B AN I R R
. URFEINTRS wmhne L ymame
mNERAN Y
NN AN AN e

SN VAT AWM WA RTVAW -1
DRNEANS BuaLunge
*Sg‘ﬁ'ﬂ\\\ SLsgwave

- WBEWELS moevhgunm

=
3R hned R aounnely count o

A Y s e rems €)
s UL

S e Br s sinar e

P i mwari 2> brrmes
«%£, gl

-Tﬁrw o s
Mg—f—’? o P i g S
rad
g L Ly RS FY
gt e pR A 2R S 2

S B |

I]

Microsoft. BASIC

B DR DR B A |

’]
i

Interpreter

for Applee Macintosh ..

Microsoft Corporation

Information in this document is subject to change without notice and
does not represent a commitment on the part of Microsoft Coporation.
The software described in this document is furnished under a license
agreement or nondisclosure agreement. The software may be used or
copied only in accordance with the terms of the agreement. It is against

the law to copy Microsoft BASIC on cassette tape, disk, or any other medi-

um for any purpose other than the purchaser’s personal use.

© Microsoft Corporation 1984

If you have comments about this manual or software, complete the
Software Problem Report at the back of this manual and return it to
Microsoft Corporation.

Microsoft and the Microsoft logo are registered trademarks, and MS is a
trademark of Microsoft Corporation.

Apple is a registered trademark, and Macintosh, MacPaint, and MacDraw
are trademarks of Apple Computer, Inc.

APPLE COMPUTER, INC. MAKES NO WARRANTIES,
EITHER EXPRESS OR IMPLIED, REGARDING THE ENCLOSED
COMPUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY
OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. THE
EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED
BY SOME STATES. THE ABOVE EXCLUSION MAY NOT APPLY
TO YOU. THIS WARRANTY PROVIDES YOU WITH SPECIFIC
LEGAL RIGHTS. THERE MAY BE OTHER RIGHTS THAT YOU
MAY HAVE WHICH VARY FROM STATE TO STATE.

Document Number: 690410003-210-R01-0985

Contents

1 Introduction

Special Language Features 2
Learning More About BASIC and
the Macintosh 5
2 Getting Started Practice Session With Microsoft
BASIC 8
3 Using The Microsoft cChoosing Between the Two The Microsoft BASIC Screen 26
BAS Versions of Microsoft BASIC 23 The Command Window 26
IC Interpreter Starting and Quitting Microsoft The Output Window 27
BASIC 24 The List Window 27
Loading and Saving Programs 25 The Menu Bar 28
Operating Modes 25
4 Editing and Editing Programs 33
3 List Window Hints 33
Debuggm 8 Debugging Programs 37
Your Programs
5 Working With Files File Naming Conventions 39 Data Files — Sequential and Random
evi Generalized Device /O 41 Access /O 45
and D ces Handling Files 43 Transferring Data Between BASIC
Program File Commands 43 and Other Programs 55
6 Advanced TOpiCS Subprograms 59 Memory Management 71
Event Trapping 66
7 BASIC Reference Character Set 75 Expressions and Operators 85
The BASIC Line 77 Statement and Function
Constants 79 Directory 92
Variables 81 Icons in the Directory 93
Appendices A ASCII Character Codes 273 E Mathematical Functions 287
B Error Codes and Error F Access to Macintosh ROM
Messages 275 Routines 289
C Microsoft BASIC Reserved G A Sample Program 301
Words 281 H Questions Most Frequently
D Internal Representation of Asked 303
Numbers 283 Index 307

—

I ~

33

s
.

39

I
O

-
U

273

1 Introduction

People use the BASIC programming language for many different reasons.
Some of these people are professional programmers. Others are not pro- 1

grammers at all, but wish to run BASIC programs they have purchased.
Probably the largest segment of BASIC users is made up of people who
write BASIC programs for their own use. They may simply enjoy the
mental exercise of programming, or they may have special applications for
which they cannot buy ready-made programs. Many BASIC users are stu-
dents who are studying computer science or using a computer to help
with their schoolwork.

All of these people have one thing in common. They use BASIC because
it is the universal language for small computers. It is easy to learn, readily
available, and highly standardized. It is also a versatile language that has
been used in the writing of business, engineering, and scientific applica-
tions, as well as in the writing of educational software and computer

games.
Microsoft BASIC Whatever your reason for using BASIC, you will find that the
for the Macintosh Microsoft= BASIC Interpreter on the Apples Macintoshrs gives you all the

well-known advantages of BASIC, plus the ease of use and fun you expect
from Macintosh tools. Microsoft puts the full BASIC language on your
Macintosh computer, including BASIC statements used to write graphics
programs. Also, it has all the familiar features of the Macintosh screen.
Microsoft BASIC has a menu bar, a mouse pointer, and windows, just like
other Macintosh tools.

If you are just starting to learn BASIC, either in a class or on your own,
Microsoft BASIC will fit right in with your course of study. Microsoft
BASIC is the most popular programming language in the world, and works
on every major microcomputer.

If you are an old hand at BASIC programming, you'll want to try some of
the special features of this version of BASIC, such as SOUND and WAVE
for making music and sounds, and GET and PUT for saving and retrieving
graphics by the screenful.

About this book This book describes the Microsoft BASIC Interpreter for the Apple
Macintosh computer. It assumes you have read your owner’s guide,
Macintosh, and are familiar with menus, scrolling, editing text, and using
the mouse.

The front part of this book (Chapters 1-6) describes how to use Microsoft
BASIC with the Macintosh computer. It includes a practice session that
will familiarize you with the features of the screen that are available while
BASIC is running. The back part of this book (Chapter 7) is a reference

Microsoft BASIC Interpreter

for the BASIC language. Use the BASIC reference section to read about
general characteristics of the language, and to look up the syntax and
usage of BASIC statements and functions in the Statement and Function
Directory. You will notice that the directory is tinted gray to help you
flip to it quickly.

Special Language Features

Support

for Macintosh
application
programs

Microsoft BASIC on the Macintosh computer is a “standard” BASIC, in that
it will run most programs that were written in Microsoft BASIC on most
other computers.

But like all languages, Microsoft BASIC is always growing, changing, and
improving. Microsoft continues to keep its BASIC Interpreter up to date
with new features. Here are some of the latest features you’ll find in this
version of BASIC. All of these features are described thoroughly in
Chapter 7, “BASIC Reference.”

Microsoft BASIC provides the tools you need to write programs that work
like and look like they were written for the Macintosh. These tools are
especially important if you are a software developer who plans to sell ap-
plication programs for the Macintosh.

Mouse Support

With the MOUSE function, your BASIC program can accept and respond to
mouse input. The MOUSE function returns the coordinates of the mouse
pointer under various conditions (button up, button down, single-click,
double-click, triple-click, and drag).

MENU Statement

Your programs can display Macintosh-style menus created by BASIC’s
MENU statement. This statement opens and closes menus, and highlights
menu items. If you want, you can replace BASIC’s menus with your own
menus, to give your program a completely “custom” look.

Dialog Boxes

Your programs can produce interactive, Macintosh-style dialog boxes with
BASIC's WINDOW, BUTTON, EDIT, and DIALOG statements. These state-
ments handle the details of opening windows, setting up “buttons” for the
user’s selection, and accepting and editing the user’s input.

Other BASIC
features to try

Introduction

PICTURE Statement

The PICTURE statement gives your BASIC programs two ways to work

with MacPaintms or other graphics programs. You can bring a picture

from the Macintosh Clipboard into your program and display it on the

screen. Or, you can put a picture in the Clipboard, then paste it into

another program that accepts graphics. PICTURE can also be used to

redraw the image in a window after it has been covered.

Macintosh Toolbox Support

An important part of the Macintosh user interface is a “toolbox” of pro-
grammers’ subroutines. Microsoft BASIC is designed to give you access to
these routines to produce sophisticated Macintosh graphics. For detailed
information, see Appendix F, “Access to Macintosh ROM Routines.”

In addition to the features just described, Microsoft BASIC also has
a number of general purpose attributes for use in your programs:

Two Floating-point Arithmetic Options

This release of Microsoft BASIC includes two versions of the interpreter,
each supporting a different internal storage format for floating-point
numbers. You may wish to choose the decimal version (BCD format),
which is best suited for business and financial applications and is also the
same format used by Microsoft BASIC version 1.0.

The binary math version (IEEE format) is best for engineering-oriented
applications and provides generally faster performance, especially for
trigonometric functions.

SOUND and WAVE

Microsoft BASIC programs can produce high quality sound for games,
music applications, or user alerts. The SOUND statement emits a tone of
specified frequency, duration, and volume. As an option, the tone can also
have one of four user-defined “voices.” The WAVE statement lets you
assign your own complex waveforms to each of the voices. SOUND and
WAVE can provide your programs with a rich variety of musical sounds,
from the complexity of a string quartet to the simplicity of a whistled
tune.

Microsoft BASIC Interpreter

LINE and CIRCLE Statements

LINE and CIRCLE are versatile commands for drawing precise graphics.
The LINE statement draws a line between two points. The points can be
expressed as relative or absolute locations. By adding the B option to the
LINE statement, you can draw a box. Another option, BF, fills in the box
with black or white.

The CIRCLE statement draws a circle, arc, or ellipse according to a given
center and radius. A color option can be used to fill in the circle with
black or white. Another option, aspect, determines how the radius is
measured, so you can adjust it to create a variety of ellipses.

Subprograms
Microsoft BASIC allows subprograms that own their own variables. Using
subprograms, you can build a library of BASIC routines that can be used

with different programs. You can do this without concern about duplicat-

ing variable names in the main program.

GET, PUT, and SCROLL Statements

The GET statement saves groups of points from the screen in an array, so
you can store a “picture” of a graphic image in memory. The PUT state-
ment calls the array back and puts it on the screen. With a series of PUT
statements, you can create the effect of animation on the screen. The
SCROLL statement lets you define an area of the screen and how much
and which way you would like it to move.

Device Independent I/O

Using Microsoft BASIC’s traditional disk file-handling statements, a pro-
gram can direct input and output from the screen, keyboard, line printer,
communications port, or Macintosh Clipboard. You can open the line
printer or the screen for output, and the keyboard for input, as easily as
you open a disk file.

Large Strings and String Variables

In Microsoft BASIC, any string or the contents of a string variable can be
up to 32,767 characters long.

Introduction

Learning More
About BASIC and the Macintosh

This manual provides complete instructions for using the Microsoft BASIC
Interpreter. However, little training material for BASIC programming is in-
cluded. If you are new to BASIC or need help in learning to program, we 5
suggest you read one of the following:

Dwyer, Thomas A. and Margot Critchfield. BASIC and the Personal
Computer. Reading, Mass.: Addison-Wesley Publishing Co., 1978.

Knecht, Ken. Microsoft BASIC. Beaverton, Ore.: Dilithium Press, 1982.
Boisgontier, Jacques and Suzanne Ropiequet. Microsoft BASIC and Its
Files. Beaverton, Oreg.: Dilithium Press, 1983.

If Microsoft BASIC is your first Macintosh software purchase, you may
want to read The Macintosh Book by Cary Lu (Bellevue, Wash.: Microsoft
Press, 1984) to help you make the best use of your Macintosh.

2 Getting Started

To start
Microsoft BASIC:

To use Microsoft BASIC, you need:

B A Macintosh computer, properly set up and connected.
@ The Microsoft BASIC disk.

You should also make two backup copies of your Microsoft BASIC disk on
your own blank disks. Put the decimal version of BASIC on one backup
and the binary version on another.

» Turn on the Macintosh power switch.

» Put the binary version of Microsoft BASIC into the Macintosh disk
drive.

» Double-click the Microsoft BASIC icon in the Finder.

Microsoft BASIC Interpreter

In a few seconds, you will see the Microsoft BASIC screen:

// }Imi\\ Seroll boxx

Seroll arrow

& File Edit Search Run Windows
i Untitled \
4

=== list
I

EH—

f
Output window] Qeroll bar X

Command window Active liet window

Practice Session
With Microsoft BASIC

Time required:
Fifteen minutes

Now you are ready to begin using BASIC. Start by loading a program
called Picture. Picture is a demonstration program, written in Microsoft
BASIC, that comes on your Microsoft BASIC disk.

» Point at the File menu in the menu bar and press the mouse button.
The commands that appear are New, Open, Close, Save, Save As, Print,
and Quit.

Getting Started

» Choose the Open command by selecting Open and releasing the
mouse button.

Edit Search Run Windows
Untitled

-y rie

Close
Save
Save fs...
Print...
Quit

EOE=——— List

You will see a dialog box with a list of the programs on this disk.

» Click on Picture to select it.
» Click the Open button (or press the Return key).

The Picture program appears in the List window. The name of the output
window changes from Untitled to Picture.

Look at the Perhaps you expected to see a line number at the beginning of each line.
program listing In this Macintosh version of Microsoft BASIC, line numbers are optional.
for Picture: To refer to a particular line, give that line a label or a line number. For

- example, the Picture program has no line numbers, but it has two labels:
CheckMouse and MovePicture.

Microsoft BASIC Interpreter

" & File Edit Search Run Windows

Picture

ER=———J O\
DEFINT P-2
DIM P(2500)
CLS
LINE(0,0)-(120,120), BF
ASPECT = .1
WHILE ASPECT<20
CIRCLE(60,60),595,30,, ASPECT
ASPECT = ASPECT*1.4
WEND
GET {0,0)-(127,127),P
CheckMouse:
IF MOUSE(0)=0 THEN CheckMouse

Command

e /

Label / {lging g label a¢ 3 reference

The labels serve two purposes:

1. They mark important control points in the program.

2. Other statements, such as GOTO CheckMouse, use them as
references.

Labels make your programs casier to read. By assigning labels to function-
al blocks, you can quickly see the control points in a program. Labels are
especially convenient if you are copying often-used subroutines from one
program to another. You don’t have to worry about matching up line
numbers so the program runs in the right sequence. Simply identify the
subroutines by their labels.

A label starts a line and is followed by a colon. It's more convenient to
put a label on a line by itself, because that makes it highly visible. But,
you can put a BASIC statement on a line with a label if you like. See the
section entitled “The BASIC Line” in Chapter 7, “BASIC Reference,” for
more information.

Getting Started

Boldface Reserved Words On the Mac screen, BASIC program listings.
are very easy to read because BASIC’s reserved words are shown in bold

typeface.
Variablee and other fext in regular fype
& File Edit Search Run Windows \)
Picture \
A \
B==—— list 11
[DEFINT P-Z
LDIM P(2500)
CLS
LINE(0,0)-{120,120), BF
ASPECT = .t
WHILE ASFPECT<20
/c|RI:LE(E.O,E.O),sa,30,,,A5P£|:T
ASPECT = ASPECT*1.4
WEND
GET (0,00-(127,127) P
CheckMouse:

IF MOUSE(0)=0 THEN CheckMouse

Recerved worde in boldface type

When you're typing a program line, the “boldness” doesn’t appear until
you press the Return key. Also, the boldness goes away temporarily while
you are editing a line.

What does Run the program to see the picture it draws.

Picture do?
» Choose Show Output from the Windows menu. This opens the out-
put window over the List window.

Uhndows
Show Command
Show List %L
Show Second List
Show dutput

Microsoft BASIC Interpreter

p» Choose Start from the Run menu.

The program runs and the picture appears in the output window. You
can move this picture by clicking the mouse anywhere in the output
window. Try it

Output from Fieture Click the mouge fo
move the picture.

hl

€ /file Edit Se¢aich Run Windows
Picture

Output window active

Stop the program: Picture keeps running until you tell it to stop.

» Choose Stop from the Run menu. You get a dialog box that says
“Program Stopped.” The box disappears when you press a key or
move the mouse.

» Choose Show List from the Windows menu. The List window comes
forward again and becomes the active window. You can scroll
through the program listing, just as you would any Macintosh docu-
ment, using the scroll arrows and scroll boxes.

If you want to know more about Picture, see Appendix G, “A Sample
Program,” for a line-by-line explanation.

Editing a Editing a Macintosh BASIC program is much like editing text with a word

BASIC program: processor. All text entry and editing takes place in the List window using
the Cut, Copy, and Paste commands from the Edit menu. You enter new
text at the insertion point (the thin blinking cursor), either by typing or

Getting Started

using the Paste command from the Clipboard. Backspace deletes charac-
ters behind the insertion point. Dragging the mouse selects text, and you
can Cut or Copy the selection just as you would with a word processor.

Practice editing This is a good opportunity to practice editing a BASIC program on the

with Picture: Mac and to learn about some of the graphics statements in Microsoft
BASIC. Don’t worry about losing or altering Picture. There is another
program just like it called Picture2 on this disk.

If you want to experiment, feel free to make your own changes to Picture.
Try the following sequence to change the program to produce output that

looks like this:
r 1

& e Edit search Run Windows
:

/= Picture

Add a line Start by adding the line that draws the second sphere.

to the program:
» Look in the Picture listing until you find this line:

CIRCLE(60,60),55,30,, ASPECT

» Click at the end of the line to move the insertion point there.

Microsoft BASIC Interpreter

® File Edit Search Run Windows

Picture

EO——= \ist ===
DEFINT P-2Z
DIM P(2500)
CLS
LINE(0,0)-(120,120),,BF
ASPECT = .1
WHILE ASPECT<20
CIRCLE(60,60),55,30,, ASPECT|
ASPECT = ASPECT*1.4
WEND
6ET (0,0)-(127,127),P
CheckMouse:
IF MOUSE(0)=0 THEN CheckMouse

> Press the Return key to get a blank line. Now you are ready to type
the new line. Start it off with a few spaces to align it with the state-
ment above it. Type:

CIRCLE(60,170),40,33,, ASPECT

This statement draws an ellipse with the center located at 60,170, a
radius of 40, and an aspect ratio equal to ASPECT, in the color black.
In Microsoft BASIC, the number 33 represents black, and the number
30 represents white. Every time the WHILE loop is executed, the
statement draws another ellipse with a different aspect ratio (AS-
PECT). These ellipses form the sphere.

» Choose Start to run the program.

Getting Started

If you Whenever you type or edit a program, there’s the possibility of introduc-

get an error: ing errors. When BASIC encounters an error, it stops program execution
and gives you a dialog box that describes the error. BASIC makes sure
that a List window is active, and then it scrolls the window so the line
with the error in it is the first line in the window. The statement that
caused the error is enclosed in a bold rectangle, and BASIC moves the
cursor to the beginning of the statement. Then you can edit the incorrect
line in the List window and run the program again.

Replace a Since you changed the program, only the first sphere moves when you
program line: click the mouse. Let’s change the program so that both spheres move
together.

» If the program is still running, choose Stop to stop it.

» The List window should now appear and be active. If it doesn't ap-
pear, then choose Show List. Show List doesn’t change the position in
the List window.

> Point at the extreme left edge of the GET statement and drag across
to the end of the line. This selects the entire line.

Ee— List VY=
DEFINT P-Z s
DIM P(2500)
CLS
LINE(0,0)-(120,120),,BF
ASPECT = .1
WHILE ASPECT<20
CIRCLE(60,60),55,30,, ASPECT
ASPECT = ASPECT*1.4
WEND
GET v =i 1 27 127
CheckMouse:

i F

IF MOUSE(0)=0 THEN CheckMouse

» Choose Cut from the Edit menu to delete the selection.
» Type GET (0,0)-(120,250),P

Microsoft BASIC Interpreter

€ File Edit Search Run Windows

DIM P(2500)
CLS
LINE(0,0)-(120,120),,BF
ASPECT = .|
WHILE ASPECT<20
CIRCLE(60,60),55,30,,,ASPECT i
CIRCLE(60,170),40,33,,, ASPECT [
ASPECT = ASPECT*1.4 3
WEND
6ET (0,0)-(120,250),P|
CheckMouse:

This new GET statement increases the area that moves when you click
and drag the mouse.

B> Choose Start to run the program. Now both spheres move together
when you click the mouse.

& file Edit Sesrch Run Windows

Reversing
black and white:

Getting Started

Let’s change the first sphere so that it, too, is drawn in black on a white

Find the LINE statement in the program. A quick way to find it is

Choose Find from the Search menu. You get the Find dialog box.

Click OK. The LINE statement is highlighted in the List window.

Point at the end of the statement and click, putting the insertion point

background.
> If the program is still running, choose Stop to stop it.
| 2
with the Find command.
>
» Type LINE as the Find text.
Find next [LINE
(0K | N
|__Cancel |
b
N —
DEFINT P-2
DIM P(2500)
CLS
(W1]3(0,0)-(120,120), BF
ASPECT = .1
WHILE ASPECT <20
CIRCLE(£0,60),55,30,, ASPECT
CIRCLE(E0,170),40,33,, ASPECT
>
right after BE.
DEFINT P-2
DIM P{2500)
CLS
LINE(0,0)-(120,120), B
ASPECT = .1
| 2

Press the Backspace key once. The F in BF is deleted. Now the

inside of the box will be white (not “filled”).

Microsoft BASIC Interpreter

» Find the line
CIRCLE(60,60),55,30,, ASPECT
» Position the insertion point after the number 30.

CIRCLE(60,60), 55,30,,,ASPECT
CIRCLE(60,170),40,33,, ASPECT

» Press the Backspace key once to delete the O.
» Type 3 to make the number 33.

CIRCLE(60,60), 55,33, ASPECT
CIRCLE(AN 170),40/73 ASFECT

Ingert 3

Now the ellipses will be drawn in black instead of white.

» Choose Start to see the new program output. Now our changes are
complete.

Single-step through
the program:

Getting Started

To get better acquainted with Picture, let’s use a common debugging tech-
nique: single-stepping through the program.

Yy v vy

If Picture is still running, choose Stop to stop it.
Choose Show Command to activate the Command window.
Type in END and press the Return key.

Choose Step from the Run menu. Step executes the first line of the
program and then stops.

Choose Show List to open and activate the List window on the right
side of the screen.

[T}

SH=———JIN
DEFINT P-7]
DIM P(2500)
CLS
LINE(Q,0)-(120,120), BF
ASPECT = .1
WHILE ASPECT<Z0
CIRCLE(60,60),55,30,, ASPECT
CIRCLE(E(,170),40,33,, ASPECT

Each statement is outlined in the List window as it is executed.
The Command window is activated, so any text you type will appear
there.

Choose Step again (or press Command-T). The next line executes
and the program stops again. There’s no output yet, so not much is
happening,

Continue choosing Step and watch the program execute one program
statement at a time. When you get inside the section that draws

the ellipses, note how it draws the spheres. Each iteration of the
WHILE loop adds an ellipse with a different ASPECT (aspect ratio) to
cach sphere.

Just for fun, after the first few ellipses have been drawn, activate the
Command window and type PRINT ASPECT in the Command window
and press the Return Key.

Microsoft BASIC Interpreter

ED$ Command
PRINT ASPECT |
/
A

Immediate mode command

The current value of ASPECT (the aspect ratio for the ellipse) is
displayed in the output window.

Even though we're not actually “debugging” Picture, this illustrates a
typical debugging technique. You can enter a command in the Com-
mand window to get information from BASIC “on the spot.” When
you do this, it is called entering a command in “immediate mode.”
BASIC executes immediate mode commands right away and shows
you the result (if any). See “Operating Modes” in Chapter 3, “Using
the Microsoft BASIC Interpreter,” for more information on immediate
mode.

Continue stepping through Picture. Check other variables if you want
to. If you want to stop stepping and just run the rest of the program,
choose Continue from the Run menu.

Save the program,
SO you can
run it later:

Leave BASIC
and return
to the Finder:

Getting Started

Whenever you enter a new program or make changes to an existing pro-
gram, use the Save As command to put the program on the disk. Once it’s
on the disk, you can load and run it whenever you like.

» Choose the Save As command from the File menu. The Save As com-
mand gives you a dialog box.

Save program as:

. Microsoft...

{Picture |

(_save | { cancel)

—

@ Tewt (O Compressed O Protected

er—

BASIC assumes you want to save the program under its current name,
Picture. It also assumes you want to save the program in text format.’

Programs saved this way can be loaded and run by either version.

» You can change the name or the format if you want to, but the easiest
thing to do is simply: Click the Save button (or press the Return key).

Now you have two BASIC programs on the disk: the original, unchanged
Picture2 and the newly edited Picture. You also could have chosen to
rename the file as “Myfile” or any other legal name. That would have
preserved Picture in the form that you found it before your changes.

Choose the Quit command from the File menu.
Congratulations! You have finished the practice session.

You are now back at the Finder, ready to begin your next activity with the
Macintosh. But you've learned a lot about Microsoft BASIC in just a few
minutes.

Iv
I~

Microsoft BASIC Interpreter

You've learned how to:

Load an existing program.
Edit programs in the List window.
Work with some BASIC statements.

Save a BASIC program file.

In the next chapter, you'll find elementary facts about how to operate
BASIC, including a section called “The Microsoft BASIC Screen.” You'll
recognize things you saw in the practice session, and you'll note a few
new things, too. As with all Macintosh tools, you can’t “hurt” the comput-
¢r or BASIC through normal typing, mouse pointing, and trial and error.
So don’t be afraid to experiment with Microsoft BASIC and try all the
features of the screen.

3 Using the Microsoft
BASIC Interpreter

This chapter contains fundamental operating information for using
Microsoft BASIC, including how to choose between the different versions,
how to start and quit BASIC, how to load and save files, and how to use
the different operating modes. It then goes on to describe the various ele-
ments of the Microsoft BASIC screen.

Choosing Between the Two
Versions of Microsoft BASIC

Decimal version

&l

Binary version

&l

Microsoft has provided two versions of BASIC on your disk. Both versions
include the same features; they differ only in that they use different for-
mats for floating-point numbers. The two versions have different icons as
do applications written under them. Each version has its advantages. You
may want to experiment with both to find which one works best for the
kinds of programs you write.

The decimal version (BCD format) is best suited to business and financial
applications because it introduces no round-off error when doing calcula-
tions involving dollars and cents operations. This option is compatible
with programs and data files created by Microsoft BASIC 1.0 for the
Macintosh. (The default for numeric data types is double precision.)

The binary version (IEEE format) is best suited to scientific and engineer-
ing applications. Arithmetic operations are always faster in this version
than in the decimal version, especially for transcendental functions (SIN,
COS, SQR, LOG, etc.). (The default for numeric data types is single
precision.)

Making Use of Both Versions

If you double-click a BASIC program icon, the Finder will automatically
load the version of BASIC the program was written under. You should
remember that:

® If the version of BASIC the program was written under is not on the
disk, the program will not load.

® Data files with numeric information created by MKS$ and MKD 8 in
one version are not directly readable by the other version.

Microsoft BASIC Interpreter

B [f the same program is run under both versions, numeric results may
vary slightly between versions. This difference is insignificant in most
cases.

Converting from If you wish to change your data files from one version’s file format to
one version another, use the four functions provided in the binary version. Two of
to another: these functions are CVDBCD and CVSBCD. They take decimal-created

‘ random file non-integer numbers and turn them into binary format. The
other two functions are MKSBCD § and MKDBCD $ which take non-integer
numbers from your binary program and put them into a random file
buffer. When the contents of this buffer are output to the random file, the
numbers are then readable by a decimal version program.

Starting and Quitting
Microsoft BASIC

Two ways to start B Double-click a Microsoft BASIC icon in the Finder. The two versions
Microsoft BASIC: of BASIC differ only in the way they handle floating-point (non-
integer) numbers.

or

® Double-click any Microsoft BASIC program icon in the Finder. This
not only invokes the version of BASIC the program was written for,
but also loads and runs the selected program.

Two ways There are two ways to exit Microsoft BASIC and return to the Finder.

to return
to the Finder: B You can select the Quit option on the menu bar’s File menu.

or

8 You can enter the SYSTEM command in the Command window, or
SYSTEM can be an instruction in a BASIC program.

Using the Microsoft BASIC Interpreter

Loading and Saving Programs

Loading
a program:

Saving
a program:

To run a program, the program must be in memory. There are several
ways to put an existing program into memory.

® When in the Finder, double-click the icon for a Microsoft BASIC pro-
gram. If you do this, BASIC is loaded, and the program is loaded and
run. The appropriate version of BASIC is automatically selected for
you.

B If BASIC has already been loaded, you can select the Open option
from the File menu. This will display all the existing Microsoft BASIC
programs on the volume that use the loaded version of BASIC. Click
the one you want to open.

8 If BASIC has already been loaded, you can type the LOAD statement in
the Command window. See “LOAD” in Chapter 7, “BASIC Reference,”
for the proper syntax of this statement.

& If a BASIC program is currently running, it can use the CHAIN state-
ment to load and run another program.

To save a new program, you can either select the Save As option from the
File menu or type the SAVE statement in the Command window. See
“SAVE” in Chapter 7, “BASIC Reference,” for the proper syntax of this
statement. You can also use SAVE to file away a previously saved and now
re-edited program, but if you wish to use the File menu for saving the pro-
gram, you should select the Save option.

Operating Modes

Immediate mode

When Microsoft BASIC is double-clicked from the Finder, the Command
window appears on the screen and BASIC is at command level. This
means it is ready to accept commands. At this point, Microsoft BASIC can
be used in one of three modes: immediate mode, edit mode, or program
execution mode. The List window is active when BASIC starts operating.

In immediate mode, BASIC commands are not stored in memory, but in-
stead are executed as they are entered in the Command window. Results
of arithmetic and logical operations are displayed immediately and stored
for later use, but the instructions themselves are lost after execution. This
mode is useful for debugging and for using BASIC as a calculator for quick
computations that do not require a complete program.

Microsoft BASIC Interpreter

Program
execution mode

You must make the Command window active by selecting it with the
mouse before you can start entering commands.

When a program is running, BASIC is in program execution mode. During
program execution, you cannot execute commands in immediate mode,
nor can you enter new program lines in the List window.

Edit mode You are in edit mode when working in a List window.
L]
The Microsoft BASIC Screen
Elements There are four separate regions of the BASIC screen: the Command win-

of the screen

dow, the output window, the List window, and the menu bar.

Three of these regions, the windows, share the following traits:

Clicking inside 2 window makes it active.
Clicking the close box closes a window.
Dragging the title bar moves a window.
Dragging the size box resizes a window.

Double-clicking the title bar makes the window the full size of the
screen. Double-clicking the title bar again returns the window to its
previous size.

Additional features of each screen area are described in the sections that
follow.

The Command Window

To activate it:

The Command window is used to enter statements in immediate mode.
It is opened automatically when you load BASIC by double-clicking one
of the Microsoft BASIC icons in the Finder.

B Click inside it.
B Choose Show Command from the Windows menu.

Using the Microsoft BASIC Interpreter

- 3
In it, you can: ® Enter a statement in immediate mode. BASIC executes the statement
- when you press the Return key. Any output from the statement is
e displayed in the output window.
. 8 Use the Cut command from the Edit menu or the Backspace key to
correct typing mistakes.
—
The Output Window
—-- The output window displays the output from your programs.
-~ To activate it: ® Click inside it.
— 8 Choose Show Output from the Windows menu.
-y
pa— ° *
The List Window
m .
L The List Window is used to enter, view, edit, and trace the execution of
programs. It is automatically activated when you double-click Microsoft
BASIC from the Finder.
L]
- To activate it: Click inside it.
i 8 Choose Show List or Show Second List from the Windows menu.
- Enter LIST in the Command window.
. It also becomes active when the program halts because of an error.
Note If a program has been saved in a protected file, you
- cannot open a List window for the file. Protected files
-= can neither be listed nor edited. You protect a file by
saving it with the “Protected” format in the Save
- command.
o In it, you can: ® Look at a program and scroll through it with scroll arrows and scroll
boxes (thumbs).
8 Enter or edit a program, using all the editing features of Microsoft
- BASIC, including sclecting text with the mouse and using the com-
__ mands in the Edit menu. See “List Window Hints™ in Chapter 4, “Edit-
ing and Debugging Your Programs,” for more details on List windows.
-—

Microsoft BASIC Interpreter

To enlarge
a List window:

To shrink
a List window:

Enlarging the List Window

Like all windows in BASIC, the List window can be enlarged by dragging
the size box at its lower-right corner. Since enlarging the List window
can become a frequent task, especially during debugging sessions, BASIC
provides an even quicker method.

B Double-click the title bar of the active List window. The window
enlarges to full screen size.

8 Double-click the title bar again. The window returns to its previous
size.

Double-clicking the title bar is the most convenient way to switch
between a full-screen and a smaller List window. If you resize the win-
dow, BASIC remembers the new size the next time you switch back to it.
Double-clicking the title bar works with all BASIC windows, but you will
probably want to do this most often with the List window.

The Menu Bar

The Apple menu:
The File menu:

e

New
Open...
Close
Save
Save Rs...
Print...
Quit

There are six menus on the menu bar: Apple, File, Edit, Search, Run, and
Windows. You cannot always use all of these menus. When a menu name
is “dimmed,” it means that the menu is not relevant to what you are doing
at the moment. Similarly, when a menu command is “dimmed,” it is
irrelevant to what you are doing. When a menu or menu command

is dimmed, it cannot be selected.

Some of the menu commands show a Command-key sequence next to
them, such as Command-X for Cut. This means you can press the given
key combination (press the “X” key while holding down the Command
key) instead of choosing the command with the mouse, if you want to.

This is the system menu that contains the Macintosh desk accessories.
The File menu contains seven commands that affect program files:

gets BASIC ready to accept a new program. [t clears the
current program listing from your screen and the program from memory,
SO you can begin a new program.

tells BASIC you want to bring in a program that is already on
the disk. When you choose Open, you get a scrollable list of the pro-
grams on the disk. Select the program you want, then click the Open but-
ton. If the program you want is on another disk, you can eject the

current disk by clicking the Eject button and then put in the other disk. If
the program you want is on a disk in another disk drive, the dialog box

The Edit menu:

Cut BH
Copy %C
Paste XU

Using the Microsoft BASIC Interpreter

offers you the choice of selecting program files from a second drive. If
you select this option, BASIC offers a scrollable list of programs from the
other disk.

closes the active (highlighted) window.

puts a program on the disk after you have entered it or made
changes to it. It saves the program under its current name. (If the
current name is “Untitled,” choosing Save gives you the Save As dialog
box instead, so you can change the name.)

is the same as Save, except that Save As allows you to change
the name of the program to be saved.

The dialog box assumes you want to save the program in compressed for-
mat. If you want to save in Text, Compressed, or Protected format, click
the appropriate button (See “Program File Commands” in Chapter 5,
“Working With Files and Devices,” for an explanation of file formats.) If
you want to save the program on a different disk, you can eject the
current disk by clicking the Eject button, and then insert the other disk.

sends a copy of the program to the printer. Two prompts re-
quest information about paper size and print format before the printing
starts.

IO causes Microsoft BASIC to return to the Finder.

The Edit menu has three commands that are used when entering and edit-
ing programs. Except for immediate mode statements in the Command
window, you enter and edit all program statements in the List window.

deletes the current selection from any window and puts it
in the Clipboard. Typing Command-X is the same as choosing Cut.

puts a copy of the current selection into the Clipboard
without deleting it. Typing Command-C is the same as choosing Copy.

replaces the current selection with the contents of the Clip-
board. If no characters are selected, Paste inserts the contents of the Clip-
board to the right of the insertion point. Typing Command-V is the same
as choosing Paste.

Microsoft BASIC Interpreter

The Search menu:

find...

Find Label
Find the Cursor
Replace...

%F
Find Next %N
Find Selected Text

The Run menu:

Start %R
Stop %.
Continue
Suspend %§
Trace On

Step 6T

The Search menu contains six commands which provide the full range of
editing options you need to edit and change your programs. The Find
selections work from the current location to the bottom of the program,
and scroll around to the top of the program again.

gives you a dialog box asking for the text you want
to find. When you click the Find Next button, Find locates the next oc-
currence of that text in the program. The text is shown highlighted in the
List window. Typing Command-F is the same as selecting Find.

Find Next kB scarches forward in the program text for the next
occurrence of the text last searched for by any of the Search menu items.

Typing Command-N is the same as selecting Find Next.

FULREEHACIRIEAN searches forward for the next occurrence of the text
that is currently selected in the List window.

Find Label appends a colon to the selected text, and searches
for the label definition that corresponds to your entry.

Find the Cursor causes the List window to scroll until the cursor is
visible.

gives you a dialog box in which you enter four

things: selected text, replacement text, and two options: Replace All Oc-
currences, which replaces all occurrences of the text, and Verify Before
Replacing, which stops at each occurrence of the text and gives you the
option of replacing or not replacing that case.

The Run menu has six commands that control program execution:

runs the current program. Entering RUN in the Command
window or typing Command-R is the same as choosing Start.

stops the program that is running, displays the “Program
Stopped” alert box, and activates the Command or List window, whichev-
er was most recently active. Typing Command-period is the same as
choosing Stop.

starts a stopped program. Entering CONT in the Com-
mand window is the same as choosing Continue. If no program was
stopped, or if you changed the program while it was stopped, you get the
dialog box that says, “Can’t continue.”

MALCUIEESY suspends the program that is running until you press any
key. Typing Command-S is the same as choosing Suspend.

is a toggle that turns program tracing on and off for
debugging. If a List window is visible, tracing outlines cach statement as
it executes. This works the same as the TRON statement. Trace Off
works the same as the TROFF statement.

step 4l cxecutes the program, one statement at a time, It stops
after each statement. Typing Command-T is the same as choosing Step.

1

The
Windows menu:

Show Command
Show List %L
Show Second List
Show Output

Using the Microsoft BASIC Interpreter

The Windows menu has four commands that open windows on the BASIC
screen:

INURINIUE L opens and activates the Command window.

Show List LA opens and activates a List window onto the current
program. If a List window is already open but covered with other win-
dows, Show List brings it forward and activates it. Typing Command-L
is the same as choosing Show List.

NIITTUYION AN opens and activates a second List window onto the
current program. If a second List window is already open but obscured,
Show Second List brings it forward and activates it.

Show Output opens and activates the output window. Any overlap-
ping List windows are put behind the activated output window.

4 Editing and
Debugging Your Programs

This chapter describes how to enter text to write programs, and how to
remove errors from programs.

Editing Programs

Writing in The List window appears when you start Microsoft BASIC. Use the regular

List windows: Macintosh editing commands, Cut, Copy, and Paste, to write and edit the
program lines in the List window. The Search menu provides several
ways to quickly find or change program text in just one place, or
throughout the program. It also has two features, Find the Cursor and
Find Label, that permit you to find your way quickly around a program.

The List window that appears when BASIC is initialized may seem too

small to use for long program lines. Text written beyond the right margin

will force the window to scroll, keeping the cursor in the visible part of

the List window. If you double-click the List window’s title bar, the win-

dow enlarges to fill the screen. This provides more space for longer visi-
ble program lines. If you double-click the title bar again, the List window

assumes its previous size and location.

List Window Hints

Here are some hints to help you get the most out of List windows while
editing programs. Load the Picture program from the Microsoft BASIC
disk and follow these hints.

Viewing two Sometimes you want to look at two different parts of a program while
List windows: you are editing it. For example, a program usually has subroutine calls
(GOSUBs) near the beginning of the program, with the subroutines them-
selves toward the end. You may want to view both simultaneously.
To do this, open two List windows and scroll to different portions of the
program.

» Choose Show List from the Windows menu to open the first List
window.

» Choose Show Second List from the Windows menu. A second List
window opens and becomes the active window.

Microsoft BASIC Interpreter

> Move the active List window to the left edge of the screen by drag-
ging the title bar.

Dragging title bar

" & file\{dil Search Run Windows
\ Picture

List

= list V=—|

ASH] CLS
W LINE(0,D)-(120,120), BF
ASPECT: = .1

WHILE ASPECT<20

M CIRCLE(60,60),55,30,, ASFECT
GET} ASPECT - ASPECT*1.4

Che WEND

TFGET (0,)-(127,127),p
*UhsEkAbuse:
IF MOUSE(Q

HEN CheckMouse

/

Duplieate Liet window

» Click inside the original List window to make it active.

» Move the active List window slightly to the right by dragging the title
bar. The two windows are now side-by-side.

» Scroll the listing in each window to the lines you want and continue
editing the program.

Typing and
editing text:

Editing and Debugging Your Programs

Drag title bar fo the right.
" & File Edit Search m

Picture \
. |

CIRCLE(60,60),55,30,, ASP|
ASPECT = ASPECT*1.4
WEND

List | sl
DEFINT P-Z ED% List ===
DIM P(2500) [DEFINT P-Z
CLS DIM F;(?SOO)
LINE(0,0)-(120,120), BF CLS :_
ASPECT = .1 LINEQ0,0)'(IZO,WO),,BF
WHILE ASPECT<20 ASPELT = .1

WHILE ASPECT<20
GIRCLE(60,60),55,30,, ASPECT
ASPECT = ASPECT*1.4

BET (0,0)-(127,127),P WEND

CheckMouse: GET (0,0)-(127,127) P
IF MOUSE(0)=0 THEN CheckmMd CheckMouse:
IC ADpC/Y MONCCIIN S A T

IF f;“IUUSE(

0 THEN CheckMouse

Original Liet window /

If you close or obscure the List windows, the next Show List and
Show Second List you choose will display the List windows in these
new positions.

Editing Reminders

Editing program lines in the List window is much like working with regu-
lar text on a word processor. If you are accustomed to working with
MacWriterm on the Macintosh, you already know how to edit programs in
BASIC. Here are some reminders about typing, selecting, and editing text
in the List window.

B Insert text by typing it or pasting it from the Clipboard. Inserted text
appears to the right of the insertion point.

B Delete characters by backspacing over them or by selecting them and
then choosing Cut from the Edit menu.

Microsoft BASIC Interpreter

Selecting text:]

Scrolling: .

End each program line with a carriage return. You can have extra
carriage returns in your BASIC programs; these only create blank lines
that are ignored when the program executes.

You can indent program lines by using the Tab key. When you press
the Return key at the end of a line, the cursor descends one line and
goes to the column where the previous line started. This means if the
previous line started with a tab, the new line will start at the same tab
stop. This feature can save you considerable time in entering pro-
grams with indented lines. Note that indenting lines does not con-
sume any more memory than not indenting them,

You can type reserved words in either uppercase or lowercase, but
BASIC will always display them in uppercase and bold.

You can type variable names in either uppercase or lowercase, but
BASIC will not distinguish between them. Thus, TOTAL and total are
the same variable name.

Select characters or lines by dragging the mouse over them.

If you drag to any edge of the List window and keep holding the
mouse button down, the window automatically starts to scroll, select-
ing as it goes.

Another way to make an extended selection is to click at the begin-
ning of the selection, move the mouse to the end of the selection, and
Shift-click (clicking while holding down the Shift key). This selects all
characters between the beginning and end of the selection.

The quickest way to select a single line is to point at the far left edge
of the line and drag down one line.

Scroll as you would any Macintosh document, using the List window
scroll buttons and scroll boxes.

When you reach the bottom of the List window and continue entering
lines, BASIC automatically scrolls up one line at a time.

BASIC automatically scrolls horizontally when you reach the right
edge of the List window and continue typing. If you use the scroll
bar to move away from the area containing the cursor and try to do
anything that would change the text, the List window will scroll back
to the cursor area.

If you click above the scroll box in the vertical scroll bar, the listing
scrolls up one screenful. If you click below it, the listing scrolls down
one screenful.

Single-clicking arrows in the vertical scroll bar scrolls through the list-
ing up or down, one line at a time.

Opening a
List window at
a specific line:

Using Cut,
Copy, and Paste
commands in
List windows:

Editing and Debugging Your Programs

To open a List window at a specific line, enter the LIST command in the
Command window and include a label or line number. The List window
will open with that line as the first line.

EQ Command

LIST MovePicture

For example, LIST MovePicture opens a List window on the Picture
program, beginning with the MovePicture subroutine.

Any selection that you cut or copy in one window is put into the
Macintosh Clipboard and can be pasted into any List window. Don't for-
get that the contents of the Clipboard are replaced with each Cut and
Copy command. However, a Paste command does not change the con-
tents of the Clipboard, so you can paste the same contents into different
places in a program as many times as you want.

Sometimes you may want to cut something out of the program without
having it overwrite information you have on the Clipboard. You can do
this by highlighting the text you want to eliminate and pressing the Back-
space key. This is also a good technique when you want to avoid generat-
ing “Out of heap space” error messages which can occur when deleting a
very large block of text.

Debugging Programs

Error messages

TRON command

Microsoft BASIC comes with several debugging features. You can use
these features to save time and effort while removing program errors.

When a program encounters an €rror, program execution terminates,

a dialog box appears with the error message, and the line with the error
is indicated in the List window. See Appendix B, “Error Codes and Error
Messages,” for a complete listing of these codes and messages.

TRON is easily remembered as TRace ON. Trace mode is on when you
select the Trace On choice from the Run menu, execute TRON in a pro-
gram line, or type it in the Command window.

If a List window is visible, the statement being executed is framed with a
rectangle in the List window. As the program executes statement by
statement, each statement is framed.

TRON is disabled when you select the Trace Off item from the Run
menu, execute TROFF (TRace OFF) in a program line, or type it in the
Command window.

38

Microsoft BASIC Interpreter

Step option

Suspend option

If you have isolated the error to a small part of a program, it is easier and
quicker to turn on TRON from within the program, just before the error
is reached.

The Step option executes the next statement of the program in memory.
If the program has been executed and stopped, Step will execute the first
statement following the STOP statement. Control subsequently returns to
immediate mode. If there is more than one statement on a line, Step exe-
cutes each statement one at a time. You can also select Step from the Run
menu.

If a List window is visible, BASIC frames the last statement that was
executed.

You can advance through a program, step-by-step, testing results at the
conclusion of each line, and interactively testing variable values by order-
ing them (in the Command window) to be printed. To reset STEP to start
at the beginning of a program, type in the END statement in the Com-
mand window.

