Creatve Programming in

. C R Diie 0 FiEE

e

performance

sl EVE LAMBERT

Creative Programming in

Microsoft BASIC

For Optimal
Macintosh’
Performance

Creative Programming in

Microsoft’ BASIC

For Optimal
Macintosh"
Performance

Steve Lambert

MICROSOFT.
PoRoE S S

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation

10700 Northup Way, Box 97200, Bellevue, Washington 98009

Copyright © 1985 by Steve Lambert

All rights reserved. No part of the contents of this book

may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Cataloging in Publication Data
Lambert, Steve, 1945—

Creative programming in Microsoft BASIC for

optimal Macintosh performance.

Includes index.

1. Macintosh (Computer) —Programming. 2. BASIC
(Computer program language) 1. Title.
QA76.8.M3L36 1985 005.265 85-18952
ISBN 0-914845-57-8

Printed and bound in the United States of America.

123456789 FGFG 89098765

Distributed to the book trade in the United States by Harper and Row.
Distributed to the book trade in Canada by General Publishing Company, Ltd.

Distributed to the book trade outside the United States and Canada
by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging in Publication Data available

Apple® is a registered trademark, ImageWriter™ and MacPaint™ are
trademarks, and Macintosh™ is a trademark licensed to Apple Computer,
Incorporated. Commodore™ 64 is a trademark of Commodore
Electronics Limited. CompuServe?® is a registered trademark of
CompuServe Information Service. DIALOG® is a registered service

mark of DIALOG Information Services, Incorporated. Dow Jones
News/Retrieval® is a registered trademark of Dow Jones & Company,
Incorporated. PL-1000™ is a trademark of Elexor Associates. IBM® PCis a
registered trademark of International Business Machines Corporation.
Microsoft® and Multiplan® are registered trademarks of Microsoft
Corporation. THE SOURCE®™ is a service mark of Source Telecomputing
Corporation. The Sensorbus™ is a trademark of Transensory Devices,
Incorporated.

Contents

Preface
Acknowledgments

vii
ix

Section [: Introduction

|

Chapter 1: An Introduction to BASIC 3
Chapter 2: The Macintosh BASIC Environment 13
Section II: Graphics 24
Chapter 3: Introduction to Graphics 27
Chapter 4: Tracking the Mouse 31
Chapter 5: Drawing a Grid 43
Chapter 6: Transferring a Picture 55
Chapter 7: Manipulating a Picture 67
Chapter 8: Generating a Pattern 85
Chapter 9: The MiniPaint Program 111
Section Ill: Communications 142
Chapter 10: Introduction to Communications 145
Chapter 11: The Terminal Program 153
Chapter 12: The Expanded Communication Program 177

vi

CREATIVE PROGRAMMING IN MICROSOFT BASIC

Section IV: Games 262
Chapter 13: Introduction to Games 265
Chapter 14: The Shell Game 267
Chapter 15: The Backgammon Game 303

Section V: Data Acquisition and Control

Chapter 16: Introduction to Data Acquisition and Control 339
Chapter 17: The ADC-1 347
Chapter 18: The HBC-1 371
Section VI: Appendices 394
Appendix A: Alphabetical List of Commands 397
Appendix B: A Few Short Utility Programs 443
Appendix C: Building the HBC-1 481

Index

531

Preface -

I have been studying Microsoft BASIC, on and off, for about eight years— ever since I
assembled my first kit-computer and discovered that if I wanted software for it, I had
to write it myself. The availability of computer programs has improved since 1977, but
every now and then I still want a program that just doesn’t exist, and I dig out my
BASIC books, refresh my memory, and become a programmer for a week or so. I have a
pretty good collection of books about BASIC, having been through eight or nine com-
puters with five different operating systems since that first kit. And because there are
versions of Microsoft BASIC that will take advantage of the special features of almost
every computer on the market, the purchase of each computer requires a new BASIC
and a new book.

If I have come up with a few truths in these years of learning and relearning
BASIC, they are that complex programs are no more difficult to write than simple pro-
grams—they are just longer—and the fastest way to learn how to program is by
studying other people’s programs and figuring out how they work (or why they don't). I
have tried to apply these truths to this book about Microsoft BASIC for the Macintosh.
The sample programs are not short, simple examples demonstrating features you
could easily understand by reading the manual. They are, for the most part, programs
that serve a useful purpose or demonstrate techniques that can be applied to such
programs. I have tried to point out the pitfalls and “undocumented features™ that I
stumbled in or over, and explain the reasons for my approach to different problems.

The power and speed of new versions of BASIC have kept pace with the power
and speed of newly released computers. If this trend continues—and there is no rea-
son to believe that it won't—it will soon be feasible to write commercial-application,

vii

viii CREATIVE PROGRAMMING IN MICROSOFT BASIC

entertainment, and utility software in BASIC, thereby re-establishing computer pro-
gramming as a cottage industry open to anyone with a personal computer and the
ability to reason clearly.

For the part-time programmer, it is easy to fall into the trap of using the old fa-
miliar commands that have faithfully followed you from version to version of BASIC. I
hope this book encourages you to explore new territory, expand your horizons, and
take advantage of the tremendous potential of the power offered by the team of
Microsoft BASIC and the Macintosh.

Acknowledgments

As with every book that manages to make the journey from a mere idea to a finished
product in the hands of a reader, this book was produced through the cooperative
efforts of many people. The people in the editorial, technical review, and production
departments at Microsoft Press have my unqualified respect for their ability to pull all
the pieces together into one cohesive package. My particular thanks go to Managing
Editor Joyce Cox, who took personal responsibility for editing the manuscript, to
Technical Review Manager Barry Preppernau, who provided the backgammon game
in Chapter 15 and reviewed all programs for reliability, and to Technical Reviewer
Chris Matthews, who built and tested an HBC-1, and helped with the technical as-
pects of explaining analog-to-digital conversion.

Special thanks go to two people who don’t work for Microsoft Press, but who
contributed greatly to this book:

John Socha, fellow author and programmer, critically reviewed many of the pro-
grams. He forced me to clean up my programming style, taught me much about both
Microsoft BASIC and the Macintosh, and was always available to help me through the
rough spots. .

Gordon Mills, a linear field engineer for Texas Instruments, devoted several hun-
dred hours of his own time to the task of designing the HBC-1, and to the even greater
task of explaining its theory of operation to me.

SECTION |

Introduction

An
Introduction

to BASIC

When Apple created the Macintosh, it totally broke away from the orderly evolution-
ary path followed by previous computers. The Mac is not only easy to use, it is friendly
to the point of being fresh and has the potential for amazing power. Version 2.0 of Mi-
crosoft BASIC made most of this power available to the average programmer, and the
enhancements provided by version 2.1 and the BASIC compiler continue to increase
the pleasure of programming on the Macintosh.

Although this book is not a primer on either BASIC or the Macintosh, the chap-
ters in this section give a short explanation of how the two fit together, and may help
those readers familiar with traditional versions of BASIC on traditional machines to
understand the power available through this new partnership.

The BASICs

People purchase the BASIC programming language for various reasons. Some
have access to programs that are written in BASIC and need the language to run them.
Others have specific problems and think they can create a program in BASIC that will
solve them. A few intend to write programs for commercial distribution. But I imag-
ine that the vast majority of the people who purchase BASIC do so out of a vague feel-
ing that it is simply part of owning a computer. The computer is a mysterious device,
and programming it occasionally is a responsibility much like the weekly winding of
the grandfather clock, required to keep it running smoothly. Even after they discover
their clock to be self-winding, people often continue to write programs in BASIC just
because they find the exercise to be an entertaining form of mental gymnastics: Writ-
ing and debugging a complex BASIC program can generate all the excitement and plea-
sure of an adventure game you would pay to play in an arcade.

4 SECTION I: INTRODUCTION

Microsoft BASIC is the most popular of all microcomputer BASICs, with versions
that run on almost every brand of computer. Most of these versions are reasonably
compatible, the primary differences being in commands that take advantage of spe-
cial characteristics of individual machines. The additional scope of BASIC commands
available on the Macintosh because of its high-resolution screen display and its ability
to rapidly manipulate graphic images makes this version of BASIC a particularly chal-
lenging and enjoyable language in which to work. Some examples of these special
commands are those that allow you to use the mouse, to create windows, and to ma-
nipulate graphics. In the version of BASIC for the IBM PC, the commands for dealing
with different colors fall into this category. These special commands are obviously not
transportable between machines that don’t have like capabilities. Most other com-
mands, however, behave exactly the same in the Macintosh version as they do in any
other version.

If you have Microsoft BASIC programs that run on other machines, the com-
munication program we develop in Chapter 12 will allow you to transfer them to your
Macintosh, and you should be able to run them directly. Programs written in other
brands of BASIC can also be translated to Microsoft BASIC for the Macintosh: It is
simply a matter of sitting down with the documentation for each brand, finding the
commands that aren’t directly compatible, and replacing them with the equivalent
Microsoft BASIC commands.

BASIC differences

The programs you create in versions 2.0 and above of Microsoft BASIC for the
Mac will have a different appearance from programs in other versions with which you
may have worked. Figure 1-1, which shows the same program listing in version 2.0 and
in a traditional BASIC, illustrates the most obvious visual differences.

The listing on the top is in the traditional format. The lines are numbered in as-
cending order and the characters all appear in the style in which you typed them. The
program listing on the bottom accomplishes the same task, but was modified to take
advantage of BASIC for the Mac. And what a difference in appearance.

First, the line numbers are gone, replaced by an occasional label. Since the nor-
mal flow of a BASIC program is from the first line to the last, the only time you have to
provide a number or label for a line is when the normal flow is to be diverted to that
line from elsewhere in the program. A label can be indented, but it must be the first

Chapter 1: An Introduction to BASIC 5

1000 ' Communication Loop

1010 WHILE true

1020 IF pauseFlag THEN GOTO 1500

1030 IF (LOC(l) = 0) AND stopFlag THEN PRINT #1, XON$: stopFlag = false

1040 WHILE LOC(1l) = O 'nothing waiting to come in
1050 GOSUB 2000 'send key typed to file #1
1060 IF (sendFlag OR viewFlag) AND NOT waitFlag THEN GOSUB 2500
1070 IF endViewFlag THEN GOSUB 3000
1080 WEND
1090 WEND
CommLoop:
WHILE true

IF pauseFlag THEN GOTO CommSkip

IF (LOC(1) = 0) AND stopFlag THEN PRINT #1, xONS; : stopFlag = false

WHILE LOC(1) =0 ’nothing waiting to come in
SendKey 'send key typed to file #1
IF (sendFlag OR viewFlag) AND NOT waitFlag THEN CALL SendLine
IF endViewFlag THEN GOSUB EndFile

WEND

WEND

Figure I-1. Traditional BASIC versus Microsoft BASIC for the Mac

item printed on the line and must be followed by a colon. It can be practically any
combination of letters, numbers, and periods, as long as it starts with a letter, is no
more than 40 characters long, and contains no spaces. Multiple words can be run to-
gether with the initial letter of each capitalized or with a period separating them to
make them more readable. This flexibility allows you to use labels to specify the pur-
pose of a line as well as its location: AccountBalance:, InvestmentCredit:, MouseAc-
tion:, Dial.The. Phone:, and so on. Since a label can appear on a line by itself, it can also
be used to separate and identify subroutines and other program segments.

The second obvious feature of a version 2.0 program listing is that all the re-
served words— BASIC statements and functions—are in a boldface type style. This
happens automatically: When you press Return after typing a line, BASIC picks out all
the reserved words and converts them to this style. This helps you easily locate many
typos, since a misspelled reserved word will stay as it was typed. This feature also
helps you avoid the accidental use of an obscure reserved word as a variable name:
When the variable you just typed springs boldly back at you, you can change it on the
spot, rather than waiting until you have a syntax error while running the program.

6 SECTION I: INTRODUCTION

Interpreter versus compiler

Microsoft BASIC comes in two forms: as an interpreter and as a compiler. The
difference between the two is the manner in which they translate high-level BASIC
commands into the low-level language understood by the computer. Interpreters
translate a program one line at a time, executing each translated line before translat-
ing the next. Compilers translate the entire program, and then run it. Microsoft
BASIC 2.0 and 2.1 are interpreters. Microsoft is developing a BASIC compiler for the
Macintosh.

There are advantages to each style of translation. With an interpreter you can
run a program as soon as you finish typing it. Then, if you want to make changes, you
can edit it and immediately run it again. With a compiler, there is an extra step in the
middle—the compilation—which can take quite a bit of time. However, a compiled
program runs substantially faster than an interpreted version of the same program,
and doesn’t require that BASIC be loaded first.

Interpreters are usually considered most convenient when writing and debug-
ging a program. Compilers are most convenient when running a finished program.
Compiled languages are especially appreciated by programmers offering their work
for sale, as they don’t have to depend on the purchaser having the appropriate version
of BASIC in order to run the program. The ideal situation is a version of BASIC that can
run your program interpretively until all debugging is complete, and then compile it.
This level of convenience is approached by the combination of BASICs available from
Microsoft.

Since the compiler will compile a program written with the interpreter, the deci-
sion to compile a program can be made retroactively and has no particular influence
on how the program is written. And since this book is about writing programs, it is
based on the interpretive versions of BASIC—specifically, on versions 2.0 and above
of Microsoft BASIC for the Macintosh.

Generic syntax

The commands available to you in BASIC often have options that aren’t neces-
sarily obvious from the context in which the command appears in a program. So that
you will be aware of all the possible options that might be available, as I introduce

Chapter 1: An Introduction to BASIC 7

each new BASIC command, I will also list its generic syntax using the same format as is
used in the Microsoft BASIC manual. For example:

INPUTS$(XL,[#] filenumber])

Significant aspects of this format are:

Feature Meaning

CAPS Capitalized words (longer than one character) must be typed letter
for letter as shown, although you don’t have to capitalize them;
BASIC automatically does this for you

italics Italicized words represent program-specific variables to be supplied
by the user

X A single capitalized letter, or a letter followed by a string-specifier
(such as X$) also represents a program-specific variable that the
user supplies

() Parentheses are part of the command and must be typed in

[] Square brackets indicate optional parameters; they are not typed in
Ellipses indicate that the preceding item may be repeated any
number of times

Programming style

One of the things about programming that makes it enjoyable for me is the fact
that there are many ways to get the job done, and the method is rarely as important as
the result. There is good programming style, and there are techniques that are gener-
ally considered “proper.” These contribute to the speed and efficiency with which you
write programs, and the ease with which their operation can be understood by others,
but the ultimate test of whether or not a program is “good” is how well it does the job.
Each programmer is free to develop his or her own style and structure.

My programming technique, with anything other than the simplest of programs,
is to sit down first with a pencil and paper and list the things the program will do and
the order in which they will be done. My approach is far too primitive to be glorified
with the title “flow chart™; it is more a simple sketch. I also sketch where I think ob-
jects should appear on the screen at different points in the program (we will develop a
grid in the next section that will help in this task).

8 SECTION I: INTRODUCTION

My programming style is a little more involved. As I said earlier, programming
style is pretty much up to the programmer and can vary from program to program —
unless you are writing a book about programming and need to make it easy for your
readers to move from one program to another without having to reorient themselves
after each move. Here are some pointers about the style I have chosen for this book.

Comments

Most of the programs in this book are heavily commented. If you choose to type
these programs into your Macintosh and run them, there is really no point in typing
the comments as you can always refer to the book. However, if you modify a program,
you should add a comment of your own to explain each modification so that you, or
someone else, will understand its purpose when it is stumbled across in the future.

BASIC recognizes two types of comment, set off either by REM or by a single
quote mark. I use only the single quote mark, but use it in several distinct ways (Fig-
ure 1-2). Comments that apply to a whole section of the program are typed flush left,
and have at least one line of open space above. Comments that apply only to the line
that follows them are indented as far as that line. Comments that are on their own
lines are set off by the single quote mark followed by an asterisk. Short comments
tacked onto the end of a command line are set off by only the single quote mark.

"

™ Define variables.
"

top = 20 ‘top of output window
left = 20 "left side
bottom = 300 "bottom
right = 500 right side

"

™ Open window for display.

WINDOW 1, , (0, 20) - (512, 342), 3

TEXTFONT 4 ’Monaco font -- monospaced
TEXTSIZE 6 ‘'make it small, to get numbers in

Figure 1-2. Samples of comments

Chapter 1: An Introduction to BASIC 9

You will probably notice that the short comments to the right of the command
lines in my programs are aligned with the right edge of the display. This is not a new
feature of BASIC, but was done to increase the readability of the program listings by
separating the comments from the commands as much as possible. (It also produces a
better balanced and therefore more pleasing page.)

One other comment on comments. The maximum size program that BASIC can
load is determined by the amount of random access memory (RAM) available in your
Macintosh. This is not usually a significant factor with a 512K Mac, which has about
370K available for your program, but a 128K Macintosh only has about 20K available
for your program and its variables. Often, removing the comments will reduce the size
of an unloadable program enough so that it can be loaded. One of the utility programs
developed in Section VI performs this task for you.

Labels

I use labels only where necessary: that is, when the normal program flow is di-
verted to the label. In other words, I don’t use labels simply as comments; I use them
in place of traditional line numbers. Labels (at least in this book) have initial caps and
describe the purpose of the section they label. Statements can follow labels on the
same line, but I consistently put labels on their own line.

Variable names

I have adopted the convention of using initial lowercase letters for variable
names. If the name is composed of multiple words run together, I capitalize the first
letter of the second and all following words. Space permitting, variable names are long
enough to describe what they represent. The maximum length and components of a
variable name are the same as for a label: 1 to 40 letters, numbers. or periods.

Programmers accustomed to other versions of BASIC may feel that long variable
names and labels are an extravagance they will pay for with slower-running programs.
This is not the case in BASIC versions 2.1 and above, which tokenize variable and label
names. This means that they replace the variable name with a symbol (token), which is
stored in a list along with the name it replaced. The only time your meaningful names
and labels are used is when they are displayed on the screen for you to read; BASIC it-
self works strictly with the tokens.

10 SECTION I: INTRODUCTION

There is an interesting side effect to this method of dealing with variable names.
BASIC stores the variable names with the exact combination of upper- and lowercase
characters you type, but recognizes the same combination of characters, however
they are typed, as that variable. BASIC stores the name only once, and then uses that
name each time it has to display the variable. Each time you type the name, the stored
version is updated with the specific combination of upper- and lowercase characters
you type. As a result, each time the screen is refreshed —that is, each time a line is re-
drawn because you have edited it, or because the screen has scrolled—all occur-
rences of the name are updated to match the way you last typed it.

Indents

Labels and major comments are printed flush left. The body of the program is in-
dented four spaces, and the body of each FOR...NEXT and WHILE.. WEND loop is
indented an additional four spaces from its beginning level.

Spaces

BASIC has very little use for spaces; they are needed only to make the program
more readable for people. But since people, as well as a few computers, will be reading
these programs, I separate almost everything with spaces. An advantage of following
this practice, even if you aren’t producing programs for public consumption, is that it
is easier to automatically search for and replace a word if it is always set off by spaces.

GOTO statements

The use of GOTO statements is generally frowned on by people who teach BASIC
programming. The justification for this attitude is that GOTO statements, improperly
used, can make it very difficult for a person reading the program to follow its logical
flow. The effect of too many GOTOs is often called “spaghetti logic.” The proper use of

subroutines and subprograms usually eliminates the need for most GOTO statements.

My primary use of GOTOs is to jump around several lines, or return to the begin-
ning of a loop. The purist would avoid even these uses, possibly through the use of an
IF.. THEN.. ELSE statement, or a WHILE.. WEND loop. Purity, however, has never
been one of my major vices.

Chapter 1: An Introduction to BASIC 11

Programs on disk

The purpose of the programs in this book is to help you understand how BASIC
commands are used to create useful programs. You can learn about programming by
simply reading the program listings and their explanations, but it is much more effec-
tive if you also run the programs, study what they do, and then make changes to test
your understanding. However, typing the longer programs is a rather tedious task, so
if you would like to run the programs in this book without having to type them,
you can purchase the Companion Disk to Creative Programming in Microsoft BASIC,
which contains the programs exactly as they appear in the book. The disk also con-
tains additional information about the construction of the HBC-1 analog-to-digital
converter described in Chapter 18 and Appendix C.

You can order the disk with the order card bound into this book, or by sending
your name and address, along with $19.95 (plus $1.00 for postage and handling), for
each disk. US. funds only, please. California residents must add 6.5% sales tax and
Washington state residents 8.1% sales tax. Payment must be made by check or credit
card. Include your MasterCard, VISA, or American Express Card number, along with
the expiration date, with your order. Send your order to: Microsoft Press, Attn: LDSK,
10700 Northup Way, Bellevue, WA 98004. Please allow four weeks for delivery.

I have made every attempt to ensure that the programs on the Companion Disk
are “bug-free.” However, if you should discover something I missed, you can drop me
aline at: 15 Central Way, #280, Kirkland, WA 98033. I will include the correction on
future disks.

Now that you have seen a few of the ways Microsoft BASIC for the Mac differs
from other versions of BASIC, and I've told you about the way I format my own BASIC
programs, let’s move on to Chapter 2 for a look at some of the unique aspects of the
Macintosh.

The Macintosh
BASIC
Environment

When Apple released the Macintosh, it stressed the new computer’s “user friend-
liness” and ease of operation. It billed the Mac as the machine for “the rest of us”—
for the people who have no desire to become programmers in order to use a computer.
The Mac has lived up to this billing, but with the development of programming lan-
guages that allow access to its power, it has also become a delight for programmers,
from neophyte to expert. This chapter provides an overview of the Macintosh’s fea-
tures as they apply to Microsoft BASIC, for those users who are not familiar with this
combination.

First let’s take a quick tour of the BASIC work environment—the screenful of
windows and menus that Apple calls a desktop. If you have seen other Macintosh ap-
plications, the items on the desktop shown in Figure 2-1 should be familiar.

At the top is the menu bar, displaying the titles that, with a press of the mouse
button, drop down into full command menus. You choose a command by dragging
down the list and releasing the button while the pointer is over the desired command.

Three windows occupy the remainder of the screen: the List, Output (labeled
Untitled in Figure 2-1), and Command windows. From the time you load the BASIC in-
terpreter, it is in one of three modes of operation: edit, program execution, or com-
mand. Each mode is associated with a different window on the Macintosh desktop.
The edit mode is used to create and modify programs in the List window. The pro-
gram-execution mode is used to run these programs, displaying the results in the
Output window. The command mode allows you to enter commands directly into the
Command window and have them immediately executed. We will look at each of these
windows a little more closely in a few moments.

13

14 SECTION I: INTRODUCTION

% File Edit Search Run Windows
Untitled
L3

List

=T
L]

Command

Figure 2-1. The BASIC desktop

You have undoubtedly used other Macintosh applications in which you could
open and close windows, use the mouse to change their size and location, click buttons
in them to make selections, and so on. So you won't be too amazed to hear that BASIC
makes use of all these same features. What may come as a pleasant surprise, though, is
the fact that BASIC also allows you to integrate these features into the programs you
write. Let’s take a closer look at what we have here.

The Macintosh screen

The first time you saw the Macintosh in operation, you were undoubtedly im-
pressed by the sharpness of the image on its screen. This crispness is due to the high
resolution and small size of the Macintosh screen compared with most other computer
screens. The Macintosh always operates in a graphic mode (as opposed to a text
mode), creating images on its screen by turning on or off little dots called pixels. Sec-
tion II explains how you can use BASIC to control the condition of these pixels, either

Chapter 2: The Macintosh BASIC Environment 15

individually or in groups, to create and move images, including windows, pushbuttons,
and pictures you bring in from MacPaint.

The mouse and pointer

As you know, moving the mouse controls where the pointer points. Clicking the
mouse button, either once or rapidly several times, selects an object for some action or
gets the action going. Holding the button down while moving the mouse controls
other activities, perhaps moving a window or drawing a line. Each of these mouse
events is constantly monitored by the Macintosh and information about them is made
available to you through BASIC. You can tell where the mouse is now and where it was
when it was last clicked, double clicked, or even triple clicked. You can identify the be-
ginning and ending points of a drag, as well as the ID number of any button, box, or
window clicked. You can even change the shape of the pointer or hide it away when it
isn’'t needed. You will be familiar with most of these techniques by the time you get
through Section III.

The standard windows

BASIC itself uses four windows to manage your creative efforts while you are
writing a program. Three of these windows— List, Command, and Output—were
shown in the initial desktop displayed earlier; the fourth window—a second List
window—is used with the first List window to simultaneously list different parts of
the same program.

The Command window

When you load the BASIC interpreter, the Command window is active and BASIC
is in the immediate mode, waiting for you to type a command. Anything you type ap-
pears in the Command window. When you press Return, BASIC assumes the contents
of this window to be a command and attempts to execute it. After the command is exe-
cuted, it is discarded; to repeat the command, you have to enter it again. You can enter
multiple commands in the Command window by separating them with colons. If you
enter more text than will fit on one line of the Command window, the additional text is
automatically wrapped around to the next line—up to a total of about 250 characters.

16 SECTION I: INTRODUCTION

If you exceed this limit, an error message is displayed when you press Return, and
your commands are not executed.

NOTE: The Cut, Copy, and Paste commands function in the Command window
just as they do elsewhere. If you think you might want to repeat a command, or change
it slightly and try it again, copy it to the Clipboard before pressing Return. After the
command has been executed, press Command-V to paste a copy from the Clipboard
back into the Command window.

You enter commands in the Command window to test or change the value of vari-
ables while debugging a program, to get the results of a single calculation rapidly, or to
try out a short string of commands before using it in a program. To create a program
composed of more than about three lines, however, you must use the List window. If
the List window is visible, simply click in it to enter the edit mode. If the List window
is not visible, choose Show List from the Windows menu or type List in the Command
window and press Return.

The List window

BASIC’s List window is essentially a specialized word-processing program, de-
signed to help you write and modify programs. It allows you to use the Macintosh’s
standard Cut, Copy, and Paste commands to edit text, and has word-processing fea-
tures such as Find and Replace.

The title bar, scroll bars, and size box in this window function just as they do in
similar windows in other Macintosh applications: You can drag the window by its title
bar, scroll to different spots in the listing with the scroll bars, and change the size of
the window with the size box.

There is a shortcut for changing the size of any BASIC window that has a title bar:
You can double-click the title bar. BASIC remembers two sizes for each window, and
when you double-click, it switches the window to the other size.

The second List window

The second List window, which is identical to the first, can be used to display a
different section of the program than the one in the first window. This is very handy
when you are reorganizing a program by cutting and pasting segments within it.

Chapter 2: The Macintosh BASIC Environment 17

The Output window

The Output window is automatically opened by BASIC to display the results of
the program you run in the List Window or the commands you enter in the Command
window. BASIC designates the Output window as window #1, and counts it as one of
four output windows you can have open in your programs. You can use BASIC com-
mands to create another window as #1, in which case the stock Output window is re-
placed with the one of your own design.

Creating your own windows

The windows discussed so far are displayed by the BASIC interpreter. The pro-
grams you write in BASIC can also display up to four windows on the screen at a time,
and you can tailor the size, shape, and style of these windows to your needs. Typically,
they are used to gather input, display the result of whatever task your program is per-
forming, or alert the user to pertinent points along the way.

Most of the housekeeping tasks associated with displaying windows on your
screen are taken care of by the Macintosh. For example, if you create a window that
can be dragged with the mouse, or expanded and contracted, the Macintosh steps in
on your behalf when the user attempts one of these operations. Just as with significant
events in the life of your mouse, the Macintosh traps significant window events, stores
information about them, and passes it on to you if you request it. Information stored
includes the size of each window, the currently active window, the number of the most
recently pressed button or most recently used edit field, and whether a window has
had a previously covered area exposed, and therefore needs to be refreshed. You'll
find out more about trapping these events in Section II.

Dialog boxes

A dialog box is simply a window that has been put to a special purpose. If you are
near your Macintosh now, you can have a look at a dialog box by choosing from the
menu any item with an ellipsis after it. Choosing Open. .. from the File menu, for ex-
ample, produces a dialog box similar to the one shown in Figure 2-2. This dialog box is
used to gather the information needed to carry out the Open... command. It offers
items you can scroll through and buttons you can click; other dialog boxes might have
edit fields into which you can type a word or phrase.

18 SECTION I: INTRODUCTION

ALPHABETIZE.BAS|
check file |
Compressor
create data st
Draw

fill file
fill file (t)

, Microsoft B...

(Cancel]z[Drive |

Figure 2-2. The Open dialog box

You can build your own dialog boxes in BASIC or you can use a few of the stock
ones offered by the Macintosh. As an example, the dialog box you produced by choos-
ing Open. .. from the File menu could also be produced from within a BASIC program
with the FILES$(1) function, which you'll learn about in Section II. Not only does this
function produce the dialog box, it also retrieves the user’s selection. Isn't that easier
than the old LINE INPUT “Type the name of the file (filename.ext) to open”; f$ routine?
And selecting from a list in a dialog box solves the problem of whether or not the user’s
entry is correctly typed and spelled.

Menus

The menu bar across the top of the screen has six items on it. The Apple icon at
the left end heads a menu that is common to most Macintosh applications; the remain-
ing five menus contain some items that are similar to menu items in other applications,
but most are unique to BASIC. If you place the pointer over one of the menu titles and
press the mouse button, that entire menu drops down. If you drag the pointer down
the menu, the commands that are currently available become highlighted when the
pointer is over them. Releasing the mouse button while a menu item is highlighted
chooses that item, causing whatever action it controls to take place.

The commands available from the BASIC menu bar are grouped by function and
arranged beneath titles that more or less describe the function. Most commands in
the File and Run menus serve the same purpose as similarly named commands that
you would type in other versions of BASIC. Figure 2-3 illustrates the relationship be-
tween menu items, their keyboard equivalents (typed in the Command window) and
standard BASIC commands.

Chapter 2: The Macintosh BASIC Environment

19

Menu Item Keyboard Equivalent BASIC onIBM PC
File New New New
Open... Load Load
Close Window Close # n/a (not the same as
Close (filename))
Save n/a n/a
Save As... Save Save
Print... Llist (List, LPT1:Prompt is Llist
exact replacement)
Quit System System
Edit Cut n/a n/a
Copy n/a n/a
Paste n/a n/a
Search Find... n/a n/a
Find Next n/a n/a
Find Selected Text n/a n/a
Find Label n/a n/a
Find the Cursor n/a n/a
Replace. .. n/a n/a
Run Start Run Run
Stop Stop Stop
Continue Cont Cont
Suspend n/a n/a
Trace On/Off Tron/Troff Tron/Troff
Step n/a n/a
Window Show Command n/a n/a
Show List List n/a
Show Second List n/a n/a
Show Output Window #1 n/a

Figure 2-3. Macintosh menu options and their keyboard equivalents

The individual menu commands are explained in detail in the Microsoft BASIC
manual and in introductory books on BASIC. Here is an overview of the commands
and a brief description of those that either aren’t obvious or don't relate directly to tra-
ditional BASIC commands.

20

SECTION I: INTRODUCTION

The commands that you can select by dragging through the File menu are used
primarily to move programs in and out of BASIC.

Command Action

New Clears memory before you type new program

Open Brings program in from disk

Close Closes active window on screen; not same as BASIC statement
that closes file

Save Updates program that you have already named

Save As. .. Assigns name to program currently in memory; can also be used
to change name of program or save copy on different disk

Print. .. Sends program listing to printer; standard Macintosh Print dialog
boxes appear, allowing you to set format

Quit Returns you to Macintosh desktop (the Finder), which appears

when you turn on machine and insert disk; if there are unsaved
changes to program, you are prompted to save them

The Edit menu commands, used when typing or modifying a program in the List
or Command window, are common to almost all Macintosh applications. Once ac-
customed to cutting, copying, and pasting, you will wonder how you ever got along

without them.

Command Action

Cut Deletes currently selected text and replaces contents of
Clipboard with deleted text

Copy Replaces contents of Clipboard with copy of currently selected
text, without deleting text

Paste Puts copy of Clipboard contents at location currently selected in

List or Command window

The Search menu commands are useful when editing and debugging a program,
and are great when you decide to clean up your program by renaming variables or la-
bels. With the exception of Find Label and Find the Cursor, these are standard word-

processor features.

Chapter 2: The Macintosh BASIC Environment 21

Command Action

Find Label Adds colon to selected (highlighted) program text, and
searches for matching label

Find the Cursor Scrolls List window to display section of program
containing cursor

NOTE: If you do loose the cursor, which is possible when you scroll through a
long listing, there is actually no need to resort to the Find the Cursor command: You
can return to the cursor immediately, with no effect on the program, by typing any
character followed by a Backspace (typing the character brings the section of the text
containing the cursor onto the screen and enters the character; pressing the Back-
space key deletes the character, leaving the text as it was).

The Run menu commands control the execution of your program. Start, Stop,
and Continue are pretty obvious. The remainder cause the following actions:

Command Action

Suspend Causes execution of program to pause until any key is pressed
(other than Command-S, which invokes Suspend)

Trace On When you select Trace On, menu item changes to Trace Off.
Each statement is framed in List window as it is executed and
result is displayed in Output window, allowing you to watch
cause and effect to discover where things are going wrong

Step Essentially same as Trace command, except it executes only one
statement and then returns to immediate mode, allowing you to
test or alter variables before continuing to next step

The Windows menu commands all bring hidden or closed windows to the sur-
face and make them active.

Keyboard command shortcuts

The most-often-used menu commands can be chosen by holding down the Com-
mand (38) key and pressing a letter that represents the command. Where available,
the keyboard shortcut appears to the right of the command on the menu. For conve-
nience theyre also listed here in the table on the following page.

22 SECTION I: INTRODUCTION

Command Keyboard shortcut

Cut ¥ X
Copy
Paste
Find
Find Next
Start

Stop
Suspend
Step
Show List

3888383638389636 38
oz <O

ol Bl

Creating your own menus

Your BASIC programs can display up to ten drop-down menus (in addition to the
menu beneath the Apple icon, over which you have no control), with up to 20 items on
each. The custom menus you create can replace some or all of BASICs five stock
menus. Imagine how much more convenient these are than the conventional hier-
archical menus, where typing a response to one menu leads you to another menu, and
another, and so on. Your program need only specify the items for each menu and what
will be done when one is chosen: BASIC, or the Macintosh operating system, keeps
track of whether the pointer is over an item and what is going on with the mouse but-
ton. We will start creating our own menus in Section III.

Memory Management

A stock Macintosh, as it comes from the factory, has either 128K or 512K of RAM.
Because the Macintosh operating system requires a lot of memory, and applications
typically gobble more, other companies offer upgrade kits to expand the memory to as
much as 2M (2 million bytes). Additional memory will allow you to run larger pro-
grams, and sometimes increases the speed of the programs you could run before the
addition; but efficient management of whatever memory you have will allow optimum
performance from the Macintosh. We will look at specific memory-management tech-
niques as we develop large programs that require them.

Now that we have the background information out of the way, let’s dig into the
fun stuff. The next section deals with how you can control the display of text and pic-
tures on the Macintosh screen.

SECTION Il

Graphics

Introduction

to Graphics

An obvious and very pleasant difference between using the Macintosh and using prac-
tically any other computer results from what is called the “user interface.” This is
computer jargon for the manner in which you relate to the machine: how you give
commands and provide the information needed to produce the results you desire. As
you undoubtedly realized the first time you used it, the Macintosh leans heavily on
graphic images and the mouse to communicate with the user. You quickly learn to rec-
ognize the graphic icons representing the files on your disk, and making selections
from drop-down menus and dialog boxes by clicking buttons with your mouse be-
comes second nature.

One of Apple’s goals in developing the Macintosh was to create a user interface
that would be easy for the average person to understand, and then to make the compo-
nents of this interface readily available to companies creating application software for
the Macintosh. As a result, most commercial Mac applications— spreadsheets, word
processors, database managers, and so on—make use of a similar interface. Once you
master one program, you can learn the others relatively quickly, since you already un-
derstand the basics.

As we saw in Chapter 2, versions 2.0 and later of Microsoft BASIC for the Macin-
tosh provide access to interface features such as menus, multiple windows, dialog
boxes, and buttons, allowing you to create programs with all the power and pizzazz of
those produced by the professionals. They also allow you to store, display, move, and
manipulate other kinds of visual information: pictures you create in BASIC and those
you transfer in from other programs, such as MacPaint or Microsoft Chart. You will
utilize these features most effectively if you understand how images are produced on
the Macintosh screen.

27

28 SECTION II: GRAPHICS

Screen control

The portion of the screen that lights up to display an image is 6.75 inches wide by
4.5 inches high. The patterns that appear in this area, whether they represent letters
of the alphabet or parts of a picture, are created by turning on or off individual ele-
ments in a grid of small rectangles called pixels. The pixels are neatly organized into
342 rows and 512 columns. This works out to about 5765 pixels per square inch (as op-
posed to 2144 pixels per square inch for an IBM PC in its highest resolution graphic
mode, displayed on a typical 12 inch monitor). If you have used FatBits in MacPaint,
you have already seen and controlled individual pixels. Figure 3-1 shows a portion of
the screen, enlarged by FatBits.

Many of the commands available in BASIC allow you to manipulate individual
pixels or groups of pixels to form lines, shapes, and patterns. In order to do this accu-
rately, you must have a way to identify the location of the pixels you want to control.

% File Edit Goodies Font FontSize Style

untitled

X oo

2l

Figure 3-1. Pixels, as enlarged by FatBits

Chapter 3: Introduction to Graphics 29

30 38

-
1

Hp
-0

]
T
T
Figure 3-2. The display coordinate system

You do this on the Macintosh not by referencing the pixel itself, but by referencing an
imaginary and infinitely small point at the upper left corner of the pixel. Let’s have an-
other look at some fatbits, this time with an imaginary grid laid over them, as shown in
Figure 3-2.

This grid extends over the entire display area of the Macintosh screen, and forms
the coordinate system used to specify where graphics and text are to be printed. The
vertical lines are numbered consecutively from 0 to 512, and the horizontal from 0 to
342. You can specify a position at which something is to be displayed by specifying
the coordinates of the point formed by the junction of a vertical and horizontal line on
this grid, with the point (0,0) in the upper left corner of the screen and the point
(512,342) in the lower right corner.

Pixel commands

The actual pixels affected by your command depend upon the type of command
used. There are two classes of display commands: those provided directly by Apple
and available to the programmer as built-in programs, known as ROM (read-only
memory) calls, and those provided by Microsoft as BASIC statements. We will see ex-
amples of both in the programs we develop, so let’s take a look at the differences now.

A pair of coordinates passed to a ROM call references the pixel directly below
and to the right of the coordinate. The same coordinates used in a BASIC statement
reference the pixel above and to the right. The difference between the two is most ev-
ident when printing text on the screen. The BASIC PRINT command that displayed
the letter A in Figure 3-2 instructed the Macintosh to print the letter at location

30 SECTION II: GRAPHICS

(30,40). The character is nine pixels high and seven pixels wide (plus a pixel of white
space on each side), and extends from grid location (30,40) upward and to the right.
The ROM call that drew the line located one pixel below the letter instructed the Mac-
intosh to draw a line from (30,41) to (38,41). The line fills the row of pixels hanging
below grid line 41.

