete enhanced communication program (continued)
nwre ...

Chapter 12: The Expanded Communication Program

MENU 3, 0, 1
MENU 4, 0, 1
saveFlag = oldSaveFlag
viewFlag = false
sendFlag = false
receiveFlag = false
startFlag = false
endFlag = false
endSendFlag = false
endViewFlag = false
RETURN

'* A(4): Return to BASIC.
'*
DoneBas:

'*

MENU RESET
CLOSE
END

'* A(5): Return to Macintosh desktop.
'*
Done Desk:

CLOSE
SYSTEM

'* Options Menu was selected.
'*

Option Menu:

'*

ON ltemSel GOSUB Pause, Strip, Config
RETURN

'* B(1): Stop processing of data.
'*
Pause:

pauseFlag = pauseFlag XOR -1
MENU 2, 1, -1 * pauseFlag + 1
IF pauseFlag THEN PRINT #1, xon$; ELSE PRINT #1, xoff$;
RETURN

247

'enable Save menu
'enable Phone menu
'restore state of Save

'turn off viewing

'restore BASIC menu
'close all open files

'return to BASIC

Figure 12-63. The complete enhanced communication program (continued)
more ...

248 SECTION III: COMMUNICATIONS

'*
'* Set communication parameters.
'*
Config:

CLOSE1 'close COM1:
Save Screen
WINDOW 2, , (50, 35) - (450, 185), 2 'open new window
GOSUB DisplayDefaults 'show parameters
GOSUB SelectOptions 'get selection
options$= choice$(1) + "," + choice$(2) + "," + choice$(3) + "," + choice$(4)

'*
'* Open communications port.
'*
OPEN "COM1 :" + options$ AS 1 LEN = buffer
WINDOW CLOSE 2
Restore Screen
RETURN

DisplayDefaults:
RESTORE 'to read data statements from start

..

FOR count= 1TO16
READ x, y, group(count), nam$(count)
BUTTON count, 1, nam$(count), (x, y) - (x + 130, y + 15), 3

NEXT count
BUTTON 17' 1 I "OK"' (320, 110) - (380, 135)

'*
'* Simulate button pushes to highlight defaults.
'*
FOR count = 1 TO 4

ButtonSelect choice(count)
NEXT
RETURN

'* Here is x,y coordinate of button, groupNum, title.
'*

DATA 10, 10, 1, 110 bits per sec
DATA 1 o, 30, 1, 300 bits per sec
DATA 10, 50, 1, 600 bits per sec
DATA 10, 70, 1, 1200 bits per sec

Figure 12-63. The complete enhanced communication program (continued)
nwre ...

Chapter 12: The Expanded Communication Program

DATA 10, 90, 1, 2400 bits per sec
DATA 10, 110, 1, 4800 bits per sec
DATA 10, 130, 1, 9600 bits per sec

DATA 292, 10, 2, No parity
DATA 292, 30, 2, Even parity
DATA 292, 50, 2, Odd parity

DATA 162, 10, 3, 5 Data bits
DATA 162, 30, 3, 6 Data bits
DATA 162, 50, 3, 7 Data bits
DATA 162, 70, 3, 8 Data bits

DATA 162, 110, 4, 1 Stop bits
DATA 162, 130, 4, 2 Stop bits

SelectOptions:
eventTrapped = DIALOG(O)
IF eventTrapped <> 1 THEN SelectOptions
buttonPushed = DIALOG(1)

••

249

'dialog event
'watch for button press

'which button

'* Get button number if through making selections (clicked OK) .
••
IF buttonPushed < 17 THEN ButtonSelect buttonPushed : GOTO SelectOptions
RETURN

'*
'* Save Menu was selected.
'*
SaveMenu:

'*

ON ltemSel GOSUB StartSave, ContSave, StopSave
RETURN

'* C(1): Start saving.
'*
StartSave:

tim$=TIME$
FOR count = 3 TO 6 STEP 3

MID$(tim$, count) = •r
NEXT count
filename$ = "Saved " + tim$

'get current time for filename
'change : to I

'assign filename

Figure 12-63. The complete enhanced communication program (continued)
more ...

250

..

OPEN ff A", #3, filename$
saveFlag =true
MENU 3, 1, 0
MENU 3, 3, 1
RETURN

'*C(2): Continue saving (if stopped) . ..
ContSave:

saveFlag = true
MENU 3, 2, 0
MENU 3, 3, 1
RETURN

..
'*C(3): Stop saving . ..
StopSave:

saveFlag = false
MENU 3, 2, 1
MENU 3, 3, 0
RETURN

..
·• Phone Menu was selected . ..
PhoneMenu:

SECTION III: COMMUNICATIONS

'open new file
'set save flag to true

'disable Start
'enable Stop

'disable Continue
'enable Stop

'set save flag to false
'enable Continue

'disable Stop

ON ltemSel GOSUB Directory, EnterNumber, Disconnect, Redial
RETURN

..
•• D(1): Call Direct subprogram . ..
Directory:

SaveScreen
dialFlag = false
Direct
Restore Screen
IF NOT dialFlag THEN RETURN
PrintString "Dialing ff+ phoNam$ +er$

'set dialFlag going into subprogram
'call directory subprogram

'check dialFlag on return
'tell us who we're calling

Figure 12-63. The complete enhanced communication program (continued)
more ...

Chapter 12: The Expanded Communication Program 251

num$ = Dial$ + phoNum$ 'add modem dial command
SendToModem num$ 'send dial command and number
RETURN

'*
'* D(2): Create dialog box.
'*
EnterNumber:

'*

Save Screen
WINDOW 4, , (100, 100) - (370, 185), -4
MOVETO 20, 27
PRINT "enter phone number"
EDIT FIELD 1, phoNum$, (160, 15) - (260, 30)
BUTTON 1, 1, "Cancel", (20, 45) - (80, 70)
BUTTON 2, 1, "OK", (190, 45) - (250, 70)

'* Wait for user to finish entering number.
'*
Enterloop:

'*

eventTrapped = DIALOG(O)
IF eventTrapped = 6 THEN GOTO EnterContinue
IF eventTrapped <> 1 THEN GOTO Enterloop
buttonSel = DIALOG(1)
IF buttonSel <> 1 THEN GOTO EnterContinue
WINDOW CLOSE 4
RestoreScreen
RETURN

'* Retrieve number from dialog box.
'*
EnterContinue:

phoNum$ = EDIT$(1)
phoNam$ ="manually entered number"
WINDOW CLOSE 4
Restore Screen
num$ = Dial$ + phoNum$
SendToModem num$
MENU 4, 4, 1
RETURN

'create edit field

'Return key pressed
'button wasn't selected

'Cancel button clicked

'retrieve number

'dial number
'enable Redial

Figure 12-63. The complete enhanced communication program (continued)
more ...

252 SECTION III: COMMUNICATIONS

'*
'* 0(3): Tell modem to hang up.
'*
Disconnect:

'*

SendToModem hangup$
RETURN

'* 0(4): Send number last dialed to modem.
'*
Redial:

'*

PRINT "Dialing "; phoNam$; ":"
num$ = Dial$ + phoNum$
SendToModem num$
RETURN

'* Subprogram Section
'*

'*

'tell us who we're calling

'* Subprogram ButtonSelect(buttonPushed) is called from DisplayDefaults and
'* SelectOptions subroutines. User has just pushed button. Highlight
'* that button and remember selection in choice() and choice$().
'*
SUB ButtonSelect(buttonPushed) STATIC

SHARED nam$(), group(), choice(), choice$()
groupNum = group(buttonPushed)
BUTTON choice(groupNum), 1
BUTTON buttonPushed, 2
choice(groupNum) = buttonPushed
IF groupNum = 2 THEN SetParity
choice$(groupNum) = STR$(VAL(nam$(buttonPushed)))
EXIT SUB

SetParity:
choice$(groupNum) = LEFT$(nam$(buttonPushed), 1)

END SUB

'group 1, 2, 3, or 4
'reset old selection
'set new selection

'1 through 16
'from parity group
'from other group

'get first letter

Figure 12-63. The complete enhanced communication program (continued)
more ...

Chapter 12: The Expanded Communication Program

'*
'*Delay.
'*
SUB Delay(count) STATIC

FOR hold = 1 TO count
NEXT

END SUB

'*

253

'* Subprogram Direct called from Directory. Display telephone
'* directory and allow user to edit directory or select number to dial.
'*
SUB Direct STATIC

SHARED phoNum$, phoNam$, dia1Flag%, scrnsave%(), directFile$
SHARED num$(), who$(), er$, false, true
GOSUB DefineVariables
GOSUB ReadData
GOSUB ShowWindow

'*
'* Print string of text.
'*
SUB PrintString(text$) STATIC

SHARED curX, curY
CALL LINE (5, 0)
MOVETO curX, curY
PRINT text$;
ShowCur

END SUB

'* Remove passed character from passed line.
'*
SUB RemoveChars(lin$, char$) STATIC

SHARED removeFlag
removeFlag = false
position = INSTR(lin$, char$)
IF position = 0 THEN EXIT SUB
removeFlag =true

'erase cursor
'move back

'show new cursor

'reset flag
'where is first offensive character

'there wasn't one
'there was one

Figure 12-63. The complete enhanced communication program (continued)
mnre ...

254 SECTION III: COMMUNICATIONS

WHILE position > o 'remove first and check for more
lin$ = LEFT$(1in$, position - 1) + RIGHT$(1in$, LEN(lin$) - position)
position = INSTR(lin$, char$)

WEND
END SUB

'*
'* Place cursor in upper left corner.
'*
SUB RestoreCur STATIC

MOVETO 0, 10
ShowCur

END SUB

'*
'* Display previously saved screen area after removing dialog box.
'*
SUB RestoreScreen STATIC

SHARED scrnsave()
PUT (39, 7), scrnsave(O), PSET

END SUB

'*
'*Save maximum screen area used by any dialog box, before displaying dialog box.
'*
SUB SaveScreen STATIC

SHARED scrnsave()
GET (39, 7) - (455, 187), scrnsave(O)

END SUB

'*
'* Get keystroke from keyboard and send it out COM1 :.
'*
SUB SendKey STATIC

keyTyped$ = INKEY$
IF keyTyped$ <> "" THEN PRINT #1, keyTyped$;

END SUB

'*
'* View or send a file.
'*
SUB SendLine STATIC

SHARED viewFlag, endViewFlag

Figure 12-63. The complete enhanced communication program (continued)
more ...

Chapter 12: The Expanded Communication Program

SHARED sendFlag, endSendFlag, true, false
LINE INPUT #2, lin$
IF sendFlag THEN PRINT #1, lin$ ELSE PRINT lin$
IF NOT EOF(2) THEN EXIT SUB
IF viewFlag THEN endViewFlag = true
IF sendFlag THEN endSendFlag =true
viewFlag = false : sendFlag = false

END SUB

..

255

'get line from file
'send it someplace

•• Send passed string to modem, one character at a time with pause
•• between characters. Used to pass commands and phone numbers to modem . ..
SUB SendToModem(out$) STATIC

FOR position= 1 TO LEN(out$)
code$ = MID$(out$, position, 1)
Delay 500

'take numbers one by one

IF code$ = "-" THEN Delay 8000 : GOTO SkipCode
PRINT #1, code$;

'don't send too fast
'long pause

SkipCode:
NEXT
Delay 5000
PRINT #1 , er$

END SUB

..
'* Show cursor at end of current line . ..
SUB ShowCur STATIC

SHARED curX, curY
curX = WINDOW(4)
curY = WINDOW(5)
CALL LINE (5, 0)
MOVETO curX, curY

END SUB

'*

'end with carriage return

'horizontal location of next character
'vertical location

'draw cursor
'put print location back where it was

••Trap button and edit-field actions, and branch to appropriate subroutine . ..
MainLoop:

WHILE true
eventTrapped = DIALOG(O)

Figure 12-63. The complete enhanced communication program (continued)
more ...

256 SECTION Ill: COMMUNICATIONS

'*

IF eventTrapped = 1 THEN GOSUB ButPush
IF eventTrapped = 2 THEN GOSUB EdFldClk
IF eventTrapped = 7 THEN GOSUB EdFldTb

WEND

'* Define variables (most are shared with main program).
'*
Define Variables:

'button clicked
'edit field clicked

'Tab key pressed

DEFINTa-z
yDist = 12
RETURN

'vertical distance between entries

'*
'*Open directory file and assign entries to who$() and num$().
'*
ReadData:

'*

ON ERROR GOTO NoFileError
OPEN directFile$ FOR INPUT AS #4
IF errQuitFlag THEN EXIT SUB
ON ERROR GOTO 0
entry= 0
WHILE (entry< 11) AND (NOT EOF(4))

entry = entry + 1
INPUT #4, who$(entry), num$(entry)

WEND
last= entry
CLOSE#4
RETURN

'*Open directory display window.
'*
ShowWindow:

WINDOW 3, "Phone Directory", (50, 35) - (367, 200), -2
LINE (15, 5) - (305, 140), , b
TEXTMODE 1
TEXTSIZE9

'enable error trapping

'disable error trapping

'number of entries

'last entry
'we're through with it

'inside box
'keep selection dot clean

'keep dialog box small

Figure 12-63. The complete enhanced communication program (continued)
more ...

Chapter 12: The Expanded Communication Program

'*
'* List names and numbers.
'*
FOR entry = 1 TO last

yPos = entry * yDist

'*
'* Create name and number edit fields.
'*

257

'to shorten following lines

EDIT FIELD 2 * entry - 1, who$(entry), (20, 2 + yPos) - (155, 15 + yPos), 3
EDIT FIELD 2 *entry, num$(entry), (170, 2 + yPos) - (280, 15 + yPos), 3, 3

NEXT

'*

edField = 1 : EDIT FIELD edField
GOSUB PutDot

'*
'* Create command buttons at bottom.
'*
BUTTON 1, 1, "Cancel", (15, 145) - (75, 160)
BUTTON 2, 1, "Add", (91, 145) - (151, 160)
BUTTON 3, 1, "Done", (169, 145) - (229, 160)
BUTTON 4, 1, "Dial", (245, 145) - (305, 160)
RETURN

'* Button was clicked; determine which one and take action.
'*
ButPush:

buttonPushed = DIALOG(1)
IF buttonPushed = 1 THEN changeFlag = false : GOTO Fini

'make first edit field active
'show which entry is active

IF buttonPushed = 2 THEN GOSUB CheckEdit : GOSUB AddEntry
IF buttonPushed = 3 THEN GOSUB CheckEdit : GOTO Fini

'Cancel clicked
'Add clicked

'Done clicked
'Dial clicked

'*

IF buttonPushed = 4 THEN GOSUB CheckEdit : GOTO Dial
RETURN

'* Activate new edit field below last one.
'*
AddEntry:

changeFlag = true
last = last + 1
IF last = 10 THEN BUTTON 2, 0

'update file when quitting

Figure 12-63. The complete enhanced communication program (continued)
more ...

258 SECTION Ill: COMMUNICATIONS

'*
'*Create right edit field first, so left one ends up active.
'*
EDIT FIELD 2 * last, "number", (170, 2 + last* yDist) - (280, 15 + last* yDist), 3, 3
EDIT FIELD 2 * last - 1, "name", (20, 2 + last* yDist) - (155, 15 + last* yDist), 3
edField = 2 * last - 1
num$(1ast) = "number" 'assign temporary values
who$(1ast) = "name"
GOSUB PutDot
RETURN

'*
'* Inactive edit field was clicked; determine which one and make it active.
'*
EdFldClk:

GOSUB CheckEdit
edField = DIALOG(2) : EDIT FIELD edField
GOSUB PutDot

'see if current field has changed
'make new field active

RETURN

'*
'*Tab key was pressed; move to next edit field.
'*
EdFldTb:

..

GOSUB CheckEdit
IF edField < 2 * last THEN edField = edField + 1 ELSE edField = 1
EDIT FIELD edField
GOSUB PutDot
RETURN

'* Check if any changes have been made to edit field before
'*quitting, dialing, or moving to another edit field.
'*
CheckEdit:

entry = (edField + 1) \ 2
IF (edField MOD 2 = 1) THEN CheckNam
IF num$(entry) <> EDIT$(edField) THEN changeFlag =true
IF num$(entry) <> EDIT$(edField) THEN num$(entry) = EDIT$(edField)
RETURN

'make it active

Figure 12-63. The complete enhanced communication program (continued)
more ...

Chapter 12: The Expanded Communication Program 259

CheckNam:
IF who$(entry) <> EDIT$(edField) THEN changeFlag =true
IF who$(entry) <> EDIT$(edField) THEN who$(entry) = EDIT$(edField)
RETURN

'* Place dot at right end of currently selected entry.
'*
PutDot:

'*

entry = (edField + 1) \ 2
LINE (290, 16) - (304, 139), 30, bf
MOVETO 290, 12 + entry * yDist
PRINT CHR$(165);
RETURN

'* Dial button was pressed; get number.
'*
Dial:

'*

phoNam$ = who$(entry)
phoNum$ = num$(entry)
dialFlag = true

'* Return to main program.
'*
Fini:

IF changeFlag <> true THEN WINDOW CLOSE 3 : EXIT SUB
OPEN directFile$ FOR OUTPUT AS #4
FOR entry = 1 TO last

IF who$(entry)="" AND num$(entry) =""THEN PrintSkip
WRITE #4, who$(entry); num$(entry)

PrintSkip:
NEXT
CLOSE#4
WINDOW CLOSE 3

END SUB

'white box erases old dot
'active entry

'print dot

'who are we going to call
'their phone number

'tell main program

'no changes

'compress

'close file

Figure 12-63. The complete enhanced communication program (continued)
more ...

260 SECTION III: COMMUNICATIONS

..
'* Attempt made to open directory file that wasn't on startup disk.
'*
NoFileError:

..
'* Crash if error other than File Not Found was trapped . ..
IF ERR <> 53 THEN ON ERROR GOTO 0
BEEP
SaveScreen
WINDOW 3, , (50, 50) - (375, 185), -2
PRINT "The file containing the telephone directory"
PRINT "is not on the startup disk"
BUTTON 1, 1, "Load from another disk", (20, 50) - (200, 70), 2
BUTTON 2, 1, "Use default settings", (20, 80) - (200, 100), 2
BUTTON 3, 1 , "Cancel", (250, 95) - (310, 120)
WHILE DIALOG(O) <> 1
WEND
ButPush = DIALOG(1)
IF ButPush = 3 THEN WINDOW CLOSE 3 : RestoreScreen
IF ButPush = 3 THEN errQuitFlag =true : RESUME NEXT
IF ButPush = 2 THEN GOTO DefaultDirectory
WINDOW CLOSE 3
Restore Screen
directFile$ = FILES$(1 , "TEXT')
IF directFile$ = "" THEN GOTO NoFileError
OPEN directFile$ FOR INPUT AS #4
RESUME NEXT

DefaultDirectory:
OPEN directFile$ FOR OUTPUT AS #4
WRITE #4, "New Directory", "number"
CLOSE#4
WINDOW CLOSE 3
Restore Screen
RESUME

'get some attention

'wait for some action
'which button was clicked

'open file dialog box
'no selection

'create new file
'store something in it

'close it

Figure 12-63. The complete enhanced communication program (continued)

SECTION IV

Games

Introduction
to Games Chapter 13

All work and no play makes Jack, and the rest of us, dull. I'll admit that work on the

Macintosh often seems like play, but there comes a time to stop thinking of the com

puter as a tool and let it entertain you. So let's work at playing for a while.

Practically any computer, from a pocket calculator to a mainframe, can be pro
grammed to play games of some sort, a fact that can be attested to by many a midnight
marauder who has used the company computer to defend the solar system against en
emy invaders.

The features of the Macintosh that make it particularly enjoyable as a gaming
machine are the ease with which it can be programmed to create graphic images, and

the speed at which it produces them. We will work our way through two game pro
grams in this section.

The first game, which everyone will recognize, is an honest version of what is de
scribed by the Oxford American Dictionary as "a swindling sleight-of-hand game
using shells:' I wrote this program in about 8 hours (it was probably closer to 12, but

programmers remember time the same way fishermen recall their catch), and then
spent a few days sporadically messing around with it and modifying it.

The second program is a very polished and professional-looking version of back
gammon, written by Barry Preppernau of Microsoft Press. Barry tells me he spent 50
hours writing this program, which is about how long it took me just to learn to play the
board version of backgammon. (If I had had this game and a Macintosh, the learning
process would have been shorter, as the program refuses to allow an illegal move.)

Computer games are based on every imaginable subject, and often serve pur
poses in addition to mere entertainment. Some "games" are designed to help people
become comfortable using computers, and others teach specific skills, such as typing,
spelling, or math.

265

266 SECTION IV: GAMES

Most computer games fall into one or more of three broad classes: puzzles, ad
ventures, and simulations; sometimes it is difficult to draw the line between them.

Regardless of the class they fall into, Linda Gail Christie, author of The Successful

Computer Game (Computer BookBase, vol. 2, no. 4, 1983) maintains that games that

become successful usually share several qualities: They are difficult to master; they

reward good performance with bonus points, free games, or impressive sound and

graphic displays; they keep track of previous scores and sometimes even promote

competition by announcing the current high score among multiple players; they are

unstructured, with varying levels of difficulty and speed; and they are unpredictable.

A few years ago, it seemed as though anyone who could write a program that met

most of these criteria was assured of a steady income for life. The expectations of play

ers, however, seem to rise at least as fast as the capabilities of computers, so to be prof

itable, games now require much more hard work and attention to detail than in the

past. Of course, your motive for writing game programs may simply be to intrigue or

amuse your friends, or instruct your children. If you do decide to publish for profit,

these same people should be your first, and hopefully most critical, audience. The

games offered as examples in the next two chapters were developed relatively rapidly

and tested by only two or three people. If these games were to be offered for sale, this

would be just the beginning point for hundreds of hours of testing, by people of every

degree of computer and gaming sophistication.

If you do decide to attempt to break into this potentially profitable area of pro

gramming, spend a lot of time studying the market. Play the popular games and try to

determine the qualities that contribute to their success. Rather than trying to write

yet another version of the most popular game, try to transplant its qualities- that is,
suspense, excitement, need for fast reflexes, eye-hand coordination, technical knowl

edge of a subject, dazzling graphics, and so on - to another setting. And above all

else, stick to subjects that you know about and that interest you. If you aren't excited
about playing your own game, it is doubtful that others will be either.

The Shell
Game Chapter 14

For those who have lead a really sheltered life, I'll start by explaining how to play the
shell game. Take a look at Figure 14-1, which is the playing area. The game is started

by placing the pea under one of the shells. In the manual version of the game, a person
with very quick hands shuffles the shells around and then gives you a chance to guess

s Shell Game Difficulty Leuel

j Drag pea to a shell I Vour total winnings!= $ O

•
Figure 14-1. The shell-game playing area

267

268 SECTION IV: GAMES

which shell is covering the pea. In this version of the game, the computer randomly
moves the shells, two at a time, for a preset period. The player chooses the level of dif
ficulty, which changes the speed the shells move.

As we have worked our way through the programs in this book, I have tried to
approach the explanations from various directions, in order to give you a better un
derstanding of the logic behind them, the techniques used, and the troubles encoun

tered. You are already familiar with most of the commands and techniques used in the

shell-game program, so rather than discuss the finished program in the order in which
the lines appear or the order in which they are executed, as we have done until now,

let's work our way through a rough draft of the program and look at a few of the prob
lems that cropped up while I was writing it.

The listing in Figure 14-2 is the finished program. If you like games of this sort,
you could type it in and play it a few times, to relate the program to what actually hap
pens on the screen.

'* The Shell Game

'*
'* Initialize for first game.
'*
GOSUB lnitializeVariables
GOSUB CreateScreen
GOSUB lnitializeShell

'* Initialization subroutines for all games after first.
'*
NextGame:

GOSUB lnitializeBoard

'*
'* Interaction with player starts at this point.
'*
Move Pea:

DisplayMessage 15, 20, outline, "Drag pea to a shell"

Figure 14-2. The complete shell-game program
more ...

Chapter 14: The Shell Game 269

WHILE MOUSE(O) <> -1
WEND
xPtr = MOUSE(3)
yPtr = MOUSE(4)
IF ABS(xPtr - xPea) > 20 OR ABS(yPtr - yPea) > 20 GOTO MovePea
WHILE MOUSE(O) = -1

endX = MOUSE(5)
endY = MOUSE(6)
IF (endX = xPea) AND (endY = yPea) THEN GOTO SkipMove
Place Pea
xPea = endX
yPea = endY
Place Pea

'near pea?

'erase pea

'redraw pea
Skip Move:

'*

WEND
IF ABS(endY - yShel(1)) > 28 GOTO PlacePea
FOR shell = 1 TO 3

IF ABS(endX - xShel(shell)) < 28 THEN hide= shell: GOTO Shuffle
NEXT
GOTO MovePea

'near shell?

'* Initialize variables . ..
Initialize Variables:

DEFINTa- z
RANDOMIZE TIMER
DIM shellArray(151)
DIM peaArray(36)
DIM bound(3)
DIM xShel(3)
DIM yShel(3)
DIM pat(3)
DIM dif$(4)
PENMODE 10
dif= 20
odds= 2
winnings! = O!
creditlimit! =winnings! + 5000
true= -1
false= O
outline = true
noOutline = false

'for speed
'reseed random-number generator

'image of shell
'image of pea

'initial location of pea
'x coordinate of center of each shell

'y coordinate
'pea pattern

'description of difficulty level
'invert mode

'initial level of difficulty
'initial odds

'initial winnings
'initial credit limit

'logical true
'logical false

'used for messages
'used for messages

Figure 14-2. The complete shell-game program (continued)
more ...

270

'*

'*
'* Descriptions of the levels of difficulty ..
dif$(1) ="Boring"
dif$(2) = "Easy"
dif$(3) = "Challenge"
dif$(4) ="Dizzy"
RETURN

'* Open window and create menu . ..
CreateScreen:

WINDOW 1,, (0, 20) - (512, 342), 3

Menu I nit:

'*

MENU 1, 0, 1, "Shell Game"
MENU 1, 1 , 1, "Start New Game"
MENU 1, 2, 1, "Quit to BASIC"
MENU 1, 3, 1 , "Quit to Desktop"
MENU 3, O, 1, "Difficulty Level"
MENU 3, 1, 1, "1-Boring"
MENU 3, 2, 1 , "2-Easy"
MENU 3, 3, 1 , "3-Challenge"
MENU 3, 4, 1, "4-Dizzy"
MENU 2, 0, 0, "": MENU 4, 0, 0, "":MENU 5, 0, 0, "''
MENU 3, dif \ 10, 2
ON MENU GOSUB MenuHandle
MENU ON
RETURN

SECTION IV: GAMES

'full screen for background

'check initial selection

'* Read data statements describing shell and store in shellArray.
'*

lnitializeShell:
FOR count= 0 TO 151

READ shellArray(count)
NEXT
RETURN

Figure 14-2. The complete shell-game program (continued)
more ...

Chapter 14: The Shell Game 271

'*
'* Prepare board for starting game. Place shells and pea in their initial
'* locations, and display total winnings or losses.
'*
lnitializeBoard:

CLS

'*
'* Specify initial location for center of each shell.
'*
xShel(1) = 105 : xShel(2) = 225 : xShel(3) = 345
yShel(1) = 150 : yShel(2) = 150 : yShel(3) = 150

'*
'*Vertical and horizontal offsets (from center of each shell)
'*determine four boundaries of shell (top, bottom, left, right).
'*
yOffset = 15 : xOffset = 25

'*
'* Place each shell at its starting location
'*
PlaceShell 1
PlaceShell 2
PlaceShell 3

'* Draw pea then store its image in peaArray
'*
xPea = 200 : yPea = 250
bound(O) = yPea - 8
bound(1) = xPea - 8
bound(2) = yPea + 8
bound(3) = xPea + 8
FOR count = 0 TO 3

pat(count) = -1
NEXT
FILLOVAL VARPTR (bound(O)), VARPTR (pat(O))

'*

'*Store image of pea.
'*

'vertical and horizontal offsets

'initial x/y coordinates pea center
'top of pea

'left edge of pea
'bottom of pea

'right edge of pea
'store black pattern for pea

GET (bound(1), bound(O)) - (bound(3), bound(2)), peaArray(O)

Figure 14-2. The complete shell-game program (continued)
more ...

272 SECTION IV: GAMES

'*
'* Display player's financial condition relative to beginning of game.
'*
IF winnings! < O THEN message$= "Your total losses=$"+ STR$(ABS(winnings!))
IF winnings I => O THEN message$ = "Your total winnings! = $" + STR$(winnings!)
DisplayMessage 285, 20, outline, message$
RETURN

'*
'*Select two shells at random and exchange their position repeatedly.
'*
Shuffle:

HIDECURSOR

'*
'*Blink pea.
'*
FOR blink = 1 TO 3

PlacePea
Pause 2000
PlacePea
Pause 2000

NEXT blink
Place Pea

'*
'* Set length of time shells will be shuffled.
'*
start!= TIMER
finish!= start! + 15
WHILE finish!> TIMER

'*
'* Randomly select first shell to move.
'*

aShell = INT(RND(1) * 3 + 1)
Selects:

bShell = INT(RND(1) * 3 + 1)
IF bShell = aShell GOTO SelectB

Figure 14-2. The complete shell-game program (continued)

'erase pea

'draw pea

'final erase

'note single precision

'other shell

'can't select shell twice

more ...

Chapter 14: The Shell Game 273

'*
'* Swap shells.
'*

Switch:

'*

MENU OFF
xDistance = xShel(bShell) - xShel(aShell) 'how far apart
mult = 2 * dif * SGN(xDistance) 'multiplier--used later
IF ABS(xDistance) > 200 THEN mult = 1 * dif * SGN(xDistance)
FOR moveNumber = 1 TO ABS(xDistance) \ dif

PlaceShell aShell 'erase first shell
xShel(aShell) = xShel(aShell) + dif * SGN(xDistance) 'distance, direction to move
yShel(aShell) = yShel(aShell) + mult * SIN(6.283 * moveNumber I (xDistance \ dif))
PlaceShell aShell 'redraw first shell
PlaceShell bShell 'erase second shell
xShel(bShell) = xShel(bShell) - dif * SGN(xDistance) 'distance, direction to move
yShel(bShell) = yShel(bShell) - mult * SIN(6.283 * moveNumber I (xDistance \ dif))
PlaceShell bShell 'redraw second shell

NEXT moveNumber

'*Following five lines are needed only if shells tend to drift
'* out of horizontal alignment. This will happen if distance between
'* shells is not evenly divisible by difficulty level.

'PlaceShell aShell
'PlaceShell bShell
'yShel(aShell) = 150 : yShel(bShell) = 150
'PlaceShell aShell
'PlaceShell bShell

'erase first shell
'erase second shell

'compensate for vertical error
'place shells

MENU ON
WEND

'*
'* Reset number of guesses before starting Bets section
'*
numGuess=O

'*Give suckers chance to part with their money.
'*
Bets:

DisplayMessage 15, 20, outline, "Care to place a bet?"
WINDOW 2, , (50, 55) - (350, 140), -4

Figure 14-2. The complete shell-game program (continued)
more ...

274 SECTION IV: GAMES

..

DisplayMessage 10, 25, noOutline, "The current difficulty level is" + dif$(dif \ 10)
DisplayMessage 10, 50, noOutline, "Enter your bet"
EDIT FIELD 1, "", (110, 36) - (170, 51)
DisplayMessage 20, 75, noOutline, "odds are" + STR$(odds) + " to 1"
BUTTON 1, 1, "OK", (220, 50) - (280, 70)
SHOWCURSOR

••Wait for OK button or Return . ..
Loop:

event = DIALOG(O)
IF event = 1 OR event = 6 THEN GOTO Done
GOTO Loop

·• Retrieve bet. ..
Done:

ON ERROR GOTO Overflow
bet!= VAL(EDIT$(1))

'number too large

..

ON ERROR GOTO 0
IF bet! < 0 THEN BEEP : WINDOW 1 : GOTO Bets
IF bet! > creditlimit! THEN GOTO Overlimit
WINDOW CLOSE 2
DisplayMessage 15, 20, outline, "Select a shell"

'disable error trapping

·• Guess which shell pea is under . ..
Guess:

DisplayMessage 15, 20, outline, "Which shell? (Click)"
WHILE MOUSE(O) <> 1 : WEND
xPtr = MOUSE(3) : yPtr = MOUSE(4)
IF ABS(yPtr - yShel(1)) > 28 GOTO Guess 'near shell vertically?
FOR shell = 1 TO 3 'which shell?

IF ABS(xPtr - xShel(shell)) < 28 THEN guessShell = shell : GOTO Show
NEXT shell
GOTO Guess

Figure 14-2. The complete shell-game program (continued)
more ...

Chapter 14: The Shell Game 275

'*
'* Show sucker, uh ... player ... what's under shell.
'*
Show:

numGuess = numGuess + 1 'keep track of number of guesses
PUT (xShel(guessShell) - xOffset, yShel(guessShell) - yOffset), shellArray 'erase shell
IF hide= guessShell GOTO Gotlt 'right one?
winnings! = winnings! - bet! 'amount lost
creditlimit! = winnings! - bet! 'new credit limit
IF creditlimit! < 2500 THEN creditlimit! = 2500 'minimum credit limit
DisplayMessage 295, 20, outline, "You lost$"+ STR$(bet!)
IF numGuess > 1 GOTO Guess ELSE GOTO Bets

'*
'* Correct shell was guessed.
'*
Gotlt:

PUT (xShel(guessShell) - 8, yShel(guessShell) - 8), peaArray
DisplayMessage 15, 20, outline, "You got it!"
IF numGuess > 2 GOTO Delay
winnings! = winnings! + odds * bet!
creditlimit! = winnings! + 5000
IF winnings! > 10 " 7 - 1 THEN GOTO Broke Bank
DisplayMessage 295, 20, outline, "You won$"+ STR$(odds * betl)

Delay:

'*

Pause 5000
GOTO NextGame

'* Routine branched to when item is selected from menu.

Menu Handle:
menu Bar= MENU(O) : menu Item = MENU(1)
MENU
IF menuBar = 3 GOTO Setlevel
IF menultem = 1 THEN dif = 20 : winnings! = 0 : GOTO NextGame
IF menultem = 2 THEN CLEAR : END
IF menultem = 3 THEN SYSTEM

Figure 14-2. The complete shell-game program (continued)
more ...

276

'*
'* Set difficulty level.
'*
SetLevel:

'*

MENU 3, dif \ 10, 1
dif = 1 O * menu Item
odds= 2 A (menu Item - 1)
MENU 3, menultem, 2
RETURN

·• These are error routines

·• Invalid bet was entered.

Overflow:

..

WINDOW CLOSE 2
WINDOW 3, , (50, 55) - (350, 140), -4
BEEP
DisplayMessage 15, 20, outline, "This bet is invalid"
Pause 5000
BEEP
WINDOW CLOSE 3
RESUME Bets

·• Bet exceeds player's credit limit. ..
OverLimit:

WINDOW CLOSE 2
WINDOW 3, , (50, 55) - (350, 140), -4
BEEP
message$= "This bet exceeds your current credit limit"
DisplayMessage 15, 20, noOutline, message$
message$= "which is$"+ STR$(creditLimit!)
DisplayMessage 15, 40, noOutline, message$
BUTTON 1, 1, "OK", (220, 50) - (280, 70)

Figure 14-2. The complete shell-game program (continued)

SECTION IV: GAMES

more ...

Chapter 14: The Shell Game

'*Wait for OK button or Return.
'*
WaitForEvent:

event = DIALOG(O)
IF (event<> 1) AND (event<> 6) THEN GOTO WaitForEvent
WINDOW CLOSE 3
GOTO Bets

·• Player won enough to force display into scientific notation.
'*

BrokeBank:
WINDOW 2, , (20, 50) - (490, 250), -4

'*Change to San Francisco textfont.

TEXTFACE49
TEXTSIZE 12
message$= "You've won all my money and I can't afford to pay"
DisplayMessage 20, 40, noOutline, message$
message$= "Let me off for 10¢ on the dollar or I'll blow your Mac Up!"
DisplayMessage 20, 90, noOutline, message$
TEXTFACEO
TEXTSIZE 12
BUTTON 1, 1, "", (50, 110) - (70, 130)
BUTTON 2, 1, "", (50, 145) - (70, 165)
DisplayMessage 90, 127, noOutline, "This is extortion, but I'll do it"
DisplayMessage 90, 162, noOutline, "I demand my money!"
WHILE DIALOG(O) <> 1
WEND
IF DIALOG(1) = 2 THEN GOTO Crash
winnings! = winnings! /10
WINDOW CLOSE 2
GOTO NextGame

Figure 14-2. The complete shell-game program (continued)

277

more ...

278 SECTION IV: GAMES

Crash:

..

..
'* Show Arcs, Sparks, and Soundeffects.
'* Crash system . ..
END

'*These DATA statements contain values that are read into shellArray.
'* They were created with a utility program and merged with this program . ..
DATA 51,31,0,0,0,0,0,0
DATA 0,0,0,1020,0,0,0,15595
DATA-16384, 0, 1, -8096, -4096, 0, 7, 64
DATA 15360, 0, 4, 16384, 5632, 0, 24, -32768
DATA 2816, 0, 51, 16384, 2240, 0, 109, -32768
DATA 2144, 0, 212, 2413, -31136, 0, 392, 14043
DATA 24976, 0, 256, 9216, 18472, 0, 768, -14336
DATA 6152, 0, 517, -32768, 5636, 0, 1034, 0
DATA 772,0,3084, 18,386,0,2096,877
DATA-24253, 0, 2080, 6948, -24511, 0, 3200, 18432
DATA 4161, 0, 6465, -20480, 3121, 0, 4099, 8192
DATA 1, 0, 4101, 0, 1, -32768, 5124, 0
DATA 512, -32768, 7021, -28672 , 11702, -32768, 12873, 9362
DATA 18724, -16384, 26770, 23405, -20407, 24576, 32640, 292
DATA 0, 8192, 511, -8192, 4095, -8192, 0, 16383
DATA-2048, 0, 0, 0, 0, 0, 0, 0
DATA 0,0,0,0,0,0,0,0
DATA 0, 0, 0, 0, 0, 0, 0, 0
DATA 0, 0, 0, 0, 0, 0, 0, 0

..
'*Print message at specified location near top of window . ..
SUB DisplayMessage(x, y, box, message$) STATIC

SHARED true, false
LINE (x-15, y-18)- (x + 220, y + 10), 30, bf
MOVETOx,y
PRINT message$

Figure 14-2. The complete shell-game program (continued)
more ...

Chapter 14: The Shell Game

IF NOT box THEN EXIT SUB
LINE (x - 5, y - 18) - (x + 215, y + 10), , b

END SUB

..
'* Pause by counting to number passed . ..
SUB Pause(count) STATIC

FOR Pause= 1 TO count
NEXT

END SUB

..
'* Place image of pea at location specified by values of xPea and yPea . ..
SUB PlacePea STATIC

SHARED xPea, yPea, peaArray()
PUT (xPea - 8, yPea - 8), peaArray

END SUB

..
'* Place image of shell at location specified by values of xShel() and yShel() . ..
SUB PlaceShell(shellNum) STATIC

SHARED shellArray(), xShel(), yShel(), yOffset, xOffset
PUT (xShel(shellNum) - xOffset, yShel(shellNum) - yOffset), shellArray(O)

END SUB

Figure 14-2. The complete shell-game program (continued)

I Writing the program I

279

This is not a particularly complex program; but as much as I would like to claim
that I simply sat down at the keyboard and produced it in its finished form, I didn't, so
I won't. The program went through the same development stages as most of my pro
grams: Think about it, sketch it out, write some rough code, debug the code so that it
works with all the right choices, refine it, fix the problems introduced while refining,
and then bulletproof it (try to trap potential errors so the program doesn't crash when
the player does something wrong). Depending upon the program being written, some
of the stages may have to be repeated several times.

280 SECTION IV: GAMES

Figure 14-3. A preliminary How chart for the shell game

I Thinking and sketching I
Since this program is fashioned after an existing game, I didn't have to give a lot

of thought to what it would look like. My initial sketch looked like Figure 14-3, which
isn't much of a How chart, but it does get things moving in the right direction.

The betting and difficulty levels were afterthoughts that didn't get tacked on un

til I was halfway through the program and thought it was a little dull. The points I con
sidered important in the beginning were to:

I Express all screen locations in terms of predefined variables, since I wasn't
sure of the final size, shape, or location of the "shells" (I used circles until
the very end).

Chapter 14: The Shell Game 281

I Decide whether to partition one window, use multiple windows, or both, in
order to communicate with the player for displaying occasional instructions
and scores, entering bets, and so forth.

I Include data statements that would create an image of a shell.

I Select the two shells moved in each swap and the direction of movement
(clockwise or counterclockwise) randomly.

I Develop a formula that would vary the value of they coordinate of the
shell location to make it move up or down and then return to the same
horizontal level.

Have the program test for whether, when the player dragged the pea to the
shell, the mouse was clicked close enough to the pea to "pick it up" and

whether, after being dragged, the pea was dropped close enough to a shell
to be considered under it; and then have the program determine which

shell the pea is under.

Either vary the distance moved each cycle or insert a variable delay to
control the speed of movement and therefore the difficulty, since move
ment would be simulated by erasing the shells and redrawing them at a
slightly different location and each erase/redraw cycle has the same

minimum time requirement.

Taken one at a time, these seemed to be fairly simple problems-and since simple
problems are the only kind I like, that's the way I took them.

I Roughing in the code I
There were several approaches open to me at this point. Some people like to see

immediate results when they start a program. If that is your frame of mind and you
know pretty much what a program you' re writing will do, then creating the menus and
the menu-handling routine is a good place to start. You can carry this stage as far as
branching to an appropriately named subroutine for each menu selection and then
placing a RETURN at that point (stubbing out the GOSUBs, as we did in the last sec
tion). Personally, I would rather write and modify the menus to follow the capabilities

282

DEFINTa- z
RANDOMIZE TIMER
DIM she11Array(200)
DIM bound(3), pat(3), peaArray(50)
WINDOW 1,, (0, 20) - (512, 342), 3

Figure 14-4. Initializing the program

SECTION IV: GAMES

of the program as they develop than restrict my program to the features I remem
bered to put on the menu.

I began with a couple of things that I knew from the start I was going to need:
the usual define-declare-and-dimension section, and some random numbers. My first
few lines of code, which made it through to the end almost unscathed, are shown in
Figure 14-4. (If you are going to type this program into your computer, use the
finished version, not these intermediate steps.)

The only new statement in this group is RANDOMIZE, which is used to reseed
the random-number generator. I suppose the word "seed" is used in this context be
cause the number supplied here-the seed number-is the one from which all the
random numbers provided later are" grown:· The syntax for this statement is:

RANDOMIZE [expression]

The optional expression after RANDOMIZE can be any integer between -32768 and
32767, or the function TIMER, which returns the number of seconds since midnight
(based on the Macintosh clock) and therefore provides an "almost random" seed for
the random-number generator. A little quick math and you will discover that there are
86,400 seconds in a day-a fact we will use with the TIMER function a little later.

The dimensions for shellArray and peaArray, the array variables to hold the im
ages of the shell and the pea, are just estimates that I figured at the time would be at
least large enough. During the refining stage, I replaced these with the minimum
values required, to conserve memory. The information stored in the bound and pat
arrays is used later for ROM calls that draw and fill shapes.

With this initialization out of the way, the next project was to create the playing
surface, the three circles that will later be redrawn as shells, and the pea. Figure 14-5
shows how that started out.

Chapter 14: The Shell Game

Initialize Board:
CLS
xShel(1) =105 : xShel(2) = 225 : xShel(3) = 345
yShel(1) =150 : yShel(2) = 150 : yShel(3) = 150
yOffset = 20 : xOffset = 20
xPea = 200 : yPea = 250
CIRCLE (xShel(1), yShel(1)), 20
x = xShel(1) : y = yShe1(1)
GET (x - xOffset, y - yOffset) - (x + xOffset, y + yOffset), shellArray(O)
PUT (xShel(2) - xOffset, yShel(2) - yOffset), shellArray(O)
PUT (xShel(3) - xOffset, yShel(3) - yOffset), shellArray(O)
bound(O) = yPea - 8
bound(1) = xPea - 8
bound(2) = yPea + 8
bound(3) = xPea + 8
FOR count = 0 TO 3

pat(count) = -1
NEXT
FILLOVAL VARPTR (bound(O)), VARPTR (pat(O))
GET (bound(1), bound(O)) - (bound(3), bound(2)), peaArray(O)

Figure 14-5. Creating the playing area

283

This section is run at the beginning of each game, to clear the playing area and
place the pieces at their starting locations. The CLS statement clears the window be
fore each game (always necessary after the first game). The array variables xShel and
y Shel define the centers of the three circles and xPea and yPea define the center of the
pea. (I used the variable names x and y to shorten the first GET statement so that it
would fit within the page format for this book.) Since the GET and PUT statements
that move these images reference the upper left corner of the space in which they are
drawn, a horizontal and vertical offset is needed when using those statements. It
would be just as easy to refer to the pea and shells by their upper left corners instead of
their centers, but the off sets would still be necessary, since many of the commands in
the program reference the center of the pea or a shell. I used the variables yOffset and
xO.ffset to hold the vertical and horizontal offsets between the center of the shell (cir
cle) and the upper left corner.

284 SECTION IV: GAMES

The first circle is drawn with a CIRCLE statement, and then a GET statement is

used to store the image in shellArray. All shells from this point on are drawn by PUT

ting shellArray, so when I eventually replace the circle with a picture of a shell, the
only change I have to make is to store the drawing of the first shell in shellArray.

The pea is drawn as a filled oval, and GET is again used to store it in an array. I
tried peas of a few different sizes and finally decided to stick with one 16 pixels across,
so I didn't use variables to represent the pea offsets as I did for the shell, which will

eventually change in size.
Now that I had three circles and a pea, the next problem was picking up the pea

and placing it beneath one of the shells. This is done with the MovePea routine, shown

in Figure 14-6. In this section, the program waits for the player to press and hold the
mouse button, and then tests to see if the position of the pointer when the button was
pressed was within 20 pixels of the center of the pea. This test is performed by com
puting the absolute value of the distance between both the x coordinate of the pointer
and the center of the pea, and they coordinate of the same points. If neither distance
is greater than 20, the pointer is considered to be close enough.

Move Pea:
WHILE MOUSE(O) <> -1
WEND
xptr = MOUSE(3)
yptr = MOUSE(4)
IF ABS(xptr - xPea) > 20 OR ABS(yptr - yPea) > 20 GOTO PlacePea
WHILE MOUSE(O) = -1

endX = MOUSE(S)
endY = MOUSE(6)
PUT (xPea - 8, yPea - 8), peaArray(O)
xPea=endX
yPea=endY
PUT (xPea - 8, yPea - 8), peaArray(O)

WEND
IF ABS(endY - yShel(1)) > 28 GOTO MovePea
FOR shell = 1 TO 3

IF ABS(endX - xShel(shell)) < 28 THEN hide= shell: GOTO Shuffle
NEXT
GOTO MovePea

Figure 14-6. Moving the pea

'near shell?

Chapter 14: The Shell Game 285

Dragging the pea is pretty routine- simply a matter of PUTting the pea at the
old location (in XOR mode) to erase it, and then PUTting it at the current location of
the pointer. Since this is done rapidly, the pea seems to follow the pointer around the
screen. The changes made later to this section provided instructions to the player and
reduced the flicker when the pea is moved.

When the mouse button is released, the y coordinate is checked to see if it is on

the same plane as the shells and, if it is, the x coordinate is compared with the ranges

occupied by the shells to see if the pea is close enough to one of them to be considered

under it. If either test fails, the program returns to MovePea and waits for the player to
again click near the pea.

Once the pea is assigned to a shell, the next thing we want to do is shuffle the
shells around. The first half of the routine to do this is shown in Figure 14-7, which
sets a timer and then randomly selects two shells to move. This section posed a few in

teresting problems; that is, it posed a few problems that became interesting after they

were solved.

Shuffle:
FOR blink= 1TO3

PUT (xPea - 8, yPea - 8), peaArray
FOR Pause = 1 TO 2000 : NEXT
PUT (xPea - 8, yPea - 8), peaArray
FOR Pause = 1 TO 2000 : NEXT

NEXT blink
PUT (xPea - 8, yPea - 8), peaArray
start! = TIMER
finish! =start! + 15
WHILE finish!> TIMER

'* Randomly select first shell to move.
'*
aShell = INT(RND(1) * 3 + 1)

Selects:
bShell = INT(RND(1) * 3 + 1)
IF bShell = aShell GOTO Selects

Figure 14-7. Moving the shells

'blink pea

'hide pea

'set length of shuffle

'other shell

'can't select shell twice

286 SECTION IV: GAMES

The first part of the section, a FOR. .. NEXT loop, blinks the pea off and on three
times, to warn the player that something is about to happen, and the PUT statement
following the loop erases the pea a final time.

You will notice that the variables start! and finish! are single-precision variables,
rather than our usual integers. This is because they are both set relative to the value
returned by the TIMER function: the number of seconds since midnight, which we
calculated earlier to range from 0 to 86399. Now, integer variables can hold positive
values only up to 32767, which, in terms of time, works out to about six minutes after
9 o'clock in the morning. So guess who got this program Working perfectly well with

integer variables at 3 a.m. (when writers and programmers do their best work), and
then tried to show it off to a friend in the afternoon. It's not a mistake I'll make again.

Back to our program. The values of start! and finish! are the current time and 15
seconds into the future, respectively. The couple of dozen lines of code between
WHILE finish! > TIMER and the following WEND statement, which is in the next sec
tion, run repeatedly until TIMER returns a value equal to or greater than finish!.
Even if you count the number of times the shells are moved, and then think of the

number of times each shell is drawn during a move, you probably still won't be able to
grasp how fast the Macintosh is whipping through this program.

The first thing that happens each time through the WHILE loop is the selection
of the two shells to move. This selection is controlled by the RND function, which re
turns a random number greater than 0 but less than I. Its syntax is:

RND[(X)]

The optional X in this function determines how the random number is generated, ac
cording to this schedule:

XValue

<0
>OornoX
=O

Action

Restarts the same sequence of numbers for any given X
Generates the next random number in the current sequence
Repeats the last number generated

The two shells to be moved are referred to as aShell and bShell. The variable
aShell is first set equal to INT(RND(l) * 3 +I), which evaluates to either I, 2, or 3, since
INT returns the largest integer produced when the expression within its parentheses

Chapter 14: The Shell Game 287

is evaluated, and RND always returns a value less than 1. The variable bShell is then

set equal to the same formula, and will of course also come up as 1, 2, or 3. Since we
don't want aShell and bShell ever to be equal to the same number, we test for this con
dition and compute another value for bShell if they are.

I originally thought it would be easiest to randomly select just one shell, and then
swap the other two. However, it turned out that there is a problem with this approach:
With the range of randomly generated numbers limited to just three possible values,
the same number often comes up eight or ten times in a row, which then causes the

same two shells to be swapped eight or ten times in a row and takes a lot of the chal

lenge out of the game. (As you will see when rolling dice in the backgammon game in
Chapter 15, the same number comes up pretty often even when you are selecting one
number out of six.)

Writing the part of this routine that actually swaps the shells was my biggest
problem. If you typed the finished program and ran it, you noticed that as the shells
are swapped, they move in a fairly smooth curve. Of course, this move is actually
made up of a series of short moves controlled by GET and PUT statements. Each of

these short moves has a horizontal and a vertical component: That is, to move diago

nally up and to the left, a new set of coordinates is created that is so many pixels up and
so many pixels to the left. The horizontal component wasn't particularly difficult, so I
wrote that first. The two selected shells simply slid right and left, crossed over in the
middle, and came to rest in each other's old position. The original version of this sec

tion is shown in Figure 14-8.