You cannot use Step to stop execution of a program if ON BREAK trap-
ping is enabled. (See “ON BREAK” in Chapter 7, “BASIC Reference,” for
further information.)

You can cause program execution to pause cither by pressing Command-$
or selecting the Suspend option from the Run menu. This suspends or
causes a pause in program execution until any key (except Command-S)
is pressed. This option is enabled whenever a program is running.

Using the Command Window

Once a program has been stopped, you can use the Command window to
glean useful debugging information in immediate mode. For example, if
your program is causing an error message, and the error occurs some-
where within a loop, you can find out how many times the program has
executed the loop and all the variable values. You find this out by enter-
ing immediate mode instructions in the Command window to PRINT the
variables (for exact syntax, see “PRINT” in Chapter 7, “BASIC Reference™).

Another debugging use of the Command window is to change the values
of variables with immediate mode LET statements. You can assign a new
value to a variable and use the Continue selection on the Run menu to
resume program execution.

5 Working With
Files and Devices

This chapter discusses the way files and devices are used and addressed in
Microsoft BASIC, and the way information is input and output through the
system. File handling is discussed, as well as how to use data and pictures
from other applications, such as Microsoft Multiplanry, in your BASIC
programs.

File Naming Conventions

There are few filename constraints in Microsoft BASIC on the Macintosh.
All files have a filename preceded by an optional volume name.

Filenames

Microsoft BASIC filenames can be from one to 255 characters in length,
and can consist of either uppercase or lowercase alphanumeric characters
or a combination of both. No Command characters can be used in
filenames. Examples of valid filenames:

PAYROLL A2400 MyFile CHECK REGISTER

Volume Specifications

Your Macintosh comes with one built-in disk drive. You may connect an
additional disk drive to increase your storage capacity. Even on one-drive
systems, some people will have more than one volume. In this case, you
must explain which volume is to be activated for loading or saving files.
You do this by adding the relevant filename to the volume name, separat-
ing them by a colon. For example, if you were trying to get a program
named CATALOG, from a volume named Bill’'s Multiplan Disk, you would
refer to the file as:

LOAD "Bill's Muitiplan Disk: CATALOG"

For loading program files, it is best to select the Open command on the
File menu. This will display a dialeg box that provides an Eject option so
that you can remove the BASIC disk and insert another disk containing the
program file you wish to load. After the disk is inserted, the files on the

Microsoft BASIC Interpreter

disk will be displayed, and you can proceed with selecting and loading the
file in the normal way you would if the file was on the same disk. To save
program files, it is best to select the Save As command on the File menu.
The process that follows is similar to the procedures for loading.

You can also load a program from another volume with the LOAD,
MERGE, or RUN commands by e¢ntering the volume name and filename,
separated by a colon, in the Command window. However, if that volume
has not been previously mounted on the system, an “Unknown volume”
error message is generated. To avoid this, you will have to first eject the
disk in your internal drive by pressing Command-Shift-1 (Command-Shift-2
for the external drive). Then you can insert the volume containing the
program you wish to load.

Data files accessed from another volume also require that you specify the
volume in addition to the filename. To ensure that the volume is present,
you can use the FILES$ function.

Assume, for example, you want to open a data file called “Expenses” from
the internal drive, but the disk volume it is on, “Accounts”, is not in the
internal drive. You can do the following:

X8 = FILES$(1)

When BASIC executes the FILESS function, it will automatically display a
dialog box and provide options to select files on the current volume, on a
second drive, or to ¢ject the disk from the drive and load from another
volume.

In the latter case, you can select the Eject button to eject the current disk
in the internal disk drive and insert the “Accounts” volume. The dialog
box will then allow you to select the file, “Expenses” (or any other file on
the disk). The volume name and filename of the selected file will au-
tomatically be stored in the string variable (X$). This will allow you to
open the file by later using X8 in an OPEN statement, as in the following
line:

OPEN X $ FOR APPEND AS #1

Working With Files and Devices

Generalized Device /O

Microsoft BASIC supports generalized device input and output. This
means that various devices can be used with the same syntax BASIC uses
to access disk files. The following devices are supported:

SCRN: Files can be opened to the screen device for output. All
data opened to SCRN: is directed to the current output
window.

KYBD: Files can be opened to the keyboard device for input. All
data read from a file opened to KYBD: comes from the
keyboard.

LPT1: Files can be opened to this device for output. All data
written to a file opened to LPT1: is directed to the line-
printer.

CLIP: Files can be opened to this device (the Finder’s Clip-
board) for input or output. By using this device, you can
write results from a program to the Clipboard for use by
the Finder or another application. Conversely, you can
use the Copy choice in a program like Microsoft Multi-
plan to save information to the Clipboard. (See “Transfer-
ring Data Between BASIC and Other Programs” in this
chapter for more information.) You can then read that
data from CLIP: into a BASIC program. The Clipboard

is changed whenever a Cut or Copy edit process is
performed.

You can address the Clipboard in three different ways.
The first two, “CLIP:” and “CLIP:TEXT”, hold data in text
format, while “CLIP:PICTURE"” holds encoded graphics
instructions.

“CLIP:” is useful for transferring data to and from pro-
grams that have tabular data, like Microsoft Multiplan or
Microsoft Chart. If you use the WRITE# statement in
BASIC to put information into the Clipboard, you can
later use that information in Multiplan or Chart. In the
WRITE statement, expressions are separated by commas,
and these are converted to tabs when written to the
Clipboard.

“CLIP:TEXT"” is useful for transferring data to and from
word processors and similar programs.

“CLIP:PICTURE" is useful for transferring data to and
from MacPaint and similar programs.

Microsoft BASIC Interpreter

COM1: Files can be opened to this device for input or output.
COM1: accesses the asynchronous port for external com-
munication. The syntax for using the COM1: filename is
as follows:

COM1: [baud-rate ||, parity || |data-bits || stop-bits]]]

baud-rate: The speed at which the computer commun-
icates. The default is 300. The baud-rate is
one of the following values: 110, 150, 300,
600, 1200, 1800, 2400, 3600, 4800, 7200,
9600, 19200, or 57600.

Darity: A technique for detecting transmission er-
rors. The default is E. It is ¢ither O (for
odd), E (for even), or N (for none).

data-bits: The bits in each byte transmitted that are
real data, and not overhead (parity bits and
stop bits). The default is 7. It is either 5,
6, 7, 0r 8.

stop-bits: Used to mark the end of the transmitted
‘byte.” When the baud rate is 110, the de-
fault for stop bits is 2. At all other baud
rates, the default is 1. When 2 stop bits and
S data bits are specified, 1.5 stop bits are
used.

Printer Options

Microsoft BASIC provides you with a number of different ways to use the
printer, offering a spectrum of styles and speeds. The printer device is ad-
dressed by using LPT1: .

BASIC graphics and ROM calls can be sent to the printer by way of the
WINDOW OUTPUT# statement. See “WINDOW?” in Chapter 7, “BASIC
Reference,” for details.

When PRINT statements are sent to the file, “LPT1:DIRECT”, BASIC sends
a stream of ASCII bytes. This is useful for sending text to a daisy-wheel
printer. This is the fastest way to produce printer output, although it has
the lowest visual quality.

When PRINT statements are directed to a file named “LPT1:PROMPT”,
BASIC displays two dialog boxes that permit you to change print specifica-
tion parameters. After a dialog box to choose the proper paper size, there
is a dialog box that offers three choices for printing. They are Draft, Stan-
dard, and High.

Working With Files and Devices

Draft print is the fastest of the three options. The print appearance is simi-
lar to standard dot-matrix print. The printer attempts to approximate dif-
ferent font and typeface appearances. Standard print is based on bit-
mapped screen information, and is precisely the way the text appears on
the screen. High print is the same as Standard, except the printer strikes
every character twice for higher resolution.

“LPT1:” and the Standard and High options support graphics.
“LPT1:DIRECT” and the “LPT1:PROMPT"” Draft option do not.

Note that “LPT1:” and “LPT1:PROMPT” send output to a disk file first and
then to the printer when the file is closed.

The following statements and functions support device-independent I/O:

CHAIN MERGE
CLOSE OPEN
EOF POS
GET PRINT
INPUT PRINT USING
INPUT# PUT
LINE RUN
LIST INPUT# SAVE
LOAD WIDTH
LOC WRITE
LOF WRITE#

Handling Files

This section examines file VO procedures for the beginning BASIC
user. If you are new to Microsoft BASIC, or if you are encountering file-
related errors, read through these procedures and program examples to
make sure you are using the file statements correctly.

Program File Commands

Getting at a
program file:

The following is a brief overview of the commands and statements you
use to manipulate program files. More detailed information and syntactic
rules are given in Chapter 7, “BASIC Reference,” under the various state-
ment names.

There are three main ways to open up a program file. The most common-
ly used way is to open the file by using the LOAD command. When you
load a program file, all open data files are closed, the contents of memory
are cleared, and the loaded program is put into memory.

Microsoft BASIC Interpreter

Putting away
program files:

Additional
file commands

Another way to get a program file is to bring a program into memory and
attach it to the end of a program already in memory. Do this by using the
MERGE command. This is useful when you are developing a large pro-
gram and want to test the parts of it separately. After testing and debug-
ging the parts, you can merge them together.

A third way to get at a program file is to transfer control to it during the
execution of another program. Do this by using the CHAIN statement.
When you use CHAIN, the program in memory opens up another program
and brings it into memory. The first program is no longer in memory.
Options to the CHAIN statement permit all or some variable values to be
preserved, and merging of the program already in memory with the pro-
gram to which control is being transferred.

The two main ways to file away your programs are by selecting the Save
or Save As selections on the File menu, or by typing the SAVE command
in the Command window. For information on the Save and Save As selec-
tions, see “The Menu Bar” in Chapter 3, “Using the Microsoft BASIC Inter-
preter.” For full details on the SAVE command, see “SAVE” in Chapter 7,
“BASIC Reference.” The default format for saved files is binary. In the
Save As selection on the File menu, this option is called “Compressed.”
The files in this format take up the least room, and load and save most
quickly.

If you wish to have a program protected from being listed or changed, use
the “Protected” (,P) option with the SAVE command. This option is
called “Protected” in the Save As selection of the File menu. You will al-
most certainly want to save another, unprotected copy of a program
saved this way for listing and editing purposes.

If you wish to save the program in ASCII format, use the “ASCII” (,A) op-
tion. This option is called “Text” in the Save As selection of the File
menu. ASCII files use up more room than binary ones, but word process-
ing programs can read ASCII files, and CHAIN MERGE and MERGE can
successfully work only with programs in this format.

Microsoft BASIC provides you with additional program file-handling state-
ments as well. The NAME statement provides you with the ability to
rename existing program and data files. The KILL statement enables you
to delete a data or program file from a volume. For detailed information
about these two commands, see “NAME” and “KILL” in Chapter 7, “BASIC
Reference.”

Working With Files and Devices

Data Files —
Sequential and Random Access I/O

There are two types of data files that can be created and accessed by a
BASIC program: sequential files and random access files.

Sequential Files

Sequential files are easier to create than random access files, but are not as
flexible and quick in locating data. The data written to a sequential file is
a series of ASCII characters stored, one item after another (sequentially),
in the order written. The data is read back sequentially, one item after
another.

Warning Sequential files can be opened in order to write to them
(output) or read from them (input), but not both at the
same time. When you need to add to a sequential file
that has already been given data and closed, do not open
it for output. This erases the previous contents of the file
before it writes the new data you give it. Use append
mode to add information to the end of an existing file if
you don’t want to erase existing data.

This version of BASIC gives you the option of specifying the file buffer
size for sequential file /0. The default length is 128 bytes. This size can
be specified in the OPEN statement for the sequential file. The sizes you 45
specify are independent of the length of any records you are reading or
writing to the file; they only specify the buffer size. Larger buffer sizes
speed /O operations, but take memory away from BASIC. Smaller buffer
sizes conserve memory, but produce slower /0.

The following statements and functions are used with sequential data files:

CLOSE LOF

EOF OPEN

INPUT$ PRINT#
INPUT# PRINT USING#

LINE INPUT# WIDTH
LOC WRITE#

40

Microsoft BASIC Interpreter

Creating a Program 1 is a short program that creates a sequential file, “DATA”, from
sequential information you enter at the keyboard.
data file:

Program I—Creating a Sequential Data File

OPEN “DATA" FOR OUTPUT AS *1
ENTER:
INPUT "NAME (‘DONE’ TO QUIT)";N$
IF N$ = "“DONE" THEN GOTO FINISH
INPUT "DEPARTMENT"; DEPTS$
INPUT "DATE HIRED"; HIREDATES
WRITE #1,N$,DEPTS HIREDATES
PRINT
GOTO ENTER
FINISH:
CLOSE *1
END

As illustrated in Program 1, the following program steps are required to
create a sequential file and access the data in it:

1. Open the file in output (to the file) mode.
2. Write data to the file using the WRITE# statement.
3. After you put all the data in the file, close the file.

A program can write formatted data to the file with the PRINT# USING
statement. For example, the statement

PRINT #1, USING"#### 88" A BCD

can be used to write numeric data to the file without commas separating
the variables. The comma at the end of the format string in the PRINT#
USING statement separates the items in the file with commas. It is good
programming practice to use “delimiters” of some kind to separate dif-
ferent items in a file.

Working With Files and Devices

If you want commas to appear in the file as delimiters between variables
without having to specify each one, the WRITE# statement can also be
used. For example, the statement

WRITE #1,A B$
can be used to write these two variables to the file with commas delimit-
ing them.
Reading data Now look at Program 2. It accesses the file “DATA” that was created in
from a sequential Program 1 and displays the name of everyone hired in 1981.
data file:
Program 2—Accessing a Sequential Data File
OPEN “I"#1,"DATA"
WHILE NOT EOF(1)
INPUT #1,N$,DEPT$ HIREDATES
IF RIGHT$(HIREDATES,2) - “81" THEN PRINT N$
WEND
Program 2 reads, sequentially, each item in the file, and prints the names
of employees hired in 1981. When all the data has been read, the
WHILE..WEND control structure uses the EOF function to test for the
end-of-file condition and avoids the error of trying to read past the end of
the file.
Adding data If you have a sequential file residing on disk and want to add more data to
to a sequential the end of it, you cannot simply open the file in output mode and start
data file: writing data. As soon as you open a sequential file in output mode, you

destroy its current contents.

Instead, use append mode. If the file doesn’t already exist, the OPEN
statement will work exactly as it would if output mode had been
specified.

Microsoft BASIC Interpreter

The following procedure can be used to add data to an existing file called
“FOLKS”:

Program 3—Adding Data to a Sequential Data File

OPEN "A",* | "FOLKS"
REM *** Add new entries
NEWENTRY:
IF N$ - " THEN GOTO FINISH "Carrisge Return exits input loop
LINE INPUT "ADDRESS ? ~,ADDR$
LINE INPUT "BIRTHDAY ? " BIRTHDATES
PRINT*1,N$
PRINT* |, ADORS
PRINT* 1, BIRTHDATES
GOTO NEWENTRY
FINISH:
CLOSE *1
END

The LINE INPUT statement is used for getting ADDR$ because it allows
you to enter delimiter characters (commas and quotes).

Random Access Files
Creating and accessing random access files requires more program
steps than creating and accessing sequential files. However, there are

advantages to using random access files. One advantage is that random ac-

cess files require less room on the disk, since BASIC stores them in a
packed binary format. (A sequential file is stored as a series of ASCII
characters.)

The biggest advantage to using random access files is that data can be ac-
cessed randomly, that is, anywhere in the file. It is not necessary to read
through all the information from the beginning of the file, as with sequen-

in distinct units called records. Each record is numbered.

Working With Files and Devices

The statements and functions that are used with random access files are:

CLOSE LSET

CVD MKD
CVvl MKI
CVS MKS
FIELD OPEN
GET PUT
LOC RSET
LOF
Creating a Program 4—Creating a Random Data File
random access
data file: OPEN °R",#1,"DATA",32
FIELD #1,20 AS N$,4 AS A$,8 AS P$

START:
INPUT “2-DIGIT CODE (ENTER -1 TO QUIT)";CODER
IF CODE®=-1 THEN QUITFILE
INPUT “NAME";PERSONS
INPUT “AMOUNT";AMOUNT
INPUT “PHONE";TELEPHONES
PRINT
LSET N$ = PERSONS
LSET A$= MKS$(AMOUNT)
LSET P$ = TELEPHONES
PUT #1,CODER

GOTO START

QUITFILE:
CLOSE *1

As illustrated by Program 4, the following program steps are required to
create a random access file.

1. OPEN the file for random access. The absence of an input, output,
or append parameter specifies a random file. If the record length
(LEN =) is not specificd, the default value is 128 bytes.

2. Use the FIELD statement to allocate space in the random buffer for
the variables that will be written to the random access file. The ran-
dom buffer is an area of memory, a holding area, reserved for transfer-
ring data from files to program variables and vice versa.

Example:

FIELD #1,20 AS N$, 4 AS ADDRS, 8 AS P$

Microsoft BASIC Interpreter

Accessing a
random access
data file:

3. Use LSET to move the data into the random access buffer. Numeric
values must be made into strings when placed in the buffer. To do
this, use the “make” functions: MKI$ to make an integer value into a
string, MKS$ to make a single precision value into a string to be
stored in a random file, and MKD$ to make a double precision value
into a string.

Example:

LSET N$ - X$
LSET ADDR$ - MKS$(AMT)
LSET P$ - TELS

4. Write the data from the buffer to the disk using the PUT statement
and specifying the record number with an expression.

Example:

PUT *1, CODE%

Program 4 takes information that is input from the keyboard and writes
it to a random access file. Each time the PUT statement is executed, a
record is written to the file. The two-digit code that is input in line 30
becomes the record number.

Note Do not use a fielded string variable in an INPUT or LET
statement. Doing so causes that variable to be redeclared;
BASIC will no longer associate that variable with the file
buffer, but with the new program variable.

Program 5 accesses the random access file, “DATA”, that was created in Pro-
gram 4. By entering a two-digit code at the keyboard, the information as-
sociated with that code is read from the file and displayed.

Working With Files and Devices

Program 5—Accessing a Random Data File

OPEN °R",#*1,"DATA",32
FIELD #1,20 AS N$,4 AS A3,8 AS P§
START:
INPUT “2-DIGIT CODE (ENTER -1 TO QUIT)";CODER
(F CODER=-1 THEN QUITFILE
GET #1, CODER
PRINT N$
PRINT USING “$3** #2°.CVS(AS)
PRINT P$: PRINT
GOTO START
QUITFILE:
CLOSE *1

The following program steps are required to access a random access file:

1. OPEN the file in random mode.

2. Use the FIELD statement to allocate space in the random access
buffer for the variables that will be read from the file. (See the
FIELD statement in Program 5.)

Note In a program that performs both input and output on the
same random access file, you can often use just one OPEN
statement and one FIELD statement.

3. Use the GET statement to move the desired record into the random
access buffer.

The data in the buffer can now be accessed by the program. Numeric
values that were converted to strings by the MKI$, MKS$, and MKD $ func-
tions must be converted back to numbers using the “convert” functions:
CVI for integers, CVS for single precision values, and CVD for double pre-
cision values. The MKI$ and CVI processes mirror each other, the former
converting a number into a format for storage in random files, the latter
converting the random file storage into a format usable by the

program.

N
o

Microsoft BASIC Interpreter

Random file
operations

The LOC function, when used with random access files, returns the
“current record number.” The current record number is the last record
number that was used in a GET or PUT statement. For example, the
statement

IF LOC(1) > 50 THEN END

ends program execution if the current record number in file#1 is greater
than 50.

Program 6 is an inventory program that illustrates random file access.

Program 6—inventory

OPEN “INVEN.DAT" AS *1 LEN=39

FIELD 1,1 AS F$,30 AS D$,2 AS 03,2 AS R$,4 AS P$
FUNCTIONLABEL:

CLS PRINT “FUNCTIONS: "PRINT

PRINT “1. INITIALIZE FILE"

PRINT "2. CREATE A NEW ENTRY"

PRINT "3. DISPLAY INVENTORY FOR ONE PART"

PRINT "4. ADD TO STOCK"

PRINT °5. SUBTRACT FROM STOCK"

PRINT "6. DISPLAY ALL ITEMS BELOW REORDER LEVEL"
PRINT “7. OONE WITH THIS PROGRAM"

PRINT:PRINT :IRPUT "FUNCTION “;FUNCTION

IF (FUNCTION>O)AND(FUNCTION<7) THEN GOTO START
GOTO FUNCTIONLABEL

START:

ON FUNCTION 60SUB 600,100,200,300,400,500, 700
60TO FUNCTIONLABEL

END

Working With Files and Devices

100 :
60SUB PART
IF ASC(F$)<>255 THEN INPUT "OVERWRITE “;ADDR$
IF ASC(FS)()ZSS AND ADDR$<>"Y" THEN ADDRS = "N™: RETURN
LSET F$=CHR$(0)
INPUT "DESCRIPTION ";DESCRIPTIONS
LSET D$=DESCRIPTIONS
INPUT "QUANTITY IN STOCK ";QUANTITY®
LSET Q3=MKIS(QUANTITY®)
INPUT "REORDER LEVEL “;REORDER®
LSET R$=MKI$(REORDER%®)
INPUT "UNIT PRICE ";PRICE
LSET P$=MKS$(PRICE)
PUT *1,PARTZ
INPUT "Press Return to continue”, DUM$
RETURN
200 :
60SUB PART
IF ASC(F$)=255 THEN PRINT "NULL ENTRY ":RETURN
PRINT USING "PART NUMBER ***-.PART®
PRINT D$
PRINT USING "QUANTITY ON HAND *##===--CvI(0Q$)
PRINT USING "REORDER LEVEL **=#==--CVI(RS)
PRINT USING "UNIT PRICE $$=# ##-.CVS(P$)
INPUT "Press Return to continue”, DUM$
RETURN
300 :
G0SUB PART
IF ASC(F$)=255 THEN PRINT "NULL ENTRY “:RETURN
PRINT DS$:INPUT "GUANTITY TO ADD";ADDITIONAL®
Q%=CV1(Q$)+ADDITIONALS
LSET Q$=MKI$(Q%)
PUT *1,PARTR
RETURN
400 :
60SUB PART
IF ASC(F$)=255 THEN PRINT "NULL ENTRY "RETURN
PRINT D$

Microsoft BASIC Interpreter

425 :
INPUT "QUANTITY TO SUBTRACT ",LESS®
Qz=Ccvi(as)
IF (QB-LESS®)<0 THEN PRINT "ONLY “;Q%;" IN STOCK ~:60TO0 425
Q%=0%-LESSR
IF Q8<=CVI(RS) THEN PRINT "QUANTITY NOW ";0%;
IF QB<=CVI(RS) THEN PRINT " REORDER LEVEL “;CVI(RS)
LSET Q3$=MKI$(Q%)
PUT*1,PARTX
INPUT “Press Return te continue”, DUM$
RETURN
500 : REORDER = 0
FOR I1=1 TO 100
GET #1,|
IF ASC(F$)=255 6070 525
IF CVI(Q$)<CVI(RS) THEN PRINT D$; "QUANTITY ".CVI(Q3).TAB(35);
IF CVI(Q3)<CVI(RS) THEN PRINT RECRDER LEVEL";CVI(RS)
IF CVI(Q$)<CVYI(RS) THEN REORDER = (- 1)
525: NEXT |
IF REORDER = O THER PRINT "All-items well-stocked”
INPUT “Press Return to continue”, DUM$
RETURN

600 : INPUT "ARE YOU SURE ~;CONF IRMS$:IF CONF IRM$<>"Y" THEN RETURN
LSET F$=CHR$(255)
FOR I=1 TO 100
PUT *1,1
NEXT |
RETURN
PART:
ENTERNO:
INPUT "PART NUMBER 7 ",PART®
IF (PART®<1)OR(PART®>100) THEN PRINT "BAD PART NUMBER"
IF (PARTE<¢1)OR(PART®>100) THEN GOTO ENTERNO
GET *1,PARTR
RETURN

700 :CLOSE * 1
END

In this program, the record number is used as the part number. It is as-
sumed the inventory contains no more than 100 different part numbers.
The program initializes the data file by writing CHR8(255) as the first
character of each record. This is used later to determine whether an entry
already exists for that part number.

Working With Files and Devices

Transferring Data Between
BASIC and Other Programs

Microsoft BASIC gives you the ability to transfer data between BASIC and
other applications.

Between BASIC and Multiplan

If you are using both Microsoft BASIC and Microsoft Multiplan on your
Macintosh computer, you can transfer data from a Multiplan worksheet to
a BASIC program, or vice versa.

There are two phases to transferring data between a BASIC program and a
Multiplan worksheet. Phase one is setting up your BASIC program to re-
ceive or send the data. Phase two is performing the actual transfer. Sam-
ple BASIC statements and the steps for performing the transfers are given
in this section.

Transferring Phase one The BASIC program must be able to write data to the

data from a Macintosh Clipboard. To do this, OPEN the CLIP: device for output, and
BASIC pro WRITE the data from the BASIC program to the Clipboard.

to a Multiplan For example, assume you have a program that fills four arrays (A,B,C,D)
worksheet: with data. These arrays contain the data you want to transfer. The follow-

ing program segment writes the four arrays to the Clipboard that will later
be pasted into Multiplan cells:

OPEN “CLIP:" FOR OUTPUT AS *1
FOR | =1T020 55
WRITE #1,A(1),B(1),C(1),0(1)
NEXT |
CLOSE *1

Phase two To perform the transfer of data from the BASIC program to
Multiplan, follow these steps:

» Start BASIC.

» Run the program you wrote in phase one to write data to the Clip-
board.

» Return to the Finder. The system will save the Clipboard.

Microsoft BASIC Interpreter

Transferring data
from Multiplan to
a BASIC program:

Opening
Ll the Clipboard:

» Start Multiplan and load the worksheet that will receive the data.
» Select the cells that will receive the data.
» Choose the Paste command from the Edit menu.

The contents of the selected cells will be replaced with the data items
from the Clipboard.

Phase one The BASIC program that will receive the data must be able
to input the data from the Macintosh Clipboard. To do this, OPEN the
CLIP: device for input, and INPUT the data from the Clipboard to the
BASIC program.

For example, the following BASIC program segment reads four columns
(A,B,C,D) of data from the Clipboard and returns the column totals in the
variables SUMA, SUMB, SUMC, and SUMD.

OPEN "CLIP:” FOR INPUT AS *1
WHILE NOT EOF(1)

INPUT #1,AB.C.0

LET SUMA = SUMA + A

LET SUMB =SUMB + B

LET SUMC =SuUMC + C

LET SUMD = SUMD + D
WEND
CLOSE *1

In the preceding program, the first line opens the Clipboard (CLIP:) for input,
and the third line reads the data from the Clipboard to the BASIC program.
The OPEN and INPUT statements are the same statements that open and
read data from disk files. In a similar way, you can open the keyboard and
screen (for input) and the line printer (for output). For more informa-

tion, see the section called “Generalized Device 1/0” in this chapter.

Phase two To perform the transfer of data from Multiplan to the BASIC
program, follow these steps:

» Start Multiplan and load the worksheet that contains the data to be
transferred.

» Select the cells containing the data to be transferred.

» Select the Copy command from the Edit menu. This copies the con-
tents of the selected cells to the Macintosh Clipboard. The contents
of the worksheet remain unchanged.

» Return to the Finder. The system will save the Clipboard.

Using a
word processor:

Transferring
a picture
from BASIC
to MacPaint:

Working With Files and Devices

Start BASIC.

Run the BASIC program you wrote in phase one to input data from
the Clipboard.

vV

Between BASIC and a Word Processor

Programmers who own sophisticated word processing programs some-
times choose to enter their BASIC programs with a word processor.

Remember that word processing programs produce files with more char-
acters than the visible ones in your text. Many word processors use spe-
cial hidden characters to control appearance and format and to control
the printer. These characters can ruin your program file.

Most, but not all, word processing programs have a filing option called
“text only” or “unformatted” or “non-document.” When text is filed with
this option, all the hidden control characters are removed. Only the text
is filed.

Also, if you write a program in Microsoft BASIC and later wish to use a
word processor to edit it, prepare the program first. When you save the
BASIC program, use the “,A” (ASCII) option which saves the program in a
format that can be read by the word processing program.

Between BASIC and MacPaint

MacPaint uses many of the same graphics ROM routines that Microsoft
BASIC does. This similarity permits you to draw using MacPaint and sub-
sequently bring those drawings into your BASIC program, or to use BASIC
to create a picture that you can transfer to MacPaint.

» Use the PICTURE ON statement to turn on the recording of graphics
statements.

» Issue the statements that produce the desired image.

» Use the PICTURE OFF statement to stop recording graphics state-
ments.

» Open the Clipboard to accept the information:

OPEN "CLIP:PICTURE" FOR OUTPUT AS 1

» Send the picture information to the file:

PRINT #1 PICTURES

Microsoft BASIC Interpreter

Transferring >
a picture
from MacPaint >
to BASIC:

For

Close the file:

CLOSE *1

Start up MacPaint. Use the MacPaint Paste command to copy the
image from the Clipboard and put it in your work area.

In MacPaint, produce an image the way you want it to be in BASIC,
and then select it.

Use either the Copy or Cut command from the Edit menu to put the
image on the Clipboard.

Start up Microsoft BASIC.
Open the Clipboard as an input file:

OPEN "CLIP:PICTURE" FOR INPUT AS 1

Take a copy of the picture on the Clipboard and transfer it to a string
variable (in this example called IMAGES$):

IMAGE$-INPUT$(LOF(1),1)

Draw the picture to the screen exactly the way it was recorded.

PICTURES IMAGE$

further details on using the PICTURE statement and the

PICTURE $ function, see “PICTURE” and “PICTURES$” in Chapter 7,
“BASIC Reference.”

6 Advanced Topics

Microsoft BASIC supports several advanced programming features includ-
ing subprograms, event trapping, and memory management. These
powerful features, not necessary for beginners to master, add flexibility to
Microsoft BASIC. They are especially helpful to programmers who
develop programs for other users.

i
Subprograms are modules similar to subroutines but with major advan-
tages. They are especially helpful to programmers who write routines that
are reused in other programs.

Event trapping allows a program to transfer control to a specific program
line when certain events occur. These events include dialog box activity,
passage of time, mouse activity, a user’s attempting to stop the program,
or menu selection.

Memory management in Microsoft BASIC is available through use of the
CLEAR statement and the FRE function. These tools can help you create
large programs that would ordinarily not run because of the Macintosh’s
limited memory.

Subprograms

Subprograms are sets of program statements similar to subroutines. There
are three notable advantages to using subprograms.

First, subprograms use variables that are isolated from the rest of the pro-
gram. If a programmer accidentally uses a variable name in a subprogram
that has already been used in the main program, the two variables still re-
tain separate values. Variables within subprograms are called local vari-

ables because their values cannot be changed by actions outside the sub-

program.

The second advantage of subprograms is also related to local variables.
Programmers frequently find themselves producing the same routine over
and over in different programs, rewriting it each time to fit the variable
names and design of each new program. Because you don't need to
rewrite a subprogram to include it in another program, it is simple to pro-
duce a collection of subprograms. Subprograms then can be merged into
new programs with minimal changes.

60

Microsoft BASIC Interpreter

The third advantage of subprograms is that they cannot be executed ac-
cidentally. A subroutine can be executed accidentally if no GOTO state-
ment is stationed above it; program flow simply enters the subroutine.
Subprograms are not executed unless a specific CALL to the subprogram is
executed.

Referencing Subprograms

Subprograms are referenced by the optional CALL statement with an argu-
ment list. (See “CALL” in Chapter 7, “BASIC Reference,” for more infor-
mation.)

In this discussion, you will find references to “formal parameters” and “ar-
guments.” Arguments refer to the program variables that are passed in the
CALL statement. For example:

CALL FIGURETAX(SUBTOTAL, TAX, TOTAL())

In this example, the arguments are the variables SUBTOTAL and TAX, and
the array variable TOTAL.

Formal parameters refer to the parallel values that the subprogram uses.
If, for example, the FIGURETAX subprogram was called using the above
CALL statement, the subprogram’s first line could appear as:

SUB FIGURETAX(FIGURE, TAXRATE, SUM(1)) STATIC

In this example, the formal parameters are the variables FIGURE and
TAXRATE, and the array SUM. These parameters correspond to (and re-
turn values to) the main program variables used as arguments: SUBTOTAL,
TAX, and TOTAL().

The parameters that transfer between the main body of the program and
the subprogram are said to be passed by reference. This means if the for-
mal parameter is modified by the subprogram, the argument’s value
changes also.

Advanced Topics

This can affect the values of variables. For example:

CALL AddIt(A,B,Result)

SUB AddIt(X,)Y,Z)

Z=X+Y
X=X+ 12
Y=Y+ 94
END SUB

If the values of the variables when the program executes the CALL state-
ment are A = 2 and B = 3, then when control returns to the main pro-
gram, A and B would have altered values. The A variable is tied to X, and
B to Y. If the value of X is changed in the subprogram, the value of A is
altered as well. In this example, the value of A is increased by 12 in the
statement X = X + 12. This subtle change happened because the vari-
able X is an “alias” for the variable A.

In the cases where you want the main program variable’s value to change
in the subprogram, this works well. Where you don’t want this to happen,
put parentheses around the variables and they will retain their values, re-
gardless of what happens in the subprogram. For example:

CALL Addit((A), (B), Result)

The parentheses around the first two parameters force them into the
category of expressions. Their values cannot be changed by subprograms.
You need not use parentheses to pass expressions. For example:

CALL Addit(1+2, 3*A, Result)

Microsoft BASIC Interpreter

Subprogram Delimiters:
The SUB and END SUB Statements

Subprograms are delimited by the SUB and END SUB statements. The
EXIT SUB statement also can be used to exit a particular subprogram be-
fore it reaches the END SUB statement. Execution of an EXIT SUB or END
SUB statement transfers program control back to the calling routine. The
syntax is as follows:

SUB subprogram-name |(formal-parameter-list)] STATIC
[SHARED list-of-variables |

END SUB

The subprogram-name can be any valid identifier up to 40 characters in
length. This name cannot appear in any other SUB statement.

The formal-parameter-list can contain two types of entries: simple vari-
ables and array variables. If you are planning to use array variables, read
“Declaring Array Variables,” below. Entries are separated by commas.
The number of parameters is limited only by the number of characters
that can fit on a BASIC line.

STATIC indicates that all the variables within the subprogram retain their
values between invocations of the subprogram. Static variable values can-
not be changed by actions taken outside the subprogram. STATIC re-
quires that the subprogram be non-recursive; that is, it does not contain
an instruction that calls itself or that calls a subprogram that in turn calls
the original subprogram.

SHARED variables can be altered by parts of the program outside the sub-
program. Those variables you want shared must be explicitly listed in the
list-of-variables following the SHARED statement. Any simple variables or
arrays referenced in the subprogram are considered local unless they have
been explicitly declared SHARED variables. See “SHARED” in Chapter 7,
“BASIC Reference,” for a discussion of the SHARED statement.

The statements that make up the body of a subprogram are enclosed by
the SUB and END SUB statements.

All BASIC statements can be used within a subprogram, except the
following:

8 User-defined function definitions.
® A SUB/END SUB block. This means subprograms cannot be nested.
B COMMON statements

Advanced Topics

Declaring Array Variables
Simple variable parameters can be given any valid Microsoft BASIC
name. Arrays must be declared as follows:

array-name|number-of-dimensions|

where array-name is any valid Microsoft BASIC name for a variable and
the optional number-of-dimensions is an integer constant indicating
the number of dimensions in the array. Note that the actual dimensions
are not given here.

For example, in the following subprogram,

SUB MATADD2(NY%,M% A(2),B(2),C(3)) STATIC

END SUB

N% and M% are integer variables, and A and B are indicated as two-
dimensional arrays, while C is a three-dimensional array.

Simple Variables and Array Elements

When a simple variable or array element or an entire array is passed to a
BASIC subprogram, it is passed by reference. The following example
shows how a subprogram is invoked by the CALL statement, and illustrates
call-by-reference argument passing.

A=5:8=2

CALL SGUARE(A, B)
PRINT AB

END

SUB SQUARE(X,Y) STATIC
Y= X*X
END SUB

This example prints the results 5 and 25. Each reference to Y in subpro-
gram SQUARE actually resulted in a reference to B, and each reference to
X resulted in a reference to A. In other words, each time SQUARE used Y,
it was actually using B.

Microsoft BASIC Interpreter

Shared variables

Argument Expressions

Expressions also can be passed as arguments to BASIC subprograms. An
argument expression is considered to be any valid BASIC expression, ex-
cept simple variables and array element references. When an expression
is encountered in the argument list in a CALL statement, it is assigned to a
temporary variable of the same type. This variable is then passed by refer-
ence to the subprogram. This is equivalent in effect to the call-by-value
passing in functions, whereby the value itself is passed.

If a simple variable or array element is enclosed in parentheses, it is
passed the same way as an expression (that is, as call-by-value). For ex-
ample, if the CALL SQUARE statement in the above example were changed
to:

CALL SQUARE (A, (8))

the results printed would be 5 and 2. In this case (B) is passed by
value as an expression, and therefore the subprogram cannot change the
value of B.

Note Arrays should not be passed as parameters to assembly
language procedures using the conventions outlined. In-
stead, the base element of an array should be passed by
reference if the entire array needs to be accessed in the
assembly language program. For example:

CALL X(VARPTR (A(0,0)))

Shared and Static Variables in Subprograms

Variables and arrays referenced or declared in subprograms are generally
considered to be local to the subprogram. However, Microsoft BASIC sup-
ports shared variables within a module and provides a way for values to
be preserved across subprogram invocations.

By using the SHARED statement in a subprogram, you can access variables
without passing them into a subprogram as parameters.

Within a subprogram, main program variables can be used by including
the SHARED statement. The SHARED statement only affects variables
within that subprogram.

Static variables

Advanced Topics

Within a subprogram, main program variables can be used by includ-
ing the SHARED statement. The SHARED statement only affects vari-
ables within that subprogram.

For example:

LET A=1: LET B=5: LET C=10
DIM P(100),Q(100)

SUB MAC STATIC
SHARED A,B.P().Q()

ENi) suB

In this cxample, all main program variables and arrays except C are
shared with the subprogram MAC.

As already noted, variables and arrays referenced or declared in a sub-
program are considered local to the given subprogram. They are not
changed by statements outside of the subprogram. Initial values of
zero or null string are assumed.

If the subprogram is exited and then reentered, however, variable and
array values are those present when the subprogram was exited.

The STATIC keyword is required for all subprogram definitions in this
version of BASIC.

Array Bound Functions

The upper and lower bounds of the dimensions of an array can be
determined by using the functions, LBOUND and UBOUND.

LBOUND returns the lower bound, either O or 1, depending on the
setting of the OPTION BASE statement. The default lower bound is 0.
UBOUND returns the upper bound of the specified dimension.

Each function has two syntaxes: a general syntax and a shortened syn-
tax that can be used for one-dimensional arrays. The syntaxes are:

LBOUND(array) for 1-dimensional arrays
LBOUND(arraydim) for n-dimensional arrays

UBOUND(array) for 1-dimensional arrays
UBOUND(arraydim) for n-dimensional arrays

Microsoft BASIC Interpreter

The array is a valid BASIC identifier and the dim argument is an integer
constant from 1 to the number of dimensions of the specified array.

LBOUND and UBOUND are particularly useful for determining the size
of an array passed to a subprogram.

See “LBOUND” in Chapter 7, “BASIC Reference,” for examples of the use
of array bound functions.

Event Trapping

Event trapping is a programming capability through which a program can
detect and respond to certain “events” and branch to an appropriate rou-
tine. The events that can be trapped are dialog activity (ON DIALOG),
time passage (ON TIMER), the user attempting to halt the program (ON
BREAK), the selection of a custom menu item (ON MENU), or mouse ac-
tivity (ON MOUSE). BASIC checks between each statement it executes to
see if the specified events have happened.

To use event trapping, the programmer builds a subroutine to respond to
the event. Then, if the program has activated event trapping for the event,
program control is automatically routed to the event-handling subroutine
when the event occurs. BASIC does this exactly as if a GOSUB statement
had been executed to the event-handling subroutine.

The subroutine, after servicing the event, executes a RETURN statement.
This causes the program to resume execution at the statement that im-
mediately follows the last statement executed before the event trap
occurred.

This section gives an overview of event trapping. For more details on in-
dividual statements, see Chapter 7, “BASIC Reference.”

. Event trapping is controlled by the following statements:
66

eventspecifier ON to turn on trapping
eventspecifier OFF to turn off trapping
eventspecifier STOP to temporarily turn off trapping

The eventspecifier must be one of the following:

TIMER The timer is the Macintosh’s internal clock. If you use
timer event trapping, you can force an event trap every
time a given number of seconds elapse.

MOUSE Mouse event trapping allows the programmer to redirect
program flow when the mouse is clicked by the user.

Activating
event trapping:

Terminating
event trapping:

Suspending
event trapping:

Advanced Topics

MENU If menu event trapping has been activated, the program
can use selection of custom menu items as events to trap.
BREAK When break event trapping is activated, the program sends

control to a specified subroutine when the user presses
Command-period, the break keystroke. Care should be
taken when using break event trapping. If a programmer
uses the statement in a program being tested, the program
cannot be exited before a program END statement without
rebooting the machine. One way to avoid this potential
problem is to omit the BREAK ON statement that activates
the ON BREAK event trap until testing is completed.

DIALOG If dialog event trapping is activated, the program sends
control to a specified subroutine when dialog box, button,
or edit field activity has occurred.

ON...GOSUB Statement

The ON GOSUB statement tells BASIC the starting line of the event-
handling subroutine. The format is:

ON eventspecifier GOSUB line

A line of zero disables trapping for that event.

When an eventspecifier is ON and if a non-zero line number has been
specified in the ON GOSUB statement, each time Microsoft BASIC starts a
new statement it checks to see if the specified event has occurred.

An event will not be trapped by the ON eventspecifier statement unless
the corresponding eventspecifier ON statement has been previously
executed.

When the eventspecifier is OFF, no trapping takes place, and the event is
not remembered if it takes place. 6

When the eventspecifier is stopped, no trapping takes place. However, the
occurrence of an event is remembered so that an immediate trap takes
place when an eventspecifier ON statement is executed, if the specified
event has occurred while the eventspecifier was stopped.

When a trap is made for a particular event, the trap automatically causes a
STOP on that eventspecifier, so recursive traps can never occur. A return
from the trap routine automatically reenables the event trap unless an
explicit OFF has been performed inside the trap routine.

Microsoft BASIC Interpreter

Note Once an error trap takes place, all trapping of that event
is automatically disabled until a RESUME statement is
executed.

Using Caution in Event Trap Programming

Programmers who produce applications that include more than one active
event trap should take special care. Subtle programmer errors can be hid-
den from view until an unusual series of events take place. An example of
this kind of occurrence appears in the program fragment below:

MENU ON

DIALOG ON

ON DIALOG 60SUB HandleDialog
ON MENU 60SUB HandleMenu

FOR (=170 2356
NUMBER = SQR(I) : PRINT |, NUMBER

NEXT |

HendleDiolog:
WHICH = DIALOG(0)
ON WHICH 60SUB Pressed, Click, Activate, GoAway, Warning

RETURN

HendleMenu:
WHICH = MENU(0)
I = MENU(1)
ON WHICH 60SUB GoAway, Store, Reconcile

RETURN

In this example, a dialog event would branch control to the “HandleDialog”
subroutine. While that was executing, you could select a menu item, set-
ting off the menu event trap, and routing control to the menu routine.
When the menu subroutine finished executing, control would be returned
to the “HandleDialog™ subroutine, but the WHICH variable’s value could be

Polling —
a safe approach

Advanced Topics

changed. In addition, both event-trapping routines use the “GoAway” sub-
routine. If one event-handling routine is using the “GoAway” routine, and
is interrupted by the other which calls “GoAway” as well, unpredictable
results can occur.

To lessen the chance of these errors, avoid having the same event-trap
subroutine called by two events. Also, avoid using the same variables in
an event-trapping routine and the main program or another subroutine.
Not doing this is the most frequent reason for bugs in programs that use
event-trap features.

There is an additional common source of programmer error in the exam-
ple. It is possible for the FOR I loop to be executing at the moment you
select a menu item. At the end of the executing statement, control will
pass to the “HandleMenu” subroutine, which happens to use the variable L.
Most likely, I will not coincidentally be assigned the same value it had in
the FOR..NEXT loop; probably the value is changed. When control re-
turns to the loop, the counter variable I has the value it was assigned in
the event trap subroutine.

Beyond taking extra care in not using the same variables in the main pro-
gram and an event-trapping subroutine, there is another design option.
You can avoid event trapping altogether by branching control to a pro-
gram using idle loops and GOSUB statements. For example, if you want to
produce a program that branches to a subroutine when the user clicks the
mouse, you can use the following language:

Microsoft BASIC Interpreter

MENU 7,0,1,"Clear the screen”
MENU 7,1,1,°Do it”

true=-1

MOVET0 0,0

WHILE true ‘endless loop
menu0=0
mous0=0
WHILE mous0=0 AND menu0=0 ‘polling locp
menuO=MENU(0)
mous0-MOUSE(0)
WEND
IF mous0<>0 THEN 608UB handiemouse
IF menu0<>0 THEN 608UB handlemenu
WEND
END

handlemouse:
LINETO MOUSE(1),MOUSE(2)
RETURN

handlemenu:
CLS
RETURN

The small program above uses an idle loop to check for mouse and menu
activity. When there is such activity, control branches to an event-
handling subroutine. This technique, called polling, can be a good alterna-
tive to event trapping; only expected events need be dealt with, and as a
result, program flow and variables are easier to follow and debug.

oo Advanced Topics

—

- Memory Management
If you need to produce large programs on the Macintosh, you may be

- disappointed by the memory limitations imposed by the hardware.