Multiple windows

The Macintosh allows you to display information in up to four windows at a time.
To make the mechanics of this somewhat easier, each window has its own coordinate
system, starting at (0,0) in its upper left corner. This means you can judge the place-
ment of images using the borders of the window as guidelines, rather than having to
pinpoint particular pixel locations within the screen as a whole. Also, as you move a
window;, the coordinates of images in it stay the same, since they are always relative to
the corner of the window. We will play with this feature as we develop our first pro-
gram in the next chapter. We will also experiment a little with where the different dis-
play commands place text and graphics.

Tracking .
the Mouse

Although this first program, shown in Figure 4-1, is rather short, it introduces several
interesting commands and will, I think, give you a better understanding of how the
grid coordinate system is used to identify pixel locations. I'll explain how this program
works in a moment. My practice throughout this book is to explain each command the
first time I use it. (If you skip ahead and find that you've missed an explanation, you
can either locate the command in the Index and return to the explanation, or look it
up in Appendix A, which contains an alphabetical listing of all the Microsoft BASIC
commands.) My explanations will probably be much easier to follow if you first load
BASIC into your Mac, type into the List window each program as it appears in the text
(less the comments), and run it. If you have experience with other versions of BASIC,
you may want to simply glance through the explanation of each program, to pick up
new commands.

After you have typed in the program in Figure 4-1 and chosen Start from the
Run menu, position the pointer within the small window that is created on the screen
and press the mouse button. The (x,y) coordinates that identify the grid location of
the pixel at the head of the pointer (using ROM convention) are printed in the upper
left corner of the window, as shown in Figure 4-2. Now drag the mouse and watch the
coordinates change.

We will try a few other experiments with this display shortly, but first let’s take a
closer look at the individual lines in the program and consider what each command
contributes to the final display.

31

32 SECTION II: GRAPHICS

™ Tracking the Mouse

"

"

* Open two windows.
WINDOW 1, "Background", (0, 38) - (512, 342), 1
WINDOW 2, "Tracking the Mouse", (275, 150) - (475, 300), 1

"

™* Print instructions.

CALL MOVETO (2, 50) "position to print onscreen
PRINT "Position the pointer in this"

PRINT "window, press the mouse "

PRINT "button, and drag.”

PRINT "Triple click to quit."

(13

™ Wait for the mouse button and print coordinates.

”"

WHILE MOUSE(0) <> -3 "'while no triple click
WHILE MOUSE(0) = -1 'while button is down
CALL MOVETO (10, 20)
PRINT "x="; MOUSE(1), "y="; MOUSE(2) 'x and y coordinates
WEND

"

" The button has been released. Go back and wait for it to be
™ pressed again.

WEND
END

Figure 4-1. Mouse-tracking program listing

Chapter 4: Tracking the Mouse 33

% ¢il¢ Edit 8ear¢<h Run Windows
Background

E[J= Tracking the Mouse ==
x= 145 y= 112

Position the pointer in this
window, press the mouse
button, and drag.

Triple click to quit.

]

Figure 4-2. Tracking the mouse

The WINDOW command

The WINDOW command is a new one, even for those familiar with versions of
BASIC for other machines. This program uses two windows: a background window
that fills the entire screen, overlaid by a display window that starts rather small, but
can be enlarged. (The idea of a background window is common to many of my pro-
grams: Its purpose is to cover the List and Command windows that BASIC normally
displays so that the program output is more prominent on the screen.) Here are the
statements that create these windows:

WINDOW 1, "Background", (0, 38) - (512, 342), 1
WINDOW 2, "Tracking the Mouse", (275, 150) - (475, 300), 1

34 SECTION II: GRAPHICS

As with many BASIC commands, there are several versions of the WINDOW
command: four statements and one function. Here is the syntax for each version. First
the statements:

WINDOW IDJ, [title][, [rectangle] [, type]]]
WINDOW CLOSE ID
WINDOW OUTPUT ID
WINDOW OUTPUT file #
And here’s the function:
WINDOW(n)

The four statements allow you to create windows, close existing windows, specify
which will be the output window, and redirect the output from the screen to a file.
The function returns information about the active and the current output windows.

The mouse-tracking program uses the first form of the WINDOW command to
create two windows. The active window is the highlighted window in front of any
other window on the desktop. In our program, window #2 is the active window, as it
was the last window drawn and we haven't specifically designated another window as
active. INPUT statements, MOUSE and DIALOG functions, and dialog event trapping
(all of these subjects will be covered later) are monitored in the active window.

The current output window is the one in which print and graphic statements dis-
play their results. When a window is created, it automatically becomes both the active
window and the current output window, but when more than one window is created
(recall that you can have up to four), you can designate separate windows as active
and current output.

In the WINDOW statement that creates it, our active window is identified as
window #2 by the ID parameter and given the title Tracking the Mouse. The rectangle
option determines where on the screen the window will appear, by specifying the
(x,y) coordinates of its upper left and lower right corners: This output window
stretches from (275,150) to (475,300). The type option specifies the window type,
from the four possible types shown in Figure 4-3.

Chapter 4: Tracking the Mouse 35

Type 1 Type 2
= Untitled S=——
Type 3 Type 4

Figure 4-3. Four types of window

The integers 1 through 4 and —1 through —4 are used to specify these window
types. Windows with negative type numbers, called modal windows, look just like
their positive counterparts, but when a modal window is active, any attempt to select
something outside it results in a beep. You can use this feature to force the person
running the program to respond to a request for information, rather than select an
item from a menu or wander off on some other tangent.

The CALL statement

The CALL statement diverts the flow of a program to a BASIC subprogram or, as
in this program, to a machine-language routine.

CALL MOVETO (2, 50)

This particular machine-language routine—MOVETO (x,y)—is one of the group of
predefined routines that Apple stored in the Macintosh ROM. These ROM calls are

36 SECTION II: GRAPHICS

among those provided to standardize the appearance of application programs (see
Chapter 3). Calling these ROM routines from within BASIC is much easier than trying
to accomplish the same task with a series of BASIC commands and, since they are writ-
ten in machine language, they perform their tasks much faster than BASIC could.

The CALL statement is unusual, in that the statement name itself is optional.
The two syntaxes of the CALL statement are:

CALL name [(argument list)]
name [argument list]

If you choose to drop CALL, notice that you must also drop the parentheses surround-
ing the list of arguments. I usually choose the shorter format.

The MOVETO statement

MOVETO positions the Macs pen—the graphic point used for drawing lines,
shapes, and text—at the pixel specified by the (x,y) coordinates given in the argu-
ment list: in this case (2,50). This is usually done in preparation for printing text or
drawing a line or shape.

When running this program, you will notice that the origin of the coordinate
system—that is, the point at which both x and y equal zero—is not at the same spot
on the screen for every command that references coordinates. The WINDOW state-
ment, for example, creates a window defined by (x,y) coordinates relative to the upper
left corner of the screen. However, PRINT statements and other graphic commands
(such as MOVETO) reference coordinates that are relative to the upper left corner of
the current output window. We will experiment with this feature in just a moment.

The PRINT statement

The PRINT statement should be familiar to anyone who has used any version of
BASIC. There is nothing new or different about the Macintosh version, which causes
the expressions following it to be printed in the current output window, starting at the
current pen location. The expressions to be printed can be either text or numbers.
Those that are to be printed just as they appear in the PRINT statement, like the ones
in our mouse-tracking program, are enclosed in quotation marks.

Chapter 4: Tracking the Mouse 37

PRINT "Position the pointer in this"
PRINT "window, press the mouse "
PRINT "button, and drag.”

PRINT "Triple click to quit."

Variables representing text or numbers are listed without quotes, and are auto-
matically replaced by their actual values at the time of printing. We will see an exam-
ple of this soon.

Multiple expressions, separated by semicolons or commas, can follow a single
PRINT statement, as in this line from the mouse-tracking program:

PRINT "x="; MOUSE(1), "y="; MOUSE(2)

An expression following a semicolon is printed immediately adjacent to the previous
expression; an expression following a comma is printed at the beginning of the next
comma stop (the comma stop is a position set by the WIDTH statement, which de-
faults to the width of a string of 14 numbers in whichever font you are using). You can
also terminate an entire PRINT statement with a semicolon or comma, causing the
next PRINT statement to continue on the same line, after the current statement has
been printed.

The WHILE. . WEND statements

The WHILE. . WEND statements are often referred to as a WHILE. . WEND
loop. The full syntax for these statements is:

WHILE expression [statements] WEND

When the program encounters a WHILE. . . statement, it checks to see if the ex-
pression after the WHILE is true. The first such expression evaluated in this program
is the following:

WHILE MOUSE(0) <> -3

38 SECTION II: GRAPHICS

If the expression is not true, the program continues with the line after the WEND. If
it is true, the statements between WHILE and WEND are executed and the program
returns to the WHILE statement and repeats the process until the expression is no
longer true.

The MOUSE function

The MOUSE function is actually a group of functions—MOUSE(0) through
MOUSE(6)— that make available information about the status of the mouse button
and the location of the pointer. This information is trapped by a section of the Macin-
tosh operating system called the Event Manager. (The Event Manager also traps infor-
mation about other activities in your program, such as the most recently selected
menu and menu item, and the fact that an inactive window has been clicked.)

Function Information returned

MOUSE(0) Returns integer between 3 and —3, depending
upon status of mouse button

MOUSE(1) and MOUSE(2) Return x and y coordinates, respectively, of
pointer at moment MOUSE(0) function was
last used

MOUSE(3) and MOUSE(4) Return x and y coordinates of pointer at

button-press prior to last use of MOUSE(0)
function (starting point of drag)

MOUSE(5) and MOUSE(6) Return x and y coordinates, respectively, of
pointer at moment of last MOUSE(0) if button
was down at that moment; if button was not
down, they return coordinates at which it was
last released

The number returned by the MOUSE(0) function ranges from —3 to 3, and is de-
termined by whether the mouse button has been pressed since the last MOUSE(0)
and, if so, whether there has been a single, double, or triple click and whether the but-
ton is still down. The possible values returned by MOUSE(0) are explained in the fol-
lowing table.

Chapter 4: Tracking the Mouse 39

Mouse value Meaning
0 Button is not down and has not been pressed since last
MOUSE(0)
1 Button is not down, but single click has occurred since last
MOUSE(0)
2 Button is not down, but double click has occurred
3 Button is not down, but triple click has occurred
—1to -3 Same as 1 through 3, except that button is still down (in middle
of drag)

So, what the WHILE statement in our program essentially does is allow the main
body of the program to run as long as the mouse is not triple clicked. When a triple
click is detected, program flow continues with the statement after the WEND that is
paired with this WHILE: in this case an END statement, which stops the program and
returns you to BASIC.

NOTE: You have to click very rapidly in order to register a triple click. If you click
too slowly, BASIC interprets it as a single click and acts accordingly. (We will develop a
routine, about two programs down the line, that gets around this problem.)

Nested WHILE.. WEND statements

Within the outside WHILE.. WEND loop in our program is another WHILE. ..
WEND loop. The program cycles through the inner loop as long as MOUSE(0) is equal
to —1; that is, as long as the mouse button is held down after a single click.

WHILE MOUSE(0) = -1

CALL MOVETO (10, 20)

PRINT "x="; MOUSE(1), "y="; MOUSE(2)
WEND

The two lines in this loop—a MOVETO statement and a PRINT statement—move the
pen to the upper left part of window #2 and print the x and y values of the pointer po-
sition at the last MOUSE(0). Recall that MOUSE(1) and MOUSE(2) return the x and y
coordinates of the pointer the last time the MOUSE(0) function was used. You could

40 SECTION II: GRAPHICS

substitute MOUSE(5) and MOUSE(6) for MOUSE(1) and MOUSE(2) in this application,
since they return the current (x,y) position if the button is down, and this loop is exe-
cuted only if the button is down. The WEND statement then returns program flow to
the WHILE at the beginning of the loop. If the mouse button is still down, the pro-
gram cycles through the MOVETO and PRINT statements again. If the mouse button
has been released, the program continues with the statement after WEND: in this
case the outer WEND that sends the program back to wait for the mouse button to go
down again.

Experimenting with the program

Now that the explanations are out of the way, let’s get on to the more interesting
stuff. When you ran the program, you saw that it created a background window and a
small display window, and that if you pressed the mouse button while the pointer was
inside the small window, the program displayed the (x,y) coordinates of the pixel at
the head of the pointer. You saw the coordinate display change as you moved the
pointer. With a little experimentation, you can discover the origin (0,0) of the coordi-
nate system at the upper left corner of the output window. If you move the pointer to
the left of the origin, the x value increases in a negative direction; move it above the
origin and the y value does the same. Now move the pointer to the lower left corner of
the first line of instructions. You should be able to identify the point (2,50), which is
where the MOVETO statement placed the pen before printing.

If you look at the display window, you will see that it has a title bar and size box
just like the windows created by Macintosh application programs. And just as in those
programs, you can use these features to control the location and size of the window.
You move the window by placing the pointer in the title bar and dragging the mouse,
and you can change the window’s size by either dragging the size box or double click-
ing in the title bar. (Double clicking enlarges the window to fill the screen; double
clicking in the title bar of the enlarged window returns it to its previous size.) As you
change the size and location of the window and display new coordinates, notice that
they are always relative to the upper left corner of the window.

These housekeeping tasks are taken care of through the special relationship be-
tween BASIC and the machine-language ROM calls provided by Apple. All that was re-
quired of you was a single command line to create the window. If you have experience

Chapter 4: Tracking the Mouse 41

writing programs in BASIC for other computers, you can imagine the commands that
would be required to duplicate the features of this window. You may also have noticed
a housekeeping task that was not totally taken care of by BASIC. The text displayed in
the window moves with the window as you drag it, but if you do anything that causes
the text to be erased, such as double clicking the title bar to enlarge the window or
dragging the size box to make the window smaller than required to show all the text,
the text is not redisplayed. BASIC does trap this fact, and later we will learn how to tell
when a window needs to be refreshed —that is, its text needs to be redrawn.

Stop the program by triple clicking in the the active window. Choose Show List
from the Windows menu and, when the program appears, change the beginning size
and location of window #2 (by changing the rectangle parameter), and perhaps its
type (by changing the number at the right end of the statement to 2, 3, or 4). See if you
can anticipate where the window will appear when you run the program again, and
what it will look like. The keyboard commands that can be used in lieu of choices from
the menu are convenient when making quick changes to a program and then check-
ing to see the effect. Pressing Command-period will stop the program, Command-L
shows the List window, and Command-R runs the program.

As you experiment with different window types, compare the size of each with
the dimensions you specified in the WINDOW statement. Our original window, for ex-
ample, was 200 pixels wide by 150 high (the ending minus the beginning x and y
values). If you check the actual dimensions of the window, you will find that the title
bar is added on to the top dimension, but the vertical column at the side is included in
the window width specified. In addition, the Macintosh menu bar is always displayed
in the top 20 pixels of the screen. This explains why the background window (window
#1 in our program) has a beginning y coordinate of 38, indicating that its top is 38 pix-
els down from the top of the screen: The menu bar is 20 pixels high, and the title bar
for the window is 18. If you had specified the coordinates (0,0)— (512,342) for this win-
dow in an attempt to fill the entire screen, the title bar would be totally off the screen
and the top two pixels of the window would be behind the menu bar.

As a final experiment, change the WHILE MOUSE(0) = —1 statement to WHILE
MOUSE(0)= 0. This causes the program to display the position of the pointer as long as
the mouse button is not pressed. This may not seem too significant right now, but it
will be an important element of the program in the last chapter in this section.

Drawing a Grid

Now that you have a general understanding of how the coordinate system is used to
position both text and graphic output on the Macintosh screen, let’s whip out a slightly
longer program (with a little less explanation) to create the grid shown in Figure 5-1.
You can print copies of this grid and use them to help plan your screen displays.

® file Edit Sear<h Run Windows

20 40 60 60 100 120 140 160 160 200 220 240 260 200 900 920 40 960 900 400 420 440 460 480 EOO

Figure 5-1. A grid for plotting displays

43

44

SECTION II: GRAPHICS

"* Drawing a grid

i1

* Define variables.
top =20

left = 20

bottom = 300

right = 500

"

" Open window and set display font.
WINDOW 1,, (0, 20) - (512, 342), 3
TEXTFONT 4

TEXTSIZE 6

"e

™ Print numbers down left side and draw horizontal lines.

"

FOR hLine = top TO bottom STEP 20
MOVETO 0, hLine + 2
PRINT hLine
MOVETO left - 1, hLine
LINETO right + 1, hLine
NEXT hLine

"

"™ Print numbers across top and draw vertical lines.

FOR vLine = left TO right STEP 20

™ Width function returns number of pixels in string.
MOVETO vLine - WIDTH(STR$(vLine))/2-2,top- 7
PRINT vLine
MOVETO vLine, top - 1
LINETO vLine, bottom + 1

NEXT vLine

‘top of output window
'left side

"bottom

'right side

"Monaco font monospaced
’small, to get numbers in

Figure 5-2. The grid-drawing program

more...

Chapter 5: Drawing a Grid 45

113

™ Wait for mouse click.

"

WHILE MOUSE(0) =0
WEND
END

Figure 5-2. The grid-drawing program (continued)

The grid program listed in Figure 5-2 first creates a window that fills all the
space beneath the BASIC menu bar, then changes the font size to 6-point in order to
squeeze the line labels into a small space. The monospaced Monaco font is used to
make the labels as easy to read as possible in the small size. It then draws and labels
the set of horizontal and vertical lines that represent the imaginary coordinate system
we discussed in Chapter 4, and pauses, waiting for you to click the mouse button to
signal that it should end. (The final click was thrown in to give you a chance to print an
image of the screen by pressing Command-Shift-3—a task we could also do from
' yvithin the program.) You should recognize many of the statements in this program
listing, so let’s just review it quickly and then take a closer look at the new commands.

The first section of the program assigns the values of the coordinates that form
the boundaries of the grid to top, left, bottom, and right. The variables top and bottom
are, of course, the minimum and maximum y values; left and right are the minimum
and maximum x values. These variables are used by the ROM calls that draw the
boundary and grid lines. We could simply use the coordinate numbers, but attaching
names to them makes it a little easier to follow what is going on in the program. More
important, if you decide to change a value that is used throughout the program, you
need change it only once, in the initial assignment.

It is a good practice to group the variables you will be using throughout the pro-
gram near the beginning. If you use adequate comments in this section, it provides a
handy and easy-to-locate reference to the use of each variable. With versions of BASIC
prior to 2.1, there is a more important reason for doing this: These earlier versions
store variables in a sequential list, in the order in which they are first encountered in
the program. Each time a variable is encountered while running the program, the list

46 SECTION II: GRAPHICS

is searched, again sequentially, until the variable is found and its value retrieved, so
the speed at which a complex program runs can definitely be affected by where in the
list the most commonly used variables are stored. However, starting with version 2.1
of BASIC, variables are accessed by a different method, so this becomes a less impor-
tant consideration.

The first statement in the grid program is the WINDOW statement, which cre-
ates the background for the grid:

WINDOW 1, , (0, 20) - (512, 342), 3

Since I have defined this as a type 3 window, which does not display a title, there is no
point in including a title parameter in the statement. You must, however, include the
commas to hold its place.

The TEXTFONT statement

TEXTFONT calls a Macintosh ROM routine in the same manner as the MOVETO
call used in the last program. Remember that there are two syntaxes for the call state-
ment: CALL name [(argument list)] and simply name [argument list]. We used the first
syntax in the mouse-tracking program, and will use the second from now on. (The
word CALL and the parentheses are optional, but not individually so: You must use
both or neither.)

TEXTFONT provides access to the standard Macintosh fonts that you have used
in other applications, and to any special or custom fonts you may have loaded onto
your disk. The number after TEXTFONT specifies your choice. The font designated
with this call will be used for all printing in the current output window. The table on
the next page lists the standard fonts available at the time BASIC 2.0 was released.

The system font is the one used automatically when you are working at the oper-
ating-system level, as when typing a name under a file icon in the Finder. The applica-
tion font is the default font for BASIC PRINT statements. In order to use a font, it must,
of course, be on your disk. Since storing fonts requires a lot of disk space, you probably
won't want to keep all of them on every disk. You can use the Font Mover program on

Chapter 5: Drawing a Grid 47

Font no. Font

System font (Chicago)
Application font (Geneva)
New York

Geneva

Monaco

Venice

London

Athens

San Francisco
Toronto

Seattle

Cairo

HOOWOIDUlk WD =O

—

your Macintosh System Disk to rearrange them as needed. (If the font you specify
with TEXTFONT is not on your disk, the Macintosh substitutes what it considers the
most similar one.) The TEXTFONT 4 call in our program specifies that printing will be
done in the Monaco font.

The TEXTSIZE statement

The TEXTSIZE call sets the point size of the selected font. As you have probably
discovered in using other applications, each font has specific sizes in which it looks
best. The monospaced Monaco font is readable at 6-point, and this small size will al-
low us to squeeze our grid labels into the limited space available.

The FOR...NEXT statements

The FOR...NEXT pair of statements is usually called a FOR...NEXT loop. The
syntax of these statements is:

FORvariable = x TO y [STEP z]
NEXT [variable][, variable. . .]

The variable in the FOR statement represents a counter, which has an initial value of x
and a final value of y. When BASIC encounters a FOR... statement, it tests the counter
to see if it is greater than the final value (unless STEP is negative, in which case it

48 SECTION II: GRAPHICS

checks to see if the counter is less than the final value). If the counter is in the proper
range, the program executes the statements between FOR and NEXT. When it gets to
NEXT, the counter is incremented by the value of z and is again tested against the final
value (if the optional z is omitted, the counter is incremented by 1). This loop con-
tinues until the counter exceeds the final value, at which time the program continues
with the statement after NEXT.

The FOR...NEXT loop in our program initializes the variable hLine to the value
of top—the y coordinate of the top horizontal line—and increments it by 20 after
each loop until it exceeds bottom —the y coordinate of the bottom line.

FOR hLine = top TO bottom STEP 20

Therefore, hLine equals 20 on the first pass through the loop, it equals 40 on the sec-
ond pass, and so on until the 15th pass, when it equals 300. After the 15th pass, hLine
is incremented to 320, tested against the final value, and found to be greater, so pro-
gram flow moves on to the line after the NEXT statement. As long as hLine is not
greater than bottom, the statements between FOR and NEXT are executed. We'll look
at these statements one at a time.

You are already familiar with the MOVETO ROM call, which positions the pen
prior to printing or drawing. In this program one of the arguments we are passing to
the routine is the variable hLine, which will take on a different value for each pass

through the loop.

MOVETO 0, hLine + 2

This statement positions the pen two pixels below the horizontal line that will be
drawn in a moment, in preparation for the BASIC statement that prints the line label
beside each horizontal line.

The next command, PRINT hLine, is pretty straightforward. It simply prints the
current value of hLine, which is some multiple of 20. Then the MOVETO left —1, hLine

Chapter 5: Drawing a Grid ‘ 49

call repositions the pen in preparation for drawing the horizontal line. The actual
drawing is done by the next statement:

LINETO right + 1, hLine

LINETO is another ROM call. It draws a line from the current pen position to the co-
ordinates specified in the argument list. On the first pass through this loop, it will
draw a line from (19,20) to (501,20).

The statement NEXT hLine marks the end of the FOR...NEXT loop. The NEXT
statement increments the counter and returns the program to the FOR statement. The
computer remembers which NEXT goes with which FOR, so it isn’t really necessary to
include the variable name hLine in the NEXT statement —this is a matter of personal
preference; but it is a good idea to include the variable if not doing so could cause con-
fusion, as with embedded loops or long loops where the NEXT statement may be a
page or more away from its corresponding FOR.

The WIDTH and STRS functions

The next section of the program draws the vertical lines of the grid using, with
two exceptions, the same commands used to draw horizontal lines. The exceptions are
the WIDTH and STR$ functions, which keep the labels centered above their lines.

MOVETO vLine - WIDTH(STR$(vLine))/2-2,top-7

This MOVETO call, like the first one in the previous section, positions the pen
prior to printing a line label. However, things become a little more complex here. The
labels printed across the top of the grid vary in width (some are two digits wide and
some are three), and our grid will look neater and more orderly if each label is cen-
tered on its line. To accomplish this you still pass just two arguments—the horizontal
and the vertical distances from the origin—to the MOVETO call, but this time you
use compound expressions that evaluate to two simple numbers.

50 SECTION II: GRAPHICS

NOTE: Compound expressions may look a bit confusing at first. If you are read-
ing, and trying to understand, a program that contains them, their meaning will usu-
ally become clear if you work your way through several steps of the program, replacing
each variable with its current value. If you are writing a program and want to describe
a certain location or value that can only be expressed relative to other values, try first
describing the value in English. Then look through your list of BASIC commands for
one that will shape the English expression into an expression that the computer can
understand.

To center a two- or three-digit number on a vertical line, you want to start print-
ing the number about half its width to the left of the line. In this case, both the num-
ber and the position of the line are represented by the variable vLine, so the location
to start printing will be vLine minus the quantity that is half its width (vLine minus
vLine divided by 2). Looking through the list of BASIC commands, you will discover
the WIDTH function, which returns the width of a string in pixels. This is fine, except
that vLine is a numeric variable, not a string. A little more rummaging around will
produce the STR$ function, which returns a string representation of a numeric value.
Combining the two gives you WIDTH(STR$(vLine)), which should be the width of the
present value of vLine in pixels. Now divide this by 2 and subtract it from the location
of vLine and you have what turns out to be almost the correct spot to start printing.
Why almost? Well, if you use this value for the horizontal distance, you will find that
the numbers are printed with their centers slightly to the right of each line. This is be-
cause BASIC always prints four pixels of white space in front of a number. Going back
to your formula and subtracting another two pixels will take care of this. This is the
type of problem that is usually solved through experimentation the first few times it
occurs; then you start remembering the extra space.

The expression for the distance you want the number to be printed above the
grid, top —7, is easier to evaluate. Bearing in mind that grid coordinates increase as
you move down and to the right, subtracting 7 from the top of the grid moves the print
location seven pixel lines up from the location passed to the ROM call that drew the
horizontal line at the top of the grid. Since the line is drawn with the pixel below the
location passed to it, and the number is printed starting at the pixel above the print lo-
cation, there will be seven pixels of open space between the two.

Chapter 5: Drawing a Grid 51

Ending the program

When the program ends, the Command window, and possibly the List window,
appear on the screen, covering parts of the grid. So that this doesn’t happen before
you are ready for it, the last WHILE.. WEND loop pauses the program until you press
the mouse button, to give you time to study the grid or to use Command-Shift-3 or
Command-Shift-4 to send a copy of the screen display to the printer or to a disk file.

WHILE MOUSE(0) =0
WEND

NOTE: There are several ways besides Command-Shift-3 to reproduce a screen
display on a graphic printer such as the ImageWriter. The easiest, if your printer is
hooked up and ready to print, is to insert an LCOPY statement in your program at the
point when the screen will be displaying the image you want to print.

Armed with a printout of this grid and an understanding of the relative coordi-
nates used by the different graphic commands in BASIC, you should now find it easier
to plan the layout of your windows, dialog boxes, pushbuttons, and other designs.

More experiments

As you type these programs and experiment with them, bear in mind that rou-
tines developed in one program, and even entire programs, can easily be included in
other programs. For example, you could replace the WHILE.. WEND loop at the end
of this program with the WHILE MOUSE(0) <> —3...WEND loop from the mouse-
tracking program. This would allow you to confirm the accuracy of your grid and in-
terpret exact locations between the printed lines. If you do this, change the location at
which the coordinates are printed from (10,20) to (30,315) and end the PRINT state-
ment with a semicolon, to prevent a carriage return after the coordinates are printed
(a carriage return here would scroll the screen, since you are printing on the bottom
line). With the new WHILE.. WEND loop the program should look like Figure 5-3.

52

SECTION II: GRAPHICS

" Drawing a grid, Version 2

"

* Define variables.
top=20

left = 20

bottom-= 300

right = 500

"

™ Open window and set display font.
WINDOW 1, , (0, 20) - (512, 342), 3
TEXTFONT 4

TEXTSIZE 6

"

™ Print numbers down left side and draw horizontal lines.
FOR hLine = top TO bottom STEP 20

MOVETO 0, hLine + 2

PRINT hLine

MOVETO left - 1, hLine

LINETO right + 1, hLine
NEXT hLine

"

" Print numbers across top and draw vertical lines.

FOR vLine = left TO right STEP 20

™ Width function returns number of pixels in string.
MOVETO vLine - WIDTH(STR$(vLine))/2-2,top-7
PRINT vLine
MOVETO vLine, top - 1
LINETO vLine, bottom + 1

NEXT vLine

TEXTSIZE 10

'top of output window
"left side

"bottom

'right side

'Monaco font monospaced
'small, to get numbers in

Figure 5-3. The grid program with a new WHILE.. WEND ore. -

Chapter 5: Drawing a Grid 53

"

™ Wait for the mouse button and print coordinates.

"

WHILE MOUSE(0) <> -3 "while no triple-click
WHILE MOUSE(0) <0 ‘'while button is down
CALL MOVETO (30, 315)
PRINT "x="; MOUSE(1), "y="; MOUSE(2) "x and y coordinates
WEND

"

™ The button has been released. Go back and wait for it to be
* pressed again.

WEND
END

Figure 5-3. The grid program with a new WHILE. . WEND (continued)

Now that you understand how to specify the location of text and graphics on the
Mac screen, let’s move on to some programs that let you use your new knowledge.

Transferring

a Picture |

An advantage of storing information in common formats, as most applications for the
Macintosh do, is that you can easily transfer information between applications. Most
versions of BASIC are capable of reading text files created by word-processing, spread-
sheet, and database programs, but Microsoft BASIC for the Macintosh goes one step
beyond these, by allowing you to control graphic information produced in other appli-
cations. You can transfer into BASIC any graphic that you can cut or copy to the Clip-
board. You can then move, scale, and modify these images just as you would images
you created entirely in BASIC. And you can send any graphic created or modified in
BASIC to the Clipboard and then paste it from there into other applications (assuming
they accept graphics).

Using the Clipboard in this way has its drawbacks. Information stored in the
Clipboard is rather transitory, disappearing the next time you cut or copy something
else, and using the Clipboard as the direct intermediary between some other applica-
tion and BASIC can be a bit of a hassle, since you have to load the application, create
the picture, copy it to the Clipboard, quit the application, load BASIC, load or type the
program to read the Clipboard, and then run the program. If you are interrupted, re-
set your Macintosh, cut something else to the Clipboard, or mess up in some other
manner, you will probably have to go all the way back to the beginning and start over.
And you can transfer only one picture each time you go through this process.

A less frustrating method is to use the Clipboard to transfer as many images as
you like, one at a time, from the application to the Scrapbook. Since the Scrapbook is
stored as a disk file, you can later copy it to the BASIC disk (I'm assuming your BASIC
disk is the startup disk), load BASIC and run the program that reads the Clipboard,
open the Scrapbook, select an image, and choose Copy from the Edit menu. The se-
lected image is transferred to the Clipboard and brought into BASIC. If you want to

55

56 SECTION II: GRAPHICS

bring in a second image, you simply select and copy again. (By the time this book is re-
leased, Apple’s Switcher should be a standard feature on everyone’s menu, and the
hassles just described will live on only in the memories of the “old timers.”)

NOTE: You can have only one file named Scrapbook on a disk, so if you don’t
want to lose BASIC’s existing Scrapbook file when you copy the Scrapbook from the
application to the BASIC disk, rename the existing one x-Scrapbook, or Scrapbook-2,
or something else that you will recognize later. When you have finished transferring
the images, you can discard the Scrapbook they are stored in and give x-Scrapbook its
old name back.

Transferring the picture

To avoid having to rename the currrent Scrapbook file every time you want to
transfer a new set of stored images onto your BASIC disk, you can store each image in a
file of its own. You bring a picture into BASIC from a file where BASIC has previously
stored it the same way you bring a picture in from the Clipboard. Both storage areas
are treated as sequential files, so you use the same commands to get the information;
the only difference is whether you open the Clipboard or the file for input. In this
chapter we will write a short program that brings an image in from the Clipboard and
writes it back out to a disk file. Then in Chapter 7 we will develop a more substantial
program that brings an image in from a disk file and allows you the flexibility of copy-
ing, moving, and scaling it.

Figure 6-1 lists the first program, which asks you for a file name, then brings a
picture in from the Clipboard and stores it in that file. After typing this program, run
it and follow the instructions. You are told to copy an image to the Clipboard from the
Scrapbook, and then asked to provide a name for the file in which it will be stored. I
used the picture of a robot that seems to be a standard fixture in the Scrapbook of
most applications (though my robot has developed romantic interests, the clandestine
handiwork of my teenage daughter, who recently developed a fascination for Mac-
Paint). The picture you copied to the Clipboard appears in an output window (Figure
6-2) and when you quit BASIC, you will discover that you now have a new icon bearing
the file name you assigned.

Although this program is short, it shows off several commands that are unique to
the Macintosh. Let’s take a look at the ones we haven’t encountered.

Chapter 6: Transferring a Picture

57

™ Transferring a picture
1%

"

"™ Clear screen.

"

CLs

™ Tell user what to do.

Start:
WINDOW 2, , (100, 50) - (350, 170), 2
PRINT "Copy a picture from the Scrapbook"
PRINT "and then click OK."
PRINT "Click Quit to return to BASIC."
BUTTON 1, 1, "Quit", (20, 85) - (80, 105)
BUTTON 2, 1, "OK", (175, 85) - (235, 105)

"

* Wait until button clicked.
WHILE DIALOG(0) <> 1
WEND

butSel = DIALOG(1)

IF butSel = 1 THEN END
WINDOW CLOSE 2

"

™ Transfer picture.
™ Open Clipboard in preparation for bringing in picture
™ previously placed there.

OPEN "clip:picture” FOR INPUT AS #1
image$ = INPUT$ (LOF(1), 1)

CLOSE 1

IF image$ = "" THEN GOTO Start

‘bringing in image

Figure 6-1. The picture-transferring program

58 SECTION II: GRAPHICS

"

* Open output file to store image in.

filename$ = FILES$(0, "Store image in file:")
IF filename$ =" THEN END
OPEN filename$ FOR OUTPUT AS #2

PRINT #2, image$ 'storing image in file
CLOSE 2 ‘closing file
PICTURE (50, 50) - (200, 200), image$ "displaying image

BUTTON 1, 1, "Continue", (400, 250) - (460, 280)
WHILE DIALOG(0) <> 1

WEND

GOTO Start

Figure 6-1. The picture-transferring program (continued)

% fie Edit $esr¢h Run Windows
[J=————= Picture Transfer ——|

|

O]

Figure 6-2. The robot from the Scrapbook, with a friend

Chapter 6: Transferring a Picture 59

The CLS statement

The program starts by clearing the screen and using the now-familiar WINDOW
statement to open a small window, where the instruction to copy a picture to the Clip-
board is displayed. This is the first time we have used the CLS clear-screen statement,
which clears the contents of the current output window and positions the pen in the
upper left corner. On the Macintosh, this command affects only the current output
window, and does not erase edit fields or buttons in the cleared window.

The BUTTON statement

At the bottom of the window are two buttons: a Quit button and an OK button.
Here are the statements that create them:

BUTTON 1, 1, "Quit", (20, 85) - (80, 105)
BUTTON 2, 1, "OK", (175, 85) - (235, 105)

The Quit button is used to signal to the program that you are through transferring pic-
tures and would like to return to BASIC. Clicking the OK button indicates that you are
satisfied with the file name you have entered, and the program can transfer the pic-
ture and store it in that file.

Toward the end of the program, after the picture has been brought into the pro-
gram and displayed on the screen, another button, called Continue, is created and
displayed in the lower right corner of the screen.

BUTTON 1, 1, "Continue", (400, 250) - (460, 280)

Clicking this button, after you have taken a moment to scrutinize the picture just
brought in, returns you to the beginning of the program.

Buttons are pretty routine items in Macintosh applications, but this is the first
time we have created our own in a BASIC program. The syntax of the BUTTON state-
ment is similar to that of the WINDOW statement:

BUTTON ID, state [, title, rectangle(, type]]

60 SECTION II: GRAPHICS

Except for state, each of these parameters is used like its counterpart in the
WINDOW statement. For instance, ID is a number greater than zero that you assign to
identify the buttons in a window. Buttons are usually numbered consecutively, start-
ing with 1, but this isn’t required. Since there is no practical limit to the number of but-
tons you can have in a window and the numbering system for each window is separate
from that of other windows, the same numbers can be used in more than one window.

The state is a number from 0 through 2 that indicates the current status of the
button, as follows:

State Button condition

0 Inactive and dimmed on screen

1 Active, but not currently selected
2 Active and currently selected

The title is the text associated with the button (in this case Quit, OK, and Con-
tinue), and rectangle refers to the screen coordinates within the current window.

There are three button types available: Figure 6-3 shows them in each of their
possible states. Although you can use each of the button types for any task you would
like, there are some accepted standard usages. Button type 1 is normally used when
you want the user to select an action such as Quit, Run, Cancel, OK, and so on. Button
type 2 is used to select one or more options from a list. Button type 3 is used to select
one item from a list of mutually exclusive items; that is, each time a new item is se-
lected, the previously selected item should be deselected (we will soon see how a but-
ton is deselected).

State 0 State 1 State 2
[Cancet) (Help | Type 1
Oage [JRace X sex Type 2

O Neo Parify QO Even Parity @ 0dd Parity | Type 3

Figure 6-3. Buttons in all possible type/state combinations

Chapter 6: Transferring a Picture 61

The DIALOG function

Once the buttons are displayed, the program has to have a way of knowing when
one is clicked. This is one of several events trapped by the DIALOG function, in a
manner similar to that by which the MOUSE function traps mouse events. DIALOG(0)
returns a number from 0 through 7 indicating the kind of event trapped, and the DIA-
LOG(1) through DIALOG(5) functions return more information about specific events.
The number returned by a DIALOG function is reset to 0 each time it is read, so it
must be stored in a variable in order to be used later. We will look into the DIALOG
function in more detail in Section III; in this program we use only DIALOG(0) and
DIALOG(1).

WHILE DIALOG(0) <> 1
WEND

butSel = DIALOG(1)

IF butSel = 1 THEN END

DIALOG(0) returns a 1 if a button is clicked in the active output window (other-
wise it returns a 0), so the WHILE DIALOG(0) <> 1... WEND loop causes the program
to pause until a button is clicked.

DIALOG(1) returns the ID of the most recently clicked button, so setting the
variable butSel equal to DIALOG(1) after a button is clicked stores the number of that
button in butSel. butSel is then tested and the program either ends or continues, de-
pending upon its value. If the program continues, it closes window #2 and opens the
Clipboard for input.