Switch:
xDistance = xShel(bShell) - xShel(aShell)
FOR j = 1 TO ABS(xDistance)

PUT (xShel(aShell) - xOffset, yShel(aShell) - yOffset), shellArray
xShel(aShell) = xShel(aShell) + SGN(xDistance)
PUT (xShel(aShell) - xOffset, yShel(aShell) - yOffset), shellArray
PUT (xShel(bShell) - xOffset, yShel(bShell) -yOffset), shellArray
xShel(bShell) = xShel(bShell) - SGN(xDistance)
PUT (xShel(bShell) - xOffset, yShel(bShell) - yOffset), shellArray

NEXT

Figure 14-8. The original switch

288 SECTION IV: GAMES

The top half of the FOR. .. NEXT loop moves aShell; the bottom half moves
bShell. The distance and direction of the move are determined by adding SGN(xDis
tance) to the value of xShel(aShell) and xShel(bShell) each time through the loop, be

fore the shell is redrawn. The function:

SGN(X)

returns -1 if X is negative, + 1 if Xis positive, and 0 if X equals 0. Since aShell and
bShell are in different locations, there is always distance between them, so SGN(xDis
tance) will always be either+ 1 or -1. By adding this value to the x coordinate of one
shell and subtracting it from the x coordinate of the other, we move the shells in op
posite directions.

When I tested this segment of the program, the shells moved just as expected,
but they moved incredibly slowly. The reason for this, I realized, was that I was mov
ing each shell only one pixel each time through the loop. Obviously, if I wanted to in
crease the shell speed, I had to increase the distance moved each time, which I could
do by multiplying SGN(xDistance) by some fixed value each time I incremented
xShel(aShell) and xShel(bShell). Since this would make the shell move a greater dis
tance each time through the loop, I also had to decrease the number of times the pro

gram went through the loop by dividing ABS(xDistance) by the same value. This
seemed like a good place to control the level of difficulty, so I divided and multiplied
by a variable I named dif. which I defined as being equal to 20. The parts of this sec
tion that were changed are highlighted in Figure 14-9.

Switch:
dif = 20
xDistance = xShel(bShell) - xShel(aShell)
FOR moveNumber = 1 TO ABS(xDistance) I dif

PUT (xShel(aShell) - xOffset, yShel(aShell) - yOffset), shellArray
xShel(aShell) = xShel(aShell) + dif * SGN(xDistance)
PUT (xShel(aShell) - xOffset, yShel(aShell) - yOffset), shellArray
PUT (xShel(bShell) - xOffset, yShel(bShell) - yOffset), shellArray
xShel(bShell) = xShel(bShell) - dif * SGN(xDistance)
PUT (xShel(bShell) - xOffset, yShel(bShell) - yOffset), shellArray

NEXT

Figure 14-9. The changes to Switch

Chapter 14: The Shell Game 289

Once the shells were moving smoothly back and forth, I attacked the problem of
making them move up and down. This required adding a number to the y coordinate

during half the shell's journey from the beginning and to the ending point, and sub
tracting a number (or adding a negative number) during the other half. I needed a for
mula that would create a series of numbers that began near zero, increased to some
value, returned to zero, increased in a negative direction, and returned to zero. I
could then assign this range of numbers to the y coordinate and match it to the range
of variation in the x coordinates, so each cycle through the FOR. .. NEXT loop would
move the shell vertically and horizontally. The shell should follow a path similar to half
of the sine curve commonly used to represent alternating current. And since SIN (X) is
a standard trig function available in BASIC, it seemed that function could somehow be
used to produce the numbers I needed here.

It seemed that way, but it has been more years than I care to remember since my
last trigonometry class, and I didn't have a book of trig tables handy. So I did what
most other programmers probably do in similar situations: I started experimenting. At
times such as this the separate List and Command windows of BASIC are very conve
nient. I typed this command sequence into the Command window:

FOR J = 0 TO 15: PRINT J, SIN(J): NEXT

But before pressing the Return key to execute the command, I dragged through it and
copied it to the Clipboard, so that I would not have to retype the entire sequence to
try a slight variation on it: I could paste it back into the Command window, make
minor changes, and press Return to execute it again. When I pressed Return the first
time, the list of numbers in Figure 14-10 (on the next page) appeared in the Output
window. This list of numbers starts, predictably, at 0, increases to about 0.9, decreases
to about -0.9 (passing, of course, through 0 on the way), then begins increasing
again, passing through 0 somewhere between J = 6 and J = 7.

It was apparent that incrementing they coordinate by the sine of a series of num
bers varying from 0 to a little over 6 would produce the results I was looking for. And
about this time, the value "a little over 6" rang a bell, and I remembered that multi
ples of 'TT were somehow significant. So I tried 6.283, which is about 2'TT and found that

290 SECTION IV: GAMES

• File Edit § (~ <I n h Run Windows

0 0
.84147 1

2 .9092973
3 .14112
4 - .7568024
5 - .9589242
6 - .2794155
7 .6569867
8 .9893582
9 .4121185
10 - .5440211
11 - .9999902
12 - .5365729
13 .420 167
14 .9906074
15 .6502879

~

0 Command
for j =Oto 15 : print j, Sin(j) : next

Figure 14-10. The numbers from 0 to 15 with their sines

it worked fine as the upper extreme of the range. I pressed Command-V to paste the

previous command sequence back into the Command window and modified it as
shown here:

CLS : FOR J! = 0 TO 6.5 STEP .5: PRINT J!, SIN(J!): NEXT

(Note the exclamation marks after the variable], declaring it as a single-precision
variable. This was necessary because the DEFINT a-z statement used in the program
still affects commands entered into the Command window after the program has
been run.) When I tested this new sequence, the program produced the numbers
shown in Figure 14-11, substantiating my earlier impression.

Chapter 14: The Shell Game 291

" File Edit s (~<ln h Run Windows
0 0
.5 .4794256
1 .841471
1.5 .9974951
2 .9092973
2.5 .5984721
3 .14 112
3.5 - .3507832
4 - .7568024
4.5 - .9775301
5 - .9589242
5.5 -.7055404
6 -.2794155
6.5 .21512

0 Command
els : for j! = 0 to 6.5 step .5: print j!, Sin(j!): nextf

Figure 14-11. The numbers from 0 to 6.5 with their sines

Now I needed a number that would increase smoothly from about 0 to about 1,

that I could use to multiply 6.283 by to create a smooth curve. Looking around for

such a variable (I didn't want to complicate things by creating a new one), I realized

that since moveNumber, the counter in the FOR ... NEXT loop, varied from 1 to xDis

tance \ dif, then move Number I (xDistance \ dif) would range from something very
small to 1. So after the line that incrementsxShel(aShell), I inserted the line:

yShel(aShel) = yShel(aShel) + SIN(6.283 * moveNumber I (xDistance \ dif))

and after the line that increments xShel(bShell), I inserted:

yShel(bShel) = yShel(bShel) - SIN(6.283 * moveNumber I (xDistance \ dif))

292

Switch:
dif = 20
xDistance = xShel(bShell) - xShel(aShell)
mult = 2 * dif
IF ABS(xDistance) > 200 THEN mult = 1 * dif
FOR moveNumber = 1 TO ABS(xDistance) I dif

SECTION IV: GAMES

PUT (xShel(aShell) - xOffset, yShel(aShell) - yOffset), shellArray
xShel(aShell) = xShel(aShell) + dif * SGN(xDistance)
yShel(aShel) = yShel(aShel) + mult * SIN(S.283 * moveNumber I (xDistance \ dif))
PUT (xShel(aShell) - xOffset, yShel(aShell) - yOffset), shellArray
PUT (xShel(bShell) - xOffset, yShel(bShell) - yOffset), shellArray
xShel(bShell) = xShel(bShell) - dif * SGN(xDistance)
yShel(aShel) = yShel(aShel) - mult * SIN(S.283 * moveNumber I (xDistance \ dif))
PUT (xShel(bShell) - xOffset, yShel(bShell) - yOffset), shellArray

NEXT

Figure 14-12. Adding they coordinate multiplier to Switch

When I ran the program, I could see, by watching closely, that the shells did move up

and down, but the value returned by SIN(6.283 * moveNumber I (xDistance \ dif)) was so
small that the total movement was barely noticeable. So now this value had to be mul
tiplied by some number. By trial and error, I found that about 2 times the value as
signed to dif seemed to work well when adjacent shells were selected, but made the
arc too high when the two end shells were selected. So I added the variable mult to

Guess:
LINE (10, 2) - (200, 30), I b
MOVETO 15, 20
PRINT "Which shell? (Click)"
WHILE MOUSE(O) <> 1 : WEND
xPtr = MOUSE(3) : yPtr = MOUSE(4)
IF ABS(yPtr - yShel(1)) > 28 GOTO Guess 'near shell vertically?
FOR shell = 1 TO 3 'which shell?

IF ABS(xPtr - xShel(shell)) < 28 THEN guessShell = shell : GOTO Show
NEXT shell
GOTO Guess

Figure 14-13. Guessing where the pea is now

Chapter 14: The Shell Game

Show:
PUT (xShel(guessShell) - xOffset, yShel(guessShell) - yOffset), shellArray
IF hide = guessShell GOTO Gotlt
GOTO Guess

Figure 14-14. Checking the guess

293

each of the lines that increments a y coordinate, and gave mult two definitions, de
pending upon the value ofxDistance. Figure 14-12 shows the finished routine.

This routine seemed to move the shells around in a reasonable manner, so I
could go on to check the player's guess. This section, shown in Figure 14-13, took no
time to write, since I could use essentially the same routine used to place the pea.

When the click is close enough to a shell, the program goes to the Show routine
(Figure 14-14), which erases the selected shell and checks to see if the pea was hidden
under it. If the correct shell was selected, the program goes to Gotlt, shown in Figure
14-15, otherwise it returns to Guess to give the player another try.

I Getting the program running I
The description I just gave was a very streamlined version of the process by

which I wrote this program. I left out a lot of the trial-and-error experimentation used
to find the correct value for a variable or the ideal position for an image on the screen.
There were a few times that the program simply didn't do what I thought it should,
and I could not see why. At these times, the TRON statement, which traces the flow of

the program, proved its usefulness.

Gotlt:
PUT (xShel(guessShell) - 8, yShel(guessShell) - 8), peaArray
FOR pause = 1 TO 5000 : NEXT
GOTO lnitializeBoard

Figure 14-15. The correct-guess routine

294 SECTION IV: GAMES

You can turn Trace on and off from the Run menu, from the Command window,
or from within a program. If you know about where the program is going haywire, in
sert this line just before that point:

LIST:TRON

Before you run the program with Trace turned on, arrange the List window so that it
is as large as possible without covering anything you will have to see or click in the out
put window. When the LIST: TRON statement is encountered in the program, the List
window will be displayed and each command outlined as it is executed. (For even
more refined troubleshooting, choose the step option.) When a program "isn't run
ning right;' it usually is running precisely "right" -it simply isn't running the way
you expected it to. The computer, unfortunately, doesn't know what you expect it to
do, only what you tell it to do. Trace will point out where the program takes off on a
tangent from your expectations.

I Adding refinements I
The most obvious refinement to this program was the addition of menus. You

have been through menus enough times that these won't require much explanation.
As you saw in the complete program listing shown at the beginning of the chapter, I
placed all the statements creating the menus in a routine called Menu/nit, just before
InitializeBoard. I used menus 1 and 3, just to space them out a bit, and turned off
BASIC's menus 2, 4, and 5 by creating new menus in their slots with zero in the state

position. Then I used the ON MENU GOSUB statement to tell the program where to
go when a selection is made from a menu, and activated menu-event trapping with the
MENU ON statement.

I put the subroutine that handles trapped menu events, MenuHandle, at the end
of the program. Figure 14-16 shows the Menu/nit routine and all the subroutines used
to handle menu selections. Some of these features were on the menus from the begin
ning, but others were added later, as they occurred to me.

Chapter 14: The Shell Game

Menu I nit:
MENU 1, 0, 1, "Shell Game"
MENU 1, 1 , 1, "Start New Game"
MENU 1, 2, 1, "Quit to BASIC"
MENU 1, 3, 1, "Quit to Desktop"
MENU 3, 0, 1, "Difficulty Level"
MENU 3, 1, 1, "1-Boring"
MENU 3, 2, 1, "2-Easy"
MENU 3, 3, 1, "3-Challenge"
MENU 3, 4, 1, "4-Dizzy"

295

MENU 2, 0, 0, "" : MENU 4, 0, 0, "" : MENU 5, 0, 0, ""
MENU 3, dif\ 10, 2 'check initial selection
ON MENU GOSUB MenuHandle
MENU ON
RETURN

Menu Handle:

..

menuBar = MENU(O) : menultem = MENU(1)
MENU
IF menuBar = 3 GOTO Setlevel
IF menultem = 1 THEN dif = 20 : winnings! = O : GOTO NextGame
IF menultem = 2 THEN CLEAR : END
IF menultem = 3 THEN SYSTEM

•• Set difficulty level. ,.
Setlevel:

MENU 3, dif \ 10, 1
dif = 10 •menu Item
odds= 2 " (menu Item - 1)
MENU 3, menultem, 2
RETURN

Figure 14-16. Handling the menus

The Difficulty Level menu required this statement at the end of the Menulnit
section, to place a check mark in front of the current difficulty level.

MENU 3, dif \ 10, 2

296 SECTION IV: GAMES

The menu selection is defined by the expression dif \ 10. Since dif was originally de
fined as 20, menu 3 will initially have a check mark in front of the second item. If the

player selects another difficulty level from the menu, MenuHandle diverts the pro

gram to SetLevel, which removes the check mark from the current level, redefines dif
as 10 times the number of the item selected, and places the check mark in front of the

new selection.

I Communicating with the player I
Because I wrote this program, its operation seems totally obvious to me. But it's

important never to assume that the person running your program knows what to do

next. Sometimes people who are new to computing are so busy being intimidated by
the computer that they don't give themselves time to think about what is actually hap

pening with the program. For this reason I wanted to be able to post a few notes to
guide the player through the program-and of course, to announce the score.

Originally, rather than create separate windows, I used the LINE statement with
the b option to draw a box, and the PRINT statement to display my comments. When it
was necessary to remove the box or erase its contents, I used the LINE statement
again, this time with the bf option, to create a box outlined and filled with white. If the

white box was the same size and at the same location as the first box with its black out

line, both the outline and its contents disappeared; if the white box was a pixel smaller

all the way around, just the contents disappeared.
Somewhere around version four of the program, I decided to add a subprogram

to display a message with or without a border (Figure 14-17). I could pass it the loca
tion to start printing the message, whether or not to put a border around it, and the
contents of the message: The subprogram did the rest. I then used a series of state

ments similar to this:

DisplayMessage 15, 20, outline, "Drag pea to a shell"

to display messages appropriate for the different events in the program.
To indicate whether or not the message should be framed, I created the variables

outline and noOutline and added them to the variable initialization section, setting
them equal to true and false (which I also added).

Chapter 14: The Shell Game

'*
'* Print message at specified location near top of window.
'*
SUB DisplayMessage(x, y, box, message$) STATIC

SHARED true, false
LINE (x -15, y-18)- (x + 220, y + 10), 30, bf
MOVETOx,y
PRINT message$
IF NOT box THEN EXIT SUB
LINE (x - 5, y - 18) - (x + 215, y + 10), , b

END SUB

Figure 14-17. Displaying messages

I Placing bets I

297

The routines shown on the following page in Figure 14-18-Bets, Loop, and
Done-were inserted in the program just before the Guess routine and are all used in
placing a bet. At first, I made placing a bet a menu selection, allowing the player to se
lect it if desired, but after playing the game a few times I decided I would rather have
the option offered automatically before the first and second guesses, which is closer
to the way the fellows with the fast fingers do it in the park. By placing the sequence of
betting routines between the sequence that shuffies the shells and the Guess routine,
the only changes that I had to make to the existing program were to add a routine to
count the number of guesses and to redirect the program back to Bets after the first
incorrect guess.

The Bets routine creates a second window, with an edit field and an OK button,
and announces the current difficulty level and the odds. In order to present the dif
ficulty level as a descriptive word (Easy, Challenge, and so forth), I went back to the
beginning of the program, dimensioned another array-dif$(4)-and defined four
elements of the array as the words describing the four difficulty levels. The current
odds are determined by the difficulty, so I again returned to the beginning of the pro
gram to set an initial value and then added a line to the SetLevel routine to compute
new odds each time the difficulty level is changed. A final change required by the ad
dition of betting was initialization of the variable winnings! to zero at the start of the
program and addition of a statement resetting it to zero when the player starts a new
game by choosing that option from the menu.

298

'*
'*Give suckers chance to part with their money.
'*
Bets:

DisplayMessage 15, 20, outline, "Care to place a bet?"
WINDOW 2, I (50, 55) - (350, 140), -4

SECTION IV: GAMES

DisplayMessage 10, 25, noOutline, "The current difficulty level is • + dif$(dif \ 10)
DisplayMessage 10, 50, noOutline, "Enter your bet"

'*

EDIT FIELD 1, '"'I (110, 36) - (170, 51)
DisplayMessage 20, 75, noOutline, "odds are" + STR$(odds) + " to 1"
BUTTON 1, 1, "OK" I (220, 50) - (280, 70)
SHOWCURSOR

'* Wait for OK button or Return.
'*
Loop:

'*

event = DIALOG(O)
IF event = 1 OR event = 6 THEN GOTO Done
GOTO Loop

'* Retrieve bet.
'*
Done:

betl = VAL(EDIT$(1))
IF betl < 0 THEN BEEP : WINDOW 1 : GOTO Bets
IF bet! > creditLimitl THEN GOTO OverLimit
WINDOW CLOSE 2
DisplayMessage 15, 20, outline, "Select a shell"

Figure 14-18. Placing a bet

I Drawing the shells I
One of the last changes I made to the program was to get rid of the circles I was

using for shells, replacing them with something that looks a little more like a walnut
shell. To do this, I drew the shell in MacPaint and copied it to the Scrapbook. I then
wrote a short program to bring the image into BASIC and create a set of DATA state
ments that describe it. These DATA statements were saved as a file and I used the
MERGE statement to add them to my program. All I had to do then was add a short
routine (Shelllnit) to read the DATA statements and store them in shellArray. Finally, I

Chapter 14: The Shell Game 299

deleted the line that created the circles, changed the offsets a bit, and was back in
business. (The utility program I wrote to create the DATA statements is short and sim
ple, and is explained in Appendix B, which presents a few short utility programs.

I A possible correction I
One of the standard tradeoffs in programming is speed against accuracy. I have

consistently used integer variables where possible, since they require less memory
space and are manipulated more rapidly by the computer. We usually think of ac
curacy as important primarily when dealing with money or with scientific calcula
tions, but this game demonstrates another situation where the error introduced by
rounding calculations off to the nearest integer can cause a problem. The number of
moves made by the shells when they are exchanging positions is determined by the

value xDistance \ dif Now, both xDistance and dif are integers, but depending upon
the value of each, the quotient may not be. All combinations of the present values of
xDistance and dif in this program do produce an integer for xDistance \ dif, but if you
decide to place the shells differently or to use different difficulty levels, you may find
that the shells miss being lined up by a few pixels after each swap. The error is cumu
lative, and after 15 or 20 swaps, can become pretty large. The easiest solution to this
problem is to realign the shells at the end of each swap, when the error is still so small
that it is barely noticeable. Adding the five lines in Figure 14-19 after the FOR. .. NEXT

loop that performs the swap will do the trick. (Since the present values of xDistance
and dif don't require this correction, you may not want to include them in the· final

version of the program.)

'* Following five lines are needed only if shells tend to drift
'* out of horizontal alignment. This will happen if distance between
'* shells is not evenly divisible by difficulty level.

'PlaceShell aShell
'PlaceShell bShell
'yShel(aShell) = 150 : yShel(bShell) = 150
'PlaceShell aShell
'PlaceShell bShell

Figure 14-19. Aligning the shells after each swap

'erase first shell
'erase second shell

'compensate for vertical error
'place shells

300 SECTION IV: GAMES

I Bulletproofing I
The most common places for a program to go astray are those points where the

user enters information. Either through poor instructions on the part of the program
mer or lack of attention on the part of the user, incompatible information is entered.

You ask the user for a number from 1 to 4, and you get 27, or maybe the word three. Or
the classics-lowercase l's for l's and uppercase O's for O's. Using menus that let the

user make choices with the mouse, rather than requiring a typed entry, helps prevent
errors, but there are still places (for instance when a bet is entered) where things can

go astray. So here are some techniques to help bulletproof your interactive programs.
The size of the edit field used in this program to enter the bet is four digits. You

can, of course, make the edit field any size you want, but entering one number more
than will fit will always cause an overflow error, and there will always be a high-roller
who wants to bet a billion dollars. The solution is to trap the error right when it hap

pens, and take some appropriate action. To avoid a potential crash, add the line:

ON ERROR GOTO Overflow

to the Done routine, just before the information in the edit field is retrieved, and then

tack the routine in Figure 14-20 onto the program.

'*
'* Invalid bet was entered.
'*
Overflow:

WINDOW CLOSE 2
WINDOW 3, , (50, 55) - (350, 140), -4
BEEP
DisplayMessage 15, 20, outline, "This bet is invalid"
Pause 5000
BEEP
WINDOW CLOSE 3
RESUME Bets

Figure 14-20. The Overflow routine

Chapter 14: The Shell Game 301

If you expect a variety of errors, you could use the ERR function to return the
number of the error that diverted the program to this routine. That isn't necessary in
this program but you will want to add the line:

ON ERROR GOTO 0

to the Done routine to turn off error trapping just after the information is retrieved,
since the Overflow routine is not appropriate for errors that might happen in other
parts of the program.

It also seemed like a good idea to add a sliding credit limit, based on the amount
of money won or lost. The credit limit is set and varied in other parts of the program;
the Done routine then tests each bet against this credit limit and routes the program
to OverLimit if necessary:

IF bet! > creditlimit! THEN GOTO Overlimit

The OverLimit routine displays the current credit limit and then returns to Bets, to
let the player enter a new bet.

Another possible error is the entry of a negative number. This would not cause
the program to crash, but it would allow the player to win money by guessing incor
rectly. This is solved by testing the retrieved information and not accepting it if it is
less than zero.

The final problem I trapped (I'm sure I missed a few) is the attempt to display
too large a number. Any single-precision number over seven digits is expressed in sci
entific notation when displayed by the Binary version of BASIC (eight digits for the
Decimal versi(;m). This is tested for in the Gotlt routine. If the total winnings go over
$9,999,999, the program branches to the BrokeBank routine (Figure 14-21).

That is about all there is to this program. It is fairly simple, but has the potential
for expansion. You could add sound effects and sarcastic comments, or goad the player
to bet more after losing. The odds and difficulty levels could also be manipulated
more realistically. At the moment, the Crash routine simply ends the program; you

302 SECTION IV: GAMES

·• Player won enough to force display into scientific notation . ..
BrokeBank:

WINDOW 2, , (20, 50) - (490, 250), -4

·• Change to San Francisco textfont. ..
TEXTFACE49
TEXTSIZE 12
message$= "You've won all my money and I can't afford to pay"
DisplayMessage 20, 40, noOutline, message$
message$ ="Let me off for 10¢ on the dollar or I'll blow your Mac Up!"
DisplayMessage 20, 90, noOutline, message$
TEXTFACEO
TEXTSIZE 12
BUTTON 1, 1, "", (50, 110) - (70, 130)
BUTTON 2, 1, "", (50, 145) - (70, 165)
DisplayMessage 90, 127, noOutline, "This is extortion, but I'll do it"
DisplayMessage 90, 162, noOutline, "I demand my money!"
WHILE DIALOG(O) <> 1
WEND
IF DIALOG(1) = 2 THEN GOTO Crash
winnings! = winnings! /10
WINDOW CLOSE 2
GOTO NextGame

Crash:

'*
'* Show Arcs, Sparks, and Soundeffects.
'* Crash system.
'*
END

Figure 14-21. The Broke Bank and Crash routines

might want to add pyrotechnics and sound effects to make it live up to its accompany
ing comments.

If you prefer games you can get a little more involved in, the next one should

keep you happy for a while.

The
Backgammon

Game Chapter 15

Backgammon, which has a less tarnished reputation than the shell game, is a substan
tially more complex game to play. It is a game of strategy, tactics, and intimidation

all the things that contribute to a good war. Our program to produce this game is over
300 lines long. If you glance through it, however, you will find only one or two BASIC

instructions with which you are not already familiar. This is a good example of the fact
that every BASIC program, no matter how complex its function, is composed of a

bunch of relatively simple commands. The challenge to a programmer's ingenuity is to
use these simple commands in a clear, concise, unambiguous manner. The prerequi

site for meeting this challenge is an understanding of both the commands and the
problem you want to solve with them. Barry Preppernau was able to write this pro

gram in a relatively short time because, in addition to understanding BASIC, he under
stood the rules and techniques of backgammon.

I How the backgammon program works I
Although this is a fairly sophisticated program, the individual steps involved in

making it run are no more difficult than in any other program. Two-thirds of the pro
gram deals with setting up the playing surface; the remainder takes care of making
the moves, checking their validity, and keeping score.

The main differences between playing backgammon on a flat board with pieces
you pick up and move, and playing Barry's version on the Macintosh, is that on the
Macintosh it is much more difficult to make an illegal move and there is never an argu
ment over where a piece was before you picked it up; if you have any doubts, the Undo
button will quickly return the board to its condition before the move.

303

304 SECTION IV: GAMES

Barry's comments, which appear to the right of program lines, set off by an apos
trophe, do a good job of explaining the function of individual lines. I have added re
mark statements, preceded by REM, to trace the order in which the sections would
typically be executed. I have also listed, before each subroutine, the numbers of the
sections that call that subroutine, to remind you where you should move back to when
you get to the RETURN statement. And, as usual, you will find the complete program
listing at the end of the chapter (Figure 15-20), and we'll work through it here a sec
tion at a time.

I Beginning the game l
The BeginGame section (Figure 15-1) is simply a group of statements that send

the program first to the subroutines used to create the playing surface, and then to the
routine that actually controls the game. This section was included in order to group
these major segments together at the beginning of the program, rather than placing
each where it would naturally appear in the How of the program (typically in the se
quence 2, 3, 15, and 16). By carefully arrangingthe sections in their natural order, you
could eliminate this section and the RETURN statements at the end of Variablelnit,

Boardlnit, and Menulnit. However, there would be no practical purpose in doing this,
since it would make the logic of the program harder to follow, and because the ac
tivities of these sections take place before the game starts, the savings in time and
memory would be insignificant.

REM Section 1. Call three subroutines that set up game.
BeginGame:

CLEAR
GOSUB Variablelnit
GOSUB Boardlnit
GOSUB Menulnit
GOTO StartGame

Figure 15-1. Section 1: BeginGame

Chapter 15: The Backgammon Game 305

j Initializing the variables I
The Variable/nit segment, shown in Figure 15-2 on the following page, defines

and dimensions the arrays used in the program and also sets up a number of constants.
Here is what these arrays represent:

Variable

pat(3)

rect(3)

poly(lO)

board(28,3)

oldBoard(28)

tempBoard(28)

pointArray(1820)

circleArray(64)

dicelma.ge(384)

grey(3), black(3),
and white(3)

Purpose

Holds values used to define pattern for point

Holds values of boundaries of rectangle to be used in
ROM calls: rect(O) =top, rect(l) =left, rect(2) =bottom,
and rect(3) = right

Holds values used by ROM call that creates polygon used
as point shape (this new ROM call will be explained later)

Serves three purposes: board(l,1) throughboard(28,1)
hold x coordinate of upper left corner of 24 points,
two areas in OFF, and two in BAR; board(l,2) through
board(28,2) hold y coordinate; board(l,3) through
board(28,3) hold number of pieces in areas 1 through 28
(negative for black pieces; positive for white)

Holds location of all pieces before current move; used to
restore board if Undo button clicked

Holds board locations in middle of turn to allow for
moving one piece multiple times

Holds images of four points (light and dark, up and down);
stored by GET statements and used by PUT statements
as needed to draw original board and to redraw single
points, so that when piece is moved, entire board does
not have to be redrawn

Holds outline of playing piece; used when player is
dragging piece to new location

Holds six faces of die; each face requires 64 bytes, so die
of face n (n being 1 through 6) is specified by offsetting
(n -1) * 64 from dicelmage(O)

Hold integer values of three main patterns; used in ROM
calls to fill rectangles and ovals

306

REM Section 2--called by Section 1. Define variables to be used.
Variable I nit:

DEFINTa-z
RANDOMIZE TIMER
DIM rect(3), poly(10), board(28,3), old8oard(28), temp8oard(28)
DIM pointArray(1820), circleArray(64), dicelmage(384)
DIM grey(3), black(3), white(3)

SECTION IV: GAMES

FOR x = 0 TO 3 'integer values for grey, black, and white patterns
grey(x) = -21931
black(x) = -1
white(x) = 0

NEXTx
dark = -30686 'pattern for dark points
light= -8841 'pattern for light points
pWidth = 34 'width of points
piWidth = 30 'width of pieces
wleft = 0 'window left side
wRight = 511 'window right side
wTop = 20 'window top
wBot = 340 'window bottom
boardRight = 409 'board right side
tUp = o 'top of upper points
bUp = 150 'bottom of upper points
tlow = 170 'top of lower points
lghtleft = 425 'left side of light BAR and OFF
dkleft = 465 'left side of dark BAR and OFF
offTop = 185 'top of OFF
barTop = 275 'top of BAR
FOR pnt= 1 TO 12 'X,Y for points on the board; board(pnt, 1)=X, board(pnt,2)= Y

board(pnt, 1) = 1 + (pnt - 1) * pWidth : board(pnt, 2) = tUp
boarcl(pnt + 12, 1) = 1 + (12 - pnt) * pWidth : board(pnt + 12, 2) = tlow

NEXTpnt
board(1, 3) = -2 : board(6, 3) = 5 : board(8, 3) = 3 'initial locations
board(12, 3) = -5 : board(13,3) = 5 : board(17,3) = -3 '<0 black, >0 white
board(19,3) = -5 : board(24,3) = 2
board(25, 1) = lghtleft : board(25, 2) = offTop : board(26, 1) = dkleft
board(26, 2) = offTop : board(27, 1) = lghtleft: board(27, 2) = barTop
board(28, 1) = dkleft : board(28, 2) = barTop
'board(25, 3) = 1 O : board(1, 3) = 5 'end game piece locations
'board(26, 3) = -1 O : board(24, 3) = -5
RETURN

Figure 15-2. Section 2: Variable/nit

Chapter 15: The Backgammon Game 307

This section goes on to define a few integer constants that will be used in several
places throughout the program. Most of these define the boundaries of the various
areas on the screen (the window, board, upper points, lower points, BAR and OFF).

However, the first two, dark and light, are used to define a dark and light pattern for
alternating points. These constants will be assigned to the pat array when initializing
the points.

The remainder of this section specifies the (x,y) coordinates for the 24 points,

and the numbers and colors of the pieces that will be put on each point at the start of
the game. The board shown in Figure 15-3 is the starting board, with the points num
bered and the coordinates shown at the edge.

x= 1

y=O -

y =l50 -

y=l70 -

y=320 -

I

35 69 103 137 171 205 239 273 307 341 375 401

l 21 3 141516171 s 19l10l11l12I
--=====

Dark"s Move

24 23 22 21 20 19 18 17 16 15 14 13

Figure 15-3. The starting board

308 SECTION IV: GAMES

I Initializing the board I
The Boardlnit subroutine (Figure 15-4) orchestrates the creation of the playing

surface. It opens a window and then calls the subroutines that create and store images
of the points, the playing-piece outline, and the dice. It also sets up the mode for writ
ing text, creates the Roll and Undo buttons, and draws the OFF and BAR sections of
the screen. Finally, it calls additional subroutines to actually draw the points and
pieces, and cast the dice for the first time.

I Initializing the pointer I
The Pointlnit subroutine, shown in Figure 15-5, uses the MOD operator to re

turn the integer remainder from the division of two integers. If the dividend and di
visor are not integers, BASIC rounds them to integers before performing the division

REM Section 3--called by Section 1. Set up board.
Boardlnit:

WINDOW 1, , (wleft, wTop) - (wRight, wBot), 3
GOSUB Pointlnit : CLS
GOSUB Circlelnit: CLS
GOSUB Dicelnit : CLS
LINE (boardRight, 0) - (boardRight, 340)
TEXTMODE2
BUTTON 1, 1, "Roll", (415, 100)-(455, 130)
BUTTON 2, 1, "Undo", (465, 100) - (505, 130)

'use whole screen
'initialize images in pointArray

'circle outline to use to drag piece
'initialize images in dice array

'separate board from buttons and dice
'XOR all text

rect(O) = 140 : rect(1) = 420 : rect(2) = 170 : rect(3) = 501
FRAMERECT VARPTR(rect(O)) 'OFF title box
MOVETO 448, 160 : PRINT "OFF"
rect(O) = 180 : rect(2) = 220
FILLRECT VARPTR(rect(O)), VARPTR(grey(O))
rect(O) = 230 : rect(2) = 260

'backgnd box for OFF pieces

FRAMERECT VARPTR(rect(O)) 'BAR title box
MOVETO 448,250 : PRINT "BAR"
rect(O) = 270 : rect(2) = 310
FILLRECT VARPTR(rect(O)), V ARPTR(grey(O)) 'backgnd box for BAR pieces

'put all points for first time
'roll one die each and decide whose turn

GOSUB BuildBoard
GOSUB FirstRoll
RETURN

Figure 15-4. Section 3: Boardlnit

Chapter 15: The Backgammon Game 309

REM Section 4--called by Section 3. Define variables used to create four kinds of points:
REM light up and down, and dark up and down.
Pointlnit:

FOR points = 1 TO 4
IF points MOD 2 = 1 THEN pat = light
IF points MOD 2 = 0 THEN pat = dark
rect(O) = 50 : rect(1) = 33 : rect(2) = 200 : rect(3) = 67
poly(O) = 22 : poly(1) = 50 : poly(2) = 33 : poly(3) = 200
poly(4) = 67 : poly(5) = 50 : poly(6) = 50 : poly(?) = 200
poly(S) = 33 : poly(9) = 200 : poly(10) = 67

'four kinds of points
'odd points light; up or down

'even points dark; up or down
'area to draw points

'set poly for up points

IF points > 2 THEN poly(5) = 200 : poly(6) = 50 : poly(?) = 50
IF points> 2 THEN poly(S) = 33 : poly(9) = 50 : poly(10) = 67
GOSUB BuildPoint

'down points

'draw that point
'fill array with all points GET (33, 50) - (66, 199), pointArray((points- 1) • 455)

NEXT points
RETURN

Figure 15-5. Section 4: Point/nit

operation that returns the MOD value. For example, 15.3 MOD 4.3 returns 3, the re
mainder when 15 is divided by 4. This section of the program uses MOD to determine
whether the number assigned to the varible points is odd or even: If a number is di

vided by 2 and has a remainder of 1, it is odd; if it has a remainderofO, it is even.
The rest of the section defines the points that will be drawn as polygons by the

Buil.dPoint subroutine. The technique for drawing a polygon is similar to the familiar

technique for drawing a rectangle or oval. The main difference is in the number of
items that have to be stored in the integer array before the ROM call. Rectangles and

ovals, you will recall, require you to store the upper, left, lower, and right boundaries
of the area to be filled with the shape. A polygon requires those four elements plus an
(x, y) coordinate for each corner of the polygon. And, since the number of corners is it
self a variable factor, one additional element is required to specify the total number of
bytes (two per element) used to define the polygon. This sounds a little complex, but it
isn't too bad after you have done it once.

The triangle used for a point on the playing board requires 11 elements in its ar
ray: six for the three sets of corner coordinates; four for the upper, left, lower, and
right boundaries of the surrounding rectangle; and one to give the information that

310 SECTION IV: GAMES

22 bytes are used in all. In an array with the elements numbered from 0 to 10, these

items would appear in this order:

Element

poly(O)
poly(l)
poly(2)
poly(3)
poly(4)
poly(5)
poly(6)
poly(7)
poly(B)
poly(9)
poly(lO)

Contents

Number of bytes
Upper boundary
Left boundary
Lower boundary
Right boundary
y coordinate of first corner
x coordinate of first corner
y coordinate of second corner
x coordinate of second corner
y coordinate of third corner
x coordinate of third corner

Note the reversal of the normal (x,y) order of expressing coordinates. The poly
gon shown in Figure 15-6, which is actually drawn in the next section, displays the ar
ray variables assigned in this section and required to draw it.

Left boundary= poly(2) = 33

Upper boundary= poly(l) = 50

l . { poly(5)=y=50
/First corner: poly(6)=x=SO ---

{ poly(7) = y = 200

Seoond "°'""'' pdy(8J~x~33 ""'
. { poly(9)=y=200

Third corner: poly(10) = x = 67

l'----+ Lower boundary =poly(3) = 200

Right boundary= poly(4) = 67

Figure 15-6. The array elements required to draw a polygon

Chapter 15: The Backgammon Game 311

REM Section 5--called by Section 4. Draw points defined in Section 4.
BuildPoint:

FILLRECT VARPTR(rect(O)), VARPTR(grey(O))
FOR X= 0 TO 3 : pat(x) = pat : NEXT x
FILLPOLY VARPTR(poly(O)), VARPTR(pat(O))
LINE(poly(6), poly(S)) - (poly(8), poly(?))
LINE - (poly(10), poly(9)) : LINE - (poly(6), poly(S))
RETURN

Figure 15-7. Section 5: BuildPoint

'backgnd for all points
'set up pattern for actual point

'draw point
'outline point

Having defined the points, the Pointlnit subroutine calls the BuiklPoint sub
routine (shown in Figure 15-7) four times-once each time through the loop- to
draw one set of light and dark points that point up and another set that point down. It
draws each point on a grey background with FILLPOLY and then outlines it. When the
points are all put on the screen, the grey rectangles around them will form a solid grey
background for the playing board.

I Drawing the pieces and dice I
Figure 15-8 on the following page shows the two subroutines that create the

pieces and dice. The Circlelnit routine simply draws a circle and stores its image in an
array. The Dicelnit routine defines the basic black die and then draws and captures it
six times, with from one to six white dots arranged on it.

A FOR. .. NEXT loop is used to control which die is being created. The dice coun
ter is examined to determine which dots belong on this particular image of the die.
Again, we use MOD to determine if the counter is odd; if it is, we know that a dot has
to go in the center. If the counter is greater than 1, then a dot has to go in the upper left
and lower right corners. If the counter is greater than 3, then the lower left and upper
right corners get a dot. Finally, if the counter is equal to 6, two dots are drawn in the
middle left and right. Notice the manner of offsetting each face in the dicelmage array
so that all faces can be stored and recovered from one array. Only the six versions of
the black die are stored; to produce a white die, the black one is simply inverted.

312 SECTION IV: GAMES

REM Section 6--called by Section 3. Draw and store circle used as playing piece.
Circle I nit:

CIRCLE (50, 50), 15
GET (35, 35) - (65, 65), circleArray
RETURN

'pieces have diameter of 30
'use array to drag outline of piece

REM Section 7--called by Section 3. Draw and store view of each surface of die.
Dice I nit:

rect(O) = 35 : rect(1) = 35 : rect(2) = 66 : rect(3) = 66 '30x30 square dice
FOR dice = 1 TO 6

FILLRECT VARPTR(rect(O)), VARPTR(black(O)) 'dice are black, invert for white dice
IF dice MOD 2 = 1 THEN CIRCLE (50, 50), 1, 30 'dot in center for odd dice
IF dice > 1 THEN CIRCLE (40, 40), 1, 30 : CIRCLE (60, 60), 1, 30 'up left, low right
IF dice > 3 THEN CIRCLE (60, 40), 1, 30 : CIRCLE (40, 60), 1, 30 'up right, low left
IF dice = 6 THEN CIRCLE (40, 50), 1, 30 : CIRCLE (60, 50), 1, 30 'mid left, mid right
GET (35, 35) - (65, 65), dicelmage((dic_e - 1) • 64) 'store all images in one array

NEXT dice
RETURN

Figure 1.5-8. Sections 6 and 7: Circle/nit and Dicelnit

I Creating the board I
The BuildBoard subroutine shown in Figure 15-9 is called by Board/nit to draw

the basic playing board. PENMODE 9 (the overlay mode) is used to OR the new pat
tern with the existing screen. The two FILLRECT statements fill in areas that aren't

covered by the point rectangles: a one-pixel rectangle on the far left side, and the area
between the bottom of the upper points and the top of the lower points. BuildPoint

then uses the FOR INT= 1 TO 28 loop to call the DrawPoint subroutine 28 times to
produce the points, the pieces, and the BAR and OFF areas.

Each time through the loop, new values are assigned to ptX and ptY (the x and y
coordinates of the point) and to pieces (the number of pieces on the point). DrawPoint

is called at the beginning of the game to draw each point, and again later in the game
to redraw points that have had pieces moved on or off them. If the number of the
point to be drawn is greater than 24, a GOTO directs the program to the BarAndOff

routine. The two lines that are executed IF pnt > 12 draw the upward-pointing points

Chapter 15: The Backgammon Game

REM Section 8--called by Section 3. Draw board and points.
BuildBoard:

PENMODE9
rect(O) = bUp : rect(1) = wleft : rect(2) = tlow : rect(3) = boardRight

313

FILLRECT VARPTR(rect(O)), VARPTR(grey(O)) 'fill in between upper and lower points
rect(O) = wTop : rect(1) = wleft : rect(2) = wBot : rect(3) = 1
FILLRECT VARPTR(rect(O)), VARPTR(grey(O)) 'fill in left side of screen
FOR pnt = 1 TO 28 'draw all points; (ptX,ptY) =top left corner of point

ptX = board(pnt, 1) : ptY = board(pnt,2) : pieces = board(pnt, 3)
GOSUB DrawPoint
tempBoard(pnt) = board(pnt, 3) 'use tempBoard to move one piece multiple times

NEXT pnt
RETURN

REM Section 9--called by Sections 8, 21, 24, and 27. Draw and refresh points.
DrawPoint:

IF pnt > 24 GOTO BarAndOff '25=1ightOFF, 26=dark0FF, 27=1ightBAR, 28=darkBAR
IF pnt > 12 AND pnt MOD 2 = O THEN points = O 'set up index into pointArray
IF pnt > 12 AND pnt MOD 2 = 1 THEN points = 1
IF pnt < 13 AND pnt MOD 2 = 0 THEN points = 2
IF pnt < 13 AND pnt MOD 2 = 1 THEN points = 3
PUT (ptX, ptY), pointArray(points * 455), PSET
GOSUB DrawPiece
RETURN

Figure 15-9. Sections 8 and 9: BufldBoard and DrawPoint

'overlay point on board
'draw pieces on this point

on the lower row; the two lines that are executed IF pnt < 13 draw the downward
pointing points on the upper row. For each row of points, IF pnt MOD 2 = 0, the point
is dark; IFpnt MOD 2=1, it is light.

The pieces

After each point is drawn, the DrawPiece subroutine, shown in Figure 15-10 on
the next page, is called by DrawPoint to draw the specified pieces on the point. (The
number of pieces on the point, stored in the board(point,3) array, was assigned to the
variable pieces in the BuildBoard subroutine.)

The majority of this section defines the location of the rectangle where the piece
will be drawn. Notice that we have not saved an image of the pieces in an array; in
stead we call FILLOVAL every time. Since the ROM calls are so fast, this saves us

314 SECTION IV: GAMES

REM Section 10--called by Section 9. Draw pieces on points.
DrawPiece:

IF pieces = O THEN RETURN 'don't need to draw zero pieces
IF ABS(pieces) > 5 THEN show= 5 ELSE show= ABS(pieces) 'only show first 5 pieces
FOR piece = 1 TO show 'draw up to 5 pieces

IF pnt < 13 THEN rect(O) = (piece - 1) * piWidth 'set up rect for current piece
IF pnt < 13 THEN rect(2) = (piece - 1) * piWidth + piWidth
IF pnt < 13 THEN rect(1) = (pnt - 1) * pWidth + 3
IF pnt < 13 THEN rect(3) = (pnt - 1) * pWidth + 33
IF pnt > 12 THEN rect(O) = 320 - (piece - 1) * piWidth - piWidth
IF pnt > 12 THEN rect(2) = 320 - (piece - 1) * piWidth
IF pnt > 12 THEN rect(1) = (24 - pnt) * pWidth + 3
IF pnt > 12 THEN rect(3) = (24 - pnt) * pWidth + 33
IF pieces< 0 THEN FILLOVAL VARPTR(rect(O)), VARPTR(black(O)) 'draw black
IF pieces > 0 THEN FILLOVAL VARPTR(rect(O)), VARPTR(white(O)) 'draw white

NEXT piece
IF ABS(pieces) <= 5 THEN RETURN 'did we draw all pieces on this point?
TEXTSIZE 1 o 'write number of pieces stacked on top of:
IF pnt < 13 THEN CALL MOVETO ((pnt - 1) * pWidth + 6, 20) 'top piece for upper
IF pnt > 12 THEN CALL MOVET0((24 - pnt) * pWidth + 6, 307) 'bottom piece for lower
PRINT ABS(pieces) - 5 : TEXTSIZE 12
RETURN

Figure 15-10. Section 10: DrawPiece

memory with no loss in speed. If you have typed in this program, run it once with
Trace turned on to slow it down, so that you can watch the order in which all these
things are drawn.

The BAR and OFF areas

The BAR and OFF areas are where pieces are stored when they have either been
bumped from the board by an opponent or finished their circuit and been removed.
The BarAndO.ff subroutine (shown in Figure 15-11) first draws the areas and then
adds any pieces that belong on them. The pnt = 25 and pnt = 26 values refer to light
and dark pieces, respectively, on the OFF area; pnt = 27 and pnt = 28 are light and
dark pieces in the BAR area.

Chapter 15: The Backgammon Game 315

REM Section 11--called by Section 9. Draw BAR and OFF areas and any pieces on them.
BarAndOff:

IF pnt = 25 OR pnt = 26 THEN rect(O) = 180 : rect(2) = 220 'backgnd rect
IF pnt = 27 OR pnt = 28 THEN rect(O) = 270 : rect(2) = 310
IF pnt = 25 OR pnt = 27 THEN rect(1) = 420 : rect(3) = 460
IF pnt = 26 OR pnt = 28 THEN rect(1) = 460 : rect(3) = 501
FILLRECT VARPTR(rect(O)), VARPTR(grey(O))
IF pieces = 0 THEN RETURN 'don't need to draw zero pieces
rect(O) = ptY : rect(1) = ptX : rect(2) = ptY + piWidth : rect(3) = ptX + piWidth
IF pnt = 25 OR pnt = 27 THEN FILLOVAL VARPTR(rect(O)), VARPTR(white(O))
IF pnt = 26 OR pnt = 28 THEN FILLOVAL VARPTR(rect(O)), VARPTR(black(O))
IF pieces < 10 THEN CALL MOVETO(ptX + 3, ptY + 20)
IF pieces > 9 THEN CALL MOVETO(ptX - 1, ptY + 20)
PRINT ABS(pieces) 'write number of pieces OFF or on BAR
RETURN

Figure 15-11. Section 11: BarAndOff

I Starting the play I
Several routines are involved in actually setting up the board and getting down

to the serious business of playing backgammon. These routines are discussed briefly
in the next few paragraphs, but once again, you will want to rely on the comments in
the program to help you follow the details.

The FirstRoll routine (Figure 15-12 on the next page) casts the initial roll of one
die for each player, which determines the player (Dark or Light) who will go first. The

RND(l) function is used in a short formula to assign a number between 1 and 6 to the

variables dice(l) and dice(2). Notice that the value assigned to dice(l) is multiplied
here by -1, to make it negative and thereby keep the Dark player's die black. The die
represented bydice(2) has a positive value, so it is inverted to make the Light player's
die white. Notice also the use of the ol,dDice and ol,dBoard arrays to record conditions
before a move, in case the player pushes the Undo button.

Next, the WhoseTurn subroutine (Figure 15-13 on the next page) tests the value
of the variable turn, assigned initially in the FirstRoll subroutine, and later in the Roll
subroutine. If turn is greater than zero, it is Light's turn to play, and the program goes
to LightTurn (also Figure 15-13). If turn is less than zero, the program stays in the
WhoseTurn subroutine and announces that it is Dark's move.

316

REM Section 12--called by Section 3. Determine who starts.
FirstRoll:

SECTION IV: GAMES

dice(1) = INT(RND(1) * 6 + 1) * -1 : dice(2) = INT(RND(1) * 6 + 1) '(1)=black, (2)=white
IF ABS(dice(1)) = dice(2) GOTO FirstRoll 'can't have doubles on first roll
IF ABS(dice(1)) > dice(2) THEN turn= -1 ELSE turn= 1 'turn<O for dark, >0 for light
oldDice(1) = dice(1) : oldDice(2) = dice(2) 'use oldDice for Undo
GOSUB Whose Turn 'draw turn title box
GOSUB DrawDice
FOR pnt = 1 TO 28 'record current board set up for Undo

oldBoard(pnt) = board(pnt, 3) : tempBoard(pnt) = board(pnt, 3)
NEXT pnt
RETURN

Figure 15-12. Section 12: First&ll

DrawDice and NextDice (Figure 15-14) draw the dice after each roll, using the
numbers generated in FirstRoll or Roll to offset the starting point in the dicelmage

array so that the correct dice are drawn. Each die is drawn in black, and then inverted
if the value of dice(l) ordice(2) is not less than zero; that is, if it is Light's move.

The Menulnit routine shown in Figure 15-15 produces the backgammon menu,

blanks out the BASIC menus, and specifies where to go (MenuHandle) if someone se
lects an item from the menu.

