
-
-

-

-

-

I.-. Microsoft® BASIC

Interpreter

for Apple® Macintosh™

Microsoft Corporation

Information in this document is subject to change without notice and
does not represent a commitment on the part of Microsoft Coporation.
The software described in this document is furnished under a license
agreement or nondisclosure agreement. The software may be used or
copied only in accordance with the terms of the agreement. It is against
the law to copy Microsoft BASIC on cassette tape, disk, or any other medi­
um for any purpose other than the purchaser's personal use.

ci Microsoft Corporation 1984

If you have comments about this manual or software, complete the
Software Problem Report at the back of this manual and return it to
Microsoft Corporation.

Microsoft and the Microsoft logo are registered trademarks, and MS is a
trademark of Microsoft Corporation.

Apple is a registered trademark, and Macintosh, MacPaint, and MacDraw
are trademarks of Apple Computer, Inc.

APPLE COMPUTER, INC. MAKES NO WARRANTIES,
EITHER EXPRESS OR IMPLIED, REGARDING THE ENCLOSED
COMPUTER SOFIWARE PACKAGE, ITS MERCHANTABILI1Y
OR ITS FITNESS FOR ANY PARTICUIAR PURPOSE. THE
EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED
BY SOME STATES. THE ABOVE EXCLUSION MAY NOT APPLY
TO YOU. THIS WARRAN1Y PROVIDES YOU WITH SPECIFIC
LEGAL RIGHTS. THERE MAY BE OTHER RIGHTS THAT YOU
MAY HAVE WHICH VARY FROM STATE TO STATE.

Document Number: 690410003-210-ROI-0985

~,

· . .i

-'I
I

~
I '

~

Contents

111111 1 Introduction Special Language Features 2 • Learning More About BASIC and
the Macintosh 5

_-.
2 Getting Started Practice Session With Microsoft • BASIC 8

.-i

3 Using The Microsoft Choosing Between the Two The Microsoft BASIC Screen 26

BASIC Interpreter Versions of Microsoft BASIC 23 The Command Window 26
~ Starting and Quitting Microsoft The Output Window 27 • BASIC 24 The List Window 27

Loading and Saving Programs 25 The Menu Bar 28
~ Operating Modes 25

,.., 4 Editing and Editing Programs 33
Debugging List Window Hints 33 • Your Programs

Debugging Programs 37

-.
5 Working With Files File Naming Conventions 39 Data Files - Sequential and Random

and Devices Generalized Device 1/0 41 Access 1/0 45 • ~ Handling Files 43 Transferring Data Between BASIC
Program File Commands 43 and Other Programs 55

6 Advanced Topics Subprograms 59 Memory Management 71. Event Trapping 66

~ -
7 BASIC Reference Character Set 75 Expressions and Operators 85

The BASIC Line 77 Statement and Function ,,.. Constants 79 Directory 92.
Variables 81 Icons in the Directory 93

IRlt Appendices A ASCII Character Codes 273 E Mathematical Functions 287
8 Error Codes and Error F Access to Macintosh ROM

Messages 275 Routines 289 •
~ c Microsoft BASIC Reserved G A Sample Program 301

Words 281 H Questions Most Frequently
D Internal Representation of Asked 303

Numbers 283 Index 307

-

Microsoft BASIC
for the Macintosh

About this book

1 Introduction

People use the BASIC programming language for many different reasons. •
Some of these people are professional programmers. Others are not pro-
grammers at all, but wish to run BASIC programs they have purchased.
Probably the largest segment of BASIC users is made up of people who
write BASIC programs for their own use. They may simply enjoy the
mental exercise of programming, or they may have special applications for
which they cannot buy ready-made programs. Many BASIC users are stu-
dents who are studying computer science or using a computer to help
with their schoolwork.

All of these people have one thing in common. They use BASIC because
it is the universal language for small computers. It is easy to learn, readily
available, and highly standardized. It is also a versatile language that has
been used in the writing of business, engineering, and scientific applica­
tions, as well as in the writing of educational software and computer
games.

Whatever your reason for using BASIC, you will find that the
Microsoft·~ BASIC Interpreter on the AppleR· Macintoshn1 gives you all the
well-known advantages of BASIC, plus the ease of use and fun you expect
from Macintosh tools. Microsoft puts the full BASIC language on your
Macintosh computer, including BASIC statements used to write graphics
programs. Also, it has all the familiar features of the Macintosh screen.
Microsoft BASIC has a menu bar, a mouse pointer, and windows, just like
other Macintosh tools.

If you are just starting to learn BASIC, either in a class or on your own,
Microsoft BASIC will fit right in with your course of study. Microsoft
BASIC is the most popular programming language in the world, and works
on every major microcomputer.

If you are an old hand at BASIC programming, you'll want to try some of
the special features of this version of BASIC, such as SOUND and WAVE
for making music and sounds, and GET and PUT for saving and retrieving
graphics by the screenful.

This book describes the Microsoft BASIC Interpreter for the Apple
Macintosh computer. It assumes you have read your owner's guide,
Macintosh, and are familiar with menus, scrolling, editing text, and using
the mouse.

The front part of this book (Chapters 1-6) describes how to use Microsoft
BASIC with the Macintosh computer. It includes a practice session that
will familiarize you with the features of the screen that are available while
BASIC is running. The back part of this book (Chapter 7) is a reference

•

Microsoft BASIC Interpreter

Support
for Macintosh
application
programs

for the BASIC language. Use the BASIC reference section to read about
general characteristics of the language, and to look up the syntax and
usage of BASIC statements and functions in the Statement and Function
Directory. You will notice that the directory is tinted gray to help you
flip to it quickly .

Special Language Features
Microsoft BASIC on the Macintosh computer is a "standard" BASIC, in that
it will run most programs that were written in Microsoft BASIC on most
other computers.

But like all languages, Microsoft BASIC is always growing, changing, and
improving. Microsoft continues to keep its BASIC Interpreter up to date
with new features. Here are some of the latest features you'll find in this
version of BASIC. All of these features are described thoroughly in
Chapter 7, "BASIC Reference."

Microsoft BASIC provides the tools you need to write programs that work
like and look like they were written for the Macintosh. These tools are
especially important if you are a software developer who plans to sell ap­
plication programs for the Macintosh.

Mouse Support
With the MOUSE function, your BASIC program can accept and respond to
mouse input. The MOUSE function returns the coordinates of the mouse
pointer under various conditions {button up, button down, single-dick,
double-click, triple-click, and drag).

MENU Statement
Your programs can display Macintosh-style menus created by BASIC's
MENU statement. This statement opens and closes menus, and highlights
menu items. If you want, you can replace BASIC's menus with your own
menus, to give your program a completely "custom" look.

Dialog Boxes
Your programs can produce interactive, Macintosh-style dialog boxes with
BASIC's WINDOW, BUTION, EDIT, and DIALOG statements. These state­
ments handle the details of opening windows, setting up "buttons" for the
user's selection, and accepting and editing the user's input.

-~

~
i '

Other BASIC
features to try

Introduction

PICTURE Statement
The PICTIJRE statement gives your BASIC programs two ways to work
with MacPaintTM or other graphics programs. You can bring a picture
from the Macintosh Clipboard into your program and display it on the
screen. Or, you can put a picture in the Clipboard, then paste it into
another program that accepts graphics. PICTIJRE can also be used to
redraw the image in a window after it has been covered.

Macintosh Toolbox Support
An important part of the Macintosh user interface is a "toolbox" of pro­
grammers' subroutines. Microsoft BASIC is designed to give you access to
these routines to produce sophisticated Macintosh graphics. For detailed
information, see Appendix F, "Access to Macintosh ROM Routines."

In addition to the features just described, Microsoft BASIC also has
a number of general purpose attributes for use in your programs:

Two Floating-point Arithmetic Options
This release of Microsoft BASIC includes two versions of the interpreter,
each supporting a different internal storage format for floating-point
numbers. You may wish to choose the decimal version (BCD format),
which is best suited for business and financial applications and is also the
same format used by Microsoft BASIC version 1.0.

The binary math version (IEEE format) is best for engineering-oriented
applications and provides generally faster performance, especially for
trigonometric functions.

SOUND and WAVE
Microsoft BASIC programs can produce high quality sound for games,
music applications, or user alerts. The SOUND statement emits a tone of
specified frequency, duration, and volume. As an option, the tone can also
have one of four user-defined "voices." The WA VE statement lets you
assign your own complex waveforms to each of the voices. SOUND and
WA VE can provide your programs with a rich variety of musical sounds,
from the complexity of a string quartet to the simplicity of a whistled
tune.

•

•

Microsoft BASIC Interpreter

LINE and CIRCLE Statements
LINE and CIRCLE are versatile commands for drawing precise graphics.
The LINE statement draws a line between two points. The points can be
expressed as relative or absolute locations. By adding the B option to the
LINE statement, you can draw a box. Another option, BF, fills in the box
with black or white .

The CIRCLE statement draws a circle, arc, or ellipse according to a given
center and radius. A color option can be used to fill in the circle with
black or white. Another option, aspect, determines how the radius is
measured, so you can adjust it to create a variety of ellipses.

Subprograms
Microsoft BASIC allows subprograms that own their own variables. Using
subprograms, you can build a library of BASIC routines that can be used
with different programs. You can do this without concern about duplicat­
ing variable names in the main program.

GET, PUT, and SCROLL Statements
The GET statement saves groups of points from the screen in an array, so
you can store a "picture" of a graphic image in memory. The PUT state­
ment calls the array back and puts it on the screen. With a series of PUT
statements, you can create the effect of animation on the screen. The
SCROLL statement lets you define an area of the screen and how much
and which way you would like it to move.

Device Independent 1/0
Using Microsoft BASIC's traditional disk file-handling statements, a pro­
gram can direct input and output from the screen, keyboard, line printer,
communications port, or Macintosh Clipboard. You can open the line
printer or the screen for output, and the keyboard for input, as easily as
you open a disk file.

Large Strings and String Variables

,....
I

In Microsoft BASIC, any string or the contents of a string variable can be
up to 32,767 characters long. .!'i

Introduction

Learning More
About BASIC and the Macintosh
This manual provides complete instructions for using the Microsoft BASIC
Interpreter. However, little training material for BASIC programming is in- •
eluded. If you are new to BASIC or need help in learning to program, we
suggest you read one of the following:

Dwyer, Thomas A. and Margot Critchfield. Btti1C and the Personal
Computer. Reading, Mass.: Addison-Wesley Publishing Co., 1978.

Knecht, Ken. Microsoft BASIC. Beaverton, Ore.: Dilithium Press, 1982.

Boisgontier, Jacques and Suzanne Ropiequet. Microsoft BASIC and Its
Files. Beaverton, Oreg.: Dilithium Press, 1983.

If Microsoft BASIC is your first Macintosh software purchase, you may
want to read The Macintosh Book by Cary Lu (Bellevue, Wash.: Microsoft
Press, 1984) to help you make the best use of your Macintosh.

To start
Microsoft BASIC:

2 Getting Started

To use Microsoft BASIC, you need:

• A Macintosh computer, properly set up and connected.

• The Microsoft BASIC disk.

You should also make two backup copies of your Microsoft BASIC disk on
your own blank disks. Put the decimal version of BASIC on one backup
and the binary version on another.

..,. Turn on the Macintosh power switch.

..,. Put the binary version of Microsoft BASIC into the Macintosh disk
drive.

IJll- Double-dick the Microsoft BASIC icon in the Finder.

•

•

Microsoft BASIC Interpreter

Time required:
Fifteen minutes

In a few seconds, you will see the Microsoft BASIC screen:

~aroll arrow

///en\~
,. ei file Edit Search Run Windo111s

,

Untitled

I

I
Oulpul window

Command window Aalive li~I window

Practice Session
With Microsoft BASIC

Now you are ready to begin using BASIC. Start by loading a program
called Picture. Picture is a demonstration program, written in Microsoft
BASIC, that comes on your Microsoft BASIC disk.

~ Point at the File menu in the menu bar and press the mouse button.
The commands that appear are New, Open, Close, Save, Save As, Print,
and Quit.

...

-

....

Look at the
program listing
for Picture:

Getting Started

• Choose the Open command by selecting Open and releasing the
mouse button.

saue
Saue Rs •••
Print ...
Quit

Search Run Windows

Untitled

List

You will see a dialog box with a list of the programs on this disk.

• Click on Picture to select it.

• Click the Open button (or press the Return key).

.,

The Picture program appears in the List window. The name of the output
window changes from Untitled to Picture.

Perhaps you expected to see a line number at the beginning of each line.
In this Macintosh version of Microsoft BASIC, line numbers are optional.
To refer to a particular line, give that line a label or a line number. For
example, the Picture program has no line numbers, but it has two labels:
CheckMouse and MovePicture.

•

•

Microsoft BASIC Interpreter

r s File Edit Search Run lllindoms

~

Picture

!~~,o~~~~~[IL~isit~~~~~i
DEFINT P-Z ~
DIM P(2500)
CLS
LINE(0,0)-(120, 120),,BF
ASPECT= .1

WHILE ASPECT <20
CIRCLE(60,60),55,30,,,ASPECT
ASPECT = ASPECT* 1.4

WEND
GET (0,0)-(127,127),P

~;~~i.;f6ii~~J
L_ Command 1

Z I

.,

label7 1ucing a label ac a reference

The labels serve two purposes:

I . They mark important control points in the program.

2. Other statements, such as GOTO CheckMouse, use them as
references.

Labds make your programs easier to read. By assigning labels to function-

.....
I

al blocks, you can quickly see the control points in a program. labels are """
especially convenient if you are copying often-used subroutines from one
program to another. You don't have to worry about matching up line
numbers so the program runs in the right sequence. Simply identify the
subroutines by their labels.

A label starts a line and is followed by a colon. It's more convenient to
put a label on a line by itself, because that makes it highly visible. But,
you can put a BASIC statement on a line with a label if you like. See the
section entitled "The BASIC Line" in Chapter 7, "BASIC Reference," for
more information.

What does
Picture do?

Getting Started

Boldface Reserved Words On the Mac screen, BASIC program listings.
are very easy to read because BASIC's reserved words are shown in bold
typeface.

l/:;riable~ and olher lex! in regular lype

,. s File Edit Search Run Windows

Picture

HINT P-Z
IM P(2500)

CLS

List

LINE(0,0)-(1 20, 120),,BF
ASPECT= .1

WHILE ASPECT <20
C IRCLE(60 ,60) ,55,30 ,,,ASPECT
ASPECT =ASPECT* 1.4

WEND
GET (0,0)-(127, 127),P
CheckHouse:

IF MOUSE(O)=O THEN CheckMouse

Re~erved word~ in boldlaoe lype

.,

When you're typing a program line, the "boldness" doesn't appear until
you press the Return key. Also, the boldness goes away temporarily while
you are editing a line.

Run the program to see the picture it draws.

Choose Show Output from the Windows menu. This opens the out­
put window over the List window.

Show Command
Show List 31:L
Show second List
\110111 ll11lp111

II

•

Microsoft BASIC Interpreter

Stop the program:

Editing a
BASIC program:

"" Choose Start from the Run menu.

The program runs and the picture appears in the output window. You
can move this picture by clicking the mouse anywhere in the output
window. Try it.

Oufpuf lrom Pidure Click fhe mou~e lo
move fhe pidure .

Windows

Picture -- - .,

Oufpuf window adive

Picture keeps running until you tell it to stop.

"" Choose Stop from the Run menu. You get a dialog box that says
"Program Stopped." The box disappears when you press a key or
move the mouse.

"" Choose Show List from the Windows menu. The List window comes
forward again and becomes the active window. You can scroll
through the program listing, just as you would any Macintosh docu­
ment, using the scroll arrows and scroll boxes.

If you want to know more about Picture, see Appendix G, "A Sample
Program," for a line-by-line explanation.

Editing a Macintosh BASIC program is much like editing text with a word
processor. All text entry and editing takes place in the List window using
the Cut, Copy, and Paste commands from the Edit menu. You enter new
text at the insertion point (the thin blinking cursor), either by typing or

n

-
Practice editing
with Picture:

Add a line
to the program:

Getting Started

using the Paste command from the Clipboard. Backspace deletes charac­
ters behind the insertion point. Dragging the mouse selects text, and you
can Cut or Copy the selection just as you would with a word processor.

This is a good opportunity to practice editing a BASIC program on the
Mac and to learn about some of the graphics statements in Microsoft
BASIC. Don't worry about losing or altering Picture. There is another
program just like it called Picture2 on this disk.

If you want to experiment, feel free to make your own changes to Picture.
Try the following sequence to change the program to produce output that
looks like this:

,. a f ih~ Edit S(~<ln h Run llfindo11•s

~ Picture

•
Start by adding the line that draws the second sphere.

Iii> Look in the Picture listing until you find this line:

CIRCLE(60,60),55,30,,,ASPECT

Iii> Click at the end of the line to move the insertion point there.

•

Microsoft BASIC Interpreter

r S File Edit Searth Run lllindo111s

Picture

=o
DEFINT P-Z
DIM P(2500)
CLS

List

LINE(0,0)-(120, 120),,BF
ASPECT= .1

WHILE ASPECT <20
CIRCLE(60,60),55,30,,,ASPECTI
ASPECT = ASPECT* 1.4

WEND
GET (0,0)-(127, 127),P
CheckMouse:

IF MOUSE(O):O THEN CheckMouse

... Press the Return key to get a blank line. Now you are ready to type
the new line. Start it off with a few spaces to align it with the state­
ment above it. Type:

CIRCLE(60, 170),40,33,,,ASPECT

This statement draws an ellipse with the center located at 60, 1 70, a
radius of 40, and an aspect ratio equal to ASPECT, in the color black.
In Microsoft BASIC, the number 33 represents black, and the number
30 represents white. Every time the WHILE loop is executed, the
statement draws another ellipse with a different aspect ratio (AS-

'

-

PECT). These ellipses form the sphere. ~

... Choose Start to run the program.

~-

-
-

Hyou
get an error:

Replace a
program line:

Getting Started

Whenever you type or edit a program, there's the possibility of introduc­
ing errors. When BASIC encounters an error, it stops program execution
and gives you a dialog box that describes the error. BASIC makes sure
that a List window is active, and then it scrolls the window so the line
with the error in it is the first line in the window. The statement that
caused the error is enclosed in a bold rectangle, and BASIC moves the
cursor to the beginning of the statement. Then you can edit the incorrect
line in the List window and run the program again.

Since you changed the program, only the first sphere moves when you
click the mouse. Let's change the program so that both spheres move
together .

.,. If the program is still running, c hoose Stop to stop it .

.,. The List window should now appear and be active. If it doesn't ap­
pear, then choose Show List. Show List doesn't change the position in
the List window .

.,.. Point at the extreme left edge of the GET statement and drag across
to the end of the line. This selects the entire line.

=D List
DEFINT P-Z
DIM P(2500)
CLS
L INE(0,0)-(120, 120),,BF
ASPECT= .1

WHILE ASPECT<20
CI RCLE(60 ,60) ,55 ,30 ,,,ASPECT
ASPECT = ASPECT* 1.4

WEND
(jf: I . I I ' I - I I . : ' . . ' ..

Checl<Mouse:
IF MOU5E(0)=0 THEN CheckMouse

.,. Choose Cut from the Edit menu to delete the selection.

... Type GET (O,O}(120,250),P

•

•

Microsoft BASIC Interpreter

,. s File Edit Search Run Windows

Picture

DEFINT P-Z
Dltt P(2SOO)
CLS

List

LINE(0,0)-(120, 120),.BF
ASPECT= . I

WHILE ASPECT<20
CIRCLE(60,60),SS,30,,.ASPECT
CIRCLE(60, I 70),40,33,.,ASPECT
ASPECT = ASPECT* 1.4

WEND
GET (0,0)-(120,250),Pj
CheckMouse:

This new GET statement increases the area that moves when you click
and drag the mouse .

.,.. Choose Start to run the program. Now both spheres move together
when you click the mouse.

s Hlc1 Edit Scrnn h Run Windows

EiO Picture

.,

,

Reversing
black and white:

Getting Started

Let's changt: tht: first sphere so that it, too, is drawn in black on a white
background.

.,.. If the program is still running, choose Stop to stop it .

.,.. Find tht: LINE statement in the program. A quick way to find it is
with the Find command.

....

....
Choose Find from tht: Search menu. You gt:t the Find dialog box .

Type LINE as the Find text.

Find neHt ! LIN~
OK I

[Cane el l

.,.. Click OK. The LI NE state ment is highlighted in the List w indow.

0
DEFINT P-Z
DIM P(2500)
CLS

list

!1m3(0,0)-(120, 120),,EiF
ASPECT = .1

WH ILE ASPECT <20
CI RCLE(60 ,60) ,:05,30 ,,,ASPECT

j::i:
CI RCLE(60, 170) ,40 ,33 .,,ASPECT ;:;::

.,.. Point at the enc.J of the statement and click, putting the insertion point
right after BF.

....

DEF INT P-Z
DIM P(2500)
CLS
LINE(0,0)-(120, 1 20) ,,B~
ASPECT= .1

Press the Backspace key once. The F in BF is deleted . Now the
inside of the box will bt: white (no t "'fil led").

•

•

Microsoft BASIC Interpreter

• Find the line

CIRCLE(60,60),55,30,,,ASPECT

• Position the insertion point after the number 30.

CIRCLE(60,60), 55,3tj,,,ASPECT
CIRCLE(60, 170),40,33,,,ASPECT

• Press the Backspace key once to delete the 0.

• Type 3 to make the number 33.

CIRCLE(60,60), 55,3~,,,ASPECT
CIRCLE(6fl.170),4133 .. ,ASPECT

IMerl.9

Now the ellipses will be drawn in black instead of white.

• Choose Start to see the new program output. Now our changes are
complete.

Single-step through
the program:

Getting Started

To get better acquainted with Picture, let's use a common debugging tech­
nique: single-stepping through the program.

II> If Picture is still running, choose Stop to stop it.

II> Choose Show Command to activate the Command window.

II> Type in END and press the Rt:turn key.

II> Choose Step from the Run menu. Step executes the first line of the
program and then stops.

II> Choose Show List to open and activate the List window on the right
side of the screen.

:0
DEF INT P-Z I
DIM P(2500)
CLS

list

LINE(0,0)- (120, 120).,EiF
ASPECT= . I

WHILE ASPECT <20
C IRCLE(60,60),55 ,30,,,ASPECT
CIRCLE(60, 170),40,33,..ASPECT :::::

L__----

Each statement is outlined in the List window as it is executed.
The Command window is activated, so any text you type will appear
there.

II> Choose Step again (or press Command-T). The next line executes
and the program stops again. There's no output yet , so not much is
happening.

II> Continue choosing Step and watch the program execute one program
statement at a time. When you get inside the section that draws
the ellipses, note how it draws the spheres. Each iteration of the
WHILE loop adds an ellipse with a different ASPECT (aspect ratio) to
each sphere.

II> just for fun, after the first few ellipses have been drawn, activate the
Command window and type PRINT ASPECT in the Command window
and press the Return key.

•

Microsoft BASIC Interpreter

•

meet ..

Command

I
Immediate mode oommand

The current value of ASPECT (the aspect ratio for the ellipse) is
displayed in the output window .

Even though we're not actually "debugging" Picture, this illustrates a
typical debugging technique. You can enter a command in the Com­
mand window to get information from BASIC "on the spot." When
you do this, it is called entering a command in "immediate mode."
BASIC executes immediate mode commands right away and shows
you the result (if any). See "Operating Modes" in Chapter 3, "Using
the Microsoft BASIC Interpreter," for more information on immediate
mode.

Continue stepping through Picture. Check other variables if you want
to. If you want to stop stepping and just run the rest of the program,
choose Continue from the Run menu.

Save the program,
so you can
run it later:

Leave BASIC
and return
to the Finder:

Getting Started

Whenever you enter a new program or make changes to an existing pro­
gram, use the Save As command to put the program on the disk. Once it's
on the disk, you can load and run it whenever you like.

..,. Choose the Save As command from the File menu. The Save As com­
mand gives you a dialog box.

Saue program as:
Microsoft ...

I Picture
Eject

Saue fanc:el

@)TeKt () Compressed ()Protected

BASIC assumes you want to save the program under its current name,
Picture. It also assumes you want to save the program in text format.·

Programs saved this way can be loaded and run by either version .

..,. You can change the name or the format if you want to, but the easiest
thing to do is simply: Click the Save button (or press the Return key).

Now you have two BASIC programs on the disk: the original, unchanged
Picture2 and the newly edited Picture. You also could have chosen to
rename the file as "Myfile" or any other legal name. That would have
preserved Picture in the form that you found it before your changes.

Choose the Quit command from the File menu.

Congratulations! You have finished the practice session.

You are now back at the Finder, ready to begin your next activity with the
Macintosh. But you've learned a lot about Microsoft BASIC in just a few
minutes.

•

•

Microsoft BASIC Interpreter

You've learned how to:

• Load an existing program.

• Edit programs in the List window.

• Work with some BASIC statements.

• Save a BASIC program file.

In the next chapter, you'll find elementary facts ahout how to operate
BASIC, including a section called "The Microsoft BASIC Screen." You'll
recognize things you saw in the practice session, and you 'II note a few
new things, too. As with all Macintosh tools, you can't "hurt" the comput­
er or BASIC through normal typing, mouse pointing, and trial and error.
So don't be afraid to experiment with Microsoft BASIC and try all the
teatures of the screen.

,..

....
I

~
' I

Decimal version

Binary version

G

3 Using the Microsoft
BASIC Interpreter

This chapter contains fundamental operating information for using
Microsoft BASIC, including how to choose between the different versions,
how to start and quit BASIC, how to load and save files, and how to use
the different operating modes. It then goes on to describe the various ele­
ments of the Microsoft BASIC screen.

Choosing Between the Two
Versions of Microsoft BASIC

Microsoft has provided two versions of BASIC on your disk. Both versions
include the same features; they differ only in that they use different for­
mats for floating-point numbers. The two versions have different icons as
do applications written under them. Each version has its advantages. You
may want to experiment with both to find which one works best for the
kinds of programs you write.

The decimal version (BCD format) is best suited to business and financial
applications because it introduces no round-off error when doing calcula­
tions involving dollars and cents operations. This option is compatible
with programs and data files created by Microsoft BASIC 1.0 for the
Macintosh. (The default for numeric data types is double precision.)

The binary version (IEEE format) is best suited to scientific and engineer­
ing applications. Arithmetic operations are always faster in this version
than in the decimal version, especially for transcendental functions (SIN,
COS, SQR, LOG, etc.). (The default for numeric data types is single
precision.)

Making Use of Both Versions
If you double-click a BASIC program icon, the Finder will automatically
load the version of BASIC the program was written under. You should
remember that:

• If the version of BASIC the program was written under is not on the
disk, the program will not load.

• Data files with numeric information created by MKSS and MKDS in
one version are not directly readable by the other version.

•

Microsoft BASIC Interpreter

Converting from
one version
to another:

• If the same program is run under both versions, numeric results may
vary slightly between versions. This difference is insignificant in most
cases.

If you wish to change your data files from one version's file format to
another, use the four functions provided in the binary version. Two of
these functions are CVDBCD and CVSBCD. They take decimal-created
random file non-integer numbers and turn them into binary format. The
other two functions are MKSBCD S and MKDBCD S which take non-integer
numbers from your binary program and put them into a random file
buffer. When the contents of this buffer are output to the random file, the
numbers are then readable by a decimal version program.

Starting and Quitting

• Microsoft BASIC
~===============================

Two ways to start
Microsoft BASIC:

Two ways
to return
to the Finder:

• Double-dick a Microsoft BASIC icon in the Finder. The two versions
of BASIC differ only in the way they handle floating-point (non­
integer) numbers.

or

• Double-dick any Microsoft BASIC program icon in the Finder. This
not only invokes the version of BASIC the program was written for,
but also loads and runs the selected program.

There are two ways to exit Microsoft BASIC and return to the Finder.

• You can select the Quit option on the menu bar's File menu.

or

• You can enter the SYSTEM command in the Command window, or
SYSTEM can be an instruction in a BASIC program.

....,
I

....

~
I

~
I

Loading
a program:

Saving
a program:

Immediate mode

....

Using the Microsoft BASIC Interpreter

Loading and Saving Programs

To run a program, the program must be in memory. There are several
ways to put an existing program into memory.

•

•

•

•

When in the Finder, double-click the icon for a Microsoft BASIC pro­
gram. If you do this, BASIC is loaded, and the program is loaded and
run. The appropriate version of BASIC is automatically selected for
you.

If BASIC has already been loaded, you can select the Open option
from the File menu. This will display all the existing Microsoft BASIC
programs on the volume that use the loaded version of BASIC. Click
the one you want to open.

If BASIC has already been loaded, you can type the LOAD statement in •
the Command window. See "LOAD" in Chapter 7, "BASIC Reference,"
for the proper syntax of this statement.

If a BASIC program is currently running, it can use the CHAIN state·
ment to load and run another program.

To save a new program, you can either select the Save As option from the
File menu or type the SAVE statement in the Command window. See
"SAVE" in Chapter 7, "BASIC Reference," for the proper syntax of this
statement. You can also use SAVE to file away a previously saved and now
re-edited program, but if you wish to use the File menu for saving the pro·
gram, you should select the Save option.

Operating Modes

When Microsoft BASIC is double-clicked from the Finder, the Command
window appears on the screen and BASIC is at command level. This
means it is ready to accept commands. At this point, Microsoft BASIC can
be used in one of three modes: immediate mode, edit mode, or program
execution mode. The List window is active when BASIC starts operating.

In immediate mode, BASIC commands are not stored in memory, but in­
stead are executed as they are entered in the Command window. Results
of arithmetic and logical operations arc displayed immediately and stored
for later use, but the instructions themselves are lost after execution. This
mode is useful for debugging and for using BASIC as a calculator for quick
computations that do not require a complete program.

•

Microsoft BASIC Interpreter

Program
execution mode

Edit mode

Elements
of the screen

To activate it:

You must make the Command window active by selecting it with the
mouse before you can start entering commands.

When a program is running, BASIC is in program execution mode. During
program execution, you cannot execute commands in immediate mode,
nor can you enter new program lines in the List window.

You are in edit mode when working in a List window.

The Microsoft BASIC Screen
There are four separate regions of the BASIC screen: the Command win­
dow, the output window, the List window, and the menu bar.

Three of these regions, the windows, share the following traits:

• Clicking inside a window makes it active.

• Clicking the close box closes a window.

• Dragging the title bar moves a window.

• Dragging the size box resizes a window.

• Double-clicking the title bar makes the window the full size of the
screen. Double-clicking the title bar again returns the window to its
previous size.

Additional features of each screen area are described in the sections that
follow.

The Command Window

The Command window is used to enter statements in immediate mode.
It is opened automatically when you load BASIC by double-clicking one
of the Microsoft BASIC icons in the Finder.

• Click inside it.

• Choose Show Command from the Windows menu.

~
I !

In it, you can:

To activate it:

To activate it:

In it, you can:

Using the Microsoft BASIC Interpreter

• Enter a statement in immediate mode. BASIC executes the statement
when you press the Return key. Any output from the statement is
displayed in the output window.

• Use the Cut command from the Edit menu or the Backspace key to
correct typing mistakes.

The Output Window

The output window displays the output from your programs.

• Click inside it.

• Choose Show Output from the Windows menu.

The List Window

The List Window is used to enter, view. edit, and trace the execution of
programs. It is automatically activated when you double-click Microsoft
BASIC from the Finder.

• Click inside it.

• Choose Show List or Show Second List from the Windows menu.

• Enter LIST in the Command window.

It also becomes active when the program halts because of an error.

Note If a program has been saved in a protected file, you
cannot open a List window for the file. Protected files
can neither be listed nor edited. You protect a file by
saving it with the "Protected" format in the Save
command.

• Look at a program and scroll through it with scroll arrows and scroll
boxes (thumbs).

• Enter or edit a program, using all the editing features of Microsoft
BASIC, including selecting text with the mouse and using the com­
mands in the Edit menu. See "List Window Hints" in Chapter 4, "Edit­
ing and Debugging Your Programs," for more details on List windows.

•

•

Microsoft BASIC Interpreter

To enlarge
a List window:

To shrink
a List window:

The Apple menu:
The File menu:

New
Open •••
Close
Soue
Soue As •••
Print ...
Quit

Enlarging the List Window
Like all windows in BASIC, the List window can be enlarged by dragging
the size box at its lower-right corner. Since enlarging the List window
can become a frequent task, especially during debugging sessions, BASIC
provides an even quicker method.

• Double-dick the title bar of the active List window. The window
enlarges to full screen size.

• Double-click the title bar again. The window returns to its previous
size.

Double-clicking the title bar is the most convenient way to switch
between a full-screen and a smaller List window. If you resize the win­
dow, BASIC remembers the new size the next time you switch back to it.
Double-clicking the title bar works with all BASIC windows, but you will
probably want to do this most often with the List window.

The Menu Bar

There are six menus on the menu bar: Apple, File, Edit, Search, Run, and
Windows. You cannot always use all of these menus. When a menu name
is "dimmed," it means that the menu is not relevant to what you are doing
at the moment. Similarly, when a menu command is "dimmed," it is
irrelevant to what you are doing. When a menu or menu command
is dimmed, it cannot be selected.

Some of the menu commands show a Command-key sequence next to
them, such as Command-X for Cut. This means you can press the given
key combination (press the "X" key while holding down the Command
key) instead of choosing the command with the mouse, if you want to.

This is the system menu that contains the Macintosh desk accessories.

The File menu contains seven commands that affect program files:

- gets BASIC ready to accept a new program. It clears the
current program listing from your screen and the program from memory,
so you can begin a new program.

- tells BASIC you want to bring in a program that is already on
the disk. When you choose Open, you get a scrollable list of the pro­
grams on the disk. Select the program you want, then click the Open but­
ton. If the program you want is on another disk, you can eject the
current disk by clicking the Eject button and then put in the other disk. If
the program you want is on a disk in another disk drive, the dialog box

,...
I

~
I

-

The Edit menu:

Cut XH
Copy XC
Paste XU

Using the Microsoft BASIC Interpreter

offers you the choice of selecting program files from a second drive. If
you select this option, BASIC offers a scrollable list of programs from the
other disk

closes the active (highlighted) window.

- puts a program on the disk after you have entered it or made
changes to it. It saves the program under its current name. (If the
current name is "Untitled," choosing Save gives you the Save As dialog
box instead, so you can change the name.)

MjiiUiliM is the same as Save, except that Save As allows you to change
the name of the program to be saved.

The dialog box assumes you want to save the program in compressed for­
mat. If you want to save in Text, Compressed, or Protected format, click
the appropriate button (See "Program File Commands" in Chapter S,
"Working With Files and Devices," for an explanation of file formats.) If
you want to save the program on a different disk, you can eject the
current disk by clicking the Eject button, and then insert the other disk.

- sends a copy of the program to the printer. Two prompts re­
quest information about paper size and print format before the printing
starts.

- causes Microsoft BASIC to return to the Finder.

The Edit menu has three commands that are used when entering and edit­
ing programs. Except for immediate mode statements in the Command
window, you enter and edit all program statements in the List window.

- deletes the current selection from any window and puts it
in the Clipboard. Typing Command-X is the same as choosing Cut.

11.14!*·!1 puts a copy of the current selection into the Clipboard
without deleting it. Typing Command-C is the same as choosing Copy.

1zg1.+.riii replaces the current selection with the contents of the Clip­
board. If no characters are selected, Paste inserts the contents of the Clip­
board to the right of the insertion point. Typing Command-Vis the same
as choosing Paste.

•

•

Microsoft BASIC Interpreter

1he Search menu:

Find... XF
Find NeHt XN
find Selected TeHt
find Label
Find the Cursor
Replace •••

1he Run menu:

Start XR
s.top ••
Continue
Suspend XS
Trace On
Step an

The Search menu contains six commands which provide the full range of
editing options you need to edit and change your programs. The Find
selections work from the current location to the bottom of the program,
and scroll around to the top of the program again.

rind... '.!H gives you a dialog box asking for the text you want
to find. When you click the Find Next button, Find locates the next oc­
currence of that text in the program. The text is shown highlighted in the
List window. Typing Command-Fis the same as selecting Find.

Find Neut .:ii:.N searches forward in the program text for the next
occurrence of the text last searched for by any of the Search menu items.
Typing Command-N is the same as selecting Find Next.

f md \elected f eHt searches forward for the next occurrence of the text
that is currently selected in the List window.

rind Label appends a colon to the selected text, and searches
for the label definition that corresponds to your entry.

Fmd the Cur\or causes the List window to scroll until the cursor is
visible.

Replace ... gives you a dialog box in which you enter four
things: selected text, replacement text. and two options: Replace All Oc­
currences, which replaces all occurrences of the text, and Verify Before
Replacing, which stops at each occurrence of the text and gives you the
option of replacing or not replacing that case.

The Run menu has six commands that control program execution:

- runs the current program. Entering RUN in the Command
window or typing Command-R is the same as choosing Start.

- stops the program that is running, displays the "Program
Stopped" alert box, and activates the Command or List window, whichev­
er was most recently active. Typing Command-period is the same as
choosing Stop.

MlftDihiii- starts a stopped program. Entering CONT in the Com-
mand window is the same a~ choosing Continue. If no program was
stopped, or if you changed the program while it was stopped, you get the
dialog box that says, "Can't continue."

MjiLjH§m+il suspends the program that is running until you press any
key. Typing Command-Sis the same as choosing Suspend.

Miliii&U. I is a toggle that turns program tracing on an<l off for
debugging. If a List window is visihk, tracing outlines e&1ch statement as
it executes. This works the same as the TRON statement. Trace Off
works the same as the TROFF statement.

executes the program, one statement at a time. It stops
after each statement. Typing Command-Tis the same as choosing Step.

,...

The
Windows menu:

Show Command
Show List XL
Show Second List
Show Output

Using the Microsoft BASIC Interpreter

The Windows menu has four commands that open windows on the BASIC
screen:

Show [ommanct opens and activates the Command window.

Show List :~l opens and activates a List window onto the current
program. If a List window is already open but covered with other win­
dows, Show List brings it forward and activates it. Typing Command-L
is the same as choosing Show List.

\how Second List opens and activates a second List window onto the
current program. If a second List window is already open but obscured,
Show Second List brings it forward and activates it.

\how Output opens and activates the output window. Any overlap­
ping List windows are put behind the activated output window .

•

Writing in
List windows:

Viewing two
List windows:

4 Editing and
Debugging Your Programs

This chapter describes how to enter text to write programs, and how to
remove errors from programs.

Editing Programs
The List window appears when you start Microsoft BASIC. Use the regular
Macintosh editing commands, Cut, Copy, and Paste, to write and edit the
program lines in the List window. The Search menu provides several
ways to quickly find or change program text in just one place, or
throughout the program. It also has two features, Find the Cursor and
Find Label, that permit you to find your way quickly around a program.

The List window that appears when BASIC is initialized may seem too
small to use for long program lines. Text written beyond the right margin
will force the window to scroll, keeping the cursor in the visible part of
the List window. If you double-dick the List window's title bar, the win- •
dow enlarges to fill the screen. This provides more space for longer visi-
ble program lines. If you double-dick the title bar again, the List window
assumes its previous size and location.

List Window Hints

Here are some hints to help you get the most out of List windows while
editing programs. Load the Picture program from the Microsoft BASIC
disk and follow these hints.

Sometimes you want to look at two different parts of a program while
you are editing it. For example, a program usually has subroutine calls
(GOSUBs) near the beginning of the program, with the subroutines them­
selves toward the end. You may want to view both simultaneously.
To do this, open two List windows and scroll to different portions of the
program .

..., Choose Show List from the Windows menu to open the first List
window .

..., Choose Show Second List from the Windows menu. A second List
window opens and becomes the active window.

•

Microsoft BASIC Interpreter

..,. Move the active List window to the left edge of the screen by drag­
ging the title bar.

Oragging lille bar

r • file Run Windows

Picture

List
INT P-21

DIME =· List

Cl DEFINT P-Z
l IN DIM Pdsoo)
AS CLS j

LINE(O,pH 120, 120),,6F
ASPECTj:. 1
WHl~E ASPECT <20
Cl~CLE(60,60),55,30,,,ASPECT
ASPECT= ASPECT* 1.4

Che WEND
I I GET (O,p)-(127, 127),P
, .. ·······•· · "[ffe"cJCrr6use:

IF MOUSE

Oupliaale li~I window

..,_ Click inside the original List window to make it active .

..,_ Move the active List window slightly to the right by dragging the title
bar. The two windows are now side-by-side .

..,_ Scroll the listing in each window to the lines you want and continue
editing the program.

~

.,
i-"

~

~

""" I

~

~

~

!-'

Typing and
editing text:

Editing and Debugging Your Programs

Orag lille bar lo !he righl.

" 9 File Edit Search Run

list
DEFINT P-Z
DIM P(2500) Efl~T P-2
CLS DIM Fi(2500)
LINE(0,0)-(120, 120),,BF CLS i @j!

AS~E~ITL~ ~SPECT <20 ~~~~'~T°l~~ 120, 120),,BF ii!lil

CIRCLE(60,60),55,30,,,ASP W~ILE ASPECT <20 ''iii·

•• ~~~~:~;, :;:::~.:· 1• w~~~~~~ <;~;~;0;s:~~,,• sPEcr ~I
CheckMouse: GET (;0,0)-(127, 127),P it

IF MOUSE(O):O THEN Checkl1 Chec~Mouse: mm
IF ~DUSE(- THEN CheckMouse

Original li~I window

If you close or obscure the List windows, the next Show List and
Show Second List you choose will display the List windows in these
new positions.

Editing Reminders
Editing program lines in the List window is much like working with regu­
lar text on a word processor. If you are accustomed to working with
MacWriten 1 on the Macintosh, you already know how to edit programs in
BASIC. Here are some reminders about typing, selecting, and editing text
in the List window.

.,

• Insert text by typing it or pasting it from the Clipboard. Inserted text
appears to the right of the insertion point.

• Delete characters by backspacing over them or by selecting them and
then choosing Cut from the Edit menu.

•

•

Microsoft BASIC Interpreter

Selecting text:

Scrolling:

• End each program line with a carriage return. You can have extra
carriage returns in your BASIC programs; these only create blank lines
that are ignored when the program executes.

• You can indent program lines by using the Tab key. When you press
the Return key at the end of a line, the cursor descends one line and
goes to the column where the previous line started. This means if the
previous line started with a tab, the new line will start at the same tab
stop. This feature can save you considerable time in entering pro­
grams with indented lines. Note that indenting lines does not con­
sume any more memory than not indenting them.

• You can type reserved words in either uppercase or lowercase, but
BASIC will always display them in uppercase and bold.

• You can type variable names in either uppercase or lowercase, but
BASIC will not distinguish between them. Thus, TOT AL and total are
the same variable name.

• Select characters or lines by dragging the mouse over them.

• If you drag to any edge of the List window and keep holding the
mouse button down, the window automatically starts to scroll, select­
ing as it goes.

• Another way to make an extended selection is to click at the begin­
ning of the selection, move the mouse to the end of the selection, and
Shift-click (clicking while holding down the Shift key). This selects all
characters between the beginning and end of the selection.

• The quickest way to select a single line is to point at the far left edge
of the line and drag down one line.

• Scroll as you would any Macintosh document, using the List window
scroll buttons and scroll boxes.

• When you reach the bottom of the List window and continue entering
lines, BASIC automatically scrolls up one line at a time.

• BASIC automatically scrolls horizontally when you reach the right rm-'
edge of the List window and continue typing. If you use the scroll
bar to move away from the area containing the cursor and try to do
anything that would change the text, the List window will scroll back
to the cursor area.

• If you click above the scroll box in the vertical scroll bar, the listing
scrolls up one screenful. If you click below it, the listing scrolls down
one screenful.

• Single-clicking arrows in the vertical scroll bar scrolls through the list­
ing up or down, one line at a time.

Opening a
List window at
a specific line:

Using Cut,
Copy, and Paste
commands in
List windows:

Editing and Debugging Your Programs

To open a List window at a specific line, enter the LIST command in the
Command window and include a label or line number. The List window
will open with that line as the first line.

l7i1sr MovePicture
Command

For example, LIST MovePicture opens a List window on the Picture
program, beginning with the MovePicture subroutine.

Any selection that you cut or copy in one window is put into the
Macintosh Clipboard and can be pasted into any List window. Don't for­
get that the contents of the Clipboard are replaced with each Cut and
Copy command. However, a Paste command does not change the con­
tents of the Clipboard, so you can paste the same contents into different
places in a program as many times as you want.

Sometimes you may want to cut something out of the program without
having it overwrite information you have on the Clipboard. You can do
this by highlighting the text you want to eliminate and pressing the Back­
space key. This is also a good technique when you want to avoid generat­
ing "Out of heap space" error messages which can occur when deleting a
very large block of text.

Debugging Programs
_ ·==

Error messages

TRON command

Microsoft BASIC comes with several debugging features. You can use
these features to save time and effort while removing program errors.

When a program encounters an error, program execution terminates,
a dialog box appears with the error message, and the line with the error
is indicated in the List window. See Appendix 8, "Error Codes and Error
Messages," for a complete listing of these codes and messages.

TRON is easily remembered as TRace ON. Trace mode is on when you
select the Trace On choice from the Run menu, execute TRON in a pro­
gram line, or type it in the Command window.

If a List window is visible, the statement being executed is framed with a
rectangle in the List window. As the program executes statement by
statement, each statement is framed.

TRON is disabled when you select the Trace Off item from the Run
menu, execute TROFF (TRace OFF) in a program line, or type it in the
Command window.

•

Microsoft BASIC Interpreter

Step option

• Suspend option

If you have isolated the error to a small part of a program, it is easier and
quicker to turn on TRON from within the program, just before the error
is reached.

The Step option executes the next statement of the program in memory.
If the program has been executed and stopped, Step will execute the first
statement following the STOP statement. Control subsequently returns to
immediate mode. If there is more than one statement on a line, Step exe­
cutes each statement one at a time. You can also select Step from the Run
menu.

If a List window is visible, BASIC frames the last statement that was
executed.

You can advance through a program, step-by-step, testing results at the
conclusion of each line, and interactively testing variable values by order­
ing them (in the Command window) to be printed. To reset STEP to start
at the beginning of a program, type in the END statement in the Com- '1
mand window.

You cannot use Step to stop execution of a program if ON BREAK trap­
ping is enabled. (See "ON BREAK" in Chapter 7, "BASIC Reference," for
further information.)

You can cause program execution to pause either by pressing Command-S
or selecting the Suspend option from the Run menu. This suspends or
causes a pause in program execution until any key (except Command-S)
is pressed. This option is enabled whenever a program is running.

Using the Command Window
Once a program has been stopped, you can use the Command window to
glean useful debugging information in immediate mode. For example, if
your program is causing an error message, and the error occurs some­
where within a loop, you can find out how many times the program has
executed the loop and all the variable values. You find this out by enter­
ing immediate mode instructions in the Command window to PRINT the
variables (for exact syntax, see "PRINT" in Chapter 7, "BASIC Reference").

Another debugging use of the Command window is to change the values
of variables with immediate mode LET statements. You can assign a new
value to a variable and use the Continue selection on the Run menu to
resume program execution.

5 Working With
Files and Devices

This chapter discusses the way files and devices are used and addressed in
Microsoft BASIC, and the way information is input and output through the
system. File handling is discussed, as well as how to use data and pictures
from other applications, such as Microsoft MultiplanTM, in your BASIC
programs.

File Naming Conventions
There are few filename constraints in Microsoft BASIC on the Macintosh.
All files have a filename preceded by an optional volume name.

Filenames
Microsoft BASIC filenames can be from one to 255 characters in length,
and can consist of either uppercase or lowercase alphanumeric characters
or a combination of both. No Command characters can be used in
filenames. Examples of valid filenames:

PAYROLL A2"100 My File CHBCK REGISTER

Volume Specifications
Your Macintosh comes with one built-in disk drive. You may connect an
additional disk drive to increa.c;e your storage capacity. Even on one-drive
systems, some people will have more than one volume. In this case, you
must explain which volume is to be activated for loading or saving files.
You do this by adding the relevant filename to the volume name, separat­
ing them by a colon. For example, if you were trying to get a program
named CATALOG, from a volume named Bill's Multiplan Disk, you would
refer to the file as:

LOAD "Bill's Multiplan Disk: CATALOG"

For loading program files, it is best to select the Open command on the
File menu. This will display a dialog box that provides an Eject option so
that you can remove the BASIC disk and insert another disk containing the
program file you wish to load. After the disk is inserted, the files on the

•

•

Microsoft BASIC Interpreter

disk will be displayed, and you can proceed with selecting and loading the
file in the normal way you would if the file was on the same disk. To save
program files, it is best to select the Save As command on the File menu.
The process that follows is similar to the procedures for loading.