The OPEN statement

The OPEN statement is used to associate a file number with the device (screen,
keyboard, printer, Clipboard, or communication port) or file name that information is
going to or from. All subsequent statements dealing with that device or file refer to it
by the assigned file number, which can be any integer or integer expression with a
value from 1 through 255.

62 SECTION II: GRAPHICS

There are two ways to express the OPEN statement. Both provide the same in-
formation but in a different order:

OPEN mode, [#] filenumber, filespecl, file-buffer-size]
OPEN filespec [FOR mode] AS [#] filenumber [LEN = file-buffer-size]

The two formats are interchangeable, though the actual words used in each may
differ, depending upon what you are opening and why. We will discuss the variations
as we use them, but for now I will simply explain the OPEN statements used in this
program.

OPEN "clip:picture” FOR INPUT AS #1

The first OPEN statement uses the second format. The filespec “clip:picture” in-
dicates which way you wish to open the Clipboard. There are three possible ways:

Silespec Use

“clip:” Transferring tabular data such as spreadsheets
“clip:text” Transferring text to and from word processors
“clip:picture” Transferring graphic images

The OPEN statement’s mode parameter is INPUT. The words “input” and “out-
put” are relative to the controlling program, not to the file or device—that is, opening
for input means opening a file to input data to the program from the file. The file
number assigned to this file is #1.

OPEN filename$ FOR OUTPUT AS #2

This statement uses the same format as the one that opened the Clipboard for in-
put. When a file is opened for output, data is sent from the program to the disk file. If
you open a nonexistent file for output, a new file with the specified name is automat-
ically created.

Chapter 6: Transferring a Picture 63

Disk files use two storage formats: sequential and random access. The files we
create with this program are sequential files, which means that the data is stored se-
quentially, just as it is read in, and can be accessed only in the same manner.

The INPUTS and LOF functions

The next line in the program uses two functions to bring the data from the Clip-
board and assign it to the string variable image$.

image$ = INPUT$ (LOF(1), 1)

The general format of these two functions is:
INPUTS$ (X[, [#] filenumber])
LOF(filenumber)

The X argument in INPUTS$ stands for the number of characters to be read from
the file referenced by filenumber. The function LOF(1), which replaces X in this pro-
gram, returns the number of characters in file #1, so the combination says “read how-
ever many characters there are in file #1, from file #1.” The characters that are read in
are stored as a single string variable (string variables can be up to 32,767 characters

long) called image$.

The CLOSE statement

The CLOSE statement dissociates the file number from the file or device it was
associated with by the OPEN statement.

CLOSE 1

Having dissociated file #1 from the Clipboard, you will be able to reuse the same
number with a different file, or you can reopen the original file with the same or a dif-
ferent number and mode.

64 SECTION II: GRAPHICS

The FILESS function

After the file is opened and its contents are stored in image$, image$ is checked
to make sure it contains something—there’s no point in filling files with blank pic-
tures. Since the instructions offered you the option of quitting, if you continued with-
out putting something in the Clipboard, the program assumes you didn’t understand

and returns to the beginning of the routine and displays the instructions again. If
there is a picture in the Clipboard, the program solicits a file name under which to
store it, by displaying a dialog box (shown in Figure 6-4) similar to the one displayed
when you choose Save As... from the File menu. The command line in our program
that asks the user to name the file in which the image brought in from the Clipboard
will be stored is:

filename$ = FILES$(0, "Store image in file:")

There are two variations of the FILES$ function: One gets the name of a file to
open and the other, as you have seen in this program, asks you for a name under which
to store a file. The general format for the two is:

FILES$(n[, prompt-string])

The argument n can be either 0 or 1. If it is 0, the Save-type dialog box is dis-
played and the function returns either the file name entered by the user, or, if the
Cancel button is clicked, a null string (a string of zero length). If n is 1, a dialog box

Store image in file: { steve's Gr...

L e

(Save) (cancel) (Drive)

Figure 6-4. Dialog box for soliciting file name

Chapter 6: Transferring a Picture 65

similar to the standard Macintosh Open dialog box is displayed. We will take a closer
look at FILES$(1) in the next program. The prompt-string parameter has a different
purpose in each variation. For FILES$(0), the text you enter as prompt-string appears
in the dialog box to prompt the user; for FILES$(1), this string can be a list of the
types of files you would like listed in the mini-finder, from which the user can select.

The IF... THEN...ELSE statement

After asking the user for a file name and assigning the response to the variable
filename$, the program must decide what to do next.

IF filename$ = "" THEN END

This line uses the IF... THEN...ELSE statement to test whether a file name was
entered in response to the previous line, and to quit if none was. The syntax for this
statement is:

IF expression THEN then-clause [ELSE else-clause]

The statement first evaluates the expression after IF. If it is true, the program ex-
ecutes the then-clause. If the expression is not true, the program executes the optional
else-clause, if present; otherwise it continues with the next command line, the OPEN
filename$ FOR OUTPUT AS #2 statement already discussed.

A new kind of PRINT statement

I mentioned that the PRINT statement has many variations. When followed by a
file number, as it is here:

PRINT #2, image$

it prints whatever follows the comma to the specified file. The picture you stored in
image$ was stored as a series of numbers that tells the Macintosh which pixels to
darken on the screen in order to reproduce the picture. This PRINT statement stores

66 SECTION II: GRAPHICS

image$ in the file you opened as file #2, so that at some other time the image can be

read back into the computer and displayed on the screen. After the string is printed to
file #2, the file is closed.

The PICTURE statement

The program has actually done all the work of bringing the image in from the
Clipboard and storing it in the disk file; I threw in the next statement just to prove that
something actually happened while the disk drive was whirring.

PICTURE (50, 50) - (200, 200), image$

The PICTURE statement draws the picture stored in P$ (in this case image$)
within the rectangular space defined by the coordinates (x1,y1) and (x2,y2), scaling it
as necessary to fit. The generic syntax for this statement is:

PICTURE [(xLyl) [- (x2,y2)]1[, P$]

You may want to take a moment to look at the picture just brought in, then click
the Continue button displayed in the lower right corner of the screen to return to the
beginning of the program.

Bringing your picture back from the disk file you just stored it in is no more diffi-
cult than bringing it in from the Clipboard. The program in the next chapter not.only
brings your picture back to life; it also allows you to move it around the screen and
change its size. ‘

Manipulating
a Picture

The program in this chapter retrieves the picture you stored in a disk file in Chapter 6
and again displays it in the output window. You then have three options: You can click
once and drag across an area of the window, to select an image to be copied or moved.
You can click twice and drag, to reproduce a previously selected image in the scale of
the new area you just dragged over. Or you can click three times and drag, to cause the
selected image to follow the pointer around the window.

Because this program is longer and more complex than our previous ones, I will
discuss it in five sections: bringing in the picture, branching on a click, and the three
options. The full program is listed in Figure 7-9, at the end of this chapter.

Bringing in the picture

The first section of the program, shown in Figure 7-1, is very similar to the pro-
gram in Chapter 6. It defines all variables as integers, dimensions an array, creates two
windows, prints instructions, brings the picture in from the disk file, displays it, and
then sets the pen mode for future graphic calls. This section contains two new state-
ments (DEFINT a-z and DIM pict(3000)), one new ROM call (PENMODE 10), and one
new function (FILES$(1, “TEXT”)).

The DEFINT statement

DEFINT is one of a group of four statements that are used to declare variables as
integers, single- or double-precision numbers, or strings. The other three statements
are DEFSNG, DEFDBL, and DEFSTR. The syntax for the entire group is:

STATEMENT-NAME letter-range

67

68 SECTION II: GRAPHICS

"

™ Bring in picture.

CLS ‘clear screen
DEFINT a -z 'integers are faster
DIM pict(3000) 'space to store picture
WINDOW 1, , (0, 20) - (512, 342), 3 ‘open display window
WINDOW 2, , (10, 220) - (500, 340), 3

PRINT " INSTRUCTIONS"

PRINT "Select a picture file saved by picture-transferring program.”

PRINT "Use the following mouse actions to manipulate the picture:"

PRINT

PRINT "Single click and drag selects an area to work with."

PRINT "Double click and drag copies and scales selected area to new rectangle."
PRINT "Triple click and drag moves selected area.";

filename$ = FILES$(1, "TEXT") 'which file to open
IF filename$ = ™ THEN END ‘quit if no file
OPEN filename$ FOR INPUT AS #1 ’open file we stored picture in
image$ = INPUT$ (LOF(1), 1) "bring in picture
CLOSE 1 "close file

"

"* Define picture’s boundaries.

top =50

left = 50

bottom = 200

right = 200

WINDOW 1

PICTURE (top, left) - (bottom, right), image$

PENMODE 10 ‘write to screen in XOR mode

Figure 7-1. Bringing in a picture from a disk file

So, in this program the statement DEFINT a-z tells BASIC to treat all variables begin-
ning with all letters from a through z as integers.

Numeric variables should be declared as integers unless they absolutely have to
have the higher precision offered by the other types. This is because integers require
less memory to store and can be handled faster. If you don’t specifically declare the
variables, they default to double precision in the decimal version of BASIC and to sin-
gle precision in the binary version.

Chapter 7: Manipulating a Picture 69

A type-declaration character (%, !, #, and $ for integer, single-precision, double-
precision, and string variables, respectively) can be used within a BASIC statement to
override this blanket declaration. This enables you to make a general declaration
about variables at the beginning of a program and then make specific exceptions if cir-
cumstances warrant it.

The DIM statement

An array variable, also called a subscripted variable, is a group of related vari-
ables that have been gathered together under a common name. Each element in the
array is identified by a subscript (in parentheses) added to the variable name. For ex-
ample, if I wanted to assign a list of years to variable names, I could use the sub-
scripted variable year(n), and assign 1980 to year(0), 1981 to year(1), and so on.

The dimension (DIM) statement lists the arrays that will be used in the program
and specifies the maximum value of the subscript for each, using the general format:

DIM subscripted-variable-list

If there is only one subscript listed after the array variable, the array is said to be “one-
dimensional.” An array can have up to 255 dimensions, though actually using more
than four dimensions is unusual. The array in this program is one-dimensional; we
will use a two-dimensional array in the next program.

It is not absolutely necessary to dimension an array in order to use a subscripted
variable; if you don’t, the maximum value of the subscript simply defaults to 10. How-
ever, if you do dimension an array, you must do so before the first time you reference
one of its elements. To ensure that this is the case, the DIM statement is usually placed
at the beginning of the program. A second reason for placing it there is that you don’t
want the program to flow past it a second time: Attempting to dimension an array a
second time, or attempting to dimension a variable that has already been referenced
(and thereby defaulted to a maximum subscript of 10) will cause a “Duplicate defini-
tion” error and stop the program.

This program lists only one array, using the statement DIM pict(3000). The num-
ber in parentheses after the variable name is the largest subscript that may be used
with that variable. However, unless you specify otherwise with the OPTION BASE
statement, the lowest subscript is 0, so you can actually have one more variable in an

70 SECTION II: GRAPHICS

array than the value given in the DIM statement—a fact that occasionally confuses
people. (Programmers often avoid this confusion by simply not assigning a value to the
zero-subscripted variable, though this is a slight waste of memory space.)

The DEFINT statement has defined all variables as integers, which each require
two bytes of memory for storage, so the integer array pict(3000) sets aside 6002 bytes
of memory to hold the section of the output window we will later select by single click-
ing and dragging over it. I will explain how I came up with the number 3000 in a mo-
ment; for now let’s skip to the next new command.

A new version of FILES$

A few lines down we encounter a new version of the FILES$ function.
FILESS$(1), used to determine which file you want to open in this statement:

filename$ = FILES$(1, "TEXT")

is the alternate form of the function used in the last chapter’s picture-transferring
program to get the name of a file in which to store the picture. The four lines following
this one, familiar from the previous program, open the file, bring in the picture, and
close the file again.

The PENMODE call

Having assigned values to a few variables and displayed the image with a PIC-
TURE statement, the program uses a PENMODE ROM call (without the optional
CALL statement and parentheses) to determine the effect of subsequent graphic calls
on existing images and background patterns in the output window. The PENMODE
call has the following format:

PENMODE mode

and there are eight modes, numbered 8 through 15. For now, we need to worry about
only two of them. Mode 8, the default mode, copies the new pattern on top of any ex-
isting pattern, each pixel of the new pattern replacing the corresponding pixel of the

Chapter 7: Manipulating a Picture 71

old pattern at that location. Mode 10, specified in this program with the simple state-
ment PENMODE 10, XORs the pixels of the new pattern with those of the old, inverting
each pixel of the old pattern that is covered by the new pattern. If terms like XOR are
new to you, don’t worry: We will play with modes after we get the program running,

Branching on a click

After the image is displayed on the screen, the program goes into the loop shown
in Figure 7-2, where it stays until there is a single, double, or triple click of the mouse
button. The program is then immediately diverted to the subroutine appropriate to
the number of clicks.

The WHILE.. WEND loop simply holds the program at that point until the
mouse button is pressed (remember that MOUSE(0) returns a negative number when
the button is held down). Once the button is pressed, the FOR...NEXT loop is used as
a delay. The program should branch to one of three subroutines, based on the number
of clicks, but BASIC is so fast that it is often impossible to get the second click in before
the program branches to the subroutine for a single click. This delay loop gives the

"

™ Branch on click.

Loop:

"Wait for mouse click and drag.

"

WHILE MOUSE(0) > -1

WEND

FOR pause = 1 TO 2000

NEXT

IF MOUSE(0) = -1 THEN GOSUB GetPicture 'single click and drag
IF MOUSE(0) = -2 THEN GOSUB PutPicture 'double click and drag
IF MOUSE(0) = -3 THEN GOSUB MovePicture ‘triple click and drag
GOTO Loop

Figure 7-2. Branching on a single, double, or triple click

72 SECTION II: GRAPHICS

user time (about one second) to get all the clicks in before the decision is made where
to go. (After you have the program running, remove the delay to see the difference.)
This is all familiar territory, but the next set of statements introduces something new.

The GOSUB...RETURN statements

The three IF.. THEN loops use GOSUB statements to branch to the subroutine
appropriate to the number of clicks. Each subroutine must be identified with either a
line number or a label. Once called, the subroutine is in control until a RETURN
statement is encountered, at which time control returns to the statement following the
most recent GOSUB, or to the line or label optionally specified after the RETURN.
This is the generic syntax of the GOSUB statement:

GOSUB line ... RETURN [line]

The IF.. THEN statements are mutually exclusive, so after executing the appro-
priate subroutine, the program returns to the GOTO Loop statement, which sends it
back to the label at the top of the loop. However, if you learned BASIC from someone
who rapped your knuckles with a ruler every time you wrote a GOTO, and you just
can’t get over your aversion to them, this GOTO could be replaced by enclosing the en-
tire branching loop in another WHILE.. WEND loop—perhaps something like
WHILE 1=1.. WEND. I'll leave the GOTO haters to find their own solution and move
on to discuss the three subroutines.

The GetPicture subroutine

The section of the program shown in Figure 7-3 does three things. First, as you
drag the mouse, the program draws a rectangle from the location of the pointer when
you clicked to its current location. Second, when you release the button, the program
stores the image enclosed by the rectangle in the integer array pict(3000). Third, be-
fore returning, it sets the flag variable lastAction to —1 (a logical true) to indicate to
subsequent routines that a single click was the previous action.

The segment of the program within the WHILE.. WEND loop draws, erases,
and redraws the selection rectangle as long as MOUSE(0) returns a value of —1 (mean-
ing that the button is still down after a single click). To do this, it calls two other sub-
routines and uses a couple of new statements and ROM calls.

Chapter 7: Manipulating a Picture 73

"

"* Single click and drag will drag out rectangle and, when mouse
* button is released, store enclosed picture.

’"*

GetPicture:
WHILE MOUSE(0) = -1
GOSUB GetRectangle

"

* Draw and erase frame from starting to ending points.
FRAMERECT VARPTR(boundary(0))
FRAMERECT VARPTR(boundary(0))

WEND

"

™ Use final set of coordinates to define rectangle enclosing
"* picture we will store.

GOSUB Reassign

"

™ Store picture in pict array, and then return to await
™ next click.

GET (left, top) - (right, bottom), pict

lastAction = -1

RETURN

Figure 7-3. Selecting an image with GetPicture

The GetRectangle subroutine

Each time through the loop, the GetRectangle subroutine is used to assign the
starting and ending coordinates of the drag to the appropriate elements of an integer
array called boundary. The listing in Figure 7-4 on the following page shows this
subroutine.

GetRectangle first assigns the current values of MOUSE(4), (3), (6), and (5)—in
that order—to the integer array variables boundary(0) through boundary(3). Two
IF... THEN statements then compare the starting and ending points to see whether

74 SECTION II: GRAPHICS

’k

"* Retrieve starting and ending x and y coordinates
™ of mouse-drag. These will be used to draw rectangle on screen.

1%

GetRectangle:
boundary(0) = MOUSE(4) 'starting y coordinate
boundary(1) = MOUSE(3) 'starting x coordinate
boundary(2) = MOUSE(6) ’ending y coordinate
boundary(3) = MOUSE(5) ’ending x coordinate

i1

* If dragging down or left, swap appropriate coordinates so

* ending coordinate is always larger than starting coordinate.

IF boundary(0) > boundary(2) THEN SWAP boundary(0), boundary(2)
IF boundary(1) > boundary(3) THEN SWAP boundary(1), boundary(3)
RETURN

Figure 7-4. Getting the mouse-drag coordinates with GetRectangle

you are dragging either left or up, in which case the starting and ending coordinates
are swapped. (The SWAP command exchanges the values of the two variables listed
after it.) This is necessary (if the drag is not down and to the right) because the ROM
call that draws the rectangle expects boundary(0) to specify the top of the rectangle,
boundary(1) the left edge, boundary(2) the bottom, and boundary(3) the right edge.

The FRAMERECT call

After control returns from GetRectangle, the FRAMERECT ROM call draws a
rectangle in the current output window, using the current height, width, pattern, and
mode of the pen. Before invoking this ROM routine, you must store the value of the
top, left, bottom, and right edges of the rectangle in an array, as we just did in the
GetRectangle subroutine.

The function VARPTR(array(n)) returns the address in memory of the specified
element of the array, so in the first FRAMERECT call:

FRAMERECT VARPTR(boundary(0))

Chapter 7: Manipulating a Picture 75

VARPTR returns the address of boundary(0) so FRAMERECT can read that element
and the next three and use them to draw the rectangle.

The FRAMERECT ROM call is one of a group of similar calls that draw, erase,
fill, paint, and invert rectangles, ovals, and other shapes. All require that you use this
same method of storing the edges of the shape in an array; they then reference the ar-
ray with the VARPTR function.

The second time FRAMERECT is called in each pass through GetRectangle’s
WHILE.. WEND loop, a second rectangle is drawn on top of the first. Since we have
specified PENMODE 10 (the inversion mode) for the pen, the second drawing inverts
the colors of the pixels of the first, making it disappear. The effect of this is to drag out
a shimmering rectangle as you move the mouse. When you release the mouse button,
MOUSE(0) is no longer —1, so the WHILE condition is not satisfied and the program
continues with the line after the WEND.

The Reassign subroutine

The statement immediately after the loop is another GOSUB directing the pro-
gram to the Reassign subroutine shown in Figure 7-5.

This subroutine assigns the current values of boundary(0) through boundary(3)
to the variables we are using to identify the top, left, bottom, and right edges of our

e

* Reassign top, left, bottom, and right boundaries
"* of picture. These boundaries are used to either GET or PUT picture.
Reassign:

top = boundary(0)

left = boundary(1)

bottom = boundary(2)

right = boundary(3)

RETURN

Figure 7-5. Changing variables with Reassign

76 SECTION II: GRAPHICS

picture. These four assignment statements are an example, like CALL, of a statement
with an optional name. The first statement is actually LET top = boundary(0), but the
word LET is optional.

The GET statement

The program returns from Reassign to the GET statement in the GetPicture sub-
routine. GET has two totally different forms: a random-file GET and a screen GET.
The screen GET used here (we'll discuss the random-file GET in another chapter) re-
cords the condition of each pixel (on or off) within the area defined by the (x,y) coor-
dinates of the upper left and lower right corners of a rectangle. This information is
stored in the array specified after the coordinates in the GET statement:

GET (x1,y1) - (x2,y2), array [(index[, index. . ., index])]

In this case the coordinates of the rectangle are specified by the variables left,
top, right, and bottom, which are the starting and ending points of your drag.

GET (left, top) - (right, bottom), pict

This image is stored in the pict array, which we dimensioned to a maximum subscript
value of 3000 at the beginning of the program. I chose the number 3000 pretty much
through experimentation: This is a large enough array to hold the size rectangle I usu-
ally drag out. If you drag out a rectangle too large for the array, the program will crash
with an “Illegal function call” error message, in which case you will want to dimension
pict to a larger value. If you know the size of the largest rectangle you will use, the fol-
lowing formula will tell you exactly how big the array must be:

4+ (((y2—yl) + 1) 2 «INT(((x2 — x1) + 16)/16))

The values y2 — y1 and x2 — x1 represent the right minus the left edge and the bottom
minus the top of your proposed rectangle. The formula returns the number of bytes of
storage the rectangle will require. Since an integer array allocates two bytes per ele-
ment, you then dimension the array to hold half the value returned by the formula.

Chapter 7: Manipulating a Picture 77

Following the GET statement, the variable lastAction is set to —1 so that any rou-
tine that might follow will know that a single-click action was just performed. Then
the RETURN statement sends the program via the GOTO Loop statement back to the
Loop label, to wait for the next single, double, or triple click of the mouse.

The PutPicture subroutine

Figure 7-6 lists the routine that the program branches to on a double click. The
only differences between this and the previous section are that the WHILE.. WEND
loop is active as long as the button is held down after a double click (MOUSE(0) = —2)
and that the PUT statement is used to redisplay the image, rather than the GET state-
ment that originally got it.

The PUT statement

PUT, like GET, has two forms: a random-file PUT, which we will deal with later,
and a screen PUT, which redisplays the image stored by the screen GET. The format
of the screen PUT is:

PUT (xLyl) [- (x2,y2)], array [(index[, index. . ., index])][, action-verb]

”*

™ Double click and drag defines new rectangle, and places stored picture in it.
™ Picture is automatically scaled to fit.

"

PutPicture:
WHILE MOUSE(0) = -2
GOSUB GetRectangle

FRAMERECT VARPTR(boundary(0))
FRAMERECT VARPTR(boundary(0))
WEND
GOSUB Reassign
PUT (left, top) - (right, bottom), pict
lastAction = -2
RETURN

Figure 7-6. Changing the size of the picture with PutPicture

78 SECTION II: GRAPHICS

Notice the square brackets indicating the optional portions of this statement. You
need specify only the (x1,y1) coordinates and the array name if you want to reproduce
the stored image in its original size, with the upper left corner of the display area lo-
cated at the specified coordinates. If you also specify the optional (x2,y2) coordinates
of the lower right corner, the image is scaled to fit in the area defined by the two sets of
coordinates. As you will see when you run the program, this allows you to change the
size and proportions of an image.

The MovePicture subroutine

The last section of this program, listed in Figure 7-7, is the one branched to on a
triple click. The MovePicture subroutine gets the image contained in the last rect-
angle dragged out after a single click and moves the image around the screen as you
move the mouse.

The variables top, left, bottom, and right are redefined after each drag, so they
always contain the boundaries of the most recent rectangle. MovePict first checks to
see if this rectangle was defined by a single or a double click. If it was defined by a dou-
ble click, which means that a scaled version of the original image was the last thing
drawn, then MoveRect redefines top and left as the current position of the mouse
pointer, and displays the original image there. If the current rectangle was defined by
a single click, meaning an image was selected, the selected image is displayed on top

”"

™* Triple click and drag moves stored picture around window.
MovePicture:
WHILE MOUSE(0) = -3
IF lastAction <> -2 THEN PUT (left, top), pict
left = MOUSE(1)
top = MOUSE(2)
PUT (left, top), pict
lastAction = -3
WEND
RETURN

Figure 7-7. Moving the picture with MovePict

Chapter 7: Manipulating a Picture 79

of itself, making it disappear. Then, as long as MOUSE(0) is equal to —3, the picture is
drawn with its upper left corner at (left,top). left and top are then redefined as the cur-
rent mouse coordinates, and the picture is redrawn. After the first image is drawn, the
drawing created by the first PUT statement in the loop is always superimposed on top
of a previous drawing, making it disappear. The drawing created by the second PUT in
the loop redisplays the picture at a new location.

Sending a picture out of BASIC

Having manipulated a picture in BASIC, you may want to transfer it to your word
processor or some other application. The program for sending a picture out of BASIC
differs very little from the one we developed in Chapter 6 to bring one in. If you use
the program in Figure 6-1 to create an image you'd like to transfer to another pro-
gram, a few lines of code before and after the part that draws the picture will capture
it and send it to the Clipboard; from there, you can recover it once you have loaded the
other application. The modified program should look like the one in Figure 7-8.

" Transferring a picture

e

"

™* Clear screen.

"

CLS

"

™* Tell user what to do.

Start:
WINDOW 2, , (100, 50) - (350, 170), 2
PRINT "Copy a picture from the Scrapbook™
PRINT "and then click OK."
PRINT "Click Quit to return to BASIC."
BUTTON 1, 1, "Quit", (20, 85) - (80, 105)
BUTTON 2, 1, "OK", (175, 85) - (235, 105)

more...

Figure 7-8. Transferring an image out of BASIC

80 SECTION II: GRAPHICS

"

™ Wait until button clicked.
WHILE DIALOG(0) <> 1
WEND

butSel = DIALOG(1)

IF butSel = 1 THEN END
WINDOW CLOSE 2

Tk

™ Transfer picture.
"™ Open Clipboard in preparation for bringing in picture
* previously placed there.

OPEN "clip:picture” FOR INPUT AS #1

image$ = INPUT$ (LOF(1), 1) ’bringing in image
CLOSE 1

IF image$ = "™ THEN GOTO Start

"

" Open output file to store image in.
filename$ = FILES$(0, "Store image in file:")
IF filename$ = "™ THEN END

OPEN filename$ FOR OUTPUT AS #2

PRINT #2, image$ ’storing image in file
CLOSE 2 ‘closing file
PICTURE ON

PICTURE (50, 50) - (200, 200), image$ 'displaying image
PICTURE OFF

OPEN "clip:picture” FOR OUTPUT AS #1

PRINT #1, PICTURE$

CLOSE #1

BUTTON 1, 1, "Continue", (400, 250) - (460, 280)
WHILE DIALOG(0) <> 1

WEND

GOTO Start

Figure 7-8. Transferring an image out of BASIC (continued)

In this program, on the line before the program starts drawing the picture, the
PICTURE ON statement has been inserted to start recording screen graphic state-
ments. After the picture is drawn, the PICTURE OFF statement stops the recording.

Chapter 7: Manipulating a Picture 81

The PICTURES function returns the string containing the image recorded by the last
PICTURE ON statement. So the next two program lines open “clip:picture” for output
and print PICTURES to the Clipboard.

NOTE: If you want your picture to appear on the screen during this recording,
also insert CALL SHOWPEN just before or after the PICTURE ON statement.

That’s all there is to it. After running the new program, you can open the Scrap-
book and paste the contents of the Clipboard into it. Since you changed the picture’s
size when you transferred it into BASIC, it will look distinctly different from the orig-
inal when you transfer it back to the Scrapbook, so you will know you haven’t simply
pasted back out what you originally copied in.

**Manipulating a Picture

"

™ Bring in picture.

CLS ‘clear screen
DEFINTa-z 'integers are faster
DIM pict(3000) ’space to store picture
WINDOW 1,, (0, 20) - (512, 342), 3 'open display window
WINDOW 2, , (10, 220) - (500, 340), 3

PRINT " INSTRUCTIONS"

PRINT "Select a picture file saved by picture-transferring program.”

PRINT "Use the following mouse actions to manipulate the picture:"

PRINT

PRINT "Single click and drag selects an area to work with."

PRINT "Double click and drag copies and scales selected area to new rectangle.”
PRINT "Triple click and drag moves selected area.”;

filename$ = FILES$(1, "TEXT") 'which file to open
IF filename$ = " THEN END ‘quit if no file
OPEN filename$ FOR INPUT AS #1 ‘open file we stored picture in
image$ = INPUT$ (LOF(1), 1) 'bring in picture
CLOSE 1 "close file

Figure 7-9. The complete picture-manipulating program more.-

82

SECTION II: GRAPHICS

"

"

"

"

"* Define picture’s boundaries.

"

top =50

left = 50

bottom = 200

ﬂght =200

WINDOW 1

PICTURE (top, left) - (bottom, right), image$
PENMODE 10

Branch on click.

Loop:

"

"

"Wait for mouse click and drag.

WHILE MOUSE(0) > -1

WEND

FOR pause = 1 TO 2000

NEXT

IF MOUSE(0) = -1 THEN GOSUB GetPicture
IF MOUSE(0) = -2 THEN GOSUB PutPicture
IF MOUSE(0) = -3 THEN GOSUB MovePicture
GOTO Loop

‘'write to screen in XOR mode

’single click and drag
"double click and drag
‘triple click and drag

™* Single click and drag will drag out rectangle and, when mouse

"

"

button is released, store enclosed picture.

GetPicture:

WHILE MOUSE(0) = -1
GOSUB GetRectangle

"

™ Draw and erase frame from starting to ending points.

"

FRAMERECT VARPTR(boundary(0))
FRAMERECT VARPTR(boundary(0))
WEND

Figure 7-9. The complete picture-manipulating program (continued)

more...

Chapter 7: Manipulating a Picture

83

"

" Use final set of coordinates to define rectangle enclosing
"* picture we will store.

GOSUB Reassign

"* Store picture in pict array, and then return to await
™ next click.

GET (left, top) - (right, bottom), pict

lastAction = -1
RETURN

"

™ Double click and drag defines new rectangle, and places stored picture in it.
"™ Picture is automatically scaled to fit.

"

PutPicture:
WHILE MOUSE(0) = -2
GOSUB GetRectangle

FRAMERECT VARPTR(boundary(0))
FRAMERECT VARPTR(boundary(0))
WEND
GOSUB Reassign
PUT (left, top) - (right, bottom), pict
lastAction = -2
RETURN

"™ Triple click and drag moves stored picture around window.
MovePicture:
WHILE MOUSE(0) = -3
IF lastAction <> -2 THEN PUT (left, top), pict
left = MOUSE(1)
top = MOUSE(2)
PUT (left, top), pict
lastAction = -3
WEND
RETURN

Figure 7-9. The complete picture-manipulating program (continued)

more...

84 SECTION II: GRAPHICS

"

" Retrieve starting and ending x and y coordinates
* of mouse-drag. These will be used to draw rectangle on screen.

"

GetRectangle:
boundary(0) = MOUSE(4) 'starting y coordinate
boundary(1) = MOUSE(3) 'starting x coordinate
boundary(2) = MOUSE(6) 'ending y coordinate .
boundary(3) = MOUSE(S) ’ending x coordinate

"

"™ If dragging down or left, swap appropriate coordinates so

* ending coordinate is always larger than starting coordinate.

IF boundary(0) > boundary(2) THEN SWAP boundary(0), boundary(2)
IF boundary(1) > boundary(3) THEN SWAP boundary(1), boundary(3)
RETURN

”

" Reassign top, left, bottom, and right boundaries
"* of picture. These boundaries are used to either GET or PUT picture.

"

Reassign:
top = boundary(0)
left = boundary(1)
bottom = boundary(2)
right = boundary(3)
RETURN

Figure 7-9. The complete picture-manipulating program (continued)

Generating

a Pattern |

In this chapter we will work our way through a program that quickly computes the
values required to define a custom-made pattern. Quite a few ROM calls available
through BASIC make use of patterns: setting them, drawing lines in them, and paint-
ing or filling shapes with them. The process of defining the patterns is easy, once you
have done it a few times. However, attempting to figure it out for the first time may be
a bit frustrating, so before we get into the program, let’s have a look at the general for-
mat used in pattern ROM calls, and the type of information you pass to them.

As you know, the Macintosh display is composed of rows and columns of pixels
that can be turned on or off: To draw a black line on the screen, the Macintosh simply
turns on consecutive pixels in the path of the line. Before a specific pattern can be
used, someone has to define which pixels the Macintosh must turn on to create that
pattern. The definition encompasses an eight-row by eight-column block of pixels,
which is then repeated in a horizontal or vertical direction, as needed, to draw or fill
an area. When you draw, fill, or spraypaint (as in MacPaint) with a pattern, the only
pixels turned on in the line or fill area are those that correspond to the turned-on pix-
els in the pattern.

To define a pattern block by hand, you first sketch an eight-by-eight grid and
then blacken the squares representing the pixels you want turned on. The sample grid
in Figure 8-1 on the next page would produce a gray pattern, since every other pixel is
turned on.

Now consider each set of two rows in the grid, starting with the top two, to be a
16-bit binary number, with each black square representing a 1 and each white square
a 0. The first row is the left half of this 16-bit number, and the second row is the right
half. Figure 8-2 on the following page shows this concept applied to the top two rows
of the gray pattern.

85

86 SECTION II: GRAPHICS

Figure 8-1. A gray pixel pattern

Lifoft]of1fofifo]foft]o]t]o1]o]1]

Figure 8-2. Two rows of a pattern grid that make a 16-bit number

If you do the same thing with the other three sets of rows, you will have a group
of four 16-bit binary numbers that uniquely defines the gray pattern. You can pass this
definition to a Macintosh ROM call so that it can use the pattern while drawing a line
or filling an area on its screen. To pass the pattern definition, you store these four
numbers in an integer array and include the first element of this array as a parameter
of the pattern ROM call, just as you did with the FRAMERECT ROM call in the pic-
ture-manipulation program.

Hex numbers revisited

Computers work very comfortably with binary numbers, but we mere mortals
find them a little cumbersome: We have to convert these numbers to either decimal or
hexadecimal before entering them into an array. There are several methods by which
we can make this conversion. Since we are working this out by hand right now, let’s

use an easy way. Later, in the pattern-generator program, we will let the computer do
it another way.

Chapter 8: Generating a Pattern 87

The following table shows the binary and decimal equivalents of hexadecimal
numbers 0 through F, for those who are a little rusty on number systems.

Binary Decimal Hexadecimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

You can convert the 16-bit binary number shown earlier into hexadecimal form
by partitioning the binary number into four 4-bit segments and converting each seg-
ment to hex, using the table above if necessary. Figure 8-3 shows how the 16-bit num-
ber that stores the first two rows of the gray pattern ends up as the hex number AA55.

If this method seems too easy to be true, you can always add up the powers of 2
to convert the binary number 1010101001010101 to the decimal number 43605, and
then convert 43605 to hex—but you'll end up with the same number.

A

A

5} 5}

[1]of1]o0

1]o]1]o

olt]o]1fol1]o]1]

1010=A
Figure 8-3. Converting a 16-bit binary number to hex

0101=5

88 SECTION II: GRAPHICS

Storing the pattern

The four sets of rows in the gray pattern are identical, so the hex number AA55
can be used to describe each. When you store this number in the computer as an array
element, you have to tell the computer that this combination of letters and numbers is
a hex number, not a string, by preceding it with the symbol &H. To the computer,
&HAA55 is a hex number that is the same as the decimal number 43605.

To store the gray pattern in memory, assign the four &H row-set numbers to four
consecutive elements of an integer array (defined as integer with either a DEFINT
statement or the % symbol). In this case, the elements of the array could be:

pat%(0) = &HAA55
pat%(1) = &HAA55
pat%(2) = &HAA55
pat%(3) = &HAA55

Then to use the pattern, point to its first element with the VARPTR function included

in all pattern ROM calls. For example, to set the pen pattern to gray, you would use the
ROM call:

CALL PENPAT (VARPTR (pat%(0)))

The ROM calls that create shapes get the top, left, bottom, and right boundaries
of the shape from another array, so a single ROM call that both creates and fills a shape
will include two VARPTR functions, to pass the address of the first element of each ar-
ray. For example, to create the filled rectangle shown in Figure 8-4, you would store
the boundaries in an array, like this:

bound%(0) = 50
bound%(1) = 20
bound%(2) = 200
bound%(3) = 100

Chapter 8: Generating a Pattern 89

and then use the ROM call:

CALL FILLRECT (VARPTR (bound%(0)), VARPTR (pat%(0)))

That is how you do the whole process of setting a pattern by hand. Now let’s have
a look at a program that shows you what the pattern you are setting will look like, and
automatically provides the numbers you need for the array. This program creates the
work area shown in Figure 8-5 on the next page. When you click a magnified “pixel” in
the grid on the left, the value of that row, in both decimal and hexadecimal, is dis-
played in the center window and the pattern, in a normal scale, is displayed in the
right window. The program goes through essentially the same process we just did by
hand, only faster. I will describe the activities in this program in eight sections. The
complete program is shown at the end of the chapter in Figure 8-18.

% File Edit Search Run Windows

SN=———— List

pat&(0) = &HAASS

pat®(1) = &HAASS

pat®(2) = &HAASS

pat®(3) = &HAASS

bound®(0) = 50

bound®(1) = 20

bound®(2) = 200

bound®(3) = 100

CALL FILLRECT (YARPTR (bound®(0)), YARPTR (patZ(0)))

Figure 8-4. A filled gray rectangle

90 SECTION II: GRAPHICS

& fiie Edit Sear<h Run Windows
Pattern Generator

149= &H95
74= &H4A
164= &HA4
89= &H39
154= &HS9A
37= &H25
82= &H52
169= &HA9

Hold down command key and press . to return to BASIC.

Figure8-5. The pattern-generator work area

Calling the subroutines

The first section (Figure 8-6) of the pattern-generator program is simply a bunch
of GOSUB statements that send the program to other sections, where initial values are
defined and the screen display is created. After executing the five subroutines, the
program flows into the main loop— CatchClick—where it stays until you quit.

GOSUB DefineVariables
GOSUB CreateWindows
GOSUB InitializePowers
GOSUB CreateGrid
GOSUB ShowilnitialValues
GOTO CatchClick

Figure 8-6. Calling the subroutines

Chapter 8: Generating a Pattern 91

Dimensioning arrays and defining variables

The DefineVariables subroutine listed in Figure 8-7 dimensions the arrays used
by the program and defines some of the more common variables. The pattern-genera-
tion program uses five arrays: bound(4), pattern(3), decimalValue(8), displayWin(3),
and power(15). I will explain the contents of each of these arrays when we put some-
thing in them.

The variables wide and high are simply the width and height of the two square
windows. The variable increment is the width, in pixels, of a row or column. Rather
than use constants for these values, which are later used in formulas, I have assigned
them to variables to make it easier to understand the computations (this also makes it
easier to change them throughout the program should you later decide to modify the
display). Moreover, BASIC can mathematically manipulate a value stored as a variable

"

™ Dimension arrays and define many variables used in program.

DefineVariables:
DEFINTa-z ‘use integers for speed

"* Dimension arrays used by program.