REM Section 13(a)--called by Sections 12 and 23. Determine and announce turn.
Whose Turn:

rect(O) = 1 : rect(1) = 411 : rect(2) = 30 : rect(3) = 510 'rect for turn title box
IF turn > 0 GOTO LightTurn
FILLRECT VARPTR(rect(O)), VARPTR(black(O)) 'draw black box
MOVETO 425, 20 : PRINT "Dark's Move"
RETURN

REM Section 13(b)--called by Section 13(a).
LightTurn:

FILLRECT VARPTR(rect(O)), VARPTR(white(O))
FRAMERECT VARPTR(rect(O))
MOVETO 420, 20 : PRINT "Light's Move"
RETURN

'draw white box to clear rect
'frame title box

Figure 15-13. Sections 13(a) and 13(b): WhoseTurn and LightTurn

Chapter 15: The Backgammon Game 317

REM Section 14(a)--called by Sections 12 and 23. Draw black dice and invert for white.
DrawDice:

rect(O) = 40 : rect(1) = 420 : rect(2) = 80 : rect(3) = 501 'backgnd for dice
FILLRECT VARPTR(rect(O)), VARPTR(grey(O))
FOR dice= 1TO2 'draw both dice

IF dice = 1 THEN left = lghtLeft ELSE left = dkLeft 'left edge of dice
PUT (left, 45), dicelmage((ABS(dice(dice)) - 1) * 64), PSET 'show correct dice image
IF dice(dice) < O GOTO NextDice 'dice is supposed to be black, draw next one
rect(O) = 45 : rect(1) = left : rect(2) = 76 : rect(3) = left + 31
INVERTRECT VARPTR(rect(O)) 'have to invert for white dice

REM Section 14(b)--called by Section 14(a).
NextDice:

NEXT dice
RETURN

Figure 15-14. Sections 14(a) and 14(b): DrawDice and NextDice

The next sections control the actual flow of the game. At the start of the game,
the next step is for the player who won the first roll of the dice to make a move. After a
valid move has been made, the next step of the game is to roll the dice for the next

REM Section 15--called by Section 1. Create menu.
Menu I nit:

MENU 1, 0, 1, "Backgammon"
MENU 1, 1, 1, "Start New Game"
MENU 1, 3, 1 , "Quit to BASIC"
MENU 1, 4, 1, "Quit to Desktop"
MENU 2, 0, 0, "" : MENU 3, 0, 0, "" : MENU 4, 0, 0, "" : MENU 5, 0, 0, ""
ON MENU GOSUB MenuHandle : MENU ON
RETURN

REM Section 29--called by menu-event trap.
Menu Handle:

DIALOG STOP : MOUSE STOP
menuBar = MENU(O) : menultem = MENU(1)
IF menuBar <> 1 THEN DIALOG ON : MOUSE ON : RETURN
IF menu Item = 1 THEN MOUSE OFF : MENU OFF : DIALOG OFF : GOTO BeginGame
IF menu Item= 3 THEN END
IF menultem = 4 THEN SYSTEM

Figure 15-15. Sections 15 and 29: Menulnit and MenuHandle

318 SECTION IV: GAMES

REM Section 16--called by Section 1.
StartGame:

ON DIALOG GOSUB DialogHandle : DIALOG ON

REM Section 22--called by dialog-event trap.
Dialog Handle:

MENU STOP : MOUSE STOP
event = DIALOG(O)
IF event <>1 THEN MENU ON: MOUSE ON: RETURN 'don't care if no button pushed
buttonNumber = DIALOG(1)
IF buttonNumber = 1 THEN GOSUB Roll
IF buttonNumber = 2 THEN GOSUB Undo
MENU ON : MOUSE ON
RETURN

REM Section 23--called by Section 22.
Roll:

turn= turn* -1 'change turns
dice(3) = 0 : dice(4) = O 'dice(3) and (4) used for doubles
dice(1) = INT(RND(1) * 6 + 1) * turn : dice(2) = INT(RND(1) * 6 + 1) * turn
IF dice(1) = dice(2) THEN dice(3) = dice(1) : dice(4) = dice(1) 'oh boy, doubles!!!
FOR x = 1 TO 4: oldDice(x) = dice(x): NEXT x 'oldDice used for Undo
GOSUB WhoseTurn 'draw turn title box
GOSUB DrawDice
FOR pnt = 1 TO 28 'record current board set up for Undo

oldBoard(pnt) = board(pnt, 3) : tempBoard(pnt) = board(pnt, 3)
NEXT pnt
RETURN

REM Section 24--called by Section 22.
Undo:

FOR pnt = 1 TO 28
tempBoard(pnt) = board(pnt, 3)
board(pnt, 3) = oldBoard(pnt)

'reset points that have changed in this turn
'record current number of pieces

'reset to start of turn
ptX = board(pnt, 1) : ptY = board(pnt, 2) : pieces = board(pnt, 3)
IF pieces <> tempBoard(pnt) THEN GOSUB DrawPoint 'if any change redraw point
tempBoard(pnt) = board(pnt, 3) 'tempBoard used for multiple moves of 1 piece

NEXT pnt
FOR x = 1 TO 4 : dice(x) = oldDice(x) : NEXT x
RETURN

'reset dice

Figure 15-16. Sections 16, 22, 23, and 24: StartGame, DialogHandle, Roll, and Undo

Chapter 15: The Backgammon Game 319

move, or to undo the previous move to try something else. The StartGame routine
(shown in Figure 15-16) simply tells the program where it should go if a dialog event is

trapped. The only dialog event we are concerned with in this program is the pushing
of one of the two buttons: Roll or Undo. DialogHandle then decides which button was

clicked and branches to the appropriate subroutine. Notice that menu- and mouse
event trapping are turned off at the beginning of DialogHandle, and turned back on at
the end, to prevent the player from interrupting the process in the middle.

If the player chooses to roll the dice, the Roll subroutine uses the RND function
to assign values to each die. Unlike the FirstRoll subroutine, Roll allows doubles (a
player who rolls doubles in backgammon gets to move four times, rather than the usual
two). If the two dice match, the value of dice(l) is assigned to the array variables
dice(3) and dice(4), which are normally set to zero. The LegalMove subroutine will

later check these values to see whether to allow the extra moves.

The Undo button lets a player with second thoughts try a different move-a
practice not always approved of by the opponent. Clicking this button calls the Undo
subroutine, which restores the board and dice to their condition before the last move.

I Making a move I
The MouseCheck routine (Figure 15-17) is the main loop of the program. This

section waits for the player to drag or clickthe mouse and then checks to see if the par

ticular action is one of interest and, if so, branches to the appropriate subroutine.

REM Section 17--flows from Section 16. Wait for mouse action (main loop).
MouseCheck:

WHILE MOUSE(O) = 0 : WEND
FOR x =1 TO 600 : NEXT x 'wait to check for double click
mousePush = MOUSE(O)
IF mousePush = 1 GOTO MouseCheck 'don't care about single clicks
IF mouse Push < -1 GOTO MouseCheck 'or double or triple clicks/drags
IF mousePush = -1 THEN GOSUB LegalMove 'trying to drag piece, check for legality
IF mousePush > 1 THEN GOSUB DoubleClick 'trying to take piece off, check for legality
GOTO MouseCheck 'loop until someone wins

Figure 15-17. Section 17: MouseCheck

320 SECTION IV: GAMES

If the player is trying to move a piece by dragging the mouse, LegalMove and the
three other sections shown in Figure 15-18-GoodStart, MovePiece, and LegalEnd
test each attempted move to ensure that it is valid. The drag must start from a point
where the player has a piece, or from the BAR, if the player has a piece there. It must
stop on a valid point: that is, a point that is the correct number of points away from the
starting point and that doesn't have more than one of the opponent's pieces already on

it. Until a move is checked, the only thing that actually changes on the board is the

movement of an outline of the piece, used to show where the player is dragging. If, at

REM Section 18--called by Section 17. Check if move is legal.
Legal Move:

stX = MOUSE(3) : stY = MOUSE(4) : stPnt = 0
FOR pnt = 1 TO 24

'starting X,Y position of drag
'quick check for starting from legal point

ptX = board(pnt, 1) : ptY = board(pnt, 2)
IF stX < ptX OR stX > ptX + pWidth THEN NextPnt1
IF stY >= ptY AND stY <= ptY + bUp THEN stPnt = pnt : pnt = 24

NextPnt1:
NEXT pnt
IF stPnt <> 0 GOTO GoodStart
FOR pnt = 27 TO 28

'started drag on board point 1-24
'check for dragging from BAR

ptX = board(pnt, 1) : ptY = board(pnt, 2)
IF stX < ptX OR stX > ptX + piWidth THEN NextPnt2
IF stY >= ptY AND stY <= ptY + piWidth THEN stPnt = pnt : pnt = 28

NextPnt2:
NEXT pnt
IF stPnt = 0 THEN RETURN 'can't drag from anyplace but 1-24 or BAR

REM Section 19--called by Section 18. Check for valid starting place.
GoodStart:

IF stPnt < 25 AND tum= -1 AND board(28, 3) <> 0 THEN RETURN
IF stPnt < 25 AND tum= 1 AND board(27, 3) <> 0 THEN RETURN
startPiece = board(stPnt, 3)

'still on BAR

IF startPiece = 0 THEN RETURN
IF tum < 0 AND startPiece > 0 THEN RETURN
IF tum > 0 AND startPiece < 0 THEN RETURN

'can't drag from point with no pieces
'can't drag opponent's piece

PUT (stX - 15, stY - 15), circleArray 'OK to drag, put circle outline under pointer

Figure 15-18. Sections 18, 19, 20, and 21: LegalMove, GoodStart,
MovePiece, and LegalEnd

more ...

Chapter 15: The Backgammon Game

REM Section 20--flows from Section 19.
MovePiece:

mousePush = MOUSE(O) : endX = MOUSE(5) : endY = MOUSE(6)

321

IF mousePush <> -1 GOTO LegalEnd 'stopped dragging, check for legality
PUT (stX - 15, stY - 15), circleArray 'erase outline at old location
PUT (endX - 15, endY - 15), circleArray 'draw outline at new location
stX = endX : stY = endY 'use stX, stY to erase next time
GOTO MovePiece 'loop until stop dragging

REM Section 21--called by Section 20.
LegalEnd:

PUT (stX - 15, stY - 15), circleArray 'erase at last location
endPnt = O
FOR pnt = 1 TO 24 'quick check for legal ending point

ptX = board(pnt, 1) : ptY = board(pnt, 2)
IF endX < ptX OR endX > ptX + pWidth THEN NextPnt3
IF endY >= ptY AND endY <= ptY + bUp THEN endPnt = pnt : pnt = 24

NextPnt3:
NEXT pnt
IF endPnt = O THEN RETURN 'have to end on point 1-24
endPiece = board(endPnt, 3)
IF turn < 0 AND endPiece > 1 THEN RETURN 'can't end on point with > 1 opponent
IF turn> 0 AND endPiece < -1 THEN RETURN
gdEnd = 0
FOR dTry = 1 TO 4 'check for moving correct number of points

dValue = ABS(dice(dTry))
IF stPnt = 27 AND endPnt = 25 - dValue THEN gdEnd = 1 : dice(dTry) = 0 : dTry = 4
IF stPnt = 28 AND endPnt = dValue THEN gdEnd = 1 : dice(dTry) = 0 : dTry = 4
IF stPnt + dValue *turn* - 1 = endPnt THEN gdEnd = 1 : dice(dTry) = 0 : dTry = 4

NEXTdTry
IF gdEnd = 0 THEN RETURN 'sorry Charlie
IF turn< O AND board(endPnt, 3) = 1 THEN board(27, 3) = board(27, 3) + 1
IF turn < 0 AND board(endPnt, 3) = 1 THEN board(endPnt, 3) = 0
IF turn > O AND board(endPnt, 3) = - 1 THEN board(28, 3) = board(28, 3) - 1
IF turn > O AND board(endPnt, 3) = - 1 THEN board(endPnt, 3) = 0
board(endPnt, 3) = board(endPnt, 3) +turn 'add piece to end point
board(stPnt, 3) = board(stPnt, 3) - turn 'subtract piece from start point
FOR pnt = 1 TO 28 'update points that changed

ptX = board(pnt, 1) : ptY = board(pnt, 2) : pieces = board(pnt, 3)
IF tempBoard(pnt) <> pieces THEN GOSUB DrawPoint 'redraw this point; it changed
tempBoard(pnt) = board(pnt, 3) 'set up to move same piece again

NEXT pnt
RETURN

Figure 15-18. Sections 18, 19, 20, and 21: LegalMove, GoodStart,
MovePiece, and LegalEnd (continued)

322 SECTION IV: GAMES

any point in the process, a test comes up invalid, a RETURN statement sends the pro
gram back to MouseCheck to wait for the next move. LegalEnd also takes care of
bumping the opponent to the BAR if the player lands on a point holding only one of the

opponent's pieces.
Finally, after the LegalMove and Roll subroutines have been repeated many

times, the DoubleClick subroutine, shown in Figure 15-19, starts coming into play. If
all conditions are correct, double clicking a piece removes it from a point and places it
on the BAR. DoubleClick and GoodDouble check that the double click was in the
proper area and that the piece is ready for removal. Then TakeOff removes the piece
to the BAR and checks to see if 15 pieces belonging to one player are on the BAR, indi
cating a win. If so, the program branches to Winner, which is used once per game to
announce which player won. The InvertScreen routine then flashes the screen until
someone makes a menu selection to either start another game or quit.

REM Section 25--called by Section 17.
DoubleClick:

stX = MOUSE(5) : stY = MOUSE(6) 'X,Y location of double click
IF stX >= board(?, 1) THEN RETURN 'quick check for double click on left side
IF turn > 0 AND stY >= board(24, 2) THEN RETURN 'double click in correct quad?
IF turn < 0 AND stY < board(24, 2) THEN RETURN
dbPnt = 0
FOR pnt = 1 TO 6 'verify double click on point 1-6 or 19-24

IF turn > O THEN ptX = board(pnt, 1) : ptY = board(pnt, 2)
IF turn < O THEN ptX = board(pnt + 18, 1) : ptY = board(pnt + 18, 2)
IF stX < ptX OR stX > ptX + pWidth THEN NextPnt4
IF stY >= ptY AND stY <= ptY +bUp THEN dbPnt = pnt : pnt = 6

NextPnt4:
NEXT pnt
IF dbPnt = 0 THEN RETURN
IF turn < 0 THEN dbPnt = dbPnt + 18

'didn't click on right point
'adjust dbPnt for dark

REM Section 26--flows from Section 25.
GoodDouble:

gdDble =0
IF turn > 0 THEN firstPnt = 7 ELSE firstPnt = 1

Figure 15-19. Sections 25 through 28: DoubleClick, GoodDouble,
TakeO.ff, Winner, and InvertScreen

11Wre ...

Chapter 15: The Backgammon Game 323

FOR pnt = firstPnt TO firstPnt + 17 'check for no pieces on point 1-18 or 7-24
IF turn > 0 AND board(pnt, 3) > 0 THEN gdDble = 1 : pnt = firstPnt + 17
IF turn < 0 AND board(pnt, 3) < 0 THEN gdDble = 1 : pnt = firstPnt + 17

NEXT pnt
IF gdDble = 1 THEN RETURN
FOR dTry = 1 TO 4

dValue = ABS(dice(dTry))

'all pieces must be in last quad before take off
'check for start point to OFF on exact dice roll

IF turn > 0 AND dbPnt = dValue THEN gdDble = 1 : dice(dTry) = 0 : dTry = 4
IF turn < 0 AND 25 - dbPnt = dValue THEN gdDble = 1 : dice(dTry) = 0 : dTry = 4

NEXTdTry
IF gdDble = 1 GOTO TakeOff 'mother may I? Yes, you may take off 1 piece
IF turn > O AND dbPnt = 6 THEN RETURN 'can only take off these pieces with 6
IF turn< 0 AND dbPnt = 19 THEN RETURN
IF turn > 0 THEN firstPnt = dbPnt + 1 : lastPnt = 6
IF turn < 0 THEN firstPnt = 19 : lastPnt = dbPnt - 1
FOR pnt = firstPnt TO lastPnt 'check for no pieces above double click

IF turn > O AND board(pnt, 3) > 0 THEN gdDble = 1 : pnt = lastPnt
IF turn < O AND board(pnt, 3) < O THEN gdDble = 1 : pnt = lastPnt

NEXT pnt
IF gdDble = 1 THEN RETURN
FOR dTry = 1 TO 4

dValue = ABS(dice(dTry))

'can't take this piece off yet
'check to see if point to OFF < dice value

IF turn > 0 AND dbPnt < dValue THEN gdDble = 1 : dice(dTry) = 0 : dTry = 4
IF turn < 0 AND 25 - dbPnt < dValue THEN gdDble = 1 : dice(dTry) = 0 : dTry = 4

NEXTdTry
IF gdDble = 1 GOTO TakeOff
RETURN

'go ahead and take it off

REM Section 27--called by Section 26.
TakeOff:

board(dbPnt, 3) = board(dbPnt, 3) - turn 'subtract piece from double click point
IF turn < O THEN board(26, 3) = board(26, 3) +turn 'add piece to OFF
IF turn > O THEN board(25, 3)= board(25, 3) + turn
FOR pnt = 1 TO 28 'update board

ptX = board(pnt, 1) : ptY = board(pnt, 2) : pieces = board(pnt, 3)
IF tempBoard(pnt) <> pieces THEN GOSUB DrawPoint
tempBoard(pnt) = board(pnt, 3)

NEXT pnt
IF turn > O AND board(25, 3) = 15 GOTO Winner 'we have a winner
IF turn< 0 AND board(26, 3) = -15 GOTO Winner
RETURN

Figure 15-19. Sections 25 through 28: DoubleClick, GoodDouble,
TakeOjf, Winner, and Invert Screen (continued)

more ...

324 SECTION IV: GAMES

REM Section 28(a)--called by Section 27.
Winner:

DIALOG OFF 'turn off dialog trapping but leave menu on
CLS : BUTTON CLOSE 1 : BUTTON CLOSE 2 'completely clear screen
rect(O) = wTop : rect(1) = wLeft : rect(2) = wBot : rect(3) = wRight 'use to invert screen
TEXTSIZE 72 'BIG LETTERS
IF turn> 0 THEN CALL MOVET0(150, 150) : PRINT "LIGHT'
IF turn < 0 THEN CALL MOVET0(150, 150) : PRINT "DARK"
MOVETO 150, 220 : PRINT "WINS"
TEXTSIZE 12 'reset textsize

REM Section 28(b)--flows from Section 28(a).
lnvertScreen:

INVERTRECT VARPTR(rect(O))
GOTO lnvertScreen

'invert whole screen, very fast
'get out of loop with menu

Figure 15-19. Sections 25 through 28: DoubleClick, GoodDouble,
TakeOff, Winner, and lnvertScreen (continued)

If all this fun is too frivolous for your nature, after studying the complete back

gammon listing in Figure 15-20 you can move on to the next section, which puts your
Macintosh to work monitoring and controlling the world around you, and should be

more to your liking.

REM Backgammon, written by Barry Preppernau
REM Section 1. Call three subroutines that set up game.
BeginGame:

CLEAR
GOSUB Variablelnit
GOSUB Boardlnit
GOSUB Menulnit
GOTO StartGame

REM Section 2--called by Section 1. Define variables to be used.
Variable I nit:

DEFINTa-z
RANDOMIZE TIMER
DIM rect(3), poly(10), board(28,3), oldBoard(28), tempBoard(28)

Figure 15-20. The complete backgammon program
mnre ...

Chapter 15: The Backgammon Game

DIM pointArray(1820), circleArray(64), dicelmage(384)
DIM grey(3), black(3), white(3)

325

FOR x =OTO 3 'integer values for grey, black, and white patterns
grey(x) = -21931
black(x) = -1
white(x) = 0

NEXTx
dark= -30686 'pattern for dark points
light= -8841 'pattern for light points
pWidth = 34 'width of points
piWidth = 30 'width of pieces
wleft = 0 'window left side
wRight = 511 'window right side
wTop = 20 'window top
wBot = 340 'window bottom
boardRight = 409 'board right side
tUp = O 'top of upper points
bUp = 150 'bottom of upper points
tlow = 170 'top of lower points
lghtleft = 425 'left side of light BAR and OFF
dkleft = 465 'left side of dark BAR and OFF
offTop = 185 'top of OFF
barTop = 275 'top of BAR
FOR pnt= 1 TO 12 'X,Y for points on the board; board(pnt, 1)=X, board(pnt,2)= Y

board(pnt, 1) = 1 + (pnt - 1) * pWidth : board(pnt, 2) = tUp
board(pnt + 12, 1) = 1 + (12 - pnt) * pWidth : board(pnt + 12, 2) = tlow

NEXT pnt
board(1, 3) = -2 : board(6, 3) = 5 : board(8, 3) = 3 'initial locations
board(12, 3) = -5: board(13,3) = 5 : board(17,3) = -3 '<0 black, >0 white
board(19,3) = -5 : board(24,3) = 2
board(25, 1) = lghtleft : board(25, 2) = offTop : board(26, 1) = dkleft
board(26, 2) = offTop : board(27, 1) = lghtleft: board(27, 2) = barTop
board(28, 1) = dkleft : board(28, 2) = barTop
'board(25, 3) = 10 : board(1, 3) = 5 'end game piece locations
'board(26, 3) = -10 : board(24, 3) = -5
RETURN

REM Section 3--called by Section 1. Set up board.
Board I nit:

WINDOW 1, , (wleft, wTop) - (wRight, wBot), 3
GOSUB Pointlnit : CLS
GOSUB Circlelnit : CLS
GOSUB Dicelnit : CLS

'use whole screen
'initialize images in pointArray

'circle outline to use to drag piece
'initialize images in dice array

Figure 15-20. The complete backgammon program (continued)
more ...

326

LINE (boardRight, 0) - (boardRight, 340)
TEXTMODE2
BUTTON 1, 1, "Roll", (415, 100)- (455, 130)
BUTTON 2, 1, "Undo", (465, 100) - (505, 130)

SECTION IV: GAMES

'separate board from buttons and dice
'XOR all text

rect(O) = 140 : rect(1) = 420 : rect(2) = 170 : rect(3) = 501
FRAMERECT VARPTR(rect(O)) 'OFF title box
MOVETO 448, 160 : PRINT "OFF"
rect(O) = 180 : rect(2) = 220
FILLRECT VARPTR(rect(O)), VARPTR(grey(O))
rect(O) = 230 : rect(2) = 260
FRAMERECT VARPTR(rect(O))
MOVETO 448,250 : PRINT "BAR"
rect(O) = 270 : rect(2) = 31 O

'backgnd box for OFF pieces

'BAR title box

FILLRECT VARPTR(rect(O)), VARPTR(grey(O))
GOSUB BuildBoard

'backgnd box for BAR pieces
'put all points for first time

'roll one die each and decide whose turn GOSUB FirstRoll
RETURN

REM Section 15--called by Section 1. Create menu.
Menu I nit:

MENU 1, 0, 1, "Backgammon"
MENU 1 , 1 , 1 , "Start New Game"
MENU 1, 3, 1 , "Quit to BASIC"
MENU 1, 4, 1 , "Quit to Desktop"
MENU 2, 0, 0, "" : MENU 3, 0, 0, "" : MENU 4, 0, 0, "" : MENU 5, 0, 0, ""
ON MENU GOSUB MenuHandle : MENU ON
RETURN

REM Section 29--called by menu-event trap.
Menu Handle:

DIALOG STOP : MOUSE STOP
menuBar = MENU(O): menultem = MENU(1)
IF menuBar <> 1 THEN DIALOG ON : MOUSE ON : RETURN
IF menu Item = 1 THEN MOUSE OFF : MENU OFF : DIALOG OFF : GOTO BeginGame
IF menultem = 3 THEN END
IF menultem = 4 THEN SYSTEM

REM Section 4--called by Section 3. Define variables used to create four kinds of points:
REM light up and down, and dark up and down.
Pointlnit:

FOR points = 1 TO 4
IF points MOD 2 = 1 THEN pat = light
IF points MOD 2 = 0 THEN pat= dark

'four kinds of points
'odd points light; up or down

'even points dark; up or down

Figure 15-20. The complete backgammon program (continued) more ...

Chapter 15: The Backgammon Game 327

rect(O) = 50 : rect(1) = 33 : rect(2) = 200 : rect(3) = 67 'area to draw points
poly(O) = 22 : poly(1) = 50 : poly(2) = 33 : poly(3) = 200 'set poly for up points
poly(4) = 67 : poly(5) = 50 : poly(6) = 50 : poly(7) = 200
poly(8) = 33 : poly(9) = 200 : poly(1 O) = 67
IF points > 2 THEN poly(5) = 200 : poly(6) = 50 : poly(7) = 50 'down points
IF points > 2 THEN poly(8) = 33 : poly(9) = 50 : poly(1 O) = 67
GOSUB BuildPi:>int 'draw that point
GET (33, 50) - (66, 199), pointArray((points - 1) * 455) 'fill array with all points

NEXT points
RETURN

REM Section 5--called by Section 4. Draw points defined in Section 4.
BuildPoint:

FILLRECT VARPTR(rect(O)), V ARPTR(grey(O))
FOR X= 0 TO 3 : pat(x) = pat : NEXT x
FILLPOLY VARPTR(poly(O)), VARPTR(pat(O))
LINE(poly(6), poly(5)) - (poly(8), poly(7))

'backgnd for all points
'set up pattern for actual point

'draw point
'outline point

LINE- (poly(10), poly(9)): LINE- (poly(6), poly(5))
RETURN

REM Section 6--called by Section 3. Draw and store circle used as playing piece.
Circle I nit:

CIRCLE (50, 50), 15 'pieces have diameter of 30
GET (35, 35) - (65, 65), circleArray 'use array to drag outline of piece
RETURN

REM Section 7--called by Section 3. Draw and store view of each surface of die.
Dice I nit:

rect(O) = 35 : rect(1) = 35 : rect(2) = 66 : rect(3) = 66 '30x30 square dice
FOR dice = 1 TO 6

FILLRECT VARPTR(rect(O)), VARPTR(black(O)) 'dice are black, invert for white dice
IF dice MOD 2 = 1 THEN CIRCLE (50, 50), 1, 30 'dot in center for odd dice
IF dice> 1 THEN CIRCLE (40, 40), 1, 30 : CIRCLE (60, 60), 1, 30 'up left, low right
IF dice > 3 THEN CIRCLE (60, 40), 1, 30 : CIRCLE (40, 60), 1, 30 'up right, low left
IF dice = 6 THEN CIRCLE (40, 50), 1, 30 : CIRCLE (60, 50), 1, 30 'mid left, mid right
GET (35, 35) - (65, 65), dicelmage((dice - 1) * 64) 'store all images in one array

NEXT dice
RETURN

REM Section 8--called by Section 3. Draw board and points.
Build Board:

PENMODE9
rect(O) = bUp : rect(1) = wLeft : rect(2) = tLow : rect(3) = board Right

Figure 15-20. The complete backgammon program (continued)
more ...

328 SECTION IV: GAMES

FILLRECT VARPTR(rect(O)), VARPTR(grey(O)) 'fill in between upper and lower points
rect(O) = wTop : rect(1) = wleft : rect(2) = wBot : rect(3) = 1
FILLRECT VARPTR(rect(O)), VARPTR(grey(O)) 'fill in left side of screen
FOR pnt = 1 TO 28 'draw all points; (ptX,ptY) =top left corner of point

ptX = board(pnt, 1) : ptY = board(pnt,2) : pieces = board(pnt, 3)
GOSUB DrawPoint
tempBoard(pnt) = board(pnt, 3) 'use tempBoard to move one piece multiple times

NEXT pnt
RETURN

REM Section 9--called by Sections 8, 21, 24, and 27. Draw and refresh points.
DrawPoint:

IF pnt > 24 GOTO BarAndOff '25=1ight0FF, 26=darkOFF, 27=1ightBAR, 28=darkBAR
IF pnt > 12 AND pnt MOD 2 = 0 THEN points = 0 'set up index into pointArray
IF pnt > 12 AND pnt MOD 2 = 1 THEN points = 1
IF pnt < 13 AND pnt MOD 2 = 0 THEN points = 2
IF pnt < 13 AND pnt MOD 2 = 1 THEN points = 3
PUT (ptX, ptY), pointArray(points * 455), PSET
GOSUB DrawPiece

'overlay point on board
'draw pieces on this point

RETURN

REM Section 10--called by Section 9. Draw pieces on points.
DrawPiece:

IF pieces = O THEN RETURN 'don't need to draw zero pieces
IF ABS(pieces) > 5 THEN show= 5 ELSE show = ABS(pieces) 'only show first 5 pieces
FOR piece = 1 TO show 'draw up to 5 pieces

IF pnt < 13 THEN rect(O) = (piece - 1) * piWidth 'set up rect for current piece
IF pnt < 13 THEN rect(2) = (piece - 1) * piWidth + piWidth
IF pnt < 13 THEN rect(1) = (pnt - 1) * pWidth + 3
IF pnt < 13 THEN rect(3) = (pnt - 1) * pWidth + 33
IF pnt > 12 THEN rect(O) = 320 - (piece - 1) * piWidth - piWidth
IF pnt > 12 THEN rect(2) = 320 - (piece - 1) * piWidth
IF pnt > 12 THEN rect(1) = (24 - pnt) * pWidth + 3
IF pnt > 12 THEN rect(3) = (24 - pnt) * pWidth + 33
IF pieces< 0 THEN FILLOVAL VARPTR(rect(O)), VARPTR(black(O)) 'draw black
IF pieces> 0 THEN FILLOVAL VARPTR(rect(O)), VARPTR(white(O)) 'draw white

NEXT piece
IF ABS(pieces) <= 5 THEN RETURN 'did we draw all pieces on this point?
TEXTSIZE 1 O 'write number of pieces stacked on top of:
IF pnt < 13 THEN CALL MOVETO ((pnt - 1) * pWidth + 6, 20) 'top piece for upper
IF pnt > 12 THEN CALL MOVET0((24 - pnt) * pWidth + 6, 307) 'bottom piece for lower
PRINT ABS(pieces) - 5: TEXTSIZE 12
RETURN

Figure 15-20. The complete backgammon program (continued) more ...

Chapter 15: The Backgammon Game 329

REM Section 11--called by Section 9. Draw BAR and OFF areas and any pieces on them.
BarAndOff:

IF pnt = 25 OR pnt = 26 THEN rect(O) = 180 : rect(2) = 220 'backgnd rect
IF pnt = 27 OR pnt = 28 THEN rect(O) = 270 : rect(2) = 310
IF pnt = 25 OR pnt = 27 THEN rect(1) = 420 : rect(3) = 460
IF pnt = 26 OR pnt = 28 THEN rect(1) = 460 : rect(3) = 501
FILLRECT VARPTR(rect(O)), VARPTR(grey(O))
IF pieces = 0 THEN RETURN 'don't need to draw zero pieces
rect(O) = ptY : rect(1) = ptX : rect(2) = ptY + piWidth : rect(3) = ptX + piWidth
IF pnt = 25 OR pnt = 27 THEN FILLOVAL VARPTR(rect(O)), VARPTR(white(O))
IF pnt = 26 OR pnt = 28 THEN FILLOVAL VARPTR(rect(O)), VARPTR(black(O))
IF pieces < 10 THEN CALL MOVETO(ptX + 3, ptY + 20)
IF pieces > 9 THEN CALL MOVETO(ptX - 1, ptY + 20)
PRINT ABS(pieces) 'write number of pieces OFF or on BAR
RETURN

REM Section 12--called by Section 3. Determine who starts.
FirstRoll:

dice(1) = INT(RND(1) * 6 + 1) * -1 : dice(2) = INT(RND(1) * 6+1) '(1)= black, (2)=white
IF ABS(dice(1)) = dice(2) GOTO FirstRoll 'can't have doubles on first roll
IF ABS(dice(1)) > dice(2) THEN tum= -1 ELSE tum= 1 'tum<O for dark, >0 for light
oldDice(1) = dice(1) : oldDice(2) = dice(2) 'use oldDice for Undo
GOSUB WhoseTum 'draw tum title box
GOSUB DrawDice
FOR pnt = 1 TO 28 'record current board set up for Undo

oldBoard(pnt) = board(pnt, 3) : tempBoard(pnt) = board(pnt, 3)
NEXT pnt
RETURN

REM Section 13(a)--called by Sections 12 and 23. Determine and announce tum.
Whose Tum:

rect(O) = 1 : rect(1) = 411 : rect(2) = 30 : rect(3) = 51 O 'rect for tum title box
IF tum > 0 GOTO LightTum
FILLRECT VARPTR(rect(O)), VARPTR(black(O)) 'draw black box
MOVETO 425, 20 : PRINT "Dark's Move"
RETURN

REM Section 13(b)--called by Section 13(a).
LightTum:

FILLRECT VARPTR(rect(O)), VARPTR(white(O))
FRAM ERECT V ARPTR(rect(O))
MOVETO 420, 20 : PRINT "Light's Move"
RETURN

'draw white box to clear rect
'frame title box

Figure 15-20. The complete backgammon program (continued)
nwre ...

330 SECTION IV: GAMES

REM Section 14(a)--called by Sections 12 and 23. Draw black dice and invert for white.
DrawDice:

rect(O) = 40 : rect(1) = 420 : rect(2) = 80 : rect(3) = 501 'backgnd for dice
FILLRECT VARPTR(rect(O)), VARPTR(grey(O))
FOR dice = 1 TO 2 'draw both dice

IF dice = 1 THEN left = lghtleft ELSE left = dkleft 'left edge of dice
PUT (left, 45), dicelmage((ABS(dice(dice)) - 1) * 64), PSET 'show correct dice image
IF dice(dice) < O GOTO NextDice 'dice is supposed to be black, draw next one
rect(O) = 45 : rect(1) = left : rect(2) = 76 : rect(3) = left + 31
INVERTRECT VARPTR(rect(O)) 'have to invert for white dice

REM Section 14(b)--called by Section 14(a).
NextDice:

NEXT dice
RETURN

REM Section 16--called by Section 1.
StartGame:

ON DIALOG GOSUB DialogHandle : DIALOG ON

REM Section 17--flows from Section 16. Wait for mouse action (main loop).
MouseCheck:

WHILE MOUSE(O) = 0 : WEND
FOR x =1 TO 600 : NEXT x 'wait to check for double click
mousePush = MOUSE(O)
IF mousePush = 1 GOTO MouseCheck 'don't care about single clicks
IF mouse Push < -1 GOTO MouseCheck 'or double or triple clicks/drags
IF mousePush = -1 THEN GOSUB LegalMove 'trying to drag piece, check for legality
IF mousePush > 1 THEN GOSUB DoubleClick 'trying to take piece off, check for legality
GOTO MouseCheck 'loop until someone wins

REM Section 22--called by dialog-event trap.
Dialog Handle:

MENU STOP : MOUSE STOP
event = DIALOG(O)
IF event <> 1 THEN MENU ON : MOUSE ON : RETURN 'don't care if no button pushed
buttonNumber = DIALOG(1)
IF buttonNumber = 1 THEN GOSUB Roll
IF buttonNumber = 2 THEN GOSUB Undo
MENU ON : MOUSE ON
RETURN

Figure 15-20. The complete backgammon program (continued) more ...

Chapter 15: The Backgammon Game

REM Section 23--called by Section 22.
Roll:

331

turn= turn* -1 'change turns
dice(3) = o : dice(4) = o 'dice(3) and (4) used for doubles
dice(1) = INT(RND(1) * 6 + 1) *turn : dice(2) = INT(RND(1) * 6 + 1) *turn
IF dice(1) = dice(2) THEN dice(3) = dice(1) : dice(4) = dice(1) 'oh boy, doubleslll
FOR x = 1 TO 4 : oldDice(x) = dice(x) : NEXT x 'oldDice used for Undo
GOSUB WhoseTurn 'draw turn title box
GOSUB DrawDice
FOR pnt = 1 TO 28 'record current board set up for Undo

oldBoard(pnt) = board(pnt, 3) : tempBoard(pnt) = board(pnt, 3)
NEXT pnt
RETURN

REM Section 24--called by Section 22.
Undo:

FOR pnt = 1 TO 28
tempBoard(pnt) = board(pnt, 3)
board(pnt, 3) = oldBoard(pnt)

'reset points that have changed in this turn
'record current number of pieces

'reset to start of turn
ptX = board(pnt, 1) : ptY = board(pnt, 2) : pieces = board(pnt, 3)
IF pieces <> tempBoard(pnt) THEN GOSUB DrawPoint 'if any change redraw point
tempBoard(pnt) = board(pnt, 3) 'tempBoard used for multiple moves of 1 piece

NEXT pnt
FOR x = 1 TO 4 : dice(x) = oldDice(x) : NEXT x
RETURN

REM Section 18--called by Section 17. Check if move is legal.
LegalMove:

'reset dice

stX = MOUSE(3) : stY = MOUSE(4) : stPnt = 0
FOR pnt = 1 TO 24

'starting X,Y position of drag
'quick check for starting from legal point

ptX = board(pnt, 1) : ptY = board(pnt, 2)
IF stX < ptX OR stX > ptX + pWidth THEN NextPnt1
IF stY >= ptY AND stY <= ptY + bUp THEN stPnt = pnt : pnt = 24

NextPnt1:
NEXT pnt
IF stPnt <> 0 GOTO GoodStart
FOR pnt = 27 TO 28

'started drag on board point 1-24
'check for dragging from BAR

ptX = board(pnt, 1) : ptY = board(pnt, 2)
IF stX < ptX OR stX > ptX + piWidth THEN NextPnt2
IF stY >= ptY AND stY <= ptY + piWidth THEN stPnt = pnt : pnt = 28

NextPnt2:
NEXTpnt
IF stPnt = 0 THEN RETURN 'can't drag from anyplace but 1-24 or BAR

Figure 15-20. The complete backgammon program (continued)
more ...

332 SECTION IV: GAMES

REM Section 19--called by Section 18. Check for valid starting place.
GoodStart:

IF stPnt < 25 AND turn= -1 AND board(28, 3) <> 0 THEN RETURN
IF stPnt < 25 AND turn = 1 AND board(27, 3) <> 0 THEN RETURN
startPiece = board(stPnt, 3)

'still on BAR

IF startPiece = 0 THEN RETURN
IF turn < 0 AND startPiece > 0 THEN RETURN
IF turn > 0 AND startPiece < 0 THEN RETURN

'can't drag from point with no pieces
'can't drag opponent's piece

PUT (stX - 15, stY - 15), circleArray 'OK to drag, put circle outline under pointer

REM Section 20--flows from Section 19.
Move Piece:

mousePush = MOUSE(O) : endX = MOUSE(5) : endY = MOUSE(6)
IF mousePush <> -1 GOTO LegalEnd 'stopped dragging, check for legality
PUT (stX - 15, stY - 15), circleArray 'erase outline at old location
PUT (endX - 15, endY - 15), circleArray 'draw outline at new location
stX = endX : stY = endY 'use stX, stY to erase next time
GOTO MovePiece 'loop until stop dragging

REM Section 21--called by Section 20.
LegalEnd:

PUT (stX - 15, stY - 15), circleArray 'erase at last location
endPnt = O
FOR pnt = 1 TO 24 'quick check for legal ending point

ptX = board(pnt, 1) : ptY = board(pnt, 2)
IF endX < ptX OR endX > ptX + pWidth THEN NextPnt3
IF endY >= ptY AND endY <= ptY + bUp THEN endPnt = pnt : pnt = 24

NextPnt3:
NEXT pnt
IF endPnt = O THEN RETURN 'have to end on point 1-24
endPiece = board(endPnt, 3)
IF turn< O AND endPiece > 1 THEN RETURN 'can't end on point with >1 opponent
IF turn > 0 AND endPiece < -1 THEN RETURN
gdEnd = 0
FOR dTry = 1 TO 4 'check for moving correct number of points

dValue = ABS(dice(dTry))
IF stPnt = 27 AND endPnt = 25 - dValue THEN gdEnd = 1 : dice(dTry) = 0 : dTry = 4
IF stPnt = 28 AND endPnt = dValue THEN gdEnd = 1 : dice(dTry) = 0 : dTry = 4
IF stPnt + dValue * turn * - 1 = endPnt THEN gdEnd = 1 : dice(dTry) = O : dTry = 4

NEXTdTry
IF gdEnd = 0 THEN RETURN 'sorry Charlie
IF tum< 0 AND board(endPnt, 3) = 1 THEN board(27, 3) = board(27, 3) + 1
IF tum < 0 AND board(endPnt, 3) = 1 THEN board(endPnt, 3) = 0

Figure 15-20. The complete backgammon program (continued) more ...

Chapter 15: The Backgammon Game

IF tum > 0 AND board(endPnt, 3) = - 1 THEN board(28, 3) = board(28, 3) - 1
IF tum > O AND board(endPnt, 3) = - 1 THEN board(endPnt, 3) = o

333

board(endPnt, 3) = board(endPnt, 3) +tum 'add piece to end point
board(stPnt, 3) = board(stPnt, 3) - tum 'subtract piece from start point
FOR pnt = 1 TO 28 'update points that changed

ptX = board(pnt, 1) : ptY = board(pnt, 2) : pieces = board(pnt, 3)
IF tempBoard(pnt) <> pieces THEN GOSUB DrawPoint 'redraw this point; it changed
tempBoard(pnt) = board(pnt, 3) 'set up to move same piece again

NEXT pnt
RETURN

REM Section 25--called by Section 17.
DoubleClick:

stX = MOUSE(5) : stY = MOUSE(6) 'X,Y location of double click
IF stX >= board(?, 1) THEN RETURN 'quick check for double click on left side
IF tum > O AND stY >= board(24, 2) THEN RETURN 'double click in correct quad?
IF turn < 0 AND stY < board(24, 2) THEN RETURN
dbPnt = 0
FOR pnt = 1 TO 6 'verify double click on point 1-6 or 19-24

IF tum > O THEN ptX = board(pnt, 1) : ptY = board(pnt, 2)
IF tum < O THEN ptX = board(pnt + 18, 1) : ptY = board(pnt + 18, 2)
IF stX < ptX OR stX > ptX + pWidth THEN NextPnt4
IF stY >= ptY AND stY <= ptY +bUp THEN dbPnt = pnt : pnt = 6

NextPnt4:
NEXT pnt
IF dbPnt = 0 THEN RETURN
IF tum < 0 THEN dbPnt = dbPnt + 18

'didn't click on right point
'adjust dbPnt for dark

REM Section 26--flows from Section 25.
GoodDouble:

gdDble =0
IF tum > 0 THEN firstPnt = 7 ELSE firstPnt = 1
FOR pnt = firstPnt TO firstPnt + 17 'check for no pieces on point 1-18 or 7-24

IF tum > 0 AND board(pnt, 3) > 0 THEN gdDble = 1 : pnt = firstPnt + 17
IF tum < 0 AND board(pnt, 3) < 0 THEN gdDble = 1 : pnt = firstPnt + 17

NEXT pnt
IF gdDble = 1 THEN RETURN
FOR dTry = 1 TO 4

dValue = ABS(dice(dTry))

'all pieces must be in last quad before take off
'check for start point to OFF on exact dice roll

IF tum > 0 AND dbPnt = dValue THEN gdDble = 1 : dice(dTry) = 0 : dTry = 4
IF tum < 0 AND 25 - dbPnt = dValue THEN gdDble = 1 : dice(dTry) = 0 : dTry = 4

NEXT dTry

Figure 15-20. The complete backgammon program (continued)
more ...

334 SECTION IV: GAMES

IF gdDble = 1 GOTO TakeOff 'mother may I? Yes, you may take off 1 piece
IF turn > O AND dbPnt = 6 THEN RETURN 'can only take off these pieces with 6
IF tum < 0 AND dbPnt = 19 THEN RETURN
IF turn > 0 THEN firstPnt = dbPnt + 1 : lastPnt = 6
IF tum < 0 THEN firstPnt = 19 : lastPnt = dbPnt - 1
FOR pnt = firstPnt TO lastPnt 'check for no pieces above double click

IF tum > 0 AND board(pnt, 3) > 0 THEN gdDble = 1 : pnt = lastPnt
IF turn < 0 AND board(pnt, 3) < 0 THEN gdDble = 1 : pnt = lastPnt

NEXTpnt
IF gdDble = 1 THEN RETURN
FOR dTry = 1 TO 4

dValue = ABS(dice(dTry))

'can't take this piece off yet
'check to see if point to OFF < dice value

IF turn > 0 AND dbPnt < dValue THEN gdDble = 1 : dice(dTry) = 0 : dTry = 4
IF turn < 0 AND 25 - dbPnt < dValue THEN gdDble = 1 : dice(dTry) = 0 : dTry = 4

NEXTdTry
IF gdDble = 1 GOTO Takeoff
RETURN

'go ahead and take it off

REM Section 27--called by Section 26.
TakeOff:

board(dbPnt, 3) = board(dbPnt, 3) - tum 'subtract piece from double click point
IF turn < 0 THEN board(26, 3) = board(26, 3) + turn 'add piece to OFF
IF tum > 0 THEN board(25, 3)= board(25, 3) + turn
FOR pnt = 1 TO 28 'update board

ptX = board(pnt, 1) : ptY = board(pnt, 2) : pieces = board(pnt, 3)
IF tempBoard(pnt) <> pieces THEN GOSUB DrawPoint
tempBoard(pnt) = board(pnt, 3)

NEXT pnt
IF tum > O AND board(25, 3) = 15 GOTO Winner 'we have a winner
IF tum< 0 AND board(26, 3) = -15 GOTO Winner
RETURN

REM Section 28(a)--called by Section 27.
Winner:

DIALOG OFF 'tum off dialog trapping but leave menu on
CLS : BUTTON CLOSE 1 : BUTTON CLOSE 2 'completely clear screen
rect(O) = wTop : rect(1) = wleft : rect(2) = wBot : rect(3) = wRight 'use to invert screen
TEXTSIZE 72 'BIG LETIERS
IF tum> 0 THEN CALL MOVET0(150, 150): PRINT "LIGHT"
IF tum< 0 THEN CALL MOVET0(150, 150): PRINT "DARK"

Figure 15-20. The complete backgammon program (continued) more ...

Chapter 15: The Backgammon Game

MOVETO 150, 220: PRINT "WINS"
TEXTSIZE 12

REM Section 28(b)--flows from Section 28(a).
lnvertScreen:

INVERTRECT VARPTR(rect(O))
GOTO lnvertScreen

335

'reset textsize

'invert whole screen, very fast
'get out of loop with menu

Figure 15-20. The complete backgammon program (continued)

SECTION V

Data
Acquisition
and Control

Introduction
to Data

Acquisition
and Control Chapter 16

In Chapter 15, you worked with a communication program that allowed you to con
nect your Macintosh to another computer, either directly or over the telephone lines,
and exchange information. It is a general-purpose communication program: You can
use it to call Dow Jones News/Retrieval Service, DIALOG, CompuServe, or a friend
down the street. With a few refinements, it can automatically log you on to a database
service, taking care of such routine matters as entering your identification number
and password.

The programs we will develop in this section are specialized communication
programs. They use the same BASIC commands to route information in and out the
modem port, but rather than communicate with friends or a variety of database ser
vices, they communicate with only one specialized device-an analog-to-digital
(AID) converter-and perform a special function: data acquisition and control.

The phrase "data acquisition and control" is somewhat mysterious and intim
idating. It sounds like something that is done by people who wear white coats and
keep rats in cages-and it is. But it's also done by each and every one of us every day
of our lives. You are driving down the street and the traffic light turns red: You put
your foot on the brake. You are cold: You turn up the heat. It starts to rain: You put up
an umbrella.

These are all commonplace activities that you do without a moment's thought,
but in each case you acquire some data, evaluate it, make a decision, and take action.
The "input devices" used to acquire this data are your senses: sight, hearing, smell,
taste, and touch. Your brain evaluates the data and makes a decision based on the
memory of a previous experience or on information provided by someone else, and
then controls your muscles to convert thoughts into actions.

339

340 SECTION V: DATA ACQUISITION AND CONTROL

Your Macintosh is probably not going to drive your car or hoist your umbrella;
but, with the proper interface to the "real world," it can enhance your senses and ex
tend them and your muscles into places and times where it isn't convenient for you
personally to take action. There are many readily available, low-cost devices that can
represent some aspect of their environment as a small electrical signal. And there are
interface devices, called analog-to-digital converters, that can transform these elec
trical signals into a digital format that your Macintosh can understand.

All AID converters perform essentially the same task, but they do it with varying
degrees of speed and accuracy, and provide various options. The primary purpose, as
their name implies, is to convert variations in natural phenomena, such as tempera
ture, pressure, strain, movement, light, and moisture, to a number that can be under
stood by a computer. Amounts or changes in these phenomena are typically measured
as analog quantities-numbers that vary smoothly in infinitely small increments
through a continuous range from a low point to a high point, or vice versa. For exam
ple, at the end of the day the level oflight fades gradually after sunset, passing almost
imperceptibly through dusk to dark. The computer, on the other hand, can handle
only digital numbers at precise intervals over a clearly specified range. Let's look at a
hypothetical situation in which your Macintosh is connected to an AID converter that
is monitoring wind speed. You are an apple grower, and the speed of the wind is more
than a matter of mild curiosity for you. At certain stages in its development, your fruit
is susceptible to severe damage due to low temperatures, and the effect of tempera
ture is related to wind speed. You have your orchard wired to monitor temperature
and wind speed at various locations, and your Macintosh has been programmed to de
cide when the critical combination is being approached and to take preventive action
to save your apples. (Strangely, preventive action, at least in the state of Washington,
involves spraying the trees with a fine mist of water, which freezes, forming a protec
tive coat over the budding fruit and maintaining its temperature at 32 degrees, several
degrees above the point at which damage occurs.)

The process of converting wind speed to information on the screen of your Mac
follows the flow chart shown in Figure 16-1. The speed of the wind is monitored by a
transducer, which is a device that converts the magnitude of a measured phenomenon
to a voltage, current, resistance, or number of pulses within a certain time period that
is proportional to the magnitude. The output of the transducer is fed into a signal
conditioning circuit (generally an amplifier), where it is converted to a voltage within

Chapter 16: Introduction to Data Acquisition and Control 341

Real-world condition
• temperature

• pressure

• strain

•
Transducer
• voltage

• resistance

• pulses

•
Signal-conditioning amplifier

• voltage

+

AID converter
• number

+

Computer
• display

Figure 16-1. Flow chart of analog-to-digital conversion process

a specified range. This voltage is in turn fed into the AID converter, which produces
an integer output proportional to the point in the allowable input range where the
present voltage falls.

342 SECTION V: DATA ACQUISITION AND CONTROL

The transducer used to monitor wind speed is called an anemometer. You have
undoubtedly seen these in home weather stations and at the top of boat masts-three
little cups spinning in the breeze. One brand produces 2.94 millivolts for each mile
per hour of wind speed. With this model, if you measure the wind speeds from 0 to
100 mph, you will expect the anemometer to produce from 0 to 294 millivolts. If the
signal-conditioning amplifier transforms the transducer's output to a range of 0 to 5
volts (that is, 0 volts from the transducer equals 0 volts going into the AID converter;
294 millivolts from the transducer equals 5 volts into the converter) and the wind is
blowing at 50 mph, then the transducer produces 14 7 millivolts and the AID converter
receives 2.5 volts. If the integer output of the AID converter ranges from 0 to 255,
then the output with a 50 mph wind will be 127. With your Macintosh connected to
the converter, you can have a BASIC program ask the converter for the output of the
channel monitoring the anemometer, and the response will be 127. The program
would presumably include a formula that multiplies the response from the converter
by 0.3921568 (100 mph divided by 255 steps) in order to compute the speed of the
wind. Once the multiplication is done, the Mac will print on its screen that the wind
speed is 49.8039 miles per hour. The slight inaccuracy in this conversion is due to the
maximum resolution possible with this particular converter.

Most AID converters currently on the market offer resolution in the range of 8 to
16 bits. This number is the number of data bits used to send the value of the converted
voltage to your computer, and determines its highest possible degree of accuracy. Fig
ure 16-2 shows you how the data is passed, and the precision provided by different
numbers of bits. You can see that if the converter can pass 8 bits of information, it is
capable of passing a number between 0 and 255. With the signal-conditioning ampli
fier properly balanced to the full range of values you want to measure, the lowest value
you want to measure should correspond to a 0, and the highest to a 255.

Remembering that the output of the converter is always a whole number (an in
teger), each step in the range between the highest and lowest numbers returned by
the transducer/signal-conditioning amplifier/converter combination is determined
according to the following formula:

0 (highest value - lowest value) ne measurement step = _ ____,.___ ________ _
(2 " number of bits of resolution)

Chapter 16: Introduction to Data Acquisition and Control 343

+----16-bit resolution----------------------

-----12-bit resolution-------------___.

------ 8-bit resolution-----

13276811628418rn214096 204811024 I 512 I 256 I ! 128 I 64 32 16 I 8 I 4 I 2 I 1

L8-bit allows numbers from 0 through 255-+1

12-bit ru1ow. numb"' fr~ 0 through 4095 ' ::_:.

+--------16-bit allows numbers from 0 through 65535---------

Figure 16-2. Bits passed

As an example, if you want to measure temperatures that range from 32 to 160 de
grees-a convenient range of 128 degrees-the minimum temperature variation an
8-bit converter is capable of distinguishing is:

(160-32)
One measurement step = = 0.5 degrees per step

256

In other words, each degree measured by the transducer is equivalent to a change of
two steps in the number returned by the converter. If you were to switch to a 12-bit
converter, the formula would be:

(160-32)
One measurement step = = 0.03125 degrees per step

4096

So each degree measured by the transducer is equivalent to a change of 32 steps in
the number returned by the converter.

In the wind-speed example, if we were measuring a wind speed of 50 mph (cor
responding to a level of 2.5 volts input to the AID converter and output of half the

344 SECTION V: DATA ACQUISITION AND CONTROL

range of the converter), the following table shows the increase in accuracy that accom

panies greater resolution:

Minimum Resulting
Resolution measurement AID converter measurement

(bits) (mph per step) output (mph)

8 0.392 127 48.8039
12 0.0244 2047 49.9756
16 0.001525 32767 49.9984

Of course, in all such measurements it is important to remember that you can't
expect the answer to be any more accurate than the least accurate element in the
chain of measurements and computations that leads to it. The weakest element in
measurement systems is usually the transducer: Unless you are willing to spend quite
a bit of money, when the readout on your Mac says the wind is blowing at 49.9756
mph, you had better settle in your mind for "about so:'

Another factor that can affect the accuracy of the answer is the sampling rate of
the AID converter. The maximum sampling rate is determined by several things-a
major one being the time required by the AID converter to actually convert the input
voltage to an output number, which ranges from about 10 microseconds up to about 1
second for converters I have investigated. The baud rate of the communication link
between the converter and computer, and the speed and efficiency of the computer
program also affect overall system performance. A high sampling rate is obviously im
portant when measuring something that H uctuates fairly rapidly in value, such as the
human voice, than when measuring something relatively stable, such as temperature.
Another advantage of a high sampling rate is that your Macintosh can compute the
average value during each I-second time period, based on several hundred samples,
rather than having to rely on the value at a precise instant in that time period, which is
what you get with one sample.