You can also load a program from another volume with the LOAD,
MERGE, or RUN commands by entering the volume name and filename,
separated by a colon, in the Command window. However, if that volume
has not been previously mounted on the system, an "Unknown volume"
error message is generated. To avoid this, you will have to first eject the
disk in your internal drive by pressing Command-Shift-I (Command-Shift-2
for the external drive). Then you can insert the volume containing the
program you wish to load.

Data files accessed from another volume also require that you specify the
volume in addition to the filename. To ensure that the volume is present,
you can use the FILES S function.

Assume, for example, you want to open a data file called "Expenses" from
the internal drive, but the disk volume it is on, "Accounts", is not in the
internal drive. You can do the following:

XS = FILESS(I)

When BASIC executes the fILESS function, it will automatically display a
dialog box and provide options to select files on the current volume, on a
second drive, or to eject the disk from the drive and load from another
volume .

In the latter case, you can select the Eject button to eject the current disk
in the internal disk drive and insert the "Accounts" volume. The dialog
box will then allow you to select the file, "Expenses" (or any other file on
the disk). The volume name and filename of the selected file will au­
tomatically be stored in the string variable (XS). This will allow you to
open the file by later using XS in an OPEN statement, as in the following
line:

OPEN XS FOR APPEND AS # l

Working With Files and Devices

Generalized Device 1/0

Microsoft BASIC supports generalized device input and output. This
means that various devices can he used with the same syntax BASIC uses
to access disk files. The following devices are supported:

SCRN:

KYBO:

LPTI:

CLIP:

Files can he opened to the screen device for output. All
data opened to SCRN: is directed to the current output
window.

Files can be opened to the keyboard device for input. All
data read from a file opened to KYBD: comes from the
keyboard.

Files can be opened to this device for output. All data
written to a file opened to LPT l: is directed to the line­
printer.

Files can he opened to this device (the Finder's Clip­
board) for input or output. By using this device, you can
write results from a program to the Clipboard for use by
the Finder or another application. Conversely, you can
use the Copy choice in a program like Microsoft Multi­
plan to save information to the Clipboard. (See "Transfer­
ring Data Between BASIC and Other Programs" in this
chapter for more information.) You can then read that
data from CLIP: into a BASIC program. The Clipboard
is changed whenever a Cut or Copy edit process is
performed.

You can address the Clipboard in three different ways.
The first two, "CUP:" and "CLIP:TEXT", hold data in text
format, while "CLIP:PICTURE" holds encoded graphics
instructions.

"CLIP:" is useful for transferring data to and from pro­
grams that have tabular data, like Microsoft Multiplan or
Microsoft Chart. If you use the WRITE# statement in
BASIC to put information into the Clipboard, you can
later use that information in Multiplan or Chart. In the
WRITE statement, expressions are separated by commas,
and these are converted to tabs when written to the
Clipboard.

"CLIP:TEXT" is useful for transferring data to and from
word processors and similar programs.

"CLIP:PICTURE" is useful for transferring data to and
from MacPaint and similar programs.

•

•

Microsoft BASIC Interpreter

COMl: Files can be opened to this device for input or output.
COM l: accesses the asynchronous port for external com­
munication. The syntax for using the COM l: filename is
as follows:

COM l: [baud-rate][,[pari~y][,[data-bits][,stop-bits]]]

baud-rate: The speed at which the computer commun­
icates. The default is 300. The baud-rate is
one of the foJlowing values: l l 0, 1 50, 300,
600, 1200, 1800, 2400, 3600, 4800, 7200,
9600, 19200, or 57600.

parity: A technique for detecting transmission er­
rors. The default is E. It is either 0 (for
odd}, E (for even), or N (for none).

data-bits: The bits in each byte transmitted that are
real data, and not overhead (parity bits and
stop bits). The default is 7. It is either 5,
6, 7, or 8.

stop-bits: Used to mark the end of the transmitted
'byte.' When the baud rate is 110, the de­
fault for stop bits is 2. At all other baud
rates, the default is l. When 2 stop bits and
5 data bits are specified, 1. 5 stop bits are
used.

Printer Options
Microsoft BASIC provides you with a number of different ways to use the
printer, offering a spectrum of styles and speeds. The printer device is ad­
dressed by using LPT 1: .

BASIC graphics and ROM calls can be sent to the printer by way of the
WINDOW OUTPUT# statement. See "WINDOW" in Chapter 7, "BASIC
Reference," for details.

When PRINT statements are sent to the file, "LPTl:DIRECT", BASIC sends
a stream of ASCII bytes. This is useful for sending text to a daisy-wheel
printer. This is the fastest way to produce printer output, although it has
the lowest visual quality.

When PRINT statements are directed to a file named "LPTl:PROMPT",
BASIC displays two dialog boxes that permit you to change print specifica­
tion parameters. After a dialog box to choose the proper paper size, there
is a dialog box that offers three choices for printing. They are Draft, Stan­
dard, and High.

Getting at a
program file:

Working With Files and Devices

Draft print is the fastest of the three options. The print appearance is simi­
lar to standard dot-matrix print. The printer attempts to approximate dif­
ferent font and typeface appearances. Standard print is based on bit·
mapped screen information, and is precisely the way the text appears on
the screen. High print is the same as Standard, except the printer strikes
every character twice for higher resolution.

"LPTI:" and the Standard and High options support graphics.
"LPTI:DIRECT" and the "LPTI:PROMPT" Draft option do not.

Note that "LPTI :" and "LPTI :PROMPT" send output to a disk file first and
then to the printer when the file is closed.

The following statements and functions support device-independent 110:

CHAIN
CLOSE
EOF
GET
INPUT
INPUT#
LINE
LIST INPUT#
LOAD
LOC
LOF

Handling Files

MERGE
OPEN
POS
PRINT
PRINT USING
PUT
RUN
SAVE
WIDTH
WRITE
WRITE#

This section examines file 110 procedures for the beginning BASIC
user. If you are new to Microsoft BASIC, or if you are encountering file­
related errors, read through these procedures and program examples to
make sure you are using the file statements correctly.

Program File Commands
The following is a brief overview of the commands and statements you
use to manipulate program files. More detailed information and syntactic
rules are given in Chapter 7, "BASIC Reference," under the various state­
ment names.

There are three main ways to open up a program file. The most common­
ly used way is to open the file by using the LOAD command. When you
load a program file, all open data files are closed, the contents of memory
are cleared, and the loaded program is put into memory.

•

•

Microsoft BASIC Interpreter

Putting away
program files:

Additional
file commands

Another way to get a program file is to bring a program into memory and
attach it to the end of a program already in memory. Do this by using the
MERGE command. This is useful when you are developing a large pro­
gram and want to test the parts of it separately. After testing and debug­
ging the parts, you can merge them together.

A third way to get at a program file is to transfer control to it during the
execution of another program. Do this by using the CHAIN statement.
When you use CHAIN, the program in memory opens up another program
and brings it into memory. The first program is no longer in memory.
Options to the CHAIN statement permit all cir some variable values to be
preserved, and merging of the program already in memory with the pro­
gram to which control is being transferred.

The two main ways to file away your programs are by selecting the Save
or Save As selections on the File menu, or by typing the SA VE command
in the Command window. For information on the Save and Save As selec­
tions, see "The Menu Bar" in Chapter 3, "Using the Microsoft BASIC Inter­
preter." For full details on the SAVE command, see "SAVE" in Chapter 7,
"BASIC Reference." The default format for saved files is binary. In the
Save As selection on the File menu, this option is called "Compressed."
The files in this format take up the least room, and load and save most
quickly.

If y9u wish to have a program protected from being listed or changed, use
the "Protected" (.P) option with the SAVE command. This option is
called "Protected" in the Save As selection of the File menu. You will al­
most certainly want to save another, unprotected copy of a program
saved this way for listing and editing purposes .

If you wish to save the program in ASCII format, use the "ASCII" (,A) op­
tion. This option is called "Text" in the Save As selection of the File
menu. ASCII files use up more room than binary ones, but word process­
ing programs can read ASCII files, and CHAIN MERGE and MERGE can
successfully work only with programs in this format.

Microsoft BASIC provides you with additional program file-handling state­
ments as well. The NAME statement provides you with the ability to
rename existing program and data files. The KILL statement enables you
to delete a data or program file from a volume. For detailed information
about these two commands, see "NAME" and "KILL" in Chapter 7, "BASIC
Reference."

.....
I

.....
I

1-i

! ',

Working With Files and Devices

Data Files -
Sequential and Random Access I/ 0

There are two types of data files that can be created and accessed by a
BASIC program: sequential files and random access files.

Sequential Files
Sequential files are easier to create than random access files, but are not as
flexible and quick in locating data. The data written to a sequential file is
a series of ASCII characters stored, one item after another (sequentially),
in the order written. The data is read back sequentially, one item after
another.

Warning Sequential files can be opened in order to write to them
(output) or read from them (input), but not both at the
same time. When you need to add to a sequential file
that has ~!ready been given data and closed, do not open
it for output. This erases the previous contents of the file
before it writes the new data you give it. Use append
mode to add information to the end of an existing file if
you don't want to erase existing data.

This version of BASIC gives you the option of specifying the file buffer
size for sequential file 1/0. The default length is 128 bytes. This size can •
be specified in the OPEN statement for the sequential file. The sizes you
specify are independent of the length of any records you are reading or
writing to the file; they only specify the buffer size. Larger buffer sizes
speed 1/0 operations, but take memory away from BASIC. Smaller buffer
sizes conserve memory, but produce slower 1/0.

The following statements and functions are used with sequential data files:

CLOSE
EOF
INPUTS
INPUT#
LINE INPUT#
LOC

LOF
OPEN
PRINT#
PRINT USING#
WIDTH
WRITE#

•

Microsoft BASIC Interpreter

Creating a
sequential
data file:

Program 1 is a short program that creates a sequential file, "DATA", from
information you enter at the keyboard.

Program /--Creating a Sequential Data File

OPEN ·oATA. FOR OUTPUT AS.,
ENTER:

INPUT .NAME ("DONE' TO OUIT>9;NS
IF NS ~ ·ooNE. THEN GOTO FINISH

INPUT ·oEPARTMENT·; DEPTS
INPUT ·oATE HIRED·; HIREOATES
WRITE • 1,NS,DEPTS,HIREOA TES
PRINT

GOTO ENTER
FINISH:

CLOSE •1
ENO

As illustrated in Program 1, the following program steps are required to
create a sequential file and access the data in it:

1. Open the file in output (to the file) mode.

2. Write data to the file using the WRITE# statement .

.3. After you put all the data in the file, close the file .

A program can write formatted data to the file with the PRINT# USING
statement. For example, the statement

PRINT #J, USING"####,##,";A,B,C,D

I •

can be used to write numeric data to the file without commas separating ~
the variables. The comma at the end of the format string in the PRINT#
USING statement separates the items in the file with commas. It is good
programming practice to use "delimiters" of some kind to separate dif-
ferent items in a file.

-

Reading data
&om a sequential
data file:

Adding data
to a sequential
data file:

Working With Files and Devices

If you want commas to appear in the file as delimiters between variables
without having to specify each one, the WRITE# statement can also be
used. For example, the statement

WRITE • t .A.BS

can be used to write these two variables to the file with commas delimit­
ing them.

Now look at Program 2. It accesses the file "DATA" that was created in
Program l and displays the name of everyone hired in 1981.

Program 2-Accessing a Sequential Data File

OPEN 'T'.•1,"DATA"
WHILE NOT BOP(1)

INPUT • 1.NS.DEPTS.HIRBDATES
IF RIGHTS(HIREDATE$,2) • "81" THEN PRINT NS

WEND

Program 2 reads, sequentially, each item in the file, and prints the names
of employees hired in 1981. When all the data has been read, the
WHILE ... WEND control structure uses the EOF function to test for the
end-of-file condition and avoids the error of trying to read past the end of
the file.

If you have a sequential file residing on disk and want to add more data to
the end of it, you cannot simply open the file in output mode and start
writing data. As soon as you open a sequential file in output mode, you
destroy its current contents.

Instead, use append mode. If the file doesn't already exist, the OPEN
statement will work exactly as it would if output mode had been
specified.

•

•

Microsoft BASIC Interpreter

The following procedure can be used to add data to an existing file called
"FOLKS":

Program 3-Adding Data to a Sequential Data File

OPEN .. A .. ,' I ,"FOLKS"
REM 0 * Add new entr1es
NE WENT RV~

IF N$ = THEN GOTO FINISH ·cornage Return exits rnput loop
LI NE INPUT .. ADDRESS ? ",ADDR$
LINE INPUT "BIRTHDAY? ",BIRTHDATE$
PRINT'l, N$
PRINT• 1, AODR$
PRINT' 1, BIRTHDATE$
GOTO NEWENTRV

FINISH:
CLOSE• 1
END

The LINE INPUT statement is used for getting ADDRS because it allows
you to enter delimiter characters (commas and quotes).

Random Access Files
Creating and accessing random access files requires more program
steps than creating and accessing sequential files. However, there are
advantages to using random access files. One advantage is that random ac­
cess files require less room on the disk, since BASIC stores them in a
packed binary format. (A sequential file is stored as a series of ASCII
characters.)

The biggest advantage to using random access files is that data can be ac­
cessed randomly, that is, anywhere in the file. It is not necessary to read

(i

through all the information from the beginning of the file, as with scquen- ~
tial files. This is possible because the information is stored and accessed
in distinct units called records. Each record is numbered.

-

,...

Creating a
random access
data file:

Working With Files and Devices

The statements and functions that are used with random access files are:

CLOSE
CVD
CVI
CVS
FIELD
GET
LOC
LOF

I.SET
MKD
MKI
MKS
OPEN
PUT
RSET

Program 4--Creating a Random Data File

OPEN ·R·.•1.·oATA·.32
FIELD• 1.20 AS NS.4 AS AS,8 AS PS
START:

INPUT ·2-0IGIT CODE (ENTER - I TO QUIT>9;CODEX
IF CODEX=- I THEN OUITFILE
INPUT .NAME9;PERSONS
INPUT .AMOUNY-;AMOUNT
INPUT ·pHONE.;TELEPHONES
PRINT
LSET NS .. PERSONS
LSET AS= MKS$(At10UNT)
LSET PS"' TELEPHONES
PUT • I ,CODEX

GOTO START
OUITFILE:

CLOSE• 1

As illustrated by Program 4, the following program steps are required to
create a random access file.

I. OPEN the file for random access. The absence of an input, output,
or append parameter specifies a random file. If the record length
(LEN =) is not specified, the default value is 128 bytes.

2. Use the FIELD statement to allocate space in the random buffer for
the variables that will be written to the random access file. The ran­
dom buffer is an area of memory, a holding area, reserved for transfer­
ring data from files to program variables and vice versa.

Example:

FIELD # 1, 20 AS NS. 4 AS ADDRS, 8 AS PS

•

•

Microsoft BASIC Interpreter

Accessing a
random access
data file:

3. Use I.SET to move the data into the random access buffer. Numeric
values must be made into strings when placed in the buffer. To do
this, use the "make" functions: MKI S to make an integer value into a
string, MKS S to make a single precision value into a string to be
stored in a random file, and MKD S to make a double precision value
into a string.

Example:

LSET NS-XS
LSBT ADDRS • MKSS(AMT)
LSET PS • TELS

4. Write the data from the buffer to the disk using the PUT statement
and specifying the record number with an expression.

Example:

PUT • t, CODEI

Program 4 takes information that is input from the keyboard and writes
it to a random access file. Each time the PUT statement is executed, a
record is written to the file. The two-digit code that is input in line 30
becomes the record number .

Note Do not use a fielded string variable in an INPUT or LET
statement. Doing so causes that variable to be redeclared;
BASIC will no longer associate that variable with the file
buffer, but with the new program variable.

Program 5 accesses the random access file, "DATA", that was created in Pro­
gram 4. By entering a two-digit code at the keyboard, the information as­
sociated with that code is read from the file and displayed.

....

,...

Working With Files and Devices

Program 5-Accessing a Random Data File

OPEN ·R·.•1.·0ATA •• J2
FIELD • 1.20 AS NS.4 AS AS.8 AS PS
START:

INPUT ·2-DIGIT CODE (ENTER -1 TO QUIT>9;CODEX
IF COOEX=-1 THEN QUITFILE
GET • 1. CODEX
PRINT NS
PRINT USING ·ss··· ••·;cVS(AS)
PRINT P$: PRINT
GOTO START

QUITFILE:
CLOSF. • 1

The following program steps are required to access a random access file:

1. OPEN the file in random mode.

2. Use the FIEW statement to allocate space in the random access
buffer for the variables that will be read from the file. (See the
FIELD statement in Program 5.)

Note In a program that performs both input and output on the
same random access file, you can often use just one OPEN
statement and one FIELD statement.

3. Use the GET statement to move the desired record into the random
access buffer.

The data in the buffer can now be accessed by the program. Numeric
values that were converted to strings by the MK.IS, MKS S, and MKD S func­
tions must be converted back to numbers using the "convert" functions:
CVI for integers, CVS for single precision values, and CVD for double pre­
cision values. The MKI S and CVI processes mirror each other, the former
converting a number into a format for storage in random files, the latter
converting the random file storage into a format usable by the
program.

•

•

Microsoft BASIC Interpreter

Random file
operations

The LOC function, when used with random access files, returns the
"current record number." The current record number is the last record
number that was used in a GET or PUT statement. For example, the
statement

IP LOC(1) > 50 THEN END

ends program execution if the current record number in file# I is greater
than 50.

Program 6 is an inventory program that illustrates random file access.

Program 6-Inventory

OPEN "INVEN.DAr AS• t LEN:39
FIELD • 1, 1 AS FS,30 AS DS,2 AS QS,2 AS RS,4 AS PS
FUNCT I ONLABEL:
CLS :PRINT "FUNCTIONS: ":PRINT
PRINT "1. INITIALIZE FILE"
PR I NT ·2. CREATE A NEW ENT RV"
PRINT "3. DISPLAY INVENTORV FOR ONE PARr
PRINT "4. ADD TO STOCK"
PRINT ·s. SUBTRACT FROM STOCK"
PRINT "6. DISPLAV ALL ITEMS BELOW REORDER LEVEL"
PRINT ·1. DONE WITH THIS PROGRAM"
PRINT:PRINT :INPUT "FUNCTION ";FUNCTION
IF (FUNCTION>O)AND(FUNCTION<7) THEN GOTO START
GOTO FUNCTIONLABEL
START:
ON FUNCTION 60SUB 600, 100,200,300,400,500, 700
GOTO FUNCTIONLABEL
END

-

Working With Files and Devices

100:
60SU8 PART
IF ASC(F$)<>255 THEN INPUT "OVERWRITE ";AODRS
IF ASC(FS)<>255 AND ADDRS<>Y THEN ADORS = "N": RETURN
LSET FS:CHRS(O)
INPUT "DESCRIPTION ";DESCRIPTION$
LSET D$:DESCRIPTIONS
INPUT "QUANTITY IN STOCK ";QUANTITV:C
LSET QS:MKIS(QUANTITY:C)
INPUT "REORDER LEVEL ";REORDER%
LSET RS:MK I SCREOROER:C)
INPUT "UNIT PRICE ";PRICE
LSET P$:MKSS(PRICE)

PUT '1,PARn;
INPUT "Press Return to continue", OUM$
RETURN
200:

GOSU8 PART
IF ASC(f$):255 THEN PRINT "NULL ENTRY ":RETURN
PRINT USING "PART NUMBER •n";PARTI
PRINT 0$
PRINT USING "QUANTITY ON HAND ,,,,,.,.,..;CVl(Q$)
PRINT USING "REORDER LEVEL •••H";CVl(R$)
PRINT USING "UNIT PRICE $S" ";CVS(P$)
INPUT "Press Return to conttnue", OUM$

RETURN
300:

60SU8 PART
IF ASC(fS):255 THEN PRINT "NULL ENTRY ":RETURN
PRINT DS:lllPUT "QUANTITY TO ADD";ADDITIONALI
Ql:CVICOS)+ADD IT I ONALI
LSET Q$:HKl$(QI)
PUT • 1,PARTI

RETURN
400:

60SU8 PART
IF ASC(f$):2SS THEN PRINT "NULL ENTRY ":RETURN
PRINT 0$

•

•

Microsoft BASIC Interpreter

425:
INPUT ·au ANT ITV TO SUBTRACT • ;LESSI
Ql:CVl(Q$)
IF (Ql-LESSl)<O THEN PRINT ·oNLV ·;a1;· IN STOCK ·:&OTO 425
Ql:Ql-LESSI
IF Ql<:CVl(RS) THEN PRINT ·auANTITV NOW ·;al;
IF Ql<:CVl(R$) THEN PRINT. REORDER LEVEL ·;CVl(R$)
LSET QS:nKIS(QI)
PUT" 1,PARTI
INPUT ·press Return to continue·, OUM$

RETURN
500 : REORDER = 0

FOR I= 1 TO 100
GET" 1.1
IF ASC(F$):255 GOTO 525
IF CVl(Q$)<CVl(R$) THEN PRINT 0$; -auANTITV ";CVl(QS);TA6(35);
IF CVl(Q$)<CVl(R$) THEN PRINrREORDER LEVEL .. ;CVICRS>
IF CVl(Q$)<CVl(R$) THEN REORDER : (-1)

525: NEXT I
IF REORDER: 0 THEN PRINT "All •items well-stocked"
INPUT "Press Return to continue", DUl1$
RETURN

600: INPUT "ARE VOU SURE ";CONFIRM$:1F CONFIRl1$<>T THEN RETURN
LSET F$:CHRS(255)
FOR I: 1 TO 100
PUT• 1,1
NEXT I

RETURN
PART:
ENTERNO:

INPUT "PART NUMBER? ",PART%
IF (PARn< l)OR(PARU:> 100) THEN PRINT "6AD PART NUMBER"
IF (PARU< 1)OR(PARU:>100) THEN GOTO ENTERNO
GET "1,PARU:

RETURN

700 :CLOSE " 1
END

In this program, the record number is used as the part number. It is as­
sumed the inventory contains no more than I 00 different part numbers.
The program initializes the data file by writing CHRS(255) as the first
character of each record. This is used later to determine whether an entry
already exists for that part number.

,..
i '

Transferring
data&oma
BASIC program
to a Multiplan
worksheet:

Working With Files and Devices

Transferring Data Between
BASIC and Other Programs
Microsoft BASIC gives you the ability to transfer data between BASIC and
other applications.

Between BASIC and Multiplan
If you are using both Microsoft BASIC and Microsoft Multiplan on your
Macintosh computer, you can transfer data from a Multiplan worksheet to
a BASIC program, or vice versa.

There are two phases to transferring data between a BASIC program and a
Multiplan worksheet. Phase one is setting up your BASIC program to re­
ceive or send the data. Phase two is performing the actual transfer. Sam­
ple BASIC statements and the steps for performing the transfers are given
in this section.

Phase one The BASIC program must be able to write data to the
Macintosh Clipboard. To do this, OPEN the CLIP: device for output, and
WRITE the data from the BASIC program to the Clipboard.

For example, assume you have a program that fills four arrays (A,B,C,D)
with data. These arrays contain the data you want to transfer. The follow­
ing program segment writes the four arrays to the Clipboard that will later
be pasted into Multiplan cells:

OPEN "CL IP:" FOR OUTPUT AS • 1
FOR I= 1 TO 20

WRITE 11 1,A(t),6(1),C(l),D(I)

NEXT I
CLOSE II'

Phase two To perform the transfer of data from the BASIC program to
Multiplan, follow these steps:

.... Start BASIC.

..,. Run the program you wrote in phase one to write data to the Clip­
board .

..,. Return to the Finder. The system will save the Clipboard.

•

Microsoft BASIC Interpreter

Transferring data
from Multiplan to
a BASIC program:

•

Opening
the Clipboard:

.... Start Multiplan and load the worksheet that will receive the data.

.... Select the cells that will receive the data.

• Choose the Paste command from the Edit menu.

The contents of the selected cells will be replaced with the data items
from the Clipboard.

Phase one The BASIC program that will receive the data must be able
to input the data from the Macintosh Clipboard. To do this, OPEN the
CLIP: device for input, and INPUT the data from the Clipboard to the
BASIC program.

For example, the following BASIC program segment reads four columns
(A,B,C,D) of data from the Clipboard and returns the column totals in the
variables SUMA, SUMB, SUMC, and SUMO.

OPEN "CLIP: .. FOR INPUT AS • 1
WHILE NOT EOF(l)

INPUT • 1,A,B .. C .. D
LET SUMA = SUMA + A
LET SUMB = SUl1B + B
LET SUMC = SUMC + C
LET SUl1D = SUl1[1 + (J

WEND
CLOSE• 1

In the preceding program, the first line opens the Clipboard (CLIP:) for input,
and the third line reads the data from the Clipboard to the BASIC program.
The OPEN and INPUT statements are the same statements that open and
read data from disk files. In a similar way, you can open the keyboard and
screen (for input) and the line printer (for output). For more informa-
tion, see the section called "Generalized Device l/O" in this chapter.

Phase two To perform the transfer of data from Multiplan to the BASIC
program, follow these steps:

.... Start Multiplan and load the worksheet that contains the data to be
transferred.

.... Select the cells containing the data to be transferred.

.... Select the Copy command from the Edit menu. This copies the con­
tents of the selected cells to the Macintosh Clipboard. The contents
of the worksheet remain unchanged.

• Return to the Finder. The system will save the Clipboard.

1-r
I

,....
I

-

Using a
word processor:

Transferring
a picture
from BASIC
to MacPaint:

Working With Files and Devices

.... Start BASIC.

..,. Run the BASIC program you wrote in phase one to input data from
the Clipboard.

Between BASIC and a Word Processor
Programmers who own sophisticated word processing programs some­
times choose to enter their BASIC programs with a word processor.

Remember that word processing programs produce files with more char­
acters than the visible ones in your text. Many word processors use spe­
cial hidden characters to control appearance and format and to control
the printer. These characters can ruin your program file.

Most, but not all, word processing programs have a filing option called
"text only" or "unformatted" or "non-document." When text is filed with
this option, all the hidden control characters are removed. Only the text
is filed.

Also, if you write a program in Microsoft BASIC and later wish to use a
word processor to edit it, prepare the program first. When you save the
BASIC program, use the ",A" (ASCII) option which saves the program in a
format that can be read by the word processing program.

Between BASIC and MacPaint
MacPaint uses many of the same graphics ROM routines that Microsoft
BASIC does. This similarity permits you to draw using MacPaint and sub­
sequently bring those drawings into your BASIC program, or to use BASIC
to create a picture that you can transfer to MacPaint.

..,. Use the PICTURE ON statement to turn on the recording of graphics
statements.

..,. Issue the statements that produce the desired image.

..,. Use the PICTURE OFF statement to stop recording graphics state­
ments.

Open the Clipboard to accept the information:

OPEN "CLIP..PICTURE'' POR OUTPUT AS 1

..,. Send the picture information to the file:

PRINT • J .PICTURBS

•

•

Microsoft BASIC Interpreter

Transferring
a picture
from MacPaint
to BASIC:

• Close the file:

CL~E•t

• Start up MacPaint. Use the MacPaint Paste command to copy the
image from the Clipboard and put it in your work area.

• In MacPaint, produce an image the way you want it to be in BASIC,
and then select it.

• Use either the Copy or Cut command from the Edit menu to put the
image on the Clipboard.

• Start up Microsoft BASIC.

• Open the Clipboard as an input file:

OPEN "CLIP-.PICl1JRE" FOR INPUT AS 1

• Take a copy of the picture on the Clipboard and transfer it to a string
variable (in this example called IMAGES}: i-

IMAGES·INPUTS(LOP(1),1)

• Draw the picture to the screen exactly the way it was recorded .

PICTURES.IMAGES

For further details on using the PICTURE statement and the
PICTURES function, see "PICTIJRE" and "PICTIJRES" in Chapter 7,
"BASIC Reference."

-

-

6 Advanced Topics

Microsoft BASIC supports several advanced programming features includ·
ing subprograms, event trapping, and memory management. These
powerful features, not necessary for beginners to master, add flexibility to
Microsoft BASIC. They are especially helpful to programmers who
develop programs for other users.

I

Subprograms are modules similar to subroutines but with major advan·
tages. They are especially helpful to programmers who write routines that
are reused in other programs.

Event trapping allows a program to transfer control to a specific program
line when certain events occur. These events include dialog box activity,
passage of time, mouse activity, a user's attempting to stop the program,
or menu selection.

Memory management in Microsoft BASIC is available through use of the
CLEAR statement and the FRE function. These tools can help you create
large programs that would ordinarily not run because of the Macintosh's
limited memory.

Subprograms
Subprograms are sets of program statements similar to subroutines. There
are three notable advantages to using subprograms.

First, subprograms use variables that are isolated from the rest of the pro·
gram. H a programmer accidentally uses a variable name in a subprogram
that has already been used in the main program, the two variables still re­
tain separate values. Variables within subprograms are called local vari·
ables because their values cannot be changed by actions outside the sub·
program.

The second advantage of subprograms is also related to local variables.
Programmers frequently find themselves producing the same routine over
and over in different programs, rewriting it each time to fit the variable
names and design of each new program. Because you don't need to
rewrite a subprogram to include it in another program, it is simple to pro·
duce a collection of subprograms. Subprograms then can be merged into
new programs with minimal changes.

•

•

Microsoft BASIC Interpreter

The third advantage of subprograms is that they cannot be executed ac­
cidentally. A subroutine can be executed accidentally if no GOTO state-

~
I I

ment is stationed above it; program flow simply enters the subroutine. ~
Subprograms are not executed unless a specific CALL to the subprogram is
executed.

Referencing Subprograms
Subprograms are referenced by the optional CALL statement with an argu­
ment list. (See "CALL" in Chapter 7, "BASIC Reference,'' for more infor­
mation.)

In this discussion, you will find references to "formal parameters" and "ar­
guments." Arguments refer to the program variables that are passed in the
CALL statement. For example:

CALL FIGURETAX(SUBTOTAL, TAX, TOTAL())

In this example, the arguments are the variables SUB TOT AL and TAX, and
the array variable TOTAL

Formal parameters refer to the parallel values that the subprogram uses.
If, for example, the FIGURETAX subprogram was called using the above
CALL statement, the subprogram's first line could appear as:

SUH FIGURETAX(FIGURE, TAXRATE, SUM(l)) STATIC

In this example, the formal parameters are the variables FIGURE and
TAXRA TE, and the array SUM. These parameters correspond to (and re­
turn values to) the main program variables used as arguments: SUBTOTAL,
TAX, and TOTAL() .

The parameters that transfer between the main body of the program and
the subprogram are said to be passed by reference. This means if the for­
mal parameter is modified by the subprogram, the argument's value
changes also.

r

This can affect the values of variables. For example:

CALL Addlt(A,B,Result)

SUB Addlt(X,Y,Z)
Z=X+Y
x = x + 12
y = y + 94

END SUB

Advanced Topics

If the values of the variables when the program executes the CALL state­
ment are A = 2 and 8 = 3. then when control returns to the main pro­
gram, A and 8 would have altered values. The A variable is tied to X, and
B to Y. If the value of X is changed in the subprogram, the value of A is
altered as well. In this example, the value of A is increased by 12 in the
statement X = X + 12. This subtle change happened because the vari­
able X is an "alias" for the variable A.

In the cases where you want the main program variable's value to change
in the subprogram, this works well. Where you don't want this to happen,
put parentheses around the variables and they will retain their values, re­
gardless of what happens in the subprogram. For example:

CALL Addlt((A), (B), Result)

The parentheses around the first two parameters force them into the
category of expressions. Their values cannot be changed by subprograms.
You need not use parentheses to pass expressions. For example:

CALL Add It(1 +2, 3*A. Result) •

•

Microsoft BASIC Interpreter

Subprogram Delimiters:
The SUB and END SUB Statements
Subprograms are delimited by the SUB and END SUB statements. The
EXIT SUB statement also can be used to exit a particular subprogram be­
fore it reaches the END SUB statement. Execution of an EXIT SUB or END
SUB statement transfers program control back to the calling routine. The
syntax is as follows:

SUB subprogram-name [(formal-parameter-list)] STATIC
[SHARED list-of-variables]

END SUB

The subprogram-name can be any valid identifier up to 40 characters in
length. This name cannot appear in any other SUB statement.

The formal-parameter-list can contain two types of entries: simple vari­
ables and array variables. If you are planning to use array variables, read
"Declaring Array Variables," below. Entries are separated by commas.
The number of parameters is limited only by the number of characters
that can fit on a BASIC line.

STA TIC indicates that all the variables within the subprogram retain their
values between invocations of the subprogram. Static variable values can­
not be changed by actions taken outside the subprogram. STATIC re­
quires that the subprogram be non-recursive; that is, it does not contain
an instruction that calls itself or that calls a subprogram that in turn calls
the original subprogram.

SHARED variables can be altered by parts of the program outside the sub­
program. Those variables you want shared must be explicitly listed in the
list-of-variables following the SHARED statement. Any simple variables or
arrays referenced in the subprogram are considered local unless they have
been explicitly declared SHARED variables. See "SHARED" in Chapter 7,
"BASIC Reference," for a discussion of the SHARED statement.

The statements that make up the body of a subprogram are enclosed by
the SUB and END SUB statements.

All BASIC statements can be used within a subprogram, except the
following:

• User-defined function definitions.

• A SUB/END SUB block. This means subprograms cannot be nested.

• COMMON statements

r

....

-

....

Advanced Topics

Declaring Array Variables
Simple variable parameters can be given any valid Microsoft BASIC
name. Arrays must be declared as follows:

array-name[number-of-dimensions]

where array-name is any valid Microsoft BASIC name for a variable and
the optional number-of-dimensions is an integer constant indicating
the number of dimensions in the array. Note that the actual dimensions
are not given here.

For example, in the following subprogram,

SUB MATADD2(N%,M%,A(2),B(2),C(3)) STATIC

END SUB

N% and M% are integer variables, and A and Bare indicated as two­
dimensional arrays, while C is a three-dimensional array.

Simple Variables and Array Elements
When a simple variable or array element or an entire array is passed to a
BASIC subprogram, it is passed by reference. The following example
shows how a subprogram is invoked by the CALL statement, and illustrates
call-by-reference argument passing.

A:S:B:2
CALL SQUARE(A, B)
PRINT A,6
END

SUB SQUARE(X,V) STATIC
v = x•x

END SUB

This example prints the results 5 and 25. Each reference to Yin subpro­
gram SQUARE actually resulted in a reference to B, and each reference to
X resulted in a reference to A. In other words, each time SQUARE used Y,
it was actually using B.

•

•

Microsoft BASIC Interpreter

Shared variables

Argument Expressions
Expressions also can be passed as arguments to BASIC subprograms. An
argument expression is considered to be any valid BASIC expression, ex­
cept simple variables and array element references. When an expression
is encountered in the argument list in a CALL statement, it is assigned to a
temporary variable of the same type. This variable is then passed by refer­
ence to the subprogram. This is equivalent in effect to the call-by-value
passing in functions, whereby the value itself is passed.

If a simple variable or array element is enclosed in parentheses, it is
passed the same way as an expression (that is, as call-by-value). For ex­
ample, if the CALL SQUARE statement in the above example were changed
to:

CALL SQUARE CA, CB))

the results printed would be 5 and 2. In this case (8) is passed by
value as an expression, and therefore the subprogram cannot change the
value of 8.

Note Arrays should not be passed as parameters to assembly
language procedures using the conventions outlined. In­
stead, the base element of an array should be passed by
reference if the entire array needs to be accessed in the
assembly language program. For example:

CALL X(V ARPTR (A(0,0)))

Shared and Static Variables in Subprograms
Variables and arrays referenced or declared in subprograms are generally
considered to be local to the subprogram. However, Microsoft BASIC sup­
ports shared variables within a module and provides a way for values to
be preserved across subprogram invocations.

By using the SHARED statement in a subprogram, you can access variables
without passing them into a subprogram as parameters.

Within a subprogram, main program variables can be used by including
the SHARED statement. The SHARED statement only affects variables
within that subprogram.

,...,
I

~
I I

....

Static variables

Advanced Topics

Within a subprogram, main program variables can be used by includ­
ing the SHARED statement. The SHARED statement only affects vari­
ables within that subprogram .

For example:

LET A= I: LET 8=5: LET C= 10
DIM P(100),Q(100)

SlJB MAC STATIC
SHARED A,B,P(),Q()

END SUB

In this example, all main program variables and arrays except Care
shared with the subprogram MAC.

As already noted, variables and arrays referenced or declared in a sub­
program are considered local to the given subprogram. They are not
changed by statements outside of the subprogram. Initial values of
zero or null string are assumed.

If the subprogram is exited and then reentered, however, variable and
array values are those present when the subprogram was exited.

The ST A TIC keyword is required for all subprogram definitions in this
version of BASIC.

Array Bound Functions
The upper and lower bounds of the dimensions of an array can be
determined by using the functions, LBOUND and UBOUND.

LBOUND returns the lower bound, either 0 or I, depending on the
setting of the OPTION BASE statement. The default lower bound is 0.
lJBOlJND returns the upper bound of the specified dimension.

Each function has two syntaxes: a general syntax and a shortened syn­
tax that can be used for one-dimensional arrays. The syntaxes are:

I.BOUND(array)
I.BOUND(array.dim)

UBOUND(arraJ')
lJBOlJND(array,dim)

for I -dimensional arrays
for n-dimensional arrays

for I -dimensional arrays
for n-dimensional arrays

•

•

Microsoft BASIC Interpreter

The an-ay is a valid BASIC identifier and the dim argument is an integer
constant from 1 to the number of dimensions of the specified array.

LBOUND and UBOUND are particularly useful for determining the size
of an array passed to a subprogram.

See "LBOUND" in Chapter 7, "BASIC Reference," for examples of the use
of array bound functions.

Event Trapping
Event trapping is a programming capability through which a program can
detect and respond to certain "events" and branch to an appropriate rou­
tine. The events that can be trapped are dialog activity (ON DIALOG),
time passage (ON TIMER), the user attempting to halt the program (ON
BREAK), the selection of a custom menu item (ON MENU), or mouse ac­
tivity (ON MOUSE). BASIC checks between each statement it executes to
see if the specified events have happened.

To use event trapping, the programmer builds a subroutine to respond to
the event. Then, if the program has activated event trapping for the event,
program control is automatically routed to the event-handling subroutine
when the event occurs. BASIC does this exactly as if a GOSUB statement
had been executed to the event-handling subroutine.

The subroutine, after servicing the event, executes a RETURN statement.
This causes the program to resume execution at the statement that im­
mediately follows the last statement executed before the event trap
occurred.

This section gives an overview of event trapping. For more details on in­
dividual statements, see Chapter 7, "BASIC Reference."

Event trapping is controlled by the following statements:

eventspecifier ON
eventspecifier OFF
eventspecifier STOP

to turn on trapping
to tum off trapping
to temporarily tum off trapping

The eventspecifier must be one of the following:

TIMER

MOUSE

The timer is the Macintosh's internal clock. If you use
timer event trapping, you can force an event trap every
time a given number of seconds elapse.

Mouse event trapping allows the programmer to redirect
program flow when the mouse is clicked by the user.

...

Activating
event trapping:

Terminating
event trapping:

Suspending
event trapping:

MENU

BREAK

DIALOG

Advanced Topics

If menu event trapping has been activated, the program
can use selection of custom menu items as events to trap.

When break event trapping is activated, the program sends
control to a specified subroutine when the user presses
Command-period, the break keystroke. Care should be
taken when using break event trapping. If a programmer
uses the statement in a program being tested, the program
cannot be exited before a program END statement without
rebooting the machine. One way to avoid this potential
problem is to omit the BREAK ON statement that activates
the ON BREAK event trap until testing is completed.

If dialog event trapping is activated, the program sends
control to a specified subroutine when dialog box, button,
or edit field activity has occurred.

ON ... GOSUB Statement
The ON GOSUB statement tells BASIC the starting line of the event·
handling subroutine. The format is:

ON eventspecifier GOSUB line

A line of zero disables trapping for that event.

When an eventspecifier is ON and if a non-zero line number has been
specified in the ON GOSUB statement, each time Microsoft BASIC starts a
new statement it checks to see if the specified event has occut'red.

AQ event will not be trapped by the ON eventspecifier statement unless
the corresponding eventspecifier ON statement has been previously
executed.

not remembered if it takes place.
When the eventspecifier is OFF, no trapping takes place, and the event is •

When the eventspecifier is stopped, no trapping takes place. However, the
occurrence of an event is remembered so that an immediate trap takes
place when an eventspecifier ON statement is executed, if the specified
event has occurred while the eventspecifier was stopped.

When a trap is made for a particular event, the trap automatically causes a
STOP on that eventspecifier, so recursive traps can never occur. A return
from the trap routine automatically reenables the event trap unless an
explicit OFF has been performed inside the trap routine.

•

Microsoft BASIC Interpreter

Note Once an error trap takes place, all trapping of that event
is automatically disabled until a RESUME statement is
executed.

Using Caution in Event Trap Programming
Programmers who produce applications that include more than one active
event trap should take special care. Subtle programmer errors can be hid­
den from view until an unusual series of events take place. An example of
this kind of occurrence appears in the program fragment below:

nENU ON
DIALO& ON
ON DIALO& &OSUB Hendteotelog
ON nENU &OSUB HendleMenu

FOR I = 1 TO 256
NUMBER= SQR(I): PRINT I, NUMBER

NEXT I

Hendl eDt a 1 og:
WHICH = DIAL06(0)
ON WHICH &OSUB Pressed, Ciiek, Act1vate, GoAwey, Warn1ng

RETURN

HendleMenu:
WHICH = nENU(O)
I= nENU(l)
ON WHICH &OSUB GoAway, Store, Reconcile

RETURN

In this example, a dialog event would branch control to the "HandleDialog"
subroutine. While that was executing, you could select a menu item, set­
ting off the menu event trap, and routing control to the menu routine.
When the menu subroutine finished executing, control would be returned
to the "HandleDialog" subroutine, but the WHICH variable's value could be

r

-

-

Polllitg-
a safe approach

Advanced Topics

changed. In addition, both event-trapping routines use the "GoAway" sub­
routine. If one event-handling routine is using the "GoAway" routine, and
is interrupted by the other which calls "GoAway" as well, unpredictable
results can occur.

To lessen the chance of these errors, avoid having the same event-trap
subroutine called by two events. Also, avoid using the same variables in
an event-trapping routine and the main program or another subroutine.
Not doing this is the most frequent reason for bugs in programs that use
event-trap features.

There is an additional common source of programmer error in the exam­
ple. It is possible for the FOR I loop to be executing at the moment you
select a menu item. At the end of the executing statement, control will
pass to the "HandleMenu" subroutine, which happens to use the variable I.
Most likely, I will not coincidentally be assigned the same value it had in
the FOR. .. NEXT loop; probably the value is changed. When control re­
turns to the loop, the counter variable I has the value it was assigned in
the event trap subroutine.

Beyond taking extra care in not using the same variables in the main pro­
gram and an event-trapping subroutine, there is another design option.
You can avoid event trapping altogether by branching control to a pro­
gram using idle loops and GOSUB statements. For example, if you want to
produce a program that branches to a subroutine when the user clicks the
mouse, you can use the following language:

•

•

Microsoft BASIC Interpreter

HENU 7,0, 1,·c1enr the screen·
nENU 7, 1, 1, ·oo w
true=-1
nOYETO 0,0

WHILE true
menu0=0
mous0=0

'endless loop

WHILE mous0=0 AND menuO:O 'po111ng loop
menuO:HENU(0)
mousO:HOU6E(0)

WEND
IF mousOoO THEM 606U8 hcmdlemouse
IF menuO<>O THEM 606U8 handlemenu

WEND
END

handlemouse:
LINETO HOUSE(1),HOU6E(2)

RETURN

hnndlemenu:
CL6

RETURN

The small program above uses an idle loop to check for mouse and menu
activity. When there is such activity, control branches to an event­
handling subroutine. This technique, called polling, can be a good alterna­
tive to event trapping; only expected events need be dealt with, and as a
result, program flow and variables are easier to follow and debug .

......
I

~
I

....
I

~
I

Areas of RAM

Conserving
stack space:

Conserving data
segment space:

Advanced Topics

Memory Management

If you need to produce large programs on the Macintosh, you may be
disappointed by the memory limitations imposed by the hardware.
Microsoft BASIC includes the CLEAR statement to help writers of large
programs manage memory allocation for different purposes.

Using the CLEAR statement, you can control the size of three different
areas of memory:

• The stack

• BASIC's data segment

• The heap

'lbe Stack
The stack keeps "bookJ;narks" telling where to return to from GOSUBS,
nested subprogram calls, nested FOR ... NEXT loops, nested WHILE ... WEND
loops, and nested user-defined functions. The stack is also used by ROM
routines (see Appendix F, "Access to Macintosh ROM Routines").

Certain Macintosh ROM calls require a considerable amount of stack
space. The more levels of nesting in your control structures, the more
stack space is required to execute a program.

BASIC's Data Segment
BASIC's data segment holds the text of the program currently in memory.
It also contains numeric variables and strings. In addition, the data seg­
ment contains file buffers for opened files.

A sequential file buffer has a default size of 128 bytes. If your program is
tight for memory, one memory reclamation technique is to define a small­
er sequential file buffer. A smaller buffer may slow execution of an 1/0 in­
tensive program, however. See "OPEN" in Chapter 7, "BASIC Reference,"
for details on changing a sequential file's buffer size. Additionally, the
kind of numeric variables you use will have an effect on data segment
space. Integer variables take half the number of bytes of single precision;
single precision take half the number of bytes of double precision. Also,
chaining several small programs together uses less memory than loading
and running a large program that incorporates all the smaller ones.

•

•

Microsoft BASIC Interpreter

Conserving
heap space:

The Heap
To preserve the maximum amount of memory space, Microsoft BASIC
is not fully loaded into RAM. Part of BASIC is in memory, and the rest
is in section~ that are pulled into memory from disk as needed. The
heap holds these sections, called BASIC transient code segments,
when they are brought into memory.

The heap also contains the buffer for SOUND and WA VE information,
which, when created, uses I 024 bytes of RAM. In addition, PICTURE
data, buttons, edit fields, and active desk ornaments all require heap
space.

In assigning memory to the heap. remember that as this area is made
larger, more of BASIC will reside in memory, and it will execute more
quickly. As you reclaim space from this area for other uses, less of
BASIC sits in RAM, and the more often it will need to go to the disk
to find parts of itself. ·111e tradeoff decision is one that should be
made on a program-by-program basis.

In addition, heap space can be kept smaller by releasing the
SOUND/WA VE buffer with a WA VE 0 statement when it is no longer
needed. A PICTURE ON followed immediately by a PICTURE OFF
statement reclaims memory from any preceding picture that was in
the heap. Closing windows that hold buttons and edit fields liberates
heap space.

Using the CLEAR Statement
for Memory Management
You can use the CLEAR statement to allocate memory to three areas
of RAM.

The syntax of the CLEAR statement is:

CLEAR I .I data-segment-size JI ,stack-size]]

The data-segment-size argument dictates how many bytes are to be
reserved for BASIC's data segment.

The stack-size argument dictates how many bytes are to be reserved
for the stack.

The amount of RAM remaining (Total - (data-segment-size + stack·
size)) is the RAM reserved for the heap. Using the CLEAR statement,
your program can define the space it requires for the three adjustable
.areas of RAM. You can use the FRE functions to find out how much
free memory you have in parts of RAM.

""' I

~
I

Advanced Topics

Using the FRE Function
for Memory Management
llu: syntaxes of the FRE function arc:

FRE(11)
FRE(" ")

In the PRE(11) syntax. there arc three different functions.

If (/1) is - 1, the function returns the number of free bytes available
in the heap.

If (n) is - 2, the fimction returns the number of bytes never used by
the stack. This docs not return the number of free bytes available in
the stack. It is used in testing programs to fine-tune the stack-size
parameter of the Cl.EAR statenu:nt.

If (11) is any number other than - I or - 2, or if you use the FRE(" ")
function, BASIC returns the number of free bytes available in BASIC's
data segment.

All versions of the FRE fimction compact string space.

Common Programmer Errors
There arc three most frequent Macintosh system errors that result
from inadequate programmer memory management. These messages
come up in error dialog boxes.

15 The operating system ran out of memory while trying to bring in
a transient code segment. If this error occurs, increase the size
of the heap with the CLEAR statement.

25

28

A heap allocation request couldn't be satisifed; increase the size
of the heap.

l11c stack infringed on the heap during a Macintosh ROM routine
execution. If this error occurs, bring BASIC up again and
increase the size of the stack with the CLEAR statement. Because
of a Macintosh operating system constraint, the stack parameter
cannot he reset to a higher value without restarting BASIC.