— Microsoft BASIC includes the CLEAR statement to help writers of large
programs manage memory allocation for different purposes.

= Using the CLEAR statement, you can control the size of three different

- areas of memory:

- Areas of RAM B The stack

- ® BASIC's data segment

o— B The heap

e The Stack

. The stack keeps “bookmarks” telling where to return to from GOSUBS,
nested subprogram calls, nested FOR..NEXT loops, nested WHILE.. WEND

o loops, and nested user-defined functions. The stack is also used by ROM

' routines (see Appendix F, “Access to Macintosh ROM Routines”).
Conserving Certain Macintosh ROM calls require a considerable amount of stack

o stack space: space. The more levels of nesting in your control structures, the more

. stack space is required to execute a program.

- BASIC’s Data Segment

- BASIC’s data segment holds the text of the program currently in memory.
It also contains numeric variables and strings. In addition, the data seg-

— ment contains file buffers for opened files.

o Conserving data A sequential file buffer has a default size of 128 bytes. If your program is

- segment space: tight for memory, one memory reclamation technique is tq define a sma!l-
er sequential file buffer. A smaller buffer may slow execution of an /O in-

T tensive program, however. See “OPEN” in Chapter 7, “BASIC Reference,”
for details on changing a sequential file’s buffer size. Additionally, the

e kind of numeric variables you use will have an effect on data segment

-— space. Integer variables take half the number of bytes of single precision;
single precision take half the number of bytes of double precision. Also,

— chaining several small programs together uses less memory than loading

— and running a large program that incorporates all the smaller ones.

F——

N
[\

Microsoft BASIC Interpreter

Conserving
heap space:

The Heap

To preserve the maximum amount of memory space, Microsoft BASIC
is not fully loaded into RAM. Part of BASIC is in memory, and the rest
is in sectiong that are pulled into memory from disk as needed. The
heap holds these sections, called BASIC transient code segments,
when they are brought into memory.

The heap also contains the buffer for SOUND and WAVE information,
which, when created, uses 1024 bytes of RAM. In addition, PICTURE
data, buttons, edit fields, and active desk ornaments all require heap
space.

In assigning memory to the heap, remember that as this area is made
larger, more of BASIC will reside in memory, and it will execute more
quickly. As you reclaim space from this area for other uses, less of
BASIC sits in RAM, and the more often it will need to go to the disk
to find parts of itself. The tradeoff decision is one that should be
made on a program-by-program basis.

In addition, heap space can be kept smaller by releasing the
SOUND/WAVE buffer with a WAVE 0 statement when it is no longer
nceded. A PICTURE ON followed immediately by a PECTURE OFF
statement reclaims memory from any preceding picture that was in
the heap. Closing windows that hold buttons and edit fields liberates
heap space.

Using the CLEAR Statement

for Memory Management

You can use the CLEAR statement to allocate memory to three areas
of RAM.

The syntax of the CLEAR statement is:

CLEAR | ,|data-segment-size || ,stack-size] |

The data-segment-size argument dictates how many bytes are to be
reserved for BASIC's data segment.

The stack-size argument dictates how many bytes are to be reserved
for the stack.

The amount of RAM remaining (Total — (data-segment-size + stack-
size)) is the RAM reserved for the heap. Using the CLEAR statement,
your program can define the space it requires for the three adjustable
areas of RAM. You can use the FRE functions to find out how much
free memory you have in parts of RAM.

Advanced Topics

Using the FRE Function
for Memory Management
The syntaxes of the FRE function are:

FRE(1)
FREC™ ™)

In the FRE(72) syntax, there are three different functions.

If (n)is — 1, the function returns the number of free bytes available
in the heap.

If (1) is — 2, the function returns the number of bytes never used by
the stack. This does not return the number of free bytes available in
the stack. It is used in testing programs to fine-tune the stack-size
paramcter of the CLEAR statement.

If (1) is any number other than — 1 or — 2, or if you use the FRE(”)
function, BASIC returns the number of free bytes available in BASIC’s
data segment.

All versions of the FRE function compact string space.

Common Programmer Errors

There are three most frequent Macintosh system errors that result
from inadequate programmer memory management. These messages
come up in error dialog boxes.

15 The operating system ran out of memory while trying to bring in
a transient code segment. If this error occurs, increase the size
of the heap with the CLEAR statement.

25 A heap allocation request couldn’t be satisifed; increase the size
of the heap.

28 The stack infringed on the heap during a Macintosh ROM routine
execution. If this error occurs, bring BASIC up again and
increase the size of the stack with the CLEAR statement. Because
of a Macintosh operating system constraint, the stack parameter
cannot be reset to a higher value without restarting BASIC.

—
- 7 BASIC Reference
- The first part of this chapter describes the elements of the Microsoft
‘— BASIC language and the syntax and grammar that apply to the language.
The second part, tinted gray for easy reference, is the Statement and
- Function Directory.
—
— Character Set
— The Microsoft BASIC character set is composed of alphabetic, numeric,
- and special characters. These are the only characters that Microsoft
BASIC recognizes. There are many other characters that can be displayed
et or printed, but they have no special meaning to Microsoft BASIC.
- The Microsoft BASIC alphabetic characters include all the uppercase and
lowercase letters of the American English alphabet. Numeric characters
— are the digits 0 through 9. The following list shows the special characters
o that are recognized by Microsoft BASIC.
- Character Name or Function
-- Blank
= Equal sign or assignment symbol
— + Plus sign
- - Minus sign
* Asterisk or multiplication symbol
— / Slash or division symbol
L) Up arrow or exponential symbol
(Left parenthesis
) Right parenthesis
- % Percent sign
- # Number (or pound) sign
$ Dollar sign
s ! Exclamation point
- I Left bracket
-
-y

Microsoft BASIC Interpreter

Character

DV AYRT

<RETURN>

"

Name or Function

Right bracket

Comma

Period or decimal point

Single quotation mark (apostrophe)
Semicolon

Colon

Ampersand

Question mark

Less than

Greater than

Backslash or integer division symbol
At-sign

Underscore

Terminates input of a line

Double quotation mark

The following list shows the Command characters that are used in
Microsoft BASIC.

Key Combination
Command-period(.)

Command-S

Command-T
Command-C
Command-V
Command-X
Command-F
Command-N
Command-R
Command-L

Command-Shift-1
Command-Shift-2

Function

Interrupts program execution and returns to
BASIC command level.

Suspends program execution.

Executes the next statement of the program.
Executes the “Copy” edit function.

Executes the “Paste” edit function.

Executes the “Cut” edit function.

Executes the “Find” search function.
Executes the “Find Next” search function.
Executes the “Start” run function.

Executes the “Show List” window function.
Ejects the disk from the built-in disk drive.
Ejects the disk from a second disk drive.

BASIC Reference

The BASIC Line

Microsoft BASIC program lines have the following format:
[nnnnn) statement [:statement... || comment | <Return>
or

(alpba-num-label:|statement 1| statement2...||comment | <Return >

The nnnnn argument must be an integer between 0 and 65529.

The alpha-num-label is any combination of letters, digits, and periods
that starts with a letter and is followed (with no intervening spaces) by a
colon (2).

A comment is a non-executing statement or characters that you may put
in your programs to help clarify the program’s operation and purpose.

As you can see, Microsoft BASIC program lines can begin with a line
number, an alphanumeric label, neither, or both, and must end with a car-
riage return. A program line can contain a maximum of 255 characters.
More than one BASIC statement can be placed on a line, but each must be
separated from the last by a colon. Program lines are entered into a pro-
gram by pressing the Return key. This carriage return is an invisible part
of the line format.

Line numbers and labels are pointers used to document the program
{make it more easily understood) or to redirect program flow, as with the
GOSUB statement.

If, for example, you want a specific part of a program to run only when a
certain condition is met, you could write the following program:

IF Account$ <> " THEN GOSUB Design

The interpreter searches for a line with the label “Design:” and executes
the subroutine beginning with that line. Note that no colon is needed for
Design in the GOSUB statement.

Label definitions Alphanumeric line labels can contain from 1 to 40 letters, digits, or
periods. They must begin with an alphabetical character. This allows
the use of mnemonic labels to make your programs easier to read and
maintain.

Microsoft BASIC Interpreter

Restrictions

Format

For example, the following line numbers and alphanumeric labels are
valid:

Line Numbers Alpbanumeric Labels
100 ALPHA:
65000 AlG:
SCREEN.SUB:

In order to distinguish alphanumeric labels from variables, each alpha-
numeric label definition must have a colon (:) following it. A legal label
cannot have a space between the name and the colon. When you refer to
a label in a GOSUB or GOTO or other control statement, do not include
the colon as part of the label name. You cannot use any BASIC reserved
word as an alphanumeric label.

While the line number 0 is not restricted from use in a program, error-
trapping routines us¢ line number 0 to mean that error trapping is to be
disabled. Thus,

ON ERROR GOTO 0

does not branch to line number 0 if an error occurs. Instead, error trap-
ping is disabled by this statement.

Labels and line numbers can begin in any column, as long as they are the
first non-blank characters on the line. There cannot be a space between
the label and the required colon that follows it.

Alphanumeric labels and line numbers can be intermixed in the. same
program.

For example:

A=3
GOTO 20
10 A =12

20 IF A = 3 THEN ShowMe ELSE 100

ShowMe: PRINT "The Answer is 3"
GOTO 10

100 PRINT "The Answer is 12"

BASIC Reference

Constants

Constants are the actual values BASIC uses during program execution.
There are two types of constants: string and numeric. A string constant is
a sequence of alphanumeric characters enclosed in double quotation
marks. String constants may be up to 32,767 characters in length.

For example:

"HELLO"
“$25,000,000"
“Number of Employees”

Numeric constants are positive or negative numbers. There are five types
of numeric constants:

Integer constants Whole numbers between — 32768 and +32767.
Integer constants do not contain decimal points.

Fixed-point Positive or negative real numbers; that is, numbers
constants that contain decimal points.

Floating-point Positive or negative numbers represented in
constants exponential form (similar to scientific notation).

A floating-point constant consists of an optionally
signed integer or fixed-point number (the mantis-
sa) followed by the letter E and an optionally
signed integer (the exponent). (Double precision
floating-point constants are denoted by the letter
D instead of E.)

Examples:

235.988E-7 -~ 0000235988

2359E6 - :
359E6 - 2359000000

Hex constants Hexadecimal numbers with the prefix &H.
Examples:

&H76
&H32F

80

Microsoft BASIC Interpreter

Octal constants Octal numbers with the prefix &O or &.

Examples:

&0347
&1234

Numeric constants can be either single precision or double precision
numbers. See Appendix D, “Internal Representation of Numbers,” for
details on the internal format of numbers.

A single precision constant is any numeric constant that has one¢ of the
following properties:

B Six or fewer digits in the decimal version
Seven or fewer digits in the binary version

® Exponential form denoted by E
B A trailing exclamation point (!)

A double precision constant is any numeric constant that has one of the
following properties:

B Seven or more digits in the decimal version
Eight or more digits in the binary version

B Exponential form denoted by D
B A trailing number sign (#)

The following are examples of numeric constants:

Single Precision Double Precision

46.8 345692811

— 1.09E-6 —1.09432D-06
3489.0 3489.0#

225! 7654321.1234

Numeric constants in Microsoft BASIC cannot contain commas.

BASIC Reference

Variables

Variables represent values that are used in a program. As with constants,
there are two types of variables: numeric and string. A numeric variable
can only be assigned a value that is a number. A string variable can only
be assigned a character string value. You can assign a value to a variable,
or it can be assigned as the result of calculations in the program. Before a
variable is assigned a value, its value is zero (numeric variables) or null
(string variables).)

Variable Names

A variable name can contain as many as 40 characters. The characters al-
lowed in a variable name are letters, numbers, and the decimal point. The
first character in a variable name must be a letter. Special type declara-
tion characters are also allowed (sce “Declaring Variable Types” in this
section).

Variable names are not case-sensitive. That means that variables with the
names ALPHA, alpha, and AIPhA are the same variable.

If a variable begins with FN, BASIC assumes it to be a call to a user-
defined function. (See “DEF FN” in the Statement and Function Directory
that follows for more information on user-defined functions.)

Reserved Words

Reserved words are words that have special meaning in Microsoft BASIC.
They include the names of all BASIC commands, statements, functions, and
operators. Examples include GOTO, PRINT, and TAN. Always separate
reserved words from data or other elements of a BASIC statement with
spaces. Reserved words cannot be used as variable names. Reserved
words can be entered in either uppercase or lowercase. A complete list
of reserved words is given in Appendix C, “Microsoft BASIC Reserved
Words.”

While a variable name cannot be a reserved word, a reserved word em-
bedded in a variable name is allowed.
For example,

LET LOG - 8

is illegal because LOG is a reserved word.

Microsoft BASIC Interpreter

Declaring Variable Types

Variable names can be declared either as numeric types or as string types.

String variable names are written with a dollar sign (8) as the last charac-
ter. For example:

LET A$ - "SALES REPORT"

The dollar sign is a variable type declaration character; that is, it
“declares” that the variable will represent a string.

Numeric variable names can declare integer, single precision, or double
precision types. Computations with integer and single precision variables
can be less precise than those with double precision variables. However,
you may want to declare a variable to be a lower precision type, because
variables of higher precision take up more memory space.

The default type for a numeric variable is double precision in the decimal
version of BASIC, and single precision in the binary version.

The type declaration characters for numeric variables and the memory
requirements (in bytes) for storing each variable type are as follows:

Declaration Variable Bytes
Character Type Required
% Integer 2
! Single precision 4
Double precision 8
$ String 5 bytes overhead plus the
present contents of the
string

Examples of Microsoft BASIC variable names:

P1#
MINIMUM!I
LIMIT%
FIRSTNAMES
ABC

The Microsoft BASIC statements DEFINT, DEFSTR, DEFSNG, and DEFDBL
can be included in a program to declare the types of variable names. By

BASIC Reference

using one of the DEF#ype statements, you can specify that all variables
starting with a given letter will be of a certain variable type; the trailing
declaration character will not be needed. These statements are described
in detail under “DEFINT” in the Statement and Function Directory.

Array Variables

An array is a group of values of the same type, referenced by a single vari-
able name. The individual values in an array are called elements. Array
elements are variables also. They can be used in any BASIC statement or
function that uses variables. Declaring the name and type of an array and
setting the number of elements in the array is known as dimensioning the
array.

Each element in an array is referenced by an array variable that is sub-
scripted with an integer or an integer expression. An array variable name
has as many subscripts as there are dimensions in the array. For example,
V(10) would reference a value in a one-dimension array, T(1,4) would
reference a value in a two-dimension array, and so on. Note that the array
variable T(7) and the “simple” variable T are not the same variable. The
maximum number of dimensions for an array is 255. The maximum
number of elements per dimension is 32,768.

Individual elements of string arrays need not be the same length. For ex-
ample, in the string array WORD $(n), the element WORD$(1) could have
the value “It”, WORD $(2) the value “More of It”, and WORD $(3) the
value “A Complete Glut of It”. Each string array element is permitted the
32,767 characters allowed in an individual string variable.

Array elements, like numeric variables, require a certain amount of
memory space, depending on the variable type. The memory require-
ments for storing arrays are as for variables, each element of the array
requiring as much as the same type variable.

Type Conversion

When necessary, Microsoft BASIC will convert a numeric constant from
one type to another. The following rules and examples should be kept in
mind.

If a numeric constant of one type is assigned to a numeric variable of a 83
different type, the numeric constant will be stored as the type declared in ’

the variable name. (If a string variable is assigned to a numeric value or
vice versa, a “Type mismatch” error message is generated.)

Microsoft BASIC Interpreter

For example:

A% - 23.42
PRINT A%

23

During expression evaluation, all of the operands in an arithmetic or rela-
tional operation are converted to the same degree of precision, that is, the
degree of the most precise operand. Also, the result of an arithmetic
operation is returned to this degree of precision.

For example:

D# - 6/7
PRINT D#

85714285714286

The arithmetic operation was performed in double precision, and the
result was returned in D as a double precision value.

Logical operators convert their operands to integers and return an integer
result. Operands must be in the range — 32768 to +32767 or an “Over-
flow” error message is generated.

When a floating-point value is converted to an integer, the fractional por-
tion is rounded.

For example:

CARENX - 55.88
PRINT CAREN%

56

BASIC Reference

Expressions and Operators

An expression is a combination of constants, variables, and other expres-
sions with operators. Expressions are “evaluated” by the interpreter to
produce a string or numeric value. Operators perform mathematical or

logical operations on values. The operators provided by Microsoft BASIC
can be divided into four categories:

Arithmetic
Relational
Logical

Functional

Hierarchy of Operations

The Microsoft BASIC operators have an order of precedence; that is, when
several operations take place within the same program statement, certain
kinds of operations will be executed before others. If the operations are
of the same level, the leftmost one will be executed first, the rightmost
last. The following is the order in which operations are executed:

Exponentiation
Unary Negation

NN e

. Muttiplication and Floating-point Division
. Integer Division

Modulo Arithmetic

6. Addition and Subtraction

VIS

~

Relational Operators
8. NOT

9. AND

10. OR and XOR

11. EQV

12. IMP

Microsoft BASIC Interpreter

Arithmetic Operators

The Microsoft BASIC arithmetic operators are listed in the following table
in order of operational precedence:

Operator Operation Sample Expression
" Exponentiation XY
- Unary Negation -X
s,/ Multiplication, Floating- X+Y
point Division XY
\ Integer Division X\Y
MOD Modulo Arithmetic Y MOD Z
+, — Addition, Subtraction X+Y, X-Y

To change the order in which the operations are performed, use
parentheses. Operations within parentheses are performed first. Inside
parentheses, the usual order of operation is maintained.

BASIC expressions look somewhat different from their algebraic
equivalents. Here are some sample algebraic expressions and their BASIC

counterparts:
Algebraic BASIC
Expression Expression
X-Z
== X-Z
Y (Y
Xy
7 X*Y/Z
X+y (X+YYZ
Z
(X 2) (X2)yY
xY* X(Y'2)

X (-Y) X+ (-Y)

Integer division

Modulo
arithmetic

Overflow and
division by zero

BASIC Reference

Integer division is denoted by the backslash (\) instead of the slash (/);

the slash indicates floating-point division. The operands of integer divi-
sion are rounded to integers (that is, they must be in the range — 32768
to +32767) before the division is performed, and the quotient is truncated
to an integer.

For example:

X-10\4
Y - 25.68\6.99
PRINT XY

2 3

Modulo arithmetic is denoted by the operator MOD. Modulo arithmetic
provides the integer remainder of an integer division.

For example:

104 MOD 4 -2 (10\4 ~ 2 with a remainder of 2)
2568 MOD 6.99 -5 (26\7 - 3 with a remainder of 5)

Note that BASIC rounds both the divisor and the dividend to integers for
the MOD operation.

If a division by zero is encountered during the evaluation of an expres-
sion, the “Division by zero” error message is displayed, machine infinity
(the highest number Microsoft BASIC can produce) with the sign of the
numerator is supplied as the result of the division, and execution contin-
ues. If the evaluation of an exponentiation results in zero being raised to
a negative power, the “Division by zero” error message is displayed,
positive machine infinity is supplied as the result of the exponentiation,
and execution continues. If overflow occurs, the “Overflow” error
message is displayed, plus or minus infinity is supplied as a result, and
execution continues.

Relational Operators

Relational operators are used to compare two values. The result of the
comparison is either “true” (— 1) or “false” (0). This result can then be
used to make a decision regarding program flow (see “IF.. THEN.. ELSE”

Microsoft BASIC Interpreter

and “IF..GOTQ” in the Statement and Function Directory). The following
table lists the relational operators:

Operator Relation Tested Expression
= Equality X=Y

< > Inequality X<>Y
< Less than X <Y

> Greater than X>Y

< = Less than or equal to X< =Y
> = Greater thanorequalto X > =Y

(The equal sign is also used to assign a value to a variable. See “LET” in
the Statement and Function Directory.) When arithmetic and relational
operators are combined in one expression, the arithmetic operation is
always performed first.

For example:
X+Y<«(T-1)/72

This expression is true if the value of X plus Y is less than the value of
T -1 divided by Z.

Logical Operators

Logical operators perform bit manipulation, Boolean operations, or tests
on multiple relations. Like relational operators, logical operators can be
used to make decisions regarding program flow.

For example:

IFD <200 AND F < 4 THEN 80
IFI> 10 ORK < 0 THEN 50
IF NOT P THEN 100

A logical operator returns a result from the combination of true-false
operands. The result (in bits) is either “true” (—1) or “false” (0). The
true-false combinations and the results of a logical operation are known as
truth tables. There are six logical operators in Microsoft BASIC. They
are: NOT (logical complement), AND (conjunction), OR (disjunction),
XOR (exclusive or), IMP (implication), and EQV (equivalence). Each
operator returns results as indicated in the following table. A “T” indi-
cates a true value and an “F” indicates a false value. Operators are listed
in order of operational precedence.

BASIC Reference

Operation Value Value Result
NOT X NOT X

T F

F T
AND X Y XAND Y

T T T

T F F

F T F

F F F
OR X Y XORY

T T T

T F T

F T T

F F F
XOR X Y X XORY

T T F

T F T

F T T

F F F
IMP X Y XIMPY

T T T

T F F

F T T

F F T
EQV X Y X EQV Y

T T T

T F F

F T F

F F T

In an expression, logical operations are performed after arithmetic and
relational operations. Logical operators convert their operands to 16-bit,
signed, two’s complement integers in the range — 32768 to +32767. (If the
operands are not in this range, an error results.) If both operands are sup-
plied as 0 or —1, logical operators return O or — 1, respectively. The given
operation is performed on these integers in bits; that is, each bit of the
result is determined by the corresponding bits in the two operands. Thus,
it is possible to use logical operators to test bytes for a particular bit pat-
tern. For instance, the AND operator can be used to “mask” all but one of

Microsoft BASIC Interpreter

the bits of a status byte. The OR operator can be used to “merge” two
bytes to create a particular binary value. The following examples demon-
strate how the logical operators work.

63 AND 16 = 16 63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16.

15 AND 14 = 14 15 = binary 1111 and 14 = binary 1110,
so 15 AND 14 = 14 (binary 1110).

—1AND 8 =8 —1 = binary 1111111111111111 and 8 =
binary 1000, so —1 AND 8 = 8.

40R2=06 4 = binary 100 and 2 = binary 10, so 4
OR 2 = 6 (binary 110).

1I00R 10 = 10 10 = binary 1010, so 1010 OR 1010 =
1010 (10).

—10R -2= -1 —1 = binary 1111111111111111 and -2 =

binary 1111111111111110,s0 —1 OR =2 =
—1. The bit complement of 16 zeros is six-
teen ones, which is the two’s complement
representation of —1.

NOT X = —(X + 1) The two’s complement of any integer is
the bit complement plus one.

Functions and Functional Operators

When a function is used in an expression, it calls a predetermined opera-
tion that is to be performed on its operands. Microsoft BASIC has two
types of functions: “intrinsic” functions, such as SQR (square root) or SIN
(sine) which reside in the system, and user-defined functions that are
written by the programmer.

See the Statement and Function Directory for e¢xact descriptions of
individual intrinsic functions and “DEF FN”.

90
Using Operators With Strings

A string expression consists of string constants, string variables, and other
string expressions combined by operators. There are three classes of
operations with strings: concatenation, relational, and functional.

Concatenation

Relational
operators

BASIC Reference

Combining two strings together is called concatenation. The plus symbol
(+) is the concatenation operator.,

For example:

LET A$ - “File” : LET B$ - “name”
PRINT AS$ + B$

PRINT "New" + A$ + B$

END

Filename
New Filename

This example combines the string variables A8 and B$ to produce the
value “Filename”.

Strings can also be compared using the same relational operators that are
used with numbers:

= <> < > <= >=

Using operators with strings is similar to using them with numbers, except
that the operands are strings rather than numeric values. String comparis-
ons are made by taking one character at a time from each string and com-
paring the ASCII codes. The ASCII code system assigns a number value to
each character produced by the computer (see Appendix A, “ASCII Char-
acter Codes”). If all the ASCII codes are the same, the strings are equal.
If the ASCII codes differ, the lower code number precedes the higher. If
during string comparison the end of one string is reached, the shorter
string is said to be smaller if they are equal to that point. Leading and
trailing blanks are significant.

Examples of true statements:

"AA" < "BB”

“FILENAME" = "FILENAME"

K& > X 91
“CL "> e

"kg" > "KG"

“SMYTH" < "SMYTHE"

"B$" <"9/12/78" (where B$ - “8/13/78")

Thus, string comparisons can be used to test string values or to alphabet-
ize strings. All string constants used in comparison expressions must be
enclosed in quotation marks.

Microsoft BASIC Interpreter

Statement and
Function Directory

Headings

Syntax notation

Microsoft BASIC is a powerful programming language with over one hun-
dred fifty statements and functions. These are presented in alphabetical
order using the following format:

Syntax

Action
Remarks

See Also

Note
Warning

Examples

Shows the correct syntax for the statement or function.
There are two kinds of syntaxes: bne for statements and one
for functions. All functions return a value of a particular type
and can be used wherever an expression can be used.

Summarizes what the statement or function does.

Describes arguments and options in detail, and explains how
to use the statement or function.

Cross-references to related statements and functions.
Optional section.

Points out an important caveat or feature. Optional section.

Alerts the user to problems or dangers associated with use of
the given statement or function. Optional section.

Gives sample commands, programs, and program segments
that illustrate the use of the given statement or function.
Optional section.

The following syntax notation is used in this section:

CAPS
italics

(]

Items in capital letters must be input as shown.

Items in italics are to be.supplied by the user, as are single
capital letters (such as X, Y, Z, I, and J) and single capital
letters followed by a string specifier (such as X8 or Y$).

Items inside square brackets are optional.

Items followed by ellipses may be repeated any number of
times.

All punctuation including commas, parentheses, semicolons, hyphens, and
equal signs must be included where shown.

BASIC Reference

Icons in the Directory

The icons below represent the various programming tasks that you may
perform, or the parts of your Macintosh on which they are performed.
These icons are used throughout the Statement and Function Directory to
help you see the relationships among the various statements and functions.

Input
Input covers all tasks that put information into the processing area of the

computer for manipulation. Input is the raw material from which finished
output is produced.

Process

Process is the manipulation of information by the computer to produce
meaningful output. Process is the real work of the computer, turning facts
into something you can ‘use.

Output

Output is what the program gives you. It is the result of planned input
being processed. It is the purpose of all programs to produce output,
whether that output is an image on the screen, a printed report, or a file
for further processing.

File

A file is a collection of related information, such as a BASIC program or a
list of names and addresses. Statements and functions showing the file
icon work with files on any applicable device. The commands showing
the following device icons work only with the given device. The device

icons are:
Keyboard: % Screen: -

Disk: (EI Printer: .
armae

PR

Microsoft BASIC Interpreter

11011001
10100100
11101100
11001001
00110111

N

Assembly Language

Assembly language is the way to speak directly to the computer rather
than through the BASIC Interpreter. Call assembly language subroutines
to perform tasks that can be done more quickly and more efficiently in
assembly language than in BASIC.

Graphics

Microsoft BASIC contains a versatile set of programming commands that
get the most out of Macintosh’s graphic screen abilities. The graphics
commands ¢nable you to produce and move images on the screen.

ABS - ASC

Function Syntax
ABS(X)

Action
Returns the absolute value of the expression X.

Example

LETX=1:LETY=(-1)
PRINT ABS(X), ABS(Y)
1 1

ASC

Function Syntax
ASC(X8)

Action

Returns a numerical value that is the ASCII code for the first character of
the string X$.

Remarks

The Microsoft BASIC character set includes the entire ASCII set, but also
contains additional characters. These non-ASCII characters, as well as the
standard ASCII characters, may be tested with the ASC function (see Ap-
pendix A, “ASCII Character Codes™).

See Also
CHRS$

ASC - ATN

Example

& File Edit Search Run Windows

[

ASC EHAMPLE

84

REM *** This demonstrates the use
REM *** of the ASC Function.

LET OBJECTS = 'T"

PRINT ASC(OBJECTS)

END

96

ATN

Function Syntax
ATN(X)

Action

Returns the arctangent of X, where X is in radians, The result is in the

range -m/2 to w/2 radians.

The evaluation of this function is performed in double precision in the
decimal version. In the binary version, results are given in single preci-
sion when the argument is in single precision and in double precision
when the argument is in double precision.

Example

& File Edit Search Run Windows

ATN EHAMPLE

Arctengent of whet ? 9

== list

1.460139105621
Arctangent of what ? 4.19

1.3365154537528
Arctangent of what 7 2.92
1.2408492346483

REM *** This program illustrates a
REM *** yse of the ATN Function.
FORIZ=1T03
INPUT “Arctangent of what ? ", OBJECT
PRINT ATN(DBJECT)
NEXT I8
END

BEEP - BREAK ON/BREAK OFF/BREAK STOP

Statement Syntax

BEEP BEEP
Action
Sounds the speaker.
Remarks

The BEEP statement causes a momentary sound. The statement is useful
for alerting the user.

Example
This example executes a beep when X is less than 20.

IF X < 20 THEN BEEP

Statement Syntaxes

BREAK ON BREAK ON
BREAK OFF
BREAK OFF BREAK STOP
BREAK STOP
Action
0 Enables, disables, or suspends event trapping based on the user trying to
_I stop program execution.

Remarks

The BREAK ON statement enables event trapping of user attempts to halt
the program (by pressing Command-period or selecting the Stop option
on the Run menu).

The BREAK OFF statement disables ON BREAK event trapping.

The BREAK STOP statement suspends ON BREAK event trapping. It is

similar to BREAK OFF in that if it has been ¢xecuted, the GOSUB is not
performed. However, BREAK STOP differs in that the GOSUB is performed

as soon as a BREAK ON statement is executed, if any events occurred 97
while the event trap was stopped.

See Also
ON BREAK

BREAK ON/BREAK OFF/BREAK STOP - BUTTON

Example

& File Edit Search Run Windows
BREAK ON EHAMPLE

£0 st ===

REM *** This program fragment illusirates a use of ON BREAK
BREAK ON
BREAK ON GOSUB [IRECTUSER
DIM PAYTIME(S9) HR5(99) GROS5(99} FIT(92] FICA(99),5TATE(99) NET(99)
LET TOTALEMPLOYEES = @9
OPEN "0",* 1, "EmployeeFay”
FOR | = | TO TOTALEMPLOYEES
WRITE* 1 FPAYTIMECILHRS{11,GROSS(! FITCI) FICACI) STATE() NET(I)
NEXT |
CLOSE * | BREAK OFF
INPUT "Do you wish to print the Payroll now (Y/H) 2 * ANSWERS
IF AHSWERS = "YES™ THEN BREAK ON: GOSUB PRINTCHECKS
END
DIRECTUSER
CLS BEEP PRINT "You can't exit program until file is updated”
RETURN

Statement Syntaxes

BUTTON BUTTON button-id state| title,rectangle| ,type | |
BUTTON CLOSE »

o010,
o} | Function Syntax
BUTTON (button-id)

Actions
- The BUTTON statement displays a button in the current output window.
98

The BUTTON CLOSE statement removes a button from the current output
window.

The BUTTON function returns the state of the named button in the
current output window.,

BUTTON

Remarks

The button-id is an integer expression greater than or equal to 1 that indi-
cates the number of a button in the current output window. Any number
of buttons may be active within an output window. Large values of
button-id consume more memory than small ones.

See the WINDOW statement for definitions of “current output window”
and “active output window.”

Statement Remarks

The button created in the BUTTON statement is active until any of the
following actions occur:

B8 Another BUTTON statement with the same button-id is exccuted.
B A BUTTON CLOSE n statement is executed for the button.

B A WINDOW CLOSE 7 statement is executed for the window in which
the button exists.

The state indicates the current status of the button, and can have the
following values:

0 The button is inactive, and appears dimmed on the screen.
1 The button is active, but not currently sclected.
2 The button is active and currently selected.

The title is a string expression that is displayed inside or beside the
identified button.

The rectangle identifies where the button will be displayed. The argu-
ment appears in the form (x1,p1)-(x2)2) where (x1,y1) is the upper-left
coordinate and (x2,y2) the lower-right coordinate (relative to the current
output window) where the identified button will be displayed. The coor-
dinates are not absolute (relative to the upper-left corner of the screen),
but are offset (from the upper-left corner of the current output window).

Note

When a button is displayed in the current output window, a PRINT state-
ment will not automatically scroll the window contents.

100

BUTTON

The type is a number from 1 to 3. It describes the type of button to be
displayed, as follows:

@ A simple push button. This is the default.
O2 A check box.
O3 A radio button.

The BUTTON CLOSE statement removes the button from the current out-
put window and releases all resources associated with it. WINDOW
CLOSE 7 removes all buttons from window n.

You can use the BUTTON statement with the DIALOG ON and ON
DIALOG...GOSUB statements to trap the user’s selection of an identified
button.

Function Remarks
The BUTTON function returns one of the following values:

0 The button is inactive, and appears dimmed on the screen.
1 The button is active but not currently selected.

2 The button is active and currently selected.

See Also

DIALOG, EDIT, ON DIALOG, WINDOW

BUTTON - CALL

lustrates a use of the BUTTON Statement.
WINDOW 2,"Customer File",(50,100)-(450,250), 1
PRINT "Select choice by clicking button *
BUTTON 1,1,"Update a customer record” (5,25)-(200,40),2
BUTTON 2,1,"Add a customer record”,(5,55)-(200,70),2
BUTTON 3,1,"Delete a customer record”, (5,115)-(200,130),2
BUTTON 4,1,"CANCEL",(245,60)-(330,75),1

WHILE DIALOG(0) <> | : WEND ‘Ignore everything but buttons.

Buttonpushed = DIALOG(1) ‘records which button pressed

IF Buttonpushed = 4 THEN GOTO Done ‘return to caller

ON Buttonpushed GOSUB UpdateCus,AddCus,DeleteCus

‘Sends control to a subroutine based on which button pushed

Done:
WINDOW CLOSE 2
RETURN

Statement Syntaxes

CALL CALL name |(argument-list)|
name |argument-list |
0,0 I
_] 11001001 Actions
00110111

Performs two different actions: it calls a machine language routine, or it
calls a BASIC subprogram.

Remarks

The CALL syntax now has the CALL keyword optional. If CALL is omitted,
the parentheses are also omitted.

Calling Machine Language Subroutines The CALL statement is the

only way to transfer program flow to an external subroutine. The name 101
identifies a simple variable that contains an address that is the starting

point in memory of the subroutine. The name cannot be an array

element.

CALL

The argument-list contains the arguments that are passed to the subrou-
tine. If a parameter is to be passed by reference, VARPTR should be used.

Microsoft BASIC pushes parameters onto the stack in the order they are
presented (left to right) in the argument-list. The passed values are 2
bytes in length if they are integers. If they are single or double precision,
they are converted to 32-bit signed integers and passed as 4-byte values.
Strings are converted to a pointer and a structure containing a size byte
followed by the actual string data.

If name is a non-zero value, the address contained in it is the starting
point of the subroutine in memory.

If name has a value of zero, an “illegal function call” error message is gen-
crated. The name should be a single or double precision variable since
an integer is not large enough to hold the 24-bit address of the 68000
processor.

See Appendix F, “Access to Macintosh ROM Routines,” for information
about predefined, machine language ROM subroutines. All of these can be
used without adding the optional keyword CALL, with one exception:
LINE. This is because LINE, a ROM call, is also a BASIC reserved word.
When calling the LINE subroutine, use the CALL keyword in front of it.

Calling BASIC Subprograms Microsoft BASIC allows you to use sub-
programs. You will find a thorough discussion of subprograms in Chapter
6, “Advanced Topics.”

Warning Because the word CALL is not required in this statement,
and the statement can be executed with the syntax:

name dargument-list

there is the possibility of writing a CALL statement that
looks like an alphanumeric label. For example, examine
the following statement:

ALPHA: LET A = 5

It is not visually clear whether the statement is calling a
subprogram named ALPHA with no argument list, or the
statement LET A = 5 is on a line with the label ALPHA.:.
In such a case, ALPHA: is assumed to be a line label and
not a subprogram call with no arguments.

CALL

Calling a LIBRARY Subroutine Library routines are machine language
modules that are bound to BASIC dynamically at runtime. Library files are
special Macintosh “resource” files.

Because the CALL statement does not require the word “CALL” to precede
it, you can create custom BASIC statements. If the user has included the
library at runtime, the name called by the CALL statement directs the
program to the library resource file.

Special documentation entitled “Microsoft BASIC for the Macintosh —
Building Machine Language Libraries™ is available by contacting the
Microsoft Consumer Response Department.

Example

REM *** This program illustrates the use of the CALL Statement
RE" %%
DIM CODER(SO)
1=0
infoloop:
READ A: IF A = -1 THEN meachineprog
CODER(i)=A: |=1+1: 6OTO infolcop
mechineprog:
X%=10: Y2=0
210 SETYTOX=VARPTR(CODE®R(0)): CALL SETYTOX(XB(VARPTR(YZ))
PRINT Y%
END
REM *** Machine 1anguage for SETYTOX
DATA &H4ES6,&H0000,8H206E,8H0008,8H30AE,&HO00C 8H4ESE
DATA &H4ETS,-1

The preceding program demonstrates how values can be passed to a
machine language subroutine as well as how a machine language
subroutine can return values.

Note that on line 210, SETYTOX was assigned immediately before the CALL.

This is a safe programming practice. Declaring new scalars (non-array vari-

ables) causes arrays to move in memory. This means that if any new scalars e
were defined after SETYTOX had been assigned, SETYTOX would no longer 103
point to the first element of CODE% (0).

Also note that if Y% had not been defined before line 210 was executed, an
“Illegal function call” error message would have been generated. Again, this
is because definitions of new scalars cause arrays to move in memory.

As with all applications written for the Macintosh, machine language programs
should all be position independent (that is, relocatable anywhere in memory).

CDBL - CHAIN

CDBL

Function Syntax
CDBL(X)

Action
Converts X to a double precision number.

Example

€ File Edit Search Run Windows

{ CDBL EHAMPLE
6495242657 1429 [ED List

I 645524 REM *** This program demonstrates the

64.952428571429 REM *** yse of CDBL

LET A - 454667 LET B! = 454607

PRINT A/7

LET CI=BI/7

PRINT C!

PRINT CDBL(BI/7)

END

|

o3

Statement Syntax
CHAIN [MERGE |filespec{,|expression] [|ALL][,DELETE range]]]

Action

Executes another program and passes variables to it from the current
program.

Remarks
The filespec is the specification of the program that is called.

The expression is a line number, or an expression that evaluates to a legal
line number, in the called program. It is the starting point for execution
of the called program. If it is omitted, execution begins at the first line.
An alphanumeric label cannot be used as a starting point.

The MERGE option allows a subroutine to be brought into the BASIC pro-
gram as an overlay. That is, the current program and the called program
are merged, with the called program being appended to the end of the
calling program. The called program must be an ASCII file if it is to be
merged.

CHAIN

With the ALL option, every variable, except variables which are local to a
subprogram in the current program, is passed to the called program. If
the ALL option is omitted, the current program must contain a COMMON
statement to list the variables that are passed.

If the ALL option is used and the expression is not, a comma must hold
the place of the expression. For example, the first example below is
correct and the second is incorrect:

CHAIN "NEXTPROG", ALL
CHAIN "NEXTPROG",ALL

CHAIN leaves files opened.

After an overlay is used, it is usually desirable to delete it so that a new
overlay may be brought in. To do this, use the DELETE option.

Note

The CHAIN statement with the MERGE option preserves the current
OPTION BASE setting.

If the MERGE option is omitted, CHAIN does not preserve variable types
or user-defined functions for use by the chained program. That is, any
DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEFFN statements must be restat-
ed in the chained program. Also, CHAIN turns off all event trapping. If
event trapping is still desired, each event trap must be turned on again
after the chain has executed.

When using the MERGE option, user-defined functions should be placed
before the range deleted by the CHAIN statement in the program.
Otherwise, the user-defined functions will be undefined after the merge
is complete.

The DELETE range consists of a line number or label, a hyphen, and
another line number or label. All the lines between the two specified
lines, inclusive, are deleted from the program chained from.

See Also

COMMON, MERGE
105

Example

REM *** This program illustrates the use of the

REM *** CHAIN and COMMON Statements.

COMMON ACCT, BALANCE!, CHARGES(), DISCOUNT!, CONTACTS
CHAIN "Receivables”

106

CHR$

CHR$

Function Syntax

CHRS$(1)

Action

Returns a string whose one character has the ASCII value given by I (see
Appendix A, “ASCII Character Codes”).

Remarks

CHRS$ is commonly used to send a special character to the screen or a
device. For instance, the ASCII code for the bell character (CHR$(7)) can
be printed to cause the same effect as the BEEP statement, or the form
feed character (CHR$(12)) can be sent to clear the output window and
return the pointer to the home position.

See Also

ASC

Example

" & File Edit Search Run Windows N
CHRS EHAMPLE

A B CDEFG H IJ

e
REM *** This illustrates a use of CHR$
FOR IZ=65T0 74

PRINT CHR$(18),SPC(2);
NEXT I8
END

CINT

Function Syntax

CINT CINT(X)
3] Action
J Converts X to an integer by rounding the fractional portion.
Remarks

If X is not in the range — 32768 to 32767, an “Overflow” error message is
generated. Related to CINT are the CDBL and CSNG functions which con-
vert numbers to the double precision and single precision data types,
respectively.

See Also
CDBL, CSNG, FIX, INT

Example

& File Edit Search Run Windows

l CINT ERAMPLE
§How much in your account ? 975.41
And how many doys ? 488

Your interest totals 68 dollars

Ve st ===
REM *** This illustrates a use o
REM *** CINT Function.

LET INTEREST = .0525

LET INTEREST = INTEREST / 365.25

INPUT "How much in your account ? ", FRIC
INPUT "And how many days 7 ",DURATION
LET GAIN = INTEREST * DURATION * FRIC
LET GAIN = CINT(GAIN)

PRINT "Your interest totals ";GAIN;" dollar
END :

108

CIRCLE

CIRCLE

el

P

S

Statement Syntax
CIRCLE [STEP[(x,y)radius |,color| startend|,aspect]|]

Action
Draws a circle or an ellipse with the specified center and radius.

Remarks

The STEP option indicates the following coordinates will be relative to the
current coordinates of the pen.

The x parameter is the x coordinate for the center of the circle.
The y parameter is the y coordinate for the center of the circle.
The radius is the radius of the circle in pixels.

The color is a numeric value for the color desired. If the color given is
the value 30, the circle or ellipse border will be drawn in white. If the
color given is the value 33, black will be used.

The start and end parameters are the start and end angles in radians. The
range is —2 7 through 2. These angles allow the user to specify where a
circle or ellipse begins and ends. If the start or end angle is negative, the
circle or ellipse is connected to the center point with a line, and the an-
gles are treated as if they were positive. Note that this is different from
adding 2. The start angle may be less than the end angle.

The aspect is the aspect ratio, that is, the ratio of the x radius to the y
radius. The default aspect ratio is 1.0. If the aspect ratio is less than one,
the radius given is the x radius. If it is greater than one, the y radius is

given.
The last point referenced after a circle is drawn is the center of the circle.

Coordinates can be given as absolutes, or the STEP option can be used to
reference a point relative to the most recent point used. The syntax of
the STEP option is:

STEP (x,)

For example, if the most recent point referenced were (10,10), CIRCLE
STEP (20,15) would reference a point offset 20 from the pen’s current x
location and offset 15 from the pen’s current y location.

CIRCLE - CLEAR

Example

€ File Edit Search Run Windows
CIRCLE EHAMPLE

Si————— I E

REM *** This illustrates a use of
REM *** the CIRCLE Statement. l
LET X% = 50
LET Y& = 80
FOR COUNT® =1 TOD 39
CLS
CIRCLE(X®,YZ),COUNT®
LETXE=XE+2:LETYE=YZ + 2
NEXT COUNT®
END

Statement Syntax
CLEAR CLEAR | |data-segment-size ||, stack-size| |

o] Action
_j The CLEAR statement performs the following actions:

Closes all files.
Clears all COMMON variables.

Resets numeric variables and arrays to zero. 109

Resets the stack and string space.
Resets all string variables to null
Resets all DEF FN and DEF/SNG/DBL/STR statements.

Releases all disk buffers.

110

CLEAR

Remarks

The data-segment-size argument dictates how many bytes are to be
reserved for BASIC's data segment.

The stack-size argument dictates how many bytes are to be reserved for
the stack.

Parameters can be supplied to partition available memory into the follow-
ing three zones as follows:

Data Segment This includes program text, variables, strings. and file
data blocks. The amount of memory to be allocated to this zone is indi-
cated by data-segment-size. If not supplied, it defaults to its current
alue.

Stack The stack is used to keep track of information about active FOR
and WHILE loops, and GOSUB statements. The amount of memory to be
allocated to this zone is indicated by stack-size. If not supplied, it defaults
to its current value. Once the size of the stack is reduced by the CLEAR
statement, it cannot be increased without exiting and re-entering BASIC.,
An attempt to allocate more space to the stack than its current allocation
will cause an “Out of memory” error message to be gencerated.

Macintosh Heap This zone holds the contents of the device CLIP: and
miscellaneous data needed for window manipulation and desk accessories.
It also includes BASIC’s transient code segments. Therefore, allocating
more memory to this zone improves BASIC's performance. It does this by
reducing the frequency with which code segments must be loaded from
the disk. The amount of memory to be allocated to this zone is whatever
memory is left over after data-segment-size and stack-size are allocated.

An “Out of memory” error message is generated if an attempt is made to
allocate less than 1024 bytes to any of the three zones.