There are many devices that can be hooked to the Macintosh to allow it to moni
tor or control external events. As discussed in Section III, practically anything de
signed to be connected to a serial port that complies with the RS-232C standard can
also be connected to one of the Macintosh serial ports, which follow the RS-422 stan
dard. Beyond the actual connection, there is very little standardization, either in what

Chapter 16: Introduction to Data Acquisition and Control 345

the devices do or how they do it. Some have built-in software that determines the type

of event they can monitor; others are more general in nature, simply converting a sig

nal from the sensor and passing it along to the Macintosh. In the latter case, a program
must be loaded into the Macintosh to match the input from the sensor to an appropri

ate formula to compute temperature, wind speed, widgets per minute on the assembly
line, or whatever the particular sensor is monitoring.

Many AID converters have been built up into systems that offer more than sim
ply analog-to-digital conversion. They often monitor digital inputs, which allows them

to inform you when the water or temperature exceeds a certain level, or when a bur
glar breaks through your back door. Many allow your computer to close and open relay

contacts built into the converter, in order to turn on and off electrical devices, such as
lights, motors, heaters, and sirens.

Chapter 17 describes a specific commercially available converter, the ADC-1
from Remote Measurement Systems, and develops a BASIC program to communicate
with it, evaluate the information received, and produce an output. This particular

program monitors temperature, but with minor changes it could just as easily monitor
the security of your house, the energy consumption of your company, the soil condi

tions in your garden, or the processes that go into making a product. And monitoring

is only one side of the coin: A few more lines of BASIC program and your Macintosh
could turn on an alarm, shut off the air conditioning, water your garden, or waylay a
widget that doesn't meet specifications.

Chapter 18 describes the HBC-1, a low-cost AID converter that can be built by
anyone with a little experience assembling electronic kits-or a sense of adventure

and develops a program to communicate with it. This program uses the HBC-1 to mea
sure a voltage, and displays the result on the Macintosh screen as a digital readout, a
bar chart, and a conventional voltmeter dial.

If the description of the HBC-1 catches your interest, you can turn to Appendix C
for technical details, schematics, and assembly instructions. You will find additional
information about data acquisition and control in the books and magazines listed in
the following bibliography.

346 SECTION V: DATA ACQUISITION AND CONTROL

I Bibliography I
Analog Devices, Inc. Analog-Digital Conversion Handbook. 1976.

Carr, J.J. Microcomputer Interfacing Handbook: AID and DIA. Tab Books, Inc., 1980.

Ciarcia, S. "Analog Interfacing in the Real World." BYTE, February 1985.

Ciarcia, S. "Control the World! (Or at Least a Few Analog Points):' BYTE,
September 1977.

Englemann, B. and M. Abraham. "Personal Computer Signal Processing:' BYTE,
Aprill984.

Garrett, P. Analog 110 Design. Reston Publishing, 1981.

Genet, R.M., L.J. Boyd, and D.J. Sauer. "Interfacing for Real-Time Control:'
BYTE, April 1984.

Hallgren, R. "Putting the Apple II Work." BYTE, April 1984.

Hnatek, E. A Users Handbook of DIA and AID Converters. Wiley-Interscience,
1976.

Hybrid Systems Corporation. Digital-to-Analog Converter Handbook. 1970.

Sheingol, D. Transducer Interfacing Handbook: A Guide to Analog Signal
Conditioning. Analog Devices, Inc.1980.

VandenHeede, T. M. "AID Conversion Brings the Real World to the Personal
Computer." Personal Computing, June 1982.

Wyss, C. "Planning a Computerized Measurement System:' BYTE, April 1984.

The ADC-1 Chapter 17

Since the purpose of this chapter is to give a few examples of what a BASIC program

can do with the information provided by a monitoring device, rather than to teach you
about all such devices, I have picked one very flexible, general-purpose device on

which to base my program. Later in this chapter I will describe a few other devices
and tell you how they differ from this one. The device I have chosen is the ADC-1,

manufactured by Remote Measurement Systems, 2633 Eastlake Avenue East, Seattle,
WA98102.

I Converter features I
Besides the fact that the manufacturer was willing to loan me one and help me

understand it, I chose the ADC-1 because it has the following features:

I Sixteen analog inputs capable of measuring varying voltages.

I Analog-signal resolution of 12 bits.

I Optional instrumentation amplifier.

I Four digital inputs capable of sensing an on/off condition.

I On/off control of six outputs to operate external devices.

I Line carrier control.

I A computer link that is compatible with RS-232 devices.

I Ease of control by a BASIC program.

I Relatively low cost.

347

348 SECTION V: DATA ACQUISITION AND CONTROL

On the chance that some of these features are as meaningless to you as they were to
me the first time I read about them, I will explain them one by one.

l Analog inputs I
Each analog input to the ADC-1 can convert the varying voltage produced by a

transducer monitoring some real-world condition, such as temperature or amount of
electricity consumed, to an integer number the Macintosh can understand. This al
lows your computer to track changes in the value being monitored, and compute the
rate of change or some other value, such as a projected electrical bill based on the cur
rent rate of consumption. Conditions typically monitored by this section of the ADC-1

are speed, temperature, distance, light level, sound, electrical current, pressure, and
radioactivity.

Although the ADC-1 has sixteen channels, it monitors only one at a time-and
waits to do that until you tell it, via the computer program, which channel you want
checked. This is a form of multiplexing that is common to most multi-channel AID

converters.

l Resolution I
The concept of resolution was fairly well covered in the last chapter. The 12-bit

resolution of the ADC-1 puts it about mid-range in accuracy.

I instrumentation amplifier I
The instrumentation amplifier is an optional add-on used to amplify extremely

low-level signals from devices such as thermocouples, which typically produce 40
microvolts per degree measured.

l Digital inputs I
As discussed in other chapters, the Macintosh performs its internal manipula

tions of letters and numbers by first converting them to binary digits (bits). Bits are
always in one of two states, usually represented by such mutually exclusive terms as
on or off, 1 or 0, true or false, yes or no, and plus or minus. The conditions reported by
the digital-input section of the ADC-1 are also mutually exclusive: It tells you that a
switch is in one of two states-either open or closed. Sensors typically connected to

Chapter 17: The ADC-1 349

the digital inputs are thermostatic switches, photoelectric switches, magnetic con
tacts, relays, pressure switches, mechanical counters, vibration sensors, and water
level switches. When a sensor detects the absence or presence of the condition it is
monitoring, it notifies the ADC-1 by opening or dosing the connection between itself
and the ADC-1.

The events that can be monitored by the four digital inputs are determined more
by your reason for monitoring than by the event being monitored. If you must know a
precise value at every moment, then you have to use an analog input, but if you really
only have to know if a certain value has been passed, the digital inputs will work fine.
Typical uses for digital monitoring are turning the heater on when the temperature
drops below a set level, turning the lights on when the light level drops to a certain
point, sounding an alarm if a window or door is opened, calling you at home if the
electricity goes off at your cabin. In each of these cases, a yes/no status is adequate.
You don't care how far above or below the critical point the temperature or light is; it is
when the critical point is passed that the necessary action must be taken. Likewise,
you don't care if a burglar opens your door a foot or a yard, or leaves it open for a sec
ond or all day-you just want to know if the door is open when it shouldn't be.

I Controlled outputs I
The six controlled outputs are switches that your Macintosh can be programmed

to turn on or off by sending a signal to the ADC-1. These switches can be used, either
directly or through a relay, to control other devices, such as a motor, lights, an alarm,
or the heater for your hot tub.

I Line carrier control I
Line carrier control is an interesting and easy method of controlling electrical

devices around a building without having to run control wiring to them. This is ac
complished by placing a coded high-frequency control signal on the AC power line
that supplies voltage to the electrical outlets in the building. This signal has no effect
on the equipment you normally plug into these outlets (including your computer), but
line-carrier receivers, which you can plug or wire into the house wiring, can decode
the signal and react to specific instructions to open or close a switch. Line carrier re
ceivers are marketed under a variety of names-the most common is BSR-and
come in configurations designed to control almost anything you can imagine.

350 SECTION V: DATA ACQUISITION AND CONTROL

This feature lends itself nicely to home-control projects, such as automatically
turning lights or appliances on and off at certain times or in response to certain situa
tions (as when someone walks into the room).

I The communication link I
The communication connection on the ADC-I, though not strictly in keeping

with RS-232 standards, has the essentials where expected on pins 2, 3, and 7 (trans
mitted data, received data, and ground) of its DB-25 connector. Communication be
tween the Mac and the ADC-I is just like communication between the Macintosh and
a modem or another computer. Figure 17-1 shows the wiring diagram for a cable be
tween the Macintosh communication port and the ADC-I.

ADC-1 Macintosh
DB-25 connector DB-9 connector

1 1
Transmitted data 2 2
Received data 3 3 Ground

4 4
5 5 Transmitted data
6 6 See note

Ground 7 7
8 8

6-25 volts DC 9 9 Received data

25

NOTE: Pin 6 on the Mac supplies 12 volts DC and seems to power the ADC-1 nicely. How

ever, there is a limit to the amount of power available here to drive relays and other devices
that might be connected to the ADC-1, so you may want to power it from a battery or an ex

ternal power supply. This also avoids the possibility of damaging the Mac by connecting the
power line incorrectly.

Figure 17-1. Wiring for the ADC-I to Mac cable

Chapter 17: TheADC-1 351

I BASIC control I
One of the nicest features of the ADC-I is that it is not devoted to any particular

task; it is a general-purpose box, under the control of your computer. You determine
what it monitors by connecting transducers, and how the retrieved information will
be interpreted by writing a program - in our case in BASIC, though almost any other
language would also serve the purpose. The controlling program can send commands
out the communication port to the ADC-1, which acts on them. A response is sent by
the ADC-I, received at the Macintosh modem port, and dealt with by the program,
usually by either displaying it on the screen or entering it into a formula.

As you will see in the sample program we develop in this chapter, the portions of
the program that actually communicate with the ADC-I consist of a few short sub
routines. The remainder of each program is devoted to displaying or manipulating the
information provided by the ADC-I.

I The price I
I realize that "price" is not a technical term that is unfamiliar to you, but it is a

pertinent factor in determining the feasibility of using your Macintosh to water your
lawn or feed your cat. The ADC-I sells for about $500. The transducers that connect to
it range from a few dollars to a few hundred dollars each. This puts it out of the range
of the average person who just wants to type in the BASIC program we'll discuss in a
moment to see if it actually runs. However, if you have a need for a monitoring device,
the ADC-I is relatively low-priced for its usefulness.

If you would like to compare the features of the ADC-I to those of other AID con
verters, the list of manufacturers at the end of this chapter will give you a starting
point (and, of course, you will want to read Chapter 18, which describes an AID con
verter you can build). Most converters that can be connected to a computer will work
with the Macintosh, and can be controlled by a simple BASIC program such as the fol
lowing one, which plots the temperature.

I A program to plot temperature I
Both this program and the program in the next chapter were originally written

in Microsoft BASIC 1.0 by Keith Ronnholm of Remote Measurement Systems and

352 SECTION V: DATA ACQUISITION AND CONTROL

Rob Spencer, a biochemist in Toronto. I converted them to BASIC 2.0 and added a
simulation routine-a low-cost method used to see the display produced by the con
verter without having to actually buy or build one. This first program, which plots the
temperature and displays it as shown in Figure 17-2, is capable of communicating
with the ADC-1, but has an extra subroutine to fake a response if you don't have the
control unit.

The temperature line is plotted as if there were a pen at the right edge of the plot
area. Each new reading is plotted at that point, and then the plot area scrolls to the
left. If the reading is above or below the specified plot-range, the plot area scrolls
down or up to keep the points plotted within the area, and the maximum and mini
mum temperature labels are adjusted accordingly. The scroll command is new, so I'll
discuss it in detail when we come to it. The complete program is listed in Figure 17-15,
but as usual I'll take it a chunk at a time.

s Oh~ Edit S(H!r< h Run Windows

CURRENT ADC-1 TEMPERATURE IS 75.8

80

.
. . .

72

Figure 17-2. The temperature-plot display

(Restart I Scale

... ..

Chapter 17: The ADC-1

'*
'* Initialize variables and open communication port.
'*

CLEAR , 9000, 3000
Initialize Variables:

false = O : true = NOT false
simFlag = true
timeStep = 15
baudRate$ = "9600"
maxTemp = 80 : minTemp = 72
top = 55 : left = 40 : bottom = 280 : right = 490
xValue =right - 1
response = 2980
RANDOMIZE TIMER
chnl = 24
IF NOT simFlag THEN GOSUB OpenCom

Figure 17-3. The Initialize Variables routine

I initializing the variables I

353

'for communication port
'max and min temperatures

'borders of plot area
'horizontal point to plot

'initial number for simulation routine
'reseed random # generator
'ADC-1 internal temp sensor

'open port if not simulating ADC-1

The first section of this program, shown in Figure 17-3, initializes most of the
variables used in the program and, if necessary, opens the communication port.

Notice the variable simFlag, near the top of this section. The true/false state of
this variable determines whether the program opens the communication port and ex
pects to get information from the ADC-1, or simulates this information with the Siml
subroutine. The initial minimum and maximum temperatures and the dimensions of
the plot area are also listed here, so someone running the program can edit a few
items and totally change the appearance of the display. You will notice as we get into
the program that everything displayed on the screen is placed relative to the plot
area, so as the plot area is changed, so are the labels, buttons, and the plotted points.

I Opening the communication port I
If you are running this program with the ADC-1 connected, and therefore have

simFlag set to false, the OpenCom subroutine in Figure 17-4 (on the following page) is
used to open the communication port and Hush the input buffer.

354 SECTION V: DATA ACQUISITION AND CONTROL

'*
'*Communication port is opened only if not simulating ADC-1.
'*
OpenCom:

OPEN "com1 :"+baud Rate$+", n, 8, 2" AS #1
garbage$= INPUT$(LOC(1), 1)
RETURN

Figure 17-4. The OpenCom subroutine

'flush buffer

The ADC-1 will communicate with the Macintosh at baud rates up to 19200, but
each baud rate requires a different switch setting on the ADC-1.

I initializing the display I
The next section, shown in Figure 17-5, opens a window and then draws the out

line of the plot area and prints the labels around it.
The LINE statement at the bottom of this section creates the frame around the

plot area by drawing a box from the top left corner to the bottom right corner, using

'*
'*Open window and create labels, buttons, and plot area.
'*
Initialize Display:

WINDOW 1,, (1, 20) - (512, 342), 2

'*
'* Position buttons and labels relative to plot area.
'*
BUTTON 1, 1, "Restart", (right - 140, top - 25) - (right - 80, top - 1 O), 1
BUTTON 2, 1, "Scale", (right - 60, top - 25) - (right, top - 10), 1
MOVETO left, top - 30
PRINT "CURRENT ADC-1 TEMPERATURE IS";
GOSUB PrintTemps
LINE (left, top) - (right, bottom), 33, b 'frame plot area

Figure 17-5. The lnitializeDisplay routine

Chapter 17: The ADC-1

'*
'* Program returns here if Restart or Scale buttons clicked.
'*
Start New Plot:

degPerPixel = (maxTemp - minTemp) I (bottom - top)
LINE (left + 1, top + 1) - (right - 1, bottom - 1), 30, bf
mark=TIMER
OBSCURECURSOR

Figure 17-6. The StartNewPlot section

355

'degrees per pixel
'clear plot area

'set start time
'hide cursor

the values of top, left, bottom, and right provided in the initialization section. Again,
notice that the placement of everything else is relative to this plot area.

The three lines in the StartNewPlot section, shown in Figure 17-6, are really the
tail end of the lnitializeDisplay section; the extra label is added to provide a place to
break into the initialization routine when plotting is restarted in the middle of a plot.

First, a new variable, degPerPixel, is defined to express the relationship between
the temperature range and the height of the plot area. Then the LINE statement cre
ates a filled box in white. Since the dimensions of the box are one pixel less than the
plot area all the way around, this box effectively erases the plot area. The program
places a time-mark on the plotted line every 15 seconds (or whatever other time
period you specify), so se.tting mark equal to TIMER in the third line defines the start
ing time for the current plot. If you look through this section, you will find that the
only thing you haven't previously bumped into is the OBSCURECURSOR ROM call in
the last line. This call makes the cursor disappear until the mouse is moved. (Another
ROM call that gets rid of the cursor is HIDECURSOR; the difference is that when you
use HIDECURSOR, the cursor stays invisible until the SHOWCURSOR call is used.)

The next section, shown in Figure 17-7 on the following page, feeds the raw data
returned by the ADC-1 (or the simulation subroutine) through a formula to convert to
the units being plotted-in this case degrees Fahrenheit-and then checks the re
sult against the range. If the point is outside the range, the plot area is scrolled up or
down and the range adjusted. The point is then plotted and the plot area is scrolled to
the left one pixel, in preparation for plotting the next point.

The formulas in this section are based on an ADC-1 channel with 12-bit resolu
tion. The first line of this section jumps either to a subroutine that reads the internal

356 SECTION V: DATA ACQUISITION AND CONTROL

'*
'* Convert raw data returned to temperatures, and display.
'*
Crunch Data:

IF simFlag =true THEN GOSUB Sim1 ELSE GOSUB SndChnl
deg Kelvin = response I 1 O
degFahr = (1.8 * (degKelvin - 273.16)) + 32
MOVETO left+ 210, top - 30
PRINT USING "###.#"; degFahr;
IF degFahr <=min Temp THEN dir = -1 : GOSUB ScrollVert
IF degFahr >= maxTemp THEN dir = 1 : GOSUB ScrollVert
yValue = bottom - (degFahr - minTemp) I degPerPixel
PSET(xValue, yValue)
SCROLL (left+ 1, top+ 1) - (right - 1, bottom - 1), -1, 0

'degrees Kelvin
'degrees Fahrenheit

'print temp
'adjust range
'adjust range

'compute Y-value
'plot it

IF TIMER = mark+ timeStep THEN GOSUB TimeMark
event= DIALOG(O)
IF event <> 1 THEN GOTO CrunchData
butClick = DIALOG(1)

'check time
'see if button has been clicked

'continue plotting if no click

IF butClick = 1 THEN GOTO StartNewPlot 'restart

Figure 17-7. The CrunchData routine

temperature sensor in the ADC-1 and returns a value or to one that randomly gener
ates a typical value. Either way, the value returned (the variable response) is an in
teger between 0 and 4095. We will look at the SndChnl and Siml subroutines after we

work our way through the rest of the program.
Let's assume, for the moment, that the temperature we want to plot is within the

proper range, so the program is not diverted to the ScrollVert subroutine (I will come
back to this subroutine after we plot a point and scroll to the left.) The statement that
actually plots the point is:

PSET(xValue, yValue) 'plot it

which plots a point at the (x,y) coordinates represented byxValue and yValue. The full
generic syntax for this statement is:

PSET [STEP] (x,y)[, color]

Chapter 17: The ADC-1 357

If the STEP option is used, the values of the x and y coordinates are considered to be

relative to the current pen position; otherwise they are absolute values in the current
window. If the color option is omitted, the point is plotted in black (color 33). This is

the only difference between PSET and PRESET, which plots in white if the color op
tion is not included.

In this program, the x coordinate is always one pixel to the left of the right edge
of the plot area, and they coordinate is determined by the formula:

yValue =bottom - (degFahr - min Temp) I degPerPixel 'compute Y-value

After the point is plotted, the SCROLL statement is used to move the line to the
left one pixel. The syntax for the SCROLL statement is:

SCROLL rectangle, delta-x, delta-y

The variable rectangle defines an area in the usual (xl, y 1) - (x2, y2) format, and delta-x
and delta-y are distances, in pixels, to scroll. Positive values of x and y scroll to the
right and down; negative values scroll to the left and up.

I had a little trouble understanding the concept behind the SCROLL statement
the first time I used it. For some reason I assumed that the entire rectangle would

scroll delta-x or delta-y pixels. This is not the case. The rectangle variable defines the

area on the screen affected by the scroll statement, but that area stays exactly where it
is. Only the image within rectangle is moved. The portion of the image that moves out

of rectangle disappears and the area of rectangle uncovered by moving the image is

filled with the background pattern.
After the plot area is scrolled to the left, TIMER is checked to see if 15 seconds

have elapsed since the last time the variable mark was set. If this is the case, then the
TimeMark subroutine, shown in Figure 17-8 on the following page, is called to place a
scale on the plot line. Time Mark resets the value of mark to the current time and then
draws a vertical line across the plot line, with a tick mark at every degree step.

Let's go back to CrunchData and have a look at what happens if the monitored

temperature moves outside the range defined by maxTemp and min Temp. After each
reading is converted to degrees Fahrenheit, it is compared to the minimum and max
imum temperature the plot area will display. If the temperature is less than or equal to

358 SECTION V: DATA ACQUISITION AND CONTROL

..
'* Draw time-mark and scale line . ..
Time Mark:

mark=TIMER
MOVETO xValue, top + 1 : LINETO xValue, bottom - 1
degreeStep = (bottom - top) I (maxTemp - minTemp)
FOR yMark = top TO bottom STEP degreeStep

MOVETO xValue, yMark
LINETO xValue - 2, yMark

NEXT
RETURN

Figure 17-8. The TimeMark subroutine

the minimum temperature, then the variable dir is set to -1 to indicate that we need
to scroll up. If the temperature is greater than or equal to the maximum temperature,
then dir is set to 1. Either way, we then call the ScrollVert subroutine, which is shown

in Figure 17-9.
This routine computes how much the temperature exceeds the minimum or

maximum, by subtracting degFahr from either minTemp or maxTemp depending on
the value of dir: The difference is increased by one to make sure there is at least a little

..
'* Move screen and adjust range if range exceeded .
••
ScrollVert:

IF dir = 1 THEN xTemp = maxTemp ELSE xTemp = minTemp
excess = INT(ABS(xTemp - degFahr) + 1)
maxTemp = maxTemp + excess * dir
minTemp = minTemp + excess * dir
pixToScrol = excess I degPerPixel
SCROLL (left + 1, top + 1) - (right - 1, bottom - 1), 0, pixToScrol * dir
GOSUB PrintTemps
RETURN

Figure 17-9. The ScrollVert subroutine

Chapter 17: The ADC-1 359

scrolling on small over-ranges. The INT function is used in computing excess to avoid
fractional values for maxTemp and min Temp.

The number of pixels to scroll is determined by dividing the number of degrees
of excess temperature by the number of degrees represented by each pixel:

pixToScrol =excess I degPerPixel

The SCROLL statement then uses minus pixToScrol to move the plot area down, and

positivepixToScrol to move it up.
Other than the subroutine that provides the raw data (SndChnl or Siml) we have

covered everything going on in the CrunchData section. You may have noticed that
only one point is plotted during the pass through this section. This is obviously part of
a loop that has to be repeated for each pixel plotted. The condition that returns the
program to the top of the loop is tested for in the last four lines of CrunchData:

event = DIALOG(O)
IF event <> 1 THEN GOTO CrunchData
butClick = DIALOG(1)
IF butClick = 1 THEN GOTO StartNewPlot

'see if button has been clicked
'continue plotting if no click

'restart

Checking DIALOG(O)'each time through the CrunchData loop is an alternative to
formal dialog-event trapping with an ON DIALOG GOSUB ... statement. If a button
has been clicked since the last time DIALOG(O) was checked, the program falls

through to the next section of code; otherwise it returns to the top of CrunchData.
You have been through the process of creating edit fields and retrieving the en

tries enough times that there should be no surprises in the next section, CreateBox,

shown in Figure 17-10 on the following page. After retrieving the information in the
edit fields, this section sends the program back to StartNewPlot, which is the re-entry
point in the display initialization routine.

360 SECTION V: DATA ACQUISITION AND CONTROL

'*
'* Create dialog box with two edit fields and OK button.
'*
Create Box:

WINDOW 2,, (200, 180) - (475, 280), -4
MOVETO 8, 12 : PRINT "Edit minimum and maximum temperatures"
MOVETO 30, 40 : PRINT "Maximum"
MOVETO 30, 70 : PRINT "Minimum"
BUTTON 3, 1, "OK", (220, 80) - (260, 95), 1
EDIT FIELD 1, STR$(maxTemp), (100, 30) - (180, 45), 1, 2
EDIT FIELD 2, STR$(minTemp), (100, 60) - (180, 75), 1, 2
edFld = 2
event= 0
WHILE event <> 1 AND event <> 6

event= DIALOG(O)
'wait for new values

IF event = 2 THEN edFld = DIALOG(2) : EDIT FIELD edFld
IF event = 7 THEN edFld = (edFld MOD 2) + 1 : EDIT FIELD edFld

WEND
maxTemp = VAL(EDIT$(1))
minTemp = VAL(EDIT$(2))
WINDOW CLOSE 2
GOSUB PrintTemps
GOTO StartNewPlot

Figure 17-10. The CreateBox routine

I Communicating with the ADC-1 I

'new maximum temperature
'new minimum temperature
'close window after editing

'start monitoring again

Most multiple-channel AID converters, the ADC-1 included, do not monitor and
convert all their channels all the time. They wait until a request for information about

a specific channel is received and then they check that channel and get the retrieved
information ready to send to the computer. Checking the channel and converting the

measured analog information to digital information takes a little time (very little
usually measured in milli- or microseconds). When the converted data is ready, it is
stored until the computer makes another request, and then it is sent to the computer.
The specifics of this communication exchange vary from converter to converter; a
typical exchange goes like this:

I Converter waits for request.

I Computer sends channel request.

Chapter 17: The ADC-1

I Converter responds with whatever garbage is in its output buffer.

I Computer reads its input buffer to get rid of garbage reply.

I Converter converts measured information to digital and waits for
next request.

I Computer sends request for value.

I Converter responds with value.

I Computer retrieves value from its input buffer.

361

With slight variations, this general scheme is common to many converters. The only

variation on the part of the ADC-1 is that, since it offers 12-bit resolution but passes in

formation to the computer eight bits at a time, it requires two value requests to get the
full value. The first request produces the high eight bits, and the second the low eight.

Figure 17-11 shows the routine used to send a channel number to the ADC-1, and
the Reply routine that is used to get the response to the channel request and the high

and low-byte requests.
Communicating with the converter really doesn't differ from communicating

with a modem. We do have to get a little tricky with the high and low bytes retrieved.

'*
'* Send channel request.
'*
SndChnl:

'*

PRINT #1, CHR$(chnl);
GOSUB Reply

'*Get reply.
'*
Reply:

WHILE LOC(1) = 0 : WEND
retumedData = ASC(INPUT$(1, 1))
RETURN

Figure 17-11. The SndChnl and Reply subroutines

'tell ADC-1 which channel to check
'garbage response

'wait for response
'convert to ASCII

362 SECTION V: DATA ACQUISITION AND CONTROL

'*
'* Request high byte.
'*
ReqHiByte:

PRINT #1, CHR$(161);
GOSUB Reply
returnByte = returnedData
IF (returnByte AND 128) <> 0 THEN ReqHiByte
hiByte = returnByte AND 15

Figure17-12. TheReqHiByte routine

'get it

'bit 7 has to be o
'strip bits 4 through 7 (of 0-7)

If you think back to the explanation of 8-, 12-, and 16-bit resolution in the last chapter,
you will recall that 12-bit resolution does not use all eight bits of the high byte. Figure
17-12 shows how we get rid of the unwanted bits.

The number sent to the ADC-1 by the PRINT statement determines the kind of
information the ADC-1 sends back. There is a total of 256 codes-the ASCII numbers
from 0 through 255-and each one has its own meaning to the ADC-1. The code 161
retrieves the high byte without causing the converter to take any new action. There
are other codes that would return the same information, but would simultaneously set
or reset one of the digital channels.

We need only the lower four bits of the returned byte in our temperature cal
culation, but before stripping them out, the program checks bit 7 (the high bit-re
member that they are numbered from 0 through 7). The ADC-1 sets bit 7 to 0 when it
is returning a high byte. Confirming this bit confirms that the ADC-1 has had time to
properly convert the channel we requested. The fact that bit 7 is a 0 is confirmed by
ANDing the high byte with 128, which is 10000000 in binary notation. As you recall,
these numbers are ANDed one bit at a time, so any number with a 0 as bit 7 will pro
duce a 0 when ANDed with 128. The four bits we don't want-bits 4 through 7 -are
set to 0 by ANDing the high byte with 15, which is 00001111 in binary notation.

The low byte is requested in much the same manner-by sending code 145-
and then the high and low bytes are combined, as shown in Figure 17-13.

The variable response, which we use in the CrunchData section to compute the
temperature, is set equal to the low byte plus 256 times the high byte. Multiplying by
256 converts the high byte to the upper byte of a 2-byte number, which it was in
tended to be all along.

Chapter 17: The ADC-1

'*
'* Request low byte.
'*
ReqloByte:

PRINT #1, CHR$(145);
GOSUB Reply
loByte = returnedData

363

response = loByte + 256 * hiByte 'scale hiByte and add to low byte
IF (returnByte AND 16) = O THEN response = -response 'checks bit 4 for sign
RETURN

Figure 17-13. The ReqLoByte routine

All that remains is the simulation routine, which allows you to demonstrate this
program without hooking your Macintosh to an analog-to-digital converter. As shown
in Figure 17-14, this routine starts with the value of response (2980) specified in the
lnitializeVariables section. Each time through the simulation routine a value, ran
domly set to either + 1 or -1, is added to response, so that the plotted point will fluctu
ate randomly, but gently.

I Modifications to the program I
You have to change only the formulas in the CrunchData section, and a few la

bels, to be able to use this program to plot something other than temperature. Re
member that an AID converter with 12-bit resolution will return a value between 0
and 4095, regardless of what it is monitoring. If the transducer is properly matched to

'*
'* Simulate response.
'*
Sim1:

response = response + ((-1) 11 INT(2 * (RND(1) + 1)))
RETURN

Figure17-14. The Siml subroutine

364 SECTION V: DATA ACQUISITION AND CONTROL

the condition being monitored and to the ADC-I input, that range will represent the
full range being monitored.

As an experiment, you might change the values of top, left, bottom, and right, to
see the reason for making everything relative to these values. A few experiments re
quiring a little more effort are:

I Plotting a second line.

I Switching the point of the pen to the left edge of the plot area and
scrolling right.

I Keeping track of the highest and lowest values plotted.

I Adding some bulletproofing to catch errors in the edit-field entries.

I Adding a delay so the program plots points at specific time intervals.

This is a fairly simple program, but it could easily be expanded to match your
specific needs. I doubt that you will want to devote your Macintosh to the full-time
monitoring of the temperature, but it could easily monitor your home's security while
you are away, or your energy consumption. The complete program listing follows at
the end of the chapter, in Figure 17-5.

I Other A/D devices I
As I said earlier, almost any device designed to plug into an RS-232 port can be

connected via a modified cable to the Macintosh RS-422 port. The following analog
to-digital converters should work with the Macintosh, and I am sure their manufac
turers would be happy to send additional information.

The Sensorbus

Transensory Devices, Inc.
44060 Old Warm Springs Blvd.
Fremont, CA 94538
(415) 490-3333

Chapter 17: The ADC-1

8232 Data Acquisition and Control System

Starlmck Data Company
P.O. Box24
Newton Lower Falls, MA 02162
(617) 237-7695

PL-1000

Elexor Associates
P.O. Box246
Morris Plains, NJ 07950
(201) 299-1615

WB-31 White Box

Omega Engineering
P.O. Box 4047
Stamford, CT 06907
(203) 359-7700

'*Temperature plotting progam, with simulation
'*

'*
'* Initialize variables and open communication port.
'*

CLEAR I 9000, 3000
lnitializeVariables:

false = 0 : true = NOT false
simFlag = true
timeStep = 15
baudRate$ = "9600"
maxTemp = 80 : minTemp = 72
top = 55 : left = 40 : bottom = 280 : right = 490
xValue =right - 1
response = 2980
RANDOMIZE TIMER
chnl = 24
IF NOT simFlag THEN GOSUB OpenCom

365

'for communication port
'max and min temperatures

'borders of plot area
'horizontal point to plot

'initial number for simulation routine
'reseed random #generator
'ADC-1 internal temp sensor

'open port if not simulating ADC-1

Figure 17-15. The complete temperature-plotting program
more ...

366 SECTION V: DATA ACQUISITION AND CONTROL

'*
'* Open window and create labels, buttons, and plot area.
'*
I nitializeDisplay:

'*

WINDOW 1, , (1, 20) - (512, 342), 2

'*
'* Position buttons and labels relative to plot area.
'*
BUTTON 1, 1, "Restart", (right - 140, top - 25) - (right - 80, top - 10), 1
BUTTON 2, 1, "Scale", (right - 60, top - 25) - (right, top - 10), 1
MOVETO left, top - 30
PRINT "CURRENT ADC-1 TEMPERATURE IS";
GOSUB PrintTemps
LINE (left, top) - (right, bottom), 33, b 'frame plot area

'* Program returns here if Restart or Scale buttons clicked.
'*
StartNewPlot:

'*

degPerPixel = (maxTemp - min Temp) I (bottom - top)
LINE (left + 1, top + 1) - (right - 1, bottom - 1), 30, bf
mark=TIMER
OBSCURECURSOR

'*Convert raw data returned to temperatures, and display.
'*
CrunchData:

IF simFlag =true THEN GOSUB Sim1 ELSE GOSUB SndChnl
deg Kelvin = response I 1 o
degFahr = (1.8 * (degKelvin - 273.16)) + 32
MOVETO left+ 210, top- 30
PRINT USING"###.#"; degFahr;
IF degFahr <= minTemp THEN dir = -1 : GOSUB ScrollVert
IF degFahr >= maxTemp THEN dir = 1 : GOSUB ScrollVert
yValue =bottom - (degFahr - min Temp) I degPerPixel
PSET(xValue, yValue)
SCROLL (left + 1, top + 1) - (right - 1, bottom - 1), -1, 0

'degrees per pixel
'clear plot area

'set start time
'hide cursor

'degrees Kelvin
'degrees Fahrenheit

'print temp
'adjust range
'adjust range

'compute Y-value
'plot it

IF TIMER= mark+ timeStep THEN GOSUB TimeMark
event = DIALOG(O)

'check time
'see if button has been clicked

Figure 17-15. The complete temperature-plotting program (continued) more ...

Chapter 17: The ADC-1

'*

IF event <> 1 THEN GOTO CrunchData
butClick = DIALOG(1)
IF butClick = 1 THEN GOTO StartNewPlot

'* Create dialog box with two edit fields and OK button.
'*
Create Box:

WINDOW 2,, (200, 180) - (475, 280), -4

367

'continue plotting if no click

'restart

MOVETO 8, 12 : PRINT "Edit minimum and maximum temperatures"
MOVETO 30, 40 : PRINT "Maximum"
MOVETO 30, 70 : PRINT "Minimum"
BUTTON 3, 1, "OK", (220, 80) - (260, 95), 1
EDIT FIELD 1, STR$(maxTemp), (100, 30) - (180, 45), 1, 2
EDIT FIELD 2, STR$(minTemp), (100, 60) - (180, 75), 1, 2
edFld = 2
event= O
WHILE event <> 1 AND event <> 6

event = DIALOG(O)
'wait for new values

IF event= 2 THEN edFld = DIALOG(2) : EDIT FIELD edFld
IF event = 7 THEN edFld = (edFld MOD 2) + 1 : EDIT FIELD edFld

'*

WEND
maxTemp = VAL(EDIT$(1))
minTemp = VAL(EDIT$(2))
WINDOW CLOSE 2
GOSUB PrintTemps
GOTO StartNewPlot

'*Subroutines
'*
'*
'*Communication port is opened only if not simulating ADC-1.
'*
OpenCom:

OPEN "com1 :" + baudRate$ + ", n, 8, 2" AS #1
garbage$ = INPUT$(LOC(1), 1)
RETURN

'new maximum temperature
'new minimum temperature
'close window after editing

'start monitoring again

'flush buffer

Figure 17-15. The complete temperature-plotting program (continued)
more ...

368 SECTION V: DATA ACQUISITION AND CONTROL

'*
'* Send channel request.
'*
SndChnl:

'*

PRINT #1, CHR$(chnl);
GOSUB Reply

'* Request high byte.
'*
ReqHiByte:

'*

PRINT #1, CHR$(161);
GOSUB Reply
retumByte = retumedData
IF (retumByte AND 128) <> 0 THEN ReqHiByte
hiByte = retumByte AND 15

'* Request low byte.
'*
ReqLoByte:

PRINT #1, CHR$(145);
GOSUB Reply
loByte = retumedData

'tell ADC-1 which channel to check
'garbage response

'get it

'bit 7 has to be O
'strip bits 4 through 7 (of 0-7)

response = loByte + 256 * hiByte 'scale hiByte and add to low byte
IF (retumByte AND 16) = o THEN response = -response 'checks bit 4 for sign
RETURN

'*
••Get reply.
'*
Reply:

'*

WHILE LOC(1) = 0 : WEND
retumedData = ASC(INPUT$(1, 1))
RETURN

·• Simulate response . ..
Sim1:

response = response + ((-1) " INT(2 * (RND(1) + 1)))
RETURN

'wait for response
'convert to ASCII

Figure 17-15. The complete temperature-plotting program (continued)
more ...

Chapter 17: The ADC-1

..
'* Draw time-mark and scale line . ..
Time Mark:

mark=TIMER
MOVETO xValue, top+ 1 : LINETO xValue, bottom - 1
degreeStep = (bottom - top) I (maxTemp - minTemp)
FOR yMark =top TO bottom STEP degreeStep

MOVETO xValue, yMark
LINETO xValue - 2, yMark

NEXT
RETURN

'* Display temperature range to left of scroll box . ..
PrintTemps:

..

TEXTMODE 1
LINE (2, top - 5) - (left - 2, bottom), 30, bf
MOVETO 2, top + 5 : PRINT USING "###"; maxTemp;
MOVETO 2, bottom : PRINT USING "###"; minTemp;
TEXTMODEO
RETURN

'* Move screen and adjust range if range exceeded . ..
ScrollVert:

IF dir = 1 THEN xTemp = maxTemp ELSE xTemp = min Temp
excess = INT(ABS(xTemp - degFahr) + 1)
maxTemp = maxTemp + excess * dir
minTemp = minTemp +excess * dir
pixToScrol = excess I degPerPixel
SCROLL (left+ 1, top+ 1) - (right - 1, bottom - 1), O, pixToScrol * dir
GOSUB PrintTemps
RETURN

Figure 17-15. The complete temperature-plotting program (continued)

369

The HBC-1 Chapte1- 18

If you are willing to spend a little time tracking down components and hooking them
together, you can build the HBC-1 (Home-Brew-Converter, version 1), a powerful ana
log-to-digital converter, for under $50.

The HBC-1 exists because I wanted a low-cost way for you to try the programs in
this chapter. I would have settled for the crudest of instruments-anything that
would hook the Macintosh to the outside world. But a reasonably thorough search pro
duced nothing. And then I heard about a new AID integrated circuit from Texas In
struments and sent a request for information. This resulted in a call from Gordon
Mills, a linear field application engineer for Texas Instruments, who enthusiastically
offered to design and help me build a converter using TI parts. Our original goal was
to build the cheapest possible converter. I don't know if ours actually was the cheapest
possible, but we did build an H-channel 8-bit resolution converter for about $12 worth
of parts. We then decided that for safety reasons we should isolate the power supply
and the signal lines from the Macintosh. We added a plug-in power adaptor and a reg
ulator circuit, rather than using power from the Macintosh, and optically isolated the
input and output circuits, so that it would be nearly impossible for the converter to
damage the Mac (or vice versa). One thing lead to another and we ended up with the
HBC-1. Our total investment in parts is still under $50, and the machine is both safe
and functional.

The HBC-1 is an inexpensive and flexible device that allows a computer to mea
sure and control a variety of conditions. With the proper transducers it can monitor
wind speed, temperature, light, weight, resistance, voltage, strain, moisture, pres
sure, joystick movement, power consumption, and practically any other measurable

371

372 SECTION V: DATA ACQUISITION AND CONTROL

analog phenomenon. It can also monitor digital levels and decode keys pressed on a

keypad. Here are some significant features of this device:

I Eleven analog input channels, with a twelfth channel that provides a known
output and can be used to test most of the rest of the circuitry.

I Resolution at 8 bits, with the possibility of adding a ninth bit by a process
called dithering.

I Computer control of multiples of seven output channels (7, 14, 21, etc.)

that can latch relays and other low-current devices to control electrical

equipment.

I Powered by a plug-in AC power adaptor (which isolates the power supply
from that of the computer) but draws very little current, so it could easily
be converted to battery power.

I Input and output circuits that are optically isolated from the computer
(under optimal conditions, up to 5000 volts peak), so there is little pos

sibility of voltages monitored or generated by the HBC-1 damaging your
computer (and vice versa).

I Operates at standard computer baud rates through 19.2K baud; with a
different crystal, could operate at the highest BASIC-settable baud rate
in the Macintosh: 57.6K baud. .

I Input and output circuitry easily adapted to the protocols followed by

the Macintosh, the IBM PC, the Commodore 64, and most other popular

computers.

I realize that this is a book about programming, and that building hardware was
probably the furthest thing from your mind when you picked the book up; but this
project is not beyond the abilities of the average person, and there is no need for so
phisticated test equipment to calibrate it. Besides, it can be a lot of fun and save you
money to boot. Appendix C explains how to build the HBC-1 and how it works. Should

you decide not to build the HBC-1, you can still enter and run this program, as it con
tains a simulation routine similar to the one in the program for the ADC-1.

Chapter 18: The HBC-1 373

I A voltmeter program I
The program presented in this chapter, which produces the display shown in

Figure 18-1, was originally written to control the ADC-1. I modified it to control the

HBC-1, but it could easily be switched back to the ADC-1 format by changing the sub
routines that send the channel request to the converter and interpret the response.

The voltmeter program, listed in its entirety in Figure 18-15 at the end of the
chapter, displays the value returned by one channel of a converter in three different

formats: a digital readout, a dial, and a vertical bar chart. I have chosen to call this a

voltmeter, but it could just as easily be measuring ohms, amps, temperature, pressure,

strain, or just about anything else.
Like the previous program, this one has a simulation mode that allows it to run

without being connected to a converter. Since most of the interesting parts of the pro
gram have to do with creating and modifying the display, which is done the same way

uolts
5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Figure 18-1. The voltmeter display

374

GOSUB lnitializeVariables
GOSUB lnitializeScreen

SECTION V: DATA ACQUISITION AND CONTROL

IF NOT simFlag THEN GOSUB lnitializeCommunication

Figure 18-2. Routing the program with GOSUBs

regardless of the converter sending the information, let's first run through the pro
gram in the simulation mode, and then have a look at the changes required to run the
program with the new machine.

The first three lines of the program, shown in Figure 18-2, route the program
through the initialization routines. Of these three initialization routines, the first two
are performed every time the program starts. The third routine is skipped if the pro
gram is in simulation mode, which is indicated when simFlag is set to true.

'*
'* Initialize variables.
'*
Initialize Variables:

DEFSNG a-z
DIM cnv(255)
DIM conChn(11)
true = -1
false= O
simFlag = true
minVolts = 0
maxVolts = 5
range = maxVolts - minVolts
xCntr = 200
yCntr = 180
radius= 100
xEnd = xCntr
yEnd = yCntr
pi= 3.14159
startAngle =-pi I 2
arcAngle =pi
RANDOMIZE TIMER
RETURN

'default for Decimal version is double precision
'converts response to backward binary

'converts channel to backward binary

'are we simulating AID converter?
'lower voltage limit for display
'upper voltage limit for display

'voltage range
'x coordinate of center of voltmeter dial

'y coordinate
'radius

'x coordinate of end of dial
'y coordinate

'used to compute angle of dial
'used for dial

'reseed random number generator for simulation

Figure 18-3. The lnitializeVariables subroutine

Chapter 18: The HBC-1 375

The routine that initializes the variables is shown in Figure 18-3. The comments
explain most of the new variables. You can see that the voltage range (range) is estab
lished here-from min Volts to maxVolts. This range is used in the formula that con
verts the raw data to volts and in the routine that creates the labels on the bar chart.
The variables pi, startAngle, and arcAngle indicate we are going to get involved with
trignometry-these are used to position the needle on the face of the dial.

The dial and bar chart are created by the InitializeScreen subroutine, shown in
Figure 18-4. This subroutine opens a window and prints a little blurb, and then cre
ates the dial, the bar chart, and the labels for the bar chart .

..
'* Initialize screen . ..
lnitializeScreen:

WINDOW 1, , (1, 20) - (512, 342), 2
TEXTFONTO
TEXTSIZE 12
IF NOT simFlag THEN GOSUB Getlnput

••
'* Set up dial.
••
side = radius * 1.3 'half width of rectangle
LINE {xCntr- side, yCntr - side) - {xCntr +side, yCntr + .9 *side), , bf
cntrRad =radius·* 1.1 'radius of center circle
recto/o{O) = yCntr - cntrRad 'getting ready to .. .
recto/o{1) = xCntr - cntrRad 'create the arc .. .
recto/o{2) = yCntr + cntrRad 'used as a .. .
recto/o{3) = xCntr + cntrRad 'dial-face
CALL ERASEARC{VARPTR{recto/o{O)), 95, -190)

..
'* Set up bar chart . ..
grayo/o{O) = &HAASS
grayo/o{1) = grayo/o{O)
grayo/o{2) = grayo/o{O)
grayo/o{3) = grayo/o{O)

Figure 18-4. The Initialize Screen subroutine
more ...

376 SECTION V: DATA ACQUISITION AND CONTROL

span = 2 * cntrRad
top = yCntr - cntrRad
bottom = top + span
left = xCntr + radius + 100
rig ht = left + 40
recto/o(O) = top
recto/o(1) = left
recto/o(2) =bottom
recto/o(3) = right

'*
'* Print numbers along left side.
'*
FOR increment = O TO 1 O

value = bottom - span * increment / 1 O
MOVETO left - 45, value + 4
PRINT USING "###.#"; minVolts + (maxVolts - minVolts) * increment/ 1 O;
LINE(left - 2, value) - (left- 6, value)
NEXT '
LINE(left - 1, top) - (right, bottom), , b
MOVETO left + 2, top - 10
PRINT "volts";
oldBar = bottom
TEXTSIZE24
TEXTMODE 2
MOVETO xCntr - 95, yCntr + 85
PRINT "MacVoltmeter"
RETURN

Figure 18-4. The InitializeScreen subroutine (continued)

The body of the dial is created in two steps: first a black box is filled in with the
LINE statement, and then an arc is erased within the box with the ERASEARC ROM

call. The syntax of ERASEARC is similar to that of ROM calls you have already used to
draw and erase rectangles and ovals:

CALL ERASEARC(VARPTR(rectangle%(0)),startangle, arcangle)

ERASEARC is, as usual, part of a family of ROM calls that also includes FRAMEARC,

PAINTARC, INVERTARC, and FILLARC. Of the bunch, only FRAMEARC actually
draws a curved line; each of the others creates a wedge .

..

Chapter 18: The HBC-1 377

The arc created by this call is actually a segment of the oval that would fit in the
defined rectangle. If you imagine a compass card centered in the rectangle, with zero
degrees at the top as shown in Figure 18-5, startAngle is the compass angle of one
edge of the arc and arcAngle is the number of degrees in the arc. If arcAngle is posi
tive, the arc extends in a clockwise direction from startAngle; if it is negative, it ex
tends in a counterclockwise direction.

The first step in creating the bar chart is defining the pattern that will be used to
fill it. I'm sure that you recognize this gray pattern-&HAA55- from the pattern

generation program in Section II. Once the pattern is set, the dimensions of the plot
area are defined, based on the dimensions of the bar. Values for top, left, bottom, and
right are assigned to rect(0) through rect(3). Those elements of this array that hold top

and bottom-rect(O) and rect(2)-are redefined each time the height of the bar

changes, and the array is used to fill and erase the pattern.
Next a FOR. .. NEXT loop determines where to print the bar-chart labels, and

then computes and prints them. This is quite a bit of work for one little loop. As a final

gesture it tacks on the tick-marks at each label position.

0 radians

11' radians

Figure 18-5. The degrees of an arc

378 SECTION V: DATA ACQUISITION AND CONTROL

'*
'* Compute voltage and update bar chart and dial.
'*
MainLoop:

WHILE true
IF simFlag THEN GOSUB sim2 ELSE GOSUB SndChnl
volts = range * response I 256
fraction = (volts - minVolts) I range

Figure 18-6. Computing the voltage

The only significant things left in this section are the LINE statement, which
frames the plot area, and the implied LET statement that sets the variable oUiBar
equal to bottom (oUiBar =bottom implies LET oUibar =bottom). Establishing the ini
tial value of oUiBar is important, as it determines the bottom of the bar; you will see in
a moment just why this is significant.

After initializing the screen, the program flows into the section labeled Main
Loop (remember, we have set simFlag to true for the time being). Although this is
where the program will be most of the time, the preparation done in the other sec
tions makes the work fairly light here. MainLoop is composed of four short sections
that convert the reading to volts, update the bar chart, print the digital readout, and
update the position of the dial pointer.

Figure 18-6 shows the first MainLoop section, which computes the voltage,
based on the response from the converter or the simulation subroutine. We will look
at the SndChnl subroutine later; Sim2 is shown in Figure 18-7.

'*
'* No converter, so simulate response.
'*
sim2:

response = response + ((-1) " INT(2 * (RND(1) + 1)))
IF response < 5 THEN response = 128
IF response > 250 THEN response = 128
RETURN

Figure 18-7. The Sim2 subroutine

Chapter 18: The HBC-1 379

The simulation routine is set up as though it were a converter with 8-bit resolu

tion, meaning it would return a number between 0 and 255. Since we don't want to go

off-scale, we start with a mid-range value for response and randomly add or subtract 1.

If response gets below 5 or above 250, it is reset to 128.

Back in MainLoop, response is used to compute volts, the value of the voltage

being measured. The formula that computes volts is the standard conversion formula

explained in Chapter 16: the response times the total possible range of responses, di

vided by the possible number of steps from the converter (2 raised to the power of the

number of bits of resolution). The variable fraction is then set equal to a formula that

expresses the voltage as a fractional part of the entire range that can be plotted. This

range is defined in the initialization section to be 5 volts. If the actual voltage mea

sured were 2 volts then fraction would be %, or two fifths of the total range. This frac

tional value is used in the next section of MainLoop, shown in Figure 18-8, to update

the bar-chart display.

To create the bar chart, or modify an existing bar chart, the variable newBar is
set equal to they coordinate of the top of the new bar (bottom -span* fraction). The

value of newBar is then compared to the value of oldBar, which is the top of the cur

rent bar. If the voltage hasn't changed since the last time it was measured, then new
Bar is equal to oldBar and the program skips to the end of MainLoop, bypassing the

update sections entirely. Bypassing the updates if there is no change prevents the dis

play from needlessly flickering as everything is erased and redrawn.

If newBar is less than oldBar, then the voltage must be going up (remember that

newBar and oldBar are pixel locations, which decrease as they move toward the top of

the screen, as opposed to the voltage plot values, which increase as they move up). If
newBar is greater than oldBar, then the voltage must be going down.

'*
'* Place top of bar.
'*
newBar = bottom - span * fraction
IF newBar = oldBar THEN GOTO Skiploop
IF newBar < oldBar THEN GOSUB MoreVolts
IF newBar > oldBar THEN GOSUB LessVolts

Figure 18-8. Updating the bar chart

380 SECTION V: DATA ACQUISITION AND CONTROL

Rather than erase and re-create the entire bar chart each time the voltage
changes, which would take two ROM calls, the program only erases or creates the af
fected portion of the bar chart, which requires only one ROM call. If the voltage is
going up, then a new piece is added to the top of the bar. If the voltage is going down, a
chunk of the top is erased. The MoreVolts and LessVolts subroutines, shown in Figure
18-9, take care of these tasks.