•

.....

7 BASIC Reference

The first part of this chapter describes the elements of the Microsoft
BASIC language and the syntax and grammar that apply to the language.
The second part, tinted gray for easy reference, is the Statement and
Function Directory.

Character Set
The Microsoft BASIC character set is composed of alphabetic, numeric,
and special characters. These are the only characters that Microsoft
BASIC recognizes. There are many other characters that can be displayed
or printed, but they have no special meaning to Microsoft BASIC.

The Microsoft BASIC alphabetic characters include all the uppercase and
lowercase letters of the American English alphabet. Numeric characters
are the digits O through 9. The following list shows the special characters
that are recognized by Microsoft BASIC.

Character Name or Function

+

I

(
)
%

s

Blank
Equal sign or assignment symbol
Plus sign
Minus sign
Asterisk or multiplication symbol
Slash or division symbol
Up arrow or exponential symbol
Left parenthesis
Right parenthesis
Percent sign
Number (or pound) sign
Dollar sign
Exclamation point
Left bracket •

•

Microsoft BASIC Interpreter

Character Name or Function

Right bracket
Comma
Period or decimal point
Single quotation mark (apostrophe)
Semicolon
Colon

& Ampersand
? Question mark
< Less than
> Greater than
\ Backslash or integer division symbol
(<t' At-sign

Underscore
<RE11JRN> Terminates input of a line

Double quotation mark

The following list shows the Command characters that are used in
Microsoft BASIC.

Key Combination Function

Command-period(.) Interrupts program execution and returns to
BASIC command level.

Command-S Suspends program execution.

Command-T Executes the next statement of the program.

Command-C Executes the "Copy" edit function.

Command-V Executes the "Paste" edit function.

Command-X Executes the "Cut" edit function.

Command-F Executes the "Find" search function.

Command-N Executes the "Find Next" search function.

Command-R Executes the "Start" run function.

Command-L Executes the "Show List" window function.

Command-Shift- I Ejects the disk from the built-in disk drive.

Command-Shift-2 Ejects the disk from a second disk drive.

~

~

~

~

r-i
I

~
i

l9i!
!

~
I

~

~

~

.....
I

~
I

Label definitions

BASIC Reference

The BASIC Line

Microsoft BASIC program lines have the following format:

[nnnnn] statement [:statement ...][comment] <Return>

or

[alpba-num-label: "]statement 1[:statement2 ...][comment] <Return >

The nnnnn argument must be an integer between 0 and 65529.

The alpba-num-label is any combination of letters, digits, and periods
that starts with a letter and is followed (with no intervening spaces) by a
colon{:).

A comment is a non-executing statement or characters that you may put
in your programs to help clarify the program's operation and purpose.

As you can see, Microsoft BASIC program lines can begin with a line
number, an alphanumeric label, neither, or both, and must end with a car­
riage return. A program line can contain a maximum of 255 characters.
More than one BASIC statement can be placed on a line, but each must be
separated from the last by a colon. Program lines are entered into a pro­
gram by pressing the Return key. This carriage return is an invisible part
of the line format.

Line numbers and labels are pointers used to document the program
(make it more easily understood) or to redirect program flow, as with the
GOSUB statement.

If, for example, you want a specific part of a program to run only when a
certain condition is met, you could write the following program:

IF Accounts<>"" THEN GOSUB Design

The interpreter searches for a line with the label "Design: .. and executes •
the subroutine beginning with that line. Note that no colon is needed for
Design in the GOSUB statement.

Alphanumeric line labels can contain from 1 to 40 letters, digits, or
periods. They must begin with an alphabetical character. This allows
the use of mnemonic labels to make your programs easier to read and
maintain.

•

Microsoft BASIC Interpreter

Restrictions

Format

For example, the following line numbers and alphanumeric labels are
valid:

Line Numbers

100

65000

Alphanumeric Labels

ALPHA:

Al6:

SCREEN.SUB:

In order to distinguish alphanumeric labels from variables, each alpha­
numeric label definition must have a colon (:) following it. A legal label
cannot have a space between the name and the colon. When you refer to
a label in a GOSUB or GOTO or other control statement, do not include
the colon as part of the label name. You cannot use any BASIC reserved
word as an alphanumeric label.

While the line number 0 is not restricted from use in a program, error­
trapping routines use line number 0 to mean that error trapping is to be
disabled. Thus,

ON ERROR GOTO 0

does not branch to line number 0 if an error occurs. Instead, error trap­
ping is disabled by this statement.

Labels and line numbers can begin in any column, as long as they are the
first non-blank characters on the line. There cannot be a space between
the label and the required colon that follows it.

Alphanumeric labels and line numbers can be intermixed in the. same
program.

For example:

A = .3
GOTO 20

10 A= 12
20 IF A = 3 THEN ShowMe El.SE 100
ShowMe: PRINT "The Answer is 3"

GOTOlO
I 00 PRINT "The An~wer is 12"

...

BASIC Reference

Constants

Constants are the actual values BASIC uses during program execution.
There are two types of constants: string and numeric .. A string constant is
a sequence of alphanumeric characters enclosed in double quotation
marks. String constants may be up to 32,767 characters in length.

For example:

"HELLO"
'125,000,000"
"Number of Employees"

Numeric constants are positive or negative numbers. There are five types
of numeric constants:

Integer constants

Fixed-point
constants

Floating-point
constants

Hex constants

Whole numbers between - 32768 and + 32767.
Integer constants do not contain decimal points.

Positive or negative real numbers; that is, numbers
that contain decimal points.

Positive or negative numbers represented in
exponential form (similar to scientific notation).
A floating-point constant consists of an optionally
signed integer or fixed-point number (the mantis­
sa) followed by the letter E and an optionally
signed integer (the exponent). (Double precision
floating-point constants are denoted by the letter
D instead of E.)

Examples:

235.9888-7 - .0000235988
235986 - 2359000000

Hexadecimal numbers with the prefix &H.

Examples:

&H76
&H32F

•

•

Microsoft BASIC Interpreter

Octal constants Octal numbers with the prefix &O or &.

Examples:

&03.f7
&123.f

Numeric constants can be either single precision or double precision
numbers. See Appendix D, "Internal Representation of Numbers," for
details on the internal format of numbers.

A single precision constant is any numeric constant that has one of the
following properties:

• Six or fewer digits in the decimal version
Seven or fewer digits in the binary version

• Exponential form denoted by E

• A trailing exclamation point (!)

A double precision constant is any numeric constant that has one of the
following properties:

• Seven or more digits in the decimal version
Eight or more digits in the binary version

• Exponential form denoted by D

• A trailing number sign (#)

The following are examples of numeric constants:

Single Precision Double Precision

46.8

- l.09E-6

3489.0

22.5!

345692811

- 1.094320-06

3489.0#

7654321.1234

Numeric constants in Microsoft BASIC cannot contain commas.

~
I

r-1
I

BASIC Reference

Variables

Variables represent values that are used in a program. As with constants,
there are two types of variables: numeric and string. A numeric variable
can only be assigned a value that is a number. A string variable can only
be assigned a character string value. You can assign a value to a variable,
or it can be assigned as the result of calculations in the program. Before a
variable is assigned a value, its value is zero (numeric variables) or null
(string variables). ·

Variable Names
A variable name can contain as many as 40 characters. The characters al·
lowed in a variable name are letters, numbers, and the decimal point. The
first character in a variable name must be a letter. Special type declara·
tion characters are also allowed (see "Declaring Variable Types" in this
section).

Variable names are not case·sensitive. That means that variables with the
names ALPHA, alpha, and AIPhA are the same variable.

If a variable begins with FN, BASIC assumes it to be a call to a user·
defined function. (See "DEF FN" in the Statement and Function Directory
that follows for more information on user·defined functions.)

Reserved Words
Reserved words are words that have special meaning in Microsoft BASIC.
They include the names of all BASIC commands, statements, functions, and
operators. Examples include GOTO, PRINT, and TAN. Always separate
reserved words from data or other elements of a BASIC statement with
spaces. Reserved words cannot be used as variable names. Reserved
words can be entered in either uppercase or lowercase. A complete list
of reserved words is given in Appendix C, "Microsoft BASIC Reserved
Words."

While a variable name cannot be a reserved word, a reserved word em·
bedded in a variable name is allowed.

For example,

LET LOG· 8

is illegal because LOG is a reserved word.

•

•

Microsoft BASIC Interpreter

Declaring Variable Types
Variable names can be declared either as numeric types or as string types.
String variable names are written with a dollar sign (S) as the last charac­
ter. For example:

LET AS • "SAL~ REPORT"

The dollar sign is a variable type declaration character; that is, it
"declares" that the variable will represent a string.

Numeric variable names can declare integer, single precision, or double
precision types. Computations with integer and single precision variables
can be less precise than those with double precision variables. However,
you may want to declare a variable to be a lower precision type, because
variables of higher precision take up more memory space.

The default type for a numeric variable is double precision in the decimal
version of BASIC, and single precision in the binary version.

The type declaration characters for numeric variables and the memory
requirements (in bytes) for storing each variable type are as follows:

Declaration
Character

%

$

Variable
Type

Integer

Single precision

Double precision

String

Bytes
Required

2

4

8

5 bytes overhead plus the
present contents of the
string

Examples of Microsoft BASIC variable names:

Pl•
MINIMUMI
LIMITI
PIRSTNAMl!S
ABC

The Microsoft BASIC statements DEFINT, DEFSTR, DEFSNG, and DEFDBL
can be included in a program to declare the types of variable names. By

BASIC Reference

using one of the DEFtype statements, you can specify that all variables
starting with a given letter will be of a certain variable type; the trailing
declaration character will not be needed. These statements are described
in detail under "DEFINT" in the Statement and Function Directory.

Array Variables
An array is a group of values of the same type, referenced by a single vari­
able name. The individual values in an array are called elements. Array
elements are variables also. They can be used in any BASIC statement or
function that uses variables. Declaring the name and type of an array and
setting the number of elements in th~ array is known as dimensioning the
array.

Each element in an array is referenced by an array variable that is sub­
scripted with an integer or an integer expression. An array variable name
has as many subscripts as there are dimensions in the array. For example,
V(10) would reference a value in a one-dimension array, T(1, 4) would
reference a value in a two-dimension array, and so on. Note that the array
variable T(n) and the "simple" variable T are not the same variable. The
maximum number of dimensions for an array is 255. The maximum
number of elements per dimension is 32, 768.

Individual elements of string arrays need not be the same length. For ex­
ample, in the string array WORDS(n), the element WORDS(I) could have
the value "It", WORDS(2) the value "More of It", and WORDS(3) the
value "A Complete Glut of It". Each string array element is permitted the
32, 767 characters allowed in an individual string variable.

Array elements, like numeric variables, require a certain amount of
memory space, depending on the variable type. The memory require­
ments for storing arrays are as for variables, each element of the array
requiring as much as the same type variable.

Type Conversion
When necessary, Microsoft BASIC will convert a numeric constant from
one type to another. The following rules and examples should be kept in
mind.

If a numeric constant of one type is assigned to a numeric variable of a •
different type, the numeric constant will be stored as the type declared in
the variable name. (If a string variable is assigned to a numeric value or
vice versa, a "Type mismatch" error message is generated.)

•

Microsoft BASIC Interpreter

For example:

Al• 23.-t2
PRINT Al

23

During expression evaluation, all of the operands in an arithmetic or rela­
tional operation are converted to the same degree of precision, that is, the
degree of the most precise operand. Also, the result of an arithmetic
operation is returned to this degree of precision.

For example:

D• • 617
PRINT D•

.8571-t28571-t286

The arithmetic operation was performed in double precision, and the
result was returned in Das a double precision value.

Logical operators convert their operands to integers and return an integer
result. Operands must be in the range - 32768 to + 32767 or an "Over­
flow" error message is generated.

When a floating-point value is converted to an integer, the fractional por­
tion is rounded.

For example:

CARENI • 55.88
PRINT CARENI

56

~
.,

,...,

BASIC Reference

Expressions and Operators
An expression is a combination of constants, variables, and other expres­
sions with operators. Expressions are "evaluated" by the interpreter to
produce a string or numeric value. Operators perform mathematical or
logical operations on values. The operators provided by Microsoft BASIC
can be divided into four categories:

• Arithmetic

• Relational

• Logical

• Functional

Hierarchy of Operations
The Microsoft BASIC operators have an order of precedence; that is, when
several operations take place within the same program statement, certain
kinds of operations will be executed before others. If the operations are
of the same level, the leftmost one will be executed first, the rightmost
last. The following is the order in which operations are executed:

I. Exponentiation

2. Unary Negation

3. Multiplication and Floating-point Division

4. Integer Division

5. Modulo Arithmetic

6. Addition and Subtraction

7. Relational Operators

8. NOT

9. AND

IO. OR and XOR

11. EQV

12. IMP •

•

Microsoft BASIC Interpreter

Arithmetic Operators
The Microsoft BASIC arithmetic operators are listed in the following table
in order of operational precedence:

Operator

• , I

\

MOD

+, -

Operation

Exponentiation

Unary Negation

Multiplication, Floating-

point Division

Integer Division

Modulo Arithmetic

Addition, Subtraction

Sample Expression

X"Y

-x
X•Y

X/Y

X\Y

YMODZ

X+Y, X-Y

To change the order in which the operations are performed, use
parentheses. Operations within parentheses are performed first. Inside
parentheses, the usual order of operation is maintained.

BASIC expressions look somewhat different from their algebraic
equivalents. Here are some sample algebraic expressions and their BASIC
counterparts:

Algebraic
Expression

x-z
y

XY
z

X+Y
z

(X 2)'I

X(-Y)

BASIC
Expression

(X-Z)/Y

X•Y/Z

(X+Y)IZ

X • (-Y)

,...,

~

r--i

,....

....

Integer division

Modulo
arithmetic

Overflow and
division by zero

BASIC Reference

Integer division is denoted by the backslash(\) instead of the slash(/);
the slash indicates floating-point division. The operands of integer divi­
sion are rounded to integers (that is, they must be in the range - 32768
to + 32767) before the division is performed, and the quotient is truncated
to an integer.

For example:

x - 10\4
y - 25.68\6.99
PRINT X,Y

2 3

Modulo arithmetic is denoted by the operator MOD. Modulo arithmetic
provides the integer remainder of an integer division.

For example:

10.4 MOD 4 - 2
25.68 MOD 6.99 - 5

(10\4 • 2 with a remainder of 2)
(26 \ 7 - 3 with a remainder of 5)

Note that BASIC rounds both the divisor and the dividend to integers for
the MOD operation.

If a division by zero is encountered during the evaluation of an expres­
sion, the "Division by zero" error message is displayed, machine infinity
(the highest number Microsoft BASIC can produce) with the sign of the
numerator is supplied as the result of the division, and execution contin­
ues. If the evaluation of an exponentiation results in zero being raised to
a negative power, the "Division by zero" error message is displayed,
positive machine infinity is supplied as the result of the exponentiation,
and execution continues. If overflow occurs, the "Overflow" error
message is displayed, plus or minus infinity is supplied as a result, and
execution continues.

Relational Operators
Relational operators are used to compare two values. The result of the
comparison is either "true" (- 1) or "false" (0). This result can then be
used to make a decision regarding program flow (see "IF ... THEN ... El.SE"

•

• •

Microsoft BASIC Interpreter

and "IF ... GOTO" in the Statement and Function Directory). The following
table lists the relational operators:

operator Relation Tested Expression

Equality x y

< > Inequality x < > y

< Less than x < y

> Greater than x > y

< Less than or equal to x < y

> Greater than or equal to x > y

(The equal sign is also used to assign a value to a variable. See "LET" in
the Statement and Function Directory.) When arithmetic and relational
operators are combined in one expression, the arithmetic operation is
always performed first.

For example:

X+Y<(T-1)/2

This expression is true if the value of X plus Y is less than the value of
T - 1 divided by Z.

Logical Operators
Logical operators perform bit manipulation, Boolean operations, or tests
on multiple relations. Like relational operators, logical operators can be
used to make decisions regarding program flow.

For example:

IP D < 200 AND P < 4 THEN 80
IF I > 10 OR IC < 0 THBN 50
IF NOT P THBN 100

A logical operator returns a result from the combination of true-false
operands. The result (in bits) is either "true" (- 1) or "false" (0). The
true-false combinations and the results of a logical operation are known as
troth tables. There are six logical operators in Microsoft BASIC. They
are: NOT (logical complement), AND (conjunction), OR (disjunction),
XOR (exclusive or), IMP (implication), and EQV (equivalence). Each
operator returns results as indicated in the following table. A "T" indi­
cates a true value and an "F" indicates a false value. Operators are listed
in order of operational precedence.

"""

flll9I

BASIC Reference

Operation Value Value Result

NOT x NOTX
T F
F T

AND x y XANDY
T T T
T F F
F T F
F F F

OR x y XORY
T T T
T F T
F T T
F F F

XOR x y XXORY
T T F
T F T
F T T
F F F

IMP x y X IMPY
T T T
T F F
F T T
F F T

EQV x y X EQVY
T T T
T F F
F T F
F F T

In an expression, logical operations are performed after arithmetic and •
relational operations. Logical operators convert their operands to 16-bit, :
signed, two's complement integers in the range - 32768 to + 3276 7. (If the
operands are not in this range, an error results.) If both operands are sup-
plied as 0 or - 1, logical operators return 0 or - l, respectively. The given
operation is performed on these integers in bits; that is, each bit of the
result is determined by the corresponding bits in the two operands. Thus,
it is possible to use logical operators co test bytes for a particular bit pat-
tern. For instance, the AND operator can be used to "mask" all but one of

•

Microsoft BASIC Interpreter

the bits of a status byte. The OR operator can be used to "merge" two
bytes to create a particular binary value. The following examples demon­
strate how the logical operators work.

63 AND 16 = 16

15 AND 14 = 14

-I ANO 8 = 8

4 OR 2 = 6

IO OR IO= IO

-IOR-2=-I

63 = binary 111111 and 16 = binary
IOOOO, so 63 ANO 16 = 16.

I 5 = binary I I 11 and 14 = binary I I IO,
so 15 ANO 14 = 14 (binary 1110).

- 1 = binary I I I I I I l l 1111 11 1 1 and 8 =
binary I 000, so - I ANO 8 = 8.

4 = binary I 00 and 2 = binary I 0, so 4
OR 2 = 6 (binary 110).

IO =binary IOIO, so 1010 OR lOIO =
IOIO (IO).

- 1 = binary 1 I I I I I I I I I 1 1 11 1 I and - 2 =
binary 1111111111111110, so - I OR -2 =
-1. The bit complement of 16 zeros is six­
teen ones, which is the two's complement
representation of - I.

NOT X = -(X + I) The two's complement of any integer is
the bit complement plus one.

Functions and Functional Operators
When a function is used in an expression, it calls a predetermined opera­
tion that is to be performed on its operands. Microsoft BASIC has two
types of functions: "intrinsic" functions, such as SQR (square root) or SIN
(sine) which reside in the system, and user-defined functions that are
written by the programmer.

See the Statement and Function Directory for exact descriptions of
individual intrinsic functions and "DEF FN" .

Using Operators With Strings
A string expression consists of string constants, string variables, and other
string expressions combined by operators. There are three classes of
operations with strings: concatenation, relational, and functional.

- Concatenation

Relational
operators

BASIC Reference

Combining two strings together is called concatenation. The plus symbol
(+) is the concatenation operator.

For example:

LET AS - "Pile" : LET BS • "name"
PRINT AS+ BS
PRINT "New" + AS + BS
BND

Filename
New Filename

This example combines the string variables AS and BS to produce the
value "Filename".

Strings can also be compared using the same relational operators that are
used with numbers:

<><>< >

Using operators with strings is similar to using them with numbers, except
that the operands are strings rather than numeric values. String comparis­
ons are made by taking one character at a time from each string and com­
paring the ASCII codes. The ASCII code system assigns a number value to
each character produced by the computer (see Appendix A, "ASCII Char­
acter Codes"). If all the ASCII codes are the same, the strings are equal.
If t.he ASCII codes differ, the lower code number precedes the higher. If
during string comparison the end of one string is reached, the shorter
string is said to be smaller if they are equal to that point. Leading and
trailing blanks are significant.

Examples of true statements:

"AA"< "BB"
"FILENAME" • "FILENAME°'
"X&" > "X#"
"CL "> "Q.."

"kg"> "KG"
"SMYTH" < "SMYTHE"
"BS" < "9/ 12178" (where BS - "8/ 13178")

Thus, string comparisons can be used to test string values or to alphabet­
ize strings. All string constants used in comparison expressions must be
enclosed in quotation marks.

•

•

Microsoft BASIC Interpreter

Headings

Syntax notation

Stateinent and
Function Directory
Microsoft BASIC is a powerful programming language with over one hun­
dred fifty statements and functions. These are presented in alphabetical
order using the following format:

Syntax

Action

Remarks

See Also

Shows the correct syntax for the statement or function.
There are two kinds of syntaxes: tme for statements and one
for functions. All functions return a value of a particular type
and can be used wherever an expression can be used.

Summarizes what the statement or function does.

Describes arguments and options in detail, and explains how
to use the statement or function.

Cross-references to related statements and functions.
Optional section.

Note Points out an important caveat or feature. Optional section.

Warning Alerts the user to problems or dangers associated with use of
the given statement or function. Optional section.

Examples Gives sample commands, programs, and program segments
that illustrate the use of the given statement or function.
Optional section.

The following syntax notation is used in this section:

CAPS

italics

Items in capital letters must be input as shown.

Items in italics are to be.supplied by the user, as are single
capital letters (such as X, Y, Z, I, and J) and single capital
letters followed by a string specifier (such as XS or Y S).

[] Items inside square brackets are optional.

Items followed by ellipses may be repeated any number of
times .

All punctuation including commas, parentheses, semicolons, hyphens, and
equal signs must be included where shown.

D

BASIC Reference

Icons in the Directory
The icons below represent the various programming tasks that you may
perform, or the parts of your Macintosh on which they are performed.
These icons are used throughout the Statement and Function Directory to
help you see the relationships among the various statements and functions.

Input
Input covers all tasks that put information into the processing area of the
computer for manipulation. Input is the raw material from which finished
output is produced.

Process
Process is the manipulation of information by the computer to produce
meaningful output. Process is the real work of the computer, turning facts
into something you can 'Use.

Output
Output is what the program gives you. It is the result of planned input
being processed. It is the purpose of all programs to produce output,
whether that output is an image on the screen, a printed report, or a file
for further processing.

File
A file is a collection of related information, such as a BASIC program or a
list of names and addresses. Statements and functions showing the file
icon work with files on any applicable device. The commands showing
the following device icons work only with the given device. The device
icons are:

Keyboard: ~ Screen: !!J
Disk: §] Printer: e •

•

Microsoft BASIC Interpreter

Assembly Language
Assembly language is the way to speak directly to the computer rather
than through the BASIC Interpreter. Call assembly language subroutines
to perform tasks that can be done more quickly and more efficiently in
assembly language than in BASIC.

Graphics
Microsoft BASIC contains a versatile set of programming commands that
get the most out of Macintosh's graphic screen abilities. The graphics
commands enable you to produce and move images on the screen.

,....
I '

ABS

~

...

ASC

"

Function Syntax
ABS(X)

Action
Returns the absolute value of the expression X.

Example

LET X - 1 : LET Y - (-1)
PRINT ABS(X), ABS(Y)
1 1

Function Syntax
ASC{XS)

Action

ABS-ASC

Returns a numerical vatue that is the ASCII code for the first character of
the string X $.

Remarks
The Microsoft BASIC character set includes the entire ASCII set, but also
contains additional characters. These non·ASCII characters, as well as the
standard ASCII characters, may be tested with the ASC function (see Ap·
pendix A, "ASCII Character Codes").

See Also
CHRS

•

ASC - ATN

ATN

"

•

Example

r S File Edit Search Run Windows

84
RSC EHRMPLE

i_o List
REM*** Th1s demonstrates the use ~
REM *** of the ASC Function.
LET OBJECTS = T 1

l
PRINT ASC(OBJECTS)
END

Function Syntax

ATN(X)

Action

Returns the arctangent of X, where X is in radians. The result is in the
range -7r/2 to 7r/2 radians.

The evaluation of this function is performed in double precision in the
decimal version. In the binary version, results are given in single preci­
sion when the argument is in single precision and in double precision
when the argument is in double precision.

Example

r j File Edit Search Run Windows

RTN EHRMPLE
Arctangent of what ? 9 i!D List

1.460139105621 REM*** Th1s program illustrates a
Arctangent of whot ? 4. 19 REM *** use of the ATN Function.

1.3365 154537528 FOR 1:1: = 1 TO 3
Arctangent of whot ? 2.92 INPUT • Arctangent of what ? . , OBJECT

1.2408492346483 PR I NT A TN(OBJECT)
NEXT I :g
END

~ __..i- -

Q
~ ·:·:·

Jim

I

.,

.,

,...

-

-

....

BEEP

"

BREAK.ON
BREAK.OFF
BREAK.STOP

~

BEEP - BREAK ON/BREAK OFF/BREAK STOP

Statement Syntax
BEEP

Action
Sounds the speaker.

Remarks
The BEEP statement causes a momentary sound. The statement is useful
for alerting the user.

Example
This example executes a beep when X is less than 20.

IF X < 20 THEN BEEP

Statement Syntaxes
BREAK ON
BREAK OFF
BREAK STOP

Action
Enables, disables, or suspends event trapping based on the user trying to
stop program execution.

Remarks

The BREAK ON statement enables event trapping of user attempts to halt
the program (by pressing Command-period or selecting the Stop option
on the Run menu).

The BREAK OFF statement disables ON BREAK event trapping.

The BREAK STOP statement suspends ON BREAK event trapping. It is
similar to BREAK OFF in that if it has been executed, the GOSUB is not
performed. However, BREAK STOP differs in that the GOSUB is performed •
as soon as a BREAK ON statement is executed, if any events occurred
while the event trap was stopped.

See Also
ON BREAK

•

BREAK ON/BREAK OFF/BREAK STOP - BUTTON

BUTTON

~

Example

r s f 1le Edit Sea rch Run lllindours

~D

BRERK ON EHRMPLE
List

REM .. H Thi s program fragment illustrates a use or ON BREAK
BREAK ON
BREAK ON GOSUB DIRECTUSER m:::
ID IM PAYT 1!1E(99i .HRS(99) .GROSS(99) .F :T(99iJ ICA(99l ,ST ATE(99),NET(99) im::
LET TOT ALEl'IPLOYEES = 99 <i
OPEN "O'' ,' l ,"EmployeePey"

I cl:;~~~:::~::::;~;,~,~~~(; l ,GR055(I; ' IT (I) .FI CA(I) ,ST A TE(I) ,NET (I) !
INPUT "Do you WlSh to print tile Payroll now (VI N)? ",ANSWER$
IF ANSWER$ = "YES" THEN BREAK ON: GOSUB PR INTCHECKS
END

IDIRECTUSER
CLS BEEP·PRINT "You earn exit program until fi le is updated"
RETURN

Statement Syntaxes
BUITON button -id,sta te l ,title,rectanglel ,type 11
BUITON CLOSE n

Function Syntax
BUITON (button -id)

Actions
The BUITON statement displays a button in the current output window .

TI1c BUITON CLOSE statement removes a button from the curre nt output
window.

The BUrroN function returns the state of the named button in the
c urrent output w indow.

BUTION

Remarks
The button-id is an integer expression greater than or equal to I that indi­
cates the number of a button in the current output window. Any number
of buttons may be active within an output window. Large values of
button-id consume more memory than small ones.

See the WINDOW statement for definitions of "current output window"
and "active output window."

Statement Remarks

The button created in the BUTTON statement is active until any of the
following actions occur:

• Another BlJlTON statement with the same button-id is executed.

• A BUTTON CLOSE n statement is executed for the button.

• A WINDOW CLOSE n statement is executed for the window in which
the button exists.

The state indicates the current status of the button, and can have the
following values:

()

I

2

The button is inactive, and appears dimmed on the screen.

The button is active, but not currently selected.

'Ille button is active and currently selected.

'Ille title is a string expression that is displayed inside or beside the
identified button.

The rectangle identifies where the button will be displayed. The argu­
ment appears in the form (xl,yl)·(x2,y2) where (xl,yl) is the upper-left
coordinate and (x2,y2) the lower-right coordinate (relative to the current
output window) where the identified button will be displayed. The coor­
dinates are not absolute (relative to the upper-left corner of the screen),
but are offset (from the upper-left corner of the current output window) .

Note
When a button is displayed in the current output window, a PRINT state·
ment will not automatically scroll the window contents. •

BUTTON

•

The type is a number from 1 to 3. It describes the type of button to be
displayed, as follows:

CD A simple push button. This is the default.

02 A check box.

03 A radio button.

The BUTION CLOSE statement removes the button from the current out- ~

put window and releases all resources associated with it. WINDOW
CLOSE n removes all buttons from window n.

You can use the BUTION statement with the DIALOG ON and ON ,....
DIALOG ... GOSUB statements to trap the user's selection of an identified
button.

Function Remarks
The BUTION function returns one of the following values:

()

I

2

The button is inactive, and appears dimmed on the screen.

The button is active but not currently selected.

The button is active and currently selected.

See Also
DIALOG, EDIT, ON DIALOG, WINDOW

.....
I

...

CALL

BUTTON - CALL

Example

List
REM*** This fragment illustrates a use or the BUTTON Statement.
WINDOW 2 .~Customer File".(50, 100)-(450,250), 1
PRINT ·select choice by cli cking button -
BUTTON 1, 1 ; update fl customer record· ,(5,25)- (200,40),2
BUTTON 2, 1: Add fl customer record" ,(5,55)-(200,70),2
BUTTON 3, 1,"Delete fl customer record", (5 , 115)-(200, 130).2
BUTTON 4, 1,"CANCEL",(245,60)- (330 , 75), 1

WHILE DIALOG(O) <> 1 : WEND 'Ignore everything but buttons.
Buttonpushed = DIALOG(1) ·records which but ton pressed
IF Buttonpushed = 4 THEN GOTO Done ·return to caller
ON Buttonpushed GOSUB Updfltecus,AddCus,OeleteCus

·sends control to a subroutine based on whi ch button pushed.
Done:

WINDOW CLOSE 2
RETURN

Statement Syntaxes

CALL name I (a rg11m enl -l isl) I
name largument -list l

Actions

Performs two different actions: it calls a mac hine language routine, or it
calls a BASIC subprogram.

Remarks

The CALL syntax now has the CALL keyword optional. If CALL is omitted,
the parentheses are also omitted.

Calling Machine Language Subroutines The CALL statement is the
only way to transfer program flow to an external subroutine. The nam e
identifies a simple variable that contains an address that is the start ing
point in memory of the subroutine. The name cannot be an array
element. •

CALL

•

The argument-list contains the arguments that are passed to the subrou­
tine. If a parameter is to be passed by reference, VARPTR should be used.

Microsoft BASIC pushes parameters onto the stack in the order they are
presented (left to right) in the argument-list. The passed values are 2
bytes in length if they are integers. If they are single or double precision,
they arc converted to 32-bit signed integers and passed as 4-byte values.
Strings are converted to a pointer amt a structure containing a size byte
followed by the actual string data.

If name is a non-zero value, the address contained in it is the starting ~
point of the subroutine in memory.

If name has a value of zero, an "Illegal function call" error message is gen-
erated. The name should be a single or double precision variable since r
an integer is not large enough to hold the 24-bit address of the 68000
processor.

See Appendix F, "Access to Macintosh ROM Routines," for information
about predefined, machine language ROM subroutines. All of these can be
used without adding the optional keyword CALL, with one exception:
LINE. This is because LINE, a ROM call, is also a BASIC reserved word.
When calling the LINE subroutine, use the CALL keyword in front of it.

Calling BASIC Subprograms Microsoft BASIC allows you to use sub­
programs. You will find a thorough discussion of subprograms in Chapter
6, "Advanced Topics."

Warning Because the word CALL is not required in this statement,
and the statement can be executed with the syntax:

ntmze argument-list

there is the possibility of writing a CALL statement that
looks like an alphanumeric label. For example, examine
the following statement:

ALPHA: LET A = 5

It is not visually clear whether the statement is calling a
subprogram named ALPHA with no argument list, or the
statement LET A = 5 is on a line with the label ALPHA:.
In such a case, ALPHA: is assumed to be a line label and
not a subprogram call with no arguments.

-

-

CALL

Calling a LIBRARY Subroutine Library routines are machine language
modules that are bound to BASIC dynamically at runtime. Library files are
special Macintosh .. resource" files.

Because the CALL statement does not require the word "CALL" to precede
it, you can create custom BASIC statements. If the user has included the
library at runtime, the name called by the CALL statement directs the
program to the library resource file.

Special documentation entitled "Microsoft BASIC for the Macintosh -
Building Machine Language Libraries" is available by contacting the
Microsoft Consumer Response Department.

Example

REH ***This program illustrates the use of the CALL Statement
REH***
DIH CODEl(50)
1:0
info loop:

READ A: IF A= -1 THE• machineprog
CODEl(i):A: 1:1+ 1: GOTO inf oloop

mechineprog:
Xl=10:Yl=0

210 SETYTOX:YARPTR(CODEl(O)): CALL SETVTOX(Xl(YARPTR(YI))
PRllT YI

END
REH*** Machine language for SETYTOX
DAT A &H4E56 ,&HOOOO ,&H206E,&H0008 ,&H30AE,&HOOOC ,&H4E5E
DATA &H4E75,-1

The preceding program demonstrates how values can be passed to a
machine language subroutine aS well as how a machine language
subroutine can return values.

Note that on line 210, SE1YfOX was assigned immediately before the CALL.
This is a safe programming practice. Declaring new scalars (non-array vari­
ables) causes arrays to move in memory. This means that if any new scalars
were defined after SE1YTOX had been assigned, SETYTOX would no longer
point to the first element of CODE% (0).

Also note that if Y% had not been defined before line 210 was executed, an
"Illegal function call" error message would have been generated. Again, this
is because definitions of new scalars cause arrays to move in memory.

As with all applications written for 'the Macintosh, machine language programs
should all be position independent (that is, relocatable anywhere in memory).

•

CDBL- CHAIN

CDBL

~

CHAIN

~D

•

Function Syntax
CDBL(X)

Action
Converts X to a double precision number.

Example

,. 9 File Edit Search Run Windows

64 952428571429
649524
64.952428571429

Statement Syntax

COBL EHHMPLE

~D List

REM .. **This program 1jemonstrat.es the
REM*** use of CDBL
LET A = 454 66 7 LET B! = 454 66 7
PRINT A/7
LET (I= Ell/7
PRINT (I
PRINT CDBL(Bl/7)
f ND

CHAIN (MERGE ifilespec[,[expression] (,(ALL][,DELETE range]]]

Action
Executes another program and passes variables to it from the current
program.

Remarks
The /ilespec is the specification of the program that is called .

The expression is a line number, or an expression that evaluates to a legal
line number, in the called program. It is the starting point for execution
of the called program. If it is omitted, execution begins at the first line.
An alphanumeric label cannot be used as a starting point.

The MERGE option allows a subroutine to be brought into the BASIC pro­
gram as an overlay. That is, the current program and the called program

.,

-
r

r

are merged, with the called program being appended to the end of the ~
calling program. The called program must be an ASCII file if it is to be
merged.

-
CHAIN

With the ALL option, every variable, except variables which are local to a
subprogram in the current program, is passed to the called program. If
the ALL option is omitted, the current program must contain a COMMON
statement to list the variables that are passed.

If the ALL option is used and the expression is not, a comma must hold
the place of the expression. For example, the first example below is
correct and the second is incorrect:

OIAIN "NUTPROG" .. ALL
OIAIN "NEXTPROG".ALL

CHAIN leaves files opened.

After an overlay is used, it is usually desirable to delete it so that a ne""
overlay may be brought in. To do this, use the DELETE option.

Note

The CHAIN statement with the MERGE option preserves the current
OPTION BASE setting.

If the MERGE option is omitted, CHAIN does not preserve variable types
or user-defined functions for use by the chained program. That is, any
DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEFFN statements must be restat­
ed in the chained program. Also, CHAIN turns off all event trapping. If
event trapping is still desired, each event trap must be turned on again
after the chain has executed.

When using the MERGE option, user-defined functions should be placed
before the range deleted by the CHAIN statement in the program.
Otherwise, the user-defined functions will be undefined after the merge
is complete.

The DELETE range consists of a line number or label, a hyphen, and
another line number or label. All the lines between the two specified
lines, inclusive, are deleted from the program chained from.

See Also

COMMON, MERGE

Example

REM *** Thls program mustrates the use of the
REM ***CHAIN and COMMON Statements.
COMMON ACCT, BALANCE!, CHARGES(), DISCOUNT!, CONTACT$
CHAIN "'Rece1vables"

•

CUR$

CHR$

"

•

Function Syntax
CHRS(I)

Action
Returns a string whose one character has the ASCII value given by I (see
Appendix A, "ASCII Character Codes").

Remarks
CHR S is commonly used to send a special character to the screen or a
device. For instance, the ASCII code for the bell character (CHR S(7)) can
be printed to cause the same effect as the BEEP statement, or the form
feed character (CHR S(12)) can be sent to clear the output window and
return the pointer to the home position.

See Also
ASC

Example

,,. .t File Edit Search Run Windows

CHR$ EHRMPLE
A B C D E F G H J

List
REH*** This mustretes e use of CHR$
FOR II= 65 TO 74

PRINT CHRS(ll);SPC(2);
NEXT II
END

,

~
I

~
I

~
I

....,
i

-
CINT

~

Function Syntax
CINT(X)

Action
Converts X to an integer by rounding the fractional portion.

Remarks

CINT

If X is not in the range - 32768 to 32767, an "Overflow" error message is
generated. Related to CINT are the COBL and CSNG functions which con­
vert numbers to the double precision and single precision data types,
respectively.

See Also
CDBL, CSNG, FIX, INT

Example

r- e File Edit Search Run Windows

CINT EHRMPLE
How much in your occount ? 975.41
And how mony doys ? 466
Your interest totols 66 dollors

list
REM ***This illustrntes o use of the
REM*** CINT Function.
LET INTEREST = .0525
LET INTEREST = INTEREST I 365.25
INPUT "How much in your account?" , FRIC
INPUT "And how many days? ",DURAT ION
LET GAIN = INTEREST *DURATION* FRIC
LET GAIN= CINT(GAIN)
PRINT "Your interest totals ";GAIN;" dollar

..._------1END

.,

II

CIRCLE

CIRCLE

"~~

•

Statement Syntax

CIRCLE [STEP](X,)'),radius [,color[,start,end[,aspect]]]

Action
Draws a circle or an ellipse with the specified center and radius.

Remarks
The STEP option indicates the following coordinates will be relative to the
current coordinates of the pen.

The x parameter is the x coordinate for the center of the circle.

The)' parameter is the)' coordinate for the center of the circle.

The radius is the radius of the circle in pixels.

The color is a numeric value for the color desired. If the color given is
the value 30, the circle or ellipse border will be drawn in white. If the
color given is the value 33, black will be used.

The start and end parameters are the start and end angles in radians. The
range is - 2 ir through 2 ir. These angles allow the user to specify where a
circle or ellipse begins and ends. If the start or end angle is negative, the
circle or ellipse is connected to the center point with a line, and the an­
gles are treated as if they were positive. Note that this is different from
adding 2ir. The start angle may be less than the end angle.

The aspect is the aspect ratio, that is, the ratio of the x radius to the)'
radius. The default aspect ratio is 1.0. If the aspect ratio is less than one,
the radius given is the x radius. If it is greater than one, the y radius is
given.

The last point referenced after a circle is drawn is the center of the circle.

Coordinates can be given as absolutes, or the STEP option can be used to
reference a point relative to the most recent point used. The syntax of
the STEP option is:

STEP (x, y)

For example, if the most recent point referenced were (I 0, 10), CIRCLE
STEP (20, I 5) would reference a point offset 20 from the pen's current x
location and offset I 5 from the pen's current)' location.

~
I i

,...
!

r
.-i

I

-

CLEAR

~

CIRCLE - CLEAR

Example

r S file Edit Se11rch Run Windows

0

Statement Syntax

CIRCLE EHRMPLE
!!0 List

REM*** This illustrates a use or
REM*** the CIRCLE Statement.
LET x:g = 50
LET y:g = 80
FOR COUNU = I TO 39

CLS
CI RCLE(X:g, y:g) ,COUNU
LET x:g = X% + 2 : LET V% = V% + 2

NEXT COUNT%
END

CLEAR I .I data-segment-size II .stack-size I I

Action

The CLEAR statement performs the following actions:

• Closes all files.

• Clears all COMMON variables.

• Resets numeric variabld and arrays to zero.

• Resets the stack and string space.

• Resets all string variables to null.

• Resets all DEF FN and DEF/SNG/DBUSTR statements.

• Releases all disk buffers.

.,

•

CLEAR

•

Remarks
·nu: data-segment-size argument dictates how many bytes are to be
reserved for BASIC's data segment.

The stack-size argument dictates how many bytes arc to he reserved for
the stack.

Parameters can be supplied to partition available memory into the follow­
ing three zones as follows:

Data Segment This includes program text, variables. strings. and file
data blocks. The amount of memory to he allocated to this zone is indi·
catcd by data-segment-size. If not supplied, it defaults to its current
value.

Stack The stack is used to keep track of information about active FOR
and WHILE loops, and GOSUB statements. 111e amount of memory to be
allocated to this zone is indicated by stack-size. If not supplied, it defaults
to its current value. Once the size of the stack is reduced by the CLEAR
statement, it cannot be increased without exiting and re-entering BASIC.
An attempt to allocate more space to the stack than its current allocation
will cause an "Out of memory" error message to be generated.

Macintosh Heap This zone holds the contents of the device CLIP: and
miscellaneous data needed for window manipulation and desk accessories.
It also includes BASIC's transient code segments. Therefore, allocating
more memory to this zone improves BASIC's performance. It does this by
reducing the frequency with which code segments must be loaded from
the disk. The amount of memory to be allocated to this zone is whatever
memory is left over after data-segment-size and st"ck-size are allocated.

An "Out of memory" error message is generated if an attempt is made to
allocate less than I 024 bytes to any of the three zones.

See Also
FRE, "Memory Management" in Chapter 6, "Advanced Topics"

Examples

CLEAR
CLEAR , 20000
CLEAR., 2000
CLEAR.20000,2000

r

r

....
CLOSE

~D

-

CLOSE

Statement Syntax
CLOSE [[# ifilenumber[, [# ifilenumber ...]]

Action
Concludes 1/0 to a file. The CLOSE statement complements the OPEN
statement.

Remarks

The filenumber is the number with which the file was opened. A CLOSE
with no arguments closes all open files.

The association between a particular file and the filenumber terminates
upon execution of a CLOSE statement. The file may then be reopened
using the same or a different filenumber; likewise, that filenumber can
be reused to open any file.

A CLOSE for a sequential output file writes the final buffer of output.
When BASIC performs sequential file 1/0, it uses a holding area, called a
buffer, to build a worthwhile load before transferring data. If the buffer is
not yet full, the CLOSE statement assures that the partial load is
transferred.

The END, SYSTEM, CLEAR, and RESET statements and the NEW command
always close all files automatically. {STOP does not close files.)

See Also
CLEAR, END, NEW, OPEN, RESET, STOP, SYSTEM

II

CLOSE - CLS

CLS

•

Example

r 9 File Edit Seorch Run Windows

CLOSE EHRMPLE

List
REM*** This Is a fnigment of a program that opens an existing
REM*** file, gets data from it, updates it, and returns it.
OPEN "Payables· AS "2 LEN = 80

FIELD "2, 30 AS FIRMS, 30 AS ADDR$, 10 AS OWES, 10 AS DAV$
GET "2, ACCOUNT

LET DEBT! = CVS(OWE$)
LET DEBT!= DEBT!+ (CHARGES! - PAID!)
LSET OWE$ = MKS$(DEBT!)

PUT "2, ACCOUNT
CLOSE "2
PRINT "Account. ";ACCOUNT;" updated"

Statement Syntax

CLS

Action
Erases the contents of the current output window and sets the pen
position to the upper left-hand corner of the output window.

Remarks

The CLS statement clears the current output window only, and not other
windows. It does not clear out any edit fields or buttons in the cleared
window.

Example

CLS

,

COMMON

~

-

Statement Syntax

COMMON variable-list

Action

Passes variables to a chained program.

Remarks

COMMON

The COMMON statement is used in conjunction with the CHAIN state­
ment. COMMON statements may appear anywhere in a program, though
it is recommended that they appear at the beginning. The same variable
cannot appear in more than one COMMON statement. Array variables are
specified by appending parentheses (that is, " ()") to the variable name. If
all variables are to be passed, use CHAIN with the ALL option and omit
the COMMON statement.

Some versions of BASIC allow the number of dimensions in the array to be
included in the COMMON statement. This implementation of BASIC ac­
cepts that syntax, but ignores the numeric expression itself. For example,
the following statements are both valid and are considered equivalent:

COMMON AO
COMMON A(3)

The number in parentheses is the number of dimensions, not the dimen­
sions themselves. For example, the variable A{ 3) in this example might
correspond to a DIM statement of DIM A(5,8,4).

Example

REM ***This program illustrates the use of the
REM *** CHAIN and COl1l10N Statements.
COMMON ACCT, BALANCE!, CHARGES(). DISCOUNTI,. CONTACT$
CHAIN "Receivables"

•

CONT

CONT

~

II

Statement Syntax

CONT

Action
Continues program execution after a Command-period has been typed or
a STOP statement has heen executed. It can also be used to continue
execution after single stepping.

Remarks
Execution resumes at the point where the break occurred. If the break
occurred after a prompt from an INPUT statement, execution continues
with the reprinting of the prompt("?" or prompt string).

CONT is usually used with STOP for debugging. When execution is
stopped, variable values may be examined and changed using immediate
mode statements. Execution may be resumed with CONT or an immedi­
ate mode GOTO, which resumes execution at a specified line number.
CONT may be used to continue execution after an error has occurred.

CONT is invalid if the program has been edited during the break.

Example

r .S File Edit Secrth Run Windou1s

CONT & STOP EHRMPLE
9.89

List

REM **THIS IS AN EXAt-1PLE OF THE USE OF
REM** THE STOP & CONT STATEMENTS.
CHECK! = 25: DEBIT! = 9.89!
PRINT CHECK!, DEBIT!

STOP
LET BALANCE!= CHECK! - DEBIT!
PRINT BALANCE!
END

.,

-
cos

•

-

cos

Function Syntax
COS(X)

Action
Returns the cosine of X, where X is in radians.

Remarks
The evaluation of this function is performed in double precision in the
decimal version. In the binary version, results are given in single preci­
sion when the argument is in single precision and in double precision
when the argument is in double precision.

Example

r s File Edit Search Run Windows

. 7316888688738
COS EHAMPLE

~D List - ---- - -

REM ***This illustretes 8 use of
REM *** the COS Function.
LET RESULT = COS(.75)
PRINT RESULT
END

.,

II

CSNG

CSNG

~

•

Function Syntax
CSNG(X)

Action
Returns the single precision equivalent of X.