See Also

FRE, “Memory Management” in Chapter 6, “Advanced Topics”

Examples

CLEAR

CLEAR, 20000
CLEAR, 2000
CLEAR.20000,2000

CLOSE

i

CLOSE

Statement Syntax
CLOSE ([# |filenumber|, [# |filenumber ...]]

Action

Concludes /O to a file. The CLOSE statement complements the OPEN
statement.

Remarks

The filenumber is the number with which the file was opened. A CLOSE
with no arguments closes all open files.

The association between a particular file and the filenumber terminates
upon execution of a CLOSE statement. The file may then be reopened

using the same or a different filenumber; likewise, that filenumber can

be reused to open any file.

A CLOSE for a sequential output file writes the final buffer of output.
When BASIC performs sequential file IO, it uses a holding area, called a
buffer, to build a worthwhile load before transferring data. If the buffer is
not yet full, the CLOSE statement assures that the partial load is
transferred.

The END, SYSTEM, CLEAR, and RESET statements and the NEW command
always close all files automatically. (STOP does not close files.)

See Also
CLEAR, END, NEW, OPEN, RESET, STOP, SYSTEM

CLOSE - CLS

Example

& File Edit Search Run Windows
CLOSE EHAMPLE

e |ist —__I

REM *** This is a fragment of a program that opens an existing
REM *** file, gets data from it, updates it, and returns it. l
OPEN "Payables” AS #2 LEN = 80
FIELD *2, 30 AS FIRMS$, 30 AS ADDRS, 10 AS OWES, 10 AS DAYS
GET *2, ACCOUNT
LET DEBT! = CVS(OWES)
LET DEBT! = DEBT! + (CHARGES! - PAIDI)
LSET OWE$ = MKS$(DEBT!)
PUT #2, ACCOUNT
CLOSE *2
PRINT "Account * ";ACCOUNT;” updated”

CLS

Statement Syntax
CLS

Action

Erases the contents of the current output window and sets the pen
position to the upper left-hand corner of the output window.

Remarks

The CLS statement clears the current output window only, and not other
windows. It does not clear out any edit fields or buttons in the cleared
window.

Example

CLS

COMMON

&

.

COMMON

Statement Syntax
COMMON variable-list

Action
Passes variables to a chained program.

Remarks

The COMMON statement is used in conjunction with the CHAIN state-
ment. COMMON statements may appear anywhere in a program, though
it is reccommended that they appear at the beginning. The same variable
cannot appear in more than one COMMON statement. Array variables are
specified by appending parentheses (that is, “()”) to the variable name. If
all variables are to be passed, use CHAIN with the ALL option and omit
the COMMON statement.

Some versions of BASIC allow the number of dimensions in the array to be
included in the COMMON statement. This implementation of BASIC ac-
cepts that syntax, but ignores the numeric expression itself. For example,
the following statements are both valid and are considered equivalent:

COMMON A()
COMMON A(3)

The number in parentheses is the number of dimcnsiqns, not the dimen-
sions themselves. For example, the variable A(3) in this example might
correspond to a DIM statement of DIM A(5,8,4).

Example

REM *** This program illustrates the use of the

REM *** CHAIN and COMMQN Statements.

COMMON ACCT, BALANCE!, CHARGES(). DISCOUNT!, CONTACTS
CHAIN "Receivables”

CONT

Statement Syntax

CONT CONT
0.0 Action
J Continues program execution after a Command-period has been typed or

a STOP statement has been executed. It can also be used to continue
execution after single stepping.
Remarks

Execution resumes at the point where the break occurred. If the break
occurred after a prompt from an INPUT statement, execution continues
with the reprinting of the prompt (“?” or prompt string).

CONT is usually used with STOP for debugging. When execution is
stopped, variable values may be examined and changed using immediate
mode statements. Execution may be resumed with CONT or an immedi-
ate mode GOTO, which resumes execution at a specified line number.
CONT may be used to continue execution after an error has occurred.

CONT is invalid if the program has been edited during the break.

Example

% File Edit Search Run Windows
CONT & STOP EHAMPLE

9.69

(]
on

List
REM ** THIS IS AN EXAMPLE OF THE USE OF
REM ** THE STOP & CONT STATEMENTS.
CHECK! = 25: DEBIT! = 9.891
PRINT CHECK!, DEBIT!
STOP
LET BALANCE! = CHECK! - DEBIT!
PRINT BALANCE!
114 END

[([===———————"—— Command

ONT|

()

COS

COs

Function Syntax

COS(X)

Action

Returns the cosine of X, where X is in radians.

Remarks

The evaluation of this function is performed in double precision in the
decimal version. In the binary version, results are given in single preci-
sion when the argument is in single precision and in double precision
when the argument is in double precision.

Example

& File Edit Search Run Windows

C0S EHAMPLE

7316688688738 e | 5|
REM *** This illustrates a use of it
REM *** the COS Function.
LET RESULT = COS(.75)
PRINT RESULT

END

115

CSNG

Function Syntax

CSNG CSNG(X)
.0 Action
_I Returns the single precision equivalent of X.
See Also
CDBL, CINT
Example

€ File Edit Search Run Windows

CSNG EHAMPLE

7316688688738 = |ist =]
731689 REM *** This illustrates a use of the {3
REM *** CSNG Function.

LET RESULT = COS(.75)
PRINT RESULT

LET RESULT = CSNG(RESULT)
PRINT RESULT

END

CSRLIN

CSRLIN

Function Syntax
CSRLIN

Action

Returns the approximate line number of the pen in the current output
window.

Remarks

The CSRLIN function tells you approximately where the pen is vertically
located within the current output window. The location returned by this
function is relative to the top border of the current output window. If the
current output window is moved with the mouse, the returned row
number remains the same.

The unit of measurement for this function is the size of the character

“0" in the current font. Because many of the Macintosh fonts are propor-
tionally spaced, all characters do not have identical widths, as they do on
most typewriters. The “0” is an average width.

See Also
POS, LOCATE

Example

REM ** This example illustrates the way CSRLIN works.
INPUT “What is your name ; TITLE$

Y% = CSRLIN : REM *Record current line.

X% = POS(0) :REM *Record current column.

CLS: PRINT "Hello, ";TITLES

LOCATE Y% X% : REM *Restore cursor to old position.

118

CVI/CVS/CVD

Function Syntax

CVI(2-byte string)

CVS(4-byte string)

CVD(8-byte string)

Action

Converts random file numeric string values to numeric values.

Remarks

Numeric values that are read in from a random disk file must be convert-
ed from strings back into numbers. CVI converts a 2-byte string to an in-
teger. CVS converts a 4-byte string to a single precision number. CVD
converts an 8-byte string to a double precision number. These functions
should not be used to return the numerical value of a string. For that
purpose, use the VAL function.

See Also
MKI$, MKSS, MKD $, VAL

Example

& File Edit Search Run Windows

CUI,CUS,CUD ERAMPLE

Your account number is 98765432556
You have § 123456 in your checking account
and $§ 2500 in your suvings account.

REM *** This program illustrates the use of CVI, CVS
REM *** and CVD with Random files.
OPEN "Accountinfo” AS #2 LEN = 14
FIELD #2, 8 AS ACCTS$, 4 AS CHECKS, 2 AS DEPOSITS
GET *2,1
LET ACCOUNTNO#* = CVD(ACCT$)
LET CHECKING! = CVS(CHECKS$)

LET SAVINGSE = CVI(DEPOSITS)
CLOSE #2

PRINT "Your account number is ";ACCOUNTNO#*

PRINT "You have $";,CHECKING!;" in your checking account
PRINT “and $";SAVINGSE;" in your savings account.”
END

CVDBCD/CVSBCD

Function Syntaxes

CVDBCD CVDBCD(X$)
CVSBCD(X 8
CVSBCD X
~0 Action
_I Returns the binary math representation of a decimal math floating-point
number.
Remarks

Microsoft BASIC comes with two versions, and random access files with
single or double precision numbers produced in one version will not
work in the other. The CVSBCD and CVDBCD functions give you the abili-
ty to convert these random file numbers created in the decimal math ver-
sion of BASIC into numbers usable by the binary math version. CVSBCD
converts decimal (BCD) format single precision numbers into binary ones.
CVDBCD converts decimal (BCD) format double precision numbers into
binary ones.

You do not need to convert integers or strings. They have the same
representation in both versions.

See Also
MKSBCD 8, MKDBCD $, Appendix D, “Internal Representation of Numbers”

Example

REM ** This is a fragment of program that demonstretes opening a decimal
REM ** version random file, converting the parts that must be changed to
REM ** store in a binary version random file, and then storing the data in the
REM ** binery versien file.
OPEN "Payables™ AS *2 LEN=74
FIELD *2, 30 AS Firm$, 30 AS Addr$, 4 AS Owe$, 10 AS Day$
FOR ACCOUNT = 100 TO S00
GET *2, ACCOUNT
DEBT! = CVSBCD(OWES): LSET OWES - MKS$(DEBT!)
PUT #2, ACCOUNT
PRINT "Account #7;ACCOUNT ;" updated”
NEXT ACCOUNT

CLOSE *2 119

DATA

DATA

Statement Syntax
DATA constant-list

Action

Stores the numeric and string constants that are accessed by the READ
statement.

Remarks

DATA statements are nonexecutable and may be placed anywhere in the
program. A DATA statement may contain as many constants as will fit on
a line (separated by commas). Any number of DATA statements may be
used in a program. READ statements access DATA statements in order
(from the top of the program to the bottom). The data contained in a
DATA line may be thought of as one continuous list of items, regardless
of how many items are on a line or where the lines are placed in the
program.

The constant-list parameter may contain numeric constants in any format,
that is, fixed-point, floating-point, or integer. (No numeric expressions are
allowed in the list.) String constants in DATA statements must be sur-
rounded by double quotation marks only if they contain commas, colons,
or significant leading or trailing spaces. Otherwise, quotation marks are
not needed.

The variable type (numeric or string) given in the READ statement must
agree with the corresponding constant in the DATA statement.

DATA statements may be reread from the beginning by use of the
RESTORE statement.

See Also
READ, RESTORE

- DATA/DATE$
—
N Example
- r . . . 1
— € File Edit Search Run Windows

DATA EHAMPLE
o B | st
- REM *** This demonstrates a use of

REM *** the READ and DATA Statements.
- DiM A(15)
- FORIZ=1TO 15

READ A(I%)

F— NEXT |1%
- - END

DATA 1,2,3,4,5,6,7,89,10,11,12,13,14,15
—
]
- o (4]
—
L]
]
e Statement Syntax

DATE$ DATE $=string-expression
-
. Function Syntax
DATES$
- Actions
B The statement sets the current date.

- The function retrieves the current date. 121
faimay
—

DATES$

Statement Remarks

When setting the date, the string-expression must be a string in one of the
following forms or an “lllegal function call” error message will be
generated:

mm-dd-yy
mm-dd-yyyy
mm/dd/yy
mm/dd/yyyy

In the above forms, mm is the month (01 through 12), dd is the day (01
through 31), and yy or yyyy is the year.

Example
This example sets the current date to August 21, 1984,

DATES = "08-21-84"

Function Remarks

The DATES function returns a ten-character string in the form mm-dd-
pyyy, The function complements the DATE$ statement, which sets the
date.
Example
€ File Edit Search Run Windows !
—————
Untitled
*%%D0OUG's GARDEN & LANDSCAPE***
INVOICE 08-16-1984

REM** This fragment shows a use of
122 REM ** DATES

| |LET TODAYS = DATES

PRINT "***DOUG's GARDEN & LANDSCAPE***"
PRINT " INVOICE ", TODAY$

<] !

DEF FN

Statement Syntax

DEF FN DEF FN name |(parameter-list)|= function-definition
5o Action
_j Defines and names a function that is written by the user.
Remarks

The name parameter must be a legal variable name. This name, preceded
by DEF FN (with no intervening spaces), becomes the name of the
function.

The parameter-list consists of those variable names in the function defini-
tion that are to be replaced when the function is called. The items in the
list are separated by commas.

The function-definition is an expression that performs the operation of
the function. It is limited to one logical line. Variable names that appear
in this expression serve only to define the function; they do not affect
program variables that have the same name. A variable name used in a
Junction-definition may or may not appear in the parameter-list. If it
does, the value of the parameter is supplied when the function is called.
Otherwise, the current value of the variable is used.

The variables in the parameter-list represent, on a one-to-one basis, the
argument variables or values that will be given in the function call.

This statement may define either numeric or string functions. If a type is
specified in the function name, the value of the expression is forced to
that type before it is returned to the calling statement. If a type is speci-
fied in the function name and the argument type does not match, a “Type
mismatch” error message is generated.

A DEF FN statement must be encountered before the function it defines
may be called. If a function is called before it has been defined, an “Unde-
fined user function” error message is generated. DEF FN is illegal in im-
mediate mode and within subprograms.

Defined functions are reset when the program that they reside in chains
to another program.

DEF FN - DEFINT/DEFSNG/DEFDBL/DEFSTR

Example

" & File Edit Search Run Windows

e
Untitled

Enter your X 288
Enter your ¥ 36
The Answer is .. 2.0083292978208

E=————————lisl

REM ** This illustrates a use of the DEF FN Statement.

DEF FNTRIG(X,Y) = X"3/(X"2 + ¥)
T~ __—CLS

INPUT "Enter your X, A
INPUT “Enter your ¥ ", B
RESULT = FNTRIG(A,B)
PRINT "The Answer is .

: RESULT

124

DEFINT
DEFSNG
DEFDBL
DEFSTR

Statement Syntax

DEFINT letter-range
DEFSNG letter-range
DEFDBL letter-range
DEFSTR letter-range

Action
Declares variable types as integer, single precision, double precision, or
string,

Remarks

Any variable names beginning with the letters specified in the letter-range
argument will be considered the type of variable specified by the last
three letters of the statement, that is, either INT, SNG, DBL, or STR. How-
ever, a type declaration character always takes precedence over a DEFtype
statement.

If no type declaration statements are encountered, Microsoft BASIC as-
sumes that all variables without declaration characters are of a certain pre-
cision. In the binary version, the default is single precision. In the
decimal version, the default is double precision.

DEFtype declarations are reset when the program they reside in chains to
another program.

DEFINT/DEFSNG/DEFDBL/DEFSTR - DELETE

Examples

" & File Edit Search Run Windows

DEFINT EHAMPLE
435 31416 eI
4 3 REM *** This demonsfrates the use of

REM *** the DEFINT Statement.
LETA=435:LETB=3.1416
PRINT A,B

DEFINT A-B
LETA=435:LETB=3.1416
PRINT A,B

END

Statement Syntax

DELETE DELETE |line]| — line)
o) Action
o} | Deletes program lines.
Remarks
The DELETE statement works with both line numbers and alphanumeric
labels.

If line does not exist, an “Jllegal function call” error message is generated.

Examples
The following statement deletes line 40.

DELETE 40 125

The following statement deletes lines 100 to 999.

DELETE 100-999

126

DIALOG

DIALOG

Function Syntax
DIALOG(n)

Action

Lets the BASIC program know when and how the user is interacting with
buttons, edit fields, and windows created by the BASIC program. All DIA-
LOG functions return information about the active window.

Remarks

The DIALOG function provides you with the ability to find out the state of
various buttons, edit fields, and windows, and whether the user has tried
to select any of them. If the user has, the activity is specified by the DIA-
LOG(0) function. Other functions, DIALOG(1), DIALOG(2), DIALOG(3),
DIALOG(4), and DIALOG(5) tell which of the windows or buttons was
acted on by the user. When this information is known, the program can
cffectively trap button, edit field, and window activity (using the ON DIA-
LOG statement) and route program control to a section of the program
that can respond to the specific activity.

Using these techniques, you can create programs that use Macintosh inter-
face features, and provide the users with programs that interact like off-
the-shelf Macintosh products.

The function argument (72) indicates what value is to be returned.

DIALOG(0)

The purpose of the DIALOG(0) function is to inform the program as to
which of several possible dialog events have taken place. When these are
known, program control can be routed to appropriate routines that deal
with the events. DIALOG events form a queue, so that each time the DIA-
LOG(0) function is used, the oldest dialog event not yet delivered by the
function is the one returned by the function. The values returned by the
function have the following meanings:

0 No dialog event has occurred since the last time DIALOG(0)
was executed.

1 A button in the active output window was selected with the
mouse. The number of the button is returned by the DIA-
LOG(1) function.

2 The user has moved from one edit field to another edit field by
clicking the mouse within the new edit field. The number of
the selected edit field is returned by the DIALOG(2) function.
A useful application for the DIALOG(2) function is to trap the
moment when the user is trying to exit an edit ficld. This
event can be trapped and program control routed to a routine
that validates or verifies the content of the edit field before the

DIALOG

user can go on to another one. This event can only occur in a
window with more than one edit field.

3 The user has clicked an inactive output window to request it
be made active. The window-id of the selected window is re-
turned by the DIALOG(3) function (see “WINDOW” for an ex-
planation of window-id.) If you want the selected output win-
dow to be made the active output window, the program
should make the selected one active by executing a WINDOW
statement.

4 The user has clicked the “go-away box” of an output window.
The window-id of the affected output window is returned by
the DIALOG(4) function.

5 Part of an output window needs to be refreshed. The
window-id of the affected window is returned by the DIA-
LOG(5) function.

6 The user pressed a Return key in an active window that had a

button or edit field that cannot accept Return keys. Most ap-
plications treat this the same as if the OK button had been
selected in the active window.

7 The user pressed a Tab key in an active output window that
has an edit field. The program can be designed to advance to
the next edit field when this occurs.

DIALOG(1)
This returns the number of the most recently pressed button.

DIALOG(2)
This returns the number of the most recently selected edit field.

DIALOG(3)
This returns the number of the most recently selected output window.

DIALOG(4)
This returns the number of the output window whose go-away box was
most recently selected.

DIALOG(5)
This returns the number of the output window which needs to be re-
freshed.

Using this set of DIALOG functions, you can create programs that invoke a
subroutine if a button is pressed, then use a function to return the number
of the pressed button and branch to a specific routine based on which
button was pressed. Through this technique, you may produce button-
driven programs.

DIALOG - DIALOG ON/DIALOG OFF/DIALOG STOP

You can also create applications that validate individual edit field entries
in an output window using the DIALOG(2) function. This is useful for
form entry programs.

See Also
BUTTON, DIALOG ON, EDIT, EDIT$, WINDOW

Example

REM *** This fragment illustrates a use of the DIALOG Function.
WINDOW 2,"Customer File",(50,100)-(450,250),1
PRINT “Select choice by clicking button *
BUTTON 1,1, Updete o customer record-,(5,25)-(200,40),2
BUTTON 2,1,"Add o customer record” (5,55)-(200,70),2
BUTTON 3,1 “Delete a customer record”, (S,115)-(200,130),2
BUTTON 4,1,"CANCEL",(245,60)-(330,75),1
Activity = DIALOG(0)
WHILE Activity <>1: ACTIVITY = DIALOG(0): WEND
Buttonpushed = DIALOG(1) ‘records which button pressed
NeedUpdate = DIALOG(S) * records which window covered by window 2
IF Buttonpushed = 3 THEN GOTO Quit ‘return to main menu
ON Buttonpushed 60SUB UpdeteCus,AddCus,DeleteCus

DIALOG ON
DIALOG OFF
DIALOG STOP

Statement Syntaxes

DIALOG ON
DIALOG OFF
DIALOG STOP

Actions

The DIALOG ON and DIALOG OFF statements enable and disable, respec-
tively, event trapping based on dialog events.

A dialog event occurs whenever the DIALOG(0) function would return a
non-zero value.

The DIALOG STOP statement suspends event trapping. It is similar to

DIALOG OFF in that if it has been executed, the GOSUB is not performed.

However, DIALOG STOP differs in that the GOSUB is performed as soon
as a DIALOG ON statement is executed, if any events occurred while the
event trap was stopped.

See Also

DIALOG, ON DIALOG, “Event Trapping” in Chapter 6, “Advanced Topics”

DIALOG ON/DIALOG OFF/DIALOG STOP - DIM

Example

REM ** Thase fragments {llustrate a wey to route progrem control
REM ** Dbased on dialog event trepping.
ON DIALOG 60SUB HendleAct: DIALGG ON

HandleAct: MENU STOP: MOUSE STOP
ACT = DIALOS(0)
ON ACT 60SUB ButtonHand, EdMove,WindClick,GoAweay,Under ,NoNo,Advence
MENU ON: MOUSE ON

RETURN

ButtonHand: CHOICE = DIALOG(1)
ON CHOICE 60SUB Assets, Debits, Cslculate, EscapeRoutine
RETURN

Statement Syntax

DIM DIM subscripted-variable-list
5.0 Action
_l Specifies the maximum values for array variable subscripts, and allocates

storage accordingly.

Remarks

If an array variable name is used without a DIM statement, the maximum
value of the array’s subscript(s) is assumed to be 10. If a subscript is used
that is greater than the maximum specified, a “Subscript out of range” er-
ror message is generated. The minimum value for a subscript is always 0,
unless otherwise specified with the OPTION BASE statement.

The DIM statement sets all the clements of the specified arrays to an ini-
tial value of zero. The maximum number of dimensions allowed in a DIM
statement is 255. However, you are unlikely to need that many dimen-
sions. The number of dimensions is further limited by the amount of
available memory.

129

If the array has already been dimensioned or referenced and that variable
is later encountered in a DIM statement, a “Redimensioned array” error
message is generated. DIM statements are best placed at the top of a pro-
gram where they are executed before any references are made to the
dimensioned variable.

DIM - EDIT FIELD

Example

& File Edit Search Run Windows

DIM EHAMPLE
=] List
REM *** This demonstrates the use of
REM *** the DIM and ERASE Statements.
DIM A(15)

FORIZ=1TO 15
READ A(I%)
NEXT IR
DATA 1,2,.3,4,5,6,7,6,9,10,11,12,13,14,15
ERASE A
DIM A(3,38)

Statement Syntaxes

EDIT FIELD EDIT FIELD field-id | . default.rectangle || type || justify||]
EDIT FIELD CLOSE field-id

ﬁ - Action

Allows user to enter text within a specified rectangle of the current
output window.

Remarks

The field-id must be an integer greater than or equal to 1. It uniquely
identifies an edit field within the current output window. Large field-id
numbers consume more memory than small ones.

The default is the string expression to be edited. The string expression
may be " . Initially, the entire default is highlighted (selected). You can
130 then use standard Cut-Paste-Copy editing to change the default.

The rectangle specifies the boundary coordinates of the rectangle used for
editing. It has the form (x1,y1)-(x2,y2) where (x1,y1) is the upper-left
coordinate and (x2,)2) the lower-right coordinate that define the boun-
daries where the editing takes place within the current output window.

EDIT FIELD

The type describes one of four editing formats. The fype can be:

1 Draw a box around the rectangle to be edited. Do not allow
Return keys in the edit field. This is the default.

2 Draw a box around the rectangle to be edited. Allow Return
keys in the edit field.

3 No box around the rectangle to be edited. Do not allow

Return keys in the edit field.

4 No box around the rectangle to be edited. Allow Return keys
in the edit field.

The justify parameter is an integer from 1 to 3 that specifies the location
of text within the edit field. It can take the following values:

1 Left justify. This is the default.
2 Center text.
3 Right justify.

The EDIT FIELD statement returns control to the next executable state-
ment, and does not wait for the user to enter text. The DIALOG(2) func-
tion can be used to determine which edit field the user has selected.

The EDIT FIELD CLOSE field-id syntax closes the named field in the
current output window.

A program can activate any number of edit fields within an output win-
dow at one time. This feature is useful for generating forms. The number
of the edit field, 1, must be passed to the EDIT $ function to retrieve the
contents of an edit field. This edit field remains in the window and is ac-
cessible until any of the following actions takes place:

® Another EDIT FIELD statement with the same field-id is executed.
@ An EDIT FIELD CLOSE n statement for that edit field is executed.

B The window in which the edit field resides is closed with a WINDOW
CLOSE n statement.

Edit fields are specific to a single output window. This means that there
can be an edit field 1 in output window 1, as well as an edit field 1 in out-
put window 2. This feature allows independent subroutines to create and
control an output window without colliding with edit fields used by other
parts of the program.

EDIT FIELD

If only the field-id is specified, that edit field is made active if it has
previously been defined.

Note

When an edit field is displayed in the current output window, a PRINT
statement will not automatically scroll the window contents.

See Also
BUTTON, DIALOG, EDIT$

Example

& File Edit Seach Run Windows

ICustomer hd |

List

WINDOW 2,,(10,22)-(280,92),-4
EDIT FIELD 2,"Customer **,(5,30)-{250,45)
EDIT FIELD 1,"Name",(5,10)-{250,25)
BUTTON 1,1,"0K",(200,49)-(250,67) L3
i=1
Loop:
d=DIALOG(0)
IF d=1 THEN Done ‘got OK button
IF d=2 THEN i=DIALOG(2): EDIT FIELD i ‘got field selection
IF 0=6 THEN Done 'got RETURN key
IF d=7 THEN i=(i MOD 2)+1: EDIT FIELD i ‘got TAB key
ﬁ 60TO0 Loop

Done:

- ———————————————————————— |

EDITS$

EDIT$

Function Syntax
EDIT $(field-id)

Action

Returns the current contents of an edit field within the current output
window.

Remarks

The field-id is an integer greater than or equal to 1. It uniquely identifies
an edit field defined by the EDIT FIELD statement.

You can design your program to create data entry fields using the EDIT
FIELD statement. You can then check results with the EDIT$ function,
which returns the contents of the specified edit field in the current output
window.

If you attempt to return the value of an edit field that has not been
defined, an “lllegal function call” error message is generated.

See Also
BUTTON, DIALOG, EDIT FIELD

Example

REM ** This illustrates a use of the EDIT$ function.
WINDOW 2,,(260,22)-(490,92), -4

EDIT FIELD 1, "Name™,(5,10)-(230.25)

BUTTON 1,1,70K", (170,49)-(220,67)

Idle: ACTIVITY = DIALDG(0)
IF ACTIVITY = | THEN 60SUB Done : REM **Got Ok button.
IF ACTIVITY = 6 THEN GOSUB Done : REM**Got return key.
GOTO Idle

Done: TITLES = EDIT$(1): WINDOW CLOSE 2

WINDOW OUTPUT |
PRINT TITLES

133

END

Statement Syntax

END END
0O Action
J Terminates program execution, closes all files, and returns to previous
mode.
Remarks

END statements may be placed anywhere in the program to terminate
execution. An END statement at the end of a program is optional.

Example

% File Edit Search Run Windows
END EHAMPLE

=== |isl
REM *** This program fragment illustrates a use
REM *** of the END Statement.

INPUT “Enter your choice {(1..4) 7 *, CHOICER

IF (CHOICEZ < 1) OR (CHOICEZ > 4) THEN END
GOSUB SUBROUTINE

END
REM *** This subroutine prints the CHOICE® selected.
SUBROUT INE:
PRINT " Your choice was number ";,CHOICE®
RETURN

EOF

il ()

EOF

Function Syntax
EOF(filenumber)

Action
Tests for the end-of-file condition.

Remarks

Returns — 1 (true) if the end of a sequential input file has been reached.
Use EOF to test for end-of-file while inputting, to avoid “Input past end”
CITOr messages.

When EOF is used with a random access file, it returns true if the last GET
statement was unable to read an entire record. It is true because it was
an attempt to read beyond the end of the file.

Example

& File Edit Search Run Windows
EOF EHAMPLE

"Ward","June”
34 87 97 114 100 34 44 34 74 117

110 101 34 13
ED Llsl===—=====l

REM *** This program demonstrates a use of
REM *** the EOF Function.
DPEN “I",*1,"INFD"
LINE INPUT #1, LONGS$
PRINT LONGS$
CLDSE *1
OPEN "1",*1,"INFO"
WHILE NOT EDF(1)
PRINT ASC(INPUTS$(1,#1));
LETC=C+ 1:IFC=10THENPRINT:LETC=0
WEND
CLOSE *1
END

ERASE

Statement Syntax

ERASE ERASE array-variable-list
0.0 Action
J Eliminates arrays from memory.
Remarks

Arrays may be redimensioned after they are erased, or the previously
allocated array space in memory may be used for other purposes. If an
attempt is made to redimension an array without first erasing it, an error
message is generated.

Example

€ File Edit Search Run Windows
ERASE EHAMPLE

E == list E{

REM *** This demonstrates the use of
REM *** the DIM and ERASE Statements. l
DIM A(15)
FORIZ=1TO IS
READ A(1%)

NEXT 1% ,
DATA 1,2,3,45,6,7,8,9,10,11,12,13,14,15
ERASE A

DIM A(3,38)

ERR
ERL

ERR/ERL

Function Syntax

ERR
ERL

Action
Return the error number and the line on which the error occurred.

Remarks

When an error-handling routine is entered by way of an ON ERROR state-
ment, the function ERR returns the error code for the error, and the func-
tion ERL returns the line number of the line in which the error was
detected.

If the line with the detected error has no line number, ERL will return the
number of the first numbered line preceding the line with the error. ERL
will not return line labels. The ERR and ERL functions are usually used in
IF..THEN...ELSE statements to direct program flow in an error-handling
routine.

With the Microsoft BASIC Interpreter, if the statement that caused the
error was an immediate mode statement, ERL will return 65535. To test
whether an error occurred in an immediate mode statement, use:

IF 65535 - ERL THEN ...
Otherwise, use:

IF ERR - error code THEN ...
IF ERL - line number THEN ...

See Appendix B, “Error Codes and Error Messages,” for a list of the
Microsoft BASIC error codes.

Example
ON ERROR GOTO efrorfix

IF (ERR=55) AND (ERL=90) THEN CLOSE ¢ i: RESUME

138

ERROR

ERROR

Statement Syntax
ERROR integer-expression

Action
Simulates the occurrence of a Microsoft BASIC error, or allows error
codes to be defined by the user.

Remarks

ERROR can be used as a statement (part of a program source line) or as a
command (in immediate mode).

The value of the integer-expression must be greater than 0 and less than
256. If the value of the integer-expression equals an error code already in
use by Microsoft BASIC (see Appendix B, “Error Codes and Error Mes-
sages”), the ERROR statement will simulate the occurrence of that error
and the corresponding error message will be printed (unless errors are
being trapped).

To define your own error code, use a value that is greater than any used
by Microsoft BASIC error codes. (It is preferable to use the highest avail-
able values, so compatibility may be maintained when more error codes
are added to later versions of Microsoft BASIC.) This user-defined error
code may then be conveniently handled in an error-handling routine.

If an ERROR statement specifies a code for which no error message has
been defined, Microsoft BASIC responds with an “Unprintable error” error
message. Execution of an ERROR statement for which there is no error-
handling routine causes an error message to be generated and execution
to halt.

Example
In immediate mode:

ERROR 15
String too long

EXP - FIELD

Function Syntax
EXP(X)

Action
Returns ¢ (base of natural logarithms) to the power of X, that is, e,

Remarks

If X is greater than 145, an “Overflow” error message is displayed,
machine infinity with the appropriate sign is supplied as the result, and
execution continues,

The evaluation of this function is performed in double precision in the
decimal version. In the binary version, results are given in single
precision when the argument is in single precision and in double preci-
sion when the argument is in double precision.

Example

X=5
PRINT BXP(X)

148.41315910259

FIELD

il

Statement Syntax
FIELD [# |filenumberfieldwidth AS string-variable...

Action
Allocates space for variables in a random file buffer.

Remarks

It is good programming practice to have a FIELD statement follow as
closely as possible the statement that opens the file it is defining.

The filenumber parameter is the number under which the file was
opened. The fieldwidth is the number of characters to be allocated to the '
string-variable. 139

The total number of bytes allocated in a FIELD statement must not exceed
the record length that was specified when the file was opened. Other-
wise, a “Field overflow” error message is generated. (The default record
length is 128 bytes.)

140

FIELD

Any number of FIELD statements may be executed for the same file. All
FIELD statements that have been executed will remain in effect at the
same time.

Note

Do not use a fielded variable name in an INPUT or LET statement. Once a
variable name is fielded, it points to the correct place in the random file
buffer. If a subsequent INPUT or LET statement with that variable name is
executed, the variable’s pointer no longer refers to the random record
buffer, but to string space.

See Also
GET, LSET, OPEN, PUT, RSET

Example

& File Edit Search Run Windows

—_—

FIELD EHAMPLE
List =
EM *** This is a fragment of a program that opens an existing
REM *** file, gets data from it, updetes it, returns it & closes it.
OPEN “Payables” AS *2 LEN =74
FIELD 2, 30 AS FIRM$, 30 AS ADDRS, 4 AS OWES, 10 AS DAYS
GET #2, ACCOUNT
LET DEBT! = CVS(OWE$)
LET DEBT! = DEBT! + (CHARGES! - PAID!)
LSET OWE$ = MKS$(DEBT!)
PUT #2, ACCOUNT
CLOSE *2
PRIIIT 'Accaunt il AECUUNT upduted'

FILES
FILES$

=0

FILES/FILE$

Statement Syntax
FILES [filespec]

Function Syntax
FILES $(n| prompt-string|)

Statement Action
Prints the names of files residing on the specified disk.

Statement Remarks

If the filespec is omitted, all the files on the internal drive are listed. The
filespec parameter is a string, including a filename and optional Macintosh
volume designation.

Examples

FILES
Shows all files on the volume in the internal disk drive.

FILES "TEST.BAS”

Shows either that the file exists, or generates a “File not found” error
message.

141

-
3]

FILES/FILE$

Function Action

Is used to display standard Macintosh dialog boxes which allow the user
to select a file and optionally eject a floppy disk and insert a new one.

Function Remarks

There are two forms of the FILESS function, selected by the n parameter,
which can be either 0 or 1. The action of each form is described below:

FILES$(0) Prompts user for the name of a file. The prompt-string
is displayed in the dialog box.

FILES$(1) Prompts the user to select the name of an existing disk
file. A dialog box is displayed with a list of files that the
user can sclect. The prompt-string contains a list of file
types, four characters per type. For example, if prompt-
string is TEXTAPPL, then all files of type TEXT and type
APPL are displayed. Note that files created by BASIC
have type TEXT. The type of a file can be changed by
renaming it with the NAME statement.

If the prompt-string is omitted or its length is zero, all files on the drive
are displayed. If the CANCEL button is pressed, the FILESS function re-

turns a zero length string. If the OK button is pressed, the FILES$ func-

tion returns the filename of the specified file. This string expression can
then be used in an OPEN statement.

You can use the FILES$ function in your applications to produce a dialog
box to prompt users to name data files to be created (FILES$(0)) and to
produce a dialog box to prompt users to select an existing data file
(FILES$(1)). The dialog box also provides a button to eject the disk so
that another disk can be inserted.

See Also
NAME

FILES/FILE$ - FIX

Examples

" & e Edit Search Run Windows A
FILESS EHAMPLE

Which client to check? i

[FuRILLO |
(Save ~]

[IREM ** This fragment shows & use of a FILES$ Function.
ANSWERS = "YES"
WHILE LEFT$(ANSWERS, 1) = "¥"
WHICHS = FILES$(0, “Which client to check?")
IF WHICHS = ** THEN END
OPEN WHICHS FOR INPUT AS *1
PRINT "JOB #";TAB(35);"Hours™;TAB(70);"Comments™: PRINT
WHILE NOT EOF(1)
INPUT #1, JOBNUMBER, HOURS, COMMENT$
PRINT JOBNUMBER, HOURS, Comment$

[Cancel)

Function Syntax

FIX FIX(X)
o ° Action
J Returns the truncated integer part of X.
Remarks

FIX(X) is equivalent to SGN(X)+INT(ABS(X)). The difference between FIX
and INT is that FIX does not return the next lower number for negative X. 3
14:

See Also
CINT, INT

FIX - FOR...NEXT

Example

PRINT FIX(58.75)
58

PRINT FIX(-58.75)
-58

Statement Syntax

FOR...NEXT FOR variable=x TO y [STEP z|
NEXT [variable || ,variable...]

Action

Performs a series of instructions to be performed in a loop a given
number of times.

Remarks

The FOR statement uses x, y, and 2 as numeric expressions, and variable
as a counter. The expression x is the initial value of the counter. The ex-
pression y is the final value of the counter. The program lines following
the FOR statement are executed until the NEXT statement is encountered.
Then the counter variable is adjusted by the amount specified by STEP. A
check is performed to see if the value of the counter is now greater than
the final value of y. If it is not greater, Microsoft BASIC branches back to
the statement after the FOR statement and the process is repeated. If it is
greater, execution continues with the statement following the NEXT state-
ment. This is called a FOR..NEXT loop.

If STEP is not specified, the increment is assumed to be one (+1). If STEP
is negative, the counter is decreased each time through the loop. The
loop is executed until the counter is less than the final value.

A FOR statement without a corresponding NEXT statement will generate a
“FOR without NEXT” error message. A NEXT statement without a
corresponding FOR statement will generate a “NEXT without FOR” error
message.

Nested Loops FOR..NEXT loops may be nested; that is, a FOR..NEXT
loop may be placed within the context of another FOR..NEXT loop.
When loops are nested, each loop must have a unique variable name as its
counter. The NEXT statement for the inside loop must appear before that
for the outside loop.

144

FOR...NEXT - FRE

The variable in the NEXT statement may be omitted, in which case the
NEXT statement matches the most recent FOR statement. If a NEXT state-
ment is encountered before its corresponding FOR statement, a “NEXT
without FOR” error message is generated and execution is terminated.

Example

'_ﬁ File Edit Search Run Windows
FOR ... NEHT EHAMPLE

1 3 5 7 9
10 & 6 4 2
64 69 8% 84 73 78 71 32 76 79 79 6

Hl——————— Iy
REM *** This example demonstrates § use of the FOR. NEXT Statement [
FORIZ=1TO 10 STEP 2

PRINT I%;
NEXT |12
PRINT
FORJZ = 10TO 1 STEP -2

PRINT J%;
NEXT J% . PRINT
LET A% = "TESTING LOOP™ : LET COUNTE = LEN{AS)
FOREZ = 1 TO COUNT®

PRINT ASC{MID$(AS KZE 1]);

NEXT K%

END
Q »

FRE

Function Syntax

FRE(n)
FRE(” ™)

Action 145
FRE(— 1) returns the number of bytes in the Macintosh heap that are not
being used by Microsoft BASIC. FRE(— 2) returns the number of bytes in
the stack which have never been used. FRE(n), where n is any number
but — 1 or — 2, returns the number of bytes in BASIC’s memory space that
are not being used. FRE(” "), like all forms of FRE, forces string space
compaction. For more information about memory space management, sec
“Memory Management” in Chapter 6, “Advanced Topics.”

FRE - GET

Example

PRINT FRE(0)
18138
PRINT FRE(™)
18138

146

GET

i

Statement Syntax

GET | # |filenumber| recordnumber|
GET (x1,y1)(x2,y2)array-name |(index|,index...,index})|

Action
Reads a record from a random disk file into a random buffer.

Gets an array of bits from the screen.

Remarks

The two syntaxes shown above correspond to two different uses of the
GET statement. These are called a random file GET and a screen GET,
respectively.

Random File GET In the first form of the statement, the filenumber is
the number under which the file was opened. If the recordnumber is
omitted, the next record (after the last GET) is read into the buffer. The
largest possible record number is 16,777,215.

After a GET statement has been executed, the data in recordnumber may
be accessed directly using fielded variables. (See “Random Access Files”
in Chapter 5, “Working With Files and Devices,” for complete details on
random file operations.) INPUT# and LINE INPUT# also may be executed
to read characters from the random file buffer.

EOF(filenumber) may be used after a GET statement to check if the GET
statement was beyond the end-of-file.

GET

Screen GET The second form of the GET statement is used for transfer-
ring graphic images. GET obtains an array of bits from the screen, and its
counterpart, PUT, places an array of bits on the screen.

The arguments to GET include specification of a rectangular area in the
current output window with (x1,y1)-(x2,y2). The two points specify the
upper left-hand corner of the rectangle and the lower right-hand corner of
the rectangle, respectively.

The array-name is the name assigned to the place that will hold the im-
age. The array can be any type except string, and must be dimensioned
large enough to hold the entire image.

The multiple index parameters for an array permit multiple objects in a
multidimensional graphic array. This allows looping through different
views of an object in rapid succession.

Unless the array is of type integer, the contents of the array after a GET
will be meaningless when interpreted directly (see below).

The required size of the array, in bytes, is:

4+(((p2-p1)+1)* 2+ INT(((x2-x1) +16Y16))

where x and y are the lengths of the horizontal and vertical sides of the
rectangle.

The bytes per element of an array are:

B 2 bytes for integer
8 4 bytes for single precision
@ 8 bytes for double precision

Assume you want to GET (10,20)-(30,40),ARRAY%. The number of bytes
required is 4 + (((40 - 20) + 1) = 2 « INT (((30 - 10) + 16) / 16)) or
88 bytes. Therefore, you would need an integer array with at least 44
elements.

It is possible to examine the x and y dimensions and even the data itself if
an integer array is used. The width and height of the rectangle can be
found in elements O and 1 of the array, respectively.

The GET and PUT statements are used together to transfer graphic images
to and from the screen. The GET statement transfers the screen image
bounded by the rectangle described by the specified points into the array.
The PUT statement transfers the image stored in the array onto the
screen.

GET - GOSUB...RETURN

See Also
PUT

Example

€ File Edit Search Run Windows

GET EHAMPLE
=—— I —
REM *** Thiz 1 8 fragment af a program that opens an existing {7
REM *** file, gets data from it, updates it, and returns it. [

OPEN "Payables” AS *2 LEN = 80
FIELD *2, 30 AS FIRMS$, 30 AS ADDRS, 10 AS OWES, 10 AS DAYS
GET #2, ACCOUNT
LET DEET! = CYS(OWE$)
LET DEET! = DEBT! + (CHARGES! - PAIDI)
LSET OWES = MKS$(DEBT!)
PUT #2, ACCOUNT
CLOSE *2
PRINT "Account * ";ACCOUNT ;" updated”

GOSUB...RETURN

0.0

0} |

Statement Syntax

GOSUB line

RETURN [l/ine)

Action

Branches to and returns from a subroutine.

Remarks

The line in the GOSUB statement is the line number or label of the first
line of a subroutine. Program control branches to the /line after a GOSUB
statement executes. A RETURN within the GOSUB will return control
back to the statement just following the GOSUB statement in the program
text.

GOSUB...RETURN

A subroutine may be called any number of times in a program. A subrou-
tine also may be called from within another subroutine. Such nesting of
subroutines is limited only by available memory.

RETURN statements in a subroutine cause Microsoft BASIC to branch back
to the statement following the most recent GOSUB statement.

A subroutine may contain more than one RETURN statement, should logic
dictate a return at different points in the subroutine.

The line option may be included in the RETURN statement to return to a
specific line number or label from the subroutine. This type of return
should be used with care, however, because any other GOSUB, WHILE, or
FOR statements that were active at the time of the GOSUB will remain ac-
tive, and error messages such as “FOR without NEXT" may be generated.

Subroutines may appear anywhere in the program, but it is recommended
that the subroutine be readily distinguishable from the main program. To
prevent inadvertent entry into the subroutine, precede it with a STOP,
END, or GOTO statement that directs program control around the
subroutine.

Example

& File Edit Search Run Windows
GOSUB EHAMPLE

Enter your choice (1.4) 7 3
Your choice was number 3

El———r———3 L} %I
REM *** This program fragment illustrates a use
REM *** of the GOSUB & RETURN Statements.
INPUT “Enter your choice (1.4) 7 *, CHOICE®

IF (CHOICE® < 1) OR (CHOICE® > 4) THEN END
G0OSUB SUBROUT INE

END

REM *** This subroutine prints the CHOICE® selected.
SUBROUT INE:
PRINT "Your choice was number ";CHOICER
RETURN

K

GOTO - HEX$

GOTO

Statement Syntax
GOTO line

Action
Branches to a specified line.

Remarks
If the program statement with the number or label /ine is an executable
statement, that statement and those following are executed.

If it is a nonexecutable statement, such as a REM or DATA statement, exe-
cution proceeds at the first executable statement encountered after line.

It is advisable to use control structures (IF.. THEN...[ELSE, WHILE...\WEND,
and ON..GOTO) in lieu of GOTO statements as 2 way of branching, be-
cause a program with many GOTO statements can be difficult to read and
debug.

Example

GOTO 999

150

HEXS$

Function Syntax
HEX $(X)

Action

Returns a string that represents the hexadecimal value of the decimal
argument.

Remarks
X is rounded to an integer before HEX $(X) is evaluated.

See Also
OCTS$

HEXS$ - IF...THEN...ELSE/IF...GOTO

Example

File Edit Search Run Windows

HEH$ EHAMPLE
This program converts decimal humbers to Octel and Hexadecimal numbers
What 15 the decimal number 7 9999
Octal = 23417
Hexadecimal = 270F
Do you want to convert another 7 NO
ENeE—F—"———— list
REM **#* This program illustrates a use of the
REM *** HEX$ and OCT$ Functions
PRINT "This program converts decimal numbers”;
PRINT " to Octal and Hexadecimal numbers”
LET ANSWERS = "YES"
WHILE (LEFT$(ANSWERS,1)="Y")
INPUT “What is the decimal number ? " DECIMAL
PRINT “Ocial = ";0CT$(DECIMAL)
PRINT “Hexadecimal = ";HEX${DECIMAL)
INPUT "Do you want to convert another ? " ANSWER
WEND
END
[A

Statement Syntax

IF...THEN...ELSE IF expression THEN then-clause |ELSE else-clause|
IF expression GOTO line [ELSE else-clause
IF...GOTO / ; ! |

o) Action
_] Makes a decision regarding program flow based on the result returned by
an expression.

Remarks

If the result of the expression is true, the then-clause or GOTQ statement 151
is executed. THEN may be followed by either a line number or label for
branching or one or more statements to be executed. GOTO is always

followed by a line number or label. If the result of the expression is false,

the then-clause or GOTO statement is ignored and the else-clause, if

present, is executed. Like the then-clause, the else-clause is either a line

number or label or one or more statements.