Remembering that rect(O) is the top of a rectangle that is about to be filled or
erased and that rect(2) is the bottom should make it pretty obvious what is going on
here. MoreVolts defines a rectangle that extends from the new voltage down to the old,
and then fills that rectangle with the gray pattern. (rect(l) and rect(3), the two sides of
the bar, never change.) Less Volts sets the top of the rectangle equal to the level of the
old bar, and the bottom equal to the level of the new bar. It then erases the rectangle
from the top of the old bar, leaving the new bar.

The third and fourth parts of MainLoop print the voltage just below the center of
the dial and update the pointer position. These sections are shown in Figure 18-10.

There is nothing tricky about printing the digital readout, but drawing the line
representing the dial pointer requires a little trigonometric magic. First a white line is

'*
'* Define rectangle to show increase in voltage on bar chart.
'*
More Volts:

'*

rect%(0) = newBar
rect%(2) = oldBar
FILLRECT VARPTR(rect%(0)), VARPTR(gray%(0))
RETURN

'* Erase some of bar chart, as voltage has gone down.
'*
Less Volts:

rect%(0) = oldBar
rect%(2) = newBar
ERASERECT VARPTR(rect%(0))
RETURN

Figure 18-9. The More Volts and Less Volts subroutines

Chapter 18: The HBC-1

'*
'* Print digital display.
'*
LINE (xCntr - 50, yCntr + 15) - (xCntr + 50, yCntr + 45), , bf
MOVETO xCntr - 50, yCntr + 45
PRINT USING"##.## V"; volts

'*
'* Place dial pointer.
'*
LINE(xCntr, yCntr) - (xEnd, yEnd), 30
theta= startAngle + arcAngle *fraction
xEnd = xCntr + radius * SIN(theta)
yEnd = yCntr - radius * COS(theta)
LINE(xCntr, yCntr) - (xEnd, yEnd)
oldBar = newBar

Skiploop:
WEND

Figure 18-10. Updating the dial

381

' erase previous line

drawn using the current values of xCntr and yCntr and xEnd and yEnd. This puts the

white line on top of the black dial-pointer line, erasing it. Next we want to draw a new

line from the center of the dial to a point on the perimeter of an imaginary semicircle
just smaller than the face of the dial. Use the SIN and COS functions to determine this

point. Our imaginary semicircle's radius is defined by the variable radius (remember
that the arc we erased to form the dial face had a radius of radius* 1.1) and extends
from -pi/2 radians to pi/2 radians, as shown in Figure 18-11 on the following page.

The sine of theta is equal to a ratio of the opposite side to the hypotenuse (the ra
dius in this case), and the cosine is equal to the ratio of the side adjacent to the hypot
enuse. If you enter this information into the formulas for xEnd and yEnd, and cancel
out the common variable radius, you will find that xEnd is equal to xCntr plus the

length of the opposite side, and yEnd is equal to yCntr minus the length of the adja
cent side. The formula, of course, does the calculation for you whether you understand
it or not, but sometimes it is nice to look at the logic behind the magic.

The trig functions provide the relative distances from the center, in pixels, of the
x and y components of the point at the end of the dial pointer. Since the dial's center is

382 SECTION V: DATA ACQUISITION AND CONTROL

0

adjacent:

-Tr/2 __________, __________ 7r/2

startAngle (xCntr,yCntr) startAngle +arcAngle

6 = startAngle + arcAngle *fraction

if fraction= 3/4, then 6 = 7r/4

xEnd= xCntr+radius * SIN(6)

= xCntr+ radius* opposite I radius

= xCntr+opposite

yEnd= yCntr-radius * COS(6)

= yCntr- radius * adjacent I radius

= yCntr - adjacent

Figure 18-11. Computing the dial-pointer position

not at point (0,0), the x distance is added to xCntr and they distance is subtracted
from yCntr to get the absolute coordinates of the point.

After the line representing the dial pointer is drawn, oldBar is set equal to new
Bar in preparation for the next pass through the loop.

I The real thing I
If you decide to get serious about analog-to-digital conversion, and actually

build the HBC-I described in Appendix C, you will have to add a few more sections to
this program. In order to keep the hardware as simple as possible, we have placed a lit
tle extra burden on the software.

Just as for the ADC-I, you will have to open the communication port to send re
quests and receive responses. Unlike the ADC-I, this converter has 8-bit resolution, so

Chapter 18: The HBC-1 383

the response comes back as one byte. Another difference is that each channel request
triggers the response to the previous channel request. So rather than sending a re
quest and asking for a response, the program sends a request and immediately reads
the response to the previous request. If you want to continuously interrogate the same
channel, as this program and the one in the previous chapter do, then this is no prob
lem: The first response is garbage and the last request is never answered, but every
thing in between is fine. If you are monitoring multiple channels or monitoring one
channel intermittently, then the program will have to keep track of which response
goes with which request.

One more difference-and this one is more significant-and then we will get
on with the program: We have looked, in several of our programs, at the way bytes of
information are stored and communicated as 8-bit ASCII characters. Serial communi
cation, which is what we are doing when we exchange data through the Macintosh
communication port, sends these bytes out in a stream, one bit after another. In our
previous discussions of bits and bytes, we have always pictured a byte as eight bits,
numbered 0 through 7, with the least significant bit (LSB, which is bit O) on the right
and the most significant bit (MSB, which is bit 7) on the left. That is the standard
method of referring to bits in a computer. When a byte is sent out the communication
port, however, the computer normally reverses it, with the MSB going out first and the
LSB last. This is done to accommodate the integrated circuit, called a UART, that is
normally used to receive serial communication in modems, printers, and other de
vices. The HBC-1 doesn't use a UART, so if we simply instructed the computer to send
the byte that we wanted the HBC-1 to receive, it would reverse the byte and the HBC-1

would become confused. We can solve this problem by reversing the byte ourselves
before telling the computer to send it, so when it is again reversed by the computer, it
will be back to normal.

Rather than converting each number on the fly, I stored the converted values for
the 12 channel numbers and the 256 possible responses in DATA statements, and as
part of the communication initialization routine I load them into two arrays: one for
the channel numbers, and the other for the responses. This technique of using a look
up table is usually faster than repeatedly performing the same math for each con
version. Doing the conversion this way involves a little extra work, but it shaved about
10 percent off the cost of the converter, since we avoided the need for an expensive
chip that would have resulted in the same conversion.

384 SECTION V: DATA ACQUISITION AND CONTROL

..
•• Initialize communication if simulation not being used . ..
I nitializeCommunication:

..
••Convert channel numbers 0 - 11 to backward binary . ..
FOR channel = O TO 11

READ conChn(channel)
NEXT

..
••Convert 256 possible values of returned data to backward binary . ..
FOR returnedData = o TO 255

READ cnv(returnedData)
NEXT

..
•• Open communication port . ..
OPEN "COM1 :9600, n, 8, 2" AS #1

..
••Flush the input bufer . ..
garbage$= INPUT$(LOC(1), 1)
RETURN

..
'* Here are converted values for 12 channels and 256 responses . ..
DATA 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13
DATA 0, 128, 64, 192, 32, 160, 96, 224, 16
DATA 144, 80, 208, 48, 176, 112, 240, 8
DATA 136, 72, 200, 40, 168, 104, 232, 24
DATA 152, 88, 216, 56, 184, 120, 248, 4
DATA 132, 68, 196, 36, 164, 100, 228, 20
DATA 148, 84, 212, 52, 180, 116, 244, 12
DATA 140, 76, 204, 44, 172, 108, 236, 28
DATA 156, 92, 220, 60, 188, 124, 252, 2

Figure 18-12. The lnitializeCommunication subprogram more ...

Chapter 18: The HBC-1

DATA 130, 66, 194, 34, 162, 98, 226, 18
DATA 146, 82, 210, 50, 178, 114, 242, 10
DATA 138, 74, 202, 42, 170, 106, 234, 26
DATA 154, 90, 218, 58, 186, 122, 250, 6
DATA 134, 70, 198, 38, 166, 102, 230, 22
DATA 150, 86, 214, 54, 182, 118, 246, 14
DATA 142, 78, 206, 46, 174, 110, 238, 30
DATA 158, 94, 222, 62, 190, 126, 254, 1
DATA 129, 65, 193, 33, 161, 97, 225, 17
DATA 145, 81, 209, 49, 177, 113, 241, 9
DATA 137, 73, 201, 41, 169, 105, 233, 25
DATA 153, 89, 217, 57, 185, 121, 249, 5
DATA 133, 69, 197, 37, 165, 101, 229, 21
DATA 149, 85, 213, 53, 181, 117, 245, 13
DATA 141, 77, 205, 45, 173, 109, 237, 29
DATA 157, 93, 221, 61, 189, 125, 253, 3
DATA 131, 67, 195, 35, 163, 99, 227, 19
DATA 147, 83, 211, 51, 179, 115, 243, 11
DATA 139, 75, 203, 43, 171, 107, 235, 27
DATA 155, 91, 219, 59, 187, 123, 251, 7
DATA 135, 71, 199, 39, 167, 103, 231, 23
DATA 151, 87, 215, 55, 183, 119, 247, 15
DATA 143, 79, 207, 47, 175, 111, 239, 31
DATA 159, 95, 223, 63, 191, 127, 255

Figure 18-12. The lnitializeCommunication subprogram (continued)

I initializing communication I

385

The initialization routine and the DATA statements it reads are shown in Figure
18-12. There is nothing new or unusual here. The arrays conChn and cnv are dimen
sioned, the two FOR ... NEXT loops read the DATA statements and assign the values to
the arrays, the communication port is opened, and the buffer flushed. Other than the
arrays, this is just like any other communication session.

If the program is started with simFlag set to false, it uses the Getlnput sub
routine, shown in Figure 18-13 on the following page, to find out which channel the
user wants to monitor. This routine requests a channel number, verifies that it is in the
proper range, and then converts it to backward binary by setting it equal to its coun
terpart in the conChn array.

386 SECTION V: DATA ACQUISITION AND CONTROL

'*
'* Ask user which channel to monitor.
'*
Getlnput:

MOVETO 30, 30
INPUT "Display which channel (0 through 11) "; chanNum
chanNum = conChn(chanNum)
RETURN

Figure 18-13. The Getlnput subroutine

'channels numbered 0-11

Once the program knows which channel to monitor, it uses the SndChnl and Re
ply routines, shown in Figure 18-14, to interrogate the converter and retrieve the re
sponses. SndChnl sends out the channel number that was just converted in Getlnput,
and Reply gets the response (actually, the response to the previous request). As soon
as the response is retrieved, it is converted to normal binary.

That's about all there is to this program. The two programs we have looked at in
this section of the book are rather simple demo programs: Neither makes full use of
the capabilities of the ADC-1 or the HBC-1. I have written one rather long program

'*
'*Tell converter which channel to monitor.
'*
SndChnl:

'*

PRINT #1, CHR$(chanNum);
GOSUB Reply
RETURN

'* Get response.
'*
Reply:

WHILE LOC(1) = 0 : WEND
retumedData = ASC(INPUT$(1, 1))
response = cnv(returnedData)
RETURN

Figure18-14. The SndChnl and Reply subroutines

Chapter 18: The HBC-1 387

that does allow you to use all the features of the HBC-1, but since it introduces few

new BASIC concepts, it would not be very enlightening to drag you through an expla
nation of the whole thing-especially since it is too long to type in just for fun. I have

included the full listing of this program on the companion disk, for those of you who
would like to use it, either as is or as the basis for ideas.

'*Voltmeter program with simulation
'*

'*

GOSUB lnitializeVariables
IF NOT simFlag THEN GOSUB lnitializeCommunication
GOSUB lnitializeScreen

'* Compute voltage and update bar chart and dial.
'*
MainLoop:

WHILE true
IF simFlag THEN GOSUB sim2 ELSE GOSUB SndChnl
volts= range* response I 256
fraction = (volts - minVolts) I range

'*
'* Place top of bar.
'*
newBar = bottom - span * fraction
IF newBar = oldBar THEN GOTO SkipLoop
IF newBar < oldBar THEN GOSUB MoreVolts
IF newBar > oldBar THEN GOSUB LessVolts

'*
'* Print digital display.
'*
LINE (xCntr - 50, yCntr + 15) - (xCntr + 50, yCntr + 45), , bf
MOVETO xCntr - 50, yCntr + 45
PRINT USING"##.## V"; volts

Figure 18-15. The complete voltmeter program
more ...

388 SECTION V: DATA ACQUISITION AND CONTROL

'*
'* Place dial pointer.
'*
LINE(xCntr, yCntr) - (xEnd, yEnd), 30
theta= startAngle + arcAngle *fraction
xEnd = xCntr +radius* SIN(theta)
yEnd = yCntr - radius * COS(theta)
LINE(xCntr, yCntr) - (xEnd, yEnd)
oldBar = newBar

Skiploop:
WEND

'*
'*Some subroutines
'*
'*
'* Ask user which channel to monitor.
'*
Getlnput:

'*

MOVETO 30, 30
INPUT "Display which channel (0 through 11) "; chanNum
chanNum = conChn(chanNum)
RETURN

'* Tell converter which channel to monitor.
'*
SndChnl:

'*

PRINT #1, CHR$(chanNum);
GOSUB Reply
RETURN

'* Get response.
'*
Reply:

WHILE LOC(1) = 0 : WEND
returnedData = ASC(INPUT$(1, 1))
response = cnv(returnedData)
RETURN

Figure 18-15. The complete voltmeter program (continued)

'erase previous line

'channels numbered 0-11

nwre ...

Chapter 18: The HBC-1 389

'*
'*No converter, so simulate response.
'*
sim2:

response =response + ((-1) " INT(2 * (RND(1) + 1)))
IF response < 5 THEN response = 128

'*

IF response > 250 THEN response = 128
RETURN

'* Define rectangle to show increase in voltage on bar chart.
'*
More Volts:

recto/o(O) = newBar
recto/o(2) = oldBar
RLLRECT VARPTR(recto/o(O)), VARPTR(grayo/o(O))
RETURN

'*

'* Erase some of bar chart, as voltage has gone down.
'*
Less Volts:

'*

recto/o(O) = oldBar
recto/o(2) = newBar
ERASERECT VARPTR(recto/o(O))
RETURN

'* Initialize variables.
'*
Initialize Variables:

DEFSNG a-z
DIM cnv(255)
DIM conChn(11)
true= -1
false= O
simFlag = true
minVolts = O
maxVolts = 5
range = maxVolts - minVolts
xCntr= 200
yCntr = 180

'default for Decimal version is double precision
'converts response to backward binary
'converts channel to backward binary

'are we simulating AID converter?
'lower voltage limit for display
'upper voltage limit for display

'voltage range
'x coordinate of center of voltmeter dial

'y coordinate

Figure 18-15. The complete voltmeter program (continued) more ...

390 SECTION V: DATA ACQUISITION AND CONTROL

'*

radius= 100
xEnd = xCntr
yEnd =yCntr
pi= 3.141S9
startAng le = -pi I 2
arcAngle = pi
RANDOMIZE TIMER
RETURN

'radius
'x coordinate of end of dial

'y coordinate

'used to compute angle of dial
'used for dial

'reseed random number generator for simulation

'* Initialize screen.
'*
lnitializeScreen:

WINDOW 1, , (1, 20) - (S12, 342), 2
TEXTFONTO
TEXTSIZE 12
IF NOT simFlag THEN GOSUB Getlnput

'*
'* Set up dial.
'*
side = radius * 1.3 'half width of rectangle
LINE (xCntr- side, yCntr - side) - (xCntr +side, yCntr + .9 *side), , bf
cntrRad = radius * 1.1 'radius of center circle
rect%(0) = yCntr - cntrRad 'getting ready to .. .
rect%(1) = xCntr - cntrRad 'create the arc .. .
rect%(2) = yCntr + cntrRad 'used as a .. .
rect%(3) = xCntr + cntrRad 'dial-face
CALL ERASEARC(VARPTR(rect%(0)), 9S, -190)

••
'* Set up bar chart.
'*
gray%(0) = &HAASS
gray%(1) = gray%(0)
gray%(2) = gray%(0)
gray%(3) = gray%(0)
span = 2 * cntrRad
top = yCntr - cntrRad
bottom = top + span
left = xCntr + radius + 100
right = left + 40

Figure 18-15. The complete voltmeter program (continued) more ...

Chapter 18: The HBC-1

'*

rect%(0) = top
rect%(1) = left
rect%(2) = bottom
rect%(3) = right

'*
'* Print numbers along left side.
'*
FOR increment= 0 TO 10

value = bottom - span * increment I 1 O
MOVETO left - 45, value + 4
PRINT USING"###.#"; minVolts + (maxVolts - minVolts) *increment I 10;
LINE(left - 2, value) - (left - 6, value)

NEXT
LINE(left - 1, top) - (right, bottom), , b
MOVETO left + 2, top - 10
PRINT "volts";
oldBar =bottom
TEXTSIZE24
TEXTMODE 2
MOVETO xCntr - 95, yCntr + 85
PRINT "MacVoltmeter"
RETURN

'* Initialize communication if simulation not being used.
'*
lnitializeCommunication:

'*
'* Convert channel numbers 0 - 11 to backward binary.
'*
FOR channel = 0 TO 11

READ conChn(channel)
NEXT

'*
'*Convert 256 possible values of returned data to backward binary.
'*
FOR returnedData = 0 TO 255

READ cnv(returnedData)
NEXT

Figure 18-15. The complete voltmeter program (continued)

391

more ...

392 SECTION V: DATA ACQUISITION AND CONTROL

'*
'* Open communication port.
'*
OPEN "COM1 :9600, n, 8, 2" AS #1

..
'* Flush the input bufer . ..
garbage$= INPUT$(LOC(1), 1)
RETURN

..
'*Here are converted values for 12 channels and 256 responses . ..
DATA 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13
DATA 0, 128, 64, 192, 32, 160, 96, 224, 16
DATA 144, 80, 208, 48, 176, 112, 240, 8
DATA 136, 72, 200, 40, 168, 104, 232, 24
DATA 152, 88, 216, 56, 184, 120, 248, 4
DATA 132, 68, 196, 36, 164, 100, 228, 20
DATA 148, 84, 212, 52, 180, 116, 244, 12
DATA 140, 76, 204, 44, 172, 108, 236, 28
DATA 156, 92, 220, 60, 188, 124, 252, 2
DATA 130, 66, 194, 34, 162, 98, 226, 18
DATA 146, 82, 210, 50, 178, 114, 242, 10
DATA 138, 74, 202, 42, 170, 106, 234, 26
DATA 154, 90, 218, 58, 186, 122, 250, 6
DATA 134, 70, 198, 38, 166, 102, 230, 22
DATA 150, 86, 214, 54, 182, 118, 246, 14
DATA 142, 78, 206, 46, 174, 110, 238, 30
DATA 158, 94, 222, 62, 190, 126, 254, 1
DATA 129, 65, 193, 33, 161, 97, 225, 17
DATA 145, 81, 209, 49, 177, 113, 241, 9
DATA 137, 73, 201, 41, 169, 105, 233, 25
DATA 153, 89, 217, 57, 185, 121, 249, 5
DATA 133, 69, 197, 37, 165, 101, 229, 21
DATA 149, 85, 213, 53, 181, 117, 245, 13
DATA 141, 77, 205, 45, 173, 109, 237, 29
DATA 157, 93, 221, 61, 189, 125, 253, 3
DATA 131, 67, 195, 35, 163, 99, 227, 19

Figure 18-15. The complete voltmeter program (continued) rrwre ...

Chapter 18: The HBC-1

DATA 147, 83, 211, 51, 179, 115, 243, 11
DATA 139, 75, 203, 43, 171, 107, 235, 27
DATA 155, 91, 219, 59, 187, 123, 251, 7
DATA 135, 71, 199, 39, 167, 103, 231, 23
DATA 151, 87, 215, 55, 183, 119, 247, 15
DATA 143, 79, 207, 47, 175, 111, 239, 31
DATA 159, 95, 223, 63, 191, 127, 255

Figure 18-15. The complete voltmeter program (continued)

393

SECTION VI

Appendices

Alphabetical
List of

Commands · Append~ A

This list of the statements, functions, and ROM calls available in BASIC is primarily
meant to serve as a reminder of their purpose. Page numbers, where given, indicate
the first use in this book of the command. For a more detailed explanation and addi
tional examples of each, consult the manual for Microsoft BASIC for the Apple Macin
tosh, provided with your copy of BASIC.

I ABS function, 269

ABS(X)

Returns the absolute value of the number X. The absolute value is the value of
the number regardless of the positive or negative sign that may precede it.

I ASC function, 449

ASC(X$)

Returns the ASCII code for the first character of the string X$. ASCII codes,
which are listed in the appendix of the BASIC manual, range from 0 through 255.

I ATN function

ATN(X)

Returns the arctangent of X, where Xis a ratio of the side opposite an obtuse an
gle to the side adjacent in a right triangle. The result is in radians, in the range of
- -rr/2 through -rr/2. The arctangent is an inverse trigonometric function; that is, arc
tangent Xis an angle whose tangent is X.

397

398

I BEEP statement, 193

BEEP

SECTION VI: APPENDICES

Causes a short beep from the Macintosh speaker. Used to draw attention or alert
the user to a problem. Same as the statement PRINT CHR$(7).

I BREAK ON statement

BREAK ON

Enables trapping of an attempt to stop the program by pressing Command
period, or by selecting Stop from the Run menu. Normally used in conjunction with

the ON BREAK statement.

I BREAK OFF statement

BREAK OFF

Disables the event trapping that was enabled with the BREAK ON statement.

I BREAK STOP statement

BREAK STOP

Suspends trapping of Command-period and Stop events, but keeps track of them
and takes appropriate action when BREAK ON is executed.

I BUTTON statement, 59

BUTTON ID, state[, title, rectangle[, type]]

Creates a button in the current output window. The ID is an integer greater than
0 used to refer to the button in subsequent commands. A state of 0, 1, or 2 makes the
button inactive, active, or active and currently selected. The title is the text that will
appear in or adjacent to the button. The coordinates given in rectangle specify where
the button will appear relative to the upper left corner of the window. A type of 1, 2, or
3 determines the shape of the button. Title, rectangle, and type are optional if the but
ton has previously been defined with them, in which case the statement can be issued

Appendix A: Alphabetical List of Commands 399

with just the ID and the state, in order to change the state. Remember that text can be

replaced by string variables, and numbers can be replaced by expressions that evalu
ate to a valid number.

I BUTTON function

BUTTON(ID)

Returns the state, 0, 1, or 2, of the named button.

I BUTTON CLOSE statement

BUTTON CLOSE ID

Removes button ID from the current output window. In order to redisplay the
button, the full BUTTON statement, including rectangle, must be given. To tem
porarily prevent the user from selecting a button, there is no need to close it; simply
change its state to 0 with BUTTON ID, 0.

I CALL statement, 35

CALL name[(argument-list)]

name [argument-list]

Transfers program flow either to a machine-language subroutine or to a BASIC

subprogram. The most common machine-language subprograms are the Macintosh
toolbox calls, usually referred to as ROM calls, listed separately at the end of this ap
pendix. Other than in certain cases, as from within an IF ... THEN statement, the word
CALL and the parentheses around the argument list are optional-but not individu
ally: If you include CALL you must include the parentheses.

I CDBL function

CDBL(X)

Converts X to a double-precision number. Primarily used to express the result of
single-precision or integer division with more accuracy.

400 SECTION VI: APPENDICES

I CHAIN statement

CHAIN [MERGE] filespec[, [expression][, [ALL][, DELETE range]]]

Used to run a separate program or subprogram from within the currently run
ning program. Typically used to partition large programs into short segments that are
stored separately on disk and run as needed. The MERGE option appends the new
·program (which must be stored as an ASCII file) to the program currently in memory.
The filespec is the name of the file to, chain to, and can include a volume name. The
expression is a line number (not an alphanumeric label) that specifies where to start
execution of the chained program, if other than at the first line. The ALL option
passes all variables in the current program to the chained program. The DELETE op

tion does the opposite of MERGE, removing the specified range of program lines. The
range to be deleted can be given in either line numbers or labels.

I CHR$ function, 459

CHR$(I)

Returns a string consisting of the character that has the ASCII value I. I must be
in the range 0 through 255. This function is often used to send control codes to the
printer or screen.

I CINT function

CINT(X)

Converts X, which must be in the range from -32768 to 32767, to an integer by
rounding any fractional portion.

I CIRCLE statement, 283

CIRCLE [STEP] (x,y), radius[, color[, start, end[, aspect]]]

Draws a circle or ellipse with the specified (x,y) center and radius. The coordi
nates of the center can be given as absolute (x,y) values, or, if the STEP option is used,
as the relative distance from the current position of the pen. The radius is given in
pixels. The color can be black (33) or white (30), with black as the default. The start

Appendix A: Alphabetical List of Commands 401

and end parameters indicate the beginning and ending angle in radians (ranging from

- 21'1' through 21'1'), allowing you to draw an arc that is a portion of the circle or ellipse
defined by the statement. A negative start or end angle causes the ends of the arc to be

connected to the center (as with Pacman). The aspect, which defaults to 1, is the ratio
of they to the x radius. If the aspect ratio is not 1, then the longer radius is used for the
radius parameter.

I CLEAR statement, 165

CLEAR[, [data-segment-size][, stack-size]]

Used to manage the distribution of the Mac's available random-access memory

between three areas: the data-segment storage area, the stack storage area, and the

heap storage area. Memory management on a Fat Mac is rarely a significant issue, but

on a Slim Mac you may have to reallocate sections of memory to allow a program to
run, or to make it run faster. The default allocations are approximately:

Area

Data-segment
Stack
Heap

Slim Mac

21K
6K
remainder

Fat Mac

% of available memory
15K
remainder

In addition to allocating memory, CLEAR closes all files, resets all variables, re
sets all DEF FN and DEFSNG/DBL/STR statements, and releases all disk buffers.

I CLOSE statement, 63

CLOSE [[#]filenumber[, [#]filenumber .. .]]

Closes the specified file or files. If no filenumber is specified, closes all open files.

I CLS statement, 59

CLS

Clears graphics and text (not buttons or edit fields) from the current output.win
dow and moves the pen to the upper left corner (0,0).

402

I COMMON statement

COMMON variable-list

SECTION VI: APPENDICES

Used with the CHAIN statement when the ALL option is not used to pass vari
ables. The variable-list in the COMMON statement is a list of the variables that are
common to the current program and to the chained program. You can have more than
one COMMON statement in a program, but a variable can appear in only one.

I CONT statement

CONT

Continues the execution of a program that was stopped by pressing Command
period, or choosing Stop or Step from the Run menu. This is handy for debugging, as
variable values can be examined and changed while the program is stopped, and then
the program can be continued.

I COS function, 381

COS(X)

Returns the cosine of X, where X is in radians. The cosine is the ratio between
the side adjacent to a given acute angle in a right triangle and the hypotenuse. As the
angle increases from 0 through 360 degrees, X will increase from 0 radians to 271' radi
ans. COS(O) is 1, COS(7r I 2) is 0, COS(7r) is -1, COS(3 * 71' I 2) is 0, and COS(2 * 7r) is 1.

I CSNG function

CSNG(X)

Converts X to a single-precision number.

I CSRLIN function

CSRLIN

Returns the approximate line number (using the size of the character 0 in the
current font as a measure) of the pen in the current output window. This statement is
included to be compatible with versions of BASIC for other computers, but is not the

Appendix A: Alphabetical List of Commands 403

most effective way to get this information on the Macintosh, which displays a variety
of fonts and sizes on the screen and therefore does not have a set number of lines. See
the WINDOW(4) and WINDOW(5) functions and the GETPEN ROM call for informa
tion about better methods.

I CVI function, 477

CVI(2-byte string)

I CVS function, 477

CVS(4-byte string)

I CVD function, 477

CVD(8-byte string)

Convert random-file numeric strings to numeric variables. CVI converts a 2-byte
string to an integer, CVS converts a 4-byte string to a single-precision number, and
CVD converts an 8-byte string to a double-precision number.

I CVDBCD function

CVDBCD(X$)

I CVSBCD function

CVSBCD(X$)

Convert single- (CVSBD) and double- (CVDBCD) precision numbers from the
format used by the Decimal version of BASIC to the format used by the Binary version.
This is necessary if a program written in the binary version is to read random-access
files created by a program written in the Decimal version.

I DATA statement, 132

DATA constant-list

Used to store numeric and string constants that will be read by a READ state
ment. DATA statements can contain as many constants, separated by commas, as will
fit on a line. String constants need be enclosed in quotation marks only if they contain

404 SECTION VI: APPENDICES

commas, colons, or significant leading or trailing spaces. DATA statements can be scat
tered throughout a program, and will be read by READ statements in the order in

which they appear.

I DATE$ statement

DATE$ =string-expression

Allows you to set the Macintosh clock to a new date. This could be useful if you
are running a program that uses the DATE$ function to date-stamp reports and you
want to produce reports for dates other than today. The date must be entered in one of
these formats:

mm-dd-yy
mm-dd-yyyy
mm/dd/yy
mm/dd/yyyy

I DATE$ function MC

DATE$

Returns the date according to the Macintosh clock.

I DEF FN statement

DEF FN name [(parameter-list)] =function-definition

Allows you to create your own functions, to supplement those provided by
BASIC. The name parameter entered immediately after DEF FN (no space between
them) is the name you will use to call the function from within your program. The
parameter-list represents the variables that will be passed to the function when it is
called, and the function-definition is the actual expression that performs the opera
tion. DEF FN is conceptually similar to a subprogram, but it is limited in length to
only one line.

I DEFINT statement, 67

DEFINT letter-range

Appendix A: Alphabetical List of Commands

I DEFSNG statement, 67

DEFSNG letter-range

I DEFDBL statement, 67

DEFDBL letter-range

I DEFSTR statement, 67

DEFSTR letter-range

405

Used to declare groups of variables starting with a letter in the letter-range to be
integer, single-precision, double-precision, or string variables. The subsequent use of
type declaration characters (% for integer, ! for single-precision, # for double-preci
sion, and $ for string) to declare individual variables takes precedence over the
blanket declaration of a DEF type statement. If a variable is encountered that is not
covered by one of these statements and that is not followed by a declaration character,
then in the Binary version of BASIC it defaults to single precision, and in the Decimal
version to double precision. Most of my programs start by defining all variables as in
tegers, to increase the speed at which the program runs.

I DELETE statement

DELETE [line] [- line]

Removes the specified line or range oflines from the program.

I DIALOG function, 61

DIALOG(n)

Returns information about several types of events that might be taking place on
the screen. There are six possible values of the parameter n, ranging from 0 through 5.
See the text for examples of the use of the DIALOG function.

I DIALOG ON statement, 122

DIALOG ON

Enables trapping of dialog events. Used after an ON DIALOG statement, which
tells what to do when the event is trapped, to actually start trapping events.

406

I DIALOG OFF statement, 326

DIALOG OFF

Disables the trapping of dialog events.

I DIALOG STOP statement, 326

DIALOG STOP

SECTION VI: APPENDICES

Suspends the reporting of dialog events until the next DIALOG ON statement, at

which time any events trapped during the suspension are made available.

I DIM statement, 69

DIM subscripted-variable-list

Used to dimension variable arrays. The subscripted-variable-list contains one or
more array names, each followed in parentheses by the maximum value of that array's

subscript. Since the subscript can range from 0 through the maximum value, there
can be one more element in the array than the maximum subscript.

I EDIT FIELD statement, 220

EDIT FIELD ID[, default, rectangle[, [type][,justify]]]

Creates the stock Macintosh edit field used to enter information into a program.

I EDIT FIELD CLOSE statement

EDIT FIELD CLOSE ID

Removes a previously defined edit field from the active window.

I EDIT$ function, 223

EDIT$(ID)

Retrieves information entered in an edit field by the user.

Appendix A: Alphabetical List of Commands

I END statement, 165

END

407

Terminates a program and returns to the List, Command, or Output window
that was active in BASIC before the program was run.

I EOF function, 447

EOF(filenumber)

Tests for the end of a specified file, returning -1 (true) when an attempt is made
to read beyond the last record. Used to avoid the "input past end" error message.

I ERASE statement

ERASE array-variable-list

Eliminates the specified arrays from memory, so they can be re-dimensioned or
so that the space they occupied can be used in some other manner.

I ERL function

ERL

Returns the number of the line on which the last error occurred. Does not re
turn labels, so is oflittle use if you don't use numbers in your programs.

I ERR function, 230

ERR

Returns the number of the last error to occur. Used after trapping an error (with
the ON ERROR GOTO statement) to decide how to respond to it.

I ERROR statement

ERROR integer-expression

If integer-expression is an existing BASIC error code, then that error is simulated
when this statement is used.

408

I EXIT SUB statement, 101

EXIT SUB

SECTION VI: APPENDICES

Used to branch out of a subprogram before the END SUB statement. There can

be more than one EXIT SUB statement in a subprogram.

I EXP function

EXP(X)

Returns e (base of natural logarithms) to the power of X.

I FIELD statement, 476

FIELD [# Jfilenumber,.fieldwidth AS string-variable .. .

Allocates space in a file buffer for variables in a random-access file.

I FILES statement

FILES [.filespec]

Prints a list of the files on the disk specified in .filespec. If .filespec is omitted, all
files on the disk in the internal drive are listed.

I FILES$ function, 64

FILES$(n[, prompt-string])

The parameter n can be either 0 or 1:

Value Action

0 Produces dialog box similar to standard Save As dialog box and
displays prompt-string to prompt user for name of file

1 Produces dialog box similar to standard Open dialog box and allows
user to specify file to open

I FIX function

FIX(X)

Returns the truncated integer part of X.

Appendix A: Alphabetical List of Commands 409

I FOR ... NEXT statement, 47

FOR variable= x TO y [STEP z]

NEXT [variable][, variable ...]

Commonly referred to as a FOR-NEXT loop. Allows the section of program be

tween the FOR statement and the NEXT statement to be run a number of times deter
mined by the values of x, y, and z.

I FRE function

FRE(n)

The parameter n determines the value returned by this function, as follows:

Value

-1

-2

any other number

Returns

Number of bytes in Macintosh heap not being used by
BASIC

Number of bytes in stack that have never been used

Number of bytes in BASIC's data segment not being used

All three versions compact string space. A fourth version:

FRE("")

simply compacts string space.

I GET statement, 76

GET [#]filenumber[, recordnumber]

Reads a record from a random-access file. The parameter filenumber is the num

ber the file was opened under, and recordnumber is the number of the record to be

read (defaults to the number after the last record read if omitted). A second version of

the GET statement:

GET (xl,yl) - (x2,y2), array-name [(index[, index .. ., index])]

is called the screen GET. It retrieves the image from within the (xl,yl) - (x2,y2)

boundaries on the screen and stores it in the specified integer array.

410

I GOSUB ... RETURN statement, 72

GOSUB line

RETURN [line]

SECTION VI: APPENDICES

Interrupts the normal linear How of the program to divert it to a subroutine iden
tified by the line number or label specified with the line parameter. The RETURN

statement terminates the subroutine. If the line option is not used, program How con
tinues with the statement after the most recent GOSUB. If line is specified, the pro
gram continues at the specified line.

I GOTO statement, 10

GOTO line

Diverts the program to the specified line.

I HEX$ function, 105

HEX$(X)

Returns a string representing the hexadecimal value of the decimal argument X.

I tF. •• THEN ... ELSE statement, 65

IF expression THEN then-clause [ELSE else-clause]

Tests the expression, and if it is true executes the then-clause. If the expression is
false and the optional else-clause is included, then it is executed, otherwise the pro
gram continues with the statement on the next line.

I tF. •• GOTO ... ELSE statement

IF expression GOTO line [ELSE else-clause]

Diverts the program to line if it is true. If it is false, the else-clause, if present, is
executed, otherwise the program continues with the next line.

Appendix A: Alphabetical List of Commands

I 1NKEY$ function, 163

INKEY$

411

Used to retrieve single characters entered from the keyboard. When invoked it
returns a one-character string consisting of the oldest character in the keyboard
buffer. If the buffer is empty, it returns a null string.

I INPUT statement

INPUT[;]prompt-string;] variable-list

Allows variables to be assigned strings and values from the keyboard during pro
gram execution. If the optional prompt-string is included, it is displayed on the screen
and the program waits for a reply. One or more items can be entered,. separated by
commas, and are assigned to the variables in variable-list. The type of each entered
item (integer, string, and so on) must match the associated variable in the list. If you're
entering just text, the EDIT FIELD statement is a cleaner method of accomplishing
the same thing.

I INPUT$ function, 63

INPUT$(X[, [# lfilenumber])

Returns a string of X characters from filenumber, or from the keyboard if file
number is not specified.

I INPUT# statement

INPUT #filenumber, variable-list

Reads items from the sequential file previously opened as filenumber, and as
signs them to the variables in variable-list.

I INSTR function, 2oe
INSTR([J,]X$, Y$)

Returns the position (in characters) of the first occurrence of Y$ in X$. If X$
does not contain Y$, then INSTR returns 0. The optional offset, I, determines the
starting position for the search.

412

I INT function, 97

INT(X)

Returns the largest integer less than or equal to X.

I KILL statement

KILL filespec

Deletes the file filespec.

I LBOUND function

LBOUND(array-name[, dimension])

I UBOUND function

UBOUND(array-name [, dimension])

SECTION VI: APPENDICES

Return the minimum and maximum subscripts of array-name. The dimension

option is used to specify which dimension to test in a multi-dimension array.

I LCOPY statement

LCOPY

Prints a copy of the Macintosh screen on a graphics printer.

I LEFT$ function, 173

LEFT$(X$, I)

Returns a string composed of the leftmost I characters of X$.

I LEN function, 209

LEN(X$)

Returns the number of characters, including nonprinting characters and blanks,
contained in X$.

Appendix A: Alphabetical List of Commands 413

I LET statement

[LET] variable= expression

Assigns the value of an expression to a variable. The expression and variable
must be of the same type (integer, string, and so on). Notice that LET is optional.

I LINE statement, 111

LINE [[STEP] (xl, yl)]- [STEP] (x2,y2)[, [color][, b[f]]]

Draws a line, a box, or a filled box in the current output window. In its simplest
form, without any of the optional parameters, draws a line from point (xl,yl) to point
(x2,y2). Adding the b parameter causes it to draw a box with its opposite corners at
these two points. The f parameter fills the box. The color can be either black or white,
with black being the default if none is specified. The STEP option, which can be used
before either or both sets of coordinates, causes the coordinate to be considered rela
tive to the current position of the graphic pen.

I LINE INPUT statement

LINE INPUT[;] [prompt-string;] string-variable

Displays (optionally) a prompt, and assigns everything typed by the user-up to
the carriage return ending the line-to string-variable.

I LINE INPUT# statement, 444

LINE INPUT #filenumber, string-variable

Reads an entire line (up to the carriage return) from a sequential file, and as
signs it to string-variable.

I LIST statement

LIST [line]

LIST [line][- [line]],filename

Prints all or a specified portion of the program currently in memory to the List
window, to a disk file, or to the printer (remember that devices can be opened as files).

414 SECTION VI: APPENDICES

I LLIST statement

LLIST [line][- [line]]

Prints all or a specified portion of the current program on the printer.

I LOAD statement

LOAD [.filespec[, R]]

Loads a file from disk (and automatically runs it if the R option is included).
Without the R this is essentially the same as choosing Open from the File menu, and if
filespec is not included, the standard Open dialog box appears to prompt for the name
of the file to load.

I LOC function, 162

LOC(jilenumber)

Returns information about the specified filenumber: The information returned
depends on the type of file represented by filenumber: For random-access files, LOC

returns the number of the most recently read or written record. For sequential files, it
returns the increment, which is the total number of bytes written to or read from the
file divided by the record size. For files opened to KYBD:, LOC returns the value 1 if
there are any characters in the keyboard buffer waiting to be read, and returns the
value 0 if there are none. For files opened to CLIP: or COM:, LOC returns the number
of characters waiting to be read.

I LOCATE statement

LOCATE [row][, column]

Positions the pen at a specified column and line in the current output window.
Like the CSRLIN function, this is really a leftover from previous versions of BASIC.

The same task can be more accurately accomplished with the MOVETO ROM call.

I LOF function, 63

LOF(jilenumber)

Returns the length, in bytes, of the file opened as filenumber:

Appendix A: Alphabetical List of Commands

I LOG function

LOG(X)

Returns the natural logarithm (log base e) of X. X must be greater than zero.

I LPOS function

LPOS(X)

415

Returns the current position of the line printer's print head within the line
printer buffer; this may not be the physical position of the print head over the paper.

I LPRINT statement

LPRINT [expression-list]

Prints expression-list on the printer, just as the PRINT statement would print it
on the screen.

I LPRINT USING statement

LPRINT USING string-expression; expression-list

Prints expression-list to the printer using formatting specified by string-expres
sion. Quite a variety of formatting expressions can be used to control the appearance
of your printed text and numbers: See the Microsoft BASIC manual for a complete list.

I LSET statement, 477

LSET string-variable= string-expression

I RSET statement, 477

RSET string-variable= string-expression

Moves string variables from memory to a random file buff er in preparation for
using the PUT statement to store them in a random-access file. If string-variable is
shorter than the space allocated to string-expression in the FIELD statement, LSET

left justifies and RSET rightjustifies it.

416

I MENU statement, 1sa

MENU

MENU menu-ID, item-ID, state[, title-string]

SECTION VI: APPENDICES

Without parameters, restores the currently selected menu header to the normal
(unselected) black-on-white video. The version with parameters allows you to create a
custom menu. This statement is used once for the header and for each item you want
to appear on the menu.

The menu-ID can be a number from 1through10, and indicates the position
across the menu bar where the menu will appear. The item-ID can range from 0
through 20, with 0 indicating the command applies to the name or condition of the
entire menu. The state argument can range from 0 through 2: 0 disables the menu or
the item, 1 enables it, and 2 enables it and also places a check mark by it. The title

string is the text that appears on this particular menu item.

I MENU function, 193

MENU(n)

Returns information about a menu selection. The information returned depends
on the value of n which can be either 0 or 1. See the text for examples of the usage of
this function.

I MENU ON statement, 160

MENU ON

Enables the trapping of menu events-the selection of an item from a menu.
This statement is used after an ON MENU. .. GOSUB, which specifies where to go
when the event is trapped.

I MENU OFF statement, 326

MENU OFF

Disables the trapping of menu events.

Appendix A: Alphabetical List of Commands

I MENU RESET statement, 188

MENU RESET

Restores BASIC's default menu bar, after you have created a custom menu.

I MENU STOP statement, 202

MENU STOP

417

Suspends the reporting of menu events, but keeps track of them and reports

them when event trapping is again enabled.

I MERGE statement

MERGE filespec

Appends filespec, which must be a file that was saved in the ASCII format, to the

end of the program currently in memory.

I MID$ statement, 217

MID$(string-expl, n[, m]) =string-exp2

Replaces a portion of string-expl, beginning at position n, with m characters
from string-exp2. If m is omitted, then all of string-exp2 is used- as long as the length

of string-expl is not increased.

I MID$ function, 217

MID$(X$, n [, m])

Returns a string of m characters from X$, beginning with the nth character.

418

I MKI$ function, 477

M KI$(integer-expression)

I MKS$ function, 477

MKS$(single-precision-expression)

I MKD$ function, 477

MKD$(double-precision-expression)

SECTION VI: APPENDICES

Convert numeric values to string variables in order to store them in random

access files.

I MKSBCD$ function

M KSBCD$(single-precision-expression)

I MKDBCD$ function

MKDBCD$(double-precision-expression)

Convert single- and double-precision numbers from Binary BASIC storage for
mat to Decimal BASIC storage format, prior to storing them in a random-access file.

I MOUSE function, 38

MOUSE(n)

Returns information about the state of the mouse button or the location of the
mouse pointer relative to the upper left corner of the current output window. The in
formation returned by the MOUSE fonction is determined by the value of the argu
ment n, which can range from 0 through 6. See the text for examples of each type of
information.

I MOUSE ON statement, 326

MOUSE ON

Enables trapping of mouse events. Used in conjunction with an ON ... MOUSE

GOSUB statement, which specifies where to go when the event is trapped.

Appendix A: Alphabetical List of Commands

I MOUSE OFF statement

MOUSE OFF

Disables trapping of mouse events.

I MOUSE STOP statement, 326

MOUSE STOP

419

Suspends trapping of mouse events until the next MOUSE ON, at which time any

events that occurred during the suspension are reported.

I NAME statement

NAME oUl-.filename AS new-.filename[,.filetype]

Used to rename a file that exists on disk with a file name not currently in use on

the disk. You cannot change the volume name, which would place the file on a differ

ent disk, with this command, but you can change the four-letter code used to indicate

the type of file.

I NEW statement

NEW

Can be entered only in the Command window, and has the same effect as choos

ing New from the File menu.

I NEXT statement, 47

NEXT [variable[, variable . ..]]

The end of a FOR. .. NEXT loop. If the variable is omitted the NEXT is applied to

the most recent FOR. If FOR ... NEXT loops are nested, multiple variables may be

listed after one NEXT statement to terminate more than one loop.

I OCT$ function

OCT$(X)

Returns a string that represents the octal value of the decimal argument X.

420

I ON BREAK GOSUB statement

ON BREAK GOSUB line

SECTION VI: APPENDICES

Specifies the subroutine that program control will be transferred to if the user
presses Command-period or chooses Stop from the Run menu. The actual trapping of
the break event does not take place until after a BREAK ON statement is issued. The
line parameter can be any valid line number or label, or can be 0 to disable event trap
ping, or RETURN to ignore the trapped event.

I ON DIALOG GOSUB statement, 121

ON DIALOG GOSUB line

Transfers program control to the subroutine beginning at line (or label) when a
dialog-box-related event is trapped. This would be any event that causes DIALOG(O)

to be something other than zero. ON DIALOG GOSUB has no effect until dialog trap
ping is enabled by the DIALOG ON statement.

I ON ERROR GOTO statement, 229

ON ERROR GOTO line

Transfers program control to an error-handling routine if any error occurs subse
quent to this command. Using an ON ERROR GOTO 0 statement in a program disables
error trapping.

I ON ... GOSUB statement, 123

ON expression GOSVB line-list

Called a computed GOSUB statement. Computes the value of expression (round
ing it to an integer if it is not already an integer) and branches to the subroutine in the
line-list that is that value into the list. For example, if the value is 3, the program
branches to the third subroutine in the list; if the value is 7, the program branches to
the seventh subroutine.

Appendix A: Alphabetical List of Commands 421

I ON ... GOTO statement, 125

ON expression GOTO line-list

Same as the ON ... GOSUB statement, except that the program branches to a line
or label that is not the beginning of a subroutine.

I ON MENU GOSUB statement, 159

ON MENU GOSUB line

Transfers program control to a subroutine when the user selects a menu item.
The statement specifies which line or label the program will branch to, and becomes
effective after a MENU ON statement.

I ON MOUSE GOSUB statement

ON MOUSE GOSUB line

Transfers program control to a subroutine when the user presses the mouse but
ton. This statement does not take effect until enabled by a MOUSE ON statement.

I ON TIMER ... GOSUB statement

ON TIMER (n) GOSUB line

Transfers program control to the specified subroutine every n seconds, where n
is an integer from 1 through 86400 (the number of seconds in 24 hours). This event

trap is disabled by re-issuing the statement with line equal to 0.

I OPEN statement, 61

OPEN rrwde, [#]filenumber, filespec[, file-IJU!fer-size]

OPEN filespec [FOR rrwde] AS [#]filenumber [LEN = file-IJU!fer-size]

Used to open a file or a device for input or output. See text for examples of the

various formats.

422

I OPTION BASE statement

OPTION BASE n

SECTION VI: APPENDICES

Declares the minimum value for array subscripts to be eitherO or 1 (default= O).

I PEEK function

PEEK(I)

Returns the byte read from memory location I.

I PICTURE statement, 66

PICTURE [(xl,yl)[- (x2,y2)]][, P$]

Displays a picture (produced by screen graphics statements) that was previously
recorded using the PICTURE ON statement. If the optional coordinates are given, the
picture is scaled to fit in the area defined; if only the first coordinate is given, the pic
ture is drawn full-scale with its upper left corner at that coordinate. The variable P$ is
the string in which PICTURE ON stored the picture; if omitted, the most recently

stored picture is displayed.

I PICTURE ON statement, 80

PICTURE ON

I PICTURE OFF statement, 80

PICTURE OFF

Starts and stops the recording of screen graphics statements (such as LINE,

CLS, CIRCLE, PRINT, and ROM calls). These recorded statements can be stored as a
string and later repeated with the PICTURE statement to reproduce their effect.

I PICTURE$ function, 81

PICTURE$

Returns a string consisting of a set of encoded Macintosh instructions that re
create the effect of the graphics statements between the last PICTURE ON and PIC

TURE OFF statements.

Appendix A: Alphabetical List of Commands

I POINT function

POINT (x,y)

423

Returns the color (black= 33, white= 30) of the specified point on the screen.

I POKE statement

POKE I,]

Writes the byte J into memory location I.

I POS function

POS(I)

Returns the current column position of the cursor. I is a dummy argument and
has no significance.

I PRESET statement, 357

PRESET [STEP] (x,y)[, color]

Draws a point in the current output window at the location specified by the co
ordinates (x,y). If the STEP option is used, these coordinates are relative to the cur
rent pen position; otherwise they are relative to the upper left corner of the window.
If color is 30, the point is white (the default); if it is 33, the point is black.

I PRINT statement, 36

PRINT [expression-list]

Displays expression-list on the screen. Numbers, or expressions that evaluate to
numbers, are separated in the expression-list by commas or semicolons; string expres
sions are enclosed in quotation marks and separated by commas or semicolons. If an
expression is separated from the previous expression with a comma, it is printed at the
next comma stop, a position determined by the WIDTH statement. If it is separated by
a semicolon, it is printed adjacent to the previous expression.

424 SECTION VI: APPENDICES

I PRINT USING statement, 105

PRINT USING string-expression; expression-list

A version of the PRINT statement that allows the formatting of the printed dis
play to be determined by characters, such as I, II,&, and# that are includedinstring

expression.

I PRINT # statement, 165

PRINT #filenumber, expression-list

I PRINT# USING statement

PRINT #filenumber, [USING string-expression;] expression-list

Like PRINT and PRINT USING, except output goes to a sequential file instead of
to the screen.

I PSET statement, 356

PSET [STEP] (x,y)[, color]

Draws a point in the current output window at the location specified by the co
ordinates (x,y). If the STEP option is used, these coordinates are relative to the cur
rent pen position; otherwise they are relative to the upper left corner of the window.
If color is 30, the point is white; if it is 33, the point is black (the default).

I PTAB function

PTAB(X)

Moves the print position (horizontally) to pixel X on the screen.

I PUT statement, n
PUT [#]filenumber[, recordnumber]

The complement to the random-file GET statement, PUT transfers data from a
random file buffer to the file. A second version:

Appendix A: Alphabetical List of Commands 425

PUT(xl,yl) [- (x2,y2)], array[(index[, index ... , index])][, action-verb]

is the complement to the screen GET statement. It places a graphic image (previously
stored by the GET statement) on the screen, scaled to fit within the boundaries of the
specified coordinates. If only the first coordinate is included, the image is reproduced
at full-scale, with its upper left corner at that coordinate. The array(index) parameter
provides the starting point, in the array filled by the GET statement, of the image to
be reproduced. Theaction-verb-PSET, PRESET, AND, OR, or XOR (default)-de
termines the effect of the stored image on the color of the pixels it is reproduced on
top of. Experiment with this statement, using each action-verb.

I RANDOMIZE statement, 2a2

RANDOMIZE [expression]

Reseeds (provides a new starting point) for the random-number generator. The
argument expression must be a valid integer (-32768 through 32767) or the BASIC

function TIMER, which returns the number of seconds since midnight.

I READ statement, 120

READ variable-list

Assigns numeric or string values in DATA statements to corresponding numeric
or string variables in the variable-list.

I REM statement, a
REM remark

A nonexecutable statement placed in a BASIC program, usually for explanatory
purposes. The REM statement can be replaced by an apostrophe.

I RESET statement, 165

RESET

Closes all open files and updates directory information on disk.