See Also

CDBL, CINT

Example

,. s file Edit Search Run Windows

CSNG EHHMPLE
.7316888688738 ~ List
.731689 REM*** This illustrates a use of the ;Q

REM *** CSNG Function. """'
LET RESULT = COS(.75) il
PRINT RESULT 11111·

~~~N~~~~~~T CSNG(RESUL T) :11·i 

ENO I 

L__--- - !1111: 

., 



CSRLIN 

" 

-

Function Syntax 
CSRLIN 

Action 

CSRLIN 

Returns the approximate line number of the pen in the current output 
window. 

Remarks 
The CSRLIN function tells you approximately where the pen is vertically 
located within the current output window. The location returned by this 
function is relative to the top border of the current output window. If the 
current output window is moved with the mouse, the returned row 
number remains the same. 

The unit of measurement for this function is the size of the character 
"O" in the current font. Because many of the Macintosh fonts are propor­
tionally spaced, all characters do not have identical widths, as they do on 
most typewriters. The "O" is an average width. 

See Also 
POS, LOCATE 

Example 

REM **This example mustrates the way CSRLIN works. 
INPUT ··what is your name·; TITLE$ 
V% = CSRLIN : REM *Record current line. 
xi = POS(O) : REM *Record current column. 
CLS: PRINT ··Hello, H;TITLE$ 
LOCATE v:g.x:g: REM *Restore cursor to old position. 

• 



II 

CVI/CVS/CVD 

CVI 
CVS 
CVD 

~ 

Function Syntax 
CVI(2-byte string) 
CVS( 4 -byte string) 
CVD(B-byte string) 

Action 
Converts random file numeric string values to numeric values. 

Remarks 
Numeric values that arc read in from a random disk file must be convert ­
ed from strings back into numbers. CVI converts a 2-by te string to an in­
teger. CVS converts a 4-byte string to a single precision number . CVO 
converts an 8-byte string to a double precision number . These functions 
should not be used to return the numerical value of a string. For that 
purpose, use the VAL function. 

See Also 
MKJS, MKSS, MK.OS, VAL 

Example 

,. s File Edit Search Run Windows 

CUl,CUS,CUO EHRMPLE 
Your account number i s 98765432556 
Vou ha\le $ 123456 in your checking account 
and$ 2500 in your savings account. 

list 
REM*** This program illustrates the use of CVI , CVS 
REM*** end CVO with Random fi les. 
0·l!it~;,r~,~~-.~~;I~ 4l!~ ~~:cKI. 2 .s DEPOSIT! II' 

---<~~~:iit:~:::~:~m::~:~::~::NO• II 
"Vou he\le $";CHECKING!;" in your checki ng account .. mli' 
·end $";SAVJNGSr«i;· in your savings account.· mi:: 

, 



CVDBCD 
CVS BCD 

~ 

Function Syntaxes 
CVDBCD(XS) 
CVSBCD(XS) 

Action 

CVDBCD/CVSBCD 

Returns the binary math representation of a decimal math floating-point 
number. 

Remarks 
Microsoft BASIC comes with two versions, and random access files with 
single or double precision numbers produced in one version will not 
work in the other. The CVSBCD and CVDBCD functions give you the abili­
ty to convert these random file numbers created in the decimal math ver­
sion of BASIC into numbers usable by the binary math version. CVSBCD 
converts decimal (BCD) format single precision numbers into binary ones. 
CVDBCD converts decimal (BCD) format double precision numbers into 
binary ones. 

You do not need to convert integers or strings. They have the same 
representation in both versions. 

See Also 
MKSBCD S, MKDBCD S, Appendix D, "Internal Representation of Numbers" 

Example 

!REM ** Th1s 1s a fragment of program that demonstrates open1ng a dec1ma1 
REM ** vers1on random me, convert1ng the parts that must be changed to 
REM** store in a binary vers1on random me, and then storing the data 1n the 
REM** binary vers1on ffle. 
OPEN -payables- AS •2 LEN:74 

FIELD •2, 30 AS Firm$, 30 AS AddrS, 4 AS OweS, 10 AS Day$ 
FOR ACCOUNT = 100 TO 500 

GET •2, ACCOUNT 
DEBT! = CVSOCD(OWES>: LSET OWES = MK5$(DEBTI) 
PUT •2, ACCOUNT 
PRINT "Account •";ACCOUNT;" updated­

NEXT ACCOUNT 
CLOSE '2 • 



DATA 

DATA 

ti 

• 

Statement Syntax 

DATA constant-list 

Action 
Stores the numeric and string constants that are accessed by the READ 
statement. 

Remarks 

DATA statements are nonexecutable and may be placed anywhere in the 
program. A DAT A statement may contain as many constants as will fit on 
a line (separated by commas). Any number of DATA statements may be 
used in a program. READ statements access DAT A statements in order 
(from the top of the program to the bottom). The data contained in a 
DATA line may be thought of as one continuous list of items, regardless 
of how many items are on a line or where the lines are placed in the 
program. 

The constant-list parameter may contain numeric constants in any format, 
that is, fixed-point, floating-point, or integer. (No numeric expressions are 
allowed in the list.) String constants in DAT A statements must be sur­
rounded by double quotation marks only if they contain commas, colons, 
or significant leading or trailing spaces. Otherwise, quotation marks are 
not needed. 

The variable type (numeric or string) given in the READ statement must 
agree with the corresponding constant in the DAT A statement. 

DA TA statements may be reread from the beginning by use of the 
RESTORE statement. 

See Also 
READ, RESTORE 

i-. 
I 



DATE$ 

ii" 

DATA/DATE$ 

Example 

r j File Edit Search Run Windows 

Statement Syntax 
DA TE S=string-expression 

Function Syntax 
DATE$ 

Actions 

REM*** Th1s demonstrates a use of 
REM *** the READ end DAT A Statements. 
DIM A{15) 
FOR l:g= 1TO15 

READ A(ll) 
NEXTll 
END 
DATA 1,2,3,4,5,6,7,6,9,10,11,12,13,14,15 

The statement sets the current date. 

The function retrieves the current date. 

., 

• 



DATE$ 

• 

Statement Remarks 
When setting the date, the string-e:xpression must he a string in one of the 
following forms or an .. Illegal function call" error message will be 
generated: 

mm·dd·yy 

mm-dd·YY.YY 

mmlddly,1 

111111 Id d lyy}~J' 

In the above forms, mm is the month ( 01 through 12), dd is the day (0 1 
through 3 1 ), and J0' or J'J0'.)' is the year. 

Example 

This example sets the current date to August 2 1, 1984. 

DATES= "08-21-84" 

Function Remarks 
The DATES func tion returns a ten-character string in the form mm-dd­
.Y.J'.J0'· The function complements the DATES statement, w hich sets the 
date. 

Example 

,. • File Edit Search Run Windows 

Untitled 
***DOUG's GARDEN & LANDSCAPE*** 

INVOICE 08-16-1984 

List 
REM** This fragment shows a use of 
REM** DATES 
LET TODAYS = DA TES 
PRINT "***DOUG's GARDEN & LANDSCAPE***" 
PRINT. INVOICE "; TODAYS 

., 



DEFFN 

l&3 

-

.... 

DEFFN 

Statement Syntax 

DEF FN name I (parameter-list) J= function-definition 

Action 
Defines and names a function that is written by the user. 

Remarks 
The name parameter must be a legal variable name. This name, preceded 
by DEF FN (with no intervening spaces), becomes the name of the 
function. 

The parameter-list consists of those variable names in the function defini­
tion that are to be replaced when the function is called. The items in the 
list are separated by commas. 

The function-definition is an expression that performs the operation of 
the function. It is limited to one logical line. Variable names that appear 
in this expression serve only to define the function; they do not affect 
program variables that have the same name. A variable name used in a 
function-definition may or may not appear in the parameter-list. If it 
does, the value of the parameter is supplied when the function is called. 
Otherwise, the current value of the variable is used. 

The variables in the parameter-list represent, on a one-to-one basis, the 
argument variables or values that will be given in the function call. 

This statement may define either numeric or string functions. If a type is 
specified in the function name, the value of the expression is forced to 
that type before it is returned to the calling statement. If a type is speci­
fied in the function name and the argument type does not match, a "Type 
mismatch" error message is generated. 

A DEF FN statement must be encountered before the function it defines 
may be called. If a function is called before it has been defined, an "Unde­
fined user function" error message is generated. DEF FN is illegal in im­
mediate mode and within subprograms. 

Defined functions are reset when the program that they reside in chains 
to another program. 

• 



• 

DEF FN - DEFINT/DEFSNG/DEFDBIJDEFSTR 

DEFINT 
DEFSNG 
DEFDBL 
DEFSTR 

~ 

Example 

r S File Edit Search Run Windows 

Enter your X 2.88 
Enter your V 3.6 
The Answer is ... 2.0083292976206 

Untitled 

., 

~~~l~~~~~~~~!L~is~t~~ii~~~~~~ 
REM** This illustrates o use of the DEF FN Stotement.ij:j

DEF FNTRIG(X,V) = x·31(x·2 + V) ______ ---1 CLS

Statement Syntax

DEFINT letter-range
DEFSNG letter-range
DEFDBL letter-range
DEFSTR letter-range

Action

INPUT "Enter your X · , A
INPUT "Enter your V • , B
RESULT = FNTRIG(A,B)
PRINT "The Answer is .. : ; RESULT

Declares variable types as integer, single precision, double precision, o r
string.

Remarks

Any variable names beginning with the letters specified in the letter-range
argument will be considered the type of variable specified by the last
three letters of the statement, that is, either INT, SNG, DBL, or STR. How­
ever, a type declaration character always takes precedence over a DEFtype
statement.

If no type declaration statements are encountered, Microsoft BASIC as­
sumes that all variables w ithout declaration characters are of a certain pre­
cision. In the binary version, the default is single precision. In the
decimal version, the default is double precision.

DEFtype declarations are reset when the program they reside in chains to
another program.

-

DELETE

DEFINT/DEFSNG/DEFDBUDEFSTR - DELETE

Examples

r s File Edit Senrch Run Windows

4.35 3.1416
4 3

Statement Syntax

DELETE lfineU - lineJ

Action
Deletes program lines.

Remarks

DEFINT EHRMPLE
~[] List
REM*** This demonstrates the use of ~
REM *** the DEFINT Statement.
LET A= 4.35 : LET B = 3.1416
PRINT A,B
DEFINT A-B
LET A = 4.35 : LET B = 3. 1416
PRINT A,B
END

- -

The DELETE statement works with boch line numbers and alphanumeric
labels.

If line does not exist, an "Hlegal function call" error message is generated.

Examples
The following statement deletes line 40 .

DELETE 40

The following statement deletes lines I 00 to 999.

DELETE 100-999

.,

•

DIALOG

DIALOG

"

•

Function Syntax
DIALOG(n)

Action
Lets the BASIC program know when and how the user is interacting with
buttons, edit fields, and windows created by the BASIC program. All DIA­
LOG functions return information about the active window.

Remarks
The DIALOG function provides you with the ability to find out the state of ,....
various buttons. edit fields, and windows, and whether the user has tried
to select any of them. If the user has, the activity is specified by the DIA-
LOG(0) function. Other functions, DIALOG(I), DIALOG(2), DIALOG(3), ~

DIALOG(4). and DIALOG(5) tell which of the windows or buttons was
acted on by the user. When this information is known, the program can
effectively trap button, edit field, and window activity (using the ON DIA-
LOG statement) and route program control to a section of the program
that can respond to the specific activity.

Using these techniques, you can create programs that use Macintosh inter­
face features, and provide the users with programs that interact like off­
the-shclf Macintosh products.

The function argument (n) indicates what value is to be returned.

DIALOG(O)
The purpose of the DIALOG(0) function is to inform the program as to
which of several possible dialog events have taken place. When these are
known, program control can he routed to appropriate routines that deal
with the events. DIALOG events form a queue, so that each time the DIA­
LOG(O) function is used, the oldest dialog event not yet delivered by the
function is the one returned by the function. The values returned by the
function have the following meanings:

()

2

No dialog event has occurred since the last time DIALOG(0)
was executed.

A button in the active output window was selected with the
mouse. The number of the button is returned by the DIA­
LOG(l) function .

The user has moved from one edit field to another edit field by
clicking the mouse within the new edit field. The number of
the selected edit field is returned by the DIALOG(2) function.
A useful application for the DIALOG(2) function is to trap the
moment when the user is trying to exit an edit field. This
event can be trapped and program control routed to a routine
that validates or verifies the content of the edit field before the

- 3

4

5

6

7

DIALOG

user can go on to another one. This event can only occur in a
window with more than one edit field.

The user has clicked an inactive output window to request it
be made active. The window-id of the selected window is re­
turned by the DIALOG(3) function (see "WINDOW" for an ex­
planation of window-id.) If you want the selected output win­
dow to be made the active output window, the program
should make the selected one active by executing a WINDOW
statement.

The user has clicked the "go-away box" of an output window.
The window-id of the affected output window is returned by
the DIALOG{ 4) function.

Part of an output window needs to be refreshed. The
window-id of the affected window is returned by the DIA­
LOG(5) function.

The user pressed a Return key in an active window that had a
button or edit field that cannot accept Return keys. Most ap­
plications treat this the same as if the OK button had been
selected in the active window.

The user pressed a Tab key in an active output window that
has an edit field. The program can be designed to advance to
the next edit field when this occurs.

DIALOG(I)
This returns the number of the most recently pressed button.

DIALOG(2)
This returns the number of the most recently selected edit field.

DIALOG(3)
This returns the number of the most recently selected output window.

DIALOG(4)
This returns the number of the output window whose go-away box was
most recently selected.

DIALOG(5)
This returns the number of the output window which needs to be re­
freshed.

Using this set of DIALOG functions, you can create programs that invoke a
subroutine if a button is pressed, then use a function to return the number
of the pressed button and branch to a specific routine based on which
button was pressed. Through this technique, you may produce button­
driven programs.

•

•

DIALOG - DIALOG ON/DIALOG OFF/DIALOG STOP

DIALOG ON
DIALOG OFF
DIALOG STOP

~

You can also create applications that validate individual edit field entries
in an output window using the DIALOG(2) function. This is useful for
form entry programs.

See Also
BUTION, DIALOG ON, EDIT, EDITS, WINDOW

Example

REH ***This fregment mustrates a use of the DIALOG Function.
WINDOW 2,·customer rne·,(50, 100)-(450,250), 1
PRINT ·select choice by clicking button •
BUTTON t, 1, ·update a customer record· ,(5 ,25)-(200 ,40) ,2
BUTTON 2, 1,-Add a customer record·,(5,55)-(200,70),2
BUTTON 3, 1 ·oelete a customer reconr, (5, 115)-(200, 130),2
BUTTON 4, 1,.CANCEL ·,(245,60)-(330,75), 1

Activity = DIALO&(O)
WHILE ActMty <>1: ACTIVITY= DIALO&(O): W~ND
Buttonpushed =DIALOG(1) 'records which button pressed
NeedUpdate = DIALO&(S) ·records which window covered by window 2
IF Buttonpushed = 3 THEN &OTO Quit 're tum to main menu
ON Buttonpushed &OSUB UpdateCus,AddCus,DeleteCus

Statement Syntaxes
DIALOG ON
DIALOG OFF
DIALOG STOP

Actions
The DIALOG ON and DIALOG OFF statements enable and disable, respec­
tively, event trapping based on dialog events.

A dialog event occurs whenever the DIALOG(0) function would return a
non-zero value .

The DIALOG STOP statement suspends event trapping. It is similar to
DIALOG OFF i~ that if it has been executed, the GOSUB is not performed.
However, DIALOG STOP differs in that the GOSUB is performed as soon
as a DIALOG ON statement is executed, if any events occurred while the
event trap was stopped.

See Also
DIALOG, ON DIALOG, "Event Trapping" in Chapter 6, "Advanced Topics"

....

DIM

~

DIALOG ON/DIALOG OFF/DIALOG STOP - DIM

Example

REM .. These fragments mustrete a wey to route progrem control
REn.. based on dtalog event trepptng.
ON DIALO& &OSUB HendleAct: DIALO& ON

HendleAct: HENU STOP: nousE STOP
ACT = DIAL06(0)
ON ACT &OSUB ButtonHand,EdMOYe,WtndCltck,GoAwey,Under,NoNo,AdYence
HENU ON: HOUSE ON

RETURN

ButtonHend: CHOICE = DIAL06(1)
011 CHOICE &OSUB Assets. Debtts. Calculate. EscepeRout1ne

RETURN

Statement Syntax
DIM subscripted-variable-list

Action

Specifies the maximum values for array variable subscripts, and allocates
storage accordingly.

Remarks
If an array variable name is used without a DIM statement, the maximum
value of the array's subscript(s) is assumed to be l 0. If a subscript is used
that is greater than the maximum specified, a "Subscript out of range" er­
ror message is generated. The minimum value for a subscript is always 0,
unless otherwise specified with the OPTION BASE statement.

The DIM statement sets all the clements of the specified arrays to an ini­
tial value of zero. The maximum number of dimensions allowed in a DIM
statement is 255. However, you are unlikely to need that many dimen­
sions. The number of dimensions is further limited by the amount of
available memory.

If the array has already been dimensioned or referenced and that variable
is later encountered in a DIM statement, a "Redimensioned array" error
message is generated. DIM statements are best placed at the top of a pro­
gram where they are executed before any references are made to the
dimensioned variable.

•

DIM - EDIT FIELD

EDIT FIELD

•

Example

,. s File Edit Search Run Windows

DIM EHRMPLE
List

REM ***This demonstrates the use of
REM *** the 0111 and ERASE Statements.
DIM A(15)

FOR 1% =I TO 15
READ A(I%)

NEXT 1%
DATA 1,2,.3,4,5,6,7,6,9, 10, 11, 12, 13, 14, 15

ERASE A
DIM A(3,36)

-

Statement Syntaxes

-

EDIT FIELD field-id [,default.rectangle [,[type)[justify)))
EDIT FIELD CLOSE field-id

Action

Allows user to enter text within a specified rectangle of the current
output window.

Remarks
The field-id must be an integer greater than or equal to 1. It uniquely
identifies an edit field within the current output window. Large field-id

,

numbers consume more memory than small ones. ~

The def a ult is the string expression to be edited. The string expression
may be " ". Initially, the entire default is highlighted (selected). You can
then use standard Cut-Paste-Copy editing to change the default.

The rectangle specifies the boundary coordinates of the rectangle used for
editing. It has the form (xl,yl)-(x2,y2) where (xl,yl) is the upper-left
coordinate and (x2,y2) the lower-right coordinate that define the boun­
daries where the editing takes place within the current output window.

....

-

EDIT FIELD

The type describes one of four editing formats. The type can be:

2

3

4

Draw a box around the rectangle to be edited. Do not allow
Return keys in the edit field. This is the default.

Draw a box around the rectangle to be edited. Allow Return
keys in the edit field.

No box around the rectangle to be edited. Do not allow
Return keys in the edit field.

No box around the rectangle to be edited. Allow Return keys
in the edit field.

The justify parameter is an integer from I to 3 that specifies the location
of text within the edit field. It can take the following values:

I

2

3

Left justify. This is the default.

Center text.

Right justify.

The EDIT FIELD statement returns control to the next executable state­
ment, and does not wait for the user to enter text. The DIALOG(2) func­
tion can be used to determine which edit field the user has selected.

The EDIT FIELD CLOSE field-id syntax closes the named field in the
current output window.

A program can activate any number of edit fields within an output win­
dow at one time. This feature is useful for generating forms. The number
of the edit field, n, must be passed to the EDITS function to retrieve the
contents of an edit field. This edit field remains in the window and is ac­
cessible until any of the following actions takes place:

• Another EDIT FIELD statement with the same field-id is executed.

• An EDIT FIELD CLOSE n statement for that edit field is executed.

• The window in which the edit field resides is closed with a WINDOW
CLOSE n statement.

Edit fields are specific to a single output window. This means that there
can be an edit field I in output window I, as well as an edit field I in out­
put window 2. This feature allows independent subroutines to create and
control an output window without colliding with edit fields used by other
parts of the program.

•

EDIT FIELD

•

If only the field-id is specified, that edit field is made active if it has
previously been defined.

Note

When an edit field is displayed in the current output window, a PRINT
statement will not automatically scroll the window contents.

See Also
BUITON, DlALOG, EDITS

Example

,. 9 File Edit S<~<1n h Run Windows

!customer•

OK)

List
WINDOW 2,.(10,22)-(280,92),-4
EDIT FIELD 2,"Customer •",(5,30)-(250,45)
EDIT FIELD 1,"Nome",(5, 10)-(250,25)
HUTTON 1, 1,"0K",(200,49)-(250,67) ~
i: 1
Loop:

d:DIALOG(O)
IF d: 1 THEN Done 'got OK button
IF d:2 THEN i:DIALOG(2): EDIT FIELD i 'got field selection
IF d:6 THEN Done 'got RETURN key
IF d:7 THEN i:(j MOD 2)+ 1: EDIT FIELD i 'got TAB key
GOTO Loop

Done:

EDIT$

"
Function Syntax
EDIT S(Jield -id)

Action

EDIT$

Returns the current contents of an edit field within the current output
window.

Remarks
The field-id is an integer greater than or equal to l. It uniquely identifies
an edit field defined by the EDIT FIELD statement.

You can design your program to create data entry fields using the EDIT
FIELD statement. You can then check results with the EDITS function,
which returns the contents of the specified edit field in the current output
window.

If you attempt to return the value of an edit field that has not been
defined, an "Illegal function call" error message is generated.

See Also
BUTTON, DIALOG, EDIT FIELD

Example

REM ** Th1s mustrates a use of the EDIT$ function.
WINDOW 2.,(260,22)-(490,92), -4
EDIT FIELD 1, "Name",(5, 10H230.25)
BUTTON f, f,"OK", (170,49)-(220,67)

Idle: ACTIVITV = DIALOG(O)
IF ACTIVITY= 1 THEN GOSUB Done: REM **Got Ok button.
IF ACTIVITY = 6 THEN GOSUB Done : REM**Got return key.

GOTO Idle

Done: TITLE$= EDIT$(1): WINDOW CLOSE 2
WINDOW OUTPUT 1
PRINT TITLE$

•

END

END

II

Statement Syntax

END

Action

Terminates program executio n, closes all files, and returns to previous
mode.

Remarks
END statements may be placed anywhere in the program to terminate
execution. An END statement at the end of a program is optional.

Example

,. e File Edit Se11rth Run Windows

END EHRMPLE
~o list

REM *** Thls program fragment illustrates a use
REM *** or the END Statement.
INPUT "Enter your choice (1..4)? ", CHOICE% ~{

r~~c~~'ii:.~~~,~~ (CHOICE> > 4) THEN ENO I
REM *** Thi s subroutine prints the CHOICE% selected. '!ml
SUBROUTINE: H

PRINT .. Your choice was number ··;CHOICE%
RETURN

.,

EOF •o
Function Syntax

EO F(filenumber)

Action

Tests for the end-of-file condition.

Remarks

EOF

Returns - 1 (true) if the end of a sequential input file has been reached.
Use EOF to test for end-of-file while inputting, to avoid "Input past end"
error messages.

When EOF is used with a random access file, it returns true if the last GET
statement was unable to read an entire record. It is true because it was
an attempt to read beyond the end of the file.

Example

,. a File Edit Search Run Windows

·word", "June"
34 B7 97
110 101

114
34 13

~o

EDF EHRMPLE

100 34 44 34 74

List

117

REM ***This progrom demonstrotes a use of
REM*** the EDF Function.
OPEN T,• 1 ,"INFO"

LINE INPUT • 1, LONG$
PRINT LONG$

CLOSE• 1
OPEN 'T, 6 1,"INFO"

WHILE NOT EOF(1)

LET C = C + 1: IF C = 10 THEN PRINT: LET C = 0 !i!ii,...i _ ____,

WEND I
!!!!!

.,

II

ERASE

ERASE

~

•

Statement Syntax
ERASE array-variable-list

Action
Eliminates arrays from memory.

Remarks

Arrays may be redimensioned after they are erased, or the previously
allocated array space in memory may be used for other purposes. If an
attempt is made to redimension an array without first erasing it, an e rror
message is generated.

Example

,. s File Edit Search Run Windows

ERASE EHRMPLE

=D List
REM*** This demonstretes the use of
REM *** the DIM 6nd ERASE St6tements.

::~;~;~~~) 15 I
DATA 1,2,3,4,5,6,7,8,9,10,11,12,13'.14,15 t:
ERASE A :::!!!

DI" A(3,3Bl ~

n
.,

ERR
ERL

"
Function Syntax
ERR
ERL

Action

ERR/ERL

Return the error number and the line on which the error occurred.

Remarks
When an error-handling routine is entered by way of an ON ERROR state­
ment, the function ERR returns the error ~ode for the error, and the func­
tion ERL returns the line number of the line in which the error was
detected.

If the line with the detected error has no line number, ERL will return the
number of the first numbered line preceding the line with the error. ERL
will not return line labels. The ERR and ERL functions are usually used in
IF ... THEN ... El.SE statements to direct program flow in an error-handling
routine.

With the Microsoft BASIC Interpreter, if the statement that caused the
error was an immediate mode statement, ERL will return 65535. To test
whether an error occurred in an immediate mode statement, use:

IP 65535 ·ERL THEN ...

Otherwise, use:

IF ERR • error code THEN ...
IF BRL - line number THBN ...

See Appendix B, "Error Codes and Error Messages," for a list of the
Microsoft BASIC error codes.

Example

ON ERROR GOTO errorfix

errorfix:
IF (ERR .. 55) AND (ERL•90) THEN CLOSE• 1: RESUME

Ill

ERROR

ERROR

"

•

Statement Syntax
ERROR integer-expression

Action
Simulates the occurrence of a Microsoft BASIC error, or allows error
codes to be defined by the user.

Remarks
ERROR can be used as a statement (part of a program source line) or as a
command (in immediate mode).

The value of the integer-expression must be greater than 0 and less than
256. If the value of the integer-expression equals an error code already in
use by Microsoft BASIC (see Appendix B, "Error Codes and Error Mes­
sages"), the ERROR statement will simulate the occurrence of that error
and the corresponding error message will be printed (unless errors are
being trapped).

To define your own error code, use a value that is greater than any used
by Microsoft BASIC error codes. (It is preferable to use the highest avail­
able values, so compatibility may be maintained when more error codes
are added to later versions of Microsoft BASIC.) This user-defined error
code may then be conveniently handled in an error-handling routine.

If an ERROR statement specifies a code for which no error message has
been defined, Microsoft BASIC responds with an "Unprintable error" error
message. Execution of an ERROR statement for which there is no error­
handling routine causes an error message to be generated and execution
to halt.

Example
In immediate mode:

ERROR 15
String too long

-
EXP

"

FIELD

Function Syntax
EXP(X)

Action

EXP- FIBLD

Returns e (base of natural logarithms) to the power of X, that is, ex.

Remarks

If X is greater than 145, an "Overflow" error message is displayed,
machine infinity with the appropriate sign is supplied as the result, and
execution continues.

The evaluation of this function is performed in double precision in the
decimal version. In the binary version, results are given in single
precision when the argument is in single precision and in double preci­
sion when the argument is in double precision.

Example

X-5
PRINT EXP(X)

... 8. 4i 1315910259

Statement Syntax

FIELD [# lfi/enumber,Jieldwidth AS string-variable ...

Action
Allocates space for variables in a random file buffer.

Remarks

It is good programming practice to have a FIELD statement follow as
closely as possible the statement that opens the file it is defining.

The filenumber parameter is the number under which the file was
opened. The fieldwidth is the number of characters to be allocated to the •
string-variable.

The total number of bytes allocated in a FIELD statement must not exceed
the record length that was specified when the file was opened. Other­
wise, a "Field overflow" error message is generated. (The default record
length is 128 bytes.)

FIELD

•

Any number of FIELD statements may be executed for the same file. All
FIELD statements that have been executed will remain in effect at the
same time.

Note

Do not use a fielded variable name in an INPUT or LET statement. Once a
variable name is fielded, it points to the correct place in the random file
buffer. If a subsequent INPUT or LET statement with that variable name is
executed, the variable's pointer no longer refers to the random record
buffer, but to string space.

See Also

GET, l5ET, OPEN, PUT, RSET

Example

r s file Edit Search Run Windows

FIELD EHRMPLE
List

EM*** This Is 11 frogment of 11 progrom thot opens on existing
REM••• file, gets d11t11 from it, updotes It, returns it & closes It.
OPEN "Poyobles" AS '2 LEN = 74

FIELD '2, 30 AS FIRM$, 30 AS ADDR$, 4 AS OWE$, 10 AS DAV$
6ET '2, ACCOUNT

LET DEIHi = CYS(OWE$)
LET DEBT! = DEBT! + (CHARGES! - PAID!)
LSET OWE$ = MKSS(DEBTI)

PUT '2, ACCOUNT
CLOSE '2
PRINT "Account '";ACCOUNT;" updoted"

.,

FILES
FILES$

~~D

Statement Syntax
FILES (/ilespec]

Function Syntax
FILES S(n(,prompt-string])

Statement Action
Prints the names of files residing on the specified disk.

Statement Remarks

FILES/FILE$

If the /i/espec is omitted, all the files on the internal drive are listed. The
filespec parameter is a string, including a filename and optional Macintosh
volume designation.

Examples

PIL~

Shows all files on the volume in the internal disk drive.

PIL~ "T~T.BAS"

Shows either that the file exists, or generates a "File not found" error
message.

•

FILES/FILE$

•

Function Action
Is used to display standard Macintosh dialog boxes which allow the user
to select a file and optionally eject a floppy disk and insert a new one.

Function Remarks
There are two forms of the FILESS function, selected by then parameter,
which can be either 0 or l. The action of each form is described below:

FILESS(O)

FILESS(l)

Prompts user for the name of a file. The prompt-string
is displayed in the dialog box.

Prompts the user to select the name of an existing disk
file. A dialog box is displayed with a list of files that the
user can select. The prompt-string contains a list of file
types, four characters per type. For example, if prompt­
string is TEXT APPL, then all files of type TEXT and type
APPL are displayed. Note that files created by BASIC
have type TEXT. The type of a file can be changed by
renaming it with the NAME statement.

If the prompt-string is omitted or its length is zero, all files on the drive
are displayed. If the CANCEL button is pressed, the FILESS function re­
turns a zero length string. If the OK button is pressed, the FILES S func­
tion returns the filename of the specified file. This string expression can
then be used in an OPEN statement.

You can use the FILESS function in your applications to produce a dialog
box to prompt users to name data files to be created (FILES S(O)) and to
produce a dialog box to prompt users to select an existing data file
(FILES S(l)). The dialog box also provides a button to eject the disk so
that another disk can be inserted.

See Also
NAME

,...
I

FIX

~

FILES/FILE$ - FIX

Examples

,. j me Edit Seard\ Run Windows

FILES$ EHRMPLE

Which client to check?

lFURILLq

Saue ~) Cancel

Eject

El1 **This fragment shows e use of e FILES$ Function.
ANSWER$ = "YES"
WHILE LEFTS(ANSWER$, 1) = "Y"

WHICH$= FILES$(0, "Whlch client to checkr)
IF WHICH$="" THEN END
OPEN WHICH$ FOR INPUT AS "1
PRINT "JOB "";TAB(35);"Hours";TAB(70);"Comments": PRINT
WHILE NOT EOF(1)

INPUT"1,JOBNUMBER,HOURS,COMMENT$
PRINT JOBNUMBER HOURS Comment$

Function Syntax
FIX(X)

Action
Returns the truncated integer part of X.

Remarks

'

FIX(X) is equivalent to SGN(X) • INT(ABS(X)). The difference between FIX
and INT is that FIX does not return the next lower number for negative X. •

See Also
CINT, INT

FIX - FOR ..• NEXT

FOR •.• NEXT

~

•

Example

PRINT FIX(58.75)
58

PRINT PIX(-58.75)
-58

Statement Syntax
FOR variable=x TO y [STEP z]
NEXT [variable][,variable ... J

Action
Performs a series of instructions to be performed in a loop a given
number of times.

Remarks
The FOR statement uses ~ y, and z as numeric expressions, and variable
as a counter. The expression xis the initial value of the counter. The ex­
pression y is the final value of the counter. The program lines following
the FOR statement are executed until the NEXT statement is encountered.
Then the counter variable is adjusted by the amount specified by STEP. A
check is performed to see if the value of the counter is now greater than
the final value of y. If it is not greater, Microsoft BASIC branches back to
the statement after the FOR statement and the process is repeated. If it is
greater, execution continues with the statement following the NEXT state­
ment. This is called a FOR. .. NEXT loop.

If STEP is not specified, the increment is assumed to be one (+ 1). If STEP
is negative, the counter is decreased each time through the loop. The
loop is executed until the counter is less than the final value.

A FOR statement without a corresponding NEXT statement will generate a
"FOR without NEXT" error message. A NEXT statement without a
corresponding FOR statement will generate a "NEXT without FOR" error
message.

Nested Loops FOR ... NEXT loops may be nested; that is, a FOR ... NEXT
loop may be placed within the context of another FOR ... NEXT loop.
When loops are nested, each loop must have a unique variable name as its
counter. The NEXT statement for the inside loop must appear before that
for the outside loop.

.....
I

-

FRE

"

FOR ••• NEXT - FRE

The variable in the NEXT statement may be omitted, in which case the
NEXT statement matches the most recent FOR statement. If a NEXT state­
ment is encountered before its corresponding FOR statement, a "NEXT
without FOR" error message is generated and execution is terminated.

Example

File Edit Search Run Windows

FOR ••• NEHT EHRMPLE
1 3 5 7 9
10 8 6 4 2
84 69 83 84 73 78 71 '7 ·-,

·..IL 76 79 79 60

~u List

REM ***This example demonst.rate~. a u~.e of t.he FOR. NEXT Statement.
FOR 1:g: I TO 10 STEP 2

PRINT I~;
NEXT I~
PRINT
FOR .JX = 10 TO 1 STEP -2

PRINT J~:
NEXT .J%. PRINT
LET A$= "TESTING LOOP": LET COUNT:f. = LEN(A$)
FOR K% ::. 1 TO COUNT%

PRINT ASC(MIDS(A$.K%. l));
NEXT K~
END

Function Syntax
FRE(n)
FRE(" ")

Action

.,

FRE(- 1) returns the number of bytes in the Macintosh heap that are not
being used by Microsoft BASIC. FRE(- 2) returns the number of bytes in
the stack which have never been used. FRE(n), where n is any number
but - 1 or - 2, returns the number of bytes in BASIC's memory space that
are not being used. FRE(" "), like all forms of FRE, forces string space
compaction. For more information about memory space management, sec
"Memory Management" in Chapter 6, "Advanced Topics."

•

FRE - GET

GET

iio~

•

Example

PRINT FRE(O)
18138

PRINT PRE("'')
18138

Statement Syntax

GET I# lfilenumber(,recordnumber)
GET (x J,y I)-(x2,y2),array-name I (index(,index ... , index]) I

Action

Reads a record from a random disk file into a random buffer.

Gets an array of bits from the screen.

Remarks
The two syntaxes shown above correspond to two different uses of the
GET statement. These are called a random file GET and a screen GET,
respectively.

Random File GET In the first form of the statement, the filenumber is
the number under which the file was opened. If the recordnumber is
omitted, the next record (after the last GET) is read into the buffer. The
largest possible record number is 16, 777 ,21 5.

After a GET statement has been executed, the data in recordnumber may
be accessed directly using fielded variables. (See "Random Access Files"
in Chapter 5, "Working With Files and Devices," for complete details on
random file operations.) INPUT# and LINE INPUT# also may be executed
to read characters from the random file buffer.

EOF(filenumber) may be used after a GET statement to check if the GET
statement was beyond the end-of-file .

GET

Screen GET The second form of the GET statement is used for transfer­
ring graphic images. GET obtains an array of bits from the screen, and its
counterpart, PUT, places an array of bits on the screen.

The arguments to GET include specification of a rectangular area in the
current output window with (xl,_yl)-(x2,y2). The two points specify the
upper left-hand corner of the rectangle and the lower right-hand corner of
the rectangle, respectively.

The array-name is the name assigned to the place that will hold the im­
age. The array can be any type except string, and must be dimensioned
large enough to hold the entire image.

The multiple index parameters for an array permit multiple objects in a
multidimensional graphic array. This allows looping through different
views of an object in rapid succession.

Unless the array is of type integer, the contents of the array after a GET
will be meaningless when interpreted directly (see below).

The required size of the array, in bytes, is:

4+ (((y2-yl)+ 1) • 2•INT(((x2-xl)+16)116))

where x and y are the lengths of the horizontal and vertical sides of the
rectangle.

The bytes per element of an array are:

• 2 bytes for integer

• 4 bytes for single precision

• 8 bytes for double precision

Assume you want to GET (I0,20)-(30,40},ARRAY%. The number of bytes
required is 4 + (((40 - 20) + I) • 2 • INT (((30 - IO) + 16) I 16)) or
88 bytes. Therefore, you would need an integer array with at least 44
elements.

It is possible to examine the x and y dimensions and even the data itself if •
an integer array is used. The width and height of the rectangle can be
found in elements 0 and 1 of the array, respectively.

The GET and PUT statements are used together to transfer graphic images
to and from the screen. The GET statement transfers the screen image
bounded by the rectangle described by the specified points into the array.
The PUT statement transfers the image stored in the array onto the
screen.

GET - GOSUB ... RETURN

GOSUB ... RETURN

-~

See Also

PUT

Example

r- s File Edit Search Run Windows

~o

GET EHRMPLE
list

REM *** Thi s is a fragment of a program that opens an existing
REM *** file , gets data from it, updates it, and returns it.

"'1~~J;:~~~o~~::::~: ~~ AOORI, 10 As DWEI , 10 As DAVI ~I
LET DEBTI = DEBT! • (CHARGES! - PAIDI) iJ'

PU~:~~ ~~CE;U~~KSS(DEBT!) j,!ill

CLOSE • 2
PRINT "Account. ";ACCOUNT; .. updated ..

Statement Syntax

GOSUB line
RETURN (line]

Action
Branches to and returns from a subroutine.

Remarks

The line in the GOSUB statement is the line number o r label of the first
line of a subroutine. Program control branches to the line after a GOSUB
statement executes. A RETURN within the GOSUB will return control
back to the statement just following the GOSUB statement in the program
text.

n

GOSUB ... RETURN

A subroutine may be called any number of times in a program. A subrou­
tine also may be called from within another subroutine. Such nesting of
subroutines is limited only by available memory.

RETURN statements in a subroutine cause Microsoft BASIC to branch back
to the statement following the most recent GOSUB statement.

A subroutine may contain more than one RETURN statement, should logic
dictate a return at different points in the subroutine.

The line option may be included in the RETURN statement to return to a
specific line number or label from the subroutine. This type of return
should be used with care, however, because any other GOSUB, WHILE, or
FOR statements that were active at the time of the GOSUB will remain ac­
tive, and error messages such as "FOR without NEXT" may be generated.

Subroutines may appear anywhere in the program, but it is recommended
that the subroutine be readily distinguishable from the main program. To
prevent inadvertent entry into the subroutine, precede it with a STOP,
END, or GOTO statement that directs program control around the
subroutine.

Example

r • File Edit Search Run Windows

Enter your choice (1. 4) ? 3
Your choice wos number 3

GOSUB EHRMPLE

List
REM ***This progrom fragment illustrotes o use
REM *** of the GOSUB & RETURN Stotements.
INPUT "Enter your choice (1..4) ? "", CHOICE%
IF (CHOICE% < 1) OR (CHOICE% > 4) THEN END
GOSUB SUBROUTINE
END

·11111

111111

REM*** This subroutine prints the CHOICE% selected. ~iilll
SUBROUTINE:

PRINT "' Your choice wos number "' ;CHOICE%
RETURN •

GOTO - HEX$

GOTO

~

HEX$

"
•

Statement Syntax
GOTO line

Action
Branches to a specified line.

Remarks
If the program statement with the number or label line is an executable
statement, that statement and those following are executed.

If it is a nonexecutable statement, such as a REM or DAT A statement, exe­
cution proceeds at the first executable statement encountered after line.

....
I

It is advisable to use control structures {IF ... THEN ... ElSE, WHILE ... WEND, ,-.
and ON ... GOTO) in lieu of GOTO statements as a way of branching, be-
cause a program with many GOTO statements can be difficult to read and
debug.

Example

GOT0999

Function Syntax
HEXS(X)

Action
Returns a string that represents the hexadecimal value of the decimal
argument.

Remarks
X is rounded to an integer before HEX S(X) is evaluated.

See Also
OCTS

~
.,

IF ... THEN .•• ELSE
IF ... GOTO

~

HEX$ - IF ... THEN ... ELSE/IF ... GOTO

Example

,.
File Edit Se"rch Run Windows

HEH$ EHRMPLE
Thi s program converts decimfll numbers to Octol ond Hexodecirnol numbers

· Whflt 1s the dec1mfll number ? 9999
Octol = 23417
HexBdecimal = 270F
Do you wont to convert onother ? NO

~[] List
REM*** This progrom illustrates a use of the
REM *** HEX$ and OCT$ Functions.
PRINT "This program converts decimal numbers· ; iim:
PRINT .. l o Octal and Hexodecimal numbers·· ';'ii'

LET ANSWER$ = "VES" :!·ii!
WHILE (LEFT$(ANSWER$, I)= "V") @:

~'::~~ ~~cht:\ i=s ~~~c~~~~Ea~,~UA~~er ? ",DECIMAL !l;l!;it-_ __.

PRINT "Hexadecimal = ";HEX$(DECIMAL)
INPUT "Do you want to convert onother? ",ANSWER$ ii:!i!

WEND •.

Statement Syntax

IF expression THEN then-clause [ELSE else-clause!
IF expression GOTO linr: [ELSE else-clause I

Action
Makes a decision regarding program flow based on the result returned by
an expression.

Remarks

If the result of the expression is true, the then -clause or GOTO statement
is executed. THEN may be followed by either a line number or label for
branching or one or more statements to be executed. GOTO is always
followed by a line number or label. If the result of the expression is false,
the then -clause or GOTO statement is ignored and the else-clause, if
present, is executed. Like the then-clause, the else-clause is either a line
number or label or one or more scatements.

II

II

IF .•• THEN .•• ELSE/IF ••• GOTO

Nesting of IF Statements IF ... THEN ... ELSE statements may be nested.
Nesting is limited only by the length of the line. For example, the follow­
ing is a legal statement.

IP X > Y THEN PRINT "GRBATER" ELSE IF Y > X THEN PRINT "LPSS THAN"
ELSE PRINT "BQUAL"

If the statement does not contain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest unmatched THEN. For
example:

IP A - 8 THEN IF B - C THEN PRINT "A - C' ELSE PRINT "A <> C'

will not print "A< > C,, when A< 8.

If an IF ... THEN statement is followed by a line number or label in immedi­
ate mode, an "Undefined line number,, error message is generated, unless
a statement with the specified line number or label had previously been
entered in the program.

Examples
This statement gets record number I if I is not zero.

IP I THEN GET •1, I

In this example, a test determines if I is greater than 10 and less than 20.
If I is in this range, DB is calculated and execution branches to line 300.

r

!111111'
i

If I is not in this range, execution continues at the next line. ..-.

IF (I< 20) AND (I> 10) THEN DB· 198.f: GOTO 300 ,_.,
PRINT "OUT OF RANGE"

This statement causes printed output to go either to the screen or the
printer, depending on the value of the variable IOFLAG. If IOFLAG is
zero, output goes to the printer; otherwise, output goes to the screen.

IF IOFLAG THEN PRINT A$ ELSE LPRINT A$,_
I

,...
I

....
INKEY$

ii~

-

IF ..• THEN ... ELSE/IF ... GOTO - INKEY$

This last example shows the use of conditional variables. The IF state­
ment is true if the variable BONUS% has the value of - I and false if that
value is 0.

IF SCORE > 90 THEN BONUSl= (-1) ELSE BONUSl:O
IF BONUS:C THEN PRINT ·vou rece1ved a bonus thts week·
IF NOT BONUSI THEN PRINT ·No bonus this week·

Function Syntax
INKEYS

Action
Returns either a one-character string containing a character read from the
keyboard or a null string if no character is pending at the keyboard.

Remarks
No characters will be echoed. All characters are passed through to the
program except for Command-period, which terminates the program.
Note that the Enter and Return keys can he distinguished by using
INKEYS.

Note that if an output window is not active while the program is running,
and the user presses a key, the key will be ignored and a BEEP will occur,
since keystrokes on the Macintosh are only directed to the active window .

•

INKEY$

•

Example

r j File Edit Seorch Run Windows

I NKEYS EHRMPLE
;[] List

REM*** This checks for character input at the keyboard using INKEVS, and~
REM *** then causes a RETURN after every 50 characters are printed.
WIDTH 80
CHARCHECK:

LET ANSWER$= INKEYS
IF ANSWERS= NN THEN GOTO CHARCHECK: ELSE PRINT ANSWERS;
IF POS(X) > 50 THEN PRINT CHRS(13)
GOTO CHARCHECK:

END

J_.---- - --

,

....

~
I

INPUT

ii~

-

INPUT

Statement Syntax
INPUT(; JI prompt -string;]variable-list

Action

Allows input from the keyboard during program execution.

Remarks

When an INPUT statement is encountered, program execution pauses and
a question mark is printed to indicate the program is waiting for data. If
the prompt-string is included, the string is printed before the question
mark. The required data is then entered at the keyboard.

A comma may be used instead of a semicolon after the prompt string to
suppress the question mark. For example, the statement INPUT "ENTER
BIRTHDATE",B S will print the prompt with no question mark.

The data that is entered is assigned to the variables given in the variable­
list The number of data items supplied must be the same as the number
of variables in the list. Data items are separated by commas.

The variable names in the list may be numeric or string variable names
(including subscripted variables). The type of each data item that is input
must agree with the type specified by the variable name. (Strings input to
an INPUT statement need not be surrounded by quotation marks.)

Responding to INPUT with too many or too few items or with the wrong
type of value (numeric instead of string, etc.) causes the prompt message
"?Redo from start" to be generated. No assignment of input values is
made until an acceptable response is given.

If INPUT is immediately followed by a semi-colon, pressing the Return key
does not move the pen to the start of the next line.

•

INPUT - INPUT$

INPUT$

iio

II

Example

~ s File Edit Search Run Windows

INPUT EHRMPLE
This progrom converts decimol numbers to Octol ond Hexodecimol numbers
Whot is the decimol number ? 3456
Oclol = 6600
Hexodecimol = 080
Do you wont to convert onother ? NO

~o List
REM ***This progrom illustrotes o use of the
REM *** INPUT Stotement.
PRINT "This progrom conver ts decimol numbers";
PRINT · to Octol ond Hexodecimel numbers"
LET ANSWER$ = "YES"
WHILE (LEFT$(ANSWER$, I):"V")

INPUT "Whot is the decimol number ? ",DECIMAL
PRINT "Oc lol = ";OCTS(DECIMAL)
PRINT "Hexodecimol = ";HEX$(DECIMAL)
INPUT "Do you wont to convert onother ? ",ANSWERS ::::::

WEND I
END

Function Syntax
INPUTS(X[,[# lfilenumber])

Action
Re turns a string of X characters read from filenumber. If the filenumber
is not specified, the characters w ill be read from the keyboard.

Remarks
If the keyboard is used fo r input, no characters w ilJ be echoed on the
screen. All control characters are passed through except Command­
period, which is used to interrupt the execution of the INPUTS function.

.,

.....

INPUT#

tio

INPUT$ - INPUT#

Example

r j file Edit Search Run Windows

MWord", "JuneM
34 87 97 114 1 00 34 44 34 7 4 117 110 1 0 1 34 13

List
REM*** This program demonstrates a
REM *** use of the INPUT$ Function.
OPEN T,"1,"INFO"

LI NE INPUT " 1, LONG$
PRINT LONG$

CLOSE" 1
OPEN ''I"," I ,"INFO"

WHILE NOT EDF(I)
PR I NT ASC(INPUT$(1," 1));

WEND
CLOSE" 1
END

Statement Syntax

INPVT#filenumber,variable-list

Action

Reads items from a sequential file and assigns them to program variables.

Remarks

.,

The filenumber is the number used when the file was opened for input.
The variable-list contains the variable names that will be assigned to the •
items in the file. (The data type must match the type specified by the
variable name.)

The data items in the file should appear just as they would if data were
being typed in response to an INPUT statement. With numeric values,
leading spaces, carriage returns, and linefeeds are ignored. The first char·
acter encountered that is not a space, carriage return, or linefeed is as·
sumed to be the start of a number. The number terminates on a space,
carriage return, linefeed, or comma.

INPUT#

II

If Microsoft BASIC is scanning the sequential data file for a string item, it
will also ignore leading spaces, carriage returns, and linefeeds. The first
character encountered that is not a space , carriage return, or linefeed is
assumed to be the start of a string item. If this first c haracter is a quota­
tion mark ("), the string item will consist of all characters read between
the first quotation mark and the second. Thus, a quoted string may not
contain a quotation mark as a charac ter. If the first charac ter of the string
is not a quotation mark, the string is an unquoted string and will terminate
on a comma, carriage return, or linefeed. If the end·of-file is reached
when a numeric or string item is be ing INPUT, the item is terminated.

Example

r S File Edit Search Run Windows

INPUT# EHllMPLE

list
REM ***This demonstrates the use of INPUT "
DIM A(50), B(50), C$(50)
OPEN "I"," 1, "INFO"

LET 1% = 1
WHILE NOT EOF(l)

LET 1% = 1% + 1
INPUT' 1, A(I%) , B(I%), C$(1%)
PRINT A(I%), B(I%), C(I%)

WEND
CLOSE' 1
END

.,

INSTR

"

...

IN Sm

Function Syntax
INSTR((I,]X S,Y S)

Action
Searches for the first occurrence of string Y S in XS, and returns the posi­
tion at which the match is found. Optional offset I sets the position for
starting the search.

Remarks

If I is greater than the number of characters in XS (LEN(XS)), or if XS is
null or Y S cannot be found, INSTR returns 0. If Y S is null, INSTR returns
I or 1. XS and Y S may be string variables, string expressions, or string
literals.