"

DIM bound(4) 'edges of grid location
DIM pattern(3) ‘pattern array
DIM decimalValue(8) "decimal value of row
DIM displayWin(3) ‘edges of display window
DIM power(15) ‘powers of 2
wide = 160 ‘width of pattern display window
high = 160 "height of pattern display window
increment = 20 "height of row, width of column
displayWin(0) =0 'top of pattern display window
displayWin(1) =0 "left
displayWin(2) = 160 ‘bottom
displayWin(3) = 160 right
RETURN

Figure 8-7. Dimensioning arrays and defining the variables

92 SECTION II: GRAPHICS

faster than it can manipulate the same value given directly as a constant. This, plus the
fact that BASIC 2.0 stores, and therefore accesses, variables in the order they appear in
the program, should encourage you to use descriptive variables for values to be ma-
nipulated mathematically, define all variables at the beginning of the program, and
place the ones that require the most rapid access first. (As mentioned earlier, BASIC
2.1 stores variables in a different manner, so with that version the reasons for doing all
this aren’t so strong,)

The DefineVariables subroutine finishes by assigning the coordinates of the top,
left, bottom, and right sides of the pattern display area in window #2 to the elements
of the displayWin array.

Creating windows

The CreateWindows subroutine (Figure 8-8) creates four windows and prints an
instruction in the first one—nothing new to you. This is a good time to remind you,
though, that PRINT statements display their text in the active output window. Placing
the PRINT statement after any WINDOW statement other than the first one would
cause the instructions to be printed in that window.

”"*

"* Create four windows used by program. Window #4 is background window,

"* window #3 displays decimal and hexadecimal values of each row,

™ window #2 displays pattern, and window #1 is used to create pattern.

™ Note that window #1 is modal (specified by negative type number),

™ meaning that it is only window in which user can make selection.

CreateWindows:
WINDOW 4, "Pattern Generator”, (0, 38) - (512, 342), 1 "background
MOVETO 85, 250
PRINT "Hold down command key and press . to return to BASIC."

WINDOW 3, , (200, 60) - (300, 220), 3 ‘display values
WINDOW 2, , (320, 60) - (480, 220), 3 ‘display patterns
WINDOW 1, , (20, 60) - (180, 220), -3 ‘display pixels
RETURN

Figure 8-8. Creating four windows

Chapter 8: Generating a Pattern 93

The only other thing worth pointing out in this section is the use of —3 as a type
for window #1. You will recall from our earlier explanation of windows that this cre-
ates a modal window, which means that as long as that window is displayed, user input
is limited to it— even the menus are inaccessible.

Initializing the power array

The InitializePowers subroutine, shown in Figure 8-9, fills an array with powers
of 2—that is, with the number 2 raised to each of the powers from 0 through 14, plus
the negative value —32768 to represent the 15th power of 2, which would exceed the
upper limit for an integer variable (32767) if calculated directly. The power array will
be used to convert the decimal values of the double rows of pixels in the pattern grid
to binary numbers, which will then be used to create the pattern.

Creating a grid

The two FOR...NEXT loops in the CreateGrid subroutine (Figure 8-10 on the
next page) are used to draw a seven-by-seven grid in window #1. This actually forms a
grid composed of eight rows by eight columns, since the window frame forms the
outer boundary. This grid is used to simulate the pattern being defined.

113

"™ Initialize array containing powers of 2.
™ Used to convert from pixels to binary numbers:
™ power(bit) = 2 A bit
InitializePowers:

FOR bit=0TO 14

power(bit) = 2 A bit

NEXT bit

power(15) = -32768!

RETURN

Figure 8-9. Initializing the power array

94 SECTION II: GRAPHICS

”%

™ Draw grid used to simulate 8 by 8 array of pixels.
CreateGrid:
FOR hLine=1TO 7 ‘draw horizontal lines
MOVETO 0, hLine * increment
LINETO wide, hLine * increment
NEXT hLine

FOR vLine=1TO 7 'draw vertical lines
MOVETO vlLine * increment, 0
LINETO vLine * increment, high

NEXT vLine

RETURN

Figure8-10. Creating the pattern grid

Showing initial values

The short ShowlnitialValues subroutine in Figure 8-11 simply sets the display
conditions at the start of the program, before any pixels have been clicked.

The decimalValue array is where the current value of each row is stored. The
FOR...NEXT loop selects each row in turn and sets its decimal value equal to zero.
The GOSUB statement then diverts program flow to the ShowNum subroutine, which
makes window #3 active, prints the decimal and hexadecimal values, and then reacti-
vates window #1. We'll leave a more detailed discussion of ShowNum for later.

"

"* Display initial decimal and hexadecimal values of each row of grid.

ShowilnitialValues:
FORrow=1TO 8
decimalValue(row) = 0
GOSUB ShowNum
NEXT row
RETURN

Figure8-11. Showing the values at the beginning of the program

Chapter 8: Generating a Pattern 95

Recording the pattern-pixel selected

The CatchClick routine, listed in Figure 8-12, is active most of the time the pro-
gram is running, waiting for you to click a spot in the grid and then using the mouse

"

* Wait for user to click in grid, then determine row/column location
" of click, update values of grid and call subroutines to show
* decimal and hexadecimal values and display pattern created.

"

CatchClick:

™* Wait for button press.

"

WHILE MOUSE(0) = 0

WEND

xCord = MOUSE(1) ‘current x coordinate of mouse
yCord = MOUSE(2) ‘current y coordinate of mouse
row = ((8 * yCord \ high) + 1) ‘compute row number
doubleRow = INT((row - 1)\ 2) ‘'which double-row set
IF row MOD 2 = 0 THEN offset = 8 ELSE offset = 16

column = ((8 * xCord \ wide) + 1) ‘compute column number
bitLocation = offset - column ‘'which bit out of 16

"k

" Set up array to describe selected grid location.

(1]

top = (row -1) * increment ‘top border
left = (column -1) * increment 'left edge
SetRelRect top, left

INVERTRECT VARPTR(bound(0)) 'invert selection

"

* Update decimal value of row.

"

decimalValue(row) = decimalValue(row) XOR power(8 - column)

GOSUB ShowNum 'show number
GOSUB PaintWin 'show pattern
GOTO CatchClick 'wait for next click

Figure 8-12. Recording the pixel selected in the grid with CatchClick

96 SECTION II: GRAPHICS

coordinates to compute the row and column containing that spot. Once it knows the
grid location you have clicked, CatchClick uses two subroutines— ShowNum and
PaintWin—to compute and show the value of the row in the middle window, and to
create and display the pattern in the right window.

The first loop in this section of code simply stalls as long as the value returned by
MOUSE(0) is equal to zero (no mouse action). The program breaks out of this
WHILE.. WEND loop only when the mouse button is clicked. The MOUSE(1) and
MOUSE(2) functions return the x and y coordinates of the pointer at the time of the
last MOUSE(0), which would be when the button was clicked, and these values are as-
signed to the program variables xCord and yCord.

Integer division

The next line introduces one new concept: that of integer division. Integer divi-
sion, denoted by a backslash (\) rather than a regular slash, rounds the dividend and
divisor to integer values before dividing, and then truncates the quotient— about the
same thing you would do if you had to divide 8.9 by 4.2 in your head (you would round
it to 9 divided by 4 and say the truncated answer is about 2). The computer performs
integer division faster than it does floating-point division (the regular slash), and in
situations like this, where the operands are all integers and the dividend is an even
multiple of the divisor, the answer is the same either way.

row = ((8 * yCord \ high) + 1)

The method by which this program line computes the row number is almost ex-
actly the reverse of the process used to compute the location to draw a grid line. The
expression (8 * yCord \ high) evaluates to an integer in the range 0 through 7; adding
1 makes it a row number. You can check the math on this quite easily. Pick a possible
value of yCord (remember, it can vary from 0 through 160, the coordinates assigned to
the top and bottom of the pattern display window), then multiply by 8 and divide by
160 (the value of high). For example, let’s say you picked 70 for yCord: 70 times 8 is
560; 560 divided by 160 would be 3.5 if this were floating-point division, but since
this is integer division, the answer is truncated to 3; add 1 and you have 4. If you do a

Chapter 8: Generating a Pattern 97

quick sketch of our grid and figure out where 70 pixels down from the top would be,
you will find it is in the fourth row.

We will use the row and column numbers directly to highlight the location
clicked on the grid, but to create the pattern displayed in window #2, we must com-
pute the value of a double row, just as when we performed this operation by hand.
There are four double rows, numbered 0 through 3, and the next line decides which
double row was clicked:

doubleRow = INT((row - 1)\ 2)

The INT function returns the largest integer that is less than or equal to the expres-
sion within the parentheses. Again, try the math in your head with a few row numbers.

Modulo arithmetic

The next line introduces another new concept: modulo arithmetic. Modulo
arithmetic, denoted by the operator MOD, provides the integer remainder of integer
division. Modulo arithmetic is very useful, once you get in the habit of using it. I use it
most frequently to count by some number other than one. MOD’s syntax is:

dividend MOD divisor =remainder

Both the dividend and the divisor are rounded to integers before the division takes
place, and the remainder is naturally an integer.

This program line uses MOD to check if the row clicked is the first or second row
of a double-row set.

IF row MOD 2 = 0 THEN offset = 8 ELSE offset = 16

As you can see, if the row is equal to 2, 4, 6, or 8, row MOD 2 will be equal to 0 and the
IF.. THEN statement will set offset to 8. If the row is an odd number, then the ELSE
clause will take effect and offset will be set to 16.

98 SECTION II: GRAPHICS

The column number is computed in the same manner as the row number, using
the line column =((8 + xCord \ wide) +1). Then the offset and column values are used
to assign a value to bitLocation, which tells us which of the 16 bits in the double row
was clicked. (We'll do something kind of tricky with this in a few minutes.)

bitLocation = offset - column

In this program I have used two different methods to number grid positions, and
the calculation of bitLocation is a conversion point between the two that could cause
some confusion. I numbered columns in the grid from 1 through 8, going from left to
right. This seemed like an intuitively correct way to do it. But I numbered the bit lo-
cations in the double row from 0 to 15, going from right to left, since we will use the
combined bits of the double row to represent a binary number and that is the con-
ventional notation for binary numbers. Figure 8-13 shows the relationship between
the bitLocation values and the columns.

Column
r % Y
1 2 3 4 5 6 7 8
\
(0 (1 15(14|13(12|11]10] 9 |8 1 16
2172|6543 |2|1]o] O 8
) 3115|1413]|12|11 10| 9 |8 1 16
4 (716 4 2|1]o 0 8
doubleRow < Row J 2 2 > Row MOD 2 r offset
0 5115|1413 |12]|11]10]| 9 |8 1 16
6l17|6|5|4|3|2]1]0 0 8
7115014131211]10]| 9 |8 1 16
3
N (8(7fe6]5]4|3f2]1]o]| O] 8J
N— v
bitLocation

Figure 8-13. The relationship of bitLocation values to grid columns

Chapter 8: Generating a Pattern 99

Calling a subprogram

The next few lines store the boundaries of the selected grid location in an array
and then use the array to invert the selection, which simulates a black pixel in the giant
grid. This section introduces the concept of calling subprograms, which you will find
is a handy tool for rapidly writing clear and uncluttered programs.

A subprogram is similar to a subroutine, except that the subprogram has its own
set of variables. Unless you specifically instruct the subprogram to share some of the
variables used in the main program, its variables remain unique to it. This feature al-
lows you to use the same subprogram in different calling programs without worrying
about whether you are overwriting a significant variable in the main program. An-
other way in which a subprogram differs from a subroutine is that when you call it, you
can pass it information to use while it performs its function.

NOTE: Although the variables in a subprogram are unique, the line labels are
not, so you might want to develop line labels that include a reference to the sub-
program containing them, to make them unique.

In the CatchClick routine, the statement SetRelRect top, left calls the sub-
program SetRelRect and passes it the values of top and left (the argument list). Just as
with a call that summons a ROM routine or an assembly-language program, the CALL
statement itself is optional. If CALL is used, however, parentheses are required
around the argument list.

Let’s take a closer look at the subprogram. In fact, let’s look at two (Figure 8-14
on the next page), since the primary purpose of the first is to call the second. Between
them, these examples demonstrate almost everything that can be included in a sub-
program.

The first line of a subprogram identifies it as a subprogram and lists the param-
eters being passed, using this syntax:

SUB subprogram-name [(formal-parameter-list)] STATIC

The subprogram-name is what you use to call it from within the main program.
The formal-parameter-list is one of two methods of passing values between the main
program and the subprogram. When the program is run, each variable listed in the
parameter list will have assigned to it the current value of the sequentially corre-
sponding variable in the argument list in the calling statement. For instance, the Set-
RelRect subprogram assigns the values of top and left to the variablesx and .

100 SECTION II: GRAPHICS

"

* SetRelRect is passed upper left corner of rectangle,
™ computes other two sides, and stores values in array.
SUB SetRelRect(x, y) STATIC
SHARED bound(), increment
setRectangle bound(), (x), (y), x + increment, y + increment
END SuB

1k

" Take pair of points and set rectangle so it encloses these points.

SUB setRectangle(array(), y1, x1, y2, x2) STATIC
array(0) = y1
array(1) = x1
array(2) = y2
array(3) = x2
END SUB

Figure 8-14. The SetRelRect and SetRectangle subprograms

The word STATIC at the end of the line is required through version 2.1 of BASIC,
and means that all variables in the subprogram not specifically passed from the main
program retain their values between the times the subprogram is called (as long as
you are running the calling program). Since there are no alternatives to STATIC, it
may seem pointless to require you to include it: The obvious implication is that future
versions of BASIC will allow a different treatment of the variables between times the
subprogram is called.

The SHARED statement on the second line of the subprogram demonstrates the
other method of making variables in the main program accessible to the subprogram.
The values of the variables listed in the SHARED statement can be altered both from
within the subprogram and from the main program. Notice that to reference an array,
such as the first variable in the SHARED statement, you include empty parentheses,
without the number of dimensions.

The SetRelRect subprogram modifies the variables passed to it and passes them
on to the SetRectangle subprogram with this statement:

Chapter 8: Generating a Pattern 101

setRectangle bound(), (x), (y), x + increment, y + increment

Each of the arguments passed is assigned to a new variable in the SetRectangle sub-
program, which fills an array with these values and then ends, returning control to the
first subprogram and then to the line after the calling statement in the main program.
Notice that variables that are passed as parameters to one subprogram, and then
passed by that subprogram to another one, must be enclosed in parentheses for the
second transfer.

The END SUB statement obviously ends the subprogram. There can be only one
END SUB in a subprogram: If you want to conditionally branch out of the subprogram
from within its body, use the EXIT SUB statement.

So, we left the main program back in the CatchClick section, after assigning a
value to the top border and left edge of the selected grid location. The subprogram
SetRelRect causes an array to be filled with the information necessary to describe a
rectangle around the selection. The line the subprogram returns to—INVERTRECT
VARPTR(bound(0))—then inverts the selected rectangle. By inverting rather than
painting with black or white, the program can just reverse the color of a selection each
time you click; it doesn’t have to keep track of what color the selection is.

The XOR operator

In this program, decimalValue is the array that stores the current decimal value
of each row. This next line sets the new value by XORing the old value with the deci-
mal value of 2 raised to the power of the number of the column clicked:

decimalValue(row) = decimalValue(row) XOR power(8 - column)

Make sense to you? Sentences like that have been known to make people lose in-
terest in programming— or at least in reading about programming. But XORing num-
bers is a very handy technique that you will master pretty easily if you take the time to
study it carefully, so let’s pick the concept apart a bit.

102 SECTION II: GRAPHICS

XOR is a logical operator, in the same class as AND and OR. XOR performs its op-
eration on two operands. The operands must be either numbers or expressions that
evaluate to numbers. Before performing the operation, the computer converts the op-
erands to 16-bit, signed, twos-complement integers between —32768 and +32767.
An operand outside this range will stop the program and cause an error message to be
displayed.

The “16-bit, two's-complement™ business sounds a little complex, but it is really
just a binary number composed of 1s and 0s. All the fancy stuff is just how the com-
puter manages to deal with 2 raised to the 15th power (32768), which is one greater
than the highest allowable integer.

So, the computer performs this operation we are so gently working up to by com-
paring the operands, bit by bit, and forming a new number based on the comparison.
If the digits match, the result is 0; if they don't, the result is 1. The result of XORing
any two binary digits is shown in this truth table:

X Y XZXORY
1 1 0
1 0 1
0 1 1
0 0 0

Now, let’s leave the discussion of XOR for a moment and have a closer look at the
rows and columns in our eight-by-eight grid. As I said earlier, to help me keep the col-
umns straight in my mind, I numbered the columns in each row from 1 through 8,
going from left to right. The program, however, computes the value of the row by
numbering the columns from 0 through 7, right to left, and considering each clicked
column to have the value of 2 raised to the power of its column number. Figure 8-15
shows the value of each column in a row.

128 64 32 16 8 4 2 1

27 | 26 | 25 | 24 | 23 | 22 | 21 | 20

Figure 8-15. The value of each column in a row

Chapter 8: Generating a Pattern 103

This is obviously standard binary notation, so each row can be represented by a
binary number, with a 1 for each cell that has been clicked and a 0 for each that hasn't.
The decimal equivalent of the row is computed by adding up the powers of 2 for the
clicked cells. This table shows the binary and decimal values of each power of 2 from 0

through 7:

Binary Decimal Power of 2
00000001 1 0
00000010 2 1
00000100 4 2
00001000 8 3
00010000 16 4
00100000 32 5
01000000 64 6
10000000 128 7

So, if the pattern for a row is:

0 0 1 0 1 1 0 1 = 45 decimal

then it can be represented by the binary number 00101101, which is equal to decimal
45. If you click column 4:

0 0 1 1 1 1 0 1 = 61 decimal

the binary representation of that row of the pattern should change to 00111101, which
is equal to decimal 61. The program figures this new value by using our formula that
says it should XOR the old value with the value of the power of the column clicked.
Let’s check that out.

104 SECTION II: GRAPHICS

Old value: 00101101
24=16: 00010000
Old value XOR 24: 00111101

Use the truth table to check each bit comparison. Then work out what would happen if
you clicked column 4 again. This same operation could be done with FOR.. NEXT
loops and a bunch of math, but the computer does it so much faster with XOR that it is
worth making the effort to understand the technique.

Displaying the values

CatchClick goes on to call the ShowNum subroutine (Figure 8-16) which up-
dates the display of the decimal and hexadecimal values for the row just clicked.
There are two new commands introduced in this section: the PRINT USING state-
ment and the HEX$ function.

This subroutine first makes the number-display window (window #3) active, so
that subsequent PRINT statements will display there. (An alternative, since the pro-
gram does not expect any input from this window, is to use the WINDOW OUTPUT 3
statement, which leaves window #1 active for input but sends output to window #3.) It
then uses a MOVETO statement to position the pen in window #3, aligned with the
row just clicked in window #1, before the decimal and hexadecimal values of the row
are printed.

e

™ Print value of row in decimal and hexadecimal.

"

ShowNum:
WINDOW 3 'make value display window active
MOVETO 15, (row * increment) - § ‘get ready to print
PRINT USING "###"; decimalValue(row); "print value
PRINT "="; "&H"; HEX$ (decimalValue(row));
WINDOW 1 'make window #1 active
RETURN 'go back to end of CatchClick

Figure 8-16. Displaying the row values with ShowNum

Chapter 8: Generating a Pattern 105

The next line introduces the PRINT USING variation on the standard PRINT
statement, which allows you to format the appearance of printed material. The syntax
for this statement is:

PRINT USING string-exp; expression-list

The string-exp is a list of special formatting characters—in our case #s—and
the expression-list is the list of string or numeric expressions to be printed. Each #
sign in string-exp is a space holder representing one digit of a number to be printed.
Other formatting characters are available to control how many characters are to be
printed from a string, and to force other special formatting. If the number actually
printed has fewer digits than the spaces available, it is right-aligned (preceded by the
extra spaces). The purpose of the PRINT USING statement in this section is to keep
the decimal values, which may have different numbers of digits, neatly aligned so the
equal signs and hex numbers printed to their right will also be neatly aligned.

The HEXS$ function in the next line returns the hexadecimal equivalent of the
decimal number within the parentheses. Although the PRINT USING statement that
prints the decimal number and the PRINT statement that prints the hexadecimal
number are on separate lines in the program, the semicolon at the end of the first
statement forces everything to be displayed on one line in window #3.

Before returning control to CatchClick, the subroutine uses the WINDOW 1
statement to make that window active again.

Displaying the pattern

CatchClick now calls the PaintWin subroutine, listed in Figure 8-17 on the next
page, to make window #2—the one in which the pattern is displayed in its normal
size—the active output window. PaintWin in turn calls the UpdatePattern subroutine
to change the value in the pattern array for the double row just clicked. UpdatePattern
uses the same XOR method used to update the decimal value of the row. When control
returns to PaintWin, it uses the ROM call FILLRECT to fill window #2 with the pat-
tern. The two VARPTR statements used by FILLRECT point to the first element of the
displayWin array (window-boundary) and the first element of the pattern array.

106 SECTION II: GRAPHICS

i

* Call UpdatePattern to update pattern array,
™ then fill window #2 with new pattern.

"

PaintWin:
WINDOW 2 'make window #2 active
GOSUB UpdatePattern ‘compute pattern array

"

"* Fill window with new pattern.

FILLRECT VARPTR (displayWin(0)), VARPTR (pattern(0))
WINDOW 1

RETURN

Figure 8-17. Displaying the pattern with PaintWin

And that’s all there is to the program. If you would like a challenging experiment,
you might try to modify this program so that dragging across a block of pixels on the
big grid inverts the entire block.

™ Generating a pattern
GOSUB DefineVariables
GOSUB CreateWindows
GOSUB InitializePowers
GOSUB CreateGrid
GOSUB ShowilnitialValues
GOTO CatchClick

"

" Dimension arrays and define many variables used in program.

"

DefineVariables:
DEFINTa -z 'use integers for speed

Figure 8-18. The complete pattern-generating program ore-

Chapter 8: Generating a Pattern 107
" Dimension arrays used by program.
DIM bound(4) "edges of grid location
DIM pattern(3) ‘pattern array
DIM decimalValue(8) "decimal value of row
DIM displayWin(3) ’edges of display window
DIM power(15) ‘powers of 2
wide = 160 ‘'width of pattern display window
high = 160 "height of pattern display window
increment = 20 "height of row, width of column
displayWin(0) =0 ‘top of pattern display window
displayWin(1) =0 "left
displayWin(2) = 160 "bottom
displayWin(3) = 160 right
RETURN

"* Create four windows used by program. Window #4 is background window,

™ window #3 displays decimal and hexadecimal values of each row,

™ window #2 displays pattern, and window #1 is used to create pattern.

"™ Note that window #1 is modal (specified by negative type number),

™ meaning that it is only window in which user can make selection.

CreateWindows:
WINDOW 4, "Pattern Generator", (0, 38) - (512, 342), 1 'background

"

(13

’"

"

MOVETO 85, 250

PRINT "Hold down command key and press . to return to BASIC."
WINDOW 3, , (200, 60) - (300, 220), 3

WINDOW 2, , (320, 60) - (480, 220), 3

WINDOW 1, , (20, 60) - (180, 220), -3

RETURN

Initialize array containing powers of 2.
Used to convert from pixels to binary numbers:
power(bit) = 2 * bit

InitializePowers:

FOR bit =0 TO 14
power(bit) = 2 A bit

NEXT bit

power(15) = -32768!

RETURN

"display values
"display patterns
"display pixels

Figure 8-18. The complete pattern-generating program (continued)

more...

108 SECTION II: GRAPHICS

™ Draw grid used to simulate 8 by 8 array of pixels.
CreateGrid:
FOR hLine=1TO 7 'draw horizontal lines
MOVETO 0, hLine * increment
LINETO wide, hLine * increment
NEXT hLine

FOR vLine=1TO 7 'draw vertical lines
MOVETO vLine * increment, 0
LINETO vLine * increment, high

NEXT vLine

RETURN

"

™* Display initial decimal and hexadecimal values of each row of grid.

ShowilnitialValues:
FORrow=1TO 8
decimalValue(row) = 0
GOSUB ShowNum
NEXT row
RETURN

"

™ Wait for user to click in grid, then determine row/column location
™* of click, update values of grid and call subroutines to show
* decimal and hexadecimal values and display pattern created.

CatchClick:

"

™ Wait for button press.

””

WHILE MOUSE(0) = 0

WEND

xCord = MOUSE(1) "current x coordinate of mouse
yCord = MOUSE(2) ‘current y coordinate of mouse
row = ((8 * yCord \ high) + 1) ‘compute row number
doubleRow = INT((row - 1)\ 2) ‘'which double-row set

Figure 8-18. The complete pattern-generating program (continued) more.-

Chapter 8: Generating a Pattern

109

"

IF row MOD 2 = 0 THEN offset = 8 ELSE offset = 16
column = ((8 * xCord \ wide) + 1)
bitLocation = offset - column

"

"™ Set up array to describe selected grid location.

top = (row -1) * increment

left = (column -1) * increment
SetRelRect top, left

INVERTRECT VARPTR(bound(0))

"

™ Update decimal value of row.

"

‘compute column number
‘which bit out of 16

‘top border
"left edge

‘invert selection

decimalValue(row) = decimalValue(row) XOR power(8 - column)

GOSUB ShowNum
GOSUB PaintWin
GOTO CatchClick

™ Print value of row in decimal and hexadecimal.

"

ShowNum:

1k

WINDOW 3

MOVETO 15, (row * increment) - 5

PRINT USING "###"; decimalValue(row);
PRINT "= "; "&H"; HEX$ (decimalValue(row));
WINDOW 1

RETURN

" Call UpdatePattern to update pattern array,
* then fill window #2 with new pattern.

"k

PaintWin:

WINDOW 2
GOSUB UpdatePattern

'show number
’'show pattern
‘'wait for next click

‘'make value display window active
"get ready to print
'print value

'make window #1 active
’go back to end of CatchClick

'make window #2 active
‘compute pattern array

Figure 8-18. The complete pattern-generating program (continued)

110 SECTION II: GRAPHICS

"

™* Fill window with new pattern.

FILLRECT VARPTR (displayWin(0)), VARPTR (pattern(0))
WINDOW 1

RETURN

i3

™ Pattern array is composed of four values, one for each double row in
** grid. Next subroutine updates value for double row just clicked by

* XORing current value with power of 2 of bit location clicked.
UpdatePattern:

pattern(doubleRow) = pattern(doubleRow) XOR power(bitLocation)
RETURN

"

* SetRelRect is passed upper left corner of rectangle,
" computes other two sides, and stores values in array.
SUB SetRelRect(x, y) STATIC
SHARED bound(), increment
setRectangle bound(), (x), (y), x + increment, y + increment
END SuUB

™* Take pair of points and set rectangle so it encloses these points.
SUB setRectangle(array(), y1, x1, y2, x2) STATIC
array(0) = y1
array(1) = x1
array(2) = y2
 array(3) = x2
END SUB

Figure 8-18. The complete pattern-generating program (continued)

The MiniPaint
Program

Now that you understand how to create different patterns on the Macintosh screen,
let’s have a look at a program that uses these patterns. If you have a Macintosh, you are
at least vaguely familiar with the MacPaint program created by Bill Atkinson. The di-
minutive version of MacPaint were going to create in this chapter—MiniPaint—
won't threaten Bill’s position as the supreme master of Macintosh graphics, but it will
demonstrate how easily you can include many of the various shapes and patterns in
your own programs.

The MiniPaint program allows you to create empty and filled rectangular or oval
frames and produce freehand drawings in the large center window of the work area
shown in Figure 9-1 on the following page. By clicking the different options arranged
around the edge, you can specify the shape, thickness, and pattern of the frame or
drawing line and the fill pattern used.

There are few new commands used in this program, so we won't get too bogged
down in explanation. As you read through the program, notice that almost all screen
positions are expressed relative to the width or height of the active window, and that
these dimensions are returned by the WINDOW(2) and WINDOW(3) functions. This
approach allows you to experiment with different window sizes without rewriting the
entire program.

The program consists of seven sections. Section one, shown in Figure 9-2 on the
following page, routes the program through sections two through six to set up the ini-
tial screen. (I will discuss the ON DIALOG and DIALOG ON statements shortly, when
we've taken a look at these first six sections.) Then the program flows into section
seven, the main loop, where it will stay.