426

I RESTORE statement, 167

RESTORE [line]

SECTION VI: APPENDICES

Specifies where the next READ will get its data. DATA statements are normally

read sequentially from the the first one in the program to the last one. The RESTORE

statement redefines the beginning point and restarts the read cycle. If the line argu
ment is omitted, the next READ starts with the first DATA statement in the program.

I RESUME statement, 232

Continues program execution after the program has branched to an error-recov
ery routine. The version you use determines where the program resumes.

RESUME

RESUMEO

Resumes at the statement that caused the error; presumably action was taken in
the error-handling routine that alleviated the cause of the error.

RESUME NEXT

Resumes at the statement immediately following the one that caused the error.

RESUME line

Resumes at line. Note that line cannot be within a subprogram.

I RETURN statement, 72

RETURN [line]

Ends a subroutine and transfers program control to another place in the pro
gram. Used without the line option, program execution continues with the statement
immediately following the last executed GOSUB. Used with the line option, execution
continues at the specified line number or label.

I RIGHT$ function, 206

RIGHT$(X$, I)

Returns the rightmost I characters of X$.

Appendix A: Alphabetical List of Commands

I RND function, 286

RND[(X)]

427

Returns a random number between 0 and 1. The argument X determines which
number in the random-number sequence is returned: if Xis less than 0, the sequence
is restarted; if X is greater than 0 or omitted, then the next random number in the se
quence is returned; if Xis equal to 0, the last number returned is repeated.

I RSET statement, 477

RSET string-variable= string-expression

Moves string variables from memory to a random file buffer in preparation for
using the PUT statement to store them in a random-access file. If string-variable is
shorter than the space allocated to string-expression in the FIELD statement, RSET

right justifies it.

I RUN statement

RUN [line]

Starts execution of the program in memory, at the specified line if it is included.

RUN filename[, R]

Loads .filename and starts execution. If the R option is included, all data files that

are open remain open.

I SAVE statement

SAVE [filename[, A]]

SAVE [filename[, P]]

SAVE [.filename[, B]]

Saves the program currently in memory to a disk file with the name filename. If
filename is not included in the statement, a dialog box appears requesting it. The A, P,
and B options determine the format in which the program is saved: A is ASCII; Pis
protected (can't be listed or edited); and B is compressed binary (takes less space
than ASCII).

428 SECTION VI: APPENDICES

I SCROLL statement, 357

SCROLL rectangle, delta-x, delta-y

Moves the defined rectangle to the right or left delta-x pixels, and up or down

delta-y pixels.

I SGN function, 288

SGN(X)

Returns a number that indicates whether Xis greater than 0 (returns 1), equal to
0 (returns O), or less than 0 (returns -1).

I SHARED statement, 100

SHARED variable-list

Used within a subprogram to specify that variables in variable-list are common
to variables of the same name in the main program.

I SIN function, 289

SIN(X)

Returns the sine (in a right triangle, the ratio of the side opposite an acute angle
to the hypotenuse) of X, where Xis given in radians.

I SOUND statement

SOUND frequency, duration [, [volume] [, voice]]

Causes the Macintosh speaker to emit noise that some say passes for music. The
frequency argument indicates the pitch in cycles per second, duration indicates the
length of time the tone lasts (can vary from 1 through 77, with each second equal to
18.2), volume indicates the loudness (measured on a scale from 0 through 255), and
voice indicates which of four possible soundtracks (created by the WAVE statement) is
to be used.

Appendix A: Alphabetical List of Commands

I SOUND RESUME statement

SOUND RESUME

429

Continues the execution of SOUND statements, including any queued during a
SOUND WAIT.

I SOUND WAIT statement

SOUND WAIT

Queues subsequent SOUND statements. Continues queuing until a SOUND RE

SUME statement is executed.

I SPACE$ function

SPACE$(X)

Returns a string of spaces, oflength X.

I SPC function, 447

SPC(I)

Used in a PRINT or LPRINT statement to skip I spaces.

I SQR function

SQR(X)

Returns the square root of X.

I STOP statement

STOP

Terminates program execution and returns to the immediate mode.

I STR$ function, 49

STR$(X)

Returns a string representation of the value of X.

430

I STRING$ function

STRING$(/, j)

SECTION VI: APPENDICES

Returns a string I characters long, with each character equal to that represented

by the ASCII code].

STRING$(/, X$)

Returns a string I characters long, with each character the same as the first char

acter of X$.

I SUB statement, 99

SUB subprogram-name [(formal-parameter-list)] STATIC

Indicates the beginning of a subprogram. The formal-parameter-list is a list of
variable names used in the subprogram that are matched to variables supplied in the
statement that called the subprogram. This is a method of passing variables to a sub
program. The STATIC argument is required in versions of BASIC at least through 2.1,
and means that all variables within the subprogram retain their value between times
the subprogram is called.

I END SUB statement, 101

END SUB

Terminates a subprogram and returns program flow to the statement following
the one that called the subprogram. There can be only one END SUB statement in a
subroutine.

I EXIT SUB statement, 101

EXIT SUB

Used to branch out of a subprogram before the END SUB statement. There can
be more than one EXIT SUB statement in a subprogram.

I SWAP statement, 74

SWAP variable, variable

Exchanges the values of the two variables listed.

Appendix A: Alphabetical List of Commands

I SYSTEM statement, 164

SYSTEM

Closes everything and returns to the Macintosh finder.

I TAB function, 450

TAB(I)

431

Used in PRINT and LPRINT statements to move the print position to I, where I is

the number of column spaces. If the current print position is already past I, it is moved
to I on the next line.

I TAN function

TAN(X)

Returns the tangent (in a right triangle, the tangent is the ratio of the side op

posite a given obtuse angle to the side adjacent to the angle) of X, where Xis an angle
expressed in radians.

I TIME$ statement

TIME$ =string-expression

Sets the Macintosh clock to the time specified in string-expression. The format
for string-expression is hh[:mm[:ss]], with the omitted options defaulting to 0.

I TIME$ function, 216

TIME$

Returns the current time according to the Macintosh clock.

I TIMER function, 202

TIMER

Returns the number of seconds elapsed since midnight.

432

I TIMER ON statement

TIMER ON

Enables event trapping based on time.

I TIMER OFF statement

TIMER OFF

Disables event trapping based on time.

I TIMER STOP statement

TIMER STOP

SECTION VI: APPENDICES

Suspends reporting of events based on time, but keeps track of them and reports
them after the next TIMER ON statement.

I TRON statement, 293

TRON

I TROFF statement

TROFF

Turn tracing of program execution on and off.

I UBOUND function

UBOUND(array-name[, dimension])

I LBOUND function

LBOUND(array-name[, dimension])

Return the maximum and minimum subscript of the dimensions of an array.

I UCASES function, 449

UCASE$ (string-expression)

Returns a string with all alphabetic characters i~ uppercase.

Appendix A: Alphabetical List of Commands

I VAL function, 172

VAL(X$)

Returns the numeric value of X$.

I VARPTR function

VARPTR(variable-name)

433

Returns the address in memory at which the first byte of the variable variable
name is stored. Usually used to pass the location of a variable or array to an assembly
language program.

I WAVE statement

WAVE voice [, [wave-definition] [, phtise]]

Used to define multiple voices to be used by the SOUND statement.

I WHILE ... WEND statement, 37

WHILE expression [statements]

WEND

Executes the series of statements in the loop between WHILE and WEND as
long as expression evaluates to a true condition.

I WIDTH statement, 49

WIDTH output-device, [size][, print-zone]

Sets the width in characters of the print zone (tabs, comma stops) and the line on
different output devices. The output-device may be SCRN:, CLIP:, COMl:, or LPTl:,
with SCRN: as the default. The size argument is the maximum width of a line, given in
the number of "standard" characters it will hold. With the proportionally spaced fonts
of the Macintosh this is not very standard: The width of a numeral in the current font
is the standard.

WIDTH #.filenumber, [size] [, print-zone]

Sets the line and print-zone width of a file opened as .filenumber:

434 SECTION VI: APPENDICES

WIDTH [size] [, print-zone]

Default syntax, applies to the screen (SCRN:).

WIDTH LPRINT [size] [, print-zone]

An alternate to specifying LPTl: in the first syntax.

I WIDTH function

WIDTH (string-expression)

Returns the width of a string, in pixels.

I WINDOW statement, 33

WINDOW ID[, [title][, [rectangle][, type]]]

Creates a window with the given ID number and title. The window boundaries

specified by rectangle are relative to the upper left corner of the screen. You can cre
ate two variations of each of the four window types that are standard in Macintosh ap
plications. The type is a number from 1 through 4, or from - 1 through - 4, with the

minus sign indicating that the window is modal, meaning that all activity is confined
to that window.

I WINDOW function, 34

WINDOW(n)

Returns six different types of information about output windows, with the type
determined by the value of n, which can range from 0 through 5. See the text for ex
amples of the use of this function.

I WINDOW CLOSE statement, 34

WINDOW CLOSE ID

Closes the specified window.

Appendix A: Alphabetical List of Commands

I WINDOW OUTPUT statement, 34

WINDOW OUTPUT ID

435

Makes the specified window the current output window, without making it the
active window. This allows you to direct output to one window while soliciting input
from another.

WINDOW OUTPUT #jilenumber

Sends the results of graphic statements such as CIRCLE, PSET, PICTURE, and
ROM calls to an output device other than the screen.

I WRITE statement

WRITE [expression-list]

Displays the data in expression-list on the screen; multiple items in the list are
separated by commas. WRITE displays positive numbers without the leading blank in
serted by PRINT, which is occasionally useful.

I WRITE # statement

WRITE #filenumber, expression-list

Places string and numeric variables into a sequential file, placing a comma be
tween each and a quotation mark before and after each string variable.

I ROM CALLS I
You can use the BASIC CALL statement to access many of the machine-language

routines stored by Apple in the Macintosh ROM. These are the same QuickDraw
graphic calls used by commercial application programs to rapidly create shapes and
patterns, and to control text and cursor attributes. There are several concepts com
mon to many of these calls:

I With several exceptions, the word CALL and the outside set of parentheses
around the parameters are optional.

436 SECTION VI: APPENDICES

I The variables passed are expected to be integers: Append the % sign to
each or use the DEFINT statement in the calling program to define an
entire class of variables as integer.

I The usual method of passing array variables is to reference the first element

of the array with the VARPTR function, which passes the memory location of
that element to the machine-language routine.

I The screen coordinates passed refer to the upper left corner of a pixel.

I If a call, such as the pen-pattern call, sets an attribute, the attribute applies
only to the current output window, but is stored with that window. If you
move between windows, the last attribute that was set in each window
comes into effect.

I General-purpose calls I

I CALL BACKPAT

CALL BACKPAT(VARPTR(pattern%(0)))

Sets the background pattern for the output window. Before calling BACKPAT,

four elements that describe the pattern must be stored in the pattern array.

I CALL ERASE ...

See specific family in Shape section.

I CALL FILL. ..

See specific family in Shape section.

I CALL FRAME ...

See specific family in Shape section.

Appendix A: Alphabetical List of Commands 437

I CALL GETPEN

CALL GETPEN(VARPTR(penlocation% (n)))

Returns the current location of the graphic pen: If n is 0 the vertical coordinate
is returned; if n is 1 the horizontal coordinate is returned.

I CALL HIDECURSOR, 355

CALL HIDECURSOR

Makes the cursor invisible. It still exists, its location and condition are still
trapped with the MOUSE function, and it functions as usual if yo~ click or drag with it.

I CALL HIDEPEN

CALL HIDEPEN

Turns off the visible output of the pen. The lines that you draw exist, but they
can't be seen.

I CALL INITCURSOR

CALL INITCURSOR

Resets the mouse cursor to the standard arrow shape, and makes it visible if it
has been made invisible with HIDECURSOR or OBSCURECURSOR.

I CALL INVERT ...

See specific family in Shape section.

I CALL LINE, 118

CALL LINE (xdelta,ydelta)

Draws a line from the current pen location to the location xdelta to the right (or
left if xdelta is negative) and ydelta down (or up if ydelta is negative). This is a case in
which CALL and the parentheses are required, to avoid confusion with the BASIC

LINE statement.

438

I CALL LINETO, 49

CALL LINETO (x,y)

SECTION VI: APPENDICES

Draws a line from the current pen location to the specified coordinates. The pen
returns to the current location after drawing the line.

I CALL MOVE

CALL MOVE (xdelta,ydelta)

Moves the pen to the position xdelta horizontally and ydelta vertically from the

current position. Positive values of xdelta and ydelta move the pen to the right and
down, negative values move it to the left and up.

I CALL MOVETO, 36

CALL MOVETO (x,y)

Moves the pen to the specified (x,y) coordinate.

I CALL OBSCURECURSOR, 355

CALL OBSCURECURSOR

Makes the mouse cursor invisible until the mouse is moved.

I CALL PAINT ...

See specific family in Shape section.

I CALL PENMODE, 70

CALL PEN MODE (rrwde)

Determines how subsequent graphic calls affect existing screen images.

I CALL PENNORMAL

CALL PENNORMAL

Restores the pen characteristics to the default size (1 pixel by 1 pixel), pattern
(black), and mode (copy).

Appendix A: Alphabetical List of Commands 439

I CALL PENPAT, 88

CALL PENPAT(VARPTR(pattern%(0)))

Assigns the pattern stored in the pattern array to the pen. Applies only to lines
drawn by ROM calls, not to lines and circles created by BASIC statements.

I CALL PENSIZE, 118

CALL PENSIZE (width, height)

Determines the width and height, in pixels, of the pen point.

I CALL SETCURSOR

CALL SETCURSOR(VARPTR(cursor% (0)))

Assigns a new shape to the mouse cursor by defining a 16- by 16-bit image in the

cursor array.

I CALL SHOWCURSOR, 355

CALL SHOWCURSOR

Makes the cursor visible. Used to restore the cursor after a HIDECURSOR call.

I CALL SHOWPEN

CALL SHOWPEN

Used after a HIDEPEN call to turn the pen output back on.

I CALL TEXTFACE, 473

CALL TEXTFACE (face)

I CALL TEXTFONT, 46

CALL TEXTFONT (font)

I CALL TEXTMODE, 157

CALL TEXTMODE (nwde)

440 SECTION VI: APPENDICES

I CALL TEXTSIZE, 47

CALL TEXTSIZE (size)

Set text characteristics.

I Shapes I
The ROM calls in this section create and modify geometric shapes. Common to

all is the technique of defining the top, left, bottom, and right boundaries of a rect

angle that the shape will fit within. There are five operations that can be performed

with each shape:

Call

FRAME
PAINT
ERASE
INVERT
FILL

• ... ARC, 376

Action

Draws outline of shape
Paints shape with current pen pattern
Paints shape with current background pattern
Inverts pixels enclosed by shape
Fills shape with specified pattern

CALL FRAMEARC(VARPTR(rectangle%(0)), startangle, arcangle)

CALLPAINTARC(VARPTR(rectangle%(0)),startangle,arcangle)

CALL ERASEARC (VARPTR(rectangle% (0)), startangle, arcangle)

CALL INVERTARC(VARPTR(rectangle%(0)), startangle, arcangle)

CALL FILLARC(VARPTR(rectangle%(0)), startangle, arcangle,
VARPTR(pattern%(0)))

In addition to the usual array that defines the rectangle the shape will fit within,

these calls include variables to specify the startangle and arcangle (and the pattern for

FILLARC). Angles are expressed in degrees, either positive or negative from zero at
the top center of the rectangle. The startangle is the point at which the arc starts, and
arcangle is the number of degrees spanned by the arc.

Appendix A: Alphabetical List of Commands

• ... OVAL, 126

CALL FRAMEOVAL(VARPTR(rectangle%(0)))

CALL PAINTOVAL(VARPTR(rectangle%(0)))

CALL ERASEOVAL(VARPTR(rectangle%(0)))

CALL INVERTOVAL(VARPTR(rectangle% (0)))

CALLFILLOVAL(VARPTR(rectangle%(0)), VARPTR(pattern%(0)))

441

The rectangle argument describes the boundaries the oval will fit within; if its
height and width are equal, a circle will be drawn .

• ... POLY, 309

CALL FRAMEPOLY(VARPTR(polygon%(0)))

CALL PAINTPOLY(VARPTR(polygon%(0)))

CALL ERASEPOLY(VARPTR(polygon % (0)))

CALL INVERTPOLY(VARPTR(polygon%(0)))

CALL FILLPOLY(VARPTR(polygon%(0)), VARPTR(pattern%(0)))

The shapes created by this set of ROM calls can be composed of any number of
connected lines. The number of elements in the polygon array is determined by the
number oflines in the polygon: There will be five elements plus two for each corner of
the polygon. Of the five basic elements, the first one specifies how many elements are
in the array and the second through the fifth define the usual upper, left, lower, and
right boundaries of the shape. The remaining elements are in groups of two, with the
first specifying they coordinate of a corner and the second specifying the x coordi
nate of the same corner (note the reversal of the normal (x, y) order). The corner coor

dinates are given in the order the corners are to be drawn .

• ... RECT, 74

CALL FRAMERECT(VARPTR(rectangle%(0)))

CALL PAINTRECT(VARPTR(rectangle%(0)))

442

CALL ERASERECT(VARPTR(rectangle%(0)))

CALL INVERTRECT(VARPTR(rectangle%(0)))

SECTION VI: APPENDICES

CALL FILLRECT(VARPTR(rectangle%(0)), VARPTR(pattern%(0)))

The shapes created or modified by these ROM calls are rectangles defined by the

rectangle array.

I · .. ROUNDRECT
CALL FRAMEROVNDRECT(VARPTR(rectangle%(0)))

CALL PAINTROVNDRECT(VARPTR(rectangle%(0)))

CALL ERASEROVNDRECT(VARPTR(rectangle%(0)))

CALL INVERTROUNDRECT(VARPTR(rectangle%(0)))

CALLFILLROUNDRECT(VARPTR(rectangle%(0)), VARPTR(pattern%(0)))

These ROM calls create rectangles with rounded corners: The shape of the cor
ner is determined by the arguments oval width and ovalheight, which specify the
number of pixels in each direction of the radius of the corner.

A Few Short
Utility

Programs Appendix B

The word utility implies usefulness and practicality-whether it is referring to water
and power companies (public utilities), baseball players (utility infielders and out
fielders), or computer programs. All computer programs, of course, should be useful,
but utilities are a special class of useful programs. Typically they perform a single
task-often of a housekeeping nature, such as reconstructing a damaged file, copying
a disk, or displaying some sort of information. The Single-Drive Copy program sup
plied with the Macintosh is an example of a utility, as are the items available on the
Apple menu (the Alarm Clock, Calculator, and so on).

Utility programs often evolve through dissatisfaction and disaster. Many times, a
few minutes spent writing a short utility program can save the day-or at least several
hours of it-if it occurs to you to write the program. The incident that resulted in the
first utility we will look at is an example of this.

As a person who writes for Microsoft Press-often about Microsoft products-I
enjoy the mixed blessing of early access to many of their programs. Microsoft Word is
one such program. When I started working on this book, the programmers hadalnwst
all the bugs worked out of the Macintosh version of Word, so I decided to use it. There
were minor frustrations, but I saved my work often, and the few times the system
crashed it left a "temporary" or "rescue" file from which I could recover all but the
last few paragraphs. Until 2 o'clock on the morning of January 6th, when I uncovered
a bug-and it bit me. Tired and ready to crawl into bed, I did a final save and chose
Quit from the File menu. The program announced that I had unsaved changes to the
glossary and suggested I save them as Standard Glossary, which I agreed to. When all
the whirring stopped and I was looking at the desktop, I woke up in a hurry: My chap
ter was gone! Totally. No temporary file, no rescue file, nothing. My backup copy

443

444 SECTION VI: APPENDICES

on a different disk was only six hours old, but those six hours represented 5000 charac
ters of more or less creative effort.

While desperately rummaging through the disk directory, I clicked Display by
size and discovered that the Standard Glossary file was 67K bytes, rather than its usual
700 or so bytes. My entire chapter had been absorbed into the glossary file. After half
an hour of trying to get Word to open the glossary, I was tired again and went to bed,
resolved to retype the missing 5K in the morning.

I am almost embarrassed to admit that it never occurred to me to write a BASIC

utility to recover the file. Fortunately, the first person I complained to in the morning
suggested I do that, and ten minutes later I'd recovered mywork. Ifl had just stopped
to think for a few minutes the night before, I could have solved the problem then and
had a much better night's sleep.

The reason I am taking up space with this personal confession is that I have
noticed I am not the only person who overlooks the obvious. When you run into a
problem, especially if it has to do with information stored in a file, stop for a moment
to consider whether any of your BASIC skills can be of use. "Professionally" written
programs are often available that will alrrwst solve the problem, but the difference be
tween almost and entirely might be several hours of frustration. Try looking to your
own talents when faced with a problem. And don't wait until a problem comes along to
think about writing a BASIC utility. Each time you perform some routine, repetitive
task, ask yourself whether a BASIC program could handle it for you.

I A file-recovery program I
Word no longer does the Standard Glossary trick, and with any luck you will

never lose a file-to Word or to any other program. But you can still profit from this
recovery utility, as it is the base for a variety of others.

The first stage involved in recovering my file from Standard Glossary was dis
covering just what the glossary file contained. To do this, I wrote the short program
shown in Figure B-1.

The LINE INPUT # 1 statement reads one "line" from the sequential file opened
as file # 1. A line, in this case, is defined as all characters up to a carriage return, and
since this file was created by Word, which places a carriage return only at the end of a
paragraph, each line will be a paragraph from the file.

Appendix B: A Few Short Utility Programs

'* File display program
'*

OPEN FILES$(1) FOR INPUT AS #1
lineCount = 1
WHILE NOT EOF(1)

LINE INPUT #1, text$
PRINT lineCount; text$
lineCount = lineCount + 1

WEND

Figure B-1. Displaying a file

445

The LINE INPUT # filenumber, string-variable statement reads a paragraph and
assigns it to the string-variable included in the statement-text$ in this program. A

string variable can be up to 32,767 characters long, which is certainly longer than any
paragraph we are likely to encounter.

The PRINT statement prints a line number and then the line-one long line,
stretching off the right side of the Macintosh screen. It wouldn't take much more

effort to neatly wrap the lines around so the entire paragraph would be displayed. We
will do just that in another utility later in this appendix, but this display is adequate for
the job at hand, which is seeing what is in the glossary.

I included the line numbers because the section I wanted to recover was about
three pages long and buried in the middle of forty pages. There was no point in taking

the time or the disk space to copy the entire file. I was sure I could spot the beginning
and ending points of the section by watching the opening line of each paragraph scroll
past on the screen. And I did: The section started around line 250 and ran to about
line 265. A quick edit changed the program to the one in Figure B-2 (shown on the
next page), and a few minutes later I had recovered my work of the previous night.
These programs are short and simple, but they did the job.

I An outline program I
The second utility we will look at is another program born out of frustration. My

publisher asked me to produce outlines of two manuscripts I had almost completed.
Having been through this routine before, I had worked out an outlining method:
After loading Word and opening two document windows, I would load a chapter into

446 SECTION VI: APPENDICES

'* File recovery program
'*

OPEN "standard glossary" FOR INPUT AS #1
OPEN "goodstuff" FOR OUTPUT AS #2
FOR lineCount=1TO300

LINE INPUT #1, text$
IF lineCount > 245 AND lineCount < 271 THEN PRINT #2, text$

NEXT
CLOSE 1, 2

Figure B-2. Recovering the section

one window and then use the mouse to select and copy the section headings to the
second window. Since I include typesetting code as I write, the headings were easy to
spot, as each was preceded by the code AAA), BBB), or CCC).

I immediately set to work on the first book, and two hours later had a 12-page
outline. I also had a sore back (concentration is tiring) and a desire not to repeat the
process for the second book. I stopped to consider whether or not I was using the best
method. My brain finally clicked into gear, and in less than 20 minutes I had both
written a BASIC utility and used it to create the outline of the second book.

The outline program is really just a slight enhancement of the previous program.
It opens a file for the outline, and then reads each chapter and writes specified por
tions of it to the outline file. The primary prerequisite for making this program work is
having some way to identify the portions of the input file that you want to transfer to
the output file. If there aren't natural markers, such as my typesetting codes, in the
file, you may have to scroll through with your word processor and uniquely mark each
segment to transfer. The BASIC program can, of course, delete the unwanted markers
as it makes the transfer.

The program is listed in Figure B-3. Notice, in the Begin section, that the pro
gram can be terminated by not selecting a new input file from the standard Open dia
log box provided by the FILES$(I) function. If a file is selected, its name is printed to
the output file, with a carriage return-CHR$(13)-before and after it, as a divider
between chapters.

The section labeled Strip checks the first four characters of each paragraph to
see if they are the characters used to indicate a section heading. If so, it sets the value

Appendix B: A Few Short Utility Programs

'*Outlining program
'*

DEFINTa-z
Begin:

doc$ = FILES$(1)
IF doc$ = "" THEN END
OPEN doc$ FOR INPUT AS #1
outline$= FILES$(0, "enter the outline file name")
OPEN outline$ FOR APPEND AS #2
PRINT #2, CHR$(13); doc$; CHR$(13)

Strip:
WHILE NOT EOF(1)

LINE INPUT #1, para$

'*
'* Extract first, second, and third level headings.
'*
lineStart$ = LEFT$(para$, 4)
IF lineStart$ = "AAA)" THEN space = 0 : GOSUB PrintHead
IF lineStart$ = "BBB)" THEN space = 4 : GOSUB PrintHead
IF lineStart$ = "CCC)" THEN space = 8 : GOSUB PrintHead

WEND
GOTO Begin

PrintHead:
para$ = MID$(para$, 5)
PRINT SPC(space); para$
PRINT #2, SPC(space); para$
RETURN

Figure B-3. Creating an outline

447

of space to the appropriate number of spaces and sends the program to the section
that's labeled PrintHead, where the typesetting code is removed and the indent and
head are printed.

I A program to count words and characters I
The next program (Figure B-4 on the following pages) continues the theme of

programs primarily of interest to writers. It displays a file while counting the number
of characters and words. There are various reasons why you might want to know the

448 SECTION VI: APPENDICES

amount of printable text in a file; for example, the pay scale for magazine articles is
often based on a character or word count. A side benefit of knowing these two figures
is that you (or the Macintosh) can then compute the average word length, which is a

good indicator of the reading level of the article and hence whether it is appropriate

for the audience at which it is aimed.

·• Character and word counting program ..
DEFINTa- z
WINDOW 1,, (2, 20) - (510, 340), 3

..
'* Initialize variables . ..
Begin:

numChar= 0
numWord = O
numPara= O
wide= 75
lastBreak = 1
count= 0
newline$ = ""
true= -1
false= 0

..
'* Give info and see if there is word to search for.

GetWord:
WINDOW 2, I (20, 200) - (430, 335), 4

'the output window

'number of characters counted
'number of words counted

'number of paragraphs counted
'width of output in characters

'place to break line
'number of characters in current line

'blank line
'logical true

'logical false

PRINT "This progam opens a file and counts the number of characters, "
PRINT "words, and paragraphs. If you would like it also to count how"
PRINT "many times a particular word occurs, enter that word here."
EDIT FIELD 1 ,""I (20, 100) - (200, 115)
BUTTON 1, 1, "Continue", (220, 100) - (280, 120)
BUTTON 2, 1, "Quit", (320, 100) - (380, 120)

Waiting:
event = DIALOG(O)
IF event <> 1 AND event <> 6 THEN GOTO Waiting

Figure B-4. Counting words and characters nwre ...

Appendix B: A Few Short Utility Programs

'*

IF event = 1 AND DIALOG(1) = 2 THEN END
keyword$ = EDIT$(1)
searchFor$ = UCASE$(keyWord$)
IF searchFor$ <> ""THEN findFlag =true
WINDOW CLOSE 2

'* Get name of file to be searched.
'*
GetFile:

'*

doc$ = FILES$(1, "TEXTWORDWDBN")
IF doc$ = "" THEN END
WINDOW CLOSE 2
CLS
OPEN doc$ FOR INPUT AS #1

'*Start display and search.
'*
Start:

WHILE NOT EOF(1)
LINE INPUT #1, para$
numPara = numPara + 1

'*
'*Check each letter in paragraph.
'*
FOR position = 1 TO LEN(para$)

ltr = ASC(MID$(para$, position, 1))
count= count+ 1
IF ltr = 32 OR ltr = 45 THEN lastBreak = count
newline$= newline$+ CHR$(1tr)
IF count= wide THEN GOSUB Prnt

Skip:

'*

NEXT
GOSUB Prnt

WEND

'*All done, print the findings.
'*
DisplayResults:

WINDOW 2, I (20, 175) - (400, 335), 4

Figure B-4. Counting words and characters (continued)

449

'Quit button clicked

'space or hyphen
'form new line
'check length

more ...

450

PRINT CHR$(7); "Information about:"; doc$
PRINT
PRINT "characters"; TAB(20); "= "; numChar
PRINT "words"; TAB(20); "= "; numWord
PRINT "paragraphs"; TAB(20); "= "; numPara
PRINT "average word length"; TAB(20); "= ";
PRINT USING "##.##"; numChar I numWord
IF NOT findFlag THEN GOTO skip2
PRINT
PRINT "Number of occurrences of"; CHR$(34);
PRINT keyword$; CHR$(34);" =";occur

skip2:

..

TEXTFACE 1
PRINT
PRINT "Click this window to continue";
TEXTFACEO
WHILE MOUSE(O) = 0 : WEND
CLOSE:CLEAR
GOTO Begin

'* Display document. ..
Prnt:

'* Determine how much to print. ..
IF count< wide THEN lastBreak =count
printedline$ = LEFT$(newline$, lastBreak)
numChar = numChar + LEN(printedline$)

..
'* Print letters and count words . ..
FOR location = 1 TO lastBreak

ltr$ = (MID$(printedline$, location, 1))
PRINT ltr$;
IF ASC(ltr$) = 32 THEN numWord = numWord + 1

NEXT
PRINT CHR$(13);
IF findFlag THEN startSearch = 1 : GOSUB Find
count= count - lastBreak

SECTION VI: APPENDICES

'use CHR$(34) to print quote mark

'accumulate character count

'end line with carriage return

Figure B-4. Counting words and characters (continued)
11Wre ...

Appendix B: A Few Short Utility Programs 451

newline$ = RIGHT$(newLine$, count)
RETURN

'leave unprinted characters in newline$

Find:
printedLine$ = UCASE$(printedline$) 'searchFor$ and printedLine$ uppercase
found= INSTR(startSearch, printedline$, searchFor$)
IF found<> 0 THEN occur= occur+ 1 ELSE RETURN
startSearch =found + LEN(searchFor$) 'restart search after current word
IF startSearch <= LEN(printedLine$) - LEN(searchFor$) THEN GOTO Find
RETURN

Figure B-4. Counting words and characters (continued)

This program also offers the opportunity to count the number of occurrences of
a specified word, in addition to generally counting all words. (Of course, if your pro
gram can recognize a specific word to count it, you could also have it delete the word

or change it.)
The first section of the program displays a message telling the user what the pro

gram does and providing an edit field to enter a word to count. If a word to count is en
tered, the Waiting section retrieves the word, stores it as the variable keyWord$ (and

stores an all-caps version as searchFor$), and sets the variable.findFZag equal to true.
This flag is checked at several points in the program: after each paragraph is printed,
to see if the paragraph should be scanned for the specified word, and at the end of the
program, to see if the number of occurrences of the word should be displayed.

Notice that in the GetFile routine, I used the optional prompt-string parameter

with the FILES$ function to limit the files listed to those of type TEXT, WORD, or

WDBN. Common file types and the programs that create them are:

File type

TEXT
WORD
WDBN

Program

BASIC
Mac Write
Microsoft Word, formatted

In the Start section, which sifts through the characters in each paragraph, the
program keeps track of the position of the last occurrence of a space (ltr = 32) or hy
phen (ltr=45). It stores this as lastBreak, and later uses this information to decide

452 SECTION VI: APPENDICES

where to break the line when displaying it on the screen. The maximum line width is
specified in Begin (the variable wide is originally set to 75), but the program will try to
break the line between words, rather than exactly at the line length specified.

After each paragraph is printed, findFlag is checked. If it is true, the offset is set
equal to 1 and the program is diverted to the Find subroutine, which uses the INSTR

function to check each paragraph for the supplied word. The syntax for this is:

INSTR([I,]X$, Y$)

The optional I is an offset indicating how far into string X$ the search for Y$ should
start. The function returns a number equal to the position, in characters from the be
ginning of X$, that Y$ starts, or a zero if there is no occurrence of Y$.

If the paragraph does not contain the word, the program then returns to the
Prnt subroutine. If the word is found, the counter (occur) is incremented, and the off
set is increased by the starting position of the word plus the length of the word. The
Find subroutine is repeated until either the word is not found, or the offset comes
within the length of the word from the end of the paragraph.

I A program to create DATA statements I
While writing the shell-game program for Chapter 14, I needed a way to convert

a MacPaint picture to DATA statements, so you wouldn't have to draw your own pic
ture of a walnut shell. I wrote the short utility shown in Figure B-5 to do the job. This
program brings a picture in from the Clipboard, displays it on the screen within a
specified area, uses the GET statement to store it in an integer array, and then breaks
the array down to a series of DATA statements.

There are several variables in this program that you will have to adjust for the
size of the picture you are using. The size of the array is determined by the area cap
tured with the GET statement, which is in turn determined by the area the picture is
scaled to with the PICTURE statement. The following formula, discussed in Chapter
7, is used to determine the size array required:

4+(((y2-yl)+1) * 2 *INT(((x2-xl) + 16)/16))

The x and y variables are the boundaries used in the PICTURE and GET statements.

Appendix B: A Few Short Utility Programs

'*Program to create DATA statements
'*

DEFINTa-z
DIM pict(125)

'*Tell user what to do and get response.
'*
Start:

WINDOW 1,, (0, 30) - (512, 342), 3
WINDOW 2, , (100, 50) - (350, 170), 2
PRINT "Copy a picture from the Scrapbook"
PRINT "to the clipboard and then click OK."
PRINT "Click Quit to return to BASIC."
BUTTON 1, 1, "Quit", (20, 85) - (80, 105)
BUTTON 2, 1, "OK", (175, 85) - (235, 105)

'*
'* Get response.
'*
WHILE DIALOG(O) <> 1
WEND
butSel = DIALOG(1)
IF butSel = 1 THEN END
WINDOW CLOSE 2

'*
'* Open clipboard in preparation for bringing in picture
'* previously placed there.
'*
OPEN "clip:picture" FOR INPUT AS #1
image$= INPUT$ (LOF(1), 1)
CLOSE 1
IF image$ = '"' THEN GOTO Start
PICTURE (50, 50) - (100, 80), image$
GET (50, 50) - (100, 80), pict

..
'* Open output file in which to store image . ..
filename$= FILES$(0, "Store image in file:")
IF filename$ = "" THEN SYSTEM

Figure B-5. Creating DATA statements

453

'background window
'instruction window

'wait for button-click

'bring image in

'try again if blank
'display the image

'store image in array

more ...

454

'*

OPEN filename$ FOR OUTPUT AS #2
count= O

'*Convert array to series of DATA statements.
'*
PrintDataStatement:

PRINT #2, "DATA";
FOR item = 1 TO 7

PRINT #2, pict(count); ", ";
count = count + 1
IF count = 125 THEN CLOSE 2 : END

NEXT item
PRINT #2, pict(count)
count = count + 1
GOTO PrintDataStatement

Figure B-5. Creating DATA statements (continued)

SECTION VI: APPENDICES

'initialize counter

'DATA statement on each line
'first 7 items on line

'increment counter
'check for end

'last item on line (no comma)
'increment counter

'do next line

The value returned by this formula is the number of bytes required to store the pic
ture. Since there are two bytes per array element in an integer array, you can divide
the value by 2, and enter the result as the variable limit at the beginning of the pro

gram. This variable is used in both the DIM statement and in the test at the end of the
program to see if all array elements have been read.

I wrote this utility to convert one picture. If you are going to convert a bunch of

pictures of different sizes, you could modify this program to include the ability to ad
just the picture size with the mouse, and then automatically compute the array size
and dimension the array.

To use the DATA statements produced by this program in another program, you
can either open the sequential file they are stored in and read the data, or use the
MERGE command to incorporate the data in the new program. To demonstrate this

second technique, type the short program shown in Figure B-6, and then make the
Command window active and enter the command MERGE, followed by the name of
the file in which you stored the DATA statements (enclose the file name in quotation
marks). When you press Return, BASIC brings the DATA statements in from the disk
file and attaches them to the end of your program. If you now run the program, the
picture described by the statements is displayed.

Appendix B: A Few Short Utility Programs

ShowNewPict:
DIM newPict%(125)
FOR item= 0 TO 125

READ newPict%(item)
NEXT
PUT (100, 100), newPict(O)

Figure B-6. Merging DATA statements

I A program to compute the dimensions of a picture array I

455

Now that you have suffered through the formula used to compute the dimen
sions of a picture array, here's a utility that will do the math for you. The essence of this

program-the part that actually computes the number of elements in the array-is
only a few lines long; the remainder of the program is used to set up and manage the

edit fields (shown in Figure B-7) that solicit the boundaries.
The full program is shown in Figure B-8 on the following pages. There should be

no unfamiliar commands in this listing, though you may want to note the fact that the
VAL function is used in the RetrieveValues section to convert the string contents of

each edit field to a numeric value.

Computing the Array Size

Left boundary

Top boundary

Right boundary

Bot tom boundary

[Compute I Done

Figure B- 7. The array-dimension
dialog box

456 SECTION VI: APPENDICES

'* Program to compute array size needed to hold picture of given dimension
'*

'*

'*
'* Open display window.
'*
WINDOW 4, , (100, 50) - (350, 250), -3

'*
'* Print labels and edit fields.
'*
MOVETO 35, 15
PRINT "Computing the Array Size"
MOVETO 15, 40
PRINT "Left boundary"
EDIT FIELD 1, "", (130, 25) - (205, 40)
MOVETO 15, 65
PRINT "Top boundary"
EDIT FIELD 2, '"', (130, 50) - (205, 65)
MOVETO 15, 90
PRINT "Right boundary"
EDIT FIELD 3, '"', (130, 75) - (205, 90)
MOVETO 15, 115
PRINT "Bottom boundary"
EDIT FIELD 4, "", (130, 100) - (205, 115)
et = 1 : EDIT FIELD ef

'*
'* Create buttons.
'*
BUTTON 1, 1, "Compute", (15, 175) - (85, 190)
BUTTON 2, 1, "Done", (165, 175) - (235, 190)

'* Wait for something to happen
'*
MainLoop:

WHILE 1=1
event = DIALOG(O)
IF event = 1 THEN GOSUB ButtonPressed
IF event= 2 THEN ef = DIALOG(2)

Figure B-8. Computing array dimensions

'make top edit field active

more ...

Appendix B: A Few Short Utility Programs

'*

IF event = 6 THEN GOSUB RetrieveValues
IF event = 7 THEN ef = ef MOD 4 + 1 : EDIT FIELD ef

WEND

'* Button was pressed.
'*
ButtonPressed:

IF DIALOG(1) = 2 THEN END

'*
'* Retrieve entries.
'*
Retrieve Values:

left= VAL(EDIT$(1))
top= VAL(EDIT$(2))
right= VAL(EDIT$(3))
bottom= VAL(EDIT$(4))
high = bottom - top
wide= right - left

••
'* Compute size . ..
size= 4 +((high+ 1) * 2 * INT((wide + 16) I 16))
arrayElements = size I 2

'*
'* Print answer.
'*
MOVETO 0, 135
PRINT "An array to hold the pixels within the"
PRINT "rectangle("; left;","; top;") - (";right;","; bottom;")"
PRINT "requires "; arrayElements; "elements.
RETURN

Figure B-8. Computing array dimensions (continued)

457

This program was written more to convey the idea that you can modify code and
apply it to your own needs than as a finished product (it is actually a modification of
the program in Section II that transfers an image into BASIC). If you are creating a lot
of picture arrays, you may want to rewrite this program as a subprogram that uses the

458 SECTION VI: APPENDICES

beginning and ending points of a mouse drag to define the picture boundaries. The

number of elements required by the array could be passed to the main program,

which would erase the previous array and dimension a new one.

I A program to strip comments I
The next program removes REM statements and comments. There are two rea

sons for doing this: size and speed. A heavily commented program can easily be twice
as large as the same program without the comments, and runs substantially slower.

Size is a factor when disk space is at a premium or when the amount of available RAM

in your Macintosh limits how large a program can be loaded. Speed is not always im
portant, but when doing number crunching or animation, it can be significant.

Before having a look at the stripper, let's do a quick experiment to determine the
effect of comments on a program's speed. Enter and run the short program shown in

Figure B-9. Record the time span displayed. Now add a REM statement between the
FOR and NEXT statements and repeat the test. Add an apostrophe and comment to
the line FOR count= 1 TO 25000 and again repeat the test. Remove the REM state

ment and repeat the test again. You should now have a list of run-times that will give
you an idea of the effect of comments and REM statements.

The stripper program is listed in Figure B-10. The comments should pretty well ·
explain the purpose of each section. The program opens the commented file for input
and a new file for output, where it will place the stripped lines of the input file. It then

'*Speed test
'*

BEEP
time1 ! =TIMER
FOR count = 1 TO 25000
NEXT count
time2! =TIMER
BEEP
PRINT time2! - time1 !; "seconds"

Figure B-9. A speed test

Appendix B: A Few Short Utility Programs

'*Program to strip comments
'*

remark$ = "REM"

'*
'*Open input and output files.
'*
Start:

inputFile$ = FILES$(1 , "TEXT")
IF inputFile$ = "" THEN END
outputFile$ = FILES$(0, "Save as")
IF outputFile$ =""THEN END
OPEN inputFile$ FOR INPUT AS #1
OPEN outputFile$ FOR OUTPUT AS #2

'*
'*Process input file.
'*
WHILE NOT EOF(1)

LINE INPUT # 1, lin$
length = LEN(lin$)
IF length = 0 THEN GOTO Skip

'*
'*Remove leading spaces.
'*
FOR char= 1 TO length

char$ = MID$(1in$, char, 1)

459

IF char$ = CHR$(32) THEN GOTO SkipChar
lin$ = MID$(1in$, char) 'new line, without leading spaces
char = length + 1

SkipChar:
NEXT

'*
'* Find first apostrophe in line.
'*
comment = INSTR(lin$, CHR$(39))
IF comment<> 0 THEN lin$ = LEFT$(1in$, comment-1)
length = LEN(lin$)
IF length = 0 THEN GOTO Skip

Figure B-10. The stripper
11101-e. ••

460

'*
'* Find first REM in line . ..
comment = INSTR(lin$, remark$)
IF comment<> O THEN lin$ = LEFT$(1in$, comment-1)
length = LEN(lin$)
IF length = 0 THEN GOTO Skip

..
'* Get rid of spaces to the right of line . ..
FOR char = length TO 1 STEP -1

char$= MID$(1in$, char, 1)
IF char$ = CHR$(32) THEN GOTO Skip2
lin$ = LEFT$(1in$, char)
char= O

Skip2:
NEXT

'*
'* Drop final colon.
'*

SECTION VI: APPENDICES

IF RIGHT$(1in$, 1) = ":" THEN lin$ = LEFT$(1in$, LEN(lin$) - 1)
PRINT #2, lin$ 'put line in output file
PRINT lin$, LEN(lin$) 'show results

Skip:
WEND
CLOSE
WHILE MOUSE(O) = 0 : WEND 'time to read results
GOTO Start

Figure B-10. The stripper(continued)

reads the lines of the input file, one-by-one, discards the line if it is blank, and re
moves any leading spaces. The resulting line is searched for an apostrophe, and if one
is found, a new line is formed using all of the old line up to the apostrophe. (Note: Ev
erything after ail apostrophe within a PRINT statement will also be stripped. I will
leave the solution to this problem as an exercise for you to solve.) The line is next
searched for a REM statement, which, if found, is discarded. Any spaces remaining to
the right of the line when a comment or REM statement was removed are now dis
carded, along with the final colon that would have separated a trailing REM statement

Appendix B: A Few Short Utility Programs 461

from the rest of the line. The stripped line is stored in the output file and displayed on
the screen, to prove that the program works.

I A program to create a SYLK file I
Different application programs, for the Macintosh as well as other computers,

store their output files in different formats. Each, naturally, reads its own format, and
some have the ability to convert to and from other formats. If you know the format ex

pected by a program, you can have BASIC store its results in that format, so that it can
be read directly into the other program. This could be useful, for example, when you
have an established BASIC program to accumulate and evaluate numeric information

that you would like to chart, using the Microsoft Chart program. Chart will allow you
to paste data from the Clipboard and format that into a chart but it would be more effi

cient to simply read the data file directly.

Chart and most other Microsoft applications can directly read two types of files:
their own unique format and SYLK (Symbolic Link) format. SYLK is sort of a general

purpose format that has room for the types of information desired by various applica
tions. Each application can open a SYLK file and read the portions it needs. There is a
fairly complete, though not very understandable, explanation of SYLK format in the

appendices of the Chart and Multi plan manuals.
The program in Figure B-11 demonstrates how a SYLK file could be created to

feed data points to Chart to be plotted. It includes sample data points for the purpose

of demonstration: If you were actually using this program, you would probably convert
it to a subprogram and pass the data points to it from the main program.

'*Program to create a Microsoft SYLK file
'*

· This program could be called from a program that performs calculations
' and produces a set of x and y variables, or it could be tacked onto the
' end of such a program. The variable NumDatPts, and the data points
'themselves should be defined in the main program, and x() and y()
'should be dimensioned at the beginning of the main program. If you

Figure B-11. Creating a SYLK file
11Wre ...

462 SECTION VI: APPENDICES

' are creating a Text series, the variable x should be defined as a string
'variable. If multiple files are to be created during one session, make
'sure that the arrays are ERASEd prior to re-dimensioning.

DEFINTa-w

'*
'*Following values are included to demonstrate program.
'*
numDatpts = 4 'number of datapoints passed
DIM x$(numDatPts - 1), y$(numDatpts - 1)
DIM x(numDatpts - 1), y(numDatPts - 1)
x(O) = 9

'normally done in main program
'x() and y() passed from main program

x(1) = 3
x(2) = 5
x(3) = 8
y(O) = 11
y(1) = 22
y(2) = 43
y(3) = 14
x$(0) = "one"
x$(1) ="five"
x$(2) = "seven"
x$(3) = "ten"

'*
'*Assign default names and provide opportunity to change them.
'*
WINDOW 4, , (100, 50) - (400, 200), -2
MOVETO 10, 20
PRINT "Series name:"
MOVETO 15, 40
PRINT "category axis:"
MOVETO 15, 60
PRINT "value axis:"
MOVETO 10, 90
PRINT ''Type:"
BUTTON 1, 2, "Sequence", (15, 100) - (100, 115), 3
currentButton = 1
type$= "S"
BUTTON 2, 1, "Date", (150, 100)-(250, 115), 3
BUTTON 3, 1, "Text", (15, 120) - (100, 135), 3
BUTTON 4, 1, "Number", (150, 120) - (250, 135), 3

Figure B-11. Creating a SYLK file (continued)

'create dialog box

'selected by default

11Wre ...

Appendix B: A Few Short Utility Programs

'*

BUTTON 5, 1, "OK" I (260, 100) - (290, 135), 1
vaName$ = "Y"
EDIT FIELD 3, vaName$, (120, 45) - (290, 60)
caName$ = "X"
EDIT FIELD 2, caName$, (120, 25) - (290, 40)
sName$ = TIME$
EDIT FIELD 1, sName$, (120, 5) - (290, 20)
ef = 1

'* Watch for action in dialog box.
'*
Loop:

event = DIALOG(O)
IF event = 1 THEN GOSUB But
IF event = 2 THEN ef = DIALOG(2)
IF event= 6 THEN GOTO Done

463

'default value axis name

'default category axis name

'default series name

IF event = 7 THEN ef = ef MOD 3 + 1 : EDIT FIELD ef
GOTO Loop

'Type button was clicked
'different edit box was clicked

'Return key pressed
'Tab key pressed

But:
buttonPushed = DIALOG(1)
IF buttonPushed = 1 THEN type$ = "S"
IF buttonPushed = 2 THEN type$ = "D"
IF buttonPushed = 3 THEN type$= "A"
IF buttonPushed = 4 THEN type$ = "N"
IF buttonPushed = 5 THEN GOTO Done
BUTTON currentButton, 1
BUTTON buttonPushed, 2
currentButton = buttonPushed
RETURN

Done:
sName$ = EDIT$(1)

'*

'which button was pressed
'Sequence button

'Date button
'Text button

'Number button

'deselect previously selected button
'select new button

'store currently selected button

'get new names

'* Have to get rid of colons (if time retained as name), as this is
'* file name, and Mac recognizes colon as volume identifier.
'*
tempName$ = ""

Figure B-11. Creating a SYLK file (continued)
more ...

464

FOR count = 1 TO LEN(sName$)
char$ = MID$(sName$, count, 1)
IF ASC(char$) = 58 THEN char$= CHR$(46)
tempName$ = tempName$ + char$

NEXT
sName$ = tempName$
caName$ = EDIT$(2)
vaName$ = EDIT$(3)
WINDOW CLOSE 4

'*
'* Produce SYLK file.

SECTION VI: APPENDICES

'check each character
'change : to -

're-create name

'* See Appendix of Chart documentation for explanation of SYLK files . ..
OPEN sName$ FOR OUTPUT AS #1
PRINT #1, "ID;PMC"
PRINT #1, "C;X1 ;Y1 ;K"; CHR$(34); "MC;;r; type$; ";;N"; sName$; ";;S1 ;;P1 "; CHR$(34)
PRINT #1, "C;Y2;K"; CHR$(34); sName$; "."; caName$; CHR$(34)
PRINT #1, "C;X2;K"; CHR$(34); sName$; "." vaName$; CHR$(34)

xVal:
IF type$ = "S" OR type$ = "D" THEN GOTO yVal
IF type$= "A" THEN GOTO aVal
fin$= "C;X1 ;Y4;K" + STR$(x(O))
GOSUB Strip
FOR dp = 1 TO numDatPts - 1

fin$= "C;Y" + STR$(dp + 4) + ";K" + STR$(x(dp))
GOSUB Strip

NEXT
GOTOyVal

a Val:

'x values computed by Chart
'have to insert quotation marks

'print rest of x-axis data points

fin$= "C;X1 ;Y4;K" + CHR$(34) + x$(0) + CHR$(34) 'insert quotes
GOSUB Strip
FOR dp = 1 TO numDatPts - 1

fin$= "C;Y" + STR$(dp + 4) + ";K" + CHR$(34) + x$(dp) + CHR$(34)
GOSUB Strip

NEXT

yVal:
FOR count = O TO numDatPts - 1

y$(count) = STR$(y(count))
NEXT

Figure B-11. Creating a SYLK file (continued) more ...

Appendix B: A Few Short Utility Programs 465

lin$ = "C;X2;Y4;K" + y$(0) 'specify y-axis and print first data point
GOSUB Strip
FOR dp = 1 TO numDatPts - 1 'print rest of y-axis data points

lin$ = "C;Y" + STR$(dp + 4) + ";K" + y$(dp)
GOSUB Strip
NEXT

PRINT #1 , "E" 'indicates end of SYLK file
CLOSE 1
END

Strip:
FOR count = 1 TO LEN(lin$)

char$ = MID$(1in$, count, 1)
IF ASC(char$) = 32 THEN GOTO Skip
nlin$ = nlin$ + char$

Skip:
NEXT
PRINT #1, nlin$
nlin$ = ""
RETURN

Figure B-11. Creating a SYLK file (continued)

When you run the program, the dialog box shown in Figure B-12 solicits infor
mation about the chart. This information, along with the data points, is used to create
a simple column chart. With a little more study of the SYLK format, you could add but
tons to select the style of chart: bar, column, line, and so on.