Example

,. s File Edit Search Run Windows

INSTR EHAMPLE

List

10 REM *** Thts program 11 lust.n:st.es a use of
REM*** the iNSTR Funct.1on
LET PLACES$ = ··r1ankat.o. r·1rnne.sot.a"'
LET FIND$= '"lvr
PRINT INSTR(PLACES$,FIN0$)
PRINT INSTR(3,PLACES$,FIND$)
END

- -

,

•

INT-KILL

INT

"

•

Function Syntax
INT(X)

Action
Returns the largest integer less than or equal to X.

See Also
CINT, FIX

Examples

PRINT INT(98.89)
98
PRINT INT(5.6.j3 • 3. l 4i 16)
17
PRINT INT(-12.11)
-13

Statement Syntax
KILL filespec

Action
Deletes a file from disk.

Remarks

If a KILL command is given for a file that is currently OPEN, a "File
already open" error message is generated. The filespec argument is any
legal Macintosh filename.

Example

KILL "MailLabels"

This deletes the file named MailLabels.

!lllml
I

....,
I '

'

....
'

LBOUND
UBOUND

~

Function Syntax

LBOUND(an-ay-name[,dimension])
UBOUND(an-ay-name[,dimension])

Action

LBOUND/UBOUND

Returns the lower and upper bounds of the dimensions of an array.

Remarks
The an-ay-name is the name of the array variable to be tested.

The dimension parameter is an optional 11J.1mber used when the array
is multi-dimensional, and specifies the dimensions of the array being test­
ed. The optional dimension parameter specifies for which dimension to
find the bound. The default value is l.

If, for example, there is a three-dimensional array, GRID(X,Y,Z), and
UBOUND is being used to test the upper bound of the Y subscript, the
dimension specifier would be 2, because Y is the second dimension in the
array. If the UBOUND function is testing the Z subscript, the value is 3,
because Z is the third dimension.

The upper and lower bounds are the largest and smallest indices for the
specified dimension of the array. UBOUND always returns the value that
was used in the DIM statement, and LBOUND returns 0 or l depending on
whether the OPTION BASE is 0 or l.

Example
LBOUND and UBOUND are particularly useful for determining the size of
an array passed to a subprogram. For example, a subprogram could be
changed to use these functions instead of explicitly passing the upper
bounds to the routine:

CALL INCREMENT (ARRAY 1 (), ARRAY2(), TOT ALO)

SUB INCREMENT (A(2), 6(2), C(2)) STATIC
FOR I = LBOUND(A, 1) TO UBOUND (A, 1)

FOR J = LBOUND(A,2) TO UBOUND(A,2)
C(l,J) = A(l,J) + 8(1,J)

NEXT J
NEXT I

END SUB •

LCOPY - LEFT$

LCOPY

"~

LEFT$

~

•

Statement Syntax
LCOPY

Action
Sends a copy of the image on the screen to the Macintosh printer.

Remarks
The printer must be on for LCOPY to work. Note that daisy-wheel
printers cannot reproduce Macintosh screen images.

Function Syntax
LEFTS(XS,I)

Action
Returns a string containing the leftmost I characters of XS.

Remarks lilmt

I must be in the range 0 to 32767. If I is greater than the number of char-
acters in XS (LEN(XS)), the entire string (XS) will be returned. If I = 0,
a null string of length zero is returned. ,...,

See Also
MIDS, RIGHTS

Example

,. 9 file Edit Search Run Windows

p

PR
PRO
PROG
PRO GR
PROGRA
PROGRAM

-

LEFT$ EHRMPLE
List

REM*** Thf s program illustrates the use or ~
REM *** the LEFT$ Function

:::;~~~ ~i~:;:E::·$,I~) I
END Q
o L Jmmmmmmmmmmimmimrnmmmrnim~mmmllllmmmmlmmrn~l~l~im~1m~m~1m~rnm~mrnmrnml~~m~ CJ

-

.,

-

....
:

LEN

"
Function Syntax

LEN(X S)

Action
Returns the number of characters in XS. Non printing characters and
blanks are counted.

Example

" s File Edit Search Run Windows

Client Nome? Jone Austen
Job Number? " 1648

Untitled

Comments - Excellent monuscript - perhops too wordy for us.
Comments - Greot book - let's consider.

List
REM** This frogment lllustrotes o use of the LEN Function.
REM ** It prevents 1nsert1on of comments over 30 chorocters long.
INPUT "Client Nome? ·. CLIENTS
INPUT "Job Number? ·.JOBS
CheckSize: INPUT "Comments - ",COMMENTS

IF LEN(COMMENT$) > 30 THEN GOTO CheckS1ze

-

LEN

.,

-

II

LET

LET

~

II

Statement Syntax

[LET] variable=expression

Action

Assigns the value of an expression to a variable.

Remarks

Notice that the word LET is optional. The equal sign by itself is sufficient
for assigning an expression to a variable name.

Example

,,. • File Edit Senrch Run Windows

LET EHRMPLE
A B DUMMY
5 10 0
10 5 5

~o List

- -

..,

LINE

.I!!!

LINE

Statement Syntax
LINE [[STEP) (xl,yl))-[STEP] (x2,y2) [,[color J[,b(f)]]

Action
Draws a line or box in the current output window.

Remarks
The coordinate for the starting point of the line is (x l,y 1); the coordinate
for the end point of the line is (x2,y2). The color parameter is the
number of the color in which the line should be drawn. If the value of
the color is 33. black is used. If the value of the color is 30, white is
used.

With the ",b" option, a box is drawn in the foreground, with the points
(xl,yl) and (x2,y2) as opposite corners.

The ",bf' option fills the interior of the box. When out-of-range coordi­
nates are given, the coordinate that is out of range is given the closest le­
gal value. Boxes are drawn and filled in the color given by color.

With STEP, relative rather than absolute coordinates can be given. For ex­
ample, assume that the most recent point referenced was (10, 10). The
statement LINE STEP (I 0, 5) would specify a point at (20, I 5), offset I 0
from x I and offset 5 from y I.

If the STEP option is used for the second coordinate in a LINE statement,
it is relative to the first coordinate in the statement.

Examples
The following examples assume a screen of 320 pixels wide by 200 pixels
high. The first example draws a line from the last point to (5,5) in the
foreground color. This is the simplest form of the LINE statement:

LINE - (12,y2)

This example draws a diagonal line across the screen (downward):

LINE (0,0) - (319,199)

This example draws a horizontal line across the screen:

LINE (0,100) - (319,100)

This example draws a box in the foreground:

LINE (0,0) - (I00,100),.B

•

LINE INPUT

LINE INPUT

ii~

•

Statement Syntax
LINE INPUT!: 11 "'jnnmpt-string": I strinp,-{l{triable

Action
Inputs an t:ntire line to a string variabl<: without the use of c.Jdimilers.

Remarks
Tht: pro111pt-stri11g is a string literal that is printcc..I on the scret:n before
input is acceptec.J. A question mark is not printcc.J unless it is part of the
pro111pt-s lri11g All input from the enc.J of the pro111pt-s tring to the car­
riage return is assignec.J to the s tring-11ariable.

If l.INE INP T is immec.Jiately followec.J by a st:micolon, the carriage return
typ<:c..I by the ust:r to enc.J the input line c.Joes not e<.:110 a carriage return/
lin<:feec.J sequence on the screen.

A LI NE INPUT statement can be terminatec..I by typing Commanc..1-perioc.J,
causing BASIC to return to the commanc.J level. Typing CONT resumes
execution at the LINE INPUT.

See Also

LI NE INPUT#

Example

r s File Edit Search Run Windows

LINE INPUT EHRMPLE
Customer Doto? Andrew Smith $10.17 Umbrello
Andrew Smith $10. 17 Umbrella

F:l List

REM ***This demonstrates the use of
REM *** LINE INPUT end LINE INPUT "
OPEN "0","2,"INFO" I

~~~~~~.~~~~~~~~~~:·'· ? ,CUSTOMERS Iii 

------i~~~;~ ;~IENT$ 'J!lil,._f ___ _, 

ENO 

., 



LINE INPUT# 

iio 

LINE INPUT# 

Statement Syntax 
LINE INPUT#filenumber,string-variable 

Action 
Reads an entire line without delimiters from a sequential data file to a 
string variable. 

Remarks 
The filenumber is the number under which the file was opened. The 
string-variable is the variable name to which the line will be assigned. 

LINE INPUT# reads all characters in the sequential file up to a carriage re­
turn. It then skips over the carriage return/linefeed sequence. The next 
LINE INPUT# reads all characters up to the next carriage return. 

LINE INPUT# is especially useful if each line of a data file has been bro­
ken into fields, or if a BASIC program saved in ASCII format is being read 
as data by another program. 

See Also 
LINE INPUT, SA VE 

Example 
See the example for LINE INPUT. 

• 



LIST 

LIST 

"D 

• 

Statement Syntax 
UST (line) 
LIST (line)[ -[line I I.filename 

Action 
Lists the program currently in memory to a List window, a file, 
or a device. 

Remarks 
The line may be a line number or an alphanumeric label. When a LIST 
command is given, a List window appears over the output window if there 
is not already one. The specified lines appear in the List window. You 
may have up to two List windows at a given time. i-. 

The second syntax allows the following options: 

• If only the first line is specified, that line and all following lines are 
listed. 

• If only the second line is specified, all lines from the beginning of the 
program through the specified line are listed. 

• If both line arguments are specified, the entire range is listed. 

• If a filename is given in a string expression such as SCRN: or LPTl:, 
the listed range is listed to the given file. 

LIST, "LPTl:PROMPT" is identical to the file menu's Print selection. 

LIST, "LPTI :DIRECT" is identical to LUST. 

See Also 
"List Window Hints" in Chapter 4, "Editing and Debugging Your 
Programs" 

Example 
This example produces a List window and lists the program. 

LIST 

,... 
I 



LLIST 

~~ 

LOAD 

iio 

Statement Syntax 

LUST I line JI ·I line II 

Action 

LUST- LOAD 

Sends a listing of all or part of the program currently in memory to the 
line printer. 

Remarks 

The options for LUST arc the same as for LIST. except that there is no 
optional output device parameter; output is always to the line printer. 

See Also 

LIST 

Example 
Sec the example for LIST. 

Statement Syntax 

LOAD Lfilespecl .R 11 

Action 
Loads a file from disk into memory. 

Remarks 
If the fi/espec is not included. a dialog box appears to prompt the user for 
the correct name of the file to load. If there is a second drive on the sys­
tem, and the second drive has a disk in it. the dialog box includes a but­
ton for files on the second drive. 

The filespec must include the filename that was used when the file was 
saved. 

The ",R" option automatically runs the program after it has been loaded. 

LOAD closes all open files and deletes all variables and program lines 
currently residing in memory before it loads the designated program. 
However. if the ",R" option is used with LOAD. the program is run after it • 
is loaded, and all open data files arc kept open. Thus, LOAD with the ",R" 
option may be used to chain several programs (or segments of the same 
program). Information may be passed between the programs using their 
disk data files. 

See Also 
CHAIN. MERGE, SAVE 



LOAD - LOC 

LOC 

"D 

• 

Examples 
This example loads and runs the program STRTRK. 

LOAD "STRTRK", R 

ll1e same result could have been achieved by using the mouse and 
making an Open selection. 

This example loads the program MYPROG from the volume called Bill's 
Work Disk. but docs not run the program: 

LOAD "Bill's Work Disk: MYPROG" 

Function Syntax 
LOC( fi /en umber) 

Action 
for random disk files, LOC returns the record number of the last record 
read or written. 

for sequential disk files. LOC returns a different number, the increment. 

Remarks 
The increment is the number of bytes written to or read from the sequen­
tial file. divided either by the number of bytes in the default record size 
for sequential files ( 128 bytes) or the record size specified in the OPEN 
statement for that file. Mathematically. this can be expressed as shown 
below. 

Number of Bytes Read or Written\ OPEN statement Record Size = 
# Returned by LOC(file1111mber) 

for files opened to KYBD:. LOC returns the value I if any characters arc 
ready to be read from the standard input. Otherwise, it returns 0. for files 
opened to CLIP: or COM I:. LOC returns the number of characters ready 
to he input. 

When a disk file is opened for sequential input, BASIC reads the first 
record of the file. so LOC returns I even before any input from the file 
occurs. LOC assumes the filemmzber is the number under which the file 
was opened. 



LOCATE 

~l!J 

LOC - LOCATE 

Example 

" s file Edit Search Run WlndOW$ 

.. - -- -- - - - -- - - -- - -

PEN "NAMES" AS "1 LEN:35 

LDC EHRMPLE 

List 

FIELD" 1, 15 AS FIRST$,20 AS LAST$ 
ENTER: 

INPUT "Enter first neme (END to quit)";FIRSTNAME$ 
IF FIRSTNAME$:"END" THEN GOTO QUITFILE 
INPUT "Enter lest neme·; LASTNAME$ 
LSET FIRST$:FIRSTNAME$ 
LSET LAST$:LASTNAME$ 
PUT 1 
PRINT "Record number";LOC( 1 );"hes been entered." 
GOTO ENTER 

QUITFILE: 
PRINT ·current file conteins";LOF( !);"bytes: 
CLOSE" 1 

Statement Syntax 

LOCATE I row )[ ,column I 

Action 

Positions the pen at a specified column and line in the current output 
window. 

Remarks 

., 

The location specified in this statement is relative to the upper-left corner • 
of the curre nt output window. If the current output window is moved 
with the mouse, the row number remains the same. 

111e unit of measurement for this statement is the size of the character "O" 
in the current font. Because many of the Macintosh fonts are proportion­
ally spaced, all characters do not have identical widths, as they do on most 
typewriters. The "O" is an average width. 



LOCATE - LOF 

LOF 

li!o 

• 

The row and column parameters must be greater than or equal to I. 
lbey default to the pen's current coordinates if not specified. 

The LOCATE statement is complementary to the POS and CSRLIN func­
tions. LOCATE gives the pen a new location. POS and CSRLIN return the 
column and line location of the pen. 

Example 

REM **This example illustrotes the way LOCATE works. 
INPUT ··what is your name·; TITLES 
v,; = CSRLIN : REM *Record current line. 
xi= POS(O) : REM *Record current column. 
CLS: PRINT ·Hello, ·;TITLE$ 
LOC:A TE V%,X% : REM *Restore cursor to old position.I 

Function Syntax 
LOF(filenumber) 

Action 
Returns the length of the file in bytes. 

Remarks 
Files opened to SCRN :, KYBD:, or LPT I: always return the value 0. Files 
opened to CLIP: return the size of the Clipboard in bytes . 



LOG 

~ 

LOF-LOG 

Example 

r S File Edit Search Run Windows 

LDF EHAMPLE 

List 
OPEN "NAMES" AS "1 LEN:35 
FIELD "1, 15 AS FIRST$,20 AS LAST$ 
ENTER: 

INPUT "Enter first Mme (END to QUit)";FIRSTNAME$ 
IF FIRSTNAME$="END" THEN GOTO QUITFILE 
INPUT "Enter l6st nllme·; LASTNAME$ 
LSET FIRST$:FIRSTNAME$ 
LSET LAST$=LASTNAME$ 
PUT 1 
PRINT "Record number· ;LOC( 1) ;"hos been entered." 
60TO ENTER 

QUITFILE: 
PRINT ·current fi le conl6ins";LOF( 1 );"bytes." 
CLOSE" 1 

Function Syntax 

LOG(X) 

Action 

Returns thc natural logarithm of X. X must be greater than zero. 

Remarks 

Thc evaluation of this func tion is performed in double precision in the 
decimal version. In the binary version, results are given in single prcci­
sion when the argument is in single precision and in double precision 
when the argument is in double precision. 

., 

• 



LOG - LPOS 

LPOS 

"~ 

• 

Example 

,. s file Edit Search Run Windows 

LOG EHRMPLE 
The logori thm of 11 is 2.3978952727983 

~o List 
REM *** Thi s progrom demonstrntes o use of 
REM *** the LOG Functi on. 
LET ALGEBRA : LOG( 11 ) 
PRINT .. The logorithm of 11 is "',ALGEBRA 

l_---END 

Function Syn tax 

LPOS(X) 

Action 

~ 

11--L 

Re turns the current position of the line printe r's print head within the line 
printer huffer. 

Remarks 

X is a d ummy argu ment. LPOS docs not necessarily give the physical 
posit ion of the print head . 

Example 

IF LPOS(X) > 60 THEN PRINT CHRS( 13) 

, 



LP RI NT 
LPRINT USING 

"[&'J 

LSET 
RSET 

"~ 

Statement Syntaxes 
LPRINT (expression-list] 

LPRINT/LPRINT USING - LSET/RSET 

LPRINT USING string-expression;expression-list 

Action 
Prints data on the line printer. 

Remarks 
LPRINT and LPRINT USING are the same as PRINT and PRINT USING, 
except that output goes to the line printer. 

See Also 
LPOS, PRINT, PRINT USING 

Examples 
See the examples in PRINT and PRINT USING. 

Statement Syntax 
I.SET string-variable= string -expression 
RSET string-variab/e=string-expression 

Action 
Moves data from memory to a random file buffer in preparation for a PUT 
statement. 

Remarks 
If the string-expression parameter requires fewer bytes than were fielded 
to the string-variable, I.SET left-justifies the string in the field, and RSET 
right-justifies the string. (Spaces are used to pad the extra positions.) If 
the string is too long for the field, characters are dropped from the right. 
Numeric values must be converted to strings with MKIS, MKSS, or MKDS 
before they are used with LSET or RSET. 

Note 
LSET or RSET may also be used with a nonfielded string variable to left-
justify or right-justify a string in a given field. For example, these program • 
lines right-justify the string NS in a 20-character field: 

LET AS - SPACBS(20) 
RSET AS - NS 

This can be handy for formatting printed output. 



LSET/RSET - MENU 

MENU 

·~ • 

See Also 
MKIS, MKSS, MKDS 

Example 

r S File Edit Search Run Windows 

LSET, RSET EHRMPLE 
List 

REM*** This program illustrates the use or the LSET 
REM *** end RSET Stetements. 
OPEN "Account lnfo" AS "2 LEN= 15 

FIELD "2, 8 AS ACCT$, 4 AS CHECK$, 3 AS DEPOSIT$ 
GET "2, 1 

LET ACCOUNT NO" = 987432 16 7" 
LET CHECKING! = 1234.34 
LET SAVINGS% = 2500 
LSET ACCT$ = MKDS(ACCOUNTNO") 
LSET CHECK$ = MKSS(CHECKING!) 
RSET DEPOSIT$ = MKIS(SAVINGS%) 

PUT "2, 1 
----1 CLOSE "2 

Statement Syntaxes 
MENU 
MENU menu-id. item -id, stale I.title-siring] 
MENU RESET 

Function Syntaxes 

MENU(O) 
MENU( I) 

Actions 

~ 

I 

The statements create custom menu bar options and items underneath 
them , or restore the default menu bar. 

ll1e fi.tnc tions return the number of tht: last menu bar or menu item 
selectio n made . 

., 



MENU 

Remarks 
This set of MENU statements and functions gives you the tools to build 
custom menus and menu items in the menu bar at the top of the screen. 
If a MENU ON statement is executed, the user's selection of custom menu 
items can be trapped with the ON MENU GOSUB statement. 

You can override the existing BASIC menu items with the MENU 
statement. 

Statement Remarks 
The MENU statement with no arguments returns the current selection to 
normal black-on-white video. 

The menu-id is the number assigned to the menu bar selection. It can he 
a value from 1 to 10. 

The item-id is the number assigned to the menu item underneath the 
menu bar. It can be a value from 0 to 20. If item-id is between 1 and 20, 
it specifies an item in the menu. If item-id is 0, it specifies the entire 
menu. 

For the state argument, use 0 to disable the menu or menu item, 1 to 
enable it, or 2 to enable the item mu/ place a check mark by it. If the 
item-id is 0, the state takes effect for the entire menu. 

The title-string is a string assigned to he the title of a custom menu bar 
selection or an item underneath one. 

The MENU RESET statement restores BASIC's default menu bar. 

Function Remarks 
The function syntax MENU( 0) returns a number which corresponds to 
the number of the last menu bar selection made. MENU( 0) is reset to 0 
every time it executes, so the menu bar can be polled just like IN KEYS. 

The function syntax MENU( I ) returns a number which corresponds to 
the number of the last menu item selected. 

• 



MENU 

II 

See Also 
MENU ON, ON MENU 

Example 

,. s File Edit Search Run Transactions 
- --=-- =-- -- - - --.....;..__=-- "7 List - ---- - . - ---- - -

REM** This fn1gment illustn1tes 11 use of menu event tr11pptng. 
MENU 5,0, 1, 'Tr11ns11ctions· 
MENU 5, 1, 1 ,"Deposits" 
MENU 5,2, l ,"Wi thdr11w111s· 
MENU 5,3, 1,"Automotic P11yment" 
MENU 5,4, 1 ,"Credit Cord Purch11se" 
ON MENU GOSUB Menucheck: MENU ON 

Idle: 
GOTO Idle 

Menucheck: MENUNUMBER = MENU(O): IF MENUNUMBER <>5 THEN RETURN 
MENU ITEM= MENU ( 1) 
ON MENUITEM GOSUB Deposit, Withdrow, AutoP11y, Cred1t 
RETURN 

De osit: WINDOW 1 "De osits" (50-200)-(450 250) 1 

:;:::~;: 
·:."t: 
......... 

·'.·'.-'.-:· 

., 



MENU ON 
MENU OFF 
MENU STOP 

~ 

MERGE 

~D 

MENU ON/MENU OFF/MENU STOP • MERGE 

Statement Syntaxes 
MENU ON 
MENU OFF 
MENU STOP 

Actions 
Enables, disables, or suspends event trapping based on menu selections. 

Remarks 
The MENU ON statement enables menu event trapping by the ON 
MENU. .. GOSUB statement. 

The MENU OFF statement disables menu event trapping by the ON 
MENU. .. GOSUB statement. 

The MENU STOP statement suspends menu event trapping. It is similar to 
MENU OFF in that if it ha'i been executed, the GOSUB is not performed. 
However, MENU STOP differs in that the GOSUB is performed as soon as a 
MENU ON statement is executed, if any events occurred while the event 
trap was stopped. 

See Also 
"Event Trapping" in Chapter 6, "Advanced Topics" 

Example 
See MENU for an illustration of these statements. 

Statement Syntax 
MERGE fi/espec 

Action 
Appends a specified disk file to the program currently in memory. 

Remarks 
The fi/espec must include the filename used when the file was saved. 
That file must have been saved in ASCII format to be merged. (You can 
put a file in ASCII format by using the ",A" option to the SA VE command Ill 
or the "Text" option on the Save As selection on the File menu). If it was 
not saved in ASCII format, a "Bad file mode" error message is generated. 

Example 

MERGE "Sort Routine" 



MID$ 

MID$ 

" 

• 

Statement Syntax 
MIDS(string-expl,n (,m I )=string-exp2 

Function Syntax 
MIDS(XS,n (,mJ) 

Action 
The statement replaces a portion of one string with another string. 

The function returns a string of length m characters from XS, beginning 
with the nth character. 

Remarks ,... 
In the statement syntax, n and m arc integer expressions, and string-exp/ 
and string-exp2 are string expressions. The characters in string-exp/, be-
ginning at position n, are replaced by the characters in string-exp2. The 
optional m refers to the number of characters from string-exp2 that will 
be used in the replacement. If m is omitted, all of string-exp2 is used. 
The replacement of characters never exceeds the original length of ~ 
string-exp 1. 

In the function syntax, the values n and m must be in the range I to 
32767. If mis omitted or if there are fewer than m characters to the 
right of the n character, all rightmost characters, beginning with the nth 
character, are returned. If n is greater than the number of characters in 
XS (that is, LEN( XS)), MIDS returns a null string . 



Examples 

r S File Edit Search Run Windows 

MID$ EHRMPLE 
Reggie Jockson 
Reggie Smith 

List 

REM ***This progrnm demonstrotes the use of 
REM*** the MID$ Sttitement. 
LET RIGHTF IELD$ = "Reggie Jtickson" 
PRINT RIGHTFIELD$ 
MIO$(RIGHTFIELD$,B) = "Smith .. 
PRINT RIGHTF IELD$ 

.__...,ENO 

r s File Edit Search Run Windows 

TN. 
ville 

MID$ EHRMPLE 

List 

REM*** Thi s progrtim demonslrtites the use of 
REM *** the MID$ Function. 
LET PLACES$= "Neshville, rn :· 
PRINT MIO$(PLACES$, 12) 
PRINT MIO$(PLACES$,5,5) 
ENO 

MID$ 

., 

II 



II 

MKI$/MKS$/MKD$ 

MKI$ 
MKS$ 
MKD$ 

~ 

Function Syntax 
MKI S( integer-expression ) 
MKSS( single-precision-expression) 
MKD S( double-precision-expression ) 

Action 
Put numeric values into string variables for insertion into random file 
buffers. 

Remarks 
These functions are used to convert numbers into the string format that 
random files use. If a numeric program variable's value is going to be 
loaded into a random file, it must be put into a string variable (using 
MKI S, MKS S, or MKD S ), then I.SET or RSET into the buffer field variable, 
and then PUT# into the file. 

Instead of converting the binary value to its string representation, like the 
STRS function, MKS moves the binary value into a string of the proper 
length. This greatly reduces the amount of storage required for storing 
numbers in a file. 

See Also 

CVI, CVS, CVD, I.SET, RSET, Chapter 5, "Working With Files and Devices" ~ 



l MKI$/MKS$/MKD$ 

I 

Example 

r S File Edit Search Run Windows 

MK1$,MKS$,MKD$ EHRMPLE 

~D List 
REM*** This program illustrates the use of MKIS,MKSS g 
REM *** and MKDS with Random files. 
OPEN "Accountlnfo" AS •2 LEN = 14 1 

FIELD •2, 8 AS ACCTS,4 AS CHECKS,2 AS DEPOSITS imi: 
GET '2 I :::i:: 

LET ,ACCOUNTNO' = 98765432556• lilil' 
LET CHECKING!= 123456! lllJ!j 
LET SAVINGS%= 2500 ~H] 

LSET ACCT$ = MKDS(ACCOUNTNO•) iliill 
LSET CHECK$ = MKSS(CHECKING!) :iml 
LSET DEPOSITS = MKIS(SAVINGS%) ii!I!! 

PUT '2, 1 mii! 

., 

.___ CLOSE •2 mmr------
--- END J!g!J IQ 

• 



• 

MKSBCD$/MKDBCD$ 

MKSBCD$ 
MKDBCD$ 

~ 

Function Syntaxes 
MKSBCD S( single-precision-expression ) 
MKDBCD S{ double-precision-expression ) 

Action 

Returns a random file buffer string that is a decimal math representation 
of a binary math floating-point number. 

Remarks 
Microsoft BASIC comes with two versions, and random access files with 
single or double precision numbers produced in one version will not 
work in the other. The MKSBCD S and MKDBCD $ functions give you the 
ability to convert these random file numbers created in the binary math 
version of BASIC into numbers usable by the decimal math version. 

MKSBCD S converts a binary format single precision number into a string 
that can be loaded into a random file buffer for storage. MKDBCD S con­
verts a binary fonpat double precision number into a string that can be 
loaded into a random file buffer for storage. In both cases, the buffer 
string can be put into a random file that can be used with the decimal ver­
sion. When using these converted numbers in the decimal version, you 
should make sure to bring them into variables of the same precision you 
converted them from. 

You do not need to convert integers or strings. They have the same 
representation in both versions. 

See Also 

Appendix D, "Internal Representation of Numbers," CVSBCD, CVDBCD 

.. 
I 
I 



MOUSE 

" 

MKSBCD$/MKDBCD$ - MOUSE 

Example 

List 
REM **This is a fragment of program that demonstretes opening a binary 
REM ** version random me, convertfng the parts that must be changed to 
REM ** store in a decimal version random file, and then storing the data in the 

11 REM ** decimal version file. 11m 

OPEN .. Payables· AS •2 LEN:74 '.~~ 
FIELD •2, 30 AS Firms, 30 AS AddrS, 4 AS Owes. 10 AS Days ;ttH 
FOR ACCOUNT = 100 TO 500 I 

GET •2, ACCOUNT I~ 
DEBT! = CVS(OWES): LSET OWES = MKSBCDSCDEBT!) l~~ 
PUT '2, ACCOUNT · 
PRINT '"Account ''";ACCOUNT; .. updated'" 

NEXT ACCOUNT 
CLOSE '2 

Function Syntax 
MOUSE(n) 

Action 
MOUSE performs seven distinct functions. The function it performs 
depends on the given argument n. All the MOUSE functions return infor­
mation about the state of the mouse button or the location of the mouse 
pointer within the active output window. 

Remarks 
The MOUSE functions give you the tools to incorporate the mouse into 
your application programs. They can tell a program where the mouse is 
on the screen, whether or not a user has clicked a button, and what kind 
of action the user has taken with the mouse. Using the ON MOUSE state-
ment, you can design a program to use the MOUSE function information • 
to branch to different parts of the program in response to different user 
actions. 



MOUSE 

• 

There are seven mouse functions given by the integer expression n which 
can range in value from 0 to 6. The following list describes each function. 

Mouse(O): Button Status This function returns a value ranging from 
- 3 to 3. The meaning of these values is discussed below in "Button Status 
in Mouse (O)." 

Mouse(l): Current X Coordinate This function returns the horizontal 
coordinate of the mouse pointer at the time the MOUSE( 0) function was 
last invoked, regardle~ of whether or not the button was down. 

Mouse{2): Current Y Coordinate This function returns the vertical 
coordinate of the mouse pointer at the time the MOUSE( 0) function was 
last invoked, regardle~ of whether or not the button was down. ,_ 

Mouse{3): Starting X Coordinate This function returns the horizontal 
coordinate of the mouse pointer at the time of the last occurrence of a 
button-pre~ preceding a MOUSE( 0) call. This is useful for determining 
the starting point of a drag operation. 

Mouse( 4): Starting Y Coordinate This function returns the vertical 
coordinate of the mouse pointer at the time of the last occurrence of a 
button-press preceding a MOUSE( 0) call. This is useful for determining 
the starting point of a drag operation. 

Mouse{5): Ending X Coordinate This function works as follows: if the 
button was down the last time MOUSE( 0) was called, MOUSE( 5) returns 
the horizontal coordinate of the mouse pointer at the time MOUSE( 0) was 
called. If the button was up the last time MOUSE( O) was called, this func­
tion returns the horizontal coordinate where the mouse was when the 
button was released. This is useful for tracking and determining the end­
point of a drag operation. 

Mouse{6): Ending Y Coordinate This function works as follows: if the 
button was down the last time MOUSE( 0) was called, MOUSE( 6) returns 
the vertical coordinate of the mouse pointer at the time MOUSE( 0) was 
called. If the button was up the last time MOUSE( 0) was called, this func­
tion returns the vertical coordinate where the mouse was when the but­
ton was released. This is useful for tracking and determining the end­
point of a drag operation . 

11911 
I I 

~ 
I 

I I 



MOUSE 

Button Status in Mouse (O) 
This section discusses the meaning of button status values returned by 
MOUSE( O ). When the mouse button is pressed once, that is referred to as 
a first-level selection. Double-clicking is referred to as a second-level 
selection. In rare cases, there are third-level mouse operations which 
require pressing the mouse button three times. 

0 When the function returns 0, the MOUSE button is not currently 
down, and has not gone down since the last MOUSE(O) function call. 

1 When the function returns 1, the MQUSE button is not currently 
down, but a first-level selection was made (single button click) since 
the last call to MOUSE( 0). MOUSE( 3 ), MOUSE( 4 ), MOUSE( 5 ), and 
MOUSE(6) can be used to determine the start and end points of the 
selection. 

2 When the function returns 2, the MOUSE button is not currently 
down, but a second-level selection was made (double-dick) since 
the last call to MOUSE( 0 ). MOUSE{ 3 ), MOUSE( 4 ), MOUSE( 5 ), and 
MOUSE( 6) can be used to determine the start and end points of the 
selection. 

3 When the function returns 3, the MOUSE button is not currently 
down, but a third-level selection was made (triple-click) since the 
last call to MOUSE( 0). MOUSE( 3 ), MOUSE( 4 ), MOUSE{ 5 ), and 
MOUSE( 6) can be used to determine the start and end points of the 
selection. 

-1 When the function returns -1, a first-level selection was made and 
the button is still down (that is, in the midst of a drag). 

- 2 When the function returns - 2, a second-level selection was made 
and the button is still down. 

- 3 When the function returns - 3, a third-level selection was made and 
the button is still down. 

The MOUSE( 0) function also remembers the values returned by 
MOUSE( 1) through MOUSE(6). This means that using MOUSE{O) will get 
values at that moment for MOUSE{ 1) through MOUSE( 6 ), and these values 
may later be returned through the use of these functions. If a drag is in • 
progress, the starting coordinates of the drag can be determined from 
MOUSE( 3) and MOUSE( 4 ), and the ending point coordinates can be deter-
mined from MOUSE(5) and MOUSE(6). 



MOUSE 

• 

See Also 
MOUSE ON, MOUSE OFF, MOUSE STOP, ON MOUSE 

Example 
The following program allows the mouse to be used to draw a picture 
calling a pair of ROM subroutines, LINETO and MOVETO. ROM sub­
routines are described in Appendix F, "Access to Macintosh ROM 
Routines." 

MOUSE EHRMPLE 
' 

List ~--:-:---- "':":: ...::~ -----.:;:•.-=---r-:_- :.--::=-.- - ~ a-=""~=:-:-~.-.=.::.."::=:':"":."""'='""• 

·---====-~~=-=~ 

REM*** Th1s progr8m demonstr8tes the use of the MOUSE Funct1on. 
CLS 
START: 

IF (MOUSE(O) < 0) THEN CALL LINETO(MOUSE( 1),MOUSE(2)): GOTO START: 
CALL MOVETO(MOUSE( 1 ),MOUSE(2)): GOTO START: 

END 

~ 
I 

i-! 
I 



-. 

MOUSE ON 
MOUSE OFF 
MOUSE STOP 

~ 

~ 
flllllll 

NAME 

~D 

MOUSE ON/MOUSE OFF/MOUSE STOP - NAME 

Statement Syntaxes 

MOUSE ON 
MOUSE OFF 
MOUSE STOP 

Action 
Enables, disables, or suspends event trapping based on the pressing of 
the mouse button. 

Remarks 
The MOUSE ON statement enables event trapping based on a user's press­
ing the mouse button. 

The MOUSE OFF statement disables ON MOUSE event trapping. 

The MOUSE STOP statement suspends ON MOUSE event trapping. It is 
similar to MOUSE OFF in that if it has been executed, the event trap is not 
performed. However, MOUSE STOP differs in that the GOSUB will be per­
formed as soon as a MOUSE ON statement is executed, if any events oc­
curred while the event trap was stopped. 

See Also 
MOUSE, ON MOUSE, "Event Trapping" in Chapter 6, "Advanced Topics" 

Example 
The MOUSE ON/OFF/STOP statements work exactly parallel to the DIA­
LOG ON/OFF/STOP statements. See DIALOG ON for an illustration of 
how to use these forms. 

Statement Syntax 
NAME old-filename AS new-filename [ Jile(ype] 

Action 
Changes the name of a disk file. 

Remarks 
All three parameters are string expressions. The old-filename must exist 
and the new-filename must not exist; otherwise, an error results. 

A file may not be renamed with a new volume designation. If this is at­
tempted, an error message is generated. After a NAME command, the file 
exists on the same disk, in the same area on disk, with the new name. If 
filetype is specified, the file's type is changed. By default, all files created 
by BASIC are of type "TEXT." 

• 



NAME-NEW 

• 

The FILES S function can be told to display only files of certain types. This 
can be useful in designing programs in which you want users to he able to 
access some data files hut not others. If you give the files you want to be 
off-limits a different file~)1pe, you can protect them from hcing accessed in 
a FILES S function. 

See Also 
FILESS 

Example 

NAME "Accounts" AS "LEDGER" 

In this example. the file that was formerly named Accounts will now he 
named LEDGER. 

Statement Syntax 
NEW 

Action 

Deletes the program currently in memory and clears all variables and the 
List and Command windows. 

Remarks 
NEW is entered in immediate mode or selected from the File menu to 
clear memory before entering a new program. If there is a program 
currently in memory, and that program has been changed since it was 
loaded, a dialog box will automatically appear to allow saving of that pro­
gram. If executed from within a program. NEW causes BASIC to return to 
edit mode. 

NEW closes all files and turns off tracing mode. When you execute 
NEW, the windows retain their sizes and locations. and the List window 
becomes the active window . 

Example 

NEW 

r-' 
I 

,... 



NEXT -

OCT$ 

~ 

..... 

,... 

~ 

--
,__ 

~ 

NEXT- OCT$ 

Statement Syntax 
NEXT [variable[ ,variable ... ]] 

Action 
Allows a series of instructions to be performed in a loop a given number 
of times. 

Remarks 
See FOR ... NEXT for a discussion of NEXT usage. 

Function Syntax 
OCTS(X) 

Action 
Returns a string that represents the octal value of the decimal argument. 
X is rounded to an integer before OCT S( X) is evaluated. 

See Also 
HEXS 

• 



OCT$ - ON BREAK 

ON BREAK 

~ 

II 

Example 

,. s File Edit Search Run Windows 

OCT$ EHRMPLE 
This progrom converts decimol numbers to Octol ond Hexodecimol volues 
Whot is th.e decimol number? 7654 
Octol = 16746 
Hexodecimol = IDE6 
Do you want to convert another ? NO 

List 
REM ***This program illustrates the use of the 
REM *** HEX$ and OCT$ Functions. 
PRINT "This program converts decimal numbers"; 
PRINT · to Octal and Hexodeclmal values· 
LET ANSWERS = "VES" 
WHILE (LEFTS(ANSWERS, 1) = "V") 

INPUT "What is the decimal number? ",DECIMAL 
----iPRINT "Octal= ";OCTS(DECIMAL) 

PRINT "Hexadecimal = ";HEXS(DECIMAL) 
INPUT ·oo you wont to convert another? ·,ANSWERS 
WEND 
END 

Statement Syntax 

ON BREAK GOSUB line 

Action 
Sends program control to a subroutine when the user presses Command­
period. 

Remarks 

The line is the line number or label of a subroutine to which control will 
branch when the user presses Command-period. 

The ON BREAK statement has no effect until the event is enabled by the 
BREAK ON statement. 

After an ON BREAK GOSUB statement has been executed, a later attempt 
by the user to break (by pressing Command-period) transfers program 
control to the subroutine specified in line. The break sequence is thus 
disabled. 

, 



-
~ 

~ 

!-"! 

~ 

f!!!!I 

~ 

~ 

ri 

"""' 

r ON DIALOG 

~ -

ON BREAK - ON DIALOG 

If you want to have the program ignore the break, the line can contain 
just a RETURN statement. If the line is zero, ON BREAK event trapping 
is disabkd. 

See Also 
"Event Trapping" in Chapter 6, "Advanced Topics" 

Example 

:'.'.0 List 
REM *** This program fragment illustrates a use of ON BREAK. 
BREAK ON 
BREAK ON GOSUB OIRECTUSER 
DIM PAYT 111E(99) ,HRS(99) ,GROSS(99).F tT(99),F ICA(99),ST ATE(99) .NET(99) 
LET TOT ALE11PLOYEES = 99 
OPEN .. 0 .. , • 1 ; EmployeePay· 

FOR I = 1 TO TOT ALEl'lPLOYEES 
WRITE• l .PAYTIME( l) ,HRSU J.GROSS( l),FIT(l),F ICA(l),ST ATE(l) .NET(I ) 

NEXT I 
CLOSE" ! ·BREAK OFF 
INPUT .. Do you wish to print the Payroll now (Y/N)? "",ANSWER$ 
IF .ANSWER$ = .. YES .. THEN BREAK ON: GOSUB PRINTCHECKS 
END 
DIRECTUSEP· 

CLS:BEEP PRINT .. You can·t exit program until f i le is updeted .. 
RETURN 

Statement Syntax 
ON DIALOG GOSUB line 

Action 
Sends program control to a subrout ine when the user performs any action 
which would affect a dialog hox. 

Remarks 
ON DIALOG causes an event trap when the value of DlALOG(O) is non­
zero. Dialog events include output window activation, the user selecting a 
button, or edit field activity. 

II 



ON DIALOG 

• 

The line is a line number or label to which control branches when the 
event trap takes place. If the line is 0, dialog event trapping is disabled. 

The ON DIALOG statement has no effect until the event is enabled by the 
DIALOG ON statement. 

The ON DIALOG statement is executed whenever DIALOG( 0) is not equal 
to zero. If a DIALOG event takes place while BASIC is executing the DIA­
LOG event subroutine, the ON DIALOG statement will execute as soon as 
control returns from the subroutine. 

See Also 
BUTION, DIALOG, EDIT FIELD, WINDOW, "Event Trapping" in 
Chapter 6, "Advanced Topics" 

Example 

REM** These fragments mustrete e wey to route program control 
REM** based on d1alog event trapp1ng. 
ON DIALOG GOSUB HendleAct: DIALOG ON 

HondleAct: MENU STOP: MOUSE STOP 
ACT= DIALOG(O) 
ON ACT GOSUB ButtonHond,EdMove,WtndCltck,GoAwey,Under,NoNo,AdY6nce 
MENU ON: MOUSE ON 

RETURN 

ButtonHend: CHOICE = DIALOG( 1) 

ON CHOICE GOSUB Assets, Debits, Celculete, EscepeRouttne 
RETURN 

r 



ON ERROR GOTO 

~ 

... 

.... 

ON ERROR GOTO 

Statement Syntax 

ON ERROR GOTO line 

Action 

Sends program control to an error-handling routine. 

Remarks 

Once error handling has been enabled, all errors detected cause a jump to 
the specified error-handling routine. If line does not exist, an "Undefined 
line" error message is generated. 

The RESUME statement is required to continue program execution . 

To disable error handling, execute an ON ERROR GOTO 0. Subsequent 
errors generate an error message and halt execution. An ON ERROR 
GOTO 0 statement that appears in an error-handling routine causes 
Microsoft BASIC to stop and print the error message for the error .that 
caused the trap. It is recommended that all error-handling routines exe­
cute an ON ERROR GOTO 0 if an error is encountered for which there is 
no recovery action. 

Note 
If an error occurs during execution of an error-handling routine, that er­
ror message is printed and execution terminates. Error trapping cannot 
occur within the error-handling routine. 

See Also 
RESUME 

Example 

I 0: ON ERROR GOTO 900: 
900: IP (ERR - 230) AND (ERL - 90) THBN PRINT "Try again": RFSUMB 80 

• 



• 

ON •.• GOSUB/ON ••• GOTO 

ON ••• GOSUB 
ON .•. GOTO 

~ 

Statement Syntax 
ON expression GOSUB line-list 
ON expression GOTO line-list 

Action 
Branches to one of several specified line numbers or labels, depending on 
the value returned when an expression is evaluated. This is called a 
"computed GOSUB" or "computed GOTO." 

Remarks 
The value of the expression determines which line number in the line-list 
will be used for branching. If the value is a noninteger, the fractional 
portion is rounded. 

The line-list is a series of line numbers or labels to which program con­
trol will be routed depending on the value of the expression. For exam­
ple, if the value of the expression is three, the third line in the line-list 
will be the destination of the branch. 

In the ON ... GOSUB statement, each line named in the list must be the first 
line of a subroutine. 

If the value of the expression is zero, or greater than the number of items 
in the list (but less than or equal to 255 ), BASIC continues with the next 
executable statement. If the value of the expression is negative or greater 
than 255, an "Illegal function call" error message is generated. 

~ 
I 

r 

~ 
I 

~ 

i-. 
I 

~ 

i-

~ 

,.., 
I 



-

~ 

ON MENU 
~ 

~ 
~ 

~ 

f!!"'!!!! 

~ 

ON ••• GOSUB/ON ... GOTO - ON MENU 

Example 

r s file Edit Senrch Run Windows 

ON .. GOSUB EHRMPLE 
Enter your choice number ( 1 ... 3) ? 2 

SUBROUTINE TWO ~-o~~~~~~~~ll~s[t ~~~~~~~~ 

Statement Syntax 

REM *** This progrnm illustrotes the use of the 
REM *** ON ....... GOSUB Stotement. 

~~;~~: "Enter your choice number ( 1 ... 3) ? ",CHOICE% i!!!!i 

~N CtHO~~;E%% <6~~~i~~~C1E.~~B~~~~~ GOTO ST ART: '!~ii 

~~~:~~~~~SUBROUTINE ONE " ![ 
SUB2:

PRINT "SUBROUTINE TWO"
RETURN

SUB3:
PRINT "SUBROUTINE THREE"
RETURN

ON MENU GOSUB line

Action

Sends program control to a subroutine when the user selects a menu item.

Remarks
ON MENU causes an event trap when the user selects a custom menu
item created with the MENU statement.

The line is a line number or label to which control branches when the
event trap taJces place. If line is 0 , menu event trapping is disabled.

The ON MENU statement has no effect until the event is enabled by the
MENU ON statement.

See Also
MENU, "Event Trapping" in Chapter 6, "Advanced Topics"

•

ON MENU - ON MOUSE

ON MOUSE

~

II

Example

REM •• This fragment illustrates a use of menu event trapping.
MENU 5,0, 1, "Transactions·
MENU 5, 1,1 :Deposas·
MENU 5,2, 1 :w1thdrawa1s·
MENU 5,3, 1: Automal1c Payment·
MENU 5,4, 1 :credit Card Purchase·
ON MENU GOSUH Menucheck: MENU ON

Idle:
GOTO Idle

Menucheck: MENUNUMBER = MENU(O): IF MENUNUMBER <>5 THEN RETURN
MENU ITEM = MENU (1)
ON MENUITEM 60SUD Deposit, Withdraw, AutoPay, Credit
RETURN

Deposit: WINDOW 1, "Deposits", (50-200)-(450,250), 1

Statement Syntax
ON MOUSE GOSUB line

Action
Sends program control to a subroutine when the user presses the mouse
button.

Remarks
ON MOUSE causes an event trap when the user presses the mouse button.

The line is a line labe l or number to which control branches when the
event trap taJces place. If line is 0 , mouse event trapping is disabled.

The ON MOUSE statement has no effect until the event is enabled by the
MOUSE ON statement.

See Also
MOUSE, MOUSE ON, "Event Trapping" in Chapter 6 , "Advanced Topics"

Example
1l1e ON MOUSE statement works exactly parallel to the ON DIALOG
statement. See ON DLALOG for an illustration of how to use these forms.

ON TIMER

....

ON TIMER

Statement Syntax

ON TIMER (n) GOSUB line

Action

Sends program control to a subroutine based on a given time interval.

Remarks

ON TIMER causes an event trap every (n) seconds. The (n) must be
greater than zero and less than or equal to 86400 (the number of seconds
in 24 hours). Values outside this range generate an "Illegal function call"
error message.

The line is a line label or number to which control branches when the
event trap takes place. If line is 0, timer event trapping is disabled.

The ON TIMER statement has no effect until the event is enabled by the
TIMER ON statement.

See Also
TIMER, "Event Trapping" in Chapter 6, "Advanced Topics"

Example

REM*** Th1s progrem mustretes e use of timer event trep stetements.
Tlf'IER ON
ON TIMER (900) GOSUB SHUTDOWN: REH**Every 15 minutes.
OPEN ·customerDeto• FOR APPEND AS "1: ANSWERS = ·vEs·

WHILE LEFTSCANSWER$, 1) = T
INPUT ·New customer name? .. ,CUSTOMER$
INPUT ·c1ty, State, ZIP? (No Commes~-, CISTZIS

WRITE" 1, CUSTOMERS, CISTZ1$, GENESIS$: NEWENTRV = (-1)
INPUT ·Another? ·, ANSWERS

WEND
END

REM** Subrouttne checks for user octtvtty; tf none, then shuts down.
SHUTDOWN: IF DIALOG(O) = 0 THEN INACTION= (-1)

RETURN

IF INACTION AND NOT NEWENTRV THEN CLOSE "1: END
NEWENTRV = 0 •

OPEN

OPEN

~D

•

Statement Syntax 1
OPEN mode,[# ifilenumber /ilespec (file-buffer-size]

Statement Syntax 2
OPEN filespec(FOR mode] AS [# ifilenumber (LEN=file-buffer-size]

Action
Allows input or output to a disk file or device.

Remarks

OPEN associates a filenumber with a filename.

A file must be opened before any 110 operation can be performed on that
file. OPEN allocates a buffer for 110 to the disk file or device and deter·
mines the mode of access that will be used with the file.