111

112 SECTION II: GRAPHICS

% fie Edit Sesr<h Run Windows

EOON|

erase

~~~~~~

\\\\\\

\\\\\\

\\\\\\

\\\\\\

A

[T

Figure 9-1. The MiniPaint work area

You will notice, if you study the full program listing in Figure 9-20, at the end of
the chapter, that the sections of the program are grouped there not in the order I will
discuss them in but by type: the subprograms in one group, the subroutines in an-
other, and so on. This is only for convenience in finding different sections, and you can
arrange your listing as you see fit.

GOSUB DefineVariables

GOSUB CreateWindows

GOSUB CreateSymbols

GOSUB CreatePatterns

GOSUB ShowDefaults

ON DIALOG GOSUB SelectWindow 'if inactive window clicked
DIALOG ON

Figure 9-2. Calling subroutines to set up the MiniPaint work area




Chapter 9: The MiniPaint Program

113

e

" Define variables and dimension arrays.

"

DefineVariables:
DEFINTa-2z
DIM div(3)
DIM but(3)
DIM pat(28)
DIM bord(3)
DIM oldBord(3)
false =0
true = -1
div(1) =6
div(2) = 4
div(3)=7
function = 1
RETURN

‘'make all variables integers for speed
'number of window division

‘current button in each window
’pattern definitions

‘top, left, bottom, and right borders

’number of divisions in shape window
'number of divisions in line-thickness window
‘number of divisions in pattern window
"default shape to draw--rectangle

Figure9-3. Defining the variables

Defining the variables

Figure 9-3 lists the DefineVariables subroutine—the usual define-declare-and-
dimension section. The values assigned to the variables false and ¢true are the same as
those generated by the logical operators: 0 for false and —1 for true. The values of the
array elements div(1), div(2), and div(3) are the number of divisions in windows #1,

#2, and #3, respectively.

Creating the windows

The CreateWindows subroutine, shown in Figure 9-4 on the following page, uses
familiar WINDOW statements to produce the four windows you see on the MiniPaint
screen: a main work area, two small windows on the left for shapes and line thick-
nesses, and one long window on the right for patterns.




114 SECTION II: GRAPHICS

14

"™ Create four windows.

"

CreateWindows:
WINDOW 1, , (0, 20) - (50, 209), 3 ’shape window
WINDOW 2, , (0, 210) - (50, 342) ,3 "line-thickness window
WINDOW 3, , (460, 20) - (512, 342), 3 "pattern window
WINDOW 4, , (51, 20) - (459, 342), 3 'work-area window
RETURN

Figure 9-4. Creating the windows

Creating the symbols

Figure 9-5 shows the CreateSymbols subroutine, which draws the horizontal di-
vision lines in the shape, line, and pattern windows and then creates the symbol or
pattern for each option and displays it. The FOR windo =1 TO 3 loop draws the hori-
zontal division lines in each of the three windows. First the window is made active
(WINDOW windo), and then the WINDOW(2) and WINDOW(3) functions are used to
retrieve the width and height of the window and assign these values to the variables
wide and high. These values are used, along with the number of divisions in the win-
dow, to compute the size of the boxes and hence their positions down the screen, and
then to draw the lines. Nothing here should look particularly confusing to you if you
have worked your way through the previous programs.

Creating the shapes

The method of creating the actual symbols or patterns varies somewhat for each
window. To create the symbols in window #1, the height, width, and number of divi-
sions in the window—div()—are passed to the DrawFuncs subprogram, shown in
Figure 9-6 on page 116.

There are only a couple of things worth pointing out in this subprogram: the
DIM statement at the beginning, the variety of ROM calls to frame and invert rect-
angles and ovals, and the LINE STEP statement that draws the crooked line.

The only reason the DIM statement is significant here is that it again points out
the concept of variables that are unique to the subprogram. If you are using a variable
or an array in a subprogram but not in the main program, there is no point in creating




Chapter 9: The MiniPaint Program 115

i1

™ Create window divisions.

"

CreateSymbols:
FOR windo=1TO 3
WINDOW windo ‘make window windo active
wide = WINDOW(2) ‘width of current window
high = WINDOW(3) ‘height of current window
FOR division = 1 TO div(windo) - 1 ’draw division lines

MOVETO 0, division * high \ div(windo)
LINETO wide, division * high \ div(windo)
NEXT division
NEXT windo

(13

* Draw symbols in shape window.

WINDOW 1 'shape window
high = WINDOW(3)

wide = WINDOW(2)

(13

* Call subprogram that creates six shapes.

DrawFuncs wide, high, div(1)

™ Create line-thickness window.
WINDOW 2

high = WINDOW(3)

wide = WINDOW(2)

FOR division=1TO 4
PENSIZE 1, division
MOVETO 5, (division - .5) * high \ div(2) 'note parentheses
CALL LINE (wide - 10, 0)

NEXT

RETURN

Figure 9-5. Creating the symbols




116

SECTION II: GRAPHICS

"

" Draw symbols in shape window.

"

SUB DrawFuncs (wide, high, numDivs) STATIC
DIM Rect(3)
boxWidth = wide - 10 : boxHeight = high \ numDivs - 9
deltaY = high \ numDivs

"

™ Draw rectangle.

"

SetRelRect Rect(), 5, 5, boxWidth, boxHeight
FRAMERECT VARPTR(Rect(0))

"

" Draw filled rectangle.

"

SetRelRect Rect(), 5, deltaY + 5, boxWidth, boxHeight
INVERTRECT VARPTR(Rect(0))

"

™ Draw circle.

’"

SetRelRect Rect(), 5, 2 * deltaY + 5, boxWidth, boxHeight
FRAMEOVAL VARPTR(Rect(0))

"

™ Draw filled circle.
SetRelRect Rect(), 5, 3 * deltaY + 5, boxWidth, boxHeight
INVERTOVAL VARPTR(Rect(0))

"

™ Draw crooked line.

LINE (6, 4.3 * deltaY) - STEP (10, 10)
LINE - STEP (10, -10)

LINE - STEP (10, 10)

Figure 9-6. Creating the shape symbols with DrawFuncs

more...




Chapter 9: The MiniPaint Program 117

"

™ Draw eraser.
MOVETO 6, 6 * deltaY - 10
PRINT "erase”;

END SUB

Figure 9-6. Creating the shape symbols with DrawFuncs (continued)

or defining it in the main program and then passing it to the subprogram: Even if the
rect array existed in the main program, dimensioning a new array with the same name
in the subprogram would have no effect on it. However, if you call the subprogram
more than once, you will have to use the ERASE statement at the end of it to eliminate
the array, so that dimensioning it the next time will not cause an error.

The ROM calls FRAMERECT, INVERTRECT, FRAMEOVAL, and INVERTOVAL
all use the familiar format of pointing to the first element of an array containing the
top, left, bottom, and right boundaries of the section of the screen where the shape
will appear.

The LINE statement is another BASIC statement that has a variety of formats and
uses. (There is also a LINE ROM call, which is always preceded by the CALL state-
ment, to avoid confusion.) The syntax for the LINE statement is:

LINE [[STEP] (xLyl)] - [STEP] (xZ,y2)[,[color][, b[f]]]

It is used to draw a line or a box. Without the b and f options tacked onto the end,
LINE draws a line from point (x1,y1) to point (x2,y2). If you add the b, it draws a box
with opposite corners at those points; if you add the f option after the b, it also fills the
box with the current pattern.

Although the word color does not seem applicable to the Macintosh screen—at
least right now— the choice of black or white is one more choice than the purchasers
of Henry Ford’s first machine had. As then, the default is black. The number 30 in the
color position causes both the line and the fill pattern to be white. The number 33 is
for black, but since leaving the option blank will also produce a black line, there seems
to be little point in specifying it. Note, however, that if you omit the color option but
still want to use the b or bf options, you must include the commas that show where the
color option would appear.




118 SECTION II: GRAPHICS

The STEP option changes the (x,y) coordinates from absolute pixel locations to
relative pixel locations. In other words, a STEP location is x pixels horizontally and y
pixels vertically relative to the previous position of the pen, not the corner of the win-
dow. STEP can be used with the first set of coordinates, the second set, or both. You
can also omit the first set, as we do in DrawFuncs in the three statements used to draw
the crooked line: The statement LINE - STEP (x,y) draws a line from the current pen
position to the point (x,y) pixels away. The first LINE statement in this section draws
the initial segment of the crooked line; the second and third statements step the line
to the right and either up or down 10 pixels.

Creating the lines

Window #2 displays the line-width options that are available for drawing lines
and frames. The different line thicknesses are set with the PENSIZE ROM call in the
CreateSymbols subroutine:

PENSIZE 1, division

Pen width and height are in pixels. In this section we set the width equal to 1 and
the height equal to the number of the window division in which the line is drawn.
Since window #2 is divided into four parts, numbered 1 through 4, the pen heights
will range from 1 to 4. We can leave the pen width at 1 here, since we are drawing only
horizontal lines, but in the main body of the program, where we draw both horizontal
and vertical lines in the work area, the width and height will be set to the same value.

Each line is drawn with the same sequence of statements. First the pen size is set
and the pen is positioned five pixels in from the left edge and halfway down a division.
Then the LINE ROM call is used to draw the line to another location relative to the
first. So the LINE ROM call works just like the STEP option in the LINE statement, in
this case drawing a line from the current pen location to a point 10 pixels less than the
width of the window and on the same level.

There are two things of importance to note about the PENSIZE call: It applies
only to the current output window, and it applies only to lines produced by other ROM
graphic calls (not to BASIC LINE and CIRCLE statements). If you change the output




Chapter 9: The MiniPaint Program 119

window, the pen size reverts to the last size specified for that window. If no size has
specifically been set, the default size of 1,1is used.

Creating the patterns

The CreatePatterns subroutine (Figure 9-7), which displays the seven available
patterns, reads the data statements listed elsewhere in the program and stores the hex
numbers found there in the pat array. Each hex number represents a double row of the
pattern. The elements of the array are then taken four at a time, each set of four being
used to define one of the seven patterns, which are displayed in window #3.

There are several ways to make information available to a program. You can store
the information in a disk file and retrieve it with an INPUT$, INPUT#, or LINE IN-
PUT# statement. Or you can ask the user to supply the information via the keyboard
and retrieve it with an INPUT or LINE INPUT statement or the INKEY$ function. Or
you can store the information in the program itself in the form of DATA statements
that can be read as needed and assigned to variables. This last method (used in this
subroutine) is particularly appropriate when the information is not subject to change.

"

™ Read data for patterns.

"

CreatePatterns:
WINDOW 3 ’'make window #3 active
wide = WINDOW(2) ‘get its height and width

high = WINDOW(3)
FOR design =0 TO 27

READ pat(design) ‘read DATA statement
NEXT
countBy4 =0 initialize--used to count by fours
FOR division = 0 TO div(3) - 1 fill pattern swatches

SetRelRect bord(), 0, division * high \ div(3), wide, high \ div(3)

FILLRECT VARPTR(bord(0)), VARPTR(pat(countBy4))

countBy4 = countBy4 + 4 ‘increment counter
NEXT
RETURN

Figure 9-7. Creating the patterns




120 SECTION II: GRAPHICS

CreatePatterns uses the READ statement to assign the hexadecimal numbers
stored in the DATA statements to the 28 elements of the pat array. The syntax of the
READ statement is:

READ variable-list

The variable-list can contain as many variables as you like, and they can be either nu-
meric or string. The only restrictions are that there must be at least as many pieces of
data to read as there are variables in the statement, and that each item must be of the
same type (string or numeric) as the variable to which it is assigned.

The first FOR...NEXT loop in CreatePatterns is cycled through 28 times; at each
pass it assigns a value from the DATA statements to an element in the pat array. After
all 28 values have been read, the next FOR...NEXT loop passes every fourth element
of the array to the FILLRECT ROM call, which uses it to create and display a pattern.

It is important to note that pattern arrays can consist of more than four elements.
Most programs show a separate array for each pattern, and use the VARPTR function
to point to the memory location of the first element of the array when creating the pat-
tern. However, as you can see from this example, one pattern array can contain as
many elements as you like: You simply point to the first of the four consecutive ele-
ments you want to use. This approach would be very useful if you wanted to create an
evenly graduated gray scale for highlighting or shading graphics.

Highlighting the defaults

The ShowDefaults subroutine in Figure 9-8 highlights the default setting for
each of the option windows. Later, when you select a different option, the highlight
will have to be removed and applied to your new choice.

The selection is highlighted by inverting a smaller rectangle centered inside the
rectangle holding the selected symbol. The inverted rectangle is made a little smaller
than the selection it is highlighting in order to create a border around the highlight.
The width of the border is determined by the value of the variable inset. The reason
for making the inset a variable is that a wider border (10 pixels) is needed in window
#3 to make it obvious which pattern is selected (an inverted white pattern looks just
like a black pattern). After the inset is defined, each window is made active in turn,
and the SetRectangle subprogram is called to create a rectangle with dimensions two



Chapter 9: The MiniPaint Program 121

e

"* Highlight default selection in each window.

ShowDefaults:
inset =2 ’size of border around highlight
FOR windo=1TO 3
IF windo = 3 THEN inset = 10
WINDOW windo
wide = WINDOW(2)
high = WINDOW(3)
SetRectangle bord(), inset, inset, wide - inset, high \ div(windo) - inset

INVERTRECT VARPTR(bord(0)) 'invert center of selection
but(windo) = 1 ’store this window’s button-press
NEXT
RETURN

Figure 9-8. Highlighting the defaults

times inset smaller than the width and height of a window division. The INVERT-
RECT ROM call is then invoked to highlight that area in the first division of the win-
dow (the default division).

The last action in this section assigns the number of the currently highlighted di-
vision to the variable but(windo), which stands for the active “button” in that window.
This is done so that when another option is selected, we will know which option has to
have the highlight removed.

Changing options

Before moving into the main loop of the program to create shapes in window #4,
we must make provisions for what to do if another window is clicked, which would in-
dicate a desire to change options. We can do this with the ON DIALOG statement
which I deferred discussing when we encountered it at the beginning of the program.
This is ON DIALOG s general format:

ON DIALOG GOSUB line

The DIALOG function returns information about events that involve buttons,
windows, and edit fields created by BASIC. The ON DIALOG GOSUB statement is an
event trap that sends the program to a specified line if there has been a change in one




122 SECTION II: GRAPHICS

of the conditions monitored by the DIALOG function. Once you have specified where
to go if a dialog event is trapped, you activate the trapping with the DIALOG ON state-
ment. We will take a closer look at the DIALOG function soon.

The main loop

The MainLoop routine, shown in Figure 9-9, is a short section of code through
which the program loops continuously while waiting for the mouse button to be
pressed to indicate that a shape should be drawn. While waiting, the program is con-
stantly updating the value of yCord with the current coordinate value of MOUSE(2).
We will use this information a little later, when a different option is selected by click-
ing in a side window.

The sections that follow MainLoop contain the routines that actually draw rect-
angles, ovals, and lines as you drag the mouse around in window #4. Other than the
difference in the actual ROM call that draws the shape, the routines for the rectangle
and the oval are identical. Both have chunks of code that are used repeatedly, so these
chunks have been assigned to subprograms, several of which you have already seen in
other programs.

113

™ Allow user to create lines and shapes, while waiting

™ for click in side windows.

MainLoop:
WINDOW 4 'make window #4 active
WHILE MOUSE(0) =0

”

* While waiting for mouse click, store current location of
* pointer. This information will be used if next click is outside
™ work-area window.
yCord = MOUSE(2)
WEND
ON function GOSUB Rect, Oval, Lin
GOTO MainLoop

Figure 9-9. Waiting for the mouse button to be pressed




Chapter 9: The MiniPaint Program 123

When the mouse button is pressed, the program branches to the most recently
specified drawing routine (Rect, Oval, or Lin), as determined by the ON...GOSUB
statement, which has this syntax:

ON expression GOSUB line-list

This is a “computed GOSUB” statement: The value of the expression is computed and
the program branches to the subroutine whose label or line number is that far into
line-list. For example, if the value of the expression is 2, the program goes to the sec-
ond subroutine in the list; if the value is 7, the program goes to the seventh subroutine
listed. If the value is 0, or if it is greater than the number of items in line-list, the pro-
gram continues with the statement after ON...GOSUB. (A parallel statement that op-
erates this way is ON...GOTO, which branches to a line other than the beginning of a
subroutine.)

In our program, the expression to be evaluated is function. The program will
branch to Rect, Oval, or Lin, depending upon the value assigned to function. The first
time through MainLoop, the initially assigned value of 1 sends the program to the Rect
subroutine. Each of these subroutines ends by returning to MainLoop.

Drawing rectangles

The subroutine labeled Rect, shown in Figure 9-10 on the following page, can
create both framed and filled rectangles. The factor that determines which type is
drawn is a variable named fill, which is set equal to true (—1) when either of the filled-
shape options is selected from window #1.

The Rect subroutine has several distinctly separate stages. First it sets the pat-
tern to black (using the MakePattern subprogram with an argument of 1) and draws
the first rectangle (using SetRectangle and FRAMERECT). Then it checks to see
whether the mouse button has been pressed once and is still being held down
(MOUSE(0) = —1). If so, it constantly erases and redraws the rectangle as the mouse is
dragged, keeping track of the coordinate information it needs using the CopyRect
subprogram, and all the while waiting for the button to be released. Figure 9-11 on
page 125 lists the three subprograms used by the Rect routine.



124 SECTION II: GRAPHICS

”*

" Draw rectangle.

"

Rect:
PENMODE 10 "XOR mode

"

™ Draw first rectangle.

1k

MakePattern 1 ‘use black pattern for frame

SetRectangle oldBord(), MOUSE(3), MOUSE(4), MOUSE(1), MOUSE(2)

FRAMERECT VARPTR(oldBord(0)) "draw rectangle

WHILE MOUSE(0) = -1 "'while mouse button is pressed
SetRectangle bord(), MOUSE(3), MOUSE(4), MOUSE(5), MOUSE(6)
FRAMERECT VARPTR(oldBord(0)) ‘erase rectangle (while dragging)
FRAMERECT VARPTR(bord(0)) 'draw new rectangle
CopyRect oldBord(), bord()

WEND

"%

* Create filled rectangle if this symbol was selected.

"

MakePattern but(3) ‘reinstate stored pattern
PENMODE 8 ‘copy mode
FRAMERECT VARPTR(bord(0)) "draw rectangle

IF fill THEN PAINTRECT VARPTR (oldBord(0))

”"”*

™ And now for a little fun.
WHILE MOUSE(0) = -2
PENMODE 10
SetRectangle bord(), MOUSE(3), MOUSE(4), MOUSE(5), MOUSE(6)
FRAMERECT VARPTR(bord(0))
IF fill THEN PAINTRECT VARPTR(bord(0))
WEND
PENMODE 8
RETURN

Figure 9-10. Drawing rectangles with Rect




Chapter 9: The MiniPaint Program 125

%k

™ Make one of stored patterns active.
SUB MakePattern(patNum) STATIC
SHARED pat()

PENPAT VARPTR(pat(4 * patNum - 4)) "Pat() is first of group of four
END SUB

113

™ Copy one rectangle into another.
SUB CopyRect(recti1(), rect2()) STATIC
FOR count=0TO 3
rect1(count) = rect2(count)
NEXT
END SUB

i

™ Take pair of points and set rectangle so it encloses these points.
SUB SetRectangle(array(), x1, y1, x2, y2) STATIC

array(0) = y1

array(1) = x1

array(2) = y2

array(3) = x2

IF x1 > x2 THEN SWAP array(1), array(3)

IF y1 > y2 THEN SWAP array(0), array(2)
END SUB

113

* SetRelRect is just like SetRectangle except it takes as input
™ top, left point and height and width.

SUB SetRelRect(array(), x, y, wide, high) STATIC
CALL SetRectangle (array(), (x), (y), x + wide, y + high)
END SUB

Figure 9-11. The drawing subprograms MakePattern, CopyRect,
SetRectangle, and SetRelRect

The MakePattern subprogram points to the first of a set of four elements in the
pattern array—in this case pat(0)—so that the rectangle that is drawn as you drag
the mouse will always be in the same pattern. (I originally used whatever pattern was




126 SECTION II: GRAPHICS

currently selected to draw this rectangle, but found that if the white pattern was se-
lected, the rectangle was a little difficult to detect against the white background.)
When the mouse button is released, MakePattern is called again to reset the pattern to
the one currently selected, before drawing the final rectangle.

The SetRectangle subprogram fills the array passed to it with the top, left, bot-
tom, and right boundaries of the rectangle described by the mouse drag. The starting
and current coordinates of the pointer are used to define the boundaries, and the di-
rection in which the mouse is being dragged is checked by comparing the starting and
current coordinates. If the drag is not down and to the right, the upper/lower or left/
right boundaries are exchanged using the SWAP statement. (This swap is done in
order to keep the coordinates in the order expected by the ROM call that draws the
rectangle.)

The boundaries are stored in an array called oldBord, and a rectangle is drawn.
The new current coordinates of the pointer are located and stored in an array called
bord, the old rectangle is erased by drawing another rectangle on top of it, and a new
rectangle is drawn using the original starting coordinates and the new coordinates of
bord for the ending point. Then the CopyRect subprogram is called to move the ele-
ments of bord into the oldBoard array, freeing the bord array to receive the coordi-
nates of the still-moving pointer.

The rapid drawing and erasing of rectangles has the effect of lightly tracing the
changing shape of the rectangle as the mouse is dragged. After the button is released,
one more rectangle is drawn, this time from the starting coordinate to the ending co-
ordinate. It is at this point that fill is checked, and, if it is true, PAINTRECT is called.

If the mouse button is double clicked (MOUSE(0) = —2), the next loop is entered.
Look closely at this loop to see if you can figure out what will happen as the mouse is
dragged. The significant differences between this routine and the previous one are
that the rectangle is not erased after each draw, and the pen mode is set to 10, which is
XOR mode, rather than 8, which is Copy mode.

Drawing ovals

The subroutine labeled Oval, shown in Figure 9-12, does essentially the same
thing as Rect, using the FRAMEOVAL and PAINTOVAL ROM calls.



Chapter 9: The MiniPaint Program 127

1k

"* Draw oval.
Oval:
PENMODE 10
MakePattern 1 ‘use black pattern for rectangle
SetRectangle oldBord(), MOUSE(3), MOUSE(4), MOUSE(1), MOUSE(2)
FRAMEOVAL VARPTR(oldBord(0))
WHILE MOUSE(0) = -1
SetRectangle bord(), MOUSE(3), MOUSE(4), MOUSE(5), MOUSE(6)
FRAMEOVAL VARPTR(oldBord(0))
FRAMEOVAL VARPTR(bord(0))
CopyRect oldBord(), bord()
WEND
PENMODE 8
MakePattern but(3) 'reinstate selected pattern
FRAMEOVAL VARPTR(bord(0))
IF fill THEN PAINTOVAL VARPTR(oldBord(0))
WHILE MOUSE(0) = -2
PENMODE 10
SetRectangle bord(), MOUSE(3), MOUSE(4), MOUSE(5), MOUSE(6)
FRAMEOVAL VARPTR(bord(0))
IF fill THEN PAINTOVAL VARPTR(bord(0))
WEND
PENMODE 8
RETURN

Figure 9-12. Drawing ovals

Drawing lines

The third subroutine, shown in F iguré 9-13 on the following page, is labeled Lin
(notice that you have to abbreviate Line so that BASIC doesn’t confuse the Lin sub-
routine with the LINE statement). Lin draws a line that follows the pointer around as
long as the mouse button is held down after a single click. Dragging the mouse after a
double click will continuously draw new lines from the starting point to the changing
pointer location, giving a sunbeam effect.




128 SECTION II: GRAPHICS

"

™ Draw line.

"
Lin:
”"

™ Move pen point to beginning of drag.

IF MOUSE(0) = -1 THEN MOVETO MOUSE(3), MOUSE(4)

WHILE MOUSE(0) = -1 'while mouse is being dragged
point1 = MOUSE(5) 'ending coordinate is also current
point2 = MOUSE(6) ‘coordinate as long as button is down
LINETO point1, point2 ‘draw line
MOVETO point1, point2 'move pen to end of line

WEND ‘button released

"

™ Mouse double clicked before drag.
WHILE MOUSE(0) = -2
PENMODE 10
MOVETO MOUSE(3), MOUSE(4)
LINETO MOUSE(5), MOUSE(6)
WEND
PENMODE 8
RETURN

Figure 9-13. Drawing lines with Lin

Dialog event trapping

If the button is clicked while the pointer is over a window other than window #4,
BASIC considers this a significant dialog event and traps it. The ON DIALOG GOSUB
statement executed earlier then sends the program to the line labeled SelectWindow
to execute the subroutine shown in Figure 9-14.

The DIALOG function is like the MOUSE function, in that DIALOG(0) returns
the type of event that has occurred, and DIALOG(1) through DIALOG(5) give specific
information about the event. In this case, the only dialog event we want to trap is when




Chapter 9: The MiniPaint Program 129

"

"* Routine branched to if dialog event is trapped

"

SelectWindow:
IF DIALOG(0) <> 3 THEN RETURN 'inactive window clicked
WINDOW DIALOG(3) ‘'make clicked window active
windo = WINDOW(0) "active window
wide = WINDOW(2) ‘width
high = WINDOW(3) "height
GOSUB Selectltem 'get option selection
WINDOW 4 'make window #4 active
ON windo GOTO SetShape, SetLine, SetPattern 'implement selection

Figure 9-14. Responding to dialog events with Select Window

an inactive window is clicked, which causes DIALOG(0) to return the value 3. So if
DIALOG(0) is not equal to 3, the first line of this subroutine simply returns the pro-
gram to where it was when the dialog event occurred. If DIALOG(0) is equal to 3, then
DIALOG(3), which returns the ID number of the inactive window that was clicked, is
used to make the clicked window active. The ID number, width, and height of the cur-
rent window are returned by the WINDOW(0), WINDOW(2), and WINDOW(3) func-
tions, and then the SelectItem subroutine determines which option in the new window
was clicked.

Selecting options

The SelectItem subroutine shown in Figure 9-15 on the following page deter-
mines which option was clicked, removes the highlight from the old selection, high-
lights the new, and then assigns the number of the new selection to the variable butSel.
This is where the constant updating of yCord while the program is waiting for the
mouse click comes in handy. If we wait until the option window is clicked to check for
the pointer location, we have to click twice: once to activate the window and once to
spot the pointer. This is necessary because the MOUSE functions return information
only about the location of the pointer relative to the active output window, so each
time you change windows, the pointer coordinates are automatically reset, thus re-
quiring the second click.




130 SECTION II: GRAPHICS

"

"* Determine which option was clicked.

",

Selectitem:
inset =2 "border for highlight
IF windo = 3 THEN inset = 10 ‘'window #3
IF windo = 2 THEN yCord = yCord - 190 ‘window #2
butSel = ((div(windo) * yCord \ high) + 1) ‘increment down from top
IF windo = 1 AND butSel = 6 THEN RETURN 'don’t highlight erase button

top = (but(windo) - 1) * high \ div(windo) + inset

SetRelRect bord(), inset, top, wide - 2 * inset, high \ div(windo) - 2 * inset

INVERTRECT VARPTR(bord(0)) 'return previous selection to normal
top = (butSel - 1) * high \ div(windo) + inset

SetRelRect bord(), inset, top, wide - 2 * inset, high \ div(windo) - 2 * inset

INVERTRECT VARPTR(bord(0)) 'invert center of new selection
but(windo) = butSel

RETURN

Figure 9-15. Deselecting the old option and selecting the new with SelectItem

If the click was in window #1 or #3, the previously stored value of yCord is used
directly to determine the window division selected. If the click was in window #2,
which starts 190 pixels down from the top of window #4 (where we were when yCord
was first stored), then 190 is subtracted from yCord to give it a value that is relative to
the top of window #2.

Once the window division is determined, the rest of the subroutine simply sets
up and calls a few familiar subprograms and ROM calls to remove the highlight from
the old selection and highlight the new one, and then updates the value of butSel.

When the program returns from SelectItem, it makes window #4 active and then
goes to the subroutine determined by the window in which the selection was made.

If the option window selected was window #1, the program branches to the Set-
Shape subroutine, shown in Figure 9-16. This subroutine sets the values of fill and

function, depending upon the item selected in the window. If either the filled rect-
angle or the filled oval is selected, the variable fill is set equal to ¢true, which causes the
relevant drawing routine to call PAINTRECT or PAINTOVAL rather than calling
FRAMERECT or FRAMEOVAL. If the hollow rectangle or oval is selected, fill is set to
false (in case it had previously been true).




Chapter 9: The MiniPaint Program 131

"

"™ Select option from shape window.
SetShape:
IF butSel = 6 THEN CLS : RETURN
IF butSel = 5 THEN function = 3 : RETURN
fill = true
IF butSel = 4 THEN function = 2 : RETURN
IF butSel = 2 THEN function = 1 : RETURN
fill = false
IF butSel = 3 THEN function = 2 : RETURN
function = 1 : RETURN

Figure 9-16. Selecting the shape with SetShape

If the option window selected was #2, the SetLine subroutine (Figure 9-17) uses
the PENSIZE ROM call to set the size of the pen that the other ROM calls use to draw
lines and frames. You will recall that this pen size does not affect BASIC drawing
statements such as LINE and CIRCLE, and applies only to the current output window.
This is why it was important to make window #4 active again before branching to this
section. The width and height of the pen are given in pixels, and in this case are simply
set equal to the number of the option selected in window #2.

And finally, if option window #3 was selected, the SetPattern subroutine, shown
in Figure 9-18 on the next page, passes the number of the division selected within the
window (butSel) to the MakePattern subprogram, which then sets the pattern.

"

"* Set size of pen.

SetLine:
PENSIZE butSel, butSel "butSel equals 1, 2, 3, or 4
RETURN

Figure 9-17. Setting the line width with SetLine




132 SECTION II: GRAPHICS

"

"* Specify which pattern is to be used.

SetPattern:
MakePattern butSel
RETURN

Figure 9-18. Selecting the pattern with SetPattern

The only thing left in the MiniPaint program is the set of DATA statements (Fig-
ure 9-19) that stores the hexadecimal numbers describing the optional patterns. These
numbers are arranged in groups of four, for clarity, but as far as the program is con-
cerned you can put as many on a line as you want— the program considers all DATA
statements to be one large storage area. The first READ statement in the program
reads the first piece of information, the second READ statement reads the second
piece of information, and so on. To change one of the patterns used by the program,
simply edit the information in the appropriate DATA statement here.

Suggestions for experimenting

If you feel you understand this program fairly well, you might try to integrate the
pattern-generating program into it. Perhaps double clicking on a pattern could bring
up the routine to create a new pattern that will replace the existing one. You would
probably want to store the patterns in a disk file, rather than in DATA statements.

"

" Data statements for patterns.

DATA &HFFFF, &HFFFF, &hFFFF, &hFFFF
DATA &H55AA,&H55AA, &HS55AA, &H55AA
DATA &H0000,&H0000, &H0000, &HO000
DATA &H1188, &H4422, &H1188, &H4422
DATA &H8040, &H4090, &H0902, &H0201
DATA &H82AA, &H8244, &H4444, &HAA92
DATA &H0044, &H0000, &H0088, &H0000

Figure 9-19. The DATA statements that define the patterns




Chapter 9: The MiniPaint Program 133

™ MiniPaint, a diminutive version of MacPaint

113

GOSUB DefineVariables
GOSUB CreateWindows
GOSUB CreateSymbols
GOSUB CreatePatterns
GOSUB ShowDefaults

ON DIALOG GOSUB SelectWindow ‘if inactive window clicked
DIALOG ON

"

"* Allow user to create lines and shapes, while waiting
™* for click in side windows.
MainLoop:

WINDOW 4 ‘'make window #4 active
WHILE MOUSE(0) =0

"

™ While waiting for mouse click, store current location of
"* pointer. This information will be used if next click is outside
"™ work-area window.
yCord = MOUSE(2)
WEND
ON function GOSUB Rect, Oval, Lin
GOTO MainLoop

"

* Draw rectangle.
%

Rect:
PENMODE 10 "XOR mode

"

"™ Draw first rectangle.

1"

MakePattern 1 'use black pattern for frame
SetRectangle oldBord(), MOUSE(3), MOUSE(4), MOUSE(1), MOUSE(2)

FRAMERECT VARPTR(oldBord(0)) 'draw rectangle
WHILE MOUSE(0) = -1 "while mouse button is pressed

SetRectangle bord(), MOUSE(3), MOUSE(4), MOUSE(5), MOUSE(6)

more...

Figure 9-20. The complete MiniPaint program




134 SECTION II: GRAPHICS

"

FRAMERECT VARPTR(oldBord(0)) ‘erase rectangle (while dragging)
FRAMERECT VARPTR(bord(0)) 'draw new rectangle
CopyRect oldBord(), bord()

WEND

"

* Create filled rectangle if this symbol was selected.

"

MakePattern but(3) ‘reinstate stored pattern
PENMODE 8 ‘copy mode
FRAMERECT VARPTR(bord(0)) ‘draw rectangle

IF fill THEN PAINTRECT VARPTR (oldBord(0))

" And now for a little fun.
WHILE MOUSE(0) = -2
PENMODE 10
SetRectangle bord(), MOUSE(3), MOUSE(4), MOUSE(5), MOUSE(6)
FRAMERECT VARPTR(bord(0))
IF fill THEN PAINTRECT VARPTR(bord(0))
WEND
PENMODE 8
RETURN

" Draw oval.

"

Oval:

PENMODE 10
MakePattern 1 'use black pattern for rectangle
SetRectangle oldBord(), MOUSE(3), MOUSE(4), MOUSE(1), MOUSE(2)
FRAMEOVAL VARPTR(oldBord(0))
WHILE MOUSE(0) = -1
SetRectangle bord(), MOUSE(3), MOUSE(4), MOUSE(5), MOUSE(6)
FRAMEOVAL VARPTR(oldBord(0))
FRAMEOVAL VARPTR(bord(0))
CopyRect oldBord(), bord()
WEND
PENMODE 8
MakePattern but/3) ‘reinstate selected pattern
FRAMEOVAL VARPTR(bord(0))

more...

Figure 9-20. The complete MiniPaint program (continued)




Chapter 9: The MiniPaint Program 135

"k

IF fill THEN PAINTOVAL VARPTR(oldBord(0))

WHILE MOUSE(0) = -2
PENMODE 10
SetRectangle bord(), MOUSE(3), MOUSE(4), MOUSE(5), MOUSE(6)
FRAMEOVAL VARPTR(bord(0))

IF fill THEN PAINTOVAL VARPTR(bord(0))
WEND

PENMODE 8
RETURN

™ Draw line.

”

Lin:

”"”

"

™ Move pen point to beginning of drag.

IF MOUSE(0) = -1 THEN MOVETO MOUSE(3), MOUSE(4)

WHILE MOUSE(0) = -1 'while mouse is being dragged
point1 = MOUSE(5) ‘ending coordinate is also current
point2 = MOUSE(6) ’coordinate as long as button is down
LINETO point1, point2 'draw line
MOVETO point1, point2 'move pen to end of line

WEND "button released

"

™ Mouse double clicked before drag.
WHILE MOUSE(0) = -2
PENMODE 10
MOVETO MOUSE(3), MOUSE(4)
LINETO MOUSE(5), MOUSE(6)
WEND
PENMODE 8
RETURN

* Define variables and dimension arrays.

"

DefineVariables:

DEFINTa-z 'make all variables integers for speed

more...

Figure 9-20. The complete MiniPaint program (continued)




136

SECTION II: GRAPHICS

DIM div(3)
DIM but(3)
DIM pat(28)
DIM bord(3)
DIM oldBord(3)
false =0
true = -1
div(1) =6
div(2) = 4
div(3)=7
function = 1
RETURN

”»

* Create four windows.

CreateWindows:
WINDOW 1, (0, 20) - (50, 209), 3
WINDOW 2, , (0, 210) - (50, 342) ,3
WINDOW 3, , (460, 20) - (512, 342), 3
WINDOW 4, , (51, 20) - (459, 342), 3
RETURN

"

™ Create window divisions.
CreateSymbols:
FORwindo=1TO 3
WINDOW windo
wide = WINDOW(2)
high = WINDOW(3)
FOR division = 1 TO div(windo) - 1

'number of window division
"current button in each window
'pattern definitions

'top, left, bottom, and right borders

'number of divisions in shape window
'number of divisions in line-thickness window
'number of divisions in pattern window
‘default shape to draw--rectangle

'shape window
"line-thickness window
'pattern window
'work-area window

’'make window windo active
'width of current window
’height of current window
"draw division lines

MOVETO 0, division * high \ div(windo)
LINETO wide, division * high \ div(windo)

NEXT division
NEXT windo
* Draw symbols in shape window.

WINDOW 1
high = WINDOW(3)
wide = WINDOW(2)

'shape window

Figure 9-20. The complete MiniPaint program (continued)

more...




Chapter 9: The MiniPaint Program 137

"

™ Call subprogram that creates six shapes.

DrawFuncs wide, high, div(1)

* Create line-thickness window.

"

WINDOW 2
high = WINDOW(3)
wide = WINDOW(2)

FOR division=1TO 4
PENSIZE 1, division
MOVETO 5, (division - .5) * high \ div(2) 'note parentheses
CALL LINE (wide - 10, 0)

NEXT

RETURN

"

"™ Read data for patterns.

"

CreatePatterns:
WINDOW 3 'make window #3 active
wide = WINDOW(2) ‘get its height and width

high = WINDOW(3)
FOR design = 0 TO 27

READ pat(design) 'read DATA statement
NEXT
countBy4 =0 ‘initialize--used to count by fours
FOR division = 0 TO div(3) - 1 ‘fill patern swatches

SetRelRect bord(), 0, division * high \ div(3), wide, high \ div(3)
FILLRECT VARPTR(bord(0)), VARPTR(pat(countBy4))

countBy4 = countBy4 + 4 ‘increment counter
NEXT

RETURN

"™ Highlight default selection in each window.

ShowDefaults:
inset =2 'size of border around highlight

Figure 9-20. The complete MiniPaint program (continued) e




138 SECTION II: GRAPHICS

FOR windo=1TO 3
IF windo = 3 THEN inset = 10
WINDOW windo
wide = WINDOW(2)
high = WINDOW(3)
SetRectangle bord(), inset, inset, wide - inset, high \ div(windo) - inset

INVERTRECT VARPTR(bord(0)) 'invert center of selection
but(windo) = 1 'store this window’s button-press
NEXT
RETURN

"

" Routine branched to if dialog event is trapped

"

SelectWindow:
IF DIALOG(0) <> 3 THEN RETURN 'inactive window clicked
WINDOW DIALOG(3) 'make clicked window active
windo = WINDOW(0) "active window
wide = WINDOW(2) ‘width
high = WINDOW(3) ’height
GOSUB Selectitem 'get option selection
WINDOW 4 ’'make window #4 active
ON windo GOTO SetShape, SetlLine, SetPattern ‘implement selection

"

™ Select option from shape window.
SetShape:
IF butSel = 6 THEN CLS : RETURN
IF butSel = 5 THEN function = 3 : RETURN
fill = true
IF butSel = 4 THEN function = 2 : RETURN
IF butSel = 2 THEN function = 1 : RETURN
fill = false
IF butSel = 3 THEN function = 2 : RETURN
function = 1 : RETURN

"

™ Set size of pen.

SetLine:
PENSIZE butSel, butSel 'butSel equals 1, 2, 3, or 4
RETURN

Figure 9-20. The complete MiniPaint program (continued) more..




Chapter 9: The MiniPaint Program 139

" Specify which pattern is to be used.
SetPattern:

MakePattern butSel
RETURN

™ Determine which option was clicked.

Selectltem:
inset = 2 "border for highlight
IF windo = 3 THEN inset = 10 ‘'window #3
IF windo = 2 THEN yCord = yCord - 190 ‘window #2
butSel = ((div(windo) * yCord \ high) + 1) 'increment down from top
IF windo = 1 AND butSel = 6 THEN RETURN 'don’t highlight erase button

top = (but(windo) - 1) * high \ div(windo) + inset

SetRelRect bord(), inset, top, wide - 2 * inset, high \ div(windo) - 2 * inset

INVERTRECT VARPTR(bord(0)) ‘return previous selection to normal
top = (butSel - 1) * high \ div(windo) + inset

SetRelRect bord(), inset, top, wide - 2 * inset, high \ div(windo) - 2 * inset

INVERTRECT VARPTR(bord(0)) ‘invert center of new selection
but(windo) = butSel

RETURN

"

" Data statements for patterns.

DATA &HFFFF, &HFFFF, &hFFFF, &hFFFF
DATA &H55AA,&H55AA, &H55AA, &H55AA
DATA &H0000,&H0000, &H0000, &H0000
DATA &H1188, &H4422, &H1188, &H4422
DATA &H8040, &H4090, &H0902, &H0201
DATA &HB82AA, &H8244, &H4444, &HAA92
DATA &H0044, &H0000, &H0088, &H0000

* Start of subprogram section.

Figure 9-20. The complete MiniPaint program (continued)




140 SECTION II: GRAPHICS

"

™ Make one of stored patterns active.

"

SUB MakePattern(patNum) STATIC
SHARED pat()
PENPAT VARPTR(pat(4 * patNum - 4)) 'Pat() is first of group of four
END SUB

"

" Copy one rectangle into another.

SUB CopyRect(rect1(), rect2()) STATIC
FOR count=0TO 3
rect1(count) = rect2(count)
NEXT
END SUB

"

"™ Draw symbols in shape window.

SUB DrawFuncs (wide, high, numDivs) STATIC
DIM Rect(3)
boxWidth = wide - 10 : boxHeight = high \ numDivs - 9
deltaY = high \ numDivs

"™ Draw rectangle.
SetRelRect Rect(), 5, 5, boxWidth, boxHeight
FRAMERECT VARPTR(Rect(0))

"

* Draw filled rectangle.

»

’

SetRelRect Rect(), 5, deltaY + 5, boxWidth, boxHeight
INVERTRECT VARPTR(Rect(0))

"

"™ Draw circle.
SetRelRect Rect(), 5, 2 * deltaY + 5, boxWidth, boxHeight
FRAMEOVAL VARPTR(Rect(0))

Figure 9-20. The complete MiniPaint program (continued)

more...



Chapter 9: The MiniPaint Program 141

"

™ Draw filled circle.
SetRelRect Rect(), 5, 3 * delta¥ + 5, boxWidth, boxHeight
INVERTOVAL VARPTR(Rect(0))

"

™ Draw crooked line.

LINE (6, 4.3 * deltaY) - STEP (10, 10)
LINE - STEP (10, -10)

LINE - STEP (10, 10)

"

™ Draw eraser.
MOVETO 6, 6 * deltaY - 10
PRINT "erase”;

END SUB

"

™ Take pair of points and set rectangle so it encloses these points.
SUB SetRectangle(array(), x1, y1, x2, y2) STATIC

array(0) = y1

array(1) = x1

array(2) = y2

array(3) = x2

IF x1 > x2 THEN SWAP array(1), array(3)

IF y1 > y2 THEN SWAP array(0), array(2)
END SUB

"

"* SetRelRect is just like SetRectangle except it takes as input
" top, left point and height and width.

SUB SetRelRect(array(), x, y, wide, high) STATIC
CALL SetRectangle (array(), (x), (y), x + wide, y + high)
END SUB

Figure 9-20. The complete MiniPaint program (continued)




SECTION il

Communications






Introduction to

Communications |

The application programs available for your Macintosh make it a useful and entertain-
ing tool. But just as individuals can increase their knowledge and power through asso-
ciation with the rest of the community, the power of your Macintosh—and the scope
of the information you can process with it— can be extended through communication
with other computers. Connecting your computer to others allows you to search for
and retrieve information from commercial databases, exchange electronic mail, send
telegrams and telex messages, check airline fares and schedules and purchase tickets,
manage your bank account, monitor and control conditions at remote sites, and par-
ticipate in many other useful and entertaining activities.

The only items, in addition to your Macintosh, that you need to gain access to the
world of electronic information and services are a telephone line, a modem, and com-
munication software.

Modems and the modem port

Before getting too involved with the software that allows your computer to com-
municate, lets have a look at the hardware end of things, and at how you physically
hook your Macintosh to a modem or another computer.

If you look at the back of your Macintosh, you will see four sockets, called ports,
in a row at the bottom. As you undoubtedly know, these are for connecting, from left
to right, the mouse, the external drive, the printer, and the modem. (The modem port
is also called the communication port or COM1:.) The printer and modem ports are
physically identical; either could be used to communicate with a printer, a modem, a
hard disk, the AppleBus, the Microsoft MacEnhancer, or just about any other device
that normally connects to the serial port of a computer. However, differences in the

145



146 SECTION III: COMMUNICATIONS

way the operating system handles information received at the printer port restrict the
speed at which you can communicate through it, so for practical purposes, telecom-
munication or communication with other computers is limited to the modem port.

There are two standard methods—serial and parallel—by which a computer