Series name: 1 g 56 26

category axis:! ::=X==========:
value axis: Iv _________ ~

Type:

®Sequence

QTeHt

QDate

QNumber

Figure B-12. The information dialog box

466 SECTION VI: APPENDICES

The SYLK format is very flexible. The information stored in this file by BASIC

can be retrieved by Chart, Multiplan, or File. If you do a lot of number crunching in
BASIC and want to pass the results to one of these programs, you should spend some
time picking apart the SYLK format, and then modify this program to suit your needs.

I A sort program I
The sort program that's shown in Figure B-13 is another demonstration pro

gram, rather than a finished product. This program allows you to enter a list of words,
and then sorts them into alphabetical order. If you were to incorporate this routine
into one of your programs, you would probably have it read words from a file, rather
than typing them in one at a time. This program is reasonably efficient, but since it
does the entire sort in memory, rather than on disk, the number of words that can be
sorted is limited by the amount of available memory. (The variable max, defined in the
Start section, limits the number of entries the program will accept from the key
board; the number that can actually be sorted is limited by memory.)

'* Program to sort an array of string variables in memory
'* using Decreasing Increment Sort method
'*

Start:
DEFINTa-z
max= 100 'maximum number of words to sort
DIM word$(max)
WINDOW 1, , (10, 30) - (200, 340), 3

'*
'* Create data entry window with control buttons.
'*
WINDOW 2,, (201, 30) - (400, 100), 3
PRINT "Type word and press Return"
EDIT FIELD 1, "enter word", (10, 20) - (180, 35)
BUTTON 1, 1, "Sort", (10, 45) - (55, 65)
BUTTON 2, 1, "Again", (65, 45) - (110, 65)
BUTTON 3, 1, "Quit", (120, 45) - (180, 65)

Figure B-13. A sort program

'output window

more ...

Appendix B: A Few Short Utility Programs

'*
'* Wait for something to happen in window.
'*
Loop:

'*

event = DIALOG(O)
IF event = 6 THEN GOSUB GetWord
IF event = 1 THEN GOSUB GetButton
GOTO Loop

'* Retrieve word from edit field.
'*
GetWord:

temp$ = EDIT$(1)
IF temp$ = ""THEN GOTO Invalid
count =count + 1
IF count = 101 THEN GOTO Invalid
word$(count) =temp$
temp$=""
EDIT FIELD 1, "enter word", (10, 10) - (180, 25)
RETURN

Invalid:

'*

BEEP
RETURN

'* Respond to button pushed.
'*
GetButton:

'*

butPushed = DIALOG(1)
IF butPushed = 3 THEN END
IF butPushed = 2 THEN CLEAR: GOTO Start
GOSUB Sort
GOSUB Look
RETURN

'* Sort routine.
'*
Sort:

WINDOW 1
PRINT

Figure B-13. A sort program (continued)

467

'Return pressed
'button pressed

'Quit
'Again

more ...

468

PRINT "SORTING ... "
offset = count

Sort1:
offset = offset \ 2
IF offset = 0 THEN RETURN
midPoint = count - offset
sortCount = 1

Sort2:
low = sortCount

Sort3:
high= low+ offset
IF word$(1ow) <= word$(high) THEN GOTO Sort4

'*
'* Swap words
'*
temp$ = word$(1ow)
word$(1ow) = word$(high)
word$(high) =temp$
low = low - offset
IF low>= 1 THEN GOTO Sort3

Sort4:

'*

sortCount = sortCount + 1
IF sortCount > midPoint THEN GOTO Sort1
GOTO Sort2

'* Display sorted list.
'*
Look:

CLS
PRINT
PRINT "SORTED LIST:"
PRINT
FOR temp = 1 TO count

PRINT"["; temp;"]" : word$(temp)
NEXT temp
WINDOW2
RETURN

Figure B-13. A sort program (continued)

SECTION VI: APPENDICES

Appendix B: A Few Short Utility Programs 469

I A program to convert a Word file to an unformatted text file I
The next utility should require almost no typing on your part, as it is a modifica

tion of a previous program (the one that counts words and characters). This utility is
useful if you have files formatted by Word stored on a disk, and you would like to tele

communicate them, which usually requires stripping all formatting.
There are no new commands in this program, which is shown in Figure B-14, but

there is a little bit of magic in the Get File routine that I am going to leave for you to fig
ure out for yourself.

'* Program to convert Word file to unformatted text file
'*

DEFINTa- z
WINDOW 1, , (2, 20) - (510, 340), 3

'*
'* Initialize variables . ..
Begin:

numChar= O
wide= 75
lastBreak = 1
count= 0
newline$=""
true= -1
false= O

'*
·• Get name of file to be searched.
'*
GetFile:

doc$ = FILES$(1, "WDBN")
IF doc$ = "" THEN END
OPEN doc$ FOR INPUT AS #1
head$ = INPUT$(128, 1)

'the output window

'number of characters counted
'width of output in characters

'place to break line
'number of characters in current line

'blank line
'logical true

'logical false

nBytes = 256 * ASC(MID$(head$, 17, 1)) + ASC(MID$(head$, 18, 1)) - 128

Figure B-14. Converting a Word file to a text file
rrwre ...

\/

\

470 SECTION VI: APPENDICES

'*
'* Open output file.
'*
OutputFile:

'*

newFile$ = FILES$(0, "File in which to save text")
IF newFile$ = "" THEN END
OPEN newFile$ FOR OUTPUT AS #2

'* Start display and search.
'*
Start:

WHILE NOT endFlag
LINE INPUT #1, para$
numChar = numChar + 1

'*
'*Check each letter in paragraph.
'*
FOR position= 1 TO LEN(para$)

Skip:

ltr = ASC(MID$(para$, position, 1))
count = count + 1

'*
'*Check for space, hyphen, or newline . ..
IF ltr = 32 OR ltr = 45 OR ltr = 11 THEN lastBreak = count
IF ltr= 11 THEN ltr= 13
newline$ = newline$ + CHR$(1tr)
IF count= wide THEN GOSUB Prnt

NEXT
GOSUB Prnt

WEND
CLEAR : GOTO Begin

Figure B-14. Converting a Word file to a text file (continued)

'count carriage return

'form new line
'check length

11Wre ...

Appendix B: A Few Short Utility Programs

..
·• Display document.
'*
Prnt:

..
•• Determine how much to print. ..
IF count< wide THEN lastBreak =count
printedline$ = LEFT$(newline$, lastBreak)
numChar = numChar + LEN(printedline$)
IF numChar > = nBytes THEN endFlag = true

..
'*Print line . ..
PRINT printedline$
PRINT #2, printedline$
count = count - lastBreak
newline$= RIGHT$(newline$, count)
RETURN

471

'accumulate character count

'leave unprinted characters in newline$

Figure B-14. Converting a Word file to a text file (continued)

The text in a Word file is preceded by a 128-byte header that contains informa
tion about the file, and is followed by a section of formatting information. Included in
the header are two bytes, the 17th and 18th, that indicate the size of the file less the
formatting information at the end. The number of characters in the file is computed
by multiplying byte 17 by 256 and adding byte 18 to the product. The result includes
the 128-byte header, so subtracting 128 from the total gives the exact number of char
acters in the text portion of the file. By keeping track of the number of characters that
are transferred from the Word file to the unformatted file, we will be able to stop the
transfer after all the text has been copied to the new file, and avoid transferring any of
the formatting information.

If you are using the interpretive version of BASIC, it is just as much of a bother to
load BASIC and run this program as it is to load Word and save the file without format
ting, but with Microsoft's BASIC compiler, this program should be more convenient.

I

472 SECTION VI: APPENDICES

NaMe Rddl'ess Phone NuMLer

Seattle Jaycees Jose~h Uance Bg 622-4829
.Seattle Jewelry Mfg 319 Joshua Green Bg 682-1989
Seattle Judo Dojo Inc 1519 S Wash 324-7989-..
Seattle Junior Theatre Inc 158 ThoMas 622-7246 "Record
Seattle Heiro 1799 24th S 329-9575
Seattle Kicks Inc 6699 1st NE 522-9634

"'---Fields---"'-/ _____ __,/'

Figure B-15. A section of the telephone book

I A program to create a random-access file I
The next program deals with random-access files , BASIC's alternative to sequen

tial files. The primary difference between the two file types is pointed out by their
names. As you know from working with sequential files, items of information are

stored and retrieved one after the other, from the beginning of the file to the end. If
you want to read the 20th, 43rd, and 72nd records in a sequential file, you have to read
the first 72 records. In a random-access file, on the other hand, you can simply request
those three files, without sifting through the rest. Random-access files are slightly
(but only slightly) more difficult to work with than sequential, but are substantially

faster when you want to retrieve or change specific records in a file.

A more subtle difference is that in a sequential file the records are not neces
sarily related to each other in any manner, whereas in a random-access file each rec

ord contains essentially the same type of information. A familiar object that has many
of the characteristics of a random-access file is your telephone book. Figure B-15

shows a chunk of my phone book as it might look if entered into a random-access file .
Each record consists of three fields : Name, Address, and Phone Number. Each field is
allocated a specific amount of space; if the entry is shorter than the allocated space, it
is padded with spaces to make it fit exactly.

Although this is not a utility created to do a specific job, it could easily be de
veloped into a general-purpose data entry routine that could be used by any program
requiring the user to repeatedly provide the same kind of information. The entire
program is listed in Figure B-16. I'm only going to discuss the parts that are unique to
random-access files.

Appendix B: A Few Short Utility Programs

·•Random access file program ..

..

..
'*Open file and define field sizes . ..
OPEN "nameList" AS #1 LEN = 40
FIELD #1, 19 AS firstName$, 19 AS lastName$, 2 AS age$
record= 1
up= 1
down= -1
f$ = "First Name"
1$ = "Last Name"
a$= "Age"

..
•• Create data entry window . ..
WINDOW 1, , (75, 100) - (450, 290), 3
MOVETO 10, 25
TEXTFACE 1
PRINT "Entering data into a random access file."
TEXTFACEO
MOVETO 160, 60
PRINT "Fill in the fields and click OK "
MOVETO 160, 90
PRINT "or press Return to enter record."
MOVETO 160, 120
PRINT "Click Quit to return to BASIC"
MOVETO 165, 160
PRINT "Review"
LINE (95, 145) - (280, 170), , b
BUTTON 1, 1, "OK", (10, 150) - (70, 165)
BUTTON 2, 1, "QUIT', (305, 150)- (365, 165)
BUTTON 3, 1, "Up", (100, 150) - (150, 165)
BUTTON 4, 1, "Down", (225, 150) - (275, 165)

·• Create edit fields . ..
CreateEditFields:

EDIT FIELD 1, f$, (10, 45) - (150, 60)

Figure B-16. Creating a random-access file

473

nwre ...

474

..

EDIT FIELD 2, 1$, (10, 75) - (150, 90)
EDIT FIELD 3, a$, (10, 105) - (50, 120)
et= 1 : EDIT FIELD 1

·• Wait for event. ..
Loop:

..

event = DIALOG(O)
IF event = 1 THEN GOSUB GetButton
IF event= 2 THEN ef = DIALOG(2)
IF event= 6 THEN GOSUB EnterRecord
IF event= 7 THEN ef = et MOD 3 + 1 : EDIT FIELD ef
GOTO Loop

'* Take action on button click . ..
GetButton:

••

butPushed = DIALOG(1)
IF butPushed = 2 THEN END
IF butPushed = 3 THEN direction= -1 : GOSUB Review
IF butPushed = 4 THEN direction= 1 : GOSUB Review
GOSUB EnterRecord
RETURN

'* Retrieve entry and store in file.
'*
EnterRecord:

first$ = EDIT$(1)
last$ = EDIT$(2)
years$ = EDIT$(3)

'*
'*Move data to buffer.
'*
LSET lastName$ = last$
LSET firstName$ =first$
LSET age$ = years$

Figure B-16. Creating a random-access file (continued)

SECTION VI: APPENDICES

'button clicked
'edit field clicked
'Return pressed

'Tab pressed

'move up
'move down

TIWTe ••.

Appendix B: A Few Short Utility Programs

'*

'*
'* Put in record .
••
PUT #1 , record
IF record = lastRec + 1 THEN lastRec = record : record = record + 1
IF record < lastRec + 1 THEN RETURN
f$ = "First Name"
1$ = "Last Name"
a$= "Age"
RETURN CreateEditFields

'* Review records already entered .
••
Review:

'*

record = record + direction
IF record < 1 THEN BEEP : GOTO FileEnd
IF record > lastRec THEN BEEP : GOTO FileEnd

'*
'*Retrieve record from file .
••
GET #1 , record
f$ = firstName$
1$ = lastName$
a$=age$
RETURN CreateEditFields

'* Review has reached one end of file .
••
File End:

record = lastRec + 1
f$ = "First Name"
1$ = "Last Name"
a$= "Age"
RETURN CreateEditFields

Figure B-16. Creating a random-access file (continued)

475

This program opens a random file, specifies the kind of information that will be
stored in each record, creates a data entry window with three edit fields, and then set
tles into the Loap routine to await some kind of action. The available actions are to en
ter records into the file, review entries, and quit.

476 SECTION VI: APPENDICES

You open a random-access file with the same OPEN statement you would use to

open a sequential file. Here are the two syntaxes of this statement again:

OPEN mode, [#[filenumber,filespec [,file-buffer-size]

OPEN filespec [FOR mode] AS [#]filenumber [LEN= file-buffer-size]

To specify a random-access file you use a mode of R in the first syntax, and omit the

mode in the second. For both, you specify a file-buffer-size equal to the combined size
of the fields listed in the FIELD statement that follows.

The amount of space assigned to an individual record in a random-access file
can be apportioned between multiple fields: In this program there are three fields,

holding.firstName$, lastName$, and age$. The amount of space allocated to each field
is specified by the FIELD statement, which has this syntax:

FIELD [#]filenumber, fiel,dwidth AS string-variable . ..

The FIELD statement in this program:

FIELD #1, 19 AS firstName$, 19 AS lastName$, 2 AS age$

allocates 19 bytes to firstName$, 19 bytes to lastName$, and 2 bytes to age$. This totals
40 bytes, which is the number specified as file-buffer-size in the OPEN statement.

There is no practical limit on the number of fields you can have in a record, but
there is a limit on how many characters you can have on one line of a program, so mul

tiple FIELD statements are allowed. If you use more than one FIELD statement for a
file, the first field of each statement after the initial one must be a dummy field allocat

ing space equal to the sum of all previous fields, as shown in Figure B-17.

FIELD #1, 19 AS firstName$, 19 AS lastName$, 20 AS address$
FIELD #1 , 58 AS dummy$, 12 AS phone$, 2 AS age$, 5 AS race$

Figure B-17. Multiple FIELD statements

Appendix B: A Few Short Utility Programs 477

The sections of the program that create the data-entry window and edit fields,
and wait for an event, should be familiar to you. The next section that has anything
new is the EnterRecord subroutine (Figure B-18), which retrieves the information
from the edit fields and places it in the file.

Retrieving the information, with the EDIT$ function, is routine, but the process
of putting each variable in the file is new. Variables aren't placed directly into a ran
dom-access file: All the variables you want to place into a particular record are trans
ferred to a buffer, and then the contents of the buffer are placed in the file. Individual
variables can be moved into the buffer with either the LSET or the RSET statement.
The difference between the two is that LSET left justifies the variable if it is shorter
than the field length, and RSET right justifies it. Once all the variables are in the
buffer, they are transferred to a specific record of the file with the PUT statement.

,.
•• Retrieve entry and store in file . ..
EnterRecord:

first$= EDIT$(1)
last$ = EDIT${2)
years$ = EDIT${3)

..
•• Move data to buffer.
'*
LSET lastName$ = last$
LSET firstName$ =first$
LSET age$ = years$

'*
'* Put in record.
'*
PUT #1 , record
IF record = lastRec + 1 THEN lastRec = record : record = record + 1
IF record < lastRec + 1 THEN RETURN
f$ = "First Name"
1$ = "Last Name"
a$= "Age"
RETURN CreateEditFields

Figure B-18. The EnterRecord subroutine

478 SECTION VI: APPENDICES

Notice in the EnterRecord subroutine that each variable name is changed as the

variable is passed to the buffer: The variable names used in the FIELD statement can

be used only when transferring variables to and from the file. At other places in the
program the same variables must be referred to by another name.

Also notice that all the variables stored in the file are string variables; even age$,
which could conceivably be needed in the form of a numeric variable at some other
point in the program. This is another characteristic of random-access files: All vari

ables are stored as string variables. To move a numeric variable into the buffer in prep
aration for storing it in a record, use the MKI$, MKS$, or MKD$ function to convert

an integer, single-, or double-precision variable to a string variable. When retrieving

the same variable from the file, the CVI, CVS, or CVD function is used to convert back
to an integer, single-, or double-precision variable.

The only item of interest left in the program is in the Review subroutine, shown
in Figure B-19, which retrieves a record and places the variables in the edit fields for
the user to view or modify. This subroutine uses the GET statement to retrieve a spe
cific record from the file. GET places the variables from all fields of a record into the

buffer, from which they can be assigned to variables used in the rest of the program.

'*
'* Review records already entered.
'*
Review:

record = record + direction
IF record < 1 THEN BEEP : GOTO FileEnd
IF record > lastRec THEN BEEP : GOTO FileEnd

'*
'*Retrieve record from file.
'*
GET #1, record
f$ = firstName$
1$ = lastName$
a$ =age$
RETURN CreateEditFields

Figure B-19. The Review subroutine

Appendix B: A Few Short Utility Programs 479

In this case they are assigned to f$, [$, and a$, which are the default text strings for the
three edit fields.

That's about all that's new in this program. If you enter and run it, you may want

to experiment by adding an edit field that displays the record number of the current

record. You could then allow the user to specify the record to be viewed, rather than
having to scroll through the file as if it were a sequential file. Note the ease with which
you can modify existing files as they pass in review.

This appendix presented a variety of utility programs. Most were originally writ
ten in a "quick and dirty" fashion to get a job done, and then cleaned up and com

mented for use in this book. These programs are included more as inspiration than

with the idea of providing a ready-made solution to any specific problems. Excellent
sources for additional examples of utilities are the Macintosh SIGs (special interest

groups) available on information services such as CompuServe and THE SOURCE.
So you might want to use the communication program developed in Chapter 12 to fat

ten your stockpile of BASIC programs.

Building
the HBC-1 Appendix C

I realize that this is supposed to be a book about writing computer programs, not as
sembling electronic projects, but if you bear with me a while you will discover that the
two are not all that dissimilar. As you study the integrated circuits that are used to
build the Home-Brew Converter (HBC-1), you'll find that many of them are based on
the same truth tables that describe the input-output relationship of the logic state
ments in BASIC: AND, OR, NOT, and so on. It is possible to write computer programs
that simulate the action of electronic circuits, and to build electronic circuits that
demonstrate the results of your programs.

The explanation that follows and the accompanying schematics should enable a
relatively inexperienced electronic hobbyist to build the HBC-1. Additional informa
tion and control programs are available on the disk you can order from Microsoft.

The HBC-1 was designed by Gordon Mills, a linear field application engineer for
Texas Instruments, to demonstrate the use of various TI integrated circuits. Although
TI manufactures all the semiconductors, other than the diodes, needed to build this
project, and provides data sheets, application notes, and other information about spe
cific integrated circuits, the project as a whole is not a TI product, and TI probably
would not appreciate requests for assistance in putting it together. If you have prob
lems with the HBC-1, or if you find some really fantastic uses for it that you would like
to share with others, address them to me, care of Microsoft Press.

I Assembling the components I
The three methods of assembling electronic projects differ primarily in the

types of surface on which the components are mounted: poke-home board, wire
wrap, or printed circuit board. Whichever method you choose, if you have no previous

481

482 SECTION VI: APPENDICES

experience with it, I suggest you pick up a tutorial on the subject from one of the elec
tronic hobby stores-Radio Shack or Heath, for example.

I Printed circuit board I
The third method listed is the easiest and most permanent-if a printed circuit

board has already been created. Assembling the project is merely a matter of inserting
the parts in the proper holes and soldering them in place. Unfortunately, there is no
printed circuit board currently available, but I am working on this and, should one be
developed, more information will be included on the program disk.

I Poke-home board I
Of the other two methods, the easiest (but not the most permanent) is the poke

home board. These are available in a variety of sizes and configurations, but in general
they consist of a gridwork of holes, spaced at the proper interval for the insertion of in
tegrated circuit (IC) pins. The holes-actually sockets-are interconnected in a
fashion similar to that shown in Figure C-1. An IC is inserted straddling the center
space, and the ground and supply voltages are connected to the side rails and jump
ered over as needed. The row of sockets that each pin on the IC plugs into has four ad
ditional sockets available for jumpers to connect it to other devices.

Poke-home boards are available through mail-order catalogs and stores such as
Radio Shack and Active Electronics. The layout illustrated in this book uses three
boards, each 63 sockets long, but it is possible to rearrange the parts so as to use
slightly less space.

I Wire-wrap I
The stages of construction for a wire-wrap model are the same as for the poke

home model, with a few extra parts and possibly one additional step. You will need
wire-wrap sockets for the integrated circuits and mounting posts or IC-socket com
patible component headers for the discrete components. Unless you are assembling
the project on a board that already has substantial ground and Vcc grids, you will have

Appendix C: Building the HBC-1

00000 00000 0 0 0 0 0

00000 00000 0 00000

0000000000000000000000000000

000000000000000000000000000

00000000000000000000000000

00000000000000000000000000

00000 00000 00000

00000 00000 00000

Figure C-1. Interconnection of poke-home sockets

483

to provide these. The ground and Vee grids serve the same purpose as the side rails of

the poke-home board: They distribute noise-free power evenly throughout the board
(the lines of each grid must be connected together at three or four points to avoid

small voltage differences along the grid). It is extremely important that the grids be
constructed of heavy wire (14- or 16-gauge solid conductor) and the two grids be con
nected with five evenly distributed bypass capacitors of about O.lµF each to mini

mize noise problems.

If you have not previously completed a wire-wrap project, a few hours spent
reading the instructions and assembling some small project from a hobby store will
probably save you more than that much time on this project.

With a project such as this, the placement of the parts can be critical. The place
ment shown in Figure C-2 on the following page, which can be followed for both the
poke-home and the wire-wrap method, works and should not be modified unless you
have a thorough understanding of the possible consequences.

484

0 0

60- 0 0

0 0

0 0

0 0

.50-

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

40- 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

30- 0 0

20-

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

10- 0 0
0 0

0 0

0 0

0 0

0 0

0 0

00000 00000

00000 00000

00000 00000 ... ·w· ... 0000 1 0000

0000 0 0000

00000 00000

: : : :lo";!: : : :
0 0 0 .L.i_J. 0 0 0

: : : :[J· 0 : : : :
0000 1 0000

0000 2 0000

0000 0000

00000 00000

~ ~ ~ ~~0 I

0 n ~ ~
0000 c 0000

0000 3 0000

0000 0000

0000 0000

00000 00000

00000 00000

: : : =0=::: 0000 c 0000

0000 4 0000

0000 0000

0000 0000

00000 00000

00000 00000

= = = =m= = = =
0000 c 0000

:::: 5 ::::
0000 0000

0000 0000

00000 00000 ... ·m· ... 0000 1 0000

0000 3 0000

00000 00000 ... ·w· ... 0000 1 0000

0000 4 0000

00000 00000

: : : :IT], : : : :
0000 5 0000

0000 0000

00000 00000

00000 00000

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

00000 00000

00000 00000

00000 00000

00000 00000

00000 00000

00000 00000

00000 00000

00000 00000

00000 00000

00000 00000

0000 0000

0000 0000

0000 0000

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

I
c
8

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

nnmo ~oni:
0000 7 0000

0000 0000

0000 0000

00000 00000

0 0 0 owo 0 0 0
0000 1 0000

:::: 7 ::::
00000 00000

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

I
c
6

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

00000 00000

= = = =m= = = = 0000 I ooo
0000 c 000

:::: 2 ::::
0000 0000

0000 0000

00000 00000

= = = =G· . = = = = 0000 I 0000

0000 0000

0000 c 0000

0000 1 0000

0000 000

0000 0000

00000 00000

Figure C-2. Pictorial diagram of HBC-I

Parts and pin-outs

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

SECTION VI: APPENDICES

0 0 0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

: : =~~ :
0. 0 0

0 0 0 6 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

= = = =m· . = = = =
0000 I ooo
0000 c 0000

0000 9 0000

0000 0000

0000 0000

00000 00000

000 00000

00000 00000

00000 00000

00000 00000

00000 00000

00000 00000

00000 00000

00 00000

00000 00000

00000 00000

000 00000

00000 00000

00000 00000

00000 00000

00000 00000

00000 00000

00000 00000

00000 00000

00000 00000

00000 00000

00000 000 0

00000 000 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 • 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 • 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

• 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

-60

-50

-40

-30

-20

-10

The description of each section of the HBC-I will include a list of the parts used
by that section: The following is a full list of the parts for all sections, with the parts
for several of the optional input buffers tacked onto the end.

Appendix C: Building the HBC-1 485

Quantity Name Part

1 SN74HCU04N ICl
1 SN74HC4020N IC2
2 SN74HC74N IC3, IC4
1 SN74HC163N IC5
1 TLC540IN IC6
1 SN74HC164N IC7
1 SN74HC377 IC8
1 ULN2003A IC9
4 TIL124 IClO, ICll, IC13, IC14
1 TLC272CP IC12
1 TLC372N IC15
1 TL 780-05CKC IC16
1 TL431CP IC17
1 IMO. resistor Rl
1 6.8KO. resistor R2
1 lOKO. resistor R3
2 3.3KO. resistors R4, Rl2
1 lOMO. resistor R5
1 2.2KO. resistor R6
2 lOKO. resistors R7,R8
1 4.7KO. resistor R9
1 3300. resistor RIO
1 33KO. resistor Rll
1 1000. 1 % resistor Rl3
1 4.12KO. 1 % resistor Rl4
1 lOKO. 1 % resistor Rl5
1 22pF capacitor Cl
1 47pF capacitor C2
6 O.lµF capacitors C3-Cl0
1 0.33µF capacitor Cll
1 4.7µF tantalum capacitor Cl2
6 1N914 diodes CR1-CR6
1 1N4004 diode CR7
1 2.4576MHz crystal Xl

Voltmeter buffer

1 TLC27L2ACP ICl
3 IMO., 1 % resistors Rl,R2, R6
1 499KO., 1 % resistor R3
1 249KO., 1 % resistor R4
1 124KO., 1 % resistor R5

486 SECTION VI: APPENDICES

Quantity Name Part

1 332Kfi, 1 % resistor R6
1 l 43Kfi, 1 % resistor R7
1 .OlµF capacitor Cl

Anemometer buffer
1 TLC27L2ACP !Cl
1 30Kfi resistor Rl
1 lOOKfi resistor R2
2 20Kfi resistors R3,R4
1 18Kfi, 1 % resistor RS
1 2Kfi, 1 % resistor R6
1 200Kfi, 1 % resistor R7
1 lOOKfi, resistor RS
1 22Kfi, resistor R9
1 lOKfi potentiometer VRl
2 O.OlµF capacitors Cl,C2

NOTE: Unless specified otherwise, all resistors are 5% tolerance, and all capacitors
are monolithic ceramic.

Figure C-3 is a schematic for the major portion of the HBC-1. The discussion of

the HBC-l's individual sections in the second half of this appendix includes schematics

for each section. If you run these through a copy machine, you should be able to tape

them together to form a larger version of the schematic in Figure C-3, which you can
use as a road map to keep you visually oriented as you assemble the project. However,
you should use the list that follows to actually determine which connection to make
next. This list gives the point-to-point wiring for each pin of every IC, plus each lead of
the discrete components (resistors, capacitors, diodes, and the crystal). As you make
each connection, place a check mark beside it on the list. All connections are listed at

least twice (once from each end of the jumper), and some are listed more than twice
(where more than two pins are connected to the same point). You obviously have to
make each connection only once.

You may notice, in comparing the schematic to the wire-list, that some pins
called out on the list-the power and ground for each IC and some unused inputs that
must be terminated-are not shown on the schematic. This is simply to avoid clutter
ing the schematic with standard connections: The wire-list is complete. Notice that I

Appendix C: Building the HBC-1

R1-1M
Analog to Digital Conversion Circuit

Baud Clock Pulse

BCP 1

74HCU04 System Clock Frequency - 2.46MHz Pf) 12 11-)D01_0 ___ 9-no.~e _____ <_sc_F;....>-+-=-._...,

2 4S76MHZ R2- 6·SK b~---
r-=ro~ CLK I> 10 ~ :i
T Cl-22pF T C2-47pF 74 s~
'9' '9' 4~

H 6 QG 19200._.
C 13 QH 9600
4 12 QI 4SOO
0 14 l.Q.J 2400 ...

From input +SV 2 l S QK 1200-..
i~o lat.ion _A4 CLR O 1 QL 600
c1rcu1t 74HC74 I n ~ 11 2 QM 300-..

~2 IC s~ IC2 3 QN 1so:;
~ 3A - '------' -.. r----1

.-+----f>3 60"-Q-------------+--+--'~ ___Q_4
74HC74

487

To output
isolation
circuit

+SV

~3 7 14~
~4 4 13rnc
...i-s H 12~

r-+-+---12 IC S ~
--4---1>~3 4A 6 ~

+SV

+~1 ~-----4--' ?" D 6 C 111"1.!o!!"'----

ENT ! 212 <.St-R~C~O---, ~ ENPI 10

_6_10
74HC74

~7 3 ~v

~._9_....;IC""-S__.1~
+~V
o 1 0 _nnnnnnnn,_

~74-H"""c~7-4~ Data Clock Pulse

12 IC 9 '---+----i12 IC 9 DCP·

'--\> 3B e" o--~
11

+~13

i:.hip Select N!t (CSN)

:J

nr5K ~1 4B sP-

....._,11--~-4-----'.J13

IC6

J l G 1 J 1 CLK 11

~ QA n 1D? ~ 1Q
H 3 t-Qir "V T 3 H 2~ 1B.-----.
C 4 QC 3D 4 C S i-:3:,:Q,--'""""='=-t2 U 16 ~
1 S QD 4D 7 3 6 4Q 2B 3 L 1 3 ~

6 8 9 3B 6 N 12..;;
6 10 QE SD 13 7 12 SQ 4B 7 2 10 ~
4 11 QF 6D 1 4 7 1 S 6Q SB S 0 11 ~

12 QG 7D 1 7 1 6 7Q 6B 4 0 14 ~
13 QH SD 1S 19 SQ 7B 1 3 IS~

,__ __ _, E S A 9 COM

+SV
I +SV -

~~1--2o~lsal ~ 9

AV2 T 19~ ~S
At" 3 L lS SDI ~
i\414 C 17f.>D"'o-'------+--4-~~ 1
AS' s s 16 ""c=s"'"N __ __.

W 6 4 :~REF+ f;.71 7 0 13t'"R=EF""'-------.

~: 12~ ~
10 11~

.........!.. 2

IC7 ICS
IC9

Figure C-3. The system schematic

488 SECTION VI: APPENDICES

have labeled the leads of the two-lead discrete components (resistors, capacitors, and
diodes) as pin (1) and pin (2), to tell them apart. The numbers are determined by
whether the component is drawn horizontally or vertically on the schematic: Pin (1) is
the upper or the left lead, pin (2) is the lower or the right lead. The abbreviation n/c
after an IC pin means that it is not connected.

Master oscillator

ICl: 74HCU04

l' ground
2' n/c
3' ground

4' n/c
5' ground

6' n/c
7' ground

8 ' IC3A(3) ' IC4B(ll) ' IC6(19)
9 ' ICl(lO) ' IC2(10)

10 ' IC1(9) ' IC2(10)

11 ' IC1(12) ' Rl(2) ' R2(1)
12 ' ICl(ll) ' Rl(2) ' R2(1)
13 ' Rl(l) ' Xl(l) ' Cl(l)

14 ' Vcc
Rl(l) ' IC1(13) ' X(l) ' Cl(l)

(2) ' ICl(ll,12) ' R2(1)
R2(1) ' ICl(ll,12) ' Rl(2)

(2) ' X(2) ' C2(1)
Cl(l) ' R2(2) ' X(2)

(2)' ground

C2(1) ' IC1(13) ' X(l) ' Rl(l)
(2)' ground

X(l) ' IC1(13) ' Cl(l) ' Rl(l)
(2) ' C2(1) ' R2(2)

Appendix C: Building the HBC-I

Baud rate generator

IC2: 74HC4020

I' baud-n/c
2' baud-n/c
3' baud-n/c
4' baud-n/c
5' baud-n/c
6' baud-n/c
7' baud-n/c
8' ground
9' baud-n/c

IO ' IC1(9) ' ICI(IO)
11' IC3A(5)
12' baud-n/c
13' IC3B(ll) ' IC4A(3) ' IC4B(l2) 'IC5(2)
14 ' baud-n/c
15 ' baud-n/c
16' Yee

Data timing and control

IC3: 74HC74

1 ' IC3B(9) ' IC6(15) ' ICB(ll)
2' IC12(1)' R7(2)' IC6(17)' IC7(1)

3 ' ICI(B) ' IC4B(ll) ' IC6(19)
4,Vcc
5' IC2(11)
6' IC4A(4)
7' ground
8' IC5(9)

9 ' IC3A(l) ' IC6(15) ' ICB(ll)
IO' Vee
11 ' IC2(13) ' IC4A(3) ' IC4B(l2) ' IC5(2)

489

490

12 ~ IC5(15)

13 ~ Vce
14 ~ Vce

IC4: 74HC74

1 ~ Vce
2 ~ R3(1) ~ IC6(16)
3 ~ IC2(13) ~ IC3B(ll) ~ IC4B(l2) ~ IC5(2)

4 ~ IC3A(6)
5 ~ RlO(l)
6 ~ IC13(2) ~ IC14(1)
7 ~ground
8~ n/c
9 ~ IC6(18) ~ IC7(8)

lO~Yce
11 ~ IC1(8) ~ IC3A(3) ~ IC6(19)
12 ~ IC2(13) ~ IC3B(ll) ~ IC4A(3) ~ IC5(2)
13 ~ IC5(11)

14 ~ Vce

IC5: 74HC163

1 ~ Vce
2 ~ IC2(13) ~ IC3B(ll) ~ IC4A(3) ~ IC4B(12)

3 ~Vee
4~Vee

5 ~Vee
6 ~ground
7~ Vee
8 ~ground
9 ~ IC3B(8)

lO~Vce
11 ~ IC4B(13)
12 ~ n/c
13 ~ n/c

SECTION VI: APPENDICES

Appendix C: Building the HBC-1

14' n/c

15 ' IC3B(l2)

16' Vce
R3(1) ' IC4(2) ' IC6(16)

(2)' ground

Analog-to-digital conversion

IC6: TLC540

1' A/Dinput
2' A/Dinput
3' A/Dinput
4' A/Dinput
5' A/Dinput
6' A/Dinput
7' A/Dinput
8' A/Dinput
9' A/Dinput

10' ground

11 ' AID input
12' A/Dinput
13' -VREF (ground)
14' 1Cl7(1)' Rl3(2)' Rl4(1)' Cl2(+)(+~EF)

15 ' IC3A(l) ' IC3B(9) ' IC8(11)
16 ' R3(1) ' IC4A(2)
17' IC3A(2)' IC7(1)' R7(2)' IC12(1)

18 ' IC4B(9) ' IC7(8)
19 ' IC1(8) ' IC3A(3) ' IC4B(ll)
20' Vee

Parallel control output

IC7: 74HC164

1' IC3A(2)' IC6(17)' R7(2)' IC12(1)

2' Vee
3' IC8(1)

491

492

4' IC8(4)
5' IC8(7)
6' IC8(8)
7' ground

8 ' IC4B(9) ' IC6(18)
9' Vee

10' IC8(13)
11' IC8(14)
12' IC8(17)
13' IC8(18)

14' Yce

IC8: 74HC377

l' IC7(3)

2' n/c
3' ground
4' IC7(4)
5' IC9(2)
6' IC9(3)
7' IC7(5)
8' IC7(6)
9' IC9(6)

10' ground

11 ' IC3A(l) ' IC3B(9) ' IC6(15)
12' IC9(7) .
13' IC7(10)
14' IC7(11)
15' IC9(5)
16' IC9(4)
17' IC7(12)
18' IC7(13)
19' IC9(1)

20' Vee

SECTION VI: APPENDICES

Appendix C: Building the HBC-1

IC9: ULN2003A

1-+ IC8(19)
2-+ IC8(5)
3-+ IC8(6)
4-+ IC8(16)
5-+ IC8(15)
6-+ IC8(9)
7-+ IC8(12)
8-+ ground
9 -+ + 12 volts

10 -+ output to LED, relay, etc.
11 -+ output to LED, relay, etc.
12 -+ output to LED, relay, etc.
13 -+ output to LED, relay, etc.
14 -+ output to LED, relay, etc.
15 -+ output to LED, relay, etc.
16 -+ output to LED, relay, etc.

Primary power supply

IC16: TL-780-05

Input-+ +power adapter-+ Cll(l) -+ + 12volts
Common-+ ground -+ CR6(anode)
Output -+ + 5volts

Cll(l) -+ + 12volts -+ IC16input -+ +power adapter
(2) -+ ground

C6(1) -+ + 5volts
(2) -+ ground

C7(1) -+ + 5volts
(2) -+ ground

C8(1) -+ + 5volts
(2) -+ ground

C9(1) -+ +5volts
(2) -+ ground

493

494

ClO(l) -+ + 5volts
(2) -+ ground

CR7(anode)-+ ground
(cathode) -+ -poweradapter-+ offsetline

Precision voltage reference

IC17: TL431

1 -+ Rl3(2) -+ Cl2(+) -+ Rl4(1) -+ + 3.52voltline
2-+ n/c
3-+ n/c
4 -+ n/c
5 -+ n/c
6-+ ground
7-+ n/c
8 -+ Rl4(2) -+ Rl5(1)

Rl3(1) -+ + 5volts

SECTION VI: APPENDICES

(2) -+ Cl2(1) -+ Rl4(1) -+ IC17(1) -+ + 3.52voltline (+ VREF)
Rl4(1)-+ Cl2(1)-+ Rl3(2)-+ IC17(1)-+ +3.52voltline(+VREF)

(2)-+ Rl5(1)-+ IC17(8)
Rl5(1) -+ IC17(8) -+ Rl4(2)

(2) -+ ground
Cl2(+)-+ IC17(1) -+ Rl3(2)-+ Rl4(1)-+ +3.52voltline

(-) -+ ground

Input isolation circuit

IClO: TIL124

l ..+ IC11(2) ..+ +TXDfromMac
2 -+ ICU(l) -+ R4(2)
3-+ n/c
4-+ IC10(6) -+ IC11(5) -+ R5(2) -+ R6(1)
5-+ IC11(4,6) -+ R8(1) -+ R9(1) -+ IC12(3,5) -+ C3(1)
6 -+ IC10(4) -+ IC11(5) -+ R5(2) -+ R6(1)

Appendix C: Building the HBC-1

ICll: TIL124

1 ~ IC10(2) ~ R4(2)
2 ~ IClO(l) ~ + TXD from Mac
3 ~ n/c

4 ~ R8(1) ' R9(1) ~ IC11(6) ~ IC10(5) ~ C3(1) ~ IC12(3,5)
5 ~ IC10(4,6) ~ R5(2) ~ R6(1)

6 ~ IC11(4) ~ R8(1) ~ R9(1) ~ IC10(5) ' C3(1) ~ IC12(3,5)

IC12: TLC272

1 ~ R7(2) ~ IC3(2) ~ IC6(17) ~ IC7(1)
2 ~ CRl(anode) ~ CR2(cathode) ~ IC12(7)
3 ~ IC12(5) ~ C3(1) ~ IC10(5) ~ IC11(4,6) ~ R8(1) ~ R9(1)

4 ~ground

5 ~ IC12(3) ~ C3(1) ' IC10(5) ~ IC11(4,6) ' R8(1) ~ R9(1)
6 ~ CRl(cathode) ~ CR2(anode) ~ R6(2)
7 ~ CRl(anode) ~ CR2(cathode) ~ IC12(2)
8 ~ +5volts

R4(1)' -TXD

(2) ' IC10(2) ' ICll(l)
R5(1) ' + 5volts

(2) ' IC10(4,6) ~ IC11(5) ' R6(1)
R6(1) ' IC10(4,6) ' IC11(5) ~ R5(2)

(2) ' CRl(cathode) ~ CR2(anode) ~ IC12(6)
R7(1) ~ + 5volts

(2)' IC12(1)' IC3(2)' IC6(17)' IC7(1)
R8(1)' IC11(4,6) ~ IC10(5) ~ R9(1) ~ C3(1) ~ IC12(3,5)

(2)' +5volts
R9(1) ' IC11(4,6) ~ IC10(5) ~ R8(1) ~ C3(1) ' IC12(3,5)

(2)' ground

RlO(l) ' IC4(5)
(2) ' IC13(1) ' IC14(2)

C3(1)' IC12(3,5) ~ IC10(5) ~ IC11(4,6) ~ R8(1) ~ R9(1)
(2)' ground

495

496

CRl(cathode) ~ CR2(anode) ~ IC12(6) ~ R6(2)
(anode) ~ CR2(cathode) ~ IC12(2, 7)

CR2(anode) ~ CRl(cathode) ~ IC12(6) ~ R6(2)
(cathode) ~ CR2(anode) ~ IC12(2, 7)

Output isolation circuit

IC13: TIL124

1 ~ IC14(2) ~ Rl0(2)
2 ~ IC14(1) ~ IC4(6)
3 ~ n/c

SECTION VI: APPENDICES

4 ~ IC13(6) ~ IC14(5) ~ C4(2) ~ Rll(2) ~ C5(1) ~ IC15(6) ~ + RXD
and ground from Mac

5 ~ IC14(4,6) ~ IC15(5) ~ Rll(l)

6 ~ IC13(4) ~ IC14(5) ~ C4(2) ~ Rll(2) ~ C5(1) ~ IC15(6) ~ + RXD
and ground from Mac

IC14:TIL124

1 ~ IC13(2) ~ IC4(6)
2 ~ IC13(1) ~ Rl0(2)
3 ~ n/c
4 ~ IC14(6) ~ IC13(5) ~ Rll(l) ~ IC15(5)

5 ~ IC13(4,6) ~ C4(2) ~ Rll(2) ~ C5(1) ~ IC15(6) ~ + RXD
and ground from Mac

6 ~ IC14(4) ~ IC13(5) ~ Rll(l) ~ IC15(5)

IC15: TLC372

1 ~ n/c
2 ~ IC15(8)
3 ~ IC15(4)
4 ~ CR5(anode) ~ CR6(anode) ~ C5(2)
5 ~ IC13(5) ~ Rll(l) ~ IC14(4,6)
6 ~ C4(2) ~ Rll(2) ~ C5(1) ~ IC13(4,6) ~ IC14(5) ~ + RXD

and ground from Mac
7 ~ Rl2(2) ~ -RXDpin9onMac
8 ~ Rl2(1) ~ C4(1) ~ CR3(cathode) ~ CR4(cathode)

Appendix C: Building the HBC-1

RlO(l) ~ IC4(5)
(2) ~ IC13(1) ~ IC14(2)

Rll{l) ~ IC13(5) ~ IC14{4,6) ~ IC15(5)
(2) ~ C4(2) ~ IC15{6) ~ C5(1) ~ IC13{4,6) ~ IC14(5) ~ + RXD

and ground from Mac
Rl2(1) ~ IC15(8) ~ C4(1) ~ CR3(cathode) ~ CR4(cathode)

(2) ~ IC15(7) ~ - RXD

pin9onMac
C4(1) ~ IC15{8) ~ Rl2(1) ~ CR3{cathode) ~ CR4(cathode)

(2) ~ IC15(6) ~ Rll(2) ~ C5(1) ~ IC13(4,6) ~ IC14(5) ~ + RXD
and ground from Mac

C5(1) ~ Rll(2) ~ IC15(6) ~ C4(2) ~ IC13(4,6) ~ Cl4(5)
(2) ~ IC15(4) ~ CR5{anode) ~ CR6(anode)

CR3{cathode) ~ CR4(cathode) ~ Rl2(1) ~ C4(1) ~ IC15(8)

(anode)~ CR6(cathode) ~ -TXDpin5onMac
CR4{cathode) ~ CR3(cathode) ~ Rl2(1) ~ C4(1) ~ IC15{8)

(anode)~ CR5(cathode) ~ +TXDpin4onMac
CR5(anode) ~ IC15(4) ~ CR6(anode) ~ C5(2)

(cathode)~ CR4(anode) ~ +TXDpin4onMac
CR6(anode) ~ IC15(4) ~ CR5(anode) ~ C5(2)

(cathode)~ CR3(anode) ~ -TXDpin5onMac

I Construction advice I

497

I am not going to provide a wire-by-wire construction account, but I will recom
mend a few precautions and a preferred order in which to assemble the HBC-1.

It is a recommended construction practice to work on a grounded conductive
surface to avoid electrostatic discharge (sparks) that can damage integrated circuits.
This can easily be accomplished by laying out one or two sheets of heavy-duty alumi
num foil (preferably grounded) on your work area and either resting your forearms on
the foil or maintaining contact in some other manner in order to keep everything elec
trically at the same potential.

When you are handling the crystal, bear in mind that, as its name implies, it is
essentially a fragile piece of glass. Treat it gently.

498 SECTION VI: APPENDICES

When running the interconnecting wiring on either the poke-home or the wire
wrap board, keep the wires as short as possible to avoid signal cross-coupling, noise
pickup, and the effects of stray capacitance.

Connect positive rails to each other and negative rails to each other at three
equally spaced points. Do not connect positive and negative rails directly together:

Do connect the positive and negative rails with 0.lµF bypass capacitors, placed

at five spots evenly distributed about the board.
Assemble the primary power supply section, carefully confirming the placement

of each component and wire. The TL 780-05 leads, which are slightly flat, can be in
serted into sockets in three adjacent rows by carefully putting a 90-degree axial twist
in each of the leads so that the flat side of the lead aligns with the row into which it is
inserted. This prevents excessive spreading of the socket contacts, which are a little
longer than they are wide. You can use a short jumper to connect each lead of the
TL780-05 to the appropriate voltage. NOTE: The pin-orientation for the TL780-05 is
shown in a drawing adjacent to the primary power supply schematic.

With the exception of capacitor Cl2 in the precision power supply circuit, none
of the capacitors in the HBC-1 are polarized, so it doesn't matter which way the leads
go. The diodes, however, must be inserted in the correct direction. The wire-list de
fines the diode leads as anode and cathode: On the schematic the cathode is the
pointed end with the bar across it, and the diode itself has a band at the cathode end.

After assembling the power supply, apply power and use a voltmeter to confirm
that the voltage between the rails is 4.95 to 5.05 volts (note this voltage for later com
parison) and that the polarity is correct (if an oscilloscope is available, check for rip
ple; it should not exceed a few millivolts). If you get nothing out of the power supply,
make sure you have correctly connected the positive and negative leads from the
power adapter: The positive lead should connect to the input pin of the TL 780-05.
When the power supply voltage has been confirmed, it is safe to continue con
struction with little fear of damaging the rest of the components.

Turn off the power and plug in the rest of the components. Double-check the
orientation of all ICs (there is either a semicircular notch at the pin-1 end, or a re
cessed dot near pin 1).

Install the short jumpers from each IC to Vee and ground.

Appendix C: Building the HBC-1 499

Make sure you jumper the unused inputs of the 74HCU04 to the ground rail. The

jumper that connects the Baud Clock Pulse (BCP) from the 74HC4020 to the data tim
ing and control circuit should be fairly long and installed last, so that it can be moved

to other pins on the 74HC4020 to select different baud rates.
Double-check the ground and Vcc jumper to each IC. Measure the resistance

between the positive and negative rails. Depending on the make and model of your
meter, you should get a reading of several hundred ohms or more. A lower reading in
dicates an incorrect connection that must be corrected before power is applied.

Connect your voltmeter between the positive and negative rails and plug in the

power adapter. If the voltage has dropped more than a few millivolts below the previ
ous reading, indicating a heavy load on the power supply, disconnect immediately and
check all components and wiring.

Before actually connecting the Macintosh to the HBC-1, set your ohmmeter to its
highest range and verify that there is no continuity between any pin in the cable that
you will connect to the Mac and either the positive or the negative rail of the HBC-1. If
all checks are correct, you are ready to connect to the Mac.

I Connecting to the Macintosh I
The HBC-1 communicates with the Macintosh via the modem port. Unlike most

modems that can be connected to the Mac, which use only part of the Mac's RS-422

connection to emulate an RS-232 connection, the HBC-1 uses the full RS-422, and
therefore requires more than the minimum of three wires typically used in a modem
cable. The point-to-point connections for the HBC-1 cable are shown in Figure C-4 on
the next page; I will leave to you the decision as to what kind of a connector to use on

the HBC-1 end, but the Macintosh end requires a male DB-9 connector like the one for
your modem or printer.

Try to keep this cable reasonably short to avoid picking up interference from sig
nals radiated by the power line and other electrical devices, and to maintain reliable
communication. I had no problems using it with a 50-foot cable, but 25 feet should
probably be the maximum for normal operation.

500 SECTION VI: APPENDICES

Macintosh
DB-9 connector HBC-I

Ground I Not connected

+5volts 2 Not connected

Ground 3 ICI3(6) on output isolation circuit

+TXD 4 CR4/CR5 on output isolation circuit
IC IO(I), IC11(2) on input isolation
circuit

-TXD 5 CR3/CR6 on output isolation circuit
R4 on input isolation circuit

+ 12volts 6 Not connected

Handshake 7 Not connected

+RXD 8 Connect to pin 3 of Mac, at either end

-RXD 9 IC15(7),Rl2 on output isolation circuit

Figure C-4. Macintosh to HBC-1 cable connections

I Tracing problems I
It is difficult, though undoubtedly not impossible, to assemble the HBC-1 in such

a manner that it damages itself If it doesn't work after you make the final connection
and apply power, the problem will probably be traced to a wire you forgot to connect,
or connected incorrectly. Troubleshooting is substantially easier if you have access to

an oscilloscope, but rudimentary checks can be made with a voltmeter or even a digi
tal logic probe, and most problems will yield to a careful visual scrutiny.

The first thing to do if the system doesn't work is confirm that there is no prob

lem with the program that is sending channel requests to the HBC-1 and attempting to
retrieve the responses. If you are using the voltmeter program from Chapter 18 to test
the system, you should modify it so that it doesn't wait for a response after each re
quest is sent: If there is no response, the program will lock up at this point. (And make
sure that simFlag is set to false.) An alternative to modifying the voltmeter program is
to enter the short program shown in Figure C-5.

Appendix C: Building the HBC-1

..
'*Program to send a character out the communication port . ..
..
•• Open communication port . ..

OPEN "COM1 :9600, n, 8, 2" AS #1
sentData = &H55

SndChnl:

..
PRINT "Sending "; sentData
PRINT #1, CHR$(sentData);

••Get a response . ..
Reply:

IF LOC(1) = 0 THEN GOTO SndChnl
returnedData = ASC(INPUT$(LOC(1), 1))
PRINT "Returned data is"; returnedData
GOTO SndChnl

Figure C-5. A short test program

501

You can test everything up to the HBC-1 by jumpering a few of the wires in the

cable while running this program with the HBC-1 disconnected. (NOTE: Turn off
power to the Macintosh and the HBC-1 before disconnecting or connecting wires.)
With no wires jumpered, just an indication of the character being sent is printed on
the screen while the program runs. Jumpering -TXD to - RXD (the wire from pin 4
on the Mac to the wire from pin 9) will loop the output back to the input, and the
send-message and the receive-message should both be printed on the screen. You can

disconnect this jumper and jumper +TXD to + RXD (pin 5 to pin 8; disconnect the
jumper between pin 8 and ground before conducting this test, and reconnect it after
all tests are complete) with the same result. Finally, connect both jumpers, and you
should still see both messages printed on the screen.