The filenumber is an integer expression whose value is in the range I to
255. The number is associated with the file for as long as it is open, and
is used to refer other 1/0 statements to the file.

The filespec is a string expression containing the name of the file, option­
ally preceded by the name of a volume or device.

The file-buffer-size cannot exceed 32767 bytes. If the file-buffer-size op·
tion is not used, the default length is 128 bytes. For random files, the
file-buff er-size should be the record length (number of characters in one
record) of the file to be opened.

For sequential files, the file-buff er-size specification need not correspond
to an individual record size, since a sequential file may have records of
different sizes. When used to open a sequential file, the file-buff er-size
specifies the number of characters to be loaded to the buffer before it is
written to or read from the disk. The larger the buffer, the more room is
taken from BASIC, but the faster the file 110 runs.

Syntax 1 For the first syntax, the mode is a string expression whose
first character is one of the following:

0 Specifies sequential output mode.

R

A

Specifies sequential input mode .

Specifies random input/output mode.

Specifies sequential append mode.

r"
I

r

r
,...

I

~
I

....

-

OPEN

Syntax 2 For the second syntax, the mode is one of the following
keywords:

OUTPUT

INPUT

APPEND

Specifies sequential output mode.

Specifies sequential input mode.

Specifies sequential output mode and sets the file
pointer to the end of the file. A PRINT# or WRITE#
statement will then add a record to the end of the file.

If the mode is omitted in the second syntax, the default random access
mode is assumed.

Example

r • File

TEST

-

Edit Seorch Run Windows

OPEN EHRMPLE
2345

~o List

REM ***This program demonstrates the use of the ;Q
REM *** OPEN Statement.
OPEN "O", 6 4,"TESTFILE"

WRITE 6 4, "TEST", 2345
CLOSE •4
OPEN T, 6 4, "TESTFILE"

INPUT 6 4, DUMl1V$, VARBNO:g
CLOSE "4
PR I NT DUMM VS, VARBNO:g .,.,.

_END fQ
tQJ J!11!!!m!!m1m1!1~i1i1~1i1!m11m1!1!1l1mmi111mm~mmmm11mm!11111i1!111im11i111i1!1~11mmim111!!1!1!1~m1Q tJl ~

.,

•

OPTION BASE - PEEK

OPTION BASE

~

PEEK

•

Statement Syntax
OPTION BASE n

Action
Declares the minimum value for array subscripts.

Remarks
This statement determines the minimum value that array subscripts may
have. If n is 1, then 1 is the lowest value possible; if n is 0, then 0 is the
lowest value possible. The default base is 0. Specifying an OPTION BASE
other than 1 or 0 will result in a syntax error.

The OPTION BASE statement must be executed before arrays are defined
or used.

Example
If the following statement is executed, the lowest value an array subscript
can have is 1.

OPTION BASE 1

Function Syntax
PEEK(I)

Action
Returns the byte read from the indicated memory location (I).

Remarks
The returned value is an integer in the range 0 to 255. I must be in the
range 0 to 16 77721 5.

PEEK is the complementary function of the POKE statement.

See Also
POKE, VARPTR

Example

A = PEEK(1603)

,..

,....
I

""' I

PICTURE

-

PICTURE

Statement Syntax

PICTURE I (xl,y l)l·(x2,y2) I II ,PS I

Action
Draws a picture.

Remarks

PICTIJRE uses (x l ,yl) as the upper-left coordinate within the current win­
dow where the specified picture is to be drawn. If (xl,yl)-(x2,y2) is
specified, the image is scaled to fit into the rectangle specified by
(x l ,yl)-(x2,y2). If no coordinates are specified, the image is c..Iisplayec..I
exactly as it was recorded.

PS is a set of screen graphics commands that proc..Iuce an image. If P s is
not specified in the PICTURE statement, the picture recorded by the most
recent PICTURE ON statement is displayed; this is the same picture that
would be returned by the PICTURES function.

See Also
PICTURE ON, PICTURES

Example

r S File Edit Search Run Windows

PICTURE

A
M ICROSOF v

~o List

REM **This i I lust rates fl use of the
REM ** PI CTURE Statements.
WINDOW 2, .. PI CTURE .. ,(10,39)-(205,325),
PICTURE ON

CALL PENSIZE (5,5)
CALL MOVET0(5,200)
CALL L INETO(S,5)
CALL LINETO (60, 150)
CALL LINETO (120,5)
CALL LINETO (120,200)
LOCATE 5,4 : CALL TEXTSIZE(18)
PRINT "MICROSOFT"

PICTURE OFF
IMAGE$= PICTURE$
PICTURE (1,50)-(255,255), IMAGE$
FOR 1% = 0 TO -30 STEP -10

SCROLL (0,0•1%)-(2 1O+1%,210),0, -10
NEXT 1%

II

PICTURE ON/PICTURE OFF - PICTURE$

PICTURE ON
PICTURE OFF

~~

PICTURE$

"~
II

Statement Syntax
PICTIJRE ON
PICTIJRE OFF

Action
Turns on or off the recording of all screen activity within the current
output window.

Remarks
The PICTIJRE ON statement forces screen graphics statements to a storage
area for later use. Until a PICTURE OFF is encountered, screen graphics
commands will not be displayed on the screen unless the PICTURE ON
statement was preceded with or followed by CALL SHOWPEN.

The stored commands may be returned later with the PICTURES function.

Examples of screen graphics statements include BASIC statements like
LINE, CI.S, CIRCLE, and PRINT, and Macintosh ROM routines like CALL
TEXTFONT(X).

PICTIJRE OFF must be used between PICTIJRE ON statements, or an
"Illegal function call" error message is generated.

See Also
PICTIJRE, PICTURES

Example
See PICTURE for an illustration of these statements.

Function Syntax
PICTURES

Action
Returns a string containing the entire picture recorded by the last PIC­
TIJRE ON statement which was executed in the current output window.

Remarks
The string returned by PICTIJRE S is a set of encoded Macintosh instruc­
tions which, together, produce a screen image. These instructions consist
of BASIC graphics statements like LINE, CI.S, or CIRCLE, and Macintosh
ROM calls (see Appendix F, "Access to Macintosh ROM Routines").

This function is useful for saving a picture to the Clipboard or to a file for
later use.

r

-
~
I

,...
' I

I

POINT

ii~

PICTURE$ - POINT

Example

r S File Edit Search Run Windows

PICTURE$ §0 List

A
MICROSOF v

Function Syntax
POINT (x,y)

Action

REM** This illustrates e use of the
REM** PICTURE$ Function.
WINDOW 2, "PICTURE$",(10,39)-(205,325) '!!!li
PICTURE ON iiiil!

CALL PENSIZE (5,5) ;!!iii
CALL MOVET0(5,200) 'iii!!
CALL LI NET0(5,5) ·i:::!
CALL LINETO (60, 150) :!mi
CALL LINETO (120,5) 'm!i
CALL LINETO (120,200) ., ...

LOCATE 5,4 : CALL TEXTSIZE(18)
PRINT "MICROSOFT"

PICTURE OFF
IMAGE$= PICTURE$
PICTURE (1,50)-(255,255), IMAGE$

FOR 1% = 0 TO -30 STEP -1 0
SCROLL (0,0• l~)- (21O•1%,210),0, - I 0

NEXT 1%j

To read the color value of a pixel from the screen.

Remarks
ll1e arguments x and y are the coordinates (within the current output
window) of the pixel that is to be referenced. The function returns 30 if •
the point is white, 33 if the point is blac k. The pixel at (0,0) is at the I
upper left-hand corner of the curre nt output window.

Coordinate values outside of the current output window return the
value - 1.

POINT- POKE

POKE

•

Example

r ti file Edit Search Run Windows

PO I NT EHRMPLE
30 33

0 List
REM ***This program illustrates a use of the
REM*** POINT Function.
LINE (20,20) - (60,50).,BF
LET ONE~= POINT(5,5)
LET rwoi = POINT(20,20)
PRINT ONE~.Twoi
END

Statement Syntax
POKE I,J

Action
Writes a byte into a memory location.

Remarks

I

The expression I represents the address of the memory location, and J is
a data byte in the range O to 255. I must be in the range O to
16777215.

POKE is the complementary statement of the PEEK function. The argu­
ment to PEEK is an address from which a byte is to be read .

Warning Use POKE carefully. Al~ering system memory can corrupt
the system. If this happens, reboot the Macintosh.

,..,
!

r

r-
1

POS

ii!!

See Also
PEEK, VARPTR

Example

POKE X, 255

Function Syntax

POS(I)

Action

POKE- POS

Returns the current horizontal (column) position of the pointer for the
screen device SCRN:.

Remarks
The leftmost position is 1. I is a dummy argument and has no
significance.