communicates with other devices. Very briefly, serial communication sends a stream
of single bits that are grouped together at the receiving end to make characters; paral-
lel communication sends eight bits— the equivalent of one character—at a time. The
Macintosh uses serial communication.

Now that the Mac has been out for a while, modems and other devices adver-
tised as “Macintosh compatible” or “for the Macintosh™ are appearing on the market.
This sounds like a breakthrough, as if the manufacturers had to develop a special mo-
dem to allow your Macintosh to communicate; but the fact of the matter is that almost
any serial device can be connected to the Macintosh. There are serial versions of al-
most every computer peripheral, including modems, printers, plotters, and data ac-
quisition equipment. Your Macintosh can even connect directly to an IBM PC or any
other computer that has a serial port. The only “interface” required between the Mac
and the device with which it is communicating is a cable with the proper connector on
each end.

The connectors

Physically, the Mac’s serial-port connectors are somewhat smaller than the con-
nectors you may be accustomed to seeing on the serial ports of other computers. The
standard system for connecting serial devices has for years been the RS-232C pro-
tocol. (A communication protocol is a set of rules that establish a standard for inter-
connecting devices. Computer manufacturers are not required to follow any particular
communication protocol when designing their equipment, but doing so usually adds
to their product’s popularity.) RS-232C devices connect through a 25-pin connector,
commonly called a DB-25 connector.

The Macintosh is not an RS-232 device. Its serial ports follow the RS-422 pro-
tocol, which is an enhanced version of RS-232 that allows higher-speed communica-
tion and greater distance between devices. The connector used by the Macintosh has
nine pins and is commonly called a DB-9 connector. It can easily be hooked to most



Chapter 10: Introduction to Communications 147

serial devices—even those using a different protocol—with the proper cable. Your
Macintosh dealer can probably supply a cable with the proper connectors to hook to
any other device you purchase, but if you are into being self-sufficient or saving
money, you canrassemble your own cables with relatively little effort.

The nine-pin connectors at each of the Macintosh serial ports have the following
signals on them:

s}

in Signal

Ground

+ 5 volts

Ground

TXD + (transmitted data)

TXD —

Filtered + 12 volts

Handshake for printer or carrier detect for modem; also for
external clock in synchronous communication mode

RXD + (received data)

RXD -

O UL WD |

© o

Of these, the minimum required for communication are a ground, a transmit, and a
receive signal. The signals available on pins 3, 5, and 9 of the Macintosh modem port
satisfy this requirement, and correspond to pins 7, 2, and 3 on an RS-232 (DB-25) con-
nector. Some devices also require a carrier-detect signal from pin 7 of the Macintosh.
The connectors and wire required are readily available and not too expensive. Radio
Shack, for example, stocks both the DB-9 and DB-25 connectors under the following
part numbers:

DB-9 Male 276-1537
Female 276-1538
DB-29 Male 276-1547
Female 276-1548

The wiring diagrams in Figure 10-1 on the next page show the connections for
cables used to hook the Macintosh to other specific devices.



148 SECTION III: COMMUNICATIONS

Mac to Mac Mac to IBM PC
le——»1] 1 1
2 2 2 2
3e—3 3 3
4 4
4 4
5 5 5 5:]
6 6
6 6
7 7 . 7
8 8
9 9 8 8
9 9
Mac to D.C Hayes Modem :
1 1 20
2 2
Mac dummy plu:
3 3 y plug
4 4 1
5 5 2
6 6 3
7 7 4
8 8 5
9 9 6
: 7
20 8
9

Figure10-1. Various cable connections

Communication programs

Programs that allow the Macintosh to communicate with other computers come
in many sizes and shapes, and at a variety of prices. They share the common quality of
being able to send the characters you type at the keyboard out the modem port at the
back of the Mac, and of transferring the characters that come in the modem port to
the screen, but other than that, they may differ greatly.

To really take advantage of the power of your Macintosh, sophisticated software
is usually required, but because this is a book about BASIC and not a book about com-
munications per se, I'm going to limit the discussion of communication programs in



Chapter 10: Introduction to Communications 149

this chapter to the relatively simple terminal emulation program, called Terminal, that
Microsoft has included on the BASIC disk. This program—written, naturally, in
BASIC—does nothing more than allow your powerful Macintosh to act like a simple
terminal. (A terminal is a keyboard/screen combination that has no computing power
and no internal or external storage for the information that passes through it.)

There are many situations in which this level of communication is adequate. For
example, if you can connect your Macintosh to the office computer and use its storage
and computational power, then simply being able to enter information from home or
while traveling may be useful. Also, many of the electronic services, such as directing
your bank to pay a bill, or retrieving airline scheduling information, can be utilized
with a simple terminal.

In addition to providing terminal emulation capability, I like to think that Termi-
nal was provided to help you learn more about BASIC. And as a learning tool, it is
ideal: It is well written and documented, it uses several commands unique to the Mac-
intosh, it performs a simple task in an understandable manner, and it can be expanded
almost infinitely. In Chapter 11, we will tear the Terminal program apart, and learn
what it does and how it does it. Then in Chapter 12, we will add some features to make
it more useful. By the time you finish Chapter 12, you should understand the Terminal
program well enough to tailor it to your own needs. For now, let’s finish this chapter
with a brief discussion of some of the services that will be available to you once you
have your modem connected and your communication program up and running.

Let your fingers do the walking

The electronic services to which you can connect your Macintosh vary in cost
from nothing (or just the cost of a telephone call) to several hundred dollars an hour.
I'll just mention the bargains.

Bulletin boards

The most common free services are bulletin boards— computerized versions of
the cork-board at the neighborhood grocery store, where people post notices about
things to buy or sell, and carry on “pen-pal” type relationships with other comput-
erists. If you are new to telecommunication and would like a cheap way to try out your



150 SECTION III: COMMUNICATIONS

system, and perhaps meet a few people with common interests, you should try out a
few bulletin boards. The phone numbers of local bulletin boards can usually be ob-
tained from someone at a computer store or in a users-group meeting.

A communication sampler: Online

The commercial services (those that charge money) offer such a vast variety of
information and service that it is difficult to decide which to subscribe to. If you would
like to try out a few of these services for free, I recommend you buy my book: Online
(Microsoft Press, 1985). Included with the purchase of this book are subscriptions to
six major services, and free time on one more. As an example of what is available via a
modem, here’s a summary of the services offered through Online.

MCI Mail specializes in what is often called “store and forward” electronic mail
delivery. Your subscription to MCI Mail allows you to send messages to other subscrib-
ers—anything from a short note to long documents created with your word processor.
Mail sent electronically is instantly available in recipient MCI Mailboxes. The next
time the people you have sent messages to log on, they are notified of mail waiting and
can read it or transfer it directly to a computer file.

If the intended recipient is not a subscriber, MCI offers the option of telecom-
municating your message to a facility as close to the recipient as possible, printing the
message, placing it in an envelope, and then delivering it by courier or turning it over
to the U.S. Postal system, as you desire.

CompuServe is an information utility, offering a broad range of topics at a low
price. CompuServe’s Executive Information Servise (EIS) offers in-depth coverage of
the financial community, access to a variety of news services, statistical information,
shopping, and communication—both electronic mail and an online computer con-
ferencing service.

NewsNet offers the publishers of newsletters the opportunity to make their prod-
uct instantly available online to readers. When you call NewsNet, you tap into a huge
database containing years of subscriptions to hundreds of newsletters. Every key word
of every newsletter is electronically indexed; enter a word or phrase that interests you
and NewsNet will tell you which newsletter issues include references to it. You can
then select and read specific articles or headlines.



Chapter 10: Introduction to Communications 151

If you have a continuing interest in a particular subject, NewsNet will monitor
this subject for you and tell you, each time you log on, if new information has been
added to the database since your last session.

Official Airline Guides (OAG) is a database containing fares and schedules for
over 700 airlines throughout the world. With a quick call to OAG, you can find all di-
rect or connecting flights between any two cities, including departure and arrival
times and specific fares. You can discover the “specials” and excursion fares, and see
what restrictions apply to them.

Western Union is a name that brings up visions of old men dinging the bells on
their bicycles as they pedal through traffic to deliver urgent telegrams. But the deliv-
ery “boys” are gone: Western Union has enthusiastically entered the electronic era.

Your subscription to Western Unions EasyLink service provides a link to the
people on the other side of 1.6 million telex machines; allows you to send telegrams,
mailgrams, cablegrams, and ties you into an electronic mail network with 110,000
other EasyLink subscribers—all without leaving your computer keyboard. Western
Union also provides a currrent affairs news service.

DIALOG is the granddaddy of all databases. Actually, DIALOG is a vendor of
database information; it has gathered together hundreds of specialized databases,
covering almost every imaginable subject, and provides an organized method to ac-
cess all of them.

Dow Jones News/Retrieval Service is a subsidiary of the company that publishes
The Wall Street Journal. Although it specializes in stock-market information, it also
makes available to its subscribers an array of business and general-interest informa-
tion and services—everything from Wall Street news to movie reviews.

These services are just a sample of what is available online. There are thousands
of sources of information and services with which you can communicate using your
computer. Now that you know what you are going to do with telecommunication, let’s
have a look at a simple program that helps you do it.



The Terminal
Program Chapter 11

The Terminal program supplied by Microsoft on the BASIC disk is a relatively simple
program. It occupies about 4K bytes on your disk, and when printed fills about two
and a half pages. By contrast, the powerful PC-Talk III, a communication program
written in BASIC for the IBM PC, is about 45K bytes long and fills 19 pages. They both
perform the same primary function: the exchange of information between two com-
puters. PC-Talk III simply offers more refinements and options. In this chapter we will
learn how the Terminal program operates, and in the next look at possible enhance-
ments to it. By the time you finish this section, you should be able to create a com-
munication program tailored exactly to your own needs.

Since the Terminal program is on your disk and ready to run, go ahead and try it
out before we get into the explanation of how it works. (I assume, since you are read-
ing this chapter, that you have either a modem or access to a second computer to which
you can connect your Macintosh.)

The first thing you will notice as the Terminal program starts to run is that it re-
places BASIC’s menu bar with one of its own. There are only two selections on this
menu bar, with only one item on each menu. Figure 11-1, on the next page, shows the
screen after you choose Set Configuration Parameters from the Configure menu. The
dialog box that appears allows you to set the baud rate, parity, number of data bits, and
number of stop bits used to communicate, by clicking a button opposite each param-
eter. The default parameters are indicated by black dots in their buttons.

If, when you start the program with your modem connected and turned on,
these default settings are satisfactory, you can simply dial the phone number of the
computer you want to connect with and start communicating, Everything you type
will go out the modem port, and anything that comes in the modem port will appear

153



154 SECTION II1: COMMUNICATIONS

%

Terminal
(O 110 bits per sec (O 5 Data bits (O No parity
@ 300 bits per sec O 6 Data bits @® Even parity
(O 600 bits per sec (@ 7 Data bits (O 0dd parity

(O 1200 bits per sec O 8 Data bits
{0 2400 bits per sec

(O 4800 bits per sec @ 1 Stop bits
(O 9600 bits per sec O 2 Stop bits

Figure1l-1. The Terminal configuration screen

on the screen. Normally, what you type will also appear on the screen, echoed back by
either your modem or the computer with which you are communicating.

Other than the configuration dialog box and the text that you send or receive,
there is not much to look at when you run this program, but it does its simple job well.
Let’s read through the program and discuss the new commands. After you understand
how this fundamental program works, we will create a more powerful communication
program based on the same concepts.

The complete Terminal program is shown in Figure 11-13 at the end of the chap-
ter. For the purposes of this discussion, I have divided Terminal into sections, and in
the next few pages, I list and briefly describe each section in the order in which it
would typically be used, not the order in which it appears on your disk. Figure 11-2
shows the flow of the program. Once it enters the communication loop, it stays there
unless it is interrupted to handle a menu request, which in turn leads it into one or
more of the subroutines and possibly the subprogram. When the peripheral activities
are taken care of, the program returns to the communication loop.



Chapter 11: The Terminal Program

START

}

DIM

l

INIT
text attributes
menu

default

opéen com

N

—t

155

4

COMMUNICATION LOOP

|

QUIT

END

HANDLE MENU

- SELECT OPTIONS

!

r 3

!

DISPLAY DEFAULTS

read data
simulate press

a

VL v

SELECT BUTTON

Figure 11-2. A flow chart of the Terminal communication program



156 SECTION III: COMMUNICATIONS

REM --- Terminal
REM --- Terminal Emulation Program

DIM nam$(17), group(17), choice(4), choice$(4)
GOSUB Init

Figure1l-3. Dimensioning the arrays

You should be familiar with most of the commands in this program, and the com-
ments will help refresh your memory. (Notice that REM statements are used for the
comments in this program, instead of the single-quote/asterisk convention I usually
use.) If, after glancing through the listing, you feel you already understand the com-
mands used and would like to get on with enhancing Terminal to make it a more pow-
erful program, feel free to skip ahead to the next chapter.

Dimensioning the arrays

Figure 11-3 lists the section of the Terminal program that identifies the program
(in the initial comments) and sets aside storage space for array variables. As you can
see, the program uses four arrays: nam$(17), group(17), choice(4), and choice$(4). Re-
member that the number in parentheses after each variable name is the highest sub-
script that may be used with that variable, and that 0 is the lowest, so you can have one
more variable in each array than the value given in the DIM statement.

Once the arrays have been dimensioned, the GOSUB statement diverts program
flow around the main communication loop (labeled Loop:) to the Init subroutine.

Initializing the program

The Init subroutine, as its label implies, sets up the initial, or default, conditions
of the program. It establishes the text font that will be displayed on the screen, creates
the menus and their selections, specifies the default communication parameters, and
opens the communication port. Read through the listing in Figure 11-4 on the next
page, and then we will take a closer look at each line.




Chapter 11: The Terminal Program 157

Init:
TEXTFONT 4 ’'mono-spaced font
TEXTSIZE 9 ‘allows 80 characters per line
TEXTMODE 1 "print mode = XOR, not COPY

REM --- Setup menu

MENU 1, 0, 1, "File"

MENU 1, 1, 1, "Quit"

MENU 2, 0, 1, "Configure™-

MENU 2, 1, 1, "Set configuration parameters”
MENU 3,0, 0, ™

MENU 4,0,0,™

MENU5,0,0,™

ON MENU GOSUB HandleMenu

MENU ON

REM --- Setup default options

choice(1) =2 '300 baud
choice(2) =9 ’even parity
choice(3) = 13 ’7 data bits
choice(4) = 15 '1 stop bit
REM --- Open Communications port with 2000 byte input buffer

OPEN "COM1: 300, e, 7, 1" AS 1 LEN = 2000

RETURN

Figure 11-4. Initializing the program

You are familiar with the TEXTFONT and TEXTSIZE ROM calls from earlier
chapters. They set the font and character size used for printing in the output window.
The TEXTMODE call controls whether the pixels that make up new text on the Macin-
tosh screen replace old pixels at the same location or are displayed on top of them in
some manner. The two possible syntaxes for this call are:

CALL TEXTMODE (mode)
TEXTMODE mode

The mode argument is a numeric expression from 0 through 3. Figure 11-5, on the
next page, demonstrates the effect of each mode.




158 SECTION III: COMMUNICATIONS

TEXTMODE 0 TEXTMODE1 TEXTMODE 2 TEXTMODE 3

overlay on

white background overlay overlay overlay

overlay on

black background

overla

overlay overlay

overlay on
gray background

Figure1l-5. Text modes

If you don’t specify a mode, BASIC defaults to mode 0, in which new text, black
on a white background, replaces old. Mode 1 ORs new text with old, meaning that all
pixels turned on for either new or old text remain turned on. Mode 2 XORs the new
with the old, meaning that any pixel that would be turned on for the new text that has
already been turned on for the old text is inverted in color (turned off) and appears
white. Mode 3 changes only black pixels of the old text, making them white where the
new text appears.

The next block of commands provides the power to personalize your program by
creating a menu bar and dropdown menus. This part of the Mac’s visual interface is a
distinctive feature of commercially available programs for the Macintosh, and the
BASIC MENU command allows you to create and control it.

A menu is actually dealt with in two stages. The first stage, which you see in this
section, creates the menu and specifies the selections and the state (disabled or en-
abled) of each. The second stage, discussed in a moment, defines what happens when
the user selects an item from the menu.

There are nine commands in BASIC that include the word MENU. Each has a
different syntax and results in a different action being taken. Here, we use three
MENU commands. The first of these is the statement that actually creates menu items.
Its syntax is:

MENU menu-ID, item-ID, state [title]



Chapter 11: The Terminal Program 159

Here is what the italicized arguments in this statement mean:

Argument Value and meaning

menu-id A number from 1 through 10, identifying position of menu in
menu bar (from left to right).

item-id A number from 0 through 20, identifying item in menu (menu
title is item 0; selections in menu are numbered 1 through 20).

state A number from 0 through 2 that determines whether item
referenced in this statement is disabled (0), enabled (1), or
enabled and preceded by check mark (2).

title A string of text, enclosed in quotation marks, assigned to
referenced item and appearing either as menu title or as item
on menu.

Let’s take a closer look at how the Terminal-program menus are created. When
you ran the program, you saw that there were three menus— Apple, File, and Config-
ure. The latter two are created by the program and each displays one item. (You can
have as many as 10 BASIC-created menus with up to 20 items on each.) The desk ac-
cessory menu under the Apple icon is a permanent fixture that we can neither turn off
nor control from BASIC, so it has no number. You issue this version of the MENU com-
mand once for each menu title and each selection item you want to define. Glancing at
the block of MENU commands in the Terminal program, you can see that five menus,
in addition to the Apple menu, are defined. The three that you did not see when you
ran the program (numbers 3, 4, and 5), are “dummy” menus, included in the program
as a way of turning off the standard BASIC menus in those locations (remember that
this program is run from within BASIC, so the BASIC menu bar appears at the top of
the screen until you change it).

Once a menu is created, the program uses another of the nine MENU com-
mands, the ON MENU statement, to tell the Macintosh what to do when an item is se-
lected from the menu. In this case ON MENU GOSUB HandleMenu sends the program
off to a subroutine for more instructions. The ON MENU statement is one of a group
of ON... statements that set up the action to be taken should some event occur in the
future. The Macintosh stores this information and, once trapping for that event is



160 SECTION III: COMMUNICATIONS

enabled, watches for it as the program runs, taking the specified action if the event
occurs. The subsequent MENU ON statement, the third version of MENU that we’ll
meet in this chapter, enables menu event trapping. From this point on, if a menu item
is chosen, program flow is diverted to the HandleMenu subroutine.

The next part of this section of code assigns values to four elements of the choice
array, which was dimensioned in the first section. Later you will see how these set-
tings are used to display the default communication parameters when we arrive at the
DisplayDefaults subroutine.

The final step in the initialization process is to open the communication port. In
addition to opening sequential and random-access files, you can use the OPEN com-
mand to open I/O devices: the keyboard (KYBD:), the Clipboard (CLIP:), the screen
(SCRN:), the printer (LPTI:), and the communication port (COM1:). The syntax of the
OPEN command when used to open the communication port includes information to
set the baud rate, parity, number of data bits, and number of stop bits. The specific
command given in the Terminal program—Open "COMI: 300, e, 7, 1" AS 1 LEN =
2000—sets the baud rate to 300, the parity to even, the number of data bits to 7, and
the number of stop bits to 1. The complete list of possible settings for these communi-
cation parameters is:

Parameter Possible values

Baud rate 110, 150, 300, 600, 1200, 1800, 2400, 3600, 4800,
7200, 9600, 19200, or 57600

Parity 0Odd, even, or none
Data bits 5,6,7 0r8
Stop bits 1,1.5,0r2

The AS 1 portion of the command opens the port as file #1. The file number can
be any integer from 1 through 255, and is essentially the address used when sending
information to the file (PRINT #filenumber) or getting information from the file (IN-
PUT$(X, filenumber)). The final part of the OPEN statement, LEN = 2000, allocates
2000 bytes of memory as an input buffer in which to store data bits that come in faster
than the program can accept them.



Chapter 11: The Terminal Program 161

By the time the program has gotten this far, both it and the computer are ini-
tialized and ready to start communicating. So the RETURN statement sends the pro-
gram back to the line following the GOSUB that called the Init subroutine, and the
program flows on into the main communication loop, where it will remain until a
menu item is chosen.

An exercise

One of the nice things about studying a working program already on your disk is
that you don’t have to type it in and worry about whether what you have typed will
work. It is easy to load the program into BASIC and run it. You can then stop the pro-
gram, list it, and make minor changes to check your understanding of the various
commands. A simple change you can make to this section is to replace the menu titles
with other words. You could even add a few more items to one of the menus, or add an
entire new menu. As long as you don't save your changes when you quit, the original
program won't be affected.

The main communication loop

Although the program is initially directed around the Loop: section by the
GOSUB Init statement, Loop is the main part of the program and, as we will see later,
can practically stand on its own as a useful program. The program accomplished one
essential action during its diversion, however: It opened the communication port
(COML:) so that you can send and receive information.

The main communication loop, shown in Figure 11-6 on the next page, does just
what the comment in its first line indicates. (Remember that remarks can be set off
with either REM or a single quote mark.) It displays the characters arriving at COM1:
on the screen, and sends the characters typed at the keyboard out the same port. The
main loop is entered on the line labeled Loop. The next two lines monitor COM1: for
incoming characters and print any that appear. The following two check to see if a key
has been pressed since the last check, and if one has, the next-to-last line sends the
character out COM1.:. The last line directs the program back to Loop to repeat the se-
quence. As a matter of fact, it will repeat forever unless an outside event—in this case
a selection from the menu—interrupts it.



162 SECTION III: COMMUNICATIONS

"Display characters from COM1, send keystrokes to COM1
Loop:

PRINT INPUT$(LOC(1), 1);

IF LOC(1) > 0 THEN Loop

k$ = INKEY$

IF k$ = "" THEN Loop

PRINT #1, k$;

GOTO Loop

Figure 11-6. The main communication loop

Let’s look more closely at the individual lines in this section, and I will explain
the commands we haven'’t previously used.

PRINT INPUT$(LOC(1), 1);

You are already familiar with the PRINT statement. Used in this context, it will
display the string represented by INPUT$(LOC(1), 1) on the screen. We already know
that this string will be one or more characters waiting at COM1:, but how many char-
acters are there and how are they collected? Well, you'll recall that the full syntax of
the INPUTS$ function is:

INPUTS$(X[, [#]filenumber])

This function returns a string X characters long from the specified file (if no file num-
ber is specified, INPUTS$ gathers its characters from the keyboard). In this case, the
file specified is #1, the file number assigned to the communication port. The number
of characters to gather, however, has been replaced by the function LOC(I). The par-
enthetical number in this function is again a file number. The LOC function returns
different types of information, depending upon the kind of file referenced by the file
number. The number returned for COM1:, which we are using here, is the total num-
ber of characters waiting to be input (remember that the input buffer holds characters
arriving faster than they can be displayed). So what this line in essence says, is: Find
out how many characters are waiting at the communication port, bring them in, and
print them on the screen.




Chapter 11: The Terminal Program 163

The semicolon that ends the PRINT statement serves its usual purpose: It pre-
vents an automatic carriage return, so that the next PRINT statement will display its
characters directly after these, on the same line of the screen.

The next line instructs the computer to check the input port again and, if any-
thing is waiting to come in, to direct the program flow back to Loop, which will input
and print it.

IF LOC(1) > 0 THEN Loop

The purpose of this statement is to give incoming characters priority over those typed
at the keyboard. If the previous line emptied the buffer but characters are still coming
in, this line sends the program back to empty the buffer again. If there are no charac-
ters waiting to come in, the program continues to the next line.

k$ = INKEY$

This statement simply assigns the character returned by the INKEY$ function to
the variable k$. INKEYS$ returns either the next character from the keyboard buffer
or, if the buffer is empty, a null string. Because it does not hold the waiting character,
we assign the retrieved character to k$ so that we can later test it and, if necessary,
print it. The next line:

IF k$ = "" THEN Loop

instructs the computer to go back to Loop if there is no keystroke waiting in k$. (Dou-
ble quotes with neither character nor space between them are the symbol for the null
string.) Ifk$ is not equal to the null string—in other words, if a character has been as-
signed to k$—the program goes on to the next line, without executing the THEN por-
tion of the IF.. THEN statement.




164 SECTION III: COMMUNICATIONS

PRINT #1, k$;

Here we see yet another version of the PRINT statement. The #1 included in this
statement directs the printing to file #1, rather than to the screen. Again, note the
closing semicolon which keeps the printed characters on the same line.

When you are using the Terminal program, it will seem that the characters you
type are immediately printed on the screen. In reality, however, they are sent out the
communication port to the computer you are hooked to, which (assuming it has been
instructed to do so) echoes them back to your computer, in addition to whatever other
uses it makes of them.

The final line of this section directs program flow back to the beginning of the
loop, to repeat the cycle.

GOTO Loop

The constant checking of COM1: and the keyboard will continue until you stop the
program by pressing Command-period, or make a selection from the menu, so you
can see where this program will spend most of its time. The remainder of the program
simply accomplishes the housekeeping tasks of displaying and managing the menus
and allowing you to change the baud rate and other communication parameters.

Managing the menus

When an item is chosen from a menu, program flow is diverted to the Handle-
Menu subroutine shown in Figure 11-7. Since there is only one item on each menu, in
this case determining the menu that was chosen also determines the item.

The MENU(0) function checks to see which menu was selected; if it was menu
#1, the SYSTEM statement is issued to quit BASIC and return to the Macintosh desk-
top. If menu #1 was not selected, then #2 must have been, so the program assumes
you want to change the communication parameters and closes file #1, displays a list of
options, accepts your choices, and reopens the communication port with the new pa-
rameters. (It is unusual to have only two items to choose between in the entire menu.)




Chapter 11: The Terminal Program 165

HandleMenu:
IF MENU(0) = 1 THEN SYSTEM ‘got quit command
CLOSE 1 "else it must be Set configuration parameters

WINDOW 2,, (50, 50) - (450, 250), 2

GOSUB DisplayDefaults

GOSUB SelectOptions

WINDOW CLOSE 2

options$ = choice$(1) +"," + choice$(2) + "," + choice$(3) + "," + choice$(4)
REM --- Open Communications port with 2000 byte input buffer

OPEN "COM1: " + options$ AS 1 LEN = 2000

CLS

MENU 1,0, 1

RETURN

Figure 11-7. Managing the menus

The CLOSE statement puts away files opened with the OPEN statement. You can
specify one or more files to close, separated by commas, or you can simply use CLOSE,
with no file numbers, to close all open files. Files are closed automatically if you issue a
CLEAR, END, NEW, RESET, or SYSTEM statement.

You have already used the WINDOW command in Chapter 4, so there is no need
to discuss it in detail. The window created in this program is used as a dialog box, to
display the communication-parameter options. These parameters are managed by the
subroutines Display Defaults and SelectOptions, which will be discussed in a bit: They
do essentially what their names imply. After the two GOSUBs, the program returns to
HandleMenu and uses the statement WINDOW CLOSE 2 to close the dialog window,
which is no longer needed.

The two subroutines generate new values for elements 1 through 4 in the choice$
array. These new values— baud rate, parity, number of data bits, and number of stop
bits—are joined together as one long string named options$, which is then used to re-
open COML:. Creating one new string by using plus signs to “add” smaller strings to-
gether like this is called concatenation. The commas are characters in the new string,
required to open the communication port, and are not a part of the concatenation

process. If you selected 1200 baud, 8 data bits, 1 stop bit, and no parity, option$ would
look like this:

"1200,8,1,N"




166 SECTION III: COMMUNICATIONS

F inally, in preparation for starting a new communication session, the screen is
cleared with CLS and the previously highlighted menu title is reset to an active but
unselected state.

Displaying the default parameters

HandleMenu calls the DisplayDefaults subroutine to display the communica-
tion-parameter options and mark the current selections in the dialog box created by
its WINDOW statement. The values of these parameters are stored in the DATA state-
ments that follow the subroutine. DisplayDefaults reads the DATA statements and as-
signs the values they contain to elements of the nam$ and group arrays. It then uses
these arrays to place the buttons in the dialog box. After the buttons are displayed, the
Select Button subprogram is called to simulate the selection of the buttons for the cur-
rent communication parameters, choice(1) through choice(4). Figure 11-8 shows the
dialog box created, and Figure 11-9 lists the subroutine that produces the display.

You'll recall that there are several ways to provide a program with the informa-
tion it needs to make decisions, create displays, and so on: You can store information
in a disk file and retrieve it with an INPUTS$, INPUT#, or LINE INPUT# statement;
you can ask the user to supply it via the keyboard and retrieve it with an INPUT or

(O 110 bits per sec (O 5 Data bits (O No parity
@® 300 bits per sec O 6 Data bits @® Even parity
(O 600 bits per sec @ ? Data bits (O 0dd parity

(O 1200 bits per sec O 8 Data bits
(O 2400 bits per sec

(O 4800 bits per sec @ 1 Stop bits
() 9600 bits per sec (O 2 Stop bits

Figure11-8. The default communication parameters



Chapter 11: The Terminal Program 167

DisplayDefaults:
REM *** Prompt user for Communications Parameters
RESTORE
FORi=1TO 16
READ x, y, group(i), nam$(i)
BUTTON i, 1, nam$(i), (x,y) - (x + 135,y + 15), 3
NEXT i
BUTTON 17, 1, "Ok", (310, 110) - (350, 150)
REM *** Simulate button pushes to highlight defaults
FORi=1 TO 4
SelectButton choice(i)
NEXT i
RETURN

Figure 11-9. Displaying the default parameters

LINE INPUT statement or the INKEY$ function; or you can store it in the program it-
self in the form of DATA statements that can then be read as needed and assigned to
variables. This third method is the one used here to store the default communication
parameters and the (x, y) coordinates needed to properly position their buttons, since
this information is not subject to change.

The RESTORE statement at the beginning of this subroutine determines the
first DATA statement to be read. The syntax for this statement is:

RESTORE [line]

When used with neither line number nor label, as it is here, RESTORE causes the next
READ statement to start at the first DATA statement in the program. If you include the
line number or label of a specific DATA statement, the next READ will start with that
statement.

After resetting the READ position to the beginning of the DATA statements, the
program sets up a loop to read the 16 DATA statements and assign the four pieces of in-
formation in each to four variables. The 16 DATA statements, taken from top to bot-
tom, correspond to the 16 buttons in the dialog box. You are already familiar with the
FOR.. .NEXT statement: This one will cycle 16 times, executing the READ and BUT-
TON statements each time. The first time through the loop, i (the counter in the
FOR...NEXT loop) is equal to 1. The READ statement, READ x, y, group(i), nam$(i),




168 SECTION III: COMMUNICATIONS

will read the first DATA statement, DATA 10, 10, 1, 110 bits per sec, and make the follow-
ing variable assignments:

x=10

y=10

group(1)=1
nam$(1)="110 bits per sec”

The READ statement is followed by the BUTTON statement, which uses three of the
newly assigned variables to position the first button. You'll recall that the syntax for
the BUTTON statement is:

BUTTON ID, statel, title, rectangle[ , type]]

The BUTTON statement in the Terminal program reads:

BUTTON i, 1, nam$(i), (x, y) - (x + 135, y + 15), 3

so on the first time through the loop, it will look like this:
BUTTON 1, 1, "110 bits per sec”, (10, 10) - (145, 25), 3

The values of x and y, brought in from the DATA statement, are used to define the up-
per left corner of the rectangle that determines the button’s location. The x value is
then increased by 135 and the y value by 15 to define the lower right corner.

After 16 times through the loop, there will be 16 active radio-type buttons. The
line following the FOR...NEXT loop then creates one additional button, titled OK, for
the user to click to institute the new communication parameters.

The second FOR...NEXT loop in this section calls the SelectButton subprogram
four times to change each of the buttons that were stored in the choice array by the
Init subroutine to the default state.

Following the DisplayDefaults subroutine are the DATA statements it reads (Fig-
ure 11-10). You could move this section to any other place in the program, or divide it
into parts and scatter them throughout the program. As long as the statements ap-
peared in the same order, moving them would not affect how the program runs.




Chapter 11: The Terminal Program 169

REM --- x,y coordinate of button, groupid, title

DATA 10, 10, 1, 110 bits per sec

DATA 10, 30, 1, 300 bits per sec

DATA 10, 50, 1, 600 bits per sec

DATA 10, 70, 1, 1200 bits per sec

DATA 10, 90, 1, 2400 bits per sec

DATA 10, 110, 1, 4800 bits per sec

DATA 10, 130, 1, 9600 bits per sec

DATA 290, 10, 2,No parity
DATA 290, 30, 2,Even parity
DATA 290, 50, 2,0dd parity

DATA 150, 10, 3, 5 Data bits
DATA 150, 30, 3, 6 Data bits
DATA 150, 50, 3, 7 Data bits
DATA 150, 70, 3, 8 Data bits

DATA 150, 110, 4, 1 Stop bits
DATA 150, 130, 4, 2 Stop bits

Figure 11-10. The DATA statements

The individual items in a DATA statement are separated from each other by com-
mas. There is no need to place quotation marks around an individual string unless the
string itself contains commas, colons, or leading or trailing spaces that you want to
preserve.

Managing the parameter options

Having returned from DisplayDefaults, HandleMenu branches to SelectOptions
(Figure 11-11 on the next page), which waits for a button to be clicked. If a button with
an ID of less than 17 is clicked, the number of the button is passed to the SelectButton
subprogram, which changes the status of the selected button and stores the selection
in the choice array. If the OK button (#17) is clicked, indicating that the user has
finished changing parameters, then program flow returns to HandleMenu, where the
options are set and the communication port reopened.




170 SECTION II1: COMMUNICATIONS

SelectOptions:
SelectLoop:
dialogld = DIALOG(0)
IF dialogld <> 1 THEN SelectLoop
buttonid = DIALOG(1)
IF buttonld < 17 THEN CALL SelectButton(buttonld) : GOTO SelectLoop
RETURN

Figure1l-11. Managing the option selections

We discussed the DIALOG function when we first encountered it in Chapter 6.
Then, as now, we used only two of the seven possible variations: DIALOG(0) and DIA-
LOG(1). Recall that DIALOG(0) returns a 1 if a button is clicked (otherwise it returns
a 0) and that DIALOG(1) returns the ID of the most recently clicked button. Since a
function does not store the value returned, you must assign it to a variable in order to
use the value more than once. At the beginning of this section DIALOG(0) is assigned
to dialogld, and DIALOG(1) is assigned to buttonld. Once the program moves to the
SelectOptions subroutine, it goes into a loop and waits for dialogld to become equal to
1, indicating that a button has been clicked in the window. As soon as a button is
clicked, DIALOG(1), which has been set equal to buttonld, returns the button num-
ber, which will be used to set the new communication parameters.

Managing the buttons

The management of the parameter buttons is handled by the SelectButton sub-
program. As was pointed out in Chapter 8, a subprogram is similar to a subroutine, ex-
cept that the subprogram has its own set of variables, which remain unique to it unless
you specifically instruct it to share some of the variables used in the main program.

SelectButton, shown in Figure 11-12, is called each time a button other than the
OK button is pressed in the configuration dialog box. It determines which of the pa-
rameter buttons was pressed, removes the highlight from the previously selected but-
ton, and highlights the current selection. It then assigns the selected parameter to the
array variable choice$(groupld), where groupld identifies the selected parameter’s
group (baud, parity, data bits, or stop bits). Since the array choice$ is a shared vari-
able, the new value will also be available to the main program.




Chapter 11: The Terminal Program 171

REM --- The user has just pushed a button. Highlight
REM --- that button and remember the selection in choice()
REM --- and choice$()
REM ---
SUB SelectButton(buttonld) STATIC

SHARED nam$(), group(), choice(), choice$()

groupld = group(buttonlid)
IF choice(groupld) > 0 THEN BUTTON choice(groupid), 1
BUTTON buttonld, 2
choice(groupld) = buttonid
IF groupld = 2 THEN setParity
choice$(groupld) = STR$(VAL(nam$(buttonld)))
EXIT SUB
setParity:
choice$(groupld) = LEFT$(nam$(buttonid), 1)
END SUB

Figure 11-12. Managing the parameter buttons

This subprogram is a little more complex than the subroutines we've looked at,
so let’s examine it one line at a time. The first line simply identifies the start of the sub-
program and lists the formal parameters and storage class. '

SUB SelectButton(buttonld) STATIC

The SHARED statement then identifies which of the variables are common to both the
main progam and the subprogram.

SHARED nam$(), group(), choice(), choice$()

The next line assigns the group number of the button selected to the variable groupId.
Baud-rate options (buttons 1 through 7) are group 1; parity options (buttons 8 through
10) are group 2; data bit options (buttons 11 through 14) are group 3; and stop bit op-
tions (buttons 15 and 16) are group 4.




172 SECTION III: COMMUNICATIONS

groupld = group(buttonld)

Next, an IF.. THEN statement checks the value of the shared array variable choice to
confirm that a button was previously selected for this group, and then deselects it (re-
moves the highlight by changing the button status to 1).

IF choice(groupld) > 0 THEN BUTTON choice(groupld), 1

The following two lines highlight the button that was just pressed and make it the
choice for its group.

BUTTON buttonld, 2
choice(groupld) = buttonid

If the button is in group 2 (parity), an IF.. THEN statement diverts program flow
to the line labeled SetParity for reasons that will become clear in a moment. (It's worth
pausing here to remind you that although variable names are unique within a sub-
program, line labels are not. If you use a label within the subprogram that is also used
in the main program, the program stops and the error message “Duplicate label” is
displayed.) If the button is not in group 2, the program continues with this line:

choice$(groupld) = STR$(VAL(nam$(buttonlid)))

The VAL(X$) function is typically used to convert a number that has been stored
as a string variable back to a numeric variable, so that it can be manipulated mathe-
matically. A secondary effect of this function is useful in this program: In performing
the conversion, all leading blanks, tabs, and linefeeds are stripped from the argument
(X$), and then, working from left to right, each remaining character is converted to a