15

IF...THEN...ELSE/IF...GOTO

Nesting of IF Statements IF.. THEN...ELSE statements may be nested.
Nesting is limited only by the length of the line. For example, the follow-
ing is a legal statement.

IF X > Y THEN PRINT "GREATER" ELSE IF Y > X THEN PRINT "LESS THAN"
ELSE PRINT "EQUAL"

If the statement does not contain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest unmatched THEN. For
example:

IF A - B THEN IF B = C THEN PRINT "A = C" ELSE PRINT "A o C’

will not print “A < > C” when A< B.

If an IF..THEN statement is followed by a line number or label in immedi-
ate mode, an “Undefined line number” error message is generated, unless
a statement with the specified line number or label had previously been
entered in the program.

Examples
This statement gets record number I if 1 is not zero.

IF I THEN GET #1, |

In this example, a test determines if I is greater than 10 and less than 20.
If I is in this range, DB is calculated and execution branches to line 300.
If I is not in this range, execution continues at the next line.

IF (I <20) AND (I > 10) THEN DB - 1984 : GOTO 300
PRINT “OUT OF RANGE"

This statement causes printed output to go either to the screen or the
printer, depending on the value of the variable IOFLAG. If IOFLAG is
zero, output goes to the printer; otherwise, output goes to the screen.

IF IOFLAG THEN PRINT AS ELSE LPRINT A$

IF...THEN...ELSE/IF...GOTO - INKEY$

—
-- This last example shows the use of conditional variables. The IF state-
ment is true if the variable BONUS% has the value of — 1 and false if that
o value is 0.
o IF SCORE > 90 THEN BONUS®= (-1) ELSE BONUS®=0
’ IF BONUS® THEN PRINT "You received a bonus this week"
IF NOT BONUS® THEN PRINT “No bonus this week”
S_—
- Function Syntax
- INKEY$ INKEY §
— Action
Returns either a one-character string containing a character read from the
keyboard or a null string if no character is pending at the keyboard.
- Remarks
) No characters will be echoed. All characters are passed through to the
program except for Command-period, which terminates the program.
A Note that the Enter and Return keys can be distinguished by using
- INKEY 8.
- Note that if an output window is not active while the program is running,
and the user presses a key, the key will be ignored and a BEEP will occur,
) since keystrokes on the Macintosh are only directed to the active window.
T—
-
o
. 153
—
o

154

INKEY$

Example

€ File Edit Search Run Windows
N
INKEYS EHAMPLE

B0

REM *** This checks for character input at the keyboard using INKEY$, and
REM *** then causes a RETURN after every S0 characters are printed.
WIDTH 80
CHARCHECK:
LET ANSWERS = INKEYS$
(F ANSWERS = " THEN 60T0 CHARCHECK: ELSE PRINT ANSWERS;
IF POS(X) > SO THEN PRINT CHR$(13)
GOTO CHARCHECK:
END

INPUT

R L&

INPUT

Statement Syntax
INPUTY; || prompt-string;|variable-list

Action
Allows input from the keyboard during program execution.

Remarks

When an INPUT statement is encountered, program execution pauses and
a question mark is printed to indicate the program is waiting for data. If
the prompt-string is included, the string is printed before the question
mark. The required data is then entered at the keyboard.

A comma may be used instead of a semicolon after the prompt string to
suppress the question mark. For example, the statement INPUT "ENTER
BIRTHDATE” B $ will print the prompt with no question mark.

The data that is entered is assigned to the variables given in the variable-
list. The number of data items supplied must be the same as the number
of variables in the list. Data items are separated by commas.

The variable names in the list may be numeric or string variable names
(including subscripted variables). The type of each data item that is input
must agree with the type specified by the variable name. (Strings input to
an INPUT statement need not be surrounded by quotation marks.)

Responding to INPUT with too many or too few items or with the wrong
type of value (numeric instead of string, etc.) causes the prompt message
“?Redo from start” to be generated. No assignment of input values is
made until an acceptable response is given.

If INPUT is immediately followed by a semi-colon, pressing the Return key
does not move the pen to the start of the next line.

155

INPUT - INPUT$

Example

& File Edit Search Run Windows
INPUT EHAMPLE

This program converts decimal numbers to Octal and Hexadecimal numbers
What is the decimal number 7 3456

Octal = 6600

Hexadecimal = D@0

Do you want to convert another 7 NO

gD
REM *** This program illustrates a use of the
REM *** INPUT Statement.
PRINT "This program converts decimal numbers”;
PRINT " to Octal and Hexadecimal numbers”
LET ANSWER$ = "YES"
WHILE (LEFT$(ANSWERS, 1)="Y")
INPUT "What is the decimal number ? ",DECIMAL
PRINT "Octal = ";0CT$(DECIMAL)
PRINT “Hexadecimal = ";HEX$(DECIMAL)
INPUT "Do you want to convert another ? ", ANSWER
WEND
END

List

=

156

INPUTS$

MO

Function Syntax
INPUT $(X|,| # |filenumber))

Action

Returns a string of X characters read from filenumber. If the filenumber
is not specified, the characters will be read from the keyboard.

Remarks

If the keyboard is used for input, no characters will be echoed on the
screen. All control characters are passed through except Command-
period, which is used to interrupt the execution of the INPUT$ function.

INPUT$ - INPUT#

—
_ Example
- r . . . h]
. € File Edit Search Run Windows
INPUTS EXAMPLE
om "Ward","June”
-_ 34 87 97 114 100 34 44 34 74 117 110 101 34 13
- List |
. REM *** This program demenstrates a [J
REM *** yse of the INPUTS$ Function. | |
- OPEN "I",#1,"INFO"
L LINE INPUT *1, LONGS
PRINT LONG$
- CLOSE *1
OPEN "I",#1,"INFO"
T WHILE NOT EOF(1)
PRINT ASC(INPUTS$(1,*1)),
- WEND
- CLOSE *1
oo
o
—
. Statement Syntax
INPUT# INPUT #filenumber,variable-list

-— .

Action

iﬁ D Reads items from a sequential file and assigns them to program variables.

- Remarks
T The filenumber is the number used when the file was opened for input.

The variable-list contains the variable names that will be assigned to the
- items in the file. (The data type must match the type specified by the
-- variable name.)
- The data items in the file should appear just as they would if data were

being typed in response to an INPUT statement. With numeric values,
- leading spaces, carriage returns, and linefeeds are ignored. The first char-

acter encountered that is not a space, carriage return, or linefeed is as-
]

sumed to be the start of 2 number. The number terminates on a space,
carriage return, linefeed, or comma.

157

158

INPUT#

If Microsoft BASIC is scanning the sequential data file for a string item, it
will also ignore leading spaces, carriage returns, and linefeeds. The first
character encountered that is not a space, carriage return, or linefeed is
assumed to be the start of a string item. If this first character is a quota-
tion mark (), the string item will consist of all characters read between
the first quotation mark and the second. Thus, a quoted string may not
contain a quotation mark as a character. If the first character of the string
is not a quotation mark, the string is an unquoted string and will terminate
on a comma, carriage return, or linefeed. If the end-of-file is reached
when a numeric or string item is being INPUT, the item is terminated.

Example

& File Edit Search Run Windows

INPUT# EHAMPLE
(e st ==r——————
REM *** This demonstrates the use of INPUT * 4
DIM A(50), B(50), C$(50) B
OPEN "I",* 1, "INFO"

LET I =1
WHILE NOT EOF(1)
LET 1= 18+ 1
INPUT *1, A(1%), B(I%), C$(1%)
PRINT A(IZ), BUIZ), CUZ)
WEND
CLOSE *1
END

INSTR

INSTR

Function Syntax
INSTR([L]X 8,Y$)

Action
Searches for the first occurrence of string Y $ in X8, and returns the posi-

tion at which the match is found. Optional offset I sets the position for
starting the search.

Remarks

If I is greater than the number of characters in X$ (LEN(X$)), or if X8 is
null or Y$ cannot be found, INSTR returns 0. If Y8 is null, INSTR returns
Ior 1. X$# and Y$ may be string variables, string expressions, or string
literals.

Example

& File Edit Search Run Ilindows

| INSTR ERAMPLE
? EO List

Y REM *#* Thic program illustrates a use of

REM *** the [NSTR Function

{ LET PLACESS = "Mankato, Minnesota”

LET FINDS = "M"

PRINT INSTR(PLACESS FIND$)

PRINT INSTR(3 PLACESS FINDS$}

END

INT-KILL

Function Syntax
INT INT(X)

Action
Returns the largest integer less than or equal to X.

See Also
CINT, FIX

Examples

PRINT INT(98.89)

98

PRINT INT(5.643 " 3.1416)
17

PRINT INT(-12.11)

-13

Statement Syntax

KILL KILL filespec
0 E Action
_J Deletes a file from disk.
Remarks

If a KILL command is given for a file that is currently OPEN, a “File
already open” error message is generated. The filespec argument is any
legal Macintosh filename.

Example

KILL “MailLabels"

160
This deletes the file named MailLabels.

LBOUND
UBOUND

LBOUND/UBOUND

Function Syntax

LBOUND(array-name| ,dimension|)
UBOUND(array-name| dimension|)

Action
Returns the lower and upper bounds of the dimensions of an array.

Remarks
The array-name is the name of the array variable to be tested.

The dimension parameter is an optional number used when the array

is multi-dimensional, and specifies the dimensions of the array being test-
ed. The optional dimension parameter specifies for which dimension to
find the bound. The default value is 1.

If, for example, there is a three-dimensional array, GRID(X,Y,Z), and
UBOUND is being used to test the upper bound of the Y subscript, the
dimension specifier would be 2, because Y is the second dimension in the
array. If the UBOUND function is testing the Z subscript, the value is 3,
because Z is the third dimension.

The upper and lower bounds are the largest and smallest indices for the
specified dimension of the array. UBOUND always returns the value that
was used in the DIM statement, and LBOUND returns O or 1 depending on
whether the OPTION BASE is O or 1.

Example

LBOUND and UBOUND are particularly useful for determining the size of
an array passed to a subprogram. For example, a subprogram could be
changed to use these functions instead of explicitly passing the upper
bounds to the routine:

CALL INCREMENT (ARRAY1(), ARRAY2(), TOTAL())

SUB INCREMENT (A(2), B(2), C(2)) STATIC
FOR | = LBOUND(A,1) TO UBOUND (A,1)
FOR J = LBOUND(A,2) TO UBOUND(A,2)
C1J) = AL + BUW)
NEXT J
NEXT |
END SUB

LCOPY - LEFT$

Statement Syntax

LCOPY LCOPY
O Action
o] _I Sends a copy of the image on the screen to the Macintosh printer.
Remarks

The printer must be on for LCOPY to work. Note that daisy-wheel
printers cannot reproduce Macintosh screen images.

Function Syntax

LEFT$ LEFT$(X$,1)
0.0 Action
_I Returns a string containing the leftmost I characters of X8.
Remarks

I must be in the range 0 to 32767. If I is greater than the number of char-
acters in X8 (LEN(X$)), the entire string (X$) will be returned. If1 = 0,
a null string of length zero is returned.

See Also
MID S8, RIGHT$

Example

r

& File Edit Search Run Windows

LEFTS EHAMPLE
P e |js{ e————————|
PR REM *** This program illustrates the use of
PRO REM *** the LEFT$ Function.
PROG LET TEST$ = "PROGRAM"
PROGR FORIZ=1TO7
PROGRA PRINT LEFT$(TESTS,1%)
PROGRAM NEXT I1E
END

LEN

LEN

Function Syntax
LEN(XS)

Action

Returns the number of characters in X$. Nonprinting characters and
blanks are counted.

Example

€ File Edit Search Run Windows

Untitled

Client Name? Jane Austen

Job Number? #1848

Comments - Excellent manuscript - perhaps too wordy for us.
Comments - Great book - let's consider.

el List ,
REM ** This fragment fllustrates a use of the LENF uncuon
REM ** |t prevents insertion of comments over 30 characters long.
INPUT “Client Name? ", CLIENT$

INPUT “Job Number? *, JOBS

CheckSize: INPUT “Comments - “,COMMENT$

IF LEN(COMMENT$) > 30 THEN GOTO CheckSize

LET

Statement Syntax

LET [LET] variable=expression
0,0 Action
J Assigns the value of an expression to a variable.
Remarks

Notice that the word LET is optional. The equal sign by itself is sufficient
for assigning an expression to a variable name.

Example

& File Edit Search Run Windows

[LET EHAMPLE
A B DUMMY
5 10 0
10 5 5

E=———— i} ;I
REM *** This program illustrates the use of the

REM *** LET Statement.

REM *** Assign values to variables with LET
LETA=5:LETB=10:LET DUMMY =0

PRINT © A",” B","DUMMY" : PRINT A,B,DUMMY

REM *** Swap the values of A and B using LET

LET DUMMY = A: LET A = B: LET B = DUMMY

PRINT A,B,DUMMY

164

LINE

Statement Syntax

LINE LINE [[STEP | (x1,y1) }-[STEP] (x2,y2) [,[color][.b[f]]]
- Action
Draws a line or box in the current output window.
Remarks

The coordinate for the starting point of the line is (x1,y1); the coordinate
for the end point of the line is (x2,2). The color parameter is the
number of the color in which the line should be drawn. If the value of
the color is 33, black is used. If the value of the color is 30, white is
used.

With the “,b" option, a box is drawn in the foreground, with the points
(x1,y1) and (x2,y2) as opposite corners.

The “bf" option fills the interior of the box. When out-of-range coordi-
nates are given, the coordinate that is out of range is given the closest le-
gal value. Boxes are drawn and filled in the color given by color.

With STEP, relative rather than absolute coordinates can be given. For ex-
ample, assume that the most recent point referenced was (10,10). The
statement LINE STEP (10,5) would specify a point at (20,15), offset 10
from x/ and offset 5 from y1.

If the STEP option is used for the second coordinate in a LINE statement,
it is relative to the first coordinate in the statement.

Examples

The following examples assume a screen of 320 pixels wide by 200 pixels
high. The first example draws a line from the last point to (5,5) in the
foreground color. This is the simplest form of the LINE statement:

LINE - (x2,y2)

This example draws a diagonal line across the screen (downward):

LINE (0,0) - (319,199)
This example draws a horizontal line across the screen:

LINE (0,100) - (319,100)

This example draws a box in the foreground:

LINE (0,0) - (100,100),B

166

LINE INPUT

LINE INPUT

W

Statement Syntax
LINE INPUT|;| | "prompt-string™;| string-variable

Action

Inputs an entire line to a string variable without the use of delimiters.

Remarks

The prompt-string is a string literal that is printed on the screen before
input is accepted. A question mark is not printed unless it is part of the
prompt-string. All input from the end of the prompt-string to the car-
riage return is assigned to the string-variable.

If LINE INPUT is immediately followed by a semicolon, the carriage return
typed by the user to end the input line does not echo a carriage return/
linefeed sequence on the screen.

A LINE INPUT statement can be terminated by typing Command-period,
causing BASIC to return to the command level. Typing CONT resumes
execution at the LINE INPUT,

See Also
LINE INPUT#

Example

& File Edit Search Run Windows

LINE INPUT EHAMPLE
Customer Data ? Andrew Smith $10.17 Umbrella
Andrew Smith $10.17 Umbrella

EE—————= list
REM *** This demonstrates the use of
REM *#** LINE INPUT and LINE INPUT #
OPEN "0",#2,"INFO"
LINE INPUT "Customer Data ? " ,CUSTOMERS
PRINT #*2, CUSTOMERS
CLOSE *2
OPEN "1",*2,"INFO"
LINE INPUT #2, CLIENT$
CLOSE *2
PRINT CLIENT$
END

LINE INPUT#

MO

LINE INPUT#

Statement Syntax
LINE INPUT#filenumber string-variable

Action

Reads an entire line without delimiters from a sequential data file to a
string variable.

Remarks

The filenumber is the number under which the file was opened. The
string-variable is the variable name to which the line will be assigned.

LINE INPUT# reads all characters in the sequential file up to a carriage re-
turn, It then skips over the carriage return/linefeed sequence. The next
LINE INPUT# reads all characters up to the next carriage return.

LINE INPUT# is especially useful if each line of a data file has been bro-
ken into fields, or if a BASIC program saved in ASCII format is being read
as data by another program.

See Also
LINE INPUT, SAVE

Example
See the example for LINE INPUT.

LIST

LIST

s ()

Statement Syntax

LIST (line)

LIST [Zine][-[line]], filename

Action

Lists the program currently in memory to a List window, a file,
or a device.

Remarks

The line may be a line number or an alphanumeric label. When a LIST
command is given, a List window appears over the output window if there
is not already one. The specified lines appear in the List window. You
may have up to two List windows at a given time.

The second syntax allows the following options:

® If only the first /ine is specified, that line and all following lines are
listed.

B If only the second line is specified, all lines from the beginning of the
program through the specified line are listed.

B If both /ine arguments are specified, the entire range is listed.

® If a filename is given in a string expression such as SCRN: or LPT1:,
the listed range is listed to the given file.

LIST, “LPT1:PROMPT” is identical to the File menu’s Print selection.
LIST, “LPT1:DIRECT” is identical to LLIST.

See Also

“List Window Hints” in Chapter 4, “Editing and Debugging Your
Programs”

Example
This example produces a List window and lists the program.

LIST

e LLIST - LOAD
-~
Statement Syntax
LLIST LLIST [line ||-|line]|
- ~ .
0. Action
{o) _l Sends a listing of all or part of the program currently in memory to the
line printer.
o
- Remarks
The options for LLIST are the same as for LIST, except that there is no
- optional output device parameter; output is always to the line printer.
See Also
— LIST
Example
- See the example for LIST.
- Statement Syntax
LOAD LOAD [filespec| R]|
- Action
D Loads a file from disk into memory.
vy Remarks
—- If the filespec is not included, a dialog box appears to prompt the user for
the correct name of the file to load. If there is a second drive on the sys-
o tem, and the second drive has a disk in it, the dialog box includes a but-
_ ton for files on the second drive.
The filespec must include the filename that was used when the file was
- saved.
The “.R™ option automatically runs the program after it has been loaded.
= LOAD closes all open files and deletes all variables and program lines
-- currently residing in memory before it loads the designated program,
However, if the * R” option is used with LOAD, the program is run after it
- is loaded, and all open data files are kept open. Thus, LOAD with the “R” By
) option may be used to chain several programs (or segments of the same
program). Information may be passed between the programs using their
— disk data files.
See Also
CHAIN, MERGE, SAVE
-

LOAD - LOC

Examples
This example loads and runs the program STRTRK.

LOAD "STRTRK", R

The same result could have been achieved by using the mouse and
making an Open selection.

This example loads the program MYPROG from the volume called Bill's
Work Disk, but does not run the program:

LOAD "Bill's Work Disk: MYPROG"

170

LOC

s

Function Syntax
LOC(filenumber)

Action
For random disk files, LOC returns the record number of the last record
rcad or written.

For sequential disk files, LOC returns a different number, the increment,

Remarks

The increment is the number of bytes written to or read from the sequen-
tial file, divided either by the number of bytes in the default record size
for sequential files (128 bytes) or the record size specified in the OPEN
statement for that file. Mathematically, this can be expressed as shown
below.

Number of Bytes Read or Written \ OPEN statement Record Size =
Returned by LOC(filenumber)

For files opened to KYBD:, LOC returns the value 1 if any characters are
ready to be read from the standard input. Otherwise, it returns 0. For files
opened to CLIP: or COM1L:. LOC returns the number of characters ready
to be input.

When a disk file is opened for sequential input, BASIC reads the first
record of the file, so LOC returns 1 even before any input from the file
occurs. LOC assumes the filenumber is the number under which the file
was opened.

LOC - LOCATE

Example
€ File Edit Search Run Windows A
LOC EHAMPLE
List

IOPEN "NAMES" AS # 1 LEN=35

FIELD #1,15 AS FIRST$,20 AS LASTS

ENTER:
INPUT “Enter first name (END to quit)";FIRSTNAMES
IF FIRSTNAME$="END" THEN GOTO QUITFILE
INPUT “Enter last name”; LASTNAMES
LSET FIRST$=FIRSTNAME$
LSET LAST$=LASTNAMES
PUT 1
PRINT "Record number”;LOC(1);"has been entered.”
GOTO ENTER

QUITFILE:
PRINT “Current file contains™;LOF({1);"bytes.”
CLOSE *1

-

Statement Syntax

LOCATE LOCATE [row || .column |
.0 - Action
_l : x Positions the pen at a specified column and line in the current output
window,
Remarks
The location specified in this statement is relative to the upper-left corner
of the current output window. If the current output window is moved 171

with the mouse, the row number remains the same.

The unit of measurement for this statement is the size of the character “0"
in the current font. Because many of the Macintosh fonts are proportion-
ally spaced, all characters do not have identical widths, as they do on most
typewriters. The “0” is an average width.

LOCATE - LOF

The row and column parameters must be greater than or ¢qual to 1.
They default to the pen’s current coordinates if not specified.

The LOCATE statement is complementary to the POS and CSRLIN func-
tions. LOCATE gives the pen a new location. POS and CSRLIN return the
column and line location of the pen.

Example

REM ** This example illustrates the way LOCATE works.
INPUT “what is your name ~; TITLES

Y% = CSRLIN : REM *Record current line.

X% = POS(0) :REM *Record current column.

CLS: PRINT “Hello, ";TITLES

LOCATE Y%,X% : REM *Restore cursor to old position

-

LOF

e

Function Syntax
LOFK(filenumber)

Action
Returns the length of the file in bytes.

Remarks

Files opened to SCRN:, KYBD:, or LPT1: always return the value 0. Files
opened to CLIP: return the size of the Clipboard in bytes.

LOF - LOG

Example

" & File Edit Search Run Windows

LOF EHAMPLE
List

OPEN "NAMES™ AS #1 LEN=35

FIELD #1,15 AS FIRST$,20 AS LASTS

ENTER:
INPUT “Enter first name (END to quit)";FIRSTNAME$
IF FIRSTNAME$="END" THEN GOTO QUITFILE
INPUT “Enter 1ast name™; LASTNAMES
LSET FIRST$=FIRSTNAME$
LSET LAST$=LASTNAMES
PUT |
PRINT "Record number™:LOC(1);"has been entered.”
GOTO ENTER

QUITFILE:

PRINT “Current file contains™;,LOF(1);"bytes.”

CLOSE
it

*1

T

Function Syntax

LOG LOG(X)
Action
Returns the natural logarithm of X. X must be greater than zero.
Remarks

The evaluation of this function is performed in double precision in the

decimal version. In the binary version, results are given in single preci-

sion when the argument is in single precision and in double precision 173
when the argument is in double precision.

LOG - LPOS

Example

& File Edit Search Run Windows

LOG EHAMPLE
The logarithm of 11 1is 2.3978952727983

B List
REM *** This program demonstrates a use of
REM *** the LOG Function.

LET ALGEBRA = LOG(11)
PRINT " The logarithm of 11 is " ALGEBRA
END

Function Syntax

LPOS LPOS(X)
r=5{] Action
_J Returns the current position of the line printer’s print head within the line

printer buffer.

Remarks

X is a dummy argument. LPOS does not necessarily give the physical
position of the print head.

Example

174 IF LPOS(X) > 60 THEN PRINT CHR$(13)

LPRINT/LPRINT USING - LSET/RSET

Statement Syntaxes

LPRINT LPRINT |expression-list|
LPRINT USING LPRINT USING string-expression:expression-list

(o) Action
Prints data on the line printer.

Remarks

LPRINT and LPRINT USING are the same as PRINT and PRINT USING,
except that output goes to the line printer.

See Also
LPOS, PRINT, PRINT USING

Examples
See the examples in PRINT and PRINT USING.

Statement Syntax

LSET LSET string-variable=string-expression
RSET string-variable=string-expression

RSET
Action

& Moves data from memory to a random file buffer in preparation for a PUT
statement.
Remarks

If the string-expression parameter requires fewer bytes than were fielded
to the string-variable, LSET left-justifies the string in the ficld, and RSET
right-justifies the string. (Spaces are used to pad the extra positions.) If
the string is too long for the field, characters are dropped from the right.
Numeric values must be converted to strings with MKI$, MKS$, or MKD $
before they are used with LSET or RSET.

Note

LSET or RSET may also be used with a nonfielded string variable to left-
justify or right-justify a string in a given field. For example, these program _
lines right-justify the string N§ in a 20-character field: 175

LET A$ - SPACE$(20)
RSET A$ - N$

This can be handy for formatting printed output.

LSET/RSET - MENU

See Also
MKI$, MKS$, MKD §

Example

& File Edit Search Run Windows
LSET, RSET EHAMPLE

(E=—————— list El
REM *** This program illustrates the use of the LSET ¥,
REM *** gnd RSET Statements. ¥

OPEN “Accountinfo” AS #*2 LEN = 15
FIELD *2, 8 AS ACCTS, 4 AS CHECKS, 3 AS DEPOSITS

GET *2, 1
LET ACCOUNTND* = 987432167*
LET CHECKING! = 123434
LET SAVINGS® = 2500

LSET ACCT$ = MKD$(ACCOUNTNO*)
LSET CHECK$ = MKS$(CHECKING!)
RSET DEPOSITS = MKI$(SAVINGS®)
PUT *2, |
CLOSE #2 :
END g3

Statement Syntaxes

MENU MENU

MENU menu-id. item-id, state |, title-string |
& - MENU RESET
Function Syntaxes

176 MENU(0)
MENU(1)

Actions

The statements create custom menu bar options and items underncath
them, or restore the default menu bar.

The functions return the number of the last menu bar or menu item
selection made.

MENU

Remarks

This set of MENU statements and functions gives you the tools to build
custom menus and menu items in the menu bar at the top of the screen.
If a MENU ON statement is executed, the user's selection of custom menu
items can be trapped with the ON MENU GOSUB statement.

You can override the existing BASIC menu items with the MENU
statement.

Statement Remarks

The MENU statement with no arguments returns the current selection to
normal black-on-white video.

The menu-id is the number assigned to the menu bar selection. It can be
a value from 1 to 10.

The item-id is the number assigned to the menu item underneath the
menu bar. It can be a value from 0 1o 20. If item-id is between 1 and 20,
it specifies an item in the menu. If ftem-id is 0, it specifies the entire
menu.

For the state argument, use 0 to disable the menu or menu item, 1 to

enable it, or 2 to enable the item and place a check mark by it. If the
item-id is 0, the state takes effect for the entire menu.

The title-string is a string assigned to be the title of a custom menu bar
selection or an item underneath one.

The MENU RESET statement restores BASIC's default menu bar.

Function Remarks

The function syntax MENU(0) returns a number which corresponds to
the number of the last menu bar selection made. MENU(0) is reset to O
every time it excecutes, so the menu bar can be polled just like INKEY S.

The function syntax MENU(1) returns a number which corresponds to
the number of the last menu item selected.

MENU

See Also
MENU ON, ON MENU

Example

& File Edit Search Run Transactions

REM ** This fragment illustrates a use of menu event trapping.
MENU 5,0,1, "Transactions”

MENU 5,1,1,"Deposits”

MENU 5,2,1,"Withdrawals”

MENU 5,3,1,"Automatic Payment”

MENU 5,4,1,"Credit Card Purchase”

ON MENU 605UB Menucheck: MENU ON

ldle:
GOTO Idle

Menucheck: MENUNUMBER = MENU(0): IF MENUNUMBER <S5 THEN RETURN
MENUITEM = MENU (1)

ON MENUITEM 605UB Deposit, Withdray, AutoPay, Credit
RETURN
ND ’

its® 6]

MENU ON
MENU OFF
MENU STOP

MENU ON/MENU OFF/MENU STOP - MERGE

Statement Syntaxes

MENU ON
MENU OFF
MENU STOP

Actions
Enables, disables, or suspends event trapping based on menu selections.

Remarks

The MENU ON statement enables menu event trapping by the ON
MENU...GOSUB statement.

The MENU OFF statement disables menu event trapping by the ON
MENU..GOSUB statement.

The MENU STOP statement suspends menu event trapping. It is similar to
MENU OFF in that if it has been executed, the GOSUB is not performed.
However, MENU STOP differs in that the GOSUB is performed as soon as a
MENU ON statement is executed, if any events occurred while the event
trap was stopped.

See Also
“Event Trapping” in Chapter 6, “Advanced Topics”

Example
See MENU for an illustration of these statements.

MERGE

B

Statement Syntax
MERGE filespec

Action
Appends a specified disk file to the program currently in memory.

Remarks

The filespec must include the filename used when the file was saved.

That file must have been saved in ASCII format to be merged. (You can
put a file in ASCII format by using the “,A” option to the SAVE command
or the “Text” option on the Save As selection on the File menu). If it was
not saved in ASCII format, a “Bad file mode” error message is generated.

179

Example

MERGE "Sort Routine”

MID$

Statement Syntax

MID $ MID $(string-expl,n |,m|)=string-exp2
Function Syntax
MIDS(XS,n [.m])
Action

The statement replaces a portion of one string with another string.

The function returns a string of length m characters from X8, beginning
with the nth character.

Remarks

In the statement syntax, 7 and m are integer expressions, and string-exp !
and string-exp2 are string expressions. The characters in string-expl, be-
ginning at position », are replaced by the characters in string-exp2. The
optional m refers to the number of characters from string-exp2 that will
be used in the replacement. If m is omitted, all of string-exp2 is used.
The replacement of characters never exceeds the original length of
string-expl.

In the function syntax, the values » and m must be in the range 1 to
32767. If m is omitted or if there are fewer than m characters to the
right of the »n character, all rightmost characters, beginning with the nth
character, are returned. If »n is greater than the number of characters in
X $ (that is, LEN(X$)), MID$ returns a null string.

180

Examples

& Fi

le Edit Search Run Windows

MID$

MID$ EHAMPLE

Reggie Jackson
Reggie Smith

L

REM *** This program demonstrates the use of
REM *** the MID$ Statement.

LET RIGHTFIELD$ = "Reggie Jackson”

PRINT RIGHTFIELD$

MID$(RIGHTFIELDS$,8) = "Smith *

PRINT RIGHTFIELD$

& File Edit Search Run Windows

MID$ EHAMPLE

TN.
ville

[

E[[E=————— List

REM **¥ This program demonstrates the use of
REM *** the MID$ Function.

LET PLACES$ = "Nashville, TN.”

PRINT MID$(PLACESS,12)

PRINT MID$(PLACESS$,5,5)

END

181

MKI$/MKS$/MKD$

MKI$
MKS$
MKD$

Function Syntax

MKI 8(integer-expression)

MKS 8(single-precision-expression)
MKD 8(double-precision-expression)

Action

Put numeric values into string variables for insertion into random file
buffers.

Remarks

These functions are used to convert numbers into the string format that
random files use. If a numeric program variable’s value is going to be
loaded into a random file, it must be put into a string variable (using
MKI$, MKS$, or MKD 8), then LSET or RSET into the buffer field variable,
and then PUT# into the file.

Instead of converting the binary value to its string representation, like the
STR$ function, MK$ moves the binary value into a string of the proper
length. This greatly reduces the amount of storage required for storing
numbers in a file.

See Also
CVI, CVS, CVD, LSET, RSET, Chapter 5, “Working With Files and Devices”

| MKI$/MKS$/MKD$

Example

& File Edit Search Run Windows

MKI1$,MKS$,MKD$ EHAMPLE
Y sl —e——r————=
REM *** This program illustrates the use of MKI$,MKS$ [
REM *** and MKD$ with Random files. | |
OPEN "Accountinfo” AS *2 LEN= 14

FIELD *2, 8 AS ACCT$,4 AS CHECKS,2 AS DEPOSITS
GET *2,1

LET ACCOUNTNO* = 98765432556*

LET CHECKING! = 123456!

LET SAVINGS® = 2500

LSET ACCT$ = MKD$(ACCOUNTNO*)

LSET CHECK$ = MKS$(CHECKINGI)

LSET DEPOSITS = MKIS(SAVINGSZE)
PUT *2,1

CLOSE *2
T ~ewn

183

MKSBCD$/MKDBCD$

Function Syntaxes

MKSBCD$ MKSBCD $(single-precision-expression)
MKDBCD $(double-precision-expression
MKDBCD$ Hdouble-p pression)
3 o Action
Returns a random file buffer string that is a decimal math representation

of a binary math floating-point number.

Remarks

Microsoft BASIC comes with two versions, and random access files with
single or double precision numbers produced in one version will not
work in the other. The MKSBCD $ and MKDBCD $ functions give you the
ability to convert these random file numbers created in the binary math
version of BASIC into numbers usable by the decimal math version.

MKSBCD$ converts a binary format single precision number into a string
that can be loaded into a random file buffer for storage. MKDBCD$ con-
verts a binary format double precision number into a string that can be
loaded into a random file buffer for storage. In both cases, the buffer
string can be put into a random file that can be used with the decimal ver-
sion. When using these converted numbers in the decimal version, you
should make sure to bring them into variables of the same precision you
converted them from.

You do not need to convert integers or strings. They have the same
representation in both versions.

See Also
Appendix D, “Internal Representation of Numbef's," CVSBCD, CVDBCD

184

MKSBCD $/MKDBCD$ - MOUSE

REH ** Thisisa tragment of program that demonstrates opening a binsry
REM ** version random file, converting the parts that must be changed to
REM ** store in a decimal version random file, and then storing the dets in the it
REM ** decimal version file.
OPEN "Payables™ AS *2 LEN=74
FIELD *#2, 30 AS Firm$, 30 AS Addr$, 4 AS Owe$, 10 AS Day$
FOR ACCOUNT = 100 TO 500
GET *2, ACCOUNT
DEBT! = CVS(OWES). LSET OWES - MKSBCD$(DEBT!)
PUT *2, ACCOUNT
PRINT "Account *";ACCOUNT;” updated”
NEXT ACCOUNT
CLIJSE 2

MOUSE

Function Syntax
MOUSE(#n)

Action

MOUSE performs seven distinct functions. The function it performs
depends on the given argument n. All the MOUSE functions return infor-
mation about the state of the mouse button or the location of the mouse
pointer within the active output window.

Remarks

The MOUSE functions give you the tools to incorporate the mouse into
your application programs. They can tell a program where the mouse is
on the screen, whether or not a user has clicked a button, and what kind
of action the user has taken with the mouse. Using the ON MOUSE state-
ment, you can design a program to use the MOUSE function information
to branch to different parts of the program in response to different user
actions.

185

MOUSE

There are seven mouse functions given by the integer expression n which
can range in value from O to 6. The following list describes each function.

Mouse(0): Button Status This function returns a value ranging from
— 3 to 3. The meaning of these values is discussed below in “Button Status
in Mouse (0).”

Mouse(1): Current X Coordinate This function returns the horizontal
coordinate of the mouse pointer at the time the MOUSE(0) function was
last invoked, regardless of whether or not the button was down.

Mouse(2): Current Y Coordinate This function returns the vertical
coordinate of the mouse pointer at the time the MOUSE(0) function was
last invoked, regardless of whether or not the button was down.

Mouse(3): Starting X Coordinate This function returns the horizontal
coordinate of the mouse pointer at the time of the last occurrence of a
button-press preceding a MOUSE(O) call. This is useful for determining
the starting point of a drag operation.

Mouse(4): Starting Y Coordinate This function returns the vertical

coordinate of the mouse pointer at the time of the last occurrence of a
button-press preceding a MOUSE(O) call. This is useful for determining
the starting point of a drag operation.

Mouse(5): Ending X Coordinate This function works as follows: if the
button was down the last time MOUSE(0) was called, MOUSE(5) returns
the horizontal coordinate of the mouse pointer at the time MOUSE(Q) was
called. If the button was up the last time MOUSE(0) was called, this func-
tion returns the horizontal coordinate where the mouse was when the
button was released. This is useful for tracking and determining the end-
point of a drag operation.

Mouse(6): Ending Y Coordinate This function works as follows: if the
button was down the last time MOUSE(0) was called, MOUSE(6) returns
the vertical coordinate of the mouse pointer at the time MOUSE(0) was
called. If the button was up the last time MOUSE(0) was called, this func-
tion returns the vertical coordinate where the mouse was when the but-
ton was released. This is useful for tracking and determining the end-
point of a drag operation.

MOUSE

Button Status in Mouse (0)

This section discusses the meaning of button status values returned by
MOUSE(0). When the mouse button is pressed once, that is referred to as
a first-level selection. Double-clicking is referred to as a second-level
selection. In rare cases, there are third-level mouse operations which
require pressing the mouse button three times.

0

When the function returns 0, the MOUSE button is not currently
down, and has not gone down since the last MOUSE(0) function call.

When the function returns 1, the MOUSE button is not currently
down, but a first-level selection was made (single button click) since
the last call to MOUSE(0). MOUSE(3), MOUSE(4), MOUSE(5), and
MOUSE(G) can be used to determine the start and end points of the
selection.

When the function returns 2, the MOUSE button is not currently
down, but a second-level selection was made (double-click) since
the last call to MOUSE(0). MOUSE(3), MOUSE(4), MOUSE(5), and
MOUSE(6) can be used to determine the start and end points of the
selection.

When the function returns 3, the MOUSE button is not currently
down, but a third-level selection was made (triple-click) since the
last call to MOUSE(0). MOUSE(3), MOUSE(4), MOUSE(5), and
MOUSE(6) can be used to determine the start and end points of the
selection.

When the function returns — 1, a first-level selection was made and
the button is still down (that is, in the midst of a drag).

When the function returns — 2, a second-level selection was made
and the button is still down.

When the function returns — 3, a third-level selection was made and
the button is still down.

The MOUSE(0) function also remembers the values returned by

MOUSE(1) through MOUSE(G). This means that using MOUSE(0) will get
values at that moment for MOUSE(1) through MOUSE(G), and these values
may later be returned through the use of these functions. If a drag is in
progress, the starting coordinates of the drag can be determined from
MOUSE(3) and MOUSE(4), and the ending point coordinates can be deter-
mined from MOUSE(5) and MOUSE(6).

188

MOUSE

See Also

MOUSE ON, MOUSE OFF, MOUSE STOP, ON MOUSE

Example

The following program allows the mouse to be used to draw a picture
calling a pair of ROM subroutines, LINETO and MOVETO. ROM sub-

routines are described in Appendix F, “Access to Macintosh ROM
Routines.”

€ e Edit Search Run Windows
-
MOUSE EHAMPLE

REH ®%%* This program demonstrales the use of the MOUSE Function.
CLS

START:
IF (MOUSE(0) < 0) THEN CALL LINETO(MOUSE(1),MOUSE(2)): GOTO START: |
CALL MOVETO(MOUSE(1),MOUSE(2)): 6OTO START:

MOUSE ON/MOUSE OFF/MOUSE STOP - NAME

Statement Syntaxes

MOUSE ON MOUSE ON
MOUSE OFF
MOUSE OFF MOUSE STOP
MOUSE STOP
Action
) Enables, disables, or suspends event trapping based on the pressing of
_l the mouse button.

Remarks

The MOUSE ON statement enables event trapping based on a user’s press-
ing the mouse button.

The MOUSE OFF statement disables ON MOUSE event trapping.

The MOUSE STOP statement suspends ON MOUSE event trapping. It is
similar to MOUSE OFF in that if it has been executed, the event trap is not
performed. However, MOUSE STOP differs in that the GOSUB will be per-
formed as soon as a MOUSE ON statement is executed, if any events oc-
curred while the event trap was stopped.

See Also
MOUSE, ON MOUSE, “Event Trapping” in Chapter 6, “Advanced Topics”

Example

The MOUSE ON/OFF/STOP statements work exactly parallel to the DIA-
LOG ON/OFF/STOP statements. See DIALOG ON for an illustration of
how to use these forms.

Statement Syntax

NAME NAME old-filename AS new-filename | filetype)
0.0 Action
0] _] Changes the name of a disk file.

Remarks

All three parameters are string expressions. The old-filename must exist 189
and the new-filename must not exist; otherwise, an error results.

A file may not be renamed with a new volume designation. If this is at-
tempted, an error message is generated. After a NAME command, the file
exists on the same disk, in the same area on disk, with the new name. If
Sfiletype is specified, the file’s type is changed. By default, all files created
by BASIC are of type “TEXT.”

NAME - NEW

The FILES$ function can be told to display only files of certain types. This
can be useful in designing programs in which you want users to be able to
access some data files but not others. If you give the files you want to be
off-limits a different filetype, you can protect them from being accessed in
a FILES $ function.

See Also
FILES $

Example

NAMB “Accounts” AS "LEDGER”

In this example, the file that was formerly naumed Accounts will now be
named LEDGER.

Statement Syntax

NEW NEW
0 Action
_] Deletes the program currently in memory and clears all variables and the

List and Command windows.

Remarks

NEW is entered in immediate mode or selected from the File menu to
clear memory before entering a new program. If there is a program
currently in memory, and that program has been changed since it was
loaded, a dialog box will automatically appear to allow saving of that pro-
gram. If executed from within a program, NEW causes BASIC to return to
edit mode.

NEW closes all files and turns off tracing mode. When you execute
NEW, the windows retain their sizes and locations, and the List window
becomes the active window.

190 Example

NEW

- NEXT - OCT$
—
Statement Syntax
NEXT NEXT |variable| variable...]|
L]
) >0 Action
_, Allows a series of instructions to be performed in a loop a given number
— of times.
- Remarks
- See FOR..NEXT for a discussion of NEXT usage.
= Function Syntax
OCT$ OCT&(X)
- Action
- Returns a string that represents the octal value of the decimal argument.
X is rounded to an integer before OCT $(X) is evaluated.
_—
- See Also
HEX$
pu_—
-
—_—
L]
]
f—
L]
-ty

OCT$ - ON BREAK

Example

" & File Edit Search Run Windows

OCT$ EHAMPLE

This program converts decimal numbers to Octal and Hexadecimal values
what is the decimal number ? 7654
Octal = 16746
Hexadecimal = 1DE6
Do you want to convert another ? NO

m_—— -
REM *** This program illustrates the use of the i
REM *** HEX$ and OCT$ Functions.
PRINT "This program converts decimal numbers”;
PRINT " to Octal and Hexadecimal values”
LET ANSWERS = "YES”
WHILE (LEFT$(ANSWERS,1) = "Y")
INPUT "What is the decimal number 7 “,DECIMAL
PRINT “Octal = “;0CT$(DECIMAL)
PRINT "Hexadecimal = ;HEX$(DECIMAL)
INPUT "Do you want to convert another 7 ", ANSWER
WEND
END

Statement Syntax

ON BREAK ON BREAK GOSUB line
0 Action
_I Sends program control to a subroutine when the user presses Command-
period.
Remarks

The line is the line number or label of a subroutine to which control will
branch when the user presses Command-period.

The ON BREAK statement has no effect until the event is enabled by the
BREAK ON statement.

After an ON BREAK GOSUB statement has been executed, a later attempt
by the user to break (by pressing Command-period) transfers program
control to the subroutine specified in /ine. The break sequence is thus
disabled.

ON BREAK - ON DIALOG

If you want to have the program ignore the break, the /ine can contain
just a RETURN statement. If the /ine is zero, ON BREAK event trapping
is disabled.

See Also
“Event Trapping” in Chapter 6, “Advanced Topics”

Example

REM *** This program fraament 11lustrates a use of ON BREAK.
BREAK ON
BREAK ON GOSUB DIRECTUSER
DIM PAYTIME(99) HRS(99) GROSS(99) FITI99) FICA(99) STATE(I9) NET(99)
LET TOTALEMPLOYEES = 99
OPEN "0, 1,"EmployeePay”
FOR | = | TO TOTALEMPLOYEES
WRITE® | PAYTIMECI) HRS(1).GROSS(I) FIT(1) FICA(I), STATECI) . NET(I)
NEXT |
CLOSE *1 BREAK OFF
INPUT “Do you wish to print the Payrall now (Y/N) ? * ANSWERS
IF ANSWERS = "YES” THEN BREAK ON: GOSUB FRINTCHECKS
END
[DIRECTUSER

CLSBEEP PRINT “You can't exit program until file is updated”
RETURN

Statement Syntax

ON DIALOG ON DIALOG GOSUB line
o) Action
_J Sends program control to a subroutine when the user performs any action
which would affect a dialog box.

Remarks

ON DIALOG causes an event trap when the value of DIALOG(0) is non-
zero. Dialog events include output window activation, the user selecting a
button, or edit field activity.

ON DIALOG

The line is a line number or label to which control branches when the
event trap takes place. If the line is 0, dialog event trapping is disabled.

The ON DIALOG statement has no effect until the event is enabled by the
DIALOG ON statement.

The ON DIALOG statement is executed whenever DIALOG(0) is not equal
to zero. If a DIALOG event takes place while BASIC is executing the DIA-
LOG event subroutine, the ON DIALOG statement will execute as soon as
control returns from the subroutine.

See Also

BUTTON, DIALOG, EDIT FIELD, WINDOW, “Event Trapping” in
Chapter 6, “Advanced Topics”

Example

REM ** These fragments illustrate a way to route program control
REM ** based on dialog event trapping.
ON DIALOG 6G0OSUB HendleAct: DIALOG ON

HandleAct: MENU STOP: MOUSE STOP
ACT = DIALOG(0)
ON ACT GOSUB ButtonHand,EdMove, WindClick GoAway,Under NoNo,Advance
MENU ON: MOUSE ON

RETURN

ButtonHand: CHOICE = DIALOG(1)
ON CHOICE 60SUB Assets, Debits, Calculate, EscapeRoutine
RETURN

ON ERROR GOTO

Statement Syntax

ON ERROR GOTO ON ERROR GOTO line

(o) Action
_J Sends program control to an error-handling routine.
Remarks

Once error handling has been enabled, all errors detected cause a jump to
the specified error-handling routine. If /ine does not exist, an “Undefined
line” error message is generated.