See Also
CSRLIN, LOCATE, LPOS

•

POS - PRESET

PRESET

~~~ 

• 

Example 

r S me Edit Se<ff( h Run Windows 

POS EHRMPLE 
66666666666666666666666666666666666666666666666666660666 

00000000000000000000000000000000000000000000000000000000 

00060000000000000000000600660060060000060000606600000000 

06600660 ~o ust 
REM *** This progr6m illustrates 6 use of the IQ 
REM *** POS Function. ttm 
REM *** A RETURN is C6USed ofter eyery 50 ch6racters 6re m::J 
REM *** printed on the screen. ~i\m 
WIDTH 80 ~!l!J! 

~~s~~;;=~";~EN GOTO ST ART ELSE PRINT ANSWER!; '~ 
- ----- ~o~~ss~~~; 50 THEN PRINT .i:llir 

E~ ~ 
IQJ. 1mmH:1::::uHt:m:::mm:::r:mm:::::::<:::::::::::::::::}::m:mmm:rmrm1m::m::::m::::mn:m::m:~ 1J 

Statement Syntax 

PRESET [STEPl(xJI) [,color] 

Action 
Draws a specified point in the current output window . PRESET works 
exactly like PSET, except that if the color is not specified, white is used. 

Remarks 
When used, the STEP option indicates that x and y are relative and no t ab­
solute coordinates. The x and y coordinates specify the pixel that is to be 
set . 

The color is a numeric value for the color desired. The value 33 pro­
duces black, and the value 30 produces white . If an out-of-range 
coordinate is given, no action is taken, and no e rror message is given. 

The syntax of the STEP option is: 

STEP (xoffset, yoffset ) 



PRINT 

"(!J -

PRESET - PRINT 

For example, if the most recently referenced point is ( 10, 1 O ), then STEP 
( 10,0) would reference a point at an offset of 10 from x and O from y, that 
is, ( 20, 10). 

Example 

r 9 file Edit Search Run Windows 

PRESET EHRMPLE 

list 
REM ***This progrem illustrates a use of the 
REM *** PRESET Statement. 
CLS 

FOR 1% = 5 TO 150 
PRESET(l%,1%), 33 

NEXT 1% 
FOR J% = 200 TO 90 STEP - 1 

PRESET(J%,J%), 30 
NEXT J% 

Statement Syntax 

PRINT [expression -list I 

Action 

Outputs data to the current output w indow. 

Remarks 

If the expression-list is omitted, a blank line is printed. If the expression ­
/isl is included, the values of the expressions are printed in the output 
window. The expressions in the list may be numeric or string expres­
sions. (String constants must be enclosed in quotation marks.) 

Print Positions The position of each printed item is determined by the 
punctuation used to separate the items in the list. In the list of expres­
sions, a comma causes the next value to be printed at the beginning of the 
next comma stop, as set by the WIDTH statement. A semicolon causes 
the next value to be printed immediately adjacent to the last value. Typ­
ing one or more spaces between expressions has the same effect as typing 
a semicolon. 

., 

• 



PRINT 

II 

If a comma or a semicolon terminates the list of expressions, the next 
PRINT statement begins printing on the same line, spacing accordingly. If 
the list of expressions terminates without a comma or a semicolon, a car­
riage return is printed at the end of the line. If the printed line is longer 
than the line width as set by the WIDTH statement, BASIC goes to the 
next physical line and continues printing. 

Printed numbers are always followed by a space. Positive numbers are 
preceded by a space. Negative numbers are preceded by a minus sign. 
Single precision numbers that can be represented with 7 or fewer digits in 
the unscaled format as accurately as they can be represented in the scaled 
format are output using the unscaled format. For example, l E- 7 is out­
put as .000000 l and IE - 8 is output as l E - 08. Double precision 
numbers that can be represented with 16 or fewer digits in the unscaled 
format as accurately as they can be represented in the scaled format are 
output using the unscaled format. For example, l D - I 5 is output as 
.00000000000000 I and l D - l 7 is output as ID - l 7. 

Note 

A question mark may be used in place of the word PRINT in a PRINT 
statement. This can be a time-saving shorthand tool, especially when 
entering long programs with many consecutive PRINT statements. 

See Also 

PRINT USING, PRINT#, WIDTH 

Example 

r S File Edit Search Run Windows 

PR I NT EHRMPLE 
32 -6 Koth 

i!D List 

32 -6 Koth 
32, -6, "Koth" 
32, -6,"Koth" REM *** This illustrates the use of the \2 

REM *** differ ences between the PRINT m REM *** end WRITE Statements. 
CLS 
LET A = 32: LET B = -6: LET C$ = "Kath·· 
PRINT A,B,C$ 
PRINT A;B;C$ 
WRITE A,B,C$ 
WRITE A;B;C$ 

-END 
~ 

., 



PRINT USING 

"!! 

PRINT USING 

Statement Syntax 

PRINT USING string-exp;expression-list 

Action 
Prints strings or numbers using a specified format. 

Remarks 

The string-e:>.p is a string literal (or variable) composed of special format­
ting characters. These formatting characters determine the field and the 
format of the printed strings or numbers. 

The expression-list is comprised of the string expressions or numeric 
expressions that arc to be printed, separated by semicolons. 

Literal characters may be included in the string-exp and will subsequently 
appear in the printed output. If you want any of the format symbols to 
appear as literal characters, precede them with an underscore(_). 

Multiple string expressions may appear in one PRINT USING statement. 

String Fields When PRINT USING is used to print strings, one of three 
formatting characters may be used to format the string field: 

Specifics that only the first character in the given string is to be printed. 

\nspaces\ 

Specifies that 2 + n characters from the string are to be printed. If the 
backslashes are typed with no spaces, two characters will be printed; with 
one space, three characters will be printed, and so on. If the string is 
longer than the field, the extra characters are ignored. If the field is 
longer than the string, the string will be left-justified in the field and 
padded with spaces on the right. 

• 



PRINT USING 

• 

Example 

r s File Edit Search Run Windows 

LO 
LOOKOUT 
LOOKOUT!! 

& 

PRINT USING EHRMPLE 
List 

REM*** This program i llustrates the use 
REM *** the PRINT USING Statement. 
LET A$ = "LOOK" : LET B$ = "OUT" 
PRINT USING T; A$; B$ 
PRINT USING "&"; A$; B$ 
PRINT USING "&"; A$; B$; .. !! .. 
END 

Specifies a variable length string field. When the field is specified with the 
ampersand ( &), the string is output without modification. 

Numeric Fields When PRINT USING is used to print numbers, the 
following special characters may be used to format the numeric field: 

# 

A number sign is used to represent each digit position. Digit positions are 
always filled. If the number to be printed has fewer digits than positions 
specified, the number will be right-justified (preceded by spaces) in the 
field. 

A decimal point may be inserted at any position in the field. If the format 
string specifies that a digit is to precede the decimal point, the digit will 
always be printed (as 0 , if necessary). Numbers are rounded as necessary. 

Example 
In this example, three spaces are inserted at the end of the format string 
to separate the printed values on the line. 

PRINT USING ..... H"; .78 
0.78 
PRINT USING"•••.••"; 987.65.of 
987.65 
PRINT USING "••. ##"; 10.2, 5.3 .. 23.of 
10.20 5.30 0.23 



-
PRINT USING 

+ 
A plus sign at the beginning or end of the format string will cause the sign 
of the number (plus or minus) to be printed before or after the number. 

A minus sign at the end of the format field will cause negative numbers to 
be printed with a trailing minus sign. 

Example 

PRINT USING "+H.H"; -68.95, 2A, -9 
-68.95 +2.-CO -9.00 
PRINT USING .. ••.##-"; -68.95, 22.449, -7 
68.95- 22 . .f5 7.00-

•• 

A double asterisk at the beginning of the format string causes leading 
spaces in the numeric field to be filled with asterisks. The double asterisk 
also specifies positions for two more digits. 

Example 

PRINT USING"•••.•"; 12.39 -0.9, 765.1 
•12 . .c ·-o.9 765.t 

A double dollar sign causes a dollar sign to be printed to the immediate 
left of the formatted number. The SS specifies two more digit positions, 
one of which is the dollar sign. The exponential format cannot be used 
with SS. Negative numbers cannot be used unless the minus sign trails to 
the right. 

Example 

PRINT USING "S$H•.u"; .f56.78, 9.3 
S.f56.78 S9.30 • 



PRINT USING 

II 

The double asterisk dollar sign ( • • S) at the beginning of a format string 
combines the effects of the above two symbols. Leading spaces will be 
asterisk-filled and a dollar sign will he printed before the number. .. S 
specifics three more digit positions, one of which is the dollar sign. 

The exponential format cannot be used with • • S. When nc;gative numbers 
are printed, the minus sign will appear immediately to the left of the 
dollar sign. 

Example 

PRINT USING .... $##,##"; 2.34, 999.9 
... S2.34.S999. 90 

A comma that is to the left of the decimal point in a format string causes 
a comma to be printed to the left of every third digit to the left of the 
decimal point. A comma that is at the end of the format string is printed 
as part of the string. A comma specifies another digit position. 
The comma has no effect if used with exponential ( · · • · ) format. 

Example 

PRINT USING"####,,##"; 1234.5 
1,234.50 
PRINT USING"####,##,"; 123-4.5 
123-f.50, 

Four carets (or up-arrows) may be placed after the digit position charac­
ters to specify exponential format. The four carets allow space for E +xx 
to be printed. Any decimal point position may be specified. The signifi­
cant digits arc left-justified, and the exponent is adjusted. lJnless a leading 
+ or trailing + or - is specified, one digit position will be used to the left 
of the decimal point to print a space or a minus sign. 

,..., 
I 

?-! 
• t 



Example 

PRINT USING"##.##"""""; 23-t.56 
2.35E+02 
PRINT USING ". ••••····"; 888888 
.8889E+06 
PRINT USING"+.##"""""; 123 
+.12E+03 

PRINT USING 

An underscore in the format string causes the next character to be output 
as a literal character. 

Example 

PRINT USING "_l•• ... _I"; 12.3-t 
112.341 
PRINT USING"_?##.##_?"; 12.3-t 
712.3-f? 

The literal character itself may be an underscore by placing " __ " in the 
format string. 

% 

If the number to be printed is larger than the specified numeric field, a 
percent sign is printed in front of the number. If rounding causes the 
number to exceed the field, a percent sign will be printed in front of the 
rounded number. 

Example 

PRINT USING "I##.##"; 111.22 
11111.22 
PRINT USING "••.##1"; 111.22, .9 
1111.221 0.901 

If the number of digits specified exceeds 24, an "Illegal function call" 
error message is generated. 

• 



• 

PRINT#/PRINT# USING 

PRINT# 
PRINT# USING 

Pl!D 

Statement Syntax 
PRINT# filenumber,(USING string-exp;) expression-list 

Action 
Writes data to a sequential file. 

Remarks 
The filenumber is the number used when the file was opened for output. 
The string-exp consists of formatting characters as described in "PRINT 
USING." The expressions in the expression-list are the numeric or string 
expressions to be written to the file. 

PRINT# does not compress data. An image of the data is written to the 
file, just as it would be displayed on the screen with a PRINT statement. 
For this reason, care should be taken to delimit the data so that it is input 
correctly. 

In the expression-list, numeric expressions should be delimited by semi­
colons. For example: 

PRINT • l ,A;B;C;X;Y l 

(If commas are used as delimiters, the extra blanks that are inserted 
between print fields are also written to the file.) 

String expressions must be separated by semicolons in the list. To format 
the string expressions correctly in the file, use explicit delimiters in the 
list of expressions. 

For example, let AS="CAMERA" and 8$="93604- l ". The statement 
PRINT# 1,AS;BS would write CAMERA93604- l to the file. Because 
there are no delimiters, this co~ld not be input as two separate strings. 
To correct the problem, insert explicit delimiters into the PRINT state­
ment as follows: 

PRINT • 1. AS;",";BS 

The image written to the file is: 

CAMERA. 9360.f-1 

.This can be read back into two string variables. 



PRINT#/PRINT# USING 

If the strings themselves contain commas, semicolons, significant leading 
blanks, carriage returns, or linefeeds, write them to the file surrounded by 
explicit quotation marks with CHRS(34). 

See Also 
CHRS, PRINT, PRINT USING, WRITE# 

Examples 
Let AS="CAMERA, AUTOMATIC" and BS=" 93604-1". The statement 

PRINT # 1,AS;BS 

writes the following image to the file: 

CAMERA, AUTOMATIC 93604-1 

And, the statement 

INPUT #I ,AS.BS 

inputs "CAMERA" to AS and "AUTOMATIC 93604-1" to BS. To separate 
these strings properly in the file, write double quotation marks to the file 
using CHR S( 34 ). The statement 

PRINT • 1,CHRS(3-t);AS;CHRS(34);CHRS(34);BS;CHRS(3-i) 

writes the following image to the file: 

"CAMERA, AUTOMATIC'" 93604-1" 

And, 1he slatement • 

INPUT #I ,AS.BS 

inputs "CAMERA, AUTOMATIC" to AS and" 93604-1" to BS. 



• 

PRINT#/PRINT# USING - PSET 

PSET 

"~~ 

The PRINT# statement may also be used with the USING option to 
control the format of the file. 

For example: 

PRINT #l,USING "$$###,##,";J;K;L 

Statement Syntax 

PSET ( Xil') [,color I 
PSET STEP ( xoffset 1v<Jjfset >I .color I 

Action 
Sets a point in the current output window. 

Remarks 

1l1e coordinates ( x.y ) specify the point on the screen to be colored. 

PSET allows the color to be left off the command line. 

The STEP option (as shown in the second syntax). when used, indicates 
that the x and y coordinates are relative, not absolute. coordinates. The 
coordinates x and y specify the pixel that is to be set. The color is a 
numeric value for the color desired. The number :H specifies the color 
black, and the number ~O specifies white. When Microsoft BASIC scans 
coordinate values. it allows them to he beyond the edge of the window. 

See Also 

PRESET 

.., 



PSET- PTAB 

Example 

r j File Edit Search Run Windows 

PSET EHRMPLE 
List 

REM ***This demonstrates the use of the lQ 
REM *** PSET Statement. 
CLS 
FOR I% = 5 TO 150 

PSET(l%,1%),33 
NEXT 1% 

- FOR J% = 200 TO 90 STEP - 1 
-... PSET(J%,J:.¥:),30 

Function Syntax 
PTAB(X) 

Action 

NEXT J% 
END 

Moves the print position to pixel X. 

Remarks 

-

PT AB is similar to TAB, except that PT AB indicates the pixel position rath­
er than the character position to advance to. If the current print position 
is already beyond pixel X, PT AB retreats to that pixel on the same line. 
Pixel O is the leftmost position. I must be in the range 0 to 32767. PTAB 
may only be used in PRINT statements. 

A semicolon (;) is assumed to follow the PT AB( I) function, which means 
PRINT does not force a carriage return. 

, 

• 



PTAB - PUT 

PUT 

~D~ 

• 

Example 

,. s File Edit Search Run Windows 

Chorles Dickens 
Chorl es Di ck ens 
Chorles Dickens 

PTRB EHRMPLE 

~D List 
REM ***This program demonstrates the use 
REM *** or the PT AB Statement. 
LET A$= "Charles .. : LET B$ = "Dickens" 

PRINT A$;B$ 

----- PRINT A$;PTAH(60);B$ 
PRINT A$;PTAH(75);B$ 
END 

Statement Syntax 

PUT [ # lfilenumber[ ,record-number] 
PUT(xl,yl) [ -(x2,y2) ],array[ (index [, index .. ., index J)] [,action-verb] 

Action 
Writes a record from a random buffer to a random access file. 

Draws a screen graphics image obtained in a GET statement. 

Remarks 
The two syntaxes shown above correspond to two different uses of the 
PUT statement. These are called a random file PUT and a screen PUT, 
respectively. 

Random File PUT For the first syntax, the filenumber is the number 
under which the file was opened. If the record-number is o mitted, BASIC 
will assume the next record number (after the last PUT). The largest 
possible record number is 167772 15; the smallest is 1. 

PRINT#, PRINT# USING, and WRITE# may be used to put characters in 
the random file buffer before executing a PUT statement, but most often, 
the buffer is filled by FIELD and LSET or RSET statements. 

In the case of WRITE#, Microsoft BASIC pads the buffer with spaces up to 
the carriage return. Any attempt to read or write past the end of the 
buffer causes a "Field overflow" error message to be generated. 

., 



-

PUT 

Screen PUT In the second syntax, PUT uses (xl,yl) as the pair of coor· 
dinates specifying the upper left·hand corner of the rectangular image to 
be placed in the current output window. 

The coordinates (x2,y2), if specified, indicate the lower right·hand coordi· 
nates of the destination rectangle for the image. 

The array is the name assigned to the array that holds the image. (See 
"GET" for a discussion of array name issues.) 

The index allows you to PUT multiple objects in each array. This tech· 
nique can be used to loop rapidly through different views of an object in 
succession. 

The action-verb is one of the following: PSET, PRESET, AND, OR, XOR. If 
the action-verb is omitted, it defaults to XOR. 

The action-verb performs the interaction between the stored image and 
the one already on the screen. 

One of the most useful things that can be done with PUT is animation. 
Animation can be performed in the following way: 

1. PUT the object on the screen. 

2. Recalculate the new position of the object. 

3. PUT the object on the screen a second time at the old location to 
remove the old image. 

4. Go to step 1, but this time PUT the object at the new location. 

Movement done this way will leave the background unchanged. Flicker 
can be cut down by minimizing the time between steps 4 and 1 and by 
making sure that there is enough time delay between l and 3. If more 
than one object is being animated, every object should be processed 
simultaneously, one step at a time. 

If it is not important to preserve the background, animation can be per­
formed using the PSET action-verb. The idea is to leave a border around 
the image when it is first gotten that is as large or larger than the max· 
imum distance the object will move. Thus, when an object is moved, this 
border will effectively erase any points. 

Because you can specify (x2,y2 ), the image can be scaled (enlarged or re­
duced). For example, if the user loaded a circle from the screen with a 
"GET( 0,0 )-( 50, 50 ),A" statement, then a "PUT( l 00, l 00 )-( 150,200 ),A" 
statement would put the A array on the screen, and elongate it on the y 
axis, producing an oval. 

• 



PUT 

• 

This technique can be used to produce better parallax perspectives during 
animation. If the moving object becomes larger, it appears to be moving 
towards the user. 

See Also 
FIELD, GET, LSET, PRESET, PRINT, PSET, RSET, SCROLL, WRITE 

Example 

r e Fiie Edit Searth Run Windows 

PUT EHRMPLE 

List 
REtl ***This is 6 frngment of o program that opens an existing 
REtl *** file, gets dota from it, updates it, returns it&. closes it. 
OPEN "Peyables· AS '2 LEN= 74 

FIELD '2, 30 AS FIRM$, 30 AS ADDR$, 4 AS OWES, 10 AS DAV$ 
GET '2, ACCOUNT 

LET DEBT! = CVS(OWE$) 
LET DEBT!= DEBT!+ (CHARGES! - PAID!) 
LSET OWE$ = MKSS(DEBT!) 

PUT 1 2, ACCOUNT 
CLOSE '2 
PRINT "Account' ";ACCOUNT;'' updoted" 

r 

, 



-
RANDOMIZE 

lM3 

Statement Syntax 
RANDOMIZE [expression J 

Action 

Reseeds the random number generator. 

Remarks 

RANDOMIZE 

This statement reseeds the random number generator with the expression, 
if given, where the expression is either an integer between - 32768 and 
32767, inclusive, or where the expression is TIMER. If the expression is 
omitted, BASIC suspends program execution and asks for a value before 
randomizing, by printing: 

Random Number Seed (-32768 to 32767)? 

If the random number generator is not reseeded, the RND function re­
turns the same sequence of random numbers each time the program is 
run. To change the sequence of random numbers every time the program 
is run, place a RANDOMIZE statement at the beginning of the program 
and change the argument with each run. 

The simplest way to change a random sequence of numbers with each 
program run is to use RANDOMIZE TIMER. In this case, the random 
number seed is the number of seconds that have passed since midnight. 

See Also 
RND 

• 



RANDOMIZE - READ 

READ 

ii 

• 

Example 

r S File Edit Search Run Windows 

RANDOMIZE EHRMPLE 
Rondom Number Seed (-32768 to 3276 7)? 13 

.30859452486038 

.30859452486038 

.39090895652771 ~D List 

.74937337636948 
19 
12 

Statement Syntax 

READ variable-list 

Action 

REM*** This demonstrntes ways to generate 
REM*** and display random numbers using the 
REM*** RANDOMIZE Statement. !% 
RANDOMIZE i'!ii! 

~~: ~~: 'i ~~ ii ::11
:: ::~,<~;:: :::: ~: :1::r 

FORK%= 1 TO 2: PRINT INT(RND*25): NEXT K% 

END -~ 

Reads values from DAT A statements and assigns them to variables. 

Remarks 
A READ statement must always be used in conjunction with a DATA state­
ment. READ statements assign DAT A statement values to variables on a 
one-to-one basis. READ statement variables may be numeric or string, and 
the values read must agree with the variable types specified. If they do 
not agree, a "Syntax error" message is generated . 

., 



READ 

A single READ statement may access one or more DAT A statements (they 
will be accessed in order), or several READ statements may access the 
same DATA statement. If the number of variables in the variable-list 
exceeds the number of elements in the DATA statements, an 
"Out of data" error message is generated. If the number of variables 
specified is fewer than the number of elements in the DAT A statements, 
later READ statements begin reading data at the first unread element. If 
there are no subsequent READ statements, the extra data is ignored. 

To reread DATA statements from the start, use the RESTORE statement. 

See Also 

DATA, RESTORE 

Example 

r e file Edit Searth Run Windows 

RERO EHRMPLE 
1 2 3 4 5 6 7 B 9 1 2 3 4 5 6 

ONE TWO THREE FOUR FI VE 

0 List 

REM *** This demonstretes the use of 
REM *** the READ Statement. 
DIM A( 15),8$(5) 
FOR 1% = 1TO15 

READ A(l!t'.) : PRINT A(I%); 

NEXT 1% : PRINT 
FOR J% = 1 TO S 

READ B$(J%) :PRINT 8$(J%);" " 
NEXT J% 
END 
DAT A 1,2,3,4,5,6,7,B,9, 1,2,3,4,5,6 
DATA "ONE",'TWO",'THREE","FOUR",'TIVE" \rn: 

.., 

• 



REM- RESET 

REM 

ii 

RESET 

.~D 

Statement Syntax 
REM remark 

Action 
Allows explanatory remarks to be inserted in a program. 

Remarks 
REM statements are not executed but appear exactly as entered when the 
program is listed. 

REM statements may be branched into from a GO'I:_O or GOSUB statement. 
Execution continues with the first executable statement after the REM 
statement. 

Remarks may be added to the end of a line by preceding the remark with 
a single quotation mark instead of the REM keyword. 

Warning 

Example 

REM should not be used in a DAT A statement, since it 
will be considered legal data. 

100: REM ••• This is a remark. 
110: ·This is also a remark. 
120: LhT A • 5: REM ••• This is a remark, as well. 

Statement Syntax 
RESET 

Action 
Closes all open files. 

Remarks 
RESET closes all open files, forces all file blocks in memory to be written 
to the volume, and forces the volume directories to be updated. As a 
result, if the machine is turned off or loses power, all files will be 
preserved in the state they were in when the RESET command was issued. 

-



RESTORE 

~ 

Statement Syntax 

RESTORE I line] 

Action 

RESTORE 

Allows DATA statements to be reread from a specified line. 

Remarks 

111e line can be a label or line number. 

After a RESTORE statement with no specified line number or label is exe­
cuted, the next READ statement accesses the first item in the first DATA 
statement in the program. If the line is specified, the next READ state­
ment accesses the first item in the specified DATA statement. 

Example 

" S File Edit Search Run Windows 

Wtilla Wtillti 
Sell indge 
Reno 

\l/alla Walla 
Sell indge 
Reno 

RESTORE EHRMPLE 
=o List 

REM ***This program illustrates a use of 
REM *** RESTORE Statement. 
FOR LOOP% = 1 TO 3 

READ CITV$(LOOP%) : PRINT CITV$(LOOP%) !ilW 
NEXT LOOP% lJ 
RESTORE : PRINT )j 

HHH 
FOR LOOP% = 4 TO 6 !)!)! 

_--...., NEXR:~~O~~V$(LOOP%) : PRINT CITV$(LOOP%) ii··:. 

~:~A .. Walla Walla", .. Sel lindge .. , .. Reno· ii!!J: 

• 



RESUME 

RESUME 

~ 

• 

Statement Syntax 

RESUME 
RESUME 0 
RESUME NEXT 
RESUME line 

Action 
Continues program execution after an error recovery procedure has been 
performed. 

Remarks 
Any one of the four syntaxes shown above may be used, depending upon 

~ 

where execution is to resume: ~ 

RESUME or RESUME 0 

RESUME NEXT 

RESUME line 

Execution resumes at the statement that 
caused the error. 

Execution resumes at the statement immedi­
ately following the one that caused the error. 

Execution resumes at line. 

A RESUME statement that is not in an error-handling routine causes a 
"RESUME without error" error message to be generated. 

See Also 
ON ERROR 

Example 

I 0: ON ERROR GOTO 900: 
900: IF (ERR • 230) AND (ERL • 90) THEN PRINT "Try again": RESUME 80 

.... 



RETURN 

lM3 

Statement Syntax 
RETURN (line] 

Action 
Returns execution control from a subroutine. 

Remarks 

RETURN 

The line in the RETIJRN statement acts as with a GOTO. If no line is 
given, execution begins with the statement immediately following the last 
executed GOSUB statement. 

Microsoft BASIC includes the RETIJRN line enhancement that lets 
processing resume at a line that has a number or label. Normally, the pro­
gram returns to the statement immediately following the GOSUB state­
ment when the RETURN statement is encountered. However, RETIJRN 
line enables the user to specify another line. This permits you more flexi­
bility in program design. This versatile feature, however, can cause prob­
lems for untidy programmers. Assume, for example, that your program 
contains these fragments of a program: 

5 MOUSE ON 
10 ON MOUSE GOSUB 1000 
20 FOR I = 1 TO 10 
30 PRINT I 
40 NEXT I 
50 REM NEXT PROGRAM LINE 

200 REM PROGRAM RESUMES HERE 

1000 'FIRST LINE OF SUBROUTINE 

1050 RETURN 200 

If mouse activity takes place while the FOR ... NEXT loop is executing, the 
subroutine is performed, but program control returns to line 200 instead 
of completing the FOR ... NEXT loop. The original GOSUB entry is can­
celled by the RETURN statement, and any other GOSUB, WHILE, or FOR 
that was active at the time of the trap remains active. But the current 

• 



RETURN - RIGHT$ 

RIGHT$ 

•" 

FOR concext also remains accivc, and a "FOR w ithout NEXT" error message 
wi ll be generated. 

See Also 

GOSUB 

Example 

r s file Edit Search Run Windows 

SUBROUTINE ONE 
SU BR OUT I NE TWO 
SUBROUTI NE THREE 

Function Syntax 

IUGHTS(XS,I) 

Action 

RETURN EHRMPLE 

~o list 
REM *** This illustrates the use of the 
REM *** RETURN Statement. 
START 

FOR 1%: I TO 3 
ON 1% GOSUB SUB I ,SUB2,SUB3 

NEXT 1% 
END 
SUB! : 

PRINT ··suBROUT INE ONE" 
RETURN 

SUB2: 
PRINT "SUBROUT INE TWO" 
RETURN 

SUB3: 
PRINT "SUBROUTINE THREE" 
RETURN 

Returns the rightmost I characters of st ring XS. 

Remarks 

, 

If I is greater than or equal to the number of characters in XS, it returns 
XS. If I = 0. the null string ( lengch zero) is returned. I can range from 0 
lo 52767. 

See Also 
LEFT S, MID S 



RND 

" 

RIGHT$- RND 

Example 

r j file Edit Seorch Run Windows 

RIGHT$ EHRMPLE 
New York ~D List 
Vork REM*** This program mustretes e use~ 

REM*** of the RIGHTS Functton. ~ 
LET PLACE$ = "Seneca Fells, New Vork" ;ml! 

------

PRINT Rl6HTS(PLACE$,9) ~!l!llr--......, 
PRINT Rl6HTS(PLACE$,5) llm -
END ~ 
~ 1 li~!!!!mm1mi!!~~~mnHm~!!Hm1!!t!I!m~~~m~!~!I~I!mi~~!m~m~~!mmill!1~1iiiiiimlQ g 

Function Syntax 
RND((X)) 

Action 
Returns a random number between O and I. 

Remarks 
The same sequence of random numbers is generated each time the 
program is run unless the random number generator is reseeded with 
RANDOMIZE. 

X < O always restarts the same sequence for any given X. 

X > 0 or X omitted generates the next random number in the sequence. 

X = O repeats the last number generated. 

Note 

The values produced by the RND function vary with different 
implementations of Microsoft BASIC. 

See Also 
RANDOMIZE 

, 

II 



RND - RSET - RUN 

RSET 

.i!o 

RUN 

Example 

r S File Edit Search Run Windows 

RNO EHRMPLE 

Statement Syntax 
RSET string-variable=string-expression 

Action 
Moves data from memory to a random file buffer in preparation for a PUT 
statement. 

Remarks 
See "LSET" for a discussion of both LSET and RSET. 

Statement Syntax 
RUN [line] 
RUN filename{ ,RI 

Action 
Executes the program currently in memory. 

Remarks 
If the line is specified, execution begins on that line. Otherwise, execu­
tion begins at the first line of the program. 

With the second form of the syntax, the named file is loaded from disk 
into memory and run. If there is a program in memory when the com­
mand executes, a dialog box appears permitting saving of the program. 

., 



-
-

-
SAVE 

... 

RUN· SAVE 

In the second syntax, the filename must be that used when the file was 
saved. 

RUN closes all open files and deletes the current contents of memory be­
fore loading the designated program. However, with the ",R" option, all 
data files remain open. 

Example 

RUN 
RUN "Rich's BASIC Disk: Filer" 
RUN "Record List", R 

Statement Syntax 
SA VE (filename[ ,A] I 
SA VE (filename [,P)] 
SA VE (filename ( ,B) ) 

Action 

Saves a program file. 

Remarks 
The filename is a quoted string. If a filename already exists, the file will 
be written over, and the original replaced. If no filename is given, a dia­
log box appears to prompt you for information. This information includes 
the name of the file to save, and the format in which to save it, either text, 
compressed, or protected. If your Macintosh has a second disk drive, and 
if there is a disk in it, the dialog box will offer a button to select saving 
the program to the other disk. 

If you press the Return key without giving information in the dialog box, 
the file will be saved under its previous name with its previous format 
attributes. 

The ",A" option saves the file in ASCII format the same as the "Text" • 
selection on the Save As prompt screen. If the ",A" option is not speci-
fied, Microsoft BASIC saves the file in a compressed binary format that can 
also be specified with the ",B" option. ASCII format takes more space on 
the disk, but some programs require that files be in ASCII format. For in-
stance, the MERGE command requires an ASCII format file. Application 
programs may also require ASCII format in order to read the file. 

The ",P" option protects the file by saving it in an encoded binary format. 
When a protected file is later RUN (or loaded with LOAD), any attempt to 
list or edit it will fail. • 



SAVE - SCROLL 

SCROLL 

~~0 

• 

Example 

Saue program as: 

Saue Cancel 

MS-BRSIC ••• 

( Eject ) 

O TeHt ® Compressed O Protected 

Statement Syntax 

SCROLL rectangle, delta-x, delta-_y 

Action 

Scrolls a defined area in the current output window. 

Remarks 
The defined rectangle has the form ( x l ,y 1 )-( x2,y2 ). These coordinates 
specify the bounds of the rectangle in the current output window that will 
be scrolled. 

The delta-x parameter indicates the number of pixels to scroll right. If 
the parameter is a negative number, the rectangle scrolls left. 

The delta·.Y parameter indicates the number of pixels the rectangle will 
scroll down. A negative value will scroll the rectangle up. 

The SCROLL statement is most effective when the image to be scrolled is 
smaller than the defined rectangle, and the areas being affected have no 
background. 

This statement is useful for scrolling on a rectangular area of an output 
window. You can, therefore, design a program to create output windows 
that the user can scroll with scroll bars. Your program must still update 
the information in the scrolled area. If not refreshed, the part of the rec­
tangle scrolled away from shows the background pattern. 

... 

.... 
I 



-

SCROLL 

Note 

You should not scroll areas contain ing edit fields or bu ttons. 

Example 

r 4S file Edi t Search Run Windows 

SCROLL 

f\.M ICROS4 v 
lis t 

REM ** This i l l ustrates a use of the 
REM "'"' SCROLL Stat ement. 
WINDOW 2, .. SCROLL .. ,( 10,39)-(205 ,325), 1 

PICTURE ON 
CALL PEN SIZE (5,5) 
CALL MOVET0(5,200) 
CALL LINET0(5,5) 
CALL LINETO (60, 150) 
CALL LINETO ( 120,5) 
CALL LINETO ( 120,200) 
LOCATE 5,4 CALL TEXTS I ZE( 18) 
PRINT .. MICROSOFT" 

PICTURE OFF 
IMAGE$= PICTURE$ 
PICTURE ( 1,50)-(255,25 5), IMAGE$ 
FOR 1% =O TO -30 STEP - 10 

SCROLL (0 ,O+ l ~) - (2 1 O+ 1 :g,210),0, - 10 

'--~~~~~~~~...L.....o!NEXT 1:g 

, 

II 



SGN 

SGN 

" 

• 

Function Syntax 
SGN(X) 

Action 
Indicates the value of X, relative to zero. 

Remarks 
If X > 0, SGN( X) returns 1. 

If X = 0 , SGN(X) returns 0. 

If X < 0, SGN(X) returns - 1. 

Example 

r S File Edit Search Run Windows 

25 
SGN EHRMPLE 

0 -25 

0 -1 

0 List 
REM*** This demonstretes t he use of 
REM *** the SGN Function. 
LET X = 25: LET V = 0: LET Z = (-25) 
PRINT X,V,Z: PRINT 
PRINT SGN(X),SGN(V),SGN(Z) 
END 

, 

111·1: 



SHARED - ~ 

-

SHARED 

Statement Syntax 

SHARED variable-list 

Action 

Makes specified variables within a subprogram common to variables of the 
same name in the main program. 

Remarks 
The variable-list is a list of variables, separated by commas, that will be 
shared by the subprogram and the main program. If the variable to be 
shared is an array, its name must be followed by parentheses. If the value 
of the variable is altered within the subprogram, the value is changed for 
that variable in the main program, and vice versa. 

The SHARED statement must be used within a subprogram. A subprogram 
can have several SHARED statements for different variables, just like a pro­
gram can have several DIM statements for different variables. 

It is advisable to group all of one subprogram's SHARED statements at the 
top of the subprogram. 

Example 

~ . file Edit Search 

--COUNTY-- SALES 
Jefferson 1087.5 
King 1600 
Clackamas 2000 

Run Windows 

SHARED EHRMPLE 
Taxi 

5 
B.1 
4 

$ OWED 
54.38 
129.6 
BO 

List 
OPEN ·salesByCounty• FOR INPUT AS •2 
PRINT ·--COUNTY--","SALES",laxl","$ OWED" 
WHILE NOT EOF(2) 

INPUT •2, COUNTY$, SALESTOT AL, T AXRATEI 
1 

.. 

PRINT COUNTY$, SALESTOT AL, T AXRATEI,; 
CALL T AXCALC(SALESTOT AL, T AXRATEI) 
PRINT TAXAMOUNT! 

WEND:CLOSE •2 

SUB TAXCALC (TOTAL, RATEi) STATIC 
SHARED T AXAHOUNTI 
TAXAMOUNTI = (CINT(RATEI * TCJTAL))/100 

END SUB 

, 

• 



SIN 

SIN 

~ 

• 

Function Syntax 
SIN(X) 

Action 
Returns the sine of X, where X is in radians. 

Remarks 
The evaluation of this function is performed in double precision in the 
decimal version. In the binary version, results are given in single preci­
sion when the argument is in single precision and in double precision 
when the argument is in double prec ision. 

See Also 
COS, TAN 

Example 

" s File Edit Search Run Windows 

SIN EHRMPLE 
The Si ne of Xis .99749498660401 

~o List 

REM ***This demonstretes the use of 
REM*** the SIN Function. 
LET X: 1.5 
PRINT "'The Sine of Xis ";SIN(X) 
END 

ll!lli 
mm 

, 



... 
-

SOUND 

~ 

Statement Syntaxes 
SOUND frequency, duration [,[volume][ ,voice]) 
SOUND WAIT 
SOUND RESUME 

Action 

SOUND 

Produces a sound from the speaker, builds a queue of sounds, and plays a 
queue of sounds. 

Remarks 
The SOUND statement produces music or other sounds through the speak­
er. Harmony with various simultaneous tones is possible by using the 
voice parameter in conjunction with the WA VE statement. 

The SOUND WAIT statement causes all subsequent SOUND statements to 
be queued until a SOUND RESUME statement is executed. This can be 
used to synchronize voices. 

The frequency can be either an integer or a floating-point number. It 
indicates the pitch to be produced in cycles per second. 

One octave of frequencies is: 

c 523 
D 587 
E 659 
F 698 

G 784 
A 880 
8 988 

Other frequencies can be calculated by multiplying or dividing the 
numbers above by 2. For example, C in the next higher octave would be 
1046. 

The duration can be an integer or floating-point number in the range 0 to 
77. It determines for what time span the sound will be produced. One 
second is represented by a duration of 18.2. Therefore, the number 18.2 
as a duration argument would produce a tone that lasts one second. The 
maximum argument, 77, would produce a tone that lasts about 4.25 
seconds. 

When the SOUND statement produces a sound, that sound continues for 
the length of the duration. Any other subsequent SOUND statements 
executed are placed in a queue and are played after the duration of the 
former one is complete. 

The number given for volume can range from 0 (no volume) to 255 (full 
volume). The default volume is 127. The volume argument is ignored if 
the system is in multi-voice mode. 

• 



SOUND 

• 

The voice argument indicates which voice is being controlled. Voice 0 is 
the default. When the system is in single-voice mode, the voice argument 
must be O or an "Illegal function call" error message is generated. If the 
system is in multi-voice mode, the voice can range from 0 to 3. 

Multi-voice mode is enabled by any WAVE statement other than WA VE 0 , 
which disables multi-voice mode. 

Warning 

See Also 

WAVE 

Example 

You can use the SOUND WAIT statement to synchronize 
multiple voices, playing them with the SOUND RESUME 
statement. The queue that holds the SOUND information 
has finite room; if too many SOUND statements are 
queued without using the SOUND RESUME, an "Out of 
memory" error message is generated. 

. . . ·.. . .: . List 

REM **Ploy the Twilight Zone theme song** 
Theme song: FOR I~= 1 TO 4 

SOUND 494,4, 127 
SOUND 523,4, 127 
SOUND 494,4, 127 
SOUND 392,4, 127 

NEXT I~ 



SPACE$ 

" 

-

~ 

f!!!"'IJI 

!1!!111!!! 

~ 

~ 

~ 

SPACE$ 

Function Syntax 

SPACES(X) 

Action 

Returns a string of spaces of length X. 

Remarks 

The expression X is rounded to an integer and must be in the range 
0 to 32767. 

See Also 

SPC 

Example 

r • File Edit Search Run Windows 

2 
3 
4 
5 
6 
7 
B 
9 
10 

SPRCE$ EHRMPLE 

. -~--·= --~--- ---=-~- List 

REM ** Thi s demonslreles e use of 
REM ** the SPACES Funcl ion. 
FOR ll= 1TO10 

INTERVALS= SPACE$(1l) 
PRINT INTERVAL$; ll 

NEXT ll 
END 

Command 

~I 

., 

• 



SPC 

SPC 

" 

• 

Function Syntax 
SPC(I) 

Action 
Generates spaces in a PRINT statement. I is the number of spaces to be 
skipped. 

Remarks 

SPC can be used only with PRINT and LPRINT statements. I must be 
in the range O to 255. A semicolon (;) is assumed to follow the SPC( I) 
function. 

See Also 

PTAB, SPACES, TAB 

Example 

,. s File Edit Search Run Windows 

1 
2 

3 
4 

5 
6 

7 
6 

9 
10 

-

SPC £HAMPLE 

List 
REH** This demonstretes e use of ~ 
REH ** the SPC Function. 
FORll=1T010 

PRINT SPC(ll);ll 
NEXT II 
END 

t!il:!l:ll, ~-----i.-

mll~i::1 
lli 
Q 

, 

~ 
I 

.... 
I 



-
SQR 

Pl! 

SQR 

Function Syntax 

SQR(X) 

Action 

Returns the square root of X. 

Remarks 
X must be > = 0. 

The evaluation of this function is performed in double precision in the 
decimal version. In the binary version, resu lts are given in single preci­
sion w hen the argument is in single precision and in double precision 
when the argument is in double precision. 

Example 

r • file [dit Search Run Windows 

SQR £HRMPL£ 
5 2.2360679774996 
10 3. 162277660 16B4 
15 3.B729B33462074 
20 4.4721359549996 

List 

REM *** This demonstretes the use of 
REM*** the SQR Function. 

;;;~~r:g~E~T.~ ~~;(~~~E~T>l ~! 

., 

• 



STOP 

STOP 

• 

Statement Syntax 

STOP 

Action 
Terminates program execution and returns to immediate mode. 

Remarks 
STOP statements can be used anywhere in a program to terminate execu­
tion. STOP is often used for debugging. When a STOP is encountered, 
the "Program Stopped" dialog box is displayed. 

The STOP statement does not close files. 

Execution can be resumed by issuing a CONT command. 

See Also 
CONT 

Example 

r s File Edit Search Run Windows 

CONT & STOP EHRMPLE 
25 9.89 

List 

REM **THIS IS AN EXAl"IPLE OF THE USE OF 
REM** THE STOP & CONT STATEMENTS. 
CHECK! = 25: DEBIT! = 9.89! 
PRINT CHECK!, DEBIT! 

STOP 
LET BALANCE! = CHECKI - DEBIT! 
PRINT BALANCE! 
END 

., 



STR$ 

~ 

STRING$ 

" 

Function Syntax 
STRS(X) 

Action 
Returns a string representation of the value of X. 

Remarks 

STR$ - STRING$ 

The string returned includes a leading space for positive numbers and a 
leading minus sign for negative numbers. 

STR S is not used to convert numbers into strings for random file opera­
tions. For that purpose, use the MK.IS, MKSS, and MKDS functions. 

See Also 

VAL 

Example 

i =·· - - - -· . - - -- - List 
REH** This fragment shows e use of the STR$ Function. 

ZIPS = STRSCZIPCODE) 
IF LEFTSCZIP$, 3) = M9B 1 M THEN CITVS = MseattleM 

Function Syntax 
STRINGS( I,J ) 
STRINGS( I,X S) 

Action 
The first syntax returns a string of length I whose characters all have 
ASCII code J. 

The second syntax returns a string of length I whose characters are all the 
first character of XS. • 



STRING$ - SUB/END SUB/EXIT SUB 

SUB 
END SUB 
EXIT SUB 

[a5J 

• 

Example 

r s file Edit Search Run Windows 

------Doily Soles------

AA AAA 

STRING$ EHRMPLE 
List ~o 

REM ***This program demonstrates the ~ 
REM ***use of the STRINGS Function. 
LET X$ = STRINGS(6,45) 
PRINT XS;"Deily Seles";XS 

- REM *** Another example 
LET VS = .. ABCDE" 

PRINT:PRINT STRING$(5,V$); 
ENO 

Statement Syntaxes 

SUB subprogram-name I (formal-parameter-list ) !STATIC 
ENO SUB 
EXIT SUB 

Actions 
Starts, ends, and exits from a subprogram. 

Remarks 
The subprogram -name can be any valid Microsoft BASIC identifier up 
to 40 characters in length. This name cannot appear in any other SUB 
statement. 

The formal-parameter-list can contain two types of e ntries: simple vari­
ables and array variables. The subscript number that is optional after array 
variables should contain the number of dimensions in the array, not the 
actual dime nsions of the array. Entries are separated by commas. 111e 
number of parameters is limited only by the number of characters that 
can fit on one logical BASIC line. 

, 



r--. 

,.. 

.... 

SUB/END SUB/EXIT SUB 

STA TIC means that all the variables within the subprogram retain their 
values from when control leaves the subprogram until it returns. The 
values of static variables cannot be changed by actions taken outside the 
subprogram. 

The body of the subprogram, the statements that make it up, occur 
between the SUB and END SUB statements. 

The END SUB statement marks the end of a subprogram. When the pro· 
gram executes END SUB, control returns to the statement following the 
statement that called the subprogram. 

The EXIT SUB statement routes control out of the subprogram and back 
to the statement following the CALL subprogram statement. 

Before BASIC starts executing a program, it checks all subprogram·related 
statements. If any errors are found, the program doesn't execute. The 
mistakes are not trappable with ON ERROR, nor do they have error codes. 
The following messages can appear in an error dialog box when the 
corresponding mistake is made: 

• Tried to declare a SUB within a SUB . 

• SUB already defined . 

• Missing STATIC in SUB statement . 

• EXIT SUB outside of a subprogram . 

• END SUB outside of a subprogram . 

• SUB without an END SUB . 

• SHARED outside of a subprogram . 

A thorough discussion of the use and advantages of subprograms can be 
found in Chapter 6, "Advanced Topics." 

• 



SUB/END SUB/EXIT SUB 

• 

See Also 

CALL, SHARED 

Example 

~ ti File Edit Search Run Windows 

-COUNTY -
Jefferson 
King 
Clcckcmcs 

SALES 
1087.5 
1600 
2000 

sue EHRMPLE 
Taxi 

5 
B.1 
4 

. • ---=::--= --

$ OWED 
54.38 
129.6 
BO 

List 
OPEN ·sclesByCounty• FOR INPUT AS •2 
PRINT ·--COUNTY--","SALES","Tcxi ·,·s OWED" 
WHILE .NOT EOF{2) 

INPUT •2, COUNTY$, SALESTOTAL, TAXRATE! 
PRINT COUNTY$, SALESTOT AL, T AXRATE!,; 
CALL TAXCALC(SALESTOT AL, T AXRATEI) 
PRINT T AXAHOUNT! 

WEND:CLOSE •2 

SUB TAXCALC (TOTAL, RATE!) STATIC 
SHARED TAX AMOUNT! 
TAXAHOUNT! = (CINT(RATE! * TOTAL))/100 

END SUB 

., 



SWAP 

SWAP 

Statement Syntax 
SW AP variable,variab/e 

Action 

Exchanges the values of two variables. 

Remarks 
Any type variable may be swapped (integer, single precision, double preci­
sion, string), buc che two variables muse be of che same cype or a "Type 
mismatch" error message is generated. 

If the second variable is not already defined when SW AP is executed, an 
"Illegal function call" error message will be generated. 

Example 

r S file Edit Senrch Run Windows 

A 
B 

B 
A 

SWRP EHRMPLE 
234 
ggg 

[O List 

999 
234 

REM*** This demonstnites the use of the @ 
REM *** SWAP St8tement. ~ _ 

._ __ --1 LET FIRST$= "A": LET SECOND$= "B" i!ii!il..-- --J....... 
LET Xi = 234 : LET V% = ggg :1111. 

PRINT FIRST$,SECONO$,xi ,v:t: ·!!!!! 
SWAP FIRST$,SECONO$: SWAP X%,V% :1m1 

PRINT FIRST$,SECONO$,Xi,V% mm 
END ~ 
QJ i mmm:mmmmmmmrnmH:mn:rnmm:mmm::m:mmmm:mm:mw::rnmmJ Q 1J 

., 

• 



SYSTEM-TAB 

SYSTEM 

TAB 

"D 

• 

Statement Syntax 
SYSTEM 

Action 
Closes all open files and returns control to the Finder. 

Remarks 
When a SYSTEM command is executed, all open files are closed and the 
Finder is reloaded. 

The same result can be achieved by selecting the Quit selection from the 
File menu. 

When SYSTEM is executed in the program or in the Command window or 
from the Quit selection on the File menu, the interpreter checks to see if 
the program in memory has been saved. If it hasn't been, a dialog box 
appears to prompt the user to save the program. 

Function Syntax 
TAB(I) 

Action 
Moves the print position to I. 

Remarks 
If the current print position is already beyond space I, TAB goes to that 
position on the next line. Space I is the leftmost position, and the right­
most position is the width minus one. 1 must be in the range 1 to 255. 
TAB may only be used in PRINT and LPRINT statements. 

A semicolon (;) is assumed to precede and to follow the TAB( I) function. 

See Also 
PTAB, SPC 

r 

,..., 
I 

~ 
I I 



TAN 

~ 

TAB -TAN 

Example 

r • File Edit Search Run Windows 

Nome 

G.T. Jones 
T. Beor 
B. Chorlton 
B. Moore 
G. Best 
N. Styles 

Function Syntax 
TAN(X) 

Action 

TRB EHRMPLE 
Amount Due ~O List 

25 
I 
33 
99 
100 
13.5 

REM*** This is on exomple of the use 
REM *** of the TAB Function. 
PR I NT .. Nome" ;TAB( 16) ;"Amount Due" !i!!jj 
PRINT TAB(2) ; .. ----";TAB(16);·----------· m:Ji 

FOR R1:A~ 1A~~ t i!il:i 
PRINT .. '';A$;TAB( 18);B !iljji 

NEXT 1% !ii!ii 

i~m: END 
DATA "G.T. Jones",25,"T. Beor·. 1 
DATA "B. Chorlton·, 33, "B. Moore",99 
DATA "G. Best ", 100, "N. Styles ... 13.50 

Iii ii: 

ii!ili 

Returns the tangent of X where X is in radians. 

Remarks 

The evaluation of this function is performed in double precision in the 
decimal version. In the binary version, r esults are given in single preci­
sion when the argument is in single precision and in double precision 
when the argument is in double precision. 

See Also 

COS, SIN II 



TAN -TIME$ 

TIME$ 

"ii 

• 

Example 

r S File Edit Search Run Windows 

TRN EHRMPLE 
-.4s2315659441 e9 ~o list 

REM *** This program illustrates the use 

-----1 REM *** of the TAN Function. 
LET TRIG= TAN(9) 
PRINT TRIG 
ENO 

Statement Syntax 
TIMES =string-expression 

Function Syntax 
TIMES 

Actions 
The statement sets the current time. 

The function retrieves the current time. 

Statement Remarks 

The TIMES statement sets the clock to the time given by the time in the 
string-expression. It requires a string in one of the following forms: 

hh (sets the hour; minutes and seconds default to 00) 

hh:mm (sets the hour and minutes; seconds default to 00) 

hh:mm:ss (sets the hour, minutes. and seconds) 

A 24-hour clock is used. Thus 8:00 p.m. would be shown as 20:00:00. 

, 

-



TIME$ 

Function Remarks 
The TIMES function returns an eight-character string in the form 
hh:mm:ss, where hh is the hour (00 through 23), mm is minutes (00 
through 59 ), and ss is seconds ( 00 through 59 ). 

Example 

TIMBS - "08:00:00" 

Example 

,. s File Edit Search Run Windows 

. 19:45:28 
19:45:29 

TIME$ EHRMPLE 
~o List 
REM ***This demonstrates the use 
REM *** the TIME$ Function. 

---_..LET CHRONOS$ = TIME$ 
PRINT CHRONOS$ 
FOR 1% = 1 TO 3000:NEXT 1% 
LET CHRONOS$ =TIME$ 
PRINT CHRONOSS 
ENO 

I~ 
!!l!ll 

., 

• 



• 

TIMER ON/TIMER OFF/TIMER STOP/TIMER 

TIMER ON 
TIMER OFF 
TIMER STOP 
TIMER 

~" 

Statement Syntaxes 
TIMER ON 
TIMER OFF 
TIMER STOP 

Function Syntax 
TIMER 

Action 
The statements enable, disable, and suspend event trapping based on time. 

The function retrieves the number of seconds that have elapsed since 
midnight. 

Remarks 
The TIMER ON statement enables event trapping based on time. This 
allows you to alter the flow of the program based on the reading of the 
timer by using the ON TIMER. .. GOSUB statement. 

The TIMER OFF statement disables ON TIMER event trapping based on 
time. 

The TIMER STOP statement suspends ON TIMER event trapping. It is simi-
lar to TIMER OFF in that the GOSUB is not performed. However, TIMER ~ 
STOP differs in that the GOSUB will be performed as soon as a TIMER ON 
statement is executed, if any events occurred while the event trap was 
stopped. 

The TIMER function can be used to generate a random number for the 
RANDOMIZE statement. It can also be used to time programs or parts 
of programs. 

See Also 
"Event Trapping" in Chapter 6, "Advanced Topics" 



TIMER ON/TIMER OFF!fIMER STOP!fIMER 

Example 
This program segment prints to the screen the number of seconds that a 
program section took to execute. 

r S File Edit Search Run Windows 

TIMER EHRMPLE 
Whot is the Account ? 05546 78 
Whot is the Debit ? 345.89 
Another? NO 
Vou spent 19 seconds on this tosk. 

List 
REM*** This shows o use of the TIMER Function. 
START: TIMER 
LET ANSWER$ : "VES" 
WHILE ANSWER$ : "VEs·· 

INPUT"Whot is the Account? ",ACCOUNT 
INPUT"Whot is the Debit? ",DEBIT 

WE~:PUT "Another? ",ANSWER$ ·l.··I 

-------i~l;ll~~ ~v:~~~:nt ";FINISH - START;" seconds on)!:!l11-----~ 
PRINT .. this tosk. " :!\!!! 
END 

., 

• 



TRON/TROFF 

TRON 
TROFF 

~ 

• 

Statement Syntax 

TRON 
TROFF 

Action 
Traces the execution of program statements. 

Remarks 
The Trace On option in the Run menu is the same as the TRON 
statement. 

As an aid in debugging, the TRON statement (executed in either immedi­
ate or program execution mode or selected from the Run menu) enables a 
trace flag. The currently executing statement is highlighted with a rectan­
gle in the List window, if a List window is visible. 

If there is more than one statement on a line, each statement is run and 
highlighted separately. The trace flag is disabled with the TROFF state­
ment, the Trace Off menu option, or when a NEW command is executed. 

Example 

,, .... 
Ii.I file Edit Search Run lltindows 

~D List 
REl1 ***This progrom demonstrates the use of 
REl1 *** TRON and TROFF. 
LET K: 10 
TRON 
FOR J = 1 TO 2 

[ 

LET L = K • 10 
PRINT J,K,L 
STOE 
LET K = K • 10 

TROFF 
NEXT J 
END 

~ 
I 



-

UBOUND 
LBOUND 

" 
UCASE$ 

~ 

Function Syntax 
UBOUND( array-name{ ,dimension]) 
LBOUND( array-name{ ,dimension]) 

Action 

UBOUND/LBOUND - UCASE$ 

Returns the upper and lower bounds of the dimensions of an array. 

Remarks 

See "LBOUND" for a discussion of both LBOUND and UBOUND. 

Function Syntax 
UCASE $ (string-expression ) 

Action 
Returns a string with all alphabetic characters in uppercase. 

Remarks 
This function makes a copy of the string-expression, converting any lower­
case letters to the corresponding uppercase letter. 

The UCASE S function provides you with a way to compare and sort 
strings that have been entered with different uppercase and lowercase for­
mats. For example, if you had a program line, INPUT "Do you want to 
continue? ", ANSWERS, the user might enter, "YES", "Yes", "yes", "Y", or 
"y". You could route program control in the next statement by testing 
the first letter of the UCASE S of the ANSWERS against "Y". This makes 
different affirmative responses of different users work in the program. 

Another use of the UCASE S function is when you have a form entry pro­
gram. The person or people putting in form data may not consistently use 
uppercase format. For example, a user might enter the names "atlanta", 
"AUSTIN", and "Buffalo". If a normal BASIC program to alphabetize names 
sorted these three, they would be ordered "AUSTIN", "Buffalo", and final­
ly, "atlanta", because when strings are sorted they are compared based on 
their ASCII character numbers. The ASCII character number for "A" is 
lower than that for "B", but all uppercase letters come before the lower­
case letters, so the character "B" comes before the character "a". If you 
sort based on the UCASE S representation of the strings, the results are 
alphabetically ordered. • 



UCASE$ -VAL 

VAL 

~ 

II 

Example 

r s File Edit Search Run Windows 

Willie Dixon 
WILLIE DIXON 

UCRSE$ EKomple 
corey bell WALTER HORTON 
CAREY BELL WALTER HORTON 

~[] List 
~REM **This shows the use of the UCASE$ function. ~~ 

A$= "Willie Di xon· 
'ml B$ = "corey bell" i:t 

C$: "WALTER HORTON" ::;:;' 
PRINT A$, B$, C~ :::::: 
PRINT UCASE$(A$), UCASE$(B$), UCASE$(C$) IQ 
~ _1m::m:mmm::mmm:::ml:l::1:m1::mm1::m::m::mmm:rnmmrn:nm:m:mm:mm:::::m::::m:::m:::::m::::::mm:mmm:m~ g 

Function Syntax 
VAL(XS ) 

Action 

To return the numerical value of string XS. The VAL function also strips 
leading blanks, tabs, and linefeeds from the argument string. 

VAL is not used to convert random file strings into numbers. For that 
purpose, use the CVI, CVS, and CVD functions. 

See Also 
STRS 



-

VARPTR 

" 

VAL -VARPTR 

Example 

,. s File Edit Search Run Windows 

URL EHRMPLE 
32 76 

§_D List 

REM ***This program 111ustrates the use of Q: 
REM *** the VAL Function. 
LET ADD$ = "32" ll 

_.....----j LET B = 44 + VAL(ADD$) lli~i~ 
- PRINT ADOS,B ::::i ....... 

END ~ Q 

Function Syntax 
VARPTR( variable-name ) 

Action 
Returns the address of the first byte of data identified with the variable­
name. A value must be assigned to the variable-name prior to execution 
of V ARPTR, or an "Illegal function call" error message is generated. Any 
type variable name may be used (numeric, string, array). For string vari­
ables, the address of the first byte of the string descriptor is returned. 
The address returned is a number in the range 0 to 16 777215. For furth· 
er information, see Appendix 0, "Internal Representation of Numbers." 

V ARPTR is usually used to obtain the address of a variable or array so that 
it may be passed to an assembly language subroutine. A function call of 
the form V ARPTR( A( O)) is usually specified when passing an array, so that 
the lowest-addressed element of the array is returned. 

Note 

All simple variables should be assigned before calling V ARPTR for an array 
element, because the addresses of the arrays change whenever a new 
simple variable is assigned. 

See Also 
PEEK, POKE 

• 



VARPTR - WAVE 

WAVE 

~ 

• 

Example 

r S File Edit Search Run Windows 

UARPTR EHAMPLE 

0 List 
REM *** This program illustrates the use of 
REM *** the VARPTR Function. 
REM *** Fill array with machine language program. 
DIM CODE%(50) 
I= 0 
INFOLOOP: 

READ A : IF A= - I THEN MACHINEPROG: 
CODE%(1) =A: I= I+ 1: GOTO INFOLOOP: 

MACHINEPROG: 
x:g = 10 : y:g = o 
SETVTOX:VARPTR(CODE%(0)): CALL SETVTOX(X:t, VARPTR(V%)) 
PRINT V:t 

END 
REM *** Mochine language program for SETVTOX(X:t,VARPTR(V:t)) 
DAT A &H4E56,&HOOOO,&H206E,&HOOOB,&.H30AE,&HOOOC,&H4ESE 
DATA &H4E75,-1 

Statement Syntax 
WAVE voice[ ,[ wave-definition I[ ,phase 11 

Action 

Defines the shape of a sound wave for a voice and enables or disables 
multi-voice sounds. 

Remarks 
The WA VE statement adds versatil ity to the SOUND statement. By using a 
numbe r array to define the shape of the sound wave to be played through 
the speaker, you can produce more specific types of sound. The defini­
tion of the wave is contained in an integer array. Like PUT, the array can 
be of the form xi (index! ,index ... ,[ index]]) I· Each element of the array 
contains a height number. The height numbers, when put together, define 
a curve; that curve is the wave shape. 

., 



WAVE 

The voice indicates the number of the voice being defined. It can range 
from 0 to 3. 

The wave-definition defines the shape of the fundamental sound wave for 
the voice. The wave-definition can be SIN or the name of an integer ar­
ray with at least 256 elements. These elements must each be in the range 
- 128 to 127. The default wave-definition of voice 0 is the square wave. 

The phase defines the subscript number of the first array element to be 
sampled. It defaults to 0. 

An "Illegal function call" error message is generated if the wave-definition 
array: 

• Is not yet defined 

• Has fewer than 256 clements 

• Has a value outside of the range - 128 to 127 

To save space, the wave-definition array should be erased with the ERASE 
statement after the WA VE statement is executed. 

The statement "WA VE O" puts the system in single-voice mode, the de­
fault. In this mode, a simple square wave is produced. This slows pro­
gram execution speed only two percent. Any other form of the WA VE 
statement puts the system into multi-voice mode which slows program 
execution speed by 50 percent or more. 

If any voice but O is specified, the wave-definition array argument is 
mandatory. 

• 



WAVE 

• 

Example 

WAVE 1, SIN: REM **Set the vo1ce to s1ne weve** 
60SU8 Themesong: REM **Play the themesong** 
REM **Now create new wave form** 
DIM A:g(260): REM **Set dimension for WAVE erray** 
FOR II= -127 TO 128 

LET AICll+ 127) = INT (.75!*(ATN(ll))) 
NEXT II 
WAVE 1, Al : REM **Set new wave form** 
60SU8 Themesong: REM** P1ey it with new wave form** 
END 
Themesong: FOR 1:g= 1 TO 4 

SOUND 494,5,, 1 
SOUND 523 ,4,, 1 
SOUND 494,4,, 1 
SOUND 392,4,, 1 

NEXTll 
RETURN 



WHILE ••• WEND 

WHILE ••• WEND 

Statement Syntax 
WHILE expression [statements] WEND 

Action 
Executes a series of statements in a loop as long as a given condition is 
true. 

Remarks 
If the expression is true (that is, it evaluates to a non-zero value), then 
statements are executed until the WEND statement is encountered. 
BASIC then returns to the WHILE statement and re-evaluates the expres­
sion If it is still true, the process is repeated. If it is not true, execution 
resumes with the statement following the WEND statement. 

WHILE ... WEND loops may be nested to any level. Each WEND matches 
the most recent previous WHILE that has not been completed with an 
intervening WEND. An unmatched WHILE statement causes a "WHILE 
without WEND" error message to be generated, and an unmatched WEND 
statement causes a "WEND without WHILE" error message to be 
generated. 

Warning Do not direct program flow into a WHILE ... WEND loop 
without entering through the WHILE statement, as this 
will confuse BASIC's program flow control. 

• 



WHILE ... WEND - WIDTH 

WIDTH 

~D 

• 

Example 

r S file Edit Senrch Run Windows 

WHILE/ WEND EHRMPLE 
This progrom conver ts decimol numbers to Octol ond Hexodecimol volues 
Enter the decimol number to convert ? 999 
Octol = 1747 
Hexodecimol = 3E7 
Another number ? NO 

~o list 
REM *** This progrom i llustrotes the use of 
REM *** the WHILE/WEND Stotement. 

~:r~:~~~:~: ~:i:.~:::~:;;~~~:~~:;,, numbers·; I 
WHILE (LEFT$(ANSWER$,1) = "V") } \j 

INPUT "Enter the decimol number to convert ? ",DECIMAL !(!!!! 
PRINT "Octol = ";OCT$(DECIMAL) :m:: 
PRINT "Hexodecimol : ",HEXS(DECIMAL) !iii! 
INPUT "Another number ? ",ANSWER$ .m~ 

WEND I 
ENO 

Statement Syntax 

WIDTH output-device , I siz e I !,print-zone I 
WIDTH #filenumber, I siz e 11 .fJrint -zone I 
WIDTH lsize I l.fJrint-zone l 
WIDTH LPRJNT [siz e I [,print -zone I 

Function Syntax 
W IDTH(string-cxprcssion) 

Actions 

The statement sets the printed line width and print zone width in the 
number of standard charactns for any output device. 

The function returns the w idth of a st ring, in pixels, as counted on the 
screen . 

. Statement Remarks 

The output-device may be "SCRN:", "CLIP:", "COM I :". or " LPTI :",and if 
not spec ified is assumed to be " SCRN: ". 

., 



wmm 

The integer size is the number of standard characters that the named out­
put device line may contain. However, the position of the pointer or the 
print head, as given by the POS or LPOS function, returns to zero after po­
sition 255. In Macintosh's proportionally spaced fonts, the standard width 
for screen characters is the equivalent of the width of any of the numerals 
0 through 9. The default line width for the screen is 255. 

If the size is 255, the line width is "infinite"; that is, BASIC never forces a 
carriage return character. 

The /ilenumber is a numeric expression that is the number of the file that 
is to have a new width assignment. 

The print-zone argument is the value, in standard characters, to be as­
signed for print zone width. Print zones are similar to tab stops, and they 
are forced by comma delimiters in the PRINT and LPRINT statements. 

If the device is specified as SCRN:, the line width is set at the screen. Be­
cause the screen uses proportionally spaced fonts, lines with the same 
number of characters may not have the same length. 

If the output device is specified LPT l :, the line width is set for the line 
printer. The WIDTH LPRINT syntax is an alternative way to set the 
printer width. 

When files are first opened, they take the device width as their default 
width. The width of opened files may be altered by using the second 
WIDTH statement syntax shown above. 

For detailed information on generalized device 1/0, see Chapter 5, 
"Working With Files and Devices." 

Function Remarks 
The WIDTH function is useful for measuring the width of strings which 
are to be printed in an output window. If the string to be printed is too 
long to fit, the program can be designed to enlarge the output window to 
accommodate the string. 

See Also 
I.POS, LPRINT, POS, PRINT, PTAB, TAB 

Example 

WIDTH "LPT 1 :", 7520, 12 
WIDTH, 60, 15 
WIDTH #l, .fO 
WIDTH •3 .. 12 

• 



WINDOW 

WINDOW 

• 

Statement Syntaxes 
WINDOW window-id[,[ title][,( rectangle] [,type J JI 
WINDOW CLOSE window-id 
WINDOW OUTPUT window-id 
WINDOW OUTPUT #file-number 

Function Syntax 
WINDOW(n) 

Actions 
The statements create an output window, close an output window, cause a 
window other than the active window to be the current output window, 
or redirect output from the screen to a file. 

The function returns information about the active and current output win­
dow. 

Statement Remarks 
Macintosh applications frequently use multiple windows. The WINDOW 
statement gives you the ability to create multiple windows in your appli­
cations. 

~ 
I 

rm' 
I 

The active window is the highlighted, frontmost window. The INPUT .-
statement, dialog events, and DIALOG functions are relative to the active 
window. The current output window is affected by print and graphics 
statements such as LINE, PlCTIJRE, and ROM calls. The EDITS and BUT-
TON functions return information about the current output window. The r-' 
active window is always the same as the current output window, unless 
the WINDOW OUTPUT statement is used. 

Input 
Stetements 

MOUSE Functions 
DIALOG 

PAINT & Grephlcs 