numeric value until a character is encountered that is not a number, at which time the




Chapter 11: The Terminal Program 173

function terminates. The result of the VAL function is thus to convert a string such as
110 bits per sec, which was stored in the nam$ array by the DisplayDefaults subroutine
earlier in the program, to the number 110.

The STR$(X) function does just the opposite, converting numbers to strings. The
result of the combination of these two functions is to pull the leading number from
each of the strings that store the names of the parity, data-bit and stop-bit buttons
(groups 1, 3, and 4) and convert it back to a string. This retrieved string is then as-
signed to the variable choice$(groupld), which will later be used as a parameter when
opening the communication port.

If a parity button is chosen (group 2), the portion of the parameter that has to be
assigned to choice$(groupld) is the first letter of the button name. Since the name
consists entirely of letters— No parity, Even parity, Odd parity—the VAL function is
of no use. However, we can use the LEFT$ function, which has the syntax:

LEFT$(X$, I)

to return the leftmost I characters of X$. In this case, it returns just the leftmost char-
acter of nam$(buttonld)—N, E, or O—which is then assigned to choice$(groupId).

choice$(groupld) = LEFT$(nam$(buttonid), 1)

If the button that was pressed to cause this subprogram to be called was in group
1,3, or 4, the subprogram is terminated by the conditional EXIT SUB statement. If the
button was in group 2, the subprogram is terminated by the END SUB statement.
Either way, program flow returns to the statement following the CALL statement in
the SelectOptions subroutine: GOTO SelectLoop. Flow returns from SelectOptions to
HandleMenu when the OK button (#17) is clicked.

That completes our discussion of the Terminal program. If your Macintosh is
hooked to a modem or to another computer, you may have used this program to send
the characters you type and read the response, but you probably found that its
usefulness is limited by its inability to store the information received. However, now
that you understand how the program works, you can see that it would not be too diffi-
cult to open an extra file and, each time a character from the modem port is printed




174 SECTION III: COMMUNICATIONS

on the screen, to also print it in the file. This could be accomplished by adding just a
few lines to the program, but such a simple refinement wouldn't give me a chance to
explain many new BASIC commands. Instead, I'll use the next chapter to add some ex-
tra bells and whistles to create a more useful communication program.

REM --- Terminal
REM --- Terminal Emulation Program

DIM nam$(17), group(17), choice(4), choice$(4)
GOSUB Init

‘Display characters from COM1, send keystrokes to COM1
Loop:

PRINT INPUT$(LOC(1), 1);

IF LOC(1) > 0 THEN Loop

k$ = INKEY$

IF k$ = "" THEN Loop

PRINT #1, k$;

GOTO Loop

Init:
TEXTFONT 4 ’mono-spaced font

TEXTSIZE 9 "allows 80 characters per line
TEXTMODE 1 ’print mode = XOR, not COPY

REM --- Setup menu

MENU 1, 0, 1, "File"

MENU 1, 1, 1, "Quit"

MENU 2, 0, 1, "Configure"

MENU 2, 1, 1, "Set configuration parameters”
MENU 3,0,0,™

MENU 4,0,0,"™

MENU 5,0,0,™

ON MENU GOSUB HandleMenu

MENU ON

REM --- Setup default options
choice(1) = 2 '300 baud
choice(2) =9 ‘even parity

Figure11-13. The complete Terminal program more:.-




Chapter 11: The Terminal Program 175

choice(3) =13 '7 data bits
choice(4) = 15 ’1 stop bit
REM --- Open Communications port with 2000 byte input buffer

OPEN "COM1: 300, e, 7, 1" AS 1 LEN = 2000

RETURN

HandleMenu:
IF MENU(0) = 1 THEN SYSTEM 'got quit command
CLOSE 1 ‘else it must be Set configuration parameters
WINDOW 2,, (50, 50) - (450, 250), 2
GOSUB DisplayDefaults
GOSUB SelectOptions
WINDOW CLOSE 2
options$ = choice$(1) +"," + choice$(2) + "," + choice$(3) + "," + choice$(4)
REM --- Open Communications port with 2000 byte input buffer
OPEN "COM1: " + options$ AS 1 LEN = 2000
CLS
MENU 1,0, 1
RETURN

DisplayDefaults:
REM *** Prompt user for Communications Parameters
RESTORE
FORi=1TO 16
READ x, y, group(i), nam$(i)
BUTTON i, 1, nam$(i), (x,y) - (x + 135,y + 15), 3
NEXT i
BUTTON 17, 1, "Ok", (310, 110) - (350, 150)
REM *** Simulate button pushes to highlight defaults
FORi=1 TO 4
SelectButton choice(i)
NEXT i
RETURN

REM --- x,y coordinate of button, groupid, title

DATA 10, 10, 1, 110 bits per sec

DATA 10, 30, 1, 300 bits per sec

DATA 10, 50, 1, 600 bits per sec

DATA 10, 70, 1, 1200 bits per sec

DATA 10, 90, 1, 2400 bits per sec

DATA 10, 110, 1, 4800 bits per sec

DATA 10, 130, 1, 9600 bits per sec

Figure 11-13. The complete Terminal program (continued) more- -




176 SECTION III: COMMUNICATIONS

DATA 290, 10, 2,No parity
DATA 290, 30, 2,Even parity
DATA 290, 50, 2,0dd parity

DATA 150, 10, 3, 5 Data bits
DATA 150, 30, 3, 6 Data bits
DATA 150, 50, 3, 7 Data bits
DATA 150, 70, 3, 8 Data bits

DATA 150, 110, 4, 1 Stop bits
DATA 150, 130, 4, 2 Stop bits

SelectOptions:

SelectLoop:
dialogld = DIALOG(0)
IF dialogld <> 1 THEN SelectLoop
buttonid = DIALOG(1)

IF buttonid < 17 THEN CALL SelectButton(buttonid) : GOTO SelectLoop
RETURN

REM --- The user has just pushed a button. Highlight
REM --- that button and remember the selection in choice()
REM --- and choice$()
REM ---
SUB SelectButton(buttonid) STATIC

SHARED nam$(), group(), choice(), choice$()

groupld = group(buttonlid)
IF choice(groupld) > 0 THEN BUTTON choice(groupld), 1
BUTTON buttonld, 2
choice(groupld) = buttonld
IF groupld = 2 THEN setParity
choice$(groupld) = STR$(VAL(nam$(buttonlid)))
EXIT SUB
setParity:
choice$(groupld) = LEFT$(nam$(buttonid), 1)
END SUB

Figure11-13. The complete Terminal program (continued)




The Expanded
Communication

Program |

The terminal emulation program supplied on your BASIC disk and explained in Chap-
ter 11 is an excellent learning tool, and in certain circumstances has practical value.
But it lacks many of the features considered standard in a communication program. In
this chapter we will expand the terminal program to include the features I consider
desirable. By the time we are through, you should understand the program well
enough to tailor it precisely to your needs.

Before we get involved with enhancing the Terminal program, let’s prove how
simple communication is by stripping Terminal down to its bare essentials. Figure
12-1 shows a shorter version of this program that still manages to move information be-
tween computers. As you can see, it is really just the program we have been working
with, without the menus and choices of communication parameters. With only very
minor modifications, this program will run on almost any computer that runs some
form of BASIC.

Init:

OPEN "COM1:300, e, 7, 1" AS 1 LEN = 2000
Loop:

PRINT INPUT$(LOC(1), 1)

IF LOC(1) > 0 THEN Loop

k$ = INKEY$

IF k$ = "™ THEN Loop

PRINT #1, k$;

GOTO Loop

Figure 12-1. A stripped-down communication program

177



178 SECTION III: COMMUNICATIONS

You could consider this the core of the communication program we are about to
develop. The program we worked with in Chapter 11 is the second stage: It added a
few visual refinements and niceties. Now we will carry the development a little fur-
ther by adding routines that give the user the ability to toggle on and off the saving of
information that passes through the Macintosh’s port and across its screen. We will
also add the ability to upload and download files, and to store and edit a directory of
telephone numbers and dial one of these numbers with a single command.

The flow chart in Figure 12-2 shows the major sections of the program we are
going to build. Can you recognize the Terminal program buried in it? In designing
this program, I analyzed the features of the Terminal program, made a list of features
I'wanted to add, and sketched a chart similar to this one. Since this program is quite a
bit more complex than Terminal (not necessarily more difficult— just more of it), I
added a “flow control” section consisting of a series of GOSUB statements that route
the program through initialization subroutines that define key variables, create the
screen display, set default communication parameters, open the communication port,
and create the menu, before allowing it to flow into the main communication loop.
Since each of the initialization subroutines is used only once, the program could sim-
ply be allowed to flow through them in a linear fashion, without all the GOSUBs and
RETURNS, but this section is helpful to someone encountering the program for the
first time, as it gives them a quick feeling for the flow and the significant sections.

In this chapter, I'm basically going to re-enact the process I went through to cre-
ate the program you will find in Figure 12-63 (without all the mistakes and dead ends
involved in the original task). If you are entering this program as you follow along,
there is no point in including the comments, as they slow the program down apprecia-
bly. As a matter of fact, if you have a Macintosh with 128K of RAM, the comments
would make this program too large to load.

After I wrote the flow-control GOSUB statements, I labeled each subroutine and
stubbed it out with a RETURN statement, as shown in Figure 12-3 on the page after
next. When the program returned from all the subroutines, I had it fall into the main
communication loop, labeled CommLoop:, where I placed an infinite WHILE...
WEND loop to hold it. Then I began filling in individual modules.



Chapter 12: The Expanded Communication Program 179
l InitializeVariables I
I CreateWindow J -« Subroutines
| SetDefaults I
I OpenComm I
l DefineMenu I
v
[ CommLoop |
:Z:.:: < »| HandleMenu
y
V. ‘L A 4
File Options Save Phone
A A A ﬂ[
—»| View File »| Pause »| Start —{ Directory
—] Receive File ¥ Configure »| Continue —1 Enter Number
—»| Send File »{ Stop —»| Hang Up
—> Quit to BASIC —»| Redial

»| Quit to Desktop

Figure12-2. Aflow chartofthe enhanced communication program




180 SECTION II1: COMMUNICATIONS

113

" Execute all initializing subroutines.
GOSUB InitializeVariables
GOSUB CreateWindow
GOSUB SetDefaults
GOSUB OpenComm
GOSUB DefineMenu

CommLoop:
WHILE 1 =1
WEND

InitializeVariables:
RETURN

CreateWindow:
RETURN

SetDefaults:
RETURN

OpenComm:
RETURN

DefineMenu:
RETURN

Figure 12-3. The framework

Initializing the variables

The first section to add is the one that initializes the variables and dimensions
the arrays. It is important to place this section near the beginning of the program, be-
fore any arrays are actually used.

As you can see in Figure 12-4, I have added only three arrays to those used in the
Terminal program, but one of them is very large. The two small arrays, num$(10) and
who$(10), are used in the subprogram that creates the telephone directory. The large
array, scrnsave(4889), is used to refresh portions of the screen that are covered, then
uncovered, as we display various dialog boxes.




Chapter 12: The Expanded Communication Program 181

™ Dimension arrays and initialize variables.

InitializeVariables:
DEFINTa-z ‘for speed
DIM choice(4) 'selected parameters
DIM choice$(4) likewise
DIM group(17) 'parameter buttons
DIM nam$(17) "likewise
DIM num$(10) "directory phone number
DIM scrnsave(4889) ‘used to restore screen
DIM who$(10) "directory name
alert$ = CHR$(7) ‘beep
buffer = 2000 'input buffer
bufferLimit = .9 * buffer "buffer limit--send XOFF
choice(1) = 4 ’1200 baud
choice(2) =9 ‘even parity
choice(3) =13 ’7 data bits
choice(4) = 16 "2 stop bits

cr$ = CHR$(13)
dial$ = "ATDT"
directFile$ = "directory file"

"carriage return

'D.C. Hayes dial command
file containing phone #'s

endMessage$ = sp$ + cr$ + If$ + alert$ + "End of Transmission" + cr$

false =0

hangup$ = "~+++~ATHO"
1f$ = CHR$(10)
pauseFlag = false
posit}=cr$ +" "
receiveFlag = false
saveFlag = false
sendFlag = false
sp$ = CHR$(32)
stopFlag = false
true = -1

viewFlag = false
waitFlag = false
xoff$ = CHR$(19)
xon$ = CHR$(17)
RETURN

’hangup command
‘linefeed
"activity paused

'Receive File selected
'save flag
'Send File selected

"XOFF sent flag

'View file selected
"XOFF received flag
’stop sending

’send more

Figure 12-4. Initializing the variables




182 SECTION III: COMMUNICATIONS

I also chose to define quite a few variables in this section, and to specify that all
variables will be integers unless individually defined otherwise. These variables were
not the result of a tremendous amount of forethought. In fact, they weren't even here
before I started fleshing out the program, but were added as I needed them. Since I
now know what’s needed here, we may as well list them all, and discuss each of them
as they are used.

Setting aside a specific area of a program in which significant variables are de-
fined as you add them can be useful in three ways: First, you then have one place
where you can look up the values assigned to these variables. Second, if you include
adequate remarks here, you will be able, a few months later, to look up variables with
names you thought you'd never forget the meaning of to see what they mean. And
third, if variables are subject to change between versions of the program, you can
make one change here rather than searching and replacing throughout the program.

An example of this last point is the assignment of "ATDT” to dial$. ATDT is the
D.C. Hayes command to dial a touch-tone telephone. By using dial$ throughout the
program whenever I want to dial the phone, I need only replace this one definition to
change to a different modem or to a rotary phone.

Testing the module

There is really no operational test for this section, since it does nothing obvious.
You can, however, practice a troubleshooting technique that may be handy in the fu-
ture. Run the program, and then stop it and make the Command window active. Use
the PRINT statement to display the values of the variables that you defined in Ini-
tializeVariables. To prove that the program is setting these variables, change one of
them from the Command window, as with this command:

LET endMessage$ ="Goodbye"

Now print your new value, and then run the program and print it again.

Creating the window

The addition of an output window seems straightforward: You simply want
something that will fill the available space and provide a background for text. It seems
straightforward, but I experienced a little frustration before I settled on the window



Chapter 12: The Expanded Communication Program 183

created by the listing in Figure 12-5. The cause of my frustration was a desire to have
the maximum amount of space possible for displaying text. The original window went
from (0,20) to (512,342), and when I reached the point where the program was capa-
ble of displaying text, I found that it scrolled rather slowly and flickered a lot. It turns
out that the contortions the Macintosh goes through to scroll a window that does not
have square corners (as when the corners are cut off by the rounded corners of the
screen) are considerably more involved than when the corners are square. A less
obtrusive problem involved a narrow strip along the left edge of the window that dis-
appeared after certain operations. This was just a pixel or two of the first character of
each line, but it was noticeable. Moving the window in three pixels and up four solved
both problems. You may want to enlarge the window later in the program, just to see
what I was dealing with.

I chose a type 3 window, which does not have a title bar, so there is no point in in-
cluding a title parameter in the WINDOW statement that begins this subroutine, but
notice the two commas used to hold the space.

Next, PENMODE sets the graphic-call mode to XOR, which reverses the color of
the pixels where a new graphic appears. The only graphic call in the program is the
one to create the cursor: The XOR mode allows the cursor to be erased by drawing an-
other cursor on top of it. The PENMODE, TEXTFONT, and TEXTSIZE ROM calls
were placed in this section rather than in the InitializeVariables subroutine because
they apply only to the current window, and you therefore have to wait until after the
window is opened to call them.

"k

"* Create output window.

CreateWindow:
WINDOW 1, (3, 20) - (511, 338), 3
PENMODE 10
TEXTFONT 4 'monospace font
TEXTSIZE 9 '80 characters per line
RETURN

Figure12-5. Creating the output window




184 SECTION III: COMMUNICATIONS

You can run the program again to test for typographical errors, but there still
isn’t much to look at. About all you can experiment with at this point is the window
type, size, or title.

Setting the defauits

This section of the program uses the values you assigned to choice(1) through
choice(4) in the InitializeVariables subroutine to actually set the default options used
when the communication port is initially opened. This is a slight improvement on the
Terminal program, which assigned the default values but used them only to simulate
the button pushes in the configuration dialog box, thus requiring you to edit both the
choice array and the statement that opened the port in order to change the default set-
ting in the program. The method used in the SetDefaults subroutine (Figure 12-6) al-
lows you to open COM1: with new parameters simply by changing values assigned to
choice(1) through choice(4) in the InitializeVariables subroutine.

The FOR...NEXT loop in this subroutine reads through the 16 sets of DATA
statements located a little further into the program and discards everything except 16
values that are assigned to the array variable nam$ (the unwanted values are assigned
to the variable garbage, which is never used). The four values assigned to the choice
array in InitializeVariables are used to extract the default communication parameters
(currently 1200 baud rate, even parity, 7 data bits, and 2 stop bits), which are then
concatenated into option$.

The method used to extract the default parameters is the same as that used in
the SelectButton subprogram we discussed in Chapter 11. You'll recall that each ele-
ment of the nam$ array holds more information than we need (for example, 110 bits
per sec), so choice$(1), choice$(3), and choice$(4) are extracted by using the VAL func-
tion to return the numerical value of nam$ and then the STR$ function to convert this
new value back to a string, while choice$(2) is extracted by using the LEFT$ function
to return the leftmost character of nams$.

If you would like to test this section of the program now, you could add a PRINT
statement after the concatenation of option$, to display the options on the screen.
Then, after running the program, you could edit the values assigned to the choice ar-
ray in the InitializeVariables subroutine and run the program again. This time option$
should indicate the new defaults. (Don't forget to delete the PRINT statement after
completing the test.)



Chapter 12: The Expanded Communication Program 185

%

* Set up default options.

»

"* choice(1) is baud rate: 1 -- 110
* 2 -- 300
* 3 -- 600
* 4 --1200
* 5 --2400
™ 6 -- 4800
™ 7 -- 9600
* choice(2) is parity: 8 -- None
™ 9 -- Even
™ 10 -- Odd
"™ choice(3) is data bits: 11 -- 5

* 12--6

* 13--7

™ 14--8

™* choice(4) is stop bits: 15 -- 1
* 16 -- 2

113

"k

"* Changing default choices here will control initial parameters.

SetDefaults:
FOR count=1TO 16
READ garbage, garbage, garbage, nam$(count) "discard garbage
NEXT
choice$(1) = STR$(VAL(nam$(choice(1))))
choice$(2) = LEFT$(nam$(choice(2)), 1)
choice$(3) = STR$(VAL(nam$(choice(3))))
choice$(4) = STR$(VAL(nam$(choice(4))))
options$ = choice$(1) + "," + choice$(2) + "," + choice$(3) + "," + choice$(4)
RETURN

Figure12-6. Setting the defaults




186 SECTION II1: COMMUNICATIONS

Opening the port

The OpenComm subroutine (Figure 12-7) opens the communication port with
our default parameters. I decided to add the Flush subroutine, which simply grabs any
garbage that might be in the input buffer and discards it, to ensure that the first char-
acters printed on the screen will be those actually received through the port.

Setting up the menus

This section of the program should be a little more satisfying than the preceding
ones, since it does something you can actually see. I discussed the three MENU state-
ments used here while explaining the Terminal program. When you finish typing De-

fineMenu (Figure 12-8), your program will have four new menus (the MENU 5, 0, 0,"

statement simply creates a blank menu to “erase” the fifth menu from BASIC’s menu
bar) with a total of 14 items from which to select. The menu items with a status param-
eter of 0 (Continue, Stop, and Redial) are initially disabled, since it is not reasonable to
select them before something else happens. For example, there is no point in enabling
Redial until after the user has dialed a number.

Now you need to stub out the HandleMenu subroutine with a RETURN, just as
you did for each of the initialization subroutines, so that you can run the program and
look at all your new menus. It is a little disappointing to have nothing happen when
you select from a menu, so let’s try another troubleshooting technique. Go back to the

"

™ Open communications port.
OpenComm:
OPEN "COM1:" + options$ AS 1 LEN = buffer

"

* Clear input buffer.

Flush:
garbage$ = INPUT$ (LOC(1), 1)
RETURN

Figure 12-7. Opening the communication port




Chapter 12: The Expanded Communication Program 187

"

* Set up custom menu.
DefineMenu:
MENU 1, 0, 1, "File"
MENU 1, 1, 1, "View File"
MENU 1, 2, 1, "Receive File"
MENU 1, 3, 1, "Send File"
MENU 1, 4, 1, "Quit to BASIC"
MENU 1, 5, 1, "Quit to Desktop"”
MENU 2, 0, 1, "Options"
MENU 2, 1, 1, "Pause"
MENU 2, 3, 1, "Set Configuration Parameters"
MENU 3, 0, 1, "Save"
MENU 3, 1, 1, "Start"
MENU 3, 2, 0, "Continue"
MENU 3, 3, 0, "Stop"
MENU 4, 0, 1, "Phone"
MENU 4, 1, 1, "Directory"
MENU 4, 2, 1, "Enter Number”
MENU 4, 3, 1, "Hang Up"
MENU 4, 4, 0, "Redial"

MENUS5,0,0,"

ON MENU GOSUB HandieMenu 'if menu item chosen
MENU ON "activate trapping
RETURN

1]

* Decide which menu item selected and take action.

"

HandleMenu:
RETURN

Figure 12-8. Setting up the menus

stubbed-out HandleMenu subroutine and insert a statement that does something—1I
usually use the BEEP statement, which sounds a short tone. You could also type:

PRINT alert$

which uses the variable alert$ that we defined to be CHR$(7)— the beep character—
in the InitializeVariables subroutine. Now when you run your program, you will hear a
beep each time you select an item from the menu.




188 SECTION III: COMMUNICATIONS

When you have finished testing this part of the program, you will have to hold
down the Command key while pressing the period key to quit to BASIC, since we have
replaced the BASIC menu and have not yet activated Quit on our new menu. When the
Command window appears on your screen, type MENU RESET to restore the BASIC

1%

"™ Display characters from COMT1:, send keystrokes to COM1:.

Cmmog :

WHILE pauseFlag : WEND
Ilf LOC(1) = 0) AND stopFlag THEN PRINT #1, xon$; : stopFlag = false

'nothing waiting to come in

Sen y ’send key typed to file #1
ENU STOP ‘don’t get sidetracked

IF (sendFlag OR viewFlag) AND NOT waitFlag THEN CALL SendLine

IF endViewFlag THEN GOSUB EndFile

MENU ON

‘see if anything selected

>(1) > bufferLimit THEN PRINT #1, xoff$; : stopFlag = true

‘get everything waiting
’strip linefeeds

|
RemoveChars iin$, If$
RemoveChars lin$, xon$
IF sendFlag AND waitFlag AND removeFlag THEN waitFlag = false
RemoveChars lin$, xoff$

IF sendFlag AND removeFlag THEN waitFlag = true
MENU STOP

'MENU ON
IF endSendFlag THEN GOSUB EndFile

"%

* File #3 is automatically named file that stores input when
** Start or Continue is chosen from Save menu. File #2
"* stores received file after asking for name to store it under.

133

IF saveFlag THEN PRINT #3, lin$;
__IF receiveFlag THEN PRINT #2, lin$;

Figure 12-9. The main communication loop




Chapter 12: The Expanded Communication Program 189

menu and choose Show List from the Windows menu to redisplay the program in the
List window.

The main communication loop

The main communication loop is the heart of this program, just as it was in the
Terminal program. Although the final version of CommLoop, shown in Figure 12-9,
is the result of a lot of refinement that went on as sections were added to the program,
the highlighted statements that make up its core are very similar to those in the Ter-
minal program.

The logic in this section is a little difficult to follow if you don’t understand what
is going on in the rest of the program. I use a set of variables ending in Flag—

- pauseFlag, stopFlag, viewFlag, and so on—to indicate that a selection has been made
elsewhere in the program that affects how CommLoop should deal with the text it
processes. To avoid having to explain all these functions before their time, let’s start
with just the core loop shown in Figure 12-10.

This listing is made up of the highlighted statements from the previous listing,
except for the SendKey and PrintString subprograms, which have been replaced by
simple statements. As soon as you are certain this core loop works, we will add the
subprograms.

You can test the communication loop by hooking your modem to the Macintosh,
running the program, and typing something. As with the Terminal program, what you

",

™ Initial CommLoop

WHILE true
WHILE LOC(1) =0
keyTyped$ = INKEY$
IF keyTyped$ <> " THEN PRINT #1, keyTyped$
WEND
lin$ = INPUT$(LOC(1), 1)
PRINT lin$
WEND

Figure 12-10. The core communication loop




190 SECTION III: COMMUNICATIONS

type can get to your screen only by going out the communication port and being re-
flected back by either a modem or another computer. If you do not have a modem or
another computer to hook to, and still feel compelled to type and test this program,
you can simulate a modem by placing a jumper between the transmitted-data and
received-data pins on the communication-port connector. Since this is a female con-
nector, a lightweight paper clip straightened out and then rebent to fit between sock-
ets 5and 9, as shown in Figure 12-11, will do the trick.

CAUTION: If you try this, be careful not to force too large a paper clip into the
hole, and BE EVEN MORE CAREFUL NOT TO GO INTO THE WRONG HOLES. Pin 2
is tied to the Mac’s +5-volt power supply, and pin 6 to the +12-volt power supply.
Shorting either of these to ground, which is on neighboring pins 1 and 3, will add a lit-
tle unexpected excitement to your life.

When you've successfully tested the loop, go on to the next section, where we
will replace the PRINT lin$ statement with the PrintString subprogram, to add a cur-
sor to the screen at the next print location.

Adding a cursor

Adding and managing the cursor requires a couple of subprograms and the use
of two new functions— WINDOW(4) and WINDOW(5). WINDOW(4) returns the x
coordinate of the location in the current window where the next character will be
drawn, and WINDOW(5) returns the y coordinate. Since this is where you want the
cursor to be drawn, this will be a handy set of functions.

In the next few minutes we will create four subprograms, so this seems like a
good time to discuss how we want to store all of the subprograms in this application. I
like to arrange them in alphabetical order after the main program, as you will see in
the full listing in Figure 12-63, but there are undoubtedly other methods, and you are

5 4 3 2
0 0 ©

1
a)
o 0 0O
9 8 7 6
Figure12-11. A simple dummy plug




Chapter 12: The Expanded Communication Program 191

welcome to choose the one that suits you. However you arrange them, I think it is im-
portant that they be in some logical order, so that people reading your program can lo-
cate them easily.

The first subprogram we will discuss, ShowCur; is listed in Figure 12-12. This
subprogram first assigns the x and y coordinates of the current pen location to the
variables curX and curY. It next uses the LINE ROM call to draw a line (the cursor)
from the current pen location to a point five pixels to the right and on the same level
(5,0), and then returns the pen to its previous position, at the front of the cursor.

You can see the result of this subprogram by returning to CommLoop and call- -
ing ShowCur right after the PRINT lin$ statement. When you run the program, a cur-
sor appears after each character you type. There are a few minor cosmetic problems,
however: For one thing, the first line of text is printed just above the output window,
so all that shows is the cursor, which hangs a little below the line. Then you’ll notice
that pressing the Return key leaves a cursor at the end of each line. This is because
each character you type overwrites the previous cursor (due to the default text mode
of 0), but no character is printed for a carriage return. Also, there is no initial cursor
on the blank screen, since this subprogram is not called until something is printed.

The solutions to these problems are not particularly difficult. Let’s start by get-
ting the first line down where we can see it. It’s out of sight because when a window is
created or cleared, the pen is automatically moved to location (0,0). As you will recall,
ROM calls like LINE are drawn below the pen location, and BASIC statements like
PRINT are displayed above the pen location. So the text is out of sight, but we can see

"

™ Show cursor at end of current line.

"

SUB ShowCur STATIC
SHARED curX, curY
curX = WINDOW(4) "horizontal location of next character
curY = WINDOW(5) 'vertical location
CALL LINE (5, 0) "draw cursor
MOVETO curX, curY ’put print location back where it was
END SUB

Figure 12-12. The ShowCur subprogram




192 SECTION III: COMMUNICATIONS

1h

"™ Place cursor in upper left corner.
SUB RestoreCur STATIC
MOVETO 0, 10
ShowCur
END SUB

Figure12-13. The RestoreCur subprogram

the cursor. We have to move the pen location down a bit before we call ShowCur the
first time after creating or clearing the window. Let’s use another subprogram to do
this: We'll call this one RestoreCur: It consists of the few lines shown in Figure 12-13.

Make sense? Now return to the CreateWindow subroutine and add a call to this
subprogram between the TEXTSIZE call and the RETURN statement. This is the
only addition we’ll make to CreateWindow, which should now look like Figure 12-14.
If you run the program again, the first line of text will now be visible.

Now we’ll get rid of the extra cursor at the end of each line. We can do this by
erasing the cursor just before each new line is printed. This means erasing the cursor
many times when it isn't really necessary, as the text would overwrite it anyway, but
testing each character to see if it is a carriage return, and erasing the cursor only if it
is, slows the program substantially.

113

" Create output window.
CreateWindow:

WINDOW 1, , (3, 20) - (511, 338), 3

PENMODE 10

TEXTFONT 4 'monospace font
TEXTSIZE '80 characters per line

RETURN

Figure12-14. The final CreateWindow subroutine




Chapter 12: The Expanded Communication Program 193

"

"™ Print string of text.
SUB PrintString(text$) STATIC
SHARED curX, curY

CALL LINE (5, 0) ‘erase cursor

MOVETO curX, curY 'move back

PRINT text$;

ShowCur 'show new cursor
END SUB

Figure 12-15. The PrintString subprogram

Now is the time to replace the PRINT lin$ statement (and the ShowCur call) in
CommLoop with PrintString lin$, a new call to the PrintString subprogram shown
in Figure 12-15.

You can see immediately that this subprogram will print the text$ characters
passed to it, and then call ShowCur, but do you understand why it causes the cursor to
disappear? The last time ShowCur was called, it left the pen at the beginning of the
cursor. So when we call LINE (5,0) again, we are drawing a second cursor on top of
the first one. Since we specified PENMODE 10 in the CreateWindow subroutine, the
new pixels drawn are XORed with the old, reversing their color to white.

Managing the menus

Now that we have the cursor under control, let’s flesh out the File menu, so that
_you can at least quit in a civilized manner. First, let’s replace the BEEP statement in
the HandleMenu subroutine with the subroutine in Figure 12-16 on the next page,
which controls where the program branches when an item is chosen from the menu.

The MENU(0) and MENU(1) functions, two new variations of the MENU com-
mand, return the number of the selected menu and the number of the item chosen
from that menu, which are assigned here to the variables MenuSel and ItemSel, re-
spectively. HandleMenu then uses a computed GOSUB statement to branch to the first
(FileMenu), second (OptionMenu), third (SaveMenu), or fourth (PhoneMenu) sub-
routine listed, depending upon the value (1 through 4) returned by MENU(0) and as-
signed to MenuSel.




194 SECTION I11: COMMUNICATIONS

"

™ Decide which menu item selected and take action.

"

HandleMenu:
MenuSel = MENU(0) 'get number of menu
ltemSel = MENU(1) ‘get number of item

e

™ Go to appropriate subroutine for menu selected.

ON MenuSel GOSUB FileMenu, OptionMenu, SaveMenu, PhoneMenu
MENU
RETURN

Figure 12-16. Managing the menus

Upon returning from the menu subroutine, the program encounters the MENU
statement, used this time with no arguments. This statement changes the title of the
menu in the menu bar from the highlighted state back to normal black-on-white.

After typing the HandleMenu subroutine, stub out the menu subroutines. Now
when you select an item from your new menu, the title is highlighted, the program
takes a short side trip to your stub, the title is returned to normal by the MENU state-
ment, and the program returns to where it was when the selection was made.

Each of the menu subroutines branched to from HandleMenu starts with an-
other computed GOSUB statement, to direct the program to the proper subroutine for
the specific item chosen. In the program listing, I have organized these subroutines
into four groups, labeled A through D, for the four menus, and then further divided
each group into the number of items on that menu. For example, A(1) contains the sub-
routine for the first item on the first menu, C(2) contains the subroutine for the second
item on the third menu, and so on. Now let’s get on with the process of fleshing out the
File menu.

The File menu

Type the computed GOSUB statement shown in Figure 12-17, and stub out the
five menu items. Then drop down to DoneBas and DoneDesk and type the routines
shown in Figure 12-18.




Chapter 12: The Expanded Communication Program 195

"

™ File menu was selected.

113

FileMenu:
ON ltemSel GOSUB ViewFile, ReceiveFile, SendFile, DoneBas, DoneDesk
RETURN

ViewFile:
RETURN

ReceiveFile:
RETURN

SendFile:
RETURN

DoneBas:

DoneDesk:

Figure 12-17. The FileMenu subroutine

"

"™ A(4): Return to BASIC.

DoneBas:
MENU RESET 'restore BASIC menu
CLOSE "close all open files
END ‘return to BASIC

1

* A(5): Return to Macintosh desktop.

DoneDesk:
CLOSE
SYSTEM

Figure 12-18. The DoneBas and DoneDesk routines




196 SECTION II1: COMMUNICATIONS

Notice that these aren’t subroutines, in that they end the program rather than
returning to the main program. DoneBas provides an orderly method of retreating to
BASIC. The advantage of using this method over pressing Command-period is that
this routine restores the BASIC menu before closing all open files and returning to
BASIC. DoneDesk issues the SYSTEM statement, to quit BASIC and return to the Mac-
intosh Finder.

The ViewFile, ReceiveFile, and SendFile subroutines

The next three features operate in much the same manner, with very similar
subroutines. The object in each case is to move information from one place to another:
ViewFile transfers information from a disk file to the screen; ReceiveFile transfers in-
formation received at the communication port to a disk file, simultaneously displaying
it on the screen; and SendFile transfers information from a disk file to the communica-
tion port so it can be sent to another computer. Selecting any one of the three puts a
check mark in front of it on the menu and disables the other two. When the file trans-
fer is complete, the check mark is removed and the disabled item is enabled. Selecting
the checked item again, before the file transfer is compete, aborts the transfer and re-
turns everything to normal. Since the procedures for each selection are almost identi-
cal, I will explain the one for ViewFile and then point out the differences for the other
selections. (Because they use so many of the same routines, you may as well enter all
three before we do a test.)

Selecting View File from the File menu causes the program to branch to the
ViewFile subroutine (Figure 12-19), which allows you to view a text file while running
the communication program. You may want to do this before sending the file, or to
check a file after receiving it.

Since the program calls ViewFile both when you ask to start viewing a file and
when you ask to stop viewing before the end of a file, the first thing the ViewFile sub-
routine does is check the value of startFlag, to see whether you are starting to view a
file or already in the process of viewing one. If this flag is not true, then the program
continues with the subroutine, where viewing is enabled and startFlag, among other
flags, is set to true. If startFlag is already true when ViewFile is called, the program
jumps to EndFile, a common ending routine for ViewFile, ReceiveFile, and SendFile.



Chapter 12: The Expanded Communication Program 197

"

™ A(1): View file before sending or after receiving.

ViewFile:
IF startFlag = true THEN GOTO EndFile ‘terminating ViewFile
SaveScreen
filename$ = FILES$(1, "TEXT")
RestoreScreen
IF filename$ = "" THEN RETURN
MENU 1,2,0 ‘disable Receive File
MENU 1, 3,0 "put check mark by Send File
MENU 1, 1,2 'put check mark by View File
MENU 2,0, 0 ‘disable Options menu
MENU 3,0, 0 'disable Save menu
MENU 4,0, 0 ‘disable Phone menu
OPEN filename$ FOR INPUT AS #2
oldSaveFlag = saveFlag ’store state of save flag
saveFlag = false 'if previously saving, stop

viewFlag = true
startFlag = true
RETURN

Figure 12-19. The ViewFile subroutine

The next thing we want to do is find out which file the user wants to view (or
send, in the case of the SendFile subroutine). You already know how to get this infor-
mation, using the FILES$(1) function. A new twist introduced in this program is the
idea of saving the information that is already on the screen, where the FILES$ dialog
box will appear. This is done with the same GET and PUT statements you used in
Chapter 7 to move images around the screen.

Since restoring the screen after a dialog box has been displayed is frequently re-
quired during the program, I have written two subprograms that work together to ac-
complish the task: SaveScreen and RestoreScreen (see Figure 12-20 on the next page).
These two subprograms capture the image on a portion of the screen and return it to
the same area. Rather than use a different subprogram for each dialog box, or pass
screen coordinates in order to save exactly the area covered, I always save the area
covered by the largest dialog box used, after making sure that all the rest of the dialog
boxes are displayed within that area.




198 SECTION II1: COMMUNICATIONS

"

* Save maximum screen area used by any dialog box, before displaying dialog box.
SUB SaveScreen STATIC

SHARED scrnsave()

GET (39, 7) - (455, 187), scrnsave(0)
END SUB

"

"™ Display previously saved screen area after removing dialog box.
SUB RestoreScreen STATIC

SHARED scrnsave()

PUT (39, 7), scrnsave(0), PSET
END SUB

Figure 12-20. Saving and restoring the screen

There is one critical difference between the format used for the graphic calls
here and that used in Chapter 7. The syntax of the PUT statement allows an optional
action-verb at its end:

PUT (xLyl) [- (x2,y2)], array [(INDEX|(, index, . .. index])][, action-verb]

This verb, which can be PSET, PRESET, AND, OR, or XOR, determines the in-
teraction between the stored image and the one on the screen. If the option is ig-
nored, as it was in our previous programs, the XOR default is used. This would still
work if we covered and then uncovered exactly the area we saved, but if you either
save more than you cover or cover more than you save, you will end up with a white
border around the text when it is returned to the screen. The action-verb PSET solves
this problem. Try the different options after you get this section running, just to see
what happens.

Back to viewing the file. ... Once the ViewFile subroutine has saved the screen,
retrieved a file name, and restored the screen, it disables the other two menu items
and puts a check mark by itself on the menu. With all three routines, the entire Op-
tions, Save, and Phone menus are disabled and saveFlag is set to false after its current




Chapter 12: The Expanded Communication Program 199

condition is stored. (The selections available from the Save menu allow you to toggle
the saving of text on and off as the text passes across the screen. Saved text is ap-
pended to a file that is automatically opened with a file name consisting of the time of
day that you first started saving. There is no point in saving information in this manner
if you are viewing, receiving, or sending a file, since you either have it saved on disk al-
ready, or are about to save it.) The ViewFile and SendFile subroutines then open the
selected file for input, while the ReceiveFile subroutine opens it for output. Then all
three subroutines set the viewFlag, receiveFlag, or sendFlag (as appropriate) and the
startFlag to true.

The only differences in the ReceiveFile subroutine (Figure 12-21) are that
FILES$(0) is used to prompt the user for a name under which to store the file, and dif-
ferent menus and flags are set.

"

™ A(2): Transfer information received at COM1: to disk file.

ReceiveFile:
IF startFlag = true THEN EndFile ‘terminating ReceiveFile
SaveScreen
filename$ = FILES$(0, "Name to save file under")
RestoreScreen
IF filename$ =" THEN RETURN
MENU 1,3,0 'disable Send File
MENU 1, 2,2 ’put check mark by Receive File
MENU 1,1,0 'disable View File
MENU 2,0,0 "disable Options menu
MENU 3,0,0 'disable Save menu
MENU4,0,0 'disable Phone menu

OPEN "O", #2, filename$

oldSaveFlag = saveFlag

saveFlag = false

receiveFlag = true 'turn on receiving
startFlag = true

RETURN

Figure 12-21. The ReceiveFile subroutine




200 SECTION III: COMMUNICATIONS

The SendFile subroutine, shown in Figure 12-22, is also similar to ViewFile, ex-
cept that after FILES$(1) is used to get the name of an existing file, the file is opened
for input and sendFlag is set to true.

The EndFile subroutine

The EndFile subroutine, shown in Figure 12-23, is common to all three file oper-
ations. It is the routine branched to when you quit in the middle of a file operation by
choosing the checked selection from the File menu.

This subroutine begins by closing file #2, which has been opened by one of the
preceding File subroutines to either get or receive information. Then it puts the cur-
sor back on the screen, since we have been ignoring that task, and prints endMessage$.
Finally, it restores the menus and flags to their normal conditions and sets three new

"

* A(3): Transmit file stored on disk.

"

SendFile:
IF startFlag = true THEN EndFile "terminating SendFile
SaveScreen
filename$ = FILES$(1, "TEXT")
RestoreScreen
IF filename$ = "* THEN RETURN
MENU 1,2,0 ‘disable Receive File
MENU 1, 3,2 "put check mark by Send File
MENU1,1,0 'disable View File
MENU 2,0, 0 'disable Options menu
MENU 3,0, 0 'disable Save menu
MENU 4,0,0 'disable Phone menu

OPEN "I", #2, filename$

oldSaveFlag = saveFlag

saveFlag = false

sendFlag = true ‘turn on sending
startFlag = true

RETURN

Figure 12-22. The SendFile subroutine




Chapter 12: The Expanded Communication Program

201

"

™ Close file and re-enable various competing menus

i

EndFile:
CLOSE #2
ShowCur
PrintString endMessage$
MENU 1, 2,1
MENU 1, 3, 1
MENU 1, 1,1
MENU 2, 0, 1
MENU 3, 0, 1
MENU 4, 0, 1
saveFlag = oldSaveFlag
viewFlag = false
sendFlag = false
receiveFlag = false
startFlag = false
endFlag = false
endSendFlag = false
endViewFlag = false
RETURN

'enable Receive File option
’enable Send File option
’remove check mark
’enable Options menu
’enable Save menu
‘enable Phone menu
‘restore state of Save

‘turn off viewing

Figure 12-23. The EndFile subroutine

flags: endFlag, endSendFlag, and endViewFlag. You will see how each of these flags is

used as we work our way through Comm Loop.

We have added a whole bunch of lines to our core program, just to do something
as simple as look at a file, but if you were paying close attention, you may have noticed
that not one routine included the most important lines of all: the ones to read the file