The RESUME statement is required to continue program execution.

To disable error handling, execute an ON ERROR GOTO 0. Subsequent
errors generate an error message and halt execution. An ON ERROR
GOTO 0 statement that appears in an error-handling routine causes
Microsoft BASIC to stop and print the error message for the error that
caused the trap. It is recommended that all error-handling routines exe-
cute an ON ERROR GOTO 0 if an error is encountered for which there is
no recovery action.

Note

If an error occurs during execution of an error-handling routine, that er-
ror message is printed and execution terminates. Error trapping cannot
occur within the error-handling routine.

See Also
RESUME

Example

10: ON ERROR GOTO 900:
900: IF (ERR - 230) AND (ERL = 90) THEN PRINT “Try again": RESUME 80

ON...GOSUB/ON...GOTO

Statement Syntax

ON...GOSUB . ON expression GOSUB line-list
ON expression GOTO line-list

ON...GOTO
=0 Action
_‘ Branches to one of several specified line numbers or labels, depending on

the value returned when an expression is evaluated. This is called a
“computed GOSUB” or “computed GOTO.”

Remarks

The value of the expression determines which line number in the line-list
will be used for branching. If the value is a noninteger, the fractional
portion is rounded.

The line-list is a series of line numbers or labels to which program con-
trol will be routed depending on the value of the expression. For exam-
ple, if the value of the expression is three, the third line in the line-list
will be the destination of the branch.

In the ON...GOSUB statement, each line named in the list must be the first
line of a subroutine.

If the value of the expression is zero, or greater than the number of items
in the list (but less than or equal to 255), BASIC continues with the next

executable statement. If the value of the expression is negative or greater
than 255, an “lllegal function call” error message is generated.

ON...GOSUB/ON...GOTO - ON MENU

Example

& File Edit Search Run Windows

ON..GOSUB EHAMPLE
Enter your choice number (1..3) ? 2
SUBROUTINE TWO D List

REM *** This program illustrates the use of the
REM ¥ ¥%0N GOSUB Statement.
START:
| INPUT “Enter your choice number (1..3) ? *,CHOICE®
IF CHOICE® < 1 OR CHOICEZ > 3 THEN GOTO START:
ON CHOICE® GOSUB SUB1,5UB2,SUB3
END
SUBI:
PRINT "SUBROUTINE ONE ~
RETURN
SUBZ2:
PRINT "SUBROUT INE TwO"
RETURN
SUB3:
PRINT "SUBROUT INE THREE"
RETURN

ON MENU

(2]

Statement Syntax
ON MENU GOSUB line

Action
Sends program control to a subroutine when the user selects a menu item.

Remarks
ON MENU causes an event trap when the user selects a custom menu
item created with the MENU statement.

The line is a line number or label to which control branches when the
event trap takes place. If /ine is 0, menu event trapping is disabled.

The ON MENU statement has no effect until the event is enabled by the
MENU ON statement.

See Also
MENU, “Event Trapping” in Chapter 6, “Advanced Topics”

ON MENU - ON MOUSE

REM ** This fragment illustrates a use of menu event trapping.
MENU 5,0,1, "Transactions™

MENU 5,1,1,"Deposits”

MENU 5,2,1,"withdrawals”

MENU 5,3,1,"Automatic Payment”

MENU 5,4,1,"Credit Card Purchase”

ON MENU 60SUB Menucheck: MENU ON

Idle:
GOTO ldle

Menucheck: MENUNUMBER = MENU(0): IF MENUNUMBER S THEN RETURN
MENUITEM = MENU (1)
ON MENUITEM 60SUB Deposit, Withdraw, AutoPay, Credit
RETURN

INDOW 1, "Deposits”, (50-200)

CARAAR

-(4

Deposit: W
Q B

50,250), 1

I

Statement Syntax

ON MOUSE ON MOUSE GOSUB /ine
o) Action
J Sends program control to a subroutine when the user presses the mouse
button.
Remarks

ON MOUSE causes an event trap when the user presses the mouse button.

The line is a line label or number to which control branches when the
event trap takes place. If /ine is 0, mouse event trapping is disabled.

198 The ON MOUSE statement has no effect until the event is enabled by the
MOUSE ON statement.

See Also
MOUSE, MOUSE ON, “Event Trapping” in Chapter 6, “Advanced Topics”

Example

The ON MOUSE statement works exactly parallel to the ON DIALOG
statement. See ON DIALOG for an illustration of how to use these forms.

ON TIMER

Statement Syntax

ON TIMER ON TIMER (7) GOSUB line

o) Action

_] Sends program control to a subroutine based on a given time interval.
Remarks

ON TIMER causes an event trap every (»n) seconds. The (7) must be
greater than zero and less than or equal to 86400 (the number of seconds
in 24 hours). Values outside this range generate an “Illegal function call”
error message.

The line is a line label or number to which control branches when the
event trap takes place. If line is 0, timer event trapping is disabled.

The ON TIMER statement has no effect until the event is enabled by the
TIMER ON statement.

See Also
TIMER, “Event Trapping” in Chapter 6, “Advanced Topics”

Example

REM *** This program illustrates a use of timer event trap statements.
TIMER ON

ON TIMER (900) GOSUB SHUTDOWN: REM**Every 15 minutes.

OPEN "CustomerData™ FOR APPEND AS *1. ANSWERS = "YES®

WHILE LEFT$(ANSWERS, 1) = Y
INPUT "New customer name? *,CUSTOMERS
INPUT "City, State, ZIP? (No Commas] -, CISTZI$
WRITE* 1, CUSTOMERS, CISTZI$, GENESISS : NEWENTRY = (-1)
INPUT "Another? -, ANSWERS
WEND
END
REM** Subroutine checks for user actlvitg; if none, then shuts down.
SHUTDOWN: IF DIALOG(0) = O THEN INACTION = (- 1)
IF INACTION AND NOT NEWENTRY THEN CLOSE *1: END
NEWENTRY = 0 199

RETURN

OPEN

OPEN

B

Statement Syntax 1
OPEN mode,| # |filenumber filespec | file-buffer-size]

Statement Syntax 2
OPEN filespec[FOR mode] AS | # |filenumber | LEN=file-buffer-size)

Action
Allows input or output to a disk file or device.

Remarks
OPEN associates a filenumber with a filename.

A file must be opened before any I/O operation can be performed on that
file. OPEN allocates a buffer for I/O to the disk file or device and deter-
mines the mode of access that will be used with the file.

The filenumber is an integer expression whose value is in the range 1 to
255. The number is associated with the file for as long as it is open, and
is used to refer other /O statements to the file.

The filespec is a string expression containing the name of the file, option-
ally preceded by the name of a volume or device.

The file-buffer-size cannot exceed 32767 bytes. If the file-buffer-size op-
tion is not used, the default length is 128 bytes. For random files, the
Sfile-buffer-size should be the record length (number of characters in one
record) of the file to be opened.

For sequential files, the file-buffer-size specification need not correspond
to an individual record size, since a sequential file may have records of
different sizes. When used to open a sequential file, the file-buffer-size
specifies the number of characters to be loaded to the buffer before it is
written to or read from the disk. The larger the buffer, the more room is
taken from BASIC, but the faster the file YO runs.

Syntax 1 For the first syntax, the mode is a string expression whose
first character is one of the following:

O Specifies sequential output mode.

| Specifies sequential input mode.

R Specifies random input/output mode.
A Specifies sequential append mode.

OPEN

Syntax 2 For the second syntax, the mode is one of the following
keywords:

OUTPUT Specifies sequential output mode.
INPUT Specifies sequential input mode.
APPEND Specifies sequential output mode and sets the file

pointer to the end of the file. A PRINT# or WRITE#
statement will then add a record to the end of the file.

If the mode is omitted in the second syntax, the default random access
mode is assumed.

Example

" & File Edit Search Run Windows

N

OPEN EHAMPLE

TEST 2345

ED ME——
REM *** This program demonstrates the use of the
REM *** OPEN Statement.
OPEN "0, *4,"TESTFILE"
WRITE *4, "TEST", 2345
CLOSE *4
OPEN “I", *4, "TESTFILE"
INPUT *4, DUMMYS, VARBNOS
CLOSE *4
PRINT DUMMY$,VARBNO®

OPTION BASE - PEEK

Statement Syntax

OPTION BASE OPTION BASE 7
.0 Action
J Declares the minimum value for array subscripts.
Remarks

This statement determines the minimum value that array subscripts may
have. If nis 1, then 1 is the lowest value possible; if 7 is 0, then 0 is the
lowest value possible. The default base is 0. Specifying an OPTION BASE
other than 1 or 0 will result in a syntax error.

The OPTION BASE statement must be executed before arrays are defined
or used.

Example
If the following statement is executed, the lowest value an array subscript
can have is 1.

OPTION BASE 1

Function Syntax

PEEK PEEK(I)
oy [Action
13903001 Returns the byte read from the indicated memory location (1).
Remarks

The returned value is an integer in the range 0 to 255. 1 must be in the
range 0 to 16777215.

PEEK is the complementary function of the POKE statement.

See Also
POKE, VARPTR

Example

A = PEEK(1603)

PICTURE

PICTURE

Statement Syntax
PICTURE [(x1,p1)-(x2y2)]]| ,P$]

Action
Draws a picture.

Remarks

PICTURE uses (x/,y1) as the upper-left coordinate within the current win-
dow where the specified picture is to be drawn. If (x1,y1)-(x2,2) is
specified, the image is scaled to fit into the rectangle specified by
(x1,y1)(x2,y2). If no coordinates are specified, the image is displayed
exactly as it was recorded.

P$ is a set of screen graphics commands that produce an image. If P$ is
not specified in the PICTURE statement, the picture recorded by the most
recent PICTURE ON statement is displayed; this is the same picture that
would be returned by the PICTURES function.

See Also
PICTURE ON, PICTURE $

Example

& File Edit Search Run Windows
PICTURE [[B—=—= list

REM ** This illustrates a use of the
REM ** PICTURE Statements.
WINDOW 2, "PICTURE",(10,39)-(205,325)
M ICROSOFT| [FIETUREON

CALL PENSIZE (5,5)

CALL MOVETO0I(5,200)

CALL LINETO(5,5)

CALL LINETO (60,150)

CALL LINETO (120,5)

CALL LINETO {120,200}

LOCATE 5,4 CALL TEXTSIZE{18)

PRINT "MICROSOFT"
PICTURE OFF
IMAGE$ = PICTURE$
PICTURE (1,50)-(255,255), IMAGE$
FOR IE=0T0 -30 STEP -10
| SCROLL (0,0+18)-(210+1%,210),0,-10
B NEXT %

PICTURE ON/PICTURE OFF - PICTURE$

PICTURE ON
PICTURE OFF

N

Statement Syntax
PICTURE ON
PICTURE OFF
Action

Turns on or off the recording of all screen activity within the current
output window.

Remarks

The PICTURE ON statement forces screen graphics statements to a storage
area for later use. Until a PICTURE OFF is encountered, screen graphics
commands will not be displayed on the screen unless the PICTURE ON
statement was preceded with or followed by CALL SHOWPEN.

The stored commands may be returned later with the PICTURE$ function.

Examples of screen graphics statements include BASIC statements like
LINE, CLS, CIRCLE, and PRINT, and Macintosh ROM routines like CALL
TEXTFONT(X).

PICTURE OFF must be used between PICTURE ON statements, or an
“Illegal function call” error message is generated.

See Also

PICTURE, PICTURE$

Example

See PICTURE for an illustration of these statements.

[\
s

PICTURES$

pls

¥

Function Syntax
PICTURES$

Action

Returns a string containing the entire picture recorded by the last PIC-
TURE ON statement which was executed in the current output window.

Remarks

The string returned by PICTURES is a set of encoded Macintosh instruc-
tions which, together, produce a screen image. These instructions consist
of BASIC graphics statements like LINE, CLS, or CIRCLE, and Macintosh
ROM calls (see Appendix F, “Access to Macintosh ROM Routines™).

This function is useful for saving a picture to the Clipboard or to a file for
later use.

PICTURE$ - POINT

—
—= Example
P—
- € File Edit Search Run Windows
™ REH ** This illustrates a use of the
= REM ** PICTURES Function.
WINDOW 2, "PICTURES",(10,39)-(205,325)}
™ ! ICF!DSEIFT PICTURE ON
—— CALL PENSIZE (5,5)
CALL MOVETO(S,200)
— CALL LINETO(S,S)
£t CALL LINETO (60,150)
CALL LINETO {120,5)
— CALL LINETO (120,200)
LOCATE 5,4 : CALL TEXTSIZE(18)
PRINT "MICROSOFT"
p— PICTURE OFF
I IMAGES = PICTURE}
PICTURE {1,50)-(255,255), IMAGE$
— FORIZ=-0TO -30 STEP -10
2 SCROLL (0,0+1%)-(210+18,210),0,-10
7 H NEXT 1|
e o
F—
~— Function Syntax
POINT POINT (x,»)
—
3 - Action
To read the color value of a pixel from the screen.
—
A Remarks
The arguments x and y are the coordinates (within the current output
- window) of the pixel that is to be referenced. The function returns 30 if
the point is white, 33 if the point is black. The pixel at (0,0) is at the
B upper left-hand corner of the current output window.
—_ Coordinate values outside of the current output window return the
i value — 1.
—

5

-

05

POINT - POKE

Example

& File Edit Search Run Windows

o
I POINT EHAMPLE
30 33
ECH List]

REM *** This program illustrates a use of the
REM *** POINT Function.

LINE (20,20) - {60,50),,6F

LET ONE® = POINT(S,S)

LET TWO® = POINT(20,20)

PRINT ONER,TWOR

POKE

11011001
10100100
11101100
11001001
00110111

Statement Syntax
POKE L,]

Action
Werites a byte into a memory location.

Remarks

The expression I represents the address of the memory location, and J is
a data byte in the range 0 to 255. 1 must be in the range 0 to
16777215.

POKE is the complementary statement of the PEEK function. The argu-
ment to PEEK is an address from which a byte is to be read.

Warning Use POKE carefully. Altering system memory can corrupt
the system. If this happens, reboot the Macintosh.

POKE - POS

See Also
PEEK, VARPTR

Example

POKE X, 255

POS

Function Syntax

POS(I)

Action

Returns the current horizontal (column) position of the pointer for the
screen device SCRN..

Remarks

The leftmost position is 1. 1 is a dummy argument and has no
significance.

See Also
CSRLIN, LOCATE, LPOS

207

POS - PRESET

Example

& file Edit Search Run Windows

POS EHAMPLE
606606860000060006066000680600008006680000060066060806800
00006000000000086006000006000000000008000080066080008868

660060060006006600000600006006000000000000060800600680800000

as888888 ED——_— List EE

REM *** This program illustrates a use of the

REM *** POS Function.

REM *** A RETURN is caused after every S0 characlers are
REM *** printed on the screen.

WIDTH &0

START:

ANSWERS = INKEY$

IF ANSWERS =" THEN GOTO START: ELSE PRINT ANSWER
IF POS(0) = > 50 THEN PRINT

GOTO START:

END

208

Statement Syntax
PRESET [STEP|(x) [.color]

Action

Draws a specified point in the current output window. PRESET works
exactly like PSET, except that if the color is not specified, white is used.
Remarks

When used, the STEP option indicates that x and y are relative and not ab-
solute coordinates. The x and y coordinates specify the pixel that is to be
set.

The color is a numeric value for the color desired. The value 33 pro-
duces black, and the value 30 produces white. If an out-of-range
coordinate is given, no action is taken, and no error message is given.

The syntax of the STEP option is:
STEP (xoffset, yoffset)

PRESET - PRINT

—
L For example, if the most recently referenced point is (10,10), then STEP
(10,0) would reference a point at an offset of 10 from x and 0 from vy, that
e is, (20,10).
- Example
—
= " & File Edit Search Run Windows A
= PRESET EHAMPLE
I O e
REM #*** This program illustrates a use of the
— REM *** PRESET Statement.
3 CLS
FOR I18=5T0 150
- b PRESET(IZ,I%), 33
NEXT (%
FOR JZ = 200 TO 90 STEP -1
- PRESET(JZ J%), 20
NEXT J%
—
o
— Statement Syntax
- PRINT PRINT [expression-list)
. - Action
z X Outputs data to the current output window.
—
Remarks
If the expression-list is omitted, a blank line is printed. If the expression-
— list is included, the values of the expressions are printed in the output
5 window. The expressions in the list may be numeric or string expres-
sions. (String constants must be enclosed in quotation marks.)
) Print Positions The position of each printed item is determined by the
- punctuation used to separate the items in the list. In the list of expres-
sions, a comma causes the next value to be printed at the beginning of the
—_— next comma stop, as set by the WIDTH statement. A semicolon causes
the next value to be printed immediately adjacent to the last value. Typ-
ing one or more spaces between expressions has the same effect as typing
s a semicolon.

PRINT

If a comma or a semicolon terminates the list of expressions, the next
PRINT statement begins printing on the same line, spacing accordingly. If
the list of expressions terminates without a comma or a semicolon, a car-
riage return is printed at the end of the line. If the printed line is longer
than the line width as set by the WIDTH statement, BASIC goes to the
next physical line and continues printing.

Printed numbers are always followed by a space. Positive numbers are
preceded by a space. Negative numbers are preceded by a minus sign.
Single precision numbers that can be represented with 7 or fewer digits in
the unscaled format as accurately as they can be represented in the scaled
format are output using the unscaled format. For example, 1E—7 is out-
put as .0000001 and 1E—8 is output as 1E—08. Double precision
numbers that can be represented with 16 or fewer digits in the unscaled
format as accurately as they can be represented in the scaled format are
output using the unscaled format. For example, 1D— 15 is output as
.000000000000001 and 1D —17 is output as 1D—17.

Note

A question mark may be used in place of the word PRINT in a PRINT
statement. This can be a time-saving shorthand tool, especially when
entering long programs with many consecutive PRINT statements.

See Also
PRINT USING, PRINT#, WIDTH

Example

& File Edit Search Run Windows

PRINT ERAMPLE
32 -6 Keth
32 -6 Keth
32,-6,°Keth” B[
32,-6,"Kath’

List
REM *** This illustrates the use of the
REM *** differences between the PRINT | |
REM *** and WRITE Statements.

CLS

LET A =32 LET B = -6: LET C$ = "Kath"
PRINT AB,C$

PRINT A;B;C$

WRITE AB,CS

WRITE A;B;C$

PRINT USING

el

[A—1

PRINT USING

Statement Syntax
PRINT USING string-exp.expression-list

Action
Prints strings or numbers using a specified format.

Remarks

The string-exp is a string literal (or variable) composed of special format-
ting characters. These formatting characters determine the field and the
format of the printed strings or numbers.

The expression-list is comprised of the string expressions or numeric
expressions that are to be printed, separated by semicolons.
Literal characters may be included in the string-exp and will subsequently

appear in the printed output. If you want any of the format symbols to
appear as literal characters, precede them with an underscore (_).

Multiple string expressions may appear in one PRINT USING statement.

String Fields When PRINT USING is used to print strings, one of three
formatting characters may be used to format the string field:

!
Specifies that only the first character in the given string is to be printed.
\nspaces\

Specifies that 2 + n characters from the string are to be printed. If the
backslashes are typed with no spaces, two characters will be printed; with
one space, three characters will be printed, and so on. If the string is
longer than the field, the extra characters are ignored. If the field is
longer than the string, the string will be left-justified in the field and
padded with spaces on the right.

A%

b

PRINT USING

Example

& File Edit Search Run Windows

i PRINT USING EHAMPLE
LO =0 List |
LOOKOUT REM *** This program 1llustrates the use
LooKouTH REM *** the PRINT USING Statement.

LET A$ = "LOOK" : LET B% = "0UT"
PRINT USING "I"; A$; BS
PRINT USING "&"; A$; BS
PRINT USING "&"; A$; BS; "II"

&

Specifies a variable length string field. When the field is specified with the
ampersand (&), the string is output without modification.

Numeric Fields When PRINT USING is used to print numbers, the
following special characters may be used to format the numeric field:

#

A number sign is used to represent each digit position. Digit positions are
always filled. If the number to be printed has fewer digits than positions
specified, the number will be right-justified (preceded by spaces) in the
field.

A decimal point may be inserted at any position in the field. If the format
string specifies that a digit is to precede the decimal point, the digit will
always be printed (as 0, if necessary). Numbers are rounded as necessary.

Example

In this example, three spaces are inserted at the end of the format string
to separate the printed values on the line.

PRINT USING "## #%", 78

0.78

PRINT USING "### ##", 987 654
987.65

PRINT USING "## #2102, 5.3, 234
10.20 5.30 0.23

PRINT USING

+

A plus sign at the beginning or end of the format string will cause the sign
of the number (plus or minus) to be printed before or after the number.

A minus sign at the end of the format field will cause negative numbers to
be printed with a trailing minus sign.

Example

PRINT USING "+## #%". -68.95, 2.4, -9
-68.95 +2.40 -9.00

PRINT USING “##.##-" -68.95, 22.449, -7
68.95- 22.45 7.00-

xs

A double asterisk at the beginning of the format string causes leading
spaces in the numeric field to be filled with asterisks. The double asterisk
also specifies positions for two more digits.

Example

PRINT USING “**#.#"; 12.39 -0.9, 765.1
*12.4"-0.9 765.1

88

A double dollar sign causes a dollar sign to be printed to the immediate
left of the formatted number. The $$ specifies two more digit positions,
one of which is the dollar sign. The exponential format cannot be used
with $8. Negative numbers cannot be used unless the minus sign trails to
the right.

Example

PRINT USING “$$### 88" 456.78,9.3
$456.78 $9.30

]
N

PRINT USING

‘!s

The double asterisk dollar sign (**$) at the beginning of a format string
combines the effects of the above two symbols. Leading spaces will be
asterisk-filled and a dollar sign will be printed before the number. **$
specifies three more digit positions, one of which is the dollar sign.

The exponential format cannot be used with **$. When negative numbers
are printed, the minus sign will appear immediately to the left of the
dollar sign.

Example

PRINT USING "**$##.#3" 2 34,9999
***$2.34"$999.90

A comma that is to the left of the decimal point in a format string causes
a comma to be printed to the left of every third digit to the left of the
decimal point. A comma that is at the end of the format string is printed
as part of the string. A comma specifics another digit position.

The comma has no effect if used with exponential (""") format.

Example

PRINT USING “###s 84" 12345
1,234.50
PRINT USING "sss3 22" 12345
1234.50,

Four carets (or up-arrows) may be placed after the digit position charac-
ters to specify exponential format. The four carets allow space for E+xx
to be printed. Any decimal point position may be specificd. The signifi-
cant digits are left-justified, and the exponent is adjusted. Unless a leading
+ or trailing + or — is specified, one digit position will be used to the left
of the decimal point to print a space or a minus sign.

PRINT USING

Example

PRINT USING "## ##°". 234 56
2.35E+02

PRINT USING " ####""". 888888
.8889E+06

PRINT USING “+.##" 123
+.12E+03

An underscore in the format string causes the neéxt character to be output
as a literal character.

Example

PRINT USING "_l##.#%_|", 12.34
112.34!

PRINT USING "_?##.88_?". 12.34
712.34?

The literal character itself may be an underscore by placing “_ _” in the
format string.

%

If the number to be printed is larger than the specified numeric field, a
percent sign is printed in front of the number. If rounding causes the
number to exceed the field, a percent sign will be printed in front of the
rounded number.

Example

PRINT USING "%## #8" []11.22
%%111.22

PRINT USING "##. #3%"; 111.22, .9
%111.22% 0.90%

If the number of digits specified exceeds 24, an “Illegal function call”
error message is generated.

PRINT#/PRINT# USING

PRINT#
PRINT# USING

de

Statement Syntax
PRINT# filenumber[USING string-exp;] expression-list

Action
Werites data to a sequential file.

Remarks

The filenumber is the number used when the file was opened for output.
The string-exp consists of formatting characters as described in “PRINT
USING.” The expressions in the expression-list are the numeric or string
expressions to be written to the file.

PRINT# does not compress data. An image of the data is written to the
file, just as it would be displayed on the screen with a PRINT statement.
For this reason, care should be taken to delimit the data so that it is input
correctly.

In the expression-list, numeric expressions should be delimited by semi-
colons. For example:

PRINT #1 ABCXYZ

(If commas are used as delimiters, the extra blanks that are inserted
between print fields are also written to the file.)

String expressions must be separated by semicolons in the list. To format
the string expressions correctly in the file, use explicit delimiters in the
list of expressions.

For example, let A$="CAMERA” and B$="93604 - 1". The statement
PRINT# 1,A8B$ would write CAMERA93604 - 1 to the file. Because
there are no delimiters, this could not be input as two separate strings.
To correct the problem, insert explicit delimiters into the PRINT state-
ment as follows:

PRINT #1, A$:""B$

The image written to the file is:

CAMERA, 93604-1

‘This can be read back into two string variables.

PRINT#/PRINT# USING

If the strings themselves contain commas, semicolons, significant leading
blanks, carriage returns, or linefeeds, write them to the file surrounded by
explicit quotation marks with CHR$(34).

See Also
CHR$, PRINT, PRINT USING, WRITE#

Examples
Let A$="CAMERA, AUTOMATIC” and B$="93604-1". The statement

PRINT #1,A$.B$

writes the following image to the file:
CAMERA, AUTOMATIC 93604-1
And, the statement

INPUT #1,A$,B$

inputs "CAMERA” to A$ and "AUTOMATIC 93604-1” to BS. To separate
these strings properly in the file, write double quotation marks to the file
using CHR$(34). The statement

PRINT #1,CHR$(34).A$:CHR$(34).CHR$(34),B$:CHR$(34)

writes the following image to the file:

"CAMERA, AUTOMATIC" " 93604-1"

And, the statement 217

INPUT #1,AB

inputs "CAMERA, AUTOMATIC” to A8 and " 93604 —1" to BS.

PRINT#/PRINT# USING - PSET

The PRINT# statement may also be used with the USING option to
control the format of the file.

For example:

PRINT #1,USING "$$#4# 82" JKL

Statement Syntax

PSET PSET (x0)].color|
PSET STEP (xoffset yoffset)| color |

% a % Action

Sets a point in the current output window.

Remarks

The coordinates (x,)) specify the point on the screen to be colored.
PSET allows the color to be left off the command line.

The STEP option (as shown in the second syntax), when used, indicates
that the x and y coordinates are relative, not absolute, coordinates. The
coordinates x and y specify the pixel that is to be set. The color is a
numeric value for the color desired. The number 33 specifies the color
black, and the number 30 specifies white. When Microsoft BASIC scans
coordinate values, it allows them to be beyond the edge of the window.
See Also

PRESET

218

PSET - PTAB

Example

€ File Edit Search Run Windows

I PSET EHAMPLE
I~ e ———————|
N\ REM *** This demonstrates the use of the [
\\ REM *** PSET Statement.
\ CLS

_ |FoR1Z=ST0 150
PSET(I%,1%),33

NEXT 1%

FOR JE = 200 TO 90 STEP -1

L] PsETU£.J%),30

NEXT J%

END

PTAB

Function Syntax
PTAB(X)

Action
Moves the print position to pixel X.

Remarks

PTAB is similar to TAB, except that PTAB indicates the pixel position rath-
er than the character position to advance to. If the current print position
is already beyond pixel X, PTAB retreats to that pixel on the same line.
Pixel O is the leftmost position. 1 must be in the range 0 to 32767. PTAB
may only be used in PRINT statements.

A semicolon (;) is assumed to follow the PTAB(1) function, which means
PRINT does not force a carriage return.

PTAB - PUT

Example

€ File Edit Search Run Windows

PTAB EHAMPLE
Charles Dickens Ell———————— BN %]
Charles Dickens REM *** This program demonstrates the use '

Cherles Dickens REM *** of the PTAB Statement.

LET A$ = “Charles " : LET B$ = "Dickens”
PRINT A$:B$

PRINT A$:PTAB(60);B$

PRINT A$;PTAB(75);8%

END

220

PUT

e)

Statement Syntax

PUT [# |filenumber| record-number|
PUT(x1,y1) [(x2y2)),array|(index |,index...,index|)| | action-verb|

Action
Writes a record from a random buffer to a random access file.

Draws a screen graphics image obtained in a GET statement.

Remarks

The two syntaxes shown above correspond to two different uses of the
PUT statement. These are called a random file PUT and a screen PUT,
respectively.

Random File PUT For the first syntax, the filenumber is the number
under which the file was opened. If the record-number is omitted, BASIC
will assume the next record number (after the last PUT). The largest
possible record number is 16777215; the smallest is 1.

PRINT#, PRINT# USING, and WRITE# may be used to put characters in
the random file buffer before executing a PUT statement, but most often,
the buffer is filled by FIELD and LSET or RSET statements.

In the case of WRITE#, Microsoft BASIC pads the buffer with spaces up to
the carriage return. Any attempt to read or write past the end of the
buffer causes a “Field overflow” error message to be generated.

PUT

Screen PUT In the second syntax, PUT uses (x1,y1) as the pair of coor-
dinates specifying the upper left-hand corner of the rectangular image to
be placed in the current output window.

The coordinates (x2,12), if specified, indicate the lower right-hand coordi-
nates of the destination rectangle for the image.

The array is the name assigned to the array that holds the image. (See
“GET"” for a discussion of array name issues.)

The index allows you to PUT multiple objects in each array. This tech-
nique can be used to loop rapidly through different views of an object in
succession.

The action-verb is one of the following: PSET, PRESET, AND, OR, XOR. If
the action-verb is omitted, it defaults to XOR.

The action-verb performs the interaction between the stored image and
the one already on the screen.

One of the most useful things that can be done with PUT is animation.
Animation can be performed in the following way:

1. PUT the object on the screen.
2. Recalculate the new position of the object.

3. PUT the object on the screen a second time at the old location to
remove the old image.

4. Go to step 1, but this time PUT the object at the new location.

Movement done this way will leave the background unchanged. Flicker
can be cut down by minimizing the time between steps 4 and 1 and by
making sure that there is enough time delay between 1 and 3. If more
than one object is being animated, every object should be processed
simultaneously, one step at a time.

If it is not important to preserve the background, animation can be per-

formed using the PSET action-verb. The idea is to leave a border around

the image when it is first gotten that is as large or larger than the max-

imum distance the object will move. Thus, when an object is moved, this

border will effectively erase any points. 221

Because you can specify (x2,p2), the image can be scaled (enlarged or re-
duced). For example, if the user loaded a circle from the screen with a
“GET(0,0)-(50,50),A” statement, then a “PUT(100,100)-(150,200),A”
statement would put the A array on the screen, and elongate it on the y
axis, producing an oval.

PUT

This technique can be used to produce better parallax perspectives during
animation. If the moving object becomes larger, it appears to be moving
towards the user.

See Also
FIELD, GET, LSET, PRESET, PRINT, PSET, RSET, SCROLL, WRITE

Example

& Flle Edit Search Run Windows

PUT EKAMPLE
(BVFiia————"—"_ list

REM *** This is a fragment of 8 program that opens an existing
REM **# {ile, gets data from it, updates it, returns it & closes it.
OPEN "Payables” AS #2 LEN=-74
FIELD #2, 30 AS FIRMS, 30 AS ADDRS, 4 AS OWES, 10 AS DAYS
GET #2, ACCOUNT
LET DEBT! = CVS(OWES)
LET DEBT! = DEBT! + (CHARGES! - PAID!)
LSET OWES = MKS$(DEBT!)
PUT #2, ACCOUNT
CLOSE *2
PRINT "Account # “;ACCOUNT;” updated”

RANDOMIZE

(o]

RANDOMIZE

Statement Syntax
RANDOMIZE [expression |

Action
Reseeds the random number generator.

Remarks

This statement reseeds the random number generator with the expression,
if given, where the expression is either an integer between — 32768 and
32767, inclusive, or where the expression is TIMER. If the expression is
omitted, BASIC suspends program execution and asks for a value before
randomizing, by printing:

Random Number Seed (-32768 to 32767)?

If the random number generator is not resecded, the RND function re-
turns the same sequence of random numbers each time the program is
run. To change the sequence of random numbers every time the program
is run, place a RANDOMIZE statement at the beginning of the program
and change the argument with each run.

The simplest way to change a random sequence of numbers with each
program run is to use RANDOMIZE TIMER. In this case, the random
number seed is the number of seconds that have passed since midnight.

See Also
RND

RANDOMIZE - READ

Example

& File Edit Search Run Windows

RANDOMIZE EHAMPLE
Random Number Seed (-32768 to 32767)7 13

30659452486038
.30859452486038
39090895652771 [|ist
.74937337636948 |REM *** This demonstrates ways to generate
19 REM *** and display random numbers using the
12 REM *** RANDOMIZE Statement.

RANDOMIZE

FOR I8 = 1 TO 2: PRINT RND(0): NEXT %

| T—{FORJZ - 1 TO 2 PRINT RND(1): NEXT J%

FORKZ = 1 TO 2: PRINT INT(RND*25): NEXT K%
END

Statement Syntax
READ variable-list

Action
Reads values from DATA statements and assigns them to variables.

Remarks

A READ statement must always be used in conjunction with a DATA state-
ment. READ statements assign DATA statement values to variables on a
one-to-one basis. READ statement variables may be numeric or string, and
the values read must agree with the variable types specified. If they do
not agree, a “Syntax error” message is generated.

A single READ statement may access one or more DATA statements (they
will be accessed in order), or several READ statements may access the
same DATA statement. If the number of variables in the variable-list
exceeds the number of elements in the DATA statements, an

“Out of data” error message is generated. If the number of variables
specified is fewer than the number of elements in the DATA statements,
later READ statements begin reading data at the first unread element. If
there are no subsequent READ statements, the extra data is ignored.

To reread DATA statements from the start, use the RESTORE statement.

See Also
DATA, RESTORE

Example

& File Edit Search Run Windows

READ EHAMPLE
| 2 3 4 5 6 7 8 9) 2 3 45 &
ONE TWO THREE FOUR FIVE

m————— I
REM **#* This demonstrates the use of
REM *#% the READ Statement.
DIM A(15),B3(5)
FORIZ=1T0 15

READ A(IZ) : PRINT A(IR);
NEXT I® - PRINT
FORJE=1T0O5S

READ B$(JZ) :PRINT B$(J%);" ";
NEXT J%
END
DATA 1,2,3456,7,689,1,2,3,45,6
DATA "ONE","TWO","THREE","FOUR","FIVE"

225

REM - RESET

Statement Syntax
REM remark

Action
Allows explanatory remarks to be inserted in a program.

Remarks

REM statements are not executed but appear exactly as entered when the
program is listed.

REM statements may be branched into from a GOTO or GOSUB statement.
Execution continues with the first executable statement after the REM
statement.

Remarks may be added to the end of a line by preceding the remark with
a single quotation mark instead of the REM keyword.

Warning REM should not be used in a DATA statement, since it
will be considered legal data.

Example

100: REM *** This is a remark.
110: ' This is also a remark.
120: LET A = S: REM "** This is a remark, as well.

RESET

il

Statement Syntax
RESET

Action

Closes all open files.

Remarks

RESET closes all open files, forces all file blocks in memory to be written
to the volume, and forces the volume directories to be updated. As a
result, if the machine is turned off or loses power, all files will be
preserved in the state they were in when the RESET command was issued.

RESTORE

Statement Syntax

RESTORE RESTORE | line |
0.0 Action
[0)% '] statements to be rerea om a specified line.
0] Allows DATA b d fr pecified li
Remarks

The line can be a label or line number.

After a RESTORE statement with no specified line number or label is exe-
cuted, the next READ statement accesses the first item in the first DATA
statement in the program. If the /ine is specified, the next READ state-
ment accesses the first item in the specified DATA statement.

Example

" & File Edit Search Run Windows

B RESTORE EHAMPLE
Walla Wallo B == |st
Sellindge REM *** This program illustrates a use of
gReno REM *** RESTORE Statement.
FOR LOOPE = 1 TO 3
walla Walla READ CITY$(LOOPE) : PRINT CITY$(LOOPE)
Sellindge NEXT LOOPE
Reno RESTORE : PRINT
FOR LOOPZ - 4TO 6
READ CITY$(LOOPE) : PRINT CITY$(LOOPR)

|_/,_ NEXT LOOPS
END

DATA "walla Walla","Sellindge”,"Reno”

227

RESUME

Statement Syntax

RESUME RESUME
RESUME 0

0,0 RESUME NEXT
[o0) RESUME line
Action
Continues program execution after an error recovery procedure has been
performed.
Remarks

Any one of the four syntaxes shown above may be used, depending upon
where execution is to resume:

RESUME or RESUME 0 Execution resumes at the statement that
caused the error.

RESUME NEXT Execution resumes at the statement immedi-
ately following the one that caused the error.

RESUME line Execution resumes at /ine.

A RESUME statement that is not in an error-handling routine causes a
“RESUME without error” error message to be generated.

See Also
ON ERROR

Example

10: ON ERROR GOTO 900:
900: IF (ERR - 230) AND (ERL - 90) THEN PRINT “Try again": RESUME 80

228

RETURN
0.0

RETURN

Statement Syntax
RETURN [/ine]

Action
Returns execution control from a subroutine.

Remarks

The line in the RETURN statement acts as with a GOTO. If no line is
given, execution begins with the statement immediately following the last
executed GOSUB statement.

Microsoft BASIC includes the RETURN line enhancement that lets
processing resume at a line that has a number or label. Normally, the pro-
gram returns to the statement immediately following the GOSUB state-
ment when the RETURN statement is encountered. However, RETURN
line enables the user to specify another line. This permits you more flexi-
bility in program design. This versatile feature, however, can cause prob-
lems for untidy programmers. Assume, for example, that your program
contains these fragments of a program:

5 MOUSE ON

10 ON MOUSE GOSUB 1000
20FORI=1TO 10

30 PRINT I

40 NEXT 1

50 REM NEXT PROGRAM LINE

260 REM PROGRAM RESUMES HERE

1600 "FIRST LINE OF SUBROUTINE

1050 RETURN 200

If mouse activity takes place while the FOR..NEXT loop is executing, the
subroutine is performed, but program control returns to line 200 instead
of completing the FOR..NEXT loop. The original GOSUB entry is can-
celled by the RETURN statement, and any other GOSUB, WHILE, or FOR
that was active at the time of the trap remains active. But the current

RETURN - RIGHT$

FOR context also remains active, and a “FOR without NEXT” error message

will be generated.

See Also
GOSUB

Example

€ File Edit Search Run Windows

RETURN EHAMPLE

SUBROUT INE ONE

=N

List

SUBROUTINE TWO
SUBROUT INE THREE

/_\/

REM *** This illustrates the use of the
REM *** RETURN Statement.
START:

FORIE=-1TO3

NEXT (%

END

SuB1:

SUBZ:

SUB3:

ON |Z GOSUB 5UB1,5UB2,5UB3

PRINT "SUBROUTINE ONE™
RETURN

PRINT "SUBROUTINE TWD"
RETURN

PRINT "SUBROUTINE THREE"
RETURN

RIGHT$

g

Function Syntax
RIGHT $(X8,I)

Action

Returns the rightmost I characters of string X 8.

Remarks

If I is greater than or equal to the number of characters in X8, it returns
X$. If I = 0, the null string (length zero) is returned. [can range from 0

to 32767.

See Also
LEFT S8, MIDS$

RIGHT$ - RND

Example

€ File Edit Search Run Windows
RIGHTS EHAMPLE
New York Ee——]\
York REM *** This program illustrates a use {3

REM *** of the RIGHT$ Function. [|
LET PLACES$ = "Senaca Falls, New York'’

——— PRINT RIGHT$(PLACES,9)
PRINT RIGHT$(PLACES,S)

Function Syntax
RND{(X)]

Action
Returns a random number between 0 and 1.

Remarks

The same sequence of random numbers is generated each time the
program is run unless the random number generator is reseeded with
RANDOMIZE.

X < 0 always restarts the same sequence for any given X.
X > 0 or X omitted generates the next random number in the sequence.
X = 0 repeats the last number generated.

Note

The values produced by the RND function vary with different
implementations of Microsoft BASIC.

See Also

RANDOMIZE

RND - RSET - RUN

Example

& File Edit Search Run Windows

RAND EHAMPLE
Random Number Seed (-32768 to 32767)7 19283
.30974310636521 e | st =

REM *** This program illustrates a use of the

.30974310636521

é RANDOMIZE

FOR I8 = 1 TO 2: PRINT RND(0) : NEXT I%
FORJ® = 1 TO 2: PRINT RND(1) : NEXT J%
FORK® = 1 TO 2: PRINT INT(RND*25) : NEXT K%

20

Statement Syntax

RSET RSET string-variable=string-expression
Action
D Moves data from memory to a random file buffer in preparation for a PUT
statement.
Remarks

See “LSET" for a discussion of both LSET and RSET.

Statement Syntax

RUN RUN [/ine]
) RUN filename| R)

0
¢ A
232 _] ction
& Executes the program currently in memory.

Remarks

If the line is specified, execution begins on that line. Otherwise, execu-
tion begins at the first line of the program.

With the second form of the syntax, the named file is loaded from disk
into memory and run. If there is a program in memory when the com-
mand executes, a dialog box appears permitting saving of the program.

RUN - SAVE

]

In the second syntax, the filename must be that used when the file was
saved.

- RUN closes all open files and deletes the current contents of memory be-
fore loading the designated program. However, with the “,R” option, all
data files remain open.

]

. Example
= RUN
h RUN “Rich’s BASIC Disk: Filer”
— RUN “Record List", R
-
Statement Syntax
SAVE SAVE | filename[,A]]
- SAVE [filename| P]]
SAVE [filename| B]|
o)

-~ Action
Saves a program file.

Remarks

Lo}

The filename is a quoted string. If a filename already exists, the file will

be written over, and the original replaced. If no filename is given, a dia-

log box appears to prompt you for information. This information includes
ro— the name of the file to save, and the format in which to save it, either text,

- compressed, or protected. If your Macintosh has a second disk drive, and
if there is a disk in it, the dialog box will offer a button to select saving

— the program to the other disk.

If you press the Return key without giving information in the dialog box,
the file will be saved under its previous name with its previous format

- attributes.

a The “,A” option saves the file in ASCII format the same as the “Text”

— selection on the Save As prompt screen. If the “,A” option is not speci- 33
fied, Microsoft BASIC saves the file in a compressed binary format that can [
also be specified with the “,B” option. ASCII format takes more space on
the disk, but some programs require that files be in ASCII format. For in-

- stance, the MERGE command requires an ASCII format file. Application

- programs may also require ASCII format in order to read the file.
- The *P” option protects the file by saving it in an encoded binary format.

When a protected file is later RUN (or loaded with LOAD), any attempt to
list or edit it will fail. ~

SAVE - SCROLL

Example

Save program as: i MS-BRSIC ...

{ save] [Cencel]

OText @ Compressed O Protected

~

Statement Syntax

SCROLL SCROLL rectangle, delta-x, delta-y
- % Action
Pt 4 Scrolls a defined area in the current output window.
Remarks

The defined rectangle has the form (x1,yl)-(x2,y2). These coordinates
specify the bounds of the rectangle in the current output window that will
be scrolled.

The delta-x parameter indicates the number of pixels to scroll right. If
the parameter is a negative number, the rectangle scrolls left.

The deita-y parameter indicates the number of pixels the rectangle will
scroll down. A negative value will scroll the rectangle up.

The SCROLL statement is most effective when the image to be scrolled is
smaller than the defined rectangle, and the areas being affected have no
background.

This statement is useful for scrolling on a rectangular area of an output
window. You can, therefore, design a program to create output windows
that the user can scroll with scroll bars. Your program must still update
the information in the scrolled area. If not refreshed, the part of the rec-
tangle scrolled away from shows the background pattern.

Note

SCROLL

You should not scroll areas containing edit fields or buttons.

Example

® File Edit Search Run Windows

1

SCROLL

e st

>

MICROSOF

i

REM ** This 1llustrates a use of the
REM ** SCROLL Statement.
¥INDOW 2, "SCROLL",(10,39)-(205,329),1
PICTURE ON

CALL PENSIZE (5,5)

CALL MOVETD({5,200)

CALL LINETO(S,9)

CALL LINETO (60,150)

CALL LINETO (120,5)

CALL LINETO (120,200)

LOCATE 5,4 CALL TEXTSIZE(18)

PRINT "MICROSOFT"
PICTURE OFF
IMAGE$ = PICTURES
PICTURE (1,50)-(255,255), IMAGE$
FOR1Z=0TO -30 STEP -10

SCROLL (0,0+1%)-(210+1%8,210),0,-10

NEXT 12

36

SGN

SGN

Function Syntax
SGN(X)

Action
Indicates the value of X, relative to zero.

Remarks
If X > 0, SGN(X) returns 1.

If X = 0, SGN(X) returns 0.
If X < 0, SGN(X) returns — 1.
Example

€ File Edit Search Run Windows

SGN EHAMPLE

25 0 =25
1 0 =
EOE List S=———1

REM *** This demonstrates the use of
REM *** the SGN Function.

LET X =25 LET ¥ = 0: LET Z = (-25)
PRINT X,Y,Z: PRINT

PRINT SGN(X),SGN(Y),SGN(2)

END

SHARED

Statement Syntax

SHARED SHARED variable-list
0.0 Action
J Makes specified variables within a subprogram common to variables of the

same name in the main program.

Remarks

The variable-list is a list of variables, separated by commas, that will be
shared by the subprogram and the main program. If the variable to be
shared is an array, its name must be followed by parentheses. If the value
of the variable is altered within the subprogram, the value is changed for
that variable in the main program, and vice versa.

The SHARED statement must be used within a subprogram. A subprogram
can have several SHARED statements for different variables, just like a pro-
gram can have several DIM statements for different variables.