Stetements 

EDIT$ Function 
BUTTON Function 

ACTIVE 
WINDOW 

CURRENT 
OUTPUT 
WINDOW 

~ 
I 



WINDOW 

The window-id is a number from I to 4 which identifies an output 
window. Window I appears when BASIC is started. 

The title is a string expression that is displayed in the window's title bar, 
if it has a title bar. Window 1 displays the name of the program or 
"Untitled" if no program is loaded when BASIC initializes it. 

The rectangle specifies the physical screen boundary coordinates of the 
created window. It has the form (xl,yl )-(x2,y2) where (xl,yl) is the 
upper-left coordinate and (x2,y2) the lower-right coordinate (relative to 
the screen) that define the boundaries where the window will be 
displayed. If no coordinates arc specified, the window appears at the 
current default for that window. 

The type is a number which indicates the type of window the program is 
creating. The types are: 

2 

3 
4 

Document window. This has a size box and a title bar. 

Dialog box with a "frame" or two-line border. This type of 
window has neither a size box nor a title bar, so the user may 
not move it or change it with the mouse. 

Window with a simple one-line border. 

Window with a shadow. 

Window types - 1 through - 4 correspond directly to the 1 through 4 
window types with one exception. The negative numbered types are 
modal dialog boxes. When a modal dialog box is visible, any attempt to 
select outside the box results in a beep. If Command-period is pressed 
when one of these windows is active, BASIC returns to edit mode, unless 
the ON BREAK statement has been executed. 

The WINDOW statement creates an output window if none currently ex­
ists and makes it visible and active. The WINDOW statement also makes 
the created window the current output window. 

When there are multiple output windows, the user of the program cannot 
activate a window by clicking the mouse in that window, as is normally 
done. The program can trap the event with the ON DIALOG event trap if 
the DIALOG( 0) function returns 3. The program can then make the 
clicked window both active and current with the WINDOW statement. 

WINDOW CLOSE window-id causes the named window to become invisi­
ble. It also releases all related memory storage, including edit fields and 
buttons that existed within that window. 

• 



WINDOW 

• 

WINDOW OUTPUT window-id causes the named window to become the 
current output window without forcing it to be the active window. This 
adds the ability to direct output (text, graphics, etc.) to another window 
without changing the active window. 

BUTTON and EDIT FIELD functions always return values based on the 
current output window. Dialog events, on the other hand, are only trig­
gered in the active window. Therefore, if you are trapping dialog events, 
remember to set the active window to be the current output window be­
fore using the BUTTON or EDITS functions. The following example 
demonstrates how this can be done. 

Set up windows and edit fleld 
WINDOW 1,·current output w1ndow",(5, 170H250,2BO), 1 
WINDOW 2;ectfve w1ndow",(0,40H240, 150), 1 
PRINT "Enter name end press RETURN" 
EDIT FIELD 1,"",{10,30)-(150,45},1 

DIALOG ON ·turn on d1alog trapp1ng 
'ff event occurs, go to the handledg routine 
ON DIALOG GOSUH hanc:tledg 

WINDOW OUTPUT I 

loop: 
IF LEN(nam$)<>0 THEN PRINT "Hello, ";nam$ 

GOTO loop: 

· Routlne to handle the event trap and retrieve 
· the contents of the ed1t f1eld 
handledg: 

IF DIAL06(0)<>6 THEN RETURN 'ex1t if return not pressed 
savecurrentw1ndow=WINDOWC 1) ·save number of current w1ndow 
WINDOW OUTPUT WINDOW(O) ·make active w1ndow the current window 
nam$:EDIT$(1) ·retr1eve the contents of the ed1t field 

WINDOW OUTPUT savecurrentw1ndow ·restore the prev1ous 
·current output wtndow 

RETURN 

This example gets the user's name from an edit field in the active window 
and then prints it in the current output window. The event-handling rou­
tine ( "handledg") is executed whenever the user presses the Return key. 
The "handledg" routine saves the current output window number in the 

r-"' 
I 

~ 
i 



-
WINDOW 

savecurrentwindow variable. Then, it makes the active window into the 
current output window. Now the "handledg" routine can read the con­
tents of the edit field into the name string. Finally, "handledg" restores 
the previous current output window and returns to the main program. 

WINDOW OUTPUT #file-number allows graphics devices other than the 
screen to be affected by graphic statements such as CIRCLE, PSET, PIC­
TURE, and ROM calls. Currently, only files opened to LPTl: are valid with 
this statement. As other devices are introduced which support graphics, 
this will change. 

Function Remarks 
When you write programs using multiple output windows, it becomes 
critical to have information passed to the program about the status and 
size of an output window so the program can respond to different situa­
tions. The WINDOW function provides this information. 

The WINDOW function returns 6 different types of information, depend­
ing on the value of the n argument. The list below describes the informa­
tion returned by each. 

0 

2 

3 
4 

5 

Returns the window-id of the active output window. 
WINDOW( 0) returns 0 if no output window is active. 

Returns the window-id of the current output window. This is 
the window to which PRINT or graphics statements send their 
output. 

Returns the width of the current output window. 

Returns the height of the current output window. 

Returns the x coordinate in the current output window where 
the next character will be drawn. 

Returns the y coordinate in the current output window where 
the next character will be drawn. 

• 



WRITE 

WRITE 

~(!J 

• 

Statement Syntax 

WRlTE I expression-list I 

Action 
Outputs data to the screen. 

Remarks 
If the expression-list is omitted, a blank line is output. If the expression­
/isl is included, the values of the expressions are output to the screen. 
The expressions in the list may be numeric or string expressions. They 
must be separated by commas. 

When the printed items are output, each item is separated from the last by 
a comma. Printed strings are delimited by quotation marks. After the last 
item in the list is printed, BASIC inserts a carriage return/linefeed 
sequence. 

WRlTE outputs numeric values without the leading spaces PRlNT puts on 
positive numbers. 

Example 

,. • File Edit Search Run Windows 

B0,90,"The End" 
BO 90 

0 

lllRITE EHRMPLE 

The End 

list 
REM** * This i llustrates the difference between 
REM **" the WRITE and PRINT Statements. 
A : 80 : B : 90 : C$ = "The End" 
WRITE A,B,C$ 
PRINT A,B,C$ 
END 

., 



WRITE# 

l!l!D 

-

WRITE# 

Statement Syntax 
WRITE# filenumber,expression-list 

Action 
Writes data to a sequential file. 

Remarks 
The filenumber is the number under which the file was opened with the 
OPEN statement. The expressions in the list are string or numeric expres· 
sions. They must be separated by commas. 

The difference between WRJTE# and PRJNT# is that WRITE# inserts 
commas between the items as they are written to the file and delimits 
strings with quotation marks. Therefore, it is not necessary to put explicit 
delimiters in the list. A carriage return/linefeed sequence is inserted after 
the last item in the list is written to the file. 

See Also 
OPEN, PRINT#, WRITE 

Example 

r S File Edit Search Run Windows 
., 

WRITE# EHRMPLE 
32 -6 Koth 

REM ***This progrem illustretes the use of the iQ, 
REM*** WRITE " Stetement. ~ 
LET A$ = • 32" : LET B = -6 : LET C$ = "Kath" !!!:!· 
OPEN ·o· "1 ·1NFO" mm 

Cl;~'!~ "1', A$;B;C$ I!.~: 
OPENT,11 1, · 1NFO" m; 

L---1 INPUT "1, A$,B,C$ :m:--~~ 

CL::~~~ A$,B,C$ ''',I 
E~ 8 IO 

lD List 

• 



Appendix A: 
ASCII Character Codes 

,_, 
Dec Hex CHR Dec Hex CHR Dec Hex CHR 

000 OOH NUL 043 2BH + 086 56H v 
001 OlH SOH 044 2CH 087 57H w 

i-. 002 02H STX 045 2DH 088 58H x 
003 03H ETX 046 2EH 089 59H y 
004 04H EOT 047 2FH I 090 5AH z 
005 05H ENQ 048 30H 0 091 5BH [ ..... 006 06H ACK 049 31H 1 092 5CH \ 
007 07H BEL 050 32H 2 093 5DH ) 
008 08H BS 051 33H 3 094 5EH 
009 09H HT 052 34H 4 095 5FH 

~ 010 OAH LF 053 35H 5 096 60H 
011 OBH VT 054 36H 6 097 61H a 
012 OCH FF 055 37H 7 098 62H b 
013 OOH CR 056 38H 8 099 63H c 

l'lll!ll 014 OEH so 057 39H 9 100 64H d 
015 OFH SI 058 3AH 101 65H e 
016 JOH OLE 059 3BH ; 102 66H f 

~ ~17 1 lH DCl 060 3CH < 103 67H g 
018 12H DC2 061 3DH 104 68H h 
019 13H DC3 062 3EH > 105 69H 
020 14H DC4 063 3FH ? 106 6AH j ,..._ 021 15H NAK 064 40H cw 107 6BH k 
022 16H SYN 065 41H A 108 6CH I 
023 17H ETB 066 42H B 109 6DH m 
024 18H CAN 067 43H c 110 6EH n 

~ 025 19H EM 068 44H D 111 6FH 0 

026 lAH SUB 069 45H E 112 70H p 
027 IBH ESCAPE 070 46H F 113 71H q 
028 ICH FS 071 47H G 114 72H r ..... 029 IDH GS 072 48H H 115 73H s 
030 lEH RS 073 49H I 116 74H t 

031 lFH us 074 4AH J 117 75H u 
032 20H SPACE 075 4BH K 118 76H v .... 
033 21H 076 4CH L 119 77H w 
034 22H 077 4DH M 120 78H x 
035 23H # 078 4EH N 121 79H y 

~ 036 24H s 079 4FH 0 122 7AH z 
037 25H % 080 50H p 123 7BH { 
038 26H & 081 51H Q 124 7CH I 
039 27H 082 52H R 125 7DH } .... 040 28H ( 083 53H s 126 7EH 
041 29H ) 084 54H T 127 7FH DEL 
042 2AH 085 55H u 

~ 
Dec=decimal, Hex=hexadecimal(H), CHR=character, LF=Line Feed, • FF=Form Feed, CR=Carriage Return, DEL=Rubout 

... 



~ 
I 

Non-ASCII 
Character Codes 

flllil 

Dec HeH Chr Dec HeH Chr Dec HeH Chr 

128 80 ii 158 9E u 188 BC ! ~ 
129 81 A 159 9f ij 189 BO n 
llO 82 ~ 160 RO 190 BE 8! 
131 83 t 161 Rl 191 Bf 8 

i-. 132 B4 N 162 R2 ¢ 192 co i. 
133 B5 0 163 R3 [. 193 Cl 
134 B6 ii 164 R4 § 194 [2 
135 B7 8 165 RS • 195 C3 v 
136 BB a 166 R6 en 196 C4 f 
137 B9 i 167 R7 JJ 197 [5 ~ 

13B BR 8 16B RB 8 19B [6 6 ~ 
I , 

139 BB ii 169 R9 @ 199 C1 « 
140 BC 8 170 RR 1M 200 CB » 

41 80 f; 171 RB 201 C9 ~ 
42 BE e 172 RC 202 CR SP I I 

43 Bf e 173 RD =-= 203 CB R 
44 90 e 174 RE f( 204 cc fi f' 45 91 ~ 175 Rf B 205 co ii 
46 92 176 BO 00 206 CE IE 
47 93 177 81 :!: 207 Cf m 
4B 94 17B B2 208 DO !-II 

49 95 "i 179 B3 209 01 
50 96 n IBO 84 ¥ 210 02 .. 
51 97 0 1B1 85 JJ 211 03 " ~ 

52 98 0 1B2 B6 ~ 212 04 
153 99 6 183 B7 I 213 05 
154 9R () 184 88 n 214 06 .... ~ 
155 9B 0 185 89 11 215 07 0 

I 

156 9[ u 186 BR I 216 08 g 
157 9D u 187 BB ! ,_.. 

,.... 

• ,.. 

~ 



-
~ 

1.-i 

~ 

~ 

~ 

.... 

~ 

;111111\ 

l'!lo1l't 

..., 

-

Operational 
Errors 

Appendix B: Error Codes 
and Error Messages 

Error 
Code Message 

2 

3 

4 

5 

6 

7 

8 

NEXT WITHOUT FOR 

A variable in a NEXT statement does not correspond to any pre­
viously executed, unmatched FOR variable. 

SYNTAX ERROR 

A line is encountered that contains some incorrect sequence of 
characters (such as an unmatched parenthesis, a misspelled com· 
mand or statement, or incorrect punctuation). 

RETURN WITHOUT GOSUB 

A RETURN statement is encountered for which there is no previ· 
ous, unmatched GOSUB statement. 

OUT OF DATA 

A READ statement is executed when there arc no DATA state· 
ments with unread data remaining in the program. 

ILLEGAL FUNCTION CALL 

A parameter that is out of range is passed to a math or string 
function . This error may also occur as the result of a negative or 
unreasonably large subscript. 

OVERFLOW 

The result of a calculation is too large to be represented in 
Microsoft BASIC's number format. If underflow occurs, the result 
is zero and execution continues without an error. 

OUT OF MEMORY 

A program is too large, has too many FOR loops or GOSUBs, too 
many variables, or expressions that arc too complicated . 

UNDEFINED LABEL 

A line referenced in a GOTO, GOSUB, IF ... THEN[ ... ElSE), or 
DELETE statement does not exist. • 



• 

Microsoft BASIC Interpreter 

9 SUBSCRIPT OUT OF RANGE 

Caused by one of three conditions: 

1. An array element is referenced with a subscript that is out­
side the dimensions of the array. 

2. An array element is referenced with the wrong number of 
subscripts. 

3. A subscript is used on a variable that is not an array. 

10 DUPLICATE DEFINITION 

Caused by one of three conditions: 

I. Two DIM statements are given for the same array. 

2. A DIM statement is given for an array after the default dimen­
sion of 10 has been established for that array. 

3. An OPTION BASE statement has been encountered after an 
array has been dimensioned by either default or a DIM state­
ment. 

11 DIVISION BY ZERO 

~ 
I : 

~ I , 

Caused by one of two conditions: ~ 

12 

I. A division by zero operation is encountered in an expression. 
Machine infinity with the sign of the numerator is supplied as ,..... 
the result of the division. 

2. The operation of raising zero to a negative power occurs. 
Positive machine infinity is supplied as the result of the ex- ~ 

ponentiation, and execution continues. 

ILLEGAL DIRECT 

A statement that is illegal in immediate mode is entered as an im­
mediate mode command. For example, DEF FN . 

r 



13 

14 

15 

16 

Error Messages 

1YPE MISMATCH 

A string variable name is assigned a numeric value or vice versa; 
a function that expects a numeric argument is given a string ar­
gument or vice versa. This error can also be caused by trying to 
SW AP single precision and double precision values. 

OUT OF HEAP SPACE 

The Macintosh heap is out of memory. The situation may be 
remedied by allocating more space for the heap with the CLEAR 
statement. This is described in "CLEAR" in Chapter 7, "BASIC 
Reference." 

STRING TOO LONG 

An attempt was made to create a string that exceeds 32, 76 7 char­
acters. 

STRING FORMULA TOO COMPLEX 

A string expression is too long or too complex. The expression 
should be broken into smaller expressions. 

17 CAN'T CONTINUE 

18 

19 

20 

An attempt is made to continue a program that: 

1. Has halted due to an error 

2. Has been modified during a break in execution 

3. Does not exist 

UNDEFINED USER FUNCTION 

A user-defined function is called before the function definition 
(DEF statement) is given. 

NO RESUME 

An error-handling routine is entered, but it contains no RESUME 
statement. 

RESUME WITHOUT ERROR 

A RESUME statement is encountered before an error-trapping 
routine is entered. 

• 



• 

Microsoft BASIC Interpreter ~ 
i I 

21 UNPRINTABLE ERROR 

An error message is not available for the error condition which 
exists. This is usually caused by an ERROR statement with an un- i--t 

22 

23 

defined error code. 

MISSING OPERAND 

An expression contains an operator without a following operand. 

LINE BUFFER OVERFLOW 

An attempt has been made to input a line that has too many char­
acters. 

26 FOR WITHOUT NEXT 

29 

30 

A FOR statement is encountered without a matching NEXT state­
ment. 

WHILE WITHOUT WEND 

A WHILE statement is encountered without a matching WEND 
statement. 

WEND WITHOUT WHILE 

A WEND statement is encountered without a matching WHILE 
statement. 

35 UNDEFINED SUBPROGRAM 

A subprogram is called but is not in the program. 

36 SUBPROGRAM ALREADY IN USE 

A subprogram is called that has been previously called, but has 
not been ended or exited. Recursive subprograms are not per­
mitted. 

37 ARGUMENT COUNT MISMATCH 

38 

The number of arguments in a subprogram CALL statement is not 
the same as the number in the corresponding SUB statement. 

UNDEFINED ARRAY 

An array was referenced in a SHARED statement before it was 
created . 

~ 
I ! 

r 



Disk Errors 

Error Messages 

Error 
Code Message 

50 

51 

52 

53 

FIELD OVERFLOW 

A FIELD statement is attempting to allocate more bytes than 
were specified for the record length of a random access file. 

INTERNAL ERROR 

An internal malfunction has occurred in Microsoft BASIC. Report 
to Microsoft the conditions under which the message appeared. 

BAD FILE NUMBER 

A statement or command references a file with a file number that 
is not OPEN or is out of the range of file numbers specified at 
initialization. 

FILE NOT FOUND 

A FILES, LOAD, NAME, or KILL command or OPEN statement 
references a file that does not exist on the current disk. 

54 BAD FILE MODE 

55 

57 

58 

An attempt was made to: 

I. Use PUT, GET, or LOF with a sequential file. 

2. LOAD a random access file. 

3. Execute an OPEN statement with a file mode other than I, 0, 
or R. 

FILE ALREADY OPEN 

A sequential output mode OPEN is issued for a file that is al­
ready open or a KILL is given for a file that is open. 

DEVICE 1/0 ERROR 

An 110 error occurred during a disk 1/0 operation. It is a fatal er­
ror; i.e., the operating system cannot recover from the error. 

FI LE ALREADY EXISTS 

The filename specified in a NAME statement is identical to a 
filename already in use on the disk. • 



• 

Microsoft BASIC Interpreter 

61 DISK FULL 

Afl disk storage space is in use. 

62 INPUT PAST END 

~ 
I \ 

An INPUT statement is executed after all the data in the file ~ 
has been INPUT, or for a null (empty) file. To avoid this error, 
use the EOF function to detect the end-of-file. 

63 BAD RECORD NUMBER 

In a PUT or GET statement, the record number is either greater 
than the maximum allowed or equal to zero. ~ 

64 BAD FILE NAME 

An illegal form (e.g., a filename with too many characters) is 
used for the filespec with a LOAD, SA VE, or KILL command or an 
OPEN statement. 

67 TOO MANY OPENED FILES 

An attempt is made to create a new file (using SA VE or OPEN) 
when all directory entries are full. 

68 DEVICE UNAVAILABLE 

70 

The device that has been specified is not available at this time. 

PERMISSION DENIED (DISK WRITE PROTECTED) 

The disk has a write protect feature, or is a disk that cannot be 
written to. 

74 UNKNOWN VOLUME 

A reference was made to a volume which has not been mounted. 

j 

~ 
i ' 

~ 
I , 

To mount another volume in the internal drive while Microsoft r 
BASIC is active, press Command-Shift- I. To mount another 
volume in the external drive, press Command-Shift-2. 

69, 71-73, 75-255 UNPRINTABLE ERROR 

'lbere is no error message for the error that exists . 

~ 
I 



1!11111 

.... 
,.... 

~ 

~ 

""''1 

,_.... 

... 

... 
i-.. 

~ 

,_. 

~ 

,.., 

Appendix C: Microsoft 
BASIC Reserved Words 

The following is a list of reserved words used in Microsoft BASIC on the 
Macintosh. If you use these words as variabk names, a syntax error will 
be generated . 

ABS DEFDBL FRAMEPOLY 
ALL DEFINT FRAM ERECT 
AND DEFSNG FRAMEROUNDRECT 
APPEND DEFSTR FRE 
AS DELETE 
ASC DIALOG GET 
ATN DIM GETPEN 

GOSUB 
BACKPAT EDIT GOTO 
BASE ELSE 
BEEP END HEXS 
BREAK EOF HIDECURSOR 
BUTTON EQV HIDEPEN 

ERASE 
CALL ERASEARC IF 
CDBL ERASEOVAL IMP 
CHAIN ERASEPOLY INITCURSOR 
CHRS ERAS ERECT INKEYS 
CINT ERASEROUNDRECT INPUT 
CIRCLE ERL INSTR 
CLEAR ERR INT 
CLOSE ERROR INVERT ARC 
CLS EXIT INVERTOVAL 
COMMON EXP INVERTPOL Y 
CONT INVERTRECT 
cos FIELD INVERTROUNDRECT 
CSNG FILES 
CSRLIN FILLARC KILL 
CVD FILLOVAL 
CVDBCD FILLPOLY I.BOUND 
CVI FILLRECT I.COPY 
CVS FILLROUNDRECT LEFTS 
CVS BCD FIX LEN 

FN LET 
DATA FOR LIBRARY 
DATES FRAMEARC LINE 
DEF FRAMEOVAL LI NETO • 



Microsoft BASIC Interpreter ~ 
I '1 

~ 

LIST PAINTROUNDRECT STATIC 
LUST PEEK STEP 
LOAD PENMODE STOP ~ 
LOC PENNORMAL STRS 
LOCATE PENPAT STRINGS 
LOF PENSIZE SUB 

~ LOG PICTURE SWAP I 

LPOS POINT SYSTEM 
LPRINT POKE 
I.SET POS TAB ~ 

PRESET TAN 
MENU PRINT TEXTFACE 
MERGE PSET TEXTFONT ~ 
MIDS PTAB TEXTMODE I 

MK.OS PUT TEXTSIZE 
MKIS THEN 
MKSS RANDOMIZE TIME 
MOD READ TIMER 
MOUSE REM TO 
MOVE RESET TROFF ~ ' ' 

MO VETO RESTORE TRON 
RESUME 

NAME RETURN UBOUND ri. NEW RIGHTS UCASES 
NEXT RND USING 
NOT RSET USR r-1 

RUN 
OBSCURECURSOR VAL 
OCTS SAVE VARPTR 
OFF SCROLL ~ 
ON SETCURSOR WAIT 
OPEN SGN WAVE 
OPTION SHARED WEND ~ 
OR SHOWCURSOR WHILE 
OUTPUT SHOW PEN WIDTH 

SIN WINDOW r-'I 
PAINT ARC SOUND WRITE I 

PAINTOVAL SPACES 
PAINTPOLY SPC XOR 

i--PAINTRECT SQR 

~ 

• ,.._ 

~ 
I 

I 



Double precision 

Appendix D: Internal 
Representation of Numbers 

Microsoft BASIC on the Macintosh features two versions of the Inter· 
preter: one has the decimal math pack, the other the binary. This choice 
provides maximum flexibility in the design of your programs. For com· 
plete details on the differences and advantages of the two versions, see 
"Choosing Between the Two Versions of Microsoft BASIC" in Chapter 3, 
"Using the Microsoft BASIC Interpreter." In the tables that follow, internal 
representation is expressed in hexadecimal numbers. 

Integers in Both Versions 
Integers are represented by a 16-bit 2's complement signed binary 
number. Integer math is identical in both binary and decimal versions of 
Microsoft BASIC. 

External Representation 

-32768 
- 1 
0 
1 
32767 

Internal Representation 

8000 
FFFF 
0000 
0001 
7FFF 

Decimal Math Version 
With the decimal math pack, the default type for variables is double preci· 
sion, and built-in mathematical functions perform in double precision as 
well. 

Eight bytes as follows: One bit sign followed by 7 bits of biased exponent 
followed by fourteen digits of mantissa, 4 bits each. If the sign bit is 0, 
the number is positive. If the sign bit is l, the number is negative. The 
unbiased exponent (biased exponent - 64 ) is the power of 10 by which 
the mantissa is to he multiplied. The mantissa represents a number 
between 0.10000000000000 and 0.99999999999999. For example, 
- .00000123456789 would he represented by the hexadecimal number 
BB 12345678900000. Positive numbers may be represented up to but not 
including l OM. The smallest representable number is l o-CJ-t. Decimal dou­
ble precision numbers arc represented with up to 14 digits of precision. • 



• 

Microsoft BASIC Interpreter 

Single precision 

Double precision 

External Representation Internal Representation 

- 9. 99999999999990+ 62 
-10-64 
() 

10-64 
9. 99999999999990 + 62 

Ff 99999999999999 
8110000000000000 
OOxxxxxxxxxxxxxx 
0110000000000000 
7F99999999999999 

Internally, single precision numbers are represented identically to double 
precision numbers, except they occupy four bytes, and the mantissa is 
three bytes. They represent numbers with up to six digits of precision. 

External Representation Internal Representation 

-9.99999E+62 
- lE-64 
() 

lE-64 
9.99999E+62 

FF999999 
81100000 
OOxxxxxx 
01100000 
7F999999 

Binary Math Version 

With the binary math pack, the default type for variables is single preci­
sion, and built-in mathematical functions perform in single precision or 
double precision. Single precision is much faster but less precise. 

Eight bytes as follows: One bit sign followed by 11 bits of biased exponent 
followed by 53 bits of mantissa (including the implied leading bit which 
has a value of 1 ). If the sign bit is 0, the number is positive. If the sign 
bit is 1, the number is negative. The unbiased exponent (biased exponent 
- 3FF hex or - 1023 decimal) is the power of 2 by which the mantissa is 
to be multiplied. The mantissa represents a number greater than or equal 
to 1 and less than two. Positive numbers may be represented up to but 
not including 1.79 • 10.'\oH. The smallest representable number is 2.23• 
10-.'\oH. Binary double precision numbers are represented with up to 15.9 
digits of precision. 

External Representation Internal Representation 

1 
- 1 
0 
10 
0.1 

3FFOOOOOOOOOOOOO 
BFFOOOOOOOOOOOOO 
0(l0xxxxxxxxxxxxx 
4024000000000000 
3FB999999999999A 

I ', 

~ 
I 

~ 
I 

~ 
I , 

~I 
I 



- Single precision 

-

-

Representation of Numbers 

Four bytes as follows: One bit sign followed by 8 bits of biased exponent 
followed by 24 bits of mantissa (including the implied leading bit which 
has a value of 1 ). If the sign bit is 0, the number is positive. If the sign 
bit is 1, the number is negative. The unbiased exponent (biased exponent 
- 7F hex, - 127 decimal) is the power of 2 by which the mantissa is to 
be multiplied. The mantissa represents a number greater than or equal to 
1 and less than 2. Positive numbers may be represented up to but not in­
cluding 3.4 • 10·'\8 . The smallest representable number is 1.18 • 10 - .iH. 

Binary single precision numbers are represented with up to 7.2 digits of 
precision. 

External Representation Internal Representation 

-1 
0 
10 
0.1 

3F800000 
BF800000 
OOyxxxxx 
41200000 
3DCCCCCD 

In the examples above, y is any hex digit less than or equal to 7, and x is 
any hex digit. 

• 



- Appendix E: 
Mathematical Functions 

The derived functions that are not intrinsic to Microsoft BASIC can be cal­
culated as follows. 

Mathematical 
Function 

SECANT 

COSE CANT 

COTANGENT 

INVERSE 
SINE 

INVERSE 
COSINE 

INVERSE 
SECANT 

INVERSE 
COSE CANT 

INVERSE 
COTANGENT 

HYPERBOLIC 
SINE 

HYPERBOLIC 
COSINE 

HYPERBOLIC 
TANGENT 

Microsoft 
BASIC Equivalent 

SEC(X)= l/COS(X) 

CSC(X)= l/SIN(X) 

COT(X)= 1/TAN(X) 

ARCSIN(X)=ATN(X/SQR(-XX+ 1 )) 

ARCCOS(X)=-ATN (X/SQR(-XX+ 1)) 
+ 1.5708 

ARCSEC(X)=ATN(X/SQR(XX-1 )) 
+SGN(SGN(X )-1)1.5708 

ARCCSC(X)=ATN(X/SQR(XX-1 )) 
+(SGN(X)-1 )1.5708 

ARCCOT(X)=ATN(X)+ 1.5708 

SINH(X)=(EXP(X)-EXP(-X))/2 

COSH( X )=( EXP(X )+EXP( -X) )/2 

TANH(X )=(EXP(-X)JEXP(X) 
+ EXP(-X))2+ I 

• 



Microsoft BASIC Interpreter r 

HYPERBOLIC SECH(X)=2/(EXP(X)+EXP(-X)) 
SECANT 

HYPERBOLIC CSCH(X)=2/(EXP(X)-EXP(-X)) 
~ 

COSE CANT 

HYPERBOLIC COTH(X)=EXP(X)/(EXP(X)-EXP(-X))2+ l 
,.. 

COTANGENT 

INVERSE ARCSINH(X)=LOG(X +SQR(XX + l )) ~ 
HYPERBOLIC SINE 

INVERSE ARCCOSH(X)=LOG(X+SQR{XX-1) r-1 HYPERBOLIC COSINE I 

INVERSE ARCTANH(X)=LOG(( l +X)/( 1-X))/2 
HYPERBOLIC TANGENT 

INVERSE ARCSECH(X)=LOG((SQR(-XX +I)+ l )IX) 
HYPERBOLIC SECANT ~ 

INVERSE ARCCSCH(X) 
HYPERBOLIC COSECANT =LOG((SGN(X)SQR(XX+ I)+ I )IX ~ 

l 

INVERSE ARCCOTH(X)=LOG((X+ l )/{X-1 ))/2 
HYPERBOLIC COTANGENT 

r-t 
I 

r--
' 

• • fllll! 

r 



-
Appendix F: Access to 
Macintosh ROM Routines 

Microsoft Basic for the Macintosh gives you access to many of the internal 
functions of the Apple QuickDraw .graphics package that resides in the 
Macintosh ROM as part of the Mac's Toolhox. These functions provide 
support for cursor handling, font selection, and drawing of a variety of 
shapes and patterns. 

Introduction 
=--'1'============================================================================================= 

Passing 
parameters: 

Using the 
VARPTR function: 

Specifying 
screen coordinates: 

To use ROM functions, list the name and any parameters after the CALL 
statement. For example: 

CALL MOVETO (250, 100) 

Many of the routines require that you pass function parameters as in­
tegers. You can declare integers in BASIC in one of two ways. An integer 
variable can he specified hy adding a percent symbol to the end of the 
variable name or hy using the DEFINT statement. For example, if a pro­
gram statement uses the variable RECTANGLE%, it will he treated as an 
integer variable. Alternativc:ly, you can include the statements DEFINT R 
or DEFINT A-Z at the beginning of your program. Either of these state­
ments causes the variable RECTANGI.E to be treated as an integer. 

Many of the routines use the VARPTR function, usually referencing an 
array in the form VARPTR(INTEGERCX. (0)). You must dimension and as­
sign values to the array INTEGER% (0) through INTEGER%(n) prior to 
the function call. The number of necessary elements varies with the par­
ticular Toolbox call. 

Many of the graphics functions also require screen coordinates. Screen 
coordinates arc 0 pixel" locations on the output window. (A pixel is the 
smallest displayable point on the screen). The screen coordinates 0,0 
refer to the upper-left corner of the output window. The first number 
represents the horizontal coordinate and the second the vertical. 

In the following descriptions. the names of Toolbox calls are shown in • 
hold capital letters. Variables arc shown in italics. Any non-reserved name : 
can he used for the variables. 



II 

Microsoft BASIC Interpreter 

Changing 
the text font: 

Text Appearance 
The routines supported by Microsoft BASIC allow you to select text 
characteristics. The default font attributes that BASIC uses are: 

Font: 

Size: 

Face: 

Mode: 

Geneva 

12 

0 (plain text) 

O (copy) 

These attributes can be changed with the following calls: 

CALL TEXTFONT (font) 

TI1is sets the font used for all text output to the screen. To use a specific 
font, place the corresponding font number in parentheses in the ~ 
TEXTFONT statement. The available fonts depend upon those installed 
in the System file. You can use the Font Mover (from your Mac system 
disk) to add or delete fonts to and from your BASIC disk. The following .~ 
table shows the font numbers associated with specific fonts: 

Font No. Font Name Remarks 

() System font Default font is Chicago. 
Application font Default application font is 

Geneva - size I 2. • 
2 New York 
3 Geneva 
4 Monaco Monospaced (non-

proportional) font. 
5 Venice 
6 London 
7 Athens 
8 San Francisco 
9 Toronto 

10 Seattle 
I I Cairo 

*The default application font was changed from New York to Geneva on 
the Finder released May 7, 1984. 



Changing 
the text size: 

Changing 
the type face: 

Macintosh ROM Routines 

CALL TEXTSIZE (size) 

This sets the point size of the current font in use. Each font has a recom­
mended size that will yield the best results. (You can use the Font Mover 
to check the types and sizes for fonts on your BASIC disk. You can also use 
this to add or delete fonts. ) If another size is specified, the font will be 
scaled. 

CALL TEXTFACE (face) 

This sets the character style (bold, italic, underline, outline, shadow, con­
densed, or extended) of the current font. The attribute is selected 
by setting the appropriate bit in the face parameter. 

The following table lists the bit for each attribute and its corresponding 
value: 

Value Attribute 

O Plain text 
I Bold 
2 Italic 
-I Underlined 
8 Outlined 

16 Shadow 
32 Condensed (less space between characters) 
64 Extended (more space between characters) 

Text characteristics can be combined by adding values. For example, 
while TEXTFACE ( 2) makes text italic and TEXTFACE ( 8) makes it out­
lined, TEXTFACE ( 10) makes it both outlined and italic. Any combination 
of attributes can be added together and used as a face argument to 
TEXTFACE. 

• 



• 

Microsoft BASIC Interpreter ~ 

Changing CALL TEXTMODE (mode) 

the text mode: 

Moving the pen: 

This sets the mode for displaying text on the screen. Mode 0 is the de­
fault mode and causes the text to replace whatever is on the screen. 
Mode I causes the text output to be ORed with the screen, while mode 2 
causes it to be XO Red. Specifying 3 uses the BIC (Black is Changed) 
transfer mode. 

Pen and Line-Drawing Routines 

The PEN is the graphics point used for drawing lines, shapes, and text. 
The pen has four characteristics: location, size, pattern, and mode. These 
affect only the QuickDraw routines, not the standard BASIC LINE and 
CIRCLE statements. 

CALL GETPEN ( VARPTR(pe11locatio11% ( O))) 

This returns the currt:nt location of the graphics pen. The GETPEN 
( VARPTR(pe11localio11% ( 0))) function returns the vertical coordinate. 
The GETPEN (VARPTR(jJenlocatio11% (I))) function returns the horizon­
tal coordinate. 

CALL MOVETO (x ,J') 

This moves the pen to the coordinates specified by the x and y ,-. 
coordinates. 

CALL MOVE (.wlelta ,ydelta ) ~ 

This moves the pen from the current location to the relative position 
specified .xdelta and ydelta. Positive values move the pen to the right ~ 
and down and negative values to the left and up. For example, if the pen 
is at the coordinates ( 20,20) you can move it to ( I 0,25) by specifying 
CALL MOVE (-10,5 ). i-iit 

r 



- Drawing a line: 

Macintosh ROM Routines 

CALL LINETO (x,y) 

This draws from the current pen location to the: coordinates specified in 
parentheses. The line will he drawn using the current pen size, pattern, 
and mode. 

CALL LINE (xdelta, ytlelta ) 

LINE is like LINETO except that the coordinates are relative to the 
current pen location. LINE also uses the current characteristics of the 
pen. 

CALL PENSIZE (witlth,height) 

This defines the dimensions of the pen. All subsequent calls to LINE, 
LINETO, and framed shapes will be drawn using this pen size . 

• 



• 

Microsoft BASIC Interpreter 

Pen Patterns and Transfer Modes 

The pen draws in a pattern. This pattern can be set with: 

CALL PENPAT (VARPTR(J>attem% (0))) 

for drawing all graphic output, where pattem% ( 0) through pattenz')(, ( 3) 
define an 8-byte pattern. Since BASIC uses 2-byte integers, the first ele­
ment of the integer array defines the bit image of the first two lines of the 
pattern. The next element contains the next two lines, and so forth. 

The pattern can be defined on graph paper and translated into a binary se­
quence with a black pixel represented by a I bit and a white pixel by a O 
bit. 

CALL PENMODE (mode) 

This sets the mode that determines how subsequent graphics calls will af­
fect any existing images on the screen. One of eight modes can be speci­
fied, as listed in the following table: 

Mode No. Operation 

8 Copy 

9 OR 

IO XOR 

11 BIC 

12 Not Copy 

1.3 Not OR 

14 Not XOR 

15 Not BIC 

Description 

Pen pattern replaces the contents of 
the screen (default mode). 
Pen pattern ORs with the contents of the 
screen (overlay mode). 
Pen pattern XORs with the contents of 
the screen (invert). 
Pixels of the pattern change to white. 
White pixels of the pen pattern will not 
affect the screen contents (Black Is 
Changed mode). 
Same as mode 8, except that the pen 
pattern is inverted before the operation. 
Same as mode 9, except that the pen 
pattern is inverted before the operation. 
Same as mode I 0, except that the pen 
pattern is inverted before the operation . 
Same as mode I I, except that the pen 
pattern is inverted before the operation. 



-

Resetting the pen: 

Hiding the pen: 

Making the 
pen visible: 

Setting 
the background: 

Macintosh ROM Routines 

CALL PENNORMAL 

This restores the characteristics of the pen to the default setting for size 
( I pixel by I pixel ), pattern (black), and mode (copy). The location of 
the pen is not changed. 

CALL HIDEPEN 

This turns off the visible output of the pen. Lines or shapes can still be 
drawn, but will not be seen on the screen. 

CALL SHOWPEN 

This turns on the visible output of the pen. Used after a previous call to 
HIDEPEN. 

CALL BACKPAT(VARPTR(pattem% (0))) 

This sets the background pattern used for the BASIC output window. (Sec 
the explanation of patterns in PENPA T.) To draw the screen prop-
erly with the new pattern, it is advisable to use the CLS statement after 
the call is made. 

Drawing Rectangles, 
Ovals, Arcs, and Polygons 

The following routines all involve specifying the top, left, bottom, and 
right hounds of a rectangular area. There arc five possible operations that 
can be used to draw these shapes. The pen location is not changed after a 
call to any of these operations. 

FRAME 

PAINT 
ERASE 

This draws an outline of the geometric shape. The 
outline is affected by the current height, width, and pattern 
of the pen. 

This paints the shape with the current pen pattern. 

This paints the shape with the current background pattern. 

INVERT This inverts the pixels enclosed by the shape (black 
pixels arc changed to white and white to black) . 

FILL This fills the shape with the supplied pattern. • 



• 

Microsoft BASIC Interpreter 

Drawing 
rectangles: 

Drawing rounded 
rectangles: 

Drawing ovals: 

The following routines are designed to draw rectangles: 

CALL FRAMERECT (V ARPTR( rectangle% ( O))) 

CALL PAINTRECT (VARPTR(rectangle% (0))) 

CALL ERASERECT (VARPTR(rectangle% (0))) 

CALL INVERTRECT (VARPTR( rectangle% ( 0))) 

CALL FllLRECT (VARPTR( rectangle% ( O) ), 
VARPTR(pattern% ( 0))) 

Note Where rectangle % ( 0) through rectangle % ( 3) define the 
top, left, bottom, and right boundaries of the rectangle. 

The following routines draw rectangles with rounded corners. These are 
often used for selection boxes on Macintosh applications. The ova/width 
and ova/height variables define the diameter of the curve of the round 
corner of the rectangle. 

CALL FRAMEROUNDRECT (VARPTR(rectangle% (0)), 
ovalwidth,ovalheight) 

CALL PAINTROUNDRECT (VARPTR(rectangle% (0)), 
ovalwidth,ovalheight) 

CALL ERASEROUNDRECT (VARPTR(rectangle% (0)), 
ovalwidth,ovalheight) 

CALL INVERTROUNDRECT (VARPTR( rectangle% ( O) ), 
ovalwidth,ovalheight) 

CALL FILLROUNDRECT (VARPTR(rectangle% (O)),ovalwidth, 
ovalbeight,VARPTR(pattern% ( 0))) 

These calls draw ovals that fit within the rectangle area specified. To 
draw a circle, simply make the distance between the top and bottom edge 
the same as that between the left and right edge . 

r 



Drawing arcs: 

Drawing polygons: 

Macintosh ROM Routines 

CALL FRAMEOV AL (V ARPTR( rectangle% ( O))) 

CALL PAINTOVAL (VARPTR(rectangle% (0))) 

CALL ERASEOVAL (VARPTR(rectangle% (0))) 

CALL INVERTOV AL (VARPTR( rectangle% ( O))) 

CALL FILLOVAL (VARPTR(rectangle% (0)), 
V ARPTR(pattern% ( o))) 

These procedures allow you to draw arcs and wedge-sections of ovals. 
The arc is described using the oval that fits inside the rectangular area you 
specify. The startangle is where the arc begins and arcangle indicates 
the extent of the arc. Angles may be in positive or negative degrees. Pos­
itive angles are drawn to clockwise (to the right), and negative angles 
are counter-clockwise. Zero degrees is at the 12 o'clock position. 

CALL FRAMEARC(VARPTR( rectangle% ( O) ),startangle,arcangle) 

CALL PAINTARC(V ARPTR( rectangle% ( O) ),startangle ,arcangle) 

CALL ERASEARC(V ARPTR{ rectangle% ( 0) ),startangle ,arcangle) 

CALL INVERTARC(VARPTR( rectangle% ( 0) ),startangle ,arcangle) 

CALL FILLARC(V ARPTR( rectangle% ( 0) ), 
startangle ,arcangle .V ARPTR(pattern% ( O))) 

Angles are measured relative to the rectangle border. For example, an 
arc from Oto 45 degrees will be drawn from the top to an imaginary line 
drawn from the center to the top right comer of the rectangle (even if 
the rectangle is not square). Only the FRAMEARC call actually draws an 
arc. All other operations draw the wedge-shaped portion of the oval 
described by the arc. 

The following routines are designed to draw polygons. A polygon is a se­
quence of connected lines. The variable polygon% that holds the 
description of the polygonal figure is stored in an integer array. 

If the integer array polygon% holds the description, the first element of 
the array, polygon% (0), should hold the number of bytes contained in 
the entire array. This will be two bytes per element, and must include 
the two bytes for polygon% (0 ). The variables polygon% ( 1) through • 
polygon% ( 4) will hold the top, left, bottom, and right coordinates of the 
rectangle that frames the polygonal image. Each subsequent pair of array 
elements describes the y-coordinate (odd-numbered elements) and x-
coordinate (even-numbered elements) that will define the "corners" of 



Microsoft BASIC Interpreter 

Hiding the 
mouse cursor: 

Making the mouse 
cursor visible: 

• 

the figure. Note the reversal of the traditional Cartesian x,y coordinate sys­
tem for these ROM calls; they axis is defined before the x axis. 

CALL FRAMEPOLY (V ARPTR(polygon% ( o))) 

CALL PAINTPOLY (VARPTR(polygon% (0))) 

CALL ERASEPOLY (VARPTR(polygon% (0))) 

CALL INVERTPOLY (VARPTR(polygon% (0))) 

CALL FILLPOLY (V ARPTR(polygon% ( O) ),V ARPTR(pattern% ( 0))) 

Mouse Cursor Handling Routines 

CALL INITCURSOR 

This resets the mouse cursor to its standard arrow shape and makes it visi­
ble if it is not. 

CALL HIDECURSOR 

This turns off the mouse cursor so that it is not visible. 

CALL OBSCURECURSOR 

OBSCURECURSOR is exactly like HIDECURSOR except that the mouse 
cursor is only hidden until the mouse is moved. 

CALL SHOWCURSOR 

This makes the mouse cursor visible. This is the opposite of 
HIDECURSOR. 

r 



Building a 
mouse cursor: 

Macintosh ROM Routines 

CALL SETCURSOR(V ARPTR( cursor°ki ( o))) 

This sets the mouse cursor to a 16 by 16-bit image defined in the integer 
array named iQ the CALL statement. The parameters are broken down 
into three major areas. The first sixteen elements of the integer array 
describe the bit pattern (shape) of the cursor. 

Note Where cursor % ( 0) through cursor % ( I 5) is the cursor 
data, cursor % ( 16) through cursor % ( 31 ) is the cursor 
mask, cursor % ( 32) is the vertical coordinate of the hot 
spot, and cursor % ( 33) is the horizontal coordinate of the 
hot spot. 

To check the outcome of the various operations described above, check 
the table below for screen results. 

Cursor Data Cursor Mask Resulting Pixel on the Screen 

0 
1 
0 

1 
1 
0 
0 

White 
Black 
Same as pixel under the cursor 
Inverse of the pixel under the cursor 

The next sixteen integers define the cursor mask. The appearance of the 
cursor pattern is dependent upon the cursor data bit and the mask bit 
(and the pixel under the cursor if the mask bit is O ), as shown in the pre­
vious table. 

The last two elements in the cursor array define the vertical ( y) and hor­
izontal (x) location of the "hot spot," that is, the active area of the cursor 
image that determines where the cursor is pointing to. The hot spot is 
not a pixel location, but the intersection of the corners between the pix­
els. The top left corner of the top left pixel is coordinate ( 0,0 ); the top 
right corner of the top right pixel is ( 16,0 ); the bottom right corner of 
the bottom right pixel is ( 16, 16 ). 

SETCURSOR does not affect the cursor status. If the cursor is currently 
hidden, it will set to the shape defined, but will remain hidden. If it is 
visible, the change will be seen immediately. 

• 



-

-

Appendix G: 
A Sample Program 

Here is a closer look at Picture, the program you ran in the practice 
session. 

IA) DEFINT P-Z 
I B] 011'1 P(2500) 
IC) CLS 
ID I LINE(0,0)-( 120, 120),.BF 
IE) ASPECT= .1 
IFJ WHILE ASPECT<20 
I GI CIRCLE(60,60),55,l0,.,ASPECT 
IH) ASPECT= ASPECT• 1.4 
II] WEND 
1J I GET (0,0)-( 127, 127),P 
I K J Check Mouse: 
ILi IF MOUSE(O)•O THEN Checkt1ouse 
[M) IF ABS(X-t10USE( 1)) > 2 THEN MovePicture 
(NJ IF ABS(Y-l'10USE(2)) < 3 THEN Checkt1ouse 
[ o) MovePicture: 
IP] PUT(X,Y),P 
IQ] X=l'10USE( 1 ): Y=t10USE(2) 
IRJ PUT(X,Y),P 
( s) GOTO CheckMouse 

The bracketed letters are included for your reference only; they will not 
appear in your listing. 

[A) Sets all variables from P through Z to integer. 

(8) Creates an array of 2500 elements. 

[CJ Erases the output window. 

[ D] Draws a rectangle defined by points ( 0,0) and ( 120, 120 ). 

[ E] Sets the variable ASPECT to 0.1. 

[ F] Repeats the following as long as ASPECT < 20. 

[ G) Draws an ellipse with center ( 60,60 ), radius 55, color 30 (white), 
and an aspect ratio = ASPECT. 

II 



• 

Microsoft BASIC Interpreter 

[ H] Increases the value of ASPECT. 

[I J Exits this loop when ASPECT is > = 20. 

[J] Copies the content of part of the screen to array P. 

[ K] Starts a routine called CheckMouse to check the mouse status. 

(L] Waits for the mouse button to be pressed. 

[ M J If the mouse has moved at least 3 points in the X direction, goes to 
Move Picture. 

[ N] If the mouse has not moved at least 4 points in the Y direction, goes 
back to CheckMouse. 

[ 0] Starts a routine called MovePicturc to move the picture stored in 
array P. 

[PI Erases the picture from the old location. 

[ Q] Sets X and Y to the new coordinates of the mouse. 

[ R J Copies the picture in array P to the new X,Y location. 

[S] Goes back to the CheckMouse routine. 

r-1 

,,.., 

~ 
I 

~ 

.-ii 

~ 

~ 
I 
I 



Appendix H: Questions 
Most Frequently Asked 

There are questions about Microsoft BASIC that are asked more frequently 
than others. This appendix includes answers to these questions. 

How do I do random file 1/0? 

Random files are not stored in ASCII format, so the methods for getting 
data from them and putting data in them are not the same as for ASCII for­
mat sequential files. To create a random file, first give it a name and 
record size by using the OPEN statement. The next statement should be a 
FIELD statement that describes the order and size of the buffer variables. 
Each of these buffer variables is a string variable, whether the data that 
will go in them is string data or numerical data. 

You must never alter these buffer variables with program statements. 
They are intermediate: use them to load and unload data from the files. 
To load the values of working program variables into these buffer vari­
ables, use LSET or RSET, not LET. In order to convert numeric program 
variables into strings that can be put into the buffer variables, use the 
MaKe-Integer-into-a- String, MaKe-a-Single-precision-number-into-a- String or 
MaKe-a-Double-precision-number-into-a- String functions ( MKI S, MKS S, and 
MKDS). 

An example of this process is: 

L~ET AS = MKSS(ASSETS) 

At this point, the value of the numeric variable is in string form and stored 
in the data-file buffer. To store this information, it has to be put into the 
file with the PUT statement. When this is done, the file contains the infor­
mation. 

Remember, in random files if you only write to records l and 3, record 2 
will contain garbage because you have not yet written to it. Useless infor­
mation exists there from previous disk use. You must keep track of what 
records have and have not been written to in order to avoid reading non­
sense from a record to which nothing has yet been written. 

You don't have to close and then reopen a random file to get information 
back out of the file like you do with sequential files. If, however, you • 
want to open a random file to get information out of it, use the OPEN 
statement, define the FIELDs for the buffer variables, and use the GET 
statement to load the right record into the data buffer. Again, you cannot 
use these buffer variables for other purposes in your program. To refer-
ence them, assign them values to working program variables. 



• 

Microsoft BASIC Interpreter 

In addition, if the actual information is not string information, you'll need 
to convert it from the string format of the buffer variable to the variables 
numeric format. To do this, you use the Convert-to-an-Integer, ConVert­
to-a-Single-precision or Con Vert-to-a-Double-precision functions ( CVI, CVS, 
and CVD ). If the data in the buffer is going to be a string in your pro­
gram, you don't need to convert it. For example: 

LET COMPANYS =AS 
LET DEBT# = CVD( BS) 

To close a random file, use the CLOSE statement. 

How do I FIELD a random file record when the list of buffer vari­
ables exceeds the length of a legal program line? 

When the list of buffer variables is long enough to exceed a legal BASIC 
line, use consecutive multiple FIELD statements. In the first FIELD 
statement, deal with the first part of the record. Then, in the second 
FIELD statement, refer to the entire range of records in the first field 
statement as one buffer variable. Then continue your naming of variables. 
For example: 

OPEN R. #4, ACCOUNT.DAT, 14~ 
FIELD #4, 21 AS COMPANYS, 8 AS ACCOUNTNOS, 4 AS 
AS, 4 AS BS, 4 AS CS, 4 AS DS, 4 AS ES, 2 AS FS, 
4 AS Gs. 21 AS STREETS. I 0 AS STREET2 S 

FIELD #4, 86 AS IGNORES, 14 AS II S, 1-i AS IS, 9 
ASJS, 2 AS KS, 2 AS LS, 2 AS MS, 2 AS NS, 2 AS 
OS, 2 AS PS, 2 AS QS, 2 AS RS, 2 AS SS. 2 AS TS 

In the above example. a random file, ACCOUNT.DAT is opened. The first 
field statement describes the first 86 characters in the record. The second 
field statement refers to all the information described in the first field 
statement as IGNORES. The individual buffer variables in the first state­
ment can still he accessed by the names given in the first field statement. 
The second field statement goes on to describe the rest of the buffer vari­
ables in that file . 

,.. 



-

... 

Frequently Asked Questions 

How do I read what I've written in my sequential file? 

If you already have the file opened for either Output mode or Append 
mode, you must first close the file, and then re-open it for Input mode. In 
other words, when you use sequential access, you can have a sequential 
file opened for input only or for output only, but never both at the same 
time. 

How do I use event trapping? 

To be able to use an event trap statement, such as ON MENU. .. GOSUB, 
you must first activate it with the corresponding activation statement 
(in this case MENU ON). 

When the event trap is active, the program will check between the execu­
tion of each program statement for the event. If the event has occurred, 
program control will transfer to the line or label mentioned in the ON 
eventspecifier GOSUB statement. 

My old programs have line numbers. Will I be able to use them in 
this version. 

Yes. This new version of Microsoft BASIC allows lines with alphanumeric 
labels, numbers, or no line specifier at all. 

My program is running slowly. Is there anything I can do about it? 

Check to see if you have a trace executing in a hidden List window. If you 
do, turning the trace off increases program execution speed. Some other 
factors can affect program speed. 

If you have an ON TIMER( n ) event trap active where n is a small time in­
terval, BASIC is slower to execute the program. The SOUND statement 
also slows down a program. Also check your numeric variables. If you are 
using loop counter variables in FOR/NEXT statements, declare them as 
integers wherever possible; this speeds program execution. 

• 



Index 

ABS function, 95 Carriage return, 166, 167, 270, Converting numbers 
Absolute value, 95 271 binary to decimal, 184 
Alphanumeric labels, 77-78 Carriage return characters, 265 decimal to binary, 119 
AND operator, 85 CDBI. function, 104 Copy command, 12, 29 
Append mode, 45 CHAIN statement, 44, 104-105, COS function, 11 5 
Apple menu, 8, 28 113 Creating statements, 103 
Arcs, 295 Changing CSNG function, 116 
Arctangent, 96 pen, 292 CSRLIN function, 11 7 
Argument expressions, 64 pen pattern, 294-295 Cursor 
Arguments, 60 text font, 290 hot spot, 299 
Arithmetic overflow, 84 text size, 291 routines, 298-299 
Array type face, 291 Custom menus, 1 76-178, 197 

boundary functions, 65-66, 161 Character set, 75-76 Cut command, 12, 13, 29 
declaration, 63 Choosing between versions, 23 Cutting and pasting between 
dimensioning, 83, 136 CHR S function, 106 windows, 37 
elements, 63, 83 CINT function, 107 CVD function, 118 
subscripts, 83, 129 CIRCLE statement, 4, 18, 108-109 CVDBCD function, 24, 119 
variables, 1 13, 129 CLEAR statement, 71. 72, 109- CVI function, 118 

ASC function, 95 110 CVS function, 118 
i-.i ASCII Clearing output windows, l 12 CVSBCD function, 24, 119 

code~ 95, 106, 273 CUP:, 41, 55-56 
format, I 04, 179, 233 Clipboard, 37, 41, 55-56, 58 Data segment, 71, 110 

t9lllt Assembly language routines, 1O1, Close command, 29 DAT A statement, 120-121, 227 
259 CLOSE statement, 111-11 2 DATES 

ATN function, 96 CLS statement, I 12 function, 121-122 
Colon as line separator, 77 statement, 121-122 

BACKPAT routine, 295 COMl: Debugging programs, 20, 3 7-38 
BASIC Reserved Words, 281-282 baud-rate, 42 Decimal math pack, 23, 119, 184 
BEEP statement, 97 data-bits, 42 DEF FN statement, 123-124 
Binary math pack, 23, 119, 184 parity, 42 DEFDBL statement, 124-125 
Binary numbers stop-bits, 4 2 DEFINT statement, 82-83, 124-

converting to decimal. 184 Command window, 26-27, 38 125, 289 

~ BREAK OFF statement, 97 Command-period, 97. 192 DEFSNG statement, 124-125 
BREAK ON statement, 97 COMMON statement, 113 DEFSTR statement, 124-125 
BREAK STOP statement, 97 Communications port, 4 2 DELETE statement, 125 
BUTTON Compatibility with other BASICs, Device-independent 1/0, 4, 41-4 3 -. 

function, 98- 1O1 2 Devices 
statement, 98, 101 Conserving memory, 71-7 3 CLIP:, 41 

Constants, 79-80 COMl:, 42 

• CALL statement, 60-61, 101-10 3, CONT statement, 114,. 166 KYBD:, 41 
289 Continue command, 38 LPTI:, 41 



Index 

Devices (continued) 
SCRN:, 41 

DIALOG function, 126-128 
DIALOG OFF statement, 128-129 
DIALOG ON statement, 128-129 
DIALOG STOP statement, 128-

129 
DIM statement, 129-130 
Double precision, 104, 124, 210 
Drawing 

a line, 293 
arcs, 297 
circles, 296-297 
ovals, 296-297 
polygons, 297-298 
rectangles, 296 

EDIT FIELD statement, 130-132 
Edit menu 

Copy command, 29 
Cut command, 29 
Paste command, 29 

Edit mode, 26 
EDITS function, 133 
Editing a program, 12-16, 33, 35-

37 
END statement, 134 
END SUB statement, 62, 246-248 
EOF function, 47, 135 
EQV operator, 85 
ERASE statt!ment, 136 
ERASEARC routine, 297 
ERASEOVAL routine, 297 
ERASEPOL Y routine, 298 
ERASERECT routine, 296 
ERASEROUNDRECT routine, 296 
ERL function, 13 7 
ERR function, 13 7 
Error 

codes, 138, 275-280 
handling, 137, 195, 228 
messages, 275-280 
status, 137 
trapping, 138 

. 
• 

ERROR statement, 138 

Event trapping, 66-70, 97, 100, 
126, 128, 189, 192-194, 
197-199, 254, 305 

EXIT SUB statement, 62, 246-247 
EXP function, 139 
Expression evaluation, 84 
Expressions, 85 
External communications, 42 

FIELD statement, 49, 51, 139-140 
File menu 

Close command, 29 
New command, 28 
Open command, 28 
Print command, 29 
Quit command, 29 
Save As command, 29 
Save command, 29 

FILES statement, 141 
FILESS function, 40, 141-143 
Files 

data, 45 
deleting from disk, 160 
handling, 43 
1/0, 303-304 
protecting, 44, 233 
random, 48-54, 140, 146, 170, 

175, 182, 200, 220, 232, 
303-304 

sequential, 45-48, 135, 157, 
167, 170, 200, 216-217, 
271, 303 

FILLARC routine, 297 
FILLOV AL routine, 297 
FILLPOL Y routine, 298 
FILLRECT routine, 296 
FILLROUNDRECT routine, 296 
Find command, 30 
Find Label command, 30 
Find Next command, 30 
Find Selected Text command, 30 
Find the Cursor command, 30 
Finder, 25 
FIX function, 143-144 
Floating point numbers, 79-80 

FOR ... NEXT statement, 144-145, 
191 

Formal parameters, 60 
FRAMEARC routine, 297 
FRAMEOV AL routine, 297 
FRAMEPOLY routine, 298 
FRAMERECT routine, 296 
FRAMEROlJNDRECT routine, 296 
FRE function, 7~. 14 5-146 
Functional operators, 90 
Functions 

intrinsic, 90 
user-defined, 90, 123-124 

Generalized device 1/0, 41-4 3 
GET statement, 4, 51, 140, 146-

148 
GETPEN routine, 292 
GOSUB ... RETURN statement, 

148-149, 229 
GOTO statement, 150 

Heap, 72 
HEX S function, 150-151 
Hexadecimal, I 50-1 51 
HIDECURSOR routine, 298 
HIDEPEN routine, 295 

Icons 
explanation of, 93-94 

IF ... GOTO statement, 151-153 
IF ... THEN ... ELSE statement, 151-

153 
Immediate mode, 20, 25-26, 38 
IMP operator, 85 
INITCURSOR routine, 298 
INKEYS function, 153-154 
Input mode, 45 
INPUT statement, 114, 140, 155-

156 
INPUT# statement, 157-158 
INPUTS function, 156-157 
INSTR function, 1 59 
INT function, 160 
Integer, 107, 143, 160 

r 

~ 
I 

~ 
I 



Index 

- Integer division, 87 LOF function, 172-1 73 MOUSE ON statement, 189 
Internal number representations, LOG function, 173-174 MOUSE STOP statement, 189 

283-85 Logarithm, 173 MOVE routine, 292 
Intrinsic functions, 90 Logical operators, 88-90 MOVETO routine, 289, 292 
INVERTARC routine, 297 Loops, 144, 191, 263 Moving the pen, 292 ... INVERTOVAL routine, 297 LPOS function, 174, 265 Multiplan, 55 
INVERTPOL Y routine, 298 LPRINT statement, 175, 264 
INVERTRECT routine, 296 LPRINT USING statement, I 75 NAME 
INVERTROUNDRECT routine, LPTl:, 41-43 command, 189 

296 LSET statement, 50, 140, 1 75- I 76, statement, 44, 189-190 
232 Natural logarithm, 139 

KILL statement, 44, 160 New command, 28 - KYBD:, 41 Macintosh NEW statement, 190 
heap, 110 NEXT statement, 191 

Labels, 9-10, 77-78 ROM routines, 289-299 Non-ASCII codes, 274 
LBOUND function, 65, 161, 257 system errors, 73 NOT operator, 85 
LCOPY statement, 162 MacPaint, 57 Numeric constants, 79-80 
LEFTS function, 162 Math packs, 23 
LEN function, 16 3 Mathematical functions, 287-88 OBSCURECURSOR routine, 298 
LET statement, 164 Memory management, 59, 71-73 OCT s function, 191-192 
LINE INPUT statement, 166 Menu bar, 28 Octal, 191 
LINE INPUT# statement, 167 MENU ON BREAK statement, 67, 192-
Line function, I 76-1 78 193 

labels, 77-78 statement, I 76-1 78 ON DIALOG statement, 67, 193-
numbers, IO, 77-78 MENU OFF statement, 179 194 
printer, 169, 174, 175, 265 MENU ON statement, 1 79 ON ERROR GOTO statement, 
separator MENU STOP statement, I 79 195 

colon, 77 MERGE ON ... GOSUB statement, 67, 196-

.... LINE routine, 293 command, 179 197 
LINE statement, 4, 165 statement, 44, I 79 ON ... GOTO statement, 196-197 
LINETO routine, 293 Microsoft Multiplan, 55 ON MENU statement, 67, 197-
LIST statement, 3 7, 168 MIDS 198 ... List window function, 180-181 ON MOUSE, 185, 189 

activating, 27 statement, 180-181 ON MOUSE statement, 66, 198 
cutting and pasting between MKD S function, 182-183 ON TIMER statement, 66, 199 

windows, 37 MKDBCDS function, 24, 184-185 Open command, 8-9, 30 
enlarging, 28 MKI S function, 182-183 OPEN statement, 49, 51, 140, 
opening at specific line, 37 MKS S function, 182-183 200-201 
viewing more than one, 33-35 MKSBCDS function, 24, 184-185 Operators 

LUST statement, 169 MOD operator, 87 arithmetic, 86-87 
LOAD statement, 25, 44, 169-170, Modal dialog box, 26 7 functional, 90 

233 Modulo arithmetic, 87 logical, 88-90 ,..., 
Loading a program, 8, 25 Mouse cursor handling, 298-99 precedence, 85 
LOC function, 5 2, I 70-1 71 MOUSE function, 185-188 relational, 87-88 
LOCATE statement, 1 71-1 72 MOUSE OFF statement, 189 string, 90 

• 



Index 

OPTION BASE statement, 65, Printing Run menu 
161, 202 program files, 29 Continue command, 30 

OR operator, 85 screen images, 162 Start command, 30 
rm"' Output Program Step command, 30 

mode, 45 execution mode, 26 Stop command, 30 
window, 27 execution speed, 305 Suspend command, 30 

active, 266 loading, 8-9 Trace command, 30 
current, 266 Protected files, 233 

Ovals, 295 PSET statement, 218-219 Save As command, 23, 29, 44 
PTAB function, 219-220 Save command, 29, 44 

PAINTARC routine, 297 PUT statement, 4, SO, 140, 220- SAVE statement, 25; 44, 169, 
PAINTOV AL routine, 297 222 233-234 
PAINTPOLY routine, 298 Saving 
PAINTRECT routine, 296 Questions and answers, 303-305 a program, 25 
PAINTROUNDRECT routine, 296 Quit command, 24, 29 data to the Clipboard, 41 
Pass by reference, 60 Quitting BASIC, 24 Saving files 
Paste command, 12, 29 ASCII format, 29, 233 
PEEK function, 202, 206 Random files, 24, 48-54, 140, binary format, 29, 233 
PENMODE routine, 294 146, l 70, 1 75, 182, 200, protected format, 29, 233 
PENNORMAL routine, 295 220-222, 232, 303-304 Screen elements, 26 r 
PENPAT routine, 294 Random numbers, 223, 231 SCROLL statement, 4, 234-235 
PENSIZE routine, 293 RANDOMIZE statement, 223-224, Search menu 
PICTIJRE OFF statement, 57, 204 231 Find command, 30 
PICTIJRE ON statement, 57, 204 READ statement, 224-225, 227 Find Label command, 30 
PICTIJRE statement, 203 Reading data from the Clipboard, Find Next command, 30 
PICTIJRES function, 204-205 41 Find Selected Text command, 
Picture Rectangles, 295 30 

program, 301-302 Rectangles with rounded corners, Find the Cursor command, 30 
loading, 9 296 Replace command, 30 
running, 11-12 Relational operators, 87-88 Sequential files, 45-48, 135, 157, 

POINT function, 205-206 REM statement, 226 167, 170, 200, 216-217, 271, 
POKE statement, 202, 206-207 Removing program errors, 3 7-38 303 
Polling, 69-70 Replace command, 30 SETCURSOR routine, 299 
Polygons, 295 Reserved words, 81, 281-282 SGN function, 236 
POS function, 207-208, 265 RESET statement, 226 SHARED statement, 62, 64, 237 
Practice session, 8 RESTORE statement, 227 Shared variables, 64, 237 ,_ 
PRESET statement, 208-209 RESUME statement, 228 Show Command command, 31 
Print command, 29 RETURN statement, 148, 229-230 Show List command, 31 
PRINT statement, 209-21 O RIGHTS function, 230-231 Show Output command, 31 
PRINT USING statement, 211-215 RND function, 223, 231-232 Show Second List command, 31 
PRINT# statement, 216-218 ROM calls, 289-299 SHOWCURSOR routine, 298 
PRINT# USING statement, 216- RSET statement, 175-176, 232 SHOWPEN routine, 295 

218 RUN Simple variables, 63 
Printer, 1 75 command, 232 SIN function, 238 

• 
statement, 232-233 Single precision, 116, 124, 210 

.... 
! 

~ 



Slow program execution, 303 
SOUND statement, 239-240 
SPACES function, 241 
SPC function, 242 
Speed of program execution, 303 
SQR function, 243 
Square root, 243 
Stack, 71, 110 
Start command, 30 
Starting BASIC, 7, 24 
Statement & Function Directory, 

92-271 
STATIC attribute, 62, 64-65 
Static variables, 65 
Step 

command, 19, 30 
option, 38 

Stop command, 12, 30, 138 
STOP statement, 114, 244 
Stopping a program, 38 
STRS function, 245 
String 

concatenation, 91 
constants, 79 
functions, 117, 159, 162, 180, 

230, 245, 257,258 
size, 4 
space, 109, 14 5 
variable size, 4 
variables, 124 

STRINGS function, 245-246 
SUB statement, 62, 246-247 
Subprograms, 59-66, 102, 161, 

237 
Subroutines, 148-149, 196, 229 
Subscripts, 202 
Suspend command, 30, 38 
SW AP statement, 249 
System errors, 73 
SYSTEM statement, 24, 250 

TAB function, 250-251 
TAN function, 251-252 
Tangent, 251 
Text processing, 57 

TEXTFACE routine, 291 
TEXTFONT routine, 290 
TEXTMODE routine, 292 
TEXTSIZE routine, 291 
TIMES 

function, 252-253 
statement, 252-253 

TIMER function, 254-255 
TIMER OFF statement, 254 
TIMER ON statement, 254 
TIMER STOP statement, 254 
Toolbox calls, 289-299 
Trace off command, 30 
Trace on command, 30 
TROFF 

command, 30, 256 
statement, 37, 256 

TRON 
command, 30, 256 
statement, 37, 256 

UBOUND function, 65, 161, 257 
UCASE S function, 2 5 7 
Using data from other programs, 

56 

VAL function, 258-259 
Variables, 81 

array, 129 
passing with COMMON, 105, 

113 
string, 124 

VARPTR function, 259-260, 289 

WAVE statement, 260-262 
WEND statement, 263 
WHILE ... WEND statement, 14, 

263-264 
WIDTH LPRINT statement, 264 
WIDTH 

function, 264--265 
statement, 264-265 

WINDOW 
function, 266-269 
statement, 42, 266·269 

Index 

WINDOW CLOSE statement, 267 
WINDOW OUTPUT statement, 

267 
WINDOW OUTPUT# statement, 

269 
Windows menu 

Show Command command, 31 
Show List command, 31 
Show Output command, 31 
Show Second List command, 31 

Word processing, 5 7 
WRITE statement, 270 
WRITE# statement, 271 

XOR operator, 85 

• 



- MICROSOFT® 
10700 Northup Way, Bellevue, WA 98004 

Software 
Problem Report 

=,....============================================================================================== 

Name 

Street-----------------------------

City _____________ State------Zip-------

Phone Date _______ _ 

Instructions 

Use this form to report software bugs, documentation errors, or suggested enhancements. 
Mail the form to Microsoft. 

Category 

__ Software Problem Documentation Problem 
(Document# _____ _ 

__ Software Enhancement __ Other 

Software Description 

Microsoft Product 

Rev.------ Registration# ---------------­

Operating System-------------------------

Rev. ______ supplier------------------

Other Software Used 

Rev. ______ Supplier------------------

Hardware Description 

Manufacturer ------ CPU 

Disk Size-----" Density: 

Memory 

Sides: 

Single__ Single __ 

Double__ Double __ 

______ KB 

Pcripher~s --------------------------~ 



Problem Description 

Describe the problem. (Also describe how co reproduce it, and your diagnosis and suggested 
correction.) Attach a listing if available. 

Microsoft Use Only 

Tech Support -----­

Routing Code 

Report Number ----­

Action Taken : 

Date Received 

Date Resolved 





-

-