and print its contents. We could add these features to each of the subroutines, but
since we already have most of the commands we need built into CommLoop, we might

as well make them do double duty.

Modifying CommLoop

Let’s return to the simple CommLoop routine and add a call to the short sub-
program we'll create in a moment to allow you to actually view a file. Right after the




202 SECTION III: COMMUNICATIONS

line that prints keyTyped$ (IF keyTyped$ <> "" THEN PRINT #1, keyTyped$), add
these lines:

MENU STOP

IF viewFlag THEN CALL SendLine

IF endViewFlag THEN GOSUB EndFile
MENU ON

I hope you appreciate the ease and speed with which you were able to enter those
lines. They are the result of an hour or so of frustrating experimentation on my part,
trying to understand the cause of seemingly inexplicable error messages, after starting
with the line:

IF viewFlag THEN SendLine

It turns out that this is one case in which the CALL statement is not optional: If
you call a subprogram from the THEN or ELSE portion of an IF... THEN...ELSE
statement, CALL is required to make it clear that the name refers to a subprogram,
not a line label. An exception to this exception seems to occur if you also pass an argu-
ment to the subprogram, in which case BASIC recognizes it as a subprogram re-
gardless of where it is. These situations are not documented in the BASIC manual, so
you might make special note of them.

The reason for testing endViewFlag is to see if the end of the file has been
reached, and if so to branch to the EndFile subroutine. We will add a similar test for
endSendFlag, but at a different location in the program. We differentiate between the
endings of these two processes in order to allow the last characters sent out the com-
munication port to be retrieved and printed on the screen (viewed) before the end
message is printed.

MENU STOP, another variation of the MENU command, must be added at the
beginning of this sequence to suspend the practice of branching to a subroutine when
a menu event is trapped (a record of events trapped will be kept, and they will be re-
sponded to when the MENU ON statement is issued). Here’s why we suspend event




Chapter 12: The Expanded Communication Program 203

"

™ View or send a file.

SUB SendLine STATIC
SHARED viewFlag, endViewFlag
SHARED true, false

LINE INPUT #2, lin$ ‘get line from file
PRINT lin$ 'send it someplace
IF NOT EOF(2) THEN EXIT SUB

endViewFlag = true
viewFlag = false
END SUB

Figure 12-24. The SendLine subprogram

trapping: The obvious menu event to trap while viewing a file is the reselection of
View File to abort viewing, which closes file #2. If this reselection is made between
the time the SendLine subprogram is called and the time it tries to input a line from
file #2, the program is stopped and a Bad File Number error message is generated.

Finally, go to your subprogram section and add the SendLine subprogram,
shown in Figure 12-24.

Now you can fire up the program and choose View File from the File menu
(don’t choose Receive File or Send File yet, since we haven’t added the last bit of code
they need). If you don't have a text file on the disk, you can use the options in the
FILES$(1) dialog box to change drives or to eject the disk and insert one containing a
text file. After you select a file, it should scroll across your screen; at the end of the file
(or if you abort viewing from the menu), the end message will be printed.

Finishing up: Sending

Let’s go ahead and wrap up the other two sections. Finishing the Send File op-
tion is pretty easy: Go back to the lines you just added to CommLoop and change the
second one to:

IF (viewFlag OR sendFlag) THEN CALL SendLine




204 SECTION III: COMMUNICATIONS

To avoid the same problems that I had in the View File section, you will also want to

drop down to PrintString lin$ and add a few lines on either side of it, so that it looks
like this:

MENU STOP

PrintString lin$

MENU ON

IF endSendFlag THEN GOSUB EndFile

and then go on down to the SendLine subprogram and add the highlighted items in
Figure 12-25.

You should now be able to use this communication program to send a file. Test it
by sending a file to another computer, or by simply turning your modem on and send-
ing the file without calling anyone. If the file appears on your screen, it must have
made it out the communication port and back in.

The only other feature we will add to the Send File option is something variously
called flow control, handshaking, or XON/XOFF. All of these terms refer to the ability
of the receiving computer to tell the sending computer to stop sending for a while.
This is usually done when information is arriving at the computer faster than it can be

%

"™ View or send a file.

1%

SUB SendLine STATIC
SHARED vnewFla endV|

' dFlag; true, false
-,LINE INPUT #2 hn$ ‘get line from file
| dFlz {E SE PRINT lin$ 'send it someplace
IF NOT EOF 2 THEN EXIT SUB
] ndViewFlag = tru

iew|ag
END SUB

Figure12-25. The final SendLine subroutine




Chapter 12: The Expanded Communication Program 205

brought in and processed. When the input buffer fills up to a certain point, the receiv-
ing computer sends an XOFF signal and the communication program in the other
computer stops sending information. When the buffer is emptied, the receiving com-
puter sends an XON signal and transmission resumes. We have already defined xon$
and x0ff$ as CHR$(17) and CHR$(19) in the InitializeVariables subroutine: Now we
have to decide when to send them and what to do when we receive them.

If we are sending a file, we have to watch the incoming data for an XOFF. If we
receive an XOFF, we have to stop sending until we receive an XON. So far so good.
The next step is figuring out how to recognize these specific characters in the input,
when we often bring in a whole bunch of characters at a time. At this point, some pro-
grams revert to bringing in characters one at a time and testing each against a list of
“special” characters (XON, XOFF, carriage return, and so on). This works well up to
about 300 baud, but beyond that it slows down communication too much, so we will
. develop a subprogram that searches a string (the line read in from the input port) fora
specific character, removes it if found, and then sets a flag to tell us it was there. We
can use this subprogram as a general-purpose character stripper, and it will also serve
to tell us if we receive an XON or XOFF, which we would always want to strip anyway.
Figure 12-26 shows RemoveChars, the subprogram that will do the job. When we call
RemoveChars, we will pass it the line to be searched and the character to remove.

"

" Remove passed character from passed line.
SUB RemoveChars(lin$, char$) STATIC
SHARED removeFlag

removeFlag = false ‘reset flag
position = INSTR(lin$, char$) ‘'where is first offensive character
IF position = 0 THEN EXIT SUB ‘there wasn’t one
removeFlag = true ‘there was one
WHILE position > 0 ‘remove first and check for more

lin$ = LEFT$(lin$, position - 1) + RIGHT$(lin$, LEN(lin$) - position)
position = INSTR(lin$, char$)
WEND
END SUB

Figure 12-26. The RemoveChars subprogram




206 SECTION III: COMMUNICATIONS

When we leave this subprogram, removeFlag will be set to true if the character
was found, so the first thing we have to do is set it to false, in case the previous pass set
it to true. Then we use the INSTR function to see if the string contains the character
we are looking for. This is a very useful function; its full syntax is:

INSTR([I, ]1X$, Y$)

INSTR searches for the first occurrence of Y$ in X$. If you don’t want to start the
search with the first character of X$, you can use the optional offset, I, to specify
where to start. If Y$ is not found in X$, the function returns 0; otherwise it returns
the character position at which the match is found. In our subprogram, we assign the
returned value to the variable position, and then test position to see if it is 0. If it is,
meaning the character was not in the string, we use EXIT SUB to return to the main
program. If, on the other hand, position is greater than 0, we set removeFlag to true
and continue through the subprogram. i

Within the WHILE. . WEND loop, lin$ is restructured by setting it equal to the -
left portion of lin$, up to the character before position, plus the right portion from

1%

"* Display characters from COM1:, send keystrokes to COM1:.

CommLoop:
WHILE true
WHILE LOC(1) =0 ’nothing waiting to come:in
keyTyped = INKEY$ 'send key typed to file #1
IF keyTyped <> "" THEN PRINT #1, keyTyped$
MENU STOP ‘don’t get sidetracked

IF (sendFlag OR viewFlag) THEN CALL SendLine
IF endViewFlag THEN GOSUB EndFile
MENU ON ‘see if anything selected
WEND
lin$ = INPUT$(LOC(1), 1) ‘get everything waiting
MENU STOP
PrintString lin$
MENU ON
IF endSendFlag THEN GOSUB EndFile
WEND

Figure 12-27. The modified CommLoop routine




Chapter 12: The Expanded Communication Program 207

the character after position to the end of the string. Then the string is tested again. If
there is another “special” character, the process is repeated; otherwise the sub-
program ends. Add RemoveChars to your subprogram section, and then we'll return
to CommLoop and figure out when we need to call it. (CommLoop should now look
like Figure 12-27.)

Since we want to remove the extra character between the time we receive it and
the time we'd otherwise print it, we have to call our new subprogram between the
lines lin$ = INPUT$(LOC(1), 1) and MENU STOP. So insert the line:

RemoveChars lin$, xoff$

between those two lines. Then you will immediately want to test removeFlag, to see if
an XOFF was in fact removed (actually, you don't always have to check removeFlag—
only when you are sending a file). This next line will do the trick:

IF sendFlag AND removeFlag THEN waitFlag = true

So, if we do receive an XOFF and set waitFlag to true, where is the best place to
test waitFlag to prevent any more lines from being sent? Let’s go back up a few lines
to where we call SendLine if viewFlag and sendFlag are true and insert a check for
waitFlag there. The line willlook like this:

IF sendFlag OR viewFlag AND NOT waitFlag THEN CALL SendLine

That takes care of stopping the transmission if we receive an XOFF. Now, we
need to turn it back on when we receive an XON. Sounds like another job for Remove-
Chars. Insert these two lines just above or below the two lines you added for XOFF:

RemoveChars lin$, xon$
IF sendFlag AND waitFlag AND removeFlag THEN waitFlag = false




208 SECTION III: COMMUNICATIONS

"

"™ Get keystroke from keyboard and send it out COM1..

SUB SendKey STATIC

keyTyped$ = INKEY$

IF keyTyped$ <> ™ THEN PRINT #1, keyTyped$;
END SUB

Figure 12-28. The SendKey subprogram

Before we tackle the receive side of flow control, let’s update CommLoop again
and make sure it works. First, to cut down on the clutter let’s convert to a subprogram
the two lines near the top that send a character typed at the keyboard out the com-
munication port. We'll call the subprogram SendKey, and it will look like Figure
12-28. Nothing new here, just clean-up.

There is one more character we will almost always want to remove, since the
Macintosh automatically inserts it when a carriage return is received, and that charac-
ter is the linefeed. To take care of this, insert the line:

RemoveChars lin$, 1f$

above, below, or between the two sets of lines that remove and test for XON and XOFF.
Just don’t put the new line between a RemoveChars call and the line that tests re-
moveFlag, orwaitFlag will be set or reset whenever a linefeed is received.

Now for a quick test. If you have added a call to remove linefeeds, replace If$
with some letter of the alphabet, enclosed in quotation marks. Start the program and
“send” a file to your modem —no need to be connected to another computer. The text
that is reflected back to your screen should not contain the character you passed to the
RemoveChars subprogram.

If you would like to experiment a bit more, write another subprogram, similar to
RemoveChars, that replaces one character with another. Pass to the subprogram the




Chapter 12: The Expanded Communication Program 209

string, the character to remove, and its replacement. A line similar to this next one
will probably play an important role in the subprogram.

lin$ = LEFT$(lin$, position - 1) + newChar$ + RIGHT$(lin$, LEN(lin$) - position)

Finishing up: Receiving

Now that you can easily send the files on your disk to other computers, let’s finish
off the process of receiving a file from someone else and storing it in a disk file. When
Receive File is chosen from the File menu, the program goes to a subroutine that so-
licits a name under which to store the file, opens that file as #2, and sets receiveFlag to
true. It then returns to CommLoop, where characters are brought in from the com-
munication port and displayed on the screen. If we want to find out if those characters
should also be put in a file, we can have CommLoop check the status of receiveFlag. A
good time to do this is right after each line is displayed on the screen (after
PrintString lin$). This next line, inserted at that point, will print the line in file #2 if
receiveFlag is true.

IF receiveFlag THEN PRINT #2, lin$

That was pretty easy. Now, what do we do if data is coming in faster than we can
process it? Well, best tell the other computer to stop for a moment—sounds like just
the job for xoff$.

When we opened COM1:, we specified a buffer length of 2000 characters. All in-
coming data goes into the buffer and CommLoop retrieves it from the buffer with
lin$ = INPUT$(LOC(1), 1). At modem transmittal speeds (300 and 1200 baud), we will
probably never receive data faster than it can be retrieved and processed, but with a
higher-speed connection to another computer, it is likely we would lose data if we
couldn’t stop transmission every now and then. If we wait until the buffer is full to tell
the other computer to stop, we will lose what came in between the time the buffer




210 SECTION III: COMMUNICATIONS

filled and the time the other computer got around to interpreting our XOFF and re-
sponding to it. So when we defined the variable bufferLimit in the InitializeVariables
section, we set it equal to a percentage of the buffer. Now we can test bufferLimit and
start the XOFF procedure as soon as it is exceeded.

The best place to test the buffer is just before the line that inputs all characters
from the buffer and assigns them to lin$ (lin$ = INPUT$(LOC(1), 1), since that is when
it will contain the most characters. Here is the line you want to insert:

IF LOC(1) > bufferLimit THEN PRINT #1, xoff$; : stopFlag = true

And as you know from working out flow control for the sending routine, after you
finish processing the data in the buffer you have to tell the other computer to resume
sending. This next line will do that job. A good place to insert it is just before the
WHILE LOC(1) =0...WEND loop near the top of CommLoop.

IF LOC(1) = 0 AND stopFlag THEN PRINT #1, xon$; : stopFlag = false

This takes care of the entire viewing, receiving, and sending sections of our pro-
gram. The CommLoop routine should now look like Figure 12-29. (The lines that we
have entered since the last complete listing are highlighted.) There will be a few
minor additions to CommLoop, when we add the Pause and Save features, and then we
will be through with it.

The Options menu

This section of code includes a short subroutine and the section from the Termi-
nal program that sets communication parameters. The new item is a Pause selection,
which stops the processing of data until Pause is selected again. The stubbed version
of OptionMenu is shown in Figure 12-30.




Chapter 12: The Expanded Communication Program 211

"

"* Display characters from COM1:, send keystrokes to COM1:.

CommLoop:
WHILE true

IF (LOC(1) = 0) AN g THEN INT #1, xon$; : stopFlag = fals

WHILE LOC(1) =0 'nothing waiting to come in
SendKey 'send key typed to file #1
MENU STOP ‘don’t get sidetracked
IF sendFlag OR viewFlag THEN CALL SendLine
IF endViewFlag THEN GOSUB EndFile
MENU ON ‘see if anything selected

WEND

in$ = INPUTSLOC(1),1) ‘geteverything waiting

ENU STOP
PrintString lin$
MENU ON
IF endSendFlag THEN GOSUB EndFile

w

Figure 12-29. The updated CommLoop

1%

™ Options Menu was selected.
OptionMenu:
ON ItemSel GOSUB Pause, Config
RETURN

Pause:
RETURN

Config:
RETURN

Figure 12-30. The OptionMenu subroutine




212 SECTION III: COMMUNICATIONS

The Pause subroutine

The first time Pause (Figure 12-31) is chosen from the Options menu, it stops the
flow of whatever data was being viewed, received, or sent. The next time it is chosen,
it starts things back up, right where they left off. To accomplish this it toggles the con-
dition of pauseFlag between false and true (0 and —1) by setting pauseFlag equal to it-
self XORed with —1 (the value of true). The Pause menu selection itself is also toggled
between an unchecked state and a checked state by using the value of pauseFlag to
control the value of the state argument (state is set equal to —1* pauseFlag + 1).

The final action of this subroutine, before returning, is to send an XOFF if Pause
is being started or an XON if it is being stopped, so that the buffer won't be filling up
while we aren’t removing anything.

To prevent the program from continuing to loop through CommLoop, we'll need
to add a line. Just after WHILE true, insert:

WHILE pauseFlag : WEND

This definitely wraps up CommLoop; I promise not to drag you back here for any
more additions. Although this program is much larger than the Terminal program, all
the real work takes place in CommLoop (which should now look like Figure 12-32),
just as it did in Terminal. If you understand what this section does, then you under-
stand the essence of telecommunication, and if you understand how BASIC performs
this communication, then you understand more about BASIC than most people do.

"

™ B(1): Stop processing of data.

Pause:
pauseFlag = pauseFlag XOR -1
MENU 2, 1, -1 * pauseFlag + 1
IF pauseFlag THEN PRINT #1, xon$; ELSE PRINT #1, xoff$;
RETURN

Figure 12-31. The Pause subroutine




Chapter 12: The Expanded Communication Program 213

113

"* Display characters from COM1:, send keystrokes to COM1:.

CommLoop:
WHILE true
WHILE pauseFlag : WEND
IF (LOC(1) = 0) AND stopFlag THEN PRINT #1, xon$; : stopFlag = false

WHILE LOC(1) =0 ’nothing waiting to come in
SendKey ’send key typed to file #1
MENU STOP 'don’t get sidetracked

IF (sendFiag OR viewFlag) AND NOT waitFlag THEN CALL SendLine
IF endViewFlag THEN GOSUB EndFile

MENU ON ’see if anything selected
WEND
IF LOC(1) > bufferLimit THEN PRINT #1, xoff$; : stopFlag = true
lin$ = INPUT$(LOC(1), 1) ‘get everything waiting
RemoveChars lin$, {$ *strip linefeeds

RemoveChars lin$, xon$

IF sendFlag AND waitFlag AND removeFlag THEN waitFlag = false
RemoveChars lin$, xoff$

IF sendFlag AND removeFlag THEN waitFlag = true

MENU STOP

PrintString lin$

MENU ON

IF endSendFlag THEN GOSUB EndFile

"*

™* File #3 is automatically named file that stores input when
™* Start or Continue is chosen from Save menu. File #2
" stores received file after asking for name to store it under.
IF saveFlag THEN PRINT #3, lin$;
IF receiveFlag THEN PRINT #2, lin$;

WEND

Figure 12-32. The final CommLoop

The Config subroutine

The Config subroutine used here is almost identical to the one used by the Ter-
minal program. The main differences are that a few of the variable names are longer,
and the buttons in the window are closer together. Figure 12-33 shows the new listing.
The changes are so minor that the comments should explain them adequately.




214 SECTION II1: COMMUNICATIONS

"

™ Set communication parameters.

e

Config:
CLOSE 1 ‘close COM1:
SaveScreen
WINDOW 2, , (50, 35) - (450, 185), 2 ‘open new window
GOSUB DisplayDefaults 'show parameters
GOSUB SelectOptions ’get selection

options$ = choice$(1) + "," + choice$(2) + "," + choice$(3) + "," + choice$(4)

™ Open communications port.

OPEN "COM1:" + options$ AS 1 LEN = buffer
WINDOW CLOSE 2

RestoreScreen

RETURN

DisplayDefaults:

(13

"

13

RESTORE 'to read data statements from start
FOR count=1TO 16
READ x, y, group{count), nam$(count)
BUTTON count, 1, nam$(count), (x,y) - (x + 130,y + 15), 3
NEXT count
BUTTON 17, 1, "OK", (320, 110) - (380, 135)

1k

" Simulate button pushes to highlight defaults.
FOR count=1TO 4
ButtonSelect choice(count)
NEXT
RETURN

Here is x,y coordinate of button, groupNum, title.

DATA 10, 10, 1, 110 bits per sec
DATA 10, 30, 1, 300 bits per sec
DATA 10, 50, 1, 600 bits per sec
DATA 10, 70, 1, 1200 bits per sec
DATA 10, 90, 1, 2400 bits per sec

Figure 12-33. The Config subroutine more. -




Chapter 12: The Expanded Communication Program 215

DATA 10, 110, 1, 4800 bits per sec
DATA 10, 130, 1, 9600 bits per sec

DATA 292, 10, 2, No parity
DATA 292, 30, 2, Even parity
DATA 292, 50, 2, Odd parity

DATA 162, 10, 3, 5 Data bits
DATA 162, 30, 3, 6 Data bits
DATA 162, 50, 3, 7 Data bits
DATA 162, 70, 3, 8 Data bits

DATA 162, 110, 4, 1 Stop bits
DATA 162, 130, 4, 2 Stop bits

SelectOptions:
eventTrapped = DIALOG(0) ‘dialog event
IF eventTrapped <> 1 THEN SelectOptions ‘watch for button press
buttonPushed = DIALOG(1) ‘which button

"

* Get button number if through making selections (clicked OK).

"

IF buttonPushed < 17 THEN ButtonSelect buttonPushed : GOTO SelectOptions
RETURN

13

* Subprogram ButtonSelect(buttonPushed) is called from DisplayDefaults and
"* SelectOptions subroutines. User has just pushed button. Highlight
"* that button and remember selection in choice() and choice$().
SUB ButtonSelect(buttonPushed) STATIC
SHARED nam$(), group(), choice(), choice$()

groupNum = group(buttonPushed) 'group 1,2, 3,0r4
BUTTON choice(groupNum), 1 ‘reset old selection
BUTTON buttonPushed, 2 'set new selection
choice(groupNum) = buttonPushed ’{ through 16
IF groupNum = 2 THEN SetParity "from parity group
choice$(groupNum) = STR$(VAL(nam$(buttonPushed))) 'from other group
EXIT SUB
SetParity:
choice$(groupNum) = LEFT$(nam$(buttonPushed), 1) ‘get first letter
END SUB

Figure 12-33. The Config subroutine (continued)




216 SECTION I1I: COMMUNICATIONS

The Save menu

The three selections on the Save menu allow the user to start, stop, or continue
saving information that passes across the screen. These menu items are obviously in-
terdependent—you can’t stop saving something you haven't started saving, or con-
tinue when you haven't started and then stopped—so we will use BASIC's ability to
enable and disable menu items to let the user know which selection is available at any
moment. Figure 12-34 shows the standard computed GOSUB used to branch to the
routine appropriate to the item selected from the menu.

Start saving

In order to start saving information without bothering the user with a request for
a file name, some sort of unique file name must automatically be assigned. As shown in
Figure 12-35, the StartSave subroutine does this by using the TIME$ function to re-
trieve the current time, and then using that value, preceded by the word Saved, as the
file name. The only difficulty in doing this is that the time is expressed with colons
separating the hours, minutes, and seconds, and the Macintosh uses a colon to sepa-
rate the volume name (the name assigned to the disk) from the file name. We could

"

™ Save Menu was selected.

SaveMenu:
ON ItemSel GOSUB StartSave, ContSave, StopSave
RETURN

StartSave:
RETURN

ContSave:
RETURN

StopSave:
, RETURN

Eigure 12-34. The SaveMenu subroutine




Chapter 12: The Expanded Communication Program 217

"

* C(1): Start saving.

StartSave:
tim$ = TIME$ "get current time for filename
FOR count =3 TO 6 STEP 3 ‘change :to /
MID$(tim$, count) = "/

NEXT count

filename$ = "Saved " + tim$ "assign filename
OPEN "A", #3, filename$ ‘open new file
saveFlag = true 'set save flag to true
MENU 3,1,0 "disable Start
MENU 3, 3, 1 ’enable Stop
RETURN

Figure 12-35. The StartSave subroutine

write a loop to test each character and replace it if it is a colon, but since we know
which characters are always colons, we can use an easier method to replace them au-
tomatically: a FOR...NEXT loop that uses the MID$ statement to replace the third
and sixth characters with slashes. The syntax of the MID$ statement is:

MID$(string-expl, n[, m ]) = string-exp2

This statement replaces m characters in string-expl with the same number of charac-
ters from string-exp2, starting with the character in position n in string-expl. The
variable m is optional; if omitted, as our program does, all of string-exp2 will be used
in place of n.

Before returning, StartSave also sets saveFlag to true, disables the Start menu
selection, and enables the Stop menu selection.

Continue saving

The menu item that leads to the ContSave subroutine can be selected only if sav-
ing has been started and then stopped. If those conditions exist and Continue is
chosen from the Save menu, ContSave (Figure 12-36 on the next page) sets saveFlag
totrue, disables itself, and enables the Stop selection.




218 SECTION III: COMMUNICATIONS

"

"*C(2): Continue saving (if stopped).

ContSave:
saveFlag = true
MENU 3, 2,0 ‘disable Continue
MENU 3, 3, 1 ‘enable Stop
RETURN

Figure 12-36. The ContSave subroutine

Stop saving

The StopSave subroutine, shown in Figure 12-37, is essentially the same as the
previous section, except that it sets saveFlag to false, enables the Continue selection,
and disables itself.

That’s all there is to the Save menu. Its selections are useful when trying to con-
serve disk storage space while connected to a remote computer that has a little useful
information buried in a bunch of irrelevant material. You simply toggle saving on as
you get into the interesting parts, and toggle it off as you leave them.

Testing the Save section

The obvious test for the Save menu is to fire the program up and save portions of
a communication session. You can also try interrupting this save routine to receive a
file under a name you assign by choosing the Save option from the File menu.

"k

*C(8): Stop saving.

StopSave:
saveFlag = false 'set save flag to false
MENU 3, 2, 1 ’enable Continue
MENU 3, 3,0 "disable Stop
RETURN

Figure 12-37. The StopSave subroutine




Chapter 12: The Expanded Communication Program 219

"

" Phone Menu was selected.

e

PhoneMenu:
ON ItemSel GOSUB Directory, EnterNumber, Disconnect, Redial
RETURN

Directory:
RETURN

EnterNumber:
RETURN

Disconnect:
RETURN

Redial:
RETURN

Figure 12-38. The PhoneMenu subroutine

The Phone menu

The items on the Phone menu handle the various telephone-related functions
provided by the program. They allow the user to enter a telephone number that the
computer will then dial, or to hang up the phone, redial, or select a number from a list
stored on disk. The stubbed PhoneMenu subroutines are shown Figure 12-38. The
only new concept introduced in the subroutines for the first three options is edit
fields: the text-input function common to many Macintosh dialog boxes.

Entering a number

The section branched to when the Enter Number option is chosen from the
Phone menu consists of three subroutines. The first, EnterNumber, creates the dialog
box shown in Figure 12-39 on the next page, to ask the user for a phone number. The
other two subroutines, EnterLoop and EnterContinue, retrieve the number and pass
it to the SendToModem subprogram, which dials it.




220 SECTION III: COMMUNICATIONS

enter phone number [ |

Figure 12-39. The number-entry dialog box

The EnterNumber subroutine

EnterNumber, which opens a window, prints some instructions, and then creates
an edit field and two buttons, is shown in Figure 12-40.

The new statement in this section of code, EDIT FIELD, belongs in the same
class as DIALOG, WINDOW, and MOUSE: They all pack a lot of power. Here is the ge-
neric sytax for EDIT FIELD:

EDIT FIELD ID|, default, rectangle|, [typell, justify]]]

The ID is a number greater than zero used to identify a particular edit field in a
window. Typically, the fields are numbered consecutively from 1. Just as with buttons,
these ID numbers are unique to the window in which they are used, so an edit field
with the same number in two different windows will not cause a conflict.

The optional default is the text to be edited. If you provide this text, it will auto-
matically appear in the edit field. The default can be specified as actual text, enclosed

"

™ D(2): Create dialog box.

EnterNumber:
SaveScreen
WINDOW 4, , (100, 100) - (370, 185), -4
MOVETO 20, 27
PRINT "enter phone number”
EDIT FIELD 1, phoNum$, (160, 15) - (260, 30) ‘create edit field
BUTTON 1, 1, "Cancel", (20, 45) - (80, 70)
BUTTON 2, 1, "OK", (190, 45) - (250, 70)

Figure 12-40. The EnterNumber subroutine




Chapter 12: The Expanded Communication Program 221

in quotation marks, or it can be a string variable defined elsewhere (if you want to dis-
play a numeric variable, use the STR$ function, as in EDIT FIELD 1, STR$(age),...). If
you don't include default text, you must still include the quotation marks.

The rectangle argument is the same type of upper left, lower right coordinate
description used to define windows and boxes in other BASIC statements, and type is a
number from 1 to 4 that determines the editing format as follows:

Value Meaning

1 The default. Draws a box around the rectangle to be edited; does not
allow Returns in the edit field (most applications trap the Return and
interpret it the same as a click of the OK button)

2 Boxed,; allows Return key
3 No box; does not allow Return key
4 No box; allows Return key

Another optional argument is justify, a number from 1 to 3, specifying the loca-
tion of text within the edit-field rectangle:

Value Meaning
1 The default. Left-justifies text

2 Centers text

3 Right-justifies text

When a window contains more than one edit field, the fields are created in the
order they are listed in the program. The contents of the last edit field created are al-
ways highlighted, and standard Macintosh Cut, Copy, and Paste techniques can be
used to make changes. These edit features aren’t necessary with the edit field created
to input a phone number, but they can be useful elsewhere.

NOTE: Even if the Edit menu is replaced or turned off by your BASIC program,
as it is by this one, the Command-key equivalents of the Cut, Copy, and Paste com-
mands will still work.



222 SECTION III: COMMUNICATIONS

The EnterLoop subroutine

Once the dialog box has been created by EnterNumber, the program goes into
the EnterLoop subroutine, shown in Figure 12-41, to wait for the user to click a button
or press the Return key to signal that the number has been entered.

In previous programs, we have trapped DIALOG(0) to see when a button was
pushed, but this time we are interested in two dialog events, not just one:

Value Meaning

DIALOG(0)=1 Button in active output window selected with mouse;
number of button is returned by DIALOG(1) function, and
this number is used to determine which subroutine should
respond to the event

DIALOG(0)=6 Return key pressed in active window that has button or edit

field that cannot accept Return as input text; treated same
as click of the OK button in that window

Pressing the Return key or clicking the OK button causes the program to move on to
EnterContinue. Clicking Cancel terminates the EnterLoop subroutine simply by not
branching out of it before the end.

"

™* Wait for user to finish entering number.

"

EnterLoop:
eventTrapped = DIALOG(0) ‘
IF eventTrapped = 6 THEN GOTO EnterContinue 'Return key pressed
IF eventTrapped <> 1 THEN GOTO EnterLoop ‘button wasn't selected

buttonSel = DIALOG(1)

IF buttonSel <> 1 THEN GOTO EnterContinue

WINDOW CLOSE 4 'Cancel button clicked
RestoreScreen

RETURN

Figure 12-41. The EnterLoop subroutine




Chapter 12: The Expanded Communication Program 223

"%

* Retrieve number from dialog box.

EnterContinue:
phoNum$ = EDIT$(1) ‘retrieve number
phoNam$ = "manually entered number"
WINDOW CLOSE 4
RestoreScreen
num$ = dial$ + phoNum$
SendToModem num$ "dial number
MENU 4, 4, 1 ‘enable Redial
RETURN ' :

Figure 12-42. The EnterContinue subroutine

The EnterContinue subroutine

This subroutine, shown in Figure 12-42, uses the EDIT$ function to retrieve the
contents of the edit field. The syntax for this function is:

EDIT$(ID)

The ID used here must be the same number used to open the edit field you want to re-
trieve information from.

You use the EDIT$ function by setting it equal to a string variable—in this case,
phoNum$—thereby assigning the number entered in the edit field to the variable.
(We deal with the phone number as a string to avoid problems with the non-numeric
symbols, such as dashes and parentheses, often included in phone numbers.) The sec-
ond line of the subroutine assigns the phrase “manually entered number” to the vari-
able phoNam$, which is used in other parts of the program to store the name of the
party being called. When the number is actually dialed, the text assigned to phoNam$
is displayed on the screen. Once the number is retrieved, the dial command for your
modem (assigned to the variable dial$ in the InitializeVariables subroutine) is placed
in front of it and they are passed to the SendToModem subprogram, shown in Figure
12-43 on the following page. After the number is dialed, the menu is reset and the pro-
gram returns to CommLoop.




224 SECTION III: COMMUNICATIONS

"

" Send passed string to medem, one character at a time with pause
* between characters. Used to pass commands and phone numbers to modem.
SUB SendToModem(out$) STATIC
FOR position = 1 TO LEN(out$) ‘take numbers one by one
code$ = MID$(out$, position, 1)
Delay 500 'don’t send too fast
IF code$ = "~" THEN Delay 8000 : GOTO SkipCode "long pause
PRINT #1, code$;
SkipCode:
NEXT
Delay 5000
PRINT #1, cr$ ’end with carriage return
END SUB

(13

™ Delay.

SUB Delay(count) STATIC
FOR hold = 1 TO count
NEXT

END SUB

Figure 12-43. The SendToModem subprogram

Hanging up

If the user selects Hang Up from the Phone menu, the short subroutine shown in
Figure 12-44 passes hangup$ to SendToModem. This variable was defined in Ini-
tializeVariables as"~+ + +~ATHO", but it can easily be changed to match the modem
in use (though the D.C. Hayes command used here works with most modems). The
tildes (~) on either side of the three plus signs, which are used to put the modem in
the command mode, cause a pause of about two seconds, so that the modem will be
ready to respond to the ATHO that follows.




Chapter 12: The Expanded Communication Program 225

1]

"* D(3): Tell modem to hang up.

Disconnect:
SendToModem hangup$
RETURN

Figure 12-44. The Disconnect subroutine

Redialing

Selecting Redial from the Phone menu causes the Redial subroutine, shown in
Figure 12-45, to send the last number dialed (whether it was entered manually or from
the directory) and your modem dial command (assigned to dial$ in InitializeVariables)
to SendToModem.

Dialing from a directory

When Directory is selected from the Phone menu, the Directory subroutine,
shown in Figure 12-46 on the next page, calls the Direct subprogram, which in turn
displays a list of numbers and allows the user to select one to dial. Notice that before
the Direct subprogram is called, Directory sets the variable dialFlag to false. This
variable is shared with the subprogram, which sets it to true, and assigns values to
phoNum$ and phoNams$ if the user selects a number to dial. Upon returning from the

"

" D(4): Send number last dialed to modem.

Redial:
PRINT "Dialing "; phoNam$; ": " ‘tell us who we're calling
num$ = dial$ + phoNum$
SendToModem num$
RETURN

Figure 12-45. The Redial subroutine




226 SECTION III: COMMUNICATIONS

113

* D(1): Call Direct subprogram.

Directory:
SaveScreen
dialFlag = false ’set dialFlag going into subprogram
Direct call directory subprogram
RestoreScreen
IF NOT dialFlag THEN RETURN ‘check dialFlag on return
PrintString "Dialing " + phoNam$ + cr$ ‘tell us who we're calling
num$ = dial$ + phoNum$ ’add modem dial command
SendToModem num$ ’send dial command and number
RETURN

Figure 12-46. The Directory subroutine

subprogram, the Directory subroutine tests dialFlag and, if it is true, prints the name
and dials the number just as was done when the number was entered by hand.

The Direct subprogram

The Direct subprogram produces a display similar to that shown in Figure 12-47,
which is a list of phone numbers that can be edited or dialed. This subprogram is
really a fairly major program which, with a few modifications, could be split off to

—— __T
282-3077 o
CompuServe EIS 241-9111
Western Union Easylink 1-800-324-4112
Telenet 625-9612
Tymnet 285-0109

[Cancel )] (_Add ] (_Done ] (__Dial )

Figure 12-47. The directory display




Chapter 12: The Expanded Communication Program 297

maintain your address book or some similar list. Since it can stand on its own, I sug-
gest you type Direct as a separate program and, when everything works smoothly,
merge it with the main program. To make it an independent program, simply drop the
first three lines and change the END SUB and EXIT SUB statements to END state-
ments. For test purposes, you may want to include the SendToModem subprogram and
change the Dial subroutine at the very end of the subprogram so that it passes the
phone number to SendToModem, rather than back to the main program.

We will stumble across a few new concepts in this section of code, but most of it
should look pretty familiar to you by now. I will list the program in sections, and com-
ment on new items and problem areas as we come to them.

Initializing the subprogram

The first section, shown in Figure 12-48, contains the standard subprogram
statement and a few GOSUBs to initialize the directory display. Notice that there are
two SHARED statements: You can use as many as you need to list all the shared vari-
ables. They aren’t required to be at the beginning of the subprogram, but you will
avoid problems if you always put them there.

A second thing to notice in this section is the subroutine labels. I tend to use the
same labels for the same functions in different programs. For example, I usually use
InitializeVariables for the subroutine that does what the first one here does. However,
in this case doing so would result in a duplicate-label error, since that label is already
used in the main program. This doesn’t seem to be quite in keeping with the theory of

"

* Subprogram Direct called from Directory. Display telephone
™ directory and allow user to edit directory or select number to dial.
SUB Direct STATIC

SHARED phoNum$, phoNam$, dialFlag%, scrnsave%s), directFile$

SHARED num$(), who$(), cr$, false, true

GOSUB DefineVariables

GOSUB ReadData

GOSUB ShowWindow

Figure 12-48. Initializing the subprogram




228 SECTION III: COMMUNICATIONS

unique variable names that makes subprograms portable between programs, but
there are exceptions to every rule, and there is probably a good reason for this one.

Defining the variables

The DefineVariables subroutine (Figure 12-49) is included primarily to keep the
format consistent, since most variables pertinent to this section were already defined
in the main program and are included in the SHARED statements. One thing is worth
pointing out, though: You do need to define all variables as integers again, since the
DEFINT statement in the main program does not apply here. The variable yDist is
used here to establish the vertical distance between lines in the directory display.

Reading data

The ReadData subroutine shown in Figure 12-50 attempts to open a disk file
containing the names and numbers to be displayed. If it has a problem doing so, it
branches to an error-handling routine that should take care of the problem. Once the
file is opened, the names and numbers are read and assigned to the elements of the ar-
rays who$ and num$.

I set the maximum number of entries to be read at 10. My original version of this
directory allowed you to page through unlimited entries, but I decided I was adding
complexity and length to the program without really explaining anything new. (A sim-
ple method of storing more numbers is to use multiple directory files and add a
FILES$(1) statement to allow you to choose one of them.)

"

" Define variables (most are shared with main program).

DefineVariables:
DEFINTa-z

yDist = 12 'vertical distance between entries
RETURN

Figure 12-49. The DefineVariables subroutine




Chapter 12: The Expanded Communication Program 229

"k

™ Open directory file and assign entries to who$() and num$().
ReadData:
ON ERROR GOTO NoFileError ‘enable error trapping
OPEN directFile$ FOR INPUT AS #4
IF errQuitFlag THEN EXIT SUB
ON ERROR GOTO 0 "disable error trapping
entry =0
WHILE (entry < 11) AND (NOT EOF(4))
entry = entry + 1 ‘number of entries
INPUT #4, who$(entry), num$(entry)
WEND
last = entry ‘last entry
CLOSE #4 ‘'we’re through with it
RETURN

Figure 12-50. The ReadData subroutine

The ON ERROR GOTO statement at the beginning of this section puts error
trapping into effect, instructing the program to branch to NoFileError should any er-
ror occur later in the program. Of course, since we are about to open a file, we suspect
that if there is an error now it will be a File Not Found error (number 53).

Let’s assume for the moment that the file is there and that we have opened it. We
will bypass errQuitFlag, which is set by the error-handling routine. The ON ERROR
GOTO 0 statement turns error trapping off, so that the program won’t branch to the
NoFileError routine if it later encounters an error.

The next line initializes the variable entry to 0. This variable is used to keep
track of the line occupied by each name and phone number on the display. It would be
unnecessary to initialize entry to 0 if we ran this subprogram only once, since all nu-
meric variables are initially set to 0 unless we specify otherwise. However, when a
subprogram is rerun, all variables that are not shared with the main program have ex-
actly the value they had when the subprogram last ended (assuming that you have not
stopped running the main program between calls), so we need to take the precaution
of re-initializing the variable here.

Next, a WHILE.. WEND loop repeats until the number of entries exceeds 10 or
the end of the file is reached. The test for the number of entries is included to avoid an




230 SECTION III: COMMUNICATIONS

error (Subscript Out of Range, number 9) if the user opens a file containing too many
entries— perhaps one created by another program. After the WHILE.. WEND loop,
we again test the number of entries, this time to see if the file we opened was empty. If
it was, who$(1) is assigned the string “empty directory”, so that the user will at least
know the file was opened and checked. The last value of entry (which is incremented
by 1 each time through the loop) is assigned to the variable last, which is used to deter-
mine how many edit fields to display.

The NoFileError subroutine

If the directory file was not on the startup disk, the program branches to the
NoFileError routine shown here in Figure 12-51. This routine makes sure the error
trapped was number 53 (File Not Found) and then gives the user a choice of solutions
(Figure 12-52). If it was some other error, then the ON ERROR GOTO 0 statement stops
the program and prints the error number. However, by placing the error trap where
we did, it is unlikely we will trap any other error.

"k

* Attempt made to open directory file that wasn't on startup disk.

NoFileError:

"’

™ Crash if error other than File Not Found was trapped.

IF ERR <> 53 THEN ON ERROR GOTO 0

BEEP ‘get some attention
SaveScreen

WINDOW 3, , (50, 50) - (375, 185), -2

PRINT "The file containing the telephone directory”

PRINT “is not on the startup disk"

BUTTON 1, 1, "Load from another disk", (20, 50) - (200, 70), 2

BUTTON 2, 1, "Use default settings", (20, 80) - (200, 100), 2

BUTTON 3, 1, "Cancel", (250, 95) - (310, 120)

WHILE DIALOG(0) <> 1

WEND ‘wait for some action
butPush = DIALOG(1) "'which button was clicked

Figure12-51. The NoFileError subroutine more:.




Chapter 12: The Expanded Communication Program 231

IF butPush = 3 THEN WINDOW CLOSE 3 : RestoreScreen

IF butPush = 3 THEN errQuitFlag = true : RESUME NEXT

IF butPush = 2 THEN GOTO DefaultDirectory

WINDOW CLOSE 3

RestoreScreen

directFile$ = FILESS$(1, "TEXT") ‘open file dialog box
IF directFile$ = "™ THEN GOTO NoFileError 'no selection
OPEN directFile$ FOR INPUT AS #4

RESUME NEXT

DefaultDirectory:
OPEN directFile$ FOR OUTPUT AS #4 ‘create new file
WRITE #4, "New Directory", "number” 'store something in it
CLOSE #4 "close it
WINDOW CLOSE 3
RestoreScreen
RESUME

Figure 