It is advisable to group all of one subprogram’s SHARED statements at the
top of the subprogram.

Example

r

& File Edit Search Run Windows

SHARED EKAMPLE

--COUNTY-- SALES Tax® $ OWED
Jefferson 1087.5 5 54.36
King 1600 8.1 129.6
Clackemes 2000 4 60
N List D

OPEN "SelesByCounty” FOR INPUT AS #2
PRINT "--COUNTY--","SALES","Tax®","$ OWED"
WHILE NOT EOF(2)
INPUT #2, COUNTY$, SALESTOTAL, TAXRATE!
PRINT COUNTYS$, SALESTOTAL, TAXRATEL,;
CALL TAXCALC(SALESTOTAL, TAXRATE!)
PRINT TAXAMOUNT!
WEND.CLOSE *2

=
i

SUB TAXCALC (TOTAL, RATE!) STATIC
SHARED TAXAMOUNT!
TAXAMOUNT! = (CINT(RATE! * TOTAL))/100
END SUB

=14

2

&

<)

SIN

Function Syntax

SIN SIN(X)
Action
Returns the sine of X, where X is in radians.
Remarks

The evaluation of this function is performed in double precision in the
decimal version. In the binary version, results are given in single preci-
sion when the argument is in single precision and in double precision
when the argument is in double precision.

See Also
COS, TAN

Example

& File Edit Search Run Windows

SIN EHAMPLE

The Sine of X is .99749498660401

REM *** This demonstrates the use of
REM *** the SIN Function.

LET X =15
PRINT "The Sine of X is ":SIN(X)
END

238

SOUND

SOUND

Statement Syntaxes

SOUND frequency, duration| [volume]|,voice]|]
SOUND WAIT
SOUND RESUME

Action
Produces a sound from the speaker, builds a queue of sounds, and plays a
queue of sounds.

Remarks

The SOUND statement produces music or other sounds through the speak-
er. Harmony with various simultaneous tones is possible by using the
voice parameter in conjunction with the WAVE statement.

The SOUND WAIT statement causes all subsequent SOUND statements to
be queued until a SOUND RESUME statement is executed. This can be
used to synchronize voices.

The frequency can be either an integer or a floating-point number. It
indicates the pitch to be produced in cycles per second.

One octave of frequencies is:

C 523 G 784
D 587 A 880
E 659 B 988
F 698

Other frequencies can be calculated by multiplying or dividing the
numbers above by 2. For example, C in the next higher octave would be
1046.

The duration can be an integer or floating-point number in the range O to
77. It determines for what time span the sound will be produced. One
second is represented by a duration of 18.2. Thercfore, the number 18.2
as a duration argument would produce a tone that lasts one second. The
maximum argument, 77, would produce a tone that lasts about 4.25
seconds.

When the SOUND statement produces a sound, that sound continues for

the length of the duration. Any other subsequent SOUND statements

executed are placed in a queue and are played after the duration of the PR
former one is complete.

The number given for volume can range from 0 (no volume) to 255 (full
volume). The default volume is 127. The volume argument is ignored if
the system is in multi-voice mode.

240

SOUND

The voice argument indicates which voice is being controlled. Voice 0 is
the default. When the system is in single-voice mode, the voice argument
must be 0 or an “lIllegal function call” error message is generated. If the
system is in multi-voice mode, the voice can range from 0 to 3.

Multi-voice mode is enabled by any WAVE statement other than WAVE 0,
which disables multi-voice mode.

Warning You can use the SOUND WAIT statement to synchronize
multiple voices, playing them with the SOUND RESUME
statement. The queue that holds the SOUND information
has finite room; if too many SOUND statements are
queued without using the SOUND RESUME, an “Out of
memory” error message is generated.

REM **Play the Twilight Zone them

Theme song: FOR I%=1TO 4
SOUND 494,4,127
SOUND 523,4,127
SOUND 494,4,127
SOUND 392,4,127

NEXT |%

SPACE$

Function Syntax

SPACE$ SPACES(X)

Action
Returns a string of spaces of length X.

Remarks

The expression X is rounded to an integer and must be in the range
0 to 32767.

See Also

SPC

Example

" & File Edit Search Run Windows
SPACES EXAMPLE
! = sl ===

2 REM ** This demonstrates a use of
3 REM ** the SPACE$ Function.
4 FORIZ=1TO 10
3 INTERVALS = SPACES$(IZ)
67 PRINT INTERVALS; IZ
8
g

NEXT 1%

10

Command

[\

SPC

SPC

Function Syntax
SPC(I)

Action

Generates spaces in a PRINT statement. I is the number of spaces to be

skipped.

Remarks

SPC can be used only with PRINT and LPRINT statements. I must be
in the range 0 to 255. A semicolon (;) is assumed to follow the SPC(1)

function.

See Also
PTAB, SPACES$, TAB

Example

& File Edit Search Run Windows

R I

SPC EHAMPLE

En———==JINY

REM ** This demonstrates s use of
REM ** the SPC Funclion.
FORIZ=1TO 10

PRINT SPC(1%);1%
NEXT IR
END

SQR

SQR

Function Syntax
SQR(X)
Action

Returns the square root of X.

Remarks
X must be > = (.

The evaluation of this function is performed in double precision in the
decimal version. In the binary version, results are given in single preci-
sion when the argument is in single precision and in double precision
when the argument is in double precision.

Example

& File Edit Search Run Windows
SOR EHAMPLE

S 2.2360679774998

10 31622776601684

15 38729633462074

20 44721359549996
ED st
REM *¥* This demonstrates the use of [0

REM *** {he SOR Function.

FOR OBJECT®=5TO 20 STEP §
PRINT OBJECT®, SQR(OBJECT®)

NEXT OBJECTZ

[\

STOP

Statement Syntax

STOP STOP
- °) Action
_J Terminates program execution and returns to immediate mode.
Remarks

STOP statements can be used anywhere in a program to terminate execu-
tion. STOP is often used for debugging. When a STOP is encountered,
the “Program Stopped” dialog box is displayed.

The STOP statement does not close files.
Execution can be resumed by issuing a CONT command.

See Also
CONT

Example

% File Edit Search Run Windows
CONT & STOP EHAMPLE

9.89

K2
n

List

REM ** THIS IS AN EXAMPLE OF THE USE OF
REM ** THE STOP & CONT STATEMENTS.
CHECK! = 25: DEBIT! = 9.89!
PRINT CHECK!, DEBIT!

sTopP
LET BALANCE! = CHECK! - DEBIT!
PRINT BALANCE!

END
=== Commeand
CONT|

STR$ - STRING$

Function Syntax

STR$ STR$(X)
0,0 Action
o) _] Returns a string representation of the value of X.
Remarks

The string returned includes a leading space for positive numbers and a
leading minus sign for negative numbers.

STRS$ is not used to convert numbers into strings for random file opera-
tions. For that purpose, use the MKI$, MKS$, and MKD $ functions.

See Also
VAL

Example

ZIP$ = STR$(ZIPCODE)
IF LEFT$(ZIP$, 3) = "9681° THEN CITY$ = “Seattle”

Function Syntax
STRING$ STRING $(1,J)
STRING $(1,X8)
& Action
The first syntax returns a string of length | whose characters all have
ASCII code J.

The second syntax returns a string of length I whose characters are all the
first character of X 8.

STRINGS$ - SUB/END SUB/EXIT SUB

Example

& File Edit Search Run Windows
STRINGS EHAMPLE

List ===l
REM *** This program demonstrates the [
AAAAA REM *** yge of the STRINGS Function. | |
LET X$ = STRING$(6,45)

PRINT X$;Daily Sales™;X$

L — T __IREM *** Another example

LET Y$ = “ABCDE"

PRINT:PRINT STRINGS$(S,Y$);

Statement Syntaxes

SUB SUB subprogram-name|(formal-parameter-list) |STATIC
END SUB END SUB

EXIT SUB EXIT SUB

0 Actions

_] Starts, ends, and exits from a subprogram.

Remarks

The subprogram-name can be any valid Microsoft BASIC identifier up
to 40 characters in length. This name cannot appear in any other SUB
statement.

The formal-parameter-list can contain two types of entries: simple vari-
ables and array variables. The subscript number that is optional after array
variables should contain the number of dimensions in the array, not the
actual dimensions of the array. Entries are separated by commas. The
number of parameters is limited only by the number of characters that
can fit on one logical BASIC line.

SUB/END SUB/EXIT SUB

STATIC means that all the variables within the subprogram retain their
values from when control leaves the subprogram until it returns. The
values of static variables cannot be changed by actions taken outside the
subprogram.

The body of the subprogram, the statements that make it up, occur
between the SUB and END SUB statements.

The END SUB statement marks the end of a subprogram. When the pro-
gram executes END SUB, control returns to the statement following the
statement that called the subprogram.

The EXIT SUB statement routes control out of the subprogram and back
to the statement following the CALL subprogram statement.

Before BASIC starts executing a program, it checks all subprogram-related
statements. If any errors are found, the program doesn’t execute. The
mistakes are not trappable with ON ERROR, nor do they have error codes.
The following messages can appear in an error dialog box when the
corresponding mistake is made:

Tried to declare a SUB within a SUB.
SUB already defined.

Missing STATIC in SUB statement.
EXIT SUB outside of a subprogram.
END SUB outside of a subprogram.
SUB without an END SUB.

SHARED outside of a subprogram.

A thorough discussion of the use and advantages of subprograms can be
found in Chapter 6, “Advanced Topics.”

LA

SUB/END SUB/EXIT SUB

See Also
CALL, SHARED

Example

€ File Edit Search Run Windows
SUB EHAMPLE

-COUNTY - SALES Tax® $ OWED
Jefferson 1087.5 5 5438
King 1600 8.1 1296
Clackamas 2000 4 BO

T ——]|

OPEN "SalesByCounty™ FOR INPUT AS *#2
PRINT "--COUNTY--","SALES", Tax®","$ OWED"
WHILE NOT EOF{2
INPUT #2, COUNTYS$, SALESTOTAL, TAXRATE!
PRINT COUNTYS$, SALESTOTAL, TAXRATEL,;
CALL TAXCALC{SALESTOTAL, TAXRATE!)
PRINT TAXAMOUNT!
WEND:CLOSE #2

SUB TAXCALC (TOTAL, RATE!) STATIC
SHARED TAXAMOUNT!
TAXAMOUNT! = (CINT(RATE! * TOTAL))/ 100
END SUB

S

i

T ™ F i

Statement Syntax

SWAP SWAP variable,variable
0.0 Action
_I Exchanges the values of two variables.
Remarks

Any type variable may be swapped (integer, single precision, double preci-
sion, string), but the two variables must be of the same type or a “Type
mismatch” error message is generated.

If the second variable is not already defined when SWAP is executed, an
“Illegal function call” error message will be generated.

Example

& File Edit Search Run Windows

| SWAP EHAMPLE
A B 234 999
B A 999 234

fiee—= st =r—
REM *** This demonstrates the use of the &
REM *** SWAP Statement.

LET FIRSTS$ = "A" : LET SECOND$ = "B"
LET X% = 234 : LET Y% = 999

PRINT FIRST$,SECONDS X%,Y%

SWAP FIRST$,SECONDS: SWAP X% Y%
PRINT FIRST$,SECONDS X%, Y%

END

SYSTEM - TAB

SYSTEM

Statement Syntax
SYSTEM

Action
Closes all open files and returns control to the Finder.

Remarks

When a SYSTEM command is executed, all open files are closed and the
Finder is reloaded.

The same result can be achieved by selecting the Quit selection from the
File menu.

When SYSTEM is executed in the program or in the Command window or
from the Quit selection on the File menu, the interpreter checks to see if
the program in memory has been saved. If it hasn’t been, a dialog box
appears to prompt the user to save the program.

250

TAB

i)

Function Syntax
TAB(1)

Action
Moves the print position to I.

Remarks

If the current print position is already beyond space I, TAB goes to that
position on the next line. Space 1 is the leftmost position, and the right-
most position is the width minus one. 1 must be in the range 1 to 255.
TAB may only be used in PRINT and LPRINT statements.

A semicolon (;) is assumed to precede and to follow the TAB(I) function.

See Also
PTAB, SPC

Example

& File Edit Search Run Windows

TAB - TAN

TAB EHAMPLE

Name

G.T. Jones
T. Bear

B. Charlton
B. Moore

G. Best

N. Styles

Amount Due [E[J

100
13.5

List

REM *** This is an example of the use L
REM *** of the TAB Function. |
PRINT * Name”;TAB(16);"Amount Due”
PRINT TAB(2),"----", TAB(16);"--------
FORIZ=1TODE

READ A$B

PRINT " ";A$;TAB(18),B
NEXT IZ
END

DATA "G.T. Jones",25,"T. Bear", 1
DATA "B. Charlton”, 33, "B. Moore”,99
DATA "G. Best”, 100, "N. Styles”, 13.50

TAN

Function Syntax
TAN(X)

Action

Returns the tangent of X where X is in radians.

Remarks

The evaluation of this function is performed in double precision in the
decimal version. In the binary version, results are given in single preci-
sion when the argument is in single precision and in double precision
when the argument is in double precision.

See Also
COS, SIN

251

TAN - TIME$

Example

& File Edit Search Run Windows
1 TAN EHAMPLE

45231565944 169 [E[] List ===
REM *** This program illustrates the use {J
REM *** of the TAN Function. |
LET TRIG = TAN(9)
PRINT TRIG

END

252

TIME$

pls £

Statement Syntax

TIME $=string-expression
Function Syntax

TIMES$

Actions
The statement sets the current time.

The function retrieves the current time.

Statement Remarks

The TIMES statement sets the clock to the time given by the time in the
string-expression. It requires a string in one of the following forms:

bh (sets the hour; minutes and seconds default to 00)

bh:mm (sets the hour and minutes; seconds default to 00)

bh:mm:ss (sets the hour, minutes, and seconds)

A 24-hour clock is used. Thus 8:00 p.m. would be shown as 20:00:00.

TIME$

Function Remarks

The TIMES$ function returns an eight-character string in the form
hb:mm:ss, where bb is the hour (00 through 23), mm is minutes (00
through 59), and ss is seconds (00 through 59).

Example

TIMES$ - "08:00:00"

Example

& File Edit Search Run Windows

i TIMES EHAMPLE
19:45:28 Ell List
19:45:29 REM *** This demonstrates the use &

REM *** the TIME$ Function.
LET CHRONOSS = TIMES
PRINT CHRONOS$

FOR IZ =1 TO 3000:NEXT I%
LET CHRONOSS = TIMES
PRINT CHRONOSS

L3>
AN

TIMER ON/TIMER OFF/TIMER STOP/TIMER

TIMER ON
TIMER OFF
TIMER STOP
TIMER

& el

Statement Syntaxes

TIMER ON
TIMER OFF
TIMER STOP

Function Syntax
TIMER

Action
The statements enable, disable, and suspend event trapping based on time.

The function retrieves the number of seconds that have elapsed since
midnight.

Remarks
The TIMER ON statement enables event trapping based on time. This

allows you to alter the flow of the program based on the reading of the
timer by using the ON TIMER...GOSUB statement.

The TIMER OFF statement disables ON TIMER event trapping based on
time.

The TIMER STOP statement suspends ON TIMER event trapping. It is simi-
lar to TIMER OFF in that the GOSUB is not performed. However, TIMER
STOP differs in that the GOSUB will be performed as soon as a TIMER ON
statement is executed, if any events occurred while the event trap was
stopped.

The TIMER function can be used to generate a random number for the
RANDOMIZE statement. It can also be used to time programs or parts
of programs.

See Also

“Event Trapping” in Chapter 6, “Advanced Topics”

TIMER ON/TIMER OFF/TIMER STOP/TIMER

Example

This program segment prints to the screen the number of seconds that a
program section took to execute.

& File Edit Search Run Windows

TIMER EHAMPLE
What is the Account 7 0554678
What is the Debit ? 345.89
Another 7 NO
You spent 19 seconds on this task.

Sl List =
REM *** This shows a use of the TIMER Function. &
START = TIMER

LET ANSWERS = "YES"
WHILE ANSWERS ="VES"
INPUT"What is the Account 7 *, ACCOUNT
INPUT"What is the Debit ? ", DEBIT
INPUT "Ancther ? ", ANSWER$
WEND
FINISH = TIMER
PRINT "You spent ";FINISH - START,;" seconds on";
PRINT " this task.”
END

255

TRON/TROFF

Statement Syntax

TRON TRON
TROFF

TROFF

=0 Action

_I Traces the execution of program statements.
Remarks
The Trace On option in the Run menu is the same as the TRON
statement.

As an aid in debugging, the TRON statement (executed in either immedi-
ate or program execution mode or selected from the Run menu) enables a
trace flag. The currently executing statement is highlighted with a rectan-
gle in the List window, if a List window is visible.

If there is more than one statement on a line, each statement is run and
highlighted separately. The trace flag is disabled with the TROFF state-
ment, the Trace Off menu option, or when a NEW command is executed.

Example
] File Edit Search Run Windows b
TRON EHAMPLE
1 10 20

D]

V57— list
REM *** This progrem demonstrates the use of
REM *** TRON and TROFF.

LETK=10

TRON

FORJ=1T702

LETL=K+ 10

PRINT JX.L

_ __si0p
256 LETK=K + 10

TROFF

UBOUND/LBOUND - UCASE$

Function Syntax

UBOUND UBOUND(array-name| dimension|)
LBOUND(array-name| ,dimension))

LBOUND
Action
Returns the upper and lower bounds of the dimensions of an array.
Remarks
See “LBOUND” for a discussion of both LBOUND and UBOUND.
Function Syntax

UCASE$ UCASES$ (string-expression)

o) Action
_I Returns a string with all alphabetic characters in uppercase.

Remarks

This function makes a copy of the string-expression, converting any lower-
case letters to the corresponding uppercase letter.

The UCASES$ function provides you with a way to compare and sort
strings that have been entered with different uppercase and lowercase for-
mats. For example, if you had a program line, INPUT " Do you want to
continue? ", ANSWERS$, the user might enter, “YES”, “Yes”, “yes”, “Y”, or
“y”. You could route program control in the next statement by testing
the first letter of the UCASES$ of the ANSWER $ against “Y". This makes
different affirmative responses of different users work in the program.

Another use of the UCASES$ function is when you have a form entry pro-

gram. The person or people putting in form data may not consistently use
uppercase format. For example, a user might enter the names “atlanta”,
“AUSTIN", and “Buffalo”. If a normal BASIC program to alphabetize names

sorted these three, they would be ordered “AUSTIN”, “Buffalo”, and final-

ly, “atlanta”, because when strings are sorted they are compared based on

their ASCII character numbers. The ASCII character number for “A” is

lower than that for “B”, but all uppercase letters come before the lower-

case letters, so the character “B” comes before the character “a”. If you 257
sort based on the UCASES$ representation of the strings, the results are /
alphabetically ordered.

UCASES$ - VAL

Example

& File Edit Search Run Windows

UCASES$ Example
Willie Dixon carey bell WALTER HORTON
WILLIE DIXON CAREY BELL WALTER HORTON

[N Il =———"————|
REM ** This shows the use of the UCASE$ function.
A$ = "Willie Dixon”

B$ = "carey bell”

C$ = "WALTER HORTON"

PRINT AS$, BS, CS|

PRINT UCASES$(AS$), UCASES(BS), UCASES(CS)

L—

258

Function Syntax

VAL VAL(X$)
Action
To return the numerical value of string X$8. The VAL function also strips

leading blanks, tabs, and linefeeds from the argument string,

VAL is not used to convert random file strings into numbers. For that
purpose, use the CVI, CVS, and CVD functions.

See Also
STR$

VAL - VARPTR

Example

& File Edit Search Run Windows
VAL EHAMPLE

32 76

e %
REM **#* This program illustrates the use of [0
REM *** the VAL Function.
LET ADD$ = 32"

LET B = 44 + VAL(ADDS)
PRINT ADD$ B

VARPTR

Function Syntax
VARPTR(variable-name)

Action

Returns the address of the first byte of data identified with the variable-
name. A value must be assigned to the variable-name prior to execution
of VARPTR, or an “lllegal function call” error message is generated. Any
type variable name may be used (numeric, string, array). For string vari-
ables, the address of the first byte of the string descriptor is returned.

The address returned is a number in the range 0 to 16777215. For furth-
er information, see Appendix D, “Internal Representation of Numbers.”

VARPTR is usually used to obtain the address of a variable or array so that
it may be passed to an assembly language subroutine. A function call of
the form VARPTR(A(0)) is usually specified when passing an array, so that
the lowest-addressed element of the array is returned.

Note

All simple variables should be assigned before calling VARPTR for an array
element, because the addresses of the arrays change whenever a new
simple variable is assigned.

See Also
PEEK, POKE

VARPTR - WAVE

Example

€ File Edit Search Run Windows
{ URRPTR EHAMPLE

[—n————"—""list —_I
REM *** This program illustrates the use of
REM *** the VARPTR Function.
REM *** Fill array with machine language program.
DIM CODE®(50)
i='0
INFOLOOP:
READ A : IF A = -1 THEN MACHINEPROG:
CODE®(I) = A: 1 = | + 1. GOTO INFOLOOP:
MACHINEPROG:
X8=10:Y8=0
SETYTOX=VARPTR(CODE®(0)): CALL SETYTOX(X% VARPTR(Y®)
PRINT Y&
END
REM *** Machine language program for SETYTOX(X®,VARPTR(Y®))
DATA &H4ES6,&HO000 &H206E &HO008 &H30AE &HO00C &H4ESE
DATA &H4E7S,-1

260

WAVE

Statement Syntax
WAVE voice|,|wave-definition|| phase])

Action

Defines the shape of a sound wave for a voice and enables or disables
multi-voice sounds.

Remarks

The WAVE statement adds versatility to the SOUND statement. By using a
number array to define the shape of the sound wave to be played through
the speaker, you can produce more specific types of sound. The defini-
tion of the wave is contained in an integer array. Like PUT, the array can
be of the form x{(index|,index...|index]])]. Each element of the array
contains a height number. The height numbers, when put together, define
a curve; that curve is the wave shape.

WAVE

The voice indicates the number of the voice being defined. It can range
from O to 3.

The wave-definition defines the shape of the fundamental sound wave for
the voice. The wave-definition can be SIN or the name of an integer ar-

ray with at least 256 elements. These elements must each be in the range
— 128 to 127. The default wave-definition of voice 0 is the square wave.

The pbase defines the subscript number of the first array element to be
sampled. It defaults to 0.

An “lllegal function call” error message is generated if the wave-definition
array:

8 Is not yet defined
® Has fewer than 256 elements
@ Has a value outside of the range — 128 to 127

To save space, the wave-definition array should be erased with the ERASE
statement after the WAVE statement is executed.

The statement “WAVE 0” puts the system in single-voice mode, the de-
fault. In this mode, a simple square wave is produced. This slows pro-
gram execution speed only two percent. Any other form of the WAVE
statement puts the system into multi-voice mode which slows program
execution speed by 50 percent or more.

If any voice but 0 is specified, the wave-definition array argument is
mandatory.

201

WAVE

Example

WAVE 1, SIN: REM **Set the voice 1o sine wave®*
60SUB Themesong: REM **Play the themesong**
REM **Now create new wave form**
DIM AR(260): REM **Set dimension for WAVE array**
FOR 18 =-127T0 128
LET AB(I18+127) = INT (7SI*(ATN(IR)))

NEXT I8
WAVE 1, A% : REM **Sel new wave form**
60SUB Themesong: REM** Play it with new wave form**
END
Themesong: FOR I8=1TO0 4

SOUND 494,5,,1

SOUND 523 ,4,,1

SOUND 494,4,,1

SOUND 392,4,,1

NEXT I%

RETURN

Statement Syntax

WHILE.. WEND WHILE expression |statements] WEND
o O Action
_' Executes a series of statements in a loop as long as a given condition is
true.
Remarks

If the expression is true (that is, it evaluates to a non-zero value), then
statements are executed until the WEND statement is encountered.
BASIC then returns to the WHILE statement and re-evaluates the expres-
sion. If it is still true, the process is repeated. If it is not true, execution
resumes with the statement following the WEND statement.

WHILE... WEND loops may be nested to any level. Each WEND matches
the most recent previous WHILE that has not been completed with an
intervening WEND. An unmatched WHILE statement causes a “WHILE
without WEND" error message to be generated, and an unmatched WEND
statement causes a “WEND without WHILE” error message to be
generated.

Warning Do not direct program flow into a WHILE..WEND loop
without entering through the WHILE statement, as this
will confuse BASIC’s program flow control.

WHILE...WEND - WIDTH

Example

€ File Edit Search Run Windows

IWHILE/WEND EHAMPLE
This progrem converts decimal numbers to Octal and Hexadecimal values
Enter the decimal number to convert 7 999
Octal = 1747
Hexadecimal = 3E7
Another number ? NO
S lee—rr—————- List
REM *** This program illustrates the use of
REM *** the WHILE/WEND Statement.
CLS:PRINT "This program converts decimal numbers”;
PRINT * to Octal and Hexadecimal values”
LET ANSWERS = "YES®
| WHILE (LEFT$(ANSWERS, 1) = "Y")
INPUT "Enter the decimal number to convert 7 ",DECIMAL
PRINT "Octal = ",0CT$(DECIMAL)
PRINT "Hexadecimal = * HEX$(DECIMAL)
INPUT “Another number 7 *,ANSWER$
WEND

WIDTH

s)

Statement Syntax

WIDTH output-device, |size | | print-zone |
WIDTH #filenumber, [size| | print-zone |
WIDTH |[size| |,print-zone|

WIDTH LPRINT [size| |, print-zone)|

Function Syntax
WIDTH(string-expression)

Actions
The statement sets the printed line width and print zone width in the
number of standard characters for any output device.

The function returns the width of a string, in pixels, as counted on the
screen.

.Statement Remarks

The output-device may be “SCRN:”, “CLIP:", “COMI1:", or “LPT1:”, and if
not specified is assumed to be “ SCRN: ™.

WIDTH

The integer size is the number of standard characters that the named out-
put device line may contain. However, the position of the pointer or the

print head, as given by the POS or LPOS function, returns to zero after po-
sition 255. In Macintosh’s proportionally spaced fonts, the standard width
for screen characters is the equivalent of the width of any of the numerals
0 through 9. The default line width for the screen is 255.

If the size is 255, the line width is “infinite”; that is, BASIC never forces a
carriage return character.

The filenumber is a numeric expression that is the number of the file that
is to have a new width assignment.

The print-zone argument is the value, in standard characters, to be as-
signed for print zone width. Print zones are similar to tab stops, and they
are forced by comma delimiters in the PRINT and LPRINT statements.

If the device is specified as SCRN;, the line width is set at the screen. Be-
cause the screen uses proportionally spaced fonts, lines with the same
number of characters may not have the same length.

If the output device is specified LPT1:, the line width is sect for the line
printer. The WIDTH LPRINT syntax is an alternative way to set the
printer width.

When files are first opened, they take the device width as their default
width. The width of opened files may be altered by using the second
WIDTH statement syntax shown above.

For detailed information on generalized device /O, see Chapter 5,
“Working With Files and Devices.”

Function Remarks

The WIDTH function is useful for measuring the width of strings which
are to be printed in an output window. If the string to be printed is too
long to fit, the program can be designed to enlarge the output window to
accommodate the string.

See Also
LPOS, LPRINT, POS, PRINT, PTAB, TAB

Example

WIDTH "LPT1:", 7520, 12
WIDTH, 60, 15
WIDTH #1, 40
WIDTH #3,,12

WINDOW

WINDOW

Statement Syntaxes

WINDOW window-id| .| title]|,| rectangle] | type)]]
WINDOW CLOSE window-id

WINDOW OUTPUT window-id

WINDOW OUTPUT #file-number

Function Syntax
WINDOW(n)

Actions

The statements create an output window, close an output window, cause a
window other than the active window to be the current output window,
or redirect output from the screen to a file.

The function returns information about the active and current output win-
dow.

Statement Remarks

Macintosh applications frequently use multiple windows. The WINDOW
statement gives you the ability to create multiple windows in your appli-
cations.

The active window is the highlighted, frontmost window. The INPUT
statement, dialog events, and DIALOG functions are relative to the active
window. The current output window is affected by print and graphics
statements such as LINE, PICTURE, and ROM calls. The EDIT$ and BUT-
TON functions return information about the current output window. The
active window is always the same as the current output window, unless
the WINDOW OUTPUT statement is used.

Input
Statements €] ACTIVE
MOUSE Functions e WiNDOW
DIALOG
PRINT & Grephics _al CURRENT
Statements OuUTPUT
EDIT$ Function e WINDOW
BUTTON Function

WINDOW

The window-id is a number from 1 to 4 which identifies an output
window. Window 1 appears when BASIC is started.

The title is a string expression that is displayed in the window’s title bar,
if it has a title bar. Window 1 displays the name of the program or
“Untitled” if no program is loaded when BASIC initializes it.

The rectangle specifies the physical screen boundary coordinates of the
created window. It has the form (x1,y1)-(x2,y2) where (x1,y1) is the
upper-left coordinate and (x2,y2) the lower-right coordinate (relative to
the screen) that define the boundaries where the window will be
displayed. If no coordinates are specified, the window appears at the
current default for that window.

The type is a number which indicates the type of window the program is
creating. The types are:

Document window. This has a size box and a title bar.

2 Dialog box with a “frame” or two-line border. This type of
window has neither a size box nor a title bar, so the user may
not move it or change it with the mouse.

3 Window with a simple one-line border.
4 Window with a shadow.

Window types — 1 through — 4 correspond directly to the 1 through 4
window types with one exception. The negative numbered types are
modal dialog boxes. When a modal dialog box is visible, any attempt to
select outside the box results in a beep. If Command-period is pressed
when one of these windows is active, BASIC returns to edit mode, unless
the ON BREAK statement has been executed.

The WINDOW statement creates an output window if none currently ex-
ists and makes it visible and active. The WINDOW statement also makes
the created window the current output window.

When there are multiple output windows, the user of the program cannot

activate a window by clicking the mouse in that window, as is normally

done. The program can trap the event with the ON DIALOG event trap if

the DIALOG(0) function returns 3. The program can then make the
clicked window both active and current with the WINDOW statement. <0/

WINDOW CLOSE window-id causes the named window to become invisi-
ble. It also releases all related memory storage, including edit fields and
buttons that existed within that window,

WINDOW

WINDOW OUTPUT window-id causes the named window to become the
current output window without forcing it to be the active window. This

adds the ability to direct output (text, graphics, etc.) to another window

without changing the active window.

BUTTON and EDIT FIELD functions always return values based on the
current output window. Dialog events, on the other hand, are only trig-
gered in the active window. Therefore, if you are trapping dialog events,
remember to set the active window to be the current output window be-
fore using the BUTTON or EDIT$ functions. The following example
demonstrates how this can be done.

Set up windows and edit field
WINDOW 1, current output window" (5,170)-(250,280),1
WINDOW 2, active window",(0,40)-(240,150),1

PRINT "Enter name and press RETURN"

EDIT FIELD 1,*,{10,30)-(150,45),1

DIALOG ON ‘turn on dialeg trapping
‘if event occurs, go to the handledg routine
ON DIALOG 60SUB handledg

WINDOW OUTPUT 1

loop:
IF LEN(nam$)<>0 THEN PRINT “Hello, “;nam$
60TO loop:

* Routine to handle the event trap and retrieve
the contents of the edit field
handledg:
IF DIALDG(0)<>6 THEN RETURN ‘exit if return not pressed
savecurrentwindow=WINDOW(1) ‘save number of current window
WINDOW DUTPUT WINDOW(0) ‘make active window the current window
nam$=EDITS$(1) retrieve the contents of the edit field
WINDOW OUTPUT savecurrentwindow ‘restore the previous
‘current output window
RETURN

This example gets the user’s name from an edit field in the active window
and then prints it in the current output window. The event-handling rou-
tine (“handledg”) is executed whenever the user presses the Return key.
The “handledg” routine saves the current output window number in the

WINDOW

savecurrentwindow variable. Then, it makes the active window into the
current output window. Now the “handledg” routine can read the con-
tents of the edit field into the name string. Finally, “handledg” restores

the previous current output window and returns to the main program.

WINDOW OUTPUT #file-number allows graphics devices other than the
screen to be affected by graphic statements such as CIRCLE, PSET, PIC-
TURE, and ROM calls. Currently, only files opened to LPT1: are valid with
this statement. As other devices are introduced which support graphics,
this will change.

Function Remarks

When you write programs using multiple output windows, it becomes
critical to have information passed to the program about the status and
size of an output window so the program can respond to different situa-
tions. The WINDOW function provides this information.

The WINDOW function returns 6 different types of information, depend-
ing on the value of the z» argument. The list below describes the informa-
tion returned by each.

0 Returns the window-id of the active output window.
WINDOW(O0) returns 0O if no output window is active.

1 Returns the window-id of the current output window. This is
the window to which PRINT or graphics statements send their
output.

2 Returns the width of the current output window.

Returns the height of the current output window.

4 Returns the x coordinate in the current output window where
the next character will be drawn.

5 Returns the y coordinate in the current output window where
the next character will be drawn.

2069

270

WRITE

WRITE

Statement Syntax
WRITE | expression-list |

Action
Outputs data to the screen.

Remarks

If the expression-list is omitted, a blank line is output. If the expression-
list is included, the values of the expressions are output to the screen.
The expressions in the list may be numeric or string expressions. They
must be separated by commas.

When the printed items are output, each item is separated from the last by
a comma. Printed strings are delimited by quotation marks. After the last
item in the list is printed, BASIC inserts a carriage return/linefeed
sequence.

WRITE outputs numeric values without the leading spaces PRINT puts on
positive numbers.

Example

& File Edit Search Run Windows
WAITE EHAMPLE

80,90,"The End”
80 90 The End

EC List @]

REM *** This illustrates the difference between
REM *** the WRITE and FRINT Statements.
A=B80:B=90:C$="The End"

WRITE AB.CS

PRINT AB,CS

WRITE#

WRITE #

Statement Syntax
WRITE# filenumber,expression-list

Action
Writes data to a sequential file.

Remarks

The filenumber is the number under which the file was opened with the
OPEN statement. The expressions in the list are string or numeric expres-
sions. They must be separated by commas.

The difference between WRITE# and PRINT# is that WRITE# inserts
commas between the items as they are written to the file and delimits
strings with quotation marks. Therefore, it is not necessary to put explicit
delimiters in the list. A carriage return/linefeed sequence is inserted after
the last item in the list is written to the file.

See Also

OPEN, PRINT#, WRITE
Example

& File Edit Search Run Windows

WRITE# EHAMPLE
32 -6 Kath
" ——

REM *** This progrem illustrates the use of the [
REM *** WRITE # Statement. [|
LET A$ =" 32" :LET B = -6 : LET C$ = "Kath"
OPEN "0", #1, "INFO"

WRITE *1, A$;B,C$
CLOSE *1
OPEN "I",# 1, "INFO"
§ — | INPUT *1, A$B,CS

PRINT A$,B,C$
CLOSE #1

Appendix A:
ASCII Character Codes

Dec

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042

Hex

O0H
O1H
02H
O3H
04H
O5H
OGH
07H
08H
O09H
OAH
OBH
OCH
ODH
OEH
OFH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1DH
1EH
1FH
20H
21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH

T TR T

Dec

043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070

Hex

2BH
2CH
2DH
2EH
2FH
30H
31H
32H
33H
34H
35H

37H

CHR

N B IOV BRRNN=O ™"

C""”’O"’OZZFN‘—"IO"Hmcow:»@'vv oA

Dec

086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

Hex

56H
57H
S8H
S9H
S5AH
5BH
SCH
SDH
SEH
SFH
GOH
G6lH
62H
63H
64H
6SH
6GH
67H
G68H
69H
GAH
G6BH
6CH
6DH
GEH
GOFH
70H
71H
72H
73H
74H
75H
76H
77H
78H
79H
7AH
7BH
7CH
7DH
7EH
7FH

HR

]

— TN X g <

TN R d<eEg "N oD O TRETTOR QA OTR

DEL

Dec=decimal, Hex =hexadecimal(H), CHR=character, LF=Line Feed,
FF=Form Feed, CR=Carriage Return, DEL=Rubout

Non-ASCII
Character Codes

Dec Hesn Chr
128 80 fi
129 81 fi
130 82 C
13 83 3
132 84 N
133 85 0
134 86]
135 87 a
136 88 8
132 89 8
138 8A Y
139 88 d
140 8¢C 8
141 80 c
142 8t é
143 8F [}
144 90 é
145 91 3
146 92 i
147 93 i
148 94 i
149 95 i
150 96 i
151 97 0
152 98 0
153 99 0
154 9 o
155 98 (i
156 9C 0
157 90 u

Dec Hex Chr
158 9t 1}
159 9F i
160 Ao '
161 fl °
162 A2 ¢
163 A3 £
164 A4 §
165 AS .
166 A6 9
167 A? [}
168 A8 ®
169 R9 ©
170 AR ™
(g] AB :
172 AC

173 AD =
174 AE i
1?75 AF a8
176 BO o
1 B1 +
178 B2 ¢
179 B3 2
180 B4 ¥
181 BS 1]
182 B6 o
183 B? z
184 88 n
185 B9 w
186 BA]
187 BB]

Dec Hes Chr
188 BC)
189 BD Q
190 BE)
191 BF 8
192 co &
193 c1 i
194 c2 -
195 c3 v
196 c4 f
192 c5 -
198 c6 A
199 c? «
200 c8 »
201 9
202 CA SP
203 c8 A
204 cc A
205 cD (i}
206 CE (13
207 CF ®
208 Do -
209 D -
210 D2 “
21 D3 "
212 D4 ‘
213 0s ’
214 D6 +
215 0? °
216 (1] i}

Lann ®
- Appendix B: Error Codes
- and Error Messages
—
. Operational Error
Errors Code Message
oy
1 NEXT WITHOUT FOR
A variable in a NEXT statement does not correspond to any pre-
— viously executed, unmatched FOR variable.
2 SYNTAX ERROR
— A line is encountered that contains some incorrect sequence of
— characters (such as an unmatched parenthesis, a misspelled com-
mand or statement, or incorrect punctuation).
[o]
—_ 3 RETURN WITHOUT GOSUB
A RETURN statement is encountered for which there is no previ-
el ous, unmatched GOSUB statement.
4 OUT OF DATA
- A READ statement is executed when there are no DATA state-
- ments with unread data remaining in the program.
- 5 ILLEGAL FUNCTION CALL
- A parameter that is out of range is passed to a math or string
- function. This error may also occur as the result of a negative or
unreasonably large subscript.
- 6 OVERFLOW
7 The result of a calculation is too large to be represented in
) Microsoft BASIC’s number format. If underflow occurs, the result
- is zero and execution continues without an error.
o 7 OUT OF MEMORY
an A program is too large, has too many FOR loops or GOSUBs, too
. many variables, or expressions that are too complicated.
- 8 UNDEFINED LABEL

A line referenced in a GOTO, GOSUB, IF..THEN]...ELSE], or
DELETE statement does not exist.

Microsoft BASIC Interpreter

10

11

12

SUBSCRIPT OUT OF RANGE

Caused by one of three conditions:

1. An array element is referenced with a subscript that is out-
side the dimensions of the array.

2. An array element is referenced with the wrong number of
subscripts.

3. A subscript is used on a variable that is not an array.

DUPLICATE DEFINITION

Caused by one of three conditions:

1. Two DIM statements are given for the same array.

2. A DIM statement is given for an array after the default dimen-
sion of 10 has been established for that array.

3. An OPTION BASE statement has been encountered after an
array has been dimensioned by either default or a DIM state-
ment.

DIVISION BY ZERO

Caused by one of two conditions:

1. A division by zero operation is encountered in an expression.
Machine infinity with the sign of the numerator is supplied as
the result of the division.

2. The operation of raising zero to a negative power occurs.
Positive machine infinity is supplied as the result of the ex-
ponentiation, and execution continues.

ILLEGAL DIRECT

A statement that is illegal in immediate mode is entered as an im-
mediate mode command. For example, DEF FN.

13

14

15

16

17

18

19

20

Error Messages

TYPE MISMATCH

A string variable name is assigned a numeric value or vice versa;
a function that expects a numeric argument is given a string ar-
gument or vice versa. This error can also be caused by trying to
SWAP single precision and double precision values.

OUT OF HEAP SPACE

The Macintosh heap is out of memory. The situation may be
remedied by allocating more space for the heap with the CLEAR
statement. This is described in “CLEAR” in Chapter 7, “BASIC
Reference.”

STRING TOO LONG

An attempt was made to create a string that exceeds 32,767 char-
acters.

STRING FORMULA TOO COMPLEX

A string expression is too long or too complex. The expression

should be broken into smaller expressions.

CAN'T CONTINUE

An attempt is made to continue a program that:

1. Has halted due to an error
2. Has been modified during a break in execution

3. Does not exist

UNDEFINED USER FUNCTION

A user-defined function is called before the function definition
(DEF statement) is given.

NO RESUME

An e¢rror-handling routine is entered, but it contains no RESUME
statement.

RESUME WITHOUT ERROR

A RESUME statement is encountered before an error-trapping
routine is entered.

277

278

Microsoft BASIC Interpreter

21

22

23

26

29

30

35

36

37

38

UNPRINTABLE ERROR

An error message is not available for the error condition which

exists. This is usually caused by an ERROR statement with an un-

defined error code.

MISSING OPERAND

An expression contains an operator without a following operand.

LINE BUFFER OVERFLOW

An attempt has been made to input a line that has too many char-

acters.

FOR WITHOUT NEXT

A FOR statement is encountered without a matching NEXT state-
ment.

WHILE WITHOUT WEND

A WHILE statement is encountered without 2 matching WEND
statement.

WEND WITHOUT WHILE

A WEND statement is encountered without a matching WHILE
statement.

UNDEFINED SUBPROGRAM

A subprogram is called but is not in the program.

SUBPROGRAM ALREADY IN USE

A subprogram is called that has been previously called, but has
not been ended or exited. Recursive subprograms are not per-
mitted.

ARGUMENT COUNT MISMATCH

The number of arguments in a subprogram CALL statement is not
the same as the number in the corresponding SUB statement.
UNDEFINED ARRAY

An array was referenced in a SHARED statement before it was
created.

Disk Errors

Error Messages

Error
Code Message

50 FIELD OVERFLOW

A FIELD statement is attempting to allocate more bytes than
were specified for the record length of a random access file.

51 INTERNAL ERROR

An internal malfunction has occurred in Microsoft BASIC. Report
to Microsoft the conditions under which the message appeared.

52 BAD FILE NUMBER
A statement or command references a file with a file number that
is not OPEN or is out of the range of file numbers specified at
initialization.

53 FILE NOT FOUND

A FILES, LOAD, NAME, or KILL command or OPEN statement
references a file that does not exist on the current disk.

54 BAD FILE MODE

An attempt was made to:

1. Use PUT, GET, or LOF with a sequential file.
2. LOAD a random access file.

3. Execute an OPEN statement with a file mode other than I, O,
or R.

55 FILE ALREADY OPEN

A sequential output mode OPEN is issued for a file that is al-
ready open or a KILL is given for a file that is open.

57 DEVICE IO ERROR
An IO error occurred during a disk IO operation. It is a fatal er-
ror; i.¢., the operating system cannot recover from the error.

58 FILE ALREADY EXISTS

The filename specified in a NAME statement is identical to a
filename already in use on the disk.

Microsoft BASIC Interpreter

61

062

64

67

68

70

74

69, 71-73, 75-255

DISK FULL

All disk storage space is in use.

INPUT PAST END

An INPUT statement is executed after all the data in the file
has been INPUT, or for a null (empty) file. To avoid this error,
use the EOF function to detect the end-of-file.

BAD RECORD NUMBER
In a PUT or GET statement, the record number is either greater
than the maximum allowed or equal to zero.

BAD FILE NAME

An illegal form (e.g, a filename with too many characters) is
used for the filespec with a LOAD, SAVE, or KILL command or an
OPEN statement.

TOO MANY OPENED FILES

An attempt is made to create a new file (using SAVE or OPEN)
when all directory entries are full.

DEVICE UNAVAILABLE

The device that has been specified is not available at this time.

PERMISSION DENIED (DISK WRITE PROTECTED)

The disk has a write protect feature, or is a disk that cannot be
written to.

UNKNOWN VOLUME

A reference was made to a volume which has not been mounted.
To mount another volume in the internal drive while Microsoft
BASIC is active, press Command-Shift-1. To mount another
volume in the external drive, press Command-Shift-2.

UNPRINTABLE ERROR

There is no error message for the error that exists.

Appendix C: Microsoft
BASIC Reserved Words

The following is a list of reserved words used in Microsoft BASIC on the
Macintosh. If you use these words as variable names, a syntax error will

be generated.