If the computer and cable check out, you will have to look for a problem in the
HBC-1. This should be fairly easy if you have an oscilloscope, as you can compare the
waveforms shown later in Figure C-14 and on the individual schematics to what is ac
tually happening. Critical sections to test first are the oscillator section that develops

502 SECTION VI: APPENDICES

the System Clock Frequency (SCF), and the input isolation section, which passes the
data from the Mac through to the data timing and control section. (Remember, when

looking at the data, that it has been converted to backward binary: The 1 that you send
from the Mac comes in as 128, 2 as 64, 3 as 192, 4 as 32, and so on.) If both of these

sections look good, check the Baud Clock Pulse (BCP) output of the 74HC4020

(shown later in Figures C-10 and C-14). If you use the negative-going edge of Chip

Select Not (CSN) as a trigger, you should be able to count the nine pulses plus a blip.

Moving on to Data Clock Pulse (DCP), you should see eight pulses. A request to con
vert the test channel (channel 11; the Mac sends a 208) should produce a response of
124 to 130 from the HBC-1, and a request for any invalid channel (12 through 15)

should produce a response of all zeroes.

If you don't have access to an oscilloscope, here are a few common trouble spots
to look into:

I Make sure your program's baud rate (set with the OPEN statement) matches

the baud rate selected on the 74HC4020.

I Make sure that all unused inputs to the 74HCU04 are connected to ground
(actually, they can all go to ground or to Vee. as long as they are all
connected).

I Confirm that you have the five bypass capacitors installed between the

positive and negative rails.

I Use the wiring list and a check-mark system to reconfirm every connection.

I Use a voltmeter or digital probe to check the quiescent (no data into the
HBC-1) levels of the ICs. Between the waveform tables and the text, most of
these values are included in this appendix.

If all else fails, make friends with someone who owns an oscilloscope.

I The HBC-1 components I
I have divided the HBC-1 into nine functional sections, based on the functions of

the HBC-1 circuitry, and will explain the purpose and theory of operation of each.
Some of these sections are optional or easily modified to operate in some other man
ner; the following explanation outlines one combination of circuits that work well

Appendix C: Building the HBC-1 503

together. It is not necessary to read or understand this explanation in order to use the
HBC-1, but if you run into problems the extra information may prove useful. The nine
sections are:

I Power supply

I Master oscillator

I Baud rate generator

I Serial data input isolation

I Data timing and control

I Analog-to-digital conversion

I Serial data output isolation

I Parallel control output

I Analog signal conditioning

The schematic in Figure C-4 showed the major elements of the HBC-I-every
thing except the power supply circuits and the input and output isolation circuits. This
drawing is primarily to show you how the sections fit together, since it is a little small
to actually work from. Larger-scale schematics are included with the explanation of

each section.

I Power supply I
The HBC-1 requires a +5 volt power supply capable of providing about 30 milli

amps, but the entire monitoring system can require a variety of voltages, depending
on the peripheral devices connected to it. The transducers that provide analog inputs
often require a reference voltage, and, of course, the outputs that drive relays, lamps,
motors, and so on can require additional power.

The power supply shown in Figure C-6 on the next page consists of two sections,
labeled Primary Power Supply and Precision Voltage Reference. The primary power
supply gets its power from a plug-in AC adapter that provides an unregulated 12 volts
DC at up to 500 milliamps. This unregulated voltage is used by the TL 780-05 to gener
ate a regulated + 5 volts DC, which powers the integrated circuits. This section also

504 SECTION VI: APPENDICES

~~--~+12V Power 1--+-----------------++12 volts
adaptor

Diode

ano~
cathoq-

0

TL780-
05

t
common

+5V

R13-100

~. ~ ~ 8
r: 2 4.7uF., Cl 6 TL431

IC17

7

input

C11
~ .33uF

IC16 output +5 volts
TL 780- 1----..------+---+

05
common

CR7 1N4004

Prlm11ry Power Supply

3 .52 vo 1t reference

R14-4.12K 195

R15-10K 195

.1 uF blJ pass capacitors
C6-1 0 distributed on board

0 volts

offset

Precision Vo1t11ge Reference

Figure C-6. The power supply schematic

which powers the integrated circuits. This section also passes along the unregulated
12 volts, which can be used to power relays and lamps. (NOTE: If you want to power
peripheral 5-volt devices from this power supply, you will have to add a heat sink to
the TL 780-05.)

The diode in the return line provides polarity protection, preventing smoke if
the power-adapter wires are accidentally reversed. A secondary effect of this diode is
to make the 0-volt reference for system power float slightly above the power adapter's
return line. This very slight difference in potential can be used to generate a negative
offset-compensation voltage of a few millivolts, which can in turn be used to zero-set
the high-gain amplifiers for signal-conditioning circuits, such as the one used to mea
sure wind speed with an anemometer.

The regulated voltage provided by the primary power supply section (2% reg
ulation) is adequate if you are satisfied with monitoring ratiometric devices such as

Appendix C: Building the HBC-1 505

joysticks, photocells, and keypads. In this case the 5-volt supply is used as the system
reference voltage, in addition to powering the integrated circuits. To monitor devices
that have a high output impedance, or that otherwise require op-amp buffering, such
as anemometers and thermocouples, the precision voltage reference section is used to
provide a stable 3.52-volt reference. There are several advantages to using this:

I It has time and temperature stability of instrumentation quality, providing

an excellent source of excitation voltage for strain gauges, thermistors, and
anemometers.

I It provides improved short-circuit protection for the power supply, shutting
down if the current exceeds about 50 milliamps, which is well within the

capability of the power adapter to handle.

I It allows you to use a simple op-amp configuration as a buffer in the signal

conditioning circuit.

I Parts used I
Quantity Description

~~~~~~~~~~~~~~ 

Primary power supply 

1 AC power adapter 

1 5-volt regulator 

1 diode 

1 capacitor 

5 capacitors 

Precision voltage reference 

1 
1 
1 
1 
1 

adjustable precision shunt regulator 
capacitor 
resistor 
resistor 
resistor 

Part 

Radio Shack #273-1652, 
12 volt 500 ma DC 
output 

TL 780-05KC (for 4% 
regulation a UA 7805KC 
can be used) 

1N4004 (polarity 
protection) 

0.33µF (provides 
stability) 

O.lµF (bypass) 

TL431 
4.7µF 
1000 
4.12KO, 1% 
lOKO, 1% 



506 

RHM 

12 

2.4576MHZ R2- 6 ·8K 

D XI i Cl -22pF i C2-47pF 

SECTION VI: APPENDICES 

S11stem Clock Frequenc11 - 2.46 MHZ 
8 (SCF)--,. 

Figure C-7. Master oscillator circuit 

I Master oscillator I 
The master oscillator circuit, shown in Figure C-7, develops the System Clock 

Frequency (SCF) used by the remainder of the circuits-either directly or after it is 

divided down-for timing. 

The 74HCU04 was chosen as the inverter for this circuit due to its relatively low 

gain of about 10: high enough to guarantee oscillation at 2.4576 MHz, but low enough 
to suppress spurious oscillations at harmonic frequencies, which could be a problem. 
The two inverters that buffer the oscillator's output sharpen the waveform's edges, 

providing clean rise and fall times. The output taken from between the inverters goes 

only to the baud rate generator, which is negative-edge-triggered. The System Clock 
Frequency is inverted once more and is used by a variety of positive-edge-triggered 

devices. 

I Parts used I 

Quantity Description Part 

I crystal 2.4576MHz 

3 inverters Halfofa 74HCU04 
hex inverter chip 

I resistor IMO. 

I resistor 6.BK.0. 

I capacitor 22pF 

I capacitor 47pF 



Appendix C: Building the HBC-1 507 

I Baud rate generator I 
This circuit is composed of a single chip: the 74HC4020 binary ripple counter. 

The counter has 14 stages, each of which divides the output frequency of the previous 
stage by 2. Of the 14 frequencies developed, the first and the fourth through the four
teenth are available as outputs. With the clock frequency of 2.4576 MHz provided by 
the master oscillator circuit, the eight lowest frequencies match standard baud rates 
available in the Macintosh and most other computers (Figure C-8). 

The master oscillator frequency we are using provides most of the Macintosh 
baud rates; most of the rest-1800, 3600, 7200, and 57600-could be matched by 
changing the crystal in the master oscillator to one with a frequency 1.5 times as high. 
This would not be a standard crystal, and there is little point in actually doing this un
less you have a specific need for one of these baud rates (I have, however, run the 

Stage frequency Output Pin Mac baud rates 

1228800 QA 9 
614400 n/a n/a 
307200 n/a n/a 
153600 QD 7 
76800 QE 5 

57600 
38400 QF 4 
19200 QG 6 19200 
9600 QH 13 9600 

7200 
4800 QI 12 4800 

3600 
2400 QJ 14 2400 

1800 
1200 QK 15 1200 
600 QL 1 600 
300 QM 2 300 
150 QN 3 150 

110 

Figure C-8. 74HC4020 outputs and Macintosh baud rates 



508 SECTION VI: APPENDICES 

HBC-1 up to 57600 to prove that it will work). The only remaining baud rate~ 110-
could also be matched, but I can think of no practical reason for running the HBC-1 at 
this low speed. 

I Parts used I 

Quantity Description Part 
-------------~ 

1 Asynchronous 14-bit binary counter 74HC4020 

The 74HC4020 

The 74HC4020 is an asynchronous 14-bit binary ripple counter-a pretty fancy 
name for an integrated circuit that is the functional equivalent of a bunch of nested 
FOR ... NEXT loops. Figure C-9 shows the logic diagram forthe 4020. 

The input on pin 11 disables or enables the counter: A high at this input disables 
the counter and resets all outputs to zero; a low on pin 11 enables the counter, allowing 

CLR 

(11) 

CLK 

(10) 

R R 

R R R R 

(14) 

QG QH QI QJ 

Figure C-9. Logic diagram of the 74HC4020 

R R R R 

R R R R 



Appendix C: Building the HBC-1 509 

SCF 

QA 

N/A 

N/A 

QD 

QE 

QF 

QG 

QH 9600 baud 

Figure C-10. Ripple-counter waveforms 

the system clock frequency (SCF) to ripple through the counter (the word "ripple" is 
used because the ouput of one stage is the input to the next). 

Each stage of the counter is triggered by the negative-going edge of its input, 
which happens once in each input cycle, so each stage divides its input frequency in 
half. The primary clock frequency and the waveforms after each of the first eight 
stages are shown in Figure C-10. You can imagine how the rest of the stages would 
continue to divide the clock frequency. 

There are not enough pins on the integrated circuit to make the outputs of all 14 
stages available. As you saw in the logic diagram, the second and third stages of the 
counter are skipped. The 12 stages that are available provide common baud rates that 
are binary multiples of 150. Figure C-11 on the next page shows an enlarged view of 
the baud rate generation portion of the system schematic. 

Only one of the outputs-usually one between 1200and19200-is used at any 
one time: It must be matched to the baud rate specified in the OPEN statement used 
to open the modem port for communication with the HBC-1. Whichever Baud Clock 
Pulse (BCP) is selected, it will be used by the data timing and control circuit to create 



510 

CLK 
10 

7 
4 
H 
c 
4 
0 
2 
0 

Baud Clock Pulse 
..1\1\1\l\1\1\l 

Figure C-11. Baud rate generator circuit 

SECTION VI: APPENDICES 

pulses and levels that step the requests and commands from the Macintosh into the 
HBC-1, and the responses back out to the Mac. 

I Serial data input isolation I 
The primary purpose of this circuit is to provide signal isolation between the 

HBC-1 and your Macintosh, ensuring that no voltages present in the Macintosh can 
harm the HBC-1. The output from the HBC-1 is similarly isolated to protect the Mac
intosh. In a very general way, this isolation is accomplished in much the same manner 
as the historical passing of messages between ships at sea: with fl.ashing lights. The 
TIL124 used in the circuit shown in Figure C-12 converts the voltage signal arriving 

From Mac modem port 

-TXD pin 5 

+TXD pin 4 R4 
3.3K 

TIL 124 

IC10 

TIL 124 

IC11 

sv 

RS-10M 

R6-2.2K 

Figure C-12. Input isolation circuit 

CR1-1N914 

+SY 

CR2-1N914 +SY R7-10K 

l C3-.1uF 

1Cl2 IS A TLC272 



Appendix C: Building the HBC-1 511 

from the Macintosh to light, beams the light across a small gap, and then converts it 
back to a voltage signal. There is no hard-wired electrical connection between the 
two machines, and the voltage range of the signal inside the HBC-1 is independent of 
the voltage range of the signal from the Mac. 

I Parts used I 

Quantity Description 
~~~~~~~~~~~~~~ 

2 optical isolators
1 dual operational amplifier
2 diodes
1 resistor
1 resistor
1 resistor
2 resistors

I Theory of operation I

Part

TIL124
TLC272
1N914
2.2KO
3.3KO
4.7KO
lOKO

The signal from the Macintosh is applied to the inputs of the two TIL124 optical
isolators. Notice that the positive input goes to the anode of one optical isolator and to
the cathode of the other, and that the negative return is connected to the other input
of each optical isolator. This ensures that one TIL124 or the other, but never both, will
always be conducting. Whichever TIL124 is conducting generates an output current at
its base collector outputs. The outputs of the TIL124s are tied together so that as the

input voltage reverses polarity, the output follows. This output is applied to the inputs
of the TLC272 op-amp, which is configured as a current-summing amplifier. The 1.6-
volt bias level produced by R8 and R9 ensures that the op-amp, with back-to-back di
odes in its current feedback path, will switch sharply when the input voltage from the
Mac changes state. Resistor R6 is included to improve the stability of the circuit. The
output of the first stage of the TLC272 is fed into the second stage, which is operating
as a comparator. The output of this stage, in conjunction with the lOK pull-up
resistor to Vcc. produces a CMOS-compatible output that is stable with inputs to the
circuit ranging from 1 milliamp to over 10 milliamps.

Resistor R6 was added to eliminate the possibility that random noise could trig
ger the parallel digital outputs if the HBC-1 were disconnected from the Macintosh
but left turned on.

512 SECTION VI: APPENDICES

From input +SV
isolation 4
circuit 7 4HC7 4

Q

6 Q

+SV
10

74HC74

12 IC 9

11 30 8

+SV 13

3 7
4 4
5 H

~+..:;;...-j6 c
1
6
3

ICS 1

Chip Select Not (CSN)

Figure C-13. Data timing and control schematic

I Data timing and control I

4

To output
isolation
circuit

......+-+----12 IC 5 t-----1JW_!l _ _J

--+---L>3 4A 6 io----G~l_J

+SV
1 0 --l\l\l\l1l\IV\

r-=74~H~C7~4,..., Data Clock Pulse

'---+-----112 IC 9 DCP

11 40 8

13

The data timing and control circuit, shown in Figure C-13, is probably the most
difficult circuit in the HBC-1 to explain. The reason for the difficulty is that multiple
events occur simultaneously, triggering other events; but the explanation must be lin
ear, covering one event at a time.

The waveform diagram in Figure C-14, which shows the relationship of the vari
ous clock pulses and enable levels created or affected by this circuit, may provide a
perspective on my linear explanation. Notice that significant times in the diagram are
marked by vertical lines dropping from the top.

The data timing and control circuit responds to serial data from the computer by
enabling the baud rate generator and then using the resulting Baud Clock Pulses
(BCP) to create eight Data Clock Pulses (DCP) that load the channel request into the
analog-to-digital conversion circuit and transmit the conversion result (of the previ
ous request) back out. Let's look at the conditions in this circuit while it is waiting for a
binary character to come from the computer, and then we will follow the character
through the HBC-1.

Appendix C: Building the HBC-1 513

t0 t, t 2

SDI -,·""" s"'"'t~""'rt"'-1-!-_.___.____.__......____, _ _.__....__;....-J! st~p

BCP

CSN
l samp)e-and~hold wjndo;w J.

DCP ---;--+-~

DO

SDO ---r-i!-; s_ta_rt+! _ _.___.____.__......_____, _ __.__-!----!! stop
: : :

: : :

: : :

74HC163 ; ;

LD

count : 0 : 7 ~ 8 9 10 11 12 13 14 ~ 15 ~ 0

QA

QC ~"--------'
: : :

: : :

: : :
: : :

QD : : ~· -----------+----+-.

Figure C-14. Timing waveforms

I While awaiting data I
While awaiting data, the Clear (CLR) and the Preset (PRE) inputs to IC3A are

high (PRE is tied to +5 volts, CLR is held high by Chip Select Not (CSN), the Q out
put of IC3B on the next page). This means that the level on the data input to IC3A will
be latched through to the Q output by each positive-edge of the SCF. Between Mac
intosh output bytes, the Serial Data In (SDI) is high, so a high appears on the output of
IC3A (see the truth table for D flip-flops in Figure C-15 on the next page).

The high from IC3A Q output is applied to the CLR input (pin 11) of the
74H C4020 asynchronous binary counter, disabling that chip and holding all its outputs
low, so there is no BCP.

514

Function Table

INPUTS OUTPUTS

PRE CLR CLK D Q l.i

L H x x H L

H L x x L H

L L x x Ht Ht

H H t H H L

H H t L L H

H H L x Qo Qo

tThis configuration is nonstab le; that is, it will not
persist when Preset or Clear returns to its inactive
(high) leve 1.

Logic Diagram (each flip-flop)
PRE-----------------------.

CLK~~

D-------1

E E

SECTION VI: APPENDICES

1CLR 1
1D 2

1CLK 3
1m 4

1Q 5
1Q 6

GND 7

E

Vee
2CLR
2D
2CLK
2PRE
2Q
20

Q

Figure C-15. Logic diagram, function table, and pinout for D flip-flops

The four preset inputs of the 74HC163 synchronous binary counter are hard
wired to 1, 1, 1, and 0, ready to set the outputs to a count of 7. The low level on the 163's
Load input (LD-pin 9), provided by IC3B not-Q output, holds the 163 in a state of
readiness to have the preset inputs passed through to the outputs. The positive edge
of the first BCP (t1) into the 163 will set the output to 7, but until that happens the four
outputs are each at 0.

The low from the QD output of the 163 is applied to the CLR pin of IC4B, holding
its output low.

Appendix C: Building the HBC-1 515

I Data arrives I
Serial Data Input (SDI) from the Macintosh, after passing through the isolation

circuit, appears on the data-input pin of IC3A. The character from the Macintosh con
sists of a start bit, which is low, eight data bits, and a stop bit, which is high (the input
remains high until the next character is received).

When SDI changes to a low state at the data input to IC3A, indicating the start of
a character (time t0 on the waveform table), the next SCF (remember that this is a

high-frequency, 0.4 µSec clock, so the next SCF occurs almost instantly) latches the Q

output low, putting a low level on pin 11 of the 74HC4020 and allowing it to start count

ing. (The not-Q output of IC3A is applied to the PRE input of IC4A.) It will take one
half of the start-bit width for the BCP to appear at the selected output: This delay is

put to good use. It is possible that noise or some other glitch could appear on the input
to IC3A and start the timer. This is pretty much avoided because the timer will be re
set if the level on pin 11 returns high prior to tr. which would happen if a low glitch

came and went away. So pin 11 is held low for the length of the start bit. But we will
need a total of ten BCP out of the counter (as you can see on the timing diagram, nine

full BCP plus the leading edge of the tenth, which stops the entire process), so the
counter will have to remain enabled after the start bit ends and a data bit (possibly a

high) appears at IC3A. For this to happen, the output of IC3A must be held low by
some means.

One output from the 74HC4020 counter has been selected (hard-wired) to be

used as the BCP to provide timing for the data timing and control circuit. As the cir
cuit is presently drawn, with a 2.4576 MHz crystal providing the clock input to the
4020, the output of 9600 Hz appearing on pin 13 is used to provide baud rate timing

(the computer should be set for 9600 baud, no parity, eight data bits, one stop bit).
This signal is applied to the data input of IC4B, and the clock inputs of IC3B, IC4A,
and the 74HC163 synchronous binary counter. Let's look at the effect of the first BCP,
at time t1 on the timing diagram.

I Timet1 I
The first positive-going transition ofBCP (t1 on the waveform diagram in Figure

C-15) clocks the low on IC3B's input through, latching the Q output (CSN) low, and
the not-Q output high. CSN is applied to IC3A's CLR input, disabling the flip-fl.op and

516 SECTION VI: APPENDICES

holding its Q output low (which maintains the needed enable level on the 74HC4020).

You can see on the waveform diagram that CSN stays low long enough to bring one
character in and send one out. CSN is also applied to pin 15 of the TLC540 analog-to

digital converter, enabling it.
With the first BCP edge, the HBC-1 is committed to the fact that this is a valid

start bit, so it starts sending out the response to the previous conversion request. Data
Out (DO) is clocked out through IC4A, which has been enabled ever since a few SCF
cycles after the SDI went low at t0 (the high from IC3A not-Q output was applied to
IC4A PRE). The data input to IC4A is the DO from the TLC540 (you'll have to look at

the main schematic to confirm this). The output pin of the 540, however, was at a high

impedance until a few SCF cycles after the first BCP. This high impedance state al

lows the !OK resistor between IC4A's data input and ground to define a low state until
just after the first BCP, when the output of the 540 presents a low impedance output,
allowing the TLC540 DO to define the most significant bit (MSB) of the response data.
This initial low causes the data input to IC4A to be low when the BCP at t1 latches the

output of IC4A low. This low is the start pulse for the Serial Data Output (SDO), which
is the response going back to the Macintosh.

The initial outputs of the 74HC163 are all Os, as that is where the 163 stopped
counting at the end of the previous character. The outputs following t1 are determined

by the preset levels on the A, B, C, and D inputs, which are 1, 1, 1, and 0. With these
inputs, the chip can load a count of seven. The first positive-going BCP (time t1) ap

plied to the clock input of the 74HC163 causes its outputs to go to the preset state, and
the counter to start counting.

ITimet2 l
At time t2, which corresponds to the leading edge of the second BCP, the QD

output of the 163 goes high. This level is applied to the CLR input to IC4B, enabling it
and allowing SCF to gate BCP through, creating eight Data Clock Pulses (DCP) from
the BCP signal. DCP is applied to pin 18 of the TLC540 as 1/0 clock.

I From t2 tot4 I
The positive-going edge of each DCP performs two functions: It samples the

SDI bit and loads it into the TLC540-the first four bits are used to define the address

Appendix C: Building the HBC-1 517

of the next channel to be converted-and it clocks the DO bit that is currently at the
input of IC4A out as SDO. When QA goes high on count fifteen of the 163, the Ripple
Carry Output (RCO) also goes high (time t3). RCO is applied to the data input of IC3B,

and the final short BCP (time t4) triggers the flip-flop, latching Q high (resetting CSN)

and not-Q low. Resetting CSN allows IC3A to again latch SDI through. The data input
at this time should be the stop bit, so the next SCF positive edge will latch it through,
thus stopping BCP by resetting the 74HC4020. The not-Q output from IC3A goes low,
forcing the output of IC4A high, thereby creating the outgoing stop bit, which is high.

I Parts used I

Quantity Description

2 dual D-type flip-flops with clear
and preset

1 synchronous 4-bit binary counter

1 resistor

The74HC74

Part

74HC74

74HC163

lOKfi

Flip-flops get their name from the action they perform. Typically, a flip-flop has
two outputs, one of which-at any given moment-is high and the other low. Upon
the occurrence of the proper input condition, the outputs flip-the high one going
low and the low one high. The 74HC74 contains two independent flip-flops, each with
a Preset (PRE), a Clear (CLR), a Clock (CLK), and a Data '(D) input, and two outputs
(Q and not-Q). PRE and CLR are used to force the outputs to specific conditions: A
low on PRE forces Q high and not-Q low-called setting the flip-flop-while a low
on CLR forces the opposite conditions-called resetting the flip-flop. A low on either
of these inputs overrides the CLK and D inputs. The table in Figure C-15 showed
these input/output relationships.

If both PRE and CLR are high, then the Q output follows the condition of the D
input at each positive-going clock pulse (the not-Q output is always the opposite of
the Q output).

518 SECTION VI: APPENDICES

The74HC163

This counter is essentially composed of four gated flip-flops that are intercon
nected. The fact that this is a synchronous counter means that the outputs can change
only on the positive edge of the clock pulse, regardless of when any control input

i:i5Ai5 _(9_) ______ -<ll>-------~

ENT(_t_o)_---l »--------+----1---d >-------~

ENP _(7_) ----l

CLR _Ct_) --+----<1

A (3)

B (4)

c (5)

Mt
.._-1-----------1--1--1---102

.,,____-1-.-.l> t ,2T / t C3
G4

Jl>----+--+--+~ 3D
.._+---1---d 4R

Mt
1-+-+-+--IG2

_ _...___,_t ,2T /t C3
G4

»---+-+--+--<ii 3D
.._+---1---d 4R

Mt
1-+-+-+--IG2

.,,____-1-.-.l> t ,2T / 1 C3
G4

X>---+--+---+---d 3D
.._1---+---d 4R

Ml
t--+--+----< G2

.___~ 1 ,2T /1 C3

a) M
D -----------! :o---+---__,.,3D

~----<14R

Figure C-16. Logic diagram for the 74HC163

AppendixC: Building the HBC-1 519

change is made. An important feature of this counter that makes it useful in our appli
cation is the ability to preset the output to a specific value. The first BCP that occurs
after the Load (LD) input goes low passes the preset value to the output. Proper en
abling and removal of the LD input allows the counter to start counting, incrementing
the output by 1 with each BCP. When the output reaches 15, it "rolls over" to zero at

the next count. In our circuit, we stop the clock pulses after the return to zero, so the
counter stops. Figure C-16 shows the logic diagram for the 74HC163.

The data inputs (A, B, C, and D), which are used to preset the outputs, and the
outputs (QA, QB, QC, and QD-see Figure C-17) use low- and high-voltage levels to

represent binary numbers from 0000to1111 (Oto 15 decimal). In our application we
determine the load value. of the counter to be 7 by connecting A, B, and C to + 5 volts

to t1 t2

SDI --; start 1 i-=..:;::....:..1.--;--'---'---'----'---'---'--...._+-'! st~p

BCP

CSN
l samp)e-and~hold wjndo:w J.

DCP

DO

S DO --:--if-=; s..:..:ta::...rt4j --'--'-_;_-'-....:..._-'----'--'---'---'---+--~i stop
74HC163 ; ; : LD

count 8 9 10 11 12 13 14 : 15 0

QA

QB _;_r----,,_; ---.
QC

QD

RCO--;-+---+-----------~

Figure C-lZ 74HC163 waveforms

520 SECTION VI: APPENDICES

(a high), and D to ground (O volts, a low). Typically, this counter is enabled and dis
abled by the Enable inputs (ENT and ENP), but in this application we have tied both
to + 5 volts, so the counter is always enabled and loads the preset count and starts
counting on the first positive-going clock pulse after the LD input goes low. Normal
up-counting occurs after LD goes high. The waveforms in Figure C-17 show one full

count-cycle, from 7 through 15.
The two outputs of the 74HC163 that are used by the data timing and control cir

cuit of the HBC-1 are the Q D output and the RCO output.

I Analog-to-digital conversion I
The TLC540, shown in Figure C-18, is the heart of the HBC-1. A single inte

grated circuit, it has a built-in channel selector (multiplexer) enabling it to monitor 11
input channels (plus a self-test channel). It also has circuitry to convert the analog lev
els measured to digital values, decode the channel-number requests, and make the
converted values available at its data output pin.

Several other important features of the TLC540 are its short data-conversion
cycle time of 13 microseconds, and the fact that it is capable of 0 .5 LSB accuracy.

I Parts used I

Quantity Description Part

1 8-bit analog-to-digital converter with serial
control and 11 inputs TLC540

+SV

IC6

Figure C-18. The analog-to-digital converter schematic

Appendix C: Building the HBC-1 521

I Theory of operation I
As explained in the data timing and control section, the DCP clocks eight data

bits into the TLC540. The first four data bits are recognized as the number of the
channel to read. This channel is sampled from the end of the fourth DCP through to
the end of the eighth DCP (the sample-and-hold window). At the falling edge of the
eighth DCP, the analog value of the selected channel is held and the conversion pro
cess, which requires 36 SCF cycles to complete, is started.

The result of this conversion will be available when the next channel address is
clocked in. During the same time period, DCP also clocks the response to the previ
ous conversion request out of the TLC540 to IC4A as DO.

To read the value present at the input of a channel, two bytes from the computer
are required. The first specifies the channel and converts the data; the second re
trieves the result. If you are repeatedly reading one or more channels, the address
byte for the second channel can be used to retrieve the result of the first request.

I Serial data output isolation I
The output isolation circuit shown in Figure C-19 protects the computer from

the voltages measured or generated in the HBC-1.

From data timing C4
and contro 1 circuit TIL 124

SOD
R10-330

SOON
R11-33K

IC13

cs

IC14

Figure C-19. Output isolation circuit

.1uF

6
5

.1uF

CR3-1N914

CR4-1N914

R12
3.3K

CR5-1N914

CR6-1N914

From Mac modem port

+RXD pine*

Ground pin 1 or 3

-TXD pin 5

+TXD pin 4

-RXD pin 9

*This jumper can be placed
at the Macintosh end of the
cable to save running one wir'e.

522

I Parts used I

Quantity Description
~~-'--~~~~~~~~~~~

2 optical isolators

1 differential comparator

4 diodes

1 resistor

1 resistor

1 resistor

2 capacitors

I Theory of operation I

SECTION VI: APPENDICES

Part

TIL124

Half a TLC372N (an
LM393N can be
substituted)

1N914

3300

3.3KO

33KO

.lµ.F

The two outputs from the data timing and control circuit (SDO and its inverse,

SDON) are applied to the opto-isolators via a 3300 resistor, creating a 10 milliamp

current. One opto-isolator or the other will always be conducting. The opto-isolator
photo diode (base to collector) output current across the 33K load resistor creates an

input voltage exceeding plus or minus 100 millivolts to the TLC372 comparator. The
comparator's output, with the aid of the 3.3K pull-up resistor, provides the output
from the HBC-1 to the Macintosh (-RXD on pin 9 of the Macintosh). The four 1N914s

are connected as a diode bridge to provide a self-powered interface; that is, it is pow

ered only by the voltage difference between the -TXD and the +TXD's signal from

the Mac. This avoids having to supply 5or12 volts from the Mac or from an external

power supply.

I Parallel control output I
The section of the HBC-1 shown in Figure C-20 controls output voltage levels,

which can be used to activate relays, LEDs, or other low-current devices. The number
of outputs can be expanded, practically infinitely, in groups of seven.

Appendix C: Building the HBC-1

11
7 7
4

3
4 IQ

H H 2 2Q 18 2 c 4 c 5 u 16
8 5 6 3Q 28 3 L 15 2 1 3 4Q 38 6 14 6 6 9 N

10 7 12 5Q 48 7 2 13 4 7 15 6Q 58 5 0 12 11
12 16 7Q 68 4 0 11
13 19 BQ 78 1 3 10

E 8 9 A
IC7 ICB

IC9

First addition a 1 block

: .. ·

To next set of additiona 1 blocks

Figure C-20. Parallel control output circuit

I Parts used I
For each group of seven outputs, the following parts are used:

Quantity Description

1 8-bit parallel-out serial shift register
1 octal D-type flip-flops with clock enable
1 Darlington transistor array

Part

74HC164
74HC377
ULN2003A

523

524

ill (9)

(4)

Oe
(5)

Oc
(6)

Oo

Figure C-21. Logic diagram for the 74HC164

The74HC164

SECTION VI: APPENDICES

(11)

Or
(12)

Oa

A shift register is essentially a small storage area; this particular shift register
holds 8 bits, which is the length of one character sent to the HBC-1. As its logic dia
gram in Figure C-21 indicates, the 74HC164 consists of eight flip-flops, each after the
first getting its input from the previous one.

The bits come into the shift register as serial data-that is one after the other
and are gated through by clock pulses (DCP in this case). After eight clock pulses, the
channel request/digital output data from the computer is fully loaded into the shift
register. There are eight outputs from the 74HC164, and at any point the bits that
have been loaded can be read out as a parallel byte.

The74HC377

The 74HC377 is another set of eight flip-flops, this time with parallel input and
parallel output. Though the individual flip-flops are not connected to each other, they
do share common clock and enable signals, as shown in Figure C-22.

If the enable (not-G) is low when a positive-going clock pulse occurs, then what
ever levels are on the eight inputs (lD through 80) are clocked into the flip-flops and
appear on the eight outputs (lQ through 8Q).

I Theory of operation I
The serial data coming from the computer is fed into the shift register and ap

pears in parallel on its outputs, most of which are also the inputs to the 74HC377. The
exception is the last bit in, which has a special function: It is used as the enable for the
74HC377. If this bit is low, the next positive-going clock pulse (the positive-going edge

Appendix C: Building the HBC-1 525

CLK

10 <3> (2) 1Q

20 <4> (S) 2Q

30 <7> (6) 3Q

40 (S) (9) 4Q

SD (13) (12) SQ

60 (14) (1 S) 6Q

70 (17) (16)
7Q

80 (18) (19) SQ

Figure C-22. Logic diagram for the 74HC377

of CSN) will gate the other seven bits into the 74HC377, and they will appear on its
outputs. If this bit is high, the 74HC377 does not gate the data to its outputs, leaving
the previous data there. Either way, the TLC540 is processing the same data stream
and considers the first four bits to be an address request, which it attempts to process.

What all this means is that if you want to set the parallel output, you send an
ASCII character to the HBC-1 consisting of seven bits that represent the seven desired
outputs, and an eighth bit that is low. Since each character sent to the HBC-1 results in
a response from the TLC540, the program must read the input after each output com
mand and discard it, to keep everything straight (requests for an invalid channel re
turn a value ofO).

526 SECTION VI: APPENDICES

I Analog signal conditioning I
Each of the analog inputs to the TLC540 is limited to a voltage range of 0 to 5

volts. If you want to measure a voltage that matches this range, you can use the 5-volt

power supply as VREF and apply the voltage to be measured directly to the TLC540 in
put channel with no signal conditioning required. You can also measure ratiometric
devices based on variations in resistance, such as joysticks, potentiometers, therm
istors, and photoresistors using the simple configurations shown in Figure C-23.

These configurations will provide accurate measurements as long as the trans
ducer source resistance is lOK or less. The variable resistor in the first circuit repre
sents one of the two potentiometers in a joystick. You could use two channels of the
HBC-1 to monitor both potentiometers to control a pointer on the Macintosh screen

V ref (5 volts)

potentiomenter, ! ! 1 OK
Thermister, ~ i ·······1

or photoresistor l.. _ _i __ .,..,,..,.~------+
Vin to TLC540

l 0.1uF

V ref (5 volts)

10K
Joystick or I . r··>·.;·-;-·] _ __,,_,,.,.~------+l v in to TLC540
potentiometer r L.! I

l 0.1uF

V ref (5 volts)

j~'
Relay, ~
pressure s"'itch
magnetic contact J

22K

.,,...~-1-----+• Vin to TLC540

l 0.1uF

Figure C-23. Configuration for ratiometric input circuits

Appendix C: Building the HBC-1 527

just as the mouse does, or to perform some other function. The variable resistor in the
second circuit could represent a thermistor, a potentiometer, or a photoresistor. A
thermistor varies in resistance as the temperature changes, and a photoresistor varies
in resistance as the amount oflight changes. There are inexpensive versions of each of
these available at different sensitivities and response speeds. By matching the re
sponse speed of the photoresistor to the expected speed oflight-level change, you can
use them to measure light levels that vary from as slowly as the sunlight beaming
through your living room window to as rapidly as a light beam broken by a car as it en
ters your driveway.

To accurately measure voltages that are higher, or substantially lower, than 5
volts, or to accurately measure the output of a transducer with a source resistance that
is much greater than !OK, some sort of buffer amplifier is required. This buffer ampli
fier provides additional protection for the TLC540 inputs against the accidental appli
cation of excessive voltage, and matches the specific transducer output to the 0 to
VREF range. This is where the optional precision voltage reference described in the

power supply section comes in. The schematic in Figure C-24 on the next page shows
how you could buffer the output from an anemometer to accurately measure wind
speeds from near 0 to approximately 100 miles per hour (the mechanical anemometer
itself is not very accurate below 2 mph, and I haven't actually wandered out into a 100-
mph wind to test the upper end).

By changing the values of Rl and R2 in this circuit you can vary the gain of the
TLC27L2, which determines the full-scale input range of the circuit. The gain is com
puted by the formula:

Gain= 1 + (R2/Rl)

So in the configuration shown, the gain is equal to 101. If you decide to change the
gain, keep R2 in the 200K to 400K range in order to maintain a reasonable response
time and keep the offset circuit operating properly. The maximum full-scale input is
determined by the formula:

Full-scale input voltage= VREF I Gain

which yields 34.9 millivolts in this case.
Another simple circuit that can be easily modified to cover a variety of applica

tions is the buffer shown in Figure C-25 on page 529, which is used in conjunction
with a resistance network to form a four-range, bipolar digital voltmeter.

528

V REF (3.52 volts)

RI
30K

R2 VR1

R3-20K R4-20K

100 IOK.l+-----------1

RB R9
IOOK 22K

R6
2K
1'5 R7

200K, 1'5

O.luF

Cl
6

7

SECTION VI: APPENDICES

R5
I BK, I '5 Offset voltage

--....,..,..--+ from 5V power
suppllJ

AID
input

0 - 34.9 mV >-------....,.,_--,-""""",....-.-------15 +
input from

TLC27L2ACP

--~~ C2 IO.I uF

Figure C-24. Monitoring an anemometer

The four ranges are determined by the ratio of resistor Rl to each set of level
translation resistors (R5 and RB, R4 and R7, R3 and R6, and R2). With the values
shown, the four ranges are:

-3.52 to +3.52

-7.04 to + 7.04

-14.08to +14.08

-28.16to +28.16

In this example each range is neatly symmetrical with respect to zero volts, but you
can set the high and low point of each range independently of each other and of the

Appendix C: Building the HBC-1

Voltage to be R1 - 1 M * measured >--___..,,.,..,... ________ -1

R2-1M
VREF---+-~~~

(3.52 volts)

I 0.01 uF
C1

._ ± 3.52 Volts

R3-499K* R6-1M*
-......,.,~---+-+----",..,..,...---..., ._ ±7 .04 Vo lb

Input to TLCS40

R4-249K* R7-332K*
- ~----+-------.,..,,..,..-- ._ ± 14.08 Volts

RS-124K* R8-143K*_,.,.......,. ______ --""""'"""--.._ ±28.16Volb

*Note: all resistors are Ile

Figure C-25. A digital voltmeter

529

other ranges. For example, one range could be from -5 to + 10 volts and the next

could be from - 20 to + 7. The only restrictions on the range are that the most posi

tive limit of the negative end of the range is minus the value of VREF> -3.52 in this

case, and the most negative limit of the positive end of the range is VREF· The resistors

labeled R2 through R5 in Figure C-25 control the negative extent of the range, and

resistors R6 through R 7 the positive. The value of each resistor in any particular range

is determined by a formula. The formula that determines the value of the resistor for

the negative extent is:

R = Rl x VREF /1 - VNEGL!Ml

and the formula that determines the value of the resistor for the positive extent is:

R = Rl x VREF/ (+ VPOSLIM - VREF)

It is important to use precision resistors (1 %) in this circuit, so after using the for

mulas to compute the desired resistance, you will have to substitute the value of the

nearest available precision resistor. This will provide an exact reading of the voltage

over a range very close to the one you want. You can, of course, add more ranges to the

meter by adding more resistors.

530 SECTION VI: APPENDICES

One point to bear in mind when establishing the measurement range is that the
resolution is inversely related to the range: If you double the range, you cut the resolu

tion in half. (Resolution is equal to the range divided by the number of output steps
from the AID converter-256 for the HBC-1.) With the configuration shown in the
voltmeter schematic, the resolution at the lowest range is 0.0275 volts per step; at
the highest range it is 0.22 volts per step. You could easily double the resolution of one
(or all) of the inputs by removing the low-extent resistor for that input (R2, 3, 4, or 5).

You would sacrifice the bipolarity of that input but in so doing the resolution would be
doubled (the range cut in half). If this is the only TLC540 channel being monitored,

you could reverse the voltmeter leads to read a negative voltage. If more than one
channel is being monitored, reversing the leads on one would mess up the others.

I in conclusion I
As I said in Chapter 18, the HBC-I was conceived as a method to demonstrate a

simple BASIC program: From that point of view the project probably got a little out of
hand. We ended up with a full-blown analog-to-digital conversion system that is com

parable to or better than most commercially available units costing 10 to 20 times as
much. Building the HBC-I was a lot of fun, but using it is even more fun. With a little

imagination, you will come up with a lot of ways to put it to use. For example, one per

son has already suggested a method of building a do-it-yourselfThunderscanner, and
another is creating a navigation system for his boat. If you come up with a particularly
interesting idea, or if you write a program that does something new and different, and

you would like to share it with others, send it to me care of Microsoft Press, and I will
try to find a way to spread the word.

A
ABS function, 269
Active window, 34
ADC-1, 345, 347
Analog, 348

Index

resolution, 342, 348
to digital converter, 340

AND operator, 362
Anemometer, 342
Array, 69

picture, 76
ASC function, 449

B
BEEP, 193
BUTTON statement, 59, 168
Button types, 60

c
CALL statement, 35-36
Calling a subprogram, 202
CHR$ function, 459
CIRCLE statement, 284
CLEAR statement, 165
Clicking, 15
Clipboard

transferring images, 55
CLOSE statement, 63, 165
CLS statement, 59
COMl:. See Serial port
Command

mode, 13

Command (continued)
window, 13, 15

Comments, 8-9
stripping, 458

Communication buffer, 209
Compiler, 6
Computed GOSUB, 123, 193
Concatenation, 165
Coordinate system, 29

multiple windows, 30, 36, 43, 45
COS function, 381
Current output window, 34
Cursor, 191

D
Data acquisition, 339
DATA statement, 119, 132
DEFDBL statement, 67
DEFINT statement, 67
DEFSNG statement, 67
DEFSTR statement, 67
Dialog box, 17
DIALOG event, 128
DIALOG function, 34, 61, 128, 170, 222
DIALOG ON, 122
DIM statement, 69
Dummy plug, 190

E
Edit field, 220

selecting, 236
Tab, 235

Edit mode, 13

531

532

EDIT$ function, 223
END statement, 39, 165
ENDSUB,101
EOF function, 447
ERASEARC, 376
Errorhandling,228,230
Event Manager, 38
Event trapping, 128
EXIT SUB, 101

F
FIELD statement, 476
File

recovery, 444
types, 451

FILES$
FILES$(0), 64
FILES$(!), 18, 70

FILLOVAL, 313
FILLPOLY, 311
FILLRECT, 89
Flags, 189
Flow control, 204
FOR. .. NEXT statement, 47
FRAMEOVAL, 117, 126
FRAMERECT, 74

G
Games, qualities of, 266
GET statement

random file, 76
screen, 76, 197

GOSUB ... RETURN statement, 72
GOTO statement, 10

H
Handshaking, 204
HBC-1, 345, 371
Hex numbers, 87
HEX$ function, 105
HIDECURSOR, 355

CREATIVE PROGRAMMING IN MICROSOFT BASIC

I
IF. .. THEN ... ELSE statement, 65
Indent, 10
INKEY$ function, 163
INPUT statement, 34
INPUT$ function, 63, 162
INSTR function, 206, 452
INT function, 97, 359
Integer division, 96
Interpreter, 6
INVERTOVAL, 117
INVERTRECT, 101

L
Label, 4-5, 9

subroutine, 227
LCOPY statement, 51
LEFT$ function, 173
LET statement, 76
Line carrier control, 349
Line INPUT#, 444
Line numbers, 4
Line ROM Call, 118, 191
LINE statement, 117, 127, 296

STEP, 117
LINETO, 49
List window, 13, 15, 16

second, 15, 16
LOC function, 162
LOF function, 63
LSET statement, 4 77

M
MENU function, 193
Menus, 18

creating, 22
disabling, 196
Edit, 20
File, 20
keyboard equivalents, 19
Run,21
shortcuts, 22

Index 533

MENU statement, 158, 186 Patterns
ON, 160 define by hand, 85
RESET, 188 storing as array, 88, 120
STOP, 202 uses, 85

MERGE statement, 298, 454 PENMODE, 70, 75, 126, 183, 312
MID$ statement, 217 PENPAT, 88
MOD,97,309 PENSIZE, 118, 131
Moclal window, 35 Picture
Mode of operation array, 452, 455

command, 13 manipulating, 67
edit, 13 storing, 55, 452
program, 13 PICTURE statement, 66

Modem port. See Serial port PICTURE OFF statement, 80
Mouse, 15 PICTURE ON statement, 80

events, 15 PICTURE$ function, 81
tracking program, 31 Pixels, 14, 28, 85

MOUSE function, 34, 38, 129 POLYGON, 309
MOVETO, 35-36 Ports, 145
Multiple commands, 15 PRINT statement, 36

in active window, 92

N multiple expressions, 37
variables, 37

NEW statement, 165 PRINT# statement, 65, 164

Null string, 163 PRINT$ statement, 162
PRINT USING, 105

0
Program

execution mode, 13

OBSCURECURSOR, 355
size, 9

Programming
ON DIALOG statement, 120 style, 7-8
ON ERROR GOTO, 229, 300 technique, 7
ON ... GOSUB, 123 PSET statement, 356
ON ... GOTO, 123 PUT statement
ON MENU statement, 159, 294 action verb, 198
Online services, 150 random file, 77
OPEN statement, 61 screen, 77, 79, 197

COMl:,160
OPTION BASE, 69

R Outline program, 445
Output window, 13, 15, 17 RANDOM access file, 4 72

RANDOMIZE statement, 282

p READ statement, 120
REM statement, 8, 156

PAINTOVAL, 126 Reserved word, 5
PAINTRECT, 126 RESET statement, 165, 477

534

RESTORE statement, 167
RESUME statement, 232
RIGHT$ function, 206
RND function 286, 315
ROM call, 29, 35-36
RS-422, 344

s
Sampling rate, 344
Screen

image, 14, 28
print, 51
saving, 197

SCROLL statement, 357
Serial communication, 146, 383
Serial port, 145

connector, 146
opening, 160
wiring, 147

SGN function, 288
SHARED statement, 100, 171, 227
SHOWCURSOR, 355
SHOWPEN,81
Signal conditioning, 340
SIN function, 289, 381
SORT routine, 466
Spaces, 10
SPC statement, 44 7
Statement, 29
STATIC, 100
STR$ function, 49, 173, 221
String variable, 445
Subprogram, 99, 171

error trapping, 231
labels, 227
defining variables, 231

Subscripted variable, 69
SWAP statement, 74, 126
SYLK file, 461
Syntax, 6-7
SYSTEM statement, 165, 196

CREATIVE PROGRAMMING IN MICROSOFT BASIC

T
TAB statement, 450
Terminal program, 149, 153
TEXTFACE, 473
TEXTFONT, 46
TEXTMODE, 157, 183
TEXTSIZE, 47, 183
TIME$ function, 216
TIMER, 282, 286
Tokenize, 9
TRACE command, 294
Transducer, 340
Transferring images

clipboard, 55, 79
file, 56
scrapbook, 55, 79

TRON statement, 293

u
UCASE$ function, 449
User interface, 27

v
VAL function, 172
Variable

in PRINT statements, 37
names, 9
storage, 45
subscripted, 69
type declaration, 69

VARPTR function, 74, 105

w
WHILE. .. WEND statement, 37, 39

nested, 39
WIDTH function, 49

statement, 37
Windows

active, 34

Index

Windows (continued)
Command, 13, 15
creating, 17
dimensions, 41
events, 17
List, 13, 15
modal, 35
Output, 13, 15, 17, 30, 34
scrolling text, 183
size, 16, 40
types, 35

WINDOW CLOSE statement, 34, 165
WINDOW function, 34, 111, 114, 190
WINDOW OUTPUT statement, 34, 104
WINDOW statement

statements, 33-34, 105
WORD format, 469

x
XON/XOFF, 204
XOR, 101

535

Steve Lambert

Steve Lambert, a native of Seattle, Washington, has worn many hats, including

those of high-rigger, house painter, locksmith, and journeyman electrician. An
interest in Seattle's early architecture led him to publish a biography of designer/

builder Fred Anhalt.
Steve's fascination with personal computers has led him to investigate many

of their practical uses. He has written about computers for High Technology and

Computingfor Business/Interface Age magazines, and is a contributor to Mac
world, Time-Life Access, and PC World magazines. He is also the author of Pre
sentation Graphics on the Apple Macintosh, and Online: A Guide to Americas
Leading Information Services, published by Microsoft Press.

The manuscript for this book was prepared and submitted to
Microsoft Press in electronic form. Text files were processed
and formatted using Microsoft Word.

Cover design by Ted Mader and Associates. Interior text de
sign by John D. Berry. The high-resolution screen displays were
created on the Apple Macintosh and printed on the Hewlett
Packard LaserJet.

Text composition by Microsoft Press in New Caledonia with
display in Helvetica, using the CCI composition system and the
Mergenthaler Linotron 202 digital phototypesetter.

OTHER TITLES FROM MICROSOFT PRESS

THE APPLE MACINTOSH BOOK, 2nd edition Cary Lu $19.95

EXCEL IN BUSINESS Douglas Cobb and the Cobb Group $22.95
Number-Crunching Power on the Apple Macintosh

THE PRINTED WORD David A. Kater and Richard L. Kater $17.95
Professional Word Processing with Microsoft Word on the Apple Macintosh

MACWORK MACPLAY Lon Poole $18.95
Creative Ideas for Fun and Profit on Your Apple Macintosh

PRESENTATION GRAPHICS ON THE APPLE MACINTOSH Steve Lambert $18.95
How to Use Microsoft Chart to Create Dazzling Graphics for Professional and Corporate Applications

MICROSOFT MACINATIONS The Waite Group, Mitchell Waite, Robert Lafore, and Ira Lansing $19.95
An Introduction to Microsoft BASIC for the Apple Macintosh

MACINTOSH MIDNIGHT MADNESS The Waite Group, Mitchell Waite, Dan Putterman,
Don Urquhart, and Chuck Blanchard $18.95
Utilities, Games, and Other Grand Diversions in Microsoft BASIC for the Apple Macintosh

MICROSOFT MULTIPLAN: OF MICE AND MENUS The Waite Group, Bill Bono, and Ken Kalkis $16.95
Models for Managing Your Business with the Apple Macintosh

COMMAND PERFORMANCE: MULTIPLAN ON THE APPLE MACINTOSH Eddie Adamis $19.95
The Microsoft Desktop Dictionary and Cross-Reference Guide

INSIDE MAC PAINT Jeffrey S. Young Introduction by Bill Atkinson, creator of MacPaint $18.95
Sailing Through the Sea of Fat Bits on a Single-Pixel Raft

ONLINE Steve Lambert $19.95
A Guide to Americas Leading Information Services

SILICON VALLEY GUIDE TO FINANCIAL SUCCESS IN SOFTWARE Daniel Remer, Paul Remer, and
Robert Dunaway $19.95

OUT OF THE INNER CIRCLE ''The Cracker" (Bill Landreth) $9.95 softcover $19.95 hardcover
A Hackers Guide to Computer Security

A MUCH, MUCH BETTER WORLD Eldon Dedini $6.95

Available wherever fine books are sold. For a catalog listing all our titles write to:

Marketing Department • Microsoft Press • 10700 Northup Way• Box 97200 • Bellevue, WA 98009

CREATIVE PROGRAMMING IN M CROSOFT® BASIC
joins the growing Microsoft Press libr~ry of high-quality,
critically-acclaimed books on the Macmtosh.

Creative Programming in

USA $18.95
UK. £15.95
AUST. $28 .95

(recommended)

CAN . $28.95

M c R 0 s 0 F T®

BY
STEVE
LAMBERT

Here -for intermediate programmers -is a superior selection of
original programs that explores the incredible possibilities of program
ming with Microsoft BASIC on the Macintosh. If you're already familiar
with BASIC on another machine, you'll discover all the unique character
istics of the Macintosh that are accessible through BASIC. Lambert's
example -driven approach includes 17 BASIC utilities and games : a fea
ture-rich communications program, a program that transfers images from
BASIC to another program, and a unique and inventive analog to digital .
converter-worth over $600-that can be built for under $75. Steve
Lambert is the author of the popular Microsoft Press titl~s Presentation
Graphics on the Apple Macintosh and Online.

ISBN 0-914845-57-