ABS

ALL
AND
APPEND
AS

ASC
ATN

BACKPAT
BASE
BEEP
BREAK
BUTTON

CALL
CDBL
CHAIN
CHRS$
CINT
CIRCLE
CLEAR
CLOSE
CISs
COMMON
CONT
CcOs
CSNG
CSRLIN
CvD
CVDBCD
CVl

CVS
CVSBCD

DATA
DATE$
DEF

DEFDBL
DEFINT
DEFSNG
DEFSTR
DELETE
DIALOG
DIM

EDIT

ELSE

END

EOF

EQV

ERASE
ERASEARC
ERASEOVAL
ERASEPOLY
ERASERECT
ERASEROUNDRECT
ERL

ERR

ERROR
EXIT

EXP

FIELD

FILES
FILLARC
FILLOVAL
FILLPOLY
FILLRECT
FILLROUNDRECT
FIX

FN

FOR
FRAMEARC
FRAMEOVAL

FRAMEPOLY
FRAMERECT
FRAMEROUNDRECT
FRE

GET
GETPEN
GOSUB
GOTO

HEX$
HIDECURSOR
HIDEPEN

IF

IMP
INITCURSOR
INKEY 8
INPUT

INSTR

INT
INVERTARC
INVERTOVAL
INVERTPOLY
INVERTRECT
INVERTROUNDRECT

KILL

LBOUND

LCOPY

LEFT$

LEN

LET

LIBRARY

LINE 281
LINETO

Microsoft BASIC Interpreter

LIST
LLIST
LOAD
LOC
LOCATE
LOF
LOG
LPOS
LPRINT
LSET

MENU
MERGE
MID $
MKD $§
MKI $
MKS$
MOD
MOUSE
MOVE
MOVETO

NAME
NEW
NEXT
NOT

OBSCURECURSOR
OCT$

OFF

ON

OPEN

OPTION

OR

OUTPUT

PAINTARC

PAINTOVAL
PAINTPOLY
PAINTRECT

PAINTROUNDRECT

PEEK
PENMODE
PENNORMAL
PENPAT
PENSIZE
PICTURE
POINT
POKE

POS
PRESET
PRINT
PSET

PTAB

PUT

RANDOMIZE
READ
REM
RESET
RESTORE
RESUME
RETURN
RIGHT 8
RND
RSET
RUN

SAVE
SCROLL
SETCURSOR
SGN

SHARED
SHOWCURSOR
SHOWPEN

SIN

SOUND
SPACES$

SPC

SQR

STATIC
STEP
STOP
STR$
STRING $
SUB
SWAP
SYSTEM

TAB

TAN
TEXTFACE
TEXTFONT
TEXTMODE
TEXTSIZE
THEN
TIME
TIMER

TO

TROFF
TRON

UBOUND
UCASE$
USING
USR

VAL
VARPTR

WAIT
WAVE
WEND
WHILE
WIDTH
WINDOW
WRITE

XOR

L o
- Appendix D: Internal
L]
-~ Representation of Numbers
- Microsoft BASIC on the Macintosh features two versions of the Inter-
-~ preter: one has the decimal math pack, the other the binary. This choice
provides maximum flexibility in the design of your programs. For com-
o plete details on the differences and advantages of the two versions, see
— “Choosing Between the Two Versions of Microsoft BASIC™ in Chapter 3,
“Using the Microsoft BASIC Interpreter.” In the tables that follow, internal
o representation is expressed in hexadecimal numbers.
* *®
- Integers in Both Versions
Integers are represented by a 16-bit 2's complement signed binary
- number. Integer math is identical in both binary and decimal versions of
- Microsoft BASIC.
e External Representation Internal Representation
o - 32768 8000
-1 FFFF
-
0 0000
-_ 1 0001
32767 7FFF
-_—
* 4
- Decimal Math Version
With the decimal math pack, the default type for variables is double preci-
P sion, and built-in mathematical functions perform in double precision as
L well.
Double precision Eight bytes as follows: One bit sign followed by 7 bits of biased exponent
- followed by fourteen digits of mantissa, 4 bits each. If the sign bit is 0,
-— the number is positive. If the sign bit is 1, the number is negative. The
unbiased exponent (biased exponent —64) is the power of 10 by which
- the mantissa is to be multiplicd. The mantissa represents a number
— between 0.10000000000000 and 0.99999999999999. For example,
—.00000123456789 would be represented by the hexadecimal number
- BB123450678900000. Positive numbers may be represented up to but not

283

including 1093, The smallest representable number is 107, Decimal dou-
ble precision numbers are represented with up to 14 digits of precision.

Microsoft BASIC Interpreter

Single precision

External Representation Internal Representation

=9.9999999999999D+62 FF99999999999999

- 1D—-64 81100000000600000
0 QOXXXXXXXXXXXXXX
1D-64 0110000000000000

9.9999999999999D + 62 7£99999999999999

Internally, single precision numbers are represented identically to double
precision numbers, except they occupy four bytes, and the mantissa is
three bytes. They represent numbers with up to six digits of precision.

External Representation Internal Representation

—9.99999E+62 FF999999
— 1E-64 81100000
0 00xxXXXXX
1E—-64 01100000
9.99999E+62 7F999999

Binary Math Version

Double precision

With the binary math pack, the default type for variables is single preci-
sion, and built-in mathematical functions perform in single precision or
double precision. Single precision is much faster but less precise.

Eight bytes as follows: One bit sign followed by 11 bits of biased exponent
followed by 53 bits of mantissa (including the implied leading bit which
has a value of 1). If the sign bit is O, the number is positive. If the sign
bit is 1, the number is negative. The unbiased exponent (biased exponent
— 3FF hex or — 1023 decimal) is the power of 2 by which the mantissa is
to be multiplied. The mantissa represents a number greater than or equal
to 1 and less than two. Positive numbers may be represented up to but
not including 1.79 + 1038, The smallest representable number is 2,23+
107398, Binary double precision numbers are represented with up to 15.9
digits of precision.

External Representation Internal Representation

1 3FFO000000000000
-1 BFFG000000000000
0 000XXXXXXXXXXXXX
10 4024000000000000
0.1 3FB999999999999A

Single precision

Representation of Numbers

Four bytes as follows: One bit sign followed by 8 bits of biased exponent
followed by 24 bits of mantissa (including the implied leading bit which
has a value of 1). If the sign bit is 0, the number is positive. If the sign
bit is 1, the number is negative. The unbiased exponent (biased exponent
— 7F hex, — 127 decimal) is the power of 2 by which the mantissa is to
be multiplied. The mantissa represents a number greater than or equal to
1 and less than 2. Positive numbers may be represented up to but not in-
cluding 3.4 *10**. The smallest representable number is 1.18 <1038,
Binary single precision numbers are represented with up to 7.2 digits of
precision.

External Representation Internal Representation

1 3F800000
-1 BF800000
0 00yxxxxx
10 41200000
0.1 3DCCCCCD

In the examples above, y is any hex digit less than or equal to 7, and x is
any hex digit.

—— L]

- Appendix E:
Mathematical Functions

—

- The derived functions that are not intrinsic to Microsoft BASIC can be cal-

~— culated as follows.

F_—

— Mathematical Microsoft
Function BASIC Equivalent

—

_ SECANT SEC(X)= 1/COS(X)

— COSECANT CSC(X)=1/SIN(X)

- COTANGENT COT(X)=1/TAN(X)

- INVERSE ARCSIN(X)=ATN(X/SQR(-XX+1))

—_ SINE

- INVERSE ARCCOS(X)=-ATN (X/SQR(-XX+1))

- COSINE +1,5708

-~ INVERSE ARCSEC(X)=ATN(X/SQR(XX-1))

_ SECANT +SGN(SGN(X)-1)1.5708
INVERSE ARCCSC(X)=ATN(X/SQR(XX-1))

- COSECANT +(SGN(X)-1)1.5708
INVERSE ARCCOT(X)=ATN(X)+1.5708

b COTANGENT
HYPERBOLIC SINH(X)=(EXP(X)-EXP(-X))2

o~ SINE

- HYPERBOLIC COSH(X)=(EXP(X)+EXP(-X))2
COSINE

_—

- HYPERBOLIC TANH(X)=(EXP(-X YEXP(X)
TANGENT +EXP(-X))2+1

—

—

3.1.]

Microsoft BASIC Interpreter

HYPERBOLIC
SECANT

HYPERBOLIC
COSECANT

HYPERBOLIC
COTANGENT

INVERSE
HYPERBOLIC SINE

INVERSE
HYPERBOLIC COSINE

INVERSE
HYPERBOLIC TANGENT

INVERSE
HYPERBOLIC SECANT

INVERSE
HYPERBOLIC COSECANT

INVERSE
HYPERBOLIC COTANGENT

SECH(X)=2/EXP(X)+EXP(-X))

CSCH(X)=2/(EXP(X)-EXP(-X))

COTH(X)=EXP(X (EXP(X)-EXP(-X))2+1

ARCSINH(X)=LOG(X+SQR(XX+1))

ARCCOSH(X)=LOG(X+SQR(XX-1)

ARCTANH(X)=LOG((1+X)/(1-X))/2

ARCSECH(X)=LOG((SQR(-XX+1)+1YX)

ARCCSCH(X)

=LOG((SGN(X)SQR(XX+1)+1yX

ARCCOTH(X)=LOG((X+1)(X-1))2

- .
~ Appendix F: Access to
L3 L]
- Macintosh ROM Routines
o
= Microsoft Basic for the Macintosh gives you access to many of the internal
functions of the Apple QuickDraw graphics package that resides in the
- Macintosh ROM as part of the Mac’s Toolbox. These functions provide
- support for cursor handling, font s¢lection, and drawing of a variety of
shapes and patterns.
—
1
Introduction
__—
To use ROM functions, list the name and any parameters after the CALL
s statement. For example:
CALL MOVETO (250, 100)
g
Passing Many of the routines require that you pass function parameters as in-
-y parameters: tegers. You can declare integers in BASIC in one of two ways. An integer
— variable can be specified by adding a percent symbol to the end of the
variable name or by using the DEFINT statement. For example, if a pro-
— gram statement uses the variable RECTANGLEY%, it will be treated as an
integer variable. Alternatively, you can include the statements DEFINT R
= or DEFINT A-Z at the beginning of your program. Either of these state-
ments causes the variable RECTANGLE to be treated as an integer.
]
— Using the Many of the routines use the VARPTR function, usually referencing an
VARPTR function: array in the form VARPTR(INTEGER% (0)). You must dimension and as-
-~ sign values to the array INTEGERY% (0) through INTEGER% (#n) prior to
the function call. The number of necessary elements varies with the par-
- ticular Toolbox call.
-— Specifying Many of the graphics functions also require screen coordinates. Screen
. screen coordinates: coordinates are “pixel” locations on the output window. (A pixel is the
smallest displayable point on the screen). The screen coordinates 0,0
- refer to the upper-left corner of the output window. The first number
represents the horizontal coordinate and the second the vertical.
In the following descriptions, the names of Toolbox calls are shown in
o bold capital letters. Variables are shown in italics. Any non-reserved name

can be used for the variables.

Microsoft BASIC Interpreter

Text Appearance

The routines supported by Microsoft BASIC allow you to select text
characteristics. The default font attributes that BASIC uses are:

Font: Geneva

Size: 12

Face: 0 (plain text)
Mode: 0 (copy)

These attributes can be changed with the following calls:

Changing CALL TEXTFONT (font)
the text font:

This sets the font used for all text output to the screen. To use a specific
font, place the corresponding font number in parentheses in the
TEXTFONT statement. The available fonts depend upon those installed
in the System file. You can use the Font Mover (from your Mac system
disk) to add or delete fonts to and from your BASIC disk. The following
table shows the font numbers associated with specific fonts:

Font No. Font Name Remarks
0 System font Default font is Chicago.
1 Application font Default application font is
Geneva — size 12.*
2 New York
3 Geneva
4 Monaco Monospaced (non-
proportional) font.
5 Venice
6 London
7 Athens
8 San Francisco
9 Toronto
10 Seattle
11 Cairo

*The default application font was changed from New York to Geneva on
the Finder released May 7, 1984.

Changing
the text size:

Changing
the type face:

Macintosh ROM Routines

CALL TEXTSIZE (size)

This sets the point size of the current font in use. Each font has a recom-
mended size that will yield the best results. (You can use the Font Mover
to check the types and sizes for fonts on your BASIC disk. You can also use
this to add or delete fonts.) If another size is specified, the font will be
scaled.

CALL TEXTFACE (face)

This sets the character style (bold, italic, underline, outline, shadow, con-
densed, or extended) of the current font. The attribute is selected
by setting the appropriate bit in the face parameter.

The following table lists the bit for each attribute and its corresponding
value:

Value Attribute

0 Plain text

1 Bold

2 Italic

4 Underlined

8 Qutlined
16 Shadow

32 Condensed (less space between characters)
64 Extended (more space between characters)
Text characteristics can be combined by adding values. For example,

while TEXTFACE (2) makes text italic and TEXTFACE (8) makes it out-
lined, TEXTFACE (10) makes it both outlined and italic. Any combination
of attributes can be added together and used as a face argument to
TEXTFACE.

Microsoft BASIC Interpreter

Changing
the text mode:

CALL TEXTMODE (mode)

This sets the mode for displaying text on the screen. Mode O is the de-
fault mode and causes the text to replace whatever is on the screen.
Mode 1 causes the text output to be ORed with the screen, while mode 2
causes it to be XORed. Specifying 3 uses the BIC (Black is Changed)
transfer mode.

Pen and Line-Drawing Routines

Moving the pen:

The PEN is the graphics point used for drawing lines, shapes, and text.
The pen has four characteristics: location, size, pattern, and mode. These
affect only the QuickDraw routines, not the standard BASIC LINE and
CIRCLE statements.

CALL GETPEN (VARPTR(penlocation% (0)))

This returns the current location of the graphics pen. The GETPEN
(VARPTR(penlocation% (0))) function returns the vertical coordinate.
The GETPEN (VARPTR(penlocation% (1))) function returns the horizon-
tal coordinate.

CALL MOVETO (x.»)

This moves the pen to the coordinates specified by the x and y
coordinates.

CALL MOVE (xdelta,ydelta)

This moves the pen from the current location to the relative position
specified xdelta and ydelta. Positive values move the pen to the right
and down and negative values to the left and up. For example, if the pen
is at the coordinates (20,20) you can move it to (10,25) by specifying
CALL MOVE (-10,5).

Drawing a line:

Macintosh ROM Routines

CALL LINETO (x,»)

This draws from the current pen location to the coordinates specified in
parentheses. The line will be drawn using the current pen size, pattern,
and mode.

CALL LINE (xdelta, ydelta)

LINE is like LINETO except that the coordinates are relative to the
current pen location. LINE also uses the current characteristics of the
pen.

CALL PENSIZE (width beight)

This defines the dimensions of the pen. All subsequent calls to LINE,
LINETOQ, and framed shapes will be drawn using this pen size.

Microsoft BASIC Interpreter

Pen Patterns and Transfer Modes

The pen draws in a pattern. This pattern can be set with:

CALL PENPAT (VARPTR(pattern% (0)))

for drawing all graphic output, where pattern% (0) through patternd% (3)
define an 8-byte pattern. Since BASIC uses 2-byte integers, the first ele-
ment of the integer array defines the bit image of the first two lines of the
pattern. The next element contains the next two lines, and so forth.

The pattern can be defined on graph paper and translated into a binary se-
quence with a black pixel represented by a 1 bit and a white pixel by a 0
bit.

CALL PENMODE (mode)
This sets the mode that determines how subsequent graphics calls will af-

fect any existing images on the screen. One of eight modes can be speci-
fied, as listed in the following table:

Mode No. Operation Description

8 Copy Pen pattern replaces the contents of
the screen (default mode).

9 OR Pen pattern ORs with the contents of the
screen (overlay mode).

10 XOR Pen pattern XORs with the contents of
the screen (invert).

11 BIC Pixels of the pattern change to white.

White pixels of the pen pattern will not
affect the screen contents (Black Is
Changed mode).

12 Not Copy Same as mode 8, except that the pen
pattern is inverted before the operation.
13 Not OR Same as mode 9, except that the pen
pattern is inverted before the operation.
14 Not XOR Same as mode 10, except that the pen
pattern is inverted before the operation.
15 Not BIC Same as mode 11, except that the pen

pattern is inverted before the operation,

Macintosh ROM Routines

_——

- Resetting the pen: CALL PENNORMAL

r——

_ This restores the characteristics of the pen to the default setting for size
(1 pixel by 1 pixel), pattern (black), and mode (copy). The location of
the pen is not changed.

—

~ Hiding the pen: CALL HIDEPEN

[]

_— This turns off the visible output of the pen. Lines or shapes can still be
drawn, but will not be seen on the screen.

_—

— Making the CALL SHOWPEN

pen visible:

- This turns on the visible output of the pen. Used after a previous call to

— HIDEPEN.

= Setting CALL BACKPAT(VARPTR(pattern% (0)))

- the background:

o= This sets the background pattern used for the BASIC output window. (See
the explanation of patterns in PENPAT.) To draw the screen prop-

o crly with the new pattern, it is advisable to use the CLS statement after
the call is made.

oy

- Drawing Rectangles,

- Ovals, Arcs, and Polygons

—

. The following routines all involve specifying the top, left, bottom, and
right bounds of a rectangular area. There are five possible operations that

— can be used to draw these shapes. The pen location is not changed after a
call to any of these operations.

FRAME This draws an outline of the geometric shape. The
oy outline is affected by the current height, width, and pattern
— of the pen.

PAINT This paints the shape with the current pen pattern.
o— ERASE This paints the shape with the current background pattern.
— INVERT This inverts the pixels enclosed by the shape (black

pixels are changed to white and white to black).

J—

FILL This fills the shape with the supplied pattern.

Microsoft BASIC Interpreter

Drawing
rectangles:

Drawing rounded
rectangles:

Drawing ovals:

The following routines are designed to draw rectangles:

CALL FRAMERECT (VARPTR(rectangle% (0)))
CALL PAINTRECT (VARPTR(rectangle% (0)))
CALL ERASERECT (VARPTR(rectangle% (0)))
CALL INVERTRECT (VARPTR(rectangle% (0)))

CALL FILLRECT (VARPTR(rectangie% (0)),
VARPTR(pattern% (0)))

Note Where rectangle %(0) through rectangle %(3) define the
top, left, bottom, and right boundaries of the rectangle.

The following routines draw rectangles with rounded corners. These are
often used for selection boxes on Macintosh applications. The ovalwidth
and ovalbeight variables define the diameter of the curve of the round
corner of the rectangle.

CALL FRAMEROUNDRECT (VARPTR(rectangle% (0)),
ovalwidth,ovalbeight)

CALL PAINTROUNDRECT (VARPTR(rectangle% (0)),
ovalwidth,ovalbeight)

CALL ERASEROUNDRECT (VARPTR(rectangle% (0)),
ovalwidth,ovalbeight)

CALL INVERTROUNDRECT (VARPTR(rectangle% (0)),
ovalwidth,ovalbeight)

CALL FILLROUNDRECT (VARPTR(rectangle% (0)),ovalwidth,
ovalbeight VARPTR(pattern% (0)))

These calls draw ovals that fit within the rectangle area specified. To
draw a circle, simply make the distance between the top and bottom edge
the same as that between the left and right edge.

Drawing arcs:

Drawing polygons:

Macintosh ROM Routines

CALL FRAMEOVAL (VARPTR(rectangle% (0)))
CALL PAINTOVAL (VARPTR(rectangle% (0)))
CALL ERASEOVAL (VARPTR(rectangle% (0)))
CALL INVERTOVAL (VARPTR(rectangle% (0)))

CALL FILLOVAL (VARPTR(rectangle% (0)),
VARPTR(pattern% (0)))

These procedures allow you to draw arcs and wedge-sections of ovals.
The arc is described using the oval that fits inside the rectangular area you
specify. The startangle is where the arc begins and arcangle indicates
the extent of the arc. Angles may be in positive or negative degrees. Pos-
itive angles are drawn to clockwise (to the right), and negative angles
are counter-clockwise. Zero degrees is at the 12 o’clock position.

CALL FRAMEARC(VARPTR(rectangle% (0)),startangle,arcangle)
CALL PAINTARC(VARPTR(rectangle% (0)),startangle arcangle)
CALL ERASEARC(VARPTR(rectangle% (0)),startangle,arcangle)
CALL INVERTARC(VARPTR(rectangle% (0)),startangle arcangle)

CALL FILLARC(VARPTR(rectangie% (0)),
startangle,arcangle VARPTR(pattern% (0)))

Angles are measured relative to the rectangle border. For example, an
arc from O to 45 degrees will be drawn from the top to an imaginary line
drawn from the center to the top right corner of the rectangle (even if
the rectangle is not square). Only the FRAMEARC call actually draws an
arc. All other operations draw the wedge-shaped portion of the oval
described by the arc.

The following routines are designed to draw polygons. A polygon is a se-
quence of connected lines. The variable polygon% that holds the
description of the polygonal figure is stored in an integer array.

If the integer array polygon% holds the description, the first element of
the array, polygon% (0), should hold the number of bytes contained in
the entire array. This will be two bytes per element, and must include
the two bytes for polygon% (0). The variables polygon% (1) through
Dpolygon% (4) will hold the top, left, bottom, and right coordinates of the
rectangle that frames the polygonal image. Each subsequent pair of array
elements describes the y-coordinate (odd-numbered elements) and x-
coordinate (even-numbered elements) that will define the “corners” of

Microsoft BASIC Interpreter

the figure. Note the reversal of the traditional Cartesian x,y coordinate sys-
tem for these ROM calls; the y axis is defined before the x axis.

CALL FRAMEPOLY (VARPTR(polygon% (0)))

CALL PAINTPOLY (VARPTR(polygon% (0)))

CALL ERASEPOLY (VARPTR(polygon% (0)))

CALL INVERTPOLY (VARPTR(polygon% (0)))

CALL FILLPOLY (VARPTR(polygon% (0)),VARPTR(pattern% (0)))

Mouse Cursor Handling Routines

Hiding the
mouse cursor:

Making the mouse
cursor visible:

CALL INITCURSOR

This resets the mouse cursor to its standard arrow shape and makes it visi-
ble if it is not.

CALL HIDECURSOR

This turns off the mouse cursor so that it is not visible.

CALL OBSCURECURSOR

OBSCURECURSOR is exactly like HIDECURSOR except that the mouse
cursor is only hidden until the mouse is moved.

CALL SHOWCURSOR

This makes the mouse cursor visible. This is the opposite of
HIDECURSOR.

Building a
mouse Cursor:

Macintosh ROM Routines

CALL SETCURSOR(VARPTR(cursor% (0)))

This sets the mouse cursor to a 16 by 16-bit image defined in the integer
array named in the CALL statement. The parameters are broken down
into three major areas. The first sixteen elements of the integer array
describe the bit pattern (shape) of the cursor.

Note Where cursor %(0) through cursor %(15) is the cursor
data, cursor %(16) through cursor %(31) is the cursor
mask, cursor %(32) is the vertical coordinate of the hot
spot, and cursor %(33) is the horizontal coordinate of the
hot spot.

To check the outcome of the various operations described above, check
the table below for screen results.

Cursor Data Cursor Mask Resulting Pixel on the Screen

White
Black
Same as pixel under the cursor

0
1
0
1 Inverse of the pixel under the cursor

[T

The next sixteen integers define the cursor mask. The appearance of the
cursor pattern is dependent upon the cursor data bit and the mask bit
(and the pixel under the cursor if the mask bit is 0), as shown in the pre-
vious table.

The last two elements in the cursor array define the vertical (y) and hor-
izontal (x) location of the “hot spot,” that is, the active area of the cursor
image that determines where the cursor is pointing to. The hot spot is
not a pixel location, but the intersection of the corners between the pix-
els. The top left corner of the top left pixel is coordinate (0,0); the top
right corner of the top right pixel is (16,0); the bottom right corner of
the bottom right pixel is (16,16).

SETCURSOR does not affect the cursor status. If the cursor is currently
hidden, it will set to the shape defined, but will remain hidden. If it is
visible, the change will be seen immediately.

_— [d
Appendix G:
®
- A Sample Program
—
- Here is a closer look at Picture, the program you ran in the practice
session.
-
- [A] DEFINT P-Z
[B] DIM P(2500)
— [C] CLS
- [D] LINE(0,0)-(120,120),,BF
[E] ASPECT = .1
o |F| WHILE ASPECT<20
1G] CIRCLE(60,60),55,30,,,ASPECT
[H] ASPECT = ASPECT*1.4
- {1 WEND
- JI GET (0,0)-(127,127),P
|[K] CheckMouse:
- IL) IF MOUSE(0)=0 THEN CheckMouse
[M] IF ABS(X-MOUSE(1)) > 2 THEN MovePicture
B [N] {F ABS(Y-MOUSE(2)) < 3 THEN CheckMouse
[O] MovePicture:
= [P] PUT(X,Y),P
- Q] X=MOUSE(1): Y=MOUSE(2)
[R] PUT(X,Y),P
- (] GOTO CheckMouse
v The bracketed letters are included for your reference only; they will not
appear in your listing.
ey [A] Sets all variables from P through Z to integer.
. [B] Creates an array of 2500 elements.
[C] Erases the output window.
-~ [D] Draws a rectangle defined by points (0,0) and (120,120).
[E] Sets the variable ASPECT to 0.1.
) [FI Repeats the following as long as ASPECT < 20.
- |G] Draws an ellipse with center (60,60), radius 55, color 30 (white),
and an aspect ratio = ASPECT.
]

Microsoft BASIC Interpreter

(H]
(n
0l
(K]
(L]
(M]

[N]
[O]

(P]
[Q]
[R]
s]

Increases the value of ASPECT.

Exits this loop when ASPECT is >= 20.

Copies the content of part of the screen to array P.

Starts a routine called CheckMouse to check the mouse status.
Waits for the mouse button to be pressed.

If the mouse has moved at least 3 points in the X direction, goes to
MovePicture.

If the mouse has not moved at least 4 points in the Y direction, goes
back to CheckMouse.

Starts a routine called MovePicture to move the picture stored in
array P.

Erases the picture from the old location.

Sets X and Y to the new coordinates of the mouse.
Copies the picture in array P to the new XY location.
Goes back to the CheckMouse routine.

Appendix H: Questions
Most Frequently Asked

There are questions about Microsoft BASIC that are asked more frequently
than others. This appendix includes answers to these questions.

How do I do random file I/O?

Random files are not stored in ASCII format, so the methods for getting
data from them and putting data in them are not the same as for ASCII for-
mat sequential files. To create a random file, first give it a name and
record size by using the OPEN statement. The next statement should be a
FIELD statement that describes the order and size of the buffer variables.
Each of these buffer variables is a string variable, whether the data that
will go in them is string data or numerical data.

You must never alter these buffer variables with program statements.

They are intermediate: use them to load and unload data from the files.

To load the values of working program variables into these buffer vari-
ables, use LSET or RSET, not LET. In order to convert numeric program
variables into strings that can be put into the buffer variables, use the
MaKe-Integer-into-a- String, MaKe-a-Single-precision-number-into-a- $tring or
MaKe-a-Double-precision-number-into-a- String functions (MKI$, MKSS$, and
MKDS).

An example of this process is:

LSET A8 = MKSS$(ASSETS)

At this point, the value of the numeric variable is in string form and stored
in the data-file buffer. To store this information, it has to be put into the
file with the PUT statement. When this is done, the file contains the infor-
mation.

Remember, in random files if you only write to records 1 and 3, record 2

will contain garbage because you have not yet written to it. Useless infor-
mation exists there from previous disk use. You must keep track of what

records have and have not been written to in order to avoid reading non-
sense from a record to which nothing has yet been written.

You don’t have to close and then reopen a random file to get information

back out of the file like you do with sequential files. If, however, you

want to open a random file to get information out of it, use the OPEN 303
statement, define the FIELDs for the buffer variables, and use the GET

statement to load the right record into the data buffer. Again, you cannot

use these buffer variables for other purposes in your program. To refer-

ence them, assign them values to working program variables.

Microsoft BASIC Interpreter

In addition, if the actual information is not string information, you’ll need
to convert it from the string format of the buffer variable to the variables
numeric format. To do this, you use the ConVert-to-an-Integer, ConVert-
to-a-Single-precision or ConVert-to-a-Double-precision functions (CVI, CVS,
and CVD). If the data in the buffer is going to be a string in your pro-
gram, you don't need to convert it. For example:

LET COMPANYS = A$
LET DEBT# = CVD)(BS$)

To close a random file, use the CLOSE statement.

How do I FIELD a random file record when the list of buffer vari-
ables exceeds the length of a legal program line?

When the list of buffer variables is long enough to exceed a legal BASIC
line, use consccutive multiple FIELD statements, In the first FIELD
statement, deal with the first part of the record. Then, in the second
FIELD statement, refer to the entire range of records in the first field
statement as one buffer variable. Then continue your naming of variables.
For example:

OPEN R, #4, ACCOUNT.DAT , 143
FIELD #4, 21 AS COMPANYS$, 8 AS ACCOUNTNOS, 4 AS
AS, 4 ASBS, 4 ASCS, 4 ASDS, 4 ASES, 2 AS Fs,
4 AS G, 21 AS STREETS. 10 AS STREET2S
FIELD #+4, 86 AS IGNORES, 14 AS HS, 14 AS 18,9
ASJS, 2 ASKS, 2 ASLS, 2AS M$, 2 ASNS, 2 AS
OS, 2ASPS, 2A5QS, 2ASRS, 2A58S8, 2ASTS

In the above example, a random file, ACCOUNT.DAT is opened. The first
field statement describes the first 86 characters in the record. The second
field statement refers to all the information described in the first field
statement as IGNORES. The individual buffer variables in the first state-
ment can still be accessed by the names given in the first field statement.
The second field statement goes on to describe the rest of the buffer vari-
ables in that file.

Frequently Asked Questions

How do I read what I've written in my sequential file?

If you already have the file opened for either Output mode or Append
mode, you must first close the file, and then re-open it for Input mode. In
other words, when you use sequential access, you can have a sequential
file opened for input only or for output only, but never both at the same
time.

How do I use event trapping?

To be able to use an event trap statement, such as ON MENU...GOSUB,
you must first activate it with the corresponding activation statement
(in this case MENU ON).

When the event trap is active, the program will check between the execu-
tion of each program statement for the event. If the event has occurred,
program control will transfer to the line or label mentioned in the ON
eventspecifier GOSUB statement.

My old programs have line numbers. Will I be able to use them in
this version.

Yes. This new version of Microsoft BASIC allows lines with alphanumeric
labels, numbers, or no line specifier at all.

My program is running slowly. Is there anything I can do about it?

Check to see if you have a trace executing in a hidden List window. If you
do, turning the trace off increases program execution speed. Some other
factors can affect program speed.

If you have an ON TIMER(#) ¢vent trap active where # is a small time in-
terval, BASIC is slower to execute the program. The SOUND statement
also slows down a program. Also check your numeric variables. If you are
using loop counter variables in FOR/NEXT statements, declare them as
integers wherever possible; this speeds program execution.

305

Index

ABS function, 95

Absolute value, 95

Alphanumeric labels, 77-78

AND operator, 85

Append mode, 45

Apple menu, 8, 28

Arcs, 295

Arctangent, 96

Argument expressions, 64

Arguments, 60

Arithmetic overflow, 84

Array
boundary functions, 65-66, 161
declaration, 63
dimensioning, 83, 136
elements, 63, 83
subscripts, 83, 129
variables, 113, 129

ASC function, 95

ASCII
codes, 95, 1006, 273
format, 104, 179, 233

Assembly language routines, 101,

259
ATN function, 96

BACKPAT routine, 295
BASIC Reserved Words, 281-282
BEEP statement, 97
Binary math pack, 23, 119, 184
Binary numbers

converting to decimal, 184
BREAK OFF statement, 97
BREAK ON statement, 97
BREAK STOP statement, 97
BUTTON

function, 98-101

statement, 98, 101

CALL statement, 60-61, 101-103,
289

Carriage return, 166, 167, 270,
271
Carriage return characters, 265
CDBL function, 104
CHAIN statement, 44, 104-105,
113
Changing
pen, 292
pen pattern, 294-295
text font, 290
text size, 291
type face, 291
Character set, 75-76
Choosing between versions, 23
CHR$ function, 106
CINT function, 107
CIRCLE statement, 4, 18, 108-109
CLEAR statement, 71, 72, 109-
110
Clearing output windows, 112
CLIP;, 41, 55-56
Clipboard, 37, 41, 55-56, 58
Close command, 29
CLOSE statement, 111-112
CLS statement, 112
Colon as line separator, 77
COM1:
baud-rate, 42
data-bits, 42
parity, 42
stop-bits, 42
Command window, 26-27, 38
Command-period, 97, 192
COMMON statement, 113
Communications port, 42
Compatibility with other BASICs,
2
Conserving memory, 71-73
Constants, 79-80
CONT statement, 114, 166
Continue command, 38

Converting numbers
binary to decimal, 184
decimal to binary, 119
Copy command, 12, 29
COS function, 115
Creating statements, 103
CSNG function, 116
CSRLIN function, 117
Cursor
hot spot, 299
routines, 298-299
Custom menus, 176-178, 197
Cut command, 12, 13, 29
Cutting and pasting between
windows, 37
CVD function, 118
CVDBCD function, 24, 119
CVI function, 118
CVS function, 118
CVSBCD function, 24, 119

Data segment, 71, 110
DATA statement, 120-121, 227
DATES

function, 121-122

statement, 121-122
Debugging programs, 20, 37-38
Decimal math pack, 23, 119, 184
DEF FN statement, 123-124
DEFDBL statement, 124-125
DEFINT statement, 82-83, 124-

125, 289

DEFSNG statement, 124-125
DEFSTR statement, 124-125
DELETE statement, 125
Device-independent /O, 4, 41-43
Devices

CLIP:, 41

COMI1:, 42

KYBD:, 41

LPTI:, 41

Index

Devices (continued)

SCRN;, 41
DIALOG function, 126-128
DIALOG OFF statement, 128-129
DIALOG ON statement, 128-129
DIALOG STOP statement, 128-

129

DIM statement, 129-130
Double precision, 104, 124, 210
Drawing

a line, 293

arcs, 297

circles, 296-297

ovals, 296-297

polygons, 297-298

rectangles, 296

EDIT FIELD statement, 130-132
Edit menu
Copy command, 29
Cut command, 29
Paste command, 29
Edit mode, 26
EDIT $ function, 133
Editing a program, 12-16, 33, 35-
37
END statement, 134
END SUB statement, 62, 246-248
EOF function, 47, 135
EQYV operator, 85
ERASE statement, 136
ERASEARC routine, 297
ERASEOVAL routine, 297
ERASEPOLY routine, 298
ERASERECT routine, 296
ERASEROUNDRECT routine, 296
ERL function, 137
ERR function, 137
Error
codes, 138, 275-280
handling, 137, 195, 228
messages, 275-280
status, 137
trapping, 138
ERROR statement, 138

Event trapping, 66-70, 97, 100,
126, 128, 189, 192-194,
197-199, 254, 305

EXIT SUB statement, 62, 246-247

EXP function, 139

Expression evaluation, 84

Expressions, 85

External communications, 42

FIELD statement, 49, 51, 139-140
File menu
Close command, 29
New command, 28
Open command, 28
Print command, 29
Quit command, 29
Save As command, 29
Save command, 29
FILES statement, 141
FILES 8 function, 40, 141-143
Files
data, 45
dcleting from disk, 160
handling, 43
/O, 303-304
protecting, 44, 233
random, 48-54, 140, 1406, 170,
175, 182, 200, 220, 232,
303-304
sequential, 45-48, 135, 157,
167, 170, 200, 216-217,
271, 303
FILLARC routine, 297
FILLOVAL routine, 297
FILLPOLY routine, 298
FILLRECT routine, 296
FILLROUNDRECT routine, 296
Find command, 30
Find Label command, 30
Find Next command, 30
Find Selected Text command, 30
Find the Cursor command, 30
Finder, 25
FIX function, 143-144
Floating point numbers, 79-80

FOR..NEXT statement, 144-145,
191

Formal parameters, 60
FRAMEARC routine, 297
FRAMEOVAL routine, 297
FRAMEPOLY routine, 298
FRAMERECT routine, 296
FRAMEROUNDRECT routine, 296
FRE function, 73, 145-146
Functional operators, 90
Functions

intrinsic, 90

user-defined, 90, 123-124

Generalized device 1/0, 41-43

GET statement, 4, 51, 140, 146-
148

GETPEN routine, 292

GOSUB...RETURN statement,
148-149, 229

GOTO statement, 150

Heap, 72

HEX$ function, 150-151
Hexadecimal, 150-151
HIDECURSOR routine, 298
HIDEPEN routine, 295

Icons
explanation of, 93-94

IF...GOTO statement, 151-153

IF.. THEN.. ELSE statement, 151-
153

Immediate mode, 20, 25-26, 38

IMP operator, 85

INITCURSOR routine, 298

INKEY 8 function, 153-154

Input mode, 45

INPUT statement, 114, 140, 155-
156

INPUT# statement, 157-158

INPUTS$ function, 156-157

INSTR function, 159

INT function, 160

Integer, 107, 143, 160

Integer division, 87

Internal number representations,
283-85

Intrinsic functions, 90

INVERTARC routine, 297

INVERTOVAL routine, 297

INVERTPOLY routine, 298

INVERTRECT routine, 296

INVERTROUNDRECT routine,
296

KILL statement, 44, 160
KYBD:, 41

Labels, 9-10, 77-78
LBOUND function, 65, 161, 257
LCOPY statement, 162
LEFT $ function, 162
LEN function, 163
LET statement, 164
LINE INPUT statement, 166
LINE INPUT# statement, 167
Line
labels, 77-78
numbers, 10, 77-78
printer, 169, 174, 175, 265
separator
colon, 77
LINE routine, 293
LINE statement, 4, 165
LINETO routine, 293
LIST statement, 37, 168
List window
activating, 27
cutting and pasting between
windows, 37
enlarging, 28
opening at specific line, 37
viewing more than one, 33-35
LLIST statement, 169
LOAD statement, 25, 44, 169-170,
233
Loading a program, 8, 25
LOC function, 52, 170-171
LOCATE statement, 171-172

LOF function, 172-173

LOG function, 173-174

Logarithm, 173

Logical operators, 88-90

Loops, 144, 191, 263

LPOS function, 174, 265

LPRINT statement, 175, 264

LPRINT USING statement, 175

LPT1:, 41-43

LSET statement, 50, 140, 175-176,
232

Macintosh

heap, 110

ROM routines, 289-299

system errors, 73
MacPaint, 57
Math packs, 23
Mathematical functions, 287-88
Memory management, 59, 71-73
Menu bar, 28
MENU

function, 176-178

statement, 176-178
MENU OFF statement, 179
MENU ON statement, 179
MENU STOP statement, 179
MERGE

command, 179

statement, 44, 179
Microsoft Multiplan, 55
MIDS$

function, 180-181

statement, 180-181
MKD$ function, 182-183
MKDBCD $ function, 24, 184-185
MKI $ function, 182-183
MKSS$ function, 182-183
MKSBCD $ function, 24, 184-185
MOD operator, 87
Modal dialog box, 267
Modulo arithmetic, 87
Mouse cursor handling, 298-99
MOUSE function, 185-188
MOUSE OFF statement, 189

Index

MOUSE ON statement, 189
MOUSE STOP statement, 189
MOVE routine, 292
MOVETO routine, 289, 292
Moving the pen, 292
Multiplan, 55

NAME
command, 189
statement, 44, 189-190
Natural logarithm, 139
New command, 28
NEW statement, 190
NEXT statement, 191
Non-ASCII codes, 274
NOT operator, 85
Numeric constants, 79-80

OBSCURECURSOR routine, 298
OCT?$ function, 191-192
Octal, 191
ON BREAK statement, 67, 192-
193
ON DIALOG statement, 67, 193-
194
ON ERROR GOTO statement,
195
ON...GOSUB statement, 67, 196-
197
ON...GOTO statement, 196-197
ON MENU statement, 67, 197-
198
ON MOUSE, 185, 189
ON MOUSE statement, 66, 198
ON TIMER statement, 66, 199
Open command, 8-9, 30
OPEN statement, 49, 51, 140,
200-201
Operators
arithmetic, 86-87
functional, 90
logical, 88-90
precedence, 85
relational, 87-88
string, 90

Index

OPTION BASE statement, 65,
161, 202
OR operator, 85
Output
mode, 45
window, 27
active, 266
current, 266
Ovals, 295

PAINTARC routine, 297
PAINTOVAL routine, 297
PAINTPOLY routine, 298
PAINTRECT routine, 296
PAINTROUNDRECT routine, 296
Pass by reference, 60
Paste command, 12, 29
PEEK function, 202, 206
PENMODE routine, 294
PENNORMAL routine, 295
PENPAT routine, 294
PENSIZE routine, 293
PICTURE OFF statement, 57, 204
PICTURE ON statement, 57, 204
PICTURE statement, 203
PICTURE$ function, 204-205
Picture

program, 301-302

loading, 9

running, 11-12
POINT function, 205-206
POKE statement, 202, 206-207
Polling, 69-70
Polygons, 295
POS function, 207-208, 265
Practice session, 8
PRESET statement, 208-209
Print command, 29
PRINT statement, 209-210
PRINT USING statement, 211-215
PRINT# statement, 216-218
PRINT# USING statement, 216-

218

Printer, 175

Printing
program files, 29
screen images, 162
Program
execution mode, 26
execution speed, 305
loading, 8-9
Protected files, 233
PSET statement, 218-219
PTAB function, 219-220
PUT statement, 4, 50, 140, 220-
222

Questions and answers, 303-305
Quit command, 24, 29
Quitting BASIC, 24

Random files, 24, 48-54, 140,
146, 170, 175, 182, 200,
220-222, 232, 303-304

Random numbers, 223, 231

RANDOMIZE statement, 223-224,
231

READ statement, 224-225, 227

Reading data from the Clipboard,
41

Rectangles, 295

Rectangles with rounded corners,
296

Relational operators, 87-88

REM statement, 226

Removing program errors, 37-38

Replace command, 30

Reserved words, 81, 281-282

RESET statement, 226

RESTORE statement, 227

RESUME statement, 228

RETURN statement, 148, 229-230

RIGHT $ function, 230-231

RND function, 223, 231-232

ROM calls, 289-299

RSET statement, 175-176, 232

RUN

command, 232
statement, 232-233

Run menu
Continue command, 30
Start command, 30
Step command, 30
Stop command, 30
Suspend command, 30
Trace command, 30

Save As command, 23, 29, 44
Save command, 29, 44
SAVE statement, 25; 44, 169,
233.234
Saving
a program, 25
data to the Clipboard, 41
Saving files
ASCII format, 29, 233
binary format, 29, 233
protected format, 29, 233
Screen elements, 26
SCROLL statement, 4, 234-235
Search menu
Find command, 30
Find Label command, 30
Find Next command, 30
Find Selected Text command,
30
Find the Cursor command, 30
Replace command, 30
Sequential files, 45-48, 135, 157,
167, 170, 200, 216-217, 271,
303
SETCURSOR routine, 299
SGN function, 236
SHARED statement, 62, 64, 237
Shared variables, 64, 237
Show Command command, 31
Show List command, 31
Show Output command, 31
Show Second List command, 31
SHOWCURSOR routine, 298
SHOWPEN routine, 295
Simple variables, 63
SIN function, 238
Single precision, 116, 124, 210

Slow program execution, 303
SOUND statement, 239-240
SPACE$ function, 241
SPC function, 242
Speed of program execution, 303
SQR function, 243
Square root, 243
Stack, 71, 110
Start command, 30
Starting BASIC, 7, 24
Statement & Function Directory,
92-271

STATIC attribute, 62, 64-65
Static variables, 65
Step

command, 19, 30

option, 38
Stop command, 12, 30, 138
STOP statement, 114, 244
Stopping a program, 38
STR$ function, 245
String

concatenation, 91

constants, 79

functions, 117, 159, 162, 180,

230, 245, 257, 258

size, 4

space, 109, 145

variable size, 4

variables, 124
STRING $ function, 245-246
SUB statement, 62, 246-247
Subprograms, 59-66, 102, 161,

237

Subroutines, 148-149, 196, 229
Subscripts, 202
Suspend command, 30, 38
SWAP statement, 249
System errors, 73
SYSTEM statement, 24, 250

TAB function, 250-251
TAN function, 251-252
Tangent, 251

Text processing, 57

TEXTFACE routine, 291
TEXTFONT routine, 290
TEXTMODE routine, 292
TEXTSIZE routine, 291
TIME$

function, 252-253

statement, 252-253
TIMER function, 254-255
TIMER OFF statement, 254
TIMER ON statement, 254
TIMER STOP statement, 254
Toolbox calls, 289-299
Trace off command, 30
Trace on command, 30
TROFF

command, 30, 256

statement, 37, 256
TRON

command, 30, 256

statement, 37, 256

UBOUND function, 65, 161, 257

UCASE$ function, 257

Using data from other programs,

56

VAL function, 258-259
Variables, 81
array, 129

passing with COMMON, 105,

113
string, 124

VARPTR function, 259-260, 289

WAVE statement, 260-262
WEND statement, 263

WHILE...WEND statement, 14,

263-264

WIDTH LPRINT statement, 264

WIDTH
function, 264-265
statement, 264-265
WINDOW
function, 266-269
statement, 42, 266-269

Index

WINDOW CLOSE statement, 267
WINDOW OUTPUT statement,
267
WINDOW OUTPUT# statement,
269
Windows menu
Show Command command, 31
Show List command, 31
Show Output command, 31
Show Second List command, 31
Word processing, 57
WRITE statement, 270
WRITE# statement, 271

XOR operator, 85

MICR@SOFT«» Software

10700 Northup Way, Bellevue, WA 98004 Problem Report

Name

Street

City State Zip
Phone Date

Instructions

Use this form to report software bugs, documentation errors, or suggested enhancements.
Mail the form to Microsoft.

Category
Software Problem —_ Documentation Problem
(Document#__)
Software Enhancement — Other
Software Description
Microsoft Product
Rev. Registration#
Operating System
Rev. . Supplier
Other Software Used
Rev. Supplier
Hardware Description
Manufacturer —— CPU =~ Memory — KB
Disk Size " Density: Sides:
Single Single
Double Double

Peripherals

Problem Description

Describe the problem. (Also describe how to reproduce it, and your diagnosis and suggested
correction.) Attach a listing if available.

Microsoft Use Only

MechiSuppore - 0~ Date Received
RoutingCode Date Resolved
Report Number

Action Taken:

!0‘

o_m<m “_.“_.OWO._O_E w

i d

MICRSSOFT.

Microsoft Corporation
10700 Northup Way
Box 97200
Bellevue, WA 98009

1085 Part No. 014-096-033

-

4